
Performance and Tuning:
Optimizer and Abstract Plans

Adaptive Server® Enterprise

12.5.1

DOCUMENT ID: DC20023-01-1251-01

LAST REVISED: August 2003

Copyright © 1989-2003 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture,
Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server
Enterprise Replication, Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, Anywhere Studio, Application
Manager, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Translator, APT-Library, AvantGo,
AvantGo Application Alerts, AvantGo Mobile Delivery, AvantGo Mobile Document Viewer, AvantGo Mobile Inspection, AvantGo
Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon Application Server,
AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker, ClearConnect, Client-Library,
Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress, DataServer,
DataWindow, DB-Library, dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution Director, e-ADK,
E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway, ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise
Application Studio, Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server
Manager, Enterprise Work Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA,
Financial Fusion, Financial Fusion Server, Gateway Manager, GlobalFIX, ImpactNow, Industry Warehouse Studio, InfoMaker,
Information Anywhere, Information Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, Mail
Anywhere Studio, MainframeConnect, Maintenance Express, Manage Anywhere Studio, M-Business Channel, M-Business Network,
M-Business Server, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, My AvantGo, My AvantGo Media Channel,
My AvantGo Mobile Marketing, MySupport, Net-Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle,
OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open
Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC
Net Library, PocketBuilder, Pocket PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class
Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage,
PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst,
Rapport, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication Server, Replication Server Manager,
Replication Toolkit, Resource Manager, RW-DisplayLib, S-Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian,
SKILS, smart.partners, smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL
Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART,
SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, S.W.I.F.T.
Message Format Libraries, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase MPP,
Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial,
SyberAssist, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, TradeForce, Transact-SQL,
Translation Toolkit, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual
Components, VisualSpeller, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse
WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup
SQL Server, XA-Library, XA-Server and XP Server are trademarks of Sybase, Inc. 03/03

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

Performance &Tuning: Optimizer and Abstract Plans iii

About This Book .. xv

CHAPTER 1 Introduction to Performance and Tuning 1

CHAPTER 2 Optimizer Overview... 3
Definition .. 3

Steps in query processing ... 4
Working with the optimizer .. 4

Object sizes are important to query tuning....................................... 5
Query optimization ... 6

SQL derived tables and optimization... 7
Factors examined during optimization.. 7
Preprocessing can add clauses for optimizing................................. 8

Converting clauses to search argument equivalents................. 9
Converting expressions into search arguments 10
Search argument transitive closure... 10
Join transitive closure.. 11
Predicate transformation and factoring 12

Guidelines for creating search arguments...................................... 14
Search arguments and useful indexes... 15

Search argument syntax ... 15
How statistics are used for SARGS... 17
Using statistics on multiple search arguments 20
Default values for search arguments....................................... 20
SARGs using variables and parameters 21

Join syntax and join processing ... 21
How joins are processed ... 22
When statistics are not available for joins 22
Density values and joins.. 23
Multiple column joins ... 23
Search arguments and joins on a table................................... 23

Datatype mismatches and query optimization................................ 24
Overview of the datatype hierarchy and index issues 25

Contents

iv Adaptive Server Enterprise

Datatypes for parameters and variables used as SARGs....... 28
Compatible datatypes for join columns 29
Suggestions on datatypes and comparisons........................... 30
Forcing a conversion to the other side of a join....................... 31

Splitting stored procedures to improve costing 32
Basic units of costing ... 33

CHAPTER 3 Advanced Optimizing Tools ... 35
Special optimizing techniques.. 35
Specifying optimizer choices.. 36
Specifying table order in joins .. 37

Risks of using forceplan .. 38
Things to try before using forceplan .. 38

Specifying the number of tables considered by the optimizer........ 39
Specifying an index for a query.. 40

Risks.. 41
Things to try before specifying an index.................................. 41

Specifying I/O size in a query... 42
Index type and large I/O .. 43
When prefetch specification is not followed 44
set prefetch on... 45

Specifying the cache strategy .. 45
In select, delete, and update statements................................. 46

Controlling large I/O and cache strategies 47
Getting information on cache strategies.................................. 47

Asynchronous log service .. 48
Understanding the user log cache (ULC) architecture 49
When to use ALS .. 50
Using the ALS ... 50
Changed system procedures .. 51

Enabling and disabling merge joins ... 51
Enabling and disabling join transitive closure 52
Suggesting a degree of parallelism for a query.............................. 53

Query level parallel clause examples...................................... 55
Concurrency optimization for small tables 55

Changing locking scheme ... 56

CHAPTER 4 Query Tuning Tools.. 57
Overview .. 57
How tools may interact ... 59

Using showplan and noexec together 59
noexec and statistics io ... 59

How tools relate to query processing ... 60

Contents

Performance &Tuning: Optimizer and Abstract Plans v

CHAPTER 5 Access Methods and Query Costing for Single Tables............. 61
Table scan cost .. 63

Cost of a scan on allpages-locked table.................................. 63
Cost of a scan on a data-only-locked tables 64

From rows to pages ... 66
How cluster ratios affect large I/O estimates........................... 67

Evaluating the cost of index access ... 69
Query that returns a single row ... 69
Query that returns many rows ... 69
Range queries with covering indexes...................................... 72
Range queries with noncovering indexes................................ 73

Costing for queries using order by ... 77
Prefix subset and sorts.. 78
Key ordering and sorts .. 79
How the optimizer costs sort operations 81
Allpages-locked tables with clustered indexes 81
Sorts when index covers the query ... 83
Sorts and noncovering indexes ... 84

Access Methods and Costing for or and in Clauses 85
or syntax.. 85
in (values_list) converts to or processing 85
Methods for processing or clauses.. 86

How aggregates are optimized .. 90
Combining max and min aggregates....................................... 91

How update operations are performed... 92
Direct updates ... 92
Deferred updates... 95
Deferred index inserts ... 96
Restrictions on update modes through joins 99
Optimizing updates.. 100
Using sp_sysmon while tuning updates 102

CHAPTER 6 Accessing Methods and Costing for Joins and Subqueries .. 105
Costing and optimizing joins .. 105

Processing... 106
Index density and joins.. 106
Datatype mismatches and joins .. 107
Join permutations .. 107

Nested-loop joins ... 110
Cost formula .. 112
How inner and outer tables are determined 112

Self join .. 113
Access methods and costing for sort-merge joins 114

How a full-merge is performed .. 117

Contents

vi Adaptive Server Enterprise

How a right-merge or left-merge is performed 118
How a sort-merge is performed... 119
Mixed example .. 119
Costing for merge joins ... 121
Costing for a full-merge with unique values 122
Example: allpages-locked tables with clustered indexes 122
Costing for a full-merge with duplicate values....................... 123
Costing sorts ... 124
When merge joins cannot be used.. 125
Use of worker processes... 126
Recommendations for improved merge performance 126

Enabling and disabling merge joins ... 127
At the server level.. 128
At the session level ... 128

Reformatting strategy... 128
Subquery optimization.. 129

Flattening in, any, and exists subqueries 130
Flattening expression subqueries.. 135
Materializing subquery results... 135
Subquery introduced with an and clause 137
Subquery introduced with an or clause 138
Subquery results caching .. 138
Optimizing subqueries... 139

or clauses versus unions in joins ... 140

CHAPTER 7 Parallel Query Processing .. 141
Types of queries that can benefit from parallel processing.......... 142
Adaptive Server’s worker process model..................................... 143

Parallel query execution .. 145
Returning results from parallel queries.................................. 146

Types of parallel data access... 147
Hash-based table scans.. 148
Partition-based scans.. 149
Hash-based index scans ... 149
Parallel processing for two tables in a join 150
showplan messages.. 151

Controlling the degree of parallelism.. 152
Configuration parameters for controlling parallelism 153
Using set options to control parallelism for a session 155
Controlling parallelism for a query... 156
Worker process availability and query execution 157
Other configuration parameters for parallel processing 158

Commands for working with partitioned tables 158
Balancing resources and performance .. 161

Contents

Performance &Tuning: Optimizer and Abstract Plans vii

CPU resources .. 161
Disk resources and I/O.. 162
Tuning example: CPU and I/O saturation.............................. 162

Guidelines for parallel query configuration................................... 162
Hardware guidelines.. 163
Working with your performance goals and hardware guidelines..

163
Examples of parallel query tuning ... 164
Guidelines for partitioning and parallel degree...................... 165
Experimenting with data subsets... 166

System level impacts ... 167
Locking issues... 167
Device issues .. 168
Procedure cache effects.. 168

When parallel query results can differ.. 169
Queries that use set rowcount... 169
Queries that set local variables ... 170
Achieving consistent results .. 170

CHAPTER 8 Parallel Query Optimization ... 171
What is parallel query optimization? .. 172

Optimizing for response time versus total work..................... 172
When is optimization performed?... 172
Overhead costs .. 173

Factors that are not considered... 173
Parallel access methods .. 174

Parallel partition scan .. 175
Parallel clustered index partition scan (allpages-locked tables) 176
Parallel hash-based table scan ... 178
Parallel hash-based index scan .. 180
Parallel range-based scans... 182
Additional parallel strategies ... 184

Summary of parallel access methods .. 184
Selecting parallel access methods .. 185

Degree of parallelism for parallel queries..................................... 186
Upper limit ... 187
Optimized degree .. 187
Nested-loop joins... 190
Examples... 192
Runtime adjustments to worker processes 194

Parallel query examples... 195
Single-table scans ... 195
Multitable joins... 197
Subqueries .. 200

Contents

viii Adaptive Server Enterprise

Queries that require worktables .. 201
union queries... 201
Queries with aggregates ... 201
select into statements.. 202

Runtime adjustment of worker processes 202
How Adaptive Server adjusts a query plan 203
Evaluating the effect of runtime adjustments 204
Recognizing and managing runtime adjustments 204
Reducing the likelihood of runtime adjustments.................... 205
Checking runtime adjustments with sp_sysmon 206

Diagnosing parallel performance problems.................................. 206
Query does not run in parallel ... 207
Parallel performance is not as good as expected 208
Calling technical support for diagnosis.................................. 208

Resource limits for parallel queries .. 208

CHAPTER 9 Parallel Sorting .. 211
Commands that benefits from parallel sorting.............................. 211
Requirements and resources overview.. 212
Overview of the parallel sorting strategy 213

Creating a distribution map ... 215
Dynamic range partitioning.. 215
Range sorting .. 216
Merging results.. 216

Configuring resources for parallel sorting 216
Worker process requirements for parallel sorts..................... 217
Worker process requirements for select query sorts............. 220
Caches, sort buffers, and parallel sorts................................. 221
Disk requirements ... 228

Recovery considerations.. 230
Tools for observing and tuning sort behavior 230

Using set sort_resources on.. 231
Using sp_sysmon to tune index creation 236
Using parellel sort to speed the create index 236

CHAPTER 10 Tuning Asynchronous Prefetch ... 237
How asynchronous prefetch improves performance.................... 237

Improving query performance by prefetching pages 238
Prefetching control mechanisms in a multiuser environment 239
Look-ahead set during recovery.. 240
Look-ahead set during sequential scans............................... 240
Look-ahead set during nonclustered index access 241
Look-ahead set during dbcc checks...................................... 241

Contents

Performance &Tuning: Optimizer and Abstract Plans ix

Look-ahead set minimum and maximum sizes 242
When prefetch is automatically disabled...................................... 243

Flooding pools ... 244
I/O system overloads... 244
Unnecessary reads ... 245

Tuning Goals for asynchronous prefetch 247
Commands for configuration ... 248

Other Adaptive Server performance features 248
Large I/O ... 248
Fetch-and-discard (MRU) scans ... 250
Parallel scans and large I/Os .. 250

Special settings for asynchronous prefetch limits 251
Setting limits for recovery .. 251
Setting limits for dbcc .. 252

Maintenance activities for high prefetch performance.................. 252
Eliminating kinks in heap tables .. 253
Eliminating kinks in clustered index tables 253
Eliminating kinks in nonclustered indexes............................. 253

Performance monitoring and asynchronous prefetch 253

CHAPTER 11 Multiple Temporary Databases.. 255
Overview .. 255
After creating a temporary database.. 258
Using sp_tempdb ... 259
Binding with temporary databases ... 260

Session binding ... 261
Multiple temporary database and the system 261

System table changes ... 261
@@tempdbid global variable .. 262
tempdb_id() function.. 263
Log truncation.. 263
Rollback and recovery... 263
Dropping a temporary database.. 264
alter database.. 265
Caching characteristics ... 266
Processing stored procedures... 266
tempdb write optimization.. 267
High-availability considerations ... 267
Dumping and loading temporary databases.......................... 269
sp_dboption stored procedure... 270
Configuring the number of open databases 270
Changed procedures... 270
Changed and additional DBCCs ... 271
Additional changes .. 272

Contents

x Adaptive Server Enterprise

Installation issues... 272
Sizing and configuring temporary databases for applications 273
Shareable temporary tables .. 273
Updating user-created stored procedures............................. 273
Downgrading to an earlier version... 275

CHAPTER 12 tempdb Performance Issues... 277
How management of tempdb affects performance 277

Main solution areas for tempdb performance........................ 278
Types and uses of temporary tables .. 278

Truly temporary tables... 279
Regular user tables ... 279
Worktables .. 280

Initial allocation of tempdb.. 280
Sizing the tempdb .. 281
Placing tempdb .. 282
Dropping the master device from tempdb segments 282

Using disks for parallel query performance 283
Binding tempdb to its own cache ... 283

Commands for cache binding.. 284
Temporary tables and locking .. 284
Minimizing logging in tempdb... 285

 With select into ... 285
By using shorter rows.. 285

Optimizing temporary tables .. 286
Creating indexes on temporary tables................................... 287
Creating nested procedures with temporary tables............... 288
Breaking tempdb uses into multiple procedures 288

CHAPTER 13 Cursors and Performance... 291
Definition .. 291

Set-oriented versus row-oriented programming 292
Example .. 293

Resources required at each stage ... 294
Memory use and execute cursors ... 296

Cursor modes... 297
Index use and requirements for cursors....................................... 297

Allpages-locked tables .. 297
Data-only-locked tables... 298

Comparing performance with and without cursors....................... 299
Sample stored procedure without a cursor............................ 299
Sample stored procedure with a cursor................................. 300
Cursor versus noncursor performance comparison 301

Contents

Performance &Tuning: Optimizer and Abstract Plans xi

Locking with read-only cursors... 302
Isolation levels and cursors.. 304
Partitioned heap tables and cursors... 304
Optimizing tips for cursors.. 305

Optimizing for cursor selects using a cursor 305
Using union instead of or clauses or in lists 306
Declaring the cursor’s intent .. 306
Specifying column names in the for update clause 306
Using set cursor rows.. 307
Keeping cursors open across commits and rollbacks 308
Opening multiple cursors on a single connection.................. 308

CHAPTER 14 Overview on Abstract Plans .. 309
Definition .. 309
Managing abstract plans .. 310
Relationship between query text and query plans 310

Limits of options for influencing query plans 311
Full versus partial plans ... 311

Creating a partial plan ... 313
Abstract plan groups .. 313
How abstract plans are associated with queries 314

CHAPTER 15 Abstract Query Plan Guide .. 315
Introduction .. 315

Abstract plan language.. 316
Identifying tables ... 318
Identifying indexes... 319
Specifying join order.. 320
Specifying the join type ... 324
Specifying partial plans and hints.. 325
Creating abstract plans for subqueries.................................. 327
Abstract plans for materialized views 333
Abstract plans for queries containing aggregates 334
Specifying the reformatting strategy...................................... 336
OR strategy limitation .. 337
When the store operator is not specified............................... 337

Tips on writing abstract plans... 337
Comparing plans “before” and “after”... 338

Effects of enabling server-wide capture mode 339
Time and space to copy plans... 340

Abstract plans for stored procedures ... 340
Procedures and plan ownership.. 341
Procedures with variable execution paths and optimization.. 341

Contents

xii Adaptive Server Enterprise

Ad Hoc queries and abstract plans .. 342

CHAPTER 16 Creating and Using Abstract Plans.. 343
Using set commands to capture and associate plans.................. 343

Enabling plan capture mode with set plan dump................... 344
Associating queries with stored plans 344
Using replace mode during plan capture............................... 345
Using dump, load, and replace modes simultaneously 346

set plan exists check option ... 348
Using other set options with abstract plans.................................. 348

Using showplan ... 349
Using noexec... 349
Using forceplan ... 349

Server-wide abstract plan capture and association Modes.......... 350
Creating plans using SQL .. 350

Using create plan .. 351
Using the plan Clause ... 352

CHAPTER 17 Managing Abstract Plans with System Procedures 355
System procedures for managing abstract plans......................... 355
Managing an abstract plan group... 356

Creating a group.. 356
Dropping a group... 357
Getting information about a group... 357
Renaming a group... 360

Finding abstract plans .. 360
Managing individual abstract plans .. 361

Viewing a plan ... 361
Copying a plan to another group ... 362
Dropping an individual abstract plan 362
Comparing two abstract plans... 363
Changing an existing plan ... 364

Managing all plans in a group .. 364
Copying all plans in a group .. 364
Comparing all plans in a group.. 365
Dropping all abstract plans in a group................................... 367

Importing and exporting groups of plans...................................... 368
Exporting plans to a user table.. 368
Importing plans from a user table.. 369

CHAPTER 18 Abstract Plan Language Reference ... 371
Keywords ... 371

Contents

Performance &Tuning: Optimizer and Abstract Plans xiii

Operands ... 371
Abstract plan derived tables .. 372

Schema for examples .. 372
g_join.. 373
hints.. 376
i_scan... 377
in .. 378
lru ... 381
m_g_join... 381
mru ... 383
nested .. 384
nl_g_join... 386
parallel.. 387
plan .. 388
prefetch .. 390
prop .. 391
scan.. 392
store ... 393
subq ... 394
t_scan... 397
table ... 398
union .. 399
view .. 401
work_t... 401

Index ... 405

Contents

xiv Adaptive Server Enterprise

Performance & Tuning: Optimizer and Abstract Plans xv

About This Book

Audience This manual is intended for database administrators, database designers,
developers and system administrators.

Note You may want to use your own database for testing changes and
queries. Take a snapshot of the database in question and set it up on a test
machine.

How to use this book This manual is used to fine tune, troubleshoot or improve the performance
on Adaptive Server.

Chapter 1, “Introduction to Performance and Tuning” gives a general
description of this manual and the other manuals within the Performance
and Tuning Series for Adaptive Server.

Chapter 2, “Optimizer Overview” explains the process of query
optimization, how statistics are applied to search arguments and joins for
queries.

Chapter 3, “Advanced Optimizing Tools” describes advanced tools for
tuning query performance.

Chapter 4, “Query Tuning Tools” presents an overview of query tuning
tools and describes how these tools can interact.

Chapter 5, “Access Methods and Query Costing for Single Tables”
describes how Adaptive Server accesses tables in queries that only involve
one table and how the costs are estimated for various access methods.

Chapter 6, “Accessing Methods and Costing for Joins and Subqueries”
describes how Adaptive Server accesses tables during joins and
subqueries, and how the costs are determined.

Chapter 7, “Parallel Query Processing” intoduces the concepts and
resources required for parallel query processing.

Chapter 8, “Parallel Query Optimization” provides an indepth look at the
optimization of parallel queries.

Chapter 9, “Parallel Sorting” describes the use of parallel sorting for
queries and creating indexes.

xvi Adaptive Server Enterprise

Chapter 10, “Tuning Asynchronous Prefetch” describes how asynchronous
prefetch improves performance for queries that perform large disk I/O.

Chapter 12, “tempdb Performance Issues” stresses the importance of the
temporary database, tempdb, and provides suggestions for improving its
performance.

Chapter 11, “Multiple Temporary Databases” describes how Adaptive Server
allows you to create multiple temporary databases, which you can then use to
create temporary objects such as private temporary tables and work tables.

Chapter 13, “Cursors and Performance” describes performance issues with
cursors.

Related documents :

• The remaining volumes for the Performance and Tuning Series are:

• Performance and Tuning: Basics

• Performance and Tuning: Locking

• Performance and Tuning: Monitoring and Analyzing

• The release bulletin for your platform – contains last-minute information
that was too late to be included in the books.

A more recent version of the release bulletin may be available on the
World Wide Web. To check for critical product or document information
that was added after the release of the product CD, use the Sybase
Technical Library.

• The Installation Guide for your platform – describes installation, upgrade,
and configuration procedures for all Adaptive Server and related Sybase
products.

• Configuring Adaptive Server Enterprise for your platform – provides
instructions for performing specific configuration tasks for Adaptive
Server.

• What’s New in Adaptive Server Enterprise? – describes the new features
in Adaptive Server version 12.5, the system changes added to support
those features, and the changes that may affect your existing applications.

• Transact-SQL User’s Guide – documents Transact-SQL, Sybase’s
enhanced version of the relational database language. This manual serves
as a textbook for beginning users of the database management system.
This manual also contains descriptions of the pubs2 and pubs3 sample
databases.

 About This Book

Performance & Tuning: Optimizer and Abstract Plans xvii

• System Administration Guide – provides in-depth information about
administering servers and databases. This manual includes instructions
and guidelines for managing physical resources, security, user and system
databases, and specifying character conversion, international language,
and sort order settings.

• Reference Manual – contains detailed information about all Transact-SQL
commands, functions, procedures, and data types. This manual also
contains a list of the Transact-SQL reserved words and definitions of
system tables.

• The Utility Guide – documents the Adaptive Server utility programs, such
as isql and bcp, which are executed at the operating system level.

• The Quick Reference Guide – provides a comprehensive listing of the
names and syntax for commands, functions, system procedures, extended
system procedures, data types, and utilities in a pocket-sized book.
Available only in print version.

• The System Tables Diagram – illustrates system tables and their entity
relationships in a poster format. Available only in print version.

• Error Messages and Troubleshooting Guide – explains how to resolve
frequently occurring error messages and describes solutions to system
problems frequently encountered by users.

• Component Integration Services User’s Guide – explains how to use the
Adaptive Server Component Integration Services feature to connect
remote Sybase and non-Sybase databases.

• Java in Adaptive Server Enterprise – describes how to install and use Java
classes as data types, functions, and stored procedures in the Adaptive
Server database.

• XML Services in Adaptive Server Enterprise – describes the Sybase native
XML processor and the Sybase Java-based XML support, introduces
XML in the database, and documents the query and mapping functions
that comprise XML Services.

• Using Sybase Failover in a High Availability System – provides
instructions for using Sybase’s Failover to configure an Adaptive Server
as a companion server in a high availability system.

• Job Scheduler User’s Guide – provides instructions on how to create and
schedule jobs on a local or remote Adaptive Server using the command
line or a graphical user interface (GUI).

xviii Adaptive Server Enterprise

• Using Adaptive Server Distributed Transaction Management Features –
explains how to configure, use, and troubleshoot Adaptive Server DTM
features in distributed transaction processing environments.

• EJB Server User’s Guide – explains how to use EJB Server to deploy and
execute Enterprise JavaBeans in Adaptive Server.

• XA Interface Integration Guide for CICS, Encina, and TUXEDO –
provides instructions for using Sybase’s DTM XA interface with X/Open
XA transaction managers.

• Glossary – defines technical terms used in the Adaptive Server
documentation.

• Sybase jConnect for JDBC Programmer’s Reference – describes the
jConnect for JDBC product and explains how to use it to access data stored
in relational database management systems.

• Full-Text Search Specialty Data Store User’s Guide – describes how to use
the Full-Text Search feature with Verity to search Adaptive Server
Enterprise data.

• Historical Server User’s Guide –describes how to use Historical Server to
obtain performance information for SQL Server and Adaptive Server.

• Monitor Server User’s Guide – describes how to use Monitor Server to
obtain performance statistics from SQL Server and Adaptive Server.

• Monitor Client Library Programmer’s Guide – describes how to write
Monitor Client Library applications that access Adaptive Server
performance data.

Other sources of
information

Use the Sybase Technical Library CD and the Technical Library Product
Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the Technical Library CD. It is included with
your software. To read or print documents on the Getting Started CD you
need Adobe Acrobat Reader (downloadable at no charge from the Adobe
Web site, using a link provided on the CD).

• The Technical Library CD contains product manuals and is included with
your software. The DynaText reader (included on the Technical Library
CD) allows you to access technical information about your product in an
easy-to-use format.

 About This Book

Performance & Tuning: Optimizer and Abstract Plans xix

Refer to the Technical Library Installation Guide in your documentation
package for instructions on installing and starting the Technical Library.

• The Technical Library Product Manuals Web site is an HTML version of
the Technical Library CD that you can access using a standard Web
browser. In addition to product manuals, you will find links to
EBFs/Updates, Technical Documents, Case Management, Solved Cases,
newsgroups, and the Sybase Developer Network.

To access the Technical Library Product Manuals Web site, go to Product
Manuals at http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

3 Select a product name from the product list and click Go.

4 Select the Certification Report filter, specify a time frame, and click Go.

5 Click a Certification Report title to display the report.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software updates

❖ Finding the latest information on EBFs and software updates

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Updates. Enter user name and password information, if
prompted (for existing Web accounts) or create a new account (a free
service).

3 Select a product.

xx Adaptive Server Enterprise

4 Specify a time frame and click Go.

5 Click the Info icon to display the EBF/Update report, or click the product
description to download the software.

Conventions This section describes conventions used in this manual.

Formatting SQL
statements

SQL is a free-form language. There are no rules about the number of words you
can put on a line or where you must break a line. However, for readability, all
examples and syntax statements in this manual are formatted so that each
clause of a statement begins on a new line. Clauses that have more than one part
extend to additional lines, which are indented.

Font and syntax
conventions

The font and syntax conventions used in this manual are shown in Table 1.0:

Table 1: Font and syntax conventions in this manual

Element Example

Command names, command option names, utility
names, utility flags, and other keywords are bold.

select
sp_configure

Database names, datatypes, file names and path
names are in italics.

master database

Variables, or words that stand for values that you
fill in, are in italics.

select

column_name

from

table_name

where

search_conditions

Parentheses are to be typed as part of the command. compute

row_aggregate

 (

column_name

)

Curly braces indicate that you must choose at least
one of the enclosed options. Do not type the braces.

{cash, check, credit}

Brackets mean choosing one or more of the
enclosed options is optional. Do not type the
brackets.

[anchovies]

The vertical bar means you may select only one of
the options shown.

{die_on_your_feet | live_on_your_knees
| live_on_your_feet}

 About This Book

Performance & Tuning: Optimizer and Abstract Plans xxi

• Syntax statements (displaying the syntax and all options for a command)
appear as follows:
sp_dropdevice [device_name]

or, for a command with more options:

select column_name

from table_name

where search_conditions

In syntax statements, keywords (commands) are in normal font and identifiers
are in lowercase: normal font for keywords, italics for user-supplied words.

• Examples of output from the computer appear as follows:

Parentheses are to be typed as part of the command. compute

row_aggregate

 (

column_name

)

Curly braces indicate that you must choose at least
one of the enclosed options. Do not type the braces.

{cash, check, credit}

Brackets mean choosing one or more of the
enclosed options is optional. Do not type the
brackets.

[anchovies]

The vertical bar means you may select only one of
the options shown.

{die_on_your_feet | live_on_your_knees
| live_on_your_feet}

xxii Adaptive Server Enterprise

0736 New Age Books Boston MA

0877 Binnet & Hardley Washington DC

1389 Algodata Infosystems Berkeley CA

Case In this manual, most of the examples are in lowercase. However, you can
disregard case when typing Transact-SQL keywords. For example, SELECT,
Select, and select are the same. Note that Adaptive Server’s sensitivity to the
case of database objects, such as table names, depends on the sort order
installed on Adaptive Server. You can change case sensitivity for single-byte
character sets by reconfiguring the Adaptive Server sort order.

See in the System Administration Guide for more information.

Expressions Adaptive Server syntax statements use the following types of expressions:

Table 2: Types of expressions used in syntax statements

Examples Many of the examples in this manual are based on a database called pubtune.
The database schema is the same as the pubs2 database, but the tables used in
the examples have more rows: titles has 5000, authors has 5000, and titleauthor
has 6250. Different indexes are generated to show different features for many
examples, and these indexes are described in the text.

The pubtune database is not provided with Adaptive Server. Since most of the
examples show the results of commands such as set showplan and set statistics
io, running the queries in this manual on pubs2 tables will not produce the same
I/O results, and in many cases, will not produce the same query plans as those
shown here.

Usage Definition

expression Can include constants, literals, functions, column identifiers, variables, or
parameters

logical expression An expression that returns TRUE, FALSE, or UNKNOWN

constant expression An expression that always returns the same value, such as “5+3” or “ABCDE”

float_expr Any floating-point expression or expression that implicitly converts to a floating
value

integer_expr Any integer expression, or an expression that implicitly converts to an integer value

numeric_expr Any numeric expression that returns a single value

char_expr Any expression that returns a single character-type value

binary_expression An expression that returns a single binary or varbinary value

 About This Book

Performance & Tuning: Optimizer and Abstract Plans xxiii

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

xxiv Adaptive Server Enterprise

Performance & Tuning: Optimizer and Abstract Plans 1

C H A P T E R 1 Introduction to Performance and
Tuning

Tuning Adaptive Server Enterprise for performance can involve several
processes in analyzing the “Why?” of slow performance, contention,
optimizing and usage.

The Optimizer in the Adaptive Server takes a query and finds the best way
to execute it. The optimization is done based on the statistics for a
database or table. The optimized plan stays in effect until the statistics are
updated or the query changes. You can update the statistics on the entire
table or by sampling on a percentage of the data.

This volumn from the series on Performance and Tuning covers the
information on optimizing in Adaptive Server.

The remaining manuals for the Performance and Tuning Series are:

• Performance and Tuning: Basics

This manual covers the basics for understanding and investigating
performance questions in Adaptive Server. It guides you in how to
look for the places that may be impeding performance.

• Performance and Tuning: Locking

Adaptive Server locks the tables, data pages, or data rows currently
used by active transactions by locking them. Locking is a
concurrency control mechanism: it ensures the consistency of data
within and across transactions. Locking is needed in a multiuser
environment, since several users may be working with the same data
at the same time.

• Performance and Tuning: Abstract Plans

Adaptive Server can generate an abstract plan for a query, and save
the text and its associated abstract plan in the sysqueryplans system
table. Abstract plans provide an alternative to options that must be
specified in the batch or query in order to influence optimizer
decisions. Using abstract plans, you can influence the optimization of
a SQL statement without having to modify the statement syntax.

2 Adaptive Server Enterprise

• Performance and Tuning: Monitoring and Analyzing for Performance

Adaptive Server employs reports for monitoring the server. This manual
explains how statistics are obtained and used for monitoring and
optimizing. The stored procedure sp_sysmon produces a large report that
shows the performance in Adaptive Server.

You can also use the Sybase Monitor in Sybase Central for realtime
information on the status of the server.

Each of the manuals has been set up to cover specific information that may be
used by the system administrator and the database administrator.

Performance & Tuning: Optimizer and Abstract Plans 3

C H A P T E R 2 Optimizer Overview

This chapter introduces the Adaptive Server query optimizer and explains
the steps performed when you run queries.

This chapter explains how costs for individual query clauses are
determined.

Chapter 5, “Access Methods and Query Costing for Single
Tables,”explains how these costs are used to estimate the logical, physical,
and total I/O cost for single table queries.

Chapter 6, “Accessing Methods and Costing for Joins and Subqueries,”
explains how costs are used when queries join two or more tables, or when
queries include subqueries.

Definition
The optimizer examines parsed and normalized queries, and information
about database objects. The input to the optimizer is a parsed SQL query
and statistics about the tables, indexes, and columns named in the query.
The output from the optimizer is a query plan.

Topic Page
Definition 3

Object sizes are important to query tuning 5

Query optimization 6

Factors examined during optimization 7

Preprocessing can add clauses for optimizing 8

Guidelines for creating search arguments 14

Search arguments and useful indexes 15

Join syntax and join processing 21

Datatype mismatches and query optimization 24

Splitting stored procedures to improve costing 32

Basic units of costing 33

Definition

4 Adaptive Server Enterprise

The query plan is compiled code that contains the ordered steps to carry out the
query, including the access methods (table scan or index scan, type of join to
use, join order, and so on) to access each table.

Using statistics on tables and indexes, the optimizer predicts the cost of using
alternative access methods to resolve a particular query. It finds the best query
plan – the plan that is least the costly in terms of I/O. For many queries, there
are many possible query plans. Adaptive Server selects the least costly plan,
and compiles and executes it.

Steps in query processing
Adaptive Server processes a query in these steps:

1 The query is parsed and normalized. The parser ensures that the SQL
syntax is correct. Normalization ensures that all the objects referenced in
the query exist. Permissions are checked to ensure that the user has
permission to access all tables and columns in the query.

2 Preprocessing changes some search arguments to an optimized form and
adds optimized search arguments and join clauses.

3 As the query is optimized, each part of the query is analyzed, and the best
query plan is chosen. Optimization includes:

• Each table is analyzed.

• The cost of using each index that matches a search argument or join
column is estimated.

• The join order and join type are chosen.

• The final access method is determined.

4 The chosen query plan is compiled.

5 The query is executed, and the results are returned to the user.

Working with the optimizer
The goal of the optimizer is to select the access method for each table that
reduces the total time needed to process a query. The optimizer bases its choice
on the statistics available for the tables being queried and on other factors such
as cache strategies, cache size, and I/O size. A major component of optimizer
decision-making is the statistics available for the tables, indexes, and columns.

CHAPTER 2 Optimizer Overview

Performance & Tuning: Optimizer and Abstract Plans 5

In some situations, the optimizer may seem to make the incorrect choice of
access methods. This may be the result of inaccurate or incomplete information
(such as out-of-date statistics). In other cases, additional analysis and the use
of special query processing options can determine the source of the problem
and provide solutions or workarounds.

The query optimizer uses I/O cost as the measure of query execution cost. The
significant costs in query processing are:

• Physical I/O, when pages must be read from disk

• Logical I/O, when pages in cache are read for a query

See access methods and query costing.

Object sizes are important to query tuning
You should know the sizes of your tables and indexes to understanding query
and system behavior. At several stages of tuning work, you need size data to:

• Understand statistics io reports for a specific query plan.

Chapter 4, “Using the set statistics Commands,” in the Performance and
Tuning: Monitoring and Analyzing for Performance book describes how
to use statistics io to examine the I/O performed.

• Understand the optimizer’s choice of query plan. Adaptive Server’s cost-
based optimizer estimates the physical and logical I/O required for each
possible access method and chooses the cheapest method. If you think a
particular query plan is unusual, you can used dbcc traceon(302) to
determine why the optimizer made the decision. This output includes page
number estimates.

• Determine object placement, based on the sizes of database objects and the
expected I/O patterns on the objects. You can improve performance by
distributing database objects across physical devices so that reads and
writes to disk are evenly distributed.

Object placement is described in Chapter 6, “Controlling Physical Data
Placement.” in the book Performance and Tuning: Basics.

Query optimization

6 Adaptive Server Enterprise

• Understand changes in performance. If objects grow, their performance
characteristics can change. One example is a table that is heavily used and
is usually 100 percent cached. If that table grows too large for its cache,
queries that access the table can suddenly suffer poor performance. This is
particularly true for joins requiring multiple scans.

• Do capacity planning. Whether you are designing a new system or
planning for growth of an existing system, you need to know the space
requirements to plan for physical disks and memory needs.

• Understand output from Adaptive Server Monitor and from sp_sysmon
reports on physical I/O.

See the Adaptive Server System Administration Guide for more information on
sizing.

Query optimization
To understand the optimization of a query, you need to understand how the
query accesses database objects, the sizes of the objects, and the indexes on the
tables to determine whether it is possible to improve the query’s performance.

Some symptoms of optimization problems are:

• A query runs more slowly than you expect, based on indexes and table
size.

• A query runs more slowly than similar queries.

• A query suddenly starts running more slowly than usual.

• A query processed within a stored procedure takes longer than when it is
processed as an ad hoc statement.

• The query plan shows the use of a table scan when you expect it to use an
index.

Some sources of optimization problems are:

• Statistics have not been updated recently, so the actual data distribution
does not match the values used by Adaptive Server to optimize queries.

• The rows to be referenced by a given transaction do not fit the pattern
reflected by the index statistics.

• An index is being used to access a large portion of the table.

CHAPTER 2 Optimizer Overview

Performance & Tuning: Optimizer and Abstract Plans 7

• where clauses are written in a form that cannot be optimized.

• No appropriate index exists for a critical query.

• A stored procedure was compiled before significant changes to the
underlying tables were performed.

SQL derived tables and optimization
Queries expressed as a single SQL statement exploit the optimizer better than
queries expressed in two or more SQL statements. SQL derived tables enable
one to concisely express in a single step what might otherwise require several
SQL statements and temporary tables, especially where intermediate aggregate
results must be stored. For example,

select dt_1.* from
(select sum(total_sales)

from titles_west group by total_sales)
dt_1(sales_sum),

(select sum(total_sales)
from titles_east group by total_sales)

dt_2(sales_sum)
where dt_1.sales_sum = dt_2.sales_sum

Here aggregate results are obtained from the SQL derived tables dt_1 and dt_2,
and a join is computed between the two SQL derived tables. Everything is
accomplished in a single SQL statement.

For more information on SQL derived tables, see the Transact-SQL User’s
Guide.

Factors examined during optimization
Query plans consist of retrieval tactics and an ordered set of execution steps to
retrieve the data needed by the query. In developing query plans, the optimizer
examines:

• The size of each table in the query, both in rows and data pages, and the
number of OAM and allocation pages that need to be read.

Preprocessing can add clauses for optimizing

8 Adaptive Server Enterprise

• The indexes that exist on the tables and columns used in the query, the type
of index, and the height, number of leaf pages, and cluster ratios for each
index.

• Whether the index covers the query, that is, whether the query can be
satisfied by retrieving data from the index leaf pages without having to
access the data pages. Adaptive Server can use indexes that cover queries,
even if no where clauses are included in the query.

• The density and distribution of keys in the indexes.

• The size of the available data cache or caches, the size of I/O supported by
the caches, and the cache strategy to be used.

• The cost of physical and logical reads.

• Join clauses and the best join order and join type, considering the costs and
number of scans required for each join and the usefulness of indexes in
limiting the I/O.

• Whether building a worktable (an internal, temporary table) with an index
on the join columns would be faster than repeated table scans if there are
no useful indexes for the inner table in a join.

• Whether the query contains a max or min aggregate that can use an index
to find the value without scanning the table.

• Whether the data or index pages will be needed repeatedly to satisfy a
query such as a join or whether a fetch-and-discard strategy can be
employed because the pages need to be scanned only once.

For each plan, the optimizer determines the total cost by computing the logical
and physical I/Os. Adaptive Server then uses the cheapest plan.

Stored procedures and triggers are optimized when the object is first executed,
and the query plan is stored in the procedure cache. If other users execute the
same procedure while an unused copy of the plan resides in cache, the
compiled query plan is copied in cache, rather than being recompiled.

Preprocessing can add clauses for optimizing
After a query is parsed and normalized, but before the optimizer begins its
analysis, the query is preprocessed to increase the number of clauses that can
be optimized:

CHAPTER 2 Optimizer Overview

Performance & Tuning: Optimizer and Abstract Plans 9

• Some search arguments are converted to equivalent arguments.

• Some expressions used as search arguments are preprocessed to generate
a literal value that can be optimized.

• Search argument transitive closure is applied where possible.

• Join column transitive closure is applied where possible.

• For some queries that use or, additional search arguments can be generated
to provide additional optimization paths.

The changes made by preprocessing are transparent unless you are examining
the output of query tuning tools such as showplan, statistics io, or dbcc
traceon(302). If you run queries that benefit from the addition of optimized
search arguments, you see the added clauses:

• In additional costing blocks for the added clauses to be optimized in dbcc
traceon(302) output.

• In showplan output, you may see “Keys are” messages for tables where
you did not specify a search argument or a join.

Converting clauses to search argument equivalents
Preprocessing looks for some query clauses that it can convert to the form used
for search arguments (SARGs). These are listed in Table 2-1.

Table 2-1: Search argument equivalents

Clause Conversion

between Converted to >= and <= clauses. For example, between 10 and 20 is
converted to >= 10 and <= 20.

like If the first character in the pattern is a constant, like clauses can be
converted to greater than or less than queries. For example, like "sm%"
becomes >= "sm" and < "sn".

If the first character is a wildcard, a clause such as like "%x" cannot use an
index for access, but histogram values can be used to estimate the number
of matching rows.

in (values_list) Converted to a list of or queries, that is, int_col in (1, 2, 3) becomes int_col
= 1 or int_col = 2 or int_col = 3. The maximum number of elements in an IN-
list is 1025.

Preprocessing can add clauses for optimizing

10 Adaptive Server Enterprise

Converting expressions into search arguments
Many expressions are converted into literal search strings before query
optimization. In the following examples, the processed expressions are shown
as they appear in the search argument analysis of dbcc traceon(302) output:

These conversions allow the optimizer to use the histogram values for a
column rather than using default selectivity values.

The following are exceptions:

• The getdate function

• Most system functions such as object_id or object_name

These are not converted to literal values before optimization.

Search argument transitive closure
Preprocessing applies transitive closure to search arguments. For example, the
following query joins titles and titleauthor on title_id and includes a search
argument on titles.title_id:

select au_lname, title
from titles t, titleauthor ta, authors a
where t.title_id = ta.title_id
 and a.au_id = ta.au_id
 and t.title_id = "T81002"

Operation Example of where Clause Processed expression

Implicit
conversion

numeric_col = 5 numeric_col = 5.0

Conversion
function

int_column = convert(int, "77") int_column = 77

Arithmetic salary = 5000*12 salary = 6000

0

Math functions width = sqrt(900) width = 30

String functions shoe_width = replicate("E", 5) shoe_width = "EEEEE"

String
concatenation

full_name = "Fred" + " " + "Simpson" full_name = "Fred Simpson"

Date functions week = datepart(wk, "5/22/99") week = 21

Note getdate() cannot be optimized.

CHAPTER 2 Optimizer Overview

Performance & Tuning: Optimizer and Abstract Plans 11

This query is optimized as if it also included the search argument on
titleauthor.title_id:

select au_lname, title
from titles t, titleauthor ta, authors a
where t.title_id = ta.title_id
 and a.au_id = ta.au_id
 and t.title_id = "T81002"
 and ta.title_id = "T81002"

With this additional clause, the optimizer can use index statistics on
titles.title_id to estimate the number of matching rows in the titleauthor table.
The more accurate cost estimates improve index and join order selection.

Join transitive closure
Preprocessing applies transitive closure to join columns for normal equijoins if
join transitive closure is enabled at the server or session level. The following
query specifies the equijoin of t1.c11 and t2.c21, and the equijoin of t2.c21 and
t3.c31:

select *
from t1, t2, t3
where t1.c11 = t2.c21
and t2.c21 = t3.c31
and t3.c31 = 1

Without join transitive closure, the only join orders considered are (t1, t2, t3),
(t2, t1, t3), (t2, t3, t1),and (t3, t2, t1). By adding the join on t1.c11 = t3.31, the
optimizer expands the list of join orders with these possibilities: (t1, t3, t2) and
(t3, t1, t2). Search argument transitive closure applies the condition specified
by t3.c31 = 1 to the join columns of t1 and t2.

Transitive closure is used only for normal equijoins, as shown above. Join
transitive closure is not performed for:

• Non-equijoins; for example, t1.c1 > t2.c2

• Equijoins that include an expression; for example, t1.c1 = t2.c1 + 5

• Equijoins under an or clause

• Outer joins; for example t1.c11 *= t2.c2 or left join or right join

• Joins across subquery boundaries

• Joins used to check referential integrity or the with check option on views

Preprocessing can add clauses for optimizing

12 Adaptive Server Enterprise

• Columns of incompatible datatypes

Enabling join transitive closure

A System Administrator can enable join transitive closure at the server level
with the enable sort-merge joins and JTC configuration parameter. This
configuration parameter also enables merge joins. At the session level, set jtc
on enables join transitive closure, and takes precedence over the server-wide
setting. For more information on the types of queries likely to benefit from the
use of join transitive closure.

See “Enabling and disabling join transitive closure” on page 52.

Predicate transformation and factoring
Predicate transformation and factoring improves the number of choices
available to the optimizer. It adds clauses that can be optimized to a query by
extracting clauses from blocks of predicates linked with or into clauses linked
by and. These additional optimized clauses mean that there are more access
paths available for query execution. The original or predicates are retained to
ensure query correctness.

During predicate transformation:

1 Simple predicates (joins, search arguments, and in lists) that are an exact
match in each or clause are extracted. In the sample query, this clause
matches exactly in each block, so it is extracted:

 t.pub_id = p.pub_id

between clauses are converted to greater-than-or-equal and less-than-or-
equal clauses before predicate transformation. The sample query above
uses between 15 in both query blocks (though the end ranges are different).
The equivalent clause is extracted by step 1:

price >=15

2 Search arguments on the same table are extracted; all terms that reference
the same table are treated as a single predicate during expansion. Both type
and price are columns in the titles table, so the extracted clauses are:

(type = "travel" and price >=15 and price <= 30)
or
(type = "business" and price >= 15 and price <= 50)

CHAPTER 2 Optimizer Overview

Performance & Tuning: Optimizer and Abstract Plans 13

3 in lists and or clauses are extracted. If there are multiple in lists for a table
within one of the blocks, only the first is extracted. The extracted lists for
the sample query are:

 p.pub_id in ("P220", "P583", "P780")
or
 p.pub_id in ("P651", "P066", "P629")

4 These steps can overlap and extract the same clause, so any duplicates are
eliminated.

5 Each generated term is examined to determine whether it can be used as
an optimized search argument or a join clause. Only those terms that are
useful in query optimization are retained.

6 The additional clauses are added to the existing query clauses that were
specified by the user.

Example

All clauses optimized in this query are enclosed in the or clauses:

select p.pub_id, price
from publishers p, titles t
where (
 t.pub_id = p.pub_id
 and type = "travel"
 and price between 15 and 30
 and p.pub_id in ("P220", "P583", "P780")
)
or (
 t.pub_id = p.pub_id
 and type = "business"
 and price between 15 and 50
 and p.pub_id in ("P651", "P066", "P629")
)

Predicate transformation pulls clauses linked with and from blocks of clauses
linked with or, such as those shown above. It extracts only clauses that occur
in all parenthesized blocks. If the example above had a clause in one of the
blocks linked with or that did not appear in the other clause, that clause would
not be extracted.

Guidelines for creating search arguments

14 Adaptive Server Enterprise

Guidelines for creating search arguments
Follow these guidelines when you write search arguments for your queries:

• Avoid functions, arithmetic operations, and other expressions on the
column side of search clauses. When possible, move functions and other
operations to the expression side of the clause.

• Avoid incompatible datatypes for columns that will be joined and for
variables and parameter used as search arguments.

See “Datatype mismatches and query optimization” on page 24 for more
information.

• Use the leading column of a composite index as a search argument. The
optimization of secondary keys provides less performance.

• Use all the search arguments you can to give the optimizer as much as
possible to work with.

• If a query has more than 102 predicates for a table, put the most potentially
useful clauses near the beginning of the query, since only the first 102
SARGs on each table are used during optimization. (All of the search
conditions are used to qualify the rows.)

• Some queries using > (greater than) may perform better if you can rewrite
them to use >= (greater than or equal to). For example, this query, with an
index on int_col uses the index to find the first value where int_col equals
3, and then scans forward to find the first value that is greater than 3. If
there are many rows where int_col equals 3, the server has to scan many
pages to find the first row where int_col is greater than 3:

select * from table1 where int_col > 3

It is probably more efficient to write the query like this:

select * from table1 where int_col >= 4

This optimization is more difficult with character strings and floating-
point data. You need to know your data.

• Check showplan output to see which keys and indexes are used.

• If you expect an index is not being used when you expect it to be, check
dbcc traceon(302) output to see if the optimizer is considering the index.

CHAPTER 2 Optimizer Overview

Performance & Tuning: Optimizer and Abstract Plans 15

Search arguments and useful indexes
It is important to distinguish between where and having clause predicates that
can be used to optimize the query, and those that are used later during query
processing to filter the rows to be returned.

Search arguments can be used to determine the access path to the data rows
when a column in the where clause matches a leading index key. The index can
be used to locate and retrieve the matching data rows. Once the row has been
located in the data cache or has been read into the data cache from disk, any
remaining clauses are applied.

For example, if the authors table has on an index on au_lname and another on
city, either index can be used to locate the matching rows for this query:

select au_lname, city, state
from authors
where city = "Washington"
and au_lname = "Catmull"

The optimizer uses statistics, including histograms, the number of rows in the
table, the index heights, and the cluster ratios for the index and data pages to
determine which index provides the cheapest access. The index that provides
the cheapest access to the data pages is chosen and used to execute the query,
and the other clause is applied to the data rows once they have been accessed.

Search argument syntax
Search arguments (SARGs) are expressions in one of these forms:

<column> <operator> <expression>

<expression> <operator> <column>

<column> is null

Where:

• column is only a column name. If functions, expressions, or concatenation
are added to the column name, an index on the column cannot be used.

• operator must be one of the following:

 =, >, <, >=, <=, !>, !<, <>, !=, is null

• expression is either a constant, or an expression that evaluates to a
constant. The optimizer uses the index statistics differently, depending on
whether the value of the expression is known at compile time:

Search arguments and useful indexes

16 Adaptive Server Enterprise

• If expression is a known constant or can be converted to a known
constant during preprocessing, it can be compared to the histogram
values stored for an index to return accurate row estimates.

• If the value of expression is not known at compile time, the optimizer
uses the total density to estimate the number of rows to be returned by
the query. The value of variables set in a query batch or parameters set
within a stored procedure cannot be known until execution time.

• If the datatype of the expression is not compatible with the datatype
of the column, an index cannot be used, and is not considered.

See “Datatype mismatches and query optimization” on page 24 for
more information.

Nonequality operators

The nonequality operators, < > and !=, are special cases. The optimizer checks
for covering nonclustered indexes if the column is indexed and uses a
nonmatching index scan if an index covers the query. However, if the index
does not cover the query, the table is accessed via a table scan.

Examples of SARGs

The following are some examples of clauses that can be fully optimized. If
there are statistics on these columns, they can be used to help estimate the
number of rows the query will return. If there are indexes on the columns, the
indexes can be used to access the data:

au_lname = "Bennett"
price >= $12.00
advance > $10000 and advance < $20000
au_lname like "Ben%" and price > $12.00

The following search arguments cannot be optimized:

advance * 2 = 5000 /*expression on column side
 not permitted */
substring(au_lname,1,3) = "Ben" /* function on
 column name */

These two clauses can be optimized if written in this form:

advance = 5000/2
au_lname like "Ben%"

Consider this query, with the only index on au_lname:

CHAPTER 2 Optimizer Overview

Performance & Tuning: Optimizer and Abstract Plans 17

select au_lname, au_fname, phone
 from authors
 where au_lname = "Gerland"
 and city = "San Francisco"

The clause qualifies as a SARG:

au_lname = "Gerland"

• There is an index on au_lname.

• There are no functions or other operations on the column name.

• The operator is a valid SARG operator.

• The datatype of the constant matches the datatype of the column.

city = "San Francisco"

This clause matches all the criteria above except the first—there is no index on
the city column. In this case, the index on au_lname is used for the query. All
data pages with a matching last name are brought into cache, and each
matching row is examined to see if the city matches the search criteria.

How statistics are used for SARGS
When you create an index, statistics are generated and stored in system tables.
Some of the statistics relevant to determining the cost of search arguments and
joins are:

• Statistics about the index: the number of pages and rows, the height of the
index, the number of leaf pages, the average leaf row size.

• Statistics about the data in the column:

• A histogram for the leading column of the index. Histograms are used
to determine the selectivity of the SARG, that is, how many rows from
the table match a given value.

• Density values, measuring the density of keys in the index.

• Cluster ratios that measure the fragmentation of data storage and the
effectiveness of large I/O.

Only a subset of these statistics (the number of leaf pages, for example) are
maintained during query processing. Other statistics are updated only when
you run update statistics or when you drop and re-create the index. You can
display these statistics using optdiag.

Search arguments and useful indexes

18 Adaptive Server Enterprise

See Chapter 6, “Statistics Tables and Displaying Statistics with optdiag.” in
the Performance and Tuning: Monitoring and Analyzing for Performance
book.

Histogram cells

When you create an index, a histogram is created on the first column of the
index. The histogram stores information about the distribution of values in the
column. Then you can use update statistics to generate statistics for the minor
keys of a compound index and columns used in unindexed search clauses.

The histogram for a column contains data in a set of steps or cells. You can
specify the number of cells can when the index is created or when the update
statistics command is run. For each cell, the histogram stores a column value
and a weight for the cell.

There are two types of cells in histograms:

• A frequency cell represents a value that has a high proportion of
duplicates in the column. The weight of a frequency cell times the number
of rows in the table equals the number of rows in the table that match the
value for the cell. If a column does not have highly duplicated values, there
are only range cells in the histogram.

• Range cells represent a range of values. Range cell weights and the range
cell density are used for estimating the number of rows to be returned
when search argument values falls within a range cell.

For more information on histograms, see “Histogram displays” on page 151 in
the Performance and Tuning: Monitoring and Analyzing for Performance
book.

Density values

Density is a measure of the average proportion of duplicate keys in the index.
It varies between 0 and 1. An index with N rows whose keys are unique has a
density of 1/N; an index whose keys are all duplicates of each other has a
density of 1.

For indexes with multiple keys, density values are computed and stored for
each prefix of keys in the index. That is, for an index on columns A, B, C, D,
densities are stored for:

• A

• A, B

CHAPTER 2 Optimizer Overview

Performance & Tuning: Optimizer and Abstract Plans 19

• A, B, C

• A, B, C, D

Range cell density and total density

For each prefix subset, two density values are stored:

• Range cell density, used for search arguments

• Total density, used for joins

Range cell density represents the average number of duplicates of all values
that are represented by range cells in the histogram. Total density represents the
average number of duplicates for all values, those in both frequency and range
cells. Total density is used to estimate the number of matching rows for joins
and for search arguments whose value is not known when the query is
optimized.

How the optimizer uses densities and histograms

When the optimizer analyzes a SARG, it uses the histogram values, densities,
and the number of rows in the table to estimate the number of rows that match
the value specified in the SARG:

• If the SARG value matches a frequency cell, the estimated number of
matching rows is equal to the weight of the frequency cell multiplied by
the number of rows in the table. This query includes a data value with a
high number of duplicates, so it matches a frequency cell:

where authors.city = "New York"

If the weight of the frequency cell is #.015606, and the authors table has
5000 rows, the optimizer estimates that the query returns 5000 * .015606
= 78 rows.

• If the SARG value falls within a range cell, the optimizer uses the range
cell density to estimate the number of rows. For example, a query on a city
value that falls in a range cell, with a range cell density of .000586 for the
column, would estimate that 5000 * .000586 = 3 rows would be returned.

• For range queries, the optimizer adds the weights of all cells spanned by
the range of values. When the beginning or end of the range falls in a range
cell, the optimizer uses interpolation to estimate the number of rows from
that cell that are included in the range.

Search arguments and useful indexes

20 Adaptive Server Enterprise

Using statistics on multiple search arguments
When there are multiple search arguments on the same table, the optimizer uses
statistics to combine the selectivity of the search arguments.

This query specifies search arguments for two columns in the table:

select title_id
from titles
where type = "news"
and price < $20

With an index on type, price, the selectivity estimates vary, depending on
whether statistics have been created for price:

• With only statistics for type, the optimizer uses the frequency cell weight
for type and a default selectivity for price. The selectivity for type is
#.106600, and the default selectivity for an open-ended range query is
33%. The number of rows to be returned for the query is estimated using
.106600 * .33, or .035178. With 5000 rows in the table, the estimate is 171
rows.

See Table 2-2 for the default values used when statistics are not available.

• With statistics added for price, the histogram is used to estimate that
.133334 rows match the search argument on price. Multiplied by the
selectivity of type, the result is .014213, and the row estimate is 71 rows.

The actual number of rows returned is 53 rows for this query, so the additional
statistics improved the accuracy. For this simple single-table query, the more
accurate selectivity did not change the access method, the index on type, price.
For some single-table queries, however, the additional statistics can help the
optimizer make a better choice between using a table scan or using other
indexes. In join queries, having more accurate statistics on each table can result
in more efficient join orders.

Default values for search arguments
When statistics are not available for a search argument or when the value of a
search argument is not known at optimization, the optimizer uses default
values. These values are shown in Table 2-2.

CHAPTER 2 Optimizer Overview

Performance & Tuning: Optimizer and Abstract Plans 21

Table 2-2: Density approximations for unknown search arguments

SARGs using variables and parameters
Since the optimizer computes its estimates before a query executes, it cannot
know the value of a variable that is set in the batch or procedure. If the value
of a variable is not known at compile time, the optimizer uses the default values
shown in Table 2-2

For example, the value of @city is set in this batch:

declare @city varchar(25)
select @city = city from publishers
 where pub_name = "Brave Books"
select au_lname from authors where city = @city

The optimizer uses the total density, .000879, and estimates that 4 rows will be
returned; the actual number of rows could be far larger.

A similar problem exists when you set the values of variables inside a stored
procedure. In this case, you can improve performance by splitting the
procedure: set the variable in the first procedure and then call the second
procedure, passing the variables as parameters. The second procedure can then
be optimized correctly.

See “Splitting stored procedures to improve costing” on page 32 for an
example.

Join syntax and join processing
Join clauses take this form:

table1.column_name <operator> table2.column_name

The join operators are:

Operation Type Operator Density Approximation

Equality = Total density, if statistics are available
for the column, or 10%

Open-ended range <, <=,
>, or >=

33%

Closed range between 25%

Join syntax and join processing

22 Adaptive Server Enterprise

=, >, >=, <, <=, !>, !<, !=, <>, *=, =*

And:

table1 [left | right] join table2
 on column_name = column_name
table1 inner join table2
 on column_name = column_name

When joins are optimized, the optimizer can only consider indexes on column
names. Any type of operator or expression in combination with the column
name means that the optimizer does not evaluate using an index on the column
as a possible access method. If the columns in the join are of incompatible
datatypes, the optimizer can consider an index on only one of the columns.

How joins are processed
When the optimizer creates a query plan for a join query:

• It evaluates indexes for each table by estimating the I/O required for each
possible index and for a table scan.

• It determines the join order, basing the decision on the total cost estimates
for the possible join orders. It estimates costs for both nested-loop joins
and sort-merge joins.

• If no useful index exists on the inner table of a join, the optimizer may
decide to build a temporary index, a process called reformatting.

See “Reformatting strategy” on page 128.

• It determines the I/O size and caching strategy.

• It also compares the cost of serial and parallel execution, if parallel query
processing is enabled.

See Chapter 8, “Parallel Query Optimization,” for more information.

Factors that determine costs on single-table selects, such as appropriate
indexing, search argument selectivity, and density of keys, become much more
critical for joins.

When statistics are not available for joins
If statistics are not available for a column in a join, the optimizer uses default
values:

CHAPTER 2 Optimizer Overview

Performance & Tuning: Optimizer and Abstract Plans 23

For example, in the following query, the optimizer uses 1/500 for the join
selectivity for both tables if there are no statistics for either city column, and
stores has 500 rows and authors has 5000 rows:

select au_fname, au_lname, stor_name
 from authors a, stores s
 where a.city = s.city

Density values and joins
When statistics are available on a join column, the total density is used to
estimate how many rows match each join key. If the authors table has 5000
rows, and the total density for the city column is .000879, the optimizer
estimates that 5000 * .000879 = 4 rows will be returned from authors each time
a join on the city column matches a row from the other table.

Multiple column joins
When a join query specifies multiple join columns on two tables, and there is
a composite index on the columns, the composite total density is used. For
example, if authors and publishers each has an index on city, state, the
composite total density for city, state is used for each table in this query:

select au_lname, pub_name
from authors a, publishers p
where a.city = p.city
and a.state = p.state

Search arguments and joins on a table
When there are search arguments and joins on a table, the selectivities of the
columns are combined during join costing to estimate the number of rows more
accurately.

Operator type Examples Default selectivity

Equality t1.c1 = t1.c2 1/rows in smaller table

Nonequality t1.c1 > t1.c2
t1.c1 >= t1.c2
t1.c1 < t1.c2
t1.c1 <= t1.c2

33%

Datatype mismatches and query optimization

24 Adaptive Server Enterprise

The following example joins authors and stores on both the city and state
columns. There is a search argument on authors.state, so search argument
transitive closure adds the search argument for stores.state table also:

select au_fname, au_lname, stor_name
from authors a, stores s
where a.city = s.city
and a.state = s.state
and a.state = "GA"

If there is an index on city for each table, but no statistics available for state, the
optimizer uses the default search argument selectivity (10%) combined with
the total density for city. This overestimates the number of rows that match the
search argument for this query, for a state with more rows that match a search
argument on state, it would underestimate the number of rows. When statistics
exist for state on each table, the estimate of the number of qualifying rows
improves, and overall costing for the join query improves also.

Datatype mismatches and query optimization
One common problem when queries fail to use indexes as expected is datatype
mismatches. Datatype mismatches occur:

• With search clauses using variables or stored procedure parameters that
have a different datatype than the column, for example:

where int_col = @money_parameter

• In join queries when the columns being joined have different datatypes, for
example:

where tableA.int_col = tableB.money_col

Datatype mismatches lead to optimization problems when they prevent the
optimizer from considering an index. The most common problems arise from:

• Comparisons between the integer types, int, smallint and tinyint

• Comparisons between money and smallmoney

• Comparisons between datetime and smalldatetime

• Comparisons between numeric and decimal types of differing precision and
scale

• Comparisons between numeric or decimal types

CHAPTER 2 Optimizer Overview

Performance & Tuning: Optimizer and Abstract Plans 25

• Comparisons between integer or money columns

To avoid problems, use the same datatype (including the same precision and
scale) for columns that are likely join candidates when you create tables. Use
a matching datatype for any variables or stored procedure parameters used as
search arguments. The following sections detail the rules and considerations
applied when the same datatype is not used, and provide some troubleshooting
tips.

Overview of the datatype hierarchy and index issues
The datatype hierarchy controls the use of indexes when search arguments or
join columns have different datatypes. The following query prints the hierarchy
values and datatype names:

select hierarchy, name from systypes order by 1
hierarchy name
 --------- ------------------------------
 1 floatn
 2 float
 3 datetimn
 4 datetime
 5 real
 6 numericn
 7 numeric
 8 decimaln
 9 decimal
 10 moneyn
 11 money
 12 smallmoney
 13 smalldatetime
 14 intn
 15 int
 16 smallint
 17 tinyint
 18 bit
 19 univarchar
 20 unichar
 21 reserved
 22 varchar
 22 sysname
 22 nvarchar
 23 char
 23 nchar
 24 varbinary

Datatype mismatches and query optimization

26 Adaptive Server Enterprise

 24 timestamp
 25 binary
 26 text
 27 image

If you have created user-defined datatypes, they are also listed in the query
output, with the corresponding hierarchy values.

The general rule is that when different datatypes are used, the
systypes.hierarchy value determines whether an index can be used.

• For search arguments, the index is considered when the column’s datatype
is same as, or precedes, the hierarchy value of the parameter or variable.

• For a join, the index is considered only on the column whose
systypes.hierarchy value is the same as the other column’s, or precedes the
other column’s in the hierarchy.

• When char and unichar datatypes are used together, char is converted to
unichar.

The exceptions are:

• Comparisons between char and varchar, unichar and univarchar, or between
binary and varbinary datatypes. For example, although their hierarchy
values are 23 and 22 respectively, char and varchar columns are treated as
the same datatype for index consideration purposes. The index is
considered for both columns in this join:

where t1.char_column = t2.varchar_column

char columns that accept NULL values are stored as varchar, but indexes
can still be used on both columns for joins.

• The null type of the column has no effect, that is, although float and floatn
have different hierarchy values, they are always treated as the same
datatype.

• Comparisons of decimal or numeric types also take precision and scale into
account. This includes comparisons of numeric or decimal types to each
other, and comparisons of numeric or decimal to other datatypes such as int
or money.

See “Comparison of numeric and decimal datatypes” on page 27 for more
information.

CHAPTER 2 Optimizer Overview

Performance & Tuning: Optimizer and Abstract Plans 27

Comparison of numeric and decimal datatypes

When a query joins columns of numeric or decimal datatypes, an index can be
used when both of these conditions are true:

• The scale of the column being considered for a join equals or exceeds the
scale of the other join column, and

• The length of the integer portion of the column equals or exceeds the
length of the other column’s integer portion.

Here are some examples of when indexes can be considered:

Comparing numeric types to other datatypes

When comparing numeric and decimal columns to columns of other numeric
datatypes, such as money or int:

• numeric and decimal precede integer and money columns in the hierarchy,
so the index on the numeric or decimal column is the only index
considered.

• The precision and scale requirements must be met for the numeric or
decimal index to be considered. The scale of the numeric column must be
equal to, or greater than, the scale of the integer or money column, and the
number of digits in the integer portion of the numeric column must be
equal to or greater than the maximum number of digits usable for the
integer or money column.

The precision and scale of integer and money types is shown in Table 2-3.

Datatypes in the join Indexes considered

numeric(12,4) and
numeric(16,4)

Index considered only for numeric(16,4), the
integer portion of numeric(12,4) is smaller.

numeric(12,4) and
numeric(12,8)

Neither index is considered, integer portion is
smaller for numeric(12,8) and scale is smaller
for numeric(12,4).

numeric(12,4) and
numeric(12,4)

Both indexes are considered.

Datatype mismatches and query optimization

28 Adaptive Server Enterprise

Table 2-3: Precision and scale of integer and money types

Datatypes for parameters and variables used as SARGs
When declaring datatypes for variables or stored procedure parameters to be
used as search arguments, match the datatype of the column in the variable or
parameter declaration to ensure the use of an index. For example:

declare @int_var int
select @int_var = 50
select *
from t1
where int_col = @int_var

Use of the index depends on the precedence of datatypes in the hierarchy. The
index on a column can be used only if the column’s datatype precedes the
variable’s datatype. For example, int precedes smallint and tinyint in the
hierarchy. Here are just the integer types:

hierarchy name
 --------- ------------------------------
 15 int
 16 smallint
 17 tinyint

If a variable or parameter has a datatype of smallint or tinyint, an index on an int
column can be used for a query. But an index on a tinyint column cannot be used
for an int parameter.

Similarly, money precedes int. If a variable or parameter of money is compared
to an int column, an index on the int column cannot be used.

This eliminates issues that could arise from truncation or overflow. For
example, it would not be useful or correct to attempt to truncate the money
value to 5 in order to use an index on int_col for this query:

declare @money_var money
select @money_var = $5.12
select * from t1 where int_col = @money_var

Datatype Precision, scale

tinyint 3,0

smallint 5,0

int 10,0

smallmoney 10,4

money 19,4

CHAPTER 2 Optimizer Overview

Performance & Tuning: Optimizer and Abstract Plans 29

Troubleshooting datatype mismatch problems fo SARGs

If there is a datatype mismatch problem with a search argument on an indexed
column, the query can use another index if there are other search arguments or
it can perform a table scan. showplan output displays the access method and
keys used for each table in a query.

You can use dbcc traceon(302) to determine whether an index is being
considered. For example, using an integer variable as a search argument on
int_col produces the following output:

Selecting best index for the SEARCH CLAUSE:
 t1.int_col = unknown-value

SARG is a local variable or the result of a function or
an expression, using the total density to estimate
selectivity.

Estimated selectivity for int_col,
 selectivity = 0.020000.

Using an incompatible datatype such as money for a variable used as a search
argument on an integer column does not produce a “Selecting best index for the
SEARCH CLAUSE” block in dbcc traceon(302) output, indicating that the
index is not being considered, and cannot be used. If an index is not used as you
expect in a query, looking for this costing section in dbcc traceon(302) output
should be one of your first debugging steps.

The “unknown-value” and the fact that the total density is used to estimate the
number of rows that match this search argument is due to the fact that the value
of the variable was set in the batch; it is not a datatype mismatch problem.

See “SARGs using variables and parameters” on page 21 for more
information.

Compatible datatypes for join columns
The optimizer considers an index for joined columns only when the column
types are the same or when the datatype of the join column precedes the other
column’s datatype in the datatype hierarchy. This means that the optimizer
considers using the index on only one of the join columns, limiting the choice
of join orders.

For example, this query joins columns of decimal and int datatypes:

select *

Datatype mismatches and query optimization

30 Adaptive Server Enterprise

from t1, t2
where t1.decimal_col = t2.int_col

decimal precedes int in the hierarchy, so the optimizer can consider an index on
t1.decimal_col, but cannot use an index on t2.int_col. The result is likely to be a
table scan of t2, followed by use of the index on t1.decimal_col.

Table 2-4 shows how the hierarchy affects index choice for some commonly
problematic datatypes.

Table 2-4: Indexes considered for mismatched column datatypes

Troubleshooting datatype mismatch problems for joins

If you suspect that an index is not being considered on one side of a join due to
datatype mismatches, use dbcc traceon(302). In the output, look for “Selecting
best index for the JOIN CLAUSE”. If datatypes are compatible, you see two of
these blocks for each join; for example:

Selecting best index for the JOIN CLAUSE:
t1.int_col = t2.int_col

And later in the output for the other table in the join:

Selecting best index for the JOIN CLAUSE:
t2.int_col = t1.int_col

For a query that compares incompatible datatypes, for example, comparing a
decimal column to an int, column, there is only the single block:

Selecting best index for the JOIN CLAUSE:
t1.decimal_col = t2.int_col

This means that the join costing for using an index with t2.int_col as the outer
column is not performed.

Suggestions on datatypes and comparisons
To avoid datatype mismatch problems:

Join column types Index considered on column of type

money and smallmoney money

datetime and smalldatetime datetime

int and smallint int

int and tinyint int

smallint and tinyint smallint

CHAPTER 2 Optimizer Overview

Performance & Tuning: Optimizer and Abstract Plans 31

• When you create tables, use the same datatypes for columns that will be
joined.

• If columns of two frequently joined tables have different datatypes,
consider using alter table...modify to change the datatype of one of the
columns.

• Use the column’s datatype whenever declaring variables or stored
procedure parameters that will be used as search arguments.

• Consider user-defined datatype definitions. Once you have created
definitions with sp_addtype, you can use them in commands such create
table, alter table, and create procedure, and for datatype declarations.

• For some queries where datatype mismatches cause performance
problems, you may be able to use the convert function so that indexes are
considered on the other table in the join. The next section describes this
work around.

Forcing a conversion to the other side of a join
If a join between different datatypes is unavoidable, and it impacts
performance, you can, for some queries, force the conversion to the other side
of the join. In the following query, an index on smallmoney_col cannot be used,
so the query performs a table scan on huge_table:

select *
from tiny_table, huge_table
where tiny_table.money_col =
 huge_table.smallmoney_col

Performance improves if the index on huge_table.smallmoney_col can be used.
Using the convert function on the money column of the small table allows the
index on the large table to be used, and a table scan is performed on the small
table:

select *
from tiny_table, huge_table
where convert(smallmoney,tiny_table.money_col) =
 huge_table.smallmoney_col

This workaround assumes that there are no values in tinytable.money_col that
are large enough to cause datatype conversion errors during the conversion to
smallmoney. If there are values larger than the maximum value for smallmoney,
you can salvage this solution by adding a search argument specifying the
maximum values for a smallmoney column:

Splitting stored procedures to improve costing

32 Adaptive Server Enterprise

select smallmoney_col, money_col
from tiny_table , huge_table
where convert(smallmoney,tiny_table.money_col) =
 huge_table.smallmoney_col
and tiny_table.money_col <= 214748.3647

Converting floating-point and numeric data can change the meaning of some
queries. This query compares integers and floating-point numbers:

select *
 from tab1, tab2
 where tab1.int_column = tab2.float_column

In the query above,you cannot use an index on int_column. This conversion
forces the index access to tab1, but also returns different results than the query
that does not use convert:

select *
from tab1, tab2
where tab1.int_col = convert(int, tab2.float_col)

For example, if int_column is 4, and float_column is 4.2, the modified query
implicitly converts to a 4, and returns a row not returned by the original query.
The workaround can be salvaged by adding this self-join:

and tab2.float_col = convert(int, tab2.float_col)

This workaround assumes that all values in tab2.float_col can be converted to
int without conversion errors.

Splitting stored procedures to improve costing
The optimizer cannot use statistics the final select in the following procedure,
because it cannot know the value of @city until execution time:

create procedure au_city_names
 @pub_name varchar(30)
as
 declare @city varchar(25)
 select @city = city
 from publishers where pub_name = @pub_name
 select au_lname
 from authors
 where city = @city

CHAPTER 2 Optimizer Overview

Performance & Tuning: Optimizer and Abstract Plans 33

The following example shows the procedure split into two procedures. The
first procedure calls the second one:

create procedure au_names_proc
 @pub_name varchar(30)
as
 declare @city varchar(25)
 select @city = city
 from publishers
 where pub_name = @pub_name
 exec select_proc @city
create procedure select_proc @city varchar(25)
as
 select au_lname
 from authors
 where city = @city

When the second procedure executes, Adaptive Server knows the value of
@city and can optimize the select statement. Of course, if you modify the value
of @city in the second procedure before it is used in the select statement, the
optimizer may choose the wrong plan because it optimizes the query based on
the value of @city at the start of the procedure. If @city has different values
each time the second procedure is executed, leading to very different query
plans, you may want to use with recompile.

Basic units of costing
When the optimizer estimates costs for the query, the two factors it considers
are the cost of physical I/O, reading pages from disk, and the cost of logical I/O,
finding pages in the data cache. The optimizer assigns 18 as the cost of a
physical I/O and 2 as the cost of a logical I/O. These are relative units of cost
and do not represent time units such as milliseconds or clock ticks. These units
are used in the formulas in this chapter, with the physical I/O costs first, then
the logical I/O costs. The total cost of accessing a table can be expressed as:

Cost = All physical IOs * 18 + All logical IOs * 2

Basic units of costing

34 Adaptive Server Enterprise

Performance & Tuning: Optimizer and Abstract Plans 35

C H A P T E R 3 Advanced Optimizing Tools

This chapter describes query processing options that affect the optimizer’s
choice of join order, index, I/O size and cache strategy.

Special optimizing techniques
Being familiar with the information presented in the Performance and
Tuning: Basics volume helps to understand the material in this chapter.
Use caution, as the tools allow you to override the decisions made by
Adaptive Server’s optimizer and can have an extreme negative effect on
performance if misused. You should understand the impact on the
performance of both your individual query and the possible implications
for overall system performance.

Topic Page
Special optimizing techniques 35

Specifying optimizer choices 36

Asynchronous log service 48

Specifying table order in joins 37

Specifying the number of tables considered by the optimizer 39

Specifying an index for a query 40

Specifying I/O size in a query 42

Specifying the cache strategy 45

Controlling large I/O and cache strategies 47

Asynchronous log service 48

Enabling and disabling merge joins 51

Enabling and disabling join transitive closure 52

Suggesting a degree of parallelism for a query 53

Concurrency optimization for small tables 55

Specifying optimizer choices

36 Adaptive Server Enterprise

Adaptive Server’s advanced, cost-based optimizer produces excellent
query plans in most situations. But there are times when the optimizer does
not choose the proper index for optimal performance or chooses a
suboptimal join order, and you need to control the access methods for the
query. The options described in this chapter allow you that control.

In addition, while you are tuning, you may want to see the effects of a
different join order, I/O size, or cache strategy. Some of these options let
you specify query processing or access strategy without costly
reconfiguration.

Adaptive Server provides tools and query clauses that affect query
optimization and advanced query analysis tools that let you understand
why the optimizer makes the choices that it does.

Note This chapter suggests workarounds for certain optimization
problems. If you experience these types of problems, please call Sybase
Technical Support.

Specifying optimizer choices
Adaptive Server lets you specify these optimization choices by including
commands in a query batch or in the text of the query:

• The order of tables in a join

• The number of tables evaluated at one time during join optimization

• The index used for a table access

• The I/O size

• The cache strategy

• The degree of parallelism

In a few cases, the optimizer fails to choose the best plan. In some of these
cases, the plan it chooses is only slightly more expensive than the “best”
plan, so you need to weigh the cost of maintaining forced options against
the slower performance of a less than optimal plan.

CHAPTER 3 Advanced Optimizing Tools

Performance & Tuning: Optimizer and Abstract Plans 37

The commands to specify join order, index, I/O size, or cache strategy,
coupled with the query-reporting commands like statistics io and showplan,
can help you determine why the optimizer makes its choices.

 Warning! Use the options described in this chapter with caution. The
forced query plans may be inappropriate in some situations and may cause
very poor performance. If you include these options in your applications,
check query plans, I/O statistics, and other performance data regularly.

These options are generally intended for use as tools for tuning and
experimentation, not as long-term solutions to optimization problems.

Specifying table order in joins
Adaptive Server optimizes join orders to minimize I/O. In most cases, the
order that the optimizer chooses does not match the order of the from
clauses in your select command. To force Adaptive Server to access tables
in the order they are listed, use:

set forceplan [on|off]

The optimizer still chooses the best access method for each table. If you
use forceplan, specifying a join order, the optimizer may use different
indexes on tables than it would with a different table order, or it may not
be able to use existing indexes.

You might use this command as a debugging aid if other query analysis
tools lead you to suspect that the optimizer is not choosing the best join
order. Always verify that the order you are forcing reduces I/O and logical
reads by using set statistics io on and comparing I/O with and without
forceplan.

If you use forceplan, your routine performance maintenance checks should
include verifying that the queries and procedures that use it still require the
option to improve performance.

You can include forceplan in the text of stored procedures.

set forceplan forces only join order, and not join type. There is no
command for specifying the join type; you can disable merge joins at the
server or session level.

Specifying table order in joins

38 Adaptive Server Enterprise

See “Enabling and disabling merge joins” on page 51 for more
information.

Risks of using forceplan
Forcing join order has these risks:

• Misuse can lead to extremely expensive queries. Always test the
query thoroughly with statistics io, and with and without forceplan.

• It requires maintenance. You must regularly check queries and stored
procedures that include forceplan. Also, future versions of Adaptive
Server may eliminate the problems that lead you to incorporate index
forcing, so you should check all queries using forced query plans each
time a new version is installed.

Things to try before using forceplan
Before you use forceplan:

• Check showplan output to determine whether index keys are used as
expected.

• Use dbcc traceon(302) to look for other optimization problems.

• Run update statistics on the index.

• Use update statistics to add statistics for search arguments on
unindexed search clauses in the query, especially for search
arguments that match minor keys in compound indexes.

• If the query joins more than four tables, use set table count to see if it
results in an improved join order.

See “Specifying the number of tables considered by the optimizer”
on page 39.

CHAPTER 3 Advanced Optimizing Tools

Performance & Tuning: Optimizer and Abstract Plans 39

Specifying the number of tables considered by the
optimizer

Adaptive Server optimizes joins by considering permutations of two to
four tables at a time, as described in “Costing and optimizing joins” on
page 105. If you suspect that an inefficient join order is being chosen for
a join query, you can use the set table count option to increase the number
of tables that are considered at the same time. The syntax is:

set table count int_value

Valid values are 0 though 8; 0 restores the default behavior.

For example, to specify 4-at-a-time optimization, use:

set table count 4

dbcc traceon(310) reports the number of tables considered at a time. See
“dbcc traceon(310) and final query plan costs” on page 189 in the
Performance and Tuning: Monitoring and Analyzing for Performance
book for more information.

As you decrease the value, you reduce the chance that the optimizer will
consider all the possible join orders. Increasing the number of tables
considered at one time during join ordering can greatly increase the time
it takes to optimize a query.

Since the time it takes to optimize the query is increased with each
additional table, the set table count option is most useful when the
execution savings from improved join order outweighs the extra
optimizing time. Some examples are:

• If you think that a more optimal join order can shorten total query
optimization and execution time, especially for stored procedures that
you expect to be executed many times once a plan is in the procedure
cache

• When saving abstract plans for later use

Use statistics time to check parse and compile time and statistics io to verify
that the improved join order is reducing physical and logical I/O.

If increasing the table count produces an improvement in join
optimization, but increases the CPU time unacceptably, rewrite the from
clause in the query, specifying the tables in the join order indicated by
showplan output, and use forceplan to run the query. Your routine
performance maintenance checks should include verifying that the join
order you are forcing still improves performance.

Specifying an index for a query

40 Adaptive Server Enterprise

Specifying an index for a query
You can specify the index to use for a query using the (index index_name)
clause in select, update, and delete statements. You can also force a query
to perform a table scan by specifying the table name. The syntax is:

select select_list
from table_name [correlation_name]

(index {index_name | table_name })
[, table_name ...]

where ...

delete table_name
from table_name [correlation_name]
(index {index_name | table_name }) ...

update table_name set col_name = value
from table_name [correlation_name]
(index {index_name | table_name})...

For example:

select pub_name, title
 from publishers p, titles t (index date_type)
 where p.pub_id = t.pub_id
 and type = "business"
 and pubdate > "1/1/93"

Specifying an index in a query can be helpful when you suspect that the
optimizer is choosing a suboptimal query plan. When you use this option:

• Always check statistics io for the query to see whether the index you
choose requires less I/O than the optimizer’s choice.

• Ttest a full range of valid values for the query clauses, especially if
you are tuning queries:

• Tuning queries on tables that have skewed data distribution

• Performing range queries, since the access methods for these
queries are sensitive to the size of the range

CHAPTER 3 Advanced Optimizing Tools

Performance & Tuning: Optimizer and Abstract Plans 41

Use this option only after testing to be certain that the query performs
better with the specified index option. Once you include an index
specification in a query, you should check regularly to be sure that the
resulting plan is still better than other choices made by the optimizer.

Note If a nonclustered index has the same name as the table, specifying a
table name causes the nonclustered index to be used. You can force a table
scan using select select_list from tablename (0).

Risks
Specifying indexes has these risks:

• Changes in the distribution of data could make the forced index less
efficient than other choices.

• Dropping the index means that all queries and procedures that specify
the index print an informational message indicating that the index
does not exist. The query is optimized using the best alternative
access method.

• Maintenance increases, since all queries using this option need to be
checked periodically. Also, future versions of Adaptive Server may
eliminate the problems that lead you to incorporate index forcing, so
you should check all queries using forced indexes each time you
install a new version.

• The index must exist at the time the query using it is optimized. You
cannot create an index and then use it in a query in the same batch.

Things to try before specifying an index
Before specifying an index in queries:

• Check showplan output for the “Keys are” message to be sure that the
index keys are being used as expected.

• Use dbcc traceon(302) to look for other optimization problems.

• Run update statistics on the index.

Specifying I/O size in a query

42 Adaptive Server Enterprise

• If the index is a composite index, run update statistics on the minor
keys in the index, if they are used as search arguments. This can
greatly improve optimizer cost estimates. Creating statistics for other
columns frequently used for search clauses can also improve
estimates.

Specifying I/O size in a query
If your Adaptive Server is configured for large I/Os in the default data
cache or in named data caches, the optimizer can decide to use large I/O
for:

• Queries that scan entire tables

• Range queries using clustered indexes, such as queries using >, <, > x
and < y, between, and like “charstring %”

• Queries that scan a large number of index leaf pages

If the cache used by the table or index is configured for 16K I/O, a single
I/O can read up to eight pages simultaneously. Each named data cache can
have several pools, each with a different I/O size. Specifying the I/O size
in a query causes the I/O for that query to take place in the pool that is
configured for that size. See the System Administration Guide for
information on configuring named data caches.

To specify an I/O size that is different from the one chosen by the
optimizer, add the prefetch specification to the index clause of a select,
delete, or update statement. The syntax is:

select select_list
from table_name

([index {index_name | table_name}]
prefetch size)

[, table_name ...]
where ...

delete table_name from table_name
([index {index_name | table_name}]

prefetch size)
...

CHAPTER 3 Advanced Optimizing Tools

Performance & Tuning: Optimizer and Abstract Plans 43

update table_name set col_name = value
from table_name

([index {index_name | table_name}]
prefetch size)

...

The valid prefetch size depends on the page size. If no pool of the specified
size exists in the data cache used by the object, the optimizer chooses the
best available size.

If there is a clustered index on au_lname, this query performs 16K I/O
while it scans the data pages:

select *
from authors (index au_names prefetch 16)
 where au_lname like "Sm%"

If a query normally performs large I/O, and you want to check its I/O
performance with 2K I/O, you can specify a size of 2K:

select type, avg(price)
 from titles (index type_price prefetch 2)
 group by type

Note Reference to Large I/Os are on a 2K logical page size server. If you
have an 8K page size server, the basic unit for the I/O is 8K. If you have a
16K page size server, the basic unit for the I/O is 16K.

Index type and large I/O
When you specify an I/O size with prefetch, the specification can affect
both the data pages and the leaf-level index pages. Table 3-1 shows the
effects.

Specifying I/O size in a query

44 Adaptive Server Enterprise

Table 3-1: Access methods and prefetching

showplan reports the I/O size used for both data and leaf-level pages.

See “I/O Size Messages” on page 112 in the book Performance and
Tuning: Monitoring and Analyzing for Performance for more information.

When prefetch specification is not followed
In most cases, when you specify an I/O size in a query, the optimizer
incorporates the I/O size into the query’s plan. However, there are times
when the specification cannot be followed, either for the query as a whole
or for a single, large I/O request.

Large I/O cannot be used for the query if:

• The cache is not configured for I/O of the specified size. The
optimizer substitutes the best size available.

• sp_cachestrategy has been used to disable large I/O for the table or
index.

Large I/O cannot be used for a single buffer if

• Any of the pages included in that I/O request are in another pool in the
cache.

• The page is on the first extent in an allocation unit. This extent holds
the allocation page for the allocation unit, and only seven data pages.

• No buffers are available in the pool for the requested I/O size.

Whenever a large I/O cannot be performed, Adaptive Server performs 2K
I/O on the specific page or pages in the extent that are needed by the query.

Access method Large I/O performed on

Table scan Data pages

Clustered index Data pages only, for allpages-locked
tables

Data pages and leaf-level index pages for
data-only-locked tables

Nonclustered index Data pages and leaf pages of
nonclustered index

CHAPTER 3 Advanced Optimizing Tools

Performance & Tuning: Optimizer and Abstract Plans 45

To determine whether the prefetch specification is followed, use showplan
to display the query plan and statistics io to see the results on I/O for the
query. sp_sysmon reports on the large I/Os requested and denied for each
cache.

See “Data cache management” on page 82 in the book Performance and
Tuning: Monitoring and Analyzing for Performance.

set prefetch on
By default, a query uses large I/O whenever a large I/O pool is configured
and the optimizer determines that large I/O would reduce the query cost.
To disable large I/O during a session, use:

set prefetch off

To reenable large I/O, use:

set prefetch on

If large I/O is turned off for an object using sp_cachestrategy, set prefetch
on does not override that setting.

If large I/O is turned off for a session using set prefetch off, you cannot
override the setting by specifying a prefetch size as part of a select, delete,
or insert statement.

The set prefetch command takes effect in the same batch in which it is run,
so you can include it in a stored procedure to affect the execution of the
queries in the procedure.

Specifying the cache strategy
For queries that scan a table’s data pages or the leaf level of a nonclustered
index (covered queries), the Adaptive Server optimizer chooses one of two
cache replacement strategies: the fetch-and-discard (MRU) strategy or the
LRU strategy.

See “Overview of cache strategies” on page 174 in the book Performance
and Tuning: Basics for more information about these strategies.

The optimizer may choose the fetch-and-discard (MRU) strategy for:

Specifying the cache strategy

46 Adaptive Server Enterprise

• Any query that performs table scans

• A range query that uses a clustered index

• A covered query that scans the leaf level of a nonclustered index

• An inner table in a nested-loop join, if the inner table is larger than the
cache

• The outer table of a nested-loop join, since it needs to be read only
once

• Both tables in a merge join

You can affect the cache strategy for objects:

• By specifying lru or mru in a select, update, or delete statement

• By using sp_cachestrategy to disable or reenable mru strategy

If you specify MRU strategy, and a page is already in the data cache, the
page is placed at the MRU end of the cache, rather than at the wash marker.

Specifying the cache strategy affects only data pages and the leaf pages of
indexes. Root and intermediate pages always use the LRU strategy.

In select, delete, and update statements
You can use lru or mru (fetch-and-discard) in a select, delete, or update
command to specify the I/O size for the query:

select select_list
from table_name

(index index_name prefetch size [lru|mru])
[, table_name ...]

where ...

delete table_name from table_name (index index_name
prefetch size [lru|mru]) ...

update table_name set col_name = value
from table_name (index index_name

prefetch size [lru|mru]) ...

This query adds the LRU replacement strategy to the 16K I/O
specification:

select au_lname, au_fname, phone

CHAPTER 3 Advanced Optimizing Tools

Performance & Tuning: Optimizer and Abstract Plans 47

 from authors (index au_names prefetch 16 lru)

For more information about specifying a prefetch size, see “Specifying I/O
size in a query” on page 42.

Controlling large I/O and cache strategies
Status bits in the sysindexes table identify whether a table or an index
should be considered for large I/O prefetch or for MRU replacement
strategy. By default, both are enabled. To disable or reenable these
strategies, use sp_cachestrategy. The syntax is:

sp_cachestrategy dbname , [ownername.]tablename
[, indexname | "text only" | "table only"
[, { prefetch | mru }, { "on" | "off"}]]

This command turns off the large I/O prefetch strategy for the
au_name_index of the authors table:

sp_cachestrategy pubtune,
authors, au_name_index, prefetch, "off"

This command reenables MRU replacement strategy for the titles table:

sp_cachestrategy pubtune,
titles, "table only", mru, "on"

Only a System Administrator or the object owner can change or view the
cache strategy status of an object.

Getting information on cache strategies
To see the cache strategy that is in effect for a given object, execute
sp_cachestrategy, with the database and object name:

sp_cachestrategy pubtune, titles
object name index name large IO MRU
---------------- ---------------- -------- --------
titles NULL ON ON

showplan output shows the cache strategy used for each object, including
worktables.

Asynchronous log service

48 Adaptive Server Enterprise

Asynchronous log service
ALS increases scalability in Adaptive Server and provides higher
throughput in logging subsystems for high-end symmetric multiprocessor
systems.

You cannot use ALS if you have fewer than 4 engines. If you try to enable
ALS with fewer than 4 online engines an error message appears.

Enabling ALS You can enable, disable, or configure ALS using the sp_dboption stored
procedure.

sp_dboption <db Name>, "async log service",
"true|false"

Issuing a checkpoint After issuing sp_dboption, you must issue a checkpoint in the database for
which you are setting the ALS option:

sp_dboption "mydb", "async log service", "true"
use mydb
checkpoint

You can use the checkpoint to identify the one or more databasess or use
an all clause.

checkpoint [all | [dbname[, dbname[, dbname.....]]]

Disabling ALS Before you disable ALS, make sure there are no active users in the
database. If there are, you receive an error message when you issue the
checkpoint:

sp_dboption "mydb", "async log service", "false"
use mydb
checkpoint

Error 3647: Cannot put database in single-user mode.
Wait until all users have logged out of the database
and issue a CHECKPOINT to disable "async log
service".

If there are no active users in the database, this example disables ALS

sp_dboption "mydb", "async log service", "false"
use mydb
checkpoin]

Displaying ALS You can see whether ALS is enabled in a specified database by checking
sp_helpdb.

sp_helpdb "mydb"

CHAPTER 3 Advanced Optimizing Tools

Performance & Tuning: Optimizer and Abstract Plans 49

mydb 3.0 MB sa 2

July 09, 2002
select into/bulkcopy/pllsort, trunc log on

chkpt,
async log service

For more information on these stored procedures, see “Changed system
procedures” on page 51.

Understanding the user log cache (ULC) architecture
Adaptive Server’s logging architecture features the user log cache, or
ULC, by which each task owns its own log cache. No other task can write
to this cache, and the task continues writing to the user log cache whenever
a transaction generates a log record. When the transaction commits or
aborts, or the user log cache is full, the user log cache is flushed to the
common log cache, shared by all the current tasks, which is then written
to the disk.

Flushing the ULC is the first part of a commit or abort operation. It
requires the following steps, each of which can cause delay or increase
contention:

1 Obtaining a lock on the last log page.

2 Allocating new log pages if necessary.

3 Copying the log records from the ULC to the log cache.

The processes in steps 2 and 3 require you to hold a lock on the last
log page, which prevents any other tasks from writing to the log cache
or performing commit or abort operations.

4 Flush the log cache to disk.

Step 4 requires repeated scanning of the log cache to issue write
commands on dirty buffers.

Repeated scanning can cause contention on the buffer cache spinlock
to which the log is bound. Under a large transaction load, contention
on this spinlock can be significant.

Asynchronous log service

50 Adaptive Server Enterprise

When to use ALS
You can enable ALS on any specified database that has at least one of the
following performance issues, so long as your systems runs 4 or more
online engines:

• Heavy contention on the last log page.

You can tell that the last log page is under contention when the
sp_sysmon output in the Task Management Report section shows a
significantly high value. For example:

Table 3-2: Log page under contention

• Underutilized bandwidth in the log device.

Note You should use ALS only when you identify a single database with
high transaction requirements, since setting ALS for multiple database
may cause unexpected variations in throughput and response times. If you
want to configure ALS on multiple databases, first check that you]
throughput and response times are satisfactory.

Using the ALS
Two threads scan the dirty buffers (buffers full of data not yet written to
the disk), copy the data, and write it to the log. These threads are:

• The User Log Cache (ULC) flusher

• The Log Writer.

Task
Management per sec per xact count % of total

Log Semaphore
Contention

58.0 0.3 34801 73.1

CHAPTER 3 Advanced Optimizing Tools

Performance & Tuning: Optimizer and Abstract Plans 51

ULC flusher

The ULC flusher is a system task thread that is dedicated to flushing the
user log cache of a task into the general log cache. When a task is ready to
commit, the user enters a commit request into the flusher queue. Each
entry has a handle, by which the ULC flusher can access the ULC of the
task that queued the request. The ULC flusher task continuously monitors
the flusher queue, removing requests from the queue and servicing them
by flushing ULC pages into the log cache.

Log writer

Once the ULC flusher has finished flushing the ULC pages into the log
cache, it queues the task request into a wakeup queue. The log writer
patrols the dirty buffer chain in the log cache, issuing a write command if
it finds dirty buffers, and monitors the wakeup queue for tasks whose
pages are all written to disk. Since the log writer patrols the dirty buffer
chain, it knows when a buffer is ready to write to disk.

Changed system procedures
Two stored procedures are changed to enable ALS:

• sp_dboption adds an option that enables and disables ALS.

• sp_helpdb adds a column to display ALS.

For more general information about these stored procedures, see the
Reference Manual.

Enabling and disabling merge joins
By default, merge joins are not enabled at the server level. When merge
joins are disabled, the server only costs nested-loop joins, and merge joins
are not considered. To enable merge joins server-wide, set enable sort-
merge joins and JTC to 1. This also enables join transitive closure.

The command set sort_merge on overrides the server level to allow use of
merge joins in a session or stored procedure.

To enable merge joins, use:

Enabling and disabling join transitive closure

52 Adaptive Server Enterprise

set sort_merge on

To disable merge joins, use:

set sort_merge off

For information on configuring merge joins server-wide see the System
Administration Guide.

Enabling and disabling join transitive closure
By default, join transitive closure is not enabled at the server level, since
it can increase optimization time. You can enable join transitive closure at
a session level with set jtc on. The session-level command overrides the
server-level setting for the enable sort-merge joins and JTC configuration
parameter.

For queries that execute quickly, even when several tables are involved,
join transitive closure may increase optimization time with little
improvement in execution cost. For example, with join transitive closure
applied to this query, the number of possible joins is multiplied for each
added table:

select * from t1, t2, t3, t4, ... tN
where t1.c1 = t2.c1
and t1.c1 = t3.c1
and t1.c1 = t4.c1
...
and t1.c1 = tN.c1

For joins on very large tables, however, the additional optimization time
involved in costing the join orders added by join transitive closure may
result in a join order that greatly improves the response time.

You can use set statistics time to see how long it takes to optimize the
query. If running queries with set jtc on greatly increases optimization
time, but also improves query execution by choosing a better join order,
check the showplan or dbcc traceon(302, 310) output. Explicitly add the
useful join orders to the query text. You can run the query without join
transitive closure, and get the improved execution time, without the
increased optimization time of examining all possible join orders
generated by join transitive closure.

CHAPTER 3 Advanced Optimizing Tools

Performance & Tuning: Optimizer and Abstract Plans 53

You can also enable join transitive closure and save abstract plans for
queries that benefit. If you then execute those queries with loading from
the saved plans enabled, the saved execution plan is used to optimize the
query, making optimization time extremely short.

See Performance and Tuning: Abstact Plans for more information on
using abstract plans.

For information on configuring join transitive closure server-wide see the
System Administration Guide.

Suggesting a degree of parallelism for a query
The parallel and degree_of_parallelism extensions to the from clause of a
select command allow users to restrict the number of worker processes
used in a scan.

For a parallel partition scan to be performed, the degree_of_parallelism
must be equal to or greater than the number of partitions. For a parallel
index scan, specify any value for the degree_of_parallelism.

The syntax for the select statement is:

select...
[from {tablename}

[(index index_name
[parallel [degree_of_parallelism | 1]]
[prefetch size] [lru|mru])],

{tablename} [([index_name]
[parallel [degree_of_parallelism | 1]

[prefetch size] [lru|mru])] ...

Table 3-3 shows how to combine the index and parallel keywords to obtain
serial or parallel scans.

Suggesting a degree of parallelism for a query

54 Adaptive Server Enterprise

Table 3-3: Optimizer hints for serial and parallel execution

When you specify the parallel degree for a table in a merge join, it affects
the degree of parallelism used for both the scan of the table and the merge
join.

You cannot use the parallel option if you have disabled parallel processing
either at the session level with the set parallel_degree 1 command or at the
server level with the parallel degree configuration parameter. The parallel
option cannot override these settings.

If you specify a degree_of_parallelism that is greater than the maximum
configured degree of parallelism, Adaptive Server ignores the hint.

The optimizer ignores hints that specify a parallel degree if any of the
following conditions is true:

• The from clause is used in the definition of a cursor.

• parallel is used in the from clause of an inner query block of a
subquery, and the optimizer does not move the table to the outermost
query block during subquery flattening.

• The table is a view, a system table, or a virtual table.

• The table is the inner table of an outer join.

• The query specifies exists, min, or max on the table.

• The value for the max scan parallel degree configuration parameter is
set to 1.

• An unpartitioned clustered index is specified or is the only parallel
option.

• A nonclustered index is covered.

• The query is processed using the OR strategy.

To specify this type of scan: Use this syntax:

Parallel partition scan (index tablename parallel N)

Parallel index scan (index index_name parallel N)

Serial table scan (index tablename parallel 1)

Serial index scan (index index_name parallel 1)

Parallel, with the choice of table or
index scan left to the optimizer

(parallel N)

Serial, with the choice of table or
index scan left to the optimizer

(parallel 1)

CHAPTER 3 Advanced Optimizing Tools

Performance & Tuning: Optimizer and Abstract Plans 55

For an explanation of the OR strategy, see “Access Methods and
Costing for or and in Clauses” on page 85.

• The select statement is used for an update or insert.

Query level parallel clause examples
To specify the degree of parallelism for a single query, include parallel after
the table name. This example executes in serial:

select * from titles (parallel 1)

This example specifies the index to be used in the query, and sets the
degree of parallelism to 5:

select * from titles
 (index title_id_clix parallel 5)
where ...

To force a table scan, use the table name instead of the index name.

Concurrency optimization for small tables
For data-only-locked tables of 15 pages or fewer, Adaptive Server does not
consider a table scan if there is a useful index on the table. Instead, it
always chooses the cheapest index that matches any search argument that
can be optimized in the query. The locking required for an index scan
provides higher concurrency and reduces the chance of deadlocks,
although slightly more I/O may be required than for a table scan.

If concurrency on small tables is not an issue, and you want to optimize
the I/O instead, you can disable this optimization with sp_chgattribute.
This command turns off concurrency optimization for a table:

sp_chgattribute tiny_lookup_table,
 "concurrency_opt_threshold", 0

With concurrency optimization disabled, the optimizer can choose table
scans when they require fewer I/Os.

You can also increase the concurrency optimization threshold for a table.
This command sets the concurrency optimization threshold for a table to
30 pages:

Concurrency optimization for small tables

56 Adaptive Server Enterprise

sp_chgattribute lookup_table,
 "concurrency_opt_threshold", 30

The maximum value for the concurrency optimization threshold is 32,767.
Setting the value to -1 enforces concurrency optimization for a table of any
size. It may be useful in cases where a table scan is chosen over indexed
access, and the resulting locking results in increased contention or
deadlocks.

The current setting is stored in systabstats.conopt_thld and is printed as
part of optdiag output.

Changing locking scheme
Concurrency optimization affects only data-only-locked tables. Table 3-4
shows the effect of changing the locking scheme.

Table 3-4: Effects of alter table on concurrency optimization
settings

Changing locking scheme from Effect on stored value

Allpages to data-only Set to 15, the default

Data-only to allpages Set to 0

One data-only scheme to another Configured value retained

Performance & Tuning: Optimizer and Abstract Plans 57

C H A P T E R 4 Query Tuning Tools

This chapter provides a guide to the tools that can help you tune your
queries.

The tools mentioned in this chapter are described in more detail in the
chapters that follow.

Overview
Adaptive Server provides the following diagnostic and informational
tools to help you understand query optimization and improve the
performance of your queries:

• A choice of tools to check or estimate the size of tables and indexes.
These tools are described in Chapter 11, “Determining Sizes of
Tables and Indexes.” in the book Performance and Tuning: Basics.

• set statistics io on displays the number of logical and physical reads
and writes required for each table in a query. If resource limits are
enabled, it also displays the total actual I/O cost. set statistics io is
described in Chapter 4, “Using the set statistics Commands,” in the
book Performance and Tuning: Monitoring and Analyzing for
Performance.

• set showplan on displays the steps performed for each query in a
batch. It is often used with set noexec on, especially for queries that
return large numbers of rows.

See Chapter 5, “Using set showplan,” in the book Performance and
Tuning: Monitoring and Analyzing for Performance.

Topic Page
Overview 57

How tools may interact 59

How tools relate to query processing 60

Overview

58 Adaptive Server Enterprise

• set statistics subquerycache on displays the number of cache hits and
misses and the number of rows in the cache for each subquery.

See “Subquery results caching” on page 138 for examples.

• set statistics time on displays the time it takes to parse and compile
each command.

See “Checking compile and execute time” on page 62 in the book
Performance and Tuning: Monitoring and Analyzing for
Performance for more information.

• dbcc traceon (302) and dbcc traceon(310) provide additional
information about why particular plans were chosen and is often used
when the optimizer chooses a plan that seems incorrect.

See Chapter 7, “Tuning with dbcc traceon,” in the Performance and
Tuning: Monitoring and Analyzing for Performance book.

• The optdiag utility command displays statistics for tables, indexes,
and columns.

See Chapter 6, “Statistics Tables and Displaying Statistics with
optdiag,” Performance and Tuning: Monitoring and Analyzing for
Performance book.

• Chapter 3, “Advanced Optimizing Tools,” in Performance and
Tuning: Optimizer explains tools you can use to enforce index choice,
join order, and other query optimization choices. These tools include:

• set forceplan – forces the query to use the tables in the order
specified in the from clause.

• set table count – increases the number of tables that the optimizer
considers at one time while determining join order.

• select, delete, update clauses with
(index...prefetch...mru_lru...parallel) –specifies the index, I/O size,
or cache strategy to use for the query.

• set prefetch –toggles prefetch for query tuning experimentation.

• set sort_merge – disallows sort-merge joins.

• set parallel_degree – specifies the degree of parallelism for a
query.

• sp_cachestrategy – sets status bits to enable or disable prefetch
and fetch-and-discard cache strategies.

CHAPTER 4 Query Tuning Tools

Performance & Tuning: Optimizer and Abstract Plans 59

How tools may interact
showplan, statistics io, and other commands produce their output while
stored procedures are being run. The system procedures that you might use
for checking table structure or indexes as you test optimization strategies
can produce voluminous output when diagnostic information is being
printed. You may want to have hard copies of your table schemas and
index information, or you can use separate windows for running system
procedures such as sp_helpindex.

For lengthy queries and batches, you may want the save showplan and
statistics io output in files. You can do so by using “echo input” flag to isql.
The syntax is:

isql -P password -e -i input_file -o outputfile

Using showplan and noexec together
showplan is often used in conjunction with set noexec on, which prevents
SQL statements from being executed. Issue showplan, or any other set
commands, before you issue the noexec command. Once you issue set
noexec on, the only command that Adaptive Server executes is set noexec
off. This example shows the correct order:

set showplan on
set noexec on
go
select au_lname, au_fname
 from authors
 where au_id = "A137406537"
go

noexec and statistics io
While showplan and noexec make useful companions, noexec stops all the
output of statistics io. The statistics io command reports actual disk I/O;
while noexec is in effect, no I/O takes place, so the reports are not printed.

How tools relate to query processing

60 Adaptive Server Enterprise

How tools relate to query processing
Many of the tools, for example, the set commands, affect the decisions
made by the optimizer. showplan and dbcc traceon(302, 310) show you
optimizer decision-making. dbcc traceon(302,310) shows intermediate
information as analysis is performed, with dbcc traceon(310) printing the
final plan statistics. showplan shows the final decision on access methods
and join order.

statistics io and statistics time provide information about how the query was
executed: statistics time measures time from the parse step until the query
completes. statistics io prints actual I/O performed during query execution.

noexec allows you to obtain information such as showplan or dbcc
traceon(302,310) output without actually executing the query.

Performance & Tuning: Optimizer and Abstract Plans 61

C H A P T E R 5 Access Methods and Query
Costing for Single Tables

This chapter introduces the methods that Adaptive Server uses to access
rows in tables. It examines various types of queries on single tables, and
describes the access methods that can be used, and the associated costs.

Chapter 2, “Optimizer Overview,” explains how the optimizer uses search
arguments and join clauses to estimate the number of rows that a query
will return. This chapter looks at how the optimizer uses row estimates
and other statistics to estimate the number of pages that must be read for
the query, and how many logical and physical I/Os are required.

This chapter looks at queries that affect a single table.

For queries that involve more than one table, see Chapter 6, “Accessing
Methods and Costing for Joins and Subqueries.”

For parallel queries, see Chapter 8, “Parallel Query Optimization.”

This chapter contains information about query processing that you can use
in several ways as it:

• Provides a general overview of the access methods that Adaptive
Server uses to process a variety of queries, including illustrations and
sample queries. This information will help you understand how
particular types of queries are executed and how you can improve
query performance by adding indexes or statistics for columns used
in the queries.

Topic Page
Table scan cost 63

From rows to pages 66

Evaluating the cost of index access 69

Costing for queries using order by 77

Access Methods and Costing for or and in Clauses 85

How aggregates are optimized 90

How update operations are performed 92

62 Adaptive Server Enterprise

• Provides a description of how the optimizer arrives at the logical and
physical I/O estimates for the queries. These descriptions can help
you understand whether the I/O use and response time are reasonable
for a given query. These descriptions can be used with the following
tuning tools:

• optdiag can be used to display the statistics about your tables,
indexes, and column values.

See Chapter 6, “Statistics Tables and Displaying Statistics with
optdiag,” in the Monitoring and Analyzing for Performance
book.

• showplan displays the access method (table scan, index scan, type
of OR strategy, and so forth) for a query.

See Chapter 5, “Using set showplan,” in the book Performance
and Tuning: Monitoring and Analyzing for Performance.

• statistics io displays the logical and physical I/O for each table in
a query.

• Provides detailed formulas, very close to the actual formulas used by
Adaptive Server. Use these formulas are meant to be used in
conjunction with the tuning tools, from the book Performance and
Tuning: Monitoring and Analyzing for Performance:

• optdiag can be used to display the statistics that you need to apply
the formulas. See Chapter 6, “Statistics Tables and Displaying
Statistics with optdiag.”

• dbcc traceon(302) displays the sizes, densities, selectivities and
cluster ratios used to produce logical I/O estimates, and dbcc
traceon(310) displays the final query costing for each table,
including the estimated physical I/O. See Chapter 7, “Tuning
with dbcc traceon.”

In many cases, you will need to use these formulas only when you are
debugging problem queries. You may need to discover why an or
query performs a table scan, or why an index that you thought was
useful is not being used by a query.

CHAPTER 5 Access Methods and Query Costing for Single Tables

Performance & Tuning: Optimizer and Abstract Plans 63

This chapter can also help you determine when to stop working to improve
the performance of a particular query. If you know that it needs to read a
certain number of index pages and data pages, and the number of I/Os
cannot be reduced further by adding a covering index, you know that you
have reached the optimum performance possible for query analysis and
index selection. You might need to look at other issues, such as cache
configuration, parallel query options, or object placement.

Table scan cost
When a query requires a table scan, Adaptive Server reads each page of
the table from disk into the data cache and checks the data values (if there
is a where clause) and returns qualifying rows.

Table scans are performed:

• When no index exists on the columns used in the search clauses.

• When the optimizer determines that using the index is more expensive
than performing a table scan. The optimizer may determine that it is
cheaper to read the data pages directly than to read the index pages
and then the data pages for each row that is to be returned.

The cost of a table scan depends on the size of the table and the I/O size.

Note Reference to Large I/Os are on a 2K logical page size server. If you
have an 8K page size server, the basic unit for the I/O is 8K. If you have a
16K page size server, the basic unit for the I/O is 16K.

Cost of a scan on allpages-locked table
The I/O cost of a table scan on an allpages-locked table using 2K I/O is
one physical I/O and one logical I/O for each page in the table:

Table scan cost = Number of pages * 18
+ Number of pages * 2

Table scan cost

64 Adaptive Server Enterprise

If the table uses a cache with large I/O, the number of physical I/Os is
estimated by dividing the number of pages by the I/O size and using a
factor that is based on the data page cluster ratio to estimate the number of
large I/Os that need to be performed. Since large I/O cannot be performed
on any data pages on the first extent in the allocation unit, each of those
pages must be read with 2K I/O.

The logical I/O cost is one logical I/O for each page in the table. The
formula is:

Table scan cost = (pages /pages per IO) * Clustering adjust-
ment* 18+ Number of pages * 2

See “How cluster ratios affect large I/O estimates” on page 67 for more
information on cluster ratios.

Note Adaptive Server does not track the number of pages in the first
extent of an allocation unit for an allpages-locked table, so the optimizer
does not include this slight additional I/O in its estimates.

Cost of a scan on a data-only-locked tables
Tables that use data-only locking do not have page chains like allpages-
locked tables. To perform a table scan on a data-only-locked table,
Adaptive Server:

• Reads the OAM (object allocation map) page(s) for the table

• Uses the pointers on the OAM page to access the allocation pages

• Uses the pointers on the allocation pages to locate the extents used by
the table

• Performs either large I/O or 2K I/O on the pages in the extent

The total cost of a table scan on a data-only-locked table includes the
logical and physical I/O for all pages in the table, plus the cost of logical
and physical I/O for the OAM and allocation pages.

Figure 5-1 shows the pointers from OAM pages to allocation pages and
from allocation pages to extents.

CHAPTER 5 Access Methods and Query Costing for Single Tables

Performance & Tuning: Optimizer and Abstract Plans 65

Figure 5-1: Sequence of pointers for OAM scans

The formula for computing the cost of an OAM scan with 2K I/O is:

OAM Scan Cost = (OAM_alloc_pages + Num_pages) * 18
+ (OAM_alloc_pages + Num_pages)* 2

When large I/O can be used, the optimizer adds the cost of performing 2K
I/O for the pages in the first extent of each allocation unit to the cost of
performing 16K I/O on the pages in regular extents. The number of
physical I/Os is the number of pages in the table, modified by a cluster
adjustment that is based on the data page cluster ratio for the table.

See “How cluster ratios affect large I/O estimates” on page 67 for more
information on cluster ratios.

27 2824 25 26 29 30 31

750 1 2 3 4 6

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

248 249 250 251 252 253 254 255

283

511

279

..

274

256 257 258 259 260 261 262 263

264 265 266 267 268 269 270 271

272 273 275 276 277 278

280 281 282 284 285 286 287

.
504 505 506 507 508 509 510

Pages used by
object

Other pages

Allocation page

...

OAM Page
0
256

From rows to pages

66 Adaptive Server Enterprise

Logical I/O costs are one I/O per page in the table, plus the logical I/O cost
of reading the OAM and allocation pages. The formula for computing the
cost of an OAM scan with large I/O is:

 OAM Scan Cost = OAM_alloc_pages * 18
+ Pages in 1st extent * 18
+ Pages in other extents / Pages per IO

* Cluster adjustment * 18
+ OAM_alloc_pages * 2
+ Pages in table * 2

optdiag reports the number of pages for each of the needed values.

When a data-only-locked table contains forwarded rows, the I/O cost of
reading the forwarded rows is added to the logical and physical I/O for a
table scan.

See “Allpages-locked heap tables” on page 168 of the book Performance
and Tuning: Basics for more information on row forwarding.

From rows to pages
When the optimizer costs the use of an index to resolve a query, it first
estimates the number of qualifying rows, and then estimates the number of
pages that need to be read.

The examples in Chapter 2, “Optimizer Overview,” show how Adaptive
Server estimates the number of rows for a search argument or join using
statistics. Once the number of rows has been estimated, the optimizer
estimates the number of data pages and index leaf pages that need to be
read:

• For tables, the optimizer divides the number of rows in the table by
the number of pages to determine the average number of rows per data
page.

• To estimate the average number of rows per page on the leaf level of
an index, the optimizer divides the number of rows in the table by the
number of leaf pages in the index.

CHAPTER 5 Access Methods and Query Costing for Single Tables

Performance & Tuning: Optimizer and Abstract Plans 67

After the number of pages is estimated, data page and index page cluster
ratios are used to adjust the page estimates for queries using large I/O, and
data row cluster ratios are used to estimate the number of data pages for
queries using noncovering indexes.

How cluster ratios affect large I/O estimates
When clustering is high, large I/O is effective. As the cluster ratios decline,
effectiveness of large I/O drops rapidly. To refine I/O estimates, the
optimizer uses a set of cluster ratios:

• For a table, the data page cluster ratio measures the packing and
sequencing of pages on extents.

• For an index, the data page cluster ratio measures the effectiveness of
large I/O for accessing the table using this index.

• The index page cluster ratio measures the packing and sequencing of
leaf-level index pages on index extents.

Note The data row cluster ratio, another cluster ratio used by query
optimization, is used to cost the number of data pages that need to be
accessed during scans using a particular index. It is not used in large
I/O costing.

optdiag displays the cluster ratios for tables and indexes.

Data page cluster ratio

The data page cluster ratio for a table measures the effectiveness of large
I/O for table scans. Its use is slightly different depending on the locking
scheme.

From rows to pages

68 Adaptive Server Enterprise

On allpages-locked tables

For allpages-locked tables, a table scan or a scan that uses a clustered
index to scan many pages follows the next-page pointers on each data
page. Immediately after the clustered index is created, the data page
cluster ratio is 1.0, and pages are ordered by page number on the extents.
However, after updates and page splits, the page chain can be fragmented
across the page chain, as shown in Figure 5-2, where page 10 has been
split; the page pointers point from page 10 to page 26 in another extent,
then to page 11.

Figure 5-2: Page chain crossing extents in an allpages-locked table

The data page cluster ratio for an allpages-locked table measures the
effectiveness of large I/O for both table scans and clustered index scans.

On data-only-locked tables

For data-only-locked tables, the data page cluster ratio measures how well
the pages are packed on the extents. A cluster ratio of 1.0 indicates
complete packing of extents, with the page chain ordered. If extents
contain unused pages, the data page cluster ratio is less than 1.0.

optdiag reports two data page cluster ratios for data-only-locked tables
with clustered indexes. The value reported for the table is used for table
scans. The value reported for the clustered index is used for scans using
the index.

27 2824 25 26 29 30 31

750 1 2 3 4 6

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

248 249 250 251 252 253 254 255

OAM page

Pages used by object

Other pages

Allocation page

...

CHAPTER 5 Access Methods and Query Costing for Single Tables

Performance & Tuning: Optimizer and Abstract Plans 69

Index page cluster ratio

The index page cluster ratio measures the packing and sequencing of index
leaf pages on extents for nonclustered indexes and clustered indexes on
data-only-locked tables. For queries that need to read more than one leaf
page, the leaf level of the index is scanned using next-page or previous-
page pointers. If many leaf rows need to be read, 16K I/O can be used on
the leaf pages to read one extent at a time. The index page cluster ratio
measures fragmentation of the page chain for the leaf level of the index.

Evaluating the cost of index access
When a query has search arguments on useful indexes, the query accesses
only the index pages and data pages that contain rows that match the
search arguments. Adaptive Server compares the total cost of index and
data page I/O to the cost of performing a table scan, and uses the cheapest
method.

Query that returns a single row
A query that returns a single row using an index performs one I/O for each
index level plus one read for the data page. The optimizer estimates the
total cost as one physical I/O and one logical I/O for each index page and
the data page. The cost for a point query is:

Point query cost = (Number of index levels + data page) * 18
+ (Number of index levels + data page) * 2

optdiag output displays the number of index levels.

The root page and intermediate pages of frequently used indexes are often
found in cache. In that case, actual physical I/O is reduced by one or two
reads.

Query that returns many rows
A query that returns many rows may be optimized very differently,
depending on the type of index and the number of rows to be returned.
Some examples are:

Evaluating the cost of index access

70 Adaptive Server Enterprise

• Queries with search arguments that match many values, such as:

select title, price
from titles
where pub_id = "P099"

• Range queries, such as:

select title, price
from titles
where price between $20 and $50

For queries that return a large number of rows using the leading key of the
index, clustered indexes and covering nonclustered indexes are very
efficient:

• If the table uses allpages locking, and has a clustered index on the
search arguments, the index is used to position the scan on the first
qualifying row. The remaining qualifying rows are read by scanning
forward on the data pages.

• If a nonclustered index or the clustered index on a data-only-locked
table covers the query, the index is used to position the scan at the first
qualifying row on the index leaf page, and the remaining qualifying
rows are read by scanning forward on the leaf pages of the index.

If the index does not cover the query, using a clustered index on a data-
only-locked table or a nonclustered index requires accessing the data page
for each index row that matches the search arguments on the index. The
matching rows may be scattered across many data pages, or they could be
located on a very small number of pages, particularly if the index is a
clustered index on a data-only-locked table. The optimizer uses data row
cluster ratios to estimate how many physical and logical I/Os are required
to read all of the qualifying data pages.

Range queries using clustered indexes (allpages locking)

To estimate the number of physical I/Os required for a range query using
a clustered index on an allpages-locked table, the optimizer adds the
physical and logical I/O for each index level and the physical and logical
I/O of reading the needed data pages. Since data pages are read in order
following the page chain, the cluster adjustment helps estimate the
effectiveness of large I/O. The formula is:

Data pages = Number of qualified rows / Data rows per page

CHAPTER 5 Access Methods and Query Costing for Single Tables

Performance & Tuning: Optimizer and Abstract Plans 71

Range query cost = Number of index levels * 18
+ Data pages/pages per IO * Cluster adjustment * 18
+ Number of index levels * 2
+ Data pages * 2

If a query returns 500 rows, and the table has 10 rows per page, the query
needs to read 50 data pages, plus one index page for each index level. If
the query uses 2K I/O, it requires 50 I/Os for the data pages. If the query
uses 16K I/O, these 50 data pages require 7 I/Os.

The cluster adjustment uses the data page cluster ratio to refine the
estimate of large I/O for the table, based on how fragmented the data page
storage has become on the table’s extents.

Figure 5-3 shows how a range query using a clustered index positions the
search on the first matching row on the data pages. The next-page pointers
are used to scan forward on the data pages until a nonmatching row is
encountered.

Evaluating the cost of index access

72 Adaptive Server Enterprise

Figure 5-3: Range query on the clustered index of an
allpages-locked table

Range queries with covering indexes
Range queries using covering indexes perform very well because:

• The index is used to position the search at the first qualifying row on
the index leaf level.

• Each index page contains more rows than corresponding data rows, so
fewer pages need to be read.

Page 1144
Green
Greene
Highland
Hopper

Page 1133
Greane
Greaves
Greco

Page 1132
Bennet
Chan
Dull
Edwards

Page 1127
Hunter
Jenkins

Page 1007
Bennet 1132
Greane 1133
Green 1144
Hunter 1127

Page 1009
Karsen 1009

Root page Data pages Intermediate

Key Pointer

Key Pointer

select fname, lname, id
from employees
where lname between "Greaves"
and "Highland"
Clustered index on lname

Page 1001
Bennet 1007
Karsen 1009
Smith 1062

CHAPTER 5 Access Methods and Query Costing for Single Tables

Performance & Tuning: Optimizer and Abstract Plans 73

• Index pages tend to remain in cache longer than data pages, so fewer
physical I/Os are needed.

• If the cache used by the index is configured for large I/O, up to 8 leaf-
level pages can be read per I/O.

• The data pages do not have to be accessed.

Both nonclustered indexes and clustered indexes on data-only-locked
tables have a leaf level above the data level, so they can provide index
covering.

The cost of using a covering index is determined by:

• The number of non-leaf index levels

• The number of rows that the query returns

• The number of rows per page on the leaf level of the index

• The number of leaf pages read per I/O

• The index page cluster ratio, used to adjust large I/O estimates when
the index pages are not stored consecutively on the extents

This formula shows the costs:

Leaf pages = Number of qualified rows / Leaf level
rows per page

Covered scan cost =Number of index levels * 18
+ (Leaf pages /Pages per IO) * Cluster

adjustment * 18
+ Number of index levels * 2

+ Leaf pages * 2

For example, if a query needs to read 1,200 leaf pages, and there are 40
rows per leaf-level page, the query needs to read 30 leaf-level pages. If
large I/O can be used, this requires 4 I/Os. If inserts have caused page
splits on the index leaf-level, the cluster adjustment increases the
estimated number of large I/Os.

Range queries with noncovering indexes
When a nonclustered index or a clustered index on a data-only-locked
table does not cover the query, Adaptive Server:

• Uses the index to locate the first qualifying row at the leaf level of the
nonclustered index

Evaluating the cost of index access

74 Adaptive Server Enterprise

• Follows the pointer to the data page for that index, and reads the page

• Finds the next row on the index page, and locates its data page, and
continues this process until all matching keys have been used

For each subsequent key, the data row could be on the same page as the
row for the previous key, or the data row may be on a different page in the
table. The clustering of key values for each index is measured by a value
called the data row cluster ratio. The data row cluster ratio is applied to
estimate the number of logical and physical I/Os.

When the data row cluster ratio is 1.0, clustering is very high. High cluster
ratios are always seen immediately after creating a clustered index; cluster
ratios are 1.00000 or .999997, for example. Rows on the data pages are
stored the same order as the rows in the index. The number of logical and
physical I/Os needed for the data pages is (basically) the number of rows
to be returned, divided by the number of rows per page. For a table with
10 rows per page, a query that needs to return 500 rows needs to read 50
pages if the data row cluster ratio is 1.

When the data row cluster ratio is extremely low, the data rows are
scattered on data pages with no relationship to the ordering of the keys.
Nonclustered indexes often have low data row cluster ratios, since there is
no relationship between the ordering of the index keys and the ordering of
the data rows on data pages. When the data row cluster ratio is 0, or close
to 0, the number of physical and logical I/Os required could be as much as
1 data page I/O for each row to be returned. A query that needs to return
500 rows needs to read 500 pages, or nearly 500 pages, if the data row
cluster ratio is near 0 and the rows are widely scattered on the data pages.
In a huge table, this still provides good performance, but in a table with
less than 500 pages, the optimizer chooses the cheaper alternative – a table
scan.

The size of the data cache is also used in calculating the physical I/O. If
the data row cluster ratio is very low, and the cache is small, pages may be
flushed from cache before they can be reused. If the cache is large, the
optimizer estimates that some pages will be found in cache.

CHAPTER 5 Access Methods and Query Costing for Single Tables

Performance & Tuning: Optimizer and Abstract Plans 75

Result-set size and index use

A range query that returns a small number of rows performs well with the
index, however, range queries that return a large number of rows may not
use the index—it may be more expensive to perform the logical and
physical I/O for a large number of index pages plus a large number of data
pages. The lower the data row cluster ratio, the more expensive it is to use
the index.

At the leaf level of a nonclustered index or a clustered index on a data-
only-locked table, the keys are stored sequentially. For a search argument
on a value that matches 100 rows, the rows on the index leaf level fit on
perhaps one or two index pages. The actual data rows might all be on
different data pages. The following queries show how different data row
cluster ratios affect I/O estimates. The authors table uses datarows locking,
and has these indexes:

• A clustered index on au_lname

• A nonclustered index on state

Each of these queries returns about 100 rows:

select au_lname, phone
from authors
where au_lname like "E%"
select au_id, au_lname, phone
from authors
where state = "NC"

The following table shows the data row cluster ratio for each index, and
the optimizer’s estimate of the number of rows to be returned and the
number of pages required.

The basic information on the table is:

• The table has 262 pages.

• There are 19 rows per data page in the table.

SARG on Data row cluster ratio Row estimate Page estimate Data I/O size

au_lname .999789 101 8 16K

state .232539 103 83 2K

Evaluating the cost of index access

76 Adaptive Server Enterprise

While each of the queries has its search clauses in valid search-argument
form, and each of the clauses matches an index, only the first query uses
the index: for the other query, a table scan is cheaper than using the index.
With 262 pages, the cost of the table scan is:

Closer look at the Search Argument costing

Looking more closely at the tables, cluster ratios, and search arguments
explains why the table scan is chosen:

• The estimate for the clustered index on au_lname includes just 8
physical I/Os:

• 6 I/Os (using 16K I/O) on the data pages, because the data row
cluster ratio indicates very high clustering.

• 2 I/Os for the index pages (there are 128 rows per leaf page); 16K
I/O is also used for the index leaf pages.

• The query using the search argument on state has to read many more
data pages, since the data row cluster ratio is low. The optimizer
chooses 2K I/O on the data pages. 83 physical I/Os is more than
double the physical I/O required for a table scan (using 16K I/O).

Table scan cost = (262 /8) = 37 * 18 =666
+ 262 * 2 =524

1190

CHAPTER 5 Access Methods and Query Costing for Single Tables

Performance & Tuning: Optimizer and Abstract Plans 77

Costing for noncovering index scans

The basic formula for estimating I/O for queries accessing the data
through a noncovering index is:

Costing for forwarded rows

If a data-only-locked table has forwarded rows, the cost of the extra I/O
for accessing forwarded rows is added for noncovered index scans. The
cost is computed by multiplying the number of forwarded rows in the table
and the percent of the rows from the table that to be returned by the query.
The added cost is:

Costing for queries using order by
Queries that perform sorts for order by may create and sort, or they may be
able to use the index to return rows by relying on the index ordering. For
example, the optimizer chooses one of these access methods for a query
with an order by clause:

• With no useful search arguments – use a table scan, followed by
sorting the worktable.

Leaf pages = Number of qualified rows / Leaf level rows per page

Data pages = Number of qualifying rows * Data row cluster adjustment

Scan cost = Number of nonleaf index levels * 18
+ (Leaf pages / Pages per IO) * Data page cluster adjustment * 18
+ (Data pages / Pages per IO) * Data page cluster adjustment * 18
+ Number of nonleaf index levels * 18
+ Leaf pages * 2
+ Number of qualifying rows * Data row cluster adjustment * 2

Forwarded row cost = % of rows returned * Number of forwarded rows in the table

Costing for queries using order by

78 Adaptive Server Enterprise

• With selective search argument or join on an index that does not
match the order by clause – use an index scan, followed by sorting the
worktable.

• With a search argument or join on an index that matches the order by
clause – an index scan using this index, with no worktable or sort.

Sorts are always required for result sets when the columns in the result set
are a superset of the index keys. For example, if the index on authors
includes au_fname and au_lname, and the order by clause also includes the
au_id, the query requires a sort.

If there are search arguments on indexes that match the order by clause,
and other search arguments on indexes that do not support the required
ordering, the optimizer costs both access methods. If the worktable and
sort is required, the cost of performing the I/O for these operations is added
to the cost of the index scan. If an index is potentially useful to help avoid
the sort, dbcc traceon(302) prints a message while the search or join
argument costing takes place.

See “Sort avert messages” on page 179 in the book Performance and
Tuning: Monitoring and Analyzing for Performance for more information.

Besides the availability of indexes, two major factors determine whether
the index is considered:

• The order by clause must specify a prefix subset of the index keys.

• The order by clause and the index must have compatible
ascending/descending key ordering.

Prefix subset and sorts
For a query to use an index to avoid a sort step, the keys specified in the
order by clause must be a prefix subset of the index keys. For example, if
the index specifies the keys as A, B, C, D:

• The following order by clauses can use the index:

• A

• A, B

• A, B, C

• A, B, C, D

CHAPTER 5 Access Methods and Query Costing for Single Tables

Performance & Tuning: Optimizer and Abstract Plans 79

• And other set of columns cannot use the index. For example, these are
not prefix subsets:

• A, C

• B, C, D

Key ordering and sorts
Both order by clauses and commands that create indexes can use the asc or
desc (ascending or descending) ordering qualifications:

• For index creation, the asc and desc qualifications specify the order
in which keys are to be stored in the index.

• In the order by clause, the ordering qualifications specify the order in
which the columns are to be returned in the output.

To avoid a sort when using a specific index, the asc or desc qualifications
in the order by clause must either be exactly the same as those used to
create the index, or must be exactly the opposite.

Specifying ascending or descending order for index keys

Queries that use a mix of ascending and descending order in an order by
clause do not perform a separate sort step if the index was created using
the same mix of ascending and descending order as that specified in the
order by clause, or if the index order is the reverse of the order specified in
the order by clause. Indexes are scanned forward or backward, following
the page chain pointers at the leaf level of the index.

For example, this command creates an index on the titles table with pub_id
ascending and pubdate descending:

create index pub_ix
 on titles (pub_id asc, pubdate desc)

The rows are ordered on the pages as shown in Figure 5-4. When the
ascending and descending order in the query matches the index creation
order, the result is a forward scan, starting at the beginning of the index or
at the first qualifying row, returning the rows in order from each page, and
following the next-page pointers to read subsequent pages.

Costing for queries using order by

80 Adaptive Server Enterprise

If the ordering in the query is the exact opposite of the index creation
order, the result is a backward scan, starting at the last page of the index or
the page containing the last qualifying row, returning rows in backward
order from each page, and following previous page pointers.

Figure 5-4: Forward and backward scans on an index

The following query using the index shown in Figure 5-4 performs a
forward scan:

select *
from titles
order by pub_id asc, pubdate desc

This query using the index shown in Figure 5-4 performs a backward scan:

select *
from titles
order by pub_id desc, pubdate asc

For the following two queries on the same table, the plan requires a sort
step, since the order by clauses do not match the ordering specified for the
index:

select *
from titles
order by pub_id desc, pubdate desc
select *
from titles

Page 1132
P066 12/20/93
P066 11/11/93
P066 10/4/93
P073 11/26/93

Page 1133
P073 10/14/93
P087 12/01/93
P087 10/4/93
P087 9/7/93

Page 1132
P066 12/20/93
P066 11/11/93
P066 10/4/93
P073 11/26/93

Page 1133
P073 10/14/93
P087 12/01/93
P087 10/4/93
P087 9/7/93

Forward scan: scans rows in
order on the page, then
follows the next-page

Backward scan: scans rows in
reverse order on the page, then
follows the previous-page

CHAPTER 5 Access Methods and Query Costing for Single Tables

Performance & Tuning: Optimizer and Abstract Plans 81

order by pub_id asc, pubdate asc

Note Parallel sort operations are optimized very differently for partitioned
tables. See Chapter 9, “Parallel Sorting,” for more information.

How the optimizer costs sort operations
When Adaptive Server optimizes queries that require sorts:

• It computes the cost of using an index that matches the required sort
order, if such an index exists.

• It computes the physical and logical I/O cost of creating a worktable
and performing the sort for every index where the index order does
not match the sort order. It computes the physical and logical I/O cost
of performing a table scan, creating a worktable, and performing the
sort.

Adding the cost of creating and sorting the worktable to the cost of index
access and the cost of creating and sorting the worktable favors the use of
an index that supports the order by clause. However, when comparing
indexes that are very selective, but not ordered, versus indexes that are
ordered, but not selective:

• Access costs are low for the more selective index, and so are sort
costs.

• Access costs are high for the less selective index, and may exceed the
cost of access using the more selective index and sort.

Allpages-locked tables with clustered indexes
For allpages-locked tables with clustered indexes, order by queries that
match the index keys are efficient if:

• There is also a search argument that uses the index, the index key
positions the search on the data page for first qualifying row.

• The scan follows the next-page pointers until all qualifying rows have
been found.

• No sort is needed.

Costing for queries using order by

82 Adaptive Server Enterprise

In Figure 5-5, the index was created in ascending order, and the order by
clause does not specify the order, so ascending is used by default.

Figure 5-5: An order by query using a clustered index, allpages
locking

 Queries requiring descending sort order (for example, order by title_id
desc) can avoid sorting by scanning pages in reverse order. If the entire
table is needed for a query without a where clause, Adaptive Server
follows the index pointers to the last page, and then scans backward using
the previous page pointers. If the where clause includes an index key, the
index is used to position the search, and then the pages are scanned
backward, as shown in Figure 5-6.

Page 1133
Greane
Greaves
Greco

Page 1007
Bennet 1132
Greane 1133
Green 1144
Hunter 1127

Page 1009
Karsen 1009 Page 1144

Green
Greene
Highland

Page 1132
Bennet
Chan
Dull
Edwards

Page 1127
Hunter
Jenkins

Page 1001
Bennet 1007
Karsen 1009
Smith 1062

Root page Data pages Intermediate

Key Pointer

Key Pointer

select fname, lname, id
from employees
where lname between "Dull"
and "Greene"
order by lname
Clustered index on lname

CHAPTER 5 Access Methods and Query Costing for Single Tables

Performance & Tuning: Optimizer and Abstract Plans 83

Figure 5-6: An order by desc query using a clustered index

Sorts when index covers the query
When an index covers the query and the order by columns form a prefix
subset of the index keys, the rows are returned directly from the
nonclustered index leaf pages. If the columns do not form a prefix subset
of the index keys, a worktable is created and sorted.

With a nonclustered index on au_lname, au_fname, au_id of the authors
table, this query can return the data directly from the leaf pages:

select au_id, au_lname
from authors
order by au_lname, au_fname

Page 1007
Bennet 1132
Greane 1133
Green 1144
Hunter 1127

Page 1009
Karsen 1009

Page 1133
Greane
Greaves
Greco

Page 1144
Green
Greene
Highland

Page 1132
Bennet
Chan
Dull
Edwards

Page 1127
Hunter
Jenkins

Page 1001
Bennet 1007
Karsen 1009
Smith 1062

Root page Data pages Intermediate

Key Pointer

Key Pointer

select fname, lname, id
from employees
where lname <= "Highland"
order by lname desc
Clustered index on lname

Costing for queries using order by

84 Adaptive Server Enterprise

Sorts and noncovering indexes
With a noncovering index, Adaptive Server determines whether using the
index that supports the ordering requirements is cheaper than performing
a table scan or using a more selective index, and then inserting rows into
a worktable and sorting the data. The cost of using the index depends on
the number of rows and the data row cluster ratio.

Backward scans and joins

If two or more tables are being joined, and the order by clause specifies
descending order for index keys on the joined tables, any of the tables and
indexes involved can be scanned with a backward scan to avoid the
worktable and sort costs. If all the columns for one table are in ascending
order, and the columns for the other tables are in descending order, the first
table is scanned in ascending order and the others in descending order.

Deadlocks and descending scans

Descending scans may deadlock with queries performing update
operations using ascending scans and with queries performing page splits
and shrinks, except when the backward scans are performed at transaction
isolation level 0.

The allow backward scans configuration parameter controls whether the
optimizer uses the backward scan strategy. The default value of 1 allows
descending scans.

See the System Administration Guide for more information on this
parameter.

Also, see “Index scans” on page 69 for information on the number of
ascending and descending scans performed and “Deadlocks by lock type”
on page 78 in the book Performance and Tuning: Monitoring and
Analyzing for Performance for information on detecting deadlocks.

CHAPTER 5 Access Methods and Query Costing for Single Tables

Performance & Tuning: Optimizer and Abstract Plans 85

Access Methods and Costing for or and in Clauses
When a query on a single table contains or clauses or an in (values_list)
clause, it can be optimized in different ways, depending on the presence of
indexes, the selectivity of the search arguments, the existence of other
search arguments, and whether or not the clauses might return duplicate
rows.

or syntax
Where a query uses an or clause, the optimizer may choose a more
expensive or strategy not only for table scans, but also against covering
index scans because the strategy provides a better locking concurrency.

or clauses take one of the following forms:

where column_name1 = <value>
 or column_name1 = <value>
 ...

or:

where column_name1 = <value>
 or column_name2 = <value>
 ...

in (values_list) converts to or processing
Preprocessing converts in lists to or clauses, so this query:

select title_id, price
 from titles
 where title_id in ("PS1372", "PS2091","PS2106")

becomes:

select title_id, price
 from titles
 where title_id = "PS1372"
 or title_id = "PS2091"
 or title_id = "PS2106"

Access Methods and Costing for or and in Clauses

86 Adaptive Server Enterprise

Methods for processing or clauses
A single-table query including or clauses is a union of more than one
query. Although some rows may match more than one of the conditions,
each row must be returned only once. Depending on indexes and query
clauses, or queries can be resolved by one of these methods:

• If any of the clauses linked by or is not indexed, the query must use a
table scan. If there is an index on type, but no index on advance, this
query performs a table scan:

select title_id, price
from titles
where type = "business" or advance > 10000

• If there is a possibility that one or more of the or clauses could match
values in the same row, the query is resolved using the OR strategy,
also known as using a dynamic index. The OR strategy selects the
row IDs for matching rows into a worktable, and sorts the worktable
to remove duplicate row IDs. For example, there can be rows for
which both of these conditions are true:

select title_id
from titles
where pub_id = "P076" or type > "business"

If there is an index on pub_id, and another on type, the OR strategy can
be used.

See “Dynamic index (OR strategy)” on page 88 for more
information.

Note The OR Strategy (multiple matching index scans) is only
considered for equality predicates. It is disqualified for range
predicates even if meeting other conditions. As an example, when a
select statement contains the following:

where bar between 1 and 5
or bar between 10 and 15

This will not be considered for the OR Strategy.

• If there is no possibility that the or clauses can select the same row, the
query can be resolved with multiple matching index scans, also
known as the special OR strategy. The special OR strategy does not
require a worktable and sort. The or clauses in this query cannot select
the same row twice:

CHAPTER 5 Access Methods and Query Costing for Single Tables

Performance & Tuning: Optimizer and Abstract Plans 87

select title_id, price
from titles
where pub_id = "P076" or pub_id = "P087"

With an index on pub_id, this query can be resolved using two
matching index scans.

See “Multiple matching index scans (special OR strategy)” on page
90 for more information.

• The costs of index access for each or clause are added together, and
the cost of the sort, if required. If sum of these costs is greater than a
table scan, the table scan is chosen. For example, this query uses a
table scan if the total cost of all of the indexed scans on pub_id is
greater than the table scan:

select title_id, price
from titles
where pub_id in ("P095", "P099", "P128", "P220",
"P411", "P445", "P580", "P988")

• If the query contains additional search arguments on indexed
columns, predicate transformation may add search arguments that can
be optimized, adding alternative optimization options. The cost of
using all alternative access methods is compared, and the cheapest
alternative is selected. This query contains a search argument on type
as well as clauses linked with or:

select title_id, type, price from titles
where type = "business"
and (pub_id = "P076" or pubdate > "12/1/93")

With a separate index on each search argument, the optimizer uses the
least expensive access method:

• The index on type

• The OR strategy on pub_id and pubdate

When table scans are used for or queries

A query with or clauses or an in (values_list) uses a table scan if either of
these conditions is true:

• The cost of all the index accesses is greater than the cost of a table
scan, or

• At least one of the columns is not indexed, so the only way to resolve
the query conditions is to perform a table scan.

Access Methods and Costing for or and in Clauses

88 Adaptive Server Enterprise

Dynamic index (OR strategy)

If the query uses the OR strategy because the query could return duplicate
rows, the appropriate indexes are used to retrieve the row IDs for rows that
satisfy each or clause. The row IDs for each or clause are stored in a
worktable. Since the worktable contains only row IDs, it is called a
“dynamic index.” Adaptive Server then sorts the worktable to remove the
duplicate row IDs. The row IDs are used to retrieve the rows from the base
tables. The total cost of the query includes:

• The sum of the index accesses, that is, for each or clause, the cost of
using the index to access the row IDs on the leaf pages of the index
(or on the data pages, for a clustered index on an allpages-locked
table)

• The cost of reading the worktable and performing the sort

• The cost of using the row IDs to access the data pages

Figure 5-7 illustrates the process of building and sorting a dynamic index
for an or query on two different columns.

CHAPTER 5 Access Methods and Query Costing for Single Tables

Performance & Tuning: Optimizer and Abstract Plans 89

Figure 5-7: Resolving or queries using the OR strategy

As shown in Figure 5-7, the optimizer can choose to use a different index
for each clause.

showplan displays “Using Dynamic Index” and “Positioning by Row
IDentifier (RID)” when the OR strategy is used.

See “Dynamic index message (OR strategy)” on page 107 in the
Performance and Tuning: Monitoring and Analyzing for Performance
book for more information.

Queries in cursors cannot use the OR strategy, but must perform a table
scan. However, queries in cursors can use the multiple matching index
scans strategy.

Locking during queries that use the OR strategy depends on the locking
scheme of the table.

Page Row
1441 4
1537 2
1537 2
1822 5
1941 2

Find rows on Save results Sort and
remove duplicates

Page 1239
Backwards... 1527, 4
Computer... 1441,4
Computer... 1537,2
Optional... 1923, 7

Page 1473
$14 1427, 8
$15 1941, 2
$15 1537, 2
$15 1822, 5
$16 1445,6

Page Row
1441 4
1537 2
1941 2
1537 2
1822 5

index leaf pages in a worktable

select title_id, price
 from titles
 where price <= $15 or title like "Compute%"

title_id_ix

price_ix

Access rows on
data pages

Page 1537
Using ... $27
Computer... $15
New... $18
Home... $44

Page 1441
Tricks ... $23
Computer... $29
Garden... $20
Best... $50

(to page 1882)

(to page 1941)

How aggregates are optimized

90 Adaptive Server Enterprise

Multiple matching index scans (special OR strategy)

Adaptive Server uses multiple matching index scans when the or clauses
are on the same table, and there is no possibility that the or clauses will
return duplicate rows. For example, this query cannot return any duplicate
rows:

select title
 from titles
 where title_id in ("T6650", "T95065", "T11365")

This query can be resolved using multiple matching index scans, using the
index on title_id. The total cost of the query is the sum of the multiple index
accesses performed. If the index on title_id has 3 levels, each or clause
requires 3 index reads, plus one data page read, so the total cost for each
clause is 4 logical and 4 physical I/Os, and the total query cost is estimated
to be 12 logical and 12 physical I/Os.

The optimizer determines which index to use for each or clause or value in
the in (values_list) clause by costing each clause or value separately. If each
column named in a clause is indexed, a different index can be used for each
clause or value. showplan displays the message “Using N Matching Index
Scans” when the special OR strategy is used.

See “Matching index scans message” on page 106 in the book
Performance and Tuning: Monitoring and Analyzing for Performance.

How aggregates are optimized
Aggregates are processed in two steps:

• First, appropriate indexes are used to retrieve the appropriate rows, or
a table scan is performed. For vector (grouped) aggregates, the results
are placed in a worktable. For scalar aggregates, results are computed
in a variable in memory.

• Second, the worktable is scanned to return the results for vector
aggregates, or the results are returned from the internal variable.

Vector aggregates can use a covering composite index on the aggregated
column and the grouping column, if any, rather than performing table
scans. For example, if the titles table has a nonclustered index on type,
price, the following query retrieves its results by scanning the leaf level of
the nonclustered index:

CHAPTER 5 Access Methods and Query Costing for Single Tables

Performance & Tuning: Optimizer and Abstract Plans 91

select type, avg(price)
 from titles
 group by type

Scalar aggregates can also use covering indexes to reduce I/O. For
example, the following query can use the index on type, price:

select min(price)
 from titles

Table 5-1 shows some of the access methods that the optimizer can choose
for queries with aggregates when there is no where, having or group by
clause in the query.

Table 5-1: Special access methods for aggregates

Combining max and min aggregates
When used separately, max and min aggregates on leading index columns
use special processing if there is no where clause in the query:

• min aggregates retrieve the first value on the root page of the index,
performing a single read to find the value.

• max aggregates follow the last entry on the last page at each index
level until they reach the leaf level.

However, when min and max are used together, this optimization is not
available. The entire leaf level of an index is scanned to locate the first and
last values.

min and max optimizations are not applied if:

Aggregate Index description Access method

min Scalar aggregate is leading column Use first the value on the root page of the index.

max Clustered index on an allpages-
locked table

Follow the last pointer on root page and
intermediate pages to data page, and return the last
value.

Clustered index on a data-only-
locked table

Any nonclustered index

Follow last pointer on root page and intermediate
pages to leaf page, and return the last value.

count(*) Nonclustered index or clustered
index on a data-only-locked table

Count all rows in the leaf level of the index with the
smallest number of pages.

count(col_name) Covering nonclustered index, or
covering clustered index on data-
only-locked table

Count all non-null values in the leaf level of the
smallest index containing the column name.

How update operations are performed

92 Adaptive Server Enterprise

• The expression inside the max or min function is anything but a
column. When numeric_col has a nonclustered index:

• max(numeric_col*2) contains an operation on a column, so the
query performs a leaf-level scan of the index.

• max(numeric_col)*2 uses max optimization, because the
multiplication is performed on the result of the function.

• There is another aggregate in the query.

• There is a group by clause.

Queries that use both min and max

If you have max and min aggregates that can be optimized, you should get
much better performance by putting them in separate queries. For
example, even if there is an index with price as the leading key, this query
results in a full leaf-level scan of the index:

select max(price), min(price)
 from titles

When you separate them, Adaptive Server uses the index once for each of
the two queries, rather than scanning the entire leaf level. This example
shows two queries:

select max(price)
 from titles
select min(price)
 from titles

How update operations are performed
Adaptive Server handles updates in different ways, depending on the
changes being made to the data and the indexes used to locate the rows.
The two major types of updates are deferred updates and direct updates.
Adaptive Server performs direct updates whenever possible.

Direct updates
Adaptive Server performs direct updates in a single pass:

CHAPTER 5 Access Methods and Query Costing for Single Tables

Performance & Tuning: Optimizer and Abstract Plans 93

• It locates the affected index and data rows.

• It writes the log records for the changes to the transaction log.

• It makes the changes to the data pages and any affected index pages.

There are three techniques for performing direct updates:

• In-place updates

• Cheap direct updates

• Expensive direct updates

Direct updates require less overhead than deferred updates and are
generally faster, as they limit the number of log scans, reduce logging,
save traversal of index B-trees (reducing lock contention), and save I/O
because Adaptive Server does not have to refetch pages to perform
modifications based on log records.

In-place updates

Adaptive Server performs in-place updates whenever possible.

When Adaptive Server performs an in-place update, subsequent rows on
the page are not moved; the row IDs remain the same and the pointers in
the row offset table are not changed.

For an in-place update, the following requirements must be met:

• The row being changed cannot change its length.

• The column being updated cannot be the key, or part of the key, of a
clustered index on an allpages-locked table. Because the rows in a
clustered index on an allpages-locked table are stored in key order, a
change to the key almost always means that the row location is
changed.

• One or more indexes must be unique or must allow duplicates.

• The update statement satisfies the conditions listed in “Restrictions
on update modes through joins” on page 99.

• The affected columns are not used for referential integrity.

• There cannot be a trigger on the column.

• The table cannot be replicated (via Replication Server).

How update operations are performed

94 Adaptive Server Enterprise

An in-place update is the fastest type of update because it makes a single
change to the data page. It changes all affected index entries by deleting
the old index rows and inserting the new index row. In-place updates affect
only indexes whose keys are changed by the update, since the page and
row locations are not changed.

Cheap direct updates

If Adaptive Server cannot perform an update in place, it tries to perform a
cheap direct update—changing the row and rewriting it at the same offset
on the page. Subsequent rows on the page are moved up or down so that
the data remains contiguous on the page, but the row IDs remain the same.
The pointers in the row offset table change to reflect the new locations.

A cheap direct update,must meet these requirements:

• The length of the data in the row is changed, but the row still fits on
the same data page, or the row length is not changed, but there is a
trigger on the table or the table is replicated.

• The column being updated cannot be the key, or part of the key, of a
clustered index. Because Adaptive Server stores the rows of a
clustered index in key order, a change to the key almost always means
that the row location is changed.

• One or more indexes must be unique or must allow duplicates.

• The update statement satisfies the conditions listed in “Restrictions
on update modes through joins” on page 99.

• The affected columns are not used for referential integrity.

Cheap direct updates are almost as fast as in-place updates. They require
the same amount of I/O, but slightly more processing. Two changes are
made to the data page (the row and the offset table). Any changed index
keys are updated by deleting old values and inserting new values. Cheap
direct updates affect only indexes whose keys are changed by the update,
since the page and row ID are not changed.

Expensive direct updates

If the data does not fit on the same page, Adaptive Server performs an
expensive direct update, if possible. An expensive direct update deletes the
data row, including all index entries, and then inserts the modified row and
index entries.

CHAPTER 5 Access Methods and Query Costing for Single Tables

Performance & Tuning: Optimizer and Abstract Plans 95

Adaptive Server uses a table scan or an index to find the row in its original
location and then deletes the row. If the table has a clustered index,
Adaptive Server uses the index to determine the new location for the row;
otherwise, Adaptive Server inserts the new row at the end of the heap.

An expensive direct updatemust meet these requirements:

• The length of a data row is changed so that the row no longer fits on
the same data page, and the row is moved to a different page, or the
update affects key columns for the clustered index.

• The index used to find the row is not changed by the update.

• The update statement satisfies the conditions listed in “Restrictions
on update modes through joins” on page 99.

• The affected columns are not used for referential integrity.

An expensive direct update is the slowest type of direct update. The delete
is performed on one data page, and the insert is performed on a different
data page. All index entries must be updated, since the row location is
changed.

Deferred updates
Adaptive Server uses deferred updates when direct update conditions are
not met. A deferred update is the slowest type of update.

In a deferred update, Adaptive Server:

• Locates the affected data rows, writing the log records for deferred
delete and insert of the data pages as rows are located.

• Reads the log records for the transaction and performs the deletes on
the data pages and any affected index rows.

• Reads the log records a second time, and performs all inserts on the
data pages, and inserts any affected index rows.

When deferred updates are required

Deferred updates are always required for:

• Updates that use self-joins

• Updates to columns used for self-referential integrity

How update operations are performed

96 Adaptive Server Enterprise

• Updates to a table referenced in a correlated subquery

Deferred updates are also required when:

• The update moves a row to a new page while the table is being
accessed via a table scan or a clustered index.

• Duplicate rows are not allowed in the table, and there is no unique
index to prevent them.

• The index used to find the data row is not unique, and the row is
moved because the update changes the clustered index key or because
the new row does not fit on the page.

Deferred updates incur more overhead than direct updates because they
require Adaptive Server to reread the transaction log to make the final
changes to the data and indexes. This involves additional traversal of the
index trees.

For example, if there is a clustered index on title, this query performs a
deferred update:

update titles set title = "Portable C Software" where
title = "Designing Portable Software"

Deferred index inserts
Adaptive Server performs deferred index updates when the update affects
the index used to access the table or when the update affects columns in a
unique index. In this type of update, Adaptive Server:

• Deletes the index entries in direct mode

• Updates the data page in direct mode, writing the deferred insert
records for the index

• Reads the log records for the transaction and inserts the new values in
the index in deferred mode

Deferred index insert mode must be used when the update changes the
index used to find the row or when the update affects a unique index. A
query must update a single, qualifying row only once—deferred index
update mode ensures that a row is found only once during the index scan
and that the query does not prematurely violate a uniqueness constraint.

The update in Figure 5-8 changes only the last name, but the index row is
moved from one page to the next. To perform the update, Adaptive Server:

CHAPTER 5 Access Methods and Query Costing for Single Tables

Performance & Tuning: Optimizer and Abstract Plans 97

1 Reads index page 1133, deletes the index row for “Greene” from that
page, and logs a deferred index scan record.

2 Changes “Green” to “Hubbard” on the data page in direct mode and
continues the index scan to see if more rows need to be updated.

3 Inserts the new index row for “Hubbard” on page 1127.

Figure 5-8 shows the index and data pages prior to the deferred update
operation, and the sequence in which the deferred update changes the data
and index pages.

How update operations are performed

98 Adaptive Server Enterprise

Figure 5-8: Deferred index update

Page 1421
18 Bennet
19 Hubbard
20 Yokomoto

Page 1421
18 Bennet
19 Green
20 Yokomoto

Page 1007
Bennet 1421,1 1132
Greane 1307,4 1133
Hunter 1307,1 1127

Page 1133
Greane 1307,4
Green 1421,2
Greene 1409,2

Page 1001
Bennet 1421,1 1007
Karsen 1411,3 1009
Smith 1307,2 1062

Green
Page 1242

10 O’Leary
11 Ringer
12 White
13 Jenkins

Page 1307
14 Hunter
15 Smith
16 Ringer
17 Greane

Page 1409
21 Dull
22 Greene
23 White

Page 1132
Bennet 1421,1
Chan 1129,3
Dull 1409,1
Edwards 1018,5

Page 1127
Hunter 1307,1
Jenkins 1242,4

Page 1009
Karsen 1411,3 1315

Root page Data pages Intermediate

Key RowID Pointer

Key Pointer

Leaf pages

Key RowID Pointer

update employee
set lname = "Hubbard"
where lname = "Green"

Step 2: Change data
page.

Step 1: Write log
records, then delete
index row.

Page 1133
Greane 1307,4
Greene 1409,2

Page 1127
Hubbard 1421,2
Hunter 1307,1
Jenkins 1242,4

Step 3: Read log,
insert index row.

Before update

Update steps

CHAPTER 5 Access Methods and Query Costing for Single Tables

Performance & Tuning: Optimizer and Abstract Plans 99

Assume a similar update to the titles table:

update titles
set title = "Computer Phobic’s Manual",
 advance = advance * 2
where title like "Computer Phob%"

This query shows a potential problem. If a scan of the nonclustered index
on the title column found “Computer Phobia Manual,” changed the title,
and multiplied the advance by 2, and then found the new index row
“Computer Phobic’s Manual” and multiplied the advance by 2, the
advance wold be very skewed against the reality.

A deferred index delete may be faster than an expensive direct update, or
it may be substantially slower, depending on the number of log records
that need to be scanned and whether the log pages are still in cache.

During deferred update of a data row, there can be a significant time
interval between the delete of the index row and the insert of the new index
row. During this interval, there is no index row corresponding to the data
row. If a process scans the index during this interval at isolation level 0, it
will not return the old or new value of the data row.

Restrictions on update modes through joins
Updates and deletes that involve joins can be performed in direct,
deferred_varcol, or deferred_index mode when the table being updated is
the outermost table in the join order, or when it is preceded in the join order
by tables where only a single row qualifies.

Joins and subqueries in update and delete statements

The use of the from clause to perform joins in update and delete statements
is a Transact-SQL extension to ANSI SQL. Subqueries in ANSI SQL form
can be used in place of joins for some updates and deletes.

This example uses the from syntax to perform a join:

update t1 set t1.c1 = t1.c1 + 50
from t1, t2
where t1.c1 = t2.c1
and t2.c2 = 1

The following example shows the equivalent update using a subquery:

update t1 set c1 = c1 + 50

How update operations are performed

100 Adaptive Server Enterprise

where t1.c1 in (select t2.c1
 from t2
 where t2.c2 = 1)

The update mode that is used for the join query depends on whether the
updated table is the outermost query in the join order—if it is not the
outermost table, the update is performed in deferred mode. The update that
uses a subquery is always performed as a direct, deferred_varcol, or
deferred_index update.

For a query that uses the from syntax and performs a deferred update due
to the join order, use showplan and statistics io to determine whether
rewriting the query using a subquery can improve performance. Not all
queries using from can be rewritten to use subqueries.

Deletes and updates in triggers versus referential integrity

Triggers that join user tables with the deleted or inserted tables are run in
deferred mode. If you are using triggers solely to implement referential
integrity, and not to cascade updates and deletes, then using declarative
referential integrity in place of triggers may avoid the penalty of deferred
updates in triggers.

Optimizing updates
showplan messages provide information about whether an update is
performed in direct mode or deferred mode. If a direct update is not
possible, Adaptive Server updates the data row in deferred mode. There
are times when the optimizer cannot know whether a direct update or a
deferred update will be performed, so two showplan messages are
provided:

• The “deferred_varcol” message shows that the update may change the
length of the row because a variable-length column is being updated.
If the updated row fits on the page, the update is performed in direct
mode; if the update does not fit on the page, the update is performed
in deferred mode.

• The “deferred_index” message indicates that the changes to the data
pages and the deletes to the index pages are performed in direct mode,
but the inserts to the index pages are performed in deferred mode.

CHAPTER 5 Access Methods and Query Costing for Single Tables

Performance & Tuning: Optimizer and Abstract Plans 101

These types of direct updates depend on information that is available only
at runtime, since the page actually has to be fetched and examined to
determine whether the row fits on the page.

Designing for direct updates

When you design and code your applications, be aware of the differences
that can cause deferred updates. Follow these guidelines to help avoid
deferred updates:

• Create at least one unique index on the table to encourage more direct
updates.

• Whenever possible, use nonkey columns in the where clause when
updating a different key.

• If you do not use null values in your columns, declare them as not null
in your create table statement.

Effects of update types and indexes on update modes

Table 5-2 shows how indexes affect the update mode for three different
types of updates. In all cases, duplicate rows are not allowed. For the
indexed cases, the index is on title_id. The three types of updates are:

• Update of a variable-length key column:

update titles set title_id = value
 where title_id = "T1234"

• Update of a fixed-length nonkey column:

update titles set pub_date = value
 where title_id = "T1234"

• Update of a variable-length nonkey column:

 update titles set notes = value
 where title_id = "T1234"

Table 5-2 shows how a unique index can promote a more efficient update
mode than a nonunique index on the same key. Pay particular attention to
the differences between direct and deferred in the shaded areas of the table.
For example, with a unique clustered index, all of these updates can be
performed in direct mode, but they must be performed in deferred mode if
the index is nonunique.

How update operations are performed

102 Adaptive Server Enterprise

For a table with a nonunique clustered index, a unique index on any other
column in the table provides improved update performance. In some cases,
you may want to add an IDENTITY column to a table in order to include
the column as a key in an index that would otherwise be nonunique.

Table 5-2: Effects of indexing on update mode

If the key for an index is fixed length, the only difference in update modes
from those shown in the table occurs for nonclustered indexes. For a
nonclustered, nonunique index, the update mode is deferred_index for
updates to the key. For a nonclustered, unique index, the update mode is
direct for updates to the key.

If the length of varchar or varbinary is close to the maximum length, use
char or binary instead. Each variable-length column adds row overhead
and increases the possibility of deferred updates.

Using max_rows_per_page to reduce the number of rows allowed on a
page increases direct updates, because an update that increases the length
of a variable-length column may still fit on the same page.

For more information on using max_rows_per_page, see “Using
max_rows_per_page on allpages-locked tables” on page 202 in the book
Performance and Tuning: Basics.

Using sp_sysmon while tuning updates
You can use showplan to determine whether an update is deferred or direct,
but showplan does not give you detailed information about the type of
deferred or direct update. Output from the sp_sysmon or Adaptive Server
Monitor supplies detailed statistics about the types of updates performed
during a sample interval.

Update To:

Index
Variable-
length key

Fixed-length
column

Variable-
length column

No index N/A direct deferred_varcol

Clustered, unique direct direct direct

Clustered, not unique deferred deferred deferred

Clustered, not unique, with a
unique index on another column

deferred direct deferred_varcol

Nonclustered, unique deferred_varcol direct direct

Nonclustered, not unique deferred_varcol direct deferred_varcol

CHAPTER 5 Access Methods and Query Costing for Single Tables

Performance & Tuning: Optimizer and Abstract Plans 103

Run sp_sysmon as you tune updates, and look for reduced numbers of
deferred updates, reduced locking, and reduced I/O.

See “Transaction detail” on page 50 in the Performance and Tuning:
Monitoring and Analyzing for Performance book for more information.

How update operations are performed

104 Adaptive Server Enterprise

Performance & Tuning: Optimizer and Abstract Plans 105

C H A P T E R 6 Accessing Methods and Costing
for Joins and Subqueries

This chapter introduces the methods that Adaptive Server uses to access
rows in tables when more than one table is used in a query, and how the
optimizer costs access.

In determining the cost of multitable queries, Adaptive Server uses many
of the same formulas discussed in Chapter 5, “Access Methods and Query
Costing for Single Tables.”

Costing and optimizing joins
Joins extract information from two or more tables. In a two-table join, one
table is treated as the outer table and the other table is treated as the inner
table. Adaptive Server examines the outer table for rows that satisfy the
query conditions. For each row in the outer table that qualifies, Adaptive
Server then examines the inner table, looking at each row where the join
columns match.

Optimizing join queries is extremely important for system performance,
since relational databases make heavy use of joins. Queries that perform
joins on several tables are especially critical to performance, as explained
in the following sections.

Topic Page
Costing and optimizing joins 105

Nested-loop joins 110

Access methods and costing for sort-merge joins 114

Enabling and disabling merge joins 127

Reformatting strategy 128

Subquery optimization 129

or clauses versus unions in joins 140

Costing and optimizing joins

106 Adaptive Server Enterprise

In showplan output, the order of “FROM TABLE” messages indicates the
order in which Adaptive Server chooses to join tables.

See “FROM TABLE message” on page 75 in the Performance and
Tuning: Monitoring and Analyzing for Performance book for an example
that joins three tables. Some subqueries are also converted to joins.

See “Flattening in, any, and exists subqueries” on page 130.

Processing
By default, Adaptive Server uses nested-loop joins, and also consider
merge joins, if this feature is enabled at the server-wide or session level.

When merge joins are enabled, Adaptive Server can use either nested-loop
joins or merge joins to process queries involving two or more tables. For
each join, the optimizer costs both methods. For queries involving more
than two tables, the optimizer examines query costs for merge joins and
for nested-loops, and chooses the mix of merge and nested-loop joins that
provides the cheapest query cost.

Index density and joins
The optimizer uses a statistic called the total density to estimate the
number of rows in a joined table that match a particular value during the
join.

See “Density values and joins” on page 23 for more information.

The query optimizer uses the total density to estimate the number of rows
that will be returned for each scan of the inner table of a join. For example,
if the optimizer is considering a nested-loop join with a 250,000-row table,
and the table has a density of .0001, the optimizer estimates that an average
of 25 rows from the inner table match for each row that qualifies in the
outer table.

optdiag reports the total density for each column for which statistics have
been created. You can also see the total density used for joins in dbcc
traceon(302) output.

CHAPTER 6 Accessing Methods and Costing for Joins and Subqueries

Performance & Tuning: Optimizer and Abstract Plans 107

Multicolumn densities

Adaptive Server maintains the total density for each prefix subset of
columns in a composite index. If two tables are being joined on multiple
leading columns of a composite index, the optimizer uses the appropriate
density for an index when estimating the cost of a join using that index. In
a 10,000-row table with an index on seven columns, the entire seven-
column key might have a density of 1/10,000, while the first column might
have a density of only 1/2, indicating that it would return 5000 rows.

Datatype mismatches and joins
One of the most common problems in optimizing joins on tables that have
indexes is that the datatypes of the join columns are incompatible. When
this occurs, one of the datatypes must be converted to the other, and an
index can only be used for one side of the join.

See “Datatype mismatches and query optimization” on page 24 for more
information.

Join permutations
When you are joining four or fewer tables, Adaptive Server considers all
possible permutations of join orders for the tables. However, due to the
iterative nature of Adaptive Server’s optimizer, queries on more than four
tables examine join order combinations in sets of two to four tables at a
time. This grouping during join order costing is used because the number
of permutations of join orders multiplies with each additional table,
requiring lengthy computation time for large joins. The method the
optimizer uses to determine join order has excellent results for most
queries and requires much less CPU time than examining all permutations
of all combinations.

If the number of tables in a join is greater than 25, Adaptive Server
automatically reduces the number of tables considered at a time. Table 6-
1 shows the default values.

Costing and optimizing joins

108 Adaptive Server Enterprise

Table 6-1: Tables considered at a time during a join

The optimizer starts by considering the first two to four tables, and
determining the best join order for those tables. It remembers the outer
table from the best plan involving the tables it examined and eliminates
that table from the set of tables. Then, it optimizes the best set of tables out
of the remaining tables. It continues until only two to four tables remain,
at which point it optimizes them.

For example, suppose you have a select statement with the following from
clause:

 from T1, T2, T3, T4, T5, T6

The optimizer looks at all possible sets of 4 tables taken from these 6
tables. The 15 possible combinations of all 6 tables are:

T1, T2, T3, T4
T1, T2, T3, T5
T1, T2, T3, T6
T1, T2, T4, T5
T1, T2, T4, T6
T1, T2, T5, T6
T1, T3, T4, T5
T1, T3, T4, T6
T1, T3, T5, T6
T1, T4, T5, T6
T2, T3, T4, T5
T2, T3, T4, T6
T2, T3, T5, T6
T2, T4, T5, T6
T3, T4, T5, T6

For each one of these combinations, the optimizer looks at all the join
orders (permutations). For each set of 4 tables, there are 24 possible join
orders, for a total of 360 (24 * 15) permutations. For example, for the set
of tables T2, T3, T5, and T6, the optimizer looks at these 24 possible orders:

T2, T3, T5, T6
T2, T3, T6, T5
T2, T5, T3, T6
T2, T5, T6, T3
T2, T6, T3, T5

Tables joined Tables considered at a time

4 – 25 4

26 – 37 3

38 – 50 2

CHAPTER 6 Accessing Methods and Costing for Joins and Subqueries

Performance & Tuning: Optimizer and Abstract Plans 109

T2, T6, T5, T3
T3, T2, T5, T6
T3, T2, T6, T5
T3, T5, T2, T6
T3, T5, T6, T2
T3, T6, T2, T5
T3, T6, T5, T2
T5, T2, T3, T6
T5, T2, T6, T3
T5, T3, T2, T6
T5, T3, T6, T2
T5, T6, T2, T3
T5, T6, T3, T2
T6, T2, T3, T5
T6, T2, T5, T3
T6, T3, T2, T5
T6, T3, T5, T2
T6, T5, T2, T3
T6, T5, T3, T2

Let’s say that the best join order is determined to be:

T5, T3, T6, T2

At this point, T5 is designated as the outermost table in the query.

The next step is to choose the second-outermost table. The optimizer
eliminates T5 from consideration as it chooses the rest of the join order.
Now, it has to determine where T1, T2, T3, T4, and T6 fit into the rest of
the join order. It looks at all the combinations of four tables chosen from
these five:

T1, T2, T3, T4
T1, T2, T3, T6
T1, T2, T4, T6
T1, T3, T4, T6
T2, T3, T4, T6

It looks at all the join orders for each of these combinations, remembering
that T5 is the outermost table in the join. Let’s say that the best order in
which to join the remaining tables to T5 is:

T3, T6, T2, T4

So the optimizer chooses T3 as the next table after T5 in the join order for
the entire query. It eliminates T3 from consideration in choosing the rest of
the join order.

The remaining tables are:

Nested-loop joins

110 Adaptive Server Enterprise

T1, T2, T4, T6

Now we’re down to 4 tables, so the optimizer looks at all the join orders
for all the remaining tables. Let’s say the best join order is:

T6, T2, T4, T1

This means that the join order for the entire query is:

T5, T3, T6, T2, T4, T1

Outer joins and join permutations

Outer joins restrict the set of possible join orders. When the inner member
of an outer join is compared to an outer member, the outer member must
precede the inner member in the join order. The only join permutations
that are considered for outer joins are those that meet this requirement. For
example, these two queries perform outer joins, the first using ANSI SQL
syntax, the second using Transact-SQL syntax:

select T1.c1, T2.c1, T3.c2, T4.c2
from T4 inner join T1 on T1.c1 = T4.c1
left outer join T2 on T1.c1 = T2.c1
left outer join T3 on T2.c2 = T3.c2
select T1.c1, T2.c1, T3.c2, T4.c2
from T1 , T2, T3, T4
where T1.c1 *= T2.c1
and T2.c2 *= T3.c2
and T1.c1 = T4.c1

The only join orders considered place T1 outer to T2 and T2 outer to T3.
The join orders considered by the optimizer are:

T1, T2, T3, T4
T1, T2, T4, T3
T1, T4, T2, T3
T4, T1, T2, T3

Nested-loop joins
Nested-loop joins provide efficient access when tables are indexed on join
columns. The process of creating the result set for a nested-loop join is to
nest the tables, and to scan the inner tables repeatedly for each qualifying
row in the outer table, as shown in Figure 6-1.

CHAPTER 6 Accessing Methods and Costing for Joins and Subqueries

Performance & Tuning: Optimizer and Abstract Plans 111

Figure 6-1: Nesting of tables during a nested-loop join

In Figure 6-1, the access to the tables to be joined is nested:

• TableA is accessed once. If the table has no useful indexes, a table scan
is performed. If an index can reduce I/O costs, the index is used to
locate the rows.

• TableB is accessed once for each qualifying row in TableA. If 15 rows
from TableA match the conditions in the query, TableB is accessed 15
times. If TableB has a useful index on the join column, it might require
3 I/Os to read the data page for each scan, plus one I/O for each data
page. The cost of accessing TableB would be 60 logical I/Os.

• TableC is accessed once for each qualifying row in TableB each time
TableB is accessed. If 10 rows from TableB match for each row in
TableA, then TableC is scanned 150 times. If each access to TableC
requires 3 I/Os to locate the data row, the cost of accessing TableC is
450 logical I/Os.

If TableC is small, or has a useful index, the I/O count stays reasonably
small. If TableC is large and has no useful index on the join columns, the
optimizer may choose to use a sort-merge join or the reformatting strategy
to avoid performing extensive I/O.

Scan inner TableB

Scan innermost
TableC

For each qualifying row in TableB

For each qualifying row in TableA

Nested-loop joins

112 Adaptive Server Enterprise

Cost formula
For a nested-loop join with two tables, the formula for estimating the cost
is:

With additional tables, the cost of a nested-loop join is:

How inner and outer tables are determined
The outer table is usually the one that has:

• The smallest number of qualifying rows, and/or

• The largest numbers of I/Os required to locate rows.

The inner table usually has:

• The largest number of qualifying rows, and/or

• The smallest number of reads required to locate rows.

For example, when you join a large, unindexed table to a smaller table with
indexes on the join key, the optimizer chooses:

• The large table as the outer table, so that the large table is scanned
only once.

• The indexed table as the inner table, so that each time the inner table
is accessed, it takes only a few reads to find rows.

Join cost = Cost of accessing A +
of qualifying rows in A * Pages of B to scan for each qualifying row

Cost of accessing outer table
+ (Number of qualified rows in outer) * (Cost of accessing inner table)
+ ...
+ (Number of qualified rows from previous) * (Cost of accessing innermost table)

CHAPTER 6 Accessing Methods and Costing for Joins and Subqueries

Performance & Tuning: Optimizer and Abstract Plans 113

Self join
This join is used for comparing values within a column of a table. Since
this operation involves a join of a table within itself, you need to give the
table two temporary names, or correlation names which then are used to
qualify the column names in the rest of the query.

Identify optimizations to conditions where the direct mode is possible
during update. With the in-place update project, updates involving a self-
join will always be done in the deferred mode. For example:

update t1 set t1.c1 = t1.c1 + 1
FROM t1 a, t1 b
where a.c1 = b.c2

and
delete t1 FROM t1 a, t1 b WHERE a.c1 = b.c2

will always be processed in deferred mode. This routine implements
checks for the following rules that must be satisfied as necessary
conditions to run the update in direct mode:

1 If no such self-join exists, but the query references more than one
table in its FROM list, there is a potential to run this update in direct
mode.

2 For an update query, if the query references more than one table in its
FROM list, check if the read cursor table is the first table in the join
order:

• If the read cursor is the first one in the join order, the update can
be run in direct mode, as all downstream tables will be scanned
in existence join.

• If its not the first one in the join order, check if all tables that
appear before it in the join order are tables from flattened
subqueries to which the optimizer has applied one of many
techniques (unique join, tuple filtering and/or unique
reformatting) to ensure that only one row will be fed into the final
join plan.

• If all the tables preceeding the read cursor table which are from
the outer query block are known to return a single row, then every
row from the read cursor table will only qualify once.

This guarantees that rows from the target table will only qualify
once.

Access methods and costing for sort-merge joins

114 Adaptive Server Enterprise

3 For a delete query, there is no requirement that the target table be the
first table in the join order. This is because even if a row from the
target table were to qualify multiple times due to the join conditions,
by doing a direct delete, we will delete the row the "first" time it
qualifies, and subsequent qualificiations will get a "row not found"
condition.

The following queries can potentially be run in direct mode update when
these rules are used.

Example 1: This is a non-flattened subquery which results in a table count
in the main ROOT node of 3.

update t1 set t1.c1 = t1.c1 + 1
where t1.c2 NOT IN (select t2.c2 from t2)

Example 2: This is a flattened subquery

update t1 set t1.c1 = t1.c1 + 1
FROM t1
where t1.c2 IN (select t2.c2 from t2)

In both these cases, although the table count in the main ROOT node
shows up as 3, these queries can potentially be run in direct update mode.

Example 3:

update t1 set t1.c1 = t1.c1 + 1
FROM t1, t2
where t1.c1 = t2.c1

Output:

Data is: t1 t2
--- ---
1 1
1 2

If the join order is t2 -> t1, and we do the update in direct mode, then the
rows from t1 will become:

 [(1), (1)] -> [(2), (2)]

Access methods and costing for sort-merge joins
There are four possible execution methods for merge joins:

CHAPTER 6 Accessing Methods and Costing for Joins and Subqueries

Performance & Tuning: Optimizer and Abstract Plans 115

• Full-merge join – the two tables being joined have useful indexes on
the join columns. The tables do not need to be sorted, but can be
merged using the indexes.

• Left-merge join – sort the inner table in the join order, then merge with
the left, outer table.

• Right-merge join – sort the outer table in the join order, then merge
with the right, inner table.

• Sort-merge join – sort both tables, then merge.

Merge joins always operate on stored tables – either user tables or
worktables created for the merge join. When a worktable is required for a
merge join, it is sorted into order on the join key, then the merge step is
performed. The costing for any merge joins that involve sorting includes
the estimated I/O cost of creating and sorting a worktable. For full-merge
joins, the only cost involved is scanning the tables.

Figure 6-2 provides diagrams of the merge join types.

Access methods and costing for sort-merge joins

116 Adaptive Server Enterprise

Figure 6-2: Merge join types

Left-merge join (LMJ)

Sort-merge join (SMJ)

Full-merge join (FMJ) Step 1

T1 T2

FMJ

Step 1

T2

Worktable1

Step 2

T1 Worktable1

sort
LMJ

Right-merge join (RMJ) Step 1

T1

Worktable1

Step 2

Worktable1 T2

sort
RMJ

Step 1

T1

Worktable1

Step 3

Worktable1 Worktable2

sort
SMJ

Step 2

T2

Worktable2

sort

CHAPTER 6 Accessing Methods and Costing for Joins and Subqueries

Performance & Tuning: Optimizer and Abstract Plans 117

How a full-merge is performed
If both Table1 and Table2 have indexes on the join key, this query can use
a full-merge join:

select *
 from Table1, Table2
 where Table1.c1 = Table2.c2
 and Table1.c1 between 100 and 120

If both tables are allpages-locked tables with clustered indexes, and Table1
is chosen as the outer table, the index is used to position the search on the
data page at the row where the value equals 100. The index on Table2 is
also used to position the scan at the first row in Table2 where the join
column equals 100. From this point, rows from both tables are returned as
the scan moves forward on the data pages.

Figure 6-3: A serial merge scan on two tables with clustered
indexes

Merge joins can also be performed using nonclustered indexes. The index
is used to position the scan on the first matching value on the leaf page of
the index. For each matching row, the index pointers are used to access the
data pages. Figure 6-4 shows a full-merge scan using a nonclustered index
on the inner table.

Page 1037
98
99

100
101
102

Page 3423
93

100
102
105
113
122

Page 1040
105
109
113
117
122

Table1 Table2

Access methods and costing for sort-merge joins

118 Adaptive Server Enterprise

Figure 6-4: Full merge scan using a nonclustered index on the
inner table

How a right-merge or left-merge is performed
A right-merge or left-merge join always operates on a user table and a
worktable created for the merge join. There are two steps:

1 A table or set of tables is scanned, and the results are inserted into a
worktable.

2 The worktable is sorted and then merged with the other table in the
join, using the index.

Page 1037
98
99

100
101
102

Page 1040
105
109
113
117
122

Leaf pageData pages

Page 1752
102
823
113
29

Page 1907
105
842
113
472

Page 1903
57
623
100

Page 3423
93 1955,1
100 1903,3
102 1752,2
105 1907,1
113 1752,3
122 2409,4

Table1 Table2

Data pages

CHAPTER 6 Accessing Methods and Costing for Joins and Subqueries

Performance & Tuning: Optimizer and Abstract Plans 119

How a sort-merge is performed
For a sort-merge join, there are three steps, since the inputs to the sort-
merge joins are both sorted worktables:

1 A table or set of tables is scanned and the results are inserted into one
worktable. This will be the outer table in the merge.

2 Another table is scanned and the results are inserted into another
worktable. This will be the inner table in the merge.

3 Each of the worktables is sorted, then the two sorted result sets are
merged.

Mixed example
This query performs a mixture of merge and nested-loop joins:

select pub_name, au_lname, price
from titles t, authors a, titleauthor ta,
 publishers p
where t.title_id = ta.title_id
 and a.au_id = ta.au_id
 and p.pub_id = t.pub_id
 and type = ’business’
 and price < $25

Adaptive Server executes this query in three steps:

• Step 1 uses 3 worker processes to scan titles as the outer table,
performing a full-merge join with titleauthor and then a nested-loop
join with authors. No sorting is required for the full-merge join. titles
has a clustered index on title_id. The index on titleauthor, ta_ix,
contains the title_id and au_id, so the index covers the query. The
results are stored in Worktable1, for use in the sort-merge join
performed in Step 3.

• Step 2 scans the publishers table, and saves the needed columns
(pub_name and pub_id) in Worktable2.

• In Step 3:

• Worktable1 is sorted into join column order, on pub_id.

• Worktable2 is sorted into order on pub_id.

• The sorted results are merged.

Access methods and costing for sort-merge joins

120 Adaptive Server Enterprise

Figure 6-5 shows the steps.

Figure 6-5: Multiple steps in processing a merge join

showplan messages for sort-merge joins

showplan messages for each type of merge join appear as specific
combinations:

• Full-merge join – there are no “FROM TABLE Worktable” messages,
only the “inner table” and “outer table” messages for base tables in the
query.

• Right-merge join – the “outer table” is always a worktable.

Step 1

publishers

FMJ

Worktable2Step 2

titles titleauthor

Worktable1

authors

NLJ

Step 3 SMJ

Worktable1 Worktable2

sortsort

CHAPTER 6 Accessing Methods and Costing for Joins and Subqueries

Performance & Tuning: Optimizer and Abstract Plans 121

• Left-merge join – the “inner table” is always a worktable.

• Sort-merge join – both tables are worktables.

For more information, see “Messages describing access methods,
caching, and I/O cost” on page 93 in the book Performance and Tuning:
Monitoring and Analyzing for Performance.

Costing for merge joins
The total cost for merge joins depends on:

• The type of merge join.

• Full-merge joins do not require sorts and worktables.

• For right-merge and left-merge joins, one side of the join is
selected into a worktable, then sorted.

• For sort-merge joins, both sides of the join are selected into
worktables, and each worktable is sorted.

• The type of index used to scan the tables while performing the merge
step.

• The locking scheme of the underlying table: costing models for most
scans are different for allpages locking than data-only locking.
Clustered index access cost on data-only-locked tables is more
comparable to nonclustered access.

• Whether the query is executed in serial or parallel mode.

• Whether the outer table has duplicate values for the join key.

In general, when comparing costs between a nested-loop join and a merge
join for the same tables, using the same indexes, the cost for the outer table
remains the same. Access to the inner table costs less for a merge join
because the scan remains positioned on the leaf pages as matching values
are returned, saving the logical I/O cost of scanning down the index from
the root page each time.

Access methods and costing for sort-merge joins

122 Adaptive Server Enterprise

Costing for a full-merge with unique values
If a full-merge join is performed in serial mode and there is no need to sort
the tables, the cost of a merge join on T1 and T2 is the sum of the cost of
the scans of both tables, as long as all join values are unique:

The cost saving of a merge join over a nested-loop join is:

• For a nested-loop join, access to the inner table of the join starts at the
root page of the index for each row from the outer table that qualifies.

• For a full-merge join, the upper levels of the index are used for the
first access, to position the scan:

• On the leaf page of the index, for nonclustered indexes and
clustered indexes on data-only-locked tables

• On the data page, if there is a clustered index on an allpages-
locked table

The higher levels of the index do not need to be read for each
matching outer row.

Example: allpages-locked tables with clustered indexes
For allpages-locked tables where clustered indexes are used to perform the
scans, the search arguments on the index are used to position the search on
the first matching row of each table. The total cost of the query is the cost
of scanning forward on the data pages of each table. For example, with
clustered indexes on t1(c1) and t2(c1), the query on two allpages-locked
tables can use a full-merge join:

select t1.c2, t2.c2
from t1, t2
where t1.c1 = t2.c1
and t1.c1 >= 1000 and t1.c1 < 1100

If there are 100 rows that qualify from t1, and 100 rows from t2, and each
of these tables has 10 rows per page, and an index height of 3, the costs are:

• 3 index pages to position the scan on the first matching row of t1

• Scanning 10 pages of t1

Cost of scan of T1 + Cost of scan of T2Merge join cost =

CHAPTER 6 Accessing Methods and Costing for Joins and Subqueries

Performance & Tuning: Optimizer and Abstract Plans 123

• 3 index pages to position the scan on the first matching row of t2

• Scanning 10 pages of t2

Costing for a full-merge with duplicate values
If the outer table in a merge join has duplicate values, the inner table must
be accessed from the root page of the index for each duplicate value. This
query is the same as the previous example:

select t1.c2, t2.c2
from t1, t2
where t1.c1 = t2.c1
and t1.c1 >= 1000 and t1.c1 < 1100

If t1 is the outer table, and there are duplicate values for some of the rows
in t1, so that there are 120 rows between 1000 and 1100,with 20 duplicate
values, then each time one of the duplicate values is accessed, the scan of
t2 is restarted from the root page of the index. If one row for t2 matches
each value from t1, the I/O costs for this query are:

• 3 index pages to position on the first matching row of t1

• Scanning 12 pages of t1

• 3 index pages to position on the first matching row of t2, plus an I/O
to read the data page

• For the remaining rows:

• If the value from t1 is a duplicate, the scan of t2 restarts from the
root page of the index.

• For all values of t1 that are not duplicates, the scan remains
positioned on the leaf level of t2. The scan on the inner table
remains positioned on the leaf page as rows are returned until the
next duplicate value in the outer table requires the scan to restart
from the root page.

This formula gives the cost of the scan of the inner table for a merge join:

Cost of scan of inner = Num duplicate values * (index height + scan size)
+ Num unique values * scan size

Access methods and costing for sort-merge joins

124 Adaptive Server Enterprise

The scan size is the number of pages of the inner table that need to be read
for each value in the outer table. For tables where multiple inner rows
match, the scan size is the average number of pages that need to be read
for each outer row.

Costing sorts
Sort cost during sort-merge joins depends on:

• The size of the worktables, which depends on the number of columns
and rows selected

• The setting for the number of sort buffers configuration parameter,
which determines how many pages of the cache can be used

These variables affect the number of merge runs required to sort the
worktable.

Worktable size for sort-merge joins

When a worktable is created for a merge join that requires a sort, only the
columns that are needed for the result set and for later joins in the query
execution are selected into the worktable. When the worktable for the titles
table is created for the join shown in Figure 6-5 on page 120:

• Worktable1 includes the price and authors.state, because they are part
of the result set, and pub_id, because it is needed for a subsequent join.

• Worktable2 includes the publishers.state column because it is part of
the result set, and the pub_id, because it is needed for the merge step.

The type column is used as a search argument while the rows from titles
are selected, but since it is not used later in the query or in the result set, it
is not included in the worktable.

Each sort performed for a merge join can use up to number of sort buffers
for intermediate sort steps. Sort buffers for worktable sorts are allocated
from the cache used by tempdb. If the number of pages to be sorted is less
the number of sort buffers, then the number of buffers reserved for the sort
is the number of pages in the worktable.

CHAPTER 6 Accessing Methods and Costing for Joins and Subqueries

Performance & Tuning: Optimizer and Abstract Plans 125

When merge joins cannot be used
Merge joins are not used:

• For joins using <, >, <=, >=, or != on the join columns.

• For outer joins, that is, queries using *= or =*, and left join and right join.

• For queries that include a text or image column or Java object columns
in the select list or in a where clause.

• For subqueries that are not flattened or materialized in parallel
queries.

• For multitable updates and deletes, such as:

update R set a = 5
 from R, S, T
 where ...

• For joins to perform referential integrity checks for insert, update, and
delete commands. These joins are generated internally to check for
the existence of the column values. They usually involve joins that
return a single value from the referenced table. Often, these joins are
supported by indexes. There would be no benefit from using a merge
join for constraint checks.

• When the number of bytes in a row for a worktable would exceed the
page-size limit (1960 bytes of user data) or the limit on the number of
columns (1024). If the select list and required join columns for a join
would create a worktable that exceeds either of these limits, the
optimizer does not consider performing a merge join at that point in
the query plan.

• When the use of worktables for a merge join would require more than
the maximum allowable number of worktables for a query (14).

There are some limits on where merge joins can be used in the join order:

• Merge joins can be performed only before an existence join. Some
distinct queries are turned into existence joins, and merge joins are not
used for these.

• Full-merge joins and left-merge joins can be performed only on the
outermost tables in the join order.

Access methods and costing for sort-merge joins

126 Adaptive Server Enterprise

Use of worker processes
When parallel processing is enabled, merge joins can use multiple worker
processes to perform:

• The scan that selects rows into the worktables

• Worktable sort operations

• The merge join and subsequent joins in the step

See “Parallel range-based scans” on page 182 for more information.

Recommendations for improved merge performance
Here are some suggestions for improving sort-merge join performance:

• To reduce the size of worktables select only needed columns for tables
used in merge joins. Avoid using select * unless you need all columns
of the tables. This reduces the load on tempdb and the cost of sorting
the result tables.

• If you are concerned about possible performance impacts of merge
joins or possible space problems in tempdb, see Chapter 14,
“Overview on Abstract Plans,” in the book Performance and Tuning:
Abstract Plans for a discussion of how abstract query plans can help
determine which queries on your system use merge joins.

• Look for opportunities for index covering. One example is queries
where joins are in the form:

select t1.c3, t3.c4
from t1, t2, t3
wehre t1.c1 = t2.c1 and t2.c2 = t3.c2
and ...

and columns from t2 are not in the select list, or only the join columns
are in the select list. An index on the join columns, t2(c1, c2) covers
the query, allowing a merge join to avoid accessing the data pages of
t2.

• Merge joins can use indexes created in ascending or descending order
when two tables are joined on multiple columns, such as these:

A.c1 = B.c1 and A.c2 = B.c2 and A.c3 = B.c3

CHAPTER 6 Accessing Methods and Costing for Joins and Subqueries

Performance & Tuning: Optimizer and Abstract Plans 127

The column order specified for the indexes must be an exact match,
or exactly the reverse, for all columns to be used as join predicates
when costing the join and accessing the data. If there is a mismatch of
ordering in second or subsequent columns, only the matching
columns are used for the join, and the remaining columns are used to
restrict the results after the row has been retrieved. This table shows
some examples for the query above:

Index key ordering is generally chosen to eliminate sort costs for order
by queries. Using compatible ordering for frequently joined tables can
also reduce join costs.

Enabling and disabling merge joins
You can enable and disable merge joins at the server and session level
using set sort_merge, or at the server level with the configuration
parameter enable sort-merge joins and JTC. This configuration parameter
also enables and disables join transitive closure.

Index creation order
Clauses used as join
predicates

A(c1 asc, c2 asc, c3 asc)
B(c1 asc, c2 asc, c3 asc)

All three clauses.

A(c1 asc, c2 asc, c3 asc)
B(c1 desc, c2 desc, c3 desc)

All three clauses.

A(c1 asc, c2 asc, c3 asc)
B(c1 desc, c2 desc, c3 asc)

The first two join clauses are used as
join predicates and the third clause is
evaluated as a restriction on the
result.

A1(c1 asc, c2 desc, c3 desc)
B1(c1 desc, c2 desc, c3 asc)

Only the first join clause is used as a
join predicate. The remaining two
clauses is evaluated as restrictions on
the result set.

Reformatting strategy

128 Adaptive Server Enterprise

At the server level
To enable merge joins server-wide, set enable sort-merge joins and JTC to
1. The default value is 0, which means that merge joins are not considered.
When this value is set to 1, merge joins and join transitive closure are
considered for equijoins. If merge joins are disabled at the server level,
they can be enabled for a session with set sort_merge.

Join transitive closure can be enabled independently at the session level
with set jtc on.

See “Enabling and disabling join transitive closure” on page 52.

The configuration parameter is dynamic, and can be reset without
restarting the server.

At the session level
To enable merge joins for a session, use:

set sort_merge on

To disable merge joins during a session, use:

set sort_merge off

The session setting has precedence over the server-wide setting; you can
use merge joins in a session or stored procedure even if they are disabled
at the server-wide level.

Reformatting strategy
When a table is large and has no useful index for a join, the optimizer
considers a sort merge join, and also considers creating and sorting a
worktable, and using a nested-loop join.

The process of generating a worktable with a clustered index and
performing a nested-loop join is known as reformatting.

CHAPTER 6 Accessing Methods and Costing for Joins and Subqueries

Performance & Tuning: Optimizer and Abstract Plans 129

Like a sort-merge join, reformatting scans the tables and copies qualifying
rows to a worktable. But instead of the sort and merge used for a merge
join, Adaptive Server creates a temporary clustered index on the join
column for the inner table. In some cases, creating and using the clustered
index is cheaper than a sort-merge join.

The steps in the reformatting strategy are:

• Creating a worktable

• Inserting the needed columns from the qualifying rows

• Creating a clustered index on the join columns of the worktable

• Using the clustered index in the join to retrieve the qualifying rows
from each table

The main cost of the reformatting strategy is the time and I/O necessary to
create the worktable and to build the clustered index on the worktable.
Adaptive Server uses reformatting only when the reformatting cost is less
than the cost of a merge join or repeated table scans.

A showplan message indicates when Adaptive Server is using the
reformatting strategy and includes other messages showing the steps used
to build the worktables.

See “Reformatting Message” on page 108 in the book Performance and
Tuning: Monitoring and Analyzing for Performance.

Subquery optimization
Subqueries use the following optimizations to improve performance:

• Flattening – converting the subquery to a join

• Materializing – storing the subquery results in a worktable

• Short circuiting – placing the subquery last in the execution order

• Caching subquery results – recording the results of executions

The following sections explain these strategies.

 See “showplan messages for subqueries” on page 119 in the Performance
and Tuning: Monitoring and Analyzing for Performance for an
explanation of the showplan messages for subquery processing.

Subquery optimization

130 Adaptive Server Enterprise

Flattening in, any, and exists subqueries
Adaptive Server can flatten some quantified predicate subqueries to a join.
Quantified predicate subqueries are introduced with in, any, or exists. Each
result row in the outer query is returned once, and only once, if the
subquery condition evaluates to TRUE.

When flattening can be done

• For any level of nesting of subqueries, for example:

select au_lname, au_fname
from authors
where au_id in
 (select au_id
 from titleauthor
 where title_id in
 (select title_id
 from titles
 where type = "popular_comp"))

• For multiple subqueries in the outer query, for example:

select title, type
from titles
where title in
 (select title
 from titles, titleauthor, authors
 where titles.title_id = titleauthor.title_id
 and titleauthor.au_id = authors.au_id
 and authors.state = "CA")
and title in
 (select title
 from titles, publishers
 where titles.pub_id = publishers.pub_id
 and publishers.state = "CA")

Exceptions to flattening

A subquery introduced with in, any, or exists cannot be flattened if one of
the following is true:

• The subquery is correlated and contains one or more aggregates.

• The subquery is in the select list or in the set clause of an update
statement.

CHAPTER 6 Accessing Methods and Costing for Joins and Subqueries

Performance & Tuning: Optimizer and Abstract Plans 131

• The subquery is connected to the outer query with or.

• The subquery is part of an isnull predicate.

• The subquery is the outermost subquery in a case expression.

If the subquery computes a scalar aggregate, materialization rather than
flattening is used.

See “Materializing subquery results” on page 135.

Flattening methods

Adaptive Server uses one of these flattening methods to resolve a
quantified predicate subquery using a join:

• A regular join – if the uniqueness conditions in the subquery mean
that it returns a unique set of values, the subquery can be flattened to
use a regular join.

• An existence join, also known as a semi-join – instead of scanning a
table to return all matching values, an existence join returns TRUE
when it finds the first matching value and then stops processing. If no
matching value is found, it returns FALSE.

• A unique reformat – the subquery result set is selected into a
worktable, sorted to remove duplicates, and a clustered index is built
on the worktable. The clustered index is used to perform a regular
join.

• A duplicate elimination sort optimization – the subquery is flattened
into a regular join that selects the results into a worktable, then the
worktable is sorted to remove duplicate rows

Join order and flattening methods

A major factor in the choice of flattening method depends on the cost of
the possible join orders. For example, in a join of t1, t2, and t3:

select * from t1, t2
where t1.c1 = t2.c1
and t2.c2 in (select c3 from t3)

If the cheapest join order is t1, t2, t3 or t2, t1, t3, a regular joinor or an
existence join is used. However, if it is cheaper to perform the join with t3
as the outer table, say, t3, t1, t2, a unique reformat or duplicate elimination
sort is used.

Subquery optimization

132 Adaptive Server Enterprise

The resulting flattened join can include nested-loop joins or merge joins.
When an existence join is used, merge joins can be performed only before
the existence join.

Flattened subqueries executed as regular joins

Quantified predicate subqueries can be executed as normal joins when the
result set of the subquery is a set of unique values. For example, if there is
a unique index on publishers.pub_id, this single-table subquery is
guaranteed to return a set of unique values:

select title
from titles
where pub_id in (select pub_id
 from publishers
 where state = "TX")

With a nonunique index on publishers.city, this query can also be executed
using a regular join:

select au_lname
from authors a
where exists (select city
 from publishers p where p.city = a.city)

Although the index on publishers.city is not unique, the join can still be
flattened to a normal join if the index is used to filter duplicate rows from
the query.

When a subquery is flattened to a normal join, showplan output shows a
normal join. If filtering is used, showplan output is not different; the only
diagnostic message is in dbcc traceon(310) output, where the method for
the table indicates “NESTED ITERATION with Tuple Filtering.”

Flattened subqueries executed as existence joins

All in, any, and exists queries test for the existence of qualifying values and
return TRUE as soon as a matching row is found.

The optimizer converts the following subquery to an existence join:

select title
 from titles
 where title_id in
 (select title_id
 from titleauthor)
 and title like "A Tutorial%"

CHAPTER 6 Accessing Methods and Costing for Joins and Subqueries

Performance & Tuning: Optimizer and Abstract Plans 133

The existence join query looks like the following ordinary join, although
it does not return the same results:

select title
 from titles T, titleauthor TA
 where T.title_id = TA.title_id
 and title like "A Tutorial%"

In the pubtune database, two books match the search string on title. Each
book has multiple authors, so it has multiple entries in titleauthor. A regular
join returns five rows, but the subquery returns only two rows, one for each
title_id, since it stops execution of the join at the first matching row.

When subqueries are flattened to use existence joins, the showplan output
shows output for a join, with the message “EXISTS TABLE: nested
iteration” as the join type for the table in the subquery.

Flattened subqueries executed using unique reformatting

To perform unique reformatting, Adaptive Server:

• Selects rows into a worktable and sorts the worktable, removing
duplicates and creating a clustered index on the join key.

• Joins the worktable with the next table in the join order. If there is a
nonunique index on publishers.pub_id, this query can use a unique
reformat strategy:

select title_id
from titles
where pub_id in
(select pub_id from publishers where state =
"TX")

This query is executed as:

select pub_id
into #publishers
from publishers
where state = "TX"

And after the sort removes duplicates and creates the clustered index:

select title_id
from titles, #publishers
where titles.pub_id = #publishers.pub_id

Subquery optimization

134 Adaptive Server Enterprise

showplan messages for unique reformatting show “Worktable created for
REFORMATTING” in Step 1, and “Using Clustered Index” on the
worktable in Step 2.

dbcc traceon(310) displays “REFORMATTING with Unique
Reformatting” for the method for the publishers table.

Flattened subqueries using duplicate elimination

When it is cheaper to place the subquery tables as outer tables in the join
order, the query is executed by:

• Performing a regular join with the subquery flattened into the outer
query, placing results in a worktable.

• Sorting the worktable to remove duplicates.

For example, salesdetail has duplicate values for title_id, and it is used in
this subquery:

select title_id, au_id, au_ord
from titleauthor ta
where title_id in (select ta.title_id
 from titles t, salesdetail sd
 where t.title_id = sd.title_id
 and ta.title_id = t.title_id
 and type = ’travel’ and qty > 10)

If the best join order for this query is salesdetail, titles, titleauthor, the
optimal join order can be used by:

• Selecting all of the query results into a worktable

• Removing the duplicates from the worktable and returning the results
to the user

showplan Messages for Flattened Subqueries Performing Sorts

showplan output includes two steps for subqueries that use normal joins
plus a sort. The first step shows “Worktable1 created for DISTINCT” and
the flattened join. The second step shows the sort and select from the
worktable.

dbcc traceon(310) prints a message for each join permutation when a table
or tables from a quantified predicate subquery is placed first in the join
order. Here is the output when the join order used for the query above is
considered:

2 - 0 - 1 -

CHAPTER 6 Accessing Methods and Costing for Joins and Subqueries

Performance & Tuning: Optimizer and Abstract Plans 135

This join order created while converting an exists
join to a regular join, which can happen for
subqueries, referential integrity, and select
distinct.

Flattening expression subqueries
Expression subqueries are included in a query’s select list or that are
introduced by >, >=, <, <=, =, or !=. Adaptive Server converts, or flattens,
expression subqueries to equijoins if:

• The subquery joins on unique columns or returns unique columns, and

• There is a unique index on the columns.

Materializing subquery results
In some cases, a subquery is processed in two steps: the results from the
inner query are materialized, or stored in a temporary worktable or internal
variable, before the outer query is executed. The subquery is executed in
one step, and the results of this execution are stored and then used in a
second step. Adaptive Server materializes these types of subqueries:

• Noncorrelated expression subqueries

• Quantified predicate subqueries containing aggregates where the
having clause includes the correlation condition

Noncorrelated expression subqueries

Noncorrelated expression subqueries must return a single value. When a
subquery is not correlated, it returns the same value, regardless of the row
being processed in the outer query. The query is executed by:

• Executing the subquery and storing the result in an internal variable.

• Substituting the result value for the subquery in the outer query.

The following query contains a noncorrelated expression subquery:

select title_id
from titles
where total_sales = (select max(total_sales)

Subquery optimization

136 Adaptive Server Enterprise

 from ts_temp)

Adaptive Server transforms the query to:

select <internal_variable> = max(total_sales)
 from ts_temp
select title_id
 from titles
 where total_sales = <internal_variable>

The search clause in the second step of this transformation can be
optimized. If there is an index on total_sales, the query can use it. The total
cost of a materialized expression subquery is the sum of the cost of the two
separate queries.

Quantified predicate subqueries containing aggregates

Some subqueries that contain vector (grouped) aggregates can be
materialized. These are:

• Noncorrelated quantified predicate subqueries

• Correlated quantified predicate subqueries correlated only in the
having clause

The materialization of the subquery results in these two steps:

• Adaptive Server executes the subquery first and stores the results in a
worktable.

• Adaptive Server joins the outer table to the worktable as an existence
join. In most cases, this join cannot be optimized because statistics for
the worktable are not available.

Materialization saves the cost of evaluating the aggregates once for each
row in the table. For example, this query:

select title_id
from titles
where total_sales in (select max(total_sales)
 from titles
 group by type)

Executes in these steps:

select maxsales = max(total_sales)
 into #work
 from titles
 group by type
select title_id

CHAPTER 6 Accessing Methods and Costing for Joins and Subqueries

Performance & Tuning: Optimizer and Abstract Plans 137

 from titles, #work
 where total_sales = maxsales

The total cost of executing quantified predicate subqueries is the sum of
the query costs for the two steps.

When there are where clauses in addition to a subquery, Adaptive Server
executes the subquery or subqueries last to avoid unnecessary executions
of the subqueries. Depending on the clauses in the query, it is often
possible to avoid executing the subquery because less expensive clauses
can determine whether the row is to be returned:

• If any and clauses evaluate to FALSE, the row will not be returned.

• If any or clauses evaluate to TRUE, the row will be returned.

In both cases, as soon as the status of the row is determined by the
evaluation of one clause, no other clauses need to be applied to that row.
This provides a performance improvement, because expensive subqueries
need to be executed less often.

Subquery introduced with an and clause
When and joins the clauses, evaluation stops as soon as any clause
evaluates to FALSE. The row is skipped.

This query contains two and clauses, in addition to the correlated
subquery:

select au_fname, au_lname, title, royaltyper
from titles t, authors a, titleauthor ta
where t.title_id = ta.title_id
and a.au_id = ta.au_id
and advance >= (select avg(advance)
 from titles t2
 where t2.type = t.type)
and price > $100
and au_ord = 1

Adaptive Server orders the execution steps to evaluate the subquery last,
after it evaluates the conditions on price and au_ord. If a row does not meet
an and condition, Adaptive Server discards the row without checking any
more and conditions and begins to evaluate the next row, so the subquery
is not processed unless the row meets all of the and conditions.The
maximum number of ANDs in a query expression is 1024

Subquery optimization

138 Adaptive Server Enterprise

Subquery introduced with an or clause
If a query’s where conditions are connected by or, evaluation stops when
any clause evaluates to TRUE, and the row is returned.

This query contains two or clauses in addition to the subquery:

select au_fname, au_lname, title
from titles t, authors a, titleauthor ta
where t.title_id = ta.title_id
and a.au_id = ta.au_id
and (advance > (select avg(advance)
 from titles t2
 where t.type = t2.type)
or title = "Best laid plans"
or price > $100)

Adaptive Server orders the conditions in the query plan to evaluate the
subquery last. If a row meets the condition of the or clause, Adaptive
Server returns the row without executing the subquery, and proceeds to
evaluate the next row. The maximum number of ORs in a query expression
is1024.

Subquery results caching
When it cannot flatten or materialize a subquery, Adaptive Server uses an
in-memory cache to store the results of each evaluation of the subquery.
While the query runs, Adaptive Server tracks the number of times a
needed subquery result is found in cache. This is called a cache hit ratio.
If the cache hit ratio is high, it means that the cache is reducing the number
of times that the subquery executes. If the cache hit ratio is low, the cache
is not useful, and it is reduced in size as the query runs.

Caching the subquery results improves performance when there are
duplicate values in the join columns or the correlation columns. It is even
more effective when the values are ordered, as in a query that uses an
index. Caching does not help performance when there are no duplicate
correlation values.

Displaying subquery cache information

The set statistics subquerycache on command displays the number of cache
hits and misses and the number of rows in the cache for each subquery. The
following example shows subquery cache statistics:

CHAPTER 6 Accessing Methods and Costing for Joins and Subqueries

Performance & Tuning: Optimizer and Abstract Plans 139

set statistics subquerycache on

select type, title_id
from titles
where price > all
 (select price
 from titles
 where advance < 15000)
Statement: 1 Subquery: 1 cache size: 75 hits: 4925
misses: 75

If the statement includes subqueries on either side of a union, the
subqueries are numbered sequentially through both sides of the union.

Optimizing subqueries
When queries containing subqueries are not flattened or materialized:

• The outer query and each unflattened subquery are optimized one at a
time.

• The innermost subqueries (the most deeply nested) are optimized
first.

• The estimated buffer cache usage for each subquery is propagated
outward to help evaluate the I/O cost and strategy of the outer queries.

In many queries that contain subqueries, a subquery is “nested over” to
one of the outer table scans by a two-step process. First, the optimizer finds
the point in the join order where all the correlation columns are available.
Then, the optimizer searches from that point to find the table access that
qualifies the fewest rows and attaches the subquery to that table. The
subquery is then executed for each qualifying row from the table it is
nested over.

or clauses versus unions in joins

140 Adaptive Server Enterprise

or clauses versus unions in joins
Adaptive Server cannot optimize join clauses that are linked with or and it
may perform Cartesian products to process the query.

Note Adaptive Server optimizes search arguments that are linked with or.
This description applies only to join clauses.

For example, when Adaptive Server processes this query, it must look at
every row in one of the tables for each row in the other table:

select *
 from tab1, tab2
 where tab1.a = tab2.b
 or tab1.x = tab2.y

If you use union, each side of the union is optimized separately:

 select *
 from tab1, tab2
 where tab1.a = tab2.b
union all
 select *
 from tab1, tab2
 where tab1.x = tab2.y

You can use union instead of union all to eliminate duplicates, but this
eliminates all duplicates. You may not get exactly the same set of
duplicates from the rewritten query.

Adaptive Server can optimize selects with joins that are linked with union.
The result of or is somewhat like the result of union, except for the
treatment of duplicate rows and empty tables:

• union removes all duplicate rows (in a sort step); union all does not
remove any duplicates. The comparable query using or might return
some duplicates.

• A join with an empty table returns no rows.

Performance & Tuning: Optimizer and Abstract Plans 141

C H A P T E R 7 Parallel Query Processing

This chapter introduces basic concepts and terminology needed for
parallel query optimization, parallel sorting, and other parallel query
topics, and provides an overview of the commands for working with
parallel queries.

Other chapters that cover specific parallel processing topics in more depth
include:

• For details on how the Adaptive Server optimizer determines
eligibility and costing for parallel execution, see Chapter 8, “Parallel
Query Optimization.”

• To understand parallel sorting topics, see Chapter 9, “Parallel
Sorting.”

• For information on object placement for parallel performance, see
“Partitioning tables for performance” on page 99 in the book
Performance and Tuning: Basics.

• For information about locking behavior during parallel query
processing, see System Administration Guide

• For information on showplan messages, see “showplan messages for
parallel queries” on page 114 in the book Performance and Tuning:
Monitoring and Analyzing for Performance.

Topic Page
Types of queries that can benefit from parallel processing 142

Adaptive Server’s worker process model 143

Types of parallel data access 147

Controlling the degree of parallelism 152

Commands for working with partitioned tables 158

Balancing resources and performance 161

Guidelines for parallel query configuration 162

System level impacts 167

When parallel query results can differ 169

Types of queries that can benefit from parallel processing

142 Adaptive Server Enterprise

• To understand how Adaptive Server uses multiple engines, see
Chapter 4, “Using Engines and CPUs,” in the book Performance and
Tuning: Monitoring and Analyzing for Performance.

Types of queries that can benefit from parallel
processing

When Adaptive Server is configured for parallel query processing, the
optimizer evaluates each query to determine whether it is eligible for
parallel execution. If it is eligible, and if the optimizer determines that a
parallel query plan can deliver results faster than a serial plan, the query is
divided into components that are processed simultaneously. The results are
combined and delivered to the client in a shorter period of time than it
would take to process the query serially as a single component.

Parallel query processing can improve the performance of the following
types of queries:

• select statements that scan large numbers of pages but return
relatively few rows, such as:

• Table scans or clustered index scans with grouped or ungrouped
aggregates

• Table scans or clustered index scans that scan a large number of
pages, but have where clauses that return only a small percentage
of the rows

• select statements that include union, order by, or distinct, since these
queries can populate worktables in parallel, and can make use of
parallel sorting

• select statements that use merge joins can use parallel processing for
scanning tables and for performing the sort and merge steps

• select statements where the reformatting strategy is chosen by the
optimizer, since these can populate worktables in parallel, and can
make use of parallel sorting

• create index statements, and the alter table...add constraint clauses that
create indexes, unique and primary key

• The dbcc checkstorage command

CHAPTER 7 Parallel Query Processing

Performance & Tuning: Optimizer and Abstract Plans 143

Join queries can use parallel processing on one or more tables.

Commands that return large, unsorted result sets are unlikely to benefit
from parallel processing due to network constraints—in most cases,
results can be returned from the database faster than they can be merged
and returned to the client over the network.

Commands that modify data (insert, update, and delete), and cursors do not
run in parallel. The inner, nested blocks of queries containing subqueries
are never executed in parallel, but the outer block can be executed in
parallel.

Decision support system (DSS) queries that access huge tables and return
summary information benefit the most from parallel query processing. The
overhead of allocating and managing parallel queries makes parallel
execution less effective for online transaction processing (OLTP) queries,
which generally access fewer rows and join fewer tables. When a server is
configured for parallel processing, only queries that access 20 data pages
or more are considered for parallel processing, so most OLTP queries run
in serial.

Adaptive Server’s worker process model
Adaptive Server uses a coordinating process and multiple worker
processes to execute queries in parallel. A query that runs in parallel with
eight worker processes is much like eight serial queries accessing one-
eighth of the table, with the coordinating process supervising the
interaction and managing the process of returning results to the client.
Each worker process uses approximately the same amount of memory as
a user connection. Each worker process runs as a task that must be
scheduled on an engine, scans data pages, queues disk I/Os, and performs
in many ways like any other task on the server. One major difference is that
in last phase of query processing, the coordinating process manages
merging the results and returning them to the client, coordinating with
worker processes.

Figure 7-1 shows the events that take place during parallel query
processing:

1 The client submits a query.

2 The client task assigned to execute the query becomes the
coordinating process for parallel query execution.

Adaptive Server’s worker process model

144 Adaptive Server Enterprise

3 The coordinating process requests four worker processes from the
pool of worker processes. The coordinating process together with the
worker processes is called a family.

4 The worker processes execute the query in parallel.

5 The coordinating process returns the results produced by all the
worker processes.

The serial client shown in the lower-right corner of Figure 7-1 submits a
query that is processed serially.

Figure 7-1: Worker process model

During query processing, the tasks are tracked in the system tables by a
family ID (fid). Each worker process for a family has the same family ID
and its own unique server process ID (spid). System procedures such as
sp_who and sp_lock display both the fid and the spid for parallel queries,
allowing you to observe the behavior of all processes in a family.

Query

1. Parallel client

Adaptive Server

4. Worker processes

5. Results returned

2.
Clie

nt
tas

k b
ec

om
es

3. Request for
worker
processes

 Pool of worker processes

scan the table in
parallel

co
or

din
ati

ng
 pr

oc
es

s

Serial client

Task 1 Query

Result

CHAPTER 7 Parallel Query Processing

Performance & Tuning: Optimizer and Abstract Plans 145

Parallel query execution
Figure 7-2 shows how parallel query processing reduces response time
over the same query running in serial. In parallel execution, three worker
processes scan the data pages. The times required by each worker process
may vary, depending on the amount of data that each process needs to
access. Also, a scan can be temporarily blocked due to locks on data pages
held by other users. When all of the data has been read, the results from
each worker process are merged into a single result set by the coordinating
process and returned to the client.

Figure 7-2: Relative execution times for serial and parallel query
execution

The total amount of work performed by the query running in parallel is
greater than the amount of work performed by the query running in serial,
but the response time is shorter.

Merge and Parse,
optimize,
compile

Data access

Serial execution
of a group by query

time

Return
results

Parse,
optimize,
compile

Data access

return results

Parallel
execution of the
same query with
3 worker
processes

Coordinating process

Worker process

Worker process

Worker process

Adaptive Server’s worker process model

146 Adaptive Server Enterprise

Returning results from parallel queries
Results from parallel queries are returned through one of three merge
strategies, or as the final step in a sort. Parallel queries that do not have a
final sort step use one of these merge types:

• Queries that contain a vector (grouped) aggregate use worktables to
store temporary results; the coordinating process merges the results
into one worktable and returns results to the client.

• Queries that contain a scalar (ungrouped) aggregate use internal
variables, and the coordinating process performs the final
computations to return the results to the client.

• Queries that do not contain aggregates and that do not use clauses that
do not require a final sort can return results to the client as the tables
are being scanned. Each worker process stores results in a result
buffer and uses address locks to coordinate transferring the results to
the network buffers for the task.

More than one merge type can be used when queries require several steps
or multiple worktables.

See “showplan messages for parallel queries” on page 114 in the
Performance and Tuning: Monitoring and Analyzing for Performance for
more information on merge messages.

For parallel queries that include an order by clause, distinct, or union,
results are stored in a worktable in tempdb, then sorted. If the sort can
benefit from parallel sorting, a parallel sort is used, and results are returned
to the client during the final merge step performed by the sort.

For more information on how parallel sorts are performed, see Chapter 9,
“Parallel Sorting.”

Note Since parallel queries use multiple processes to scan data pages,
queries that do not use aggregates and do not include a final sort step may
return results in different order than serial queries and may return different
results for queries with set rowcount in effect and for queries that select
into a local variable.

For details and solutions, see “When parallel query results can differ” on
page 169.

CHAPTER 7 Parallel Query Processing

Performance & Tuning: Optimizer and Abstract Plans 147

Types of parallel data access
Adaptive Server accesses data in parallel in different ways, depending
configuration parameter settings, table partitioning, and the availability of
indexes. The optimizer may choose a mix of serial and parallel methods
for queries that involve multiple tables or multiple steps. Parallel methods
include:

• Hash-based table scans

• Hash-based nonclustered index scans

• Partition-based scans, either full table scans or scans positioned with
a clustered index

• Range-based scans during merge joins

The following sections describe some of the methods.

For more examples, see Chapter 8, “Parallel Query Optimization.”

Figure 7-3 shows a scan on an allpages-locked table executed in serial by
a single task. The task follows the table’s page chain to read each page,
stopping to perform physical I/O when needed pages are not in the cache.

Figure 7-3: A serial task scans data pages

 7T1

Single page chain

Types of parallel data access

148 Adaptive Server Enterprise

Hash-based table scans
Figure 7-4 shows how three worker processes divide the work of
accessing data pages from an allpages-locked table during a hash-based
table scan. Each worker process performs a logical I/O on every page, but
each process examines rows on only one-third of the pages, as indicated
by the differently shaded pages. Hash-based table scans are used only for
the outer query in a join.

With only one engine, the query still benefits from parallel access because
one worker process can execute while others wait for I/O. If there are
multiple engines, some of the worker processes could be running
simultaneously.

Figure 7-4: Worker processes scan an unpartitioned table

Hash-based table scans increase the logical I/O for the scan, since each
worker process must access each page to hash on the page ID. For data-
only-locked tables, hash-based table scans hash either on the extent ID or
the allocation page ID, so that only a single worker process scans a page,
and logical I/O does not increase.

Multiple worker processes

WP2
WP3

Single Page ChainWP1

CHAPTER 7 Parallel Query Processing

Performance & Tuning: Optimizer and Abstract Plans 149

Partition-based scans
Figure 7-5 shows how a query scans a table that has three partitions on
three physical disks. With a single engine, this query can benefit from
parallel processing because one worker process can execute while others
sleep waiting for I/O or waiting for locks held by other processes to be
released. If multiple engines are available, the worker processes can run
simultaneously. This configuration can yield high parallel performance by
providing I/O parallelism.

Figure 7-5: Multiple worker processes access multiple partitions

Hash-based index scans
Figure 7-6 shows a hash-based index scan. Hash-based index scans can be
performed using nonclustered indexes or clustered indexes on data-only-
locked tables. Each worker process navigates higher levels of the index
and reads the leaf-level pages of the index. Each worker process then
hashes on either the data page ID or the key value to determine which data
pages or data rows to process. Reading every leaf page produces negligible
overhead.

data_dev1 data_dev2 data_dev3

 7WP1 WP2 WP3

Table on 3
partitions

Types of parallel data access

150 Adaptive Server Enterprise

Figure 7-6: Hash-based, nonclustered index scan

Parallel processing for two tables in a join
Figure 7-7 shows a nested-loop join query performing a partition-based
scan on a table with three partitions, and a hash-based index scan, with two
worker processes on the second table. When parallel access methods are
used on more than one table in a nested-loop join, the total number of
worker processes required is the product of worker process for each scan.
In this case, six workers perform the query, with each worker process
scanning both tables. Two worker processes scan each partition in the first
table, and all six worker processes navigate the index tree for the second
table and scan the leaf pages. Each worker process accesses the data pages
that correspond to its hash value.

The optimizer chooses a parallel plan for a table only when a scan returns
20 pages or more. These types of join queries require 20 or more matches
on the join key for the inner table in order for the inner scan to be
optimized in parallel.

Index Pages

Data Pages

WP2 WP3 7WP1

Pages read by worker process 1

Pages read by worker process 2

Pages read by worker process 3

CHAPTER 7 Parallel Query Processing

Performance & Tuning: Optimizer and Abstract Plans 151

Figure 7-7: Join query using different parallel access methods on
each table

showplan messages
showplan prints the degree of parallelism each time a table is accessed in
parallel. The following example shows the messages for each table in the
join in Figure 7-7:

data_dev1 data_dev2 data_dev3

 7WP1 WP2 WP3

Index Pages

Data Pages

 7WP4 WP5 WP6

Table1:
Partitioned table
on 3 devices

Table2:
Nonclustered index
with more than 20
matching rows for
each join key

Controlling the degree of parallelism

152 Adaptive Server Enterprise

Executed in parallel with a 2-way hash scan.
Executed in parallel with a 3-way partition scan.

showplan also prints a message showing the total number of worker
processes used. For the query shown in Figure 7-7, it reports:

Executed in parallel by coordinating process and 6
worker processes.

See Chapter 8, “Parallel Query Optimization,” for additional examples.

See “showplan messages for parallel queries” on page 114 in the
Performance and Tuning: Monitoring and Analyzing for Performance for
more information. .

Controlling the degree of parallelism
A parallel query’s degree of parallelism is the number of worker
processes used to execute the query. This number depends on several
factors, including:

• The values to which of the parallel configuration parameters or the
session-level limits,

(see Table 7-1 and Table 7-2)

• The number of partitions on a table (for partition-based scans)

• The level of parallelism suggested by the optimizer

• The number of worker processes that are available at the time the
query executes.

You can establish limits on the degree of parallelism:

• Server-wide – using sp_configure with parameters shown in Table 7-
1. Only a System Administrator can use sp_configure.

• For a session – using set with the parameters shown in Table 7-2. All
users can run set; it can also be included in stored procedures.

• In a select query – using the parallel clause, as shown in “Controlling
parallelism for a query” on page 156.

CHAPTER 7 Parallel Query Processing

Performance & Tuning: Optimizer and Abstract Plans 153

Configuration parameters for controlling parallelism
The configuration parameters that give you control over the degree of
parallelism server-wide are shown in Table 7-1.

Table 7-1: Configuration parameters for parallel execution

Configuring number of worker processes affects the size of the data and
procedure cache, so you may want to change the value of total memory
also.

For more information see the System Administration Guide.

When you change max parallel degree or max scan parallel degree, all
query plans in cache are invalidated, so the next execution of any stored
procedure or trigger recompiles the plan and uses the new values.

How limits apply to query plans

When queries are optimized, the configuration parameters affect query
plans.

• max parallel degree limits:

• The number of worker processes for a partition-based scan

• The total combined number of worker processes for nested-loop
join queries, where parallel access methods are used on more
than one table

• The number of worker processes used for the merge and sort
steps in merge joins

• The number of worker processes that can be used by parallel sort
operations

Parameter Explanation Comment

number of worker processes The maximum number of worker processes available for
all parallel queries. Each worker process requires
approximately as much memory as a user connection.

Restart of server
required

max parallel degree The number of worker processes that can be used by a
single query. It must be equal to or less than number of
worker processes and equal to or greater than max scan
parallel degree.

Dynamic, no
restart required

max scan parallel degree The maximum number of worker processes that can be
used for a hash scan. It must be equal to or less than
number of worker processes and max parallel degree.

Dynamic, no
restart required

Controlling the degree of parallelism

154 Adaptive Server Enterprise

• max scan parallel degree limits the number of worker processes for
hash-based table scans and index scans.

How the limits work in combination

You might configure number of worker processes to 50 to allow multiple
parallel queries to operate at the same time. If the table with the largest
number of partitions has 10 partitions, you might set max parallel degree to
10, limiting all select queries to a maximum of 10 worker processes. Since
hash-based scans operate best with 2–3 worker processes, max scan
parallel degree could be set to 3.

For a single-table query, or a join involving serial access on other tables,
some of the parallel possibilities allowed by these values are:

• Parallel partition scans on any tables with 2–10 partitions

• Hash-based table scans with up to 3 worker processes

• Hash-based nonclustered index scans on tables with nonclustered
indexes, with up to 3 worker processes

For nested-loop joins where parallel methods are used on more than one
table, some possible parallel choices are:

• Joins using a hash-based scan on one table and partitioned-based
scans on tables with 2 or 3 partitions

• Joins using partition- based scans on both tables. For example:

• A parallel degree of 3 for a partitioned table multiplied by max
scan parallel degree of 3 for a hash-based scan requires 9 worker
processes.

• A table with 2 partitions and a table with 5 partitions requires 10
worker processes for partition-based scans on both tables.

• Tables with 4–10 partitions can be involved in a join, with one or
more tables accessed in serial.

For merge joins:

• For a full-merge join, 10 worker processes scan the base tables (unless
these are fewer than 10 distinct values on the join keys); the number
of partitions on the tables is not considered.

• For a merge join that scans a table and selects rows into a worktable:

CHAPTER 7 Parallel Query Processing

Performance & Tuning: Optimizer and Abstract Plans 155

• The scan that precedes the merge join may be performed in serial
or in parallel. The degree of parallelism is determined in the usual
way for such a query.

• For the merge, 10 worker processes are used unless there are
fewer distinct values in the join key.

• For the sort, up to 10 worker processes can be used.

For fast performance, while creating a clustered index on a table with 10
partitions, the setting of 50 for number of worker processes allows you to
set max parallel degree to 20 for the create index command.

For more information on configuring worker processes for sorting, see
“Worker process requirements for parallel sorts” on page 217.

Examples of setting parallel configuration parameters

The following command sets number of worker processes:

sp_configure "number of worker processes", 50

After a restart of the server, these commands set the other configuration
parameters:

sp_configure "max parallel degree", 10
sp_configure "max scan parallel degree", 3

To display the current settings for these parameters, use:

sp_configure "Parallel Query"

Using set options to control parallelism for a session
Two set options let you restrict the degree of parallelism on a session basis
or in stored procedures or triggers. These options are useful for tuning
experiments with parallel queries and can also be used to restrict
noncritical queries to run in serial, so that worker processes remain
available for other tasks. The set options are summarized in Table 7-2.

Table 7-2: set options for parallel execution tuning

Parameter Function

parallel_degree Sets the maximum number of worker processes for a query in a session, stored
procedure, or trigger. Overrides the max parallel degree configuration parameter,
but must be less than or equal to the value of max parallel degree.

Controlling the degree of parallelism

156 Adaptive Server Enterprise

If you specify a value that is too large for set either option, the value of the
corresponding configuration parameter is used, and a message reports the
value in effect. While set parallel_degree or set scan_parallel_degree is in
effect during a session, the plans for any stored procedures that you
execute are not placed in the procedure cache. Procedures executed with
these options in effect may produce suboptimal plans.

set command examples

This example restricts all queries started in the current session to 5 worker
processes:

set parallel_degree 5

While this command is in effect, any query on a table with more than 5
partitions cannot use a partition-based scan.

To remove the session limit, use:

set parallel_degree 0
or
set scan_parallel_degree 0

To run subsequent queries in serial mode, use:

set parallel_degree 1
or
set scan_parallel_degree 1

Controlling parallelism for a query
The parallel extension to the from clause of a select command allows users
to suggest the number of worker processes used in a select statement. The
degree of parallelism that you specify cannot be more than the value set
with sp_configure or the session limit controlled by a set command. If you
specify a higher value, the specification is ignored, and the optimizer uses
the set or sp_configure limit.

The syntax for the select statement is:

scan_parallel_degree Sets the maximum number of worker processes for a hash-based scan during a
specific session, stored procedure, or trigger. Overrides the max scan parallel
degree configuration parameter but must be less than or equal to the value of max
scan parallel degree.

Parameter Function

CHAPTER 7 Parallel Query Processing

Performance & Tuning: Optimizer and Abstract Plans 157

select ...
from tablename [([index index_name]
 [parallel [degree_of_parallelism | 1]]
 [prefetch size] [lru|mru])] ,
 tablename [([index index_name]
 [parallel [degree_of_parallelism | 1]
 [prefetch size] [lru|mru])] ...

Query level parallel clause examples

To specify the degree of parallelism for a single query, include parallel after
the table name. This example executes in serial:

select * from huge_table (parallel 1)

This example specifies the index to use in the query, and sets the degree of
parallelism to 2:

select * from huge_table (index ncix parallel 2)

See “Suggesting a degree of parallelism for a query” on page 53 for more
information.

Worker process availability and query execution
At runtime, if the number of worker processes specified in the query plan
is not available, Adaptive Server creates an adjusted query plan to execute
the query using fewer worker processes. This is called a runtime
adjustment, and it can result in serial execution of the query.

A runtime adjustment now and then probably indicates an occasional,
momentary bottleneck. Frequent runtime adjustments indicate that the
system may not be configured with enough worker processes for the
workload.

See “Runtime adjustments to worker processes” on page 194 for more
information.

You can also use the set process_limit_action option to control whether a
query or stored procedure should silently use an adjusted plan, whether it
should warn the user, or whether the command should fail if it cannot use
the optimal number of worker processes.

See “Using set process_limit_action” on page 204 for more information.

Runtime adjustments are transparent to end users, except:

Commands for working with partitioned tables

158 Adaptive Server Enterprise

• A query that normally runs in parallel may perform very slowly in
serial.

• If set process_limit_action is in effect, they may get a warning, or the
query may be aborted, depending on the setting.

Other configuration parameters for parallel processing
Two additional configuration parameters for parallel query processing are:

• number of sort buffers – configures the maximum number of buffers
that parallel sort operations can use from the data cache.

See “Caches, sort buffers, and parallel sorts” on page 221.

• memory per worker process – establishes a pool of memory that all
worker processes use for messaging during query processing. The
default value, 1024 bytes per worker process, provides ample space in
almost all cases, so this value should not need to be reset.

See “Worker process management” on page 24 in the book
Performance and Tuning: Monitoring and Analyzing for
Performance for information on monitoring and tuning this value.

Commands for working with partitioned tables
Detailed steps for partitioning tables, placing them on specific devices,
and loading data with parallel bulk copy are in Chapter 6, “Controlling
Physical Data Placement,” in the book Performance and Tuning: Basics.
The commands and tasks for creating, managing, and maintaining
partitioned tables are:

• alter database – to make devices available to the database.

• sp_addsegment – to create a segment on a device; sp_extendsegment
to extend the segment over additional devices, and sp_dropsegment to
drop the log and system segments from data devices.

• create table...on segment_name – to create a table on a segment.

• alter table...partition and alter table...unpartition – to add or remove
partitioning from a table.

CHAPTER 7 Parallel Query Processing

Performance & Tuning: Optimizer and Abstract Plans 159

• create clustered index – to distribute the data evenly across the table’s
partitions.

• bcp (bulk copy) – with the partition number added after the table
name, to copy data into specific table partitions.

• sp_helpartition – to display the number of partitions and the
distribution of data in partitions, and sp_helpsegment to check the
space used on each device in a segment and on the segment as a
whole.

Figure 7-8 shows a scenario for creating a new partitioned table.

Commands for working with partitioned tables

160 Adaptive Server Enterprise

Figure 7-8: Steps for creating and loading a new partitioned table

T10 cooking 6.95 A Unified Approach to...
T10001 cooking 42.95 Scheme for an internet...
T10007 cooking 47.95 Internet Protocol Ha...
T10023 cooking 46.95 Proposed change in P...
T10029 cooking 74.95 System Summary for...
T10032 fiction 35.95 Cyberpunk
T10035 cooking 49.95 Achieving reliable coo...
T10038 cooking 12.95 Reliable Recipes
T25355 business 69.95 Plan and schedule
T39076 psychology 10.95 Reallocation and Urb...
T56358 UNDECIDED 39.95 New title
T75542 romance 44.95 Rosalie’s Romance
T10056 cooking 1.95 Brave New Cookery
T25361 business 42.95 Network Nuisance
T39082 psychology 6.95 On the problem...
authentication for network mail

alter database makes devices available to
the database.

sp_addsegment creates a segment on a
device, sp_extendsegment extends the
segment over additional devices, and
sp_dropsegment drops log and system
segments from data devices.

create table...on segment_name creates
the table on the segment.

alter table...partition creates a partition on
each device.

Parallel bulk copy loads data into
each partition from an input data
file.

CHAPTER 7 Parallel Query Processing

Performance & Tuning: Optimizer and Abstract Plans 161

Balancing resources and performance
Maximum parallel performance requires multiple CPUs and multiple I/O
devices to achieve I/O parallelism. As with most performance
configuration, parallel systems reach a point of diminishing returns, and a
later point where additional resources do not yield performance
improvement.

You need to determine whether queries are CPU-intensive or I/O-intensive
and when your performance is blocked by CPU saturation or I/O
bottlenecks. If CPU utilization is low, spreading a table across more
devices and using more worker processes increases CPU utilization and
provides improved response time. Conversely, if CPU utilization is
extremely high, but the I/O system is not saturated, increasing the number
of CPUs can provide performance improvement.

CPU resources
Without an adequate number of engines (CPU resources), tasks and
worker processes must wait for access to Adaptive Server engines, and
response time can be slow. Many factors determine the number of engines
needed by the system, such as whether the query is CPU intensive or I/O
intensive, or, at different times, both:

• Worker processes tend to spend time waiting for disk I/O and other
system resources while other tasks are active on the CPU.

• Queries that perform sorts and aggregates tend to be more CPU-
intensive.

• Execution classes and engine affinity bindings on parallel CPU-
intensive queries can have complex effects on the system. If there are
not enough CPUs, performance for both serial and parallel queries,
can be degraded.

See Chapter 5, “Distributing Engine Resources,” in the book
Performance and Tuning: Basics for more information.

Guidelines for parallel query configuration

162 Adaptive Server Enterprise

Disk resources and I/O
In most cases, configuring the physical layout of tables and indexes on
devices is the key to parallel performance. Spreading partitions across
different disks and controllers can improve performance during partition-
based scanning if all of the following conditions are true:

• Data is distributed over different disks.

• Those disks are distributed over different controllers.

• There are enough worker processes available at runtime to allocate
one worker process for each partition.

Tuning example: CPU and I/O saturation
One experiment on a CPU-bound query found near-linear scaling in
performance by adding CPUs until the I/O subsystem became saturated.
At that point, additional CPU resources did not improve performance. The
query performs a table scan on an 800MB table with 30 partitions, using
16K I/O. Table 7-3 shows the CPU scaling.

Table 7-3: Scaling of engines and worker processes

Guidelines for parallel query configuration
Parallel processing places very different demands on system resources
than running the same queries in serial. Two components in planning for
parallel processing are:

• A good understanding of the capabilities of the underlying hardware
(especially disk drives and controllers) in use on your system

• A set of performance goals for queries you plan to run in parallel

Engines
Elapsed time,
(in seconds)

CPU
utilization I/O saturation

Throughput
per device,
per second

1 207 100% Not saturated .13MB

2 100 98.7% Not saturated .27MB

4 50 98% Not saturated .53MB

8 27 93% 100% saturated .99MB

CHAPTER 7 Parallel Query Processing

Performance & Tuning: Optimizer and Abstract Plans 163

Hardware guidelines
Some guidelines for hardware configuration and disk I/O speeds are:

• Each Adaptive Server engine can support about five worker processes
before saturating on CPU utilization for CPU-intensive queries. If
CPU is not saturated at this ratio, and you want to improve parallel
query performance, increase the ratio of worker processes to engines
until I/O bandwidth becomes a bottleneck.

• For sequential scans, such as table scans using 16K I/O, it may be
possible to achieve 1.6MB per second, per device, that is, 100 16K
I/Os, or 800 pages per second, per device.

• For queries doing random access, such as nonclustered index access,
the figure is approximately 50 2K I/Os, or 50 pages per second, per
device.

• One I/O controller can sustain a transfer rate of up to 10–18MB per
second. This means that one SCSI I/O controller can support up to
6 –10 devices performing sequential scans. Some high-end disk
controllers can support more throughput. Check your hardware
specifications, and use sustained rates, rather than peak rates, for your
calculations.

• RAID disk arrays vary widely in performance characteristics,
depending on the RAID level, the number of devices in the stripe set,
and specific features, such as caching. RAID devices may provide
better or worse throughput for parallelism than the same number of
physical disks without striping. In most cases, start your parallel
query tuning efforts by setting the number of partitions for tables on
these devices to the number of disks in the array.

Working with your performance goals and hardware guidelines
The following examples use the hardware guidelines and Table 7-3 to
provide illustrate how to use parallelism to meet performance goals:

• The number of partitions for a table should be less than or equal to the
number of devices. For the experiment showing scaling of engines
and worker processes shown in Table 7-3, there were 30 devices
available, so 30 partitions were used. Performance is optimal when
each partition is placed on a separate physical device.

Guidelines for parallel query configuration

164 Adaptive Server Enterprise

• Determine the number of partitions based on the I/O throughput you
want to achieve. If you know your disks and controllers can sustain
1MB per second per device, and you want a table scan on an 800MB
table to complete in 30 seconds, you need to achieve approximately
27MB per second total throughput, so you would need at least 27
devices with one partition per device, and at least 27 worker
processes, one for each partition. These figures are very close to the
I/O rates in the example in Table 7-3.

• Estimate the number of CPUs, based on the number of partitions, and
then determine the optimum number by tracking both CPU utilization
and I/O saturation. The example shown in Table 7-3 had 30 partitions
available. Following the suggestions in the hardware guidelines of
one CPU for each five devices suggests using six engines for CPU-
intensive queries. At that level, I/O was not saturated, so adding more
engines improved response time.

Examples of parallel query tuning
The following examples use the I/O capabilities described in “Hardware
guidelines” on page 163.

Improving the performance of a table scan

This example shows how a table might be partitioned to meet performance
goals. Queries that scan whole tables and return a limited number of rows
are good candidates for parallel performance. An example is this query
containing group by:

select type, avg(price)
 from titles
group by type

Here are the performance statistics and tuning goals:

The steps for configuring for parallel operation are:

Table size 48,000 pages

Access method Table scan, 16K I/O

Serial response time 60 seconds

Target performance 6 seconds

CHAPTER 7 Parallel Query Processing

Performance & Tuning: Optimizer and Abstract Plans 165

• Create 10 partitions for the table, and evenly distribute the data across
the partitions.

• Set the number of worker processes and max parallel degree
configuration parameters to at least 10.

• Check that the table uses a cache configured for 16K I/O.

In serial execution, 48,000 pages can be scanned in 60 seconds using 16K
I/O. In parallel execution, each process scans 1 partition, approximately
4,800 pages, in about 6 seconds, again using 16K I/O.

Improving the performance of a nonclustered index scan

The following example shows how performance of a query using a
nonclustered index scan can be improved by configuring for a hash-based
scan. The performance statistics and tuning goals are:

The steps for configuring for parallel operation are:

• Set max scan parallel degree configuration parameters to 5 to use 5
worker processes in the hash-based scan.

• Set number of worker processes and max parallel degree to at least 5.

In parallel execution, each worker process scans 300 pages in 6 seconds.

Guidelines for partitioning and parallel degree
Here are some additional guidelines to consider when you are moving
from serial query execution to parallel execution or considering additional
partitioning or additional worker processes for a system already running
parallel queries:

• If the cache hit ratio for a table is more than 90 percent, partitioning
the table will not greatly improve performance. Since most of the
needed pages are in cache, there is no benefit from the physical I/O
parallelism.

Data pages accessed 1500

Access method Nonclustered index, 2K I/O

Serial response time 30 seconds

Target performance 6 seconds

Guidelines for parallel query configuration

166 Adaptive Server Enterprise

• If CPU utilization is more than 80 percent, and a high percentage of
the queries in your system can make use of parallel queries, increasing
the degree of parallelism may cause CPU saturation. This guideline
also applies to moving from all-serial query processing to parallel
query processing, where a large number of queries are expected to
make use of parallelism. Consider adding more engines, or start with
a low degree of parallelism.

• If CPU utilization is high, and a few users run large DSS queries while
most users execute OLTP queries that do not operate in parallel,
enabling or increasing parallelism can improve response time for the
DSS queries. However, if response time for OLTP queries is critical,
start with a low degree of parallelism, or make small changes to the
existing degree of parallelism.

• If CPU utilization is low, move incrementally toward higher degrees
of parallelism. On a system with two CPUs, and an average CPU
utilization of 60 percent, doubling the number of worker processes
would saturate the CPUs.

• If I/O for the devices is well below saturation, you may be able to
improve performance for some queries by breaking the one-partition-
per-device guideline. Except for RAID devices, always use a multiple
of the number of logical devices in a segment for partitioning; that is,
for a table on a segment with four devices, you can use eight
partitions. Doubling the number of partitions per device may cause
extra disk-head movement and reduce I/O parallelism. Creating an
index on any partitioned table that has more partitions than devices
prints a warning message that you can ignore in this case.

Experimenting with data subsets
Parallel query processing can provide the greatest performance gains on
your largest tables and most I/O-intensive queries. Experimenting with
different physical layouts on huge tables, however, is extremely time-
consuming. Here are some suggestions for working with smaller subsets
of data:

CHAPTER 7 Parallel Query Processing

Performance & Tuning: Optimizer and Abstract Plans 167

• For initial exploration to determine the types of query plans that
would be chosen by the optimizer, experiment with a proportional
subset of your data. For example, if you have a 50-million row table
that joins to a 5-million row table, you might choose to work with just
one-tenth of the data, using 5 million and 500,000 rows. Select
subsets of the tables that provide valid joins. Pay attention to join
selectivity—if the join on the table would run in parallel because it
would return 20 rows for a scan, be sure your subset reflects this join
selectivity.

• The optimizer does not take underlying physical devices into account;
only the partitioning on the tables. During exploratory tuning work,
distributing your data on separate physical devices will give you more
accurate predictions about the probable characteristics of your
production system using the full tables. You can partition tables that
reside on a single device and ignore any warning messages during the
early stages of your planning work, such as testing configuration
parameters, table partitioning and checking your query optimization.
Of course, this does not provide accurate I/O statistics.

Working with subsets of data can help determine parallel query plans and
the degree of parallelism for tables. One difference is that with smaller
tables, sorts are performed in serial that would be performed in parallel on
larger tables.

System level impacts
In addition to other impacts described throughout this chapter, here are
some concerns to be aware of when adding parallelism to mixed DSS and
OLTP environments. Your goal should be improved performance of DSS
through parallelism, without adverse effects on the performance of OLTP
applications.

Locking issues
Look out for lock contention:

• Parallel queries are slower than queries bench marked without
contention. If the scans find many pages with exclusive locks due
to update transactions, performance can change.

System level impacts

168 Adaptive Server Enterprise

• If parallel queries return a large number of rows using network
buffer merges, there is likely to be high contention for the
network buffer. Queries hold shared locks on data pages during
the scans and cause data modifications to wait for the shared
locks to be released. You may need to restrict queries with large
result sets to serial operation.

• If your applications experience deadlocks when DSS queries are
running in serial, you may see an increase in deadlocks when you
run these queries in parallel. The transaction that is rolled back in
these deadlocks is likely to be the OLTP query, because the
rollback decision for deadlocks is based on the accumulated CPU
time of the processes involved.

See “Deadlocks and concurrency” on page 81 in the book
Performance and Tuning: Locking for more information on
deadlocks.

Device issues
Configuring multiple devices for tempdb should improve performance for
parallel queries that require worktables, including those that perform sorts
and aggregates and those that use the reformatting strategy.

Procedure cache effects
Parallel query plans are slightly larger than serial query plans because they
contain extra instructions on the partition or pages that the worker
processes need to access.

During ad hoc queries, each worker process needs a copy of the query
plan. Space from the procedure cache is used to hold these plans in
memory, and is available to the procedure cache again when the ad hoc
query completes.

Stored procedures in cache are invalidated when you change the max
parallel degree and max scan parallel degree configuration parameters. The
next time a query is run, the query is read from disk and recompiled.

CHAPTER 7 Parallel Query Processing

Performance & Tuning: Optimizer and Abstract Plans 169

When parallel query results can differ
When a query does not include vector or scalar aggregates or does not
require a final sorting step, a parallel query might return results in a
different order from the same query run in serial, and subsequent
executions of the same query in parallel might return results in different
order each time.

Results from serial and parallel queries that include vector or scalar
aggregates, or require a final sort step, are returned after all of the results
from worktables are merged or sorted in the final query processing step.
Without query clauses that require this final step, parallel queries send
results to the client using a network buffer merge, that is, each worker
process sends results to the network buffer as it retrieves the data that
satisfies the queries.

The relative speed of the different worker processes leads to differences in
result set ordering. Each parallel scan behaves differently, due to pages
already in cache, lock contention, and so forth. Parallel queries always
return the same set of results, just not in the same order. If you need a
dependable ordering of results, use order by or run the query in serial
mode.

In addition, due to the pacing effects of multiple worker processes reading
data pages, two types of queries accessing the same data may return
different results when an aggregate or a final sort is not done:

• Queries that use set rowcount

• Queries that select a column into a local variable without sufficiently-
restrictive query clauses

Queries that use set rowcount
The set rowcount option stops processing after a certain number of rows
are returned to the client. With serial processing, the results are consistent
in repeated executions. In serial mode, the same rows are returned in the
same order for a given rowcount value, because a single process reads the
data pages in the same order every time.

When parallel query results can differ

170 Adaptive Server Enterprise

With parallel queries, the order of the results and the set of rows returned
can differ, because worker processes may access pages sooner or later than
other processes. When set rowcount is in effect, each row is written to the
network buffer as it is found and the buffer is sent to the client when it is
full, until the required number of rows have been returned. To get
consistent results, you must either use a clause that performs a final sort
step or run the query in serial mode.

Queries that set local variables
This query sets the value of a local variable in a select statement:

select @tid = title_id from titles
 where type = "business"

The where clause matches multiple rows in the titles table. so the local
variable is always set to the value from the last matching row returned by
the query. The value is always the same in serial processing, but for
parallel query processing, the results depend on which worker process
finishes last. To achieve a consistent result, use a clause that performs a
final sort step, execute the query in serial mode, or add clauses so that the
query arguments select only single rows.

Achieving consistent results
To achieve consistent results for the types of queries discussed in this
section, you can either add a clause to enforce a final sort or you can run
the queries in serial mode. The query clauses that provide a final sort are:

• order by

• distinct, except for uses of distinct within an aggregate, such as
avg(distinct price)

• union, but not union all

To run queries in serial mode, you can:

• Use set parallel_degree 1 to limit the session to serial operation

• Include the (parallel 1) clause after each table listed in the from clause
of the query

Performance & Tuning: Optimizer and Abstract Plans 171

C H A P T E R 8 Parallel Query Optimization

This chapter describes the basic strategies that Adaptive Server uses to
perform parallel queries and explains how the optimizer applies those
strategies to different queries. Parallel query optimization is an automatic
process, and the optimized query plans created by Adaptive Server
generally yield the best response time for a particular query.

However, knowing the internal workings of a parallel query can help you
understand why queries are sometimes executed in serial, or with fewer
worker processes than you expect. Knowing why these events occur can
help you make changes elsewhere in your system to ensure that certain
queries are executed in parallel and with the desired number of processes.

Topic Page
What is parallel query optimization? 172

When is optimization performed? 172

Overhead costs 173

Parallel access methods 174

Summary of parallel access methods 184

Degree of parallelism for parallel queries 186

Parallel query examples 195

Runtime adjustment of worker processes 202

Diagnosing parallel performance problems 206

Resource limits for parallel queries 208

What is parallel query optimization?

172 Adaptive Server Enterprise

What is parallel query optimization?
Parallel query optimization is the process of analyzing a query and
choosing the best combination of parallel and serial access methods to
yield the fastest response time for the query. Parallel query optimization is
an extension of the serial optimization strategies discussed in earlier
chapters. In addition to the costing performed for serial query
optimization, parallel optimization analyzes the cost of parallel access
methods for each combination of join orders, join types, and indexes. The
optimizer can choose any combination of serial and parallel access
methods to create the fastest query plan.

Optimizing for response time versus total work
Serial query optimization selects the query plan that is the least costly to
execute. Since only one process executes the query, choosing the least
costly plan yields the fastest response time and requires the least amount
of total work from the server.

The goal of executing queries in parallel is to get the fastest response time,
even if it involves more total work from the server. During parallel query
optimization, the optimizer uses cost-based comparisons similar to those
used in serial optimization to select a final query plan.

However, since multiple worker processes execute the query, a parallel
query plan requires more total work from Adaptive Server. Multiple
worker processes, engines, and partitions that improve the speed of a
query require additional costs in overhead, CPU utilization, and disk
access. In other words, serial query optimization improves performance by
minimizing the use of server resources, but parallel query optimization
improves performance for individual queries by fully utilizing available
resources to get the fastest response time.

When is optimization performed?
The optimizer considers parallel query plans only when Adaptive Server
and the current session are properly configured for parallelism, as
described in “Controlling the degree of parallelism” on page 152.

CHAPTER 8 Parallel Query Optimization

Performance & Tuning: Optimizer and Abstract Plans 173

If both the Adaptive Server and the current session are configured for
parallel queries, then all queries within the session are eligible for parallel
query optimization. Individual queries can also attempt to enforce parallel
query optimization by using the optimizer hint parallel N for parallel or
parallel 1 for serial.

If the Adaptive Server or the current session is not configured for parallel
queries, or if a given query uses optimizer hints to enforce serial execution,
then the optimizer considers serial access methods; the parallel access
methods described in this chapter are not considered.

Adaptive Server does not execute parallel queries against system tables.

Overhead costs
Parallel queries incur more overhead costs to perform such internal tasks
as:

• Allocating and initializing worker processes

• Coordinating worker processes as they execute a query plan

• Deallocating worker processes after the query is completed

To avoid applying these overhead costs to OLTP-based queries, the
optimizer “disqualifies” tables from using parallel access methods when a
scan would access fewer than 20 data pages in a table. This restriction
applies whether or not an index is used to access a table’s data. When
Adaptive Server must scan fewer than 20 data pages, the optimizer
considers only serial table and index scans and does not consider parallel
optimization.

Factors that are not considered
When computing the cost of a parallel access method, the optimizer does
not consider factors such as the number of engines available, the ratio of
engines to CPUs, and whether or not a table’s partitions reside on
dedicated physical devices and controllers. Each of these factors can
significantly affect the performance of a query. It is up to the System
Administrator to ensure that these resources are configured in the best
possible way for the Adaptive Server system as a whole.

Parallel access methods

174 Adaptive Server Enterprise

See “Configuration parameters for controlling parallelism” on page 153
for information on configuring Adaptive Server.

See “Commands for partitioning tables” on page 106 in the book
Performance and Tuning: Basics for information on partitioning your data
to best facilitate parallel queries.

Parallel access methods
The following sections describe parallel access methods and other
strategies that the optimizer considers when optimizing parallel queries.
Parallel access methods fall into these general categories:

• Partition-based access methods use two or more worker processes
to access separate partitions of a table. Partition-based methods yield
the fastest response times because they can distribute the work in
accessing a table over both CPUs and physical disks. At the CPU
level, worker processes can be queued to separate engines to increase
processing performance. At the physical disk level, worker processes
can perform I/O independently of one another, if the table’s partitions
are distributed over separate physical devices and controllers.

• Hash-based access methods provide parallel access to partitioned
tables, using either table scans or index scans. Hash-based strategies
employ multiple worker processes to work on a single chain of data
pages or a set of index pages. I/O is not distributed over physical
devices or controllers, but worker processes can still be queued to
multiple engines to distribute processing and improve response times.

• Range-based access methods provide parallel access during merge
joins on partitioned tables and unpartitioned tables, including
worktables created for sorting and merging, and via indexes. The
partitioning on the tables is not considered when choosing the degree
of parallelism, so it is not distributed over physical devices or
controllers. Worker processes can be queued to multiple engines to
distribute processing and improve response times.

CHAPTER 8 Parallel Query Optimization

Performance & Tuning: Optimizer and Abstract Plans 175

Parallel partition scan
In a parallel partition scan, multiple worker processes completely scan
each partition in a partitioned table. One worker process is assigned to
each partition, and each process reads all pages in the partition. Figure 8-
1 illustrates a parallel partition scan.

Figure 8-1: Parallel partition scan

The parallel partition scan operates faster than a serial table scan. The
work is divided over several worker processes that can execute
simultaneously on different engines. Some worker processes can be
executing during the time that others sleep on I/O or other system
resources. If the table partitions reside on separate physical devices, I/O
parallelism is also possible.

Worker
process A

Worker
process B

Worker
process C

Partition 1

Partition 2

Partition 3

Partitioned Table

Parallel access methods

176 Adaptive Server Enterprise

Requirements for consideration

The optimizer considers the parallel partition scan only for partitioned
tables in a query. The table’s data cannot be skewed in relation to the
number of partitions, or the optimizer disqualifies partition-based access
methods from consideration. Table data is considered skewed when the
size of the largest partition is two or more times the average partition size.

Finally, the query must access at least 20 data pages before the optimizer
considers any parallel access methods.

Cost model

The Adaptive Server optimizer computes the cost of a parallel table
partition scan as the largest number of logical and physical I/Os performed
by any one worker process in the scan. In other words, the cost of this
access method equals the I/O required to read all pages in the largest
partition of the table.

For example, if a table with 3 partitions has 200 pages in its first partition,
300 pages in its second, and 500 pages in its last partition, the cost of
performing a partition scan on that table is 500 logical and 500 physical
I/Os (assuming 2K I/O for the physical I/O). In contrast, the cost of a serial
scan of this table is 1000 logical and physical I/Os.

Parallel clustered index partition scan (allpages-locked tables)
A clustered index partition scan uses multiple worker processes to scan
data pages in a partitioned table when the clustered index key matches a
search argument. This method can be used only on allpages-locked tables.

One worker process is assigned to each partition in the table. Each worker
process accesses data pages in the partition, using one of two methods,
depending on the range of key values accessed by the process. When a
partitioned table has a clustered index, rows are assigned to partitions
based on the clustered index key.

Figure 8-2 shows a clustered index partition scan that spans three
partitions. Worker processes A, B, and C are assigned to each of the table’s
three partitions. The scan involves two methods:

• Method 1

CHAPTER 8 Parallel Query Optimization

Performance & Tuning: Optimizer and Abstract Plans 177

Worker process A traverses the clustered index to find the first
starting page that satisfies the search argument, about midway
through partition 1. It then begins scanning data pages until it reaches
the end of partition 1.

• Method 2

Worker processes B and C do not use the clustered index, but, instead,
they begin scanning data pages from the beginning of their partitions.
Worker process B completes scanning when it reaches the end of
partition 2. Worker process C completes scanning about midway
through partition 3, when the data rows no longer satisfy the search
argument.

Figure 8-2: Parallel clustered index partition scan

Worker
process A

Worker
process B

Worker
process C

Partition 1

Partition 2

Partition 3

Index pages

Partitioned tableselect avg (price)
from t1
where keyvalue > 400
and keyvalue < 2700

1

1000

1001

2000

2001

3000

Values assigned to
the partition

Parallel access methods

178 Adaptive Server Enterprise

Requirements for consideration

The optimizer considers a clustered index partition scan only when:

• The query accesses at least 20 data pages of the table.

• The table is partitioned and uses allpages locking.

• The table’s data is not skewed in relation to the number of partitions.
Table data is considered skewed when the size of the largest partition
is two or more times the average partition size.

Cost model

The Adaptive Server optimizer computes the cost of a clustered index
partition scan differently, depending on the total number of pages that need
to be scanned:

• If the total number of pages that need to be scanned is less than or
equal to two times the average size of a partition, the optimizer costs
the scan as the total number of pages to be scanned divided by 2.

• If the total number of pages that need to be scanned is greater than two
times the average size of a partition, the optimizer costs the scan as
the average number of pages in a partition.

The actual cost of the scan may be higher if:

• The total number of pages that need to be scanned is less than the size
of a partition, and

• The data to be scanned lies entirely within one partition

If both of these conditions are true, the actual cost of the scan is the same
as if the scan were executed serially.

Parallel hash-based table scan
Parallel hash-based table scans are performed slightly differently,
depending on the locking scheme of the table.

CHAPTER 8 Parallel Query Optimization

Performance & Tuning: Optimizer and Abstract Plans 179

Hash-based table scans on allpages-locked tables

In a hash-based table scan on an allpages-locked table, multiple worker
processes scan a single chain of data pages in a table simultaneously. All
worker processes traverse the page chain and apply an internal hash
function to each page ID. The hash function determines which worker
process reads the rows in the current page. The hash function ensures that
only one worker process scans the rows on any given page of the table.
Figure 8-3 illustrates the hash-based table scan.

Figure 8-3: Parallel hash-based table scan on an allpages-locked
table

The hash-based scan provides a way to distribute the processing of a single
chain of data pages over multiple engines. The optimizer may use this
access method for the outer table of a join query to process a join condition
in parallel.

Hash-based table scans on data-only-locked tables

A hash-based scan on a data-only-locked table hashes on either the extent
number or the allocation page number, rather than hashing on the page
number. The choice of whether to hash on the allocation page or the extent
number is a cost-based decision made by the optimizer. Both methods can
reduce the cost of performing parallel queries on unpartitioned tables.
Queries that choose a serial scan on an allpages-locked table may use one
of the new hash-based scan methods if the table is converted to data-only
locking.

Worker
processes
A, B, and C

Pages scanned
by B

Pages scanned
by C

Pages scanned
by A

Single page chain

Parallel access methods

180 Adaptive Server Enterprise

Requirements for consideration

The optimizer considers the hash-based table scan only for heap tables,
and only for outer tables in a join query—it does not consider this access
method for clustered indexes or for single-table queries. Hash-based scans
can be used on either unpartitioned or partitioned tables. The query must
access at least 20 data pages of the table before the optimizer considers any
parallel access methods.

Cost model

The optimizer computes the cost of a hash-based table scan as the total
number of logical and physical I/Os required to scan the table.

For an allpages-locked table, the physical I/O cost is approximately the
same as for a serial table scan. The logical cost is the number of pages to
be read multiplied by the number of worker processes. The cost per worker
process is one logical I/O for each page in the table, and approximately 1/N
physical I/Os, with N being the number of worker processes.

For a data-only-locked table, this is approximately the same cost applied
to a serial table scan, with the physical and logical I/O divided evenly
between the worker processes.

Parallel hash-based index scan
An index hash-based scan can be performed using either a nonclustered
index or a clustered index on a data-only-locked table. To perform the
scan:

• All worker processes traverse the higher index levels.

• All worker processes scan the leaf-level index pages.

For data-only-locked tables, the worker processes scanning the leaf level
hash on the page ID for each row, and scan the matching data pages.

For allpages-locked tables, a hash-based index scan is performed in one of
two ways, depending on whether the table is a heap table or has a clustered
index. The major difference between the two methods is the hashing
mechanism:

• For a table with a clustered index, the hash is on the key values.

• For a heap table, the scan hashes on the page ID.

CHAPTER 8 Parallel Query Optimization

Performance & Tuning: Optimizer and Abstract Plans 181

Figure 8-4 illustrates a nonclustered index hash-based scan on a heap table
with two worker processes.

Figure 8-4: Nonclustered index hash-based scan

Cost model and requirements

The cost model of a nonclustered index scan uses the formula:

Pages scanned by
worker
process 1

Pages scanned by
worker
process 2

Pages scanned by
both worker
processes

Index pages

Data pages

WP2 7WP1

Scan Cost = Number of index levels
+ Number of leaf pages / pages per IO
+ (Number of data pages / pages per IO) / number of worker processes

Parallel access methods

182 Adaptive Server Enterprise

The optimizer considers a hash-based index scan for any tables in a query
that have useful nonclustered indexes, and for data-only-locked tables
with clustered indexes. The query must also access at least 20 data pages
of the table.

Note If a nonclustered index covers the result of a query, the optimizer
does not consider using the nonclustered index hash-based scan.

See “Index covering” on page 293 in Performance and Tuning: Basics for
more information about index covering.

Parallel range-based scans
Parallel range-based scans are used for the merge process in merge joins.

When two tables are merged in parallel, each worker process is assigned a
range of values to merge. The range is determined using histogram
statistics or sampling. When a histogram exists for at least one of the join
columns, it is used to partition the ranges so that each worker process
operates on approximately the same number of rows. If neither join
column has a histogram, sampling similar to that performed for other
parallel sort operations determines the range of values to be merged by
each worker process.

Figure 8-5 shows a parallel right-merge join. In this case:

• A right-merge join is used. Table1, the outer table, is scanned into a
worktable and sorted, then merged with the inner table. These worker
processes are deallocated at the end of this step.

• The outer table has two partitions, so two worker processes are used
to perform a parallel partition scan.

• The inner table has a nonclustered index on the join key. max parallel
degree is set to 3, so 3 worker processes are used.

Requirements for consideration

The optimizer considers parallel merge joins when the configuration
parameter enable merge joins is set to 1 and the table accesses more than
20 data pages from the outer table in the merge join.

CHAPTER 8 Parallel Query Optimization

Performance & Tuning: Optimizer and Abstract Plans 183

Figure 8-5: A parallel right-merge join

data_dev1 data_dev2

All worker processes

Index pages

Data Ppages

WP3WP1

 7WP1 WP2

Table1:
Partitioned table
on 2 devices

WP2

Worker process 1

Worker process 2

Worker process 3

Merge runs after sort

Worktable1

Sort

Table2:
Nonclustered index
on join key

Pages read by:

Summary of parallel access methods

184 Adaptive Server Enterprise

Additional parallel strategies
Adaptive Server may employ additional strategies when executing queries
in parallel. Those strategies involve the use of partitioned worktables and
parallel sorting.

Partitioned worktables

For queries that require a worktable, Adaptive Server may choose to create
a partitioned worktable and populate it using multiple worker processes.
Partitioning the worktable improves performance when Adaptive Server
populates the table, and therefore, improves the response time of the query
as a whole.

See “Parallel query examples” on page 195 for examples of queries that
can benefit from the use of partitioned worktables.

Parallel sorting

Parallel sorting employs multiple worker processes to sort data in parallel,
similar to the way multiple worker processes execute a query in parallel.
create index and any query that requires sorting can benefit from the use of
parallel sorting.

The optimizer does not directly optimize or control the execution of a
parallel sort.

See “Parallel query examples” on page 195 for examples of queries that
can benefit from the parallel sorting strategy.

Also, see “Overview of the parallel sorting strategy” on page 213 for a
detailed explanation of how Adaptive Server executes a sort in parallel.

Summary of parallel access methods
Table 8-1 summarizes the potential use of parallel access methods in
Adaptive Server query processing. In all cases, the query must access at
least 20 data pages in the table before the optimizer considers parallel
access methods.

CHAPTER 8 Parallel Query Optimization

Performance & Tuning: Optimizer and Abstract Plans 185

Table 8-1: Parallel access method summary

Selecting parallel access methods
For a given table in a query, the optimizer first evaluates the available
indexes and partitions to determine which access methods it can use to
scan the table’s data. For any query that involves a join, Adaptive Server
considers a range-based merge join, and considers using a parallel merge
join if parallel query processing is enabled. The use of a range-based scan
does not depend on table partitioning, and range-based scans can be
performed using clustered and nonclustered indexes. They are considered,
and are very likely to be used, on tables that have no useful index on the
join key.

Table 8-2 shows the other parallel access methods that the optimizer may
evaluate for different table and index combinations. Hash-based table
scans are considered only for the outer table in a query, unless the query
uses the parallel optimizer hint.

Parallel method Major cost factors
Requirements for
consideration

Competing
serial methods

Partition-based scan Number of pages in the largest
partition

Partitioned table with
balanced data

Serial table scan,
serial index scan

Hash-based table scan Number of pages in table Any outer table in a join
query and that is a heap

Serial table scan,
serial index scan

Clustered index partition
scan

If total number of pages to be
scanned <= 2 * number of pages in
average-sized partition, then: Total
number of pages to be scanned / 2

If total number of pages to be
scanned > 2 * number of pages in
average-sized partition, then:
Average number of pages in a
partition

Partitioned table with a
useful clustered index;
allpages locking only

Serial index scan

Hash-based index scan Number of index pages above leaf
level to scan + number of leaf-level
index pages to scan + (number of
data pages referenced in leaf-level
index pages / number of worker
processes)

Any table with a useful
nonclustered index or a
data-only-locked table
with a clustered index

Serial index scan

Range-based scan Number of pages to be accessed in
both tables/number of worker
processes, plus any sort costs

Any table in a join eligible
for merge join
consideration

Serial merge,
nested-loop join

Degree of parallelism for parallel queries

186 Adaptive Server Enterprise

Table 8-2: Determining applicable partition or hash-based access
methods

The optimizer may further eliminate parallel access methods from
consideration, based on the number of worker processes that are available
to the query. This process of elimination occurs when the optimizer
computes the degree of parallelism for the query as a whole.

For an example, see “Partitioned heap table” on page 192.

Degree of parallelism for parallel queries
The degree of parallelism for a query is the number of worker processes
chosen by the optimizer to execute the query in parallel. The degree of
parallelism depends on both the upper limit to the degree of parallelism for
the query and on the level of parallelism suggested by the optimizer.

Computing the degree of parallelism for a query is important for two
reasons:

• The final degree of parallelism directly affects the performance of a
query since it specifies how many worker processes should do the
work in parallel.

No useful index
Useful clustered
index

Useful index (nonclustered
or clustered on data-only-
locked table)

Partitioned Table Partition scan

Hash-based table scan
(if table is a heap)

Serial table scan

Clustered index
partition scan

Serial index scan

Nonclustered index hash-based
scan

Serial index scan

Unpartitioned Table Hash-based table scan
(if table is a heap)

Serial table scan

Serial index scan Nonclustered index hash-based
scan

Serial index scan

CHAPTER 8 Parallel Query Optimization

Performance & Tuning: Optimizer and Abstract Plans 187

• While computing the degree of parallelism, the optimizer disqualifies
parallel access methods that would require more worker processes
than the limits set by configuration parameters, the set command, or
the parallel clause in a query. This reduces the total number of access
methods that the optimizer must consider when costing the query,
and, therefore, decreases the overall optimization time. Disqualifying
access methods in this manner is especially important for multitable
joins, where the optimizer must consider many different combinations
of join orders and access methods before selecting a final query plan.

Upper limit
A System Administrator configures the upper limit to the degree of
parallelism using server-wide configuration parameters. Session-wide and
query-level options can further limit the degree of parallelism. These
limits set both the total number of worker processes that can be used in a
parallel query and the total number of worker processes that can be used
for hash-based access methods.

The optimizer removes from consideration any parallel access methods
that would require more worker processes than the upper limit for the
query. (If the upper limit to the degree of parallelism is 1, the optimizer
does not consider any parallel access methods.)

See “Configuration parameters for controlling parallelism” on page 153
for more information about configuration parameters that control the
upper limit to the degree of parallelism.

Optimized degree
The optimizer can potentially use worker processes up to the maximum
degree of parallelism set at the server, session, or query level. However,
the optimized degree of parallelism may be less than this maximum. For
partition-based scans, the optimizer chooses the degree of parallelism
based on the number of partitions in the tables of the query and the number
of worker processes configured.

Degree of parallelism for parallel queries

188 Adaptive Server Enterprise

Worker processes for partition-based scans

For partition-based access methods, Adaptive Server requires one worker
process for every partition in a table. If the number of partitions exceeds
max parallel degree or a session-level or query-level limit, the optimizer
uses a hash-based or serial access method; if a merge join can be used, it
may choose a merge join using the max parallel degree.

Worker processes for hash-based scans

For hash-based access methods, the optimizer does not compute an
optimal degree of parallelism; instead, it uses the number of worker
processes specified by the max scan parallel degree parameter. It is up to
the System Administrator to set max scan parallel degree to an optimal
value for the Adaptive Server system as a whole. A general rule of thumb
is to set this parameter to no more than 2 or 3, since it takes only 2–3
worker processes to fully utilize the I/O of a given physical device.

Worker processes for range-based scans

A merge join can use multiple worker processes to perform:

• The scan that selects rows into a worktable, for any merge join that
requires a sort

• The worktable sort

• The merge join and subsequent joins in the step

• The range scan of both tables during a full merge join

Usage while creating the worktable

If a worktable is needed for a merge join, the query step that creates the
worktable can use a serial or parallel access method for the scan. The
number of worker processes for this step is determined by the usual
methods for selecting the number of worker processes for a query. The
query that selects the rows into the worktable can be a single-table query
or a join performing a nested-loop or merge join, or a combination of
nested-loops joins and a merge join.

CHAPTER 8 Parallel Query Optimization

Performance & Tuning: Optimizer and Abstract Plans 189

Parallel sorting for merge-join worktables

Parallel sorting is used when the number of pages in the worktable to be
sorted is eight times the value of the number of sort buffers configuration
parameter.

See Chapter 9, “Parallel Sorting,” for more information about parallel
sorting.

Number of merge threads

For the merge step, the number of merge threads is set to max parallel
degree, unless the number of distinct values is smaller than max parallel
degree. If the number of values to be merged is smaller than the max
parallel degree, the task uses one worker process per value, with each
worker process merging one value. If the tables being merged have
different numbers of distinct values, the lower number determines the
number of worker processes to be used. The formula is:

When there is only one distinct value on the join column, or there is an
equality search argument on a join column, the merge step is performed in
serial mode. If a merge join is used for this query, the merge is performed
in serial mode:

select * from t1, t2
where t1.c1 = t2.c1
and t1.c1 = 10

Total usage for merge joins

A merge join can use up to max parallel degree threads for the merge step
and up to max parallel degree threads can be used for each sort. A merge
that performs a parallel sort may use up to 2*max parallel degree threads.
Worker processes used for sorts are released when the sort completes.

Worker processes = min (max pll degree, min(t1_uniq_vals, t2_uniq_vals))

Degree of parallelism for parallel queries

190 Adaptive Server Enterprise

Nested-loop joins
For individual tables in a nested-loop join, the optimizer computes the
degree of parallelism using the same rules described in “Optimized
degree” on page 187. However, the degree of parallelism for the join query
as a whole is the product of the worker processes that access individual
tables in the join. All worker processes allocated for a join query access all
tables in the join. Using the product of worker processes to drive the
degree of parallelism for a join ensures that processing is distributed
evenly over partitions and that the join returns no duplicate rows.

Figure 8-6 illustrates this rule for two tables in a join where the outer table
has three partitions and the inner table has two partitions. If the optimizer
determines that partition-based access methods are to be used on each
table, then the query requires a total of six worker processes to execute the
join. Each of the six worker processes scans one partition of the outer table
and one partition of the inner table to process the join condition.

Figure 8-6: Worker process usage for a nested-loop join

Outer table

Inner table

Partition 1

Partition 2

Partition 3

Partition 1

Partition 2

WP2

WP1

 7WP3

WP5

WP4

 7WP6

CHAPTER 8 Parallel Query Optimization

Performance & Tuning: Optimizer and Abstract Plans 191

In Figure 8-6, if the optimizer chose to scan the inner table using a serial
access method, only three worker processes would be required to execute
the join. In this situation, each worker process would scan one partition of
the outer table, and all worker processes would scan the inner table to find
matching rows.

Therefore, for any two tables in a query with scan degrees of m and n
respectively, the potential degrees of parallelism for a nested-loop join
between the two tables are:

• 1, if the optimizer accesses both tables serially

• m*1, if the optimizer accesses the first table using a parallel access
method (with m worker processes), and the second table serially

• n*1, if the optimizer accesses the second table using a parallel access
method (with n worker processes) and the first table serially

• m*n, if the optimizer accesses both tables using parallel access
methods

Alternative plans

Using partition-based scans on both tables in a join is fairly rare because
of the high cost of repeatedly scanning the inner table. The optimizer may
also choose:

• A merge join.

• The reformatting strategy, if reformatting is a cheaper alternative.

• A partitioned-based scan plus a hash-based index scan, when a join
returns rows from 20 or more data pages.

See Figure 7-7 on page 151 for an illustration.

Computing the degree of parallelism for nested-loop joins

To determine the degree of parallelism for a join between any two tables
(and to disqualify parallel access methods that would require too many
worker processes), the optimizer applies the following rules:

1 The optimizer determines possible access methods and degrees of
parallelism for the outer table of the join. This process is the same as
for single-table queries.

See “Optimized degree” on page 187.

Degree of parallelism for parallel queries

192 Adaptive Server Enterprise

2 For each access method determined in step 1, the optimizer calculates
the remaining number of worker processes that are available for the
inner table of the join. The following formula determines this number:

3 The optimizer uses the remaining number of worker processes as an
upper limit to determine possible access methods and degrees of
parallelism for the inner table of the join.

The optimizer repeats this process for all possible join orders and access
methods and applies the cost function for joins to each combination. The
optimizer selects the least costly combination of join orders and access
methods, and the final combination drives the degree of parallelism for the
join query as a whole.

See “Nested-loop joins” on page 190 for examples of this process.

Parallel queries and existence joins

Adaptive Server imposes an additional restriction for subqueries
processed as existence joins. For these queries, only the number of
partitions in the outer table determines the degree of parallelism. There are
only as many worker processes as there are partitions in the outer table.
The inner table in such a query is always accessed serially. This restriction
does not apply to subqueries that are flattened into regular joins.

Examples
The examples in this section show how the limits to the degree of
parallelism affect the following types of queries:

• A partition heap table

• A nonpartitioned heap table

• A table with a clustered index

Partitioned heap table

Assume that max parallel degree is set to 10 worker processes and max
scan parallel degree is set to 3 worker processes.

Remaining worker processes = max parallel degree/ Worker processes for outer table

CHAPTER 8 Parallel Query Optimization

Performance & Tuning: Optimizer and Abstract Plans 193

Single-table query

For a single-table query on a heap table with 6 partitions and no useful
nonclustered index, the optimizer costs the following access methods:

• A parallel partition scan using 6 worker processes

• A serial table scan using a single process

If max parallel degree is set to 5 worker processes, then the optimizer does
not consider the partition scan for a table with 6 partitions.

Query with a join

The situation changes if the query involves a join. If max parallel degree is
set to 10 worker processes, the query involves a join, and a table with 6
partitions is the outer table in the query, then the optimizer considers the
following access methods:

• A partition scan using 6 worker processes

• A hash-based table scan using 3 worker processes

• A merge join using 10 worker processes

• A serial scan using a single process

If max scan parallel degree is set to 5 and max scan parallel degree is set to
3, then the optimizer considers the following access methods:

• A hash-based table scan using 3 worker processes

• A merge join using 5 worker processes

• A serial scan using a single process

Finally, if max parallel degree is set to 5 and max scan parallel degree is set
to 1, then the optimizer considers only a merge join as a parallel access
method.

Nonpartitioned heap table

If the query involves a join, and max scan parallel degree is set to 3, and
the nonpartitioned heap table is the outer table in the query, then the
optimizer considers the following access methods:

• A hash-based table scan using 3 worker processes

• A range scan using 10 worker processes for the merge join

• A serial scan using a single process

Degree of parallelism for parallel queries

194 Adaptive Server Enterprise

If max scan parallel degree is set to 1, then the optimizer does not consider
the hash-based scan.

See “Single-table scans” on page 195 for more examples of determining
the degree of parallelism for queries.

Table with clustered index

If the table has a clustered index, the optimizer considers the following
parallel access methods when the table uses allpages locking:

• A parallel partition scan or a parallel clustered index scan, if the table
is partitioned and max parallel degree is set to at least 6

• A range scan, using max parallel degree worker processes

• A serial scan

If the table uses data-only-locking, the optimizer considers:

• A parallel partition scan, if the table is partitioned and max parallel
degree is set to at least 6

• A range scan, using max parallel degree worker processes

• A serial scan

Runtime adjustments to worker processes
Even after the optimizer determines a degree of parallelism for the query
as a whole, Adaptive Server may make final adjustments at runtime to
compensate for the actual number of worker processes that are available.
If fewer worker processes are available at runtime than are suggested by
the optimizer, the degree of parallelism is reduced to a level that is
consistent with the available worker processes and the access methods in
the final query plan. “Runtime adjustment of worker processes” on page
202 describes the process of adjusting the degree of parallelism at runtime
and explains how to determine when these adjustments occur.

CHAPTER 8 Parallel Query Optimization

Performance & Tuning: Optimizer and Abstract Plans 195

Parallel query examples
The following sections further explain and provide examples of how
Adaptive Server optimizes these types of parallel queries:

• Single-table scans

• Multitable joins

• Subqueries

• Queries that require worktables

• union queries

• Queries with aggregates

• select into statements

Commands that insert, delete, or update data, and commands executed
from within cursors are never considered for parallel query optimization.

Single-table scans
The simplest parallel query optimization involves queries that access a
single base table. Adaptive Server optimizes these queries by evaluating
the base table to determine applicable access methods, and then applying
cost functions to select the least costly plan.

Understanding how Adaptive Server optimizes single-table queries is
integral to understanding more complex parallel queries. Although queries
such as multitable joins and subqueries use additional optimization
strategies, the process of accessing individual tables for those queries is
the same.

The following example shows instances in which the optimizer uses
parallel access methods on single-table queries.

Table partition scan

This example shows a query where the optimizer chooses a table partition
scan over a serial table scan. The configuration and table layout are as
follows:

Parallel query examples

196 Adaptive Server Enterprise

The example query is:

select *
 from authors
 where au_lname < "L"

Using the logic in Table 8-2 on page 186, the optimizer determines that
the following access methods are available for consideration:

• Partition scan

• Serial table scan

The optimizer does not consider a hash-based table scan for the table,
since the balance of pages in the partitions is not skewed, and the upper
limit to the degree of parallelism for the table, 10, is high enough to allow
a partition-based scan.

The optimizer computes the cost of each access method, as follows:

The optimizer chooses to perform a table partition scan at a cost of 90
physical and logical I/Os. Because the table has 5 partitions, the optimizer
chooses to use 5 worker processes. The final showplan output for this
query is:

QUERY PLAN FOR STATEMENT 1 (at line 1).

Configuration parameter values

Parameter Setting

max parallel degree 10 worker processes

max scan parallel degree 2 worker processes

Table layout

Table name Useful indexes
Number of
partitions Number of pages

authors None 5 Partition 1: 50 pages
Partition 2: 70 pages
Partition 3: 90 pages
Partition 4: 80 pages
Partition 5: 10 pages

Cost of table partition scan = # of pages in the largest partition = 90 pages

Cost of serial table scan = # of pages in table = 300 pages

CHAPTER 8 Parallel Query Optimization

Performance & Tuning: Optimizer and Abstract Plans 197

Executed in parallel by coordinating process and 5 worker
processes.
 STEP 1
 The type of query is SELECT.
 Executed in parallel by coordinating process and 5
 worker processes.
 FROM TABLE
 authors
 Nested iteration.
 Table Scan.
 Forward scan.
 Positioning at start of table.
 Executed in parallel with a 5-way partition scan.
 Using I/O Size 16 Kbytes for data pages.
 With LRU Buffer Replacement Strategy for data pages.
 Parallel network buffer merge.

Multitable joins
When optimizing joins, the optimizer considers the best join order for all
combinations of tables and applicable access methods. The optimizer uses
a different strategy to select access methods for inner and outer tables and
the degree of parallelism for the join query as a whole.

As in serial processing, the optimizer weighs many alternatives for
accessing a particular table. The optimizer balances the costs of parallel
execution with other factors that affect join queries, such as the presence
of a clustered index, the use of either nested-loop or merge joins, the
possibility of reformatting the inner table, the join order, and the I/O and
caching strategy. The following discussion focuses only on parallel versus
serial access method choices.

Parallel join optimization and join orders

This example illustrates how the optimizer devises a query plan for a join
query that is eligible for parallel execution. The configuration and table
layout are as follows:

Configuration parameter values

Parameter Setting

max parallel degree 15 worker processes

max scan parallel degree 3 worker processes

Parallel query examples

198 Adaptive Server Enterprise

The example query involves a simple join between these two tables:

select *
 from publishers, titles
 where publishers.pub_id = titles.pub_id

In theory, the optimizer considers the costs of all the possible
combinations:

• titles as the outer table and publishers as the inner table, with titles
accessed in parallel

• titles as the outer table and publishers as the inner table, with titles
accessed serially

• publishers as the outer table and titles as the inner table, with titles
accessed in parallel

• publishers as the outer table and titles as the inner table, with titles
accessed serially

• publishers as the outer table and titles as the inner table, with publishers
accessed in parallel

For example, the cost of a join order in which titles is the outer table and is
accessed in parallel is calculated as follows:

The cost of having publishers as the outer table is calculated as follows:

However, other factors are often more important in determining the join
order than whether a particular table is eligible for parallel access.

Scenario A: clustered index on publishers

The presence of a useful clustered index is often the most important factor
in how the optimizer creates a query plan for a join query. If publishers has
a clustered index on pub_id and titles has no useful index, the optimizer can
choose the indexed table (publishers) as the inner table. With this join
order, each access to the inner table takes only a few reads to find rows.

Table layout

Table
name

Number of
partitions

Number of
pages Number of rows

publishers 1 (not partitioned) 1,000 80,000

titles 10 10,000 (distributed
evenly over
partitions)

800,000

CHAPTER 8 Parallel Query Optimization

Performance & Tuning: Optimizer and Abstract Plans 199

With publishers as the inner table, the optimizer costs the eligible access
methods for each table. For titles, the outer table, it considers:

• A parallel partition scan (cost is number of pages in the largest
partition)

• A serial table scan (cost is number of pages in the table)

For publishers, the inner table, the optimizer considers only a serial
clustered index scan.

It also considers performing a merge join, sorting the worktable from titles
into order on titles, either a right-merge or left-merge join.

The final cost of the query is the cost of accessing titles in parallel times
the number of accesses of the clustered index on publishers.

Scenario B: clustered index on titles

If titles has a clustered index on pub_id, and publishers has no useful index,
the optimizer chooses titles as the inner table in the query.

With the join order determined, the optimizer costs the eligible access
methods for each table. For publishers, the outer table, it considers:

• A hash-based table scan (the initial cost is the same as a serial table
scan)

For titles, the inner table, the optimizer considers only aserial clustered
index scan.

In this scenario, the optimizer chooses parallel over serial execution of
publishers. Even though a hash-based table scan has the same cost as a
serial scan, the processing time is cut by one-third, because each worker
process can scan the inner table’s clustered index simultaneously.

Scenario C: neither table has a useful index

If neither table has a useful index, a merge join is a very likely choice for
the access method. If merge joins are disabled, the table size and available
cache space can be more important factors than potential parallel access
for join order. The benefits of having a smaller table as the inner table
outweigh the benefits of one parallel access method over the other. The
optimizer chooses the publishers table as the inner table, because it is small
enough to be read once and kept in cache, reducing costly physical I/O.

Then, the optimizer costs the eligible access methods for each table. For
titles, the outer table, it considers:

Parallel query examples

200 Adaptive Server Enterprise

• A parallel partition scan (cost is number of pages in the largest
partition)

• A serial table scan (cost is number of pages in the table)

For publishers, the inner table, it considers only a serial table scan loaded
into cache.

The optimizer chooses to access titles in parallel, because it reduces the
cost of the query by a factor of 10.

In some cases where neither table has a useful index, the optimizer
chooses the reformatting strategy, creating a temporary table and clustered
index instead of repeatedly scanning the inner table.

Subqueries
When a query contains a subquery, Adaptive Server uses different access
methods to reduce the cost of processing the subquery. Parallel
optimization depends on the type of subquery and the access methods:

• Materialized subqueries – parallel query methods are not considered
for the materialization step.

• Flattened subqueries – parallel query optimization is considered only
when the subquery is flattened to a regular join. It is not considered
for existence joins or other flattening strategies.

• Nested subqueries – parallel access methods are considered for the
outermost query block in a query containing a subquery; the inner,
nested queries always execute serially. Although the optimizer
considers parallel access methods for only the outermost query block
in a subquery, all worker processes that access the outer query block
also access the inner tables of the nested subqueries.

Each worker process accesses the inner, nested query block in serial.
Although the subquery is run once for each row in the outer table,
each worker process performs only one-fifth of the executions.
showplan output for the subquery indicates that the nested query is
“Executed by 5 worker processes,” since each worker process used in
the outer query block scans the table specified in the inner query
block.

Each worker process maintains a separate cache of subquery results,
so the subquery may be executed slightly more often than in serial
processing.

CHAPTER 8 Parallel Query Optimization

Performance & Tuning: Optimizer and Abstract Plans 201

Queries that require worktables
Parallel queries that require worktables create partitioned worktables and
populate them in parallel. For queries that require sorts, the parallel sort
manager determines whether to use a serial or parallel sort.

See Chapter 9, “Parallel Sorting,” for more information about parallel
sorting.

union queries
The optimizer considers parallel access methods for each part of a union
query separately. Each select in a union is optimized separately, so one
query can use a parallel plan, another a serial plan, and a third a parallel
plan with a different number of worker processes. If a union query requires
a worktable, then the worktable may also be partitioned and populated in
parallel by worker processes.

If a union query is to return no duplicate rows, then a parallel sort may be
performed on the internal worktable to remove duplicate rows.

See Chapter 9, “Parallel Sorting,” for more information about parallel
sorting.

Queries with aggregates
Adaptive Server considers parallel access methods for queries that return
aggregate results in the same way it does for other queries. For queries that
use the group by clause to return a grouped aggregate result, Adaptive
Server also creates multiple worktables with clustered indexes—one
worktable for each worker process that executes the query. Each worker
process stores partial aggregate results in its designated worktable. As
worker processes finish computing their partial results, they merge those
results into a common worktable. After all worker processes have merged
their partial results, the common worktable contains the final grouped
aggregate result set for the query.

Runtime adjustment of worker processes

202 Adaptive Server Enterprise

select into statements
select into creates a new table to store the query’s result set. Adaptive
Server optimizes the base query portion of a select into command in the
same way it does a standard query, considering both parallel and serial
access methods. A select into statement that is executed in parallel:

1 Creates the new table using columns specified in the select into
statement.

2 Creates n partitions in the new table, where n is the degree of
parallelism that the optimizer chose for the query as a whole.

3 Populates the new table with query results, using n worker processes.

4 Unpartitions the new table.

Performing a select into statement in parallel requires additional steps than
the equivalent serial query plan. Therefore, the execution of a parallel
select into statement takes place using four discrete transactions, rather
than the two transactions of a serial select into statement. See select in the
Adaptive Server Reference Manual for information about how this affects
the database recovery process.

Runtime adjustment of worker processes
The output of showplan describes the optimized plan for a given query. An
optimized query plan specifies the access methods and the degree of
parallelism that the optimizer suggests when the query is compiled. At
execution time, there may be fewer worker processes available than are
required by the optimized query plan. This can occur when:

• There are not enough worker processes available for the optimized
query plan.

• The server-level or session-level limits for the query were reduced
after the query was compiled. This can happen with queries executed
from within stored procedures.

CHAPTER 8 Parallel Query Optimization

Performance & Tuning: Optimizer and Abstract Plans 203

In these circumstances, Adaptive Server may create an adjusted query plan
to compensate for the available worker processes. An adjusted query
plan is generated at runtime and compensates for the lack of available
worker processes. An adjusted query plan may use fewer worker processes
than the optimized query plan, and it may use a serial access method
instead of a parallel method for one or more of the tables.

The response time of an adjusted query plan may be significantly longer
than its optimized counterpart. Adaptive Server provides:

• A set option, process_limit_action, which allows you to control
whether runtime adjustments are allowed.

• Information on runtime adjustments in sp_sysmon output.

How Adaptive Server adjusts a query plan
Adaptive Server uses two basic rules to reduce the number of required
worker processes in an adjusted query plan:

1 If the optimized query plan specifies a partition-based access method
for a table, but not enough processes are available to scan each
partition, the adjusted plan uses a serial access method.

2 If the optimized query plan specifies a hash-based access method for
a table, but not enough processes are available to cover the optimized
degree of parallelism, the adjusted plan reduces the degree of
parallelism to a level consistent with the available worker processes.

To illustrate the first case, assume that an optimized query plan
recommends scanning a table’s five partitions using a partition-based table
scan. If only four worker processes are actually available at the time the
query executes, Adaptive Server creates an adjusted query plan that
accesses the table in serial, using a single process.

In the second case, if the optimized query plan recommended scanning the
table with a hash-based access method and five worker processes, the
adjusted query plan would still use a hash-based access method, but with,
at the most, four worker processes.

Runtime adjustment of worker processes

204 Adaptive Server Enterprise

Evaluating the effect of runtime adjustments
Although optimized query plans generally outperform adjusted query
plans, the difference in performance is not always significant. The ultimate
effect on performance depends on the number of worker processes that
Adaptive Server uses in the adjusted plan, and whether or not a serial
access method is used in place of a parallel method. Obviously, the most
negative impact on performance occurs when Adaptive Server uses a
serial access method instead of a parallel access method to execute a query.

The performance of multitable join queries can also suffer dramatically
from adjusted query plans, since Adaptive Server does not change the join
ordering when creating an adjusted query plan. If an adjusted query plan
is executed in serial, the query can potentially perform more slowly than
an optimized serial join. This may occur because the optimized parallel
join order for a query is different from the optimized serial join order.

Recognizing and managing runtime adjustments
Adaptive Server provides two mechanisms to help you observe runtime
adjustments of query plans.

• set process_limit_action allows you to abort batches or procedures
when runtime adjustments take place or print warnings.

• showplan prints an adjusted query plan when runtime adjustments
occur, and showplan is effect.

Using set process_limit_action

The process_limit_action option to the set command lets you monitor the
use of adjusted query plans at a session or stored procedure level. When
you set process_limit_action to “abort,” Adaptive Server records Error
11015 and aborts the query, if an adjusted query plan is required. When
you set process_limit_action to “warning,” Adaptive Server records Error
11014 but still executes the query.

For example, this command aborts the batch when a query is adjusted at
runtime:

set process_limit_action abort

CHAPTER 8 Parallel Query Optimization

Performance & Tuning: Optimizer and Abstract Plans 205

By examining the occurrences of Errors 11014 and 11015 in the error log,
you can determine the degree to which Adaptive Server uses adjusted
query plans instead of optimized query plans. To remove the restriction
and allow runtime adjustments, use:

set process_limit_action quiet

See set in the Adaptive Server Reference Manual for more information
about process_limit_action.

Using showplan

When you use showplan, Adaptive Server displays the optimized plan for
a given query before it runs the query. When the query plan involves
parallel processing, and a runtime adjustment is made, showplan displays
this message, followed by the adjusted query plan:

AN ADJUSTED QUERY PLAN WILL BE USED FOR STATEMENT 1
BECAUSE NOT ENOUGH WORKER PROCESSES ARE AVAILABLE AT
THIS TIME.

Adaptive Server does not attempt to execute a query when the set noexec
is in effect, so runtime plans are never displayed while using this option.

Reducing the likelihood of runtime adjustments
To reduce the number of runtime adjustments, you must increase the
number of worker processes that are available to parallel queries. You can
do this either by adding more total worker processes to the system or by
restricting or eliminating parallel execution for noncritical queries, as
follows:

• Use set parallel_degree and/or set scan_parallel_degree to set session-
level limits on the degree of parallelism, or

• Use the query-level parallel 1 and parallel N clauses to limit the worker
process usage of individual statements.

To reduce the number of runtime adjustments for system procedures,
recompile the procedures after changing the degree of parallelism at the
server or session level. See sp_recompile in the Adaptive Server Reference
Manual for more information.

Diagnosing parallel performance problems

206 Adaptive Server Enterprise

Checking runtime adjustments with sp_sysmon
sp_sysmon shows how many times a request for worker processes was
denied due to a lack of worker processes and how many times the number
of worker processes recommended for a query was adjusted to a smaller
number. The following sections of the report provide information:

• “Worker process management” on page 24 of the Performance and
Tuning: Monitoring and Analyzing for Performance describes the
output for the number of worker process requests that were requested
and denied and the success and failure of memory requests for worker
processes.

• “Parallel query management” on page 26 of the Performance and
Tuning: Monitoring and Analyzing for Performance describes the
sp_sysmon output that reports on the number of runtime adjustments
and locks for parallel queries.

If insufficient worker processes in the pool seems to be the problem,
compare the number of worker processes used to the number of worker
processes configured. If the maximum number of worker processes used
is equal to the configured value for number of worker processes, and the
percentage of worker process requests denied is greater than 80 percent,
increase the value for number of worker processes and re-run sp_sysmon.
If the maximum number of worker processes used is less than the
configured value for number of worker processes, and the percentage of
worker thread requests denied is 0 percent, decreases the value for number
of worker processes to free memory resources.

Diagnosing parallel performance problems
The following sections provide troubleshooting guidelines for parallel
queries. They cover two situations:

• The query runs in serial, when you expect it to run in parallel.

• The query runs in parallel, but does not perform as well as you expect.

CHAPTER 8 Parallel Query Optimization

Performance & Tuning: Optimizer and Abstract Plans 207

Query does not run in parallel
If you think that a query should run in parallel but does not, possible
explanations are:

• The max parallel degree configuration parameter is set to 1, or the
session-level setting set parallel_degree is set to 1, preventing all
parallel access.

• The max scan parallel degree configuration parameter is set to 1, or the
session level setting set scan_parallel_degree is set to 1, preventing
hash-based parallel access.

• There are insufficient worker threads at execution time. Check for
runtime adjustments, using the tools discussed in “Runtime
adjustments to worker processes” on page 194.

• The scope of the scan is less than 20 data pages. This can be bypassed
with the (parallel) clause.

• The plan calls for a table scan and:

• The table is not a heap,

• The table is not partitioned,

• The partitioning is unbalanced, or

• The table is a heap but is not the outer table of a join.

The last two conditions can be bypassed with the (parallel) clause.

• The plan calls for a clustered index scan and:

• The table is not partitioned, or

• The partitioning is unbalanced. This can be bypassed with the
(parallel) clause.

• The plan calls for a nonclustered index scan, and the chosen index
covers the required columns.

• The table is a temporary table or a system table.

• The table is the inner table of an outer join.

• A limit has been set through the Resource Governor, and all parallel
plans exceed that limit in terms of total work.

• The query is a type that is not made parallel, such as an insert, update,
or delete command, a nested (not the outermost) query, or a cursor.

Resource limits for parallel queries

208 Adaptive Server Enterprise

Parallel performance is not as good as expected
Possible explanations are:

• There are too many partitions for the underlying physical devices.

• There are too many devices per controller.

• The (parallel) clause has been used inappropriately.

• The max scan parallel degree is set too high; the recommended range
is 2–3.

Calling technical support for diagnosis
If you cannot diagnose the problem using these hints, the following
information will be needed by Sybase Technical Support to determine the
source of the problem:

• The table and index schema—create table, alter table...partition, and
create index statements are most helpful. Provide output from sp_help
if the actual create and alter commands are not available.

• The query.

• The output of the query run with commands:

• dbcc traceon (3604,302, 310)

• set showplan on

• set noexec on

• The statistics io output for the query.

Resource limits for parallel queries
The tracking of I/O cost limits may be less precise for partitioned tables
than for unpartitioned tables, when Adaptive Server is configured for
parallel query processing.

CHAPTER 8 Parallel Query Optimization

Performance & Tuning: Optimizer and Abstract Plans 209

When you query a partitioned table, all the labor in processing the query
is divided among the partitions. For example, if you query a table with
three partitions, the query’s work is divided among 3 worker processes. If
the user has specified an I/O resource limit with an upper bound of 6000,
the optimizer assigns a limit of 2000 to each worker process.

However, since no two threads are guaranteed to perform the exact same
amount of work, the parallel processor cannot precisely distribute the
work among worker processes. You may get an error message saying you
have exceeded your I/O resource limit when, according to showplan or
statistics io output, you actually have not. Conversely, one partition may
exceed the limit slightly, without the limit taking effect.

See the System Administration Guide for more information about setting
resource limits.

Resource limits for parallel queries

210 Adaptive Server Enterprise

Performance & Tuning: Optimizer and Abstract Plans 211

C H A P T E R 9 Parallel Sorting

This chapter discusses how to configure the server for improved
performance for commands that perform parallel sorts.

 The process of sorting data is an integral part of any database
management system. Sorting is for creating indexes and for processing
complex queries. The Adaptive Server parallel sort manager provides a
high-performance, parallel method for sorting data rows. All Transact-
SQL commands that require an internal sort can benefit from the use of
parallel sorting.

Parallel sorting and how it works and what factors affect the performance
of parallel sorts is also covered. You need to understand these subjects to
get the best performance from parallel sorting, and to keep parallel sort
resource requirements from interfering with other resource needs.

Commands that benefits from parallel sorting
Any Transact-SQL command that requires data row sorting can benefit
from parallel sorting techniques. These commands are:

• create index commands and the alter table...add constraint commands
that build indexes, unique and primary key

• Queries that use the order by clause

• Queries that use distinct

Topic Page
Commands that benefits from parallel sorting 211

Requirements and resources overview 212

Overview of the parallel sorting strategy 213

Configuring resources for parallel sorting 216

Recovery considerations 230

Tools for observing and tuning sort behavior 230

Using sp_sysmon to tune index creation 236

Requirements and resources overview

212 Adaptive Server Enterprise

• Queries that perform merge joins requiring sorts

• Queries that use union (except union all)

• Queries that use the reformatting strategy

In addition, any cursors that use the above commands can benefit from
parallel sorting.

Requirements and resources overview
Like parallel query processing, parallel sorting requires more resources
than performing the same command in parallel. Response time for creating
the index or sorting query results improves, but the server performs more
work due to overhead.

Adaptive Server’s sort manager determines whether the resources required
to perform a sort operation in parallel are available, and also whether a
serial or parallel sort should be performed, given the size of the table and
other factors. For a parallel sort to be performed, certain criteria must be
met:

• The select into/bulk copy/pllsort database option must be set to true with
sp_dboption in the target database:

• For indexes, the option must be enabled in the database where the
table resides. For creating a clustered index on a partitioned table,
this option must be enabled, or the sort fails. For creating other
indexes, serial sorts can be performed if parallel sorts cannot be
performed.

• For sorting worktables, this option must be on in tempdb. Serial
sorts can be performed if parallel sorts cannot be performed.

• Parallel sorts must have a minimum number of worker processes
available. The number depends on the number of partitions on the
table and/or the number of devices on the target segment. The degree
of parallelism at the server and session level must be high enough for
the sort to use at least the minimum number of worker processes
required for a parallel sort. Clustered indexes on partitioned tables
must be created in parallel; other sorts can be performed in serial if
there are not enough worker processes available. “Worker process
requirements for parallel sorts” on page 217 and “Worker process
requirements for select query sorts” on page 220.

CHAPTER 9 Parallel Sorting

Performance & Tuning: Optimizer and Abstract Plans 213

• For select commands that require sorting, and for creating
nonclustered indexes, the table to be sorted must be at least eight
times the size of the available sort buffers (the value of the number of
sort buffers configuration parameter), or the sort will be performed in
serial mode. This ensures that Adaptive Server does not perform
parallel sorting on smaller tables that would not show significant
improvements in performance. This rule does not apply to creating
clustered indexes on partitioned tables, since this operation always
requires a parallel sort.

See “Sort buffer configuration guidelines” on page 223.

• For create index commands, the value of the number of sort buffers
configuration parameter must be at least as large as the number of
worker processes available for the parallel sort.

See “Sort buffer configuration guidelines” on page 223.

Note You cannot use the dump transaction command after indexes are
created using a parallel sort. You must dump the database. Serial
create index commands can be recovered, but only by completely re-
doing the indexing command, which can greatly lengthen recovery
time. Performing database dumps after serial create indexes is
recommended to speed recovery, although it is not required in order
to use dump transaction.

Overview of the parallel sorting strategy
Like the Adaptive Server optimizer, the Adaptive Server parallel sort
manager analyzes the available worker processes, the input table, and
other resources to determine the number of worker processes to use for the
sort.

After determining the number of worker processes to use, Adaptive Server
executes the parallel sort. The process of executing a parallel sort is the
same for create index commands and queries that require sorts. Adaptive
Server executes a parallel sort by:

1 Creating a distribution map. For a merge join with statistics on a join
column, histogram statistics are used for the distribution map. In other
cases, the input table is sampled to build the map.

Overview of the parallel sorting strategy

214 Adaptive Server Enterprise

2 Reading the table data and dynamically partitioning the key values
into a set of sort buffers, as determined by the distribution map.

3 Sorting each individual range of key values and creating subindexes.

4 Merging the sorted subindexes into the final result set.

Each of these steps is described in the sections that follow.

Figure 9-1 depicts a parallel sort of a table with two partitions and two
physical devices on its segment.

Figure 9-1: Parallel sort strategy

Producer
process 1

Producer
process 2

4

Distribution map

 2 4 5 97 830 1 6

Consumer
process 2

Consumer
process 1

2 4 5 97 8 3 01 6

Partition 1 Partition 2

Sorted data or Sorted data orCoordinating
process subindex subindex

Merged result
or index

Step 1. Sampling
the data and
building the
distribution map.

Step 2. Partitioning
data into discrete
ranges.

Step 3. Sorting
each range and
creating indexes.

2K sort buffers

Step 4. Merging the
sorted data.

2

4

2 430 1 5 97 86

8
65

9
7

3
0

1

CHAPTER 9 Parallel Sorting

Performance & Tuning: Optimizer and Abstract Plans 215

Creating a distribution map
As a first step in executing a parallel sort, Adaptive Server creates a
distribution map. If the sort is performed as part of a merge join, and there
are statistics on the join columns, the histograms are used to build the
distribution map. For other sorts, Adaptive Server selects and sorts a
random sample of data from the input table. This distribution
information—referred to as the distribution map—is used in the second
sort step to divide the input data into equally sized ranges during the next
phase of the parallel sort process.

The distribution map contains a key value for the highest key that is
assigned to each range, except the final range in the table. In Figure 9-1,
the distribution map shows that all values less than or equal to 4 are
assigned to the first range and that all values greater than 4 are assigned to
the second range.

Dynamic range partitioning
After creating the distribution map, Adaptive Server employs two kinds of
worker processes to perform different parts of the sort. These worker
processes are called producer processes and consumer processes:

• Producer processes read data from the input table and use the
distribution map to determine the range to which each key value
belongs. The producers distribute the data by copying it to the sort
buffers belonging to the correct range.

• Each consumer process reads the data from a range of the sort buffers
and sorts it into subindexes, as described in “Range sorting” on page
216.

In Figure 9-1, two producer processes read data from the input table. Each
producer process scans one table partition and distributes the data into
ranges using the distribution map. For example, the first producer process
reads data values 7, 2, 4, 5, and 9. Based on the information in the
distribution map, the process distributes values 2 and 4 to the first
consumer process, and values 7, 5, and 9 to the second consumer process.

Configuring resources for parallel sorting

216 Adaptive Server Enterprise

Range sorting
Each partitioned range has a dedicated consumer process that sorts the
data in that range independently of other ranges. Depending on the size of
the table and the number of buffers available to perform the sort, the
consumers may perform multiple merge runs, writing intermediate results
to disk, and reading and merging those results, until all of the data for the
assigned range is completely sorted.

• For create index commands, each consumer for each partitioned range
of data writes to a separate database device. This improves
performance through increased I/O parallelism, if database devices
reside on separate physical devices and controllers. The consumer
process also builds an index, referred to as a subindex, on the sorted
data.

• For merge joins, each consumer process writes the ordered rows to a
separate set of linked data pages, one for each worker process that will
perform the merge.

• For queries, the consumer process simply orders the data in the range
from the smallest value to the largest.

Merging results
After all consumer processes have finished sorting the data for each
partitioned range:

• For create index commands, the coordinating process merges the
subindexes into one final index.

• For merge joins, the worker processes for the merge step perform the
merge with the other tables in the merge join.

• For other queries, the coordinating process merges the sort results and
returns them to the client.

Configuring resources for parallel sorting
The following sections describe the resources used by Adaptive Server
when sorting data in parallel:

CHAPTER 9 Parallel Sorting

Performance & Tuning: Optimizer and Abstract Plans 217

• Worker processes read the data and perform the sort.

• Sort buffers pass data in cache from producers to consumers, reducing
physical I/O.

• Large I/O pools in the cache used for the sort also help reduce
physical I/O.

Note Reference to Large I/Os are on a 2K logical page size server. If
you have an 8K page size server, the basic unit for the I/O is 8K. If
you have a 16K page size server, the basic unit for the I/O is 16K.

• Multiple physical devices increase I/O parallelism and help determine
the number of worker processes for most sorts.

Worker process requirements for parallel sorts
Adaptive Server requires a minimum number of worker processes to
perform a parallel sort. If additional worker processes are available, the
sort can be performed more quickly. The minimum number required and
the maximum number that can be used are determined by the number of:

• Partitions on the table, for creating clustered indexes

• Devices, for creating nonclustered indexes

• Threads used to create the worktable and the number of devices in
tempdb, for merge joins

• Devices in tempdb, for other queries that require sorts

If the minimum number of worker processes is not available:

• Sorts for clustered indexes on partitioned tables must be performed in
parallel; the sort fails if not enough worker processes are available.

• Sorts for nonclustered indexes and sorts for clustered indexes on
unpartitioned tables can be performed in serial.

• All sorts for queries can be performed in serial.

The availability of worker processes is determined by server-wide and
session-wide limits. At the server level, the configuration parameters
number of worker processes and max parallel degree limit the total size of
the pool of worker processes and the maximum number that can be used
by any create index or select command.

Configuring resources for parallel sorting

218 Adaptive Server Enterprise

The available processes at runtime may be smaller than the configured
value of max parallel degree or the session limit, due to other queries
running in parallel. The decision on the number of worker processes to use
for a sort is made by the sort manager, not by the optimizer. Since the sort
manager makes this decision at runtime, parallel sort decisions are based
on the actual number of worker processes available when the sort begins.

See “Controlling the degree of parallelism” on page 152 for more
information about controlling the server-wide and session-wide limits.

Worker process requirements for creating indexes

Table 9-1 shows the number of producers and consumers required to
create indexes. The target segment for a sort is the segment where the
index is stored when the create index command completes. When you
create an index, you can specify the location with the on segment_name
clause. If you do not specify a segment, the index is stored on the default
segment.

Table 9-1: Number of producers and consumers used for create
index

Consumers are the workhorses of parallel sort, using CPU time to perform
the actual sort and using I/O to read and write intermediate results and to
write the final index to disk. First, the sort manager assigns one worker
process as a consumer for each target device. Next, if there are enough
available worker processes, the sort manager assigns one producer to each
partition in the table. If there are not enough worker processes to assign
one producer to each partition, the entire table is scanned by a single
producer.

Index type Producers Consumers

Nonclustered index Number of partitions, or 1 Number of devices on target segment

Clustered index on unpartitioned
table

1 Number of devices on target segment

Clustered index on partitioned
table

Number of partitions, or 1 Number of partitions

CHAPTER 9 Parallel Sorting

Performance & Tuning: Optimizer and Abstract Plans 219

Clustered indexes on partitioned tables

To create a clustered index on a partitioned table, Adaptive Server requires
at least one consumer process for every partition on the table, plus one
additional worker process to scan the table. If fewer worker processes are
available, then the create clustered index command fails and prints a
message showing the available and required numbers of worker processes.

If enough worker processes are available, the sort manager assigns one
producer process per partition, as well as one consumer process for each
partition. This speeds up the reading of the data.

Clustered indexes on unpartitioned tables

Only one producer process can be used to scan the input data for
unpartitioned tables. The number of consumer processes is determined by
the number of devices on the segment where the index is to be stored. If
there are not enough worker processes available, the sort can be performed
in serial.

Nonclustered indexes

The number of consumer processes is determined by the number of
devices on the target segment. If there are enough worker processes
available and the table is partitioned, one producer process is used for each
partition on the table; otherwise, a single producer process scans the entire
table. If there are not enough worker processes available, the sort can be
performed in serial.

Minimum 1 consumer per partition, plus 1 producer

Maximum 2 worker processes per partition

Can be performed in
serial

No

Minimum 1 consumer per device, plus 1 producer

Maximum 1 consumer per device, plus 1 producer

Can be performed in
serial

Yes

Minimum 1 consumer per device, plus 1 producer

Maximum 1 consumer per device, plus 1 producer per partition

Can be performed in
serial

Yes

Configuring resources for parallel sorting

220 Adaptive Server Enterprise

Using with consumers while creating indexes

RAID devices appear to Adaptive Server as a single database device, so,
although the devices may be capable of supporting the I/O load of parallel
sorts, Adaptive Server assigns only a single consumer for the device, by
default.

The with consumers clause to the create index statement provides a way to
specify the number of consumer processes that create index can use. By
testing the I/O capacity of striped devices, you can determine the number
of simultaneous processes your RAID device can support and use this
number to suggest a degree of parallelism for parallel sorting. As a
baseline, use one consumer for each underlying physical device. This
example specifies eight consumers:

create index order_ix on orders (order_id)
with consumers = 8

You can also use the with consumers clause with the alter table...add
constraint clauses that create the primary key and unique indexes:

alter table orders
add constraint prim_key primary key (order_id) with
consumers = 8

The with consumers clause can be used for creating indexes—you cannot
control the number of consumer processes used in internal sorts for
parallel queries. You cannot use this clause when creating a clustered
index on a partitioned table. When creating a clustered index on a
partitioned table, Adaptive Server must use one consumer process for
every partition in the table to ensure that the final, sorted data is distributed
evenly over partitions.

Adaptive Server ignores the with consumers clause if the specified number
of processes is higher than the number of available worker processes, or if
the specified number of processes exceeds the server or session limits for
parallelism.

Worker process requirements for select query sorts
Queries that require worktable sorts have multistep query plans. The
determination of the number of worker processes for a worktable sort is
made after the scan of the base table completes. During the phase of the
query where data is selected into the worktable, each worker process
selects data into a separate partition of the worktable.

CHAPTER 9 Parallel Sorting

Performance & Tuning: Optimizer and Abstract Plans 221

Once the worktable is populated, additional worker processes are allocated
to perform the sort step. showplan does not report this value; the sort
manager reports only whether the sort is performed in serial or parallel.
The worker processes used in the previous step do not participate in the
sort, but remain allocated to the parallel task until the task completes.

Worker processes for merge-join sorts

For merge joins, one consumer process is assigned for each device in
tempdb; if there is only one device in tempdb, two consumer processes are
used. The number of producers depends on the number of partitions in the
worktable, and the setting for max parallel degree:

• If the worktable is not partitioned, one producer process is used.

• If the number of consumers plus the number of partitions in the
worktable is less than or equal to max parallel degree, one producer
process is allocated for each worktable partition.

• If the number of consumer processes plus the number of partitions in
the worktable is greater than max parallel degree, one producer
process is used.

Other worktable sorts

For all other worktable sorts, the worktable is unpartitioned when the step
that created it completes. Worker processes are assigned in the following
way:

• If there is only one device in tempdb, the sort is performed using two
consumers and one producer; otherwise, one consumer process is
assigned for each device in tempdb, and a single producer process
scans the worktable.

• If there are more devices in tempdb than the available worker
processes when the sort starts, the sort is performed in serial.

Caches, sort buffers, and parallel sorts
Optimal cache configuration and an optimal setting for the number of sort
buffers configuration parameter can greatly speed the performance of
parallel sorts. The tuning options to consider when you work with parallel
sorting are:

Configuring resources for parallel sorting

222 Adaptive Server Enterprise

• Cache bindings

• Sort buffers

• Large I/O

In most cases, the configuration you choose for normal runtime operation
should be aimed at the needs of queries that perform worktable sorts. You
need to understand how many simultaneous sorts are needed and the
approximate size of the worktables, and then configure the cache used by
tempdb to optimize the sort.

If you drop and create indexes during periods of low system usage, you
can reconfigure caches and pools and change cache bindings to optimize
the sorts and reduce the time required. If you need to perform index
maintenance while users are active, you need to consider the impact that
re configuration could have on user response time. Configuring a large
percentage of the cache for exclusive use by the sort or temporarily
unbinding objects from caches can seriously impact performance for other
tasks.

Cache bindings

Sorts for create index take place in the cache to which the table is bound.
If the table is not bound to a cache, but the database is, then cache is used.
If there is no explicit cache binding, the default data cache is used.
Worktable sorts use the cache to which tempdb is bound, or the default data
cache.

To configure the number of sort buffers and large I/O for a particular sort,
always check the cache bindings. You can see the binding for a table with
sp_help. To see all of the cache bindings on a server, use sp_helpcache.
Once you have determined the cache binding for a table, use
sp_cacheconfig check the space in the 2K and 16K pools in the cache.

Number of sort buffers can affect sort performance

Producers perform disk I/O to read the input table, and consumers perform
disk I/O to read and write intermediate sort results to and from disk.
During the sort, producers pass data to consumers using the sort buffers.
This avoids disk I/O by copying data rows completely in memory. The
reserved buffers are not available to any other tasks for the duration of the
sort.

CHAPTER 9 Parallel Sorting

Performance & Tuning: Optimizer and Abstract Plans 223

The number of sort buffers configuration parameter determines the
maximum space that can be used to perform a serial sort. Each sort
instance can use up to the number of sort buffers value for each sort. If
active sorts have reserved all of the buffers in a cache, and another sort
needs sort buffers, that sort waits until buffers are available in the cache.

Sort buffer configuration guidelines

Since number of sort buffers controls the amount of data that can be read
and sorted in one batch, configuring more sort buffers increases the batch
size, reduces the number of merge runs needed, and makes the sort run
faster. Changing number of sort buffers is dynamic, so you do not have to
restart the server.

Some general guidelines for configuring sort buffers are as follows:

• The sort manager chooses serial sorts when the number of pages in a
table is less than 8 times the value of number of sort buffers. In most
cases, the default value (500) works well for select queries and small
indexes. At this setting, the sort manager chooses serial sorting for all
create index and worktable sorts of 4000 pages or less, and parallel
sorts for larger result sets, saving worker processes for query
processing and larger sorts. It allows multiple sort processes to use up
to 500 sort buffers simultaneously.

A temporary worktable would need to be very large before you would
need to set the value higher to reduce the number of merge runs for a
sort. See “Sizing the tempdb” on page 389 in the Performance and
Tuning: Basics for more information.

• If you are creating indexes on large tables while other users are active,
configure the number of sort buffers so that you do not disrupt other
activity that needs to use the data cache.

• If you are re-creating indexes during scheduled maintenance periods
when few users are active on the system, you may want to configure
a high value for sort buffers. To speed your index maintenance, you
may want to benchmark performance of high sort buffer values, large
I/O, and cache bindings to optimize your index activity.

• The reduction in merge runs is a logarithmic function. Increasing the
value of number of sort buffers from 500 to 600 has very little effect on
the number of merge runs. Increasing the size to a much larger value,
such as 5000, can greatly speed the sort by reducing the number of
merge runs and the amount of I/O needed.

Configuring resources for parallel sorting

224 Adaptive Server Enterprise

• If number of sort buffers is set to less than the square root of the
worktable size, sort performance is degraded. Since worktables
include only columns specified in the select list plus columns needed
for later joins, worktable size for merge joins is usually considerably
smaller than the original table size.

• Configure enough sort buffers

The sort buffers decides how many pages of data you can sort in each
run. That is the basis for the logrithmic function on calculating the
number of runs needed to finish the sort.

For example, if you have 500 buffers, then the number of runs is
calculated with "log (number of pages in table) with 500 as the log
base".

Also note that the number of sort buffers is shared by threads in the
parallel sort, if you do not have enough sort buffers, the parallel sort
may not work as fast as it should.

When enough sort buffers are configured, fewer intermediate steps
and merge runs need to take place during a sort, and physical I/O is
required. When number of sort buffers is equal to or greater than the
number of pages in the table, the sort can be performed completely in
cache, with no physical I/O for the intermediate steps: the only I/O
required is the I/O to read and write the data and index pages.

• Configure large buffers pools in a named cache, bound the cache to
the table, so you can have large I/O.

Using less than the configured number of sort buffers

There are two types of sorts that may use fewer than the configured
number of sort buffers:

• Creating a clustered index on a partition table always requires a
parallel sort. If the table size is smaller than the number of configured
sort buffers, then the sort reserves the number of pages in the table for
the sort.

• Small serial sorts reserve just the number of sort buffers required to
hold the table in cache.

CHAPTER 9 Parallel Sorting

Performance & Tuning: Optimizer and Abstract Plans 225

Configuring the number of sort buffers parameter

When creating indexes in parallel, the number of sort buffers must be equal
to or less than 90 percent of the number of buffers in the pool area, before
the wash marker, as shown in Figure 9-2.

Figure 9-2: Area available for sort buffers

The limit of 90 percent of the pool size is not enforced when you configure
the number of sort buffers parameter, but it is enforced when you run the
create index command, since the limit is enforced on the pool for the table
being sorted. The maximum value that can be set for number of sort buffers
is 32,767; this value is enforced by sp_configure.

Computing the allowed sort buffer value for a pool

sp_cacheconfig returns the size of the pool in megabytes and the wash size
in kilobytes. For example, this output shows the size of the pools in the
default data cache:

Cache: default data cache, Status: Active, Type: Default
 Config Size: 0.00 Mb, Run Size: 38.23 Mb
 Config Replacement: strict LRU, Run Replacement: strict LRU
 Config Partition: 2, Run Partition: 2
 IO Size Wash Size Config Size Run Size APF Percent
 -------- --------- ------------ ------------ -----------
 2 Kb 4544 Kb 0.00 Mb 22.23 Mb 10
 16 Kb 3200 Kb 16.00 Mb 16.00 Mb 10

This procedure takes the size of the 2K pool and its wash size as
parameters, converts both values to pages and computes the maximum
number of pages that can be used for sort buffers:

create proc bufs @poolsize numeric(6,2), @wash int

MRU LRU

Wash marker

Up to 90% of the space before the wash
marker can be used for sort buffers

Using a 2K pool

Configuring resources for parallel sorting

226 Adaptive Server Enterprise

as
select "90% of non-wash 2k pool" =
 ((@poolsize * 512) - (@wash/2)) * .9

The following example executes bufs with values of “22.23 Mb” for the
pool size and “4544 Kb” for the wash size:

bufs 22.23, 4544

The bufs procedure returns the following results:

90% of non-wash 2k pool

 8198.784

This command sets the number of sort buffers to 8198 pages:

sp_configure "number of sort buffers", 8198

If the table on which you want to create the index is bound to a user-
defined cache, configure the appropriate number of sort buffers for the
specific cache. As an alternative, you can unbind the table from the cache,
create the index, and rebind the table:

sp_unbindcache pubtune, titles
create clustered index title_ix
 on titles (title_id)
sp_bindcache pubtune_cache, pubtune, titles

 Warning! The buffers used by a sort are reserved entirely for the use of
the sort until the sort completes. They cannot be used by another other task
on the server. Setting the number of sort buffers to 90 percent of the pool
size can seriously affect query processing if you are creating indexes while
other transactions are active.

Procedure for estimating merge levels and I/O

The following procedure estimates the number of merge runs and the
amount of physical I/O required to create an index:

create proc merge_runs @pages int, @bufs int
as
declare @runs int, @merges int, @maxmerge int

select @runs = ceiling (@pages / @bufs)

/* if all pages fit into sort buffers, no merge runs needed */

CHAPTER 9 Parallel Sorting

Performance & Tuning: Optimizer and Abstract Plans 227

if @runs <=1
 select @merges = 0
else
begin
 if @runs > @bufs select @maxmerge = @bufs
 else select @maxmerge = @runs

 if @maxmerge < 2 select @maxmerge = 2

 select @merges = ceiling(log10(@runs) / log10(@maxmerge))
end
select @merges "Merge Levels",
 2 * @pages * @merges + @pages "Total IO"

The parameters for the procedure are:

• pages – the number of pages in the table, or the number of leaf-level
pages in a nonclustered index.

• bufs – the number of sort buffers to configure.

This example uses the default number of sort buffers for a table with
2,000,000 pages:

merge_runs 2000000, 500, 20

The merge_runs procedure estimates that 2 merge runs and 10,000,000
I/Os would be required to create the index:

 Merge Levels Total IO
 ------------ -----------
 2 10000000

Increasing the number of sort buffers to 1500 reduces the number of merge
runs and the I/O required:

merge_runs 2000000, 1500
 Merge Levels Total IO
 ------------ -----------
 1 6000000

The total I/O predicted by this procedure may be different than the I/O
usage on your system, depending on the size and configuration of the
cache and pools used by the sort.

Configuring caches for large I/O during parallel sorting

Sorts can use large I/O:

Configuring resources for parallel sorting

228 Adaptive Server Enterprise

• During the sampling phase

• For the producers scanning the input tables

• For the consumers performing disk I/O on intermediate and final sort
results

For these steps, sorts can use the largest pool size available in the cache
used by the table being sorted; they can use the 2K pool if no large I/O
buffers are available.

Balancing sort buffers and large I/O configuration

Configuring a pool for 16K buffers in the cache used by the sort greatly
speeds I/O for the sort, substantially reducing the number of physical I/Os
for a sort. Part of this I/O savings results from using large I/O to scan the
input table.

Additional I/O, both reads and writes, takes place during merge phases of
the sort. The amount of I/O during this step depends on the number of
merge phases required. During the sort and merge step, buffers are either
read once and not needed again, or they are filled with intermediate sort
output results, written to disk, and available for reuse. The cache-hit ratio
during sorts will always be low, so configuring a large 16K cache wastes
space that can better be used for sort buffers, to reduce merge runs.

For example, creating a clustered index on a 250MB table using a 32MB
cache performed optimally with only 4MB configured in the 16K pool and
10,000 sort buffers. Larger pool sizes did not affect the cache hit ratio or
number of I/Os. Changing the wash size for the 16K pool to the maximum
allowed helped performance slightly, since the small pool size tended to
allow buffers to reach the LRU end of the cache before the writes were
completed. The following formula computes the maximum allowable
wash size for a 16K pool:

select floor((size_in_MB * 1024 /16) * .8) * 16

Disk requirements
Disk requirements for parallel sorting are as follows:

• Space is needed to store the completed index.

CHAPTER 9 Parallel Sorting

Performance & Tuning: Optimizer and Abstract Plans 229

• Having multiple devices in the target segment increases the number
of consumers for worktable sorts and for creating nonclustered
indexes and clustered indexes on non partitioned tables.

Space requirements for creating indexes

Creating indexes requires space to store the sorted index. For clustered
indexes, this requires copying the data rows to new locations in the order
of the index key. The newly ordered data rows and the upper levels of the
index must be written before the base table can be removed. Unless you
are using the with sorted_data clause to suppress the sort, creating a
clustered index requires approximately 120 percent of the space occupied
by the table.

Creating a nonclustered index requires space to store the new index. To
help determine the size of objects and the space that is available, use the
following system procedures:

• sp_spaceused – to see the size of the table. See “Using sp_spaceused
to display object size” on page 250 in Performance and Tuning:
Basics.

• sp_estspace – to predict the size of the index. See “Using sp_estspace
to estimate object size” on page 252 in Performance and Tuning:
Basics.

• sp_helpsegment – to see space left on a database segment. See
“Checking data distribution on devices with sp_helpsegment” on
page 114 in Performance and Tuning: Basics.

Space requirements for worktable sorts

Queries that sort worktables (merge joins and order by, distinct, union, and
reformatting) first copy the needed columns for the query into the
worktable and then perform the sort. These worktables are stored on the
system segment in tempdb, so this is the target segment for queries that
require sorts. To see the space available and the number of devices, use:

tempdb..sp_helpsegment system

The process of inserting the rows into the worktable and the parallel sort
do not require multiple devices to operate in parallel. However,
performance improves when the system segment in tempdb spans multiple
database devices.

Recovery considerations

230 Adaptive Server Enterprise

Number of devices in the target segment

As described in “Worker process requirements for parallel sorts” on page
217, the number of devices in the target segment determines the number
of consumers for sort operations, except for creating a clustered index on
a partitioned table.

Performance considerations for query processing, such as the
improvements in I/O when indexes are on separate devices from the data
are more important in determining your device allocations and object
placement than sort requirements.

If your worktable sorts are large enough to require parallel sorts, multiple
devices in the system segment of tempdb will speed these sorts, as well as
increase I/O parallelism while rows are being inserted into the worktable.

Recovery considerations
Creating indexes is a minimally-logged database operation. Serial sorts are
recovered from the transaction log by completely redoing the sort.
However, parallel create index commands are not recoverable from the
transaction log—after performing a parallel sort, you must dump the
database before you can use the dump transaction command on the
database.

Adaptive Server does not automatically perform parallel sorting for create
index commands unless the select into/bulk copy/pllsort database option is
set on. Creating a clustered index on a partitioned table always requires a
parallel sort; other sort operations can be performed in serial if the select
into/bulk copy/pllsort option is not enabled.

Tools for observing and tuning sort behavior
Adaptive Server provides several tools for working with sort behavior:

• set sort_resources on shows how a create index command would be
performed, without creating the index. See “Using set sort_resources
on” on page 231.

CHAPTER 9 Parallel Sorting

Performance & Tuning: Optimizer and Abstract Plans 231

• Several system procedures can help estimate the size, space, and time
requirements:

• sp_configure – Displays configuration parameters. See
“Configuration parameters for controlling parallelism” on page
153.

• sp_helpartition – Displays information about partitioned tables.
See “Getting information about partitions” on page 111 in
Performance and Tuning: Basics.

• sp_helpsegment – Displays information about segments, devices,
and space usage. See “Checking data distribution on devices
with sp_helpsegment” on page 114 in Performance and Tuning:
Basics.

• sp_sysmon – Reports on many system resources used for parallel
sorts, including CPU utilization, physical I/O, and caching. See
“Using sp_sysmon to tune index creation” on page 236.

Using set sort_resources on
The set sort_resources on command can help you understand how the sort
manager performs parallel sorting for create index statements. You can use
it before creating an index to determine whether you want to increase
configuration parameters or specify additional consumers for a sort.

After you use set sort_resources on, Adaptive Server does not actually
create indexes, but analyzes resources, performs the sampling step, and
prints detailed information about how Adaptive Server would use parallel
sorting to execute the create index command. Table 9-2 describes the
messages that can be printed for sort operations.

Table 9-2: Basic sort resource messages

Message Explanation See
The Create Index is done
using sort_type

sort_type is either “Parallel Sort” or
“Serial Sort.”

“Requirements and resources
overview” on page 212

Sort buffer size: N N is the configured value for the number
of sort buffers configuration parameter.

“Sort buffer configuration
guidelines” on page 223

Parallel degree: N N is the maximum number of worker
processes that the parallel sort can use,
as set by configuration parameters.

“Caches, sort buffers, and
parallel sorts” on page 221

Number of output
devices: N

N is the total number of database
devices on the target segment.

“Disk requirements” on page
228

Tools for observing and tuning sort behavior

232 Adaptive Server Enterprise

Examples

The following examples show the output of the set sort_resources
command.

Nonclustered index on a nonpartitioned table

This example shows how Adaptive Server performs parallel sorting for a
create index command on an unpartitioned table. Pertinent details for the
example are:

• The default segment spans 4 database devices.

• max parallel degree is set to 20 worker processes.

• number of sort buffers is set to the default, 500 buffers.

The following commands set sort_resources on and issue a create index
command on the orders table:

set sort_resources on
create index order_ix on orders (order_id)

Adaptive Server prints the following output:

The Create Index is done using Parallel Sort
Sort buffer size: 500
Parallel degree: 20
Number of output devices: 4

Number of producer
threads: N

N is the optimal number of producer
processes determined by the sort
manager.

“Worker process requirements
for parallel sorts” on page 217

Number of consumer
threads: N

N is the optimal number of consumer
processes determined by the sort
manager.

“Worker process requirements
for parallel sorts” on page 217

The distribution map
contains M element(s)
for N partitions.

M is the number of elements that define
range boundaries in the distribution
map. N is the total number of partitions
(ranges) in the distribution map.

“Creating a distribution map”
on page 215

Partition Element:N
value

N is the number of the distribution map
element. value is the distribution map
element that defines the boundary of
each partition.

“Creating a distribution map”
on page 215

Number of sampled
records: N

N is the number of sampled records used
to create the distribution map.

“Creating a distribution map”
on page 215

Message Explanation See

CHAPTER 9 Parallel Sorting

Performance & Tuning: Optimizer and Abstract Plans 233

Number of producer threads: 1
Number of consumer threads: 4
The distribution map contains 3 element(s) for 4
partitions.
Partition Element: 1

458052

Partition Element: 2

909063

Partition Element: 3

1355747

Number of sampled records: 2418

In this example, the 4 devices on the default segment determine the number
of consumer processes for the sort. Because the input table is not
partitioned, the sort manager allocates 1 producer process, for a total
degree of parallelism of 5.

The distribution map uses 3 dividing values for the 4 ranges. The lowest
input values up to and including the value 458052 belong to the first range.
Values greater than 458052 and less than or equal to 909063 belong to the
second range. Values greater than 909063 and less than or equal to
1355747 belong to the third range. Values greater than 1355747 belong to
the fourth range.

Nonclustered index on a partitioned table

This example uses the same tables and devices as the first example.
However, in this example, the input table is partitioned before creating the
nonclustered index. The commands are:

set sort_resources on
alter table orders partition 9
create index order_ix on orders (order_id)

In this case, the create index command under the sort_resources option
prints the output:

The Create Index is done using Parallel Sort
Sort buffer size: 500
Parallel degree: 20
Number of output devices: 4

Tools for observing and tuning sort behavior

234 Adaptive Server Enterprise

Number of producer threads: 9
Number of consumer threads: 4
The distribution map contains 3 element(s) for 4
partitions.
Partition Element: 1

458464
Partition Element: 2

892035
Partition Element: 3

1349187
Number of sampled records: 2448

Because the input table is now partitioned, the sort manager allocates 9
producer threads, for a total of 13 worker processes. The number of
elements in the distribution map is the same, although the values differ
slightly from those in the previous sort examples.

Clustered index on partitioned table executed in parallel

This example creates a clustered index on orders, specifying the segment
name, order_seg.

set sort_resources on
alter table orders partition 9
create clustered index order_ix
 on orders (order_id) on order_seg

Since the number of available worker processes is 20, this command can
use 9 producers and 9 consumers, as shown in the output:

The Create Index is done using Parallel Sort
Sort buffer size: 500
Parallel degree: 20
Number of output devices: 9
Number of producer threads: 9
Number of consumer threads: 9
The distribution map contains 8 element(s) for 9
partitions.
Partition Element: 1

199141
Partition Element: 2

397543

CHAPTER 9 Parallel Sorting

Performance & Tuning: Optimizer and Abstract Plans 235

Partition Element: 3

598758
Partition Element: 4

800484
Partition Element: 5

1010982
Partition Element: 6

1202471
Partition Element: 7

1397664
Partition Element: 8

1594563
Number of sampled records: 8055

This distribution map contains 8 elements for the 9 partitions on the table
being sorted. The number of worker processes used is 18.

Note Create a clustered index first. Do not create nonclustered indexes
and then a clustered index. When you create a clustered index all previous
nonclustered index are rebuilt

Sort failure

For example, if only 10 worker processes had been available for this
command, it could have succeeded using a single producer process to read
the entire table. If fewer than 10 worker processes had been available, a
warning message would be printed instead of the sort_resources output:

Msg 1538, Level 17, State 1:
Server ’snipe’, Line 1:
Parallel degree 8 is less than required parallel
degree 10 to create clustered index on partition
table. Change the parallel degree to required
parallel degree and retry.

Using sp_sysmon to tune index creation

236 Adaptive Server Enterprise

Using sp_sysmon to tune index creation
You can use the “begin_sample” and “end_sample” syntax for sp_sysmon
to provide performance results for individual create index commands:

sp_sysmon begin_sample
create index ...
sp_sysmon end_sample

Sections of the report to check include:

• The “Sample Interval,” for the total time taken to create the index

• Cache statistics for the cache used by the table

• Check the value for “Buffer Grabs” for the 2K and 16K pools to
determine the effectiveness of large I/O.

• Check the value “Dirty Buffer Grabs,” If this value is nonzero, set
the wash size in the pool higher and/or increase the pool size,
using sp_poolconfig.

• Disk I/O for the disks used by the table and indexes: check the value
for “Total Requested I/Os”

Using parellel sort to speed the create index
To utilize the parallel sort to speed up the create index, set the target
segment on multiple devices. By using multiple devices, the parallel sort
is able to fully use the parellel I/O and Adaptive Server determines the
number of consumers for the sort and create index operations based on the
number of devices.

You do not necessarily have to slice the table to do the create index with
parallel sorting, instead use the create index with the consumer clause.
However, if the target segment is not on multiple devices, the Adaptive
Server may ignore the number of consumers you specified in the consumer
clause.

Performance & Tuning: Optimizer and Abstract Plans 237

C H A P T E R 1 0 Tuning Asynchronous Prefetch

This chapter explains how asynchronous prefetch improves I/O
performance for many types of queries by reading data and index pages
into cache before they are needed by the query.

How asynchronous prefetch improves performance
Asynchronous prefetch improves performance by anticipating the pages
required for certain well-defined classes of database activities whose
access patterns are predictable. The I/O requests for these pages are issued
before the query needs them so that most pages are in cache by the time
query processing needs to access the page. Asynchronous prefetch can
improve performance for:

• Sequential scans, such as table scans, clustered index scans, and
covered nonclustered index scans

• Access via nonclustered indexes

• Some dbcc checks and update statistics

• Recovery

Asynchronous prefetch can improve the performance of queries that
access large numbers of pages, such as decision support applications, as
long as the I/O subsystems on the machine are not saturated.

Topic Page
How asynchronous prefetch improves performance 237

When prefetch is automatically disabled 243

Tuning Goals for asynchronous prefetch 247

Other Adaptive Server performance features 248

Special settings for asynchronous prefetch limits 251

Maintenance activities for high prefetch performance 252

Performance monitoring and asynchronous prefetch 253

How asynchronous prefetch improves performance

238 Adaptive Server Enterprise

Asynchronous prefetch cannot help (or may help only slightly) when the
I/O subsystem is already saturated or when Adaptive Server is CPU-
bound. It may be used in some OLTP applications, but to a much lesser
degree, since OLTP queries generally perform fewer I/O operations.

When a query in Adaptive Server needs to perform a table scan, it:

• Examines the rows on a page and the values in the rows.

• Checks the cache for the next page to be read from a table. If that page
is in cache, the task continues processing. If the page is not in cache,
the task issues an I/O request and sleeps until the I/O completes.

• When the I/O completes, the task moves from the sleep queue to the
run queue. When the task is scheduled on an engine, Adaptive Server
examines rows on the newly fetched page.

This cycle of executing and stalling for disk reads continues until the table
scan completes. In a similar way, queries that use a nonclustered index
process a data page, issue the I/O for the next page referenced by the index,
and sleep until the I/O completes, if the page is not in cache.

This pattern of executing and then waiting for I/O slows performance for
queries that issue physical I/Os for large number of pages. In addition to
the waiting time for the physical I/Os to complete, the task switches on and
off the engine repeatedly. This task switching adds overhead to processing.

Improving query performance by prefetching pages
Asynchronous prefetch issues I/O requests for pages before the query
needs them so that most pages are in cache by the time query processing
needs to access the page. If required pages are already in cache, the query
does not yield the engine to wait for the physical read. (It may still yield
for other reasons, but it yields less frequently.)

Based on the type of query being executed, asynchronous prefetch builds
a look-ahead set of pages that it predicts will be needed very soon.
Adaptive Server defines different look-ahead sets for each processing type
where asynchronous prefetch is used.

CHAPTER 10 Tuning Asynchronous Prefetch

Performance & Tuning: Optimizer and Abstract Plans 239

In some cases, look-ahead sets are extremely precise; in others, some
assumptions and speculation may lead to pages being fetched that are
never read. When only a small percentage of unneeded pages are read into
cache, the performance gains of asynchronous prefetch far outweigh the
penalty for the wasted reads. If the number of unused pages becomes large,
Adaptive Server detects this condition and either reduces the size of the
look-ahead set or temporarily disables prefetching.

Prefetching control mechanisms in a multiuser environment
When many simultaneous queries are prefetching large numbers of pages
into a buffer pool, there is a risk that the buffers fetched for one query
could be flushed from the pool before they are used.

Adaptive Server tracks the buffers brought into each pool by asynchronous
prefetch and the number that are used. It maintains a per-pool count of
prefetched but unused buffers. By default, Adaptive Server sets an
asynchronous prefetch limit of 10 percent of each pool. In addition, the
limit on the number of prefetched but unused buffers is configurable on a
per-pool basis.

The pool limits and usage statistics act like a governor on asynchronous
prefetch to keep the cache-hit ratio high and reduce unneeded I/O. Overall,
the effect is to ensure that most queries experience a high cache-hit ratio
and few stalls due to disk I/O sleeps.

The following sections describe how the look-ahead set is constructed for
the activities and query types that use asynchronous prefetch. In some
asynchronous prefetch optimizations, allocation pages are used to build
the look-ahead set.

For information on how allocation pages record information about object
storage, see “Allocation pages” on page 158.

How asynchronous prefetch improves performance

240 Adaptive Server Enterprise

Look-ahead set during recovery
During recovery, Adaptive Server reads each log page that includes
records for a transaction and then reads all the data and index pages
referenced by that transaction, to verify timestamps and to roll transactions
back or forward. Then, it performs the same work for the next completed
transaction, until all transactions for a database have been processed. Two
separate asynchronous prefetch activities speed recovery: asynchronous
prefetch on the log pages themselves and asynchronous prefetch on the
referenced data and index pages.

Prefetching log pages

The transaction log is stored sequentially on disk, filling extents in each
allocation unit. Each time the recovery process reads a log page from a
new allocation unit, it prefetches all the pages on that allocation unit that
are in use by the log.

In databases that do not have a separate log segment, log and data extents
may be mixed on the same allocation unit. Asynchronous prefetch still
fetches all the log pages on the allocation unit, but the look-ahead sets may
be smaller.

Prefetching data and index pages

For each transaction, Adaptive Server scans the log, building the look-
ahead set from each referenced data and index page. While one
transaction’s log records are being processed, asynchronous prefetch
issues requests for the data and index pages referenced by subsequent
transactions in the log, reading the pages for transactions ahead of the
current transaction.

Note Recovery uses only the pool in the default data cache. See “Setting
limits for recovery” on page 251 for more information.

Look-ahead set during sequential scans
Sequential scans include table scans, clustered index scans, and covered
nonclustered index scans.

CHAPTER 10 Tuning Asynchronous Prefetch

Performance & Tuning: Optimizer and Abstract Plans 241

During table scans and clustered index scans, asynchronous prefetch uses
allocation page information about the pages used by the object to construct
the look-ahead set. Each time a page is fetched from a new allocation unit,
the look-ahead set is built from all the pages on that allocation unit that are
used by the object.

The number of times a sequential scan hops between allocation units is
kept to measure fragmentation of the page chain. This value is used to
adapt the size of the look-ahead set so that large numbers of pages are
prefetched when fragmentation is low, and smaller numbers of pages are
fetched when fragmentation is high. For more information, see “Page
chain fragmentation” on page 245.

Look-ahead set during nonclustered index access
When using a nonclustered index to access rows, asynchronous prefetch
finds the page numbers for all qualified index values on a nonclustered
index leaf page. It builds the look-ahead set from the unique list of all the
pages that are needed.

Asynchronous prefetch is used only if two or more rows qualify.

If a nonclustered index access requires several leaf-level pages,
asynchronous prefetch requests are also issued on the leaf pages.

Look-ahead set during dbcc checks
Asynchronous prefetch is used during the following dbcc checks:

• dbcc checkalloc, which checks allocation for all tables and indexes in
a database, and the corresponding object-level commands, dbcc
tablealloc and dbcc indexalloc

• dbcc checkdb, which checks all tables and index links in a database,
and dbcc checktable, which checks individual tables and their indexes

How asynchronous prefetch improves performance

242 Adaptive Server Enterprise

Allocation checking

The dbcc commands checkalloc, tablealloc and indexalloc, which check
page allocations validate information on the allocation page. The look-
ahead set for the dbcc operations that check allocation is similar to the
look-ahead set for other sequential scans. When the scan enters a different
allocation unit for the object, the look-ahead set is built from all the pages
on the allocation unit that are used by the object.

checkdb and checktable

The dbcc checkdb and dbcc checktable commands check the page chains
for a table, building the look-ahead set in the same way as other sequential
scans.

If the table being checked has nonclustered indexes, they are scanned
recursively, starting at the root page and following all pointers to the data
pages. When checking the pointers from the leaf pages to the data pages,
the dbcc commands use asynchronous prefetch in a way that is similar to
nonclustered index scans. When a leaf-level index page is accessed, the
look-ahead set is built from the page IDs of all the pages referenced on the
leaf-level index page.

Look-ahead set minimum and maximum sizes
The size of a look-ahead set for a query at a given point in time is
determined by several factors:

• The type of query, such as a sequential scan or a nonclustered index
scan

• The size of the pools used by the objects that are referenced by the
query and the prefetch limit set on each pool

• The fragmentation of tables or indexes, in the case of operations that
perform scans

• The recent success rate of asynchronous prefetch requests and
overload conditions on I/O queues and server I/O limits

Table 10-1 summarizes the minimum and maximum sizes for different
type of asynchronous prefetch usage.

CHAPTER 10 Tuning Asynchronous Prefetch

Performance & Tuning: Optimizer and Abstract Plans 243

Table 10-1: Look-ahead set sizes

When prefetch is automatically disabled
Asynchronous prefetch attempts to fetch needed pages into buffer pools
without flooding the pools or the I/O subsystem and without reading
unneeded pages. If Adaptive Server detects that prefetched pages are
being read into cache but not used, it temporarily limits or discontinues
asynchronous prefetch.

Access type Action Look-ahead set sizes

Table scan
Clustered index scan
Covered leaf level scan

Reading a page from a
new allocation unit

Minimum is 8 pages needed by the query

Maximum is the smaller of:

• The number of pages on an allocation unit that
belong to an object.

• The pool prefetch limits

Nonclustered index scan Locating qualified
rows on the leaf page
and preparing to
access data pages

Minimum is 2 qualified rows

Maximum is the smaller of:

• The number of unique page numbers on
qualified rows on the leaf index page

• The pool’s prefetch limit

Recovery Recovering a
transaction

Maximum is the smaller of:

• All of the data and index pages touched by a
transaction undergoing recovery

• The prefetch limit of the pool in the default
data cache

Scanning the
transaction log

Maximum is all pages on an allocation unit
belonging to the log

dbcc tablealloc, indexalloc, and
checkalloc

Scanning the page
chain

Same as table scan

dbcc checktable and checkdb Scanning the page
chain

Checking
nonclustered index
links to data pages

Same as table scan

All of the data pages referenced on a leaf level
page.

When prefetch is automatically disabled

244 Adaptive Server Enterprise

Flooding pools
For each pool in the data caches, a configurable percentage of buffers can
be read in by asynchronous prefetch and held until their first use. For
example, if a 2K pool has 4000 buffers, and the limit for the pool is 10
percent, then, at most, 400 buffers can be read in by asynchronous prefetch
and remain unused in the pool. If the number of nonaccessed prefetched
buffers in the pool reaches 400, Adaptive Server temporarily discontinues
asynchronous prefetch for that pool.

As the pages in the pool are accessed by queries, the count of unused
buffers in the pool drops, and asynchronous prefetch resumes operation. If
the number of available buffers is smaller than the number of buffers in the
look-ahead set, only that many asynchronous prefetches are issued. For
example, if 350 unused buffers are in a pool that allows 400, and a query’s
look-ahead set is 100 pages, only the first 50 asynchronous prefetches are
issued.

This keeps multiple asynchronous prefetch requests from flooding the
pool with requests that flush pages out of cache before they can be read.
The number of asynchronous I/Os that cannot be issued due to the per-pool
limits is reported by sp_sysmon.

I/O system overloads
Adaptive Server and the operating system place limits on the number of
outstanding I/Os for the server as a whole and for each engine. The
configuration parameters max async i/os per server and max async i/os per
engine control these limits for Adaptive Server. See your operating system
documentation for more information on configuring them for your
hardware.

The configuration parameter disk i/o structures controls the number of disk
control blocks that Adaptive Server reserves. Each physical I/O (each
buffer read or written) requires one control block while it is in the I/O
queue.

See the System Administration Guide.

CHAPTER 10 Tuning Asynchronous Prefetch

Performance & Tuning: Optimizer and Abstract Plans 245

If Adaptive Server tries to issue asynchronous prefetch requests that would
exceed max async i/os per server, max async i/os per engine, or disk i/o
structures, it issues enough requests to reach the limit and discards the
remaining requests. For example, if only 50 disk I/O structures are
available, and the server attempts to prefetch 80 pages, 50 requests are
issued, and the other 30 are discarded.

sp_sysmon reports the number of times these limits are exceeded by
asynchronous prefetch requests. See “Asynchronous prefetch activity
report” on page 86 in the book Performance and Tuning: Monitoring and
Analyzing for Performance.

Unnecessary reads
Asynchronous prefetch tries to avoid unnecessary physical reads. During
recovery and during nonclustered index scans, look-ahead sets are exact,
fetching only the pages referenced by page number in the transaction log
or on index pages.

Look-ahead sets for table scans, clustered index scans, and dbcc checks are
more speculative and may lead to unnecessary reads. During sequential
scans, unnecessary I/O can take place due to:

• Page chain fragmentation on allpages-locked tables

• Heavy cache utilization by multiple users

Page chain fragmentation

Adaptive Server’s page allocation mechanism strives to keep pages that
belong to the same object close to each other in physical storage by
allocating new pages on an extent already allocated to the object and by
allocating new extents on allocation units already used by the object.

However, as pages are allocated and deallocated, page chains on data-
only-locked tables can develop kinks. Figure 10-1 shows an example of a
kinked page chain between extents in two allocation units.

When prefetch is automatically disabled

246 Adaptive Server Enterprise

Figure 10-1: A kink in a page chain crossing allocation units

In Figure 10-1, when a scan first needs to access a page from allocation
unit 0, it checks the allocation page and issues asynchronous I/Os for all
the pages used by the object it is scanning, up to the limit set on the pool.
As the pages become available in cache, the query processes them in order
by following the page chain. When the scan reaches page 10, the next page
in the page chain, page 273, belongs to allocation unit 256.

When page 273 is needed, allocation page 256 is checked, and
asynchronous prefetch requests are issued for all the pages in that
allocation unit that belong to the object.

When the page chain points back to a page in allocation unit 0, there are
two possibilities:

• The prefetched pages from allocation unit 0 are still in cache, and the
query continues processing with no unneeded physical I/Os.

283

511

279

..

274

256 257 258 259 260 261 262 263

264 265 266 267 268 269 270 271

272 273 275 276 277 278

280 281 282 284 285 286 287

.
504 505 506 507 508 509 510

27 2824 25 26 29 30 31

750 1 2 3 4 6

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

248 249 250 251 252 253 254 255 OAM page

Pages used by object

Other pages

Allocation page

...

CHAPTER 10 Tuning Asynchronous Prefetch

Performance & Tuning: Optimizer and Abstract Plans 247

• The prefetch pages from allocation unit 0 have been flushed from the
cache by the reads from allocation unit 256 and other I/Os taking
place by other queries that use the pool. The query must reissue the
prefetch requests. This condition is detected in two ways:

• Adaptive Server’s count of the hops between allocation pages
now equals two. It uses the ratio between the count of hops and
the prefetched pages to reduce the size of the look-ahead set, so
fewer I/Os are issued.

• The count of prefetched but unused pages in the pool is likely to
be high, so asynchronous prefetch may be temporarily
discontinued or reduced, based on the pool’s limit.

Tuning Goals for asynchronous prefetch
Choosing optimal pool sizes and prefetch percentages for buffer pools can
be key to achieving improved performance with asynchronous prefetch.
When multiple applications are running concurrently, a well-tuned
prefetching system balances pool sizes and prefetch limits to accomplish
these goals:

• Improved system throughput

• Better performance by applications that use asynchronous prefetch

• No performance degradation in applications that do not use
asynchronous prefetch

Configuration changes to pool sizes and the prefetch limits for pools are
dynamic, allowing you to make changes to meet the needs of varying
workloads. For example, you can configure asynchronous prefetch for
good performance during recovery or dbcc checking and reconfigure
afterward without needing to restart Adaptive Server.

See “Setting limits for recovery” on page 251 and “Setting limits for
dbcc” on page 252 for more information.

Other Adaptive Server performance features

248 Adaptive Server Enterprise

Commands for configuration
Asynchronous prefetch limits are configured as a percentage of the pool in
which prefetched but unused pages can be stored. There are two
configuration levels:

• The server-wide default, set with the configuration parameter global
async prefetch limit. When you first install, the default value for global
async prefetch limit is 10 (percent).

For more information, see of the System Administration Guide.

• A per-pool override, set with sp_poolconfig. To see the limits set for
each pool, use sp_cacheconfig.

For more information, see of the System Administration Guide.

Changing asynchronous prefetch limits takes effect immediately, and does
not require a reboot. Both the global and per-pool limits can also be
configured in the configuration file.

Other Adaptive Server performance features
This section covers the interaction of asynchronous prefetch with other
Adaptive Server performance features.

Large I/O
The combination of large I/O and asynchronous prefetch can provide rapid
query processing with low I/O overhead for queries performing table scans
and for dbcc operations.

When large I/O prefetches all the pages on an allocation unit, the minimum
number of I/Os for the entire allocation unit is:

• 31 16K I/Os

CHAPTER 10 Tuning Asynchronous Prefetch

Performance & Tuning: Optimizer and Abstract Plans 249

• 7 2K I/Os, for the pages that share an extent with the allocation page

Note Reference to Large I/Os are on a 2K logical page size server. If you
have an 8K page size server, the basic unit for the I/O is 8K. If you have a
16K page size server, the basic unit for the I/O is 16K.

Sizing and limits for the 16k pool

Performing 31 16K prefetches with the default asynchronous prefetch
limit of 10 percent of the buffers in the pool requires a pool with at least
310 16K buffers. If the pool is smaller, or if the limit is lower, some
prefetch requests will be denied. To allow more asynchronous prefetch
activity in the pool, you can configure a larger pool or a larger prefetch
limit for the pool.

If multiple overlapping queries perform table scans using the same pool,
the number of unused, prefetched pages allowed in the poll needs to be
higher. The queries are probably issuing prefetch requests at slightly
staggered times and are at different stages in reading the accessed pages.
For example, one query may have just prefetched 31 pages, and have 31
unused pages in the pool, while an earlier query has only 2 or 3 unused
pages left. To start your tuning efforts for these queries, assume one-half
the number of pages for a prefetch request multiplied by the number of
active queries in the pool.

Limits for the 2K pool

Queries using large I/O during sequential scans may still need to perform
2K I/O:

• When a scan enters a new allocation unit, it performs 2K I/O on the 7
pages in the unit that share space with the allocation page.

• If pages from the allocation unit already reside in the 2K pool when
the prefetch requests are issued, the pages that share that extent must
be read into the 2K pool.

If the 2K pool has its asynchronous prefetch limit set to 0, the first 7 reads
are performed by normal asynchronous I/O, and the query sleeps on each
read if the pages are not in cache. Set the limits on the 2K pool high enough
that it does not slow prefetching performance.

Other Adaptive Server performance features

250 Adaptive Server Enterprise

Fetch-and-discard (MRU) scans
When a scan uses MRU replacement policy, buffers are handled in a
special manner when they are read into the cache by asynchronous
prefetch. First, pages are linked at the MRU end of the chain, rather than
at the wash marker. When the query accesses the page, the buffers are re
linked into the pool at the wash marker. This strategy helps to avoid cases
where heavy use of a cache flushes prefetched buffers linked at the wash
marker before they can be used. It has little impact on performance, unless
large numbers of unneeded pages are being prefetched. In this case, the
prefetched pages are more likely to flush other pages from cache.

Parallel scans and large I/Os
The demand on buffer pools can become higher with parallel queries. With
serial queries operating on the same pools, it is safe to assume that queries
are issued at slightly different times and that the queries are in different
stages of execution: some are accessing pages are already in cache, and
others are waiting on I/O.

Parallel execution places different demands on buffer pools, depending on
the type of scan and the degree of parallelism. Some parallel queries are
likely to issue a large number of prefetch requests simultaneously.

Hash-based table scans

Hash-based table scans on allpages-locked tables have multiple worker
processes accessing the same page chain. Each worker process checks the
page ID of each page in the table, but examines only the rows on those
pages where page ID matches the hash value for the worker process.

The first worker process that needs a page from a new allocation unit
issues a prefetch request for all pages from that unit. When the scans of
other worker processes also need pages from that allocation unit, they will
either find that the pages they need are already in I/O or already in cache.
As the first scan to complete enters the next unit, the process is repeated.

As long as one worker process in the family performing a hash-based scan
does not become stalled (waiting for a lock, for example), the hash-based
table scans do not place higher demands on the pools than they place on
serial processes. Since the multiple processes may read the pages much
more quickly than a serial process does, they change the status of the pages
from unused to used more quickly.

CHAPTER 10 Tuning Asynchronous Prefetch

Performance & Tuning: Optimizer and Abstract Plans 251

Partition-based scans

Partition-based scans are more likely to create additional demands on
pools, since multiple worker processes may be performing asynchronous
prefetching on different allocation units. On partitioned tables on multiple
devices, the per-server and per-engine I/O limits are less likely to be
reached, but the per-pool limits are more likely to limit prefetching.

Once a parallel query is parsed and compiled, it launches its worker
processes. If a table with 4 partitions is being scanned by 4 worker
processes, each worker process attempts to prefetch all the pages in its first
allocation unit. For the performance of this single query, the most
desirable outcome is that the size and limits on the 16K pool are
sufficiently large to allow 124 (31*4) asynchronous prefetch requests, so
all of the requests succeed. Each of the worker processes scans the pages
in cache quickly, moving onto new allocation units and issuing more
prefetch requests for large numbers of pages.

Special settings for asynchronous prefetch limits
You may want to change asynchronous prefetch configuration temporarily
for specific purposes, including:

• Recovery

• dbcc operations that use asynchronous prefetch

Setting limits for recovery
During recovery, Adaptive Server uses only the 2K pool of the default data
cache. If you shut down the server using shutdown with nowait, or if the
server goes down due to power failure or machine failure, the number of
log records to be recovered may be quite large.

To speed recovery, you can edit the configuration file to do one or both of
the following:

• Increase the size of the 2K pool in the default data cache by reducing
the size of other pools in the cache

• Increase the prefetch limit for the 2K pool

Maintenance activities for high prefetch performance

252 Adaptive Server Enterprise

Both of these configuration changes are dynamic, so you can use
sp_poolconfig to restore the original values after recovery completes,
without restarting Adaptive Server. The recovery process allows users to
log into the server as soon as recovery of the master database is complete.
Databases are recovered one at a time and users can begin using a
particular database as soon as it is recovered. There may be some
contention if recovery is still taking place on some databases, and user
activity in the 2K pool of the default data cache is heavy.

Setting limits for dbcc
If you are performing database consistency checking at a time when other
activity on the server is low, configuring high asynchronous prefetch
limits on the pools used by dbcc can speed consistency checking.

dbcc checkalloc can use special internal 16K buffers if there is no 16K pool
in the cache for the appropriate database. If you have a 2K pool for a
database, and no 16K pool, set the local prefetch limit to 0 for the pool
while executing dbcc checkalloc. Use of the 2K pool instead of the 16K
internal buffers may actually hurt performance.

Maintenance activities for high prefetch performance
Page chains for all pages-locked tables and the leaf levels of indexes
develop kinks as data modifications take place on the table. In general,
newly created tables have few kinks. Tables where updates, deletes, and
inserts that have caused page splits, new page allocations, and page
deallocations are likely to have cross-allocation unit page chain kinks. If
more than 10 to 20 percent of the original rows in a table have been
modified, you should determine if kinked page chains are reducing
asynchronous prefetch effectiveness. If you suspect that page chain kinks
are reducing asynchronous prefetch performance, you may need to re-
create indexes or reload tables to reduce kinks.

CHAPTER 10 Tuning Asynchronous Prefetch

Performance & Tuning: Optimizer and Abstract Plans 253

Eliminating kinks in heap tables
For allpages-locked heaps, page allocation is generally sequential, unless
pages are deallocated by deletes that remove all rows from a page. These
pages may be reused when additional space is allocated to the object. You
can create a clustered index (and drop it, if you want the table stored as a
heap) or bulk copy the data out, truncate the table, and copy the data in
again. Both activities compress the space used by the table and eliminate
page-chain kinks.

Eliminating kinks in clustered index tables
For clustered indexes, page splits and page deallocations can cause page
chain kinks. Rebuilding clustered indexes does not necessarily eliminate
all cross-allocation page linkages. Use fillfactor for clustered indexes where
you expect growth, to reduce the number of kinks resulting from data
modifications.

Eliminating kinks in nonclustered indexes
If your query mix uses covered index scans, dropping and re-creating
nonclustered indexes can improve asynchronous prefetch performance,
once the leaf-level page chain becomes fragmented.

Performance monitoring and asynchronous prefetch
The output of statistics io reports the number physical reads performed by
asynchronous prefetch and the number of reads performed by normal
asynchronous I/O. In addition, statistics io reports the number of times that
a search for a page in cache was found by the asynchronous prefetch
without holding the cache spinlock.

See “Reporting physical and logical I/O statistics” on page 63 in the
Performance and Tuning: Monitoring and Analyzing for Performance
book for more information.

Performance monitoring and asynchronous prefetch

254 Adaptive Server Enterprise

sp_sysmon report contains information on asynchronous prefetch in both
the “Data Cache Management” section and the “Disk I/O Management”
section.

If you are using sp_sysmon to evaluate asynchronous prefetch
performance, you may see improvements in other performance areas, such
as:

• Much higher cache hit ratios in the pools where asynchronous
prefetch is effective

• A corresponding reduction in context switches due to cache misses,
with voluntary yields increasing

• A possible reduction in lock contention. Tasks keep pages locked
during the time it takes for perform I/O for the next page needed by
the query. If this time is reduced because asynchronous prefetch
increases cache hits, locks will be held for a shorter time.

See “Data cache management” on page 82 and “Disk I/O management”
on page 102 in the Performance and Tuning: Monitoring and Analyzing
for Performance book for more information.

Performance & Tuning: Optimizer and Abstract Plans 255

C H A P T E R 1 1 Multiple Temporary Databases

This chapter discusses the multiple temporary databases.

Overview
Adaptive Server allows you to create and manage multiple temporary
databases in addition to the system tempdb, which was the only temporary
database in the server in earlier versions of Adaptive Server.

Multiple temporary databases, also referred to as tempdbs, reduce
contention on system catalogs and logs in the system tempdb. They allow
you to:

• Create temporary databases on fast-access devices

• Drop a temporary database to reclaim storage

• Partition tasks that create temporary objects into using specific
tempdbs, which prevents these tasks from interfering with other
sessions that need to use temporary database space

The multiple temporary database feature is fully enabled for:

• New installations

• Installations that upgraded from an Adaptive Server earlier than
version 12.5

• Databases that are loaded from an Adaptive Server earlier than
version 12.5

Topic Page
After creating a temporary database 258

Using sp_tempdb 259

Binding with temporary databases 260

Multiple temporary database and the system 261

Installation issues 272

Overview

256 Adaptive Server Enterprise

The tempdb database is the system-created temporary database. Before
Adaptive Server version 12.5.0.3, tempdb was the only temporary database in
the server. Temporary tables and work tables are created in tempdb.

Adaptive Server allows you to create multiple temporary databases, which you
can then use to create temporary objects such as private temporary tables and
work tables. Database administrators can bind—that is, create associations
between—the “sa” login and applications to specific temporary databases or to
the default group of temporary databases using sp_tempdb. The default group is
a system-created group that always has at least the system tempdb as its
member. You can add other temporary databases to this group.

Note You cannot explicitly bind objects to tempdb.

An application bound to the group can be assigned any temporary database
from within the group in a round-robin fashion.

Note User groups and the default temporary database group are not related.

User-created
temporary databases

User-created temporary databases are created by the user, typically the
database administrator. These databases are usually created to minimize
resource contention (such as system catalog and log contention) in the system
tempdb. User-created temporary databases are very similar to the system
tempdb in that they are:

• Used primarily to create temporary objects

• Re-created, rather than recovered, during a system-recovery process

All objects in a temporary database before a shutdown or crash are lost during
recovery because temporary databases are overwritten with the model
database. Those restrictions that apply to the system tempdb also apply to the
user-created temporary databases. See “Rollback and recovery” on page 263
for more information.

Unlike the system tempdb, you can drop user-created temporary databases.

Temporary databases
and bindings

During login, sessions get assigned to a temporary database based on the
existing bindings in effect:

• If the binding is to a specific temporary database that is online and
available, the session gets assigned to it.

• If the binding is to the default group, a temporary database from that group
is selected using a round-robin selection policy.

CHAPTER 11 Multiple Temporary Databases

Performance & Tuning: Optimizer and Abstract Plans 257

• If no binding is specified, a temporary database is selected from the default
group.

The temporary database chosen for a session remains in effect for the duration
of that session and never gets changed, regardless of any changes to the
bindings.

Once a session is assigned a temporary database, all temporary objects created
during that session are created in that temporary database. These objects are
implicitly dropped when the session or server shuts down. Shareable temporary
tables are implicitly dropped when the server shuts down.

Note Temporary tables may be dropped explicitly by the session.

Server or shareable temporary tables continue to be created in the system
tempdb if they are fully qualified as “tempdb..server_temptab” to include the
database and table name. This is done to make sure that existing applications
that pass information between sessions using shareable temporary tables
continue to work. New applications, however, can use user-created tempdbs to
create shareable temporary tables.

Private temp tables Private temporary tables are created per session, and use the “#” symbol at the
beginning of their names (for example, #pubs). They cannot be shared across
sessions. These temporary tables and work tables reside in the session’s
assigned temporary database. There are two types of private temp tables. They
are also differentiated by their visible scope and how long they implicitly exist:

• Session temp table – created at the batch level outside of a procedure, this
type of private temp table is:

• Visible to all commands, including procedures that are executed
within the creating session

• Is implicitly dropped when the session terminates

The following create statement, executed at the batch level, creates a
private temp table:

create table #t1(id int, desc varchar(250))

• Procedural temp table – created within a procedure, it is:

• Visible to the procedure that creates it and any nested procedures it
calls.

• Implicitly dropped when the procedure that created it exits.

The following creates two procedural temp tables:

After creating a temporary database

258 Adaptive Server Enterprise

create procedure SetupTempTables as
create table #pt1(. . .)
create table #pt2(. . .)

Applications can create shareable temporary tables in user-created temporary
databases in exactly the same way that they create shareable temporary tables
created in the system tempdb. Cooperating processes can communicate through
these tables.

Note Procedural temporary tables can also be explicitly dropped.

Stored procedures that create or access private temporary tables, do so in the
temporary database assigned to the session.

Shareable temp tables Shareable temporary tables can be created in user-created temporary databases
as well as in the system tempdb. All shareable temporary tables can be shared
across sessions and are implicitly dropped when the Server reboots.

Note Unlike the system tempdb, user-created temporary databases can be
dropped. Any applications that are dependent upon a dropped user-created
temporary database will not work if shareable temp tables existed.

After creating a temporary database
The dbid of a newly created temporary database is automatically registered in
a global list of all available temporary databases. You cannot bind objects to
that database until after it is registered in the global list. When a server is
restarted, temporary databases are added to the global list as they are
recovered.

The number of temporary databases that is supported is statically declared and
is not configurable. The number of temporary databases that can be registered
in the global list of temporary databases available for bindings (and,
consequently, assignment to sessions) is 512, including tempdb.

When the global list is full, an attempt to add a temporary database to it results
in a warning. To see the contents of the list, execute the
dbcc pravailabletempdbs command. See “dbcc pravailabletempdbs” on page
271 for more information.

CHAPTER 11 Multiple Temporary Databases

Performance & Tuning: Optimizer and Abstract Plans 259

You can create a database even if you cannot register its dbid in the global list.
If the global list is full, you can run a dbcc addtempdb command to add the dbid
to the global list when space becomes available. See “dbcc addtempdb” on
page 272 for more information on the dbcc addtempdb command.

In addition, if space becomes available on the global list when a temporary
database has been dropped, you can also:

• Drop and re-create the temporary database, at which point it gets
registered and becomes available for binding, using space that has become
available in the global list.

• Restart the server.

Note The system tempdb, which has a dbid of 2, is registered in the global list
when the server is restarted. It cannot be unregistered.

Adaptive Server assumes that the temporary databases you create are not
bound to the default group. To add a new database to the default group, use
sp_tempdb—see the entry for sp_tempdb in Reference Manual: Stored
Procedures for more information. Adding a database to the group makes the
database immediately available for round-robin assignment from within the
group.

Even if the database is not a member of the default group, you can still assign
it to a session via an application or login binding. See the bind option in the
entry for sp_tempdb in Reference Manual: Stored Procedures for more
information for more information.

Using sp_tempdb
sp_tempdb allows users to:

• Create the default temporary database group

• Bind temporary databases to the default temporary database group

• Bind the “sa” login and applications to the default temporary database
group or to specific temporary databases

The syntax for sp_tempdb is:

sp_tempdb [
[{ create | drop } , groupname] |

Binding with temporary databases

260 Adaptive Server Enterprise

[{ add | remove } , tempdbname, groupname] |
[{ bind, objtype, objname, bindtype, bindobj [, scope, hardness] } |

{ unbind, objtype, objname [, scope] }] |
[unbindall_db, tempdbname] |
[show [, "all" | "gr" | "db" | "login" | "app" [, name]] |
[who, dbname]
[help]

]

For detailed parameter and usage information, see Reference Manual: Stored
Procedures.

Binding with temporary databases
The following is required for sp_tempdb bind to succeed:

When you successfully execute sp_tempdb bind, it inserts a new entry into
sysattributes to represent this binding.

If an entry already exists for the objname/objtype/scope combination you
specified in sp_tempdb bind, its entry in sysattributes is updated with the new
information represented by the bindtype and bindobj you specify.

Although the new binding you create is effective immediately, any session that
has already been assigned a temporary database continues to maintain that
original assignment. Only new sessions are affected by the new binding.

Note Applications can change their name through ct_lib and other interfaces
such as jConnect, even after connecting and starting a session. This does not
affect the temporary database assignment to the session. This is also true for
the setuser command.

If Then

objtype is login_name objname must be a valid login name, and scope is NULL

objtype is application objname is an application name, and scope is NULL.

If Then

bindtype is group bindobj must be the name of the existing group that you are
binding to, which in this case is default.

bindtype is database bindobj must be an existing temporary database name. It
cannot be tempdb since tempdb cannot have explicit bindings.

CHAPTER 11 Multiple Temporary Databases

Performance & Tuning: Optimizer and Abstract Plans 261

Binding an “sa” to its
own temporary
database

You can bind the “sa” login to a separate temporary database for maintenance
and disaster recovery purposes. By isolating the “sa” user from the temporary
database activities of other applications and users, the “sa” user is guaranteed
to have access to temporary database resources when necessary.

Session binding
At login time, a session is assigned to a temporary database, which remains in
effect for the duration of that session and cannot change. Bindings are read
from sysattributes, and are chosen according to these parameters:

• If binding of type LG (login) exists, use that binding.

• If binding of type AP (application name)exists, use that binding.

• Bind session to a temporary database within the default group.

Bindings can be hard or soft:

• Soft bindings – logins never fail despite any failures to assign a temporary
database to the session according to the binding in effect. When all else
fails, a session should always end up being assigned to the system tempdb.

• Hard bindings – if an assignment of a temporary database to a session
cannot be made according to the binding in effect, the login fails.

Multiple temporary database and the system
This section describes the effects that the multiple temporary database feature
has on Adaptive Server.

System table changes
The multiple temporary database feature affects sysattributes and
sysdatabases.

Multiple temporary database and the system

262 Adaptive Server Enterprise

sysattributes

Table 11-1 shows the representation of temporary database groups and
bindings as these appear in the sysattributes system table. Only relevant
columns are shown. All other columns are NULL. Groups are represented in
rows where attribute has a value of “0”. Login and application bindings, as well
as database to group bindings, are represented in rows where attribute has a
value of “1”.

Table 11-1: sysattributes representation

sysdatabases

sysdatabases supports a new bit in the status3 field. The temporary status of a
database is indicated by the value of 0x00000100 (256 decimal) in the status3
field of a sysdatabases entry.

@@tempdbid global variable
The @@tempdbid returns a valid temporary database ID (dbid) of the session’s
assigned temporary database.

Examples Example 1 Returns the dbid of mytempdb, the session’s assigned temporary
database, which is 7:

select @@tempdbid from mytempdb
7

Example 2 Returns the name of the temporary database, which is mytempdb:

select db_name(@@tempdbid)
mytempdb

class attribute object_type object_cinfo object object_cinfo1 int_value char_value

16 0 GR group name NULL NULL group id NULL

16 0 D database name group
ID

NULL NULL NULL

16 1 LG NULL user ID 0 for soft,
1 for hard

0 for
database,
1 for group

database or
group name

16 1 AP application
name

NULL 0 for soft,
1 for hard

0 for
database,
1 for group

database or
group name

CHAPTER 11 Multiple Temporary Databases

Performance & Tuning: Optimizer and Abstract Plans 263

tempdb_id() function
The tempdb_id() reports the temporary database that a given session is assigned
to. The input of the tempdb_id() function is a server process ID, and its output
is the temporary database to which the process is assigned. If you do not
provide a server process, then tempdb_id() reports the dbid of the temporary
database assigned to the current process.

To find all the server processes that are assigned to a given temporary database,
execute:

select spid from master..sysprocesses
where tempdb_id(spid) = db_id("tempdatabase")

Note select tempdb_id() gives the same result as select @@tempdbid.

Log truncation
Adaptive Server truncates user-created temporary databases in the same way
as with the tempdb log. When you run the system checkpoint process on a
temporary database, both the tempdb log and a user-created temporary
database are truncated because of the trunc log on chkpt option. This is true only
when the system initiates the checkpoint; not when the user initiates the
checkpoint of a temporary database.

Rollback and recovery
The recovery process for user-created temporary databases differs significantly
from that of regular databases.

There is no difference in runtime-undo rollbacks between the system tempdb
and user-created temporary databases.

The restart recovery process is similar to that for tempdb. A user-created
temporary database is created using the entries in sysusages, and the model
database is copied over. All user-created objects that existed in a temporary
database before shutting down are lost.

Temporary databases are recovered in the order in which they appear in
sysdatabases. Use sp_dbrecovery_order to specify an alternate recovery order.

Multiple temporary database and the system

264 Adaptive Server Enterprise

Sessions that log in before the recovery of the temporary database that they
would normally be assigned to are assigned to another temporary database,
unless a hard binding exists—in which case the login fails. To minimize this
impact, use sp_dbrecovery_order to specify that all or some of the temporary
databases can be recovered before the rest of the user databases.

Upon successful recovery, a temporary database is added to the global list of
available temporary databases, as well as to the default group, if bound to it.

The creation date and time for the temporary database entry in sysdatabases
reflects the time that the database was re-created. This date is updated at the
time of recovery every time the temporary database is re-created.

The model database is locked while the system is under recovery so that it can
get copied over to the temporary database.

Note Since model is locked, you cannot create a new database or use use model
until the recovery process has completed.

Dropping a temporary database
You can drop a temporary database only if it has:

• No bindings associated with it, and

• No active sessions assigned to it.

This means that the database:

• Should not be part of the default temporary database group, and

• Should have no logins or applications bound to it.

If any bindings exist, drop database reports a failure. Remove the database
from the default group, and unbind all such logins and applications. Use the
sp_tempdb “show” interface to determine all bindings involving the temporary
database.

If there are any active sessions connected to the database being dropped,
drop database fails. Such sessions can exist if they were instantiated before the
bindings for the database were removed. To proceed with the drop process, a
user must either wait for all such active sessions to drain out of the system, or
kill these sessions. Use sp_tempdb “who” dbname to determine what sessions
are currently connected to a given temporary database.

CHAPTER 11 Multiple Temporary Databases

Performance & Tuning: Optimizer and Abstract Plans 265

Dropping other databases

Dropping a database requires that no Java classes in the database being
dropped are referenced by objects in temporary databases. These can exist as a
result of select into #temptable commands. In such cases, columns in a
temporary table refer back to classes in the source database. All temporary
databases are scanned to make sure that no such references exist. If such
references exist, the database is not dropped.

Note This behavior is consistent with the behavior of an Adaptive Server
without the multiple temporary database feature.

alter database
Adaptive Server performs a data copy for some alter database operations.
Logging of page contents is not generally done for these operations. For this
reason, the server flushes pages to disk so that these changes can be recovered
after a database crash. This is not necessary for tempdb, however, since the
contents of tempdb are always re-created during the recovery process.

User-created temporary databases are also freshly re-created during recovery.
Therefore, these databases are treated in a manner consistent with tempdb. The
following describes some specific cases where this is true for alter database. In
addition, there are other instances of alter database where the behavior for
user-created temporary databases is identical to that of tempdb.

Extending a
temporary database

When the system tempdb is extended, new database pages are not zeroed out.
Only allocation pages are written to disk. User-created temporary databases are
consistent with this approach.

Extending the model
database

The model database cannot be larger than the smallest temporary database
because model is copied in to the temporary database when the server is
restarted. Attempting to alter the size of model triggers a check to verify that
the new size of model is not larger than the smallest temporary database. If a
smaller temporary database is found, the alter database command reports an
error.

Multiple temporary database and the system

266 Adaptive Server Enterprise

Caching characteristics
Caches across temporary databases within a group should be configured
similarly to each other with respect to caching characteristics. The optimizer
considers the caching characteristics of a database when selecting an efficient
query plan. If the plan is part of a procedure, it may be reused by another
session that has been assigned to a different temporary database. Poor
performance may result if the caching characteristics of the two temporary
databases vary significantly.

Binding user-created temporary databases to a data cache

Use sp_bindcache to bind a database to a data cache. Binding a user-created
temporary database is similar to binding any other user database, except in the
following:

A user-created temporary database is considered to be in use as long as a
session is assigned to it, even if no activity is actually taking place on behalf of
the active session. However, to change the cache binding of the database, the
database must be exclusively locked. You cannot lock the database as long as
there is an active session assigned to it. The steps to overcome this are similar
to those necessary to drop a database:

❖ Changing the cache binding of a database

1 Use sp_tempdb to remove all bindings involving the temporary database,
including any database-to-default-group bindings as well as any
application and login bindings to the database.

2 Either wait for any active sessions already assigned to the temporary
database to drain out, or terminate these sessions if required. Use
sp_tempdb to list the active sessions that are assigned to the database.

3 Proceed with the database to cache binding.

4 Restore any bindings removed in the first step.

Processing stored procedures
Under some circumstances, the dbid of a temporary object is remapped to the
temporary database ID of the current session to ensure that these objects are
created and accessed in the correct temporary database. For example:

CHAPTER 11 Multiple Temporary Databases

Performance & Tuning: Optimizer and Abstract Plans 267

• When a stored procedure is created by a session that is attached to one
temporary database, and then is compiled by another session in a different
temporary database.

• When a stored procedure is compiled by a session that is different than the
temporary database of the session executing it.

However, remapping temporary database IDs does not ensure that the
procedure behaves identically across temporary databases. A procedure
compiled in one temporary database with certain caching characteristics may
perform very differently when run in a temporary database with a different set
of caching characteristics. Similarly, a procedure compiled in one temporary
database with certain dboption settings may have very different semantics when
executed in a temporary database with different dboptions settings.

tempdb write optimization
Temporary databases are not recoverable because Adaptive Server drops and
re-creates them when it reboots. Adaptive Server takes advantage of this by
delaying write of data or log buffers.

In normal, non-temporary databases, if you use a command such as select that
is not logged, Adaptive Server saves the data to disk for recovery purposes.

With version 12.5.0.3 and later, Adaptive Server does not do this for temporary
databases. This means that if you use a command such as the following select
into statement with a temporary database, Adaptive Server does not force the
write of data buffers to the disk:

select * into tempdb..temp_table from foo

In addition, commands such as insert, update, and delete with temporary
databases do not force Adaptive Server to write a log at the end of the commit
operation. For example, the following insert into command results in fewer
context switches and a lighter load on the log or data devices, and higher
throughput:

insert into tempdb..temp_table select * from foo

High-availability considerations
The following sections discuss the issues of multiple temporary databases in a
high-availability configuration.

Multiple temporary database and the system

268 Adaptive Server Enterprise

High-availability configuration

In versions of Adaptive Server that did not include multiple temporary
databases, user databases could not exist in the secondary companion during
the initial high-availability configuration. The introduction of user-created
temporary databases allows the following:

• The secondary server can have user-created temporary databases as long
as the database names are unique.

• The secondary server can have user-created temporary databases whose
dbid conflicts with a dbid in the primary server as long as the conflicting
dbids are for temporary databases in both the servers.

Sybase recommends that you:

• Load the user databases are loaded with user databases during the
high-availability configuration. This ensure that unique dbids are
generated for temporary databases in the secondary server, and that users
can drop and reconfigure without having to drop the user-created
temporary databases.

• Install specific application and login bindings on the secondary
companion for the temporary databases created in the secondary that may
be used by the primary server application during failover. However, If you
do not install bindings, the failed over server application uses the
temporary databases in the secondary companion’s default group, which
has little performance impact.

Proxy database support

Proxy databases are not created for multiple temporary databases for the
following reasons:

• For user-created temporary databases, databases must be re-created,
which affects the performance of both failover and failback.

• With not forcing the mount, users can deploy high-performance
RAM/disks, and local disks for temporary databases that may not
necessarily be dual-ported.

• Since the high-availability proxies are not created, the space accounting
that evaluates the space required for successful configuration does not
include the user-created temporary databases.

CHAPTER 11 Multiple Temporary Databases

Performance & Tuning: Optimizer and Abstract Plans 269

Failover scenarios

During failover, Adaptive Server does not mount the user-created temporary
databases. Although Adaptive Server allows user databases to be created (if the
set proxy option is not enabled) in failover status, Adaptive Server does not
allow user-created temporary databases during failover.

Normal companion behavior

During normal companion mode, user-created temporary databases can be
created with the same rules as those for user databases (for example, they must
have unique names). Proxy databases for multiple temporary databases are not
created, even if the with_proxydb option was used, during the configuration
mode.

Mount/Unmount

Temporary databases are not mounted during failover. A client that fails over
to a secondary server goes through the normal login process and is assigned a
new temporary database based on the existing bindings in the secondary
companion.

Dumping and loading temporary databases
Although you can dump temporary databases, doing so serves no useful
purpose. Keep these considerations in mind:

• These databases are re-created each time the server is restarted, and object
names of temporary tables are internally generated and session-specific.
This means that the same user can log in to the server via two different isql
sessions and create a temporary table #t1. An internally generated name is
created for each instance of #t1. This unique name is stored in the
sysobjects table of the temporary database. For this reason, multiple active
sessions can have their own temporary table with the same user-specified
name.

• The system tempdb created in a pre-multiple temporary database server
can be successfully dumped but not loaded.

• User-created temporary databases can be successfully dumped, but not
loaded.

Multiple temporary database and the system

270 Adaptive Server Enterprise

sp_dboption stored procedure
All temporary databases within a group must use the same dboptions.

If some of these options differ, then applications may not work correctly. For
example, if a temporary database called mtdb1 in a group enables this option
while another temporary database in the same group, called mtdb2, does not,
then the following procedure, which creates a table and inserts a row leaving
one field value out, does not work equivalently in the two temporary databases:

create procedure P1 as
create table #t1 (c1 int, str char(250))
insert #t1 values (1)

go

The insert statement in mtdb1 succeeds because NULLs are allowed, while the
insert statement in mtdb2 fails because NULLs are not allowed.

Configuring the number of open databases
For every temporary database that you create, increment the “open databases”
configuration value by one. When a session is assigned a temporary database,
the resource representing the database is kept, and marked to be in use so that
it cannot be reused during the current session.

Changed procedures
Several stored procedures have been altered to work with multiple temporary
databases:

• sp_helpdb now reports whether or not a database is a user-created
temporary database. This appears under the status column.

sp_helpdb "mytempdb3"

name db_size owner dbid created status
------- ------- ----- ---- ------- -----
mytempdb 32.0 MB sa 7 Dec 12, 2001 select into/bulkcopy/pllsort, trunc

log on chkpt, user created temp db

• sp_bindcache – has been extended to prevent binding of individual tables
to a named cache in user-created temporary databases.

CHAPTER 11 Multiple Temporary Databases

Performance & Tuning: Optimizer and Abstract Plans 271

• sp_dboption – has been extended to prevent user-created temporary
databases from being set to single-user mode. Additionally, when an
attempt to alter the options for a temporary database is made, a warning is
issued – database options across all temporary databases must be
consistent.

• sp_dropuser – has been extended to prevent a guest user from being
dropped from user-created temporary databases.

Unchanged yet notable procedures

Although the following procedures have not changed, they are relevant to
temporary databases:

Changed and additional DBCCs
Several new dbcc commands have been added.

dbcc pravailabletempdbs

dbcc pravailabletempdbs prints the global list of available temporary databases.

Example 1> dbcc pravailabletempdbs
2> go

Available temporary databases are:
Dbid: 2
Dbid: 4
Dbid: 5
Dbid: 6
Dbid: 7
DBCC execution completed. If DBCC printed error
messages, contact a user with System Administrator (SA)
role.

Procedure name Description

sp_changedbowner You can change ownership of user-created temporary databases, whereasyou cannot for
system databases, including tempdb.

sp_defaultloc You cannot map system databases, including tempdb to a default location. However, you
can map user-created temporary databases.

sp_renamedb You cannot rename system databases, including tempdb. However, you can rename
user-created temporary databases. You must ensure that existing bindings for the temporary
database being renamed are dropped, and re-created using the new database name.

Installation issues

272 Adaptive Server Enterprise

dbcc addtempdb

dbcc addtempdb adds a temporary database to the global list of available
temporary databases. The syntax for this command is:

dbcc addtempdb(dbid | dbname)

If the database does not exist or is not a temporary database, an error is
generated. If the database is already a member of the list, an informational
message prints.

Additional changes
Limits in the Resource Governor with regard to temporary database usage
continue to hold for the user-created temporary databases, just as they do for
tempdb.

Large scale deallocation is not logged for temporary databases.

Replication Agent is never started for a temporary database.

Parallel queries The child threads for parallel queries are assigned to the same temporary
database as their parent.

Multiple-database
transactions

A multidatabase transaction that spans temporary and nontemporary databases
cannot start in a temporary database, since it would be impossible to recover
such a transaction. However, a multidatabase transaction across only
temporary databases does not have this restriction since temporary databases
are re-created each time the server is restarted.

Installation issues
A new row that represents the default temporary database group is added to
sysattributes as part of the upgrade to a 12.5 server, as well as when a new
master device is built.

If you are already running a 12.5 server, and hence do not do an upgrade, you
can add the default temporary database group by executing
sp_tempdb create “default”. See the entry for sp_tempdb in Reference Manual:
Stored Procedures for more information on the stored procedure.

CHAPTER 11 Multiple Temporary Databases

Performance & Tuning: Optimizer and Abstract Plans 273

Sizing and configuring temporary databases for applications
Resource and space requirements for temporary databases vary from
application to application. You should size all temporary databases equally
unless you:

• Fully understand your resource and space requirements

• Maintain applications to database and group bindings so that database
assignments meet resource and space requirements

By sizing all temporary databases equally, you should be able to run
applications without running out of resources or space, regardless of which
database gets assigned to a given instance of an application or session.

Similarly, configure the tempdb caches within a group similarly to ensure
equivalent performance for a given query plan regardless of the tempdb used.

In high-availability configurations, configure the primary and secondary
servers similarly with respect to tempdb properties.

Shareable temporary tables
You can create shareable temporary tables in both user-created temporary
databases and in the system tempdb. Existing applications that use tempdb
when creating shareable temp tables will continue to create these tables in the
system tempdb. This allows cooperating applications and sessions that
communicate through the shareable tables in the temporary database to
continue to work as before.

New applications can create their shareable temporary tables in a user-created
temporary database. These works similarly to shareable temporary tables
created in tempdb. That is, they are accessible to other sessions, and persist
until you restart the server, unless you explicitly drop them.

Note Applications that use user-created temporary databases will not work if
the designated user-created temporary database is dropped.

Updating user-created stored procedures
You must change all existing user-created stored procedures that assume that
temporary tables are always in tempdb.

Installation issues

274 Adaptive Server Enterprise

For instance, a stored procedure that checks the sysobjects catalog of the
system tempdb for the existence of a private temporary table is no longer a
valid check since such a table exists in the assigned temporary database, which
may be tempdb. The following example demonstrates this:

select db_name(@@tempdbid)
go

a_tempdb1
(1 row affected)

create table #t1 (c1 int)
go

#t1 is not found in the sysobjects catalog of the system tempdb:

use tempdb
select name from sysobjects where name like "#%"

name

(0 rows affected)

Instead, the entry is in the catalog of their assigned tempdb.

declare @tempdb_name varchar(32)
select @tempdb_name = db_name(@@tempdbid)
use @tempdb_name
go

(1 row affected)

select name from sysobjects where name like "#%"
go

name

#t1__________00000270012069406
(1 row affected)

CHAPTER 11 Multiple Temporary Databases

Performance & Tuning: Optimizer and Abstract Plans 275

Downgrading to an earlier version
This section discusses how to downgrade from a 12.5.0.3 version of Adaptive
Server with the multiple temporary database feature enabled to Adaptive
Server version 12.5.0.2.

Note Versions earlier than 12.5.0.2 are not supported for downgrading from
version 12.5.0.3.

❖ Downgrading from a multiple tempdb-enabled Adaptive Server

1 Use sp_tempdb to remove all bindings.

2 Drop all user-created temporary databases.

3 Shut down the server.

4 Start version 12.5.0.2 of Adaptive Server.

5 Use the installmaster and instmsgs.ebf that were part of Adaptive Server
version 12.5.0.2 to reinstall the system stored procedures and messages.

Adaptive Server version 12.5.0.2 requires no additional steps to support
downgrading from version 12.5.0.3.

Version 12.5.0.2 was modified to support dynamically redefining trees
from text if they had been normalized using user-created temporary
databases in version 12.5.0.3.

Installation issues

276 Adaptive Server Enterprise

Performance & Tuning: Optimizer and Abstract Plans 277

C H A P T E R 1 2 tempdb Performance Issues

This chapter discusses the performance issues associated with using the
tempdb database Anyone can create objects in tempdb. Many processes
use it silently. It is a server-wide resource that is used primarily for internal
sorts processing, creating worktables, reformatting, and for storing
temporary tables and indexes created by users.

Many applications use stored procedures that create tables in tempdb to
expedite complex joins or to perform other complex data analysis that is
not easily performed in a single step.

How management of tempdb affects performance
Good management of tempdb is critical to the overall performance of
Adaptive Server. tempdb cannot be overlooked or left in a default state. It
is the most dynamic database on many servers and should receive special
attention.

If planned for in advance, most problems related to tempdb can be
avoided. These are the kinds of things that can go wrong if tempdb is not
sized or placed properly:

Topic Page
How management of tempdb affects performance 277

Types and uses of temporary tables 278

Initial allocation of tempdb 280

Sizing the tempdb 281

Placing tempdb 282

Dropping the master device from tempdb segments 282

Binding tempdb to its own cache 283

Temporary tables and locking 284

Minimizing logging in tempdb 285

Optimizing temporary tables 286

Types and uses of temporary tables

278 Adaptive Server Enterprise

• tempdb fills up frequently, generating error messages to users, who
must then resubmit their queries when space becomes available.

• Sorting is slow, and users do not understand why their queries have
such uneven performance.

• User queries are temporarily locked from creating temporary tables
because of locks on system tables.

• Heavy use of tempdb objects flushes other pages out of the data cache.

Main solution areas for tempdb performance
These main areas can be addressed easily:

• Sizing tempdb correctly for all Adaptive Server activity

• Placing tempdb optimally to minimize contention

• Binding tempdb to its own data cache

• Minimizing the locking of resources within tempdb

Types and uses of temporary tables
The use or misuse of user-defined temporary tables can greatly affect the
overall performance of Adaptive Server and your applications.

Temporary tables can be quite useful, often reducing the work the server
has to do. However, temporary tables can add to the size requirement of
tempdb. Some temporary tables are truly temporary, and others are
permanent.

tempdb is used for three types of tables:

• Truly temporary tables

• Regular user tables

• Worktables

CHAPTER 12 tempdb Performance Issues

Performance & Tuning: Optimizer and Abstract Plans 279

Truly temporary tables
You can create truly temporary tables by using “#” as the first character of
the table name:

create table #temptable (...)

or:

select select_list
 into #temptable ...

Temporary tables:

• Exist only for the duration of the user session or for the scope of the
procedure that creates them

• Cannot be shared between user connections

• Are automatically dropped at the end of the session or procedure (or
can be dropped manually)

When you create indexes on temporary tables, the indexes are stored in
tempdb:

create index tempix on #temptable(col1)

Regular user tables
You can create regular user tables in tempdb by specifying the database
name in the command that creates the table:

create table tempdb..temptable (...)

or:

select select_list
 into tempdb..temptable

Regular user tables in tempdb:

• Can persist across sessions

• Can be used by bulk copy operations

• Can be shared by granting permissions on them

• Must be explicitly dropped by the owner (otherwise, they are removed
when Adaptive Server is restarted)

You can create indexes in tempdb on permanent temporary tables:

Initial allocation of tempdb

280 Adaptive Server Enterprise

create index tempix on tempdb..temptable(col1)

Worktables
Worktables are automatically created in tempdb by Adaptive Server for
merge joins, sorts, and other internal server processes. These tables:

• Are never shared

• Disappear as soon as the command completes

Initial allocation of tempdb
When you install Adaptive Server, tempdb is 2MB, and is located
completely on the master device, as shown in Figure 12-1. This is
typically the first database that a System Administrator needs to make
larger. The more users on the server, the larger it needs to be. It can be
altered onto the master device or other devices. Depending on your needs,
you may want to stripe tempdb across several devices.

Figure 12-1: tempdb default allocation

Use sp_helpdb to see the size and status of tempdb. The following example
shows tempdb defaults at installation time:

sp_helpdb tempdb
name db_size owner dbid created status
--------- -------- ------ ------ ----------- --------------------
tempdb 2.0 MB sa 2 May 22, 1999 select into/bulkcopy

device_frag size usage free kbytes
------------ -------- ------------ ---------
master 2.0 MB data and log 1248

d_master

tempdb

(2MB)
data and log

CHAPTER 12 tempdb Performance Issues

Performance & Tuning: Optimizer and Abstract Plans 281

Sizing the tempdb
tempdb needs to be big enough to handle the following processes for every
concurrent Adaptive Server user:

• Worktables for merge joins

• Worktables that are created for distinct, group by, and order by, for
reformatting, and for the OR strategy, and for materializing some
views and subqueries

• Temporary tables (those created with “#” as the first character of their
names)

• Indexes on temporary tables

• Regular user tables in tempdb

• Procedures built by dynamic SQL

Some applications may perform better if you use temporary tables to split
up multitable joins. This strategy is often used for:

• Cases where the optimizer does not choose a good query plan for a
query that joins more than four tables

• Queries that join a very large number of tables

• Very complex queries

• Applications that need to filter data as an intermediate step

You might also use tempdb to:

• Denormalize several tables into a few temporary tables

• Normalize a denormalized table to do aggregate processing

For most applications, make tempdb 20 to 25% of the size of your user
databases to provide enough space for these uses.

Placing tempdb

282 Adaptive Server Enterprise

Placing tempdb
Keep tempdb on separate physical disks from your critical application
databases. Use the fastest disks available. If your platform supports solid
state devices and your tempdb use is a bottleneck for your applications, use
those devices. After you expand tempdb onto additional devices, drop the
master device from the system, default, and logsegment segments.

Although you can expand tempdb on the same device as the master
database,Sybase suggests that you use separate devices. Also, remember
that logical devices, but not databases, are mirrored using Adaptive Server
mirroring. If you mirror the master device, you create a mirror of all
portions of the databases that reside on the master device. If the mirror
uses serial writes, this can have a serious performance impact if your
tempdb database is heavily used.

Dropping the master device from tempdb segments
By default, the system, default, and logsegment segments for tempdb
include its 2MB allocation on the master device. When you allocate new
devices to tempdb, they automatically become part of all three segments.
Once you allocate a second device to tempdb, you can drop the master
device from the default and logsegment segments. This way, you can be
sure that the worktables and other temporary tables in tempdb do not
contend with other uses on the master device.

To drop the master device from the segments:

1 Alter tempdb onto another device, if you have not already done so. For
example:

alter database tempdb on tune3 = 20

2 Issue a use tempdb command, and then drop the master device from
the segments:

sp_dropsegment "default", tempdb, master
sp_dropdegment system, tempdb, master
sp_dropdegment logsegment, tempdb, master

3 To verify that the default segment no longer includes the master
device, issue this command:

select dbid, name, segmap

CHAPTER 12 tempdb Performance Issues

Performance & Tuning: Optimizer and Abstract Plans 283

from sysusages, sysdevices
where sysdevices.low <= sysusages.size + vstart
and sysdevices.high >= sysusages.size + vstart -1
and dbid = 2
and status & 2 = 2

The segmap column should report “1” for any allocations on the
master device, indicating that only the system segment still uses the
device:

 dbid name segmap
 ------ --------------- -----------
 2 master 1
 2 tune3 7

Using disks for parallel query performance
If tempdb spans multiple devices, as shown in Figure 12-2, you can take
advantage of parallel query performance for some temporary tables or
worktables.

Figure 12-2: tempdb spanning disks

Binding tempdb to its own cache
Under normal Adaptive Server use, tempdb makes heavy use of the data
cache as temporary tables are created, populated, and then dropped.

disk_2 disk_3

d_master

disk_1

tempdbtempdb

Temporary tables and locking

284 Adaptive Server Enterprise

Assigning tempdb to its own data cache:

• Keeps the activity on temporary objects from flushing other objects
out of the default data cache

• Helps spread I/O between multiple caches

See “Examining cache needs for tempdb” on page 232 for more
information.

Commands for cache binding
Use sp_cacheconfig and sp_poolconfig to create named data caches and to
configure pools of a given size for large I/O. Only a System Administrator
can configure caches and pools.

Note Reference to Large I/Os are on a 2K logical page size server. If you
have an 8K page size server, the basic unit for the I/O is 8K. If you have a
16K page size server, the basic unit for the I/O is 16K.

For instructions on configuring named caches and pools, see the System
Administration Guide.

Once the caches have been configured, and the server has been restarted,
you can bind tempdb to the new cache:

sp_bindcache "tempdb_cache", tempdb

Temporary tables and locking
Creating or dropping temporary tables and their indexes can cause lock
contention on the system tables in tempdb. When users create tables in
tempdb, information about the tables must be stored in system tables such
as sysobjects, syscolumns, and sysindexes. If multiple user processes are
creating and dropping tables in tempdb, heavy contention can occur on the
system tables. Worktables created internally do not store information in
system tables.

CHAPTER 12 tempdb Performance Issues

Performance & Tuning: Optimizer and Abstract Plans 285

If contention for tempdb system tables is a problem with applications that
must repeatedly create and drop the same set of temporary tables, try
creating the tables at the start of the application. Then use insert...select to
populate them, and truncate table to remove all the data rows. Although
insert...select requires logging and is slower than select into, it can provide
a solution to the locking problem.

Minimizing logging in tempdb
Even though the trunc log on checkpoint database option is turned on in
tempdb, changes to tempdb are still written to the transaction log. You can
reduce log activity in tempdb by:

• Using select into instead of create table and insert

• Selecting only the columns you need into the temporary tables

 With select into
When you create and populate temporary tables in tempdb, use the select
into command, rather than create table and insert...select, whenever
possible. The select into/bulkcopy database option is turned on by default
in tempdb to enable this behavior.

select into operations are faster because they are only minimally logged.
Only the allocation of data pages is tracked, not the actual changes for each
data row. Each data insert in an insert...select query is fully logged,
resulting in more overhead.

By using shorter rows
If the application creating tables in tempdb uses only a few columns of a
table, you can minimize the number and size of log records by:

• Selecting just the columns you need for the application, rather than
using select * in queries that insert data into the tables

• Limiting the rows selected to just the rows that the applications
requires

Optimizing temporary tables

286 Adaptive Server Enterprise

Both of these suggestions also keep the size of the tables themselves
smaller.

Optimizing temporary tables
Many uses of temporary tables are simple and brief and require little
optimization. But if your applications require multiple accesses to tables
in tempdb, you should examine them for possible optimization strategies.
Usually, this involves splitting out the creation and indexing of the table
from the access to it by using more than one procedure or batch. The only
requirements are:

• The table must contain data when the index is created. If you create
the temporary table and create the index on an empty table, Adaptive
Server does not create column statistics such as histograms and
densities. If you insert data rows after creating the index, the
optimizer has incomplete statistics.

• The optimizer may choose a suboptimal plan if rows have been added
or deleted since the index was created or since update statistics was
run.

When you create a table in the same stored procedure or batch where it is
used, the query optimizer cannot determine how large the table is, the table
has not yet been created when the query is optimized, as shown in
Figure 12-3. This applies to both temporary tables and regular user tables.

CHAPTER 12 tempdb Performance Issues

Performance & Tuning: Optimizer and Abstract Plans 287

Figure 12-3: Optimizing and creating temporary tables

The optimizer assumes that any such table has 10 data pages and 100 rows.
If the table is really large, this assumption can lead the optimizer to choose
a suboptimal query plan.

These two techniques can improve the optimization of temporary tables:

• Creating indexes on temporary tables

• Breaking complex use of temporary tables into multiple batches or
procedures to provide information for the optimizer

Creating indexes on temporary tables
You can define indexes on temporary tables. In many cases, these indexes
can improve the performance of queries that use tempdb. The optimizer
uses these indexes just like indexes on ordinary user tables. The only
requirements are:

Query optimized here

Table created here

Compile

Optimize

Parse and
Normalize

Query

Results

Execute

Optimize

Compile

Optimizing temporary tables

288 Adaptive Server Enterprise

• The table must contain data when the index is created. If you create
the temporary table and create the index on an empty table, Adaptive
Server does not create column statistics such as histograms and
densities. If you insert data rows after creating the index, the
optimizer has incomplete statistics.

• The index must exist while the query using it is optimized. You cannot
create an index and then use it in a query in the same batch or
procedure.

• The optimizer may choose a suboptimal plan if rows have been added
or deleted since the index was created or since update statistics was
run.

Providing an index for the optimizer can greatly increase performance,
especially in complex procedures that create temporary tables and then
perform numerous operations on them.

Creating nested procedures with temporary tables
You need to take an extra step to create the procedures described above.
You cannot create base_proc until select_proc exists, and you cannot
create select_proc until the temporary table exists. Here are the steps:

1 Create the temporary table outside the procedure. It can be empty; it
just needs to exist and to have columns that are compatible with
select_proc:

select * into #huge_result from ... where 1 = 2

2 Create the procedure select_proc, as shown above.

3 Drop #huge_result.

4 Create the procedure base_proc.

Breaking tempdb uses into multiple procedures
For example, this query causes optimization problems with #huge_result:

create proc base_proc
as
 select *
 into #huge_result
 from ...

CHAPTER 12 tempdb Performance Issues

Performance & Tuning: Optimizer and Abstract Plans 289

 select *
 from tab,
 #huge_result where ...

You can achieve better performance by using two procedures. When the
base_proc procedure calls the select_proc procedure, the optimizer can
determine the size of the table:

create proc select_proc
as
 select *
 from tab, #huge_result where ...
create proc base_proc
as
 select *
 into #huge_result
 from ...
 exec select_proc

If the processing for #huge_result requires multiple accesses, joins, or
other processes, such as looping with while, creating an index on
#huge_result may improve performance. Create the index in base_proc so
that it is available when select_proc is optimized.

Optimizing temporary tables

290 Adaptive Server Enterprise

Performance & Tuning: Optimizer and Abstract Plans 291

C H A P T E R 1 3 Cursors and Performance

This chapter discusses performance issues related to cursors. Cursors are
a mechanism for accessing the results of a SQL select statement one row
at a time (or several rows, if you use set cursors rows). Since cursors use
a different model from ordinary set-oriented SQL, the way cursors use
memory and hold locks has performance implications for your
applications. In particular, cursor performance issues includes locking at
the page and at the table level, network resources, and overhead of
processing instructions.

Definition
A cursor is a symbolic name that is associated with a select statement. It
enables you to access the results of a select statement one row at a time.
Figure 13-1 shows a cursor accessing the authors table.

Topic Page
Definition 291

Resources required at each stage 294

Cursor modes 297

Index use and requirements for cursors 297

Comparing performance with and without cursors 299

Locking with read-only cursors 302

Isolation levels and cursors 304

Partitioned heap tables and cursors 304

Optimizing tips for cursors 305

Definition

292 Adaptive Server Enterprise

Figure 13-1: Cursor example

You can think of a cursor as a “handle” on the result set of a select
statement. It enables you to examine and possibly manipulate one row at
a time.

Set-oriented versus row-oriented programming
SQL was conceived as a set-oriented language. Adaptive Server is
extremely efficient when it works in set-oriented mode. Cursors are
required by ANSI SQL standards; when they are needed, they are very
powerful. However, they can have a negative effect on performance.

For example, this query performs the identical action on all rows that
match the condition in the where clause:

update titles
 set contract = 1
where type = ’business’

The optimizer finds the most efficient way to perform the update. In
contrast, a cursor would examine each row and perform single-row
updates if the conditions were met. The application declares a cursor for a
select statement, opens the cursor, fetches a row, processes it, goes to the
next row, and so forth. The application may perform quite different
operations depending on the values in the current row, and the server’s
overall use of resources for the cursor application may be less efficient
than the server’s set level operations. However, cursors can provide more
flexibility than set-oriented programming.

Figure 13-2 shows the steps involved in using cursors. The function of
cursors is to get to the middle box, where the user or application code
examines a row and decides what to do, based on its values.

Result setCursor with select * from authors
where state = ’KY’

Programming can:
- Examine a row
- Take an action based on row values

 A978606525 Marcello Duncan KY

 A937406538 Carton Nita KY

 A1525070956 Porczyk Howard KY

 A913907285 Bier Lane KY

CHAPTER 13 Cursors and Performance

Performance & Tuning: Optimizer and Abstract Plans 293

Figure 13-2: Cursor flowchart

Example
Here is a simple example of a cursor with the “Process Rows” step shown
above in pseudocode:

declare biz_book cursor
 for select * from titles
 where type = ’business’
go
open biz_book
go
fetch biz_book
go
/* Look at each row in turn and perform
** various tasks based on values,

Declare cursor

Open cursor

Fetch row

Process row
(Examine/Update/Delete)

No

Yes

Close cursor

Deallocate cursor

Get next
row?

Resources required at each stage

294 Adaptive Server Enterprise

** and repeat fetches, until
** there are no more rows
*/
close biz_book
go
deallocate cursor biz_book
go

Depending on the content of the row, the user might delete the current row:

delete titles where current of biz_book

or update the current row:

update titles set title="The Rich
 Executive’s Database Guide"
where current of biz_book

Resources required at each stage
Cursors use memory and require locks on tables, data pages, and index
pages. When you open a cursor, memory is allocated to the cursor and to
store the query plan that is generated. While the cursor is open, Adaptive
Server holds intent table locks and sometimes row or page locks.
Figure 13-3 shows the duration of locks during cursor operations.

CHAPTER 13 Cursors and Performance

Performance & Tuning: Optimizer and Abstract Plans 295

Figure 13-3: Resource use by cursor statement

The memory resource descriptions in Figure 13-3 and Table 13-1 refer to
ad hoc cursors for queries sent by isql or Client-Library™. For other kinds
of cursors, the locks are the same, but the memory allocation and
deallocation differ somewhat depending on the type of cursor being used,
as described in “Memory use and execute cursors” on page 296.

page
locks

Memory

Declare cursor

Open cursor

Fetch row

Process row
(Examine/Update/Delete)

No

Yes

Close cursor

Deallocate cursor

Get next
row?

Table
locks
(intent);
some
row or

locks
page

Row
or

Resources required at each stage

296 Adaptive Server Enterprise

Table 13-1: Locks and memory use for isql and Client-Library client
cursors

Memory use and execute cursors
The descriptions of declare cursor and deallocate cursor in Table 13-1 refer
to ad hoc cursors that are sent by isql or Client-Library. Other kinds of
cursors allocate memory differently:

• For cursors that are declared on stored procedures, only a small
amount of memory is allocated at declare cursor time. Cursors
declared on stored procedures are sent using Client-Library or the
precompiler and are known as execute cursors.

• For cursors declared within a stored procedure, memory is already
available for the stored procedure, and the declare statement does not
require additional memory.

Cursor
command Resource use

declare cursor When you declare a cursor, Adaptive Server uses only
enough memory to store the query text.

open When you open a cursor, Adaptive Server allocates
memory to the cursor and to store the query plan that is
generated. The server optimizes the query, traverses
indexes, and sets up memory variables. The server does not
access rows yet, unless it needs to build worktables.
However, it does set up the required table-level locks (intent
locks). Row and page locking behavior depends on the
isolation level, server configuration, and query type.

See System Administration Guide for more information.

fetch When you execute a fetch, Adaptive Server gets the row(s)
required and reads specified values into the cursor variables
or sends the row to the client. If the cursor needs to hold
lock on rows or pages, the locks are held until a fetch moves
the cursor off the row or page or until the cursor is closed.
The lock is either a shared or an update lock, depending on
how the cursor is written.

close When you close a cursor, Adaptive Server releases the locks
and some of the memory allocation. You can open the
cursor again, if necessary.

deallocate cursor When you deallocate a cursor, Adaptive Server releases the
rest of the memory resources used by the cursor. To reuse
the cursor, you must declare it again.

CHAPTER 13 Cursors and Performance

Performance & Tuning: Optimizer and Abstract Plans 297

Cursor modes
There are two cursor modes: read-only and update. As the names suggest,
read-only cursors can only display data from a select statement; update
cursors can be used to perform positioned updates and deletes.

Read-only mode uses shared page or row locks. If read committed with lock
is set to 0, and the query runs at isolation level 1, it uses instant duration
locks, and does not hold the page or row locks until the next fetch.

Read-only mode is in effect when you specify for read only or when the
cursor’s select statement uses distinct, group by, union, or aggregate
functions, and in some cases, an order by clause.

Update mode uses update page or row locks. It is in effect when:

• You specify for update.

• The select statement does not include distinct, group by, union, a
subquery, aggregate functions, or the at isolation read uncommitted
clause.

• You specify shared.

If column_name_list is specified, only those columns are updatable.

For more information on locking during cursor processing, see System
Administration Guide.

Specify the cursor mode when you declare the cursor. If the select
statement includes certain options, the cursor is not updatable even if you
declare it for update.

Index use and requirements for cursors
When a query is used in a cursor, it may require or choose different indexes
than the same query used outside of a cursor.

Allpages-locked tables
For read-only cursors, queries at isolation level 0 (dirty reads) require a
unique index. Read-only cursors at isolation level 1 or 3 should produce
the same query plan as the select statement outside of a cursor.

Index use and requirements for cursors

298 Adaptive Server Enterprise

The index requirements for updatable cursors mean that updatable cursors
may use different query plans than read-only cursors. Update cursors have
these indexing requirements:

• If the cursor is not declared for update, a unique index is preferred
over a table scan or a nonunique index.

• If the cursor is declared for update without a for update of list, a unique
index is required on allpages-locked tables. An error is raised if no
unique index exists.

• If the cursor is declared for update with a for update of list, then only
a unique index without any columns from the list can be chosen on an
allpages-locked table. An error is raised if no unique index qualifies.

When cursors are involved, an index that contains an IDENTITY column
is considered unique, even if the index is not declared unique. In some
cases, IDENTITY columns must be added to indexes to make them
unique, or the optimizer might be forced to choose a suboptimal query
plan for a cursor query.

Data-only-locked tables
In data-only-locked tables, fixed row IDs are used to position cursor scans,
so unique indexes are not required for dirty reads or updatable cursors. The
only cause for different query plans in updatable cursors is that table scans
are used if columns from only useful indexes are included in the for update
of list.

Table scans to avoid the Halloween problem

The Halloween problem is an update anomaly that can occur when a client
using a cursor updates a column of the cursor result-set row, and that
column defines the order in which the rows are returned from the table. For
example, if a cursor was to use an index on last_name, first_name, and
update one of these columns, the row could appear in the result set a
second time.

To avoid the Halloween problem on data-only-locked tables, Adaptive
Server chooses a table scan when the columns from an otherwise useful
index are included in the column list of a for update clause.

CHAPTER 13 Cursors and Performance

Performance & Tuning: Optimizer and Abstract Plans 299

For implicitly updatable cursors declared without a for update clause, and
for cursors where the column list in the for update clause is empty, cursors
that update a column in the index used by the cursor may encounter the
Halloween problem.

Comparing performance with and without cursors
This section examines the performance of a stored procedure written two
different ways:

• Without a cursor – this procedure scans the table three times,
changing the price of each book.

• With a cursor – this procedure makes only one pass through the table.

In both examples, there is a unique index on titles(title_id).

Sample stored procedure without a cursor
This is an example of a stored procedure without cursors:

/* Increase the prices of books in the
** titles table as follows:
**
** If current price is <= $30, increase it by 20%
** If current price is > $30 and <= $60, increase
** it by 10%
** If current price is > $60, increase it by 5%
**
** All price changes must take effect, so this is
** done in a single transaction.
*/

create procedure increase_price
as

 /* start the transaction */
 begin transaction
 /* first update prices > $60 */
 update titles
 set price = price * 1.05
 where price > $60

Comparing performance with and without cursors

300 Adaptive Server Enterprise

 /* next, prices between $30 and $60 */
 update titles
 set price = price * 1.10
 where price > $30 and price <= $60

 /* and finally prices <= $30 */
 update titles
 set price = price * 1.20
 where price <= $30

 /* commit the transaction */
 commit transaction

return

Sample stored procedure with a cursor
This procedure performs the same changes to the underlying table as the
procedure written without a cursor, but it uses cursors instead of set-
oriented programming. As each row is fetched, examined, and updated, a
lock is held on the appropriate data page. Also, as the comments indicate,
each update commits as it is made, since there is no explicit transaction.

/* Same as previous example, this time using a
** cursor. Each update commits as it is made.
*/
create procedure increase_price_cursor
as
declare @price money

/* declare a cursor for the select from titles */
declare curs cursor for
 select price
 from titles
 for update of price

/* open the cursor */
open curs

/* fetch the first row */
fetch curs into @price

/* now loop, processing all the rows
** @@sqlstatus = 0 means successful fetch

CHAPTER 13 Cursors and Performance

Performance & Tuning: Optimizer and Abstract Plans 301

** @@sqlstatus = 1 means error on previous fetch
** @@sqlstatus = 2 means end of result set reached
*/
while (@@sqlstatus != 2)
begin
 /* check for errors */
 if (@@sqlstatus = 1)
 begin
 print "Error in increase_price"
 return
 end

 /* next adjust the price according to the
 ** criteria
 */
 if @price > $60
 select @price = @price * 1.05
 else
 if @price > $30 and @price <= $60
 select @price = @price * 1.10
 else
 if @price <= $30
 select @price = @price * 1.20

 /* now, update the row */
 update titles
 set price = @price
 where current of curs

 /* fetch the next row */
 fetch curs into @price
end

/* close the cursor and return */
close curs
return

Which procedure do you think will have better performance, one that
performs three table scans or one that performs a single scan via a cursor?

Cursor versus noncursor performance comparison
Table 13-2 shows statistics gathered against a 5000-row table. The cursor
code takes over 4 times longer, even though it scans the table only once.

Locking with read-only cursors

302 Adaptive Server Enterprise

Table 13-2: Sample execution times against a 5000-row table

Results from tests like these can vary widely. They are most pronounced
on systems that have busy networks, a large number of active database
users, and multiple users accessing the same table.

In addition to locking, cursors involve more network activity than set
operations and incur the overhead of processing instructions. The
application program needs to communicate with Adaptive Server
regarding every result row of the query. This is why the cursor code took
much longer to complete than the code that scanned the table three times.

Cursor performance issues include:

• Locking at the page and table level

• Network resources

• Overhead of processing instructions

If there is a set-level programming equivalent, it may be preferable, even
if it involves multiple table scans.

Locking with read-only cursors
Here is a piece of cursor code you can use to display the locks that are set
up at each point in the life of a cursor. The following example uses an
allpages-locked table. Execute the code in Figure 13-4, and pause at the
arrows to execute sp_lock and examine the locks that are in place.

Procedure Access method Time

increase_price Uses three table scans 28 seconds

increase_price_cursor Uses cursor, single table
scan

125 seconds

CHAPTER 13 Cursors and Performance

Performance & Tuning: Optimizer and Abstract Plans 303

Figure 13-4: Read-only cursors and locking experiment input

Table 13-3 shows the results.

Table 13-3: Locks held on data and index pages by cursors

If you issue another fetch command after the last row of the result set has
been fetched, the locks on the last page are released, so there will be no
cursor-related locks.

With a data-only-locked table:

• If the cursor query runs at isolation level 1, and read committed with
lock is set to 0, you do not see any page or row locks. The values are
copied from the page or row, and the lock is immediately released.

• If read committed with lock is set to 1 or if the query runs at isolation
level 2 or 3, you see either shared page or shared row locks at the point
that Table 13-3 indicates shared page locks. If the table uses datarows
locking, the sp_lock report includes the row ID of the fetched row.

Event Data page

After declare No cursor-related locks.

After open Shared intent lock on authors.

After first fetch Shared intent lock on authors and shared page lock on
a page in authors.

After 100 fetches Shared intent lock on authors and shared page lock on
a different page in authors.

After close No cursor-related locks.

declare curs1 cursor for
select au_id, au_lname, au_fname
 from authors
 where au_id like ’15%’
 for read only
go
open curs1
go
fetch curs1
go
fetch curs1
go 100
close curs1
go
deallocate cursor curs1
go

Isolation levels and cursors

304 Adaptive Server Enterprise

Isolation levels and cursors
The query plan for a cursor is compiled and optimized when the cursor is
opened. You cannot open a cursor and then use set transaction isolation
level to change the isolation level at which the cursor operates.

Since cursors using isolation level 0 are compiled differently from those
using other isolation levels, you cannot open a cursor at isolation level 0
and open or fetch from it at level 1 or 3. Similarly, you cannot open a
cursor at level 1 or 3 and then fetch from it at level 0. Attempts to fetch
from a cursor at an incompatible level result in an error message.

Once the cursor has been opened at a particular isolation level, you must
deallocate the cursor before changing isolation levels. The effects of
changing isolation levels while the cursor is open are as follows:

• Attempting to close and reopen the cursor at another isolation level
fails with an error message.

• Attempting to change isolation levels without closing and reopening
the cursor has no effect on the isolation level in use and does not
produce an error message.

You can include an at isolation clause in the cursor to specify an isolation
level. The cursor in the example below can be declared at level 1 and
fetched from level 0 because the query plan is compatible with the
isolation level:

declare cprice cursor for
select title_id, price
 from titles
 where type = "business"
 at isolation read uncommitted

Partitioned heap tables and cursors
A cursor scan of an unpartitioned heap table can read all data up to and
including the final insertion made to that table, even if insertions took
place after the cursor scan started.

CHAPTER 13 Cursors and Performance

Performance & Tuning: Optimizer and Abstract Plans 305

If a heap table is partitioned, data can be inserted into one of the many page
chains. The physical insertion point may be before or after the current
position of a cursor scan. This means that a cursor scan against a
partitioned table is not guaranteed to scan the final insertions made to that
table.

Note If your cursor operations require all inserts to be made at the end of
a single page chain, do not partition the table used in the cursor scan.

Optimizing tips for cursors
Here are several optimizing tips for cursors:

• Optimize cursor selects using the cursor, not an ad hoc query.

• Use union or union all instead of or clauses or in lists.

• Declare the cursor’s intent.

• Specify column names in the for update clause.

• Fetch more than one row if you are returning rows to the client.

• Keep cursors open across commits and rollbacks.

• Open multiple cursors on a single connection.

Optimizing for cursor selects using a cursor
A standalone select statement may be optimized very differently than the
same select statement in an implicitly or explicitly updatable cursor. When
you are developing applications that use cursors, always check your query
plans and I/O statistics using the cursor, rather than using a standalone
select. In particular, index restrictions of updatable cursors require very
different access methods.

Optimizing tips for cursors

306 Adaptive Server Enterprise

Using union instead of or clauses or in lists
Cursors cannot use the dynamic index of row IDs generated by the OR
strategy. Queries that use the OR strategy in standalone select statements
usually perform table scans using read-only cursors. Updatable cursors
may need to use a unique index and still require access to each data row,
in sequence, in order to evaluate the query clauses.

See “Access Methods and Costing for or and in Clauses” on page 85 in
the book Performance and Tuning: Optimizer for more information.

A read-only cursor using union creates a worktable when the cursor is
declared, and sorts it to remove duplicates. Fetches are performed on the
worktable. A cursor using union all can return duplicates and does not
require a worktable.

Declaring the cursor’s intent
Always declare a cursor’s intent: read-only or updatable. This gives you
greater control over concurrency implications. If you do not specify the
intent, Adaptive Server decides for you, and very often it chooses
updatable cursors. Updatable cursors use update locks, thereby preventing
other update locks or exclusive locks. If the update changes an indexed
column, the optimizer may need to choose a table scan for the query,
resulting in potentially difficult concurrency problems. Be sure to examine
the query plans for queries that use updatable cursors.

Specifying column names in the for update clause
Adaptive Server acquires update locks on the pages or rows of all tables
that have columns listed in the for update clause of the cursor select
statement. If the for update clause is not included in the cursor declaration,
all tables referenced in the from clause acquire update locks.

The following query includes the name of the column in the for update
clause, but acquires update locks only on the titles table, since price is
mentioned in the for update clause. The table uses allpages locking. The
locks on authors and titleauthor are shared page locks:

declare curs3 cursor
for
select au_lname, au_fname, price
 from titles t, authors a,

CHAPTER 13 Cursors and Performance

Performance & Tuning: Optimizer and Abstract Plans 307

 titleauthor ta
where advance <= $1000
 and t.title_id = ta.title_id
 and a.au_id = ta.au_id
for update of price

Table 13-4 shows the effects of:

• Omitting the for update clause entirely—no shared clause

• Omitting the column name from the for update clause

• Including the name of the column to be updated in the for update
clause

• Adding shared after the name of the titles table while using for update
of price

In this table, the additional locks, or more restrictive locks for the two
versions of the for update clause are emphasized.

Table 13-4: Effects of for update clause and shared on cursor
locking

Using set cursor rows
The SQL standard specifies a one-row fetch for cursors, which wastes
network bandwidth. Using the set cursor rows query option and Open
Client’s transparent buffering of fetches, you can improve performance:

ct_cursor(CT_CURSOR_ROWS)

Be careful when you choose the number of rows returned for frequently
executed applications using cursors—tune them to the network.

Clause titles authors titleauthor

None

sh_page on data

sh_page on index

sh_page on data sh_page on data

for update updpage on index

updpage on data

updpage on index

updpage on data updpage on data

for update of
price updpage on data

sh_page on index

sh_page on data sh_page on data

for update of
price
+ shared

sh_page on data

sh_page on index

sh_page on data sh_page on data

Optimizing tips for cursors

308 Adaptive Server Enterprise

See “Changing network packet sizes” on page 27 for an explanation of
this process.

Keeping cursors open across commits and rollbacks
ANSI closes cursors at the conclusion of each transaction. Transact- SQL
provides the set option close on endtran for applications that must meet
ANSI behavior. By default, however, this option is turned off. Unless you
must meet ANSI requirements, leave this option off to maintain
concurrency and throughput.

If you must be ANSI-compliant, decide how to handle the effects on
Adaptive Server. Should you perform a lot of updates or deletes in a single
transaction? Or should you keep the transactions short?

If you choose to keep transactions short, closing and opening the cursor
can affect throughput, since Adaptive Server needs to rematerialize the
result set each time the cursor is opened. Choosing to perform more work
in each transaction, this can cause concurrency problems, since the query
holds locks.

Opening multiple cursors on a single connection
Some developers simulate cursors by using two or more connections from
DB-Library™. One connection performs a select and the other performs
updates or deletes on the same tables. This has very high potential to create
application deadlocks. For example:

• Connection A holds a shared lock on a page. As long as there are rows
pending from Adaptive Server, a shared lock is kept on the current
page.

• Connection B requests an exclusive lock on the same pages and then
waits.

• The application waits for Connection B to succeed before invoking
whatever logic is needed to remove the shared lock. But this never
happens.

Since Connection A never requests a lock that is held by Connection B,
this is not a server-side deadlock.

Performance & Tuning: Optimizer and Abstract Plans 309

C H A P T E R 1 4 Overview on Abstract Plans

This chapter provides an overview of abstract plans.

Definition
Adaptive Server can generate an abstract plan for a query, and save the
text and its associated abstract plan in the sysqueryplans system table.
Using a rapid hashing method, incoming SQL queries can be compared to
saved query text, and if a match is found, the corresponding saved abstract
plan is used to execute the query.

An abstract plan describes the execution plan for a query using a language
created for that purpose. This language contains operators to specify the
choices and actions that can be generated by the optimizer. For example,
to specify an index scan on the titles table, using the index title_id_ix, the
abstract plan says:

(i_scan title_id_ix titles)

Abstract plans provide a means for System Administrators and
performance tuners to protect the overall performance of a server from
changes to query plans. Changes in query plans can arise due to:

• Adaptive Server software upgrades that affect optimizer choices and
query plans

• New Adaptive Server features that change query plans

Topic Page
Definition 309

Managing abstract plans 310

Relationship between query text and query plans 310

Full versus partial plans 311

Abstract plan groups 313

How abstract plans are associated with queries 314

Managing abstract plans

310 Adaptive Server Enterprise

• Changing tuning options such as the parallel degree, table
partitioning, or indexing

The major purpose of abstract plans is to provide a means to capture query
plans before and after major system changes. The sets of before-and-after
query plans can be compared to determine the effects of changes on your
queries. Other uses include:

• Searching for specific types of plans, such as table scans or
reformatting

• Searching for plans that use particular indexes

• Specifying full or partial plans for poorly-performing queries

• Saving plans for queries with long optimization times

Abstract plans provide an alternative to options that must be specified in
the batch or query in order to influence optimizer decisions. Using abstract
plans, you can influence the optimization of a SQL statement without
having to modify the statement syntax. While matching query text to
stored text requires some processing overhead, using a saved plan reduces
query optimization overhead.

Managing abstract plans
A full set of system procedures allows System Administrators and
Database Owners to administer plans and plan groups. Individual users
can view, drop, and copy the plans for the queries that they have run.

See Chapter 17, “Managing Abstract Plans with System Procedures,”

Relationship between query text and query plans
For most SQL queries, there are many possible query execution plans.
SQL describes the desired result set, but does not describe how that result
set should be obtained from the database. Consider a query that joins three
tables, such as this:

select t1.c11, t2.c21
from t1, t2, t3

CHAPTER 14 Overview on Abstract Plans

Performance & Tuning: Optimizer and Abstract Plans 311

where t1.c11 = t2.c21
and t1.c11 = t3.c31

There are many different possible join orders, and depending on the
indexes that exist on the tables, many possible access methods, including
table scans, index scans, and the reformatting strategy. Each join may use
either a nested-loop join or a merge join. These choices are determined by
the optimizer’s query costing algorithms, and are not included in or
specified in the query itself.

When you capture the abstract plan, the query is optimized in the usual
way, except that the optimizer also generates an abstract plan, and saves
the query text and abstract plan in sysqueryplans.

Limits of options for influencing query plans
Adaptive Server provides other options for influencing optimizer choices:

• Session-level options such as set forceplan to force join order or set
parallel_degree to specify the maximum number of worker processes
to use for the query

• Options that can be included in the query text to influence the index
choice, cache strategy, and parallel degree

There are some limitations to using set commands or adding hints to the
query text:

• Not all query plan steps can be influenced, for example, subquery
attachment

• Some query-generating tools do not support the in-query options or
require all queries to be vendor-independent

Full versus partial plans
Abstract plans can be full plans, describing all query processing steps and
options, or they can be partial plans. A partial plan might specify that an
index is to be used for the scan of a particular table, without specifying the
index name or the join order for the query. For example:

select t1.c11, t2.c21
from t1, t2, t3

Full versus partial plans

312 Adaptive Server Enterprise

where t1.c11 = t2.c21
and t1.c11 = t3.c31

The full abstract plan includes:

• The join type, either nl_g_join for nested-loop joins, or m_g_join for
merge joins. The plan for this query specifies a nested-loop join.

• The join order, included in the nl_g_join clause.

• The type of scan, t_scan for table scan or i_scan for index scan.

• The name of the index chosen for the tables that are accessed via an
index scan.

• The scan properties: the parallel degree, I/O size, and cache strategy
for each table in the query.

The abstract plan for the query above specifies the join order, the access
method for each table in the query, and the scan properties for each table:

(nl_g_join
 (t_scan t2)
 (i_scan t1_c11_ix t1)
 (i_scan t3_c31_ix t3)
)
(prop t3
 (parallel 1)
 (prefetch 16)
 (lru)
)
(prop t1
 (parallel 1)
 (prefetch 16)
 (lru)
)
(prop t2
 (parallel 1)
 (prefetch 16)
 (lru)
)

Chapter 18, “Abstract Plan Language Reference,” provides a reference to
the abstract plan language and syntax.

CHAPTER 14 Overview on Abstract Plans

Performance & Tuning: Optimizer and Abstract Plans 313

Creating a partial plan
When abstract plans are captured, full abstract plans are generated and
stored. You can write partial plans to affect only a subset of the optimizer
choices. If the query above had not used the index on t3, but all other parts
of the query plan were optimal, you could create a partial plan for the
query using the create plan command. This partial plan specifies only the
index choice for t3:

create plan
"select t1.c11, t2.c21
from t1, t2, t3
where t1.c11 = t2.c21
and t1.c11 = t3.c31"
"(i_scan t3_c31_ix t3)"

You can also create abstract plans with the plan clause for select, delete,
update, and other commands that can be optimized.

See “Creating plans using SQL” on page 350.

Abstract plan groups
When you first install Adaptive Server, there are two abstract plan groups:

• ap_stdout, used by default for capturing plans

• ap_stdin, used by default for plan association

A System Administrator can enable server-wide plan capture to ap_stdout,
so that all query plans for all queries are captured. Server-wide plan
association uses queries and plans from ap_stdin. If some queries require
specially-tuned plans, they can be made available server-wide.

A System Administrator or Database Owner can create additional plan
groups, copy plans from one group to another, and compare plans in two
different groups.

The capture of abstract plans and the association of abstract plans with
queries always happens within the context of the currently-active plan
group. Users can use session-level set commands to enable plan capture
and association.

Some of the ways abstract plan groups can be used are:

How abstract plans are associated with queries

314 Adaptive Server Enterprise

• A query tuner can create abstract plans in a group created for testing
purposes without affecting plans for other users on the system

• Using plan groups, “before” and “after” sets of plans can be used to
determine the effects of system or upgrade changes on query
optimization.

See Chapter 16, “Creating and Using Abstract Plans,” for information on
enabling the capture and association of plans.

How abstract plans are associated with queries
When an abstract plan is saved, all white space (returns, tabs, and multiple
spaces) in the query is trimmed to a single space, and a hash-key value is
computed for the white-space trimmed SQL statement. The trimmed SQL
statement and the hash key are stored in sysqueryplans along with the
abstract plan, a unique plan ID, the user’s ID, and the ID of the current
abstract plan group.

When abstract plan association is enabled, the hash key for incoming SQL
statements is computed, and this value is used to search for the matching
query and abstract plan in the current association group, with the
corresponding user ID. The full association key of an abstract plans
consists of:

• The user ID of the current user

• The group ID of the current association group

• The full query text

Once a matching hash key is found, the full text of the saved query is
compared to the query to be executed, and used if it matches.

The association key combination of user ID, group ID and query text
means that for a given user, there cannot be two queries in the same
abstract plan group that have the same query text, but different query
plans.

Performance & Tuning: Optimizer and Abstract Plans 315

C H A P T E R 1 5 Abstract Query Plan Guide

This chapter covers some guidelines you can use in writing Abstract
Plans.

Introduction
Abstract plans allow you to specify the desired execution plan of a query.
Abstract plans provide an alternative to the session-level and query level
options that force a join order, or specify the index, I/O size, or other query
execution options. The session-level and query-level options are
described in Chapter 16, “Creating and Using Abstract Plans.”

There are several optimization decisions that cannot be specified with set
commands or clauses included in the query text. Some examples are:

• Subquery attachment

• The join order for flattened subqueries

• Reformatting

In many cases, including set commands or changing the query text is not
always possible or desired. Abstract plans provide an alternative, more
complete method of influencing optimizer decisions.

Abstract plans are relational algebra expressions that are not included in
the query text. They are stored in a system catalog and associated to
incoming queries based on the text of these queries.

Topic Page
Introduction 315

Tips on writing abstract plans 337

Comparing plans “before” and “after” 338

Abstract plans for stored procedures 340

Ad Hoc queries and abstract plans 342

Introduction

316 Adaptive Server Enterprise

The tables used in this section are the same as those in Chapter 18,
“Abstract Plan Language Reference.” See “Schema for examples” on
page 372 for the create table and create index statements.

Abstract plan language
The abstract plan language is a relational algebra that uses these operators:

• g_join, the generic join, a high-level logical join operator. It describes
inner, outer and existence joins, using either nested-loop joins or sort-
merge joins.

• nl_g_join, specifying a nested-loop join, including all inner, outer, and
existence joins

• m_g_join, specifying a merge join, including inner and outer joins.

• union, a logical union operator. It describes both the union and the
union all SQL constructs.

• scan, a logical operator that transforms a stored table in a flow of
rows, an abstract plan derived table. It allows partial plans that do not
restrict the access method.

• i_scan, a physical operator, implementing scan. It directs the
optimizer to use an index scan on the specified table.

• t_scan, a physical operator, implementing scan. It directs the
optimizer to use a full table scan on the specified table.

• store, a logical operator, describing the materialization of an abstract
plan derived table in a stored worktable.

• nested, a filter, describing the placement and structure of nested
subqueries.

See “Schema for examples” on page 372 for the create table and create
index commands used for the examples in this section.

Additional abstract plan keywords are used for grouping and
identification:

• plan groups the elements when a plan requires multiple steps.

• hints groups a set of hints for a partial plan.

• prop introduces a set of scan properties for a table: prefetch, lru|mru
and parallel.

CHAPTER 15 Abstract Query Plan Guide

Performance & Tuning: Optimizer and Abstract Plans 317

• table identifies a table when correlation names are used, and in
subqueries or views.

• work_t identifies a worktable.

• in, used with table, for identifying tables named in a subquery (subq)
or view (view).

• subq is also used under the nested operator to indicate the attachment
point for a nested subquery, and to introduce the subqueries abstract
plan.

Queries, access methods, and abstract plans

For any specific table, there can be several access methods for a specific
query: index scans using different indexes, table scans, the OR strategy,
and reformatting are some examples.

This simple query has several choices of access methods:

select * from t1
where c11 > 1000 and c12 < 0

The following abstract plans specify three different access methods:

• Use the index i_c11:

(i_scan i_c11 t1)

• Use the index i_c12:

(i_scan i_c12 t1)

• Do a full table scan:

(t_scan t1)

Abstract plans can be full plans, specifying all optimizer choices for a
query, or can specify a subset of the choices, such as the index to use for a
single table in the query, but not the join order for the tables. For example,
using a partial abstract plan, you can specify that the query above should
use some index and let the optimizer choose between i_c11 and i_c12, but
not do a full table scan. The empty parentheses are used in place of the
index name:

(i_scan () t1)

In addition, the query could use either 2K or 16K I/O, or be performed in
serial or parallel.

Introduction

318 Adaptive Server Enterprise

Derived tables

A derived table is defined by the evaluation of a query expression and
differs from a regular table in that it is neither described in system catalogs
nor stored on disk. In Adaptive Server, a derived table may be a SQL
derived table or an abstract plan derived table.

• A SQL derived table is defined by one or more tables through the
evaluation of a query expression. A SQL derived table is used in the
query expression in which it is defined and exists only for the duration
of the query. For more information on SQL derived tables, see the
Transact-SQL User’s Guide.

• An abstract plan derived table is a derived table used in query
processing, the optimization and execution of queries. An abstract
plan derived table differs from a SQL derived table in that it exists as
part of an abstract plan and is invisible to the end user.

Identifying tables
Abstract plans need to name all of a query’s tables in a non-ambiguous
way, such that a table named in the abstract can be linked to its occurrence
in the SQL query. In most cases, the table name is all that is needed. If the
query qualifies the table name with the database and owner name, these
are also needed to fully identify a table in the abstract plan. For example,
this example used the unqualified table name:

select * from t1

The abstract plan also uses the unqualified name:

(t_scan t1)

If a database name and/or owner name are provided in the query:

select * from pubs2.dbo.t1

Then the abstract plan must also use the qualifications:

(t_scan pubs2.dbo.t1)

However, the same table may occur several times in the same query, as in
this example:

select * from t1 a, t1 b

CHAPTER 15 Abstract Query Plan Guide

Performance & Tuning: Optimizer and Abstract Plans 319

Correlation names, a and b in the example above, identify the two tables
in SQL. In an abstract plan, the table operator associates each correlation
name with the occurrence of the table:

(g_join
 (t_scan (table (a t1)))
 (t_scan (table (b t1)))
)

Table names can also be ambiguous in views and subqueries, so the table
operator is used for tables in views and subqueries.

For subqueries, the in and subq operators qualify the name of the table with
its syntactical containment by the subquery. The same table is used in the
outer query and the subquery in this example:

select *
from t1
where c11 in (select c12 from t1 where c11 > 100)

The abstract plan identifies them unambiguously:

(g_join
 (t_scan t1)
 (i_scan i_c11_c12 (table t1 (in (subq 1))))
)

For views, the in and view operators provide the identification. The query
in this example references a table used in the view:

create view v1
as
select * from t1 where c12 > 100
select t1.c11 from t1, v1
 where t1.c12 = v1.c11

Here is the abstract plan:

(g_join
 (t_scan t1)
 (i_scan i_c12 (table t1 (in (view v1))))
)

Identifying indexes
The i_scan operator requires two operands, the index name and the table
name, as shown here:

Introduction

320 Adaptive Server Enterprise

(i_scan i_c12 t1)

To specify that some index should be used, without specifying the index,
substitute empty parenthesis for the index name:

(i_scan () t1)

Specifying join order
Adaptive Server performs joins of three or more tables by joining two of
the tables, and joining the “abstract plan derived table” from that join to
the next table in the join order. This abstract plan derived table is a flow of
rows, as from an earlier nested-loop join in the query execution.

This query joins three tables:

select *
from t1, t2, t3
where c11 = c21
 and c12 = c31
 and c22 = 0
 and c32 = 100

This example shows the binary nature of the join algorithm, using g_join
operators. The plan specifies the join order t2, t1, t3:

(g_join
 (g_join
 (scan t2)
 (scan t1)
)
 (scan t3)
)

The results of the t2-t1 join are then joined to t3. The scan operator in this
example leaves the choice of table scan or index scan up to the optimizer.

Shorthand notation for joins

In general, a N-way join, with the order t1, t2, t3..., tN-1, tN is described by:

(g_join
 (g_join
 ...
 (g_join
 (g_join
 (scan t1)

CHAPTER 15 Abstract Query Plan Guide

Performance & Tuning: Optimizer and Abstract Plans 321

 (scan t2)
)
 (scan t3)
)
 ...
 (scan tN-1)
)
 (scan tN)
)

This notation can be used as shorthand for the g_join operator:

(g_join
 (scan t1)
 (scan t2)
 (scan t3)
 ...
 (scan tN-1)
 (scan tN)
)

This notation can be used for g_join, and nl_g_join, and m_g_join.

Join order examples

The optimizer could select among several plans for this three-way join
query:

select *
from t1, t2, t3
where c11 = c21
 and c12 = c31
 and c22 = 0
 and c32 = 100

Here are a few examples:

• Use c22 as a search argument on t2, join with t1 on c11, then with t3
on c31:

(g_join
 (i_scan i_c22 t2)
 (i_scan i_c11 t1)
 (i_scan i_c31 t3)
)

• Use the search argument on t3, and the join order t3, t1, t2:

(g_join

Introduction

322 Adaptive Server Enterprise

 (i_scan i_c32 t3)
 (i_scan i_c12 t1)
 (i_scan i_c21 t2)
)

• Do a full table scan of t2, if it is small and fits in cache, still using the
join order t3, t1, t2:

(g_join
 (i_scan i_c32 t3)
 (i_scan i_c12 t1)
 (t_scan t2)
)

• If t1 is very large, and t2 and t3 individually qualify a large part of t1,
but together a very small part, this plan specifies a STAR join:

(g_join
 (i_scan i_c22 t2)
 (i_scan i_c32 t3)
 (i_scan i_c11_c12 t1)
)

All of these plans completely constrain the choice of join order, letting the
optimizer choose the type of join.

The generic g_join operator implements outer joins, inner joins, and
existence joins. For examples of flattened subqueries that perform
existence joins, see “Flattened subqueries” on page 328.

Match between execution methods and abstract plans

There are some limits to join orders and join types, depending on the type
of query. One example is outer joins, such as:

select * from t1, t2
where c11 *= c21

Adaptive Server requires the outer member of the outer join to be the outer
table during join processing. Therefore, this abstract plan is illegal:

(g_join
 (scan t2)
 (scan t1)
)

Attempting to use this plan results in an error message, and the query is not
compiled.

CHAPTER 15 Abstract Query Plan Guide

Performance & Tuning: Optimizer and Abstract Plans 323

Specifying join order for queries using views

You can use abstract plans to enforce the join order for merged views. This
example creates a view. This view performs a join of t2 and t3:

create view v2
as
select *
from t2, t3
where c22 = c32

This query performs a join with the t2 in the view:

select * from t1, v2
where c11 = c21
 and c22 = 0

This abstract plan specifies the join order t2, t1, t3:

(g_join
 (scan (table t2 (in (view v2))))
 (scan t1)
 (scan (table t3 (in (view v2))))
)

This example joins with t3 in the view:

select * from t1, v2
where c11 = c31
 and c32 = 100

This plan uses the join order t3, t1, t2:

(g_join
 (scan (table t3 (in (view v2))))
 (scan t1)
 (scan (table t2 (in (view v2))))
)

This is an example where abstract plans can be used, if needed, to affect
the join order for a query, when set forceplan cannot.

Introduction

324 Adaptive Server Enterprise

Specifying the join type
Adaptive Server can perform either nested-loop or merge joins. The g_join
operator leaves the optimizer free to choose the best join algorithm, based
on costing. To specify a nested-loop join, use the nl_g_join operator; for a
sort-merge join, use the m_g_join operator. Abstract plans captured by
Adaptive Server always include the operator that specifies the algorithm,
and not the g_join operator.

Note that the “g” that appears in each operator means “generic,” meaning
that they apply to inner joins and outer joins; g_join and nl_g_join can also
apply to existence joins.

This query specifies a join between t1 and t2:

select * from t1, t2
 where c12 = c21 and c11 = 0

This abstract plan specifies a nested-loop join:

(nl_g_join
 (i_scan i_c11 t1)
 (i_scan i_c21 t2)
)

The nested-loop plan uses the index i_c11 to limit the scan using the search
clause, and then performs the join with t2, using the index on the join
column.

This merge-join plan uses different indexes:

(m_g_join
 (i_scan i_c12 t1)
 (i_scan i_c21 t2)
)

The merge join uses the indexes on the join columns, i_c12 and i_c21, for
the merge keys. This query performs a full-merge join and no sort is
needed.

A merge join could also use the index on i_c11 to select the rows from t1
into a worktable; the merge uses the index on i_c21:

(m_g_join
 (i_scan i11 t1)
 (i_scan i21 t2)
)

CHAPTER 15 Abstract Query Plan Guide

Performance & Tuning: Optimizer and Abstract Plans 325

The step that creates the worktable is not specified in the plan; the
optimizer detects when a worktable and sort are needed for join-key
ordering.

Specifying partial plans and hints
There are cases when a full plan is not needed. For example, if the only
problem with a query plan is that the optimizer chooses a table scan instead
of using a nonclustered index, the abstract plan can specify only the index
choice, and leave the other decisions to the optimizer.

The optimizer could choose a table scan of t3 rather than using i_c31 for
this query:

select *
from t1, t2, t3
where c11 = c21
 and c12 < c31
 and c22 = 0
 and c32 = 100

The following plan, as generated by the optimizer, specifies join order t2,
t1, t3. However, the plan specifies a table scan of t3:

(g_join
 (i_scan i_c22 t2)
 (i_scan i_c11 t1)
 (t_scan t3)
)

This full plan could be modified to specify the use of i_c31 instead:

(g_join
 (i_scan i_c22 t2)
 (i_scan i_c11 t1)
 (i_scan i_c31 t3)
)

However, specifying only a partial abstract plan is a more flexible
solution. As data in the other tables of that query evolves, the optimal join
order can change. The partial plan can specify just one partial plan item.
For the index scan of t3, the partial plan is simply:

(i_scan i_c31 t3)

The optimizer chooses the join order and the access methods for t1 and t2.

Introduction

326 Adaptive Server Enterprise

Grouping multiple hints

There may be cases where more than one plan fragment is needed. For
example, you might want to specify that some index should be used for
each table in the query, but leave the join order up to the optimizer. When
multiple hints are needed, they can be grouped with the hints operator:

(hints
 (i_scan () t1)
 (i_scan () t2)
 (i_scan () t3)
)

In this case, the role of the hints operator is purely syntactic; it does not
affect the ordering of the scans.

There are no limits on what may be given as a hint. Partial join orders may
be mixed with partial access methods. This hint specifies that t2 is outer to
t1 in the join order, and that the scan of t3 should use an index, but the
optimizer can choose the index for t3, the access methods for t1 and t2, and
the placement of t3 in the join order:

(hints
 (g_join
 (scan t2)
 (scan t1)
)
 (i_scan () t3)
)

Inconsistent and illegal plans using hints

It is possible to describe inconsistent plans using hints, such as this plan
that specifies contradictory join orders:

(hints
 (g_join
 (scan t2)
 (scan t1)
)
 (g_join
 (scan t1)
 (scan t2)
)
)

When the query associated with the plan is executed, the query cannot be
compiled, and an error is raised.

CHAPTER 15 Abstract Query Plan Guide

Performance & Tuning: Optimizer and Abstract Plans 327

Other inconsistent hints do not raise an exception, but may use any of the
specified access methods. This plan specifies both an index scan and a
table scan for the same table:

(hints
 (t_scan t3)
 (i_scan () t3)
)

In this case, either method may be chosen, the behavior is indeterminate.

Creating abstract plans for subqueries
Subqueries are resolved in several ways in Adaptive Server, and the
abstract plans reflect the query execution steps:

• Materialization – The subquery is executed and results are stored in a
worktable or internal variable. See “Materialized subqueries” on page
327.

• Flattening – The query is flattened into a join with the tables in the
main query. See “Flattened subqueries” on page 328.

• Nesting – The subquery is executed once for each outer query row.
See “Nested subqueries” on page 330.

Abstract plans do not allow the choice of the basic subquery resolution
method. This is a rule-based decision and cannot be changed during query
optimization. Abstract plans, however, can be used to influence the plans
for the outer and inner queries. In nested subqueries, abstract plans can
also be used to choose where the subquery is nested in the outer query.

Materialized subqueries

This query includes a non correlated subquery that can be materialized:

select *
from t1
where c11 = (select count(*) from t2)

The first step in the abstract plan materializes the scalar aggregate in the
subquery. The second step uses the result to scan t1:

(plan
 (i_scan i_c21 (table t2 (in (subq 1))))
 (i_scan i_c11 t1)

Introduction

328 Adaptive Server Enterprise

)

This query includes a vector aggregate in the subquery:

select *
from t1
where c11 in (select max(c21)
 from t2
 group by c22)

The abstract plan materializes the subquery in the first step, and joins it to
the outer query in the second step:

(plan
 (store Worktab1
 (t_scan (table t2 (in (subq 1))))
)
 (nl_g_join
 (t_scan t1)
 (t_scan (work_t Worktab1))
)
)

Flattened subqueries

Some subqueries can be flattened into joins. The g_join and nl_g_join
operators leave it to the optimizer to detect when an existence join is
needed. For example, this query includes a subquery introduced with
exists:

select * from t1
where c12 > 0
 and exists (select * from t2
 where t1.c11 = c21
 and c22 < 100)

The semantics of the query require an existence join between t1 and t2. The
join order t1, t2 is interpreted by the optimizer as an existence join, with
the scan of t2 stopping on the first matching row of t2 for each qualifying
row in t1:

(g_join
 (scan t1)
 (scan (table t2 (in (subq 1))))
)

The join order t2, t1 requires other means to guarantee the duplicate
elimination:

CHAPTER 15 Abstract Query Plan Guide

Performance & Tuning: Optimizer and Abstract Plans 329

(g_join
 (scan (table t2 (in (subq 1))))
 (scan t1)
)

Using this abstract plan, the optimizer can decide to use:

• A unique index on t2.c21, if one exists, with a regular join.

• The unique reformatting strategy, if no unique index exists. In this
case, the query will probably use the index on c22 to select the rows
into a worktable.

• The duplicate elimination sort optimization strategy, performing a
regular join and selecting the results into the worktable, then sorting
the worktable.

The abstract plan does not need to specify the creation and scanning of the
worktables needed for the last two options.

For more information on subquery flattening, see “Flattened subqueries”
on page 328.

Example: changing the join order in a flattened subquery

The query can be flattened to an existence join:

select *
from t1, t2
where c11 = c21
 and c21 > 100
 and exists (select * from t3
 where c31 != t1.c11)

The “!=” correlation can make the scan of t3 rather expensive. If the join
order is t1, t2, the best place for t3 in the join order depends on whether the
join of t1 and t2 increases or decreases the number of rows, and therefore,
the number of times that the expensive table scan needs to be performed.
If the optimizer fails to find the right join order for t3, the following
abstract plan can be used when the join reduces the number of times that
t3 must be scanned:

(g_join
 (scan t1)
 (scan t2)
 (scan (table t3 (in (subq 1))))
)

Introduction

330 Adaptive Server Enterprise

If the join increases the number of times that t3 needs to be scanned, this
abstract plan performs the scans of t3 before the join:

(g_join
 (scan t1)
 (scan (table t3 (in (subq 1))))
 (scan t2)
)

Nested subqueries

Nested subqueries can be explicitly described in abstract plans:

• The abstract plan for the subquery is provided.

• The location at which the subquery attaches to the main query is
specified.

Abstract plans allow you to affect the query plan for the subquery, and to
change the attachment point for the subquery in the outer query.

The nested operator specifies the position of the subquery in the outer
query. Subqueries are “nested over” a specific abstract plan derived table.
The optimizer chooses a spot where all the correlation columns for the
outer query are available, and where it estimates that the subquery needs
to be executed the least number of times.

The following SQL statement contains a correlated expression subquery:

select *
from t1, t2
where c11 = c21
 and c21 > 100
 and c12 = (select c31 from t3
 where c32 = t1.c11)

The abstract plan shows the subquery nested over the scan of t1:

(g_join
 (nested
 (i_scan i_c12 t1)
 (subq 1
 (t_scan (table t3 (in (subq 1))))
)
)
 (i_scan i_c21 t2)
)

CHAPTER 15 Abstract Query Plan Guide

Performance & Tuning: Optimizer and Abstract Plans 331

Subquery identification and attachment

Subqueries are identified with numbers, in the order of their leading
opened parenthesis “(“.

This example has two subqueries, one in the select list:

select
 (select c11 from t1 where c12 = t3.c32), c31
from t3
where c32 > (select c22 from t2 where c21 = t3.c31)

In the abstract plan, the subquery containing t1 is named “1” and the
subquery containing t2 is named “2”. Both subquery 1 and 2 are nested
over the scan of t3:

(nested
 (nested
 (t_scan t3)
 (subq 1
 (i_scan i_c11_c12 (table t1 (in (subq 1))))
)
)
 (subq 2
 (i_scan i_c21 (table t2 (in (subq 2))))
)
)

In this query, the second subquery is nested in the first:

select * from t3
where c32 > all
 (select c11 from t1 where c12 > all
 (select c22 from t2 where c21 = t3.c31))

In this case, the subquery containing t1 is also named “1” and the subquery
containing t2 is named “2”. In this plan, subquery 2 is nested over the scan
of t1, which is performed in subquery 1; subquery 1 is nested over the scan
of t3 in the main query:

(nested
 (t_scan t3)
 (subq 1
 (nested
 (i_scan i_c11_c12 (table t1 (in (subq 1))))
 (subq 2
 (i_scan i_c21 (table t2 (in (subq 2))))
)
)

Introduction

332 Adaptive Server Enterprise

)

More subquery examples: reading ordering and attachment

The nested operator has the abstract plan derived table as the first operand
and the nested subquery as the second operand. This allows an easy
vertical reading of the join order and subquery placement:

select *
from t1, t2, t3
where c12 = 0
 and c11 = c21
 and c22 = c32
 and 0 < (select c21 from t2 where c22 = t1.c11)

In the plan, the join order is t1, t2, t3, with the subquery nested over the
scan of t1:

(g_join
 (nested
 (i_scan i_c11 t1)
 (subq 1
 (t_scan (table t2 (in (subq 1)))
)
)
 (i_scan i_c21 t2)
 (i_scan i_c32 t3)
)

Modifying subquery nesting

If you modify the attachment point for a subquery, you must choose a point
at which all of the correlation columns are available.This query is
correlated to both of the tables in the outer query:

select *
from t1, t2, t3
where c12 = 0
 and c11 = c21
 and c22 = c32
 and 0 < (select c31 from t3 where c31 = t1.c11
 and c32 = t2.c22)

This plan uses the join order t1, t2, t3, with the subquery nested over the
t1-t2 join:

(g_join

CHAPTER 15 Abstract Query Plan Guide

Performance & Tuning: Optimizer and Abstract Plans 333

 (nested
 (g_join
 (i_scan i_c11_c12 t1)
 (i_scan i_c22 t2)
)
 (subq 1
 (t_scan (table t3 (in (subq 1))))
)
)
 (i_scan i_c32 t3)
)

Since the subquery requires columns from both outer tables, it would be
incorrect to nest it over the scan of t1 or the scan of t2; such errors are
silently corrected during optimization.

Abstract plans for materialized views
This view is materialized during query processing:

create view v3
as
select distinct *
from t3

This query performs a join with the materialized view:

select *
from t1, v3
where c11 = c31

A first step materializes the view v3 into a worktable. The second joins it
with the main query table t1 :

(plan
 (store Worktab1
 (t_scan (table t3 (in (view v3))))
)
 (g_join
 (t_scan t1)
 (t_scan (work_t Worktab1))
)
)

Introduction

334 Adaptive Server Enterprise

Abstract plans for queries containing aggregates
This query returns a scalar aggregate:

select max(c11) from t1

The first step computes the scalar aggregate and stores it in an internal
variable. The second step is empty, as it only returns the variable, in a step
with nothing to optimize:

(plan
 (t_scan t1)
 ()
)

Vector aggregates are also two-step queries:

select max(c11)
from t1
group by c12

The first step processes the aggregates into a worktable; the second step
scans the worktable:

(plan
 (store Worktab1
 (t_scan t1)
)
 (t_scan (work_t Worktab1))
)

Nested aggregates are a Transact-SQL extension:

select max(count(*))
from t1
group by c11

The first step processes the vector aggregate into a worktable, the second
scans it to process the nested scalar aggregate into an internal variable, and
the third step returns the value.

(plan
 (store Worktab1
 (i_scan i_c12 t1)
)
 (t_scan (work_t Worktab1))
 ()
)

Extended columns in aggregate queries are a Transact-SQL extension:

CHAPTER 15 Abstract Query Plan Guide

Performance & Tuning: Optimizer and Abstract Plans 335

select max(c11), c11
from t1
group by c12

The first step processes the vector aggregate; the second one joins it back
to the base table to process the extended columns:

(plan
 (store Worktab1
 (t_scan t1)
)
 (g_join
 (t_scan t1)
 (i_scan i_c11 (work_t Worktab1))
)
)

This example contains an aggregate in a merged view:

create view v4
as
select max(c11) as c41, c12 as c42
from t1
group by c12
select * from t2, v4
where c21 = 0
 and c22 > c41

The first step processes the vector aggregate; the second joins it to the
main query table:

(plan
 (store Worktab1
 (t_scan (table t1 (in (view v4))))
)
 (g_join
 (i_scan i_c22 t2)
 (t_scan (work_t Worktab1))
)
)

This example includes an aggregate that is processed using a materialized
view:

create view v5
as
select distinct max(c11) as c51, c12 as c52
from t1
group by c12

Introduction

336 Adaptive Server Enterprise

select * from t2, v5
where c21 = 0
 and c22 > c51

The first step processes the vector aggregate into a worktable. The second
step scans it into a second worktable to process the materialized view. The
third step joins this second worktable in the main query:

(plan
 (store Worktab1
 (t_scan (table t1 (in (view v5))))
)
 (store Worktab2
 (t_scan (work_t Worktab1))
)
 (g_join
 (i_scan i_c22 t2)
 (t_scan (work_t Worktab2))
)
)

Specifying the reformatting strategy
In this query, t2 is very large, and has no index:

select *
from t1, t2
where c11 > 0
 and c12 = c21
 and c22 = 0

The abstract plan that specifies the reformatting strategy on t2 is:

(g_join
 (t_scan t1
 (scan
 (store Worktab1
 (t_scan t2)
)
)
)

In the case of the reformatting strategy, the store operator is an operand of
scan. This is the only case when the store operator is not the operand of a
plan operator.

CHAPTER 15 Abstract Query Plan Guide

Performance & Tuning: Optimizer and Abstract Plans 337

OR strategy limitation
The OR strategy has no matching abstract plan that describes the RID scan
required to perform the final step. All abstract plans generated by Adaptive
Server for the OR strategy specify only the scan operator. You cannot use
abstract plans to influence index choice for queries that require the OR
strategy to eliminate duplicates.

When the store operator is not specified
Some multistep queries that require worktables do not require multistep
plans with a separate worktable step, and the use of the store operator to
create the worktable. These are:

• The sort step of queries using distinct

• The worktables needed for merge joins

• Worktables needed for union queries

• The sort step, when a flattened subquery requires sort to remove
duplicates

Tips on writing abstract plans
Here are some additional tips for writing and using abstract plans:

• Look at the current plan for the query and at plans that use the same
query execution steps as the plan you need to write. It is often easier
to modify an existing plan than to write a full plan from scratch.

• Capture the plan for the query.

• Use sp_help_qplan to display the SQL text and plan.

• Edit this output to generate a create plan command, or attach an
edited plan to the SQL query using the plan clause.

• It is often best to specify partial plans for query tuning in cases where
most optimizer decisions are appropriate, but only an index choice,
for example, needs improvement.

By using partial plans, the optimizer can choose other paths for other
tables as the data in other tables changes.

Comparing plans “before” and “after”

338 Adaptive Server Enterprise

• Once saved, abstract plans are static. Data volumes and distributions
may change so that saved abstract plans are no longer optimal.

Subsequent tuning changes made by adding indexes, partitioning a
table, or adding buffer pools may mean that some saved plans are not
performing as well as possible under current conditions. Most of the
time, you want to operate with a small number of abstract plans that
solve specific problems.

Perform periodic plan checks to verify that the saved plans are still
better than the plan that the optimizer would choose.

Comparing plans “before” and “after”
Abstract query plans can be used to assess the impact of an Adaptive
Server software upgrade or system tuning changes on your query plans.
You need to save plans before the changes are made, perform the upgrade
or tuning changes, and then save plans again and compare the plans. The
basic set of steps is:

1 Enable server-wide capture mode by setting the configuration
parameter abstract plan dump to 1. All plans are then captured in the
default group, ap_stdout.

2 Allow enough time for the captured plans to represent most of the
queries run on the system. You can check whether additional plans are
being generated by checking whether the count of rows in the
ap_stdout group in sysqueryplans is stable:

select count(*) from sysqueryplans where gid = 2

3 Copy all plans from ap_stdout to ap_stdin (or some other group, if you
do not want to use server-wide plan load mode), using
sp_copy_all_qplans.

4 Drop all query plans from ap_stdout, using sp_drop_all_qplans.

5 Perform the upgrade or tuning changes.

6 Allow sufficient time for plans to be captured to ap_stdout.

7 Compare plans in ap_stdout and ap_stdin, using the diff mode
parameter of sp_cmp_all_qplans. For example, this query compares
all plans in ap_stdout and ap_stdin:

CHAPTER 15 Abstract Query Plan Guide

Performance & Tuning: Optimizer and Abstract Plans 339

sp_cmp_all_qplans ap_stdout, ap_stdin, diff

This displays only information about the plans that are different in the
two groups.

Effects of enabling server-wide capture mode
When server-wide capture mode is enabled, plans for all queries that can
be optimized are saved in all databases on the server. Some possible
system administration impacts are:

• When plans are captured, the plan is saved in sysqueryplans and log
records are generated. The amount of space required for the plans and
log records depends on the size and complexity of the SQL statements
and query plans. Check space in each database where users will be
active.

You may need to perform more frequent transaction log dumps,
especially in the early stages of server-wide capture when many new
plans are being generated.

• If users execute system procedures from the master database, and
installmaster was loaded with server-wide plan capture enabled, then
plans for the statements that can be optimized in system procedures
are saved in master..sysqueryplans.

This is also true for any user-defined procedures created while plan
capture was enabled. You may want to provide a default database at
login for all users, including System Administrators, if space in
master is limited.

• The sysqueryplans table uses datarows locking to reduce lock
contention. However, especially when a large number of new plans
are being saved, there may be a slight impact on performance.

• While server-wide capture mode is enabled, using bcp saves query
plans in the master database. If you perform bcp using a large number
of tables or views, check sysqueryplans and the transaction log in
master.

Abstract plans for stored procedures

340 Adaptive Server Enterprise

Time and space to copy plans
If you have a large number of query plans in ap_stdout, be sure there is
sufficient space to copy them on the system segment before starting the
copy. Use sp_spaceused to check the size of sysqueryplans, and
sp_helpsegment to check the size of the system segment.

Copying plans also requires space in the transaction log.

sp_copy_all_qplans calls sp_copy_qplan for each plan in the group to be
copied. If sp_copy_all_qplans fails at any time due to lack of space or other
problems, any plans that were successfully copied remain in the target
query plan group.

Abstract plans for stored procedures
For abstract plans to be captured for the SQL statements that can be
optimized in stored procedures:

• The procedures must be created while plan capture or plan association
mode is enabled. (This saves the text of the procedure in
sysprocedures.)

• The procedure must be executed with plan capture mode enabled, and
the procedure must be read from disk, not from the procedure cache.

This sequence of steps captures the query text and abstract plans for all
statements in the procedure that can be optimized:

set plan dump dev_plans on
go
create procedure myproc as ...
go
exec myproc
go

If the procedure is in cache, so that the plans for the procedure are not
being captured, you can execute the procedure with recompile. Similarly,
once a stored procedure has been executed using an abstract query plan,
the plan in the procedure cache is used so that query plan association does
not take place unless the procedure is read from disk.

CHAPTER 15 Abstract Query Plan Guide

Performance & Tuning: Optimizer and Abstract Plans 341

Procedures and plan ownership
When plan capture mode is enabled, abstract plans for the statements in a
stored procedure that can be optimized are saved with the user ID of the
owner of the procedure.

During plan association mode, association for stored procedures is based
on the user ID of the owner of the procedure, not the user who executes the
procedure. This means that once an abstract query plan is created for a
procedure, all users who have permission to execute the procedure use the
same abstract plan.

Procedures with variable execution paths and optimization
Executing a stored procedure saves abstract plans for each statement that
can be optimized, even if the stored procedure contains control-of-flow
statements that can cause different statements to be run depending on
parameters to the procedure or other conditions. If the query is run a
second time with different parameters that use a different code path, plans
for any statements that were optimized and saved by the earlier execution,
and the abstract plan for the statement is associated with the query.

However, abstract plans for procedures do not solve the problem with
procedures with statements that are optimized differently depending on
conditions or parameters. One example is a procedure where users provide
the low and high values for a between clause, with a query such as:

select title_id
from titles
where price between @lo and @hi

Depending on the parameters, the best plan could either be index access or
a table scan. For these procedures, the abstract plan may specify either
access method, depending on the parameters when the procedure was first
executed. For more information on optimization of procedures, see
Performance & Tuning: Optimizer.

Ad Hoc queries and abstract plans

342 Adaptive Server Enterprise

Ad Hoc queries and abstract plans
Abstract plan capture saves the full text of the SQL statement and abstract
plan association is based on the full text of the SQL query. If users submit
ad hoc SQL statements, rather than using stored procedures or Embedded
SQL, abstract plans are saved for each different combination of query
clauses. This can result in a very large number of abstract plans.

If users check the price of a specific title_id using select statements, an
abstract plan is saved for each statement. The following two queries each
generate an abstract plan:

select price from titles where title_id = "T19245"
select price from titles where title_id = "T40007"

In addition, there is one plan for each user, that is, if several users check
for the title_id “T40007”, a plan is save for each user ID.

If such queries are included in stored procedures, there are two benefits:

• Only only one abstract plan is saved, for example, for the query:

select price from titles where title_id =
@title_id

• The plan is saved with the user ID of the user who owns the stored
procedure, and abstract plan association is made based on the
procedure owner’s ID.

Using Embedded SQL, the only abstract plan is saved with the host
variable:

select price from titles
where title_id = :host_var_id

Performance & Tuning: Optimizer and Abstract Plans 343

C H A P T E R 1 6 Creating and Using Abstract
Plans

This chapter provides an overview of the commands used to capture
abstract plans and to associate incoming SQL queries with saved plans.
Any user can issue session-level commands to capture and load plans
during a session, and a System Administrator can enable server-wide
abstract plan capture and association. This chapter also describes how to
specify abstract plans using SQL.

Using set commands to capture and associate plans
At the session level, any user can enable and disable capture and use of
abstract plans with the set plan dump and set plan load commands. The set
plan replace command determines whether existing plans are overwritten
by changed plans.

Enabling and disabling abstract plan modes takes effect at the end of the
batch in which the command is included (similar to showplan). Therefore,
change the mode in a separate batch before you run your queries:

set plan dump on
go
/*queries to run*/
go

Any set plan commands used in a stored procedure do not affect the
procedure in which they are included, but remain in effect after the
procedure completes.

Topic Page
Using set commands to capture and associate plans 343

set plan exists check option 348

Using other set options with abstract plans 348

Server-wide abstract plan capture and association Modes 350

Creating plans using SQL 350

Using set commands to capture and associate plans

344 Adaptive Server Enterprise

Enabling plan capture mode with set plan dump
The set plan dump command activates and deactivates the capture of
abstract plans. You can save the plans to the default group, ap_stdout, by
using set plan dump with no group name:

set plan dump on

To start capturing plans in a specific abstract plan group, specify the group
name. This example sets the group dev_plans as the capture group:

set plan dump dev_plans on

The group that you specify must exist before you issue the set command.
The system procedure sp_add_qpgroup creates abstract plan groups; only
the System Administrator or Database Owner can create an abstract plan
group. Once an abstract plan group exists, any user can dump plans to the
group. See “Creating a group” on page 356 for information on creating a
plan group.

To deactivate the capturing of plans, use:

set plan dump off

You do not need to specify a group name to end capture mode. Only one
abstract plan group can be active for saving or matching abstract plans at
any one time. If you are currently saving plans to a group, you must turn
off the plan dump mode, and reenable it for the new group, as shown here:

set plan dump on /*save to the default group*/
go
/*some queries to be captured */
go
set plan dump off
go
set plan dump dev_plans on
go
/*additional queries*/
go

The use of the use database command while set plan dump is in effect
disables plan dump mode.

Associating queries with stored plans
The set plan load command activates and deactivates the association of
queries with stored abstract plans.

CHAPTER 16 Creating and Using Abstract Plans

Performance & Tuning: Optimizer and Abstract Plans 345

To start the association mode using the default group, ap_stdin, use the
command:

set plan load on

To enable association mode using another abstract plan group, specify the
group name:

set plan load test_plans on

Only one abstract plan group can be active for plan association at one time.
If plan association is active for a group, you must deactivate the current
group and start association for the new group, as shown here:

set plan load test_plans on
go
/*some queries*/
go
set plan load off
go
set plan load dev_plans on
go

The use of the use database command while set plan load is in effect
disables plan load mode.

Using replace mode during plan capture
While plan capture mode is active, you can choose whether to have plans
for the same query replace existing plans by enabling or disabling set plan
replace. This command activates plan replacement mode:

set plan replace on

You do not specify a group name with set plan replace; it affects the current
active capture group.

To disable plan replacement:

set plan replace off

The use of the use database command while set plan replace is in effect
disables plan replace mode.

Using set commands to capture and associate plans

346 Adaptive Server Enterprise

When to use replace mode

When you are capturing plans, and a query has the same query text as an
already-saved plan, the existing plan is not replaced unless replace mode
is enabled. If you have captured abstract plans for specific queries, and you
are making physical changes to the database that affect optimizer choices,
you need to replace existing plans for these changes to be saved.

Some actions that might require plan replacement are:

• Adding or dropping indexes, or changing the keys or key ordering in
indexes

• Changing the partitioning on a table

• Adding or removing buffer pools

• Changing configuration parameters that affect query plans

For plans to be replaced, plan load mode should not be enabled in most
cases. When plan association is active, any plan specifications are used as
inputs to the optimizer. For example, if a full query plan includes the
prefetch property and an I/O size of 2K, and you have created a 16K pool
and want to replace the prefetch specification in the plan, do not enable
plan load mode.

You may want to check query plans and replace some abstract plans as
data distribution changes in tables, or after rebuilds on indexes, updating
statistics, or changing the locking scheme.

Using dump, load, and replace modes simultaneously
You can have both plan dump and plan load mode active simultaneously,
with or without replace mode active.

Using dump and load to the same group

If you have enabled dump and load to the same group, without replace
mode enabled:

• If a valid plan exists for the query, it is loaded and used to optimize
the query.

• If a plan exists that is not valid (say, because an index has been
dropped) a new plan is generated and used to optimize the query, but
is not saved.

CHAPTER 16 Creating and Using Abstract Plans

Performance & Tuning: Optimizer and Abstract Plans 347

• If the plan is a partial plan, a full plan is generated, but the existing
partial plan is not replaced

• If a plan does not exist for the query, a plan is generated and saved.

With replace mode also enabled:

• If a valid plan exists for the query, it is loaded and used to optimize
the query.

• If the plan is not valid, a new plan is generated and used to optimize
the query, and the old plan is replaced.

• If the plan is a partial plan, a complete plan is generated and used, and
the existing partial plan is replaced. The specifications in the partial
plan are used as input to the optimizer.

• If a plan does not exist for the query, a plan is generated and saved.

Using dump and load to different groups

If you have dump enabled to one group, and load enabled from another
group, without replace mode enabled:

• If a valid plan exists for the query in the load group, it is loaded and
used. The plan is saved in the dump group, unless a plan for the query
already exists in the dump group.

• If the plan in the load group is not valid, a new plan is generated. The
new plan is saved in the dump group, unless a plan for the query
already exists in the dump group.

• If the plan in the load group is a partial plan, a full plan is generated
and saved in the dump group, unless a plan already exists. The
specifications in the partial plan are used as input to the optimizer.

• If there is no plan for the query in the load group, the plan is generated
and saved in the dump group, unless a plan for the query exists in the
dump group.

With replace mode active:

• If a valid plan exists for the query in the load group, it is loaded and
used.

• If the plan in the load group is not valid, a new plan is generated and
used to optimize the query. The new plan is saved in the dump group.

set plan exists check option

348 Adaptive Server Enterprise

• If the plan in the load group is a partial plan, a full plan is generated
and saved in the dump group. The specifications in the partial plan are
used as input to the optimizer.

• If a plan does not exist for the query in the load group, a new plan is
generated. The new plan is saved in the dump group.

set plan exists check option
The exists check mode can be used during query plan association to speed
performance when users require abstract plans for fewer than 20 queries
from an abstract plan group. If a small number of queries require plans to
improve their optimization, enabling exists check mode speeds execution
of all queries that do not have abstract plans, because they do not check for
plans in sysqueryplans.

When set plan load and set exists check are both enabled, the hash keys for
up to 20 queries in the load group are cached for the user. If the load group
contains more than 20 queries, exists check mode is disabled. Each
incoming query is hashed; if its hash key is not stored in the abstract plan
cache, then there is no plan for the query and no search is made. This
speeds the compilation of all queries that do not have saved plans.

The syntax is:

set plan exists check {on | off}

You must enable load mode before you enable plan hash-key caching.

A System Administrator can configure server-wide plan hash-key caching
with the configuration parameter abstract plan cache. To enable server-
wide plan caching, use:

sp_configure "abstract plan cache", 1

Using other set options with abstract plans
You can combine other set tuning options with set plan dump and set plan
load.

CHAPTER 16 Creating and Using Abstract Plans

Performance & Tuning: Optimizer and Abstract Plans 349

Using showplan
When showplan is turned on, and abstract plan association mode has been
enabled with set plan load, showplan prints the plan ID of the matching
abstract plan at the beginning of the showplan output for the statement:

QUERY PLAN FOR STATEMENT 1 (at line 1).
Optimized using an Abstract Plan (ID : 832005995).

If you run queries using the plan clause added to a SQL statement,
showplan displays:

Optimized using the Abstract Plan in the PLAN clause.

Using noexec
You can use noexec mode to capture abstract plans without actually
executing the queries. If noexec mode is in effect, queries are optimized
and abstract plans are saved, but no query results are returned.

To use noexec mode while capturing abstract plans, execute any needed
procedures (such as sp_add_qpgroup) and other set options (such as set
plan dump) before enabling noexec mode. The following example shows a
typical set of steps:

sp_add_qpgroup pubs_dev
go
set plan dump pubs_dev on
go
set noexec on
go
select type, sum(price) from titles group by type
go

Using forceplan
If set forceplan on is in effect, and query association is also enabled for the
session, forceplan is ignored if a full abstract plan is used to optimize the
query. If a partial plan does not completely specify the join order:

• First, the tables in the abstract plan are ordered, as specified.

• The remaining tables are ordered as specified in the from clause.

• The two lists of tables are merged.

Server-wide abstract plan capture and association Modes

350 Adaptive Server Enterprise

Server-wide abstract plan capture and association
Modes

A System Administrator can enable server-wide plan capture, association,
and replacement modes with these configuration parameters:

• abstract plan dump – enables dumping to the default abstract plans
capture group, ap_stdout.

• abstract plan load – enables loading from the default abstract plans
loading group, ap_stdin.

• abstract plan replace – when plan dump mode is also enabled, enables
plan replacement.

• abstract plan cache – enables caching of abstract plan hash IDs;
abstract plan load must also be enabled. See “set plan exists check
option” on page 348 for more information.

By default, these configuration parameters are set to 0, which means that
capture and association modes are off. To enable a mode, set the
configuration value to 1:

sp_configure "abstract plan dump", 1

Enabling any of the server-wide abstract plan modes is dynamic; you do
not have to reboot the server.

Server-wide capture and association allows the System Administrator to
capture all plans for all users on a server. You cannot override he server-
wide modes at the session level.

Creating plans using SQL
You can directly specify the abstract plan for a query by:

• Using the create plan command

• Adding the plan clause to select, insert...select, update, delete and
return commands, and to if and while clauses

For information on writing plans, see Chapter 15, “Abstract Query Plan
Guide.”

CHAPTER 16 Creating and Using Abstract Plans

Performance & Tuning: Optimizer and Abstract Plans 351

Using create plan
The create plan command specifies the text of a query, and the abstract
plan to save for the query.

This example creates an abstract plan:

create plan
 "select avg(price) from titles"
"(plan
 (i_scan type_price_ix titles)
 ()
)"

The plan is saved in the current active plan group. You can also specify the
group name:

create plan
 "select avg(price) from titles"
"(plan
 (i_scan type_price_ix titles)
 ()
)"
into dev_plans

If a plan already exists for the specified query in the current plan group, or
the plan group that you specify, you must first enable replace mode in
order to overwrite the existing plan.

If you want to see the plan ID that is used for a plan you create, create plan
can return the ID as a variable. You must declare the variable first. This
example returns the plan ID:

declare @id int
create plan
 "select avg(price) from titles"
"(plan
 (i_scan type_price_ix titles)
 ()
)"
into dev_plans
and set @id
select @id

When you use create plan, the query in the plan is not executed. This
means that:

• The text of the query is not parsed, so the query is not checked for
valid SQL syntax.

Creating plans using SQL

352 Adaptive Server Enterprise

• The plans are not checked for valid abstract plan syntax.

• The plans are not checked to determine whether they are compatible
with the SQL text.

To guard against errors and problems, you should immediately execute the
specified query with showplan enabled.

Using the plan Clause
You can use the plan clause with the following SQL statements to specify
the plan to use to execute the query:

• select

• insert...select

• delete

• update

• if

• while

• return

This example specifies the plan to use to execute the query:

select avg(price) from titles
 plan
" (plan
 (i_scan type_price_ix titles)
 ()
)"

When you specify an abstract plan for a query, the query is executed using
the specified plan. If you have showplan enabled, this message is printed:

Optimized using the Abstract Plan in the PLAN clause.

When you use the plan clause with a query, any errors in the SQL text, the
plan syntax, and any mismatches between the plan and the SQL text are
reported as errors. For example, this plan omits the empty parentheses that
specify the step of returning the aggregate:

/* step missing! */
select avg(price) from titles
 plan
" (plan

CHAPTER 16 Creating and Using Abstract Plans

Performance & Tuning: Optimizer and Abstract Plans 353

 (i_scan type_price titles)
)"

It returns the following message:

Msg 1005, Level 16, State 1:
Server ‘smj’, Line 2:
Abstract Plan (AP) : The number of operands of the PLAN operator
in the AP differs from the number of steps needed to compute the
query. The extra items will be ignored. Check the AP syntax and
its correspondence to the query.

Plans specified with the plan clause are saved in sysqueryplans only if plan
capture is enabled. If a plan for the query already exists in the current
capture group, you must enable replace mode in order to replace an
existing plan.

Creating plans using SQL

354 Adaptive Server Enterprise

Performance & Tuning: Optimizer and Abstract Plans 355

C H A P T E R 1 7 Managing Abstract Plans with
System Procedures

This chapter provides an introduction to the basic functionality and use of
the system procedures for working with abstract plans. For detailed
information on each procedure, see the Adaptive Server Reference
Manual.

System procedures for managing abstract plans
The system procedures for managing abstract plans work on individual
plans or on abstract plan groups.

• Managing an abstract plan group

• sp_add_qpgroup

• sp_drop_qpgroup

• sp_help_qpgroup

• sp_rename_qpgroup

• Finding abstract plans

• sp_find_qplan

• Managing individual abstract plans

• sp_help_qplan

Topic Page
System procedures for managing abstract plans 355

Managing an abstract plan group 356

Finding abstract plans 360

Managing individual abstract plans 361

Managing all plans in a group 364

Importing and exporting groups of plans 368

Managing an abstract plan group

356 Adaptive Server Enterprise

• sp_copy_qplan

• sp_drop_qplan

• sp_cmp_qplans

• sp_set_qplan

• Managing all plans in a group

• sp_copy_all_qplans

• sp_cmp_all_qplans

• sp_drop_all_qplans

• Importing and exporting groups of plans

• sp_export_qpgroup

• sp_import_qpgroup

Managing an abstract plan group
You can use system procedures to create, drop, rename, and provide
information about an abstract plan group.

Creating a group
sp_add_qpgroup creates and names an abstract plan group. Unless you are
using the default capture group, ap_stdout, you must create a plan group
before you can begin capturing plans. For example, to start saving plans in
a group called dev_plans, you must create the group, then issue the set plan
dump command, specifying the group name:

sp_add_qpgroup dev_plans
set plan dump dev_plans on
/*SQL queries to capture*/

Only a System Administrator or Database Owner can add abstract plan
groups. Once a group is created, any user can dump or load plans from the
group.

CHAPTER 17 Managing Abstract Plans with System Procedures

Performance & Tuning: Optimizer and Abstract Plans 357

Dropping a group
sp_drop_qpgroup drops an abstract plan group.

The following restrictions apply to sp_drop_qpgroup:

• Only a System Administrator or Database Owner can drop abstract
plan groups.

• You cannot drop a group that contains plans. To remove all plans from
a group, use sp_drop_all_qplans, specifying the group name.

• You cannot drop the default abstract plan groups ap_stdin and
ap_stdout.

This command drops the dev_plans plan group:

sp_drop_qpgroup dev_plans

Getting information about a group
sp_help_qpgroup prints information about an abstract plan group, or about
all abstract plan groups in a database.

When you use sp_help_qpgroup without a group name, it prints the names
of all abstract plan groups, the group IDs, and the number of plans in each
group:

sp_help_qpgroup
Query plan groups in database ‘pubtune’
 Group GID Plans
 ------------------------------ ----------- -----------
 ap_stdin 1 0
 ap_stdout 2 2
 p_prod 4 0
 priv_test 8 1
 ptest 3 51
 ptest2 7 189

When you use sp_help_qpgroup with a group name, the report provides
statistics about plans in the specified group. This example reports on the
group ptest2:

sp_help_qpgroup ptest2
Query plans group ’ptest2’, GID 7

 Total Rows Total QueryPlans

Managing an abstract plan group

358 Adaptive Server Enterprise

 ----------- ----------------
 452 189
sysqueryplans rows consumption, number of query
plans per row count
 Rows Plans
 ----------- -----------
 5 2
 3 68
 2 119
Query plans that use the most sysqueryplans rows
 Rows Plan
 ----------- -----------
 5 1932533918
 5 1964534032
 Hashkeys

 123
There is no hash key collision in this group.

When reporting on an individual group, sp_help_qpgroup reports:

• The total number of abstract plans, and the total number of rows in the
sysqueryplans table.

• The number of plans that have multiple rows in sysqueryplans. They
are listed in descending order, starting with the plans with the largest
number of rows.

• Information about the number of hash keys and hash-key collisions.
Abstract plans are associated with queries by a hashing algorithm
over the entire query.

When a System Administrator or the Database Owner executes
sp_help_qpgroup, the procedure reports on all of the plans in the database
or in the specified group. When any other user executes sp_help_qpgroup,
it reports only on plans that he or she owns.

sp_help_qpgroup provides several report modes. The report modes are:

Mode Information returned

full The number of rows and number of plans in the group, the number of
plans that use two or more rows, the number of rows and plan IDs for
the longest plans, and number of hash keys, and has- key collision
information. This is the default report mode.

stats All of the information from the full report, except hash-key
information.

CHAPTER 17 Managing Abstract Plans with System Procedures

Performance & Tuning: Optimizer and Abstract Plans 359

This example shows the output for the counts mode:

sp_help_qpgroup ptest1, counts
Query plans group ’ptest1’, GID 3

 Total Rows Total QueryPlans
 ----------- ----------------
 48 19

Query plans in this group

Rows Chars hashkey id query
----- --------- ----------- ----------- ----------------------------
 3 623 1801454852 876530156 select title from titles ...
 3 576 476063777 700529529 select au_lname, au_fname...
 3 513 444226348 652529358 select au1.au_lname, au1....
 3 470 792078608 716529586 select au_lname, au_fname...
 3 430 789259291 684529472 select au1.au_lname, au1....
 3 425 1929666826 668529415 select au_lname, au_fname...
 3 421 169283426 860530099 select title from titles ...
 3 382 571605257 524528902 select pub_name from publ...
 3 355 845230887 764529757 delete salesdetail where ...
 3 347 846937663 796529871 delete salesdetail where ...
 2 379 1400470361 732529643 update titles set price =...

hash The number of rows and number of abstract plans in the group, the
number of hash keys, and hash-key collision information.

list The number of rows and number of abstract plans in the group, and
the following information for each query/plan pair: hash key, plan ID,
first few characters of the query, and the first few characters of the
plan.

queries The number of rows and number of abstract plans in the group, and
the following information for each query: hash key, plan ID, first few
characters of the query.

plans The number of rows and number of abstract plans in the group, and
the following information for each plan: hash key, plan ID, first few
characters of the plan.

counts The number of rows and number of abstract plans in the group, and
the following information for each plan: number of rows, number of
characters, hash key, plan ID, first few characters of the query.

Mode Information returned

Finding abstract plans

360 Adaptive Server Enterprise

Renaming a group
A System Administrator or Database Owner can rename an abstract plan
group with sp_rename_qpgroup. This example changes the name of the
group from dev_plans to prod_plans:

sp_rename_qpgroup dev_plans, prod_plans

The new group name cannot be the name of an existing group.

Finding abstract plans
sp_find_qplan searches both the query text and the plan text to find plans
that match a given pattern.

This example finds all plans where the query includes the string “from
titles”:

sp_find_qplan "%from titles%"

This example searches for all abstract plans that perform a table scan:

sp_find_qplan "%t_scan%"

When a System Administrator or Database Owner executes sp_find_qplan,
the procedure examines and reports on plans owned by all users. When
other users execute the procedure, it searches and reports on only plans
that they own.

If you want to search just one abstract plan group, specify the group name
with sp_find_qplan. This example searches only the test_plans group,
finding all plans that use a particular index:

sp_find_qplan "%i_scan title_id_ix%", test_plans

For each matching plan, sp_find_qplan prints the group ID, plan ID, query
text, and abstract plan text.

CHAPTER 17 Managing Abstract Plans with System Procedures

Performance & Tuning: Optimizer and Abstract Plans 361

Managing individual abstract plans
You can use system procedures to print the query and text of individual
plans, to copy, drop, or compare individual plans, or to change the plan
associated with a particular query.

Viewing a plan
sp_help_qplan reports on individual abstract plans. It provides three types
of reports that you can specify: brief, full, and list. The brief report prints
only the first 78 characters of the query and plan; use full to see the entire
query and plan, or list to display only the first 20 characters of the query
and plan.

This example prints the default brief report:

sp_help_qplan 588529130
 gid hashkey id
 ----------- ----------- -----------
 8 1460604254 588529130
 query

 select min(price) from titles
 plan

 (plan
 (i_scan type_price titles)
 ()
)
(prop titles
 (parallel ...

A System Administrator or Database Owner can use sp_help_qplan to
report on any plan in the database. Other users can only view the plans that
they own.

sp_help_qpgroup reports on all plans in a group. For more information see
“Getting information about a group” on page 357.

Managing individual abstract plans

362 Adaptive Server Enterprise

Copying a plan to another group
sp_copy_qplan copies an abstract plan from one group to another existing
group. This example copies the plan with plan ID 316528161 from its
current group to the prod_plans group:

sp_copy_qplan 316528161, prod_plans

sp_copy_qplan checks to make sure that the query does not already exist
in the destination group. If a possible conflict exists, it runs
sp_cmp_qplans to check plans in the destination group. In addition to the
message printed by sp_cmp_qplans, sp_copy_qplan prints messages when:

• The query and plan you are trying to copy already exists in the
destination group

• Another plan in the group has the same user ID and hash key

• Another plan in the group has the same hash key, but the queries are
different

If there is a hash-key collision, the plan is copied. If the plan already exists
in the destination group or if it would give an association key collision, the
plan is not copied. The messages printed by sp_copy_qplan contain the
plan ID of the plan in the destination group, so you can use sp_help_qplan
to check the query and plan.

A System Administrator or the Database Owner can copy any abstract
plan. Other users can copy only plans that they own. The original plan and
group are not affected by sp_copy_qplan. The copied plan is assigned a
new plan ID, the ID of the destination group, and the user ID of the user
who ran the query that generated the plan.

Dropping an individual abstract plan
sp_drop_qplan drops individual abstract plans. This example drops the
specified plan:

sp_drop_qplan 588529130

A System Administrator or Database Owner can drop any abstract plan in
the database. Other users can drop only plans that they own.

To find abstract plan IDs, use sp_find_qplan to search for plans using a
pattern from the query or plan, or sp_help_qpgroup to list the plans in a
group.

CHAPTER 17 Managing Abstract Plans with System Procedures

Performance & Tuning: Optimizer and Abstract Plans 363

Comparing two abstract plans
Given two plan IDs, sp_cmp_qplans compares two abstract plans and the
associated queries. For example:

sp_cmp_qplans 588529130, 1932533918

sp_cmp_qplans prints one message reporting the comparison of the query,
and a second message about the plan, as follows:

• For the two queries, one of:

• The queries are the same.

• The queries are different.

• The queries are different but have the same hash key.

• For the plans:

• The query plans are the same.

• The query plans are different.

This example compares two plans where the queries and plans both match:

sp_cmp_qplans 411252620, 1383780087
The queries are the same.
The query plans are the same.

This example compares two plans where the queries match, but the plans
are different:

sp_cmp_qplans 2091258605, 647777465
The queries are the same.
The query plans are different.

sp_cmp_qplans returns a status value showing the results of the
comparison. The status values are shown in Table 17-1

Table 17-1: Return status values for sp_cmp_qplans

A System Administrator or Database Owner can compare any two abstract
plans in the database. Other users can compare only plans that they own.

Return value Meaning

0 The query text and abstract plans are the same.

+1 The queries and hash keys are different.

+2 The queries are different, but the hash keys are the same.

+10 The abstract plans are different.

100 One or both of the plan IDs does not exist.

Managing all plans in a group

364 Adaptive Server Enterprise

Changing an existing plan
sp_set_qplan changes the abstract plan for an existing plan ID without
changing the ID or the query text. It can be used only when the plan text
is 255 or fewer characters.

sp_set_qplan 588529130, "(i_scan title_ix titles)"

A System Administrator or Database Owner can change the abstract plan
for any saved query. Other users can modify only plans that they own.

When you execute sp_set_qplan, the abstract plan is not checked against
the query text to determine whether the new plan is valid for the query, or
whether the tables and indexes exist. To test the validity of the plan,
execute the associated query.

You can also use create plan and the plan clause to specify the abstract plan
for a query. See “Creating plans using SQL” on page 350.

Managing all plans in a group
These system procedures help manage groups of plans:

• sp_copy_all_qplans

• sp_cmp_all_qplans

• sp_drop_all_qplans

Copying all plans in a group
sp_copy_all_qplans copies all of the plans in one abstract plan group to
another group. This example copies all of the plans from the test_plans
group to the helpful_plans group:

sp_copy_all_qplans test_plans, helpful_plans

The helpful_plans group must exist before you execute sp_copy_all_qplans.
It can contain other plans.

sp_copy_all_qplans copies each plan in the group by executing
sp_copy_qplan, so copying a plan may fail for the same reasons that
sp_copy_qplan might fail. See “Comparing two abstract plans” on page
363.

CHAPTER 17 Managing Abstract Plans with System Procedures

Performance & Tuning: Optimizer and Abstract Plans 365

Each plan is copied as a separate transaction, and failure to copy any single
plan does not cause sp_copy_all_qplans to fail. If sp_copy_all_qplans fails
for any reason, and has to be restarted, you see a set of messages for the
plans that have already been successfully copied, telling you that they exist
in the destination group.

A new plan ID is assigned to each copied plan. The copied plans have the
original user’s ID. To copy abstract plans and assign new user IDs, you
must use sp_export_qpgroup and sp_import_qpgroup. See “Importing and
exporting groups of plans” on page 368.

A System Administrator or Database Owner can copy all plans in the
database. Other users can copy only plans that they own.

Comparing all plans in a group
sp_cmp_all_qplans compares all abstract plans in two groups and reports:

• The number of plans that are the same in both groups

• The number of plans that have the same association key, but different
abstract plans

• The number of plans that are present in one group, but not the other

This example compares the plans in ap_stdout and ap_stdin:

sp_cmp_all_qplans ap_stdout, ap_stdin
If the two query plans groups are large, this might take some
time.
Query plans that are the same
 count

 338
Different query plans that have the same association key

 count

 25
Query plans present only in group ’ap_stdout’ :

 count

 0
Query plans present only in group ’ap_stdin’ :

Managing all plans in a group

366 Adaptive Server Enterprise

 count

 1

With the additional specification of a report-mode parameter,
sp_cmp_all_qplans provides detailed information, including the IDs,
queries, and abstract plans of the queries in the groups. The mode
parameter lets you get the detailed information for all plans, or just those
with specific types of differences.Table 17-2 shows the report modes and
what type of information is reported for each mode.

Table 17-2: Report modes for sp_cmp_all_qplans

This example shows the brief report mode:

sp_cmp_all_qplans ptest1, ptest2, brief
If the two query plans groups are large, this might take
some time.
Query plans that are the same
 count

 39
Different query plans that have the same association key

Mode Reported information

counts The counts of: plans that are the same, plans that have the same
association key, but different groups, and plans that exist in one
group, but not the other. This is the default report mode.

brief The information provided by counts, plus the IDs of the abstract
plans in each group where the plans are different, but the
association key is the same, and the IDs of plans that are in one
group, but not in the other.

same All counts, plus the IDs, queries, and plans for all abstract plans
where the queries and plans match.

diff All counts, plus the IDs, queries, and plans for all abstract plans
where the queries and plans are different.

first All counts, plus the IDs, queries, and plans for all abstract plans
that are in the first plan group, but not in the second plan group.

second All counts, plus the IDs, queries, and plans for all abstract plans
that are in the second plan group, but not in the first plan group.

offending All counts, plus the IDs, queries, and plans for all abstract plans
that have different association keys or that do not exist in both
groups. This is the combination of the diff, first, and second
modes.

full All counts, plus the IDs, queries, and plans for all abstract plans.
This is the combination of same and offending modes.

CHAPTER 17 Managing Abstract Plans with System Procedures

Performance & Tuning: Optimizer and Abstract Plans 367

 count

 4

 ptest1 ptest2

 id1 id2
 ----------- -----------
 764529757 1580532664
 780529814 1596532721
 796529871 1612532778
 908530270 1724533177
Query plans present only in group ’ptest1’ :

 count

 3

 id

 524528902
 1292531638
 1308531695

Query plans present only in group ’ptest2’ :

 count

 1

 id

 2108534545

Dropping all abstract plans in a group
sp_drop_all_qplans drops all abstract plans in a group. This example drops
all abstract plans in the dev_plans group:

sp_drop_all_qplans dev_plans

Importing and exporting groups of plans

368 Adaptive Server Enterprise

When a System Administrator or the Database Owner executes
sp_drop_all_qplans, all plans belonging to all users are dropped from the
specified group. When another user executes this procedure, it affects only
the plans owned by that users.

Importing and exporting groups of plans
sp_export_qpgroup and sp_import_qpgroup copy groups of plans between
sysqueryplans and a user table. This allows a System Administrator or
Database Owner to:

• Copy abstract plans from one database to another on the same server

• Create a table that can be copied out of the current server with bcp,
and copied into another server

• Assign different user IDs to existing plans in the same database

Exporting plans to a user table
sp_export_qpgroup copies all plans for a specific user from an abstract plan
group to a user table. This example copies plans owned by the Database
Owner (dbo) from the fast_plans group, creating a table called transfer:

sp_export_qpgroup dbo, fast_plans, transfer

sp_export_qpgroup uses select...into to create a table with the same
columns and datatypes as sysqueryplans. If you do not have the
select into/bulkcopy/pllsort option enabled in the database, you can specify
the name of another database. This command creates the export table in
tempdb:

sp_export_qpgroup mary, ap_stdout, "tempdb..mplans"

The table can be copied out using bcp, and copied into a table on another
server. The plans can also be imported to sysqueryplans in another
database on the same server, or the plans can be imported into
sysqueryplans in the same database, with a different group name or user
ID.

CHAPTER 17 Managing Abstract Plans with System Procedures

Performance & Tuning: Optimizer and Abstract Plans 369

Importing plans from a user table
sp_import_qpgroup copies plans from tables created by sp_export_qpgroup
into a group in sysqueryplans. This example copies the plans from the table
tempdb..mplans into ap_stdin, assigning the user ID for the Database
Owner:

sp_import_qpgroup "tempdb..mplans", dbo, ap_stdin

You cannot copy plans into a group that already contains plans for the
specified user.

Importing and exporting groups of plans

370 Adaptive Server Enterprise

Performance & Tuning: Optimizer and Abstract Plans 371

C H A P T E R 1 8 Abstract Plan Language
Reference

This chapter describes the operators and other language elements in the
abstract plan language.

Keywords
The following words are keywords in the abstract query plan language.
They are not reserved words, and do not conflict with the names of tables
or indexes used in abstract plans. For example, a table or index may be
named hints.

Operands
The following operands are used in the abstract plan syntax statements:

Topic Page
Keywords 371

Operands 371

Schema for examples 372

Schema for examples

372 Adaptive Server Enterprise

Table 18-1: Identifiers used

table_name and view_name can be specified using the notation
database.owner.object_name.

Abstract plan derived tables
An abstract plan derived table is a result of access to a stored table during
query execution. It can be:

• The result set generated by the query

• An intermediate result during query execution; that is, the result of the
join of the first two tables in the join order, which is then joined with
a third table

Abstract plan derived tables result from one of the scan operators that
specify the access method: scan, i_scan, or t_scan, for example, (i_scan
title_id_ix titles).

Note Abstract plan derived tables should not be confused with SQL
derived tables. For information on SQL derived tables, see the Transact-
SQL User’s Guide.

Schema for examples
To simplify the sample abstract plan examples, the following tables are
used in this section:

Identifier Describes

table_name The name of a base table, that is, a user or system table

correlation_name The correlation name specified for a table in a query

derived_table A table that results from the scan of a stored table

stored_table A base table or a worktable

worktable_name The name of a worktable

view_name The name of a view

index_name The name of an index

subquery_id An integer identifying the order of the subqueries in the
query

CHAPTER 18 Abstract Plan Language Reference

Performance & Tuning: Optimizer and Abstract Plans 373

create table t1 (c11 int, c12 int)
create table t2 (c21 int, c22 int)
create table t3 (c31 int, c32 int)

The following indexes are used:

create index i_c11 on t1(c11)
create index i_c12 on t1(c12)
create index i_c11_c12 on t1(c11, c12)
create index i_c21 on t2(c21)
create index i_c22 on t2(c22)
create index i_c31 on t3(c31)
create index i_c32 on t3(c32)

g_join
Description Specifies the join of two or more abstract plan derived tables without

specifying the join type (nested-loop or sort-merge).

Syntax (g_join derived_table1 derived_table2
)

(g_join (derived_table1)
(derived_table2)
...

(derived_tableN)
)

Parameters derived_table1...derived_tableN
are the abstract plan derived tables to be united.

Return value An abstract plan derived table that is the join of the specified abstract plan
derived tables.

Examples Example 1

select *
from t1, t2
where c21 = 0
and c22 = c12

(g_join
 (i_scan i_c21 t2)
 (i_scan i_c12 t1)
)

g_join

374 Adaptive Server Enterprise

Table t2 is the outer table, and t1 the inner table in the join order.

Example 2

select *
from t1, t2, t3
where c21 = 0
and c22 = c12
and c11 = c31

(g_join
 (i_scan i_c21 t2)
 (i_scan i_c12 t1)
 (i_scan i_c31 t3)
)

Table t2 is joined with t1, and the abstract plan derived table is joined with
t3.

Usage • The g_join operator is a generic logical operator that describes all
binary joins (inner join, outer join, or existence join).

• The g_join operator is never used in generated plans; nl_g_join and
m_g_join operators indicate the join type used.

• The optimizer chooses between a nested-loop join and a sort-merge
join when the g_join operator is used. To specify a sort-merge join, use
m_g_join. To specify a nested-loop join, use nl_g_join.

• The syntax provides a shorthand method of described a join involving
multiple tables. This syntax:

(g_join
 (scan t1)
 (scan t2)
 (scan t3)
 ...
 (scan tN-1)
 (scan tN)
)

is shorthand for:

(g_join
 (g_join
 ...
 (g_join
 (g_join
 (scan t1)

CHAPTER 18 Abstract Plan Language Reference

Performance & Tuning: Optimizer and Abstract Plans 375

 (scan t2)
)
 (scan t3)
)
 ...
 (scan tN-1)
)
 (scan tN)
)

• If g_join is used to specify the join order for some, but not all, of the
tables in a query, the optimizer uses the join order specified, but may
insert other tables between the g_join operands. For example, for this
query:

select *
 from t1, t2, t3
 where ...

the following partial abstract plan describes only the join order of t1
and t2:

(g_join
 (scan t2)
 (scan t1)
)

The optimizer can choose any of the three join orders: t3-t2-t1, t2-t3-
t1 or t2-t1-t3.

• The tables are joined in the order specified in the g_join clause.

• If set forceplan on is in effect, and query association is also enabled for
the session, forceplan is ignored if a full abstract plan is used to
optimize the query. If a partial plan does not completely specify the
join order:

• First, the tables in the abstract plan are ordered as specified.

• The remaining tables are ordered as specified in the from clause.

• The two lists of tables are merged.

See also m_g_join, nl_g_join

hints

376 Adaptive Server Enterprise

hints
Description Introduces and groups items in a partial abstract plan.

Syntax (hints (derived_table)
 ...
)

Parameters derived_table
is one or more expressions that generate an abstract plan derived table.

Return value An abstract plan derived table.

Examples select *
from t1, t2
where c12 = c21
 and c11 > 0
 and c22 < 1000

(hints
 (g_join
 (t_scan t2)
 (i_scan () t1)
)
)

Specifies a partial plan, including a table scan on t2, the use of some index
on t1, and the join order t1-t2. The index choice for t1 and the type of join
(nested-loop or sort-merge) is left to the optimizer.

Usage • The specified hints are used during query optimization.

• The hints operator appears as the root of a partial abstract plan that
includes multiple steps. If a partial plan contains only one expression,
hints is optional.

• The hints operator does not appear in plans generated by the
optimizer; these are always full plans.

• Hints can be associated with queries:

• By changing the plan for an existing query with sp_set_qplan.

• By specifying the plan for a query with the plan clause. To save
the query and hints, set plan dump must be enabled.

• By using the create plan command.

CHAPTER 18 Abstract Plan Language Reference

Performance & Tuning: Optimizer and Abstract Plans 377

• When hints are specified in the plan clause for a SQL statement, the
plans are checked to be sure they are valid. When hints are specified
using sp_set_qplan, plans are not checked before being saved.

i_scan
Description Specifies an index scan of a base table.

Syntax (i_scan index_name base_table)

(i_scan () base_table)

Parameters index_name
is the name or index ID of the index to use for an index scan of the
specified stored table. Use of empty parentheses specify that an index
scan (rather than table scan) is to be performed, but leaves the choice of
index to the optimizer.

base_table
is the name of the base table to be scanned.

Return value An abstract plan derived table produced by a scan of the base table.

Examples Example 1

select * from t1 where c11 = 0

(i_scan i_c11 t1)

Specifies the use of index i_c11 for a scan of t1.

Example 2

select *
 from t1, t2
 where c11 = 0
 and c22 = 1000
 and c12 = c21

(g_join
 (scan t2)
 (i_scan () t1)
)

in

378 Adaptive Server Enterprise

Specifies a partial plan, indicating the join order, but allowing the
optimizer to choose the access method for t2, and the index for t1.

select * from t1 where c12 = 0

(i_scan 2 t1)

Identifies the index on t1 by index ID, rather than by name.

Usage • The index is used to scan the table, or, if no index is specified, an
index is used rather than a table scan.

• Use of empty parentheses after the i_scan operator allows the
optimizer to choose the index or to perform a table scan if no index
exists on the table.

• When the i_scan operator is specified, a covering index scan is always
performed when all of the required columns are included in the index.
No abstract plan specification is needed to describe a covering index
scan.

• Use of the i_scan operator suppresses the choice of the reformatting
strategy and the OR strategy, even if the specified index does not
exist. The optimizer chooses another useful index and an advisory
message is printed. If no index is specified for i_scan, or if no indexes
exist, a table scan is performed, and an advisory message is printed.

• Although specifying an index using the index ID is valid in abstract
query plans, using an index ID is not recommended. If indexes are
dropped and re-created in a different order, plans become invalid or
perform suboptimally.

See also scan, t_scan

in
Description Identifies the location of a table that is specified in a subquery or view.

Syntax (in ([subq subquery_id | view view_name])
)

CHAPTER 18 Abstract Plan Language Reference

Performance & Tuning: Optimizer and Abstract Plans 379

Parameters subq subquery_id
is an integer identifying a subquery. In abstract plans, subquery
numbering is based on the order of the leading open parentheses for the
subqueries in a query.

view view_name
is the name of a view. The specification of database and owner name in
the abstract plan must match the usage in the query in order for plan
association to be performed.

Examples Example 1

create view v1 as
select * from t1

select * from v1

(t_scan (table t1 (in (view v1))))

Identifies the view in which table t1 is used.

Example 2

select *
from t2
where c21
in (select c12 from t1)

(g_join
 (t_scan t2)
 (t_scan (table t1 (in (subq 1))))
)

Identifies the scan of table t1 in subquery 1.

Example 3

create view v9
as
select *
from t1
where c11 in (select c21 from t2)

create view v10
as

in

380 Adaptive Server Enterprise

select * from v9
where c11 in (select c11 from v9)

select * from v10, t3
where c11 in
 (select c11 from v10 where c12 = t3.c31)

(g_join
(t_scan t3)
(i_scan i_c21 (table t2 (in (subq 1) (view v9) (view v10))))
(i_scan i_c11 (table t1 (in (view v9) (view v10))))
(i_scan i_c11 (table t1 (in (view v9) (view v10) (subq 1))))
(i_scan i_c11 (table t1 (in (view v9) (subq 1) (view v10))))
(i_scan i_c21 (table t2 (in (subq 1) (view v9) (subq 1) (view v10))))
(i_scan i_c11 (table t1 (in (view v9) (subq 1) (view v10) (subq 1))))
(i_scan i_c21 (table t2 (in (subq 1) (view v9) (view v10) (subq 1))))
(i_scan i_c21 (table t2(in(subq 1)(view v9)(subq 1)(view v10) (
subq 1))))
)

An example of multiple nesting of views and subqueries.

Usage • Identifies the occurrence of a table in view or subqueryof the SQL
query.

• The in list has the innermost items to the left, near the table’s name
(itself the deeply nested item), and the outermost items (the ones
occurring in the top level query) to the right. For example, the
qualification:

(table t2 (in (subq 1) (view v9) (subq 1) (view
v10) (subq 1)))

can be read in either direction:

• Reading left to right, starting from the table: the base table t2 as
scanned in the first subquery of view v9 , which occurs in the first
subquery of view v10 , which occurs in the first subquery of the
main query

• Reading from right to left, that is, starting from the main query:
in the main query there’s a first subquery, that scans the view v10
, that contains a first subquery that scans the view v9 , that
contains a first subquery that scans the base table t2

CHAPTER 18 Abstract Plan Language Reference

Performance & Tuning: Optimizer and Abstract Plans 381

See also nested, subq, table, view

lru
Description Specifies LRU cache strategy for the scan of a stored table.

Syntax (prop table_name
(lru)

)

Parameters table_name
is the table to which the property is to be applied.

Examples select * from t1

(prop t1
 (lru)
)

Specifies the use of LRU cache strategy for the scan of t1.

Usage • LRU strategy is used in the resulting query plan.

• Partial plans can specify scan properties without specifying other
portions of the query plan.

• Full query plans always include all scan properties.

See also mru, prop

m_g_join
Description Specifies a merge join of two abstract plan derived tables.

Syntax (m_g_join (
(derived_table1)
(derived_table2)

)

Parameters derived_table1...derived_tableN
are the abstract plan derived tables to be united. derived_table1 is
always the outer table and derived_table2 is the inner table

m_g_join

382 Adaptive Server Enterprise

Return value An abstract plan derived table that is the join of the specified abstract plan
derived tables.

Examples Example 1

select t1.c11, t2.c21
 from t1, t2, t3
 where t1.c11 = t2.c21
 and t1.c11 = t3.c31

(nl_g_join
 (m_g_join
 (i_scan i_c31 t3)
 (i_scan i_c11 t1)
)
 (t_scan t2)
)

Specifies a right-merge join of tables t1 and t3, followed by a nested-loop
join with table t2.

Example 2

select * from t1, t2, t3
where t1.c11 = t2.c21 and t1.c11 = t3.c31
and t2.c22 =7

(nl_g_join
 (m_g_join
 (i_scan i_c21 t2)
 (i_scan i_c11 t1)
)
 (i_scan i_c31 t3)
)

Specifies a full-merge join of tables t2 (outer) and t1 (inner), followed in
the join order by a nested-loop join with t3.

Example 3

select c11, c22, c32
from t1, t2, t3
where t1.c11 = t2.c21
and t2.c22 = t3.c32

(m_g_join

CHAPTER 18 Abstract Plan Language Reference

Performance & Tuning: Optimizer and Abstract Plans 383

 (nl_g_join
 (i_scan i_c11 t1)
 (i_scan i_c12 t2)
)
 (i_scan i_c32_ix t3)
)

Specifies a nested-loop join of t1 and t2, followed by a merge join with t3.

Usage • The tables are joined in the order specified in the m_g_join clause.

• The sort step and worktable required to process sort-merge join
queries are not represented in abstract plans.

• If the m_g_join operator is used to specify a join that cannot be
performed as a merge join, the specification is silently ignored.

See also g_join, nl_g_join

mru
Description Specifies MRU cache strategy for the scan of a stored table.

Syntax (prop table_name
(mru)

)

Parameters table_name
is the table to which the property is to be applied.

Examples select * from t1

(prop t1
 (mru)
)

Specifies the use of MRU cache strategy for the table.

Usage • MRU strategy is specified in the resulting query plan

• Partial plans can specify scan properties without specifying other
portions of the query plan.

• Generated query plans always include all scan properties.

nested

384 Adaptive Server Enterprise

• If sp_cachestrategy has been used to disable MRU replacement for a
table or index, and the query plan specifies MRU, the specification in
the abstract plan is silently ignored.

See also lru, prop

nested
Description Describes the nesting of subqueries on an abstract plan derived table.

Syntax (nested
(derived_table)

(subquery_specification)
)

Parameters derived_table
is the abstract plan derived table over which to nest the specified
subquery.

subquery_specification
is the subquery to nest over derived_table

Return value An abstract plan derived table.

Examples Example 1

select c11 from t1
where c12 =
 (select c21 from t2 where c22 = t1.c11)

(nested
 (t_scan t1)
 (subq 1
 (t_scan (table t2 (in (subq 1))))
)
)

A single nested subquery.

Example 2

select c11 from t1
where c12 =
 (select c21 from t2 where c22 = t1.c11)
 and c12 =
 (select c31 from t3 where c32 = t1.c11)

CHAPTER 18 Abstract Plan Language Reference

Performance & Tuning: Optimizer and Abstract Plans 385

(nested
 (nested
 (t_scan t1)
 (subq 1
 (t_scan (table t2 (in (subq 1))))
)
)
 (subq 2
 (t_scan (table t3 (in (subq 2))))
)
)

The two subqueries are both nested in the main query.

Example 3

select c11 from t1
where c12 =
 (select c21 from t2 where c22 =
 (select c31 from t3 where c32 = t1.c11))

(nested
 (t_scan t1)
 (subq 1
 (nested
 (t_scan (table t2 (in (subq 1))))
 (subq 2
 (t_scan (table t3 (in (subq 2))))
)
)
)
)

A level 2 subquery nested into a level 1 subquery nested in the main query.

Usage • The subquery is executed at the specified attachment point in the
query plan.

• Materialized and flattened subqueries do not appear under a nested
operator. See subq on page 394 for examples.

See also in, subq

nl_g_join

386 Adaptive Server Enterprise

nl_g_join
Description Specifies a nested-loop join of two or more abstract plan derived tables.

Syntax (nl_g_join (derived_table1)
(derived_table2)

 ...
(derived_tableN)

)

Parameters derived_table1...derived_tableN
are the abstract plan derived tables to be united.

Return value An abstract plan derived table that is the join of the specified abstract plan
derived tables.

Examples Example 1

select *
from t1, t2
where c21 = 0
and c22 = c12

(nl_g_join
 (i_scan i_c21 t2)
 (i_scan i_c12 t1)
)

Table t2 is the outer table, and t1 the inner table in the join order.

Example 2

select *
from t1, t2, t3
where c21 = 0
and c22 = c12
and c11 = c31

(nl_g_join
 (i_scan i_c21 t2)
 (i_scan i_c12 t1)
 (i_scan i_c31 t3)
)

Table t2 is joined with t1, and the abstract plan derived table is joined with
t3.

Usage • The tables are joined in the order specified in the nl_g_join clause

CHAPTER 18 Abstract Plan Language Reference

Performance & Tuning: Optimizer and Abstract Plans 387

• The nl_g_join operator is a generic logical operator that describes all
binary joins (inner join, outer join, or semijoin). The joins are
performed using the nested-loops query execution method.

See also g_join, m_g_join

parallel
Description Specifies the degree of parallelism for the scan of a stored table.

Syntax (prop table_name
(parallel degree)

)

Parameters table_name
is the table to which the property is to be applied.

degree
is the degree of parallelism to use for the scan.

Examples select * from t1

(prop t1
 (parallel 5)
)

Specifies that 5 worker processes should be used for the scan of the t1
table.

Usage • The scan is performed using the specified number of worker
processes, if available.

• Partial plans can specify scan properties without specifying other
portions of the query plan.

• If a saved plan specifies the use of a number of worker processes, but
session-level or server-level values are different when the query is
executed:

• If the plan specifies more worker processes than permitted by the
current settings, the current settings are used or the query is
executed using a serial plan.

• If the plan specifies fewer worker processes than permitted by the
current settings, the values in the plan are used.

plan

388 Adaptive Server Enterprise

These changes to the query plan are performed transparently to the
user, so no warning messages are issued.

See also prop

plan
Description Provides a mechanism for grouping the query plan steps of multi-step

queries, such as queries requiring worktables, and queries computing
aggregate values.

Syntax (plan
query_step1
...
query_stepN

)

Parameters query_step1...query_stepN –
specify the abstract plan steps for the execution of each step in the
query.

Return value An abstract plan derived table.

Examples Example 1

select max(c11) from t1
group by c12

(plan
 (store Worktab1
 (t_scan t1)
)
 (t_scan (work_t Worktab1))
)

Returns a vector aggregate. The first operand of the plan operator creates
Worktab1 and specifies a table scan of the base table. The second operand
scans the worktable to return the results.

Example 2

select max(c11) from t1

(plan

CHAPTER 18 Abstract Plan Language Reference

Performance & Tuning: Optimizer and Abstract Plans 389

 (t_scan t1)
 ()
)

Returns a scalar aggregate. The last abstract plan derived table is empty,
because scalar aggregates accumulate the result value in an internal
variable rather than a worktable.

Example 3

select *
from t1
where c11 = (select count(*) from t2)

(plan
 (i_scan i_c21 (table t2 (in_subq 1)))
 (i_scan i_c11 t1)
)

Specifies the execution of a materialized subquery.

Example 4

create view v3
as
select distinct * from t3

select * from t1, v3
where c11 = c31

(plan
 (store Worktab1
 (t_scan (table t3 (in_view v3)))
)
 (nl_g_join
 (t_scan t1)
 (t_scan (work_t Worktab1))
)
)

Specifies the execution of a materialized view.

Usage • Tables are accessed in the order specified, with the specified access
methods.

prefetch

390 Adaptive Server Enterprise

• The plan operator is required for multistep queries, including:

• Queries that generate worktables, such as queries that perform
sorts and those that compute vector aggregates

• Queries that compute scalar aggregates

• Queries that include materialized subqueries

• An abstract plan for a query that requires multiple execution steps
must include operands for each step in query execution if it begins
with the plan keyword. Use the hints operator to introduce partial
plans.

See also hints

prefetch
Description Specifies the I/O size to use for the scan of a stored table.

Syntax (prop table_name
(prefetch size)

)

Parameters table_name
is the table to which the property is to be applied.

size
is a valid I/O size: 2, 4, 8 or 16.

Examples select * from t1

(prop t1
 (prefetch 16)
)

16K I/O size is used for the scan of t1.

Usage • The specified I/O size is used in the resultant query plan if a pool of
that size exists in the cache used by the table.

• Partial plans can specify scan properties without specifying other
portions of the query plan.

• If large I/O specifications in a saved plan do not match current pool
configuration or other options:

CHAPTER 18 Abstract Plan Language Reference

Performance & Tuning: Optimizer and Abstract Plans 391

• If the plan specifies 16K I/O, and the 16K pool does not exist, the
next largest available I/O size is used.

• If session or server-level options have made large I/O unavailable
for the query (set prefetch for the session, or sp_cachestrategy for
the table), 2K I/O is used.

• If you save plans that specify only 2K I/O for the scan properties, and
later create large I/O pools, enable replace mode to save the new plans
if you want these plans to use larger I/O sizes.

See also prop

prop
Description Specifies properties to use for the scan of a stored table.

Syntax (prop table_name
(property_specification) ...

)

property_specification:

(prefetch size)
(lru | mru)
(parallel degree)

Parameters table_name
is the table to which the property is to be applied.

Examples select * from t1

(t_scan t1)
(prop t1
 (parallel 1)
 (prefetch 16)
 (lru)
)

Shows the property values used by the scan of t1.

Usage • The specified properties are used for the scan of the table

• Partial plans can specify scan properties without specifying other
portions of the query plan.

scan

392 Adaptive Server Enterprise

• Generated plans include the parallel, prefetch, and cache strategy
properties used for each table in the query.

See also lru, mru, parallel, prefetch

scan
Description Specifies the scan of a stored table, without specifying the type of scan.

Syntax (scan stored_table)

Parameters stored_table
is the name of the stored table to be scanned. It can be a base table or
worktable.

Return value An abstract plan derived table produced by the scan of the stored table.

Examples Example 1

select * from t1 where c11 > 10

(scan t1)

Specifies a scan of t1, leaving the optimizer to choose whether to perform
a table scan or index scan.

Example 2

select *
 from t1, t2
 where c11 = 0
 and c22 = 1000
 and c12 = c21

(nl_g_join
 (scan t2)
 (i_scan i_c22 t1)
)

Specifies a partial plan, indicating the join order, but allowing the
optimizer to choose the access method for t2.

Usage • The optimizer chooses the access method for the stored table.

CHAPTER 18 Abstract Plan Language Reference

Performance & Tuning: Optimizer and Abstract Plans 393

• The scan operator is used when the choice of the type of scan should
be left to the optimizer. The resulting access method can be one of the
following:

• A full table scan

• An index scan, with access to data pages

• A covering index scan, with no access to data pages

• A RID scan, used for the OR strategy

• For an example of an abstract plan that specifies the reformatting
strategy, see store.

See also i_scan, store, t_scan

store
Description Stores the results of a scan in a worktable.

Syntax (store worktable_name
([scan | i_scan | t_scan] table_name)

)

Parameters worktable_name
is the name of the worktable to be created.

table_name
is the name of the base table to be scanned.

Return value A worktable that is the result of the scan.

Examples select c12, max(c11) from t1
 group by c12

(plan
 (store Worktab1
 (t_scan t1)
)
 (t_scan (work_t Worktab1))
)

Specifies the two-step process of selecting the vector aggregate into a
worktable, then selecting the results of the worktable.

subq

394 Adaptive Server Enterprise

Usage • The specified table is scanned, and the result is stored in a worktable

• The legal places for a store operator in an abstract plan are:

• Under a plan or union operator, where the store operator signifies
a preprocessing step resulting in a worktable

• Under a scan operator (but not under an i_scan or t_scan
operator)

• During plan capture mode, worktables are identified as Worktab1,
Worktab2, and so on. For manually entered plans, any naming
convention can be used.

• The use of the reformatting strategy can be described in an abstract
plan using the scan (store ()) combination of operators. For example,
if t2 has no indexes and is very large, the abstract plan below indicates
that t2 should be scanned once, via a table scan, with the results stored
in a worktable:

select *
from t1, t2
where c11 > 0
 and c12 = c21
 and c22 between 0 and 10000
(nl_g_join
 (i_scan i_c11 t1)
 (scan (store (t_scan t2)))
)

See also scan

subq
Description Identifies a subquery.

Syntax (subq subquery_id
)

Parameters subquery_id
is an integer identifying the subquery. In abstract plans, subquery
numbering is based on the order of the leading parenthesis for the
subqueries in a query.

Examples Example 1

CHAPTER 18 Abstract Plan Language Reference

Performance & Tuning: Optimizer and Abstract Plans 395

select c11 from t1
where c12 =
 (select c21 from t2 where c22 = t1.c11)

(nested
 (t_scan t1)
 (subq 1
 (t_scan (table t2 (in (subq 1))))
)
)

A single nested subquery.

Example 2

select c11 from t1
where c12 =
 (select c21 from t2 where c22 = t1.c11)
 and c12 =
 (select c31 from t3 where c32 = t1.c11)

(nested
 (nested
 (t_scan t1)
 (subq 1
 (t_scan (table t2 (in (
subq 1))))
)
)
 (subq 2
 (t_scan (table t3 (in (subq 2))))
)
)

The two subqueries are both nested in the main query.

Example 3

select c11 from t1
where c12 =
 (select c21 from t2 where c22 =
 (select c31 from t3 where c32 = t1.c11))

(nested
 (t_scan t1)

subq

396 Adaptive Server Enterprise

 (subq 1
 (nested
 (t_scan (table t2 (in (subq 1))))
 (subq 2
 (t_scan (table t3 (in (subq
2))))
)
)
)
)

A level 2 subquery nested into a level 1 subquery nested in the main query.

Usage • The subq operator has two meanings in an abstract plan expression:

• Under a nested operator, it describes the attachment of a nested
subquery to a table

• Under an in operator, it describes the nesting of the base tables
and views that the subquery contains

• To specify the attachment of a subquery without providing a plan
specification, use an empty hint:

(nested
 (t_scan t1)
 (subq 1
 ()
)
)

• To provide a description of the abstract plan for a subquery, without
specifying its attachment, specify an empty hint as the abstract plan
derived table in the nested operator:

(nested
 ()
 (subq 1
 (t_scan (table t1 (in (subq 1))))
)
)

• When subqueries are flattened to a join, the only reference to the
subquery in the abstract plan is the identification of the table specified
in the subquery:

select *
from t2
where c21 in (select c12 from t1)
(nl_g_join

CHAPTER 18 Abstract Plan Language Reference

Performance & Tuning: Optimizer and Abstract Plans 397

 (t_scan t1)
 (t_scan (table t2 (in (subq 1))))

• When a subquery is materialized, the subquery appears in the store
operation, identifying the table to be scanned during the
materialization step:

select *
from t1
where c11 in (select max(c22) from t2 group by
c21)
(plan
 (store Worktab1
 (t_scan (table t2 (in (subq 1))))
)
 (nl_g_join
 (t_scan t1)
 (t_scan (work_t Worktab1))
)
)

See also in, nested, table

t_scan
Description Specifies a table scan of a stored table.

Syntax (t_scan stored_table)

Parameters stored_table
is the name of the stored table to be scanned.

Return value An abstract plan derived table produced by the scan of the stored table.

Examples select * from t1

(t_scan t1)

Performs a table scan of t1.

Usage • Instructs the optimizer to perform a table scan on the stored table.

• Specifying t_scan forbids the use of reformatting and the OR strategy.

See also i_scan, scan, store

table

398 Adaptive Server Enterprise

table
Description Identifies a base table that occurs in a subquery or view or that is assigned

a correlation name in the from clause of the query.

Syntax (table table_name [qualification])

(table (correlation_name table_name))

Parameters table_name
is a base table. If the query uses the database name and/or owner name,
the abstract plan must also provide them.

correlation_name
is the correlation name, if a correlation name is used in the query.

qualification
is either in (subq subquery_id) or in (view view_name).

Examples Example 1

select * from t1 table1, t2 table2
where table1.c11 = table2.c21

(nl_g_join
 (t_scan (table (table1 t1)))
 (t_scan (table (table2 t2)))
)

Tables t1 and t2 are identified by reference to the correlation names used
in the query.

Example 2

select c11 from t1
where c12 =
 (select c21 from t2 where c22 = t1.c11)

(nested
 (t_scan t1)
 (subq 1
 (t_scan (table t2 (in (subq 1))))
)
)

Table t2 in the subquery is identified by reference to the subquery.

Example 3

CHAPTER 18 Abstract Plan Language Reference

Performance & Tuning: Optimizer and Abstract Plans 399

create view v1
as
select * from t1 where c12 > 100

select t1.c11 from t1, v1
where t1.c12 = v1.c11

(nl_g_join
 (t_scan t1)
 (i_scan 2 (table t1 (in (view v1))))

Table t1 in the view is identified by reference to the view.

Usage • The specified abstract plan derived tables in the abstract plan are
matched against the positionally corresponding tables specified in the
query.

• The table operator is used to link table names in an abstract plan to the
corresponding table in a SQL query in queries that contain views,
subqueries, and correlation names for tables.

• When correlation names are used, all references to the table, including
those in the scan properties section, are in the form:

(table (correlation_name table_name))

The table operator is used for all references to the table, including the
scan properties for the table under the props operator.

See also in, subq, view

union
Description Describes the union of the two or more abstract plan derived tables.

Syntax (union
derived_table1
...
derived_tableN

)

Parameters derived_table1...derived_tableN
is the abstract plan derived tables to be united.

Return value An abstract plan derived table that is the union of the specified operands.

union

400 Adaptive Server Enterprise

Examples Example 1

select * from t1
union
select * from t2
union
select * from t3

(union
 (t_scan t1)
 (t_scan t2)
 (t_scan t3)
)

Returns the union of the three full table scans.

Example 2

select 1,2
union
select * from t2

(union
 ()
 (tscan t2)
)

Since the first side of the union is not an optimizable query, the first union
operand is empty.

Usage • The specified abstract plan derived tables in the abstract plan are
matched against the positionally corresponding tables specified in the
query.

• The union operator describes the processing for:

• union, which removes duplicate values and

• union all, which preserves duplicate values

• The union operator in an abstract query plan must have the same
number of union sides as the SQL query and the order of the operands
for the abstract plan must match the order of tables in the query.

• The sort step and worktable required to process union queries are not
represented in abstract plans.

CHAPTER 18 Abstract Plan Language Reference

Performance & Tuning: Optimizer and Abstract Plans 401

• If union queries list nonoptimizable elements, an empty operand is
required. A select query that has no from clause is shown in example

See also i_scan, scan, t_scan

view
Description Identifies a view that contains the base table to be scanned.

Syntax view view_name

Parameters view_name
is the name of a view specified in the query. If the query uses the
database name and/or owner name, the abstract plan must also provide
them.

Examples create view v1 as
select * from t1

select * from v1

(t_scan (table t1 (in (view v))))

Identifies the view in which table t1 is used.

Usage • When a query includes a view, the table must be identified using table
(tablename (in view_name)).

See also in, table

work_t
Description Describes a stored worktable.

Syntax (work_t [worktable_name
| (correlation_name worktable_name)]

)

Parameters worktable_name
is the name of a worktable.

work_t

402 Adaptive Server Enterprise

correlation_name
is the correlation name specified for a worktable, if any.

Return value A stored table.

Examples select c12, max(c11) from t1
 group by c12

(plan
 (store Worktab1
 (t_scan t1)
)
 (t_scan (work_t Worktab1))
)

Specifies the two-step process of selecting vector aggregates into a
worktable, then selecting the results of the worktable.

Usage • Matches the stored table against a work table in the query plan.

• The store operator creates a worktable; the work_t operator identifies
a stored worktable for later access in the abstract plan.

• During plan capture mode, worktables are identified as Worktab1,
Worktab2, and so on. For manually entered plans, any naming
convention can be used.

• If the scan of the worktable is never specified explicitly with a scan
operator, the worktable does not have to be named and the work_t
operator can be omitted. The following plan uses an empty scan
operator “()” in place of the t_scan and work_t specifications used in
example

(plan
 (store
 (t_scan titles)
)
 ()
)

• Correlation names for worktables are needed only for self-joined
materialized views, for example:

create view v
as
select distinct c11 from t1

select *

CHAPTER 18 Abstract Plan Language Reference

Performance & Tuning: Optimizer and Abstract Plans 403

from v v1, v v2
where ...

(plan
 (store Worktab1
 (t_scan (table t1 (in (view v))))
)
 (g_join
 (t_scan (work_t (v1 Worktab1)))
 (t_scan (work_t (v2 Worktab1)))
)
)

See also store, view

work_t

404 Adaptive Server Enterprise

Performance and Tuning: Optimizer and Abstract Plans 405

Symbols
> (greater than)

optimizing 14
(pound sign)

temporary table identifier prefix 279
() (parentheses)

empty, for i_scan operator 378
empty, for worktable scans 402
empty, in union queries 401
empty, subqueries and 396

A
abstract plan cache configuration parameter 350
abstract plan derived table

defined 372
abstract plan derived tables 318
abstract plan dump configuration parameter 350
abstract plan groups

adding 356
creating 356
dropping 357
exporting 368
importing 369
information about 357
overview of use 313
plan association and 313
plan capture and 313
procedures for managing 355–369

abstract plan load configuration parameter 350
abstract plan replace configuration parameter 350
abstract plans

comparing 363
copying 362
finding 360
information about 361
pattern matching 360
viewing with sp_help_qplan 361

access
See also access methods
optimizer methods 174–185

access methods 174
hash-based 174
hash-based scan 174
parallel 174–186
partition-based 174
range-based scan 174
selection of 185

adding
abstract plan groups 356

aggregate functions
denormalization and temporary tables 281
optimization of 90, 91
parallel optimization of 201
subqueries including 136

all keyword
union, optimization of 140

ALS
log writer 51
user log cache 49
when to use 50

ALS, see Asynchronous Log Service 48
alter database command and tempdbs 265
alter table command

parallel sorting and 220
and keyword

subqueries containing 137
any keyword

subquery optimization and 130
application design

cursors and 308
index specification 41
temporary tables in 281

asc index option 79–80
ascending sort 79, 82
associating queries with plans

plan groups and 313
session-level 344

Index

Index

406 Adaptive Server Enterprise

association key
defined 314
plan association and 314
sp_cmp_all_qplans and 365
sp_copy_qplan and 362

asynchronous prefetch 237, 248
dbcc and 241, 252
during recovery 240
fragmentation and 245
hash-based scans and 250
large I/O and 248
look-ahead set 238
maintenance for 252
MRU replacement strategy and 250
nonclustered indexes and 241
page chain fragmentation and 245
page chain kinks and 245, 252
parallel query processing and 250
partition-based scans and 251
performance monitoring 254
pool limits and 244
recovery and 251
sequential scans and 240
tuning goals 247

B
batch processing

temporary tables and 287
bcp (bulk copy utility)

temporary tables 279
between keyword

optimization 9
between operator selectivity

statistics 21
binary expressions xxii
binding

tempdb 284
binding an sa to its own tempdb 261
binding user-created tempdbs to a data cache 266
bindings and tempdbs 256
buffer pools

specifying I/O size 390
buffers

sorting 223–224

unavailable 44

C
cache hit ratio

partitioning and 165
cache strategy property

specifying 381, 383
caches, data

parallel sorting and 222
sorts and 223–224
subquery results 138
table scans and 63
tempdb bound to own 284

caching characteristics and tempdbs 266
canceling

queries with adjusted plans 204
capturing plans

session-level 344
changed system procedures 51
character expressions xxii
cheap direct updates 94
close command

memory and 296
close on endtran option, set 308
clustered indexes

asynchronous prefetch and scans 240
create index requirements 219
point query cost 69
prefetch and 43
range query cost 70
scans and asynchronous prefetch 240
space requirements 229

commands for configuration 248
comparing abstract plans 363
concurrency optimization

for small tables 55
concurrency optimization threshold

deadlocks and 56
configuration server)

parallel query processing 153
configuring

tempdbs for applications 273
the number of open databases in tempdbs 270

connections

Index

Performance and Tuning: Optimizer and Abstract Plans 407

cursors and 308
constants xxii
consumer process 215, 232
contention

system tables in tempdb 284
conventions

used in manuals xx
conversion

datatypes 31
in lists to or clauses 85
subqueries to equijoins 135

coordinating process 143, 216
copying

abstract plans 362
plan groups 364
plans 362, 364

correlation names
for tables 398
for views 402

cost
parallel clustered index partition scan 178
parallel hash-based table scan 180
parallel nonclustered index hash-based scan 181
parallel partition scan 176
point query 69
range query using clustered index 70
range query using nonclustered index 72, 73
sort operations 77

count col_name aggregate function
optimization of 91

count(*) aggregate function
optimization of 91

covered queries
specifying cache strategy for 45

covering nonclustered indexes
asynchronous prefetch and 240
cost 73
nonequality operators and 16
range query cost 72

CPU
guidelines for parallel queries 163
saturation 162, 164
utilization 161, 166

CPU usage
CPU-intensive queries 161

CPU usages

parallel queries and 166
create index command

logging considerations of 230
number of sort buffers parameter and 213, 222–

227
space requirements 229
with consumers clause and 220

creating
abstract plan groups 356

cursor rows option, set 307
cursors

execute 296
Halloween problem 298
indexes and 297
isolation levels and 304
locking and 294
modes 297
multiple 308
or strategy optimization and 89
read-only 297
stored procedures and 296
updatable 297

D
data caches

flushing during table scans 63
parallel sorting and 225, 228
sort buffers and 225
subquery cache 138
tempdb bound to own 283, 284

data modification
update modes 92

data pages
prefetching 43

database devices
parallel queries and 163

datatypes
matching in queries 24

dbcc (database c+onsistency checker)
configuring asynchronous prefetch for 252

dbcc (database consistency checker)
asynchronous prefetch and 241

dbcc addtempdb and tempdbs 272
dbcc pravailabletempdbs and tempdbs 271

Index

408 Adaptive Server Enterprise

deadlocks
concurrency optimization threshold settings 56
descending scans and 84
table scans and 56

deallocate cursor command
memory and 296

debugging aids
set forceplan on 37

decision support system (DSS) applications
parallel queries and 143, 166

declare cursor command
memory and 296

default settings
index statistics 22
number of tables optimized 39

deferred index updates 96
deferred updates 95
degree of parallelism 152, 186–194

definition of 186
joins and 190, 191
optimization of 187
parallel sorting and 220
query-level 156
runtime adjustment of 194, 202–205
server-level 153
session-level 155
specifying 387
upper limit to 187

delete operations
joins and update mode 95
update mode in joins 95

deleting
plans 362, 367

denormalization
temporary tables and 281

density
index, and joins 106, 129
range cell 19
total 19

derived tables
abstract plan derived tables 318
SQL derived tables 318

desc index option 79–80
descending order (desc keyword) 79, 82

covered queries and 83
descending scans

deadlocks and 84
devices

RAID 163
direct updates 92

cheap 94
expensive 94
in-place 93
joins and 95

disk devices
I/O speed 163
parallel queries and 158, 162
parallel sorting and 228, 230

disk i/o structures configuration parameter
asynchronous prefetch and 244

distinct keyword
parallel optimization of 211

distribution map 215, 232
dropping

abstract plan groups 357
indexes specified with index 41
plans 362, 367
tempdbs 264

dump database command
parallel sorting and 230

dumping tempdbs 269
duplicate rows

removing from worktables 88
duplication

update performance effect of 96
dynamic index

or query optimization 86
dynamic indexes 89

E
empty parentheses

i_scan operator and 378
in union queries 401
subqueries and 396
worktable scans and 402

engines
number of 161

equality selectivity
dbcc traceon(302) output 22
statistics 21

Index

Performance and Tuning: Optimizer and Abstract Plans 409

equijoins
subqueries converted to 135

equivalents in search arguments 9
error messages

process_limit_action 204
runtime adjustments 204

estimated cost
fast and slow query processing 5
indexes 4
joins 22
materialization 136
or clause 87
reformatting 129
subquery optimization 139

execute cursors
memory use of 296

exists check mode 348
exists keyword

parallel optimization of 201
exists keyword

subquery optimization and 130
expensive direct updates 94, 95
exporting plan groups 368
expression subqueries

optimization of 135
extending

model database 265
tempdbs 265

F
failover

scenarios and tempdbs 269
FALSE, return value of 131
family of worker processes 144
fetching cursors

memory and 296
finding abstract plans 360
fixed-length columns

indexes and update modes 102
flattened subqueries 130, 396
floating-point data xxii
for update option, declare cursor

optimizing and 307
forceplan

abstract plans and 375
forceplan option, set 37

alternatives 38
risks of 38

fragmentation, data
effects on asynchronous prefetch 245
page chain 245

G
g_join operator 373–375
global list of temporary databases 258

H
Halloween problem

cursors and 298
hard bindings and tempdbs 261
hardware

parallel query processing guidelines 163
hash-based scans

asynchronous prefetch and 250
heap tables and 185
I/O and 174
indexing and 185
limiting with set scan_parallel_degree 156
nonclustered indexes and 180–181, 185
table scans 179–180
worker processes and 174

high availability
configuring for tempdbs 268
mounting tempdbs 269
tempdbs and 267

hints operator 376–377

I
I/O

See also large I/O
asynchronous prefetch 237, ??–254
direct updates and 93
prefetch keyword 42
range queries and 42

Index

410 Adaptive Server Enterprise

saturation 162
saving with reformatting 128
specifying size in queries 42
spreading between caches 284
update operations and 94

I/O size
specifying 390

i_scan operator 377
identifiers

list of 371
IDENTITY columns

cursors and 298
importing abstract plan groups 369
in keyword

optimization of 85
subquery optimization and 130

in operator (abstract plans) 378–381
in-between selectivity 21
index covering

sort operations and 83
index keys

asc option for ordering 79–80
desc option for ordering 79–80

index scans
i_scan operator 377

indexes
avoiding sorts with 77
creating 211
cursors using 297
dynamic 89
large I/O for 42
parallel creation of 211
specifying for queries 40
temporary tables and 279, 287
update modes and 101
update operations and 93, 94

inner tables of joins 112
in-place updates 93
insert operations

logging and 285
installation and tempdbs issues 272
integer data

in SQL xxii
optimizing queries on 14

isolation levels
cursors 304

J
join operator

g_join 373
m_g_join 381
merge join 381
nested-loop join 386
nl_g_join 386

join order
outer join restrictions 110

join transitive closure
defined 11
enabling 11

joins
datatype compatibility in 31
index density 106, 129
indexing by optimizer 22
many tables in 107, 108
nested-loop 110
number of tables considered by optimizer 39
optimizing 105
or clause optimization 140
parallel optimization of 190–192, 197–200
process of 22
table order in 37
table order in parallel 190–192, 197–200
temporary tables for 281
union operator optimization 140
update mode and 95
updates using 93, 94, 95

jtc option, set 52

K
keys, index

update operations on 93
keywords

list of 371

L
large I/O

asynchronous prefetch and 248
index leaf pages 42

like optimization 9

Index

Performance and Tuning: Optimizer and Abstract Plans 411

limits
parallel query processing 152, 155
parallel sort 152
worker processes 152, 155

loading tempdbs 269
locking

tempdb and 284
worktables and 284

log truncation and tempdbs 263
logging

minimizing in tempdb 285
parallel sorting and 230

logical expressions xxii
look-ahead set 238

dbcc and 241
during recovery 240
nonclustered indexes and 241
sequential scans and 240

LRU replacement strategy
specifying 46

lru scan property 381

M
m_g_join operator 381–383
maintenance tasks

forced indexes 41
forceplan checking 37

materialized subqueries 135, 397
max aggregate function

min used with 91
optimization of 91

max async i/os per engine configuration parameter
asynchronous prefetch and 244

max async i/os per server configuration parameter
asynchronous prefetch and 244

max parallel degree configuration parameter 153,
192, 193

sorts and 218
max scan parallel degree configuration parameter

153, 188
memory

cursors and 294
merge join

abstract plans for 383

merge runs, parallel sorting 216, 223
reducing 223

merging index results 216
messages

dropped index 41
min aggregate function

max used with 91
optimization of 91

model database, extending 265
modifying abstract plans 364
MRU replacement strategy

asynchronous prefetch and 250
disabling 47
specifying 46

mru scan property 383–384
multiple matching index scans 86, 90
multiple temporary databases. See tempdbs.
multiple-database transactions and tempdbs 272

N
names

column, in search arguments 15
index clause and 41
index prefetch and 43

nested operator 384–385
nested-loop joins 110

specifying 386
nesting

temporary tables and 288
networks

cursor activity of 302
nl_g_join operator 386–387
nonclustered indexes

asynchronous prefetch and 241
covered queries and sorting 83
create index requirements 219
hash-based scans 180–181
point query cost 69
range query cost 72, 73
sorting and 84

nonmatching index scans
nonequality operators and 16

normal companion behavior in high-availability failover
and tempdbs 269

Index

412 Adaptive Server Enterprise

normalization
temporary tables and 281

null columns
optimizing updates on 101

number (quantity of)
cursor rows 307
engines 161
tables considered by optimizer 39

number of sort buffers 224
number of sort buffers configuration parameter

parallel sort messages and 231
parallel sorting and 213, 222–227

number of worker processes configuration parameter
153

numeric expressions xxii

O
OAM. Seeobject allocation map
object allocation map

costing 64
online transaction processing (OLTP)

parallel queries and 173
open command

memory and 296
operands

list of 371
operators

nonequality, in search arguments 16
in search arguments 15

optimization
See also parallel query optimization
cursors 296
in keyword and 85
OAM scans 179
order by queries 79
parallel query 171–208
SQL derived tables and 7
subquery processing order 139

optimizer 3–33, 61–103, 105–140, 171–208
See also parallel query optimization
aggregates and 90, 201
diagnosing problems of 6, 206
expression subqueries 135
join order 190–192

or clauses and 85
overriding 35
parallel queries and 171–208
procedure parameters and 21
quantified predicate subqueries 130
reformatting strategy 128
sources of problems 6
subqueries and 129
temporary tables and 286
updates and 100

or keyword
estimated cost 87
optimization and 85
optimization of join clauses using 140
processing 86
subqueries containing 138

OR strategy 86
cursors and 306

order
joins 190–192
tables in a join 37, 108

order by clause
parallel optimization of 201

order by clause
optimization of 79
parallel optimization of 211

outer join
permutations 110

outer joins 112
join order 110

overhead
cursors 302
deferred updates 96
parallel query 173–174

P
page chain kinks

asynchronous prefetch and 245, 252
clustered indexes and 253
defined 245
heap tables and 253
nonclustered indexes and 253

pages, data
prefetch and 43

Index

Performance and Tuning: Optimizer and Abstract Plans 413

parallel clustered index partition scan 176–178
cost of using 178
definition of 176
requirements for using 178
summary of 185

parallel hash-based table scan 179–180
cost of using 180
definition of 179
requirements for using 180
summary of 185

parallel keyword, select command 205
parallel nonclustered index hash-based scan 180–181

cost of using 181
summary of 185

parallel partition scan 175–176
cost of using 176
definition of 175
example of 195
requirements for using 176
summary of 185

parallel queries
worktables and 201

parallel queries and tempdbs 272
parallel query optimization 171–208

aggregate queries 201
definition of 172
degree of parallelism 186–194
examples of 195–205
exists clause 201
join order 190–192, 197–200
order by clause 201
overhead 172, 173–174
partitioning considerations 173, 174
requirements for 172
resource limits 208
select into queries 202
serial optimization compared to 172
single-table scans 195–197
speed as goal 172
subqueries 200
system tables and 173
troubleshooting 206
union operator 201

parallel query processing 142–170, 171–208
asynchronous prefetch and 250
configuring for 153

configuring worker processes 155
CPU usage and 161, 163, 166
disk devices and 162
execution phases 145
hardware guidelines 163
I/O and 162
joins and 150
merge types 146
query types and 142
resources 161
worker process limits 153

parallel scan property 387–388
parallel sorting 211–236

clustered index requirements 219
commands affected by 211
conditions for performing 212
configuring worker processes 155
coordinating process and 216
degree of parallelism of 220, 231
distribution map 215, 232
dynamic range partitioning for 215
examples of 232–234
logging of 230
merge runs 216
merging results 216
nonclustered index requirements 219
number of sort buffers parameter and 213
observation of 230–234
overview of 213
producer process and 215
range sorting and 216
recovery and 230
resources required for 212, 216
sampling data for 215, 232
select into/bulk copy/pllsort option and 212
sort buffers and 223–224, 231
sort_resources option 231
sub-indexes and 216
target segment 218
tempdb and 229
tuning tools 230
with consumers clause and 220
worktables and 220, 221

parameters, procedure
optimization and 21

parrellel sort

Index

414 Adaptive Server Enterprise

configure enough sort buffers 224
partial plans

hints operator and 376
specifying with create plan 313

partition-based scans 175–176, 176–178, 185
asynchronous prefetch and 251

partitioned tables
create index and 219, 230
parallel optimization and 174, 186
skew in data distribution 176
worktables 184

partitions
cache hit ratio and 165
guidelines for configuring 165
parallel optimization and 173
RAID devices and 163

performance
costing queries for data-only-locked tables 64
diagnosing slow queries 206
number of tables considered by optimizer 39
order by and 79–80
runtime adjustments and 204
tempdb and 277–288

plan dump option, set 343
plan groups

adding 356
copying 364
copying to a table 368
creating 356
dropping 357
dropping all plans in 367
exporting 368
information about 357
overview of use 313
plan association and 313
plan capture and 313
reports 357

plan load option, set 345
plan operator 388–390
plan replace option, set 345
plans

changing 364
comparing 363
copying 362, 364
deleting 367
dropping 362, 367

finding 360
modifying 364
searching for 360

pool size
specifying 390

pools, worker process 144
size 157

prefetch
asynchronous 237–??
data pages 43
disabling 45
enabling 45
queries 42
sp_cachestrategy 47

prefetch keyword
I/O size and 42

prefetch scan property 390–391
prefix subset

defined 18
examples of 18
order by and 83

private temporary tables 257
procedural temp tables 257

dropping 258
processing power 161
producer process 215, 232
prop operator 391–392
proxy database support and tempdbs 268

Q
quantified predicate subqueries

aggregates in 136
optimization of 130

queries
parallel 171–208
specifying I/O size 42
specifying index for 40

query analysis 61–103, 105–140
sp_cachestrategy 47
tools for 57–60

query optimization 6
OAM scans 64

query plans
optimizer and 3

Index

Performance and Tuning: Optimizer and Abstract Plans 415

runtime adjustment of 203
suboptimal 40
updatable cursors and 306

query processing
parallel 142–170
steps in 4

R
RAID devices

consumers and 220
create index and 220
partitioned tables and 163

range
partition sorting 216

range cell density 19
range queries

large I/O for 42
range selectivity 21
range-based scans

I/O and 174
worker processes and 174

read-only cursors 297
indexes and 297
locking and 302

recompilation
avoiding runtime adjustments 205

recovery
asynchronous prefetch and 240
configuring asynchronous prefetch for 251
parallel sorting and 230

referential integrity
update operations and 93
updates using 95

reformatting 128
joins and 128
parallel optimization of 212

reformatting strategy
prohibiting with i_scan 378
prohibiting with t_scan 397
specifying in abstract plans 394

replication
update operations and 93

reports
cache strategy 47

plan groups 357
resource limits 205
response time

parallel optimization for 172
rollback and recovery, and tempdbs 263
row ID (RID)

update operations and 93
runtime adjustment 194, 202–205

avoiding 205
defined 157
effects of 204
recognizing 204

S
sampling for parallel sort 215, 232
SARGs. See search arguments
saturation

CPU 162
I/O 162

scan operator 392–393
scan properties

specifying 391
scans, table

costs of 63
search arguments

equivalents in 9
examples of 16
indexable 15
indexes and 15
matching datatypes in 24
operators in 15
parallel query optimization 176
statistics and 17
syntax 15
transitive closure for 10

searching for abstract plans 360
segments

parallel sorting and 218
performance of parallel sort 229
target 218, 231
tempdb 282

select * command
logging of 285

select command

Index

416 Adaptive Server Enterprise

parallel clause 156
specifying index 40

select into command
parallel optimization of

 202
in parallel queries 202

select into/bulkcopy/pllsort database option
parallel sorting and 212

session binding and tempdbs 261
session temp tables 257
set command

forceplan 37
jtc 52
noexec and statistics io interaction 59
parallel degree 155
plan dump 343
plan exists 348
plan load 345
plan replace 345
scan_parallel_degree 156
sort_merge 51
sort_resources 230
statistics io 59
subquery cache statistics 138

set forceplan on
abstract plans and 375

set plan dump command 344
set plan exists check 348
set plan load command 344
set plan replace command 345
set theory operations

compared to row-oriented programming 292
shareable temp tables 258, 273
shared keyword

cursors and 297
shared locks

read-only cursors 297
size

tempdb database 280
sizing tempdbs for applications 273
skew in partitioned tables

defined 176
effect on query plans 176

slow queries 6
soft bindings and tempdbs 261
sort buffers

computing maximum allowed 225
configuring 223–224
guidelines 223
requirements for parallel sorting 213
set sort_resources and 231

sort operations (order by)
See also parallel sorting
covering indexes and 83
nonclustered indexes and 84
performance problems 278
sorting plans 230
without indexes 77

sort order
ascending 79, 82
descending 79, 82

sort_merge option, set 51
sort_resources option, set 231–234
sources of optimization problems 6
sp_add_qpgroup system procedure 356
sp_bindcache and tempdbs 270
sp_cachestrategy system procedure 47
sp_changedbowner and tempdbs 271
sp_chgattribute system procedure

concurrency_opt_threshold 55
sp_cmp_qplans system procedure 363
sp_copy_all_qplans system procedure 364
sp_copy_qplan system procedure 362
sp_dboption

and tempdbs 270, 271
sp_defaultloc and tempdbs 271
sp_drop_all_qplans system procedure 367
sp_drop_qpgroup system procedure 357
sp_drop_qplan system procedure 362
sp_dropuser and tempdbs 271
sp_export_qpgroup system procedure 368
sp_find_qplan system procedure 360
sp_help_qpgroup system procedure 357
sp_help_qplan system procedure 361
sp_helpdb and tempdbs 270
sp_import_qpgroup system procedure 369
sp_renamedb and tempdbs 271
sp_set_qplan system procedure 364
sp_sysmon system procedure

parallel sorting and 236
sorting and 236

sp_tempdb stored procedure 259

Index

Performance and Tuning: Optimizer and Abstract Plans 417

syntax 259
space

worktable sort requirements 229
space allocation

tempdb 283
special OR strategy 86, 90
speed (server)

cheap direct updates 94
deferred index deletes 99
deferred updates 95
direct updates 92
expensive direct updates 94
in-place updates 93
select into 285
slow queries 6
sort operations 216
updates 92

splitting
procedures for optimization 20, 21

SQL derived tables 318
optimization and 7

SQL standards
cursors and 292

statistics
between selectivity 21
equality selectivity 21
subquery cache usage 138

statistics subquerycache option, set 138
steps

deferred updates 95
direct updates 92
key values in distribution table 18

store operator 393–394
materialized subqueries and 397

stored procedures
cursors within 300
optimization 21
splitting 20, 21
temporary tables and 288

stored procedures, processing for tempdbs 266
striping tempdb 280

sort performance and 229
subq operator 394–397
subqueries

any, optimization of 130
attachment 139

exists, optimization of 130
expression, optimization of 135
flattened 396
flattening 130
identifying in plans 394
in, optimization of 130
materialization and 135
materialized 397
nesting and views 380
nesting examples 395
nesting of 384
optimization 129, 200
parallel optimization of 200
quantified predicate, optimization of 130
results caching 138, 200

symbols
in SQL statements xx, xxi

symptoms of optimization problems 6
sysattributes and tempdbs 262
sysdatabases and tempdbs 262
system procedures, changed 51
system tables

and tempdbs 261

T
t_scan operator 397
table count option, set 39
table operator 398–399
table scans

asynchronous prefetch and 240
cache flushing and 63
evaluating costs of 63
forcing 40
OAM scan cost 179
specifying 397

tables
normal in tempdb 279

target segment 218, 231
tasks

CPU resources and 161
tempdb database

data caches 283
logging in 285
performance and 277–288

Index

418 Adaptive Server Enterprise

placement 282
segments 282
space allocation 283
striping 280

tempdb_id() function 263
@@tempdbid global variable 262
tempdbs

alter database and 265
binding an sa to its own tempdb 261
binding objects explicitly 256
binding user-created tempdbs to a data cache 266
bindings and 256
caching characteristics 266
changing the cache binding of a database 266
configuring the number of open databases 270
dbcc addtempdb and 272
dbcc pravailabletempdbs and 271
described 255
downgrading to an earlier version of Adaptive Server

275
dropping 258, 264
dumping 269
explicitly dropping temporary tables by a session 257
extending 265
failover

scenarios for 269
global list 258
hard bindings and 261
high availability and 267
high availability configuration for 268
installation issues 272
loading 269
log truncation and 263
mounting during failover 269
multiple-database transactions 272
normal companion behavor in high-availability failover

269
parallel queries and 272
private temp tables 257
procedural temp tables 257
procedural temp tables, dropping 258
proxy database support for 268
rollback and recovery 263
session binding 261
session temp tables 257
shareable temp tables 258, 273

sizing and configuring for applications 273
soft bindings and 261
sp_bindcache and 270
sp_changedbowner and 271
sp_dboption and 271
sp_dboptions and 270
sp_defaultloc and 271
sp_dropuser and 271
sp_helpdb and 270
sp_renamedb and 271
sp_tempdb 259
sp_tempdb syntax 259
stored procedures, processing 266
sysattributes and 262
sysdatabases and 262
system table changes 261
tempdb_id()function 263
@@tempdbid global variable and 262
updating user-created stored procedures 273
user-created temporary databases 256

tempdbs and the system tempdb 256
temporary tables

denormalization and 281
indexing 287
nesting procedures and 288
normalization and 281
optimizing 286
performance considerations 278
permanent 279

testing
index forcing 40

total density 19
total work compared to response time optimization

172
transaction logs

update operation and 93
transactions

logging and 285
transitive closure

joins 11
transitive closure for SARGs 10
triggers

update mode and 100
update operations and 93

TRUE, return value of 131
tuning

Index

Performance and Tuning: Optimizer and Abstract Plans 419

advanced techniques for 35–56
asynchronous prefetch 247
parallel query 164
parallel query processing 161–167
parallel sorts 221–230
range queries 40

U
union operator

parallel optimization of 201
union operator 399–401

cursors and 306
optimization of joins using 140
parallel optimization of 212
subquery cache numbering and 139

unique indexes
update modes and 101

update cursors 297
update locks

cursors and 297
update modes

cheap direct 94
deferred 95
deferred index 96
direct 95
expensive direct 94, 95
indexing and 101
in-place 93
joins and 95
optimizing for 100
triggers and 100

update operations 92
user IDs

changing with sp_import_qpgroup 369
user log cache, in ALS 49
user-created tempdbs 256
Using Asynchronous log service 48
Using Asynchronous log service, ALS 48

V
values

unknown, optimizing 33

variables
optimizer and 21

view operator 401
views

correlation names 402
nesting of subqueries 380
specifying location of tables in 379

W
wash area

parallel sorting and 228
when to use ALS 50
with consumers clause, create index 220
work_t operator 401–403
worker processes 144

clustered indexes and 219
configuring 155
consumer process 215
coordinating process 216
joins and 190
nonclustered indexes and 219
overhead of 173
parallel sort requirements 217
parallel sorting and 220
pool 144
pool size and 157
producer process 215
resource limits with 208
runtime adjustment of 194, 202–205
specifying 387
worktable sorts and 221

worktable scans
empty scan operators 402

worktables
locking and 284
or clauses and 88
parallel queries and 184, 201
parallel sorting and 220, 223
parallel sorts on 201
partitioning of 184
reformatting and 129
space requirements 229
store operator and 393
tempdb and 280

Index

420 Adaptive Server Enterprise

	Performance and Tuning: Optimizer and Abstract Plans
	About This Book
	CHAPTER 1 Introduction to Performance and Tuning
	CHAPTER 2 Optimizer Overview
	Definition
	Steps in query processing
	Working with the optimizer

	Object sizes are important to query tuning
	Query optimization
	SQL derived tables and optimization

	Factors examined during optimization
	Preprocessing can add clauses for optimizing
	Converting clauses to search argument equivalents
	Converting expressions into search arguments
	Search argument transitive closure
	Join transitive closure
	Enabling join transitive closure

	Predicate transformation and factoring
	Example

	Guidelines for creating search arguments
	Search arguments and useful indexes
	Search argument syntax
	Nonequality operators
	Examples of SARGs

	How statistics are used for SARGS
	Histogram cells
	Density values
	Range cell density and total density
	How the optimizer uses densities and histograms

	Using statistics on multiple search arguments
	Default values for search arguments
	SARGs using variables and parameters

	Join syntax and join processing
	How joins are processed
	When statistics are not available for joins
	Density values and joins
	Multiple column joins
	Search arguments and joins on a table

	Datatype mismatches and query optimization
	Overview of the datatype hierarchy and index issues
	Comparison of numeric and decimal datatypes
	Comparing numeric types to other datatypes

	Datatypes for parameters and variables used as SARGs
	Troubleshooting datatype mismatch problems fo SARGs

	Compatible datatypes for join columns
	Troubleshooting datatype mismatch problems for joins

	Suggestions on datatypes and comparisons
	Forcing a conversion to the other side of a join

	Splitting stored procedures to improve costing
	Basic units of costing

	CHAPTER 3 Advanced Optimizing Tools
	Special optimizing techniques
	Specifying optimizer choices
	Specifying table order in joins
	Risks of using forceplan
	Things to try before using forceplan

	Specifying the number of tables considered by the optimizer
	Specifying an index for a query
	Risks
	Things to try before specifying an index

	Specifying I/O size in a query
	Index type and large I/O
	When prefetch specification is not followed
	set prefetch on

	Specifying the cache strategy
	In select, delete, and update statements

	Controlling large I/O and cache strategies
	Getting information on cache strategies

	Asynchronous log service
	Understanding the user log cache (ULC) architecture
	When to use ALS
	Using the ALS
	ULC flusher
	Log writer

	Changed system procedures

	Enabling and disabling merge joins
	Enabling and disabling join transitive closure
	Suggesting a degree of parallelism for a query
	Query level parallel clause examples

	Concurrency optimization for small tables
	Changing locking scheme

	CHAPTER 4 Query Tuning Tools
	Overview
	How tools may interact
	Using showplan and noexec together
	noexec and statistics io

	How tools relate to query processing

	CHAPTER 5 Access Methods and Query Costing for Single Tables
	Table scan cost
	Cost of a scan on allpages-locked table
	Cost of a scan on a data-only-locked tables

	From rows to pages
	How cluster ratios affect large I/O estimates
	Data page cluster ratio
	Index page cluster ratio

	Evaluating the cost of index access
	Query that returns a single row
	Query that returns many rows
	Range queries using clustered indexes (allpages locking)

	Range queries with covering indexes
	Range queries with noncovering indexes
	Result-set size and index use
	Costing for noncovering index scans
	Costing for forwarded rows

	Costing for queries using order by
	Prefix subset and sorts
	Key ordering and sorts
	Specifying ascending or descending order for index keys

	How the optimizer costs sort operations
	Allpages-locked tables with clustered indexes
	Sorts when index covers the query
	Sorts and noncovering indexes
	Backward scans and joins
	Deadlocks and descending scans

	Access Methods and Costing for or and in Clauses
	or syntax
	in (values_list) converts to or processing
	Methods for processing or clauses
	When table scans are used for or queries
	Dynamic index (OR strategy)
	Multiple matching index scans (special OR strategy)

	How aggregates are optimized
	Combining max and min aggregates
	Queries that use both min and max

	How update operations are performed
	Direct updates
	In-place updates
	Cheap direct updates
	Expensive direct updates

	Deferred updates
	When deferred updates are required

	Deferred index inserts
	Restrictions on update modes through joins
	Joins and subqueries in update and delete statements
	Deletes and updates in triggers versus referential integrity

	Optimizing updates
	Designing for direct updates
	Effects of update types and indexes on update modes

	Using sp_sysmon while tuning updates

	CHAPTER 6 Accessing Methods and Costing for Joins and Subqueries
	Costing and optimizing joins
	Processing
	Index density and joins
	Multicolumn densities

	Datatype mismatches and joins
	Join permutations
	Outer joins and join permutations

	Nested-loop joins
	Cost formula
	How inner and outer tables are determined

	Self join
	Access methods and costing for sort-merge joins
	How a full-merge is performed
	How a right-merge or left-merge is performed
	How a sort-merge is performed
	Mixed example
	showplan messages for sort-merge joins

	Costing for merge joins
	Costing for a full-merge with unique values
	Example: allpages-locked tables with clustered indexes
	Costing for a full-merge with duplicate values
	Costing sorts
	Worktable size for sort-merge joins

	When merge joins cannot be used
	Use of worker processes
	Recommendations for improved merge performance

	Enabling and disabling merge joins
	At the server level
	At the session level

	Reformatting strategy
	Subquery optimization
	Flattening in, any, and exists subqueries
	When flattening can be done
	Exceptions to flattening
	Flattening methods
	Join order and flattening methods
	Flattened subqueries executed as regular joins
	Flattened subqueries executed as existence joins
	Flattened subqueries executed using unique reformatting
	Flattened subqueries using duplicate elimination

	Flattening expression subqueries
	Materializing subquery results
	Noncorrelated expression subqueries
	Quantified predicate subqueries containing aggregates

	Subquery introduced with an and clause
	Subquery introduced with an or clause
	Subquery results caching
	Displaying subquery cache information

	Optimizing subqueries

	or clauses versus unions in joins

	CHAPTER 7 Parallel Query Processing
	Types of queries that can benefit from parallel processing
	Adaptive Server’s worker process model
	Parallel query execution
	Returning results from parallel queries

	Types of parallel data access
	Hash-based table scans
	Partition-based scans
	Hash-based index scans
	Parallel processing for two tables in a join
	showplan messages

	Controlling the degree of parallelism
	Configuration parameters for controlling parallelism
	How limits apply to query plans
	How the limits work in combination
	Examples of setting parallel configuration parameters

	Using set options to control parallelism for a session
	set command examples

	Controlling parallelism for a query
	Query level parallel clause examples

	Worker process availability and query execution
	Other configuration parameters for parallel processing

	Commands for working with partitioned tables
	Balancing resources and performance
	CPU resources
	Disk resources and I/O
	Tuning example: CPU and I/O saturation

	Guidelines for parallel query configuration
	Hardware guidelines
	Working with your performance goals and hardware guidelines
	Examples of parallel query tuning
	Improving the performance of a table scan
	Improving the performance of a nonclustered index scan

	Guidelines for partitioning and parallel degree
	Experimenting with data subsets

	System level impacts
	Locking issues
	Device issues
	Procedure cache effects

	When parallel query results can differ
	Queries that use set rowcount
	Queries that set local variables
	Achieving consistent results

	CHAPTER 8 Parallel Query Optimization
	What is parallel query optimization?
	Optimizing for response time versus total work

	When is optimization performed?
	Overhead costs
	Factors that are not considered

	Parallel access methods
	Parallel partition scan
	Requirements for consideration
	Cost model

	Parallel clustered index partition scan (allpages-locked tables)
	Requirements for consideration
	Cost model

	Parallel hash-based table scan
	Hash-based table scans on allpages-locked tables
	Hash-based table scans on data-only-locked tables
	Requirements for consideration
	Cost model

	Parallel hash-based index scan
	Cost model and requirements

	Parallel range-based scans
	Requirements for consideration

	Additional parallel strategies
	Partitioned worktables
	Parallel sorting

	Summary of parallel access methods
	Selecting parallel access methods

	Degree of parallelism for parallel queries
	Upper limit
	Optimized degree
	Worker processes for partition-based scans
	Worker processes for hash-based scans
	Worker processes for range-based scans

	Nested-loop joins
	Alternative plans
	Computing the degree of parallelism for nested-loop joins
	Parallel queries and existence joins

	Examples
	Partitioned heap table
	Nonpartitioned heap table
	Table with clustered index

	Runtime adjustments to worker processes

	Parallel query examples
	Single-table scans
	Table partition scan

	Multitable joins
	Parallel join optimization and join orders

	Subqueries
	Queries that require worktables
	union queries
	Queries with aggregates
	select into statements

	Runtime adjustment of worker processes
	How Adaptive Server adjusts a query plan
	Evaluating the effect of runtime adjustments
	Recognizing and managing runtime adjustments
	Using set process_limit_action
	Using showplan

	Reducing the likelihood of runtime adjustments
	Checking runtime adjustments with sp_sysmon

	Diagnosing parallel performance problems
	Query does not run in parallel
	Parallel performance is not as good as expected
	Calling technical support for diagnosis

	Resource limits for parallel queries

	CHAPTER 9 Parallel Sorting
	Commands that benefits from parallel sorting
	Requirements and resources overview
	Overview of the parallel sorting strategy
	Creating a distribution map
	Dynamic range partitioning
	Range sorting
	Merging results

	Configuring resources for parallel sorting
	Worker process requirements for parallel sorts
	Worker process requirements for creating indexes
	Using with consumers while creating indexes

	Worker process requirements for select query sorts
	Worker processes for merge-join sorts
	Other worktable sorts

	Caches, sort buffers, and parallel sorts
	Cache bindings
	Number of sort buffers can affect sort performance
	Sort buffer configuration guidelines
	Using less than the configured number of sort buffers
	Configuring the number of sort buffers parameter
	Procedure for estimating merge levels and I/O
	Configuring caches for large I/O during parallel sorting
	Balancing sort buffers and large I/O configuration

	Disk requirements
	Space requirements for creating indexes
	Space requirements for worktable sorts
	Number of devices in the target segment

	Recovery considerations
	Tools for observing and tuning sort behavior
	Using set sort_resources on
	Examples

	Using sp_sysmon to tune index creation
	Using parellel sort to speed the create index

	CHAPTER 10 Tuning Asynchronous Prefetch
	How asynchronous prefetch improves performance
	Improving query performance by prefetching pages
	Prefetching control mechanisms in a multiuser environment
	Look-ahead set during recovery
	Prefetching log pages
	Prefetching data and index pages

	Look-ahead set during sequential scans
	Look-ahead set during nonclustered index access
	Look-ahead set during dbcc checks
	Allocation checking
	checkdb and checktable

	Look-ahead set minimum and maximum sizes

	When prefetch is automatically disabled
	Flooding pools
	I/O system overloads
	Unnecessary reads
	Page chain fragmentation

	Tuning Goals for asynchronous prefetch
	Commands for configuration

	Other Adaptive Server performance features
	Large I/O
	Sizing and limits for the 16k pool
	Limits for the 2K pool

	Fetch-and-discard (MRU) scans
	Parallel scans and large I/Os
	Hash-based table scans
	Partition-based scans

	Special settings for asynchronous prefetch limits
	Setting limits for recovery
	Setting limits for dbcc

	Maintenance activities for high prefetch performance
	Eliminating kinks in heap tables
	Eliminating kinks in clustered index tables
	Eliminating kinks in nonclustered indexes

	Performance monitoring and asynchronous prefetch

	CHAPTER 11 Multiple Temporary Databases
	Overview
	After creating a temporary database
	Using sp_tempdb
	Binding with temporary databases
	Session binding

	Multiple temporary database and the system
	System table changes
	sysattributes
	sysdatabases

	@@tempdbid global variable
	tempdb_id() function
	Log truncation
	Rollback and recovery
	Dropping a temporary database
	Dropping other databases

	alter database
	Caching characteristics
	Binding usercreated temporary databases to a data cache

	Processing stored procedures
	tempdb write optimization
	Highavailability considerations
	Highavailability configuration
	Proxy database support
	Failover scenarios
	Normal companion behavior
	Mount/Unmount

	Dumping and loading temporary databases
	sp_dboption stored procedure
	Configuring the number of open databases
	Changed procedures
	Unchanged yet notable procedures

	Changed and additional DBCCs
	dbcc pravailabletempdbs
	dbcc addtempdb

	Additional changes

	Installation issues
	Sizing and configuring temporary databases for applications
	Shareable temporary tables
	Updating usercreated stored procedures
	Downgrading to an earlier version

	CHAPTER 12 tempdb Performance Issues
	How management of tempdb affects performance
	Main solution areas for tempdb performance

	Types and uses of temporary tables
	Truly temporary tables
	Regular user tables
	Worktables

	Initial allocation of tempdb
	Sizing the tempdb
	Placing tempdb
	Dropping the master device from tempdb segments
	Using disks for parallel query performance

	Binding tempdb to its own cache
	Commands for cache binding

	Temporary tables and locking
	Minimizing logging in tempdb
	With select into
	By using shorter rows

	Optimizing temporary tables
	Creating indexes on temporary tables
	Creating nested procedures with temporary tables
	Breaking tempdb uses into multiple procedures

	CHAPTER 13 Cursors and Performance
	Definition
	Set-oriented versus row-oriented programming
	Example

	Resources required at each stage
	Memory use and execute cursors

	Cursor modes
	Index use and requirements for cursors
	Allpages-locked tables
	Data-only-locked tables
	Table scans to avoid the Halloween problem

	Comparing performance with and without cursors
	Sample stored procedure without a cursor
	Sample stored procedure with a cursor
	Cursor versus noncursor performance comparison

	Locking with read-only cursors
	Isolation levels and cursors
	Partitioned heap tables and cursors
	Optimizing tips for cursors
	Optimizing for cursor selects using a cursor
	Using union instead of or clauses or in lists
	Declaring the cursor’s intent
	Specifying column names in the for update clause
	Using set cursor rows
	Keeping cursors open across commits and rollbacks
	Opening multiple cursors on a single connection

	CHAPTER 14 Overview on Abstract Plans
	Definition
	Managing abstract plans
	Relationship between query text and query plans
	Limits of options for influencing query plans

	Full versus partial plans
	Creating a partial plan

	Abstract plan groups
	How abstract plans are associated with queries

	CHAPTER 15 Abstract Query Plan Guide
	Introduction
	Abstract plan language
	Queries, access methods, and abstract plans
	Derived tables

	Identifying tables
	Identifying indexes
	Specifying join order
	Shorthand notation for joins
	Join order examples
	Match between execution methods and abstract plans
	Specifying join order for queries using views

	Specifying the join type
	Specifying partial plans and hints
	Grouping multiple hints
	Inconsistent and illegal plans using hints

	Creating abstract plans for subqueries
	Materialized subqueries
	Flattened subqueries
	Example: changing the join order in a flattened subquery
	Nested subqueries
	Subquery identification and attachment
	More subquery examples: reading ordering and attachment
	Modifying subquery nesting

	Abstract plans for materialized views
	Abstract plans for queries containing aggregates
	Specifying the reformatting strategy
	OR strategy limitation
	When the store operator is not specified

	Tips on writing abstract plans
	Comparing plans “before” and “after”
	Effects of enabling server-wide capture mode
	Time and space to copy plans

	Abstract plans for stored procedures
	Procedures and plan ownership
	Procedures with variable execution paths and optimization

	Ad Hoc queries and abstract plans

	CHAPTER 16 Creating and Using Abstract Plans
	Using set commands to capture and associate plans
	Enabling plan capture mode with set plan dump
	Associating queries with stored plans
	Using replace mode during plan capture
	When to use replace mode

	Using dump, load, and replace modes simultaneously
	Using dump and load to the same group
	Using dump and load to different groups

	set plan exists check option
	Using other set options with abstract plans
	Using showplan
	Using noexec
	Using forceplan

	Server-wide abstract plan capture and association Modes
	Creating plans using SQL
	Using create plan
	Using the plan Clause

	CHAPTER 17 Managing Abstract Plans with System Procedures
	System procedures for managing abstract plans
	Managing an abstract plan group
	Creating a group
	Dropping a group
	Getting information about a group
	Renaming a group

	Finding abstract plans
	Managing individual abstract plans
	Viewing a plan
	Copying a plan to another group
	Dropping an individual abstract plan
	Comparing two abstract plans
	Changing an existing plan

	Managing all plans in a group
	Copying all plans in a group
	Comparing all plans in a group
	Dropping all abstract plans in a group

	Importing and exporting groups of plans
	Exporting plans to a user table
	Importing plans from a user table

	CHAPTER 18 Abstract Plan Language Reference
	Keywords
	Operands
	Abstract plan derived tables

	Schema for examples
	g_join
	hints
	i_scan
	in
	lru
	m_g_join
	mru
	nested
	nl_g_join
	parallel
	plan
	prefetch
	prop
	scan
	store
	subq
	t_scan
	table
	union
	view
	work_t

	Index

