S SYBASE

Performance and Tuning:
Optimizer and Abstract Plans

Adaptive Server® Enterprise

12.5.1

DOCUMENT ID: DC20023-01-1251-01
LAST REVISED: August 2003

Copyright © 1989-2003 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in thisdocument is subject to change without notice. The software described herein is furnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customersin other countries with a U.S. license agreement may contact Customer Fulfillment viathe above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software rel ease dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture,
Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server
Enterprise Replication, Adaptive Server Everywhere, Adaptive Server 1Q, Adaptive Warehouse, Anywhere Studio, Application
Manager, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Trandlator, APT-Library, AvantGo,
AvantGo Application Alerts, AvantGo Mobile Delivery, AvantGo Mobile Document Viewer, AvantGo Mobile Inspection, AvantGo
Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon Application Server,
AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker, ClearConnect, Client-Library,
Client Services, Convoy/DM, Copernicus, DataPipeline, DataWorkbench, DataArchitect, Database Analyzer, DataExpress, DataServer,
Datawindow, DB-Library, doQueue, Devel opers Workbench, Direct Connect Anywhere, DirectConnect, Distribution Director, eeADK,
E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway, ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise
Application Studio, Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server
Manager, Enterprise Work Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA,
Financial Fusion, Financia Fusion Server, Gateway Manager, GlobalFI X, ImpactNow, |ndustry Warehouse Studio, InfoMaker,
Information Anywhere, Information Everywhere, |nformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, Mail
Anywhere Studio, MainframeConnect, Maintenance Express, Manage Anywhere Studio, M-Business Channel, M-Business Network,
M-Business Server, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, My AvantGo, My AvantGo MediaChannel,
My AvantGo Mobile Marketing, MySupport, Net-Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle,
OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open
Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC
Net Library, PocketBuilder, Pocket PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class
Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage,
PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst,
Rapport, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication Server, Replication Server Manager,
Replication Toolkit, Resource Manager, RW-DisplayLib, S-Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian,
SKILS, smart.partners, smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL
Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART,
SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, SW.I.F.T.
Message Format Libraries, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase MPP,
Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial,
SyberAssist, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, TradeForce, Transact-SQL,
Trang ation Toolkit, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visua
Components, Visual Speller, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse
WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup
SQL Server, XA-Library, XA-Server and XP Server are trademarks of Sybase, Inc. 03/03

Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.
All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

About This Book
CHAPTER 1

CHAPTER 2

... XV
Introduction to Performance and TuNiNgcccoeeeeeviiiieicinnninnnne, 1
OPLIMIZEr OVEIVIEW ...uuiiiiiiiiiee e e e e iie st e e e e e s e e ssnrree e e e e e e e e e sanaans

[11 0] 1o o PRSPPI
Steps iN QUETY PrOCESSING ...covveeeeieiiieeiiiee e eiiee e eeiee e e e
Working with the optimizer ...,

Object sizes are important to query tuniNg......cccccooevevvvieieeeesiniiennen,

QuUETY OPLIMIZALION ..ot
SQL derived tables and optimization.............ccoccvvveviieeiiiniivnnnn.

Factors examined during optimization...........ccccoccvvvvviieeniiniiiineeeeen,

Preprocessing can add clauses for optimizing
Converting clauses to search argument equivalents................. 9
Converting expressions into search arguments 10
Search argument transitive ClosSure...........cocccceeiviiieiiieeeee 10
JOIN tranSitive ClOSUIEoiiiiiiiii e 11
Predicate transformation and factoringcccccceeeeeeecnnneen. 12

Guidelines for creating search arguments..........cccoccoeeeeriieeennnnen. 14

Search arguments and useful iINdexes........ccccccvviiiiiieie i, 15
Search argument SYNEAXccvvvveeeeeiiiiiiiiieee e iiieeee e e e 15
How statistics are used for SARGS...........ccccevviiieiiiiiee i, 17
Using statistics on multiple search arguments 20
Default values for search arguments.............ccccvvvvveeeiiiniiinnnn, 20
SARGs using variables and parameterscccceceeeeiiniiinnen, 21

Join syntax and jOiN ProCESSING ...ccvieeviirrriiieiieeesiiiiieeeeee s s seieeees 21
HOW jOINS are proCesSedcooiiueveeiiiieieniiieee e e e 22
When statistics are not available for joinscccoceivieens 22
Density values and jOINS.........coooiiiieiiiieie e 23
Multiple column JOINSoooiiiiii e 23
Search arguments and joins on atable............c.ccoceeiiinene 23

Datatype mismatches and query optimization..............cccceeeveieeenne 24
Overview of the datatype hierarchy and index issues............. 25

Performance &Tuning: Optimizer and Abstract Plans iii

Contents

Datatypes for parameters and variables used as SARGs....... 28
Compatible datatypes for join columnscccccceeeeniiiiiinnen. 29
Suggestions on datatypes and comparisons........ccccc.oovvvvneen. 30
Forcing a conversion to the other side of a join....................... 31
Splitting stored procedures to improve costingcccccvveeeeeeinnnen, 32
BasiC UNItS Of COSHING ...oooveiiiiiiiie e 33
CHAPTER 3 Advanced Optimizing TOOIScccciiiiiiiiiie e 35
Special optimizing teChNIQUESoevvviiiiiiee e 35
Specifying optimizer ChOICEScoociiiiiiiiie e 36
Specifying table order in JOiNSccccoviiie i 37
Risks of using forceplanccccccooviiiiiiiiiiii e, 38
Things to try before using forceplan..........cccccoecvvivviieeiiiiiinnen, 38
Specifying the number of tables considered by the optimizer........ 39
Specifying an index for a QUETYuvveiiiiiiiiiiieie e 40
RISKS. ..ttt 41
Things to try before specifying an indeX...........ccccccceeeiiiiinnen, 41
Specifying I/O SIZ€ IN @ QUETY.......cooiiuieieiiiiie e 42
Index type and large /Ocoiiiiiiiieeeee e 43
When prefetch specification is not followedccccceeene 44

set prefetCh ON........ceoi i 45
Specifying the cache strategycccoceeviieiiiiiiee e, 45
In select, delete, and update statements.............cccceecvvveenennnn. 46
Controlling large 1/0 and cache strategies...........cccvvvvvieeriiiivnnnn, 47
Getting information on cache strategies..........cccccvvveeeeiinninnen, 47
ASYNChIroNOUS 10Q SEIVICEcviieiiiiiiiiiiiie et e e 48
Understanding the user log cache (ULC) architecture 49
When t0 USE ALSooiiiiiiii e 50
USING the ALS ..o 50
Changed system proCeduUIescooeueeeeiiieeeeiiiiee e e 51
Enabling and disabling merge joinscccccoooeieiieieiiee e, 51
Enabling and disabling join transitive closurecccccccceeevvveen.. 52
Suggesting a degree of parallelism for a query.........cccccceeevvecevnnen. 53
Query level parallel clause examples...........ccccvvevveeeeiiccinnnen, 55
Concurrency optimization for small tablesccccceiiiennnen. 55
Changing locking SChEMEcccoooiiiiiiiiiii e 56
CHAPTER 4 Query TUNING TOOIS ...t 57
OVEIVIBW ...ttt ettt et et e s anrne s 57
HOW t0O0IS May INtEIaCT......ccciviiiiiiiiiee e 59
Using showplan and noexec togethercccccccevviniiiiienennn. 59
noexec and StatiStiCS 10vveirvrieeiiiiee e 59
How tools relate to query processingcc.vveevveeeviiciviieeneesssnniinnenns 60

iv Adaptive Server Enterprise

Contents

CHAPTER 5 Access Methods and Query Costing for Single Tables............. 61
Table SCAN COSE.....eiiiiiiie it 63
Cost of a scan on allpages-locked table.............cccccccceevnnnneen. 63
Cost of a scan on a data-only-locked tables 64
From rows t0 PAgEScoooiiiiiiiii e 66
How cluster ratios affect large 1/0 estimates...........c....ceeuvveeee. 67
Evaluating the cost of index acCess.........ccccccveviiiiiiiiieiiee e, 69
Query that returns a single roWcccvvvveeeiiiiiiiiiceee i, 69
Query that returns Many FOWScocvvveiiieen i e s 69
Range queries with covering iNdeXesS............oocvvverieeesiiniiiennn. 72
Range queries with noncovering indexes..........ccccccoeeeeeeneen. 73
Costing for queries using order bycccceiiiiieiiiie e, 77
Prefix subset and SOMS ... 78
Key ordering and SOIMScccoeiiiiieiiiiie e 79
How the optimizer costs sort operationscccceeeeieeeenneen. 81
Allpages-locked tables with clustered indexes...............c........ 81
Sorts when index covers the qUerycccccccv i, 83
Sorts and noNcovering iINAEXESccvvvvvveeeeiiiiiiiiiee e 84
Access Methods and Costing for or and in Clauses 85
OF SYNEAX 1ot eieeeee e 85

in (values_list) converts to Or processingccccvvveeeeeesiinennn 85
Methods for processing Or ClauSES.........ccccvvvvviiiiiiiees s, 86
How aggregates are optimizedcccooeeeeiiieeeniieee e 90
Combining max and min aggregates...........ccccceerveeeeinieeeennne. 91
How update operations are performed............ccccooeviiiiiiieiniinens 92
DIreCt UPAAtES ...ttt 92
Deferred UPAates.........ccooeiiiiiieee e 95
Deferred iNdeX INSEIMScoiceiiiiiiieecee e 96
Restrictions on update modes through joinscccccoevvviinneen. 99
OptimMIZING UPAALES.....ccieeiiiiiiiiiiiiie et 100
Using sp_sysmon while tuning updatescccccceevviivvnnnnn. 102
CHAPTER 6 Accessing Methods and Costing for Joins and Subqueries .. 105
Costing and optimizing JOINScoocvvviiiiiie e 105
PrOCESSING...ciiiiiiiitiiie e 106
Index density and JOINScvviiiiiiiiieeie e 106
Datatype mismatches and joinsccccccevviviiiieeiiees i, 107
JOIN PErMULALIONSeeieiiiiii e 107
NesSted-100P JOINSvuiiiiiiie e 110
COStFOMMUIAeeieie e 112
How inner and outer tables are determinedc........... 112
SeIf JOIN oo 113
Access methods and costing for sort-merge joinsccc...... 114
How a full-merge is performedcccccceeiiiiiiiiiiie i, 117

Performance &Tuning: Optimizer and Abstract Plans \

Contents

CHAPTER 7

Vi

How a right-merge or left-merge is performed 118
How a sort-merge is performed.........ccccccviviiiiieniee i, 119
MiXed EXAMPIE ...eeviieeiiiiiiiiee e 119
Costing for Merge JOINSc.coveiiiieeiiie e 121
Costing for a full-merge with unique values 122
Example: allpages-locked tables with clustered indexes 122
Costing for a full-merge with duplicate values....................... 123
COSHNG SOMS ...eeiiieiiiee e e e 124
When merge joins cannot be used..........cccoocveeeiiiiiee e 125
USE Of WOTKEr PrOCESSES ...uvvviiiiiiiiiiiiiieiee e iniiiieee e e siiiaeeees 126
Recommendations for improved merge performance........... 126
Enabling and disabling merge joinsccccccceeeeiiiiiiiicee e 127
At the server level.........ccooiii e 128

At the SesSioN 1eVel ... 128
Reformatting Strategyovevviiiiiiiieeiiiiiiiiie e 128
Subquery optimiZation............cciieiiiiiie e 129
Flattening in, any, and exists SUDQUETIEScccuvvveereennn. 130
Flattening expression subqUEres.ccccveviiereeeiiieeeeineen. 135
Materializing subquery results...........cccccooiiiiiiiiiii i, 135
Subquery introduced with an and clausecccccceeuvneee. 137
Subquery introduced with an or clauseccccvveeeeeeeinnns 138
Subquery results cachingcccccevviiiiiienie s 138
Optimizing SUDQUETIES........cuviiiiiiiiii e 139

or clauses versus unions iN JOINSveeeniiiiienee e 140
Parallel QUEery ProCesSingccouiuierieiiiiiiie et 141
Types of queries that can benefit from parallel processing.......... 142
Adaptive Server’s worker process model.........ccccccceiiiiiiiiiinnnennn, 143
Parallel query eXeCULiONccoviiiiiiieiiee e 145
Returning results from parallel queries...........cccccovceeeinnneen. 146
Types of parallel data acCess.........cooviiieiiiiiiiieie e 147
Hash-based table scans...........cccccviiiiiiii e 148
Partition-based SCaNScoeiiuiiiiiiiie e 149
Hash-based INdeX SCaNScccoveiiiiiieiiiie e 149
Parallel processing for two tables in @ joinccccvvveeeen. 150
SHOWPIAN MESSAGESvvieii ittt 151
Controlling the degree of paralleliSm............ccccvvvevieiiiiiiiiiienneenn, 152
Configuration parameters for controlling parallelism............. 153
Using set options to control parallelism for a session 155
Controlling parallelism for a qUery.......ccccccovvviiieeiieen i, 156
Worker process availability and query execution 157
Other configuration parameters for parallel processing 158
Commands for working with partitioned tablesc...c........ 158
Balancing resources and performancecccccoeeooeeeiiieeeesneenn. 161

Adaptive Server Enterprise

Contents

CPU IESOUICES ...ttt ettt e e e 161
Disk resources and /Oc.oeiiiiiei i 162
Tuning example: CPU and I/O saturation...............ccccvvvenn... 162
Guidelines for parallel query configuration..............cccvvvvvieeniinnns 162
Hardware guidelinesS..........cuvvvvieeiiiiiiiiiiic e 163
Working with your performance goals and hardware guidelines..
163
Examples of parallel query tuningccccooecvvvveiieeniiniiennn, 164
Guidelines for partitioning and parallel degree..................... 165
Experimenting with data subsets............ccocccciiiiiiii e, 166
System level IMPACESccueiiiiiiiieie e 167
LOCKING ISSUES ... iiieee et e ettt e e e 167
DEVICE ISSUBS ...coieiieiiiiie et e ettt e et et e e e e eneee e e e 168
Procedure cache effectS.........ccooviiiiiiiii i 168
When parallel query results can differ.........cccccoviiiiiiiiiiiiiiee 169
Queries that use set rowCoUNt.......cccceeeeieeiieeeeeeeeeeeeeeeeee e, 169
Queries that set local variablescccoooeeeiiiiiiiiiiie, 170
Achieving consistent resultScccccviviiiiiin e 170
CHAPTER 8 Parallel Query Optimizationcccooviiiieeiiiiieee e 171
What is parallel query optimization?cccccvvvvviieeniiniiinnenennnn. 172
Optimizing for response time versus total work..................... 172
When is optimization performed?..........cccccoviiiiiiiiiniiiiiieeeeen 172
OVErhead COSESooiiiiiieiei e 173
Factors that are not considered.............cccoooeeeeriiieeeicieeeee 173
Parallel access Methodscoooiiiieiiiiie e 174
Parallel partition SCanccceeeiiieeieiiei e 175
Parallel clustered index partition scan (allpages-locked tables) 176
Parallel hash-based table scancccccoooiiiiiiiiiiee 178
Parallel hash-based index scancccccooiveiiiiiie e, 180
Parallel range-based SCaNS.......cc.cccvvivviieiiiee e 182
Additional parallel strategiesccccceevviiiiiiieiee e 184
Summary of parallel access methodscccccveiviiiiiiiiiiie i, 184
Selecting parallel access methods.........cccccceevviviiiiiiiine i, 185
Degree of parallelism for parallel qUeries...........coccvvvvvieeiiiiiiinnnen. 186
UPPET IIMIt e 187
Optimized deQrEecuvviee i 187
Nested-100p JOINS......coiuiiiiie e 190
EXAMPIES .. 192
Runtime adjustments to worker processesccccoecveeeennee. 194
Parallel query examples ..o 195
Single-table SCaNSccoviii e 195
Multitable JOINS........oeviiiii 197
SUBQUETIES .t 200

Performance &Tuning: Optimizer and Abstract Plans Vii

Contents

CHAPTER 9

CHAPTER 10

viii

Queries that require worktablescccccceee i, 201
UNION QUETIES ..eettiieee e e ettt e e e e s ettt e e e e s s snitbne e aa e e s s nnssanees 201
Queries With aggregates ... iiiiiiienie e 201
select INto statemMeNtsS..........occeiiiiiiie e 202
Runtime adjustment of worker proCcesses..........ccooeveeeeiieeeeenenenn. 202
How Adaptive Server adjusts a query planccccceeeneee. 203
Evaluating the effect of runtime adjustments 204
Recognizing and managing runtime adjustments 204
Reducing the likelihood of runtime adjustments.................... 205
Checking runtime adjustments with sp_sysmon 206
Diagnosing parallel performance problems...........ccccccceeeiiiiinnee. 206
Query does not run in parallel ... 207
Parallel performance is not as good as expected 208
Calling technical support for diagnosis...........cccecvveeeiiniiinnnen. 208
Resource limits for parallel qUeriescccvvvevieeiiiciiieeneee s 208
Parallel SOrtiNg ...c.eveeeeeiiiicce e 211
Commands that benefits from parallel sorting..............ccccceeerneen. 211
Requirements and resources OVErVIEWccceeecveeeerieeeeeannenn. 212
Overview of the parallel sorting strategycccceeeeeeeeiiieeeennnenn. 213
Creating a distribution mapccccoeecvviiieee e, 215
Dynamic range partitioning...........cceoeeveeeeriiereeinieeeeeieee e 215
RANGE SOMING ...eeeeei e 216
MErQING FESUILSvvviieiiiiiiiiiiie et 216
Configuring resources for parallel sortingcccccovvvciiiivieeininns 216
Worker process requirements for parallel sorts..................... 217
Worker process requirements for select query sorts............. 220
Caches, sort buffers, and parallel SOrts..........cccccvveeeiiiiinnen. 221
Disk reqUIrEMENLScovivvviiiiee e 228
Recovery CoNSIderationsccueeieieeiriieeeenieeeeeieee e e 230
Tools for observing and tuning sort behavior..............cccoccoeene 230
UsSIiNg Set SOIt_reSOUIMCES ON....couvireeiiieeeeaiieeeeaiieeaeeeeeee e 231
Using sp_sysmon to tune index creationccccceeeveieeennneen. 236
Using parellel sort to speed the create indeX..........ccccceeeeeeeiinnns 236
Tuning Asynchronous PrefetCh ..., 237
How asynchronous prefetch improves performance.................... 237
Improving query performance by prefetching pages............. 238
Prefetching control mechanisms in a multiuser environment 239
Look-ahead set during reCoVery.......ccccccveeviiiiiieeniee s 240
Look-ahead set during sequential scans.............cccoecvvvveeeennn. 240
Look-ahead set during nonclustered index access............... 241
Look-ahead set during dbcc checks.........ccccvvveeiiiiiiiiiennnnn, 241

Adaptive Server Enterprise

Contents

CHAPTER 11

Look-ahead set minimum and maximum Sizes 242
When prefetch is automatically disabled.............ccccccoivieriinnn. 243
FIoOdING POOIS ... 244

I/O system OVerloads.........ccccveeeiiiiiiiieeie i 244
UNNECESSANY MEAAS ..eeeeiiiiiiiiiiiee e i eiiiieetee e e e sbirrerae e e s siaeees 245
Tuning Goals for asynchronous prefetchccccccceeiiiiiiiinennnnn, 247
Commands for configurationccccccoevvvviieeneeniiiiiiieeeeeenn 248
Other Adaptive Server performance featurescccccvvvveeeiinnnns 248
Large 1O .o 248
Fetch-and-discard (MRU) SCaNSccccceeeeeviivvieeeeee e 250
Parallel scans and 1arge 1/OScooviieieiiiieeiiee e 250
Special settings for asynchronous prefetch limits 251
Setting limits fOr reCOVeryccoiiiiiiiie e 251
Setting limits for dbBCCoooiiiiii 252
Maintenance activities for high prefetch performance.................. 252
Eliminating kinks in heap tablescccccccoviviiiiiin i, 253
Eliminating kinks in clustered index tables.................cccuvuee. 253
Eliminating kinks in nonclustered indexes...........c.cccccovevvvnen. 253
Performance monitoring and asynchronous prefetch 253
Multiple Temporary Databasescccceeeviiiiiiieniiiiieee e 255
OVEIVIBW ...ttt ettt et e e s nnbne s 255
After creating a temporary database............ccccvveviieiiiiiiininnnenn, 258
USING SP_temPAD ... 259
Binding with temporary databases............cccocociiiiiiiiiie . 260
SeSSIoN DINAING ..oooiee e 261
Multiple temporary database and the systemccccccccevennneee. 261
System table changes ... 261

@ @tempdbid global variablecccccoiiiiiiiii 262
tempdb_id() FuNCHION........ccoiiiiiiii a1 263
LOQ trUNCALION......cvviiieee it 263
Rollback and reCoVerycccvvveiiiiiiiiii s 263
Dropping a temporary database..........cccccccovviviiiiiieeniiniinnnn, 264
alter database...........coovviiiiiiiii 265
Caching characteristiCscccuvvviiiiiiiiiii e 266
Processing stored proCedures.........ccuvviveeeiiniiinieiieeessnniinnens 266
tempdb write optimization............coooiiiiiiie e, 267
High-availability considerationsccccocooeriiiee e 267
Dumping and loading temporary databases.......................... 269
sp_dboption stored procedure............cocueveeiiiiee i 270
Configuring the number of open databasesc..c.c.cc.... 270
Changed proCeduUresS..........couieiiaiiiiee e 270
Changed and additional DBCCSccccccvieeiiiiiiiinieiiee s 271
Additional changescccoviiiiiiii 272

Performance &Tuning: Optimizer and Abstract Plans iX

Contents

INSEAllation ISSUESccoiiiiiiiiiiie e 272
Sizing and configuring temporary databases for applications 273
Shareable temporary tablescccocviviieiiiiii s 273
Updating user-created stored procedures.............cccevvvveeen... 273
Downgrading to an earlier version............ccccoeeceeeeeieeeennnenn. 275

CHAPTER 12 tempdb Performance ISSUES.......ccccciiiiiiiiiiiiee e 277

How management of tempdb affects performance....................... 277
Main solution areas for tempdb performance........................ 278

Types and uses of temporary tablesccccoviiiiiiiiiieiiieeee 278
Truly temporary tables............ccco o 279
Regular usertables..........ccccoviiiiiiiiiii 279
WOTKEBDIES ..o 280

Initial allocation of tempdb...........c.oociiiiii 280

Sizing the tempdbovviii 281

Placing tempdbc..oviiiiiii 282

Dropping the master device from tempdb segments 282
Using disks for parallel query performance............cccccecee.... 283

Binding tempdb to its own cacheccccvvvvieieeeiiiicee e, 283
Commands for cache binding............coccoeriiiiiiiiiieee 284

Temporary tables and 10ckingcoocooiiiiiiiiiii e 284

Minimizing logging in tempdb..........oooooiiiiiiii e 285
With SElEeCt INtO ...cccceeiiiiieiie e 285
By USING SNOMEr FOWSuvviiieeiiiiiiiiiicee e 285

Optimizing temporary tables ..o 286
Creating indexes on temporary tables.............ccccccceeeviniinnnn, 287
Creating nested procedures with temporary tables............... 288
Breaking tempdb uses into multiple procedures 288

CHAPTER 13 Cursors and Performance........cccoovcueeiieiiiiiine s 291

DEfiNItION ...eeeiieiee e 291
Set-oriented versus row-oriented programming.................... 292
EXAMPIE .o 293

Resources required at each stageccccevveeee i, 294
Memory use and XECULE CUISOIScc.cccvrrrereeeesiaiirnnneeaenns 296

(101 o) gl 120 Lo /=T TSRS PPSEPP 297

Index use and requirements for CUrSOrS..........cccccvveeeeeeeccivineeennn. 297
Allpages-locked tablesccccvvviiiiiiiiiii e, 297
Data-only-locked tables...........ccccvvviiiiiiiiiiiiiii e, 298

Comparing performance with and without cursors....................... 299
Sample stored procedure without @ CUrSOr.........ccccoeevivvvnnen. 299
Sample stored procedure with & CUISOr.........cccvvvvveeeeiiniivinnen. 300
Cursor versus noncursor performance comparison 301

X Adaptive Server Enterprise

Contents

Locking with read-0only CUrSOrS........cccooviiieieiiiie e 302
Isolation levels and CUISOrS..........cceieiiiiie i 304
Partitioned heap tables and CUrsors...........ccoccoeeeiiieeeiiiiee e, 304
Optimizing tiPS fOr CUISOIS....cuiiiiiiiiiiiiiiiie e 305
Optimizing for cursor selects using a CUrsorccccceeeveees 305
Using union instead of or clauses or in listSccccooevvnneee. 306
Declaring the cursor's iNteNt...........coecvvveereee i 306
Specifying column names in the for update clause............... 306
USING SEL CUISOT FTOWS ...iieiiiiiiiiiirieeesisiiiieeeeesesssinieeeeeeeessnnnnes 307
Keeping cursors open across commits and rollbacks 308
Opening multiple cursors on a single connection.................. 308
CHAPTER 14 Overview on Abstract Plansccccccvviiiiiiniiiie e 309
DefiNItiON ..o 309
Managing abstract planscccoeceireiiiiiee e 310
Relationship between query text and query plans 310
Limits of options for influencing query plansc........... 311

Full versus partial Plans ... 311
Creating a partial Plancccooccviiviiii e 313
ADSEract Plan groUPSoovvviiiiiieiiiiieiie e 313
How abstract plans are associated with queries................ccuu.... 314
CHAPTER 15 Abstract Query Plan GUidecccoociiiiiiiiiiiiecc e 315
INEFOTUCTION ...t 315
Abstract plan [anguage..........coccvvvieeiieiiiiiiie 316
Identifying tables ... 318
[dentifying INAEXES.......cceiiiiiieiiiie e 319
Specifying Join Order..........oooiiiiiiiie e 320
Specifying the JoiN tYPecooveriiiiiieeie e 324
Specifying partial plans and hints...........ccccoccoeiiiieniiines 325
Creating abstract plans for subqueries............ccccccvvvvveeeninns 327
Abstract plans for materialized VIiewsScccceviieieinieeen. 333
Abstract plans for queries containing aggregates 334
Specifying the reformatting strategy........ccccccevvvvviivviiieeniinnns 336

OR strategy lIMitationoooviiiirieeiiiiiiee e 337
When the store operator is not specified.............cccoecvvvveeennnn. 337
Tips on writing abstract plans...........cccvee i 337
Comparing plans “before” and “after”...........ccoccceeiiiiiiiiiiiiee e, 338
Effects of enabling server-wide capture mode 339
Time and space to CopY PlanS.......ceeeeiriereriiieee e 340
Abstract plans for stored proceduresccccoecveeeeiiiieeiniiieeenne 340
Procedures and plan ownership.........cccccooeeeeinieee e 341

Procedures with variable execution paths and optimization.. 341

Performance &Tuning: Optimizer and Abstract Plans Xi

Contents

Ad Hoc queries and abstract plansccccooovvviiieeiiiiiciiienneeenn 342
CHAPTER 16 Creating and Using Abstract Plans...........ccccccciiiviiiiiens 343
Using set commands to capture and associate plans.................. 343
Enabling plan capture mode with set plan dump................... 344
Associating queries with stored planscccccoeeeeiiieenn. 344
Using replace mode during plan capture...........ccccccoeevvvveeen.. 345
Using dump, load, and replace modes simultaneously 346

set plan exists check Optionc.coociieiiiic e 348
Using other set options with abstract plans............cccccooeoeeenneen. 348
USING SNOWPIANoooiiiiiiie e 349
USING NOBXEC....vvvvieieeeiiiiiieiieeessssiiineeeaeessssiianeeeeeesssnssinneeeeeens 349
UsSiNg fOrceplanooovuveviieiiiiiiiie e 349
Server-wide abstract plan capture and association Modes.......... 350
Creating plans Using SQLooviiiiiiiiiiei e ee e 350
UsSiNg Create Planccuvevveeeiiiiiiiiiiiiee e 351
Using the plan ClauSeccccoveiiviiiieieieiiicee e 352
CHAPTER 17 Managing Abstract Plans with System Procedures................. 355
System procedures for managing abstract plans......................... 355
Managing an abstract plan group.........cccccevieeeiieee e, 356
Creating @ grOUP.......eeeeeicccerrreereeeeeeesinnrereeeeesssssnnseesesessssnnnes 356

(DT (o] o] o] TaTo Jr= e {00 o USSR 357
Getting information about a group.......ccccceeeeeeeciiiieeeee e, 357
RENAMING @ GrOUPccoiiviieiiiee e ettt e e e e e e 360
Finding abstract plans ... 360
Managing individual abstract plansccccccceeiniiiiiiie s 361
VIEWING @ PIAN c.oeiiiiiii e 361
Copying a plan to another groupcccvveeveeeiniiiiieenee e 362
Dropping an individual abstract plan.........ccccccceeiiiiiiiiiennnnn. 362
Comparing two abstract plans..........ccccuvveeviie i 363
Changing an existing planccccceiiieniieee e 364
Managing all plans in @ groupcccccevieieeeiiiee e 364
Copying all plans in @ groupcceeeeiieiee i 364
Comparing all plans in @ group..........coceveeiieees e 365
Dropping all abstract plans in a group.........cccccceveeeeeecivvneenn.. 367
Importing and exporting groups of plans...........cccccvveeeeeeiiciinnenn. 368
Exporting plans to a user table.........ccccccviiiiiiiiii i, 368
Importing plans from a user table.............cccccvvveiiiiniiiiinenn. 369
CHAPTER 18 Abstract Plan Language Referenceoococceeeviiiieeeiiiiiineeenne 371
KEYWOIASevviiiieie ettt e e e e nnaenee s 371

Xii Adaptive Server Enterprise

Contents

L@ 1T = o Lo L3 SRR 371
Abstract plan derived tablesocccciiiiiii 372
Schema for eXamplescoooiiiioiie e 372
(o T (o TR RO U PP PPRPPPN 373
NINES .. 376
I USCaANM e ettt e e 377
] PP P PP PP PPUPPP PRI 378
U e e 381
00 T o [11 PO SO PRSP PPPPPRRP 381
0 0T (U PSSP 383
LTSS (=T U RERPR 384
o o T o1 OSSP 386
PArAllEl...... .o e 387
0] =0 PSR SRR 388
PrefetCh ... 390
PIOP e 391
7= 1 0 IO OO PPPTPPPRRPPR 392
] (0] £SO PP UTT P PPPPPPPRPPPN 393
L]] oo [P PPP PRSP PPRRPP 394
E S CANM ettt 397
TADIE e 398
8o To] o PRSPPI 399
VIBWW ettt ettt oo e ettt e e e et ettt e e e e e et taa e e aaaae 401
WOTK Tttt e e e e e e neeeeen 401
10T = PP PP PP PUPPPPPPRPT 405

Performance &Tuning: Optimizer and Abstract Plans Xiii

Contents

Xiv Adaptive Server Enterprise

About This Book

Audience

How to use this book

Thismanual isintended for database administrators, database designers,
developers and system administrators.

Note You may want to use your own database for testing changes and
queries. Take a snapshot of the database in question and set it up on atest
machine.

Thismanual isused to fine tune, troubleshoot or improve the performance
on Adaptive Server.

Chapter 1, “Introduction to Performance and Tuning” gives ageneral
description of this manual and the other manuals within the Performance
and Tuning Seriesfor Adaptive Server.

Chapter 2, “ Optimizer Overview” explains the process of query
optimization, how statistics are applied to search arguments and joins for
queries.

Chapter 3, “Advanced Optimizing Tools” describes advanced tools for
tuning query performance.

Chapter 4, “Query Tuning Tools’ presents an overview of query tuning
tools and describes how these tools can interact.

Chapter 5, “ Access Methods and Query Costing for Single Tables”
describes how Adaptive Server accessestablesin queriesthat only involve
one table and how the costs are estimated for various access methods.

Chapter 6, “ Accessing Methods and Costing for Joins and Subqueries’
describes how Adaptive Server accesses tables during joins and
subqueries, and how the costs are determined.

Chapter 7, “Parallel Query Processing” intoduces the concepts and
resources required for parallel query processing.

Chapter 8, “Parallel Query Optimization” provides an indepth look at the
optimization of parallel queries.

Chapter 9, “Parallel Sorting” describes the use of parallel sorting for
gueries and creating indexes.

Performance & Tuning: Optimizer and Abstract Plans XV

Related documents

XVi

Chapter 10, “Tuning Asynchronous Prefetch” describes how asynchronous
prefetch improves performance for queries that perform large disk 1/0.

Chapter 12, “tempdb Performance Issues’ stresses the importance of the
temporary database, tempdb, and provides suggestions for improving its
performance.

Chapter 11, “Multiple Temporary Databases’ describes how Adaptive Server
allows you to create multiple temporary databases, which you can then use to
create temporary objects such as private temporary tables and work tables.

Chapter 13, “Cursors and Performance” describes performance issues with
CUrsors.

e Theremaining volumes for the Performance and Tuning Series are;
e Performance and Tuning: Basics
e Performance and Tuning: Locking
e Performance and Tuning: Monitoring and Analyzing

e Therelease bulletin for your platform — contains last-minute information
that was too late to be included in the books.

A more recent version of the release bulletin may be available on the
World Wide Web. To check for critical product or document information
that was added after the release of the product CD, use the Sybase
Technical Library.

e Thelnstallation Guidefor your platform —describesinstal lation, upgrade,
and configuration procedures for all Adaptive Server and related Sybase
products.

e Configuring Adaptive Server Enterprise for your platform — provides
instructions for performing specific configuration tasks for Adaptive
Server.

e What's New in Adaptive Server Enterprise? — describes the new features
in Adaptive Server version 12.5, the system changes added to support
those features, and the changes that may affect your existing applications.

e Transact-SQL User’s Guide — documents Transact-SQL, Sybase's
enhanced version of the relational database language. This manual serves
as a textbook for beginning users of the database management system.
This manual also contains descriptions of the pubs2 and pubs3 sample
databases.

Adaptive Server Enterprise

About This Book

e System Administration Guide — provides in-depth information about
administering servers and databases. This manual includes instructions
and guidelines for managing physical resources, security, user and system
databases, and specifying character conversion, international language,
and sort order settings.

* Reference Manual — contains detailed information about all Transact-SQL
commands, functions, procedures, and data types. This manual also
contains alist of the Transact-SQL reserved words and definitions of
system tables.

e The Utility Guide—documentsthe Adaptive Server utility programs, such
asisqgl and bcp, which are executed at the operating system level.

e The Quick Reference Guide — provides a comprehensive listing of the
names and syntax for commands, functions, system procedures, extended
system procedures, datatypes, and utilities in a pocket-sized book.
Available only in print version.

e The System Tables Diagram — illustrates system tables and their entity
relationships in a poster format. Available only in print version.

e Error Messages and Troubleshooting Guide — explains how to resolve
frequently occurring error messages and describes solutions to system
problems frequently encountered by users.

e Component Integration Services User’s Guide — explains how to use the
Adaptive Server Component Integration Services feature to connect
remote Sybase and non-Sybase databases.

e Javain Adaptive Server Enterprise—describeshow toinstall and use Java
classes as data types, functions, and stored procedures in the Adaptive
Server database.

e XML Servicesin Adaptive Server Enterprise—describesthe Sybase native
XML processor and the Sybase Java-based XML support, introduces
XML in the database, and documents the query and mapping functions
that comprise XML Services.

e Using Sybase Failover in a High Availability System — provides
instructions for using Sybase's Failover to configure an Adaptive Server
as acompanion server in ahigh availability system.

e Job Scheduler User’s Guide — provides instructions on how to create and
schedule jobs on alocal or remote Adaptive Server using the command
line or agraphical user interface (GUI).

Performance & Tuning: Optimizer and Abstract Plans XVii

Other sources of
information

XViil

Using Adaptive Server Distributed Transaction Management Features —
explains how to configure, use, and troubleshoot Adaptive Server DTM
features in distributed transaction processing environments.

EJB Server User’s Guide — explains how to use EJB Server to deploy and
execute Enterprise JavaBeans in Adaptive Server.

XA Interface Integration Guide for CICS, Encina, and TUXEDO —
providesinstructions for using Sybase’'s DTM XA interface with X/Open
XA transaction managers.

Glossary — defines technical terms used in the Adaptive Server
documentation.

Sybase jConnect for JDBC Programmer’s Reference — describes the
jConnect for JDBC product and explainshow to useit to access data stored
in relational database management systems.

Full-Text Search Specialty Data Sore User’s Guide— describes how to use
the Full-Text Search feature with Verity to search Adaptive Server
Enterprise data.

Historical Server User’s Guide —describes how to use Historical Server to
obtain performance information for SQL Server and Adaptive Server.

Monitor Server User’s Guide — describes how to use Monitor Server to
obtain performance statistics from SQL Server and Adaptive Server.

Monitor Client Library Programmer’s Guide — describes how to write
Monitor Client Library applications that access Adaptive Server
performance data.

Use the Sybase Technical Library CD and the Technical Library Product
Manuals Web site to learn more about your product:

The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the Technical Library CD. Itisincluded with
your software. To read or print documents on the Getting Started CD you
need Adobe Acrobat Reader (downloadable at no charge from the Adobe
Web site, using alink provided on the CD).

The Technical Library CD contains product manuals and is included with
your software. The DynaText reader (included on the Technical Library
CD) allows you to access technical information about your product in an
easy-to-use format.

Adaptive Server Enterprise

About This Book

Refer to the Technical Library Installation Guide in your documentation
package for instructions on installing and starting the Technical Library.

The Technical Library Product Manuals Web site isan HTML version of
the Technical Library CD that you can access using a standard Web
browser. In addition to product manuals, you will find linksto
EBFs/Updates, Technical Documents, Case Management, Solved Cases,
newsgroups, and the Sybase Developer Network.

To access the Technical Library Product Manuals Web site, go to Product
Manuals at http://www.sybase.com/support/manuals/.

Sybasecertifications Technical documentation at the Sybase Web site is updated frequently.

on the Web

O Finding the latest information on product certifications

1

a b W DN

Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

Select Products from the navigation bar on the left.

Select a product name from the product list and click Go.

Select the Certification Report filter, specify atime frame, and click Go.
Click a Certification Report title to display the report.

0 Creating a personalized view of the Sybase Web site (including support
pages)
Set up aMySybase profile. MySybaseisafree servicethat allowsyouto create
apersonalized view of Sybase Web pages.

1

2

Sybase EBFs and
software updates

Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

Click MySybase and create a MySybase profile.

O Finding the latest information on EBFs and software updates

1

Point your Web browser to the Sybase Support Page at
http://lwww.sybase.com/support.

Select EBFs/Updates. Enter user name and password information, if
prompted (for existing Web accounts) or create a new account (afree
service).

Select a product.

Performance & Tuning: Optimizer and Abstract Plans XiX

4 Specify atime frame and click Go.

5 Click theInfoicon to display the EBF/Update report, or click the product
description to download the software.

Conventions This section describes conventions used in this manual.
Formatting SQL SQL isafree-formlanguage. There are no rules about the number of wordsyou
statements can put on aline or where you must break a line. However, for readability, all

examples and syntax statements in this manual are formatted so that each
clause of astatement beginson anew line. Clausesthat have morethan one part
extend to additional lines, which are indented.

Font and syntax The font and syntax conventions used in this manual are shown in Table 1.0:
conventions
Table 1: Font and syntax conventions in this manual

Element Example
Command names, command option names, utility select
names, utility flags, and other keywordsarebold. sp_configure

Database names, datatypes, file names and path master database
names areinitalics.

Variables, or words that stand for values that you sel ect
fillin, areinitalics. column name
from
table_name
wher e

search_conditions

Parentheses areto betyped as part of the command. conput e
row_aggr egate
(
col umm_nane
)
Curly braces indicate that you must choose at least {cash, check, credit}
one of the enclosed options. Do not type the braces.

Brackets mean choosing one or more of the [anchovi es]

enclosed options is optional. Do not type the

brackets.

The vertical bar means you may select only one of {di e_on_your_feet | live_on_your_knees
the options shown. | I'ive_on_your_feet}

XX Adaptive Server Enterprise

About This Book

Parentheses areto be typed as part of the command. conput e
row_aggregate

(

col um_nane

)

Curly bracesindicate that you must choose at |east {cash, check, credit}
one of the enclosed options. Do not typethe braces.

Brackets mean choosing one or more of the [anchovi es]

enclosed optionsis optional. Do not type the

brackets.

The vertical bar means you may select only one of {di e_on_your_feet | Iive_on_your_knees
the options shown. | live_on_your_feet}

e Syntax statements (displaying the syntax and all options for a command)
appear as follows:
sp_dropdevi ce [devi ce_nane]

or, for acommand with more options:
sel ect col um_nane
fromtabl e_nane
where search_conditions

In syntax statements, keywords (commands) arein normal font and identifiers
arein lowercase: normal font for keywords, italics for user-supplied words.

e Examples of output from the computer appear as follows:

Performance & Tuning: Optimizer and Abstract Plans XXI

Case

Expressions

0736 New Age Books Boston MNA
0877 Binnet & Hardl ey Washi ngton DC
1389 Al godata I nfosystens Berkel ey CA

In this manual, most of the examples arein lowercase. However, you can
disregard case when typing Transact-SQL keywords. For example, SELECT,
Select, and select are the same. Note that Adaptive Server’s sensitivity to the
case of database objects, such as table names, depends on the sort order
installed on Adaptive Server. You can change case sensitivity for single-byte
character sets by reconfiguring the Adaptive Server sort order.

See in the System Administration Guide for more information.
Adaptive Server syntax statements use the following types of expressions:

Table 2: Types of expressions used in syntax statements

Usage Definition
expression Can include constants, literals, functions, column identifiers, variables, or

parameters

logical expression

An expression that returns TRUE, FALSE, or UNKNOWN

constant expression

An expression that always returns the same value, such as“5+3" or “ABCDE”

float_expr Any floating-point expression or expression that implicitly convertsto afloating
value

integer_expr Any integer expression, or an expression that implicitly convertsto an integer value

numeric_expr Any numeric expression that returns asingle value

char_expr Any expression that returns a single character-type value

binary_expression

An expression that returns a single binary or varbinary value

Examples

XXii

Many of the examplesin this manual are based on a database called pubtune.
The database schema is the same as the pubs2 database, but the tables used in
the examples have morerows: titles has 5000, authors has 5000, and titleauthor
has 6250. Different indexes are generated to show different features for many
examples, and these indexes are described in the text.

The pubtune database is not provided with Adaptive Server. Since most of the
exampl es show the results of commands such as set showplan and set statistics
i0, running the queriesin thismanual on pubs2 tableswill not produce the same
1/O results, and in many cases, will not produce the same query plans as those
shown here.

Adaptive Server Enterprise

About This Book

Each Sybaseinstallation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve aproblem using the manualsor online help, please havethe
designated person contact Sybase Technical Support or the Sybase subsidiary

in your area.

If you need help

Performance & Tuning: Optimizer and Abstract Plans XXiii

XXiv Adaptive Server Enterprise

CHAPTER 1

Performance & Tuning: Optimizer and Abstract Plans

Introduction to Performance and
Tuning

Tuning Adaptive Server Enterprise for performance can involve several
processes in analyzing the “Why?" of slow performance, contention,
optimizing and usage.

The Optimizer inthe Adaptive Server takes aquery and findsthe best way
to execute it. The optimization is done based on the statistics for a
database or table. The optimized plan staysin effect until the statisticsare
updated or the query changes. You can update the statistics on the entire
table or by sampling on a percentage of the data.

This volumn from the series on Performance and Tuning covers the
information on optimizing in Adaptive Server.

The remaining manuals for the Performance and Tuning Series are:
e Performance and Tuning: Basics

This manual covers the basics for understanding and investigating
performance questions in Adaptive Server. It guides you in how to
look for the places that may be impeding performance.

e Performance and Tuning: Locking

Adaptive Server locks the tables, data pages, or data rows currently
used by active transactions by locking them. Locking isa
concurrency control mechanism: it ensures the consistency of data
within and across transactions. Locking is needed in a multiuser
environment, since several users may be working with the same data
a the sametime.

e Performance and Tuning: Abstract Plans

Adaptive Server can generate an abstract plan for a query, and save
the text and its associated abstract plan in the sysqueryplans system
table. Abstract plans provide an alternative to options that must be
specified in the batch or query in order to influence optimizer
decisions. Using abstract plans, you can influence the optimi zation of
a SQL statement without having to modify the statement syntax.

e Performance and Tuning: Monitoring and Analyzing for Performance

Adaptive Server employs reports for monitoring the server. This manual
explains how statistics are obtained and used for monitoring and
optimizing. The stored procedure sp_sysmon produces a large report that
shows the performance in Adaptive Server.

You can also use the Sybase Monitor in Sybase Central for realtime
information on the status of the server.

Each of the manuals has been set up to cover specific information that may be
used by the system administrator and the database administrator.

Adaptive Server Enterprise

CHAPTER 2 Optimizer Overview

This chapter introduces the Adaptive Server query optimizer and explains

the steps performed when you run queries.

Topic Page
Definition 3
Object sizes are important to query tuning 5
Query optimization 6
Factors examined during optimization 7
Preprocessing can add clauses for optimizing 8
Guidelines for creating search arguments 14
Search arguments and useful indexes 15
Join syntax and join processing 21
Datatype mismatches and query optimization 24
Splitting stored procedures to improve costing 32
Basic units of costing 33

This chapter explains how costs for individual query clauses are

determined.

Chapter 5, “ Access Methods and Query Costing for Single

Tables,” explainshow these costs are used to estimate thelogical, physical,

and total 1/0 cost for single table queries.

Chapter 6, “ Accessing Methods and Costing for Joins and Subqueries,”
explains how costs are used when queriesjoin two or moretables, or when

queriesinclude subgueries.

Definition

The optimizer examines parsed and normalized queries, and information
about database objects. The input to the optimizer is a parsed SQL query
and statistics about the tables, indexes, and columns named in the query.

The output from the optimizer isaquery plan.

Performance & Tuning: Optimizer and Abstract Plans

Definition

The query planiscompiled code that contains the ordered stepsto carry out the
query, including the access methods (table scan or index scan, type of join to
use, join order, and so on) to access each table.

Using statistics on tables and indexes, the optimizer predicts the cost of using
alternative access methods to resolve a particular query. It finds the best query
plan —the plan that isleast the costly in terms of 1/O. For many queries, there
are many possible query plans. Adaptive Server selects the least costly plan,
and compiles and executesiit.

Steps in query processing

Adaptive Server processes aquery in these steps:

1 Thequery isparsed and normalized. The parser ensures that the SQL
syntax is correct. Normalization ensures that all the objects referenced in
the query exist. Permissions are checked to ensure that the user has
permission to access all tables and columns in the query.

2 Preprocessing changes some search arguments to an optimized form and
adds optimized search arguments and join clauses.

3 Asthequery isoptimized, each part of the query isanalyzed, and the best
guery plan is chosen. Optimization includes:

» Eachtableisanalyzed.

» Thecost of using each index that matches a search argument or join
column is estimated.

» Thejoin order and join type are chosen.
» Thefinal access method is determined.
4 The chosen query plan is compiled.

The query is executed, and the results are returned to the user.

Working with the optimizer

The goal of the optimizer isto select the access method for each table that

reducesthetotal time needed to processaquery. The optimizer basesits choice
on the statistics available for the tables being queried and on other factors such
as cache strategies, cache size, and 1/O size. A major component of optimizer
decision-making is the statistics available for the tables, indexes, and columns.

Adaptive Server Enterprise

CHAPTER 2 Optimizer Overview

In some situations, the optimizer may seem to make the incorrect choice of
accessmethods. Thismay betheresult of inaccurate or incompl eteinformation
(such as out-of-date statistics). In other cases, additional analysis and the use
of specia query processing options can determine the source of the problem
and provide solutions or workarounds.

The query optimizer uses I/O cost as the measure of query execution cost. The
significant costs in query processing are;

e Physical 1/0, when pages must be read from disk
e Logica /0, when pagesin cache are read for a query

See access methods and query costing.

Object sizes are important to query tuning

You should know the sizes of your tables and indexes to understanding query
and system behavior. At several stages of tuning work, you need size data to:

e Understand statistics io reports for a specific query plan.

Chapter 4, “Using the set statistics Commands,” in the Performance and
Tuning: Monitoring and Analyzing for Performance book describes how
to use statistics io to examine the 1/O performed.

¢ Understand the optimizer’s choice of query plan. Adaptive Server's cost-
based optimizer estimates the physical and logical 1/0 required for each
possible access method and chooses the cheapest method. If you think a
particular query plan is unusual, you can used dbcc traceon(302) to
determine why the optimizer made the decision. Thisoutput includes page
number estimates.

« Determineobject placement, based on the sizes of database objectsand the
expected 1/0 patterns on the objects. You can improve performance by
distributing database objects across physical devices so that reads and
writes to disk are evenly distributed.

Object placement is described in Chapter 6, “Controlling Physical Data
Placement.” in the book Performance and Tuning: Basics.

Performance & Tuning: Optimizer and Abstract Plans 5

Query optimization

Understand changes in performance. If objects grow, their performance
characteristics can change. One exampleisatablethat is heavily used and
isusually 100 percent cached. If that table grows too large for its cache,
queriesthat accessthe table can suddenly suffer poor performance. Thisis
particularly true for joins requiring multiple scans.

Do capacity planning. Whether you are designing a new system or
planning for growth of an existing system, you need to know the space
requirements to plan for physical disks and memory needs.

Understand output from Adaptive Server Monitor and from sp_sysmon
reports on physical /0.

Seethe Adaptive Server System Administration Guide for more information on
sizing.

Query optimization

To understand the optimization of a query, you need to understand how the
guery accesses database objects, the sizes of the abjects, and theindexeson the
tables to determine whether it is possible to improve the query’s performance.

Some symptoms of optimization problems are;

A query runs more slowly than you expect, based on indexes and table
size.

A query runs more slowly than similar queries.
A query suddenly starts running more slowly than usual.

A query processed within a stored procedure takes longer than whenitis
processed as an ad hoc statement.

The query plan shows the use of atable scan when you expect it to use an
index.

Some sources of optimization problems are:

Statistics have not been updated recently, so the actual data distribution
does not match the values used by Adaptive Server to optimize queries.

The rows to be referenced by a given transaction do not fit the pattern
reflected by the index statistics.

Anindex is being used to access a large portion of the table.

Adaptive Server Enterprise

CHAPTER 2 Optimizer Overview

e where clauses are written in aform that cannot be optimized.
* No appropriate index exists for acritical query.

e A stored procedure was compiled before significant changes to the
underlying tables were performed.

SQL derived tables and optimization

Queries expressed as asingle SQL statement exploit the optimizer better than
queries expressed in two or more SQL statements. SQL derived tables enable
oneto concisely expressin asingle step what might otherwise require several
SQL statementsand temporary tables, especially whereintermediate aggregate
results must be stored. For example,

select dt_1.* from
(sel ect sun(total _sal es)
fromtitles_west group by total _sales)
dt _1(sal es_sun),
(sel ect sun(total _sales)
fromtitles_east group by total sales)
dt _2(sal es_sun
where dt _1.sal es_sum = dt_2.sal es_sum

Here aggregate results are obtained from the SQL derived tablesdt_1 and dt_2,
and ajoin is computed between the two SQL derived tables. Everything is
accomplished in asingle SQL statement.

For more information on SQL derived tables, see the Transact-SQL User’s
Guide.

Factors examined during optimization

Query plans consist of retrieval tactics and an ordered set of execution stepsto
retrieve the data needed by the query. In developing query plans, the optimizer
examines:

e Thesize of each table in the query, both in rows and data pages, and the
number of OAM and allocation pages that need to be read.

Performance & Tuning: Optimizer and Abstract Plans 7

Preprocessing can add clauses for optimizing

e Theindexesthat exist on the tables and columnsused in the query, thetype
of index, and the height, number of leaf pages, and cluster ratios for each
index.

e Whether the index coversthe query, that is, whether the query can be
satisfied by retrieving datafrom the index leaf pages without having to
access the data pages. Adaptive Server can useindexesthat cover queries,
even if no where clauses are included in the query.

e Thedensity and distribution of keysin the indexes.

e Thesizeof theavailable data cache or caches, the size of I/O supported by
the caches, and the cache strategy to be used.

e Thecost of physical and logical reads.

e Joinclausesand the best join order and join type, considering the costs and
number of scans required for each join and the usefulness of indexesin
limiting the 1/O.

e Whether building aworktable (an internal, temporary table) with an index
on the join columns would be faster than repeated table scansif there are
no useful indexes for theinner tablein ajoin.

e Whether the query contains a max or min aggregate that can use an index
to find the value without scanning the table.

e Whether the data or index pages will be needed repeatedly to satisfy a
query such as ajoin or whether afetch-and-discard strategy can be
empl oyed because the pages need to be scanned only once.

For each plan, the optimizer determinesthetotal cost by computing the logical
and physical 1/0s. Adaptive Server then uses the cheapest plan.

Stored procedures and triggers are optimized when the object isfirst executed,
and the query planis stored in the procedure cache. If other users execute the
same procedure while an unused copy of the plan resides in cache, the
compiled query plan is copied in cache, rather than being recompiled.

Preprocessing can add clauses for optimizing

After aquery is parsed and normalized, but before the optimizer beginsits
analysis, the query is preprocessed to increase the number of clauses that can
be optimized:

8 Adaptive Server Enterprise

CHAPTER 2 Optimizer Overview

e Some search arguments are converted to equivalent arguments.

e Some expressions used as search arguments are preprocessed to generate
aliteral valuethat can be optimized.

e Search argument transitive closure is applied where possible.
e Join column transitive closure is applied where possible.

« For somequeriesthat use or, additional search arguments can be generated
to provide additional optimization paths.

The changes made by preprocessing are transparent unless you are examining
the output of query tuning tools such as showplan, statistics io, or dbcc
traceon(302). If you run queries that benefit from the addition of optimized
search arguments, you see the added clauses:

« Inadditional costing blocks for the added clauses to be optimized in dbcc
traceon(302) output.

* Inshowplan output, you may see “Keys are” messages for tables where
you did not specify a search argument or ajoin.

Converting clauses to search argument equivalents

Preprocessing looks for some query clausesthat it can convert to theform used
for search arguments (SARGS). These arelisted in Table 2-1.

Table 2-1: Search argument equivalents

Clause Conversion

between Converted to >= and <= clauses. For example, between 10 and 20 is
converted to >= 10 and <= 20.

like If the first character in the pattern is a constant, like clauses can be

converted to greater than or less than queries. For example, like "sm%"
becomes >="sm" and < "sn".

If thefirst character is awildcard, a clause such as like "%x" cannot use an
index for access, but histogram values can be used to estimate the number
of matching rows.

in (values list) Converted to alist of or queries, that is, int_col in (1, 2, 3) becomes int_col
=1orint_col =2 orint_col = 3. The maximum number of elementsin an IN-
listis 1025.

Performance & Tuning: Optimizer and Abstract Plans 9

Preprocessing can add clauses for optimizing

Converting expressions into search arguments

Many expressions are converted into literal search strings before query
optimization. In the following examples, the processed expressions are shown
as they appear in the search argument analysis of dbcc traceon(302) output:;

Operation Example of where Clause Processed expression
Implicit nunmeric_col =5 numeric_col = 5.0
converson
Conversion int_colum = convert(int, "77") int_colum = 77
function
Arithmetic salary = 5000*12 salary = 6000

0
Math functions wi dth = sqgrt(900) width = 30
String functions shoe_wi dth = replicate("E", 5) shoe_wi dt h = "EEEEE"
String full _name = "Fred" +" " + "Sinpson" full_name = "Fred Sinpson"
concatenation
Date functions week = datepart(wk, "5/22/99") week = 21

Note getdate() cannot be optimized.

These conversions allow the optimizer to use the histogram values for a
column rather than using default selectivity values.

The following are exceptions:
* Thegetdate function
e Most system functions such as object_id or object_name

These are not converted to literal values before optimization.

Search argument transitive closure

Preprocessing applies transitive closure to search arguments. For example, the
following query joins titles and titleauthor on title_id and includes a search
argument on titles.title_id:

sel ect au_lnane, title
fromtitles t, titleauthor ta, authors a
where t.title_id = ta.title_id

and a.au_id = ta.au_id

and t.title_id = "T81002"

10 Adaptive Server Enterprise

CHAPTER 2 Optimizer Overview

Thisquery is optimized asif it also included the search argument on
titleauthor.title_id:

select au_lnane, title
fromtitles t, titleauthor ta, authors a
where t.title_id = ta.title_id

and a.au_id = ta.au_id

and t.title_id = "T81002"

and ta.title_id = "T81002"

With this additional clause, the optimizer can use index statistics on
titles.title_id to estimate the number of matching rows in the titleauthor table.
The more accurate cost estimates improve index and join order selection.

Join transitive closure

Preprocessing appliestransitive closureto join columnsfor normal equijoinsif
join transitive closureis enabled at the server or session level. The following
query specifiesthe equijoin of t1.c11 and t2.c21, and the equijoin of t2.c21 and
t3.¢c31:

sel ect *
fromtl, t2, t3

where tl1l.cl1ll1 = t2.c21
and t2.c21 = t3.c31
and t3.¢c31 =1

Without join transitive closure, the only join orders considered are (1, t2, t3),
(t2, 11, 3), (t2, t3, t1),and (t3, t2, t1). By adding the join on t1.c11 = t3.31, the
optimizer expandsthelist of join orders with these possibilities: (t1, t3, t2) and
(13, t1, t2). Search argument transitive closure applies the condition specified
by t3.c31 = 1 to the join columns of t1 and t2.

Transitive closureis used only for normal eguijoins, as shown above. Join
transitive closureis not performed for:

e Non-equijoins; for example, t1.c1 > t2.c2

e Equijoinsthat include an expression; for example, tl.c1 =t2.c1+5
e Equijoins under an or clause

e Outerjoins; for exampletl.c11 *=t2.c2 or left join or right join

e Joins across subquery boundaries

e Joinsused to check referential integrity or the with check option on views

Performance & Tuning: Optimizer and Abstract Plans 11

Preprocessing can add clauses for optimizing

e Columns of incompatible datatypes

Enabling join transitive closure

A System Administrator can enablejoin transitive closure at the server level
with the enable sort-merge joins and JTC configuration parameter. This
configuration parameter also enables merge joins. At the session level, set jtc
on enablesjoin transitive closure, and takes precedence over the server-wide
setting. For moreinformation on the types of querieslikely to benefit from the
use of join transitive closure.

See “Enabling and disabling join transitive closure” on page 52.

Predicate transformation and factoring

Predicate transformation and factoring improves the number of choices
available to the optimizer. It adds clauses that can be optimized to a query by
extracting clauses from blocks of predicates linked with or into clauses linked
by and. These additional optimized clauses mean that there are more access
paths available for query execution. The original or predicates are retained to
ensure query correctness.

During predicate transformation:

1 Simple predicates (joins, search arguments, and in lists) that are an exact
match in each or clause are extracted. In the sample query, this clause
matches exactly in each block, so it is extracted:

t.pub_id = p.pub_id

between clauses are converted to greater-than-or-equal and less-than-or-
equal clauses before predicate transformation. The sample query above
usesbetween 15in both query blocks (though the end rangesare different).
The equivalent clause is extracted by step 1:

price >=15

2 Search arguments on the same table are extracted; all termsthat reference
the sametable aretreated asasingle predicate during expansion. Both type
and price are columns in thettitles table, so the extracted clauses are:

(type = "travel" and price >=15 and price <= 30)
or
(type = "business" and price >= 15 and price <= 50)

12 Adaptive Server Enterprise

CHAPTER 2 Optimizer Overview

Example

in lists and or clauses are extracted. If there are multiplein listsfor atable
within one of the blocks, only the first is extracted. The extracted lists for
the sample query are:

p.pub_id in ("P220", "P583", "P780")
or
p.pub_id in ("P651", "P066", "P629")

These steps can overlap and extract the same clause, so any duplicates are
eliminated.

Each generated term is examined to determine whether it can be used as
an optimized search argument or ajoin clause. Only those termsthat are
useful in query optimization are retained.

The additional clauses are added to the existing query clauses that were
specified by the user.

All clauses optimized in this query are enclosed in the or clauses:

select p.pub_id, price
frompublishers p, titles t

where (
t.pub_id = p.pub_id
and type = "travel "

and price between 15 and 30
and p.pub_id in ("P220", "P583", "P780")
)
or (
t.pub_id p. pub_id
and type = "business"
and price between 15 and 50
and p.pub_id in ("P651", "P066", "P629")
)

Predicate transformation pulls clauses linked with and from blocks of clauses
linked with or, such as those shown above. It extracts only clauses that occur
in al parenthesized blocks. If the example above had aclausein one of the
blocks linked with or that did not appear in the other clause, that clause would
not be extracted.

Performance & Tuning: Optimizer and Abstract Plans 13

Guidelines for creating search arguments

Guidelines for creating search arguments

Follow these guidelines when you write search arguments for your queries:

14

Avoid functions, arithmetic operations, and other expressions on the
column side of search clauses. When possible, move functions and other
operations to the expression side of the clause.

Avoid incompatible datatypes for columns that will be joined and for
variables and parameter used as search arguments.

See “ Datatype mismatches and query optimization” on page 24 for more
information.

Use the leading column of a composite index as a search argument. The
optimization of secondary keys provides |ess performance.

Use all the search arguments you can to give the optimizer as much as
possible to work with.

If aquery hasmorethan 102 predicatesfor atable, put the most potentially
useful clauses near the beginning of the query, since only the first 102
SARGs on each table are used during optimization. (All of the search
conditions are used to qualify the rows.)

Some queriesusing > (greater than) may perform better if you can rewrite
them to use >= (greater than or equal to). For example, this query, with an
index on int_col uses the index to find the first value where int_col equals
3, and then scans forward to find the first value that is greater than 3. If
there are many rows where int_col equals 3, the server has to scan many
pagesto find the first row whereint_col is greater than 3:

select * fromtablel where int_col > 3
Itis probably more efficient to write the query like this:
select * fromtablel where int_col >= 4

This optimization is more difficult with character strings and floating-
point data. You need to know your data.

Check showplan output to see which keys and indexes are used.

If you expect an index is not being used when you expect it to be, check
dbcc traceon(302) output to seeif the optimizer is considering the index.

Adaptive Server Enterprise

CHAPTER 2 Optimizer Overview

Search arguments and useful indexes

It isimportant to distinguish between where and having clause predicates that
can be used to optimize the query, and those that are used later during query
processing to filter the rows to be returned.

Search arguments can be used to determine the access path to the data rows
when acolumn in the where clause matches aleading index key. Theindex can
be used to locate and retrieve the matching data rows. Once the row has been
located in the data cache or has been read into the data cache from disk, any
remaining clauses are applied.

For example, if the authors table has on an index on au_Iname and another on
city, either index can be used to locate the matching rows for this query:

select au_lnane, city, state
from aut hors

where city = "Washi ngton”
and au_l name = "Catmul | "

The optimizer uses statistics, including histograms, the number of rowsin the
table, the index heights, and the cluster ratios for the index and data pagesto

determine which index provides the cheapest access. The index that provides
the cheapest access to the data pages is chosen and used to execute the query,
and the other clause is applied to the data rows once they have been accessed.

Search argument syntax
Search arguments (SARGS) are expressionsin one of these forms:
<column> <operator> <expression>
<expression> <operator> <column>
<column> is null

Where:

e columnisonly acolumn name. If functions, expressions, or concatenation
are added to the column name, an index on the column cannot be used.

e operator must be one of the following:

= > <, >= <=, I> I< <> I= is null

e expression iseither a constant, or an expression that evaluatesto a
constant. The optimizer uses the index statistics differently, depending on
whether the value of the expression is known at compile time:

Performance & Tuning: Optimizer and Abstract Plans 15

Search arguments and useful indexes

e |If expression is aknown constant or can be converted to a known
constant during preprocessing, it can be compared to the histogram
values stored for an index to return accurate row estimates.

e |If thevalue of expression isnot known at compiletime, the optimizer
usesthetotal density to estimate the number of rowsto bereturned by
the query. Thevalue of variables set in aquery batch or parameters set
within a stored procedure cannot be known until execution time.

« |f the datatype of the expression is not compatible with the datatype
of the column, an index cannot be used, and is not considered.

See “ Datatype mismatches and query optimization” on page 24 for
more information.

Nonequality operators

Examples of SARGs

16

The nonequality operators, < > and !=, are special cases. The optimizer checks
for covering nonclustered indexes if the column isindexed and uses a
nonmatching index scan if an index coversthe query. However, if the index
does not cover the query, the table is accessed via a table scan.

The following are some examples of clauses that can be fully optimized. If
there are statistics on these columns, they can be used to help estimate the
number of rows the query will return. If there are indexes on the columns, the
indexes can be used to access the data:

au_l nane = "Bennett"

price >= $12.00

advance > $10000 and advance < $20000
au_l nane like "Ben% and price > $12.00

The following search arguments cannot be optimized:

advance * 2 = 5000 /*expression on colum side
not pernitted */
substring(au_l nane, 1,3) = "Ben" /* function on
col um nane */

These two clauses can be optimized if written in this form:

advance = 5000/ 2
au_l nane |ike "Ben%

Consider this query, with the only index on au_Iname:

Adaptive Server Enterprise

CHAPTER 2 Optimizer Overview

sel ect au_l nane, au_fnanme, phone
from aut hors
where au_Il nane = "CGerl and"
and city = "San Franci sco"

The clause qualifies as a SARG:
au_l name = "GCerl and"
¢ Thereisanindex on au_Iname.
e Thereare no functions or other operations on the column name.
e Theoperator isavalid SARG operator.
e Thedatatype of the constant matches the datatype of the column.
city = "San Francisco"

This clause matches all the criteriaabove except the first—thereisno index on
the city column. In this case, the index on au_Iname is used for the query. All
data pages with a matching last name are brought into cache, and each
matching row is examined to see if the city matches the search criteria.

How statistics are used for SARGS

When you create an index, statistics are generated and stored in system tables.
Some of the statistics relevant to determining the cost of search argumentsand
joinsare:

o Statistics about the index: the number of pages and rows, the height of the
index, the number of leaf pages, the average |leaf row size.
o Statistics about the datain the column:

e A histogram for theleading column of theindex. Histograms are used
to determinethe selectivity of the SARG, that is, how many rowsfrom
the table match a given value.

» Density values, measuring the density of keysin the index.

e Cluster ratios that measure the fragmentation of data storage and the
effectiveness of large /0.

Only asubset of these statistics (the number of leaf pages, for example) are
maintained during query processing. Other statistics are updated only when
you run update statistics or when you drop and re-create the index. You can
display these statistics using optdiag.

Performance & Tuning: Optimizer and Abstract Plans 17

Search arguments and useful indexes

Histogram cells

Density values

18

See Chapter 6, “ Statistics Tables and Displaying Statistics with optdiag.” in
the Performance and Tuning: Monitoring and Analyzing for Performance
book.

When you create an index, a histogram is created on the first column of the
index. The histogram stores information about the distribution of valuesin the
column. Then you can use update statistics to generate statistics for the minor
keys of a compound index and columns used in unindexed search clauses.

The histogram for a column contains datain a set of steps or cells. You can
specify the number of cells can when the index is created or when the update
statistics command is run. For each cell, the histogram stores a column value
and aweight for the cell.

There are two types of cellsin histograms:

* A frequency cell represents a value that has a high proportion of
duplicatesin the column. Theweight of afrequency cell timesthe number
of rows in the table equal s the number of rows in the table that match the
valuefor thecell. If acolumn does not have highly duplicated values, there
are only range cellsin the histogram.

* Rangecdlsrepresent arange of values. Range cell weights and the range
cell density are used for estimating the number of rowsto be returned
when search argument values falls within arange cell.

For more information on histograms, see“Histogram displays’ on page151in
the Performance and Tuning: Monitoring and Analyzing for Performance
book.

Density is a measure of the average proportion of duplicate keysin the index.
It varies between 0 and 1. An index with N rows whose keys are unique has a
density of 1/N; an index whose keys are all duplicates of each other has a
density of 1.

For indexes with multiple keys, density values are computed and stored for
each prefix of keysintheindex. That is, for an index on columns A, B, C, D,
densities are stored for:

A
« AB

Adaptive Server Enterprise

CHAPTER 2 Optimizer Overview

- A/BC
- ABCD

Range cell density and total density
For each prefix subset, two density values are stored:
¢ Range cell density, used for search arguments
e Total density, used for joins

Range cell density represents the average number of duplicates of all values
that arerepresented by range cellsin the histogram. Total density representsthe
average number of duplicatesfor al values, thosein both frequency and range
cells. Total density is used to estimate the number of matching rows for joins
and for search arguments whose value is not known when the query is
optimized.

How the optimizer uses densities and histograms

When the optimizer analyzes a SARG it uses the histogram values, densities,
and the number of rows in the table to estimate the number of rowsthat match
the value specified in the SARG:

e If the SARG value matches a frequency cell, the estimated number of
matching rowsis equal to the weight of the frequency cell multiplied by
the number of rows in the table. This query includes a data value with a
high number of duplicates, so it matches a frequency cell:

where authors.city = "New York"

If the weight of the frequency cell is#.015606, and the authors table has
5000 rows, the optimizer estimates that the query returns 5000 * .015606
=78 rows.

e If the SARG vaue falls within arange cell, the optimizer uses the range
cell density to estimate the number of rows. For example, aquery on acity
valuethat fallsin arange cell, with arange cell density of .000586 for the
column, would estimate that 5000 * .000586 = 3 rows would be returned.

» For range queries, the optimizer adds the weights of all cells spanned by
therange of values. When the beginning or end of therangefallsinarange
cell, the optimizer usesinterpolation to estimate the number of rows from
that cell that areincluded in the range.

Performance & Tuning: Optimizer and Abstract Plans 19

Search arguments and useful indexes

Using statistics on multiple search arguments

When there are multi ple search arguments on the sametabl e, the optimizer uses
statistics to combine the selectivity of the search arguments.

This query specifies search arguments for two columnsin the table:

select title_id
fromtitles

where type = "news"
and price < $20

With an index on type, price, the selectivity estimates vary, depending on
whether statistics have been created for price:

* With only statistics for type, the optimizer uses the frequency cell weight
for type and a default selectivity for price. The selectivity for type is
#.106600, and the default selectivity for an open-ended range query is
33%. The number of rows to be returned for the query is estimated using
.106600 * .33, or .035178. With 5000 rowsin thetable, the estimateis 171
rows.

See Table 2-2 for the default values used when statistics are not available.

* With statistics added for price, the histogram is used to estimate that
.133334 rows match the search argument on price. Multiplied by the
selectivity of type, the result is .014213, and the row estimateis 71 rows.

The actual number of rows returned is 53 rows for this query, so the additional
statistics improved the accuracy. For this simple single-table query, the more
accurate selectivity did not change the access method, theindex on type, price.
For some single-table queries, however, the additional statistics can help the
optimizer make a better choice between using a table scan or using other
indexes. Injoin queries, having more accurate statistics on each table can result
in more efficient join orders.

Default values for search arguments

When statistics are not avail able for a search argument or when the value of a
search argument is not known at optimization, the optimizer uses default
values. These values are shown in Table 2-2.

20 Adaptive Server Enterprise

CHAPTER 2 Optimizer Overview

Table 2-2: Density approximations for unknown search arguments

Operation Type Operator Density Approximation
Equality = Total density, if statisticsare available
for the column, or 10%
Open-ended range <, <=, 33%
> 0r >=
Closed range between 25%

SARGs using variables and parameters

Since the optimizer computes its estimates before a query executes, it cannot
know the value of avariable that is set in the batch or procedure. If the value
of avariableisnot known at compiletime, the optimizer usesthe default values
shown in Table 2-2

For example, the value of @city is set in this batch:

declare @ity varchar (25)
select @ity = city from publishers
where pub_nane = "Brave Books"
sel ect au_l nane fromauthors where city = @ity

The optimizer usesthetotal density, .000879, and estimates that 4 rowswill be
returned; the actual number of rows could be far larger.

A similar problem exists when you set the values of variables inside a stored
procedure. In this case, you can improve performance by splitting the
procedure: set the variable in the first procedure and then call the second
procedure, passing the variables as parameters. The second procedure can then
be optimized correctly.

See “ Splitting stored procedures to improve costing” on page 32 for an
example.

Join syntax and join processing

Join clauses take this form:
tabl el. col utm_nane <operator> tabl e2. col umm_nane

Thejoin operators are:

Performance & Tuning: Optimizer and Abstract Plans 21

Join syntax and join processing

And:

tablel [left | right] join table2
on col um_nane = col um_nane
tabl el inner join table2
on col um_nane = col um_nane

When joins are optimized, the optimizer can only consider indexes on column
names. Any type of operator or expression in combination with the column
name means that the optimizer does not eval uate using an index on the column
as a possible access method. If the columnsin the join are of incompatible
datatypes, the optimizer can consider an index on only one of the columns.

How joins are processed

When the optimizer creates a query plan for ajoin query:

It evaluatesindexesfor each table by estimating the 1/O required for each
possible index and for a table scan.

It determines the join order, basing the decision on the total cost estimates
for the possible join orders. It estimates costs for both nested-loop joins
and sort-merge joins.

If no useful index exists on the inner table of ajoin, the optimizer may
decide to build atemporary index, a process called refor matting.

See “Reformatting strategy” on page 128.
It determines the 1/O size and caching strategy.

It also compares the cost of serial and parallel execution, if parallel query
processing is enabled.

See Chapter 8, “Parallel Query Optimization,” for more information.

Factors that determine costs on single-table selects, such as appropriate
indexing, search argument sel ectivity, and density of keys, become much more
critical for joins.

When statistics are not available for joins

If statistics are not available for acolumnin ajoin, the optimizer uses default
values:

22

Adaptive Server Enterprise

CHAPTER 2 Optimizer Overview

Operator type Examples Default selectivity
Equality tl.cl = tl.c2 Lrowsin smaller table
Nonequality tl.cl >tl.c2 33%

tl.cl >=tl.c2
tl.cl <tl.c2
tl.cl <=1tl.c2

For example, in the following query, the optimizer uses 1/500 for the join
selectivity for both tables if there are no statistics for either city column, and
stores has 500 rows and authors has 5000 rows:

sel ect au_fnane, au_lnane, stor_nane
fromauthors a, stores s
where a.city = s.city

Density values and joins

When statistics are available on ajoin column, the total density is used to
estimate how many rows match each join key. If the authors table has 5000
rows, and the total density for the city column is .000879, the optimizer
estimatesthat 5000 * .000879 = 4 rowswill be returned from authors each time
ajoin on the city column matches arow from the other table.

Multiple column joins

When ajoin query specifies multiple join columns on two tables, and there is
acomposite index on the columns, the composite total density is used. For
example, if authors and publishers each has an index on city, state, the
composite total density for city, state is used for each table in this query:

sel ect au_l nane, pub_nane
fromauthors a, publishers p
where a.city = p.city

and a.state = p.state

Search arguments and joins on atable

When there are search arguments and joins on atable, the selectivities of the
columns are combined during join costing to estimate the number of rows more
accurately.

Performance & Tuning: Optimizer and Abstract Plans 23

Datatype mismatches and query optimization

The following example joins authors and stores on both the city and state
columns. There is a search argument on authors.state, S0 search argument
transitive closure adds the search argument for stores.state table also:

sel ect au_fnanme, au_lnane, stor_nane
fromauthors a, stores s

where a.city = s.city

and a.state s.state

and a.state "GA"

If thereisanindex on city for each table, but no statistics availablefor state, the
optimizer uses the default search argument selectivity (10%) combined with
thetotal density for city. This overestimates the number of rows that match the
search argument for this query, for a state with more rows that match a search
argument on state, it would underestimate the number of rows. When statistics
exist for state on each table, the estimate of the number of qualifying rows
improves, and overall costing for the join query improves also.

Datatype mismatches and query optimization

24

One common problem when queriesfail to useindexes as expected is datatype
mismatches. Datatype mismatches occur:

e With search clauses using variables or stored procedure parameters that
have a different datatype than the column, for example:

where int_col = @money_paraneter

* Injoin querieswhenthe columnsbeing joined have different datatypes, for
example:

where tabl eA int_col = tabl eB. noney_col

Datatype mismatches lead to optimization problems when they prevent the
optimizer from considering an index. The most common problems arise from:

» Comparisons between the integer types, int, smallint and tinyint
» Comparisons between money and smallmoney
» Comparisons between datetime and smalldatetime

» Comparisonsbetween numeric and decimal typesof differing precisionand
scale

» Comparisons between numeric or decimal types

Adaptive Server Enterprise

CHAPTER 2 Optimizer Overview

e Comparisons between integer or money columns

To avoid problems, use the same datatype (including the same precision and
scale) for columnsthat are likely join candidates when you create tables. Use
amatching datatype for any variables or stored procedure parameters used as
search arguments. The following sections detail the rules and considerations
applied when the same datatypeis not used, and provide some troubl eshooting

tips.

Overview of the datatype hierarchy and index issues

The datatype hierarchy controls the use of indexes when search arguments or
join columns have different datatypes. The following query printsthehierarchy
values and datatype names:

sel ect

hi er ar chy,

nanme from systypes order by 1

hi erarchy nane

[EnY
CQOVWoO~NOOUA~WNEPR

NNNOMNRNNNNNRPRRPRPRRRERERRPRR
BWWNNNRPROOONOOUNWNR

Performance & Tuning: Optimizer and Abstract Plans

floatn

fl oat
datetim
datetinme
rea
nunericn
numeri c
deci mal n
deci nal
noneyn
noney
smal | money
smal | dateti ne
intn

i nt
smal | i nt
tinyint
bi t

uni var char
uni char
reserved
var char
sysnane
nvar char
char

nchar
var bi nary

25

Datatype mismatches and query optimization

26

24 tinestanp
25 binary

26 text

27 image

If you have created user-defined datatypes, they are also listed in the query
output, with the corresponding hierarchy values.

The general ruleis that when different datatypes are used, the
systypes.hierarchy value determines whether an index can be used.

For search arguments, theindex is considered when the column’s datatype
issame as, or precedes, the hierarchy value of the parameter or variable.

For ajoin, theindex is considered only on the column whose
systypes.hierarchy value isthe same asthe other column'’s, or precedesthe
other column’sin the hierarchy.

When char and unichar datatypes are used together, char is converted to
unichar.

The exceptions are:

Comparisons between char and varchar, unichar and univarchar, or between
binary and varbinary datatypes. For example, although their hierarchy
values are 23 and 22 respectively, char and varchar columns are treated as
the same datatype for index consideration purposes. Theindex is
considered for both columnsin thisjoin;

where t1.char_colum = t2.varchar_col um

char columns that accept NULL values are stored as varchar, but indexes
can till be used on both columns for joins.

The null type of the column has no effect, that is, although float and floatn
have different hierarchy values, they are always treated as the same
datatype.

Comparisons of decimal or numeric types also take precision and scaleinto
account. Thisincludes comparisons of numeric or decimal typesto each
other, and comparisons of numeric or decimal to other datatypes such asint
Oor money.

See* Comparison of numeric and decimal datatypes” on page 27 for more
information.

Adaptive Server Enterprise

CHAPTER 2 Optimizer Overview

Comparison of numeric and decimal datatypes

When a query joins columns of numeric or decimal datatypes, an index can be
used when both of these conditions are true:

The scale of the column being considered for ajoin equals or exceeds the
scale of the other join column, and

The length of the integer portion of the column equals or exceeds the
length of the other column’sinteger portion.

Here are some examples of when indexes can be considered:

Datatypes in the join Indexes considered

numeric(12,4) and Index considered only for numeric(16,4), the

numeric(16,4) integer portion of numeric(12,4) is smaller.

numeric(12,4) and Neither index is considered, integer portion is

numeric(12,8) smaller for numeric(12,8) and scale is smaller
for numeric(12,4).

numeric(12,4) and Both indexes are considered.

numeric(12,4)

Comparing numeric types to other datatypes

When comparing numeric and decimal columns to columns of other numeric
datatypes, such as money or int;

numeric and decimal precede integer and money columnsin the hierarchy,
so the index on the numeric or decimal column is the only index
considered.

The precision and scale requirements must be met for the numeric or
decimal index to be considered. The scale of the numeric column must be
equal to, or greater than, the scale of theinteger or money column, and the
number of digitsin the integer portion of the numeric column must be
equal to or greater than the maximum number of digits usable for the
integer or money column.

The precision and scale of integer and money typesis shown in Table 2-3.

Performance & Tuning: Optimizer and Abstract Plans 27

Datatype mismatches and query optimization

Table 2-3: Precision and scale of integer and money types

Datatype Precision, scale
tinyint 3,0

smallint 50

int 10,0

smallmoney 10,4

money 194

Datatypes for parameters and variables used as SARGs

28

When declaring datatypes for variables or stored procedure parameters to be
used as search arguments, match the datatype of the columnin the variable or
parameter declaration to ensure the use of an index. For example;

declare @nt_var int
select @nt_var = 50

sel ect *

fromtl

where int_col = @nt_var

Use of theindex depends on the precedence of datatypes in the hierarchy. The
index on a column can be used only if the column’s datatype precedes the
variable's datatype. For example, int precedes smallint and tinyint in the
hierarchy. Here are just the integer types.

hi erarchy nane

15 int
16 smallint
17 tinyint

If avariable or parameter has a datatype of smallint or tinyint, an index on an int
column can be used for aquery. But an index on atinyint column cannot be used
for anint parameter.

Similarly, money precedesint. If avariable or parameter of money iscompared
to an int column, an index on the int column cannot be used.

This eliminates issues that could arise from truncation or overflow. For
example, it would not be useful or correct to attempt to truncate the money
valueto 5 in order to use an index on int_col for this query:

decl are @money_var noney
sel ect @money_var = $5. 12
select * fromtl where int_col = @mwoney_var

Adaptive Server Enterprise

CHAPTER 2 Optimizer Overview

Troubleshooting datatype mismatch problems fo SARGs

If there is a datatype mismatch problem with a search argument on an indexed
column, the query can use another index if there are other search argumentsor
it can perform atable scan. showplan output displays the access method and
keys used for each table in a query.

You can use dbcc traceon(302) to determine whether an index is being
considered. For example, using an integer variable as a search argument on
int_col produces the following output:

Sel ecting best index for the SEARCH CLAUSE:
tl.int_col = unknown-val ue

SARGis a local variable or the result of a function or
an expression, using the total density to estimate
selectivity.

Estimated selectivity for int_col,
selectivity = 0.020000.

Using an incompatibl e datatype such as money for a variable used as a search
argument on aninteger column does not produce a“ Sel ecting best index for the
SEARCH CLAUSE” block in dbcc traceon(302) output, indicating that the
index isnot being considered, and cannot be used. If anindex isnot used asyou
expect in aquery, looking for this costing section in dbcc traceon(302) output
should be one of your first debugging steps.

The “unknown-value” and the fact that the total density is used to estimate the
number of rowsthat match this search argument is dueto the fact that the value
of the variable was set in the batch; it is not a datatype mismatch problem.

See “SARGs using variables and parameters’ on page 21 for more
information.

Compatible datatypes for join columns

The optimizer considers an index for joined columns only when the column
types are the same or when the datatype of the join column precedes the other
column’s datatype in the datatype hierarchy. This means that the optimizer
considers using the index on only one of the join columns, limiting the choice
of join orders.

For example, this query joins columns of decimal and int datatypes:

sel ect *

Performance & Tuning: Optimizer and Abstract Plans 29

Datatype mismatches and query optimization

fromtl, t2
where t1.decimal _col =1t2.int_col

decimal precedesint in the hierarchy, so the optimizer can consider an index on
t1.decimal_col, but cannot use an index on t2.int_col. Theresult islikely to bea
table scan of t2, followed by use of the index on t1.decimal_col.

Table 2-4 shows how the hierarchy affects index choice for some commonly
problematic datatypes.

Table 2-4: Indexes considered for mismatched column datatypes

Join column types Index considered on column of type
money and smallmoney money

datetime and smalldatetime datetime

int and smallint int

int and tinyint int

smallint and tinyint smallint

Troubleshooting datatype mismatch problems for joins

If you suspect that an index is not being considered on one side of ajoin dueto
datatype mismatches, use dbcc traceon(302). In the output, look for “ Selecting
best index for the JOIN CLAUSE". If datatypes are compatible, you see two of
these blocks for each join; for example:

Sel ecting best index for the JO N CLAUSE:
tl.int_col = t2.int_col

And later in the output for the other table in the join:

Sel ecting best index for the JO N CLAUSE:
t2.int_col =1t1l.int_col

For a query that compares incompatible datatypes, for example, comparing a
decimal column to an int, column, there is only the single block:

Sel ecting best index for the JO N CLAUSE:
tl.decimal _col = t2.int_col

This means that the join costing for using an index with t2.int_col as the outer
column is not performed.

Suggestions on datatypes and comparisons
To avoid datatype mismatch problems:

30 Adaptive Server Enterprise

CHAPTER 2 Optimizer Overview

* When you create tables, use the same datatypes for columns that will be
joined.
e If columns of two frequently joined tables have different datatypes,

consider using alter table...modify to change the datatype of one of the
columns.

e Usethe column’s datatype whenever declaring variables or stored
procedure parameters that will be used as search arguments.

e Consider user-defined datatype definitions. Once you have created
definitions with sp_addtype, you can use them in commands such create
table, alter table, and create procedure, and for datatype declarations.

e For some queries where datatype mismatches cause performance
problems, you may be able to use the convert function so that indexes are
considered on the other table in the join. The next section describes this
work around.

Forcing a conversion to the other side of a join

If ajoin between different datatypes is unavoidable, and it impacts
performance, you can, for some queries, force the conversion to the other side
of thejoin. In thefollowing query, an index on smallmoney_col cannot be used,
so the query performs a table scan on huge_table:

sel ect *

fromtiny_table, huge_table

where tiny_tabl e. noney_col =
huge_t abl e. smal | noney_col

Performanceimprovesif theindex on huge_table.smallmoney_col can be used.
Using the convert function on the money column of the small table allows the
index on the large table to be used, and atable scan is performed on the small
table:

sel ect *

fromtiny table, huge table

where convert (smal | nobney, tiny_tabl e. money_col) =
huge_t abl e. smal | noney_col

This workaround assumes that there are no values in tinytable.money_col that
are large enough to cause datatype conversion errors during the conversion to
smallmoney. If there are values|arger than the maximum value for smalimoney,
you can salvage this solution by adding a search argument specifying the
maximum values for a smallmoney column:

Performance & Tuning: Optimizer and Abstract Plans 31

Splitting stored procedures to improve costing

sel ect snmal | noney_col, noney_col

fromtiny table , huge table

where convert(snal |l noney, tiny_tabl e. noney_col) =
huge_t abl e. snal | noney_col

and tiny_tabl e noney_col <= 214748. 3647

Converting floating-point and numeric data can change the meaning of some
queries. This query compares integers and floating-point numbers:

sel ect *
fromtabl, tab2
where tabl.int_colum = tab2.float_col um

In the query above,you cannot use an index on int_column. This conversion
forcesthe index accessto tab1, but also returns different results than the query
that does not use convert:

sel ect *
fromtabl, tab2
where tabl.int_col = convert(int, tab2.float_col)

For example, if int_column is 4, and float_column is 4.2, the modified query
implicitly convertsto a4, and returns arow not returned by the original query.
The workaround can be salvaged by adding this self-join:

and tab2.fl oat_col = convert(int, tab2.float_col)

This workaround assumes that all valuesin tab2.float_col can be converted to
int without conversion errors.

Splitting stored procedures to improve costing

32

The optimizer cannot use statistics the final select in the following procedure,
because it cannot know the value of @city until execution time:

create procedure au_city_nanes
@ub_nane var char (30)
as
declare @ity varchar (25)
select @ity = city
from publ i shers where pub_nane = @ub_nane
sel ect au_l nane
from aut hors
where city = @ity

Adaptive Server Enterprise

CHAPTER 2 Optimizer Overview

The following example shows the procedure split into two procedures. The
first procedure calls the second one:

create procedure au_nanmes_proc
@ub_nane var char (30)
as
declare @ity varchar (25)
select @ity = city
from publishers
where pub_nane = @ub_nane
exec select_proc @ity
create procedure select_proc @ity varchar(25)
as
sel ect au_l nane
from aut hors
where city = @ity

When the second procedure executes, Adaptive Server knows the value of
@city and can optimizethe select statement. Of course, if you modify thevalue
of @city in the second procedure before it is used in the select statement, the
optimizer may choose the wrong plan because it optimizes the query based on
the value of @city at the start of the procedure. If @city has different values
each time the second procedure is executed, leading to very different query
plans, you may want to use with recompile.

Basic units of costing

When the optimizer estimates costs for the query, the two factors it considers
arethe cost of physical 1/0, reading pagesfrom disk, and the cost of logical 1/0,
finding pages in the data cache. The optimizer assigns 18 as the cost of a
physical I/0 and 2 asthe cost of alogical I/0. These are relative units of cost
and do not represent time units such as milliseconds or clock ticks. These units
are used in the formulas in this chapter, with the physical I/O costsfirst, then
the logical 1/0 costs. The total cost of accessing atable can be expressed as:

Cost = All physical 10s* 18 + All logical 10s* 2

Performance & Tuning: Optimizer and Abstract Plans 33

Basic units of costing

34 Adaptive Server Enterprise

CHAPTER 3

Advanced Optimizing Tools

Thischapter describes query processing optionsthat affect the optimizer’s

choice of join order, index, 1/0 size and cache strategy.

Topic Page
Specia optimizing techniques 35
Specifying optimizer choices 36
Asynchronous log service 48
Specifying table order in joins 37
Specifying the number of tables considered by the optimizer 39
Specifying an index for a query 40
Specifying I/O size in a query 42
Specifying the cache strategy 45
Controlling large I/O and cache strategies 47
Asynchronous log service 48
Enabling and disabling merge joins 51
Enabling and disabling join transitive closure 52
Suggesting a degree of parallelism for a query 53
Concurrency optimization for small tables 55

Special optimizing techniques

Being familiar with the information presented in the Performance and

Tuning: Basics volume helps to understand the material in this chapter.

Use caution, as the tools allow you to override the decisions made by

Adaptive Server's optimizer and can have an extreme negative effect on

performance if misused. You should understand the impact on the

performance of both your individual query and the possible implications

for overall system performance.

Performance & Tuning: Optimizer and Abstract Plans

35

Specifying optimizer choices

Adaptive Server's advanced, cost-based optimizer produces excellent
guery plansin most situations. But there aretimeswhen the optimizer does
not choose the proper index for optimal performance or chooses a
suboptimal join order, and you need to control the access methods for the
query. The options described in this chapter allow you that control.

In addition, while you are tuning, you may want to see the effects of a
different join order, I/O size, or cache strategy. Some of these options let
you specify query processing or access strategy without costly
reconfiguration.

Adaptive Server provides tools and query clauses that affect query
optimization and advanced query analysis tools that let you understand
why the optimizer makes the choices that it does.

Note This chapter suggests workarounds for certain optimization
problems. If you experience these types of problems, please call Sybase
Technical Support.

Specifying optimizer choices

36

Adaptive Server lets you specify these optimization choices by including
commands in aquery batch or in the text of the query:

* Theorder of tablesin ajoin

* The number of tables evaluated at one time during join optimization
* Theindex used for atable access

* Thel/lOsize

» The cache strategy

* Thedegree of paralelism

In afew cases, the optimizer failsto choose the best plan. In some of these
cases, the plan it chooses is only dlightly more expensive than the “ best”
plan, so you need to weigh the cost of maintaining forced options against
the slower performance of aless than optimal plan.

Adaptive Server Enterprise

CHAPTER 3 Advanced Optimizing Tools

The commands to specify join order, index, 1/0 size, or cache strategy,
coupled with the query-reporting commands like statistics io and showplan,
can help you determine why the optimizer makes its choices.

Warning! Use the options described in this chapter with caution. The
forced query plans may beinappropriate in some situations and may cause
very poor performance. If you include these options in your applications,
check query plans, I/O statistics, and other performance data regularly.

These options are generally intended for use astools for tuning and
experimentation, not as long-term solutions to optimization problems.

Specifying table order in joins

Adaptive Server optimizesjoin ordersto minimize 1/O. In most cases, the
order that the optimizer chooses does not match the order of the from
clausesin your select command. To force Adaptive Server to accesstables
in the order they are listed, use:

set forceplan [on|off]

The optimizer still chooses the best access method for each table. If you
use forceplan, specifying ajoin order, the optimizer may use different
indexes on tables than it would with a different table order, or it may not
be able to use existing indexes.

You might use this command as a debugging aid if other query analysis
toolslead you to suspect that the optimizer is not choosing the best join
order. Alwaysverify that the order you areforcing reduces /O and logical
reads by using set statistics io on and comparing 1/0 with and without
forceplan.

If you useforceplan, your routine performance maintenance checks should
include verifying that the queriesand proceduresthat useit till requirethe
option to improve performance.

You can include forceplan in the text of stored procedures.

set forceplan forces only join order, and not join type. Thereisno
command for specifying the join type; you can disable merge joins at the
server or session level.

Performance & Tuning: Optimizer and Abstract Plans 37

Specifying table order in joins

See “Enabling and disabling merge joins’ on page 51 for more
information.

Risks of using forceplan
Forcing join order has these risks:

Misuse can lead to extremely expensive queries. Always test the
query thoroughly with statistics io, and with and without forceplan.

It requires maintenance. You must regularly check queries and stored
procedures that include forceplan. Also, future versions of Adaptive
Server may eliminate the problems that lead you to incorporate index
forcing, so you should check all queriesusing forced query planseach
time anew versionisinstalled.

Things to try before using forceplan
Before you use forceplan:

38

Check showplan output to determine whether index keys are used as
expected.

Use dbcc traceon(302) to look for other optimization problems.
Run update statistics on the index.

Use update statistics to add statistics for search arguments on
unindexed search clauses in the query, especially for search
arguments that match minor keysin compound indexes.

If the query joins more than four tables, use set table count to seeif it
resultsin an improved join order.

See “ Specifying the number of tables considered by the optimizer”
on page 39.

Adaptive Server Enterprise

CHAPTER 3 Advanced Optimizing Tools

Specifying the number of tables considered by the

optimizer

Adaptive Server optimizes joins by considering permutations of two to
four tables at atime, as described in “ Costing and optimizing joins’ on
page 105. If you suspect that an inefficient join order is being chosen for
ajoin query, you can use the set table count option to increase the number
of tables that are considered at the same time. The syntax is:

set table count int_value
Valid values are 0 though 8; 0 restores the default behavior.
For example, to specify 4-at-a-time optimization, use:

set table count 4

dbcc traceon(310) reports the number of tables considered at atime. See
“dbcc traceon(310) and final query plan costs’ on page 189 in the
Performance and Tuning: Monitoring and Analyzing for Performance
book for more information.

As you decrease the value, you reduce the chance that the optimizer will
consider all the possible join orders. Increasing the number of tables
considered at one time during join ordering can greatly increase the time
it takes to optimize a query.

Since the time it takes to optimize the query isincreased with each
additional table, the set table count option is most useful when the
execution savings from improved join order outweighs the extra
optimizing time. Some examples are:

e If youthink that amore optimal join order can shorten total query
optimization and execution time, especially for stored proceduresthat
you expect to be executed many times once aplanisin the procedure
cache

e When saving abstract plans for later use

Use statistics time to check parse and compile time and statistics io to verify
that the improved join order is reducing physical and logical 1/0.

If increasing the table count produces an improvement injoin
optimization, but increases the CPU time unacceptably, rewrite the from
clause in the query, specifying the tables in the join order indicated by
showplan output, and use forceplan to run the query. Your routine
performance maintenance checks should include verifying that the join
order you are forcing still improves performance.

Performance & Tuning: Optimizer and Abstract Plans 39

Specifying an index for a query

Specifying an index for a query

You can specify the index to use for aquery using the (index index_name)
clausein select, update, and delete statements. You can aso force aquery
to perform atable scan by specifying the table name. The syntax is:

select select_list
from table_name [correlation_name]
(index {index_name | table_name })
[, table_name ...]
where ...

delete table_name
from table_name [correlation_name]
(index {index_name | table_name}) ...

update table_name set col_name = value
from table_name [correlation_name]
(index {index_name | table_name})...

For example:

sel ect pub_nanme, title
frompublishers p, titles t (index date_type)
where p.pub_id = t.pub_id
and type = "business"
and pubdate > "1/1/93"

Specifying an index in a query can be helpful when you suspect that the
optimizer is choosing a suboptimal query plan. When you use this option:

« Always check statistics io for the query to see whether the index you
choose requires less 1/0 than the optimizer’s choice.

e Ttest afull range of valid values for the query clauses, especialy if
you are tuning queries:

e Tuning queries on tables that have skewed data distribution

« Performing range queries, since the access methods for these
queries are sensitive to the size of the range

40 Adaptive Server Enterprise

CHAPTER 3 Advanced Optimizing Tools

Use this option only after testing to be certain that the query performs
better with the specified index option. Once you include an index
specification in a query, you should check regularly to be sure that the
resulting plan is still better than other choices made by the optimizer.

Note If anonclustered index has the same name asthetable, specifying a
table name causes the nonclustered index to be used. You canforce atable
scan using select select_list from tablename (0).

Risks

Specifying indexes has these risks:

Changes in the distribution of data could make the forced index less
efficient than other choices.

Dropping theindex meansthat all queriesand proceduresthat specify
the index print an informational message indicating that the index
does not exist. The query is optimized using the best alternative
access method.

Maintenance increases, since all queries using this option need to be
checked periodically. Also, future versions of Adaptive Server may
eliminate the problems that lead you to incorporate index forcing, so
you should check all queries using forced indexes each time you
install anew version.

The index must exist at the time the query using it is optimized. You
cannot create an index and then use it in a query in the same batch.

Things to try before specifying an index
Before specifying an index in queries:

Check showplan output for the “Keys are” message to be sure that the
index keys are being used as expected.

Use dbcc traceon(302) to look for other optimization problems.

Run update statistics on the index.

Performance & Tuning: Optimizer and Abstract Plans 41

Specifying I/O size in a query

e |f theindex isacomposite index, run update statistics on the minor
keysin theindex, if they are used as search arguments. This can
greatly improve optimizer cost estimates. Creating statisticsfor other
columns frequently used for search clauses can also improve
estimates.

Specifying I/O size in a query

42

If your Adaptive Server is configured for large I/Os in the default data
cache or in named data caches, the optimizer can decide to use large 1/0
for:

* Queriesthat scan entire tables

» Range queriesusing clustered indexes, such asqueriesusing >, <, > x
and <y, between, and like “charstring %”

* Queriesthat scan alarge number of index leaf pages

If the cache used by the table or index is configured for 16K 1/0, asingle
1/0O can read up to eight pages simultaneously. Each named data cache can
have several pools, each with adifferent 1/0 size. Specifying the I/O size
in aquery causesthe 1/O for that query to take place in the pool that is
configured for that size. See the System Administration Guide for
information on configuring named data caches.

To specify an 1/0 size that is different from the one chosen by the
optimizer, add the prefetch specification to the index clause of a select,
delete, or update statement. The syntax is:

select select_list
from table_name
([index {index_name | table_name}]
prefetch size)
[, table_name ...]
where ...

delete table_name from table_name
([index {index_name | table_name}]
prefetch size)

Adaptive Server Enterprise

CHAPTER 3 Advanced Optimizing Tools

update table_name set col_name = value
from table_name
([index {index_name | table_name}]
prefetch size)

Thevalid prefetch size dependson the page size. If no pool of the specified
size exists in the data cache used by the object, the optimizer chooses the
best available size.

If thereis aclustered index on au_Iname, this query performs 16K 1/0
while it scans the data pages:

sel ect *
fromauthors (index au_nanes prefetch 16)
where au_l nane |ike "Snt4

If aquery normally performs large I/O, and you want to check its1/0
performance with 2K 1/O, you can specify asize of 2K:

sel ect type, avg(price)
fromtitles (index type_price prefetch 2)
group by type

Note ReferencetoLargel/Osareona?2K logical page size server. If you
have an 8K page size server, the basic unit for the I/O is8K. If you havea
16K page size server, the basic unit for the I/0 is 16K.

Index type and large 1/O

When you specify an I/O size with prefetch, the specification can affect
both the data pages and the leaf-level index pages. Table 3-1 showsthe
effects.

Performance & Tuning: Optimizer and Abstract Plans 43

Specifying I/O size in a query

Table 3-1: Access methods and prefetching

Access method Large I/O performed on

Table scan Data pages

Clustered index Data pages only, for allpages-locked
tables

Datapagesand |eaf-level index pagesfor
data-only-locked tables

Nonclustered index Data pages and leaf pages of
nonclustered index

showplan reports the 1/0 size used for both data and leaf-level pages.

See “1/0 Size Messages’ on page 112 in the book Performance and
Tuning: Monitoring and Analyzing for Performance for moreinformation.

When prefetch specification is not followed

44

In most cases, when you specify an I/O sizein aquery, the optimizer
incorporates the 1/0 size into the query’s plan. However, there are times
when the specification cannot be followed, either for the query asawhole
or for asingle, large I/O request.

Large I/O cannot be used for the query if:

e Thecacheisnot configured for 1/0 of the specified size. The
optimizer substitutes the best size available.

e sp_cachestrategy has been used to disable large I/O for the table or
index.

Large I/0O cannot be used for asingle buffer if

« Any of the pagesincluded in that I/O request arein another pool inthe
cache.

e Thepageisonthefirst extent in an alocation unit. This extent holds
the allocation page for the alocation unit, and only seven data pages.

* No buffersare available in the pool for the requested I/0O size.

Whenever alarge 1/0 cannot be performed, Adaptive Server performs 2K
I/0 on the specific page or pagesin the extent that are needed by the query.

Adaptive Server Enterprise

CHAPTER 3 Advanced Optimizing Tools

set prefetch on

To determine whether the prefetch specification isfollowed, use showplan
to display the query plan and statistics io to see the results on 1/0 for the
query. sp_sysmon reports on the large I/Os requested and denied for each
cache.

See “Data cache management” on page 82 in the book Performance and
Tuning: Monitoring and Analyzing for Performance.

By default, aquery useslarge I/O whenever alarge 1/0 pool is configured
and the optimizer determines that large 1/0 would reduce the query cost.
To disable large I/O during a session, use:

set prefetch off
To reenable large I/O, use:
set prefetch on

If large 1/O isturned off for an object using sp_cachestrategy, set prefetch
on does not override that setting.

If large 1/O isturned off for a session using set prefetch off, you cannot
override the setting by specifying a prefetch size as part of aselect, delete,
or insert statement.

The set prefetch command takes effect in the same batch in whichitisrun,
so you can include it in a stored procedure to affect the execution of the
queriesin the procedure.

Specifying the cache strategy

For queriesthat scan atable’'s data pages or the leaf level of anonclustered
index (covered queries), the Adaptive Server optimizer choosesone of two
cache replacement strategies: the fetch-and-discard (MRU) strategy or the
LRU strategy.

See“ Overview of cache strategies’ on page 174 in the book Performance
and Tuning: Basics for more information about these strategies.

The optimizer may choose the fetch-and-discard (MRU) strategy for:

Performance & Tuning: Optimizer and Abstract Plans 45

Specifying the cache strategy

e Any query that performs table scans
e A range query that uses a clustered index
e A covered query that scansthe leaf level of a nonclustered index

e Aninnertablein anested-loopjoin, if theinner tableislarger than the
cache

e The outer table of anested-loop join, since it needs to be read only
once

e Bothtablesinamergejoin

You can affect the cache strategy for objects:

e By specifying Iru or mru in aselect, update, or delete statement
e By using sp_cachestrategy to disable or reenable mru strategy

If you specify MRU strategy, and apageis already in the data cache, the
pageisplaced at the MRU end of the cache, rather than at the wash marker.

Specifying the cache strategy affects only data pages and the leaf pages of
indexes. Root and intermediate pages always use the LRU strategy.

In select, delete, and update statements

You can use Iru or mru (fetch-and-discard) in a select, delete, or update
command to specify the I/O size for the query:

select select_list
from table_name
(index index_name prefetch size [Iru|mru])
[, table_name ...]
where ...

delete table_name from table_name (index index_name
prefetch size [Irujmru]) ...

update table_name set col_name = value
from table_name (index index_name
prefetch size [lrujmru]) ...

This query adds the LRU replacement strategy to the 16K 1/0
specification:

sel ect au_l nane, au_fnane, phone

46 Adaptive Server Enterprise

CHAPTER 3 Advanced Optimizing Tools

fromauthors (index au_nanes prefetch 16 |ru)

For moreinformation about specifying aprefetch size, see* Specifying 1/0
sizein aquery” on page 42.

Controlling large 1/0 and cache strategies

Status bitsin the sysindexes table identify whether atable or an index
should be considered for large I/O prefetch or for MRU replacement
strategy. By default, both are enabled. To disable or reenable these
strategies, use sp_cachestrategy. The syntax is:
sp_cachestrategy dbname , [ownername.]tablename

[, indexname | "text only" | "table only"

[, { prefetch | mru }, { "on" | "off"}]]
This command turns off the large I/O prefetch strategy for the
au_name_index of the authors table:

sp_cachestrat egy pubtune,
aut hors, au_name_i ndex, prefetch, "off"

This command reenables MRU replacement strategy for the titles table:

sp_cachestrat egy pubtune,
titles, "table only", nru, "on"

Only a System Administrator or the object owner can change or view the
cache strategy status of an object.

Getting information on cache strategies
To see the cache strategy that isin effect for a given object, execute
sp_cachestrategy, with the database and object name:

sp_cachestrategy pubtune, titles
obj ect nane i ndex name large 10 MRU

titles NULL ON ON

showplan output shows the cache strategy used for each object, including
worktables.

Performance & Tuning: Optimizer and Abstract Plans 47

Asynchronous log service

Asynchronous log service

Enabling ALS

Issuing a checkpoint

Disabling ALS

Displaying ALS

48

ALS increases scalability in Adaptive Server and provides higher
throughput in logging subsystemsfor high-end symmetric multiprocessor
systems.

You cannot use AL Sif you have fewer than 4 engines. If you try to enable
AL S with fewer than 4 online engines an error message appears.

You can enable, disable, or configure AL S using the sp_dboption stored
procedure.

sp_dbopti on <db Nane>, "async |og service",
"true| fal se"

After issuing sp_dboption, you must issue a checkpoint in the database for
which you are setting the ALS option:

sp_dboption "nydb", "async |og service", "true"
use nydb
checkpoi nt

You can use the checkpoint to identify the one or more databasess or use
andl clause.

checkpoint [all | [dbname[, dbname[, dbname.....]]]

Before you disable ALS, make sure there are no active usersin the
database. If there are, you receive an error message when you issue the
checkpoint:

sp_dboption "nydb", "async |og service", "false"
use nydb
checkpoi nt

Error 3647: Cannot put database i n singl e-user node.
Wait until all users have | ogged out of the database
and i ssue a CHECKPAO NT to di sable "async | og
service".

If there are no active users in the database, this example disables ALS

sp_dboption "nydb", "async |og service", "false"
use nydb
checkpoi n]

You can see whether ALS is enabled in a specified database by checking
sp_helpdb.

sp_hel pdb " mydb"

Adaptive Server Enterprise

CHAPTER 3 Advanced Optimizing Tools

mydb 3.0 MB sa 2
July 09, 2002
sel ect into/bul kcopy/pllsort, trunc |og on
chkpt,
async | og service

For more information on these stored procedures, see “ Changed system
procedures’ on page 51.

Understanding the user log cache (ULC) architecture

Adaptive Server’slogging architecture features the user log cache, or
ULC, by which each task ownsits own log cache. No other task can write
tothiscache, and thetask continueswriting to the user log cache whenever
atransaction generates alog record. When the transaction commits or
aborts, or the user log cacheisfull, the user log cache is flushed to the
common log cache, shared by all the current tasks, which is then written
to the disk.

Flushing the ULC is the first part of a commit or abort operation. It
requires the following steps, each of which can cause delay or increase
contention:

1 Obtaining alock on the last log page.
2 Allocating new log pages if necessary.
3 Copying the log records from the UL C to the log cache.

The processes in steps 2 and 3 require you to hold alock on the last
|og page, which preventsany other tasksfrom writing to thelog cache
or performing commit or abort operations.

4 Fushthe log cacheto disk.

Step 4 requires repeated scanning of the log cache to issue write
commands on dirty buffers.

Repeated scanning can cause contention on the buffer cache spinlock
to which thelog is bound. Under alarge transaction load, contention
on this spinlock can be significant.

Performance & Tuning: Optimizer and Abstract Plans 49

Asynchronous log service

When to use ALS

You can enable AL S on any specified database that has at least one of the
following performance issues, so long as your systems runs 4 or more
online engines:

e Heavy contention on the last log page.

You can tell that the last log page is under contention when the
sp_sysmon output in the Task Management Report section shows a
significantly high value. For example:

Table 3-2: Log page under contention

Task

Management per sec per xact count % of total
Log Semaphore 58.0 0.3 34801 73.1
Contention

e Underutilized bandwidth in the log device.

Note You should use ALS only when you identify a single database with
high transaction requirements, since setting AL S for multiple database
may cause unexpected variationsin throughput and response times. If you
want to configure ALS on multiple databases, first check that you]
throughput and response times are satisfactory.

Using the ALS

Two threads scan the dirty buffers (buffers full of data not yet written to
the disk), copy the data, and write it to the log. These threads are:

* TheUser Log Cache (ULC) flusher
* TheLog Writer.

50 Adaptive Server Enterprise

CHAPTER 3 Advanced Optimizing Tools

ULC flusher

The ULC flusher is a system task thread that is dedicated to flushing the
user log cache of atask into the general log cache. When atask isready to
commit, the user enters a commit request into the flusher queue. Each
entry has a handle, by which the ULC flusher can access the ULC of the
task that queued the request. The UL C flusher task continuously monitors
the flusher queue, removing requests from the queue and servicing them
by flushing UL C pagesinto the log cache.

Log writer

Once the ULC flusher has finished flushing the ULC pagesinto thelog
cache, it queues the task request into a wakeup queue. The log writer
patrolsthe dirty buffer chain in the log cache, issuing awrite command if
it finds dirty buffers, and monitors the wakeup queue for tasks whose
pages are all written to disk. Since the log writer patrols the dirty buffer
chain, it knows when a buffer isready to write to disk.

Changed system procedures
Two stored procedures are changed to enable ALS:
e sp_dboption adds an option that enables and disables ALS.
e sp_helpdb adds a column to display ALS.

For more general information about these stored procedures, see the
Reference Manual.

Enabling and disabling merge joins

By default, merge joins are not enabled at the server level. When merge
joinsaredisabled, the server only costs nested-loop joins, and mergejoins
are not considered. To enable merge joins server-wide, set enable sort-
merge joins and JTC to 1. This also enablesjoin transitive closure.

The command set sort_merge on overrides the server level to allow use of
merge joins in a session or stored procedure.

To enable mergejoins, use:

Performance & Tuning: Optimizer and Abstract Plans 51

Enabling and disabling join transitive closure

set sort_merge on
To disable mergejoins, use:
set sort_nerge off

For information on configuring merge joins server-wide see the System
Administration Guide.

Enabling and disabling join transitive closure

52

By default, join transitive closure is not enabled at the server level, since
it can increase optimization time. You can enablejoin transitive closure at
asession level with set jtc on. The session-level command overrides the
server-level setting for the enable sort-merge joins and JTC configuration
parameter.

For queries that execute quickly, even when several tables are involved,
join transitive closure may increase optimization time with little
improvement in execution cost. For example, with join transitive closure
applied to this query, the number of possible joinsis multiplied for each
added table:

select * fromtl, t2, t3, t4, ... tN
where tl.cl =t2.cl

and t1.cl t3.cl

and t1.cl t4.cl

and t1.c1 = tNcl

For joins on very large tables, however, the additional optimization time
involved in costing the join orders added by join transitive closure may
resultin ajoin order that grestly improves the response time.

You can use set statistics time to see how long it takes to optimize the
query. If running queries with set jtc on greatly increases optimization
time, but also improves query execution by choosing a better join order,
check the showplan or dbcc traceon(302, 310) output. Explicitly add the
useful join orders to the query text. You can run the query without join
transitive closure, and get the improved execution time, without the
increased optimization time of examining al possiblejoin orders
generated by join transitive closure.

Adaptive Server Enterprise

CHAPTER 3 Advanced Optimizing Tools

You can also enable join transitive closure and save abstract plans for
queries that benefit. If you then execute those queries with loading from
the saved plans enabled, the saved execution plan is used to optimize the
query, making optimization time extremely short.

See Performance and Tuning: Abstact Plans for more information on
using abstract plans.

For information on configuring join transitive closure server-wide see the
System Administration Guide.

Suggesting a degree of parallelism for a query

The parallel and degree_of_parallelism extensions to the from clause of a
select command allow users to restrict the number of worker processes
used in a scan.

For a parallel partition scan to be performed, the degree_of parallelism
must be equal to or greater than the number of partitions. For a parallel
index scan, specify any value for the degree of parallelism.

The syntax for the select statement is:

select...
[from {tablename}

[(index index_name
[parallel [degree_of parallelism | 1]]
[prefetch size] [Irulmru])],

{tablename} [([index_name]
[parallel [degree_of parallelism | 1]

[prefetch size] [Irujmru])] ...

Table 3-3 shows how to combine theindex and parallel keywordsto obtain
serial or parallel scans.

Performance & Tuning: Optimizer and Abstract Plans 53

Suggesting a degree of parallelism for a query

54

Table 3-3: Optimizer hints for serial and parallel execution

To specify this type of scan: Use this syntax:

Parallel partition scan (index tablename parallel N)
Parallel index scan (index index_name parallel N)
Serial table scan (index tablename parallel 1)
Serial index scan (index index_name parallel 1)

Parallel, with the choice of tableor (parallel N)
index scan left to the optimizer
Serial, with the choice of table or (parallel 1)
index scan left to the optimizer

When you specify the parallel degreefor atablein amergejoin, it affects
the degree of parallelism used for both the scan of the table and the merge
join.

You cannot use the parallel option if you have disabled parallel processing
either at the session level with the set parallel_degree 1 command or at the

server level with the parallel degree configuration parameter. The parallel
option cannot override these settings.

If you specify adegree of parallelismthat is greater than the maximum
configured degree of parallelism, Adaptive Server ignores the hint.

The optimizer ignores hints that specify a parallel degreeif any of the
following conditionsis true;

e Thefrom clauseis used in the definition of a cursor.

e parallel is used in the from clause of an inner query block of a
subquery, and the optimizer does not move the table to the outermost
query block during subquery flattening.

e Thetableisaview, asystem table, or avirtua table.
e Thetableistheinner table of an outer join.
e The query specifies exists, min, or max on the table.

e Thevaluefor the max scan parallel degree configuration parameter is
setto 1.

e Anunpartitioned clustered index is specified or isthe only parallel
option.

e A nonclustered index is covered.

e Thequery is processed using the OR strategy.

Adaptive Server Enterprise

CHAPTER 3 Advanced Optimizing Tools

For an explanation of the OR strategy, see “ Access Methods and
Costing for or and in Clauses” on page 85.

e The select statement is used for an update or insert.

Query level parallel clause examples

To specify the degree of parallelism for asingle query, includeparallel after
the table name. This example executes in serial:

select * fromtitles (parallel 1)

This example specifies the index to be used in the query, and sets the
degree of paralelismto 5:

select * fromtitles
(index title_id_clix parallel 5)
where ...

To force atable scan, use the table name instead of the index name.

Concurrency optimization for small tables

For data-only-locked tables of 15 pagesor fewer, Adaptive Server doesnot
consider atable scan if thereis a useful index on the table. Instead, it
always chooses the cheapest index that matches any search argument that
can be optimized in the query. The locking required for an index scan
provides higher concurrency and reduces the chance of deadlocks,
although slightly more 1/0 may be required than for a table scan.

If concurrency on small tablesis not an issue, and you want to optimize
the I/0O instead, you can disable this optimization with sp_chgattribute.
This command turns off concurrency optimization for atable:

sp_chgattribute tiny_|l ookup_table,
"concurrency_opt _threshold", 0

With concurrency optimization disabled, the optimizer can choose table
scans when they require fewer |/Os.

You can aso increase the concurrency optimization threshold for atable.
This command sets the concurrency optimization threshold for atable to
30 pages:

Performance & Tuning: Optimizer and Abstract Plans 55

Concurrency optimization for small tables

sp_chgattribute | ookup_table,
"concurrency_opt _threshold", 30

The maximum valuefor the concurrency optimization threshold is32,767.
Setting the valueto -1 enforces concurrency optimization for atable of any
size. It may be useful in cases where a table scan is chosen over indexed
access, and the resulting locking resultsin increased contention or
deadlocks.

The current setting is stored in systabstats.conopt_thld and is printed as
part of optdiag output.

Changing locking scheme

56

Concurrency optimization affects only data-only-locked tables. Table 3-4
shows the effect of changing the locking scheme.

Table 3-4: Effects of alter table on concurrency optimization
settings

Changing locking scheme from Effect on stored value
Allpages to data-only Set to 15, the default
Data-only to allpages Setto 0

One data-only scheme to another Configured value retained

Adaptive Server Enterprise

CHAPTER 4 Query Tuning Tools

This chapter provides a guide to the tools that can help you tune your

queries.
Topic Page
Overview 57
How tools may interact 59
How tools relate to query processing 60

Overview

The tools mentioned in this chapter are described in more detail in the
chapters that follow.

Adaptive Server provides the following diagnostic and informational
toolsto help you understand query optimization and improve the
performance of your queries:

A choice of toolsto check or estimate the size of tables and indexes.
These tools are described in Chapter 11, “Determining Sizes of
Tables and Indexes.” in the book Performance and Tuning: Basics.

set statistics io on displays the number of logical and physical reads
and writes required for each table in aquery. If resource limits are
enabled, it also displays the total actual 1/0 cost. set statistics io iS
described in Chapter 4, “Using the set statistics Commands,” in the
book Performance and Tuning: Monitoring and Analyzng for
Performance.

set showplan on displays the steps performed for each query ina
batch. It is often used with set noexec on, especially for queries that
return large numbers of rows.

See Chapter 5, “Using set showplan,” in the book Performance and
Tuning: Monitoring and Analyzing for Performance.

Performance & Tuning: Optimizer and Abstract Plans 57

Overview

58

set statistics subquerycache on displays the number of cache hits and
misses and the number of rows in the cache for each subquery.

See “ Subquery results caching” on page 138 for examples.

set statistics time on displays the time it takes to parse and compile
each command.

See “Checking compile and execute time” on page 62 in the book
Performance and Tuning: Monitoring and Analyzing for
Performance for more information.

dbcc traceon (302) and dbcc traceon(310) provide additional
information about why particular plans were chosen and is often used
when the optimizer chooses a plan that seems incorrect.

See Chapter 7, “Tuning with dbcc traceon,” in the Performance and
Tuning: Monitoring and Analyzing for Performance book.

The optdiag utility command displays statistics for tables, indexes,
and columns.

See Chapter 6, “ Statistics Tables and Displaying Statistics with
optdiag,” Performance and Tuning: Monitoring and Analyzing for
Performance book.

Chapter 3, “ Advanced Optimizing Tools,” in Performance and
Tuning: Optimizer explainstoolsyou can useto enforceindex choice,
join order, and other query optimization choices. These toolsinclude:

e set forceplan —forces the query to use the tablesin the order
specified in the from clause.

e settable count —increases the number of tablesthat the optimizer
considers at one time while determining join order.

* select, delete, update clauses with
(index...prefetch...mru_lru...parallel) —specifiestheindex, 1/O size,
or cache strategy to use for the query.

e set prefetch —toggles prefetch for query tuning experimentation.
e setsort_merge — disallows sort-merge joins.

e set parallel_degree — specifies the degree of parallelism for a
query.

e sp_cachestrategy — Sets status bits to enable or disable prefetch
and fetch-and-discard cache strategies.

Adaptive Server Enterprise

CHAPTER 4 Query Tuning Tools

How tools may interact

showplan, statistics io, and other commands produce their output while
stored procedures are being run. The system proceduresthat you might use
for checking table structure or indexes as you test optimization strategies
can produce voluminous output when diagnostic information is being
printed. You may want to have hard copies of your table schemas and
index information, or you can use separate windows for running system
procedures such as sp_helpindex.

For lengthy queries and batches, you may want the save showplan and
statistics io output infiles. You can do so by using “echoinput” flag toisqgl.
The syntax is:

isql -P password -e -i input_file -o outpultfile

Using showplan and noexec together

showplan is often used in conjunction with set noexec on, which prevents
SQL statements from being executed. Issue showplan, or any other set
commands, before you issue the noexec command. Once you issue set
noexec on, the only command that Adaptive Server executesisset noexec
off. This example shows the correct order:

set showpl an on
set noexec on
go
sel ect au_l nane, au_fname
from authors
where au_id = "Al137406537"
go

noexec and statistics io

While showplan and noexec make useful companions, noexec stopsall the
output of statistics io. The statistics io command reports actual disk 1/O;
while noexec isin effect, no 1/O takes place, so the reports are not printed.

Performance & Tuning: Optimizer and Abstract Plans 59

How tools relate to query processing

How tools relate to query processing

Many of the tools, for example, the set commands, affect the decisions
made by the optimizer. showplan and dbcc traceon(302, 310) show you
optimizer decision-making. docc traceon(302,310) shows intermediate
information as analysis is performed, with dbcc traceon(310) printing the
final plan statistics. showplan shows the final decision on access methods
and join order.

statistics io and statistics time provideinformation about how the query was
executed: statistics time measures time from the parse step until the query
completes. statistics io printsactual 1/0 performed during query execution.

noexec allows you to obtain information such as showplan or dbcc
traceon(302,310) output without actually executing the query.

60 Adaptive Server Enterprise

CHAPTER 5 Access Methods and Query
Costing for Single Tables

This chapter introduces the methods that Adaptive Server uses to access
rows in tables. It examines various types of queries on single tables, and
describes the access methods that can be used, and the associated costs.

Topic Page
Table scan cost 63
From rows to pages 66
Evaluating the cost of index access 69
Costing for queries using order by 77
Access Methods and Costing for or and in Clauses 85
How aggregates are optimized 920
How update operations are performed 92

Chapter 2, “ Optimizer Overview,” explainshow the optimizer usessearch
arguments and join clauses to estimate the number of rows that a query
will return. This chapter looks at how the optimizer uses row estimates
and other statistics to estimate the number of pages that must be read for
the query, and how many logical and physical 1/0Os are required.

This chapter looks at queries that affect asingle table.

For queries that involve more than one table, see Chapter 6, “ Accessing
Methods and Costing for Joins and Subqueries.”

For parallel queries, see Chapter 8, “Parallel Query Optimization.”

Thischapter containsinformation about query processing that you can use
in several waysasit:

e Providesageneral overview of the access methods that Adaptive
Server usesto processavariety of queries, including illustrations and
sample queries. Thisinformation will help you understand how
particular types of queries are executed and how you can improve
query performance by adding indexes or statistics for columns used
in the queries.

Performance & Tuning: Optimizer and Abstract Plans 61

Provides a description of how the optimizer arrives at thelogical and
physical 1/0 estimates for the queries. These descriptions can help
you understand whether the I/O use and response time are reasonable
for agiven query. These descriptions can be used with the following
tuning tools:

e optdiag can be used to display the statistics about your tables,
indexes, and column values.

See Chapter 6, “ Statistics Tables and Displaying Statistics with
optdiag,” in the Monitoring and Analyzing for Performance
book.

» showplan displaysthe accessmethod (table scan, index scan, type
of OR strategy, and so forth) for aquery.

See Chapter 5, “Using set showplan,” in the book Performance
and Tuning: Monitoring and Analyzing for Performance.

e statistics io displaysthelogical and physical I/O for each tablein
aquery.

Provides detailed formulas, very close to the actual formulas used by
Adaptive Server. Use these formulas are meant to be used in
conjunction with the tuning tools, from the book Performance and
Tuning: Monitoring and Analyzing for Performance:

« optdiag can be used to display the statistics that you need to apply
the formulas. See Chapter 6, “ Statistics Tables and Displaying
Statistics with optdiag.”

e dbcc traceon(302) displays the sizes, densities, selectivities and
cluster ratios used to produce logical 1/0 estimates, and dbcc
traceon(310) displays the final query costing for each table,
including the estimated physical 1/0. See Chapter 7, “Tuning
with dbcc traceon.”

In many cases, you will need to use these formulas only when you are
debugging problem queries. You may need to discover why an or
query performs atable scan, or why an index that you thought was
useful is not being used by a query.

Adaptive Server Enterprise

CHAPTER 5 Access Methods and Query Costing for Single Tables

Table scan cost

Thischapter can also hel p you determinewhen to stop working to improve
the performance of a particular query. If you know that it needsto read a
certain number of index pages and data pages, and the number of 1/0s
cannot be reduced further by adding a covering index, you know that you
have reached the optimum performance possible for query analysisand
index selection. You might need to look at other issues, such as cache
configuration, parallel query options, or object placement.

When a query requires atable scan, Adaptive Server reads each page of
the table from disk into the data cache and checks the data values (if there
isawhere clause) and returns qualifying rows.

Table scans are performed:
¢ When noindex exists on the columns used in the search clauses.

¢ Whentheoptimizer determinesthat using theindex ismore expensive
than performing atable scan. The optimizer may determinethat it is
cheaper to read the data pages directly than to read the index pages
and then the data pages for each row that isto be returned.

The cost of atable scan depends on the size of the table and the 1/O size.

Note ReferencetoLargel/Osareona?2K logical page size server. If you
have an 8K page size server, the basic unit for the |/O is8K. If you have a
16K page size server, the basic unit for the 1/0 is 16K.

Cost of ascan on allpages-locked table

The I/O cost of atable scan on an alpages-locked table using 2K 1/O is
one physical 1/0 and one logical 1/0 for each page in the table:

Table scan cost = Number of pages * 18
+ Number of pages * 2

Performance & Tuning: Optimizer and Abstract Plans 63

Table scan cost

If the table uses a cache with large 1/0, the number of physical 1/Osis
estimated by dividing the number of pages by the I/O size and using a
factor that is based on the data page cluster ratio to estimate the number of
large I/Osthat need to be performed. Since large I/O cannot be performed
on any data pages on the first extent in the allocation unit, each of those
pages must be read with 2K 1/0.

Thelogical 1/0 cost isonelogical 1/0 for each page in the table. The
formulais:

Table scan cost = (pages /pages per 10) * Clustering adjust-
ment* 18+ Number of pages * 2

See “How cluster ratios affect large I/O estimates’ on page 67 for more
information on cluster ratios.

Note Adaptive Server does not track the number of pagesin the first
extent of an allocation unit for an allpages-locked table, so the optimizer
does not include this slight additional 1/0 in its estimates.

Cost of a scan on a data-only-locked tables

64

Tables that use data-only locking do not have page chains like allpages-
locked tables. To perform atable scan on a data-only-locked table,
Adaptive Server:

» Readsthe OAM (object allocation map) page(s) for the table
e Usesthe pointers on the OAM page to access the allocation pages

» Usesthe pointerson the all ocation pagesto locate the extents used by
the table

« Performseither large I/0 or 2K 1/O on the pagesin the extent

Thetotal cost of atable scan on a data-only-locked table includes the
logical and physical I/O for al pagesin the table, plus the cost of logical
and physical 1/0 for the OAM and allocation pages.

Figure 5-1 shows the pointers from OAM pages to allocation pages and
from allocation pages to extents.

Adaptive Server Enterprise

CHAPTER 5 Access Methods and Query Costing for Single Tables

Figure 5-1: Sequence of pointers for OAM scans

OAMP

o 1234|567 Pages used by

o5 (object
161718 (1920|2122 |23

Other pages

24 125|26 |27 (28|29 |30 |31

248|249| 250 [251|252|253 (254 |255

256|257(258|259(260|261|262|263
4264 265|266|267|268|269|270(271

272|273|274|275|276|277|278|279
280|281(282|283|284|285|286|287

504|505 (506|507 (508|509 (510|511

The formulafor computing the cost of an OAM scan with 2K /O is:

OAM Scan Cost = (OAM _alloc_pages + Num_pages) * 18
+ (OAM_alloc_pages + Num_pages)* 2

When large I/O can be used, the optimizer adds the cost of performing 2K
I/O for the pagesin the first extent of each allocation unit to the cost of
performing 16K 1/O on the pages in regular extents. The number of
physical 1/0sisthe number of pagesin the table, modified by a cluster
adjustment that is based on the data page cluster ratio for the table.

See “How cluster ratios affect large I/O estimates’ on page 67 for more
information on cluster ratios.

Performance & Tuning: Optimizer and Abstract Plans 65

From rows to pages

Logical 1/0 costsare onel/O per pagein thetable, plusthelogical 1/0 cost
of reading the OAM and all ocation pages. The formulafor computing the
cost of an OAM scan with large l/O is:

OAM Scan Cost = OAM _alloc_pages * 18
+ Pages in 1st extent * 18
+ Pages in other extents / Pages per 10
* Cluster adjustment * 18
+ OAM_alloc_pages * 2
+ Pages in table * 2

optdiag reports the number of pages for each of the needed values.

When a data-only-locked table contains forwarded rows, the I/O cost of
reading the forwarded rows is added to the logical and physical 1/0 for a
table scan.

See“ Allpages-locked heap tables’ on page 168 of the book Performance
and Tuning: Basics for more information on row forwarding.

From rows to pages

66

When the optimizer costs the use of an index to resolve a query, it first
estimates the number of qualifying rows, and then estimates the number of
pages that need to be read.

The examplesin Chapter 2, “ Optimizer Overview,” show how Adaptive
Server estimates the number of rows for a search argument or join using
statistics. Once the number of rows has been estimated, the optimizer
estimates the number of data pages and index leaf pages that need to be
read:

« For tables, the optimizer divides the number of rows in the table by
the number of pagesto determinethe average number of rows per data

page.

e To estimate the average number of rows per page on the leaf level of
an index, the optimizer dividesthe number of rowsin thetable by the
number of leaf pagesin theindex.

Adaptive Server Enterprise

CHAPTER 5 Access Methods and Query Costing for Single Tables

After the number of pagesis estimated, data page and index page cluster
ratios are used to adj ust the page estimatesfor queriesusing large 1/O, and
datarow cluster ratios are used to estimate the number of data pages for
queries using noncovering indexes.

How cluster ratios affect large I/O estimates

When clustering ishigh, largel/O iseffective. Asthe cluster ratiosdecline,
effectiveness of large I/O drops rapidly. To refine 1/0O estimates, the
optimizer uses a set of cluster ratios:

« For atable, the data page cluster ratio measures the packing and
seguencing of pages on extents.

« For anindex, the data page cluster ratio measures the effectiveness of
large 1/0 for accessing the table using this index.

e Theindex page cluster ratio measures the packing and sequencing of
leaf-level index pages on index extents.

Note The datarow cluster ratio, another cluster ratio used by query
optimization, is used to cost the number of data pages that need to be
accessed during scans using a particular index. It isnot used in large
1/O costing.

optdiag displays the cluster ratios for tables and indexes.

Data page cluster ratio

The data page cluster ratio for atable measures the effectiveness of large
1/0 for table scans. Its useis slightly different depending on the locking
scheme.

Performance & Tuning: Optimizer and Abstract Plans 67

From rows to pages

On allpages-locked tables

For allpages-locked tables, atable scan or a scan that uses a clustered
index to scan many pages follows the next-page pointers on each data
page. Immediately after the clustered index is created, the data page
cluster ratio is 1.0, and pages are ordered by page number on the extents.
However, after updates and page splits, the page chain can be fragmented
across the page chain, as shown in Figure 5-2, where page 10 has been
split; the page pointers point from page 10 to page 26 in another extent,
then to page 11.

Figure 5-2: Page chain crossing extents in an allpages-locked table

21 3(4/|5|6 r Pages used by object

16

17

10(11 12|13 |14 | 15 . OAM page
18(19 (20|21 (22|23

24

25

—— Allocation page
26 |27|28(29|30]|31

Other pages

248

249

250(251|252|253|254|255

On data-only-locked tables

68

The data page cluster ratio for an allpages-locked table measures the
effectiveness of large /O for both table scans and clustered index scans.

For data-only-locked tables, the data page cluster ratio measures how well
the pages are packed on the extents. A cluster ratio of 1.0 indicates
complete packing of extents, with the page chain ordered. If extents
contain unused pages, the data page cluster ratio isless than 1.0.

optdiag reports two data page cluster ratios for data-only-locked tables
with clustered indexes. The value reported for the table is used for table
scans. The value reported for the clustered index is used for scans using
the index.

Adaptive Server Enterprise

CHAPTER 5 Access Methods and Query Costing for Single Tables

Index page cluster ratio

Theindex page cluster ratio measuresthe packing and sequencing of index
leaf pages on extents for nonclustered indexes and clustered indexes on
data-only-locked tables. For queries that need to read more than one leaf
page, the leaf level of the index is scanned using next-page or previous-
page pointers. If many leaf rows need to be read, 16K /O can be used on
the leaf pages to read one extent at atime. The index page cluster ratio
measures fragmentation of the page chain for the leaf level of the index.

Evaluating the cost of index access

When a query has search arguments on useful indexes, the query accesses
only theindex pages and data pages that contain rows that match the
search arguments. Adaptive Server compares the total cost of index and
datapage 1/0 to the cost of performing atable scan, and uses the cheapest
method.

Query that returns a single row

A query that returns asingle row using an index performsone |/O for each
index level plus one read for the data page. The optimizer estimates the
total cost as one physical 1/0 and onelogical 1/O for each index page and
the data page. The cost for a point query is.

Point query cost = (Number of index levels + data page) * 18
+ (Number of index levels + data page) * 2

optdiag output displays the number of index levels.

Theroot page and intermediate pages of frequently used indexes are often
found in cache. In that case, actual physical /O is reduced by one or two
reads.

Query that returns many rows

A query that returns many rows may be optimized very differently,
depending on the type of index and the number of rows to be returned.
Some examples are:

Performance & Tuning: Optimizer and Abstract Plans 69

Evaluating the cost of index access

e Querieswith search arguments that match many values, such as:

select title, price
fromtitles
where pub_id = "P099"

» Range queries, such as:

select title, price
fromtitles
where price between $20 and $50

For queriesthat return alarge number of rows using the leading key of the
index, clustered indexes and covering nonclustered indexes are very
efficient:

« |f thetable uses allpages |ocking, and has a clustered index on the
search arguments, the index is used to position the scan on the first
qualifying row. The remaining qualifying rows are read by scanning
forward on the data pages.

e If anonclustered index or the clustered index on a data-only-locked
table coversthe query, theindex is used to position the scan at thefirst
qualifying row on the index leaf page, and the remaining qualifying
rows are read by scanning forward on the leaf pages of the index.

If the index does not cover the query, using a clustered index on a data-
only-locked table or anonclustered index requires accessing the data page
for each index row that matches the search arguments on the index. The
matching rows may be scattered across many data pages, or they could be
located on avery small number of pages, particularly if theindex isa
clustered index on a data-only-locked table. The optimizer uses data row
cluster ratios to estimate how many physical and logical I/Os are required
to read all of the qualifying data pages.

Range queries using clustered indexes (allpages locking)

70

To estimate the number of physical I/Os required for arange query using
aclustered index on an alpages-locked table, the optimizer adds the
physical and logical 1/0 for each index level and the physical and logical
I/O of reading the needed data pages. Since data pages are read in order
following the page chain, the cluster adjustment helps estimate the
effectiveness of large I/0. The formulais:

Data pages = Number of qualified rows / Data rows per page

Adaptive Server Enterprise

CHAPTER 5 Access Methods and Query Costing for Single Tables

Range query cost = Number of index levels * 18
+ Data pages/pages per 10 * Cluster adjustment * 18
+ Number of index levels * 2
+ Data pages * 2

If aquery returns 500 rows, and the table has 10 rows per page, the query
needs to read 50 data pages, plus one index page for each index level. If
the query uses 2K 1/0Q, it requires 50 1/Os for the data pages. If the query
uses 16K 1/0, these 50 data pages require 7 1/Os.

The cluster adjustment uses the data page cluster ratio to refine the
estimate of large 1/O for the table, based on how fragmented the data page
storage has become on the tabl€e's extents.

Figure 5-3 shows how arange query using a clustered index positionsthe
search on the first matching row on the data pages. The next-page pointers
are used to scan forward on the data pages until a nonmatching row is
encountered.

Performance & Tuning: Optimizer and Abstract Plans 71

Evaluating the cost of index access

Figure 5-3: Range query on the clustered index of an
allpages-locked table

select fname, Iname, id

from employees
where Iname between "Greaves"
and "Highland" Page 1132
Clustered index on Iname Bennet
Chan
Dull
Key Pointer Edwards
Page 1007 Page 1133
Bennet 1132 Greane
Greane 1133 Greaves
Key Pointer Green 1144 Greco
page 1001 Hunter 1127
Bennet 1007 Page 1009
Karsen 1009 Karsen 1009 Page 1144
Smith 1062 Green
v Greene
Highland
Hopper
Page 1127
Hunter
Jenkins
Root page Intermediate Data pages

Range queries with covering indexes

72

Range queries using covering indexes perform very well because:

» Theindex isused to position the search at the first qualifying row on
the index leaf level.

» Eachindex page containsmore rowsthan corresponding datarows, so
fewer pages need to be read.

Adaptive Server Enterprise

CHAPTER 5 Access Methods and Query Costing for Single Tables

* Index pagestend to remain in cache longer than data pages, so fewer
physical 1/0s are needed.

e If thecache used by theindex is configured for large 1/0, up to 8 leaf-
level pages can beread per I/O.

e The data pages do not have to be accessed.

Both nonclustered indexes and clustered indexes on data-only-locked
tables have aleaf level above the data level, so they can provide index
covering.

The cost of using a covering index is determined by:

e The number of non-leaf index levels

e The number of rows that the query returns

e The number of rows per page on the leaf level of the index
e The number of leaf pagesread per 1/0

* Theindex page cluster ratio, used to adjust large 1/0O estimates when
the index pages are not stored consecutively on the extents

This formula shows the costs:

Leaf pages = Nunber of qualified rows / Leaf |evel
rows per page

Covered scan cost =Nunber of index levels * 18
+ (Leaf pages /Pages per 10 * Custer
adj ustment * 18
+ Nunber of index levels * 2
+ Leaf pages * 2

For example, if aquery needsto read 1,200 leaf pages, and there are 40
rows per leaf-level page, the query needs to read 30 leaf-level pages. If
large 1/0 can be used, thisrequires 4 1/Os. If inserts have caused page
splits on the index leaf-level, the cluster adjustment increases the
estimated number of large 1/0s.

Range queries with noncovering indexes

When anonclustered index or a clustered index on a data-only-locked
table does not cover the query, Adaptive Server:

e Usestheindex tolocatethefirst qualifying row at theleaf level of the
nonclustered index

Performance & Tuning: Optimizer and Abstract Plans 73

Evaluating the cost of index access

» Followsthe pointer to the data page for that index, and reads the page

» Findsthe next row on the index page, and locates its data page, and
continues this process until all matching keys have been used

For each subsequent key, the data row could be on the same page as the
row for the previous key, or the datarow may be on a different pagein the
table. The clustering of key values for each index is measured by a value
called the data row cluster ratio. The datarow cluster ratio is applied to
estimate the number of logical and physical 1/Os.

When thedatarow cluster ratiois 1.0, clustering isvery high. High cluster
ratios are always seen immediately after creating aclustered index; cluster
ratios are 1.00000 or .999997, for example. Rows on the data pages are
stored the same order asthe rows in the index. The number of logical and
physical 1/0s needed for the data pages is (basically) the number of rows
to be returned, divided by the number of rows per page. For atable with
10 rows per page, a query that needs to return 500 rows needs to read 50
pages if the datarow cluster ratiois 1.

When the data row cluster ratio is extremely low, the data rows are
scattered on data pages with no relationship to the ordering of the keys.
Nonclustered indexes often have low datarow cluster ratios, sincethereis
no relationship between the ordering of the index keys and the ordering of
the data rows on data pages. When the datarow cluster ratio is 0, or close
to 0, the number of physical and logical I/0Osrequired could be as much as
1 data page 1/0 for each row to be returned. A query that needs to return
500 rows needs to read 500 pages, or nearly 500 pages, if the data row
cluster ratio is near 0 and the rows are widely scattered on the data pages.
In ahugetable, this still provides good performance, but in atable with
lessthan 500 pages, the optimizer choosesthe cheaper alternative—atable
scan.

The size of the data cache is also used in calculating the physical 1/0. If
the datarow cluster ratioisvery low, and the cacheis small, pages may be
flushed from cache before they can be reused. If the cacheislarge, the
optimizer estimates that some pages will be found in cache.

74 Adaptive Server Enterprise

CHAPTER 5 Access Methods and Query Costing for Single Tables

Result-set size and index use

A range query that returns asmall number of rows performswell with the
index, however, range queries that return alarge number of rows may not
use the index—it may be more expensive to perform the logical and
physical I/0 for alarge number of index pages plus alarge number of data
pages. The lower the datarow cluster ratio, the more expensiveit isto use
the index.

At the leaf level of anonclustered index or a clustered index on a data-
only-locked table, the keys are stored sequentially. For a search argument
on avalue that matches 100 rows, the rows on the index leaf level fit on
perhaps one or two index pages. The actual datarows might all be on
different data pages. The following queries show how different data row
cluster ratiosaffect 1/O estimates. The authors table usesdatarowslocking,
and has these indexes:

e A clustered index on au_Iname
e A nonclustered index on state
Each of these queries returns about 100 rows:

sel ect au_l nane, phone

from aut hors

where au_l nane |ike "E%

sel ect au_id, au_l nane, phone
from aut hors

where state = "NC'

The following table shows the data row cluster ratio for each index, and
the optimizer’s estimate of the number of rows to be returned and the

number of pages required.
SARG on Datarow cluster ratio Row estimate Page estimate Datal/O size
au_Iname .999789 101 8 16K
state .232539 103 83 2K

The basic information on the tableis:
e Thetable has 262 pages.
e Thereare 19 rows per data page in the table.

Performance & Tuning: Optimizer and Abstract Plans 75

Evaluating the cost of index access

While each of the queries has its search clausesin valid search-argument
form, and each of the clauses matches an index, only thefirst query uses
theindex: for the other query, atable scan is cheaper than using the index.
With 262 pages, the cost of the table scanis:

Table scan cost = (262/8)=37*18 =666
+ 262*2 =524
1190

Closer look at the Search Argument costing

Looking more closely at the tables, cluster ratios, and search arguments
explains why the table scan is chosen:

e Theestimate for the clustered index on au_Iname includes just 8
physical 1/Os:
e 61/0Os(using 16K 1/O) on the data pages, because the data row
cluster ratio indicates very high clustering.

e 21/Osfor theindex pages (there are 128 rows per leaf page); 16K
I/Oisalso used for the index leaf pages.

e Thequery using the search argument on state has to read many more
data pages, since the datarow cluster ratio is low. The optimizer
chooses 2K 1/0 on the data pages. 83 physical 1/0sis more than
double the physical /0O required for atable scan (using 16K 1/0O).

76 Adaptive Server Enterprise

CHAPTER 5 Access Methods and Query Costing for Single Tables

Costing for noncovering index scans

Leaf pages =
Data pages =

Scan cost =

The basic formula for estimating /O for queries accessing the data
through a noncovering index is:

Number of qualified rows / Leaf level rows per page
Number of qualifying rows * Data row cluster adjustment

Number of nonleaf index levels * 18
+ (Leaf pages / Pages per 10) * Data page cluster adjustment * 18
+ (Data pages / Pages per 10) * Data page cluster adjustment * 18
+ Number of nonleaf index levels * 18
+ Leaf pages * 2
+ Number of qualifying rows * Data row cluster adjustment * 2

Costing for forwarded rows

If adata-only-locked table has forwarded rows, the cost of the extral/O
for accessing forwarded rowsis added for noncovered index scans. The
cost iscomputed by multiplying the number of forwarded rowsin thetable
and the percent of the rows from the table that to be returned by the query.

The added cost is:

Forwarded row cost = % of rows returned * Number of forwarded rows in the table

Costing for queries using order by

Queriesthat perform sortsfor order by may create and sort, or they may be
able to use the index to return rows by relying on the index ordering. For
example, the optimizer chooses one of these access methods for a query

with an order by clause:

e With no useful search arguments — use a table scan, followed by
sorting the worktable.

Performance & Tuning: Optimizer and Abstract Plans

77

Costing for queries using order by

e With selective search argument or join on an index that does not
match the order by clause — use an index scan, followed by sorting the
worktable.

e With asearch argument or join on an index that matches the order by
clause — an index scan using this index, with no worktable or sort.

Sorts are always required for result sets when the columnsin the result set
are asuperset of the index keys. For example, if the index on authors
includesau_fname and au_Iname, and the order by clause also includesthe
au_id, the query requires a sort.

If there are search arguments on indexes that match the order by clause,
and other search arguments on indexes that do not support the required
ordering, the optimizer costs both access methods. If the worktable and
sort isrequired, the cost of performing thel/O for these operationsisadded
to the cost of the index scan. If an index is potentially useful to help avoid
the sort, dbcc traceon(302) prints a message while the search or join
argument costing takes place.

See “ Sort avert messages’ on page 179 in the book Performance and
Tuning: Monitoring and Analyzing for Performance for more information.

Besides the availability of indexes, two major factors determine whether
theindex is considered:

e Theorder by clause must specify a prefix subset of the index keys.

e Theorder by clause and the index must have compatible
ascending/descending key ordering.

Prefix subset and sorts

78

For aquery to use an index to avoid a sort step, the keys specified in the
order by clause must be a prefix subset of theindex keys. For example, if
theindex specifiesthekeysasA, B, C, D:

* Thefollowing order by clauses can use the index:

e A

- AB

+ ABC

- A/B,CD

Adaptive Server Enterprise

CHAPTER 5 Access Methods and Query Costing for Single Tables

« And other set of columns cannot usetheindex. For example, theseare
not prefix subsets:

« AC
- B,CD

Key ordering and sorts

Both order by clausesand commandsthat create indexes can usetheasc or
desc (ascending or descending) ordering qualifications:

e For index creation, the asc and desc qualifications specify the order
in which keys are to be stored in the index.

¢ Intheorder by clause, the ordering qualifications specify the order in
which the columns are to be returned in the output.

To avoid a sort when using a specific index, the asc or desc qualifications
in the order by clause must either be exactly the same as those used to
create the index, or must be exactly the opposite.

Specifying ascending or descending order for index keys

Queriesthat use amix of ascending and descending order in an order by
clause do not perform a separate sort step if the index was created using
the same mix of ascending and descending order as that specified in the
order by clause, or if theindex order isthereverse of the order specifiedin
the order by clause. Indexes are scanned forward or backward, following
the page chain pointers at the leaf level of the index.

For example, this command creates an index on thetitles table with pub_id
ascending and pubdate descending:

create index pub_ix
on titles (pub_id asc, pubdate desc)

The rows are ordered on the pages as shown in Figure 5-4. When the
ascending and descending order in the query matches the index creation
order, theresult isaforward scan, starting at the beginning of the index or
at the first qualifying row, returning the rowsin order from each page, and
following the next-page pointers to read subsequent pages.

Performance & Tuning: Optimizer and Abstract Plans 79

Costing for queries using order by

80

If the ordering in the query is the exact opposite of the index creation
order, theresult isabackward scan, starting at the last page of theindex or
the page containing the last qualifying row, returning rows in backward

order from each page, and following previous page pointers.

Figure 5-4: Forward and backward scans on an index

Forward scan: scans rows in
order on the page, then
follows the next-page

Backward scan: scans rows in
reverse order on the page, then
follows the previous-page

Page 1132 Page 1133
P066 P073 10/14/93
P066 P087 12/01/93
P066 P087 10/4/93
11/26/93 P087 9/7193
Page 1132 ———— Page 1133
P066 12/20/93 P073 10/14/93
p087 12/01/93
p087 10/4/93
p087 9/7193

The following query using the index shown in Figure 5-4 performs a
forward scan:

sel ect *
fromtitles
order by pub_id asc, pubdate desc

Thisquery using theindex shown in Figure 5-4 performsabackward scan:

sel ect *
fromtitles
order by pub_id desc, pubdate asc

For the following two queries on the same table, the plan requires a sort
step, sincethe order by clauses do not match the ordering specified for the
index:

sel ect *

fromtitles

order by pub_id desc, pubdate desc
sel ect *

fromtitles

Adaptive Server Enterprise

CHAPTER 5 Access Methods and Query Costing for Single Tables

order by pub_id asc, pubdate asc

Note Parallel sort operations are optimized very differently for partitioned
tables. See Chapter 9, “Parallel Sorting,” for more information.

How the optimizer costs sort operations
When Adaptive Server optimizes queries that require sorts:

It computes the cost of using an index that matches the required sort
order, if such an index exists.

It computes the physical and logical 1/O cost of creating aworktable
and performing the sort for every index where the index order does
not match the sort order. It computes the physical and logica 1/0 cost
of performing atable scan, creating a worktable, and performing the
sort.

Adding the cost of creating and sorting the worktable to the cost of index
access and the cost of creating and sorting the worktabl e favors the use of
an index that supports the order by clause. However, when comparing
indexes that are very selective, but not ordered, versus indexes that are
ordered, but not selective:

Access costs are low for the more selective index, and so are sort
costs.

Access costs are high for the less sel ective index, and may exceed the
cost of access using the more selective index and sort.

Allpages-locked tables with clustered indexes

For allpages-locked tables with clustered indexes, order by queries that
match the index keys are efficient if:

Thereis also a search argument that uses the index, the index key
positions the search on the data page for first qualifying row.

The scan follows the next-page pointersuntil all qualifying rowshave
been found.

No sort is needed.

Performance & Tuning: Optimizer and Abstract Plans 81

Costing for queries using order by

82

select fname, Iname, id

from employees

In Figure 5-5, the index was created in ascending order, and the order by
clause does not specify the order, so ascending is used by default.

Figure 5-5: An order by query using a clustered index, allpages
locking

where Iname between "Dull"

and "Greene"
order by Iname Page 1132
. Bennet
Clustered index on Iname Chan
Dull
. Edwards
Key Pointer
Page 1007
Bennet 1132 Page 1133
Key Pointer Greane 1133 Greane
Green 1144 Greaves
Page TO0T Hunter 1127 Greco
Bennet 1007
Karsen 1009 Page 1009
Smith 1062 Karsen 1009 Page 1144
Green
v Greene
Highland
Page 1127
Hunter
Jenkins
Root page Intermediate Data pages

Queries requiring descending sort order (for example, order by title_id
desc) can avoid sorting by scanning pagesin reverse order. If the entire
table is needed for a query without a where clause, Adaptive Server
followstheindex pointersto thelast page, and then scans backward using
the previous page pointers. If the where clause includes an index key, the
index is used to position the search, and then the pages are scanned
backward, as shown in Figure 5-6.

Adaptive Server Enterprise

CHAPTER 5 Access Methods and Query Costing for Single Tables

Figure 5-6: An order by desc query using a clustered index

select fname, Iname, id Page 1132
from employees A Bennet
where Iname <= "Highland" Chan
order by Iname desc Dull
Clustered index on Iname Edwards
Key Pointer
Page 1133
Page 1007 Greane
. Bennet 1132 Greaves
Key Pointer Greane 1133 Greco
Page 100T Green 1144
Bennet 1007 I Hunter 1127
| 20
Karsen 1009 Green
Greene
Highland
Page 1127
Hunter
Jenkins
Root page Intermediate Data pages

Sorts when index covers the query

When an index covers the query and the order by columns form a prefix
subset of the index keys, the rows are returned directly from the
nonclustered index leaf pages. If the columns do not form a prefix subset
of the index keys, aworktable is created and sorted.

With a nonclustered index on au_Iname, au_fname, au_id of the authors
table, this query can return the data directly from the leaf pages:

select au_id, au_l nane
from aut hors
order by au_l nare, au_fnane

Performance & Tuning: Optimizer and Abstract Plans 83

Costing for queries using order by

Sorts and noncovering indexes

With anoncovering index, Adaptive Server determines whether using the
index that supports the ordering requirements is cheaper than performing
atable scan or using amore selective index, and then inserting rows into
aworktable and sorting the data. The cost of using the index depends on

the number of rows and the data row cluster ratio.

Backward scans and joins

If two or more tables are being joined, and the order by clause specifies
descending order for index keys on the joined tables, any of the tablesand
indexes involved can be scanned with a backward scan to avoid the
worktable and sort costs. If al the columns for one table are in ascending
order, and the columnsfor the other tables arein descending order, thefirst
tableis scanned in ascending order and the others in descending order.

Deadlocks and descending scans

Descending scans may deadlock with queries performing update
operations using ascending scans and with queries performing page splits
and shrinks, except when the backward scans are performed at transaction
isolation level 0.

The allow backward scans configuration parameter controls whether the
optimizer uses the backward scan strategy. The default value of 1 allows
descending scans.

See the System Administration Guide for more information on this
parameter.

Also, see “Index scans’ on page 69 for information on the number of
ascending and descending scans performed and “ Deadl ocks by lock type”
on page 78 in the book Performance and Tuning: Monitoring and
Analyzing for Performance for information on detecting deadlocks.

84 Adaptive Server Enterprise

CHAPTER 5 Access Methods and Query Costing for Single Tables

Access Methods and Costing for or and in Clauses

When a query on asingle table contains or clauses or an in (values_list)
clauseg, it can be optimized in different ways, depending on the presence of
indexes, the selectivity of the search arguments, the existence of other
search arguments, and whether or not the clauses might return duplicate
rows.

or syntax

Where aquery uses an or clause, the optimizer may choose amore
expensive or strategy not only for table scans, but also against covering
index scans because the strategy provides a better locking concurrency.

or clauses take one of the following forms:

where column_namel = <value>
or column_namel = <value>

or:

where column_namel = <value>
or column_name2 = <value>

in (values_list) converts to or processing
Preprocessing convertsin lists to or clauses, so this query:

select title_id, price
fromtitles
where title_id in ("PS1372", "PS2091","PS2106")

becomes:

select title_id, price
fromtitles
where title_id = "PS1372"
or title_id " PS2091"
or title_id " PS2106"

Performance & Tuning: Optimizer and Abstract Plans 85

Access Methods and Costing for or and in Clauses

Methods for processing or clauses

A single-table query including or clauses is a union of more than one
query. Although some rows may match more than one of the conditions,
each row must be returned only once. Depending on indexes and query
clauses, or queries can be resolved by one of these methods:

86

If any of the clauses linked by or is not indexed, the query must use a
table scan. If there is an index on type, but no index on advance, this
query performs a table scan:

select title_id, price
fromtitles
where type = "busi ness" or advance > 10000

If thereisapossibility that one or more of the or clauses could match
values in the same row, the query is resolved using the OR strategy,
also known as using a dynamic index. The OR strategy selects the
row | Dsfor matching rows into aworktable, and sorts the worktable
to remove duplicate row | Ds. For example, there can be rows for
which both of these conditions are true:

select title_id
fromtitles
where pub_id = "P076" or type > "business"

If thereisan index on pub_id, and another ontype, the OR strategy can
be used.

See “Dynamic index (OR strategy)” on page 88 for more
information.

Note The OR Srategy (multiple matching index scans) isonly
considered for equality predicates. It is disqualified for range
predicates even if meeting other conditions. As an example, when a
select statement contains the following:

where bar between 1 and 5
or bar between 10 and 15

Thiswill not be considered for the OR Srategy.

If thereisno possibility that the or clauses can sel ect the same row, the
query can be resolved with multiple matching index scans, also
known as the special OR strategy. The special OR strategy does not
requireaworktable and sort. The or clausesin this query cannot select
the same row twice:

Adaptive Server Enterprise

CHAPTER 5 Access Methods and Query Costing for Single Tables

select title_id, price
fromtitles
where pub_id = "P076" or pub_id = "P087"

With an index on pub_id, this query can be resolved using two
matching index scans.

See “Multiple matching index scans (special OR strategy)” on page
90 for more information.

The costs of index access for each or clause are added together, and
the cost of the sort, if required. If sum of these costsis greater than a
table scan, the table scan is chosen. For example, this query uses a
table scan if the total cost of all of the indexed scans on pub_id is
greater than the table scan:

select title_id, price

fromtitles

where pub_id in ("P095", "P099", "P128", "P220",
"P411", "P445", "P580", "P988")

If the query contains additional search arguments on indexed
columns, predicate transformation may add search argumentsthat can
be optimized, adding alternative optimization options. The cost of
using al alternative access methods is compared, and the cheapest
aternativeis selected. This query contains a search argument on type
aswell as clauses linked with or:

select title_ id, type, price fromtitles
where type = "busi ness”
and (pub_id = "P076" or pubdate > "12/1/93")

With aseparate index on each search argument, the optimizer usesthe
|east expensive access method:

¢ Theindex on type

¢ TheOR strategy on pub_id and pubdate

When table scans are used for or queries

A query with or clauses or an in (values_list) uses a table scan if either of
these conditionsistrue:

The cost of al theindex accessesis greater than the cost of atable
scan, or

At least one of the columnsis not indexed, so the only way to resolve
the query conditionsisto perform atable scan.

Performance & Tuning: Optimizer and Abstract Plans 87

Access Methods and Costing for or and in Clauses

Dynamic index (OR strategy)

If the query usesthe OR strategy because the query could return duplicate
rows, the appropriateindexes are used to retrieve therow IDsfor rowsthat
satisfy each or clause. The row IDsfor each or clause are stored in a
worktable. Since the worktable contains only row 1Ds, itiscaled a
“dynamic index.” Adaptive Server then sorts the worktable to remove the
duplicaterow IDs. Therow | Dsare used to retrieve the rowsfrom the base
tables. The total cost of the query includes:

» Thesum of theindex accesses, that is, for each or clause, the cost of
using the index to access the row |Ds on the leaf pages of the index
(or on the data pages, for a clustered index on an allpages-locked
table)

* Thecost of reading the worktable and performing the sort
» Thecost of using the row 1Ds to access the data pages

Figure 5-7 illustrates the process of building and sorting a dynamic index
for an or query on two different columns.

88 Adaptive Server Enterprise

CHAPTER 5 Access Methods and Query Costing for Single Tables

select title_id, price
from titles

Figure 5-7: Resolving or queries using the OR strategy

where price <= $15 or title like "Compute%"

_ Find rows on
index leaf pages

title_id_ix

Page 1239
Backwards... | 1527, 4
Computer... 14414
Computer... 1537,2

Save results Sort and Access rows on
in a worktable remove duplicates data pages
Page 1441
Tricks ... $23
Computer... [$29
Garden... [$20
Best... $50

Optional... 1923,7
. \ Page Row Page 1537
1441 4 .
1537) Using ... $27
Computer... [$15
1941 2
L 3 9 New... $18
price_ix 1537 Home... $44
Page 1473 1822 5
$14 1427,8
$15 1941, 2
$15 1537, 2 to page 1882
$15 1822, 5 (to pag)
$16 1445,6
' (to page 1941)

Asshown in Figure 5-7, the optimizer can choose to use a different index
for each clause.

showplan displays“Using Dynamic Index” and “ Positioning by Row
IDentifier (RID)” when the OR strategy is used.

See “Dynamic index message (OR strategy)” on page 107 in the
Performance and Tuning: Monitoring and Analyzing for Performance
book for more information.

Queriesin cursors cannot use the OR strategy, but must perform atable
scan. However, queries in cursors can use the multiple matching index
scans strategy.

Locking during queries that use the OR strategy depends on the locking
scheme of thetable.

Performance & Tuning: Optimizer and Abstract Plans 89

How aggregates are optimized

Multiple matching index scans (special OR strategy)

Adaptive Server uses multiple matching index scans when the or clauses
are on the same table, and there is no possibility that the or clauses will
return duplicate rows. For example, thisquery cannot return any duplicate
rows:

select title
fromtitles
where title_id in ("T6650", "T95065", "T11365")

Thisquery can beresolved using multiple matching index scans, using the
index ontitle_id. Thetotal cost of the query isthe sum of the multipleindex
accesses performed. If the index on title_id has 3 levels, each or clause
requires 3 index reads, plus one data page read, so the total cost for each
clauseis4logical and 4 physical 1/Os, and thetotal query cost isestimated
to be 12 logical and 12 physical 1/Os.

The optimizer determineswhich index to usefor each or clause or valuein
thein (values_list) clause by costing each clause or value separately. If each
column named in aclauseisindexed, adifferent index can be used for each
clause or value. showplan displays the message “Using N Matching Index
Scans” when the special OR strategy is used.

See “Matching index scans message” on page 106 in the book
Performance and Tuning: Monitoring and Analyzing for Performance.

How aggregates are optimized

90

Aggregates are processed in two steps:

» Fird, appropriateindexes are used to retrieve the appropriate rows, or
atable scanisperformed. For vector (grouped) aggregates, theresults
are placed in aworktable. For scalar aggregates, results are computed
inavariable in memory.

e Second, the worktable is scanned to return the results for vector
aggregates, or the results are returned from the internal variable.

Vector aggregates can use a covering composite index on the aggregated
column and the grouping column, if any, rather than performing table
scans. For example, if thetitles table has a nonclustered index on type,
price, the following query retrievesitsresults by scanning the leaf level of
the nonclustered index:

Adaptive Server Enterprise

CHAPTER 5 Access Methods and Query Costing for Single Tables

sel ect type, avg(price)
fromtitles

group by type

Scalar aggregates can also use covering indexes to reduce /0. For
example, the following query can use the index on type, price:

sel ect min(price)
fromtitles

Table5-1 shows some of the access methods that the optimizer can choose
for queries with aggregates when there is no where, having or group by
clausein the query.

Table 5-1: Special access methods for aggregates

Aggregate Index description Access method
min Scalar aggregate is leading column Usefirst the value on the root page of the index.
max Clustered index on an dlpages- Follow the last pointer on root page and
locked table intermedi ate pages to data page, and return the last
value.
Clustered index on adata-only- Follow last pointer on root page and intermediate
locked table pages to leaf page, and return the last value.
Any nonclustered index
count(*) Nonclustered index or clustered Count all rowsintheleaf level of theindex with the
index on adata-only-locked table ~ smallest number of pages.
count(col_name) Covering nonclustered index, or Count al non-null valuesin the leaf level of the

covering clustered index on data- smallest index containing the column name.
only-locked table

Combining max and min aggregates

When used separately, max and min aggregates on leading index columns
use specia processing if there is no where clause in the query:

e min aggregates retrieve the first value on the root page of the index,
performing asingle read to find the value.

e max aggregates follow the last entry on the last page at each index
level until they reach the leaf level.

However, when min and max are used together, this optimization is not
available. The entireleaf level of anindex isscanned to locate thefirst and
last values.

min and max optimizations are not applied if:

Performance & Tuning: Optimizer and Abstract Plans 91

How update operations are performed

e The expression inside the max or min function is anything but a

column. When numeric_col has a nonclustered index:

e max(numeric_col*2) contains an operation on a column, so the
query performs aleaf-level scan of the index.

e max(numeric_col)*2 uses max optimization, because the
multiplication is performed on the result of the function.

e Thereisanother aggregate in the query.

» Thereisagroup by clause.

Queries that use both min and max

If you have max and min aggregates that can be optimized, you should get
much better performance by putting them in separate queries. For
example, even if there isan index with price as the leading key, this query
resultsin afull leaf-level scan of the index:

sel ect max(price), mn(price)
fromtitles

When you separate them, Adaptive Server uses the index once for each of
the two queries, rather than scanning the entire leaf level. This example
shows two queries:

sel ect max(price)
fromtitles

sel ect mn(price)
fromtitles

How update operations are performed

Direct updates

92

Adaptive Server handles updates in different ways, depending on the
changes being made to the data and the indexes used to locate the rows.
Thetwo major types of updates are deferred updatesand dir ect updates.
Adaptive Server performs direct updates whenever possible.

Adaptive Server performs direct updatesin a single pass:

Adaptive Server Enterprise

CHAPTER 5 Access Methods and Query Costing for Single Tables

» Itlocates the affected index and data rows.

e It writesthelog records for the changes to the transaction log.

« It makes the changes to the data pages and any affected index pages.
There are three techniques for performing direct updates:

e In-place updates

e Cheap direct updates

e Expensive direct updates

Direct updates require less overhead than deferred updates and are
generally faster, as they limit the number of log scans, reduce logging,
save traversal of index B-trees (reducing lock contention), and save 1/0
because Adaptive Server does not have to refetch pages to perform
maodifications based on log records.

In-place updates
Adaptive Server performsin-place updates whenever possible.

When Adaptive Server performs an in-place update, subsequent rows on
the page are not moved; the row |Ds remain the same and the pointersin
the row offset table are not changed.

For an in-place update, the following requirements must be met:
e Therow being changed cannot change its length.

¢ The column being updated cannot be the key, or part of the key, of a
clustered index on an allpages-locked table. Because the rowsin a
clustered index on an all pages-locked table are stored in key order, a
change to the key almost always means that the row location is
changed.

e Oneor more indexes must be unique or must allow duplicates.

¢ The update statement satisfies the conditionslisted in “ Restrictions
on update modes through joins’ on page 99.

e Theaffected columns are not used for referential integrity.
e There cannot be atrigger on the column.

¢ Thetable cannot be replicated (via Replication Server).

Performance & Tuning: Optimizer and Abstract Plans 93

How update operations are performed

Cheap direct updates

An in-place update is the fastest type of update because it makes asingle
change to the data page. It changes all affected index entries by deleting
the old index rows and inserting the new index row. I n-place updates affect
only indexes whose keys are changed by the update, since the page and
row locations are not changed.

If Adaptive Server cannot perform an updatein place, it triesto perform a
cheap direct update—changing the row and rewriting it at the same offset
on the page. Subsequent rows on the page are moved up or down so that
the data remains contiguous on the page, but the row | Ds remain the same.
The pointersin the row offset table change to reflect the new locations.

A cheap direct update,must meet these requirements:

* Thelength of the datain the row is changed, but the row still fits on
the same data page, or the row length is not changed, but thereisa
trigger on the table or the table is replicated.

» The column being updated cannot be the key, or part of the key, of a
clustered index. Because Adaptive Server stores the rows of a
clusteredindex in key order, achangeto the key almost always means
that the row location is changed.

* Oneor moreindexes must be unique or must alow duplicates.

» The update statement satisfies the conditions listed in “Restrictions
on update modes through joins’ on page 99.

* Theaffected columns are not used for referential integrity.

Cheap direct updates are amost as fast as in-place updates. They require
the same amount of 1/O, but dlightly more processing. Two changes are
made to the data page (the row and the offset table). Any changed index
keys are updated by deleting old values and inserting new values. Cheap
direct updates affect only indexes whose keys are changed by the update,
since the page and row ID are not changed.

Expensive direct updates

94

If the data does not fit on the same page, Adaptive Server performs an
expensivedirect update, if possible. An expensivedirect update deletesthe
datarow, including all index entries, and then insertsthe modified row and
index entries.

Adaptive Server Enterprise

CHAPTER 5 Access Methods and Query Costing for Single Tables

Adaptive Server uses atable scan or anindex to find therow initsoriginal
location and then deletes the row. If the table has a clustered index,
Adaptive Server uses the index to determine the new location for the row;
otherwise, Adaptive Server inserts the new row at the end of the heap.

An expensive direct updatemust meet these requirements:

e Thelength of adatarow is changed so that the row no longer fits on
the same data page, and the row is moved to a different page, or the
update affects key columns for the clustered index.

e Theindex used to find the row is not changed by the update.

e The update statement satisfies the conditionslisted in “ Restrictions
on update modes through joins” on page 99.

e The affected columns are not used for referential integrity.

An expensive direct update isthe slowest type of direct update. The delete
is performed on one data page, and the insert is performed on a different
data page. All index entries must be updated, since the row location is
changed.

Deferred updates

Adaptive Server uses deferred updates when direct update conditions are
not met. A deferred update is the slowest type of update.

In a deferred update, Adaptive Server:

¢ Locates the affected data rows, writing the log records for deferred
delete and insert of the data pages as rows are located.

* Readsthelog records for the transaction and performs the del etes on
the data pages and any affected index rows.

¢ Readsthelog records a second time, and performs al inserts on the
data pages, and inserts any affected index rows.

When deferred updates are required
Deferred updates are always required for:

e Updatesthat use self-joins
e Updatesto columns used for self-referential integrity

Performance & Tuning: Optimizer and Abstract Plans 95

How update operations are performed

e Updatesto atable referenced in a correlated subquery
Deferred updates are al so required when;

e The update moves arow to a new page while the table is being
accessed via atable scan or a clustered index.

* Duplicate rows are not allowed in the table, and there is no unique
index to prevent them.

e Theindex used to find the datarow is not unique, and therow is
moved because the update changesthe clustered index key or because
the new row does not fit on the page.

Deferred updates incur more overhead than direct updates because they
require Adaptive Server to reread the transaction log to make the final
changes to the data and indexes. Thisinvolves additional traversal of the
index trees.

For example, if thereisa clustered index on title, this query performs a
deferred update;

update titles set title ="Portabl e C Sof t ware" where
title = "Designing Portabl e Software"

Deferred index inserts

96

Adaptive Server performs deferred index updates when the update affects
the index used to access the table or when the update affects columnsin a
unique index. In this type of update, Adaptive Server:;

» Deletesthe index entriesin direct mode

e Updates the data page in direct mode, writing the deferred insert
records for the index

« Readsthelog recordsfor the transaction and inserts the new valuesin
theindex in deferred mode

Deferred index insert mode must be used when the update changes the
index used to find the row or when the update affects a unique index. A
query must update a single, qualifying row only once—deferred index
update mode ensures that arow is found only once during the index scan
and that the query does not prematurely violate a uniqueness constraint.

The update in Figure 5-8 changes only the last name, but the index row is
moved from one page to the next. To perform the update, Adaptive Server:

Adaptive Server Enterprise

CHAPTER 5 Access Methods and Query Costing for Single Tables

1 Readsindex page 1133, deletesthe index row for “ Greene” from that
page, and logs a deferred index scan record.

2 Changes“Green” to “Hubbard”’ on the data page in direct mode and
continues the index scan to see if more rows need to be updated.

3 Insertsthe new index row for “Hubbard” on page 1127.

Figure 5-8 shows the index and data pages prior to the deferred update
operation, and the sequence in which the deferred update changes the data
and index pages.

Performance & Tuning: Optimizer and Abstract Plans 97

How update operations are performed

98

update employee

set Iname = "Hubbard"
where Iname = "Green"

Before update

Key RowlD Pointer
Page 1001
Bennet [14211 [1007
Karsen [1411,3 1009
Smith 1307,2 | 1062
Root page
Update steps

Figure 5-8: Deferred index update

Page 1242
Key Pointer 10| O'Leary
Page 1132 111 Ringer
12 White
Bennet 1421,1 13 Jenkins
Key RowlID Pointer Chan 1129,3
Page 1007 Dull 1409,1 Page T307
Bennet | 1421,1| 1132 Edwards | 1018,5 14 Hunter
Greane | 1307,4| 1133 15 Smith
Hunter | 1307,1| 1127 PAgE TSI 16 Ringer
Greane 1307,4 1 Greane
Green 1421,2
Page 1009 Greene | 1409,2 Page 1421
Karsen |[14113 |[1315 \ 18 | Bennet
19 Green
Page 1127 20 Yokomoto
Hunter 1307,1
Jenkins | 12424 Page TA09
21 Dull
22 Greene
23 White
Intermediate Leaf pages Data pages
Step 1: Write log Page 1133
records, then delete Greane | 13074 %\
index row. Greene | 14092 [T }’
Step 2: Change data Page 1471
page. 18 Bennet
19 Hubbard
20 Yokomoto
Step 3: Read log, Page 1127
insert index row. Hubbard | 14212
Hunter 1307,1
Jenkins 1242,4

Adaptive Server Enterprise

CHAPTER 5 Access Methods and Query Costing for Single Tables

Assume a similar update to the titles table:

update titles

set title = "Conmputer Phobic's Manual ",
advance = advance * 2

where title |ike "Conputer Phob%

This query shows a potential problem. If ascan of the nonclustered index
on the title column found “ Computer Phobia Manual,” changed the title,
and multiplied the advance by 2, and then found the new index row
“Computer Phobic’s Manual” and multiplied the advance by 2, the
advance wold be very skewed against the reality.

A deferred index delete may be faster than an expensive direct update, or
it may be substantially slower, depending on the number of log records
that need to be scanned and whether the log pages are still in cache.

During deferred update of a data row, there can be a significant time
interval between the del ete of the index row and theinsert of the new index
row. During thisinterval, there is no index row corresponding to the data
row. If aprocess scans the index during thisinterval at isolation level 0, it
will not return the old or new value of the data row.

Restrictions on update modes through joins

Updates and del etes that involve joins can be performed in direct,
deferred_varcoal, or deferred_index mode when the table being updated is
the outermost tablein thejoin order, or whenitispreceded in thejoin order
by tables where only asingle row qualifies.

Joins and subqueries in update and delete statements

The use of the from clauseto perform joinsin update and delete statements
isaTransact-SQL extensionto ANSI SQL. Subqueriesin ANSI SQL form
can be used in place of joins for some updates and del etes.

This example uses the from syntax to perform ajoin:

update t1 set tl.cl1 =1tl.cl + 50
fromtl, t2

where tl.cl =t2.cl

and t2.¢c2 =1

The following example shows the equivalent update using a subquery:
update t1 set cl = cl + 50

Performance & Tuning: Optimizer and Abstract Plans 99

How update operations are performed

where tl1l.cl in (select t2.cl
fromt2
where t2.c2 = 1)

The update mode that is used for the join query depends on whether the
updated table is the outermost query in the join order—if it is not the
outermost table, the updateisperformed in deferred mode. The update that
uses a subquery is always performed as a direct, deferred_varcol, or
deferred_index update.

For a query that uses the from syntax and performs a deferred update due
to the join order, use showplan and statistics io to determine whether
rewriting the query using a subquery can improve performance. Not al
gueries using from can be rewritten to use subqueries.

Deletes and updates in triggers versus referential integrity

Optimizing updates

100

Triggers that join user tables with the deleted or inserted tablesarerunin
deferred mode. If you are using triggers solely to implement referential
integrity, and not to cascade updates and deletes, then using declarative
referential integrity in place of triggers may avoid the penalty of deferred
updatesin triggers.

showplan messages provide information about whether an update is
performed in direct mode or deferred mode. If adirect update is not
possible, Adaptive Server updates the data row in deferred mode. There
are times when the optimizer cannot know whether a direct update or a
deferred update will be performed, so two showplan messages are
provided:

» The"deferred_varcol” message showsthat the update may changethe
length of the row because a variable-length column is being updated.
If the updated row fits on the page, the update is performed in direct
mode; if the update does not fit on the page, the update is performed
in deferred mode.

» The"deferred_index” message indicates that the changes to the data
pages and the del etesto theindex pages are performed in direct mode,
but the inserts to the index pages are performed in deferred mode.

Adaptive Server Enterprise

CHAPTER 5 Access Methods and Query Costing for Single Tables

These types of direct updates depend on information that is available only
at runtime, since the page actually has to be fetched and examined to
determine whether the row fits on the page.

Designing for direct updates

When you design and code your applications, be aware of the differences
that can cause deferred updates. Follow these guidelines to help avoid
deferred updates:

« Createat least one uniqueindex on the table to encourage more direct
updates.

e Whenever possible, use nonkey columnsin the where clause when
updating a different key.

e If youdo not use null valuesin your columns, declare them as not null
in your create table statement.

Effects of update types and indexes on update modes

Table 5-2 shows how indexes affect the update mode for three different
types of updates. In all cases, duplicate rows are not allowed. For the
indexed cases, the index ison title_id. The three types of updates are:

« Update of avariable-length key column:

update titles set title_id = val ue
where title_id = "T1234"

e Update of afixed-length nonkey column:

update titles set pub_date = val ue
where title_id = "T1234"

e Update of avariable-length nonkey column;

update titles set notes = val ue
where title_id = "T1234"

Table 5-2 shows how a unique index can promote a more efficient update
mode than a nonunique index on the same key. Pay particular attention to
thedifferencesbetween direct and deferred in the shaded areas of thetable.
For example, with a unique clustered index, all of these updates can be
performed in direct mode, but they must be performed in deferred mode if
the index is nonunique.

Performance & Tuning: Optimizer and Abstract Plans 101

How update operations are performed

For atable with a nonunique clustered index, a unique index on any other
columninthetable providesimproved update performance. In some cases,
you may want to add an IDENTITY column to atable in order to include
the column as akey in an index that would otherwise be nonunique.

Table 5-2: Effects of indexing on update mode

Update To:

Variable- Fixed-length Variable-
Index length key column length column
No index N/A direct deferred_varcol
Clustered, unique direct direct direct
Clustered, not unique deferred deferred deferred
Clustered, not unique, with a deferred direct deferred_varcol
unique index on another column
Nonclustered, unique deferred_varcol direct direct
Nonclustered, not unique deferred_varcol direct deferred_varcol

If the key for anindex isfixed length, the only difference in update modes
from those shown in the table occurs for nonclustered indexes. For a
nonclustered, nonunique index, the update mode is deferred_index for
updates to the key. For a nonclustered, unique index, the update modeis
direct for updates to the key.

If the length of varchar or varbinary is close to the maximum length, use
char or binary instead. Each variable-length column adds row overhead
and increases the possibility of deferred updates.

Using max_rows_per_page to reduce the number of rows allowed on a
page increases direct updates, because an update that increases the length
of avariable-length column may still fit on the same page.

For more information on using max_rows_per_page, see “Using
max_rows_per_page on all pages-locked tables’ on page 202 in the book
Performance and Tuning: Basics.

Using sp_sysmon while tuning updates

102

You can use showplan to determine whether an updateis deferred or direct,
but showplan does not give you detailed information about the type of
deferred or direct update. Output from the sp_sysmon or Adaptive Server
Monitor supplies detailed statistics about the types of updates performed
during asampleinterval.

Adaptive Server Enterprise

CHAPTER 5 Access Methods and Query Costing for Single Tables

Run sp_sysmon as you tune updates, and |ook for reduced numbers of
deferred updates, reduced locking, and reduced 1/0.

See “Transaction detail” on page 50 in the Performance and Tuning:
Monitoring and Analyzing for Performance book for more information.

Performance & Tuning: Optimizer and Abstract Plans 103

How update operations are performed

104 Adaptive Server Enterprise

CHAPTER 6 Accessing Methods and Costing
for Joins and Subqueries

This chapter introduces the methods that Adaptive Server uses to access
rows in tables when more than one table is used in a query, and how the
optimizer costs access.

Topic Page
Costing and optimizing joins 105
Nested-loop joins 110
Access methods and costing for sort-merge joins 114
Enabling and disabling merge joins 127
Reformatting strategy 128
Subquery optimization 129
or clauses versus unionsin joins 140

In determining the cost of multitable queries, Adaptive Server uses many
of the same formulas discussed in Chapter 5, “ Access Methods and Query
Costing for Single Tables.”

Costing and optimizing joins

Joinsextract information from two or moretables. In atwo-tablejoin, one
tableistreated as the outer table and the other table istreated as the inner
table. Adaptive Server examines the outer table for rows that satisfy the
query conditions. For each row in the outer table that qualifies, Adaptive
Server then examines the inner table, looking at each row where thejoin
columns match.

Optimizing join queriesis extremely important for system performance,

sincerelational databases make heavy use of joins. Queries that perform
joinson several tables are especially critical to performance, as explained
in the following sections.

Performance & Tuning: Optimizer and Abstract Plans 105

Costing and optimizing joins

Processing

In showplan output, the order of “FROM TABLE" messages indicatesthe
order in which Adaptive Server chooses to join tables.

See “FROM TABLE message” on page 75 in the Performance and
Tuning: Monitoring and Analyzing for Performance book for an example
that joins three tables. Some subqueries are also converted to joins.

See “Flattening in, any, and exists subqueries’” on page 130.

By default, Adaptive Server uses nested-loop joins, and aso consider
merge joins, if this feature is enabled at the server-wide or session level.

When mergejoins are enabled, Adaptive Server can use either nested-loop
joins or merge joins to process queries involving two or more tables. For
each join, the optimizer costs both methods. For queries involving more
than two tables, the optimizer examines query costs for merge joins and
for nested-loops, and chooses the mix of merge and nested-loop joins that
provides the cheapest query cost.

Index density and joins

106

The optimizer uses a statistic called the total density to estimate the
number of rowsin ajoined table that match a particular value during the
join.

See “Density values and joins’ on page 23 for more information.

The query optimizer usesthetotal density to estimate the number of rows
that will be returned for each scan of theinner table of ajoin. For example,
if the optimizer isconsidering anested-loop join with a250,000-row table,
and thetable hasadensity of .0001, the optimizer estimatesthat an average
of 25 rows from the inner table match for each row that qualifiesin the
outer table.

optdiag reports the total density for each column for which statistics have
been created. You can also see the total density used for joinsin dbcc
traceon(302) output.

Adaptive Server Enterprise

CHAPTER 6 Accessing Methods and Costing for Joins and Subqueries

Multicolumn densities

Adaptive Server maintains the total density for each prefix subset of
columns in acomposite index. If two tables are being joined on multiple
leading columns of a composite index, the optimizer uses the appropriate
density for an index when estimating the cost of ajoin using that index. In
a 10,000-row table with an index on seven columns, the entire seven-
column key might have adensity of 1/10,000, whilethefirst column might
have a density of only 1/2, indicating that it would return 5000 rows.

Datatype mismatches and joins

Join permutations

One of the most common problemsin optimizing joins on tablesthat have
indexes is that the datatypes of the join columns are incompatible. When
this occurs, one of the datatypes must be converted to the other, and an
index can only be used for one side of the join.

See “ Datatype mismatches and query optimization” on page 24 for more
information.

When you are joining four or fewer tables, Adaptive Server considers all
possible permutations of join orders for the tables. However, due to the
iterative nature of Adaptive Server's optimizer, queries on more than four
tables examine join order combinations in sets of two to four tables at a
time. This grouping during join order costing is used because the number
of permutations of join orders multiplies with each additional table,
requiring lengthy computation time for large joins. The method the
optimizer uses to determine join order has excellent results for most
queries and requires much less CPU time than examining all permutations
of al combinations.

If the number of tablesin ajoin is greater than 25, Adaptive Server
automatically reduces the number of tables considered at atime. Table 6-
1 shows the default vaues.

Performance & Tuning: Optimizer and Abstract Plans 107

Costing and optimizing joins

108

Table 6-1: Tables considered at a time during ajoin

Tables joined Tables considered at a time
4-25 4
26 -37 3
38-50 2

The optimizer starts by considering the first two to four tables, and
determining the best join order for those tables. It remembers the outer
table from the best plan involving the tables it examined and eliminates
that table from the set of tables. Then, it optimizesthe best set of tables out
of the remaining tables. It continues until only two to four tables remain,
at which point it optimizes them.

For example, suppose you have aselect statement with the following from
clause:

fromT1l, T2, T3, T4, T5, T6

The optimizer looks at all possible sets of 4 tables taken from these 6
tables. The 15 possible combinations of all 6 tables are:

T1, T2, T3, T4
T1, T2, T3, T5
T1, T2, T3, T6
T1, T2, T4, T5
T1, T2, T4, T6
T1, T2, T5, T6
T1, T3, T4, T5
T1, T3, T4, T6
T1, T3, T5, T6
T1, T4, T5, T6
T2, T3, T4, T5
T2, T3, T4, T6
T2, T3, T5, T6
T2, T4, T5, T6
T3, T4, T5, T6

For each one of these combinations, the optimizer looks at all the join
orders (permutations). For each set of 4 tables, there are 24 possible join
orders, for atotal of 360 (24 * 15) permutations. For example, for the set
of tables T2, T3, T5, and T6, the optimizer looks at these 24 possible orders:

T2, T3, T5, T6
T2, T3, T6, T5
T2, T5, T3, T6
T2, T5, T6, T3
T2, T6, T3, T5

Adaptive Server Enterprise

CHAPTER 6 Accessing Methods and Costing for Joins and Subqueries

T2, T6, T5,
T3, T2, T5,
T3, T2, T6,
T3, T5, T2,
T3, T5, T6,
T3, T6, T2,
T3, T6, T5,
T5, T2, T3,
T5, T2, T6,
T5, T3, T2,
T5, T3, T6,
T5, T6, T2,
T5, T6, T3,
T6, T2, T3,
T6, T2, T5,
T6, T3, T2,
T6, T3, T5,
T6, TS5, T2,
T6, T5, T3,

Let's say that the best join order is determined to be:

T5, T3, T6,

At this point, T5 is designated as the outermost table in the query.

The next step is to choose the second-outermost table. The optimizer

T3
T6
T5
T6
T2
T5
T2
T6
T3
T6
T2
T3
T2
T5
T3
T5
T2
T3
T2

T2

eliminates T5 from consideration as it chooses the rest of the join order.
Now, it hasto determine where T1, T2, T3, T4, and T6 fit into the rest of
the join order. It looks at all the combinations of four tables chosen from

these five:

T1, T2, T3,
T1, T2, T3,
T1, T2, T4,
T1, T3, T4,
T2, T3, T4,

T4
T6
T6
T6
T6

It looks at al thejoin ordersfor each of these combinations, remembering
that T5 isthe outermost table in the join. Let’s say that the best order in

which to join the remaining tablesto T5 is:

T3, T6, T2,

T4

So the optimizer chooses T3 as the next table after T5 in the join order for
the entire query. It eliminates T3 from consideration in choosing therest of

the join order.

The remaining tables are:

Performance & Tuning: Optimizer and Abstract Plans

109

Nested-loop joins

T1, T2, T4, T6

Now we're down to 4 tables, so the optimizer looks at &l the join orders
for all the remaining tables. Let’s say the best join order is:

T6, T2, T4, T1

This means that the join order for the entire query is:

T5, T3, T6, T2, T4, T1

Outer joins and join permutations

Outer joinsrestrict the set of possiblejoin orders. When theinner member
of an outer join is compared to an outer member, the outer member must
precede the inner member in the join order. The only join permutations

that are considered for outer joins are those that meet this requirement. For
exampl e, these two queries perform outer joins, thefirst using ANSI SQL

syntax, the second using Transact-SQL syntax:
select Tl.cl, T2.cl, T3.c2, T4.c2

fromT4 inner join Tl on Tl.cl = T4.cl
| eft outer join T2 on Tl.cl = T2.cl
left outer join T3 on T2.c2 = T3.c2

select Tl.cl, T2.cl, T3.c2, T4.c2
fromTl , T2, T3, T4

where Tl.cl *= T2.cl

and T2.c2 *= T3.c2

and Tl.cl1l = T4.cl

The only join orders considered place T1 outer to T2 and T2 outer to T3.

Thejoin orders considered by the optimizer are:

T1, T2, T3, T4
T1, T2, T4, T3
T1, T4, T2, T3
T4, T1, T2, T3

Nested-loop joins

Nested-loop joins provide efficient accesswhen tables areindexed onjoin
columns. The process of creating the result set for a nested-loop join isto
nest the tables, and to scan the inner tables repeatedly for each qualifying

row in the outer table, as shown in Figure 6-1.

110

Adaptive Server Enterprise

CHAPTER 6 Accessing Methods and Costing for Joins and Subqueries

Figure 6-1: Nesting of tables during a nested-loop join

For each qualifying row in TableA

Scan inner TableB

For each qualifying row in TableB

Scan innermost
TableC

In Figure 6-1, the access to the tables to be joined is nested:

¢ TableA isaccessed once. If thetable has no useful indexes, atable scan
is performed. If an index can reduce 1/0O costs, the index is used to
locate the rows.

e TableB isaccessed oncefor each qualifying row in TableA. If 15 rows
from TableA match the conditionsin the query, TableB is accessed 15
times. If TableB hasauseful index onthejoin column, it might require
31/Osto read the data page for each scan, plus one /O for each data
page. The cost of accessing TableB would be 60 logical 1/0s.

e TableC isaccessed once for each qualifying row in TableB each time
TableB is accessed. If 10 rows from TableB match for each row in
TableA, then TableC is scanned 150 times. |f each accessto TableC
requires 3 1/0Os to locate the data row, the cost of accessing TableC is
450 logical 1/0s.

If TableC issmall, or has a useful index, the 1/O count stays reasonably
small. If TableC islarge and has no useful index on the join columns, the
optimizer may chooseto use a sort-merge join or the reformatting strategy
to avoid performing extensive I/O.

Performance & Tuning: Optimizer and Abstract Plans 111

Nested-loop joins

Cost formula

For anested-loop join with two tables, the formulafor estimating the cost
is:

Join cost = Cost of accessing A +
of qualifying rows in A * Pages of B to scan for each qualifying row

With additional tables, the cost of a nested-loop joinis:

Cost of accessing outer table

+ (Number of qualified rows in outer) * (Cost of accessing inner table)
+
+ (Number of qualified rows from previous) * (Cost of accessing innermost table)

How inner and outer tables are determined
The outer tableis usually the one that has:
e The smallest number of qualifying rows, and/or
e Thelargest numbers of 1/Os required to locate rows.
Theinner table usually has:
e Thelargest number of qualifying rows, and/or
e The smallest number of reads required to locate rows.

For example, when you joinalarge, unindexed tableto asmaller tablewith
indexes on the join key, the optimizer chooses:

* Thelarge table as the outer table, so that the large table is scanned
only once.

* Theindexed table as the inner table, so that each time the inner table
isaccessed, it takes only afew readsto find rows.

112 Adaptive Server Enterprise

CHAPTER 6 Accessing Methods and Costing for Joins and Subqueries

Self join

Thisjoin isused for comparing values within a column of atable. Since
this operation involves ajoin of atable within itself, you need to give the
table two temporary names, or correlation names which then are used to
qualify the column namesin the rest of the query.

I dentify optimizations to conditions where the direct mode is possible
during update. With the in-place update project, updates involving a self-
join will aways be donein the deferred mode. For example:

update t1 set tl.cl =tl.cl + 1
FROMt1l a, t1l b
where a.cl = b.c2

and
delete t1 FROMt1l a, t1 b WHERE a.cl1 = b.c2

will always be processed in deferred mode. This routine implements
checks for the following rules that must be satisfied as necessary
conditions to run the update in direct mode;

1

If no such self-join exists, but the query references more than one
tablein its FROM ligt, thereis apotential to run this update in direct
mode.

For an update query, if the query references more than onetableinits
FROM list, check if the read cursor table is the first table in the join
order:

e If theread cursor isthefirst onein the join order, the update can
be run in direct mode, as all downstream tables will be scanned
in existence join.

e Ifitsnot thefirst one in the join order, check if al tables that
appear before it in the join order are tables from flattened
subqueries to which the optimizer has applied one of many
techniques (unique join, tuple filtering and/or unique
reformatting) to ensurethat only onerow will befed into thefinal
join plan.

o If al the tables preceeding the read cursor table which are from
the outer query block are known to return asinglerow, then every
row from the read cursor table will only qualify once.

This guarantees that rows from the target table will only qualify
once.

Performance & Tuning: Optimizer and Abstract Plans 113

Access methods and costing for sort-merge joins

3 For adelete query, there is no requirement that the target table be the
first tablein the join order. Thisis because even if arow from the
target table were to qualify multiple times due to the join conditions,
by doing a direct delete, we will delete the row the "first” timeiit
qualifies, and subsequent qualificiations will get a"row not found"
condition.

The following queries can potentially be run in direct mode update when
these rules are used.

Example 1: Thisisanon-flattened subquery which resultsin atable count
in the main ROOT node of 3.

update t1 set tl.cl =tl.cl + 1
where t1.c2 NOT IN (select t2.c2 fromt?2)

Example 2: Thisis aflattened subquery

update t1 set tl.cl =tl.cl + 1
FROM t 1
where t1.c2 IN (select t2.c2 fromt2)

In both these cases, although the table count in the main ROOT node
shows up as 3, these queries can potentially be run in direct update mode.

Example 3:
update t1 set tl.cl =tl.cl + 1
FROM t1, t2
where tl.cl = t2.cl
Output:
Data is: t1 t2
1 1
1 2

If thejoin order ist2 -> t1, and we do the update in direct mode, then the
rows from t1 will become:

(D, (D] ->1(2), (2]

Access methods and costing for sort-merge joins

There are four possible execution methods for merge joins:

114 Adaptive Server Enterprise

CHAPTER 6 Accessing Methods and Costing for Joins and Subqueries

e Full-merge join —the two tables being joined have useful indexes on
the join columns. The tables do not need to be sorted, but can be
merged using the indexes.

e Left-mergejoin—sort theinner tablein thejoin order, then mergewith
the left, outer table.

* Right-merge join — sort the outer table in the join order, then merge
with theright, inner table.

e Sort-merge join — sort both tables, then merge.

Merge joins always operate on stored tables — either user tables or
worktables created for the merge join. When aworktableisrequired for a
merge join, it is sorted into order on the join key, then the merge step is
performed. The costing for any merge joins that involve sorting includes
the estimated 1/O cost of creating and sorting a worktable. For full-merge
joins, the only cost involved is scanning the tables.

Figure 6-2 provides diagrams of the merge join types.

Performance & Tuning: Optimizer and Abstract Plans 115

Access methods and costing for sort-merge joins

Figure 6-2: Merge join types

Full-merge join (FMJ) Step 1

o

d
CIDRGED

Left-merge join (LMJ) Step 1 Step 2

sort

Worktablel

Right-merge join (RMJ) Step 1 Step 2

Worktablel @
sort
<Worktab|e1) < T2 >

Sort-merge join (SMJ) Step 1 Step 2 Step 3

\ sort sort
6 <T2) @orktablel) (WorktableZ)

116 Adaptive Server Enterprise

CHAPTER 6 Accessing Methods and Costing for Joins and Subqueries

How a full-merge is performed

If both Table1 and Table2 have indexes on the join key, this query can use
afull-mergejoin;

sel ect *
from Tabl el, Table2
where Tablel.cl = Tabl e2.c2
and Tabl el.cl between 100 and 120

If both tables are all pages-locked tableswith clustered indexes, and Table1
is chosen as the outer table, the index is used to position the search on the
data page at the row where the value equals 100. The index on Table2 is
also used to position the scan at the first row in Table2 where the join
column equals 100. From this point, rows from both tables are returned as
the scan moves forward on the data pages.

Figure 6-3: A serial merge scan on two tables with clustered

indexes
Tablel Table2
Page 1037 Page 3423
93
98
100
99
102
100
105
101
102 113
122
Page 1040
105
109
113
17|y
122

Merge joins can also be performed using nonclustered indexes. The index
is used to position the scan on the first matching value on the leaf page of
theindex. For each matching row, theindex pointersare used to accessthe
data pages. Figure 6-4 shows afull-merge scan using anonclustered index
on theinner table.

Performance & Tuning: Optimizer and Abstract Plans 117

Access methods and costing for sort-merge joins

Figure 6-4: Full merge scan using a nonclustered index on the

inner table
Tablel Table2
Page 1037
98
99 Page 1903
100 57
101 623
102 100
Page 3423
Page 1040 93 [1955,1 Page 1907
105 100 |19033 105
109 102 [1752,2 842
113 105 |1907,1 113
ur| y 113 [17523 a2
122 122 | 24094
Page 1752
102
823
113
29
Data pages Leaf page Data pages

How aright-merge or left-merge is performed

A right-merge or left-merge join always operates on a user table and a
worktable created for the merge join. There are two steps:

1 A tableor set of tablesis scanned, and the results are inserted into a
worktable.

2 Theworktableis sorted and then merged with the other tablein the
join, using the index.

118 Adaptive Server Enterprise

CHAPTER 6 Accessing Methods and Costing for Joins and Subqueries

How a sort-merge is performed

For a sort-merge join, there are three steps, since the inputs to the sort-
merge joins are both sorted worktables:

1 Atableor set of tablesis scanned and the results are inserted into one
worktable. Thiswill be the outer table in the merge.

2 Another table is scanned and the results are inserted into another
worktable. Thiswill be the inner table in the merge.

3 Each of the worktables is sorted, then the two sorted result sets are
merged.

Mixed example
This query performs a mixture of merge and nested-loop joins:

sel ect pub_nane, au_l nanme, price
fromtitles t, authors a, titleauthor ta,
publ i shers p

where t.title_id = ta.title_id

and a.au_id = ta.au_id

and p.pub_id = t.pub_id

and type = ’business’

and price < $25

Adaptive Server executes this query in three steps:

e Step 1 uses 3 worker processes to scan titles as the outer table,
performing afull-merge join with titleauthor and then a nested-loop
join with authors. No sorting is required for the full-mergejoin. titles
has a clustered index ontitle_id. The index on titleauthor, ta_ix,
contains thetitle_id and au_id, so the index coversthe query. The
results are stored in Worktablel, for use in the sort-merge join
performed in Step 3.

e Step 2 scansthe publishers table, and saves the needed columns
(pub_name and pub_id) in Worktable2.

e InStep 3:
e Worktablel is sorted into join column order, on pub_id.
e Worktable2 is sorted into order on pub_id.

¢ The sorted results are merged.

Performance & Tuning: Optimizer and Abstract Plans 119

Access methods and costing for sort-merge joins

Figure 6-5 shows the steps.

Figure 6-5: Multiple steps in processing a merge join

Step1 Step 2 Worktable2
@ publishers

Step 3
sort sort

Worktablel Worktable2

showplan messages for sort-merge joins

showplan messages for each type of merge join appear as specific

combinations:

* Full-mergejoin—thereareno“FROM TABLE Worktable” messages,
only the“inner table” and “ outer table” messagesfor basetablesinthe
query.

* Right-merge join—the“outer table” is always aworktable.

120 Adaptive Server Enterprise

CHAPTER 6 Accessing Methods and Costing for Joins and Subqueries

e Left-mergejoin —the “inner table” is aways aworktable.
e Sort-merge join — both tables are worktables.

For more information, see M essages describing access methods,
caching, and /O cost” on page 93 in the book Performance and Tuning:
Monitoring and Analyzing for Performance.

Costing for merge joins
Thetotal cost for merge joins depends on:
e Thetype of mergejoin.
¢ Full-merge joins do not require sorts and worktables.

¢ For right-merge and left-merge joins, one side of the joinis
selected into a worktable, then sorted.

« For sort-merge joins, both sides of the join are selected into
worktables, and each worktable is sorted.

« Thetype of index used to scan the tables while performing the merge
step.

e Thelocking scheme of the underlying table: costing models for most
scans are different for alpages locking than data-only locking.
Clustered index access cost on data-only-locked tables is more
comparable to nonclustered access.

e Whether the query is executed in serial or paralel mode.
¢ Whether the outer table has duplicate values for the join key.

In general, when comparing costs between a nested-loop join and amerge
joinfor the sametables, using the sameindexes, the cost for the outer table
remains the same. Accessto theinner table costs less for amergejoin
because the scan remains positioned on the leaf pages as matching values
are returned, saving thelogical 1/0 cost of scanning down the index from
the root page each time.

Performance & Tuning: Optimizer and Abstract Plans 121

Access methods and costing for sort-merge joins

Costing for a full-merge with unique values

If afull-mergejoinisperformed in serial mode and thereisno need to sort
the tables, the cost of amergejoin on T1 and T2 is the sum of the cost of
the scans of both tables, aslong as all join values are unique;

Merge join cost = Cost of scan of T1 + Cost of scan of T2

The cost saving of amerge join over anested-loop joinis:

e For anested-loop join, accessto theinner table of thejoin starts at the
root page of theindex for each row from the outer table that qualifies.

e For afull-mergejoain, the upper levels of the index are used for the
first access, to position the scan:

e Ontheleaf page of theindex, for nonclustered indexes and
clustered indexes on data-only-locked tables

e Onthedatapage, if thereisaclustered index on an allpages-
locked table

The higher levels of the index do not need to be read for each
matching outer row.

Example: allpages-locked tables with clustered indexes

122

For allpages-locked tableswhere clustered indexes are used to perform the
scans, the search arguments on the index are used to position the search on
the first matching row of each table. Thetotal cost of the query isthe cost
of scanning forward on the data pages of each table. For example, with
clustered indexes on t1(c1) and t2(cl), the query on two allpages-locked
tables can use afull-merge join:

select tl1l.c2, t2.c2

fromtl, t2

where tl.cl =t2.cl

and t1.cl1 >= 1000 and tl1l.cl1 < 1100

If there are 100 rows that qualify from t1, and 100 rows from t2, and each
of these tables has 10 rows per page, and anindex height of 3, the costs are:

e 3index pagesto position the scan on the first matching row of t1

e Scanning 10 pages of t1

Adaptive Server Enterprise

CHAPTER 6 Accessing Methods and Costing for Joins and Subqueries

3index pages to position the scan on the first matching row of t2

Scanning 10 pages of t2

Costing for a full-merge with duplicate values

If the outer table in amergejoin has duplicate values, the inner table must
be accessed from the root page of the index for each duplicate value. This
query isthe same as the previous example:

select t1.c2, t2.c2

fromtl, t2

where tl.cl = t2.cl

and t1.c1 >= 1000 and tl1l.cl < 1100

If t1 isthe outer table, and there are duplicate values for some of the rows
int1, so that there are 120 rows between 1000 and 1100,with 20 duplicate
values, then each time one of the duplicate valuesis accessed, the scan of
t2 isrestarted from the root page of the index. If one row for t2 matches
each value from t1, the I/O costs for this query are:

3 index pages to position on the first matching row of t1
Scanning 12 pages of t1

3index pages to position on the first matching row of t2, plusan I/O
to read the data page

For the remaining rows:

e Ifthevaluefromtl isaduplicate, the scan of t2 restarts from the
root page of the index.

e For all valuesof t1 that are not duplicates, the scan remains
positioned on the leaf level of t2. The scan on the inner table
remains positioned on theleaf page asrows are returned until the
next duplicate value in the outer table requires the scan to restart
from the root page.

This formula gives the cost of the scan of the inner table for amerge join:

Cost of scan of inner = Num duplicate values * (index height + scan size)

+ Num unique values * scan size

Performance & Tuning: Optimizer and Abstract Plans 123

Access methods and costing for sort-merge joins

Costing sorts

The scan sizeisthe number of pages of the inner table that need to be read
for each value in the outer table. For tables where multiple inner rows
match, the scan size is the average number of pages that need to be read
for each outer row.

Sort cost during sort-merge joins depends on:

» Thesize of the worktables, which depends on the number of columns
and rows selected

» The setting for the number of sort buffers configuration parameter,
which determines how many pages of the cache can be used

These variables affect the number of merge runs required to sort the
worktable.

Worktable size for sort-merge joins

124

When aworktableis created for amerge join that requires a sort, only the
columns that are needed for the result set and for later joins in the query
execution are selected into the worktable. When theworktablefor thetitles
tableis created for the join shown in Figure 6-5 on page 120:

« Worktablel includesthe price and authors.state, because they are part
of theresult set, and pub_id, becauseit is needed for a subsequent join.

e Worktable2 includes the publishers.state column because it is part of
the result set, and the pub_id, because it is needed for the merge step.

The type column is used as a search argument while the rows from titles
are selected, but sinceit isnot used later in the query or in the result set, it
is not included in the worktable.

Each sort performed for a merge join can use up to number of sort buffers
for intermediate sort steps. Sort buffers for worktabl e sorts are allocated
from the cache used by tempdb. If the number of pagesto be sorted isless
the number of sort buffers, then the number of buffers reserved for the sort
is the number of pages in the worktable.

Adaptive Server Enterprise

CHAPTER 6 Accessing Methods and Costing for Joins and Subqueries

When merge joins cannot be used
Merge joins are not used:

For joinsusing <, >, <=, >=, or != on the join columns.
For outer joins, that is, queriesusing *= or =*, and left join and right join.

For queriesthat include atext or image column or Javaobject columns
in the select list or in awhere clause.

For subqueries that are not flattened or materialized in parallel
queries.

For multitable updates and del etes, such as:

update Rset a =5
fromR S, T
where ...

For joinsto perform referential integrity checksfor insert, update, and
delete commands. These joins are generated internally to check for
the existence of the column values. They usualy involve joins that
return asingle value from the referenced table. Often, these joins are
supported by indexes. There would be no benefit from using amerge
join for constraint checks.

When the number of bytesin arow for aworktable would exceed the
page-sizelimit (1960 bytes of user data) or thelimit on the number of
columns (1024). If the select list and required join columnsfor ajoin
would create a worktable that exceeds either of these limits, the
optimizer does not consider performing amergejoin at that point in
the query plan.

When the use of worktablesfor amerge join would require more than
the maximum allowable number of worktables for a query (14).

There are some limits on where merge joins can be used in the join order:

Merge joins can be performed only before an existence join. Some
distinct queries are turned into existence joins, and merge joinsare not
used for these.

Full-merge joins and |eft-merge joins can be performed only on the
outermost tables in the join order.

Performance & Tuning: Optimizer and Abstract Plans 125

Access methods and costing for sort-merge joins

Use of worker processes

When paralléel processing is enabled, merge joins can use multiple worker
processes to perform:

The scan that selects rows into the worktables
Worktable sort operations

The merge join and subsequent joins in the step

See “Parallel range-based scans’ on page 182 for more information.

Recommendations for improved merge performance
Here are some suggestions for improving sort-merge join performance:

126

To reducethe size of worktables select only needed columnsfor tables
used in mergejoins. Avoid using select * unless you need all columns
of the tables. This reduces the load on tempdb and the cost of sorting
the result tables.

If you are concerned about possible performance impacts of merge
joins or possible space problemsin tempdb, see Chapter 14,
“Overview on Abstract Plans,” in the book Performance and Tuning:
Abstract Plans for a discussion of how abstract query plans can help
determine which queries on your system use merge joins.

Look for opportunities for index covering. One exampleis queries
where joins are in the form:

select t1.¢c3, t3.c4

fromtl, t2, t3

wehre tl.cl =t2.cl1 and t2.¢c2 = t3.c2
and ...

and columnsfromt2 are not inthe select list, or only thejoin columns
arein the select list. An index on the join columns, t2(c1, c2) covers
the query, allowing a merge join to avoid accessing the data pages of
t2.

Mergejoins can useindexes created in ascending or descending order
when two tables are joined on multiple columns, such as these;

A.cl = B.cl and A c2 = B.¢c2 and A c3 = B.c3

Adaptive Server Enterprise

CHAPTER 6 Accessing Methods and Costing for Joins and Subqueries

The column order specified for the indexes must be an exact match,
or exactly thereverse, for al columns to be used asjoin predicates
when costing the join and accessing the data. If there isamismatch of
ordering in second or subsequent columns, only the matching
columns are used for the join, and the remaining columns are used to
restrict the results after the row has been retrieved. This table shows
some examples for the query above:

Index creation order

Clauses used as join
predicates

A(cl asc, €2 asc, €3 asc)
B(cl asc, c2 asc, c3 asc)

All three clauses.

A(cl asc, €2 asc, €3 asc)
B(cl desc, c2 desc, c3 desc)

All three clauses.

A(cl asc, €2 asc, €3 asc)
B(cl desc, c2 desc, ¢3 asc)

Thefirst two join clauses are used as
join predicates and the third clauseis
evaluated as arestriction on the
result.

A1l(cl asc, c2 desc, €3 desc)
B1(cl desc, c2 desc, €3 asc)

Only thefirst join clauseisused asa
join predicate. The remaining two
clausesisevauated asrestrictionson
the result set.

Index key ordering isgenerally chosen to eliminate sort costsfor order
by queries. Using compatible ordering for frequently joined tables can

also reduce join costs.

Enabling and disabling merge joins

You can enable and disable merge joins at the server and session level
using set sort_merge, or at the server level with the configuration
parameter enable sort-merge joins and JTC. This configuration parameter
also enables and disables join transitive closure.

Performance & Tuning: Optimizer and Abstract Plans

127

Reformatting strategy

At the server level

At the session level

To enable merge joins server-wide, set enable sort-merge joins and JTC to
1. The default valueis 0, which meansthat mergejoinsare not considered.
When thisvalue is set to 1, merge joins and join transitive closure are
considered for equijoins. If merge joins are disabled at the server level,
they can be enabled for a session with set sort_merge.

Join transitive closure can be enabled independently at the session level
with set jtc on.

See “Enabling and disabling join transitive closure’ on page 52.

The configuration parameter is dynamic, and can be reset without
restarting the server.

To enable merge joins for a session, use:
set sort_nerge on

To disable merge joins during a session, use:
set sort_nerge off

The session setting has precedence over the server-wide setting; you can
use mergejoinsin asession or stored procedure even if they are disabled
at the server-wide level.

Reformatting strategy

128

When atable islarge and has no useful index for ajoin, the optimizer
considers a sort merge join, and also considers creating and sorting a
worktable, and using a nested-loop join.

The process of generating aworktable with a clustered index and
performing a nested-loop join is known as reformatting.

Adaptive Server Enterprise

CHAPTER 6 Accessing Methods and Costing for Joins and Subqueries

Like asort-mergejoin, reformatting scans the tables and copies qualifying
rows to aworktable. But instead of the sort and merge used for amerge
join, Adaptive Server creates atemporary clustered index on the join
column for theinner table. In some cases, creating and using the clustered
index is cheaper than a sort-merge join.

The steps in the reformatting strategy are:

e Creating aworktable

e Inserting the needed columns from the qualifying rows

e Creating aclustered index on the join columns of the worktable

e Usingthe clustered index in the join to retrieve the qualifying rows
from each table

Themain cost of the reformatting strategy isthe time and I/O necessary to
create the worktable and to build the clustered index on the worktable.
Adaptive Server uses reformatting only when the reformatting cost isless
than the cost of a merge join or repeated table scans.

A showplan message indicates when Adaptive Server is using the
reformatting strategy and includes other messages showing the steps used
to build the worktabl es.

See “Reformatting Message” on page 108 in the book Performance and
Tuning: Monitoring and Analyzing for Performance.

Subquery optimization
Subqueries use the following optimizations to improve performance:
e FHattening — converting the subquery to ajoin
e Materializing — storing the subquery results in aworktable
e Short circuiting — placing the subquery last in the execution order
e Caching subquery results — recording the results of executions
The following sections explain these strategies.

See " showplan messagesfor subqueries’ on page 119 in the Performance
and Tuning: Monitoring and Analyzing for Performance for an
explanation of the showplan messages for subquery processing.

Performance & Tuning: Optimizer and Abstract Plans 129

Subquery optimization

Flattening in, any, and exists subqueries

Adaptive Server can flatten some quantified predicate subqueriestoajoin.
Quantified predicate subqueries areintroduced within, any, or exists. Each
result row in the outer query is returned once, and only once, if the
subquery condition evaluatesto TRUE.

When flattening can be done
* For any level of nesting of subqueries, for example:

sel ect au_l nane, au_fnane
from aut hors
where au_id in
(select au_id
fromtitleauthor
where title_id in
(select title_id
fromtitles
where type = "popul ar_conp"))

e For multiple subqueries in the outer query, for example:

select title, type

fromtitles

where title in
(select title
fromtitles, titleauthor, authors
where titles.title_id =titleauthor.title_id
and titleauthor.au_id = authors.au_id
and aut hors.state = "CA")

and title in
(select title
fromtitles, publishers
where titles.pub_id = publishers.pub_id
and publishers.state = "CA")

Exceptions to flattening

A subquery introduced with in, any, or exists cannot be flattened if one of
the following istrue:

» Thesubquery is correlated and contains one or more aggregates.

* Thesubquery isinthe select list or in the set clause of an update
statement.

130 Adaptive Server Enterprise

CHAPTER 6 Accessing Methods and Costing for Joins and Subqueries

e The subquery is connected to the outer query with or.
e Thesubquery is part of anisnull predicate.
e Thesubquery isthe outermost subquery in acase expression.

If the subquery computes a scalar aggregate, materialization rather than
flattening is used.

See “Materializing subquery results’ on page 135.

Flattening methods

Adaptive Server uses one of these flattening methods to resolve a
quantified predicate subquery using ajoin:

e A regular join—if the uniqueness conditions in the subgquery mean
that it returns a unique set of values, the subquery can be flattened to
use aregular join.

¢ Anexistencejoin, aso known as a semi-join —instead of scanning a
table to return all matching values, an existence join returns TRUE
when it findsthe first matching value and then stops processing. If no
matching value is found, it returns FAL SE.

¢ A unique reformat — the subquery result set is selected into a
worktable, sorted to remove duplicates, and a clustered index is built
on the worktable. The clustered index is used to perform aregular
join.

e A duplicate elimination sort optimization — the subquery is flattened
into aregular join that selects the resultsinto aworktable, then the
worktable is sorted to remove duplicate rows

Join order and flattening methods

A major factor in the choice of flattening method depends on the cost of
the possible join orders. For example, in ajoin of t1, t2, and t3:

select * fromtl, t2
where tl.cl =t2.cl
and t2.c2 in (select c3 fromt3)

If the cheapest join order ist1, t2, t3 or t2, t1, t3, aregular joinor or an
existencejoin isused. However, if it is cheaper to perform the join with t3
asthe outer table, say, t3, t1, t2, aunique reformat or duplicate elimination
sort is used.

Performance & Tuning: Optimizer and Abstract Plans 131

Subquery optimization

The resulting flattened join can include nested-loop joins or merge joins.
When an existence join is used, mergejoins can be performed only before
the existence join.

Flattened subqueries executed as regular joins

Quantified predicate subqueries can be executed as normal joins when the
result set of the subquery isaset of unique values. For example, if thereis
aunique index on publishers.pub_id, this single-table subquery is
guaranteed to return a set of unique values:

select title

fromtitles

where pub_id in (select pub_id
from publishers
where state = "TX")

With anonunique index on publishers.city, this query can also be executed
using aregular join:

sel ect au_l nane
fromauthors a
where exists (select city
from publishers p where p.city = a.city)

Although the index on publishers.city is not unique, the join can still be
flattened to anormal join if theindex is used to filter duplicate rows from
the query.

When a subquery is flattened to anormal join, showplan output shows a
normal join. If filtering is used, showplan output is not different; the only
diagnostic message isin dbcc traceon(310) output, where the method for
the table indicates “NESTED ITERATION with Tuple Filtering.”

Flattened subqueries executed as existence joins

Allin, any, and exists queriestest for the existence of qualifying valuesand
return TRUE as soon as a matching row is found.

The optimizer converts the following subguery to an existence join:

select title
fromtitles
where title_id in
(select title_id
fromtitleauthor)
and title like "A Tutorial %

132 Adaptive Server Enterprise

CHAPTER 6 Accessing Methods and Costing for Joins and Subqueries

The existence join query looks like the following ordinary join, although
it does not return the same results:

select title
fromtitles T, titleauthor TA
where T.title_id = TA title_id
and title like "A Tutorial %

In the pubtune database, two books match the search string on title. Each
book has multipleauthors, so it has multiple entriesin titleauthor. A regular
joinreturnsfiverows, but the subquery returnsonly two rows, onefor each
title_id, since it stops execution of the join at the first matching row.

When subqueries are flattened to use existence joins, the showplan output
shows output for ajoin, with the message “EXISTS TABLE: nested
iteration” asthejoin type for the table in the subquery.

Flattened subqueries executed using unique reformatting
To perform unique reformatting, Adaptive Server:

e Selectsrowsinto aworktable and sorts the worktable, removing
duplicates and creating a clustered index on the join key.

* Joinsthe worktable with the next table in the join order. If thereisa
nonunique index on publishers.pub_id, this query can use a unique
reformat strategy:

select title_id

fromtitles

where pub_id in

(select pub_id from publishers where state =
"TX")

This query is executed as:

select pub_id

i nto #publishers
from publishers
where state = "TX"

And after the sort removes duplicates and creates the clustered index:

select title_id
fromtitles, #publishers
where titles.pub_id = #publishers.pub_id

Performance & Tuning: Optimizer and Abstract Plans 133

Subquery optimization

showplan messages for unique reformatting show “Worktable created for
REFORMATTING” in Step 1, and “Using Clustered Index” on the
worktable in Step 2.

dbcc traceon(310) displays “REFORMATTING with Unique
Reformatting” for the method for the publishers table.

Flattened subqueries using duplicate elimination

134

When it is cheaper to place the subquery tables as outer tablesin the join
order, the query is executed by:

* Performing aregular join with the subquery flattened into the outer
query, placing resultsin aworktable.

» Sorting the worktable to remove duplicates.

For example, salesdetail has duplicate values for title_id, and it isused in
this subquery:

select title_id, au_id, au_ord

fromtitleauthor ta

where title_id in (select ta.title_id
fromtitles t, salesdetail sd
where t.title_id = sd.title_id
and ta.title_id =t.title_id
and type = "travel’ and qty > 10)

If the best join order for this query is salesdetall, titles, titleauthor, the
optimal join order can be used by:

e Selecting al of the query resultsinto aworktable

e Removing the duplicatesfrom the worktable and returning the results
to the user

showplan Messages for Flattened Subqueries Performing Sorts

showplan output includes two steps for subqueries that use normal joins
plus asort. Thefirst step shows “Worktablel created for DISTINCT” and
the flattened join. The second step shows the sort and select from the
worktable.

dbcc traceon(310) prints amessage for each join permutation when atable
or tables from a quantified predicate subquery is placed first in the join
order. Here is the output when the join order used for the query aboveis
considered:

2-0-1-

Adaptive Server Enterprise

CHAPTER 6 Accessing Methods and Costing for Joins and Subqueries

This join order created while converting an exists
join to a regular join, which can happen for
subqueries, referential integrity, and select

di stinct.

Flattening expression subqueries

Expression subqueries are included in a query’s select list or that are
introduced by >, >=, <, <=, =, or |=. Adaptive Server converts, or flattens,
expression subqueries to equijoinsif:

e Thesubquery joinson unigque columnsor returnsunique columns, and

e Thereisauniqueindex on the columns.

Materializing subquery results

In some cases, a subguery is processed in two steps: the results from the
inner query are materialized, or stored in atemporary worktableor internal
variable, before the outer query is executed. The subquery is executed in
one step, and the results of this execution are stored and then used in a
second step. Adaptive Server materializes these types of subqueries:

¢ Noncorrelated expression subqueries

e Quantified predicate subqueries containing aggregates where the
having clause includes the correlation condition

Noncorrelated expression subqueries

Noncorrelated expression subqueries must return a single value. When a
subquery isnot correlated, it returns the same value, regardless of the row
being processed in the outer query. The query is executed by:

e Executing the subquery and storing the result in an internal variable.
e Substituting the result value for the subquery in the outer query.
The following query contains a noncorrelated expression subquery:

select title_id
fromtitles
where total _sales = (select nmax(total _sal es)

Performance & Tuning: Optimizer and Abstract Plans 135

Subquery optimization

fromts_tenp)
Adaptive Server transforms the query to:

sel ect <internal _variable> = nmax(total _sal es)
fromts_tenp

select title_id
fromtitles
where total _sales = <internal variabl e>

The search clause in the second step of this transformation can be
optimized. If thereisanindex ontotal_sales, the query can useit. Thetotal
cost of amaterialized expressi on subquery isthe sum of the cost of thetwo
Separate queries.

Quantified predicate subqueries containing aggregates

136

Some subqueries that contain vector (grouped) aggregates can be
materialized. These are:

* Noncorrelated quantified predicate subqueries

» Correlated quantified predicate subqueries correlated only in the
having clause

The materialization of the subquery results in these two steps:

» Adaptive Server executesthe subquery first and storestheresultsina
worktable.

* Adaptive Server joinsthe outer table to the worktable as an existence
join. In most cases, thisjoin cannot be optimized because statisticsfor
the worktable are not available.

Materialization saves the cost of evaluating the aggregates once for each
row in the table. For example, this query:

select title_id
fromtitles
where total _sales in (select nmax(total _sales)
fromtitles
group by type)
Executesin these steps:
sel ect nmaxsal es = nmax(total _sal es)

into #work
fromtitles

group by type
select title_id

Adaptive Server Enterprise

CHAPTER 6 Accessing Methods and Costing for Joins and Subqueries

fromtitles, #work
where total _sal es = maxsal es

Thetota cost of executing quantified predicate subqueriesis the sum of
the query costs for the two steps.

When there are where clauses in addition to a subquery, Adaptive Server
executes the subquery or subqueries last to avoid unnecessary executions
of the subqueries. Depending on the clauses in the query, it is often
possible to avoid executing the subquery because less expensive clauses
can determine whether the row isto be returned:

e If any and clauses evaluate to FAL SE, the row will not be returned.
e If any or clauses evaluate to TRUE, the row will be returned.

In both cases, as soon as the status of the row is determined by the
evaluation of one clause, no other clauses need to be applied to that row.
This provides a performance improvement, because expensive subqueries
need to be executed less often.

Subquery introduced with an and clause

When and joins the clauses, evaluation stops as soon as any clause
evauatesto FALSE. Therow is skipped.

This query contains two and clauses, in addition to the correlated
subquery:

sel ect au_fnane, au_lnane, title, royaltyper
fromtitles t, authors a, titleauthor ta
where t.title_id = ta.title_id
and a.au_id = ta.au_id
and advance >= (sel ect avg(advance)
fromtitles t2
where t2.type = t.type)
and price > $100
and au_ord =1

Adaptive Server orders the execution steps to eval uate the subquery last,
after it evaluatesthe conditions on price and au_ord. If arow does not meet
an and condition, Adaptive Server discards the row without checking any
more and conditions and begins to evaluate the next row, so the subquery
is not processed unless the row meets all of the and conditions.The
maximum number of ANDsin aquery expression is 1024

Performance & Tuning: Optimizer and Abstract Plans 137

Subquery optimization

Subquery introduced with an or clause

If aquery’swhere conditions are connected by or, evaluation stops when
any clause evaluates to TRUE, and the row is returned.

This query contains two or clauses in addition to the subquery:

sel ect au_fnane, au_lnane, title
fromtitles t, authors a, titleauthor ta
where t.title_id =ta.title_id
and a.au_id = ta.au_id
and (advance > (sel ect avg(advance)
fromtitles t2
where t.type = t2.type)
or title = "Best laid plans"
or price > $100)

Adaptive Server orders the conditions in the query plan to evaluate the
subquery last. If arow meets the condition of the or clause, Adaptive
Server returns the row without executing the subquery, and proceeds to
evaluate the next row. The maximum number of ORsin aquery expression
is1024.

Subquery results caching

When it cannot flatten or materialize a subquery, Adaptive Server uses an
in-memory cache to store the results of each evaluation of the subquery.
While the query runs, Adaptive Server tracks the number of times a
needed subquery result isfound in cache. Thisis called acache hit ratio.
If the cache hit ratioishigh, it meansthat the cache is reducing the number
of timesthat the subquery executes. If the cache hit ratio islow, the cache
isnot useful, and it isreduced in size as the query runs.

Caching the subquery results improves performance when there are
duplicate valuesin the join columns or the correlation columns. It iseven
more effective when the values are ordered, asin a query that uses an
index. Caching does not help performance when there are no duplicate
correlation values.

Displaying subquery cache information

Theset statistics subguerycache on command displaysthe number of cache
hits and mi sses and the number of rowsin the cache for each subquery. The
following example shows subquery cache statistics:

138 Adaptive Server Enterprise

CHAPTER 6 Accessing Methods and Costing for Joins and Subqueries

set statistics subquerycache on

sel ect type, title_id
fromtitles
where price > all
(select price

fromtitles

where advance < 15000)
Statement: 1 Subquery: 1 cache size: 75 hits: 4925
m sses: 75

If the statement includes subqueries on either side of a union, the
subqueries are numbered sequentially through both sides of the union.

Optimizing subqueries

When queries containing subgueries are not flattened or materialized:

The outer query and each unflattened subquery are optimized oneat a
time.

The innermost subqueries (the most deeply nested) are optimized
first.

The estimated buffer cache usage for each subquery is propagated
outward to help evaluate the 1/0 cost and strategy of the outer queries.

In many queries that contain subqueries, a subquery is “nested over” to
one of theouter table scans by atwo-step process. First, the optimizer finds
the point in thejoin order where all the correlation columns are available.
Then, the optimizer searches from that point to find the table access that
qualifies the fewest rows and attaches the subquery to that table. The
subquery is then executed for each qualifying row from thetableitis
nested over.

Performance & Tuning: Optimizer and Abstract Plans 139

or clauses versus unions in joins

or clauses versus unions in joins

140

Adaptive Server cannot optimizejoin clausesthat are linked with or and it
may perform Cartesian products to process the query.

Note Adaptive Server optimizes search argumentsthat are linked with or.
This description applies only to join clauses.

For example, when Adaptive Server processes this query, it must look at
every row in one of the tables for each row in the other table:

sel ect *
fromtabl, tab2
where tabl.a = tab2.b
or tabl.x = tab2.y

If you use union, each side of the union is optimized separately:

sel ect *
fromtabl, tab2
where tabl.a = tab2.b
uni on all
sel ect *
fromtabl, tab2
where tabl.x = tab2.y

You can use union instead of union all to eliminate duplicates, but this
eliminates all duplicates. You may not get exactly the same set of
duplicates from the rewritten query.

Adaptive Server can optimize selectswith joinsthat are linked with union.
The result of or is somewhat like the result of union, except for the
treatment of duplicate rows and empty tables:

e union removes all duplicate rows (in a sort step); union all does not
remove any duplicates. The comparable query using or might return
some duplicates.

e A joinwith an empty table returns no rows.

Adaptive Server Enterprise

CHAPTER 7 Parallel Query Processing

This chapter introduces basic concepts and terminol ogy needed for
parallel query optimization, parallel sorting, and other parallel query
topics, and provides an overview of the commands for working with

parallel queries.
Topic Page
Types of queries that can benefit from parallel processing 142
Adaptive Server’'sworker process model 143
Types of parallel data access 147
Controlling the degree of parallelism 152
Commands for working with partitioned tables 158
Balancing resources and performance 161
Guiddlines for parallel query configuration 162
System level impacts 167
When parallel query results can differ 169

Other chaptersthat cover specific parallel processing topicsin more depth

include:

e For details on how the Adaptive Server optimizer determines

eligibility and costing for parallel execution, see Chapter 8, “Parallel
Query Optimization.”

To understand parallel sorting topics, see Chapter 9, “Parallel
Sorting.”

For information on object placement for parallel performance, see
“Partitioning tables for performance” on page 99 in the book
Performance and Tuning: Basics.

For information about locking behavior during parallel query
processing, see System Administration Guide

For information on showplan messages, see “ showplan messages for
parallel queries’ on page 114 in the book Performance and Tuning:
Monitoring and Analyzing for Performance.

Performance & Tuning: Optimizer and Abstract Plans 141

Types of queries that can benefit from parallel processing

e Tounderstand how Adaptive Server uses multiple engines, see
Chapter 4, “Using Engines and CPUs,” in the book Performance and
Tuning: Monitoring and Analyzing for Performance.

Types of queries that can benefit from parallel

processing

142

When Adaptive Server is configured for parallel query processing, the
optimizer evaluates each query to determine whether it is eligible for
parallel execution. If it iseigible, and if the optimizer determines that a
parallel query plan can deliver results faster than aserial plan, the query is
divided into componentsthat are processed simultaneously. Theresultsare
combined and delivered to the client in a shorter period of time than it
would take to process the query serially as a single component.

Parallel query processing can improve the performance of the following

types of queries:

* select statements that scan large numbers of pages but return
relatively few rows, such as:

* Tablescans or clustered index scans with grouped or ungrouped
aggregates
* Tablescansor clustered index scans that scan alarge number of

pages, but have where clausesthat return only asmall percentage
of therows

» select statements that include union, order by, or distinct, since these
gueries can popul ate worktablesin parallel, and can make use of
parallel sorting

» select statements that use merge joins can use parallel processing for
scanning tables and for performing the sort and merge steps

* select statements where the reformatting strategy is chosen by the
optimizer, since these can populate worktablesin parallel, and can
make use of paralléel sorting

» create index Statements, and the alter table...add constraint clauses that
create indexes, unique and primary key

e Thedbcc checkstorage command

Adaptive Server Enterprise

CHAPTER 7 Parallel Query Processing

Join queries can use parallel processing on one or more tables.

Commands that return large, unsorted result sets are unlikely to benefit
from parallel processing due to network constraints—in most cases,
results can be returned from the database faster than they can be merged
and returned to the client over the network.

Commandsthat modify data(insert, update, and delete), and cursors do not
run in parallel. The inner, nested blocks of queries containing subqueries
are never executed in parallel, but the outer block can be executed in
paralel.

Decision support system (DSS) queries that access huge tables and return
summary information benefit the most from parallel query processing. The
overhead of allocating and managing parallel queries makes parallel
execution less effective for online transaction processing (OLTP) queries,
which generally accessfewer rowsand join fewer tables. When aserver is
configured for parallel processing, only queries that access 20 data pages
or more are considered for parallel processing, so most OLTP queriesrun
in serial.

Adaptive Server’'s worker process model

Adaptive Server uses a coor dinating process and multiple worker
processesto execute queriesin parallel. A query that runsin parallel with
eight worker processes is much like eight serial queries accessing one-
eighth of the table, with the coordinating process supervising the
interaction and managing the process of returning results to the client.
Each worker process uses approximately the same amount of memory as
auser connection. Each worker process runs as a task that must be
scheduled on an engine, scans data pages, queues disk 1/0Os, and performs
inmany wayslikeany other task on the server. Onemajor differenceisthat
in last phase of query processing, the coordinating process manages
merging the results and returning them to the client, coordinating with
worker processes.

Figure 7-1 shows the events that take place during parallel query
processing:

1 Theclient submitsaquery.

2 Theclient task assigned to execute the query becomes the
coordinating process for parallel query execution.

Performance & Tuning: Optimizer and Abstract Plans 143

Adaptive Server’s worker process model

3 The coordinating process requests four worker processes from the
pool of worker processes. The coordinating process together with the
worker processesis called afamily.

4 Theworker processes execute the query in parallel.

The coordinating process returns the results produced by all the
worker processes.

The serial client shown in the lower-right corner of Figure 7-1 submits a
query that is processed serially.

Figure 7-1: Worker process model

" Adaptive Server
// . m

-
N
N
N

Pool of worker processes

3. Request for
worker
1. Parallel client RS N
©
o)
QS’Q&O@% \
. \SO}Q‘ 4. Worker processes |
Query RN scan the table in/ |
S parallel

é& Q\t} \AAAL [
o ()0 \\:;;
// Serial client
.Results returned i i
5. Results returned Task 1

" Result

" Query

During query processing, the tasks are tracked in the system tables by a

family 1D (fid). Each worker process for afamily has the same family ID
and its own unique server process ID (spid). System procedures such as

sp_who and sp_lock display both the fid and the spid for parallel queries,

allowing you to observe the behavior of all processesin afamily.

144 Adaptive Server Enterprise

CHAPTER 7 Parallel Query Processing

Parallel query execution

Figure 7-2 shows how parallel query processing reduces response time
over the same query running in serial. In parallel execution, three worker
processes scan the data pages. The times required by each worker process
may vary, depending on the amount of data that each process needs to
access. Also, ascan can betemporarily blocked dueto locks on data pages
held by other users. When all of the data has been read, the results from
each worker process are merged into asingleresult set by the coordinating
process and returned to the client.

Figure 7-2: Relative execution times for serial and parallel query

execution
Parse, Data access Return
optimize, results
compile
>« e
Serial execution
of a group by query
Bttt sttt
Coordinating process _
Parallel time

execution of the Worker process

same query with
3 worker

processes - Worker process

- <{4— <>

Parse, Dataaccess Merge and
optimize, return results

compile

Worker process

The total amount of work performed by the query running in paralld is
greater than the amount of work performed by the query running in serial,
but the response time is shorter.

Performance & Tuning: Optimizer and Abstract Plans 145

Adaptive Server’s worker process model

Returning results from parallel queries

146

Results from parallel queries are returned through one of three merge
strategies, or asthe final step in asort. Parallel queries that do not have a
final sort step use one of these merge types:

e Queriesthat contain avector (grouped) aggregate use worktablesto
store temporary results; the coordinating process merges the results
into one worktable and returns results to the client.

e Queriesthat contain ascalar (ungrouped) aggregate use internal
variables, and the coordinating process performs the final
computations to return the results to the client.

e Queriesthat do not contain aggregates and that do not use clausesthat
do not require afinal sort can return results to the client as the tables
are being scanned. Each worker process stores resultsin aresult
buffer and uses address locks to coordinate transferring the results to
the network buffers for the task.

More than one merge type can be used when queries require several steps
or multiple worktables.

See “showplan messages for parallel queries’ on page 114 in the
Performance and Tuning: Monitoring and Analyzing for Performancefor
more information on merge messages.

For parallel queriesthat include an order by clause, distinct, or union,
results are stored in aworktable in tempdb, then sorted. If the sort can
benefit from parallel sorting, aparallel sortisused, and resultsarereturned
to the client during the final merge step performed by the sort.

For more information on how parallel sorts are performed, see Chapter 9,
“Parallel Sorting.”

Note Since parallel queries use multiple processesto scan data pages,
queriesthat do not use aggregates and do not include afinal sort step may
return resultsin different order than serial queriesand may return different
results for queries with set rowcount in effect and for queries that select
into alocal variable.

For details and solutions, see “When parallel query results can differ” on
page 169.

Adaptive Server Enterprise

CHAPTER 7 Parallel Query Processing

Types of parallel data access

Adaptive Server accesses data in parallel in different ways, depending
configuration parameter settings, table partitioning, and the availability of
indexes. The optimizer may choose a mix of serial and parallel methods
for queriesthat involve multiple tables or multiple steps. Parallel methods
include:

¢ Hash-based table scans
¢ Hash-based nonclustered index scans

e Partition-based scans, either full table scans or scans positioned with
aclustered index

¢ Range-based scans during merge joins
The following sections describe some of the methods.
For more examples, see Chapter 8, “Parallel Query Optimization.”

Figure 7-3 shows a scan on an allpages-locked table executed in serial by
asingletask. The task follows the table's page chain to read each page,
stopping to perform physical 1/0 when needed pages are not in the cache.

Figure 7-3: A serial task scans data pages

Single page chain

/X b

/

Performance & Tuning: Optimizer and Abstract Plans 147

Types of parallel data access

Hash-based table scans

Figure 7-4 shows how three worker processes divide the work of
accessing data pages from an all pages-locked table during a hash-based
table scan. Each worker process performsalogical I/0 on every page, but
each process examines rows on only one-third of the pages, as indicated
by the differently shaded pages. Hash-based table scans are used only for
the outer query inajoin.

With only one engine, the query still benefits from parallel access because
one worker process can execute while others wait for 1/0O. If there are
multiple engines, some of the worker processes could be running
simultaneously.

Figure 7-4: Worker processes scan an unpartitioned table

A Single Page Chain

WP2 I 1
WP3

Multiple worker processes

Hash-based table scans increase the logical 1/0O for the scan, since each
worker process must access each page to hash on the page ID. For data
only-locked tables, hash-based table scans hash either on the extent ID or
the allocation page ID, so that only a single worker process scans a page,
and logical 1/0 does not increase.

148 Adaptive Server Enterprise

CHAPTER 7 Parallel Query Processing

Partition-based scans

Figure 7-5 shows how a query scans atable that has three partitions on
three physical disks. With a single engine, this query can benefit from
paralléel processing because one worker process can execute while others
sleep waiting for 1/O or waiting for locks held by other processes to be
released. If multiple engines are available, the worker processes can run
simultaneously. This configuration canyield high parallel performance by
providing 1/O parallelism.

Figure 7-5: Multiple worker processes access multiple partitions

Table on 3 data_devl data_dev2 data_dev3
partitions

W NEATEN

Hash-based index scans

Figure 7-6 shows ahash-based index scan. Hash-based i ndex scans can be
performed using nonclustered indexes or clustered indexes on data-only-
locked tables. Each worker process navigates higher levels of the index
and reads the |eaf-level pages of the index. Each worker process then
hashes on either the datapage ID or the key value to determine which data
pagesor datarowsto process. Reading every | eaf page producesnegligible
overhead.

Performance & Tuning: Optimizer and Abstract Plans 149

Types of parallel data access

Index Pages

Figure 7-6: Hash-based, nonclustered index scan

WP2 WP3

v

[er [l e

Data Pages

. Pages read by worker process 1

'4/

/’ / [] Pages read by worker process 2

f D Pages read by worker process 3

Parallel processing for two tables in a join

150

Figure 7-7 shows a nested-loop join query performing a partition-based
scan on atablewith three partitions, and a hash-based index scan, with two
worker processes on the second table. When parallel access methods are
used on more than one table in a nested-loop join, the total number of
worker processes required is the product of worker process for each scan.
In this case, six workers perform the query, with each worker process
scanning both tables. Two worker processes scan each partition in thefirst
table, and all six worker processes navigate the index tree for the second
table and scan the leaf pages. Each worker process accessesthe data pages
that correspond to its hash value.

The optimizer chooses aparallel plan for atable only when a scan returns
20 pages or more. These types of join queries require 20 or more matches
on thejoin key for the inner table in order for the inner scan to be
optimized in parallél.

Adaptive Server Enterprise

CHAPTER 7 Parallel Query Processing

Figure 7-7: Join query using different parallel access methods on

each table
Tablel:
Partitioned table data_dev1 data_dev2 data_dev3
on 3 devices
Table2:

. Index Pages
Nonclustered index g

with more than 20
matching rows for
each join key

Data Pages

Pt

showplan messages

showplan prints the degree of parallelism each time atableis accessed in
paralel. The following example shows the messages for each table in the
joinin Figure 7-7:

Performance & Tuning: Optimizer and Abstract Plans 151

Controlling the degree of parallelism

Executed in parallel with a 2-way hash scan.
Executed in parallel with a 3-way partition scan.

showplan also prints a message showing the total number of worker
processes used. For the query shown in Figure 7-7, it reports:

Executed in parallel by coordinating process and 6
wor ker processes.

See Chapter 8, “Parallel Query Optimization,” for additional examples.

See “showplan messages for parallel queries’ on page 114 in the
Performance and Tuning: Monitoring and Analyzing for Performancefor
more information. .

Controlling the degree of parallelism

152

A parallel query’s degree of parallelism isthe number of worker
processes used to execute the query. This number depends on several
factors, including:

e Thevaluesto which of the parallel configuration parameters or the
session-level limits,

(see Table 7-1 and Table 7-2)
e The number of partitions on atable (for partition-based scans)
e Thelevel of parallelism suggested by the optimizer

e The number of worker processes that are available at the time the
query executes.

You can establish limits on the degree of parallelism:

e Server-wide — using sp_configure with parameters shown in Table 7-
1. Only a System Administrator can use sp_configure.

e For asession — using set with the parameters shownin Table 7-2. All
users can run set; it can also be included in stored procedures.

e Inaselect query — using the parallel clause, as shown in “ Controlling
parallelism for aquery” on page 156.

Adaptive Server Enterprise

CHAPTER 7 Parallel Query Processing

Configuration parameters for controlling parallelism

The configuration parameters that give you control over the degree of
parallelism server-wide are shown in Table 7-1.

Table 7-1: Configuration parameters for parallel execution

Parameter Explanation Comment

number of worker processes The maximum number of worker processesavailablefor Restart of server
all parallel queries. Each worker process reguires required
approximately as much memory as a user connection.

max parallel degree The number of worker processes that can be used by a Dynamic, no

single query. It must be equal to or less than number of restart required
worker processes and equal to or greater than max scan
parallel degree.

max scan parallel degree The maximum number of worker processesthat canbe Dynamic, no
used for a hash scan. It must be equal to or less than restart required
number of worker processes and max parallel degree.

Configuring number of worker processes affects the size of the data and
procedure cache, so you may want to change the value of total memory
also.

For more information see the System Administration Guide.

When you change max parallel degree or max scan parallel degree, all
query plansin cache are invalidated, so the next execution of any stored
procedure or trigger recompiles the plan and uses the new values.

How limits apply to query plans

When queries are optimized, the configuration parameters affect query
plans.

* max parallel degree limits:
e The number of worker processes for a partition-based scan

e Thetota combined number of worker processes for nested-loop
join queries, where parallel access methods are used on more
than onetable

e The number of worker processes used for the merge and sort
steps in merge joins

e Thenumber of worker processesthat can be used by parallel sort
operations

Performance & Tuning: Optimizer and Abstract Plans 153

Controlling the degree of parallelism

e max scan parallel degree limits the number of worker processes for
hash-based table scans and index scans.

How the limits work in combination

You might configure number of worker processes to 50 to alow multiple
parallel queries to operate at the same time. If the table with the largest
number of partitions has 10 partitions, you might set max parallel degree to
10, limiting al select queriesto amaximum of 10 worker processes. Since
hash-based scans operate best with 2—3 worker processes, max scan
parallel degree could be set to 3.

For asingle-table query, or ajoin involving serial access on other tables,
some of the parallel possibilities allowed by these values are:

* Paradléd partition scans on any tables with 2—10 partitions
* Hash-based table scans with up to 3 worker processes

» Hash-based nonclustered index scans on tables with nonclustered
indexes, with up to 3 worker processes

For nested-loop joins where parallel methods are used on more than one
table, some possible parallel choices are:

» Joins using a hash-based scan on one table and partitioned-based
scans on tables with 2 or 3 partitions

» Joinsusing partition- based scans on both tables. For example:

* A parallel degree of 3 for apartitioned table multiplied by max
scan parallel degree of 3 for a hash-based scan requires 9 worker
Processes.

* Atablewith 2 partitions and atable with 5 partitions requires 10
worker processes for partition-based scans on both tables.

* Tableswith 4-10 partitions can beinvolved in ajoin, with one or
more tables accessed in serial.

For mergejoins:

» Forafull-mergejoin, 10 worker processes scan the base tables (unless
these are fewer than 10 distinct values on the join keys); the number
of partitions on the tablesis not considered.

» For amergejoin that scans a table and selects rows into a worktable:

154 Adaptive Server Enterprise

CHAPTER 7 Parallel Query Processing

e Thescanthat precedes the mergejoin may be performedin serial
orinparalel. Thedegree of parallelismisdeterminedintheusual
way for such a query.

e For the merge, 10 worker processes are used unless there are
fewer distinct values in the join key.

e For the sort, up to 10 worker processes can be used.

For fast performance, while creating a clustered index on atable with 10
partitions, the setting of 50 for number of worker processes allows you to
set max parallel degree to 20 for the create index command.

For more information on configuring worker processes for sorting, see
“Worker process requirements for parallel sorts’ on page 217.

Examples of setting parallel configuration parameters
The following command sets number of worker processes:
sp_configure "nunber of worker processes", 50

After arestart of the server, these commands set the other configuration
parameters:

sp_configure "max parallel degree", 10
sp_configure "max scan parallel degree", 3

To display the current settings for these parameters, use:

sp_configure "Parallel Query"

Using set options to control parallelism for a session

Two set options|et you restrict the degree of parallelism on asession basis
or in stored procedures or triggers. These options are useful for tuning
experiments with parallel queries and can also be used to restrict
noncritical queriesto runin serial, so that worker processes remain
available for other tasks. The set options are summarized in Table 7-2.

Table 7-2: set options for parallel execution tuning
Parameter Function

parallel_degree Sets the maximum number of worker processes for a query in a session, stored
procedure, or trigger. Overrides the max parallel degree configuration parameter,
but must be less than or equal to the value of max parallel degree.

Performance & Tuning: Optimizer and Abstract Plans 155

Controlling the degree of parallelism

Parameter

Function

scan_parallel_degree

Sets the maximum number of worker processes for a hash-based scan during a
specific session, stored procedure, or trigger. Overrides the max scan parallel
degree configuration parameter but must be less than or equal to the value of max
scan parallel degree.

If you specify avaluethat istoo largefor set either option, the value of the
corresponding configuration parameter is used, and a message reports the
valuein effect. While set parallel_degree or set scan_parallel_degree isin
effect during a session, the plans for any stored procedures that you
execute are not placed in the procedure cache. Procedures executed with
these options in effect may produce suboptimal plans.

set command examples

Thisexamplerestrictsall queries started in the current session to 5 worker
processes:

set parallel_degree 5

While this command isin effect, any query on atable with morethan 5
partitions cannot use a partition-based scan.

To remove the session limit, use:

set parallel_degree O
or
set scan_parallel _degree 0

To run subsequent queriesin serial mode, use:

set parallel _degree 1
or
set scan_parallel _degree 1

Controlling parallelism for a query

156

The parallel extension to the from clause of aselect command allows users
to suggest the number of worker processes used in aselect statement. The
degree of parallelism that you specify cannot be more than the value set
with sp_configure or the session limit controlled by aset command. If you
specify ahigher value, the specification isignored, and the optimizer uses
the set or sp_configure limit.

The syntax for the select statement is:

Adaptive Server Enterprise

CHAPTER 7 Parallel Query Processing

select ...
from tablename [([index index_name]
[parallel [degree_of_parallelism | 1]]
[prefetch size] [lrujmru])] ,
tablename [([index index_name]
[parallel [degree_of_parallelism | 1]
[prefetch size] [Irujmru])] ...

Query level parallel clause examples

To specify the degree of parallelism for asingle query, includeparallel after
the table name. This example executes in serial:

select * from huge_table (parallel 1)

This example specifiestheindex to usein the query, and setsthe degree of
paraleismto 2:

sel ect * fromhuge_table (index ncix parallel 2)

See " Suggesting a degree of parallelism for aquery” on page 53 for more
information.

Worker process availability and query execution

At runtime, if the number of worker processes specified in the query plan
isnot available, Adaptive Server creates an adjusted query plan to execute
the query using fewer worker processes. Thisiscalled aruntime
adjustment, and it can result in serial execution of the query.

A runtime adjustment now and then probably indicates an occasional,
momentary bottleneck. Frequent runtime adjustments indicate that the
system may not be configured with enough worker processes for the
workload.

See * Runtime adjustments to worker processes’ on page 194 for more
information.

You can a'so use the set process_limit_action option to control whether a
query or stored procedure should silently use an adjusted plan, whether it
should warn the user, or whether the command should fail if it cannot use
the optimal number of worker processes.

See“Using set process_limit_action” on page 204 for more information.

Runtime adjustments are transparent to end users, except:

Performance & Tuning: Optimizer and Abstract Plans 157

Commands for working with partitioned tables

A query that normally runsin parallel may perform very slowly in
serial.

If set process_limit_action isin effect, they may get awarning, or the
query may be aborted, depending on the setting.

Other configuration parameters for parallel processing

Two additional configuration parametersfor parallel query processing are:

number of sort buffers — configures the maximum number of buffers
that parallel sort operations can use from the data cache.

See “ Caches, sort buffers, and paralel sorts’ on page 221.

memory per worker process — establishes a pool of memory that all
worker processes use for messaging during query processing. The
default value, 1024 bytes per worker process, provides ample spacein
almost all cases, so this value should not need to be reset.

See “Worker process management” on page 24 in the book
Performance and Tuning: Monitoring and Analyzing for
Performance for information on monitoring and tuning this value.

Commands for working with partitioned tables

Detailed steps for partitioning tables, placing them on specific devices,
and loading data with parallel bulk copy are in Chapter 6, “Controlling
Physical Data Placement,” in the book Performance and Tuning: Basics.
The commands and tasks for creating, managing, and maintaining
partitioned tables are:

158

alter database — to make devices available to the database.

sp_addsegment —to create a segment on adevice; sp_extendsegment
to extend the segment over additional devices, and sp_dropsegment to
drop the log and system segments from data devices.

create table...on segment_name —to create a table on a segment.

alter table...partition and alter table...unpartition — to add or remove
partitioning from atable.

Adaptive Server Enterprise

CHAPTER 7 Parallel Query Processing

e create clustered index —to distribute the dataevenly acrossthetable’s
partitions.

e bep (bulk copy) —with the partition number added after the table
name, to copy data into specific table partitions.

e sp_helpartition —to display the number of partitions and the
distribution of datain partitions, and sp_helpsegment to check the
space used on each device in a segment and on the segment as a
whole.

Figure 7-8 shows a scenario for creating a new partitioned table.

Performance & Tuning: Optimizer and Abstract Plans 159

Commands for working with partitioned tables

Figure 7-8: Steps for creating and loading a new partitioned table

alter database makes devices available to — — ——
the database.

~_ ~ S~

sp_addsegment creates a segment on a

device, sp_extendsegment extends the — — [
segment over additional devices, and
sp_dropsegment drops log and system __ , ,

segments from data devices.

create table...on segment_name creates
the table on the segment.

alter table...partition creates a partition on —— —— ——
each device.

Parallel bulk copy loads data into
each partition from an input data
file.

T10 cooking 6.95 AUnified Approach to...
T10001 cooking 42,95 Scheme for aninternet...
T10007 cooking 47.95 Internet Protocol Ha...
T10023 cooking 46.95 Proposed change inP...
T10029 cooking 7495 System Summary for...
710032 fiction 35.95 Cyberpunk

T10035 cooking 49.95 Achieving reliable coo...
T10038 cooking 12.95 Reliable Recipes
T25355 business 69.95 Plan and schedule 7
T39076 psychology 10.95 Reallocation and Urb...
T56358 UNDECIDED 39.95 New title

T75542 romance 4495 Rosalie’s Romance
T10056 cooking 1.95 Brave New Cookery
T25361 business 4295 Network Nuisance
T39082 psychology 6.95 On the problem...
authentication for network mail

160 Adaptive Server Enterprise

CHAPTER 7 Parallel Query Processing

Balancing resources and performance

CPU resources

Maximum parallel performance requires multiple CPUs and multiple I/O
devices to achieve I/O parallelism. As with most performance
configuration, parallel systemsreach apoint of diminishing returns, and a
later point where additional resources do not yield performance
improvement.

You need to determine whether queriesare CPU-intensive or |/O-intensive
and when your performance is blocked by CPU saturation or 1/0O
bottlenecks. If CPU utilization islow, spreading a table across more
devices and using more worker processes increases CPU utilization and
provides improved response time. Conversely, if CPU utilization is
extremely high, but the 1/0 system is not saturated, increasing the number
of CPUs can provide performance improvement.

Without an adequate number of engines (CPU resources), tasks and
worker processes must wait for accessto Adaptive Server engines, and
response time can be dow. Many factors determine the number of engines
needed by the system, such as whether the query is CPU intensive or 1/O
intensive, or, at different times, both:

* Worker processes tend to spend time waiting for disk 1/0 and other
system resources while other tasks are active on the CPU.

¢ Queriesthat perform sorts and aggregates tend to be more CPU-
intensive.

¢ Execution classes and engine affinity bindings on parallel CPU-
intensive queries can have complex effects on the system. If there are
not enough CPUSs, performance for both serial and parallel queries,
can be degraded.

See Chapter 5, “Distributing Engine Resources,” in the book
Performance and Tuning: Basics for more information.

Performance & Tuning: Optimizer and Abstract Plans 161

Guidelines for parallel query configuration

Disk resources and I/O

In most cases, configuring the physical layout of tables and indexes on
devicesisthe key to parallel performance. Spreading partitions across
different disks and controllers can improve performance during partition-
based scanning if al of the following conditions are true:

« Dataisdistributed over different disks.
* Those disks are distributed over different controllers.

e There are enough worker processes available at runtime to allocate
one worker process for each partition.

Tuning example: CPU and 1I/O saturation

One experiment on a CPU-bound query found near-linear scaling in
performance by adding CPUs until the 1/0 subsystem became saturated.
At that point, additional CPU resourcesdid not improve performance. The
guery performs atable scan on an 800MB table with 30 partitions, using
16K 1/O. Table 7-3 shows the CPU scaling.

Table 7-3: Scaling of engines and worker processes

Throughput
Elapsed time, CPU per device,
Engines (in seconds) utilization I/0O saturation per second
1 207 100% Not saturated 13MB
2 100 98.7% Not saturated 2TMB
4 50 98% Not saturated .53MB
8 27 93% 100% saturated .99MB

Guidelines for parallel query configuration

Parallel processing places very different demands on system resources
than running the same queriesin serial. Two componentsin planning for
parallel processing are:

* A good understanding of the capabilities of the underlying hardware
(especially disk drives and controllers) in use on your system

* A set of performance goals for queries you plan to runin parallel

162 Adaptive Server Enterprise

CHAPTER 7 Parallel Query Processing

Hardware guidelines

Some guidelines for hardware configuration and disk 1/0O speeds are:

Each Adaptive Server engine can support about five worker processes
before saturating on CPU utilization for CPU-intensive queries. If
CPU is not saturated at thisratio, and you want to improve paralléel
query performance, increase the ratio of worker processes to engines
until 1/0 bandwidth becomes a bottleneck.

For sequential scans, such as table scans using 16K 1/O, it may be
possible to achieve 1.6MB per second, per device, that is, 100 16K
1/0s, or 800 pages per second, per device.

For queries doing random access, such as nonclustered index access,
the figure is approximately 50 2K 1/Os, or 50 pages per second, per
device.

One |/O controller can sustain atransfer rate of up to 10-18MB per
second. This means that one SCSI 1/O controller can support up to

6 —10 devices performing sequential scans. Some high-end disk
controllers can support more throughput. Check your hardware
specifications, and use sustai ned rates, rather than peak rates, for your
calculations.

RAID disk arrays vary widely in performance characteristics,
depending on the RAID level, the number of devicesin the stripe set,
and specific features, such as caching. RAID devices may provide
better or worse throughput for parallelism than the same number of
physical disks without striping. In most cases, start your parallel
query tuning efforts by setting the number of partitions for tables on
these devices to the number of disks in the array.

Working with your performance goals and hardware guidelines

The following examples use the hardware guidelines and Table 7-3 to
provideillustrate how to use parallelism to meet performance goals:

The number of partitionsfor atable should belessthan or equal tothe
number of devices. For the experiment showing scaling of engines
and worker processes shown in Table 7-3, there were 30 devices
available, so 30 partitions were used. Performanceis optimal when
each partition is placed on a separate physical device.

Performance & Tuning: Optimizer and Abstract Plans 163

Guidelines for parallel query configuration

e Determine the number of partitions based on the 1/0 throughput you
want to achieve. If you know your disks and controllers can sustain
1MB per second per device, and you want a table scan on an 800MB
table to complete in 30 seconds, you need to achieve approximately
27MB per second total throughput, so you would need at least 27
devices with one partition per device, and at least 27 worker
processes, one for each partition. These figures are very close to the
I/O ratesin the examplein Table 7-3.

« Estimate the number of CPUs, based on the number of partitions, and
then determine the optimum number by tracking both CPU utilization
and /O saturation. The example shown in Table 7-3 had 30 partitions
available. Following the suggestions in the hardware guidelines of
one CPU for each five devices suggests using six engines for CPU-
intensive queries. At that level, 1/0 was not saturated, so adding more
engines improved response time.

Examples of parallel query tuning

The following examples use the 1/0 capabilities described in “Hardware
guidelines’ on page 163.

Improving the performance of a table scan

164

Thisexample shows how atable might be partitioned to meet performance
goals. Queriesthat scan whole tables and return alimited number of rows
are good candidates for parallel performance. An example is this query
containing group by:

sel ect type, avg(price)
fromtitles

group by type
Here are the performance statistics and tuning goals:

Tablesize 48,000 pages
Access method Table scan, 16K 1/0
Seridl response time 60 seconds

Target performance 6 seconds

The stepsfor configuring for parallel operation are:

Adaptive Server Enterprise

CHAPTER 7 Parallel Query Processing

« Create 10 partitionsfor thetable, and evenly distribute the data across
the partitions.

e Set the number of worker processes and max parallel degree
configuration parametersto at least 10.

e Check that the table uses a cache configured for 16K 1/0.

In serial execution, 48,000 pages can be scanned in 60 seconds using 16K
1/0. In parallel execution, each process scans 1 partition, approximately
4,800 pages, in about 6 seconds, again using 16K 1/0.

Improving the performance of a nonclustered index scan

The following example shows how performance of a query using a
nonclustered index scan can be improved by configuring for a hash-based
scan. The performance statistics and tuning goals are:

Data pages accessed 1500

Access method Nonclustered index, 2K 1/O
Serid response time 30 seconds

Target performance 6 seconds

The steps for configuring for parallel operation are:

e Set max scan parallel degree configuration parametersto 5to use 5
worker processes in the hash-based scan.

e Set number of worker processes and max parallel degree to at least 5.

In parallel execution, each worker process scans 300 pages in 6 seconds.

Guidelines for partitioning and parallel degree

Here are some additional guidelines to consider when you are moving
from serial query execution to parallel execution or considering additional
partitioning or additional worker processes for a system already running
parald queries:

e If thecache hit ratio for atable is more than 90 percent, partitioning
the table will not greatly improve performance. Since most of the
needed pages are in cache, there is no benefit from the physical 1/0
paralelism.

Performance & Tuning: Optimizer and Abstract Plans 165

Guidelines for parallel query configuration

If CPU utilization is more than 80 percent, and a high percentage of
the queriesinyour system can make use of parallel queries, increasing
the degree of parallelism may cause CPU saturation. This guideline
also applies to moving from all-serial query processing to parallel
query processing, where a large number of queries are expected to
make use of parallelism. Consider adding more engines, or start with
alow degree of parallelism.

If CPU utilizationishigh, and afew usersrunlarge DSS querieswhile
most users execute OLTP queries that do not operatein parallel,
enabling or increasing parallelism can improve response time for the
DSS queries. However, if response time for OLTP queriesiscritical,
start with alow degree of parallelism, or make small changesto the
existing degree of parallelism.

If CPU utilization islow, move incrementally toward higher degrees
of parallelism. On a system with two CPUs, and an average CPU
utilization of 60 percent, doubling the number of worker processes
would saturate the CPUs.

If 1/O for the devicesis well below saturation, you may be ableto
improve performance for some queries by breaking the one-partition-
per-device guideline. Except for RAID devices, alwaysuseamultiple
of the number of logical devicesin asegment for partitioning; that is,
for atable on a segment with four devices, you can use eight
partitions. Doubling the number of partitions per device may cause
extra disk-head movement and reduce /O parallelism. Creating an
index on any partitioned table that has more partitions than devices
prints awarning message that you can ignore in this case.

Experimenting with data subsets

166

Parallel query processing can provide the greatest performance gains on
your largest tables and most |/O-intensive queries. Experimenting with
different physical layouts on huge tables, however, is extremely time-
consuming. Here are some suggestions for working with smaller subsets
of data:

Adaptive Server Enterprise

CHAPTER 7 Parallel Query Processing

For initial exploration to determine the types of query plans that
would be chosen by the optimizer, experiment with a proportional
subset of your data. For example, if you have a 50-million row table
that joinsto a5-million row table, you might choose to work with just
one-tenth of the data, using 5 million and 500,000 rows. Select
subsets of the tables that provide valid joins. Pay attention tojoin
selectivity—if the join on the table would run in parallel because it
would return 20 rows for a scan, be sure your subset reflects thisjoin
selectivity.

The optimizer does not take underlying physical devicesinto account;
only the partitioning on the tables. During exploratory tuning work,
distributing your data on separate physical deviceswill giveyou more
accurate predictions about the probable characteristics of your
production system using the full tables. You can partition tables that
reside on asingle device and ignore any warning messages during the
early stages of your planning work, such as testing configuration
parameters, table partitioning and checking your query optimization.
Of course, this does not provide accurate /O statistics.

Working with subsets of data can help determine parallel query plansand
the degree of parallelism for tables. One differenceis that with smaller
tables, sortsare performed in serial that would be performed in parallel on
larger tables.

System level impacts

Locking issues

In addition to other impacts described throughout this chapter, here are
some concernsto be aware of when adding parallelism to mixed DSS and
OLTP environments. Your goal should be improved performance of DSS
through parallelism, without adverse effects on the performance of OLTP
applications.

Look out for lock contention:

e Paradlel queries are slower than queries bench marked without
contention. If the scansfind many pageswith exclusivelocksdue
to update transactions, performance can change.

Performance & Tuning: Optimizer and Abstract Plans 167

System level impacts

Device issues

Procedure cache effects

Parallel query plansareslightly larger than serial query plansbecause they
contain extrainstructions on the partition or pages that the worker
processes need to access.

168

If parallel queries return alarge number of rows using network
buffer merges, there islikely to be high contention for the
network buffer. Queries hold shared |ocks on data pages during
the scans and cause data modifications to wait for the shared
locks to be released. You may need to restrict queries with large
result setsto serial operation.

If your applications experience deadlocks when DSS queries are
runningin serial, you may see anincreasein deadlockswhenyou
runthese queriesin parallel. Thetransaction that isrolled back in
these deadlocks islikely to be the OLTP query, because the
rollback decision for deadlocksisbased on the accumulated CPU
time of the processes involved.

See “Deadlocks and concurrency” on page 81 in the book
Performance and Tuning: Locking for more information on
deadlocks.

Configuring multiple devicesfor tempdb should improve performance for
parallel queriesthat require worktables, including those that perform sorts
and aggregates and those that use the reformatting strategy.

During ad hoc queries, each worker process needs a copy of the query
plan. Space from the procedure cache is used to hold these plansin
memory, and is available to the procedure cache again when the ad hoc
query compl etes.

Stored procedures in cache are invalidated when you change the max
parallel degree and max scan parallel degree configuration parameters. The
next time aquery is run, the query is read from disk and recompiled.

Adaptive Server Enterprise

CHAPTER 7 Parallel Query Processing

When parallel query results can differ

When a query does not include vector or scalar aggregates or does not
require afinal sorting step, aparallel query might return resultsin a
different order from the same query run in serial, and subsequent
executions of the same query in parallel might return results in different
order each time.

Results from serial and parallel queriesthat include vector or scalar
aggregates, or require afinal sort step, are returned after all of the results
from worktables are merged or sorted in the final query processing step.
Without query clauses that require this final step, parallel queries send
results to the client using a network buffer merge, that is, each worker
process sends results to the network buffer asit retrieves the data that
satisfies the queries.

Therelative speed of the different worker processes|eadsto differencesin
result set ordering. Each parallel scan behaves differently, due to pages
already in cache, lock contention, and so forth. Parallel queries always
return the same set of results, just not in the same order. If you need a
dependable ordering of results, use order by or run the query in serial
mode.

In addition, due to the pacing effects of multiple worker processesreading
data pages, two types of queries accessing the same data may return
different results when an aggregate or afinal sort is not done:

¢ Queriesthat use set rowcount

¢ Queriesthat select acolumninto alocal variable without sufficiently-
restrictive query clauses

Queries that use set rowcount

The set rowcount option stops processing after a certain number of rows
arereturned to the client. With serial processing, the results are consistent
in repeated executions. In serial mode, the same rows are returned in the
same order for a given rowcount value, because a single process reads the
data pages in the same order every time.

Performance & Tuning: Optimizer and Abstract Plans 169

When parallel query results can differ

With parallel queries, the order of the results and the set of rows returned
candiffer, because worker processes may access pages sooner or later than
other processes. When set rowcount isin effect, each row is written to the
network buffer asit is found and the buffer is sent to the client when itis
full, until the required number of rows have been returned. To get
consistent results, you must either use a clause that performs afinal sort
step or run the query in serial mode.

Queries that set local variables

This query setsthe value of alocal variable in aselect statement:

select @id =title_id fromtitles
where type = "busi ness"

The where clause matches multiple rows in the titles table. so the local
variable isalways set to the value from the last matching row returned by
the query. The value is always the same in serial processing, but for
parallel query processing, the results depend on which worker process
finishes last. To achieve a consistent result, use a clause that performs a
final sort step, execute the query in serial mode, or add clauses so that the
query arguments select only single rows.

Achieving consistent results

170

To achieve consistent results for the types of queries discussed in this
section, you can either add a clause to enforce afinal sort or you can run
the queriesin serial mode. The query clauses that provide afinal sort are:

e order by

e distinct, except for uses of distinct within an aggregate, such as
avg(distinct price)

e union, but not union all
To run queriesin serial mode, you can:
e Useset parallel_degree 1 to limit the session to serial operation

* Includethe (parallel 1) clause after each tablelisted in the from clause
of the query

Adaptive Server Enterprise

CHAPTER 8 Parallel Query Optimization

This chapter describes the basic strategies that Adaptive Server usesto
perform parallel queries and explains how the optimizer applies those
strategiesto different queries. Parallel query optimization is an automatic
process, and the optimized query plans created by Adaptive Server
generally yield the best response time for a particular query.

However, knowing the internal workings of a parallel query can help you
understand why queries are sometimes executed in serial, or with fewer
worker processes than you expect. Knowing why these events occur can
help you make changes elsewhere in your system to ensure that certain
queries are executed in parallel and with the desired number of processes.

Topic Page
What is parallel query optimization? 172
When is optimization performed? 172
Overhead costs 173
Parallel access methods 174
Summary of parallel access methods 184
Degree of parallelism for parallel queries 186
Parallel query examples 195
Runtime adjustment of worker processes 202
Diagnosing parallel performance problems 206
Resource limits for parallel queries 208

Performance & Tuning: Optimizer and Abstract Plans 171

What is parallel query optimization?

What is parallel query optimization?

Parallel query optimization is the process of analyzing a query and
choosing the best combination of parallel and serial access methods to
yield the fastest responsetime for the query. Parallel query optimizationis
an extension of the serial optimization strategies discussed in earlier
chapters. In addition to the costing performed for serial query
optimization, parallel optimization analyzes the cost of parallel access
methods for each combination of join orders, join types, and indexes. The
optimizer can choose any combination of serial and parallel access
methods to create the fastest query plan.

Optimizing for response time versus total work

Serial query optimization selects the query plan that isthe least costly to
execute. Since only one process executes the query, choosing the | east
costly plan yields the fastest response time and requires the least amount
of total work from the server.

Thegoal of executing queriesin parallel isto get the fastest responsetime,
even if it involves more total work from the server. During parallel query
optimization, the optimizer uses cost-based comparisons similar to those
used in serial optimization to select afinal query plan.

However, since multiple worker processes execute the query, a parallel
query plan requires more total work from Adaptive Server. Multiple
worker processes, engines, and partitions that improve the speed of a
guery require additional costsin overhead, CPU utilization, and disk
access. In other words, serial query optimization improves performance by
minimizing the use of server resources, but parallel query optimization
improves performance for individua queries by fully utilizing available
resources to get the fastest response time.

When is optimization performed?

The optimizer considers parallel query plans only when Adaptive Server
and the current session are properly configured for parallelism, as
described in “ Controlling the degree of parallelism” on page 152.

172 Adaptive Server Enterprise

CHAPTER 8 Parallel Query Optimization

Overhead costs

If both the Adaptive Server and the current session are configured for
parallel queries, then all querieswithin the session are eligible for parallel
query optimization. Individual queries can also attempt to enforce parallel
query optimization by using the optimizer hint parallel N for parallel or
parallel 1 for serial.

If the Adaptive Server or the current session is not configured for parallel
queries, or if agiven query usesoptimizer hintsto enforce serial execution,
then the optimizer considers serial access methods; the parallel access
methods described in this chapter are not considered.

Adaptive Server does not execute parallel queries against system tables.

Parallel queriesincur more overhead costs to perform such internal tasks
as:

e Allocating and initializing worker processes
¢ Coordinating worker processes as they execute a query plan
« Deallocating worker processes after the query is completed

To avoid applying these overhead costs to OLTP-based queries, the
optimizer “disqualifies’ tablesfrom using parallel access methodswhen a
scan would access fewer than 20 data pagesin atable. Thisrestriction
applies whether or not an index is used to access atable’s data. When
Adaptive Server must scan fewer than 20 data pages, the optimizer
considers only serial table and index scans and does not consider parallel
optimization.

Factors that are not considered

When computing the cost of aparallel access method, the optimizer does
not consider factors such as the number of engines available, the ratio of
engines to CPUs, and whether or not a table's partitions reside on
dedicated physical devices and controllers. Each of these factors can
significantly affect the performance of aquery. It is up to the System
Administrator to ensure that these resources are configured in the best
possible way for the Adaptive Server system as awhole.

Performance & Tuning: Optimizer and Abstract Plans 173

Parallel access methods

See “Configuration parameters for controlling parallelism” on page 153
for information on configuring Adaptive Server.

See “Commands for partitioning tables” on page 106 in the book
Performance and Tuning: Basicsfor information on partitioning your data
to best facilitate parallel queries.

Parallel access methods

The following sections describe parallel access methods and other
strategies that the optimizer considers when optimizing parallel queries.
Parallel access methods fall into these general categories:

174

Partition-based access methods use two or more worker processes
to access separate partitions of atable. Partition-based methodsyield
the fastest response times because they can distribute the work in
accessing atable over both CPUs and physical disks. At the CPU
level, worker processes can be queued to separate enginesto increase
processing performance. At the physical disk level, worker processes
can perform I/O independently of one ancther, if the table’s partitions
are distributed over separate physical devices and controllers.

Hash-based access methods provide parallel access to partitioned
tables, using either table scans or index scans. Hash-based strategies
employ multiple worker processes to work on asingle chain of data
pages or a set of index pages. |/O is not distributed over physical
devices or controllers, but worker processes can till be queued to
multiple enginesto distribute processing and improve response times.

Range-based access methods provide parallel access during merge
joins on partitioned tables and unpartitioned tables, including
worktables created for sorting and merging, and viaindexes. The
partitioning on the tables is not considered when choosing the degree
of parallelism, so it isnot distributed over physical devices or
controllers. Worker processes can be queued to multiple engines to
distribute processing and improve response times.

Adaptive Server Enterprise

CHAPTER 8 Parallel Query Optimization

Parallel partition scan

In aparallel partition scan, multiple worker processes completely scan
each partition in a partitioned table. One worker processis assigned to
each partition, and each process reads all pagesin the partition. Figure 8-
lillustrates a parallel partition scan.

Figure 8-1: Parallel partition scan

Partitioned Table
Worker Partition 1
process A
Worker Partition 2
process B
-)
Worker Partition 3
process C)
-

The parallel partition scan operates faster than a serial table scan. The
work is divided over several worker processes that can execute
simultaneously on different engines. Some worker processes can be
executing during the time that others sleep on 1/O or other system
resources. If the table partitions reside on separate physical devices, I/0
paralelismis aso possible.

Performance & Tuning: Optimizer and Abstract Plans 175

Parallel access methods

Requirements for consideration

Cost model

The optimizer considers the parallel partition scan only for partitioned
tablesin aquery. The table’s data cannot be skewed in relation to the
number of partitions, or the optimizer disqualifies partition-based access
methods from consideration. Table datais considered skewed when the
size of the largest partition istwo or more times the average partition size.

Finally, the query must access at least 20 data pages before the optimizer
considers any parallel access methods.

The Adaptive Server optimizer computes the cost of aparallel table
partition scan asthelargest number of logical and physical I/0s performed
by any one worker processin the scan. In other words, the cost of this
access method equals the 1/0 required to read all pagesin the largest
partition of the table.

For example, if atable with 3 partitions has 200 pagesinitsfirst partition,
300 pagesin its second, and 500 pagesin itslast partition, the cost of
performing a partition scan on that table is 500 logical and 500 physical
I/0s (assuming 2K /O for the physical 1/0). In contrast, the cost of aserial
scan of thistableis 1000 logical and physical 1/Os.

Parallel clustered index partition scan (allpages-locked tables)

176

A clustered index partition scan uses multiple worker processes to scan
data pages in a partitioned table when the clustered index key matches a
search argument. This method can be used only on allpages-locked tables.

One worker processis assigned to each partition in the table. Each worker
process accesses data pages in the partition, using one of two methaods,
depending on the range of key values accessed by the process. When a
partitioned table has a clustered index, rows are assigned to partitions
based on the clustered index key.

Figure 8-2 shows a clustered index partition scan that spans three
partitions. Worker processesA, B, and C are assigned to each of thetable's
three partitions. The scan involves two methods:

« Method 1

Adaptive Server Enterprise

CHAPTER 8 Parallel Query Optimization

Worker process A traverses the clustered index to find the first
starting page that satisfies the search argument, about midway
through partition 1. It then begins scanning data pages until it reaches
the end of partition 1.

e Method 2
Worker processes B and C do not use the clustered index, but, instead,
they begin scanning data pages from the beginning of their partitions.
Worker process B completes scanning when it reaches the end of
partition 2. Worker process C completes scanning about midway

through partition 3, when the data rows no longer satisfy the search
argument.

Figure 8-2: Parallel clustered index partition scan

Values assigned to

select avg (price) Partitioned table "' Partition
from t1 Worker Partition 1 .
where keyvalue > 400 process A
and keyvalue < 2700
1000
= Worker Partition 2 1001
/ process B
7 C
-) 2000
Worker Partition 3 2001
process C)
Index pages
o
3000

Performance & Tuning: Optimizer and Abstract Plans 177

Parallel access methods

Requirements for consideration
The optimizer considers a clustered index partition scan only when:
* Thequery accesses at least 20 data pages of the table.
* Thetableis partitioned and uses allpages locking.

* Thetable'sdatais not skewed in relation to the number of partitions.
Table datais considered skewed when the size of the largest partition
istwo or more times the average partition size.

Cost model

The Adaptive Server optimizer computes the cost of a clustered index
partition scan differently, depending on the total number of pagesthat need
to be scanned:

e |f thetotal number of pages that need to be scanned is less than or
equal to two times the average size of a partition, the optimizer costs
the scan as the total number of pages to be scanned divided by 2.

e If thetotal number of pagesthat need to be scanned isgreater than two
times the average size of a partition, the optimizer costs the scan as
the average number of pagesin apartition.

The actual cost of the scan may be higher if:

e Thetotal number of pagesthat need to be scanned islessthan the size
of apartition, and

e Thedatato be scanned lies entirely within one partition

If both of these conditions are true, the actual cost of the scan is the same
asif the scan were executed serially.

Parallel hash-based table scan

Parallel hash-based table scans are performed slightly differently,
depending on the locking scheme of the table.

178 Adaptive Server Enterprise

CHAPTER 8 Parallel Query Optimization

Hash-based table scans

on allpages-locked tables

In a hash-based table scan on an allpages-locked table, multiple worker
processes scan a single chain of data pagesin atable simultaneoudly. All
worker processes traverse the page chain and apply an internal hash
function to each page ID. The hash function determines which worker
process reads the rowsin the current page. The hash function ensures that
only one worker process scans the rows on any given page of the table.
Figure 8-3 illustrates the hash-based table scan.

Figure 8-3: Parallel hash-based table scan on an allpages-locked
table

Worker Single page chain

processes

A,B,andC
Pages scanned Pages scanned Pages scanned
by A by B by C

Hash-based table scans

The hash-based scan providesaway to distribute the processing of asingle
chain of data pages over multiple engines. The optimizer may use this
access method for the outer table of ajoin query to processajoin condition
in parallel.

on data-only-locked tables

A hash-based scan on a data-only-locked table hashes on either the extent
number or the all ocation page number, rather than hashing on the page
number. The choice of whether to hash on the all ocation page or the extent
number is a cost-based decision made by the optimizer. Both methods can
reduce the cost of performing parallel queries on unpartitioned tables.
Queriesthat choose a serial scan on an allpages-locked table may use one
of the new hash-based scan methods if the table is converted to data-only
locking.

Performance & Tuning: Optimizer and Abstract Plans 179

Parallel access methods

Requirements for consideration

Cost model

Parallel hash-based

180

The optimizer considers the hash-based table scan only for heap tables,
and only for outer tablesin ajoin query—it does not consider this access
method for clustered indexes or for single-table queries. Hash-based scans
can be used on either unpartitioned or partitioned tables. The query must
access at least 20 data pages of the table before the optimizer considersany
parallel access methods.

The optimizer computes the cost of a hash-based table scan as the total
number of logical and physical 1/Os required to scan the table.

For an allpages-locked table, the physical 1/0 cost is approximately the
same as for a serial table scan. The logical cost isthe number of pagesto
be read mulltiplied by the number of worker processes. The cost per worker
processisonelogical I/0 for each pagein thetable, and approximately 1/N
physical 1/0Os, with N being the number of worker processes.

For a data-only-locked table, this is approximately the same cost applied
to a serial table scan, with the physical and logical 1/0 divided evenly
between the worker processes.

index scan

An index hash-based scan can be performed using either a nonclustered
index or a clustered index on a data-only-locked table. To perform the
scan:

e All worker processes traverse the higher index levels.
e All worker processes scan the leaf-level index pages.

For data-only-locked tables, the worker processes scanning the leaf level
hash on the page ID for each row, and scan the matching data pages.

For allpages-locked tabl es, a hash-based index scan is performed in one of
two ways, depending on whether thetableisaheap table or hasaclustered
index. The major difference between the two methods is the hashing
mechanism:

» For atable with a clustered index, the hash is on the key values.
e For aheap table, the scan hashes on the page ID.

Adaptive Server Enterprise

CHAPTER 8 Parallel Query Optimization

Figure 8-4 illustratesanonclustered index hash-based scan on aheap table
with two worker processes.

Figure 8-4: Nonclustered index hash-based scan

Index pages

1=

Data pages
e :
Pages scanned by Pages scanned by Pages scanned by
both worker worker worker
processes process 1 process 2

Cost model and requirements
The cost model of a nonclustered index scan uses the formula:

Scan Cost = Number of index levels

+ Number of leaf pages / pages per IO
+ (Number of data pages / pages per |0) / number of worker processes

Performance & Tuning: Optimizer and Abstract Plans 181

Parallel access methods

The optimizer considers a hash-based index scan for any tablesin aquery
that have useful nonclustered indexes, and for data-only-locked tables
with clustered indexes. The query must also access at |east 20 data pages
of thetable.

Note If anonclustered index covers the result of a query, the optimizer
does not consider using the nonclustered index hash-based scan.

See*“Index covering” on page 293 in Performance and Tuning: Basicsfor
more information about index covering.

Parallel range-based scans

Parallel range-based scans are used for the merge processin merge joins.

When two tables are merged in parallel, each worker processisassigned a
range of valuesto merge. The range is determined using histogram
statistics or sampling. When a histogram exists for at least one of thejoin
columns, it is used to partition the ranges so that each worker process
operates on approximately the same number of rows. If neither join
column has a histogram, sampling similar to that performed for other
parallel sort operations determines the range of valuesto be merged by
each worker process.

Figure 8-5 shows a parallel right-merge join. In this case:

* Aright-mergejoinisused. Tablel, the outer table, is scanned into a
worktable and sorted, then merged with theinner table. These worker
processes are deallocated at the end of this step.

* Theouter table has two partitions, so two worker processes are used
to perform a parallel partition scan.

* Theinner table has a nonclustered index on the join key. max parallel
degree is set to 3, so 3 worker processes are used.

Requirements for consideration

182

The optimizer considers parallel merge joins when the configuration
parameter enable merge joins is set to 1 and the table accesses more than
20 data pages from the outer table in the merge join.

Adaptive Server Enterprise

CHAPTER 8 Parallel Query Optimization

Figure 8-5: A parallel right-merge join

Tablel:
Partitioned table
on 2 devices

data_devl

e

A A

K\ Worktablel
Table2:

>
Nonclustered index MZ
on join key

Index pages

4\—>

data_dev2

Merge runs after sort

Pages read by:

Data Ppages . All worker processes
. Worker process 1
|:| Worker process 2

A‘ﬁ D Worker process 3

™

Performance & Tuning: Optimizer and Abstract Plans 183

Summary of parallel access methods

Additional parallel strategies

Partitioned worktables

Parallel sorting

Adaptive Server may employ additional strategieswhen executing queries
in parallel. Those strategiesinvolve the use of partitioned worktables and
parallel sorting.

For queriesthat require aworktable, Adaptive Server may chooseto creste
a partitioned worktable and populate it using multiple worker processes.
Partitioning the worktable improves performance when Adaptive Server
popul atesthetable, and therefore, improvesthe response time of the query
asawhole.

See “Parallel query examples’ on page 195 for examples of queries that
can benefit from the use of partitioned worktables.

Parallel sorting employs multiple worker processesto sort datain parallel,
similar to the way multiple worker processes execute aquery in parallel.
create index and any query that requires sorting can benefit from the use of
parallel sorting.

The optimizer does not directly optimize or control the execution of a
parallel sort.

See “Parallel query examples’ on page 195 for examples of queries that
can benefit from the parallel sorting strategy.

Also, see “Overview of the parallel sorting strategy” on page 213 for a
detailed explanation of how Adaptive Server executes asort in parallel.

Summary of parallel access methods

184

Table 8-1 summarizes the potential use of parallel access methodsin
Adaptive Server query processing. In all cases, the query must access at
least 20 data pages in the table before the optimizer considers parallel
access methods.

Adaptive Server Enterprise

CHAPTER 8 Parallel Query Optimization

Table 8-1: Parallel access method summary

Requirements for Competing
Parallel method Major cost factors consideration serial methods
Partition-based scan Number of pagesin the largest Partitioned table with Serial table scan,
partition balanced data serial index scan
Hash-based table scan Number of pagesin table Any outer tablein ajoin Serial table scan,

serial index scan
Serial index scan

query and that is aheap
Partitioned table with a
useful clustered index;
allpages locking only

Clustered index partition
scan

If total number of pagesto be
scanned <= 2 * number of pagesin
average-sized partition, then: Total
number of pages to be scanned / 2

If total number of pagesto be
scanned > 2 * number of pagesin
average-sized partition, then:
Average number of pagesin a
partition

Hash-based index scan Seria index scan

Number of index pages above leaf
level to scan + number of leaf-level
index pages to scan + (number of

Any table with a useful
nonclustered index or a
data-only-locked table

data pages referenced in leaf-level with a clustered index
index pages/ number of worker
processes)

Number of pagesto be accessed in
both tables/number of worker

processes, plus any sort costs

Range-based scan Anytableinajoineligible Seria merge,
for merge join nested-loop join

consideration

Selecting parallel access methods

For agiven table in a query, the optimizer first evaluates the available
indexes and partitions to determine which access methods it can use to
scan the table's data. For any query that involves ajoin, Adaptive Server
considers a range-based merge join, and considers using a parallel merge
joinif parallel query processing is enabled. The use of arange-based scan
does not depend on table partitioning, and range-based scans can be
performed using clustered and nonclustered indexes. They are considered,
and are very likely to be used, on tables that have no useful index on the
join key.

Table 8-2 shows the other parallel access methods that the optimizer may
evaluate for different table and index combinations. Hash-based table

scans are considered only for the outer table in a query, unless the query
uses the parallel optimizer hint.

Performance & Tuning: Optimizer and Abstract Plans 185

Degree of parallelism for parallel queries

Table 8-2: Determining applicable partition or hash-based access
methods

Useful index (nonclustered

Useful clustered or clustered on data-only-

No useful index index locked table)

Partitioned Table Partition scan Clustered index Nonclustered index hash-based
Hash-based table scan partition scan scan
(if tableis a heap) Serial index scan Serial index scan
Serial table scan

Unpartitioned Table Hash-based table scan Serial index scan Nonclustered index hash-based
(if tableis a heap) scan
Serial table scan Serial index scan

The optimizer may further eliminate parallel access methods from
consideration, based on the number of worker processesthat are available
to the query. This process of elimination occurs when the optimizer
computes the degree of parallelism for the query as awhole.

For an example, see “ Partitioned heap table” on page 192.

Degree of parallelism for parallel queries

186

The degree of parallelism for aquery isthe number of worker processes
chosen by the optimizer to execute the query in paralel. The degree of
parallelism depends on both the upper limit to the degree of parallelism for
the query and on the level of parallelism suggested by the optimizer.

Computing the degree of parallelism for aquery isimportant for two
reasons:

e Thefinal degree of parallelism directly affects the performance of a
query since it specifies how many worker processes should do the
work in paralld.

Adaptive Server Enterprise

CHAPTER 8 Parallel Query Optimization

Upper limit

Optimized degree

e Whilecomputing the degree of parallelism, the optimizer disqualifies
parallel access methods that would require more worker processes
than the limits set by configuration parameters, the set command, or
the parallel clausein a query. Thisreduces the total number of access
methods that the optimizer must consider when costing the query,
and, therefore, decreasesthe overall optimization time. Disqualifying
access methods in this manner is especially important for multitable
joins, wherethe optimizer must consider many different combinations
of join orders and access methods before selecting afinal query plan.

A System Administrator configures the upper limit to the degree of
parallelism using server-wide configuration parameters. Session-wideand
query-level options can further limit the degree of parallelism. These
limits set both the total number of worker processes that can be used in a
parallel query and the total number of worker processes that can be used
for hash-based access methods.

The optimizer removes from consideration any parallel access methods
that would require more worker processes than the upper limit for the
query. (If the upper limit to the degree of parallelismis 1, the optimizer
does not consider any parallel access methods.)

See* Configuration parameters for controlling parallelism” on page 153
for more information about configuration parameters that control the
upper limit to the degree of parallelism.

The optimizer can potentially use worker processes up to the maximum
degree of parallelism set at the server, session, or query level. However,
the optimized degree of parallelism may be less than this maximum. For
partition-based scans, the optimizer chooses the degree of parallelism
based on the number of partitionsin thetables of the query and the number
of worker processes configured.

Performance & Tuning: Optimizer and Abstract Plans 187

Degree of parallelism for parallel queries

Worker processes for partition-based scans

For partition-based access methods, Adaptive Server requires one worker
process for every partition in atable. If the number of partitions exceeds
max parallel degree or a session-level or query-level limit, the optimizer
uses a hash-based or serial access method; if a merge join can be used, it
may choose a merge join using the max parallel degree.

Worker processes for hash-based scans

For hash-based access methods, the optimizer does not compute an
optimal degree of parallelism; instead, it uses the number of worker
processes specified by the max scan parallel degree parameter. It is up to
the System Administrator to set max scan parallel degree to an optimal
value for the Adaptive Server system asawhole. A general rule of thumb
isto set this parameter to no more than 2 or 3, since it takes only 2-3
worker processesto fully utilize the I/O of agiven physical device.

Worker processes for range-based scans

A merge join can use multiple worker processes to perform:

* The scan that selects rows into aworktable, for any merge join that
requires a sort

» Theworktable sort
» Themergejoin and subsequent joins in the step

* Therange scan of both tables during afull merge join

Usage while creating the worktable

188

If aworktable is needed for amerge join, the query step that creates the
worktable can use a serial or parallel access method for the scan. The
number of worker processes for this step is determined by the usual
methods for selecting the number of worker processes for a query. The
query that selects the rowsinto the worktable can be a single-table query
or ajoin performing a nested-loop or merge join, or a combination of
nested-loops joins and amerge join.

Adaptive Server Enterprise

CHAPTER 8 Parallel Query Optimization

Parallel sorting for merge-join worktables

Number of merge threads

Parallel sorting is used when the number of pages in the worktable to be
sorted is eight times the value of the number of sort buffers configuration
parameter.

See Chapter 9, “Parallel Sorting,” for more information about parallel
sorting.

For the merge step, the number of merge threads is set to max parallel
degree, unless the number of distinct valuesis smaller than max parallel
degree. If the number of values to be merged is smaller than the max
parallel degree, the task uses one worker process per value, with each
worker process merging one value. If the tables being merged have
different numbers of distinct values, the lower number determines the
number of worker processesto be used. The formulais:

Worker processes = min (max pll degree, min(t1_unig_vals, t2_uniq_vals))

Total usage for merge joins

When thereis only one distinct value on the join column, or thereis an
equality search argument on ajoin column, the merge step is performedin
serial mode. If amergejoinisused for this query, the mergeis performed
in serial mode:

select * fromtl, t2
where tl.cl =t2.cl
and tl1.c1l = 10

A merge join can use up to max parallel degree threads for the merge step
and up to max parallel degree threads can be used for each sort. A merge
that performs a parallel sort may use up to 2* max parallel degree threads.
Worker processes used for sorts are released when the sort completes.

Performance & Tuning: Optimizer and Abstract Plans 189

Degree of parallelism for parallel queries

Nested-loop joins

190

Outer table

For individual tablesin a nested-loop join, the optimizer computes the
degree of parallelism using the same rules described in “ Optimized
degree” on page 187. However, the degree of paralelismfor thejoin query
as awholeisthe product of the worker processes that access individual
tablesinthejoin. All worker processesallocated for ajoin query accessall
tablesin the join. Using the product of worker processesto drive the
degree of parallelism for ajoin ensures that processing is distributed
evenly over partitions and that the join returns no duplicate rows.

Figure 8-6 illustrates thisrule for two tablesin ajoin where the outer table
has three partitions and the inner table has two partitions. If the optimizer
determines that partition-based access methods are to be used on each
table, then the query requires atotal of six worker processesto execute the
join. Each of the six worker processes scans one partition of the outer table
and one partition of the inner table to process the join condition.

Figure 8-6: Worker process usage for a nested-loop join

Partition 1

Partition 2

Inner table
Partition 1

Partition 2

Partition 3

Bbbbb%

Adaptive Server Enterprise

CHAPTER 8 Parallel Query Optimization

Alternative plans

In Figure 8-6, if the optimizer chose to scan the inner table using a serial
access method, only three worker processes would be required to execute
thejoin. Inthis situation, each worker process would scan one partition of
the outer table, and all worker processes would scan the inner tableto find
matching rows.

Therefore, for any two tablesin a query with scan degrees of mand n
respectively, the potential degrees of parallelism for a nested-loop join
between the two tables are:

e 1, if the optimizer accesses both tables serially

e m*1,if the optimizer accesses the first table using a parallel access
method (with mworker processes), and the second table serially

e n*1,if the optimizer accesses the second table using aparallel access
method (with n worker processes) and the first table serially

e m*n, if the optimizer accesses both tables using parallel access
methods

Using partition-based scans on both tablesin ajoin isfairly rare because
of the high cost of repeatedly scanning the inner table. The optimizer may
also choose:

e A mergejain.
e Thereformatting strategy, if reformatting is a cheaper aternative.

* A partitioned-based scan plus a hash-based index scan, when ajoin
returns rows from 20 or more data pages.

See Figure 7-7 on page 151 for an illustration.

Computing the degree of parallelism for nested-loop joins

To determine the degree of parallelism for ajoin between any two tables
(and to disqualify parallel access methods that would require too many
worker processes), the optimizer applies the following rules:

1 Theoptimizer determines possible access methods and degrees of
parallelism for the outer table of the join. This processisthe same as
for single-table queries.

See “Optimized degree” on page 187.

Performance & Tuning: Optimizer and Abstract Plans 191

Degree of parallelism for parallel queries

2 For each access method determined in step 1, the optimizer calcul ates
the remaining number of worker processes that are available for the
inner table of thejoin. Thefollowing formuladeterminesthis number:

Remaining worker processes = max parallel degree/ Worker processes for outer table

3 The optimizer uses the remaining number of worker processes as an
upper limit to determine possible access methods and degrees of
parallelism for the inner table of the join.

The optimizer repeats this process for all possible join orders and access
methods and applies the cost function for joins to each combination. The
optimizer selects the least costly combination of join orders and access
methods, and thefinal combination drivesthe degree of parallelism for the
join query as awhole.

See “Nested-loop joins” on page 190 for examples of this process.

Parallel queries and existence joins

Examples

Partitioned heap table

192

Adaptive Server imposes an additional restriction for subqueries
processed as existence joins. For these queries, only the number of
partitionsin the outer table determines the degree of parallelism. Thereare
only as many worker processes as there are partitions in the outer table.
Theinner table in such aquery isalways accessed serially. Thisrestriction
does not apply to subqueries that are flattened into regular joins.

The examples in this section show how the limits to the degree of
parallelism affect the following types of queries:

e A partition heap table
e A nonpartitioned heap table
» A tablewith aclustered index

Assume that max parallel degree is set to 10 worker processes and max
scan parallel degree is set to 3 worker processes.

Adaptive Server Enterprise

CHAPTER 8 Parallel Query Optimization

Single-table query

Query with ajoin

For a single-table query on a heap table with 6 partitions and no useful
nonclustered index, the optimizer costs the following access methods:

e A pardlé partition scan using 6 worker processes
e A serial table scan using a single process

If max parallel degree is et to 5 worker processes, then the optimizer does
not consider the partition scan for atable with 6 partitions.

The situation changesif the query involvesajoin. If max parallel degree is
set to 10 worker processes, the query involves ajoin, and atable with 6
partitions is the outer table in the query, then the optimizer considers the
following access methods:;

e A partition scan using 6 worker processes

e A hash-based table scan using 3 worker processes
A mergejoin using 10 worker processes

e A serial scan using asingle process

If max scan parallel degree is set to 5 and max scan parallel degree iS set to
3, then the optimizer considers the following access methods:

e A hash-based table scan using 3 worker processes
e A mergejoinusing 5 worker processes
e A serial scan using asingle process

Finally, if max parallel degree is set to 5 and max scan parallel degree is set
to 1, then the optimizer considers only amerge join as a parallel access
method.

Nonpartitioned heap table

If the query involves ajoin, and max scan parallel degree is set to 3, and
the nonpartitioned heap table is the outer table in the query, then the
optimizer considers the following access methods:

¢ A hash-based table scan using 3 worker processes
e A range scan using 10 worker processes for the merge join

e A serial scan using asingle process

Performance & Tuning: Optimizer and Abstract Plans 193

Degree of parallelism for parallel queries

If max scan parallel degree is set to 1, then the optimizer does not consider
the hash-based scan.

See “ Single-table scans’ on page 195 for more examples of determining
the degree of parallelism for queries.

Table with clustered index

If the table has a clustered index, the optimizer considers the following
parallel access methods when the table uses allpages locking:

* A pardld partition scan or aparallel clustered index scan, if the table
is partitioned and max parallel degree is set to at |east 6

» A range scan, using max parallel degree worker processes
A serial scan
If the table uses data-only-locking, the optimizer considers:

* A parallé partition scan, if the table is partitioned and max parallel
degree isset to at least 6

» A range scan, using max parallel degree worker processes

e A seria scan

Runtime adjustments to worker processes

Even after the optimizer determines a degree of parallelism for the query
as awhole, Adaptive Server may make final adjustments at runtime to
compensate for the actual number of worker processes that are available.
If fewer worker processes are available at runtime than are suggested by
the optimizer, the degree of parallelismisreduced to alevel that is
consistent with the available worker processes and the access methodsin
the final query plan. “ Runtime adjustment of worker processes’ on page
202 describesthe process of adjusting the degree of parallelism at runtime
and explains how to determine when these adjustments occur.

194 Adaptive Server Enterprise

CHAPTER 8 Parallel Query Optimization

Parallel query examples

Single-table scans

Table partition scan

The following sections further explain and provide examples of how
Adaptive Server optimizes these types of parallel queries:

e Single-table scans

e Multitable joins

e Subqueries

e Queriesthat require worktables
e union queries

e Queries with aggregates

* select into statements

Commands that insert, delete, or update data, and commands executed
from within cursors are never considered for parallel query optimization.

The simplest parallel query optimization involves queries that access a
single base table. Adaptive Server optimizes these queries by evaluating
the base table to determine applicable access methods, and then applying
cost functionsto select the least costly plan.

Understanding how Adaptive Server optimizes single-table queriesis
integral to understanding more complex parallel queries. Although queries
such as multitable joins and subqueries use additional optimization
strategies, the process of accessing individual tables for those queriesis
the same.

The following example shows instances in which the optimizer uses
parallel access methods on single-table queries.

This example shows a query where the optimizer chooses atable partition
scan over a serial table scan. The configuration and table layout are as
follows:

Performance & Tuning: Optimizer and Abstract Plans 195

Parallel query examples

Configuration parameter values

Parameter Setting
max parallel degree 10 worker processes
max scan parallel degree 2 worker processes
Table layout
Number of
Table name Useful indexes partitions Number of pages
authors None 5 Partition 1: 50 pages

Partition 2: 70 pages
Partition 3: 90 pages
Partition 4: 80 pages
Partition 5: 10 pages

The example query is:

sel ect *
from aut hors
where au_l nane < "L"

Using thelogic in Table 8-2 on page 186, the optimizer determines that
the following access methods are available for consideration:

e Partition scan
e Serial table scan

The optimizer does not consider a hash-based table scan for the table,
since the balance of pagesin the partitionsis not skewed, and the upper
limit to the degree of parallelism for the table, 10, is high enough to allow
apartition-based scan.

The optimizer computes the cost of each access method, as follows:
Cost of table partition scan = # of pages in the largest partition = 90 pages
Cost of serial table scan = # of pages in table = 300 pages

The optimizer chooses to perform atable partition scan at a cost of 90

physical and logical 1/Os. Becausethe table has 5 partitions, the optimizer

chooses to use 5 worker processes. The final showplan output for this
query is:

QUERY PLAN FOR STATEMENT 1 (at line 1).

196 Adaptive Server Enterprise

CHAPTER 8 Parallel Query Optimization

Executed in parallel by coordinating process and 5 worker
processes.
STEP 1
The type of query is SELECT.
Executed in parallel by coordinating process and 5
wor ker processes.
FROM TABLE
aut hors
Nested iteration.
Tabl e Scan.
Forward scan.
Positioning at start of table.
Executed in parallel with a 5-way partition scan.
Using I/ O Size 16 Kbytes for data pages.
Wth LRU Buf fer Replacenent Strategy for data pages.
Paral | el network buffer nerge.

Multitable joins

When optimizing joins, the optimizer considers the best join order for all
combinations of tables and applicabl e access methods. The optimizer uses
adifferent strategy to select access methods for inner and outer tables and
the degree of parallelism for the join query as awhole.

Asin serial processing, the optimizer weighs many alternatives for
accessing a particular table. The optimizer balances the costs of parallel
execution with other factors that affect join queries, such as the presence
of aclustered index, the use of either nested-loop or merge joins, the
possibility of reformatting the inner table, the join order, and the I/0 and
caching strategy. The following discussion focuses only on parallel versus
serial access method choices.

Parallel join optimization and join orders

This exampleillustrates how the optimizer devises aquery plan for ajoin
query that is eligible for parallel execution. The configuration and table
layout are as follows:

Configuration parameter values

Parameter Setting
max parallel degree 15 worker processes
max scan parallel degree 3 worker processes

Performance & Tuning: Optimizer and Abstract Plans 197

Parallel query examples

Table layout
Table Number of Number of
name partitions pages Number of rows
publishers 1 (not partitioned) 1,000 80,000
titles 10 10,000 (distributed 800,000
evenly over
partitions)

The example query involves asimple join between these two tables:

sel ect *
frompublishers, titles
where publishers.pub_id =titles.pub_id

In theory, the optimizer considers the costs of all the possible
combinations:

» titles asthe outer table and publishers as the inner table, with titles
accessed in parallel

» titles asthe outer table and publishers as the inner table, with titles
accessed serially

* publishers asthe outer table and titles as the inner table, with titles
accessed in parallel

* publishers asthe outer table and titles as the inner table, with titles
accessed serially

* publishers asthe outer table and titles astheinner table, with publishers
accessed in parallel

For example, the cost of ajoin order in which titles isthe outer tableand is
accessed in parallel is calculated as follows:

The cost of having publishers as the outer tableis calculated as follows:

However, other factors are often more important in determining the join
order than whether a particular tableis eligible for parallel access.

Scenario A: clustered index on publishers

198

The presence of auseful clustered index is often the most important factor
in how the optimizer createsaquery planfor ajoin query. If publishers has
aclustered index on pub_id and titles has no useful index, the optimizer can
choose the indexed table (publishers) as the inner table. With thisjoin
order, each access to the inner table takes only afew reads to find rows.

Adaptive Server Enterprise

CHAPTER 8 Parallel Query Optimization

With publishers as the inner table, the optimizer costs the eligible access
methods for each table. For titles, the outer table, it considers:

e A pardlél partition scan (cost is number of pagesin the largest
partition)

e A serial table scan (cost is number of pagesin the table)

For publishers, the inner table, the optimizer considers only a serial
clustered index scan.

It a so considers performing amergejoin, sorting theworktable from titles
into order on titles, either aright-merge or left-merge join.

Thefinal cost of the query is the cost of accessing titles in parallel times
the number of accesses of the clustered index on publishers.

Scenario B: clustered index on titles

If titles has a clustered index on pub_id, and publishers has no useful index,
the optimizer choosestitles as the inner table in the query.

With the join order determined, the optimizer costs the eligible access
methods for each table. For publishers, the outer table, it considers:

e A hash-based table scan (theinitial cost isthe same as a serial table
scan)

For titles, the inner table, the optimizer considers only aserial clustered
index scan.

In this scenario, the optimizer chooses parallel over serial execution of
publishers. Even though a hash-based table scan has the same cost as a
serial scan, the processing time is cut by one-third, because each worker
process can scan the inner table’s clustered index simultaneoudly.

Scenario C: neither table has a useful index

If neither table has a useful index, amergejoinisavery likely choice for
the access method. If mergejoins are disabled, the table size and available
cache space can be more important factors than potential parallel access
for join order. The benefits of having a smaller table as the inner table
outweigh the benefits of one parallel access method over the other. The
optimizer choosesthe publishers table astheinner table, becauseitissmall
enough to be read once and kept in cache, reducing costly physical 1/0.

Then, the optimizer costs the eligible access methods for each table. For
titles, the outer table, it considers:

Performance & Tuning: Optimizer and Abstract Plans 199

Parallel query examples

Subqueries

200

e A parallée partition scan (cost is number of pagesin the largest
partition)

e A serial table scan (cost is number of pagesin the table)

For publishers, the inner table, it considers only a serial table scan loaded
into cache.

The optimizer chooses to accesstitles in parallel, because it reduces the
cost of the query by a factor of 10.

In some cases where neither table has a useful index, the optimizer
choosesthereformatting strategy, creating atemporary tableand clustered
index instead of repeatedly scanning the inner table.

When a query contains a subquery, Adaptive Server uses different access
methods to reduce the cost of processing the subquery. Parallel
optimization depends on the type of subquery and the access methods:

» Materialized subqueries — parallel query methods are not considered
for the materialization step.

» Flattened subqueries— parallel query optimization is considered only
when the subquery is flattened to aregular join. It is not considered
for existence joins or other flattening strategies.

* Nested subqueries — parallel access methods are considered for the
outermost query block in aquery containing a subquery; the inner,
nested queries always execute serially. Although the optimizer
considers parallel access methods for only the outermost query block
in asubquery, al worker processes that access the outer query block
also access the inner tables of the nested subqueries.

Each worker process accesses the inner, nested query block in serial.
Although the subguery is run once for each row in the outer table,
each worker process performs only one-fifth of the executions.
showplan output for the subquery indicates that the nested query is
“Executed by 5 worker processes,” since each worker processused in
the outer query block scans the table specified in the inner query
block.

Each worker process maintains a separate cache of subquery results,
so the subquery may be executed dightly more often than in seria
processing.

Adaptive Server Enterprise

CHAPTER 8 Parallel Query Optimization

Queries that require worktables

union queries

Parallel queries that require worktables create partitioned worktables and
populate them in paralel. For queries that require sorts, the parallel sort
manager determines whether to use a serial or parallel sort.

See Chapter 9, “Parallel Sorting,” for more information about parallel
sorting.

The optimizer considers parallel access methods for each part of aunion
query separately. Each select in aunion is optimized separately, so one
query can use aparallel plan, another a seria plan, and athird a parallel
plan with adifferent number of worker processes. If aunion query requires
aworktable, then the worktable may also be partitioned and populated in
paralel by worker processes.

If aunion query isto return no duplicate rows, then aparallel sort may be
performed on the internal worktable to remove duplicate rows.

See Chapter 9, “Parallel Sorting,” for more information about parallel
sorting.

Queries with aggregates

Adaptive Server considers parallel access methods for queries that return
aggregate resultsin the sameway it doesfor other queries. For queriesthat
use the group by clause to return a grouped aggregate result, Adaptive
Server aso creates multiple worktables with clustered indexes—one
worktable for each worker process that executes the query. Each worker
process stores partial aggregate results in its designated worktable. As
worker processes finish computing their partial results, they merge those
resultsinto acommon worktable. After all worker processes have merged
their partial results, the common worktable contains the final grouped
aggregate result set for the query.

Performance & Tuning: Optimizer and Abstract Plans 201

Runtime adjustment of worker processes

select into statements

select into creates a new table to store the query’s result set. Adaptive
Server optimizes the base query portion of aselect into command in the
same way it does a standard query, considering both parallel and serial
access methods. A select into statement that is executed in parald:

1 Createsthe new table using columns specified in the select into
statement.

2 Createsn partitionsin the new table, where n is the degree of
parallelism that the optimizer chose for the query as awhole.

3 Populatesthe new table with query results, using n worker processes.
4 Unpartitions the new table.

Performing aselect into statement in parallel requires additional stepsthan
the equivalent serial query plan. Therefore, the execution of a parallel
select into statement takes place using four discrete transactions, rather
than the two transactions of a serial select into statement. See select in the
Adaptive Server Reference Manual for information about how this affects
the database recovery process.

Runtime adjustment of worker processes

202

The output of showplan describesthe optimized plan for agiven query. An
optimized query plan specifies the access methods and the degree of
parallelism that the optimizer suggests when the query is compiled. At
execution time, there may be fewer worker processes available than are
required by the optimized query plan. This can occur when:

e Thereare not enough worker processes available for the optimized
query plan.

e Theserver-level or session-level limitsfor the query were reduced
after the query was compiled. This can happen with queries executed
from within stored procedures.

Adaptive Server Enterprise

CHAPTER 8 Parallel Query Optimization

Inthese circumstances, Adaptive Server may create an adjusted query plan
to compensate for the available worker processes. An adjusted query
plan is generated at runtime and compensates for the lack of available
worker processes. An adjusted query plan may usefewer worker processes
than the optimized query plan, and it may use a serial access method
instead of a parallel method for one or more of the tables.

The response time of an adjusted query plan may be significantly longer
than its optimized counterpart. Adaptive Server provides.

e A setoption, process_limit_action, which allows you to control
whether runtime adjustments are allowed.

e Information on runtime adjustmentsin sp_sysmon output.

How Adaptive Server adjusts a query plan

Adaptive Server uses two basic rules to reduce the number of required
worker processes in an adjusted query plan:

1 If the optimized query plan specifies a partition-based access method
for atable, but not enough processes are available to scan each
partition, the adjusted plan uses a serial access method.

2 If the optimized query plan specifies a hash-based access method for
atable, but not enough processes are available to cover the optimized
degree of parallelism, the adjusted plan reduces the degree of
parallelism to alevel consistent with the available worker processes.

To illustrate the first case, assume that an optimized query plan
recommends scanning atabl e’ sfive partitionsusing apartition-based table
scan. If only four worker processes are actually available at the time the
query executes, Adaptive Server creates an adjusted query plan that
accesses the table in serial, using a single process.

In the second case, if the optimized query plan recommended scanning the
table with a hash-based access method and five worker processes, the
adjusted query plan would still use a hash-based access method, but with,
at the most, four worker processes.

Performance & Tuning: Optimizer and Abstract Plans 203

Runtime adjustment of worker processes

Evaluating the effect of runtime adjustments

Although optimized query plans generally outperform adjusted query
plans, thedifferencein performanceisnot awayssignificant. Theultimate
effect on performance depends on the number of worker processes that
Adaptive Server usesin the adjusted plan, and whether or not a serial
access method is used in place of a parallel method. Obviously, the most
negative impact on performance occurs when Adaptive Server uses a
serial access method instead of aparallel access method to execute aquery.

The performance of multitable join queries can also suffer dramatically
from adjusted query plans, since Adaptive Server does not changethejoin
ordering when creating an adjusted query plan. If an adjusted query plan
is executed in serial, the query can potentially perform more slowly than
an optimized seria join. This may occur because the optimized parallel
join order for aquery is different from the optimized serial join order.

Recognizing and managing runtime adjustments

Adaptive Server provides two mechanisms to help you observe runtime
adjustments of query plans.

» set process_limit_action alows you to abort batches or procedures
when runtime adjustments take place or print warnings.

* showplan prints an adjusted query plan when runtime adjustments
occur, and showplan is effect.

Using set process_limit_action

204

The process_limit_action option to the set command |ets you monitor the
use of adjusted query plans at a session or stored procedure level. When
you set process_limit_action to “abort,” Adaptive Server records Error
11015 and aborts the query, if an adjusted query plan is required. When
you set process_limit_action to “warning,” Adaptive Server records Error
11014 but still executes the query.

For example, this command aborts the batch when a query is adjusted at
runtime;

set process_linit_action abort

Adaptive Server Enterprise

CHAPTER 8 Parallel Query Optimization

By examining the occurrences of Errors 11014 and 11015 in the error log,
you can determine the degree to which Adaptive Server uses adjusted
query plansinstead of optimized query plans. To remove the restriction
and allow runtime adjustments, use:

set process_limt_action quiet

See set in the Adaptive Server Reference Manual for more information
about process_limit_action.

Using showplan

When you use showplan, Adaptive Server displays the optimized plan for
agiven query before it runs the query. When the query plan involves
paralléel processing, and a runtime adjustment is made, showplan displays
this message, followed by the adjusted query plan:

AN ADJUSTED QUERY PLAN W LL BE USED FOR STATEMENT 1
BECAUSE NOT' ENOUGH WORKER PROCESSES ARE AVAI LABLE AT
TH S TI ME.

Adaptive Server does not attempt to execute a query when the set noexec
isin effect, so runtime plans are never displayed while using this option.

Reducing the likelihood of runtime adjustments

To reduce the number of runtime adjustments, you must increase the
number of worker processesthat are available to parallel queries. You can
do this either by adding more total worker processes to the system or by
restricting or eliminating parallel execution for noncritical queries, as
follows:

e Useset parallel_degree and/or set scan_parallel_degree to set session-
level limits on the degree of parallelism, or

e Usethequery-level parallel 1 and parallel N clausesto limit theworker
process usage of individual statements.

To reduce the number of runtime adjustments for system procedures,
recompile the procedures after changing the degree of parallelism at the
server or session level. See sp_recompile in the Adaptive Server Reference
Manual for more information.

Performance & Tuning: Optimizer and Abstract Plans 205

Diagnosing parallel performance problems

Checking runtime adjustments with sp_sysmon

sp_sysmon shows how many times a request for worker processes was
denied dueto alack of worker processes and how many times the number
of worker processes recommended for a query was adjusted to a smaller
number. The following sections of the report provide information:;

* “Worker process management” on page 24 of the Performance and
Tuning: Monitoring and Analyzing for Performance describes the
output for the number of worker process requests that were requested
and denied and the success and fail ure of memory requestsfor worker
processes.

e “Paralle query management” on page 26 of the Performance and
Tuning: Monitoring and Analyzing for Performance describes the
sp_sysmon output that reports on the number of runtime adjustments
and locks for parallel queries.

If insufficient worker processes in the pool seems to be the problem,
compare the number of worker processes used to the number of worker
processes configured. If the maximum number of worker processes used
is equal to the configured value for number of worker processes, and the
percentage of worker process requests denied is greater than 80 percent,
increase the value for number of worker processes and re-run sp_sysmon.
If the maximum number of worker processes used is less than the
configured value for number of worker processes, and the percentage of
worker thread requests denied is 0 percent, decreases the value for number
of worker processes to free memory resources.

Diagnosing parallel performance problems

The following sections provide troubleshooting guidelines for parallel
queries. They cover two situations:

e Thequery runsin serial, when you expect it to run in parallel.

e Thequery runsin paralel, but does not perform aswell asyou expect.

206 Adaptive Server Enterprise

CHAPTER 8 Parallel Query Optimization

Query does not run in parallel

If you think that a query should run in parallel but does not, possible
explanations are:

The max parallel degree configuration parameter is set to 1, or the
session-level setting set parallel_degree is set to 1, preventing all
parallel access.

Themax scan parallel degree configuration parameter isset to 1, or the
session level setting set scan_parallel_degree is set to 1, preventing
hash-based parallel access.

There are insufficient worker threads at execution time. Check for
runti me adjustments, using the tools discussed in “ Runtime
adjustments to worker processes’ on page 194.

The scope of the scanislessthan 20 data pages. This can be bypassed
with the (parallel) clause.

The plan calls for atable scan and:

e Thetableisnot a heap,

e Thetableisnot partitioned,

e The partitioning is unbalanced, or

e Thetableisaheap but is not the outer table of ajain.

The last two conditions can be bypassed with the (parallel) clause.
The plan calls for a clustered index scan and:

e Thetableisnot partitioned, or

e The partitioning is unbalanced. This can be bypassed with the
(parallel) clause.

The plan calls for anonclustered index scan, and the chosen index
covers the required columns.

Thetable is atemporary table or a system table.
Thetable is the inner table of an outer join.

A limit has been set through the Resource Governor, and all parallel
plans exceed that limit in terms of total work.

The query isatypethat is not made parallel, such asan insert, update,
or delete command, a nested (not the outermost) query, or a cursor.

Performance & Tuning: Optimizer and Abstract Plans 207

Resource limits for parallel queries

Parallel performance is not as good as expected
Possible explanations are;
e Therearetoo many partitions for the underlying physical devices.
e There are too many devices per controller.
e The (parallel) clause has been used inappropriately.

e Themax scan parallel degree is set too high; the recommended range
is2-3.

Calling technical support for diagnosis

If you cannot diagnose the problem using these hints, the following
information will be needed by Sybase Technical Support to determine the
source of the problem:

e Thetable and index schema—create table, alter table...partition, and
create index statements are most helpful. Provide output from sp_help
if the actual create and alter commands are not available.

* Thequery.

* Theoutput of the query run with commands:
* dbcc traceon (3604,302, 310)
* setshowplan on
® set noexec on

» The statistics io output for the query.

Resource limits for parallel queries

The tracking of 1/0 cost limits may be less precise for partitioned tables
than for unpartitioned tables, when Adaptive Server is configured for
parallel query processing.

208 Adaptive Server Enterprise

CHAPTER 8 Parallel Query Optimization

When you query a partitioned table, all the labor in processing the query
is divided among the partitions. For example, if you query atable with
three partitions, the query’swork is divided among 3 worker processes. If
the user has specified an 1/0 resource limit with an upper bound of 6000,
the optimizer assigns alimit of 2000 to each worker process.

However, since no two threads are guaranteed to perform the exact same
amount of work, the parallel processor cannot precisely distribute the
work among worker processes. You may get an error message saying you
have exceeded your /O resource limit when, according to showplan or
statistics io output, you actually have not. Conversely, one partition may
exceed the limit dightly, without the limit taking effect.

See the System Administration Guide for more information about setting
resource limits.

Performance & Tuning: Optimizer and Abstract Plans 209

Resource limits for parallel queries

210 Adaptive Server Enterprise

CHAPTER 9

Commands that

Parallel Sorting

This chapter discusses how to configure the server for improved
performance for commands that perform parallel sorts.

The process of sorting datais an integral part of any database
management system. Sorting is for creating indexes and for processing
complex queries. The Adaptive Server parallel sort manager provides a
high-performance, parallel method for sorting data rows. All Transact-
SQL commands that require an internal sort can benefit from the use of
parallel sorting.

Parallel sorting and how it works and what factors affect the performance
of parallel sortsisaso covered. You need to understand these subjects to
get the best performance from parallel sorting, and to keep parallel sort
resource requirements from interfering with other resource needs.

Topic Page
Commands that benefits from parallel sorting 211
Requirements and resources overview 212
Overview of the parallel sorting strategy 213
Configuring resources for parallel sorting 216
Recovery considerations 230
Tools for observing and tuning sort behavior 230
Using sp_sysmon to tune index creation 236

benefits from parallel sorting

Any Transact-SQL command that requires data row sorting can benefit
from parallel sorting techniques. These commands are:

¢ create index commands and the alter table...add constraint commands
that build indexes, unique and primary key

¢ Queriesthat use the order by clause

¢ Queriesthat use distinct

Performance & Tuning: Optimizer and Abstract Plans 211

Requirements and resources overview

Queriesthat perform merge joins requiring sorts
Queries that use union (except union all)

Queriesthat use the refor matting strategy

In addition, any cursors that use the above commands can benefit from
parallel sorting.

Requirements and resources overview

Like parallel query processing, parallel sorting requires more resources
than performing the same command in parallel. Responsetimefor creating
theindex or sorting query resultsimproves, but the server performs more
work due to overhead.

212

Adaptive Server’s sort manager determineswhether the resourcesrequired
to perform a sort operation in parallel are available, and also whether a

seria or parallel sort should be performed, given the size of the table and
other factors. For aparallel sort to be performed, certain criteriamust be

met:

Theselect into/bulk copy/plisort database option must be set to true with
sp_dboption in the target database:

» Forindexes, the option must be enabled in the database where the
tableresides. For creating aclustered index on apartitioned table,
this option must be enabled, or the sort fails. For creating other
indexes, serial sorts can be performed if parallel sorts cannot be
performed.

» For sorting worktables, this option must be on in tempdb. Serial
sorts can be performed if parallel sorts cannot be performed.

Parallel sorts must have a minimum number of worker processes
available. The number depends on the number of partitions on the
table and/or the number of devices on the target segment. The degree
of parallelism at the server and session level must be high enough for
the sort to use at least the minimum number of worker processes
required for aparallel sort. Clustered indexes on partitioned tables
must be created in parallel; other sorts can be performed in serial if
there are not enough worker processes available. “Worker process
reguirements for parallel sorts’ on page 217 and “Worker process
reguirements for select query sorts” on page 220.

Adaptive Server Enterprise

CHAPTER 9 Parallel Sorting

e For select commands that require sorting, and for creating
nonclustered indexes, the table to be sorted must be at least eight
times the size of the available sort buffers (the value of the number of
sort buffers configuration parameter), or the sort will be performed in
serial mode. This ensures that Adaptive Server does not perform
paralléd sorting on smaller tables that would not show significant
improvements in performance. This rule does not apply to creating
clustered indexes on partitioned tables, since this operation always
requires a parallel sort.

See “ Sort buffer configuration guidelines’ on page 223.

e For create index commands, the value of the number of sort buffers
configuration parameter must be at least as large as the number of
worker processes available for the parallel sort.

See “ Sort buffer configuration guidelines’ on page 223.

Note You cannot usethe dump transaction command after indexesare
created using a parallel sort. You must dump the database. Serial
create index commands can be recovered, but only by completely re-
doing the indexing command, which can greatly lengthen recovery
time. Performing database dumps after serial create indexesis
recommended to speed recovery, although it is not required in order
to use dump transaction.

Overview of the parallel sorting strategy

Like the Adaptive Server optimizer, the Adaptive Server parallel sort
manager analyzes the available worker processes, the input table, and
other resources to determine the number of worker processesto usefor the
sort.

After determining the number of worker processesto use, Adaptive Server
executes the parallel sort. The process of executing a parallel sort isthe
same for create index commands and queries that require sorts. Adaptive
Server executes a parallel sort by:

1 Creating adistribution map. For amergejoin with statisticson ajoin
column, histogram statistics are used for the distribution map. In other
cases, theinput table is sampled to build the map.

Performance & Tuning: Optimizer and Abstract Plans 213

Overview of the parallel sorting strategy

Step 1. Sampling

2 Reading the table data and dynamically partitioning the key values
into a set of sort buffers, as determined by the distribution map.

3 Sorting each individual range of key values and creating subindexes.
4 Merging the sorted subindexes into the final result set.
Each of these steps is described in the sections that follow.

Figure 9-1 depicts a parallel sort of atable with two partitions and two
physical devices on its segment.

Figure 9-1: Parallel sort strategy

the data and Partition 1 Distribution map Partition 2
building the
7 2] 4 |5 o E g 4 3 1

distribution map. [ald (6] [0]

Producer Producer

process 1 process 2
Step 2. Partitioning
data into discrete
ranges.
Step 3. Sorting
each range and
creating indexes. Consumer Consumer

process 1 process 2
2K sort buffers [0] (6] (9]
Sorted data or Coordinating Sorted data or
subindex process subindex

Step 4. Merging the

sorted data.

214

Merged result

or index (0] [1] [2] [3] [4] [8] [6] (7] [8] [9]

Adaptive Server Enterprise

CHAPTER 9 Parallel Sorting

Creating a distribution map

Asafirst step in executing a parallel sort, Adaptive Server creates a
distribution map. If the sort is performed as part of amergejoin, and there
are statistics on the join columns, the histograms are used to build the
distribution map. For other sorts, Adaptive Server selects and sorts a
random sample of datafrom the input table. This distribution
information—referred to as the distribution map—is used in the second
sort step to divide the input datainto equally sized ranges during the next
phase of the parallel sort process.

The distribution map contains a key value for the highest key that is
assigned to each range, except the final range in the table. In Figure 9-1,
the distribution map shows that all values less than or equal to 4 are
assigned to thefirst range and that all values greater than 4 are assigned to
the second range.

Dynamic range partitioning

After creating the distribution map, Adaptive Server employstwo kinds of
worker processes to perform different parts of the sort. These worker
processes are called producer processes and consumer processes.

e Producer processes read data from the input table and use the
distribution map to determine the range to which each key value
belongs. The producers distribute the data by copying it to the sort
buffers belonging to the correct range.

e Each consumer process reads the datafrom arange of the sort buffers
and sortsit into subindexes, as described in “ Range sorting” on page
216.

In Figure 9-1, two producer processes read datafrom theinput table. Each
producer process scans one table partition and distributes the data into
ranges using the distribution map. For example, thefirst producer process
reads datavalues7, 2, 4, 5, and 9. Based on the information in the
distribution map, the process distributes values 2 and 4 to the first
consumer process, and values 7, 5, and 9 to the second consumer process.

Performance & Tuning: Optimizer and Abstract Plans 215

Configuring resources for parallel sorting

Range sorting

Merging results

Each partitioned range has a dedicated consumer process that sorts the
datain that range independently of other ranges. Depending on the size of
the table and the number of buffers available to perform the sort, the
consumers may perform multiple merge runs, writing intermediate results
to disk, and reading and merging those results, until all of the datafor the
assigned range is completely sorted.

For create index commands, each consumer for each partitioned range
of datawrites to a separate database device. Thisimproves
performance through increased 1/O parallelism, if database devices
reside on separate physical devices and controllers. The consumer
process also builds an index, referred to as a subindex, on the sorted
data.

For merge joins, each consumer process writes the ordered rowsto a
separate set of linked data pages, one for each worker processthat will
perform the merge.

For queries, the consumer process simply ordersthe datain the range
from the smallest value to the largest.

After al consumer processes have finished sorting the data for each
partitioned range:

For create index commands, the coordinating process merges the
subindexes into one final index.

For mergejoins, the worker processes for the merge step perform the
merge with the other tablesin the merge join.

For other queries, the coordinating process mergesthe sort results and
returns them to the client.

Configuring resources for parallel sorting

The following sections describe the resources used by Adaptive Server
when sorting datain parallel:

216

Adaptive Server Enterprise

CHAPTER 9 Parallel Sorting

Worker processes read the data and perform the sort.

Sort buffers pass datain cache from producersto consumers, reducing
physical 1/0.

Large I/0O poolsin the cache used for the sort also help reduce
physical 1/0.

Note Referenceto Largel/Osareona2K logical pagesize server. If
you have an 8K page size server, the basic unit for the 1/0 is 8K. If
you have a 16K page size server, the basic unit for the 1/O is 16K.

Multiple physical devicesincrease!/O parallelism and help determine
the number of worker processes for most sorts.

Worker process requirements for parallel sorts

Adaptive Server reguires a minimum number of worker processesto
perform a parallel sort. If additional worker processes are available, the
sort can be performed more quickly. The minimum number required and
the maximum number that can be used are determined by the number of:

Partitions on the table, for creating clustered indexes
Devices, for creating nonclustered indexes

Threads used to create the worktable and the number of devicesin
tempdb, for merge joins

Devicesin tempdb, for other queries that require sorts

If the minimum number of worker processesis not available:

Sortsfor clustered indexes on partitioned tables must be performed in
paralel; the sort failsif not enough worker processes are available.

Sorts for nonclustered indexes and sorts for clustered indexes on
unpartitioned tables can be performed in serial.

All sorts for queries can be performed in serial.

The availability of worker processesis determined by server-wide and
session-wide limits. At the server level, the configuration parameters
number of worker processes and max parallel degree limit the total size of
the pool of worker processes and the maximum number that can be used
by any create index or select command.

Performance & Tuning: Optimizer and Abstract Plans 217

Configuring resources for parallel sorting

The available processes at runtime may be smaller than the configured
value of max parallel degree or the session limit, due to other queries
running in parallel. The decision on the number of worker processesto use
for asort is made by the sort manager, not by the optimizer. Since the sort
manager makes this decision at runtime, parallel sort decisions are based
on the actual number of worker processes available when the sort begins.

See “Controlling the degree of parallelism” on page 152 for more
information about controlling the server-wide and session-wide limits.

Worker process requirements for creating indexes

Table 9-1 shows the number of producers and consumers required to
create indexes. The target segment for a sort is the segment where the
index is stored when the create index command completes. When you
create an index, you can specify the location with the on segment_name
clause. If you do not specify a segment, the index is stored on the default
segment.

Table 9-1: Number of producers and consumers used for create
index

Index type Producers Consumers

Nonclustered index Number of partitions, or 1 Number of devices on target segment
Clustered index on unpartitioned 1 Number of devices on target segment
table

Clustered index on partitioned Number of partitions, or 1 Number of partitions

table

218

Consumers are theworkhorses of parallel sort, using CPU timeto perform
the actual sort and using I/O to read and write intermediate results and to
write the final index to disk. First, the sort manager assigns one worker
process as a consumer for each target device. Next, if there are enough
available worker processes, the sort manager assigns one producer to each
partition in the table. If there are not enough worker processes to assign
one producer to each partition, the entire tableis scanned by asingle
producer.

Adaptive Server Enterprise

CHAPTER 9 Parallel Sorting

Clustered indexes on partitioned tables

To create aclustered index on apartitioned table, Adaptive Server requires
at least one consumer process for every partition on the table, plus one
additional worker processto scan the table. If fewer worker processes are
available, then the create clustered index command fails and prints a
message showing the available and required numbers of worker processes.

If enough worker processes are available, the sort manager assigns one
producer process per partition, as well as one consumer process for each
partition. This speeds up the reading of the data.

Minimum 1 consumer per partition, plus 1 producer
Maximum 2 worker processes per partition

Can be performed in No

serid

Clustered indexes on unpartitioned tables

Nonclustered indexes

Only one producer process can be used to scan the input data for
unpartitioned tables. The number of consumer processesis determined by
the number of devices on the segment where the index isto be stored. If
there are not enough worker processesavailable, the sort can be performed
in serial.

Minimum 1 consumer per device, plus 1 producer
Maximum 1 consumer per device, plus 1 producer
Can be performed in Yes

serid

The number of consumer processes is determined by the number of
devices on the target segment. If there are enough worker processes
availableand thetableis partitioned, one producer processisused for each
partition on the tabl e; otherwise, asingle producer process scanstheentire
table. If there are not enough worker processes available, the sort can be
performed in serial.

Minimum 1 consumer per device, plus 1 producer

Maximum 1 consumer per device, plus 1 producer per partition
Can be performed in Yes

serial

Performance & Tuning: Optimizer and Abstract Plans 219

Configuring resources for parallel sorting

Using with consumers while creating indexes

RAID devices appear to Adaptive Server as a single database device, so,
although the devices may be capable of supporting the 1/O load of parallel
sorts, Adaptive Server assigns only a single consumer for the device, by

default.

The with consumers clause to the create index statement provides away to
specify the number of consumer processes that create index can use. By
testing the 1/0 capacity of striped devices, you can determine the number
of simultaneous processes your RAID device can support and use this
number to suggest a degree of parallelism for paralel sorting. Asa
baseline, use one consumer for each underlying physical device. This
exampl e specifies eight consumers:

create index order _ix on orders (order_id)
with consuners = 8

You can also use the with consumers clause with the alter table...add
constraint clauses that create the primary key and unique indexes:

alter table orders
add constraint primkey primary key (order_id) with
consunmers = 8

The with consumers clause can be used for creating indexes—you cannot
control the number of consumer processes used ininternal sorts for
parallel queries. You cannot use this clause when creating a clustered
index on apartitioned table. When creating a clustered index on a
partitioned table, Adaptive Server must use one consumer process for
every partition inthetableto ensurethat thefinal, sorted dataisdistributed
evenly over partitions.

Adaptive Server ignores the with consumers clauseif the specified number
of processesis higher than the number of available worker processes, or if
the specified number of processes exceeds the server or session limits for
parallelism.

Worker process requirements for select query sorts

220

Queries that require worktable sorts have multistep query plans. The
determination of the number of worker processes for aworktable sort is
made after the scan of the base table completes. During the phase of the
guery where data is selected into the worktable, each worker process
selects data into a separate partition of the worktable.

Adaptive Server Enterprise

CHAPTER 9 Parallel Sorting

Oncetheworktableis popul ated, additional worker processesareallocated
to perform the sort step. showplan does not report this value; the sort
manager reports only whether the sort is performed in serial or parallel.
The worker processes used in the previous step do not participatein the
sort, but remain allocated to the parallel task until the task compl etes.

Worker processes for merge-join sorts

Other worktable sorts

For merge joins, one consumer processis assigned for each device in
tempdb; if thereisonly one device in tempdb, two consumer processes are
used. The number of producers depends on the number of partitionsin the
worktable, and the setting for max parallel degree:

« If theworktable is not partitioned, one producer processis used.

e If the number of consumers plus the number of partitionsin the
worktable isless than or equal to max parallel degree, one producer
processis allocated for each worktable partition.

e If thenumber of consumer processes plus the number of partitionsin
the worktable is greater than max parallel degree, one producer
processis used.

For all other worktable sorts, the worktable is unpartitioned when the step
that created it completes. Worker processes are assigned in the following

way:

e If thereisonly onedeviceintempdb, the sort is performed using two
consumers and one producer; otherwise, one consumer processis
assigned for each device in tempdb, and a single producer process
scans the worktable.

¢ If there are more devicesin tempdb than the available worker
processes when the sort starts, the sort is performed in serial.

Caches, sort buffers, and parallel sorts

Optimal cache configuration and an optimal setting for the number of sort
buffers configuration parameter can greatly speed the performance of
paralel sorts. Thetuning optionsto consider when you work with parallel
sorting are:

Performance & Tuning: Optimizer and Abstract Plans 221

Configuring resources for parallel sorting

Cache bindings

e Cachebindings
e Sort buffers
e Largel/O

In most cases, the configuration you choose for normal runtime operation
should be aimed at the needs of queries that perform worktable sorts. You
need to understand how many simultaneous sorts are needed and the
approximate size of the worktables, and then configure the cache used by
tempdb to optimize the sort.

If you drop and create indexes during periods of low system usage, you
can reconfigure caches and pools and change cache bindings to optimize
the sorts and reduce the time required. If you need to perform index
maintenance while users are active, you need to consider the impact that
re configuration could have on user response time. Configuring alarge
percentage of the cache for exclusive use by the sort or temporarily
unbinding obj ectsfrom caches can seriously impact performancefor other
tasks.

Sorts for create index take place in the cache to which the table is bound.
If the table is not bound to a cache, but the database is, then cache is used.
If thereis no explicit cache binding, the default data cache is used.
Worktabl e sorts use the cache to which tempdb isbound, or the default data
cache.

To configure the number of sort buffersand large I/O for a particular sort,
always check the cache bindings. You can see the binding for atable with
sp_help. To see all of the cache bindings on a server, use sp_helpcache.
Once you have determined the cache binding for atable, use
sp_cacheconfig check the space in the 2K and 16K poolsin the cache.

Number of sort buffers can affect sort performance

222

Producers perform disk 1/0 to read the input table, and consumers perform
disk 1/0 to read and write intermediate sort results to and from disk.
During the sort, producers pass data to consumers using the sort buffers.
This avoids disk I/O by copying data rows completely in memory. The
reserved buffers are not available to any other tasksfor the duration of the
sort.

Adaptive Server Enterprise

CHAPTER 9 Parallel Sorting

The number of sort buffers configuration parameter determines the
maximum space that can be used to perform a serial sort. Each sort
instance can use up to the number of sort buffers value for each sort. If
active sorts have reserved all of the buffersin a cache, and another sort
needs sort buffers, that sort waits until buffers are availablein the cache.

Sort buffer configuration guidelines

Since number of sort buffers controls the amount of data that can be read
and sorted in one batch, configuring more sort buffersincreases the batch
size, reduces the number of merge runs needed, and makes the sort run
faster. Changing number of sort buffers is dynamic, so you do not have to
restart the server.

Some general guidelines for configuring sort buffers are as follows:

e The sort manager chooses serial sorts when the number of pagesin a
table isless than 8 times the value of number of sort buffers. In most
cases, the default value (500) works well for select queries and small
indexes. At this setting, the sort manager chooses seria sorting for all
create index and worktable sorts of 4000 pages or less, and parallel
sorts for larger result sets, saving worker processes for query
processing and larger sorts. It allows multiple sort processesto use up
to 500 sort buffers simultaneously.

A temporary worktable would need to be very large before you would
need to set the value higher to reduce the number of merge runsfor a
sort. See “ Sizing the tempdb” on page 389 in the Performance and
Tuning: Basics for more information.

* If youarecreatingindexeson largetableswhile other usersare active,
configure the number of sort buffers so that you do not disrupt other
activity that needs to use the data cache.

e If you arere-creating indexes during scheduled maintenance periods
when few users are active on the system, you may want to configure
ahigh value for sort buffers. To speed your index maintenance, you
may want to benchmark performance of high sort buffer values, large
1/0, and cache bindings to optimize your index activity.

e Thereduction in merge runsisalogarithmic function. Increasing the
value of number of sort buffers from 500 to 600 has very little effect on
the number of merge runs. Increasing the size to amuch larger value,
such as 5000, can greatly speed the sort by reducing the number of
merge runs and the amount of 1/O needed.

Performance & Tuning: Optimizer and Abstract Plans 223

Configuring resources for parallel sorting

If number of sort buffers is set to less than the square root of the
worktable size, sort performance is degraded. Since worktables
include only columns specified in the select list plus columns needed
for later joins, worktable size for mergejoinsis usually considerably
smaller than the original table size.

Configure enough sort buffers

The sort buffers decides how many pages of datayou can sort in each
run. That is the basis for the logrithmic function on calculating the
number of runs needed to finish the sort.

For example, if you have 500 buffers, then the number of runsis
calculated with "log (number of pagesin table) with 500 as the log
base".

Also note that the number of sort buffersis shared by threadsin the
parallel sort, if you do not have enough sort buffers, the parallel sort
may not work asfast asit should.

When enough sort buffers are configured, fewer intermediate steps
and merge runs need to take place during asort, and physical I/Ois
required. When number of sort buffers is equal to or greater than the
number of pagesin the table, the sort can be performed completely in
cache, with no physical 1/O for the intermediate steps: the only 1/0
required isthe I/O to read and write the data and index pages.

Configure large buffers pools in a named cache, bound the cache to
the table, so you can havelarge /0.

Using less than the configured number of sort buffers

224

There are two types of sortsthat may use fewer than the configured
number of sort buffers:

Creating a clustered index on a partition table always requires a
parallel sort. If thetable sizeis smaller than the number of configured
sort buffers, then the sort reservesthe number of pagesin thetablefor
the sort.

Small serial sorts reserve just the number of sort buffers required to
hold the table in cache.

Adaptive Server Enterprise

CHAPTER 9 Parallel Sorting

Configuring the number of sort buffers parameter

When creating indexesin parallel, the number of sort buffers must be equal
to or less than 90 percent of the number of buffersin the pool area, before
the wash marker, as shown in Figure 9-2.

Figure 9-2: Area available for sort buffers

Up to 90% of the space before the wash

marker can be used for sort buffers
MRU LRU

Using a 2K pool Wash marker

Thelimit of 90 percent of the pool sizeisnot enforced when you configure
the number of sort buffers parameter, but it is enforced when you run the
create index command, since the limitis enforced on the pool for thetable
being sorted. The maximum value that can be set for number of sort buffers
is32,767; thisvalue is enforced by sp_configure.

Computing the allowed sort buffer value for a pool

sp_cacheconfig returnsthe size of the pool in megabytes and the wash size
in kilobytes. For example, this output shows the size of the poolsin the
default data cache:

Cache: default data cache, Status: Active, Type: Default
Config Size: 0.00 M, Run Size: 38.23 M
Config Replacenent: strict LRU, Run Repl acenent: strict LRU

Config Partition: 2, Run Partition: 2
IO Size Wash Size Config Size Run Size APF Per cent
2 Kb 4544 Kb 0.00 Mo 22.23 M 10
16 Kb 3200 Kb 16.00 M 16.00 M 10

This procedure takes the size of the 2K pool and its wash size as
parameters, converts both values to pages and computes the maximum
number of pages that can be used for sort buffers:

create proc bufs @ool size nuneric(6,2), @wash int

Performance & Tuning: Optimizer and Abstract Plans 225

Configuring resources for parallel sorting

as
sel ect "90% of non-wash 2k pool " =
((@ool size * 512) - (@wash/2)) * .9

The following example executes bufs with values of “22.23 Mb” for the
pool size and “4544 Kb” for the wash size:

bufs 22.23, 4544
The bufs procedure returns the following results:

90% of non-wash 2k pool

8198. 784
This command sets the number of sort buffers to 8198 pages:
sp_configure "nunber of sort buffers"”, 8198

If the table on which you want to create the index is bound to a user-
defined cache, configure the appropriate number of sort buffers for the
specific cache. Asan alternative, you can unbind the table from the cache,
create the index, and rebind the table:

sp_unbi ndcache pubtune, titles
create clustered index title_ix
on titles (title_id)
sp_bi ndcache pubtune_cache, pubtune, titles

Warning! The buffers used by a sort are reserved entirely for the use of
the sort until the sort compl etes. They cannot be used by another other task
on the server. Setting the number of sort buffersto 90 percent of the pool
size can seriously affect query processing if you are creating indexeswhile
other transactions are active.

Procedure for estimating merge levels and 1/0

The following procedure estimates the number of merge runs and the
amount of physical 1/O required to create an index:

Create proc nmerge_runs @ages int, @ufs int
as

declare @uns int, @rerges int, @maxnerge int
select @uns = ceiling (@ages / @ufs)

/* if all pages fit into sort buffers, no nerge runs needed */

226 Adaptive Server Enterprise

CHAPTER 9 Parallel Sorting

if @uns <=1
sel ect @rerges

el se
begi

end
sel e

n

=0

if @uns > @ufs sel ect @uaxnerge = @ufs

el se

if @muxnerge < 2 sel ect @maxnerge

sel ect

sel ect @maxnerge = @uns

2

ceiling(loglo(@uns) / |0gl0(@maxmerge))

ct @rerges "Merge Level s",

2 * @ages * @merges + @ages "Total 1O

The parameters for the procedure are:

e pages—the number of pagesin the table, or the number of leaf-level
pages in a nonclustered index.

e bufs—the number of sort buffersto configure.

This example uses the default number of sort buffers for atable with
2,000,000 pages:

mer ge_runs 2000000, 500, 20

The merge_runs procedure estimates that 2 merge runs and 10,000,000
1/Os would be required to create the index:

Merge Levels Total 10

2 10000000

Increasing the number of sort buffersto 1500 reduces the number of merge
runs and the I/O required:

mer ge_runs 2000000, 1500
Merge Levels Total 10

1 6000000

Thetota 1/0 predicted by this procedure may be different than the 1/0
usage on your system, depending on the size and configuration of the
cache and pools used by the sort.

Configuring caches for large I/O during parallel sorting

Sorts can use large |/O;

Performance & Tuning: Optimizer and Abstract Plans 227

Configuring resources for parallel sorting

e During the sampling phase
» For the producers scanning the input tables

» For the consumers performing disk I/O on intermediate and final sort
results

For these steps, sorts can use the largest pool size available in the cache
used by the table being sorted; they can use the 2K pooal if no large I/O
buffers are available.

Balancing sort buffers and large I/O configuration

Disk requirements

228

Configuring apool for 16K buffersin the cache used by the sort greatly
speeds 1/O for the sort, substantially reducing the number of physical 1/0s
for asort. Part of this /O savings results from using large 1/0 to scan the
input table.

Additional /O, both reads and writes, takes place during merge phases of
the sort. The amount of 1/O during this step depends on the number of
merge phases required. During the sort and merge step, buffers are either
read once and not needed again, or they are filled with intermediate sort
output results, written to disk, and available for reuse. The cache-hit ratio
during sorts will always be low, so configuring alarge 16K cache wastes
space that can better be used for sort buffers, to reduce merge runs.

For example, creating a clustered index on a 250M B table using a 32MB
cache performed optimally with only 4MB configured in the 16K pool and
10,000 sort buffers. Larger pool sizes did not affect the cache hit ratio or
number of 1/Os. Changing the wash sizefor the 16K pool to the maximum
allowed helped performance sightly, since the small pool size tended to
allow buffersto reach the LRU end of the cache before the writes were
completed. The following formula computes the maximum allowable
wash sizefor a16K pool:

select floor((size_in_MB * 1024 /16) * .8) * 16

Disk requirements for parallel sorting are as follows:;

e Spaceis needed to store the completed index.

Adaptive Server Enterprise

CHAPTER 9 Parallel Sorting

e Having multiple devicesin the target segment increases the number
of consumers for worktable sorts and for creating nonclustered
indexes and clustered indexes on non partitioned tables.

Space requirements for creating indexes

Creating indexes requires space to store the sorted index. For clustered
indexes, this requires copying the data rows to new locationsin the order
of theindex key. The newly ordered datarows and the upper levels of the
index must be written before the base table can be removed. Unless you
are using the with sorted_data clause to suppress the sort, creating a
clustered index requires approximately 120 percent of the space occupied
by the table.

Creating a nonclustered index requires space to store the new index. To
help determine the size of objects and the space that is available, use the
following system procedures:

e sp_spaceused —to seethesize of thetable. See“Using sp_spaceused
to display object size” on page 250 in Performance and Tuning:
Basics.

e sp_estspace —to predict the size of theindex. See* Using sp_estspace
to estimate object size” on page 252 in Performance and Tuning:
Basics.

e sp_helpsegment — to see space left on a database segment. See
“Checking data distribution on devices with sp_helpsegment” on
page 114 in Performance and Tuning: Basics.

Space requirements for worktable sorts

Queriesthat sort worktables (merge joins and order by, distinct, union, and
reformatting) first copy the needed columns for the query into the
worktable and then perform the sort. These worktables are stored on the
system segment in tempdb, so thisisthe target segment for queries that
require sorts. To see the space available and the number of devices, use:

tenpdb. . sp_hel psegnent system

The process of inserting the rows into the worktable and the parallel sort
do not require multiple devices to operate in parallel. However,
performanceimproveswhen the system segment intempdb spans multiple
database devices.

Performance & Tuning: Optimizer and Abstract Plans 229

Recovery considerations

Number of devices in the target segment

Asdescribed in “Worker process requirementsfor parallel sorts’ on page
217, the number of devicesin the target segment determines the number
of consumers for sort operations, except for creating a clustered index on
apartitioned table.

Performance considerations for query processing, such asthe
improvementsin I/0 when indexes are on separate devices from the data
are more important in determining your device allocations and object
placement than sort requirements.

If your worktable sorts are large enough to require parallel sorts, multiple
devicesin the system segment of tempdb will speed these sorts, aswell as
increase |/O parallelism while rows are being inserted into the worktable.

Recovery considerations

Creating indexesisaminimally-logged database operation. Serial sortsare
recovered from the transaction log by completely redoing the sort.
However, parallel create index commands are not recoverable from the
transaction log—after performing a parallel sort, you must dump the
database before you can use the dump transaction command on the
database.

Adaptive Server does not automatically perform parallel sorting for create
index commands unless the select into/bulk copy/plisort database option is
set on. Creating a clustered index on a partitioned table always requires a
parallel sort; other sort operations can be performed in serial if the select
into/bulk copy/plisort option is not enabled.

Tools for observing and tuning sort behavior

230

Adaptive Server provides several tools for working with sort behavior:

* setsort_resources on shows how a create index command would be
performed, without creating theindex. See “Using set sort_resources
on” on page 231.

Adaptive Server Enterprise

CHAPTER 9 Parallel Sorting

e Severa system procedures can help estimate the size, space, and time
requirements:

sp_configure — Displays configuration parameters. See
“Configuration parameters for controlling parallelism” on page
153.

sp_helpartition — Displays information about partitioned tables.
See “ Getting information about partitions” on page 111 in
Performance and Tuning: Basics.

sp_helpsegment — Displaysinformation about segments, devices,
and space usage. See “ Checking data distribution on devices
with sp_helpsegment” on page 114 in Performance and Tuning:
Basics.

sp_sysmon — Reports on many system resources used for parallel
sorts, including CPU utilization, physical I/0, and caching. See
“Using sp_sysmon to tune index creation” on page 236.

Using set sort_resources on

The set sort_resources on command can help you understand how the sort
manager performsparallel sorting for create index statements. You can use
it before creating an index to determine whether you want to increase
configuration parameters or specify additional consumers for a sort.

After you use set sort_resources on, Adaptive Server does not actually
create indexes, but analyzes resources, performs the sampling step, and
prints detailed information about how Adaptive Server would use parallel
sorting to execute the create index command. Table 9-2 describes the
messages that can be printed for sort operations.

Table 9-2: Basic sort resource messages

Message Explanation See
The Create I ndex i s done sort_typeiseither “Parallel Sort” or “Reguirements and resources
using sort_type “Serial Sort.” overview” on page 212

Sort buffer size: N Nisthe configured valuefor thenumber “Sort buffer configuration
of sort buffers configuration parameter. guidelines’ on page 223
Paral | el degree: N N is the maximum number of worker “Caches, sort buffers, and

processes that the parallel sort canuse, parallel sorts’ on page 221
as set by configuration parameters.

Nunber of out put

devi ces:

N

N isthe total number of database
devices on the target segment. 228

“Disk requirements’ on page

Performance & Tuning: Optimizer and Abstract Plans 231

Tools for observing and tuning sort behavior

Message Explanation See

Nurmber of producer N is the optimal number of producer “Worker process requirements

threads: N processes determined by the sort for parallel sorts’ on page 217
manager.

Nurmber of consuner N is the optima number of consumer “Worker process requirements

threads: N processes determined by the sort for parallel sorts’ on page 217
manager.

The distribution map M isthe number of elementsthat define “Creating a distribution map”

contains M el ement (s) range boundariesin the distribution on page 215

for N partitions.

map. N is the total number of partitions
(ranges) in the distribution map.

Partition Elenent:N
val ue

Ul

N isthe number of thedistributionmap “Creating a distribution map
element. value isthedistributionmap on page 215
element that defines the boundary of

each partition.
Nurmber of sanpl ed Nisthenumber of sampledrecordsused “Creating a distribution map”
records: N to create the distribution map. on page 215

Examples

The following examples show the output of the set sort_resources
command.

Nonclustered index on a nonpartitioned table

232

This example shows how Adaptive Server performs parallel sorting for a
create index command on an unpartitioned table. Pertinent details for the
example are:

* Thedefault segment spans 4 database devices.
e max parallel degree is set to 20 worker processes.
* number of sort buffers is set to the default, 500 buffers.

The following commands set sort_resources on and issue a create index
command on the orders table:

set sort_resources on
create index order_ix on orders (order_id)

Adaptive Server prints the following output:

The Create Index is done using Parallel Sort
Sort buffer size: 500

Paral |l el degree: 20

Nurmber of output devices: 4

Adaptive Server Enterprise

CHAPTER 9 Parallel Sorting

Nurmber of producer threads: 1

Nunmber of consuner threads: 4

The distribution map contains 3 elenent(s) for 4
partitions.

Partition Element: 1

458052

Partition Elenment: 2
909063

Partition Element: 3
1355747

Nurmber of sanpl ed records: 2418

Inthisexample, the 4 deviceson the default segment determinethe number
of consumer processes for the sort. Because the input table is not
partitioned, the sort manager allocates 1 producer process, for atotal
degree of parallelism of 5.

The distribution map uses 3 dividing values for the 4 ranges. The lowest
input values up to and including the value 458052 belong to thefirst range.
Values greater than 458052 and |ess than or equal to 909063 belong to the
second range. Values greater than 909063 and less than or equal to
1355747 belong to the third range. Values greater than 1355747 belong to
the fourth range.

Nonclustered index on a partitioned table

This example uses the same tables and devices as the first example.
However, in thisexample, theinput tableis partitioned before creating the
nonclustered index. The commands are:

set sort_resources on
alter table orders partition 9
create index order_ix on orders (order_id)

In this case, the create index command under the sort_resources option
prints the output:

The Create Index is done using Parallel Sort
Sort buffer size: 500

Paral |l el degree: 20

Nurmber of output devices: 4

Performance & Tuning: Optimizer and Abstract Plans 233

Tools for observing and tuning sort behavior

Nurmber of producer threads: 9

Nunmber of consuner threads: 4

The distribution map contains 3 elenent(s) for 4
partitions.

Partition Elenment: 1

458464
Partition Elenent: 2

892035
Partition El ement: 3

1349187
Nunber of sanpl ed records: 2448

Because the input table is now partitioned, the sort manager allocates 9
producer threads, for atotal of 13 worker processes. The number of
elementsin the distribution map is the same, although the values differ
dlightly from those in the previous sort examples.

Clustered index on partitioned table executed in parallel

This example creates a clustered index on orders, specifying the segment
name, order_seg.

set sort_resources on
alter table orders partition 9
create clustered index order _ix

on orders (order_id) on order_seg

Since the number of available worker processesis 20, this command can
use 9 producers and 9 consumers, as shown in the output:

The Create Index is done using Parallel Sort
Sort buffer size: 500

Paral | el degree: 20

Nurmber of output devices: 9

Nurmber of producer threads: 9

Nunmber of consuner threads: 9

The distribution map contains 8 elenent(s) for 9
partitions.

Partition Element: 1

199141
Partition Elenent: 2

397543

234 Adaptive Server Enterprise

CHAPTER 9 Parallel Sorting

Sort failure

Partition Element: 3

598758
Partition El enment: 4

800484
Partition Element: 5

1010982
Partition El ement: 6

1202471
Partition Element: 7

1397664
Partition El ement: 8

1594563
Nunber of sanpl ed records: 8055

This distribution map contains 8 elements for the 9 partitions on the table
being sorted. The number of worker processes used is 18.

Note Create aclustered index first. Do not create nonclustered indexes
and then a clustered index. When you create aclustered index all previous
nonclustered index are rebuilt

For example, if only 10 worker processes had been available for this
command, it could have succeeded using asingle producer processto read
the entire table. If fewer than 10 worker processes had been available, a
warning message would be printed instead of the sort_resources output:;

Msg 1538, Level 17, State 1:

Server ’'snipe’, Line 1:

Parall el degree 8 is less than required parall el
degree 10 to create clustered index on partition
tabl e. Change the parallel degree to required
parall el degree and retry.

Performance & Tuning: Optimizer and Abstract Plans 235

Using sp_sysmon to tune index creation

Using sp_sysmon to tune index creation

You can usethe “begin_sample” and “end_sample” syntax for sp_sysmon
to provide performance results for individual create index commands:

sp_sysnon begi n_sanpl e

create index ...
sp_sysnon end_sanpl e

Sections of the report to check include:
e The“SamplelInterval,” for the total time taken to create the index
e Cache statistics for the cache used by the table

e Check thevaluefor “Buffer Grabs’ for the 2K and 16K poolsto
determine the effectiveness of large 1/0.

e Checkthevaue“Dirty Buffer Grabs,” If thisvalueisnonzero, set
the wash size in the pool higher and/or increase the poal size,
using sp_poolconfig.

e Disk I/O for the disks used by the table and indexes: check the value
for “Total Reguested |/0s”

Using parellel sort to speed the create index

To utilize the parallel sort to speed up the create index, set the target
segment on multiple devices. By using multiple devices, the parallel sort
isableto fully use the parellel 1/0 and Adaptive Server determines the
number of consumersfor the sort and create index operations based on the
number of devices.

You do not necessarily have to slice the table to do the create index with
parallel sorting, instead use the create index with the consumer clause.
However, if the target segment is not on multiple devices, the Adaptive
Server may ignorethe number of consumersyou specified inthe consumer
clause.

236 Adaptive Server Enterprise

cHaPTER 10 lTuning Asynchronous Prefetch

This chapter explains how asynchronous prefetch improves 1/0
performance for many types of queries by reading data and index pages
into cache before they are needed by the query.

Topic Page
How asynchronous prefetch improves performance 237
When prefetch is automatically disabled 243
Tuning Goals for asynchronous prefetch 247
Other Adaptive Server performance features 248
Specia settings for asynchronous prefetch limits 251
Maintenance activities for high prefetch performance 252
Performance monitoring and asynchronous prefetch 253

How asynchronous prefetch improves performance

Asynchronous prefetch improves performance by anticipating the pages
required for certain well-defined classes of database activities whose
access patternsare predictable. The I/O requestsfor these pages areissued
before the query needs them so that most pages are in cache by the time
query processing needs to access the page. Asynchronous prefetch can
improve performance for:

e Sequential scans, such astable scans, clustered index scans, and
covered nonclustered index scans

¢ Access vianonclustered indexes
e Some dbce checks and update statistics
e Recovery

Asynchronous prefetch can improve the performance of queries that
access large numbers of pages, such as decision support applications, as
long as the 1/0 subsystems on the machine are not saturated.

Performance & Tuning: Optimizer and Abstract Plans 237

How asynchronous prefetch improves performance

Asynchronous prefetch cannot help (or may help only dightly) when the
I/0 subsystem is already saturated or when Adaptive Server is CPU-
bound. It may be used in some OLTP applications, but to a much lesser
degree, since OLTP queries generally perform fewer 1/0 operations.

When a query in Adaptive Server needs to perform atable scan, it:
e Examinesthe rows on a page and the values in the rows.

e Checksthe cachefor the next pageto beread from atable. If that page
isin cache, the task continues processing. If the page isnot in cache,
the task issues an /O request and sleeps until the 1/0 compl etes.

e When the I/O completes, the task moves from the slegp queue to the
run queue. When the task is scheduled on an engine, Adaptive Server
examines rows on the newly fetched page.

Thiscycle of executing and stalling for disk reads continues until the table
scan completes. In asimilar way, queries that use a nonclustered index
processadatapage, issuethe /O for the next pagereferenced by theindex,
and sleep until the I/0 completes, if the pageis not in cache.

This pattern of executing and then waiting for 1/0O slows performance for
queriesthat issue physical 1/Os for large number of pages. In addition to

thewaiting timefor the physical I/0Osto complete, thetask switcheson and
off the engine repeatedly. Thistask switching adds overhead to processing.

Improving query performance by prefetching pages

238

Asynchronous prefetch issues 1/0 requests for pages before the query
needs them so that most pages are in cache by the time query processing
needs to access the page. If required pages are aready in cache, the query
does not yield the engine to wait for the physical read. (It may still yield
for other reasons, but it yields less frequently.)

Based on the type of query being executed, asynchronous prefetch builds
alook-ahead set of pagesthat it predicts will be needed very soon.
Adaptive Server defines different look-ahead setsfor each processing type
where asynchronous prefetch is used.

Adaptive Server Enterprise

CHAPTER 10 Tuning Asynchronous Prefetch

In some cases, look-ahead sets are extremely precise; in others, some
assumptions and speculation may lead to pages being fetched that are
never read. When only asmall percentage of unneeded pages areread into
cache, the performance gains of asynchronous prefetch far outweigh the
penalty for thewasted reads. If the number of unused pagesbecomeslarge,
Adaptive Server detects this condition and either reduces the size of the
look-ahead set or temporarily disables prefetching.

Prefetching control mechanisms in a multiuser environment

When many simultaneous queries are prefetching large numbers of pages
into a buffer pool, there is arisk that the buffers fetched for one query
could be flushed from the pool before they are used.

Adaptive Server tracksthe buffersbrought into each pool by asynchronous
prefetch and the number that are used. It maintains a per-pool count of
prefetched but unused buffers. By default, Adaptive Server sets an
asynchronous prefetch limit of 10 percent of each pool. In addition, the
limit on the number of prefetched but unused buffersis configurable on a
per-pool basis.

The pooal limits and usage statistics act like a governor on asynchronous

prefetch to keep the cache-hit ratio high and reduce unneeded 1/0O. Overal,
the effect isto ensure that most queries experience a high cache-hit ratio
and few stalls dueto disk I/O sleeps.

The following sections describe how the look-ahead set is constructed for
the activities and query types that use asynchronous prefetch. In some
asynchronous prefetch optimizations, alocation pages are used to build
the look-ahead set.

For information on how allocation pages record information about object
storage, see “ Allocation pages’ on page 158.

Performance & Tuning: Optimizer and Abstract Plans 239

How asynchronous prefetch improves performance

Look-ahead set during recovery

During recovery, Adaptive Server reads each log page that includes
records for atransaction and then reads all the data and index pages
referenced by that transaction, to verify timestampsand to roll transactions
back or forward. Then, it performs the same work for the next completed
transaction, until al transactions for a database have been processed. Two
separate asynchronous prefetch activities speed recovery: asynchronous
prefetch on the log pages themselves and asynchronous prefetch on the
referenced data and index pages.

Prefetching log pages

The transaction log is stored sequentially on disk, filling extentsin each
allocation unit. Each time the recovery process reads alog page from a
new allocation unit, it prefetches all the pages on that allocation unit that
arein use by thelog.

In databases that do not have a separate log segment, log and data extents
may be mixed on the same alocation unit. Asynchronous prefetch still
fetchesall thelog pages on the all ocation unit, but the look-ahead sets may
be smaller.

Prefetching data and index pages

For each transaction, Adaptive Server scans the log, building the look-
ahead set from each referenced data and index page. While one
transaction’s log records are being processed, asynchronous prefetch
issues requests for the data and index pages referenced by subsequent
transactions in the log, reading the pages for transactions ahead of the
current transaction.

Note Recovery usesonly the pool in the default data cache. See “ Setting
limits for recovery” on page 251 for more information.

Look-ahead set during sequential scans

Sequentia scansinclude table scans, clustered index scans, and covered
nonclustered index scans.

240 Adaptive Server Enterprise

CHAPTER 10 Tuning Asynchronous Prefetch

During table scans and clustered index scans, asynchronous prefetch uses
all ocation pageinformation about the pages used by the object to construct
the look-ahead set. Each time apage isfetched from anew allocation unit,
thelook-ahead set isbuilt from all the pages on that allocation unit that are
used by the object.

The number of times a sequential scan hops between allocation unitsis
kept to measure fragmentation of the page chain. Thisvalueis used to
adapt the size of the look-ahead set so that large numbers of pages are
prefetched when fragmentation is low, and smaller numbers of pages are
fetched when fragmentation is high. For more information, see “ Page
chain fragmentation” on page 245.

Look-ahead set during nonclustered index access

When using a nonclustered index to access rows, asynchronous prefetch
finds the page numbers for al qualified index values on a nonclustered
index leaf page. It builds the look-ahead set from the uniquelist of al the
pages that are needed.

Asynchronous prefetch is used only if two or more rows qualify.

If anonclustered index access requires several leaf-level pages,
asynchronous prefetch requests are also issued on the leaf pages.

Look-ahead set during dbcc checks
Asynchronous prefetch is used during the following dbcc checks:

* dbcc checkalloc, which checks allocation for all tables and indexesin
adatabase, and the corresponding object-level commands, dbcc
tablealloc and dbcc indexalloc

e dbcc checkdb, which checks all tables and index links in a database,
and dbcc checktable, which checksindividual tables and their indexes

Performance & Tuning: Optimizer and Abstract Plans 241

How asynchronous prefetch improves performance

Allocation checking

The dbcc commands checkalloc, tablealloc and indexalloc, which check
page allocations validate information on the allocation page. The look-
ahead set for the dbcc operations that check allocation is similar to the
look-ahead set for other sequential scans. When the scan enters adifferent
allocation unit for the object, the look-ahead set is built from all the pages
on the allocation unit that are used by the object.

checkdb and checktable

The dbce checkdb and dbce checktable commands check the page chains
for atable, building the look-ahead set in the same way as other sequential
scans.

If the table being checked has nonclustered indexes, they are scanned
recursively, starting at the root page and following all pointersto the data
pages. When checking the pointers from the leaf pages to the data pages,
the dbcc commands use asynchronous prefetch in away that is similar to
nonclustered index scans. When aleaf-level index page is accessed, the
look-ahead set isbuilt from the page | Ds of all the pagesreferenced on the
leaf-level index page.

Look-ahead set minimum and maximum sizes

242

The size of alook-ahead set for aquery at agiven pointintimeis
determined by several factors:

e Thetype of query, such as a sequential scan or a nonclustered index
scan

e Thesize of the pools used by the objects that are referenced by the
query and the prefetch limit set on each pool

» Thefragmentation of tables or indexes, in the case of operations that
perform scans

e Therecent success rate of asynchronous prefetch requests and
overload conditions on /O queues and server 1/0 limits

Table 10-1 summarizes the minimum and maximum sizes for different
type of asynchronous prefetch usage.

Adaptive Server Enterprise

CHAPTER 10 Tuning Asynchronous Prefetch

Table 10-1: Look-ahead set sizes

Access type

Action

Look-ahead set sizes

Table scan
Clustered index scan
Covered leaf level scan

Reading apagefroma
new allocation unit

Minimum is 8 pages needed by the query
Maximum is the smaller of:

* Thenumber of pages on an allocation unit that
belong to an object.

e Thepool prefetch limits

Nonclustered index scan

Locating qualified
rows on the leaf page

Minimum is 2 qualified rows
Maximum is the smaller of:

ing t :
zgeleg:g;)%g(;s e The number of unique page numbers on
qualified rows on the leaf index page
* Thepool’s prefetch limit
Recovery Recovering a Maximum isthe smaller of:
transaction « All of the data and index pages touched by a
transaction undergoing recovery
* The prefetch limit of the pool in the default
data cache
Scanning the Maximum is all pages on an allocation unit
transaction log belonging to the log
dbcc tablealloc, indexalloc, and Scanning the page Same as table scan
checkalloc chain
dbcc checktable and checkdb Scanning the page Same as table scan
chain
Checking All of the data pages referenced on aleaf level
nonclustered index page.
links to data pages

When prefetch is automatically disabled

Asynchronous prefetch attempts to fetch needed pages into buffer pools
without flooding the pools or the 1/0O subsystem and without reading
unneeded pages. If Adaptive Server detects that prefetched pages are
being read into cache but not used, it temporarily limits or discontinues

asynchronous prefetch.

Performance & Tuning: Optimizer and Abstract Plans

243

When prefetch is automatically disabled

Flooding pools

For each poal in the data caches, a configurable percentage of buffers can
be read in by asynchronous prefetch and held until their first use. For
example, if a2K pool has 4000 buffers, and the limit for the pool is 10
percent, then, at most, 400 buffers can beread in by asynchronous prefetch
and remain unused in the poal. If the number of nonaccessed prefetched
buffersin the pool reaches 400, Adaptive Server temporarily discontinues
asynchronous prefetch for that pool.

Asthe pages in the pool are accessed by queries, the count of unused
buffersinthe pool drops, and asynchronous prefetch resumes operation. If
the number of available buffersissmaller than the number of buffersinthe
look-ahead set, only that many asynchronous prefetches are issued. For
example, if 350 unused buffersarein apool that allows 400, and aquery’s
look-ahead set is 100 pages, only thefirst 50 asynchronous prefetches are
issued.

This keeps multiple asynchronous prefetch requests from flooding the
pool with requests that flush pages out of cache before they can be read.
The number of asynchronous|/Osthat cannot beissued dueto the per-pool
limitsis reported by sp_sysmon.

I/O system overloads

244

Adaptive Server and the operating system place limits on the number of
outstanding I/Os for the server as awhole and for each engine. The
configuration parameters max async i/os per server and max async i/os per
engine control theselimitsfor Adaptive Server. See your operating system
documentation for more information on configuring them for your
hardware.

The configuration parameter disk i/o structures controlsthe number of disk
control blocks that Adaptive Server reserves. Each physical 1/0 (each
buffer read or written) requires one control block whileit isin the I/O
queue.

See the System Administration Guide.

Adaptive Server Enterprise

CHAPTER 10 Tuning Asynchronous Prefetch

Unnecessary reads

If Adaptive Server triestoissue asynchronous prefetch requeststhat would
exceed max async i/os per server, max async i/os per engine, or disk i/o
structures, it issues enough requests to reach the limit and discards the
remaining requests. For example, if only 50 disk 1/O structures are
available, and the server attempts to prefetch 80 pages, 50 requests are
issued, and the other 30 are discarded.

sp_sysmon reports the number of times these limits are exceeded by
asynchronous prefetch requests. See “ Asynchronous prefetch activity
report” on page 86 in the book Performance and Tuning: Monitoring and
Analyzing for Performance.

Asynchronous prefetch tries to avoid unnecessary physical reads. During
recovery and during nonclustered index scans, look-ahead sets are exact,
fetching only the pages referenced by page number in the transaction log
or on index pages.

L ook-ahead setsfor table scans, clustered index scans, and dbcc checksare
more speculative and may lead to unnecessary reads. During sequential
scans, unnecessary 1/0O can take place due to:

« Page chain fragmentation on allpages-locked tables

* Heavy cache utilization by multiple users

Page chain fragmentation

Adaptive Server’s page all ocation mechanism strives to keep pages that
belong to the same object close to each other in physical storage by
allocating new pages on an extent already allocated to the object and by
allocating new extents on allocation units already used by the object.

However, as pages are allocated and deall ocated, page chains on data-
only-locked tables can develop kinks. Figure 10-1 shows an example of a
kinked page chain between extents in two allocation units.

Performance & Tuning: Optimizer and Abstract Plans 245

When prefetch is automatically disabled

246

Figure 10-1: A kink in a page chain crossing allocation units

0.23456

8

o 10| B 13|14 15

16

17418 119 |20 | 21| 22 | 23

24

25/ 26 |27 [28 | 29| 30 | 31

/ . Pages used by object

248

21@ 250251 (252|253 |254|255 IIII OAM page

256

Allocation page

2#57 258(259(260|261|262|263

264

272

465 266 267|268|269 (270|271 Other pages
273|274|275|276|277|278|279

280

281(282|283|284|285|286|287

504

505|506 |507|508|509|510(511

In Figure 10-1, when a scan first needs to access a page from allocation
unit 0, it checks the allocation page and issues asynchronous 1/Os for all
the pages used by the object it is scanning, up to the limit set on the pool.
Asthe pages become availablein cache, the query processesthemin order
by following the page chain. When the scan reaches page 10, the next page
in the page chain, page 273, belongs to allocation unit 256.

When page 273 is needed, allocation page 256 is checked, and
asynchronous prefetch requests are issued for all the pagesin that
allocation unit that belong to the object.

When the page chain points back to a page in alocation unit O, there are
two possibilities:

» The prefetched pages from allocation unit 0 are till in cache, and the
guery continues processing with no unneeded physical 1/0s.

Adaptive Server Enterprise

CHAPTER 10 Tuning Asynchronous Prefetch

* The prefetch pagesfrom allocation unit 0 have been flushed from the
cache by the reads from allocation unit 256 and other |/Os taking
place by other queries that use the pool. The query must reissue the
prefetch requests. This condition is detected in two ways:

e Adaptive Server's count of the hops between all ocation pages
now equals two. It uses the ratio between the count of hops and
the prefetched pages to reduce the size of the look-ahead set, so
fewer 1/Os areissued.

e Thecount of prefetched but unused pagesin the pool islikely to
be high, so asynchronous prefetch may be temporarily
discontinued or reduced, based on the pool’s limit.

Tuning Goals for asynchronous prefetch

Choosing optimal pool sizesand prefetch percentages for buffer pools can
be key to achieving improved performance with asynchronous prefetch.
When multiple applications are running concurrently, a well-tuned
prefetching system balances pool sizes and prefetch limits to accomplish
these goals:

e Improved system throughput
* Better performance by applications that use asynchronous prefetch

* No performance degradation in applications that do not use
asynchronous prefetch

Configuration changes to pool sizes and the prefetch limits for pools are
dynamic, allowing you to make changes to meet the needs of varying
workloads. For example, you can configure asynchronous prefetch for
good performance during recovery or dbcc checking and reconfigure
afterward without needing to restart Adaptive Server.

See * Setting limits for recovery” on page 251 and “ Setting limits for
dbcc” on page 252 for more information.

Performance & Tuning: Optimizer and Abstract Plans 247

Other Adaptive Server performance features

Commands for configuration

Asynchronous prefetch limits are configured as a percentage of the pool in
which prefetched but unused pages can be stored. There are two
configuration levels:

e The server-wide default, set with the configuration parameter global
async prefetch limit. When you first install, the default value for global
async prefetch limit is 10 (percent).

For more information, see of the System Administration Guide.

e A per-pool override, set with sp_poolconfig. To see the limits set for
each pool, use sp_cacheconfig.

For more information, see of the System Administration Guide.

Changing asynchronous prefetch limitstakes effect immediately, and does
not require areboot. Both the global and per-pool limits can also be
configured in the configuration file.

Other Adaptive Server performance features

This section covers the interaction of asynchronous prefetch with other
Adaptive Server performance features.

Large I/O

The combination of large I/O and asynchronous prefetch can provide rapid
query processing with low 1/O overhead for queries performing table scans
and for dbcc operations.

Whenlargel/O prefetchesall the pages on an all ocation unit, the minimum
number of 1/Osfor the entire allocation unit is:

+ 3116K I/Os

248 Adaptive Server Enterprise

CHAPTER 10 Tuning Asynchronous Prefetch

e 72K 1/Os, for the pages that share an extent with the allocation page

Note ReferencetoLargel/Osareona?2K logical page size server. If you
have an 8K page size server, the basic unit for the 1/O is8K. If you havea
16K page size server, the basic unit for the I/0 is 16K.

Sizing and limits for the 16k pool

Performing 31 16K prefetches with the default asynchronous prefetch
limit of 10 percent of the buffersin the pool requires a pool with at least
310 16K buffers. If the pool issmaller, or if the limit islower, some
prefetch requests will be denied. To allow more asynchronous prefetch
activity in the pool, you can configure alarger pool or alarger prefetch
limit for the pool.

If multiple overlapping queries perform table scans using the same pool,
the number of unused, prefetched pages allowed in the poll needsto be
higher. The queries are probably issuing prefetch requests at dightly
staggered times and are at different stages in reading the accessed pages.
For example, one query may have just prefetched 31 pages, and have 31
unused pages in the pool, while an earlier query has only 2 or 3 unused
pages left. To start your tuning efforts for these queries, assume one-half
the number of pages for a prefetch request multiplied by the number of
active queriesin the pool.

Limits for the 2K pool

Queries using large 1/0 during sequential scans may still need to perform
2K 1/0:

e When ascan entersanew allocation unit, it performs 2K 1/0O onthe 7
pages in the unit that share space with the allocation page.

e If pagesfrom the allocation unit already reside in the 2K pool when
the prefetch requests are issued, the pages that share that extent must
be read into the 2K pool.

If the 2K poal hasits asynchronous prefetch limit set to 0, thefirst 7 reads
are performed by normal asynchronous I/0O, and the query sleeps on each
read if the pagesare not in cache. Set thelimitsonthe 2K pool high enough
that it does not slow prefetching performance.

Performance & Tuning: Optimizer and Abstract Plans 249

Other Adaptive Server performance features

Fetch-and-discard (MRU) scans

When a scan uses MRU replacement policy, buffersare handled in a
special manner when they are read into the cache by asynchronous
prefetch. First, pages are linked at the MRU end of the chain, rather than
at the wash marker. When the query accesses the page, the buffersare re
linked into the pool at the wash marker. This strategy helpsto avoid cases
where heavy use of acache flushes prefetched buffers linked at the wash
marker beforethey can be used. It haslittleimpact on performance, unless
large numbers of unneeded pages are being prefetched. In this case, the
prefetched pages are more likely to flush other pages from cache.

Parallel scans and large 1/Os

Hash-based table scans

250

The demand on buffer poolscan become higher with parallel queries. With
seria queries operating on the same poals, it is safe to assumethat queries
areissued at dlightly different times and that the queries are in different
stages of execution: some are accessing pages are already in cache, and
others are waiting on |/O.

Parallel execution places different demands on buffer pools, depending on
the type of scan and the degree of parallelism. Some parallel queries are
likely to issue alarge number of prefetch requests simultaneousdly.

Hash-based table scans on allpages-locked tables have multiple worker
processes access ng the same page chain. Each worker process checksthe
page ID of each page in the table, but examines only the rows on those
pages where page |D matches the hash value for the worker process.

The first worker process that needs a page from a new allocation unit
issues a prefetch request for all pages from that unit. When the scans of
other worker processes al so need pages from that all ocation unit, they will
either find that the pages they need are already in I/O or already in cache.
Asthefirst scan to complete enters the next unit, the process is repeated.

Aslong as oneworker processin the family performing a hash-based scan
does not become stalled (waiting for alock, for example), the hash-based
table scans do not place higher demands on the pools than they place on
serial processes. Since the multiple processes may read the pages much
more quickly than aserial processdoes, they changethe status of the pages
from unused to used more quickly.

Adaptive Server Enterprise

CHAPTER 10 Tuning Asynchronous Prefetch

Partition-based scans

Special settings

Partition-based scans are more likely to create additional demands on
pools, since multiple worker processes may be performing asynchronous
prefetching on different alocation units. On partitioned tables on multiple
devices, the per-server and per-engine 1/0 limits are less likely to be
reached, but the per-pool limits are more likely to limit prefetching.

Once a parallel query is parsed and compiled, it launches its worker
processes. If atable with 4 partitionsis being scanned by 4 worker
processes, each worker process attemptsto prefetch all the pagesin itsfirst
alocation unit. For the performance of this single query, the most
desirable outcome is that the size and limits on the 16K pool are
sufficiently large to allow 124 (31* 4) asynchronous prefetch requests, so
al of the requests succeed. Each of the worker processes scans the pages
in cache quickly, moving onto new allocation units and issuing more
prefetch requests for large numbers of pages.

for asynchronous prefetch limits

You may want to change asynchronous prefetch configuration temporarily
for specific purposes, including:

* Recovery

¢ dbcc operations that use asynchronous prefetch

Setting limits for recovery

During recovery, Adaptive Server usesonly the 2K pool of thedefault data
cache. If you shut down the server using shutdown with nowait, or if the
server goes down due to power failure or machine failure, the number of
log records to be recovered may be quite large.

To speed recovery, you can edit the configuration file to do one or both of
the following:

e Increasethe size of the 2K pool in the default data cache by reducing
the size of other poolsin the cache

e Increasethe prefetch limit for the 2K pool

Performance & Tuning: Optimizer and Abstract Plans 251

Maintenance activities for high prefetch performance

Both of these configuration changes are dynamic, so you can use
sp_poolconfig to restore the original values after recovery completes,
without restarting Adaptive Server. The recovery process allows usersto
log into the server as soon as recovery of the master database is complete.
Databases are recovered one at atime and users can begin using a
particular database as soon asit is recovered. There may be some
contention if recovery is still taking place on some databases, and user
activity in the 2K pooal of the default data cache is heavy.

Setting limits for dbcc

If you are performing database consi stency checking at atime when other
activity on the server islow, configuring high asynchronous prefetch
limits on the pools used by dbcc can speed consistency checking.

dbcce checkalloc can use special internal 16K buffersif thereisno 16K pool
in the cache for the appropriate database. If you have a 2K pool for a
database, and no 16K pool, set the local prefetch limit to O for the pool
while executing dbcc checkalloc. Use of the 2K pool instead of the 16K
internal buffers may actually hurt performance.

Maintenance activities for high prefetch performance

252

Page chains for all pages-locked tables and the leaf levels of indexes
develop kinks as data modifications take place on the table. In general,
newly created tables have few kinks. Tables where updates, deletes, and
inserts that have caused page splits, new page allocations, and page
deallocations are likely to have cross-allocation unit page chain kinks. If
more than 10 to 20 percent of the origina rowsin atable have been
modified, you should determine if kinked page chains are reducing
asynchronous prefetch effectiveness. If you suspect that page chain kinks
are reducing asynchronous prefetch performance, you may need to re-
create indexes or reload tables to reduce kinks.

Adaptive Server Enterprise

CHAPTER 10 Tuning Asynchronous Prefetch

Eliminating kinks in

Eliminating kinks in

Eliminating kinks in

heap tables

For allpages-locked heaps, page allocation is generally sequential, unless
pages are deallocated by deletes that remove all rows from a page. These
pages may be reused when additional spaceisallocated to the object. You
can create a clustered index (and drop it, if you want the table stored as a
heap) or bulk copy the data out, truncate the table, and copy the datain
again. Both activities compress the space used by the table and eliminate
page-chain kinks.

clustered index tables

For clustered indexes, page splits and page deallocations can cause page
chain kinks. Rebuilding clustered indexes does not necessarily eliminate
all cross-allocation pagelinkages. Usefillfactor for clustered indexeswhere
you expect growth, to reduce the number of kinks resulting from data
modifications.

nonclustered indexes

If your query mix uses covered index scans, dropping and re-creating
nonclustered indexes can improve asynchronous prefetch performance,
once the leaf-level page chain becomes fragmented.

Performance monitoring and asynchronous prefetch

The output of statistics io reports the number physical reads performed by
asynchronous prefetch and the number of reads performed by normal
asynchronous 1/O. In addition, statistics io reports the number of timesthat
asearch for apagein cache was found by the asynchronous prefetch
without holding the cache spinlock.

See “Reporting physical and logical /O statistics’ on page 63 in the
Performance and Tuning: Monitoring and Analyzing for Performance
book for more information.

Performance & Tuning: Optimizer and Abstract Plans 253

Performance monitoring and asynchronous prefetch

sp_sysmon report contains information on asynchronous prefetch in both
the “Data Cache Management” section and the “Disk I/O Management”
section.

If you are using sp_sysmon to evaluate asynchronous prefetch
performance, you may seeimprovementsin other performance areas, such
as:

e Much higher cache hit ratios in the pools where asynchronous
prefetch is effective

« A corresponding reduction in context switches due to cache misses,
with voluntary yieldsincreasing

e A possible reduction in lock contention. Tasks keep pages |ocked
during the time it takes for perform 1/0O for the next page needed by
the query. If thistime is reduced because asynchronous prefetch
increases cache hits, locks will be held for a shorter time.

See “Data cache management” on page 82 and “Disk 1/0O management”
on page 102 in the Performance and Tuning: Monitoring and Analyzing
for Performance book for more information.

254 Adaptive Server Enterprise

cuapTer 11 Multiple Temporary Databases

This chapter discusses the multiple temporary databases.

Topic Page
After creating atemporary database 258
Using sp_tempdb 259
Binding with temporary databases 260
Multiple temporary database and the system 261
Installation issues 272

Overview

Adaptive Server allows you to create and manage multiple temporary
databasesin addition to the system tempdb, which was the only temporary
database in the server in earlier versions of Adaptive Server.

Multiple temporary databases, also referred to as tempdbs, reduce
contention on system catal ogs and logs in the system tempdb. They allow
you to:

e Create temporary databases on fast-access devices
e Drop atemporary database to reclaim storage

e Partition tasks that create temporary objects into using specific
tempdbs, which prevents these tasks from interfering with other
sessions that need to use temporary database space

The multiple temporary database feature isfully enabled for:
e New installations

e Instalationsthat upgraded from an Adaptive Server earlier than
version 12.5

e Databasesthat are loaded from an Adaptive Server earlier than
version 12.5

Performance & Tuning: Optimizer and Abstract Plans 255

Overview

User-created
temporary databases

Temporary databases
and bindings

256

The tempdb database is the system-created temporary database. Before
Adaptive Server version 12.5.0.3, tempdb was the only temporary database in
the server. Temporary tables and work tables are created in tempdb.

Adaptive Server allowsyou to create multiple temporary databases, which you
can then use to create temporary objects such as private temporary tables and
work tables. Database administrators can bind—that is, create associations
between—the“sa’ login and applicationsto specific temporary databasesor to
the default group of temporary databases using sp_tempdb. The default groupis
a system-created group that always has at least the system tempdb as its
member. You can add other temporary databases to this group.

Note You cannot explicitly bind objects to tempdb.

An application bound to the group can be assigned any temporary database
from within the group in around-robin fashion.

Note User groups and the default temporary database group are not related.

User-created temporary databases are created by the user, typically the
database administrator. These databases are usually created to minimize
resource contention (such as system catalog and log contention) in the system
tempdb. User-created temporary databases are very similar to the system
tempdb in that they are:

» Used primarily to create temporary objects
* Re-created, rather than recovered, during a system-recovery process

All objectsin atemporary database before a shutdown or crash are lost during
recovery because temporary databases are overwritten with the model
database. Those restrictions that apply to the system tempdb also apply to the
user-created temporary databases. See “ Rollback and recovery” on page 263
for more information.

Unlike the system tempdb, you can drop user-created temporary databases.

During login, sessions get assigned to a temporary database based on the
existing bindings in effect:

» If thebinding isto a specific temporary database that is online and
available, the session gets assigned to it.

e If thebinding isto the default group, atemporary database from that group
is selected using a round-robin selection policy.

Adaptive Server Enterprise

CHAPTER 11 Multiple Temporary Databases

Private temp tables

e Ifnohindingisspecified, atemporary database is selected from the default
group.

The temporary database chosen for a session remainsin effect for the duration
of that session and never gets changed, regardless of any changesto the
bindings.

Once asession is assigned atemporary database, all temporary objects created
during that session are created in that temporary database. These objects are
implicitly dropped when the session or server shutsdown. Shareabletemporary
tables are implicitly dropped when the server shuts down.

Note Temporary tables may be dropped explicitly by the session.

Server or shareable temporary tables continue to be created in the system
tempdb if they are fully qualified as “tempdb..server_temptab” to include the
database and table name. Thisis done to make sure that existing applications
that pass information between sessions using shareable temporary tables
continue to work. New applications, however, can use user-created tempdbsto
create shareable temporary tables.

Private temporary tables are created per session, and use the “#” symbol at the
beginning of their names (for example, #pubs). They cannot be shared across
sessions. These temporary tables and work tables reside in the session’s

assigned temporary database. There are two types of private temp tables. They
are also differentiated by their visible scope and how long they implicitly exist:

e Session temp table — created at the batch level outside of aprocedure, this
type of private temp tableis:

e Visbleto all commands, including procedures that are executed
within the creating session

e Isimplicitly dropped when the session terminates

The following create statement, executed at the batch level, creates a
private temp table:

create table #t1(id int, desc varchar(250))
e Procedural temp table — created within a procedure, it is:

e Vishbleto the procedure that creates it and any nested procedures it
cals.

* Implicitly dropped when the procedure that created it exits.
The following creates two procedural temp tables:

Performance & Tuning: Optimizer and Abstract Plans 257

After creating a temporary database

Shareable temp tables

After creating

258

create procedure SetupTenpTabl es as
create table #ptl(. . .)
create table #pt2(. . .)

Applications can create shareable temporary tablesin user-created temporary
databases in exactly the same way that they create shareable temporary tables
created in the system tempdb. Cooperating processes can communicatethrough
these tables.

Note Procedural temporary tables can also be explicitly dropped.

Stored procedures that create or access private temporary tables, do so in the
temporary database assigned to the session.

Shareabl e temporary tables can be created in user-created temporary databases
aswell asin the system tempdb. All shareable temporary tables can be shared
across sessions and are implicitly dropped when the Server reboots.

Note Unlike the system tempdb, user-created temporary databases can be
dropped. Any applications that are dependent upon a dropped user-created
temporary database will not work if shareable temp tables existed.

a temporary database

The dbid of anewly created temporary database is automatically registered in
aglobal list of al available temporary databases. You cannot bind objectsto
that database until after it isregistered in the global list. When a server is
restarted, temporary databases are added to the global list asthey are
recovered.

The number of temporary databases that is supported is statically declared and
isnot configurable. The number of temporary databases that can be registered
in the global list of temporary databases available for bindings (and,
conseguently, assignment to sessions) is 512, including tempdb.

When the global listisfull, an attempt to add atemporary database to it results
in awarning. To see the contents of the list, execute the

dbcc pravailabletempdbs command. See “ dbcc pravailabletempdbs’ on page
271 for more information.

Adaptive Server Enterprise

CHAPTER 11 Multiple Temporary Databases

You can create a database even if you cannot register its dbid in the global list.
If theglobal listisfull, you can run adbcc addtempdb command to add the dbid
to the global list when space becomes available. See “ dbcc addtempdb” on
page 272 for more information on the dbcc addtempdb command.

In addition, if space becomes available on the global list when atemporary
database has been dropped, you can also:

e Drop and re-create the temporary database, at which point it gets
registered and becomes availablefor binding, using space that hasbecome
availablein the global list.

¢ Restart the server.

Note The system tempdb, which has adbid of 2, isregistered in the global list
when the server is restarted. It cannot be unregistered.

Adaptive Server assumes that the temporary databases you create are not
bound to the default group. To add a new database to the default group, use
sp_tempdb—see the entry for sp_tempdb in Reference Manual: Sored
Procedures for more information. Adding a database to the group makes the
database immediately available for round-robin assignment from within the

group.

Even if the database is not a member of the default group, you can still assign
it to asession via an application or login binding. See the bind option in the
entry for sp_tempdb in Reference Manual: Sored Procedures for more
information for more information.

Using sp_tempdb
sp_tempdb allows users to:
¢ Create the default temporary database group
e Bind temporary databases to the default temporary database group

e Bindthe“sa’ login and applications to the default temporary database
group or to specific temporary databases

The syntax for sp_tempdb is:

sp_tempdb [
[{ create | drop }, groupname] |

Performance & Tuning: Optimizer and Abstract Plans 259

Binding with temporary databases

[{add | remove } , tempdbname, groupname] |
[{ bind, objtype, objname, bindtype, bindobj [, scope, hardness] } |
{ unbind, objtype, objname [, scope]}]|
[unbindall_db, tempdbname] |
[show [, "all" | "gr" | "db" | "login" | "app" [, name]] |
[who, dbname]
[help]
]

For detailed parameter and usage information, see Reference Manual: Sored
Procedures.

Binding with temporary databases

260

Thefollowing is required for sp_tempdb bind to succeed:

If Then
objtypeislogin_name | objname must be avalid login name, and scopeis NULL

objtypeis application | objnameisan application name, and scopeis NULL.

If Then

bindtypeis group bindobj must be the name of the existing group that you are
binding to, which in this case is default.

bindtypeisdatabase | bindobj must be an existing temporary database name. It
cannot be tempdb since tempdb cannot have explicit bindings.

When you successfully execute sp_tempdb bind, it inserts anew entry into
sysattributes to represent this binding.

If an entry already exists for the objname/objtype/scope combination you
specified in sp_tempdb bind, its entry in sysattributes is updated with the new
information represented by the bindtype and bindobj you specify.

Although the new binding you createis effective immediately, any session that
has already been assigned atemporary database continues to maintain that
original assignment. Only new sessions are affected by the new binding.

Note Applications can change their name through ct_lib and other interfaces
such as jConnect, even after connecting and starting a session. This does not
affect the temporary database assignment to the session. Thisis also true for
the setuser command.

Adaptive Server Enterprise

CHAPTER 11 Multiple Temporary Databases

Binding an “sa” to its
own temporary
database

Session binding

You can bind the “sa” login to a separate temporary database for maintenance
and disaster recovery purposes. By isolating the “sa’ user from the temporary
database activities of other applications and users, the “sa’ user is guaranteed
to have access to temporary database resources when necessary.

At login time, a session isassigned to atemporary database, which remainsin
effect for the duration of that session and cannot change. Bindings are read
from sysattributes, and are chosen according to these parameters:

e If binding of type LG (login) exists, use that binding.

« If binding of type AP (application name)exists, use that binding.
e Bind session to atemporary database within the default group.
Bindings can be hard or soft:

e Soft bindings—logins never fail despite any failuresto assign atemporary
database to the session according to the binding in effect. When all else
fails, asession should always end up being assigned to the system tempdb.

« Hard bindings—if an assignment of atemporary database to a session
cannot be made according to the binding in effect, the login fails.

Multiple temporary database and the system

This section describes the effects that the multiple temporary database feature
has on Adaptive Server.

System table changes

The multiple temporary database feature affects sysattributes and
sysdatabases.

Performance & Tuning: Optimizer and Abstract Plans 261

Multiple temporary database and the system

sysattributes

Table 11-1 shows the representation of temporary database groups and
bindings as these appear in the sysattributes system table. Only relevant
columns are shown. All other columns are NULL. Groups are represented in
rowswhereattribute hasavalue of “0”. Login and application bindings, aswell
as database to group bindings, are represented in rows where attribute has a
value of “1".

Table 11-1: sysattributes representation

class | attribute | object_type | object_cinfo | object | object_cinfol | int_value char_value
16 0 GR group name NULL NULL group id NULL
16 0 D database name | group NULL NULL NULL
ID
16 1 LG NULL user ID | Ofor soft, 0for database or
1for hard database, group name
1 for group
16 1 AP application NULL 0 for soft, Ofor database or
name 1for hard database, group name
1 for group
sysdatabases

sysdatabases supports anew bit in the status3 field. The temporary status of a
database isindicated by the value of 0x00000100 (256 decimal) in the status3
field of asysdatabases entry.

@@tempdbid global variable

Examples

262

The @ @tempdbid returnsavalid temporary database I D (dbid) of the session’s
assigned temporary database.

Example 1 Returnsthe dbid of mytempdb, the session’s assigned temporary
database, whichis7:

sel ect
-

@@ enmpdbi d from nmyt enpdb

Example 2 Returnsthe name of the temporary database, which is mytempdb:

sel ect db_nane(@@ enpdbi d)
nyt enpdb

Adaptive Server Enterprise

CHAPTER 11 Multiple Temporary Databases

tempdb_id() function

Log truncation

Thetempdb_id() reportsthetemporary database that agiven sessionisassigned
to. The input of the tempdb_id() function is a server process ID, and its output
is the temporary database to which the processis assigned. If you do not
provide a server process, then tempdb_id() reports the dbid of the temporary
database assigned to the current process.

Tofind all the server processesthat are assigned to agiven temporary database,
execute:

sel ect spid from naster..sysprocesses
where tenpdb_i d(spid) = db_id("tenpdatabase")

Note select tempdb_id() gives the same result as select @ @tempdbid.

Adaptive Server truncates user-created temporary databases in the same way
as with the tempdb log. When you run the system checkpoint process on a
temporary database, both the tempdb log and a user-created temporary
database are truncated because of thetrunc log on chkpt option. Thisistrueonly
when the system initiates the checkpoint; not when the user initiates the
checkpoint of atemporary database.

Rollback and recovery

Therecovery processfor user-created temporary databasesdifferssignificantly
from that of regular databases.

There is no difference in runtime-undo rollbacks between the system tempdb
and user-created temporary databases.

The restart recovery processis similar to that for tempdb. A user-created
temporary database is created using the entries in sysusages, and the model
database is copied over. All user-created objects that existed in atemporary
database before shutting down are lost.

Temporary databases are recovered in the order in which they appear in
sysdatabases. Use sp_dbrecovery_order to specify an alternate recovery order.

Performance & Tuning: Optimizer and Abstract Plans 263

Multiple temporary database and the system

Sessions that log in before the recovery of the temporary database that they
would normally be assigned to are assigned to another temporary database,
unless a hard binding exists—in which case the login fails. To minimize this
impact, use sp_dbrecovery_order to specify that all or some of the temporary
databases can be recovered before the rest of the user databases.

Upon successful recovery, atemporary database is added to the global list of
available temporary databases, as well as to the default group, if bound to it.

The creation date and time for the temporary database entry in sysdatabases
reflects the time that the database was re-created. This date is updated at the
time of recovery every time the temporary database is re-created.

The model database is locked while the system is under recovery so that it can
get copied over to the temporary database.

Note Sincemodelislocked, you cannot create anew database or use use model
until the recovery process has compl eted.

Dropping a temporary database

264

You can drop atemporary database only if it has:

* No bindings associated with it, and

* No active sessions assigned to it.

This means that the database:

* Should not be part of the default temporary database group, and
* Should have no logins or applications bound to it.

If any bindings exist, drop database reports afailure. Remove the database
from the default group, and unbind all such logins and applications. Use the
sp_tempdb “show” interface to determine all bindings involving the temporary
database.

If there are any active sessions connected to the database being dropped,

drop database fails. Such sessions can exist if they were instantiated before the
bindings for the database were removed. To proceed with the drop process, a
user must either wait for all such active sessionsto drain out of the system, or
kill these sessions. Use sp_tempdb “who” dbname to determine what sessions

are currently connected to a given temporary database.

Adaptive Server Enterprise

CHAPTER 11 Multiple Temporary Databases

Dropping other databases

alter database

Extending a
temporary database

Extending the model
database

Dropping a database requires that no Java classes in the database being
dropped are referenced by objectsin temporary databases. These can exist asa
result of select into #temptable commands. In such cases, columnsin a
temporary table refer back to classesin the source database. All temporary
databases are scanned to make sure that no such references exist. If such
references exist, the database is not dropped.

Note Thisbehavior is consistent with the behavior of an Adaptive Server
without the multiple temporary database feature.

Adaptive Server performs a data copy for some alter database operations.
Logging of page contentsis not generally done for these operations. For this
reason, the server flushes pagesto disk so that these changes can be recovered
after adatabase crash. Thisis not necessary for tempdb, however, since the
contents of tempdb are always re-created during the recovery process.

User-created temporary databases are also freshly re-created during recovery.
Therefore, these databases are treated in amanner consi stent with tempdb. The
following describes some specific caseswherethisistruefor alter database. In
addition, there are other instances of alter database where the behavior for
user-created temporary databasesis identical to that of tempdb.

When the system tempdb is extended, new database pages are not zeroed out.
Only alocation pagesarewritten to disk. User-created temporary databasesare
consistent with this approach.

The model database cannot be larger than the smallest temporary database
because model is copied in to the temporary database when the server is
restarted. Attempting to alter the size of model triggers a check to verify that
the new size of model is not larger than the smallest temporary database. If a
smaller temporary database is found, the alter database command reports an
error.

Performance & Tuning: Optimizer and Abstract Plans 265

Multiple temporary database and the system

Caching characteristics

Caches across temporary databases within a group should be configured
similarly to each other with respect to caching characteristics. The optimizer
considers the caching characteristics of a database when selecting an efficient
query plan. If the plan is part of a procedure, it may be reused by another
session that has been assigned to a different temporary database. Poor
performance may result if the caching characteristics of the two temporary
databases vary significantly.

Binding user-created temporary databases to a data cache

Use sp_bindcache to bind a database to a data cache. Binding a user-created
temporary database is similar to binding any other user database, except in the
following:

A user-created temporary database is considered to bein use aslong asa
sessionisassignedtoit, even if no activity isactually taking place on behalf of
the active session. However, to change the cache binding of the database, the
database must be exclusively locked. You cannot lock the database as long as
thereis an active session assigned to it. The stepsto overcomethis are similar
to those necessary to drop a database:

O Changing the cache binding of a database

1 Usesp_tempdb to remove al bindingsinvolving the temporary database,
including any database-to-default-group bindings as well as any
application and login bindings to the database.

2 Either wait for any active sessions aready assigned to the temporary
database to drain out, or terminate these sessionsiif required. Use
sp_tempdb to list the active sessions that are assigned to the database.

3 Proceed with the database to cache binding.
4 Restore any bindings removed in the first step.

Processing stored procedures

Under some circumstances, the dbid of atemporary object is remapped to the
temporary database ID of the current session to ensure that these objects are
created and accessed in the correct temporary database. For example:

266 Adaptive Server Enterprise

CHAPTER 11 Multiple Temporary Databases

* When astored procedureis created by a session that is attached to one
temporary database, and then is compiled by another session in adifferent
temporary database.

e When astored procedureis compiled by asession that isdifferent than the
temporary database of the session executing it.

However, remapping temporary database | Ds does not ensure that the
procedure behaves identically across temporary databases. A procedure
compiled in one temporary database with certain caching characteristics may
perform very differently when run in atemporary database with a different set
of caching characteristics. Similarly, a procedure compiled in one temporary
database with certain dboption settings may have very different semanticswhen
executed in atemporary database with different dboptions settings.

tempdb write optimization

Temporary databases are not recoverable because Adaptive Server drops and
re-creates them when it reboots. Adaptive Server takes advantage of this by
delaying write of data or log buffers.

In normal, non-temporary databases, if you use acommand such as select that
is not logged, Adaptive Server saves the data to disk for recovery purposes.

Withversion 12.5.0.3 and later, Adaptive Server does not do thisfor temporary
databases. This means that if you use acommand such as the following select
into statement with a temporary database, Adaptive Server does not force the
write of data buffersto the disk:

select * into tenpdb..tenp_table fromfoo

In addition, commands such as insert, update, and delete with temporary
databases do not force Adaptive Server to write alog at the end of the commit
operation. For example, the following insert into command results in fewer
context switches and alighter load on the log or data devices, and higher
throughpuit:

insert into tenpdb..tenp_table select * fromfoo

High-availability considerations

Thefollowing sections discuss the i ssues of multiple temporary databasesin a
high-availability configuration.

Performance & Tuning: Optimizer and Abstract Plans 267

Multiple temporary database and the system

High-availability configuration

In versions of Adaptive Server that did not include multiple temporary
databases, user databases could not exist in the secondary companion during
theinitial high-availability configuration. The introduction of user-created
temporary databases allows the following:

Proxy database support

268

The secondary server can have user-created temporary databases as long
as the database names are unique.

The secondary server can have user-created temporary databases whose
dbid conflicts with a dbid in the primary server aslong as the conflicting
dbids are for temporary databases in both the servers.

Sybase recommends that you:

Load the user databases are loaded with user databases during the
high-availability configuration. This ensure that unique dbids are
generated for temporary databases in the secondary server, and that users
can drop and reconfigure without having to drop the user-created
temporary databases.

Install specific application and login bindings on the secondary
companion for the temporary databases created in the secondary that may
be used by the primary server application during failover. However, If you
do not install bindings, the failed over server application uses the
temporary databases in the secondary companion’s default group, which
has little performance impact.

Proxy databases are not created for multiple temporary databases for the
following reasons:

For user-created temporary databases, databases must be re-created,
which affects the performance of both failover and failback.

With not forcing the mount, users can deploy high-performance
RAM/disks, and local disks for temporary databases that may not
necessarily be dual-ported.

Since the high-availability proxies are not created, the space accounting
that evaluates the space required for successful configuration does not
include the user-created temporary databases.

Adaptive Server Enterprise

CHAPTER 11 Multiple Temporary Databases

Failover scenarios

During failover, Adaptive Server does not mount the user-created temporary
databases. Although Adaptive Server allowsuser databasesto be created (if the
set proxy option is not enabled) in failover status, Adaptive Server does not
alow user-created temporary databases during failover.

Normal companion behavior

Mount/Unmount

During normal companion mode, user-created temporary databases can be
created with the same rules as those for user databases (for example, they must
have unique names). Proxy databases for multiple temporary databases are not
created, even if the with_proxydb option was used, during the configuration
mode.

Temporary databases are not mounted during failover. A client that fails over
to a secondary server goes through the normal login process and is assigned a
new temporary database based on the existing bindings in the secondary
companion.

Dumping and loading temporary databases

Although you can dump temporary databases, doing so serves no useful
purpose. Keep these considerations in mind:

e Thesedatabases arere-created each timethe server isrestarted, and object
names of temporary tables are internally generated and session-specific.
Thismeansthat the same user can log in to the server viatwo different isql
sessions and create atemporary table#t1. Aninternally generated nameis
created for each instance of #t1. This unique nameis stored in the
sysobjects table of thetemporary database. For thisreason, multiple active
sessions can have their own temporary table with the same user-specified
name.

¢ The system tempdb created in a pre-multiple temporary database server
can be successfully dumped but not loaded.

e User-created temporary databases can be successfully dumped, but not
|oaded.

Performance & Tuning: Optimizer and Abstract Plans 269

Multiple temporary database and the system

sp_dboption stored procedure
All temporary databases within a group must use the same dboptions.

If some of these options differ, then applications may not work correctly. For
example, if atemporary database called mtdb1 in a group enables this option
while another temporary database in the same group, called mtdb2, does not,
then the following procedure, which creates a table and inserts arow leaving
onefield value out, does not work equivalently in the two temporary databases:

create procedure Pl as
create table #t1 (cl int, str char(250))
insert #t1 values (1)

go

Theinsert statement in mtdb1 succeeds because NULLs are allowed, while the
insert statement in mtdb2 fails because NULLSs are not all owed.

Configuring the number of open databases

For every temporary database that you create, increment the “ open databases”
configuration value by one. When a session is assigned a temporary database,
the resource representing the database is kept, and marked to be in use so that
it cannot be reused during the current session.

Changed procedures

Several stored procedures have been atered to work with multiple temporary
databases:

» sp_helpdb how reports whether or not a database is a user-created
temporary database. This appears under the status column.

sp_hel pdb "nyt enpdb3"

name db_size owner dbid created status

nytenpdb 32.0 MB sa 7 Dec 12, 2001 sel ect into/bul kcopy/pllsort, trunc
| og on chkpt, user created tenp db

* sp_bindcache — has been extended to prevent binding of individual tables
to anamed cachein user-created temporary databases.

270 Adaptive Server Enterprise

CHAPTER 11 Multiple Temporary Databases

e sp_dboption — has been extended to prevent user-created temporary
databases from being set to single-user mode. Additionally, when an
attempt to alter the options for atemporary database is made, awarning is
issued — database options across all temporary databases must be
consistent.

e sp_dropuser — has been extended to prevent a guest user from being
dropped from user-created temporary databases.

Unchanged yet notable procedures

Procedure name

Although the following procedures have not changed, they are relevant to
temporary databases:

Description

sp_changedbowner

You can change ownership of user-created temporary databases, whereasyou cannot for
system databases, including tempdb.

sp_defaultloc

You cannot map system databases, including tempdb to a default location. However, you
can map user-created temporary databases.

sp_renamedb

You cannot rename system databases, including tempdb. However, you can rename
user-created temporary databases. You must ensurethat existing bindingsfor thetemporary
database being renamed are dropped, and re-created using the new database name.

Changed and additional DBCCs

Severa new dbcc commands have been added.

dbcc pravailabletempdbs

Example

dbcc pravailabletempdbs printsthe global list of available temporary databases.
1> dbcc pravail abl et enpdbs

2> go

Avai | abl e tenporary databases are:
Dbid: 2

Dbid: 4

Dbid: 5

Dbid: 6

Dbid: 7

DBCC execution conpleted. |If DBCC printed error
nmessages, contact a user with SystemAdni ni strator (SA)
role.

Performance & Tuning: Optimizer and Abstract Plans 271

Installation issues

dbcc addtempdb

dbcc addtempdb adds a temporary database to the global list of available
temporary databases. The syntax for this command is:

dbcc addtempdb(dbid | dbname)

If the database does not exist or is not atemporary database, an error is
generated. If the database is already a member of the list, an informational

message prints.

Additional changes

Parallel queries

Multiple-database
transactions

Limits in the Resource Governor with regard to temporary database usage
continue to hold for the user-created temporary databases, just as they do for
tempdb.

Large scale deallocation is not logged for temporary databases.
Replication Agent is never started for atemporary database.

The child threads for parallel queries are assigned to the same temporary
database as their parent.

A multidatabase transaction that spans temporary and nontemporary databases
cannot start in atemporary database, since it would be impossible to recover
such a transaction. However, a multidatabase transaction across only
temporary databases does not have this restriction since temporary databases
are re-created each time the server is restarted.

Installation issues

272

A new row that represents the default temporary database group is added to
sysattributes as part of the upgrade to a 12.5 server, aswell as when a new
master deviceis built.

If you are already running a 12.5 server, and hence do not do an upgrade, you
can add the default temporary database group by executing

sp_tempdb create “default”. See the entry for sp_tempdb in Reference Manual:
Sored Procedures for more information on the stored procedure.

Adaptive Server Enterprise

CHAPTER 11 Multiple Temporary Databases

Sizing and configuring temporary databases for applications

Resource and space requirements for temporary databases vary from
application to application. You should size al temporary databases equally
unless you:

e Fully understand your resource and space requirements

* Maintain applications to database and group bindings so that database
assignments meet resource and space requirements

By sizing all temporary databases equally, you should be able to run
applications without running out of resources or space, regardless of which
database gets assigned to a given instance of an application or session.

Similarly, configure the tempdb caches within a group similarly to ensure
equivalent performance for agiven query plan regardless of the tempdb used.

In high-availability configurations, configure the primary and secondary
servers similarly with respect to tempdb properties.

Shareable temporary tables

You can create shareable temporary tablesin both user-created temporary
databases and in the system tempdb. Existing applications that use tempdb
when creating shareabl e temp tables will continue to create these tablesin the
system tempdb. This allows cooperating applications and sessions that
communicate through the shareable tables in the temporary database to
continue to work as before.

New applications can create their shareable temporary tablesin a user-created
temporary database. These works similarly to shareable temporary tables
created in tempdb. That is, they are accessible to other sessions, and persist
until you restart the server, unless you explicitly drop them.

Note Applications that use user-created temporary databases will not work if
the designated user-created temporary database is dropped.

Updating user-created stored procedures

You must change all existing user-created stored procedures that assume that
temporary tables are always in tempdb.

Performance & Tuning: Optimizer and Abstract Plans 273

Installation issues

For instance, a stored procedure that checks the sysobjects catalog of the
system tempdb for the existence of a private temporary tableis no longer a
valid check since such atable existsin the assigned temporary database, which
may be tempdb. The following example demonstrates this:

sel ect db_nane(@@ enpdbi d)
go

a_tenpdbl

(1 row affected)

create table #t1 (cl int)
go

#t1 is not found in the sysobjects catalog of the system tempdb:

use tenpdb
sel ect nane from sysobjects where nane |ike "#%

(0 rows affected)
Instead, the entry isin the catalog of their assigned tempdb.

decl are @enpdb_nanme varchar (32)

sel ect @enpdb_name = db_nane(@@ enpdbi d)
use @ enpdb_nane

go

(1 row affected)

sel ect nane from sysobjects where nane |ike "#%
go

#t1 00000270012069406

(1 row affected)

274 Adaptive Server Enterprise

CHAPTER 11 Multiple Temporary Databases

Downgrading to an earlier version

This section discusses how to downgrade from a 12.5.0.3 version of Adaptive
Server with the multiple temporary database feature enabled to Adaptive
Server version 12.5.0.2.

Note Versions earlier than 12.5.0.2 are not supported for downgrading from
version 12.5.0.3.

0 Downgrading from a multiple tempdb-enabled Adaptive Server
1 Usesp_tempdb to remove all bindings.

Drop all user-created temporary databases.
Shut down the server.
Start version 12.5.0.2 of Adaptive Server.

a b~ W DN

Use the installmaster and instmsgs.ebf that were part of Adaptive Server
version 12.5.0.2 to reinstall the system stored procedures and messages.

Adaptive Server version 12.5.0.2 requires no additional steps to support
downgrading from version 12.5.0.3.

Version 12.5.0.2 was modified to support dynamically redefining trees
from text if they had been normalized using user-created temporary
databasesin version 12.5.0.3.

Performance & Tuning: Optimizer and Abstract Plans 275

Installation issues

276 Adaptive Server Enterprise

ciarTer 12 tempdb Performance Issues

This chapter discusses the performance issues associated with using the
tempdb database Anyone can create objects in tempdb. Many processes
useit silently. Itisaserver-wideresourcethat isused primarily for internal
sorts processing, creating worktables, reformatting, and for storing
temporary tables and indexes created by users.

Many applications use stored procedures that create tables in tempdb to
expedite complex joins or to perform other complex data analysis that is
not easily performed in asingle step.

Topic Page
How management of tempdb affects performance 277
Types and uses of temporary tables 278
Initial allocation of tempdb 280
Sizing the tempdb 281
Placing tempdb 282
Dropping the master device from tempdb segments 282
Binding tempdb to its own cache 283
Temporary tables and locking 284
Minimizing logging in tempdb 285
Optimizing temporary tables 286

How management of tempdb affects performance

Good management of tempdb is critical to the overall performance of
Adaptive Server. tempdb cannot be overlooked or left in a default state. It
isthe most dynamic database on many servers and should receive special
attention.

If planned for in advance, most problems related to tempdb can be
avoided. These are the kinds of things that can go wrong if tempdb is not
sized or placed properly:

Performance & Tuning: Optimizer and Abstract Plans 277

Types and uses of temporary tables

« tempdb fills up frequently, generating error messages to users, who
must then resubmit their queries when space becomes available.

e Sorting is slow, and users do not understand why their queries have
such uneven performance.

e User queries are temporarily locked from creating temporary tables
because of locks on system tables.

» Heavy use of tempdb objects flushes other pages out of the data cache.

Main solution areas for tempdb performance
These main areas can be addressed easily:
* Sizing tempdb correctly for all Adaptive Server activity
* Placing tempdb optimally to minimize contention
* Binding tempdb to its own data cache

* Minimizing the locking of resources within tempdb

Types and uses of temporary tables

The use or misuse of user-defined temporary tables can grestly affect the
overall performance of Adaptive Server and your applications.

Temporary tables can be quite useful, often reducing the work the server
has to do. However, temporary tables can add to the size requirement of
tempdb. Some temporary tables are truly temporary, and others are
permanent.

tempdb is used for three types of tables:
e Truly temporary tables

* Regular user tables

* Worktables

278 Adaptive Server Enterprise

CHAPTER 12 tempdb Performance Issues

Truly temporary tables

Regular user tables

You can create truly temporary tablesby using “#" asthefirst character of
the table name:

create table #tenptable (...)
or:

sel ect select list
into #tenptable ...

Temporary tables:

e Existonly for the duration of the user session or for the scope of the
procedure that creates them

¢ Cannot be shared between user connections

e Areautomatically dropped at the end of the session or procedure (or
can be dropped manually)

When you create indexes on temporary tables, the indexes are stored in
tempdb:

create index tenpix on #tenptabl e(col 1)

You can create regular user tables in tempdb by specifying the database
name in the command that creates the table:

create table tempdb..tenptable (...)
or:

sel ect select list
into tenpdb..tenptable

Regular user tables in tempdb:

e Can persist across sessions

e Can be used by bulk copy operations

¢ Can be shared by granting permissions on them

¢ Must beexplicitly dropped by the owner (otherwise, they areremoved
when Adaptive Server isrestarted)

You can create indexesin tempdb on permanent temporary tables:

Performance & Tuning: Optimizer and Abstract Plans 279

Initial allocation of tempdb

create index tenpix on tenpdb..tenptabl e(col 1)

Worktables

Worktables are automatically created in tempdb by Adaptive Server for
merge joins, sorts, and other internal server processes. These tables:

* Arenever shared

» Disappear as soon as the command completes

Initial allocation of tempdb

When you install Adaptive Server, tempdb is 2MB, and is located
completely on the master device, as shown in Figure 12-1. Thisis
typicaly the first database that a System Administrator needs to make
larger. The more users on the server, the larger it needsto be. It can be
altered onto the master device or other devices. Depending on your needs,
you may want to stripe tempdb across several devices.

Figure 12-1: tempdb default allocation
tempdb

data and log
(2MB)

d_master

Use sp_helpdb to seethe size and status of tempdb. The following example
shows tempdb defaults at installation time:

sp_hel pdb tenpdb

nane db_size owner dbid created status

tenpdb 2.0 M sa 2 My 22, 1999 sel ect intofbul kcopy
device_frag size usage free kbytes

master 2.0 M8 data and log 1248

280 Adaptive Server Enterprise

CHAPTER 12 tempdb Performance Issues

Sizing the tempdb

tempdb needsto be big enough to handlethe following processesfor every
concurrent Adaptive Server user:

¢ Worktablesfor merge joins

e Worktablesthat are created for distinct, group by, and order by, for
reformatting, and for the OR strategy, and for materializing some
views and subqueries

« Temporary tables (those created with “#” asthefirst character of their
names)

¢ Indexes on temporary tables
e Regular user tablesin tempdb
e Procedures built by dynamic SQL

Some applications may perform better if you use temporary tablesto split
up multitable joins. This strategy is often used for:

e Caseswhere the optimizer does not choose a good query plan for a
query that joins more than four tables

¢ Queriesthat join avery large number of tables

e Very complex queries

e Applicationsthat need to filter data as an intermediate step
You might also use tempdb to:

« Denormalize several tablesinto afew temporary tables

* Normalize adenormalized table to do aggregate processing

For most applications, make tempdb 20 to 25% of the size of your user
databases to provide enough space for these uses.

Performance & Tuning: Optimizer and Abstract Plans 281

Placing tempdb

Placing tempdb

Keep tempdb on separate physical disks from your critical application
databases. Use the fastest disks available. If your platform supports solid
state devicesand your tempdb useisabottleneck for your applications, use
those devices. After you expand tempdb onto additional devices, drop the
master device from the system, default, and logsegment segments.

Although you can expand tempdb on the same device as the master
database, Sybase suggests that you use separate devices. Also, remember
that logical devices, but not databases, are mirrored using Adaptive Server
mirroring. If you mirror the master device, you create amirror of all
portions of the databases that reside on the master device. If the mirror
uses serial writes, this can have a serious performance impact if your
tempdb database is heavily used.

Dropping the master device from tempdb segments

282

sel ect dbid,

By default, the system, default, and logsegment segments for tempdb
include its 2MB allocation on the master device. When you allocate new
devicesto tempdb, they automatically become part of all three segments.
Once you alocate a second device to tempdb, you can drop the master
device from the default and logsegment segments. This way, you can be
sure that the worktables and other temporary tablesin tempdb do not
contend with other uses on the master device.

To drop the master device from the segments:

1 Altertempdb onto another device, if you have not already done so. For
example:
al ter database tenpdb on tune3 = 20

2 Issueause tempdb command, and then drop the master device from
the segments:

sp_dropsegnent "default", tenpdb, mnaster
sp_dropdegnent system tenpdb, master
sp_dropdegnent | ogsegnent, tenpdb, naster

3 To verify that the default segment no longer includes the master
device, issue this command:

name, segnap

Adaptive Server Enterprise

CHAPTER 12 tempdb Performance Issues

from sysusages, sysdevices
wher e sysdevi ces. | ow <= sysusages. si ze + vstart
and sysdevi ces. hi gh >= sysusages. size + vstart -1
and dbid = 2
and status & 2 = 2

The segmap column should report “1” for any allocations on the
master device, indicating that only the system segment still uses the

device:
dbi d nane segnap
2 master 1
2 tune3d 7

Using disks for parallel query performance

If tempdb spans multiple devices, as shown in Figure 12-2, you can take
advantage of parallel query performance for some temporary tables or
worktables.

Figure 12-2: tempdb spanning disks
d_master

tempdb tempdb

Binding tempdb to its own cache

Under normal Adaptive Server use, tempdb makes heavy use of the data
cache as temporary tables are created, populated, and then dropped.

Performance & Tuning: Optimizer and Abstract Plans 283

Temporary tables and locking

Assigning tempdb to its own data cache:

» Keepsthe activity on temporary objects from flushing other objects
out of the default data cache

e Helps spread 1/0 between multiple caches

See “Examining cache needs for tempdb” on page 232 for more
information.

Commands for cache binding

Use sp_cacheconfig and sp_poolconfig to create named data caches and to
configure pools of agiven sizefor large |/O. Only a System Administrator
can configure caches and pools.

Note ReferencetoLargel/Osareon a2k logical page size server. If you
have an 8K page size server, the basic unit for the /O is8K. If you have a
16K page size server, the basic unit for the /O is 16K.

For instructions on configuring named caches and pools, see the System
Administration Guide.

Once the caches have been configured, and the server has been restarted,
you can bind tempdb to the new cache:

sp_bi ndcache "tenpdb_cache", tenpdb

Temporary tables and locking

284

Creating or dropping temporary tables and their indexes can cause lock
contention on the system tables in tempdb. When users create tablesin
tempdb, information about the tables must be stored in system tables such
as sysobjects, syscolumns, and sysindexes. If multiple user processes are
creating and dropping tablesin tempdb, heavy contention can occur on the
system tables. Worktables created internally do not store information in
system tables.

Adaptive Server Enterprise

CHAPTER 12 tempdb Performance Issues

If contention for tempdb system tables is a problem with applications that
must repeatedly create and drop the same set of temporary tables, try
creating the tables at the start of the application. Then useinsert...select to
populate them, and truncate table to remove all the datarows. Although
insert...select requireslogging and is slower than select into, it can provide
asolution to the locking problem.

Minimizing logging in tempdb

With select into

Even though the trunc log on checkpoint database option isturned onin
tempdb, changesto tempdb are still written to the transaction log. You can
reduce log activity in tempdb by:

e Using select into instead of create table and insert

e Sedlecting only the columns you need into the temporary tables

When you create and popul ate temporary tables in tempdb, use the select
into command, rather than create table and insert...select, whenever
possible. The select into/bulkcopy database option is turned on by default
in tempdb to enable this behavior.

select into operations are faster because they are only minimally logged.
Only the allocation of datapagesistracked, not theactual changesfor each
datarow. Each datainsert in an insert...select query is fully logged,
resulting in more overhead.

By using shorter rows

If the application creating tablesin tempdb uses only afew columns of a
table, you can minimize the number and size of log records by:

e Selecting just the columns you need for the application, rather than
using select * in queries that insert data into the tables

e Limiting the rows selected to just the rows that the applications
requires

Performance & Tuning: Optimizer and Abstract Plans 285

Optimizing temporary tables

Both of these suggestions also keep the size of the tables themselves
smaller.

Optimizing temporary tables

Many uses of temporary tables are simple and brief and requirelittle
optimization. But if your applications require multiple accesses to tables
in tempdb, you should examine them for possible optimization strategies.
Usually, thisinvolves splitting out the creation and indexing of the table
from the accessto it by using more than one procedure or batch. The only
requirements are:

» Thetable must contain data when the index is created. If you create
the temporary table and create the index on an empty table, Adaptive
Server does not create column statistics such as histograms and
densities. If you insert data rows after creating the index, the
optimizer has incompl ete statistics.

* Theoptimizer may choose asuboptimal planif rows have been added
or deleted since the index was created or since update statistics was
run.

When you create atable in the same stored procedure or batch whereit is
used, the query optimizer cannot determine how largethetableis, thetable
has not yet been created when the query is optimized, as shown in

Figure 12-3. Thisappliesto both temporary tablesand regular user tables.

286 Adaptive Server Enterprise

CHAPTER 12 tempdb Performance Issues

Figure 12-3: Optimizing and creating temporary tables

Parse and
Normalize

Query optimized here Optimize

Compile

Table created here Execute

The optimizer assumesthat any such table has 10 datapagesand 100 rows.
If thetableisreally large, this assumption can lead the optimizer to choose
asuboptimal query plan.

These two techniques can improve the optimization of temporary tables:
e Creating indexes on temporary tables

* Breaking complex use of temporary tablesinto multiple batches or
procedures to provide information for the optimizer

Creating indexes on temporary tables

You can define indexes on temporary tables. In many cases, these indexes
can improve the performance of queriesthat use tempdb. The optimizer
uses these indexes just like indexes on ordinary user tables. The only
requirements are:

Performance & Tuning: Optimizer and Abstract Plans 287

Optimizing temporary tables

e Thetable must contain data when the index is created. If you create
the temporary table and create the index on an empty table, Adaptive
Server does not create column statistics such as histograms and
densities. If you insert datarows after creating the index, the
optimizer has incomplete statistics.

e Theindex must exist whilethequery using it isoptimized. You cannot
create an index and then use it in aquery in the same batch or
procedure.

e Theoptimizer may choose asuboptimal plan if rows have been added
or deleted since the index was created or since update statistics was
run.

Providing an index for the optimizer can greatly increase performance,
especialy in complex procedures that create temporary tables and then
perform numerous operations on them.

Creating nested procedures with temporary tables

You need to take an extra step to create the procedures described above.
You cannot create base_proc until select_proc exists, and you cannot
create select_proc until the temporary table exists. Here are the steps:

1 Createthe temporary table outside the procedure. It can be empty; it
just needsto exist and to have columns that are compatible with
select_proc:

select * into #huge result from... where 1 = 2
2 Create the procedure select_proc, as shown above.
3 Drop #huge_result.
4 Create the procedure base_proc.

Breaking tempdb uses into multiple procedures
For example, this query causes optimization problems with #huge_resuilt:

create proc base_proc
as
sel ect *
i nto #huge_result
from...

288 Adaptive Server Enterprise

CHAPTER 12 tempdb Performance Issues

sel ect *
fromtab,
#huge_result where ...

You can achieve better performance by using two procedures. When the
base_proc procedure calls the select_proc procedure, the optimizer can

determine the size of the table:

create proc sel ect_proc

as
sel ect *
fromtab, #huge result where ...

create proc base proc
as

*

sel ect
i nto #huge_result

from...
exec select_proc

If the processing for #huge_result requires multiple accesses, joins, or
other processes, such as looping with while, creating an index on
#huge_result may improve performance. Create theindex in base_proc so
that it is available when select_proc is optimized.

Performance & Tuning: Optimizer and Abstract Plans 289

Optimizing temporary tables

290 Adaptive Server Enterprise

CHAPTER 13 Cursors and Performance

This chapter discusses performance issues related to cursors. Cursors are
amechanism for accessing the results of a SQL select statement one row
at atime (or several rows, if you use set cursors rows). Since cursors use
adifferent model from ordinary set-oriented SQL, the way cursors use
memory and hold locks has performance implications for your
applications. In particular, cursor performance issues includes locking at
the page and at the table level, network resources, and overhead of
processing instructions.

Topic Page
Definition 291
Resources required at each stage 294
Cursor modes 297
Index use and requirements for cursors 297
Comparing performance with and without cursors 299
L ocking with read-only cursors 302
Isolation levels and cursors 304
Partitioned heap tables and cursors 304
Optimizing tips for cursors 305

Definition

A cursor isasymbolic name that is associated with a select statement. It
enables you to access the results of aselect statement one row at atime.
Figure 13-1 shows a cursor accessing the authors table.

Performance & Tuning: Optimizer and Abstract Plans 291

Definition

Cursor with select * from authors

where state = 'KY’

Programming can:
- Examine a row

Figure 13-1: Cursor example

Result set
= A978606525 Marcello Duncan KY

> A937406538 Carton Nita KY
- A1525070956 Porczyk Howard KY

A913907285 Bier Lane KY

- Take an action based on row values

You can think of acursor asa“handle” on the result set of a select
statement. It enables you to examine and possibly manipulate one row at
atime.

Set-oriented versus row-oriented programming

292

SQL was conceived as a set-oriented language. Adaptive Server is
extremely efficient when it works in set-oriented mode. Cursors are
required by ANSI SQL standards; when they are needed, they are very
powerful. However, they can have a negative effect on performance.

For example, this query performs the identical action on all rows that
match the condition in the where clause:

update titles
set contract =1
where type = 'business’

The optimizer finds the most efficient way to perform the update. In
contrast, a cursor would examine each row and perform single-row
updatesif the conditions were met. The application declaresacursor for a
select statement, opens the cursor, fetches arow, processes it, goes to the
next row, and so forth. The application may perform quite different
operations depending on the values in the current row, and the server’s
overall use of resources for the cursor application may be less efficient
than the server’s set level operations. However, cursors can provide more
flexibility than set-oriented programming.

Figure 13-2 shows the steps involved in using cursors. The function of
cursorsisto get to the middle box, where the user or application code
examines arow and decides what to do, based on its values.

Adaptive Server Enterprise

CHAPTER 13 Cursors and Performance

Figure 13-2: Cursor flowchart

C Declare cursor)

. (Open cursor)

Y

— 5 Fetch row)

Process row
(Examine/Update/Delete)

v

Yes

No

L Close cursor

C Deallocate cursor)

Example

Hereisasimple example of acursor with the “Process Rows’ step shown
above in pseudocode;

decl are bi z_book cursor
for select * fromtitles
where type = 'business’
go
open bi z_book
go
fetch biz_book
go
/* Look at each row in turn and perform
** various tasks based on val ues,

Performance & Tuning: Optimizer and Abstract Plans 293

Resources required at each stage

** and repeat fetches, until
** there are no nore rows

*/

cl ose bi z_book

go

deal | ocate cursor bhiz_book
go

Depending on the content of the row, the user might del ete the current row:
delete titles where current of biz_book
or update the current row:

update titles set title="The Rich
Executive' s Dat abase Cuide"
where current of biz_book

Resources required at each stage

Cursors use memory and require locks on tables, data pages, and index
pages. When you open a cursor, memory is allocated to the cursor and to
store the query plan that is generated. While the cursor is open, Adaptive
Server holds intent table locks and sometimes row or page locks.

Figure 13-3 shows the duration of locks during cursor operations.

294 Adaptive Server Enterprise

CHAPTER 13 Cursors and Performance

Figure 13-3: Resource use by cursor statement

(

Declare cursor)

v

— 5 (Open cursor)
—> (Fetch row)
Process row
(Examine/Update/Delete)
Row
or
Yes page
locks
No
—(Close cursor
(Deallocate cursor)

Table
locks

(intent);

some
roW or
page
locks

Memory

The memory resource descriptionsin Figure 13-3 and Table 13-1 refer to
ad hoc cursorsfor queries sent by isql or Client-Library™. For other kinds
of cursors, the locks are the same, but the memory allocation and
deallocation differ somewhat depending on the type of cursor being used,
as described in “Memory use and execute cursors’ on page 296.

Performance & Tuning: Optimizer and Abstract Plans

295

Resources required at each stage

Table 13-1: Locks and memory use for isql and Client-Library client

cursors

Cursor
command

Resource use

declare cursor

When you declare a cursor, Adaptive Server uses only
enough memory to store the query text.

open

When you open a cursor, Adaptive Server alocates
memory to the cursor and to store the query plan that is
generated. The server optimizes the query, traverses
indexes, and sets up memory variables. The server does not
access rows yet, unless it needs to build worktables.
However, it does set up therequired table-level locks (intent
locks). Row and page locking behavior depends on the
isolation level, server configuration, and query type.

See System Administration Guide for more information.

fetch

When you execute afetch, Adaptive Server getsthe row(s)
required and reads specified valuesinto the cursor variables
or sends the row to the client. If the cursor needs to hold
lock on rowsor pages, the locksare held until afetch moves
the cursor off the row or page or until the cursor is closed.
Thelock is either ashared or an update lock, depending on
how the cursor is written.

close

When you closeacursor, Adaptive Server releasesthelocks
and some of the memory allocation. You can open the
cursor again, if necessary.

deallocate cursor

When you deallocate a cursor, Adaptive Server releasesthe
rest of the memory resources used by the cursor. To reuse
the cursor, you must declare it again.

Memory use and execute cursors

The descriptions of declare cursor and deallocate cursor in Table 13-1 refer
to ad hoc cursors that are sent by isqgl or Client-Library. Other kinds of
cursors alocate memory differently:

296

For cursors that are declared on stored procedures, only a small
amount of memory is allocated at declare cursor time. Cursors
declared on stored procedures are sent using Client-Library or the
precompiler and are known as execute cursors.

For cursors declared within a stored procedure, memory is already
available for the stored procedure, and the declare statement does not
require additional memory.

Adaptive Server Enterprise

CHAPTER 13 Cursors and Performance

Cursor modes

There are two cursor modes: read-only and update. As the names suggest,
read-only cursors can only display data from a select statement; update
cursors can be used to perform positioned updates and deletes.

Read-only mode uses shared page or row locks. If read committed with lock
is set to 0, and the query runs at isolation level 1, it usesinstant duration
locks, and does not hold the page or row locks until the next fetch.

Read-only mode isin effect when you specify for read only or when the
cursor’s select statement uses distinct, group by, union, or aggregate
functions, and in some cases, an order by clause.

Update mode uses update page or row locks. It isin effect when:
¢ You specify for update.

e Theselect statement does not include distinct, group by, union, a
subquery, aggregate functions, or the at isolation read uncommitted
clause.

¢ You specify shared.
If column_name list is specified, only those columns are updatable.

For more information on locking during cursor processing, see System
Administration Guide.

Specify the cursor mode when you declare the cursor. If the select
statement includes certain options, the cursor is not updatable even if you
declareit for update.

Index use and requirements for cursors

When aquery isusedinacursor, it may require or choose different indexes
than the same query used outside of a cursor.

Allpages-locked tables

For read-only cursors, queries at isolation level 0 (dirty reads) require a
unique index. Read-only cursors at isolation level 1 or 3 should produce
the same query plan as the select statement outside of a cursor.

Performance & Tuning: Optimizer and Abstract Plans 297

Index use and requirements for cursors

Theindex requirements for updatabl e cursors mean that updatabl e cursors
may use different query plansthan read-only cursors. Update cursors have
these indexing requirements:

e If thecursor isnot declared for update, a unique index is preferred
over atable scan or a nonunique index.

e |f thecursor isdeclared for update without afor update of list, aunique
index isrequired on allpages-locked tables. An error israised if no
unique index exists.

e |f thecursor is declared for update with afor update of list, then only
auniqueindex without any columnsfrom thelist can be chosen onan
allpages-locked table. An error israised if no unique index qualifies.

When cursors are involved, an index that containsan IDENTITY column
is considered unique, even if theindex is not declared unique. In some
cases, IDENTITY columns must be added to indexes to make them
unique, or the optimizer might be forced to choose a suboptimal query
plan for a cursor query.

Data-only-locked tables

In data-only-locked tables, fixed row | Dsare used to position cursor scans,
so uniqueindexesare not required for dirty readsor updatabl e cursors. The
only causefor different query plansin updatable cursorsisthat table scans
are used if columnsfrom only useful indexes areincluded in the for update
of list.

Table scans to avoid the Halloween problem

298

The Halloween problem isan update anomaly that can occur when aclient
using a cursor updates a column of the cursor result-set row, and that
column definesthe order in which therowsarereturned from the tabl e. For
example, if acursor was to use an index on last_name, first_name, and
update one of these columns, the row could appear in the result set a
second time.

To avoid the Halloween problem on data-only-locked tables, Adaptive
Server chooses a table scan when the columns from an otherwise useful
index are included in the column list of afor update clause.

Adaptive Server Enterprise

CHAPTER 13 Cursors and Performance

For implicitly updatable cursors declared without afor update clause, and
for cursors where the column list in the for update clauseis empty, cursors
that update a column in the index used by the cursor may encounter the
Halloween problem.

Comparing performance with and without cursors

This section examines the performance of a stored procedure written two
different ways:

e Without a cursor — this procedure scans the table three times,
changing the price of each book.

e With acursor —this procedure makes only one pass through the table.

In both examples, there is a unique index on titles(title_id).

Sample stored procedure without a cursor
Thisis an example of a stored procedure without cursors:

/* Increase the prices of books in the

** titles table as follows:

* *

** |f current price is <= $30, increase it by 20%
** |f current price is > $30 and <= $60, increase
** it by 10%

** |f current price is > $60, increase it by 5%
* %

** Al price changes nust take effect, so this is
** done in a single transaction.

*

create procedure increase_price
as

/* start the transaction */
begi n transaction
/* first update prices > $60 */
update titles
set price = price * 1.05
where price > $60

Performance & Tuning: Optimizer and Abstract Plans 299

Comparing performance with and without cursors

/* next, prices between $30 and $60 */
update titles

set price = price * 1.10
where price > $30 and price <= $60

/* and finally prices <= $30 */
update titles

set price = price * 1.20

where price <= $30

/* commt the transaction */
commt transaction

return

Sample stored procedure with a cursor

300

This procedure performs the same changes to the underlying table as the
procedure written without a cursor, but it uses cursors instead of set-
oriented programming. As each row is fetched, examined, and updated, a
lock is held on the appropriate data page. Also, as the commentsindicate,
each update commits asit is made, since there is no explicit transaction.

/* Same as previous exanple, this time using a
** cursor. Each update commits as it is made
*/

Create procedure increase_price_cursor

as

declare @rice noney

/* declare a cursor for the select fromtitles */
decl are curs cursor for

sel ect price

fromtitles

for update of price

/* open the cursor */
open curs

/* fetch the first row */
fetch curs into @rice

/* now | oop, processing all the rows
** @&ql status = 0 neans successful fetch

Adaptive Server Enterprise

CHAPTER 13 Cursors and Performance

** @gl status
** @gl status
*/
while (@®qlstatus != 2)
begin
/* check for errors */
if (@glstatus = 1)
begin
print "Error in increase_price"
return
end

1 neans error on previous fetch
2 neans end of result set reached

/* next adjust the price according to the
** criteria

*/

if @rice > $60

select @rice = @rice * 1.05

el se

if @rice > $30 and @rice <= $60
select @rice = @rice * 1.10

el se

if @rice <= $30

select @rice = @rice * 1.20

/* now, update the row */
update titles

set price = @rice

where current of curs

/* fetch the next row */
fetch curs into @rice
end

/* close the cursor and return */
close curs
return

Which procedure do you think will have better performance, one that
performs three table scans or one that performs a single scan viaa cursor?

Cursor versus noncursor performance comparison

Table 13-2 shows statistics gathered against a 5000-row table. The cursor
code takes over 4 times longer, even though it scans the table only once.

Performance & Tuning: Optimizer and Abstract Plans 301

Locking with read-only cursors

Table 13-2: Sample execution times against a 5000-row table

Procedure Access method Time

increase_price Uses three table scans 28 seconds

increase_price_cursor Uses cursor, single table 125 seconds
Scan

Results from tests like these can vary widely. They are most pronounced
on systems that have busy networks, alarge number of active database
users, and multiple users accessing the same table.

In addition to locking, cursors involve more network activity than set
operations and incur the overhead of processing instructions. The
application program needs to communicate with Adaptive Server
regarding every result row of the query. Thisiswhy the cursor code took
much longer to compl ete than the code that scanned the table three times.

Cursor performance issues include:

* Locking at the page and table level

* Network resources

* Overhead of processing instructions

If thereisa set-level programming equivalent, it may be preferable, even
if it involves multiple table scans.

Locking with read-only cursors

Hereisapiece of cursor code you can useto display the locks that are set
up at each point in the life of a cursor. The following example uses an
allpages-locked table. Execute the code in Figure 13-4, and pause at the
arrows to execute sp_lock and examine the locks that arein place.

302 Adaptive Server Enterprise

CHAPTER 13 Cursors and Performance

Figure 13-4: Read-only cursors and locking experiment input

declare cursl cursor for

select au id, au_Iname, au_fname

from authors
where au_id like ' 15%'’

for read only
go —
open cursl
go S —
fetch cursl
go A —
fetch cursl
go 100 ==
close cursl
go ——

deallocate cursor cursl

go

Table 13-3 shows the results.

Table 13-3: Locks held on data and index pages by cursors

Event

Data page

After declare

No cursor-related locks.

After open

Shared intent lock on authors.

After first fetch

Shared intent lock on authors and shared page lock on

apagein authors.

After 100 fetches

Shared intent lock on authors and shared page lock on

adifferent pagein authors.

After close

No cursor-related locks.

If you issue another fetch command after the last row of the result set has
been fetched, the locks on the last page are released, so there will be no

cursor-related |ocks.

With a data-only-locked table:

e If thecursor query runs at isolation level 1, and read committed with
lock is set to O, you do not see any page or row locks. The values are
copied from the page or row, and the lock isimmediately released.

e If read committed with lock is set to 1 or if the query runs at isolation
level 2 or 3, you see either shared page or shared row locks at the point
that Table 13-3 indicates shared pagelocks. If the table uses datarows
locking, the sp_lock report includes the row 1D of the fetched row.

Performance & Tuning: Optimizer and Abstract Plans

303

Isolation levels and cursors

Isolation levels and cursors

The query plan for acursor is compiled and optimized when the cursor is
opened. You cannot open a cursor and then use set transaction isolation
level to change the isolation level at which the cursor operates.

Since cursors using isolation level 0 are compiled differently from those
using other isolation levels, you cannot open a cursor at isolation level 0
and open or fetch from it at level 1 or 3. Similarly, you cannot open a
cursor at level 1 or 3 and then fetch from it at level 0. Attemptsto fetch
from a cursor at an incompatible level result in an error message.

Once the cursor has been opened at a particular isolation level, you must
deallocate the cursor before changing isolation levels. The effects of
changing isolation levels while the cursor is open are as follows:

* Attempting to close and reopen the cursor at another isolation level
fails with an error message.

* Attempting to changeisolation levels without closing and reopening
the cursor has no effect on the isolation level in use and does not
produce an error message.

You can include an at isolation clause in the cursor to specify anisolation
level. The cursor in the example below can be declared at level 1 and
fetched from level 0 because the query plan is compatible with the
isolation level:

decl are cprice cursor for

select title_id, price
fromtitles
where type = "busi ness”
at isolation read unconmitted

Partitioned heap tables and cursors

A cursor scan of an unpartitioned heap table can read all data up to and
including the final insertion made to that table, even if insertions took
place after the cursor scan started.

304 Adaptive Server Enterprise

CHAPTER 13 Cursors and Performance

If aheap tableispartitioned, data can beinserted into one of the many page
chains. The physical insertion point may be before or after the current
position of acursor scan. This means that a cursor scan against a
partitioned table is not guaranteed to scan the final insertions made to that
table.

Note If your cursor operationsrequire all insertsto be made at the end of
asingle page chain, do not partition the table used in the cursor scan.

Optimizing tips for cursors

Here are severa optimizing tips for cursors:

e Optimize cursor selects using the cursor, not an ad hoc query.

e Use union or union all instead of or clausesor in lists.

e Declare the cursor’sintent.

e Specify column names in the for update clause.

e Fetch more than onerow if you are returning rows to the client.
¢ Keep cursors open across commits and rollbacks.

e Open multiple cursors on a single connection.

Optimizing for cursor selects using a cursor

A standalone select statement may be optimized very differently than the
same select statement in animplicitly or explicitly updatable cursor. When
you are devel oping applications that use cursors, always check your query
plans and 1/0O statistics using the cursor, rather than using a standalone
select. In particular, index restrictions of updatable cursors require very
different access methods.

Performance & Tuning: Optimizer and Abstract Plans 305

Optimizing tips for cursors

Using union instead of or clauses or in lists

Cursors cannot use the dynamic index of row IDs generated by the OR
strategy. Queries that use the OR strategy in standalone select statements
usually perform table scans using read-only cursors. Updatable cursors
may need to use a unique index and till require access to each data row,
in sequence, in order to evaluate the query clauses.

See “Access Methods and Costing for or and in Clauses’ on page 85 in
the book Performance and Tuning: Optimizer for more information.

A read-only cursor using union creates a worktable when the cursor is
declared, and sorts it to remove duplicates. Fetches are performed on the
worktable. A cursor using union all can return duplicates and does not
require aworktable.

Declaring the cursor’s intent

Always declare a cursor’s intent: read-only or updatable. This gives you
greater control over concurrency implications. If you do not specify the
intent, Adaptive Server decidesfor you, and very often it chooses
updatable cursors. Updatabl e cursors use update locks, thereby preventing
other update locks or exclusive locks. If the update changes an indexed
column, the optimizer may need to choose a table scan for the query,
resulting in potentially difficult concurrency problems. Be sureto examine
the query plans for queries that use updatable cursors.

Specifying column names in the for update clause

306

Adaptive Server acquires update locks on the pages or rows of all tables
that have columns listed in the for update clause of the cursor select
statement. If the for update clauseisnot included in the cursor declaration,
all tables referenced in the from clause acquire update locks.

The following query includes the name of the column in the for update
clause, but acquires update locks only on thetitles table, since price is
mentioned in the for update clause. The table uses allpages locking. The
locks on authors and titleauthor are shared page locks:

decl are curs3 cursor

for

sel ect au_l nane, au_fnanme, price
fromtitles t, authors a,

Adaptive Server Enterprise

CHAPTER 13 Cursors and Performance

titleauthor ta
where advance <= $1000

and t.title_id = ta.title_id
and a.au_id = ta.au_id

for update of price

Table 13-4 shows the effects of :

Omitting the for update clause entirely—no shared clause

Omitting the column name from the for update clause

Including the name of the column to be updated in the for update

clause

Adding shared after the name of thetitles table while using for update

of price

In this table, the additional locks, or more restrictive locks for the two
versions of the for update clause are emphasized.

Table 13-4: Effects of for update clause and shared on cursor

locking
Clause titles authors titleauthor
None sh_page on index

sh pageondata sh pageondata sh_pageondata
for update updpage onindex updpage on index

updpageondata updpageondata updpage on data
for update of sh_page on index
price updpageondata sh pageondata sh pageon data
for update of sh_page on index
price sh pageondata sh pageondata sh pageondata
+ shared

Using set cursor rows

The SQL standard specifies a one-row fetch for cursors, which wastes
network bandwidth. Using the set cursor rows query option and Open
Client’s transparent buffering of fetches, you can improve performance:

ct _cursor (CT_CURSOR_ROWB)

Be careful when you choose the number of rows returned for frequently
executed applications using cursors—tune them to the network.

Performance & Tuning: Optimizer and Abstract Plans

307

Optimizing tips for cursors

See “Changing network packet sizes” on page 27 for an explanation of
this process.

Keeping cursors open across commits and rollbacks

ANSI closes cursors at the conclusion of each transaction. Transact- SQL
provides the set option close on endtran for applications that must meet
ANSI behavior. By default, however, this option isturned off. Unlessyou
must meet ANSI requirements, leave this option off to maintain
concurrency and throughput.

If you must be ANSI-compliant, decide how to handle the effects on
Adaptive Server. Should you perform alot of updatesor deletesinasingle
transaction? Or should you keep the transactions short?

If you choose to keep transactions short, closing and opening the cursor
can affect throughput, since Adaptive Server needs to rematerialize the
result set each time the cursor is opened. Choosing to perform more work
in each transaction, this can cause concurrency problems, since the query
holds locks.

Opening multiple cursors on a single connection

Some devel opers simulate cursors by using two or more connections from
DB-Library™. One connection performs a select and the other performs
updates or del etes on the sametables. Thishasvery high potential to create
application deadlocks. For example:

e Connection A holdsasharedlock onapage. Aslong astherearerows
pending from Adaptive Server, ashared lock is kept on the current

page.

« Connection B requests an exclusive lock on the same pages and then
walts.

e The application waits for Connection B to succeed before invoking
whatever logic is needed to remove the shared lock. But this never
happens.

Since Connection A never requests alock that is held by Connection B,
thisis not a server-side deadl ock.

308 Adaptive Server Enterprise

CHAPTER 14 Overview on Abstract Plans

This chapter provides an overview of abstract plans.

Topic Page
Definition 309
Managing abstract plans 310
Rel ationship between query text and query plans 310
Full versus partia plans 31
Abstract plan groups 313
How abstract plans are associated with queries 314

Definition

Adaptive Server can generate an abstract plan for a query, and save the
text and its associated abstract plan in the sysqueryplans system table.
Using arapid hashing method, incoming SQL queries can be compared to
saved query text, and if amatch isfound, the corresponding saved abstract
plan is used to execute the query.

An abstract plan describesthe execution plan for aquery using alanguage
created for that purpose. This language contains operators to specify the

choices and actions that can be generated by the optimizer. For example,
to specify an index scan on the titles table, using the index title_id_ix, the

abstract plan says:

(i_scan title_id_ix titles)

Abstract plans provide a means for System Administrators and
performance tuners to protect the overall performance of a server from
changes to query plans. Changes in query plans can arise due to:

e Adaptive Server software upgrades that affect optimizer choices and
query plans

¢ New Adaptive Server features that change query plans

Performance & Tuning: Optimizer and Abstract Plans 309

Managing abstract plans

e Changing tuning options such as the parallel degree, table
partitioning, or indexing

The major purpose of abstract plansisto provide ameansto capture query
plans before and after major system changes. The sets of before-and-after
query plans can be compared to determine the effects of changes on your
queries. Other uses include;

e Searching for specific types of plans, such as table scans or
reformatting

e Searching for plansthat use particular indexes

e Specifying full or partial plansfor poorly-performing queries

e Saving plansfor queries with long optimization times

Abstract plans provide an alternative to options that must be specified in
the batch or query in order to influence optimizer decisions. Using abstract
plans, you can influence the optimization of a SQL statement without
having to modify the statement syntax. While matching query text to

stored text requires some processing overhead, using asaved plan reduces
query optimization overhead.

Managing abstract plans

A full set of system procedures allows System Administrators and
Database Owners to administer plans and plan groups. Individual users
can view, drop, and copy the plans for the queries that they have run.

See Chapter 17, “Managing Abstract Plans with System Procedures,”

Relationship between query text and query plans

310

For most SQL queries, there are many possible query execution plans.
SQL describes the desired result set, but does not describe how that result
set should be obtained from the database. Consider aquery that joinsthree
tables, such asthis:

select tl1l.c11, t2.c21
fromtl, t2, t3

Adaptive Server Enterprise

CHAPTER 14 Overview on Abstract Plans

where tl1l.cl11 =t2.c21
and t1.cl11 = t3.c31

There are many different possible join orders, and depending on the
indexes that exist on the tables, many possible access methods, including
table scans, index scans, and the reformatting strategy. Each join may use
either anested-loop join or amergejoin. These choices are determined by
the optimizer’s query costing agorithms, and are not included in or
specified in the query itself.

When you capture the abstract plan, the query is optimized in the usual
way, except that the optimizer also generates an abstract plan, and saves
the query text and abstract plan in sysqueryplans.

Limits of options for influencing query plans
Adaptive Server provides other options for influencing optimizer choices:

e Session-level options such as set forceplan to force join order or set
parallel_degree to specify the maximum number of worker processes
to use for the query

e Optionsthat can beincluded in the query text to influence the index
choice, cache strategy, and parallel degree

There are some limitations to using set commands or adding hints to the
query text:

* Not all query plan steps can be influenced, for example, subquery
attachment

* Some query-generating tools do not support the in-query options or
require all queriesto be vendor-independent

Full versus partial plans

Abstract plans can be full plans, describing all query processing steps and
options, or they can be partial plans. A partial plan might specify that an
index isto be used for the scan of aparticular table, without specifying the
index name or the join order for the query. For example:

select t1.cl11, t2.c21
fromtl, t2, t3

Performance & Tuning: Optimizer and Abstract Plans 311

Full versus partial plans

where t1l.cl11 =1t2.¢c21
and t1.c11 = t3.c31

The full abstract plan includes:

* Thejointype, either nl_g_join for nested-loop joins, or m_g_join for
merge joins. The plan for this query specifies anested-loop join.

e Thejoin order, included in the nl_g_join clause.
* Thetype of scan, t_scan for table scan or i_scan for index scan.

* The name of the index chosen for the tables that are accessed via an
index scan.

» The scan properties: the parallel degree, 1/0 size, and cache strategy
for each table in the query.

The abstract plan for the query above specifies the join order, the access
method for each table in the query, and the scan properties for each table:

(nl _gjoin

(t_scan t2)

(i_scan t1_cl1l_ ix t1)
(i_scan t3_c31_ix t3)

(prop t3
(parallel 1)
(prefetch 16)
(lru)

(proptl
(parallel 1)
(prefetch 16)

(lru)

(prop t2
(parallel 1)
(prefetch 16)
(lru)

)

Chapter 18, “ Abstract Plan Language Reference,” provides areferenceto
the abstract plan language and syntax.

312 Adaptive Server Enterprise

CHAPTER 14 Overview on Abstract Plans

Creating a partial plan

When abstract plans are captured, full abstract plans are generated and
stored. You can write partial plans to affect only a subset of the optimizer
choices. If the query above had not used the index on t3, but all other parts
of the query plan were optimal, you could create a partial plan for the
query using the create plan command. This partia plan specifies only the
index choice for t3:

create plan

"select tl1.c11, t2.c21
fromt1l, t2, t3

where tl1l.cl1ll1 =t2.c21
and t1.c11 = t3.c31"

"(i_scan t3_c31_ix t3)"

You can also create abstract plans with the plan clause for select, delete,
update, and other commands that can be optimized.

See “Creating plans using SQL” on page 350.

Abstract plan groups

When youfirst install Adaptive Server, there are two abstract plan groups:
e ap_stdout, used by default for capturing plans
e ap_stdin, used by default for plan association

A System Administrator can enable server-wide plan captureto ap_stdout,
so that all query plansfor all queries are captured. Server-wide plan
association uses queries and plans from ap_stdin. If some queries require
specially-tuned plans, they can be made available server-wide.

A System Administrator or Database Owner can create additional plan
groups, copy plans from one group to another, and compare plansin two
different groups.

The capture of abstract plans and the association of abstract plans with
queries aways happens within the context of the currently-active plan
group. Users can use session-level set commands to enable plan capture
and association.

Some of the ways abstract plan groups can be used are:

Performance & Tuning: Optimizer and Abstract Plans 313

How abstract plans are associated with queries

e A query tuner can create abstract plansin a group created for testing
purposes without affecting plans for other users on the system

e Using plan groups, “before” and “after” sets of plans can be used to
determine the effects of system or upgrade changes on query
optimization.

See Chapter 16, “Creating and Using Abstract Plans,” for information on
enabling the capture and association of plans.

How abstract plans are associated with queries

314

When an abstract plan is saved, all white space (returns, tabs, and multiple
spaces) in the query istrimmed to a single space, and a hash-key valueis
computed for the white-space trimmed SQL statement. The trimmed SQL
statement and the hash key are stored in sysqueryplans along with the
abstract plan, aunique plan ID, the user’s ID, and the ID of the current
abstract plan group.

When abstract plan association isenabled, the hash key for incoming SQL
statements is computed, and this value is used to search for the matching
guery and abstract plan in the current association group, with the
corresponding user ID. The full association key of an abstract plans
consists of:

* Theuser ID of the current user
* Thegroup ID of the current association group
* Thefull query text

Once amatching hash key isfound, the full text of the saved query is
compared to the query to be executed, and used if it matches.

The association key combination of user ID, group ID and query text
means that for a given user, there cannot be two queriesin the same
abstract plan group that have the same query text, but different query
plans.

Adaptive Server Enterprise

cuapTeErR 15 Abstract Query Plan Guide

This chapter covers some guidelines you can use in writing Abstract

Plans.
Topic Page
Introduction 315
Tips on writing abstract plans 337
Comparing plans “before” and “ after” 338
Abstract plans for stored procedures 340
Ad Hoc queries and abstract plans 342

Introduction

Abstract plans allow you to specify the desired execution plan of aquery.
Abstract plans provide an alternative to the session-level and query level
optionsthat forceajoin order, or specify theindex, |/O size, or other query
execution options. The session-level and query-level options are
described in Chapter 16, “ Creating and Using Abstract Plans.”

There are several optimization decisions that cannot be specified with set
commands or clauses included in the query text. Some examples are:

e Subquery attachment
e Thejoin order for flattened subqueries
e Reformatting

In many cases, including set commands or changing the query text is not
always possible or desired. Abstract plans provide an alternative, more
complete method of influencing optimizer decisions.

Abstract plans are relational algebra expressions that are not included in
the query text. They are stored in a system catalog and associated to
incoming queries based on the text of these queries.

Performance & Tuning: Optimizer and Abstract Plans 315

Introduction

The tables used in this section are the same as those in Chapter 18,
“Abstract Plan Language Reference.” See“ Schemafor examples’ on
page 372 for the create table and create index statements.

Abstract plan language
The abstract plan languageisarelational algebrathat usesthese operators:

* g_join, the generic join, ahigh-level logical join operator. It describes
inner, outer and existence joins, using either nested-loop joins or sort-
merge joins.

* nl_g_join, specifying anested-loop join, including al inner, outer, and
existencejoins

* m_g_join, specifying amergejoin, including inner and outer joins.

* union, alogical union operator. It describes both the union and the
union all SQL constructs.

» scan, alogica operator that transforms a stored table in a flow of
rows, an abstract plan derived table. It allows partial plans that do not
restrict the access method.

* i_scan, aphysical operator, implementing scan. It directs the
optimizer to use an index scan on the specified table.

* t_scan, aphysical operator, implementing scan. It directsthe
optimizer to use afull table scan on the specified table.

» store, alogical operator, describing the materialization of an abstract
plan derived table in a stored worktable.

* nested, afilter, describing the placement and structure of nested
subqueries.

See “ Schema for examples” on page 372 for the create table and create
index commands used for the examples in this section.

Additional abstract plan keywords are used for grouping and
identification:

» plan groups the elements when a plan requires multiple steps.
* hints groups a set of hintsfor apartial plan.

» prop introduces a set of scan properties for atable: prefetch, Irujmru
and parallel.

316 Adaptive Server Enterprise

CHAPTER 15 Abstract Query Plan Guide

* table identifies atable when correlation names are used, and in
subqueries or views.

* work_tidentifies aworktable.

e in, used with table, for identifying tables named in a subquery (subq)
or view (view).

e subq isalso used under the nested operator to indicate the attachment
point for a nested subquery, and to introduce the subqueries abstract
plan.

Queries, access methods, and abstract plans

For any specific table, there can be several access methods for a specific
query: index scans using different indexes, table scans, the OR strategy,
and reformatting are some examples.

This simple query has several choices of access methods:

select * fromt1l
where c¢l11 > 1000 and c12 < O

The following abstract plans specify three different access methods:
e Usetheindexi_ci1:
(i_scan i_c11 t1)
e Usetheindexi_ci12:
(i _scan i_c12 t1)
e Doafull table scan:
(t_scan t1)

Abstract plans can be full plans, specifying all optimizer choicesfor a
query, or can specify asubset of the choices, such astheindex to usefor a
singletablein the query, but not thejoin order for the tables. For example,
using apartial abstract plan, you can specify that the query above should
use someindex and let the optimizer choose betweeni_c11 andi_c12, but
not do afull table scan. The empty parentheses are used in place of the
index name:

(i _scan () t1)

In addition, the query could use either 2K or 16K 1/O, or be performed in
serial or parallel.

Performance & Tuning: Optimizer and Abstract Plans 317

Introduction

Derived tables

Identifying tables

318

A derived table is defined by the evaluation of a query expression and
differsfromaregular tableinthat it isneither described in system catalogs
nor stored on disk. In Adaptive Server, aderived table may be a SQL
derived table or an abstract plan derived table.

* A SQL derived table is defined by one or more tables through the
evaluation of aquery expression. A SQL derived tableis used in the
guery expressioninwhichit isdefined and existsonly for the duration
of the query. For more information on SQL derived tables, see the
Transact-SQL User’s Guide.

» Anabstract plan derived table is a derived table used in query
processing, the optimization and execution of queries. An abstract
plan derived table differsfrom a SQL derived tablein that it exists as
part of an abstract plan and isinvisible to the end user.

Abstract plans need to name all of a query’s tables in a non-ambiguous
way, such that atable named in the abstract can be linked to its occurrence
inthe SQL query. In most cases, the table nameisall that is needed. If the
query qualifies the table name with the database and owner name, these
are also needed to fully identify atablein the abstract plan. For example,
this example used the unqualified table name:

select * fromtl
The abstract plan also uses the unqualified name:
(t_scan t1)
If a database name and/or owner name are provided in the query:
select * from pubs2.dbo.t1
Then the abstract plan must also use the qualifications:
(t_scan pubs2.dbo.t1)

However, the same table may occur several timesin the same query, asin
this example:

select * fromtl a, t1 b

Adaptive Server Enterprise

CHAPTER 15 Abstract Query Plan Guide

Correlation names, a and b in the example above, identify the two tables
in SQL. In an abstract plan, the table operator associates each correlation
name with the occurrence of the table:
(g_join
(t_scan (table (atl)))
(t_scan (table (bt1)))
)

Table names can also be ambiguous in views and subqueries, so the table
operator is used for tables in views and subqueries.

For subqueries, thein and subq operators qualify the name of thetablewith
its syntactical containment by the subquery. The same table is used in the
outer query and the subquery in this example:

sel ect *
fromtl
where cl1l1l in (select cl12 fromtl where cll > 100)

The abstract plan identifies them unambiguously:

(g_join
(t_scan tl)
(i_scan i_c11 cl2 (table tl1 (in (subg 1))))

For views, the in and view operators provide the identification. The query
in this example references a table used in the view:

create view vl
as
select * fromtl where c12 > 100
select tl1.c11 fromtl, vi
where t1.cl12 = vl.cll

Here isthe abstract plan:
(g_join
(t_scan tl)
(i_scani_c12 (table tl1 (in (viewvl))))

Identifying indexes

Thei_scan operator requires two operands, the index name and the table
name, as shown here:

Performance & Tuning: Optimizer and Abstract Plans 319

Introduction

(i_scani_cl12 t1)

To specify that some index should be used, without specifying the index,
substitute empty parenthesis for the index name:

(i_scan () t1)

Specifying join order

Adaptive Server performsjoins of three or more tables by joining two of
the tables, and joining the “ abstract plan derived table” from that join to
the next table in thejoin order. This abstract plan derived tableisaflow of
rows, as from an earlier nested-loop join in the query execution.

This query joins three tables:

sel ect *
fromtl, t2, t3
where cl1l1 = c21

and cl12 = c31
and c22 =0
and c32 = 100

This example shows the binary nature of the join algorithm, using g_join
operators. The plan specifiesthe join order t2, t1, t3;
(g_join
(g_join
(scan t2)
(scan t1)

)
(scan t3)

)

The results of thet2-t1 join are then joined to t3. The scan operator in this
exampl e leaves the choice of table scan or index scan up to the optimizer.

Shorthand notation for joins
Ingeneral, aN-way join, withthe order t1, t2, t3..., tN-1, tN isdescribed by:
(g_join
(g_join
 (gjoin
(g_join
(scan t1l)

320 Adaptive Server Enterprise

CHAPTER 15 Abstract Query Plan Guide

(scan t2)

)

(scan t3)

)
kééan tN-1)
)

(scan tN)
)

This notation can be used as shorthand for the g_join operator:

(g_join
(scan t1)
(scan t2)
(scan t3)

kééan tN-1)
(scan tN)
)

This notation can be used for g_join, and nl_g_join, and m_g_join.

Join order examples
The optimizer could select among several plansfor thisthree-way join
query:
sel ect *

fromtl, t2, t3
where cll = c21

and cl12 = c31
and c22 = 0
and c¢32 = 100

Here are afew examples:

e Usec22 asasearch argument on t2, join with t1 on c11, then with t3
onc31:

(g_join
(i_scan i_c22 t2)
(i_scan i_c11 t1)
(i_scan i_c31 t3)
)

e Usethe search argument on t3, and the join order t3, t1, t2:

(g_join

Performance & Tuning: Optimizer and Abstract Plans 321

Introduction

(i _scan i_c32 t3)

(i _scan i_c12 t1)

(i_scan i_c21 t2)
)

e Doafull tablescan of t2, if itissmall and fitsin cache, still using the
join order t3, 1, t2:
(g_join
(i _scan i_c32 t3)
(i _scan i_c12 t1)
(t_scan t2)
)

o Iftlisvery large, and t2 and t3 individually qualify alarge part of 1,
but together avery small part, this plan specifiesa STAR join:
(g_join
(i_scan i_c22 t2)
(i _scan i_c32 t3)
(i _scan i_cl11 cl12 t1)
)

All of these plans completely constrain the choice of join order, letting the
optimizer choose the type of join.

The generic g_join operator implements outer joins, inner joins, and

existence joins. For examples of flattened subqueries that perform
existencejoins, see “Flattened subqueries’ on page 328.

Match between execution methods and abstract plans

There are some limitsto join orders and join types, depending on the type
of query. One exampleis outer joins, such as:

select * fromtl, t2
where cl1l1 *= c21

Adaptive Server requiresthe outer member of the outer join to be the outer
table during join processing. Therefore, this abstract planisillegal:
(g_join
(scan t2)
(scan t1)

)

Attempting to use thisplan resultsin an error message, and the query isnot
compiled.

322 Adaptive Server Enterprise

CHAPTER 15 Abstract Query Plan Guide

Specifying join order for queries using views

You can use abstract plansto enforcethejoin order for merged views. This
example creates aview. Thisview performsajoin of t2 and t3:

create view v2
as

sel ect *
fromt2, t3
where c22 = ¢c32

This query performs ajoin with the t2 in the view:

select * fromtl, v2
where cl1l1 = c21
and c22 = 0

This abstract plan specifies the join order t2, t1, t3:
(g_join
(scan (table t2 (in (viewv2))))

(scan t1)
(scan (table t3 (in (viewv2))))

)
This example joins with t3 in the view:

select * fromtl, v2
where cll1 = c31
and c32 = 100

This plan uses the join order t3, t1, t2:

(g_join
(scan (table t3 (in (viewv2))))
(scan t1)
(scan (table t2 (in (viewv2))))

)

Thisis an example where abstract plans can be used, if needed, to affect
the join order for a query, when set forceplan cannot.

Performance & Tuning: Optimizer and Abstract Plans 323

Introduction

Specifying the join type

324

Adaptive Server can perform either nested-loop or mergejoins. Theg_join
operator leaves the optimizer free to choose the best join algorithm, based
on costing. To specify a nested-loop join, use the nl_g_join operator; for a
sort-merge join, use the m_g_join operator. Abstract plans captured by
Adaptive Server always include the operator that specifies the algorithm,
and not the g_join operator.

Notethat the“g” that appears in each operator means “generic,” meaning
that they apply to inner joins and outer joins; g_join and nl_g_join can also
apply to existencejains.

This query specifies ajoin between t1 and t2:

select * fromtl, t2
where c¢12 = c21 and c11 = 0

This abstract plan specifies a nested-loop join:

(nl _g join
(i _scan i_c11 t1)
(i_scan i_c21 t2)

)

The nested-loop plan usestheindexi_c11 tolimit the scan using the search
clause, and then performs the join with t2, using the index on the join
column.

This merge-join plan uses different indexes:

(mg_join
(i _scan i_c12 t1)
(i _scan i_c21 t2)

)

The merge join uses the indexes on the join columns, i_c12 andi_c21, for
the merge keys. This query performs a full-merge join and no sort is
needed.

A merge join could also usetheindex oni_c11 to select the rowsfromt1
into aworktable; the merge usestheindex oni_c21:

(mg_join
(i_scan i11 t1)
(i_scan i21 t2)

Adaptive Server Enterprise

CHAPTER 15 Abstract Query Plan Guide

The step that creates the worktable is not specified in the plan; the
optimizer detects when aworktable and sort are needed for join-key
ordering.

Specifying partial plans and hints

There are cases when afull plan is not needed. For example, if the only
problem with aquery planisthat the optimizer chooses atabl e scaninstead
of using anonclustered index, the abstract plan can specify only the index
choice, and leave the other decisions to the optimizer.

The optimizer could choose atable scan of t3 rather than usingi_c31 for
this query:

sel ect *
fromtl, t2, t3
where cll = c21

and cl12 < c31
and c22 = 0
and c¢32 = 100

Thefollowing plan, as generated by the optimizer, specifiesjoin order t2,
t1, t3. However, the plan specifies a table scan of t3:
(g_join
(i_scan i_c22 t2)
(i_scan i_c11 t1)
(t_scan t3)
)

Thisfull plan could be modified to specify the use of i_c31 instead:
(g_join
(i _scan i_c22 t2)
(i_scan i_cl11 t1)
(i _scan i_c31 t3)
)

However, specifying only a partial abstract planisamore flexible
solution. As datain the other tables of that query evolves, the optimal join
order can change. The partial plan can specify just one partial plan item.
For the index scan of t3, the partial plan is simply:

(i _scan i_c31 t3)

The optimizer chooses the join order and the access methods for t1 and t2.

Performance & Tuning: Optimizer and Abstract Plans 325

Introduction

Grouping multiple hints

There may be cases where more than one plan fragment is needed. For
example, you might want to specify that some index should be used for
each table in the query, but leave the join order up to the optimizer. When
multiple hints are needed, they can be grouped with the hints operator:

(hints
(i_scan () t1)
(i_scan () t2)
(i_scan () t3)
)

In this case, the role of the hints operator is purely syntactic; it does not
affect the ordering of the scans.

There are no limits on what may be given asahint. Partial join orders may
be mixed with partial access methods. Thishint specifiesthat t2 is outer to
t1 in the join order, and that the scan of t3 should use an index, but the
optimizer can choose theindex for t3, the access methodsfor t1 and t2, and
the placement of t3 in the join order:

(hints
(g_join
(scan t2)
(scan t1)
)

(i_scan () t3)

Inconsistent and illegal plans using hints

It is possible to describe inconsistent plans using hints, such as this plan
that specifies contradictory join orders:

(hints

(g_join
(scan t2)
(scan t1)

)

(g_join
(scan t1)
(scan t2)

)

When the query associated with the plan is executed, the query cannot be
compiled, and an error israised.

326 Adaptive Server Enterprise

CHAPTER 15 Abstract Query Plan Guide

Other inconsistent hints do not raise an exception, but may use any of the
specified access methods. This plan specifies both an index scan and a
table scan for the same table:

(hints
(t_scan t3)
(i_scan () t3)
)

In this case, either method may be chosen, the behavior is indeterminate.

Creating abstract plans for subqueries

Subqueries are resolved in several waysin Adaptive Server, and the
abstract plans reflect the query execution steps:

e Materialization — The subquery is executed and resultsare stored in a
worktableor internal variable. See* Materialized subqueries’ on page
327.

e Flattening — The query is flattened into ajoin with the tablesin the
main query. See “Flattened subqueries’ on page 328.

¢ Nesting — The subquery is executed once for each outer query row.
See “Nested subqueries’ on page 330.

Abstract plans do not allow the choice of the basic subquery resolution
method. Thisisarule-based decision and cannot be changed during query
optimization. Abstract plans, however, can be used to influence the plans
for the outer and inner queries. In nested subqueries, abstract plans can
also be used to choose where the subquery is nested in the outer query.

Materialized subqueries
This query includes a non correlated subquery that can be materialized:
sel ect *

fromtil
where cl11 = (select count(*) fromt2)

Thefirst step in the abstract plan materializes the scalar aggregate in the
subquery. The second step uses the result to scan t1:

(plan
(i_scani_c21 (table t2 (in (subg 1))))
(i_scani_cl1 t1)

Performance & Tuning: Optimizer and Abstract Plans 327

Introduction

Flattened subqueries

328

This query includes a vector aggregate in the subquery:

sel ect *

fromtl

where c11 in (select max(c2l)
fromt2

group by c22)

The abstract plan materializes the subquery in thefirst step, and joinsit to
the outer query in the second step:

(plan
(store Worktabl
(t_scan (table t2 (in (subg 1))))

)
(nl_g_join

(t_scan tl)

(t_scan (work_t Worktabl))
)

Some subqueries can be flattened into joins. The g_join and nl_g_join
operators leave it to the optimizer to detect when an existencejoinis
needed. For example, this query includes a subquery introduced with
exists:

select * fromtl
where cl12 > 0
and exists (select * fromt2
where tl1l.cl1ll = c21
and c22 < 100)

The semantics of the query requirean existencejoin betweent1 andt2. The
join order t1, t2 isinterpreted by the optimizer as an existence join, with
the scan of t2 stopping on the first matching row of t2 for each qualifying
row intl:
(g_join
(scan t1)
(scan (table t2 (in (subg 1))))
)

The join order t2, t1 requires other means to guarantee the duplicate
elimination:

Adaptive Server Enterprise

CHAPTER 15 Abstract Query Plan Guide

(g_join
(scan (table t2 (in (subg 1))))
(scan t1)

)

Using this abstract plan, the optimizer can decide to use:
e A uniqueindex ont2.c21, if oneexists, with aregular join.

e The unique reformatting strategy, if no unique index exists. In this
case, the query will probably use the index on c22 to select the rows
into aworktable.

e Theduplicate elimination sort optimization strategy, performing a
regular join and selecting the results into the worktable, then sorting
the worktable.

The abstract plan does not need to specify the creation and scanning of the
worktables needed for the last two options.

For more information on subquery flattening, see “Flattened subqueries’
on page 328.

Example: changing the join order in a flattened subquery
The query can be flattened to an existence join:

sel ect *
fromtl, t2
where cll1 = c21
and c21 > 100
and exists (select * fromt3
where ¢c31 !'=t1.cll)

The “!1=" correlation can make the scan of t3 rather expensive. If thejoin
order ist1, t2, the best placefor t3 in the join order depends on whether the
join of t1 and t2 increases or decreases the number of rows, and therefore,
the number of times that the expensive table scan needs to be performed.
If the optimizer failsto find the right join order for t3, the following
abstract plan can be used when the join reduces the number of times that
t3 must be scanned:
(g_join

(scan t1)

(scan t2)

(scan (table t3 (in (subqg 1))))

Performance & Tuning: Optimizer and Abstract Plans 329

Introduction

If the join increases the number of times that t3 needs to be scanned, this
abstract plan performs the scans of t3 before thejoin:
(g_join
(scan t1)

(scan (table t3 (in (subg 1))))
(scan t2)

Nested subqueries
Nested subqueries can be explicitly described in abstract plans:

» Theabstract plan for the subquery is provided.

» Thelocation at which the subquery attaches to the main query is
specified.

Abstract plans alow you to affect the query plan for the subquery, and to

change the attachment point for the subquery in the outer query.

The nested operator specifies the position of the subquery in the outer
query. Subgueries are “ nested over” a specific abstract plan derived table.
The optimizer chooses a spot where al the correlation columns for the
outer query are available, and where it estimates that the subquery needs
to be executed the least number of times.

The following SQL statement contains a correlated expression subquery:

sel ect *
fromtl, t2
where cll = c21
and c21 > 100
and cl12 = (select c31 fromt3
where ¢32 = t1.cll)

The abstract plan shows the subquery nested over the scan of t1:

(g_join
(nested
(i_scan i_cl2 t1)
(subg 1

(t_scan (table t3 (in (subg 1))))
)
)

(i_scan i_c21 t2)

330 Adaptive Server Enterprise

CHAPTER 15 Abstract Query Plan Guide

Subquery identification and attachment

Subqueries are identified with numbers, in the order of their leading
opened parenthesis “(“.

This example has two subgueries, one in the select list:

sel ect

(select c11 fromtl where cl12 =1t3.c¢32), c31
fromt3

where ¢32 > (select c22 fromt2 where c21 = t3.c31)

In the abstract plan, the subquery containing t1 is named “1” and the
subquery containing t2 is named “2". Both subquery 1 and 2 are nested
over the scan of t3:

(nested
(nested
(t_scan t3)
(subg 1
(i_scan i_cl11l cl1l2 (table tl (in (subg 1))))
)
)
(subg 2
(i_scani_c21 (table t2 (in(subg2))))
)
)
In this query, the second subquery is nested in the first:
select * fromt3
where c32 > al
(select cl11l fromtl where cl12 > all
(select c22 fromt2 where c21 = t3.¢c31))
Inthiscase, the subquery containing t1 isalso named “1" and the subquery
containing t2 isnamed “2”. Inthis plan, subquery 2 isnested over the scan
of t1, which isperformed in subquery 1; subquery 1 isnested over the scan
of t3 inthe main query:
(nested
(t_scan t3)
(subg 1
(nested
(i_scani_c11 c12 (table t1 (in (subg1))))
(subg 2

(i_scani_c21 (tablet2 (in (subg 2))))
)

Performance & Tuning: Optimizer and Abstract Plans 331

Introduction

More subquery examples: reading ordering and attachment

The nested operator hasthe abstract plan derived table asthefirst operand
and the nested subquery as the second operand. This allows an easy
vertical reading of the join order and subquery placement:

sel ect *
fromtl, t2, t3
where cl12 = 0
and cl11 = c21
and c22 = c32
and 0 < (select c21 fromt2 where c22 = t1.cll)

In the plan, the join order ist1, t2, t3, with the subquery nested over the

scan of t1:
(g_join
(nested
(i_scani_cl1 t1)
(subg 1

(t_scan (table t2 (in (subg 1)))
)

_scan i_c21 t2)
_scan i _c32 t3)

)
(
(

Modifying subqguery nesting

If you modify the attachment point for a subquery, you must choose apoint
at which all of the correlation columns are available.This query is
correlated to both of the tables in the outer query:

sel ect *
fromtl, t2, t3
where cl12 = 0
and cl11 c21
and c22 c32
and 0 < (select c31 fromt3 where ¢c31 =t1l.cl1
and c32 = t2.c22)

This plan uses the join order t1, t2, t3, with the subquery nested over the
t1-t2 join:

(g_join

332 Adaptive Server Enterprise

CHAPTER 15 Abstract Query Plan Guide

(nested
(gjoin
(i_scan i_cll1l cl1l2 t1)
(i_scan i_c22 t2)
)
(subg 1
(t_scan (table t3 (in(subg 1))))
)
)
(i_scani_c32t3)
)

Since the subquery requires columns from both outer tables, it would be
incorrect to nest it over the scan of t1 or the scan of t2; such errors are
silently corrected during optimization.

Abstract plans for materialized views
Thisview is materialized during query processing:

create view v3
as

sel ect distinct *
fromt3

This query performs ajoin with the materialized view:

sel ect *
fromtil, v3
where cl11 = ¢c31

A first step materializesthe view v3 into aworktable. The second joinsit
with the main query tablet1 :

(plan
(store Worktabl
(t_scan (table t3 (in (viewv3))))
)
(g_join
(t_scan tl)
(t_scan (work_t Worktabl))
)
)

Performance & Tuning: Optimizer and Abstract Plans 333

Introduction

Abstract plans for queries containing aggregates
This query returns a scalar aggregate:
sel ect max(cll) fromt1l

The first step computes the scalar aggregate and storesit in an internal
variable. The second step isempty, asit only returnsthe variable, in astep
with nothing to optimize:

(plan
(t_scan tl)
()
)
Vector aggregates are also two-step queries:

sel ect max(cll)
fromtl
group by cl12

The first step processes the aggregates into a worktable; the second step
scans the worktable:

(plan
(store Worktabl
(t_scan tl)

)
(t_scan (work_t Worktabl))

)
Nested aggregates are a Transact-SQL extension:

sel ect max(count (*))
fromtl
group by cl1

Thefirst step processes the vector aggregate into aworktable, the second
scansit to processthe nested scalar aggregate into aninternal variable, and
the third step returns the value.

(plan

(store Worktabl
(i_scani_cl2 t1)

_scan (work_t Worktabl))

—_~ —~ =

t

)
)

Extended columns in aggregate queries are a Transact-SQL extension;

334 Adaptive Server Enterprise

CHAPTER 15 Abstract Query Plan Guide

sel ect max(cll), cli
fromtl
group by c12

Thefirst step processes the vector aggregate; the second one joinsit back
to the base table to process the extended columns:

(plan
(store Worktabl

(t_scan tl)

)

(g_join

(t_scan tl)

(i_scan i_c11 (work_t Worktabl))

)
This example contains an aggregate in amerged view:

create view v4
as
sel ect max(cll) as c4l, cl2 as c42
fromtl
group by c12
select * fromt2, v4
where ¢c21 =0
and c22 > c41

The first step processes the vector aggregate; the second joinsit to the
main query table:

(plan
(store Worktabl
(t_scan (table t1 (in (viewv4d))))

)
(g_join
(i_scani_c22t2)
(t_scan (work_t Worktabl))
)
)
This example includes an aggregate that is processed using amaterialized
view:

create view v5

as

sel ect distinct max(cll) as c51, cl1l2 as c52
fromtl

group by c12

Performance & Tuning: Optimizer and Abstract Plans 335

Introduction

select * fromt2, v5
where ¢c21 = 0
and c22 > c51

The first step processes the vector aggregate into aworktable. The second
step scansit into a second worktable to processthe materialized view. The
third step joins this second worktable in the main query:

(plan
(store Worktabl
(t_scan (table t1 (in (viewv5))))
)
(store Wrktab2
(t_scan (work_t Worktabl))
)
(g_join
(i_scan i_c22 t2)
(t_scan (work_t Worktab2))

Specifying the reformatting strategy
In this query, t2 is very large, and has no index:

sel ect *

fromtl, t2

where cl11 > 0
and cl12 = c21
and c22 = 0

The abstract plan that specifies the reformatting strategy ont2 is:

(g_join
(t_scan t1
(scan
(store Worktabl
(t_scan t2)

)

)

In the case of the reformatting strategy, the store operator is an operand of
scan. Thisisthe only case when the store operator is not the operand of a
plan operator.

336 Adaptive Server Enterprise

CHAPTER 15 Abstract Query Plan Guide

OR strategy limitation

The OR strategy has no matching abstract plan that describesthe RID scan
required to performthefinal step. All abstract plansgenerated by Adaptive
Server for the OR strategy specify only the scan operator. You cannot use
abstract plans to influence index choice for queries that require the OR
strategy to eliminate duplicates.

When the store operator is not specified

Some multistep queries that require worktables do not require multistep
plans with a separate worktable step, and the use of the store operator to
create the worktable. These are;

The sort step of queries using distinct
The worktables needed for merge joins
Worktables needed for union queries

The sort step, when a flattened subquery requires sort to remove
duplicates

Tips on writing abstract plans

Here are some additional tips for writing and using abstract plans:

Look at the current plan for the query and at plans that use the same
guery execution steps as the plan you need to write. It is often easier
to modify an existing plan than to write afull plan from scratch.

e Capturethe plan for the query.
e Usesp_help_gplan to display the SQL text and plan.

« Edit this output to generate a create plan command, or attach an
edited plan to the SQL query using the plan clause.

It isoften best to specify partial plansfor query tuning in caseswhere
most optimizer decisions are appropriate, but only an index choice,
for example, needs improvement.

By using partial plans, the optimizer can choose other paths for other
tables as the data in other tables changes.

Performance & Tuning: Optimizer and Abstract Plans 337

Comparing plans “before” and “after”

e Once saved, abstract plans are static. Data volumes and distributions
may change so that saved abstract plans are no longer optimal.

Subsequent tuning changes made by adding indexes, partitioning a
table, or adding buffer pools may mean that some saved plans are not
performing as well as possible under current conditions. Most of the
time, you want to operate with a small number of abstract plans that
solve specific problems.

Perform periodic plan checks to verify that the saved plans are still
better than the plan that the optimizer would choose.

Comparing plans “before” and “after”

338

Abstract query plans can be used to assess the impact of an Adaptive
Server software upgrade or system tuning changes on your query plans.
You need to save plans before the changes are made, perform the upgrade
or tuning changes, and then save plans again and compare the plans. The
basic set of stepsis:

1 Enable server-wide capture mode by setting the configuration
parameter abstract plan dump to 1. All plans are then captured in the
default group, ap_stdout.

2 Allow enough time for the captured plans to represent most of the
gueriesrun on the system. You can check whether additional plansare
being generated by checking whether the count of rows in the
ap_stdout group in sysqueryplans is stable:

sel ect count(*) from sysquerypl ans where gid = 2

3 Copy dl plansfrom ap_stdout to ap_stdin (or some other group, if you
do not want to use server-wide plan load mode), using
sp_copy_all_gplans.

Drop all query plans from ap_stdout, using sp_drop_all_gplans.
Perform the upgrade or tuning changes.

Allow sufficient time for plans to be captured to ap_stdout.

N o o1 b~

Compare plansin ap_stdout and ap_stdin, using the diff mode
parameter of sp_cmp_all_gplans. For example, this query compares
al plansin ap_stdout and ap_stdin:

Adaptive Server Enterprise

CHAPTER 15 Abstract Query Plan Guide

sp_cnp_all _qgpl ans ap_stdout, ap_stdin, diff

Thisdisplaysonly information about the plansthat are differentin the
two groups.

Effects of enabling server-wide capture mode

When server-wide capture mode is enabled, plans for al queriesthat can
be optimized are saved in all databases on the server. Some possible
system administration impacts are:

When plans are captured, the plan is saved in sysqueryplans and log
records are generated. The amount of space required for the plansand
|og records depends on the size and complexity of the SQL statements
and query plans. Check space in each database where users will be
active.

You may need to perform more frequent transaction log dumps,
especially in the early stages of server-wide capture when many new
plans are being generated.

If users execute system procedures from the master database, and
installmaster was loaded with server-wide plan capture enabled, then
plans for the statements that can be optimized in system procedures
are saved in master..sysqueryplans.

Thisis aso true for any user-defined procedures created while plan
capture was enabled. You may want to provide a default database at
login for al users, including System Administrators, if spacein
master is limited.

The sysqueryplans table uses datarows locking to reduce lock
contention. However, especially when alarge number of new plans
are being saved, there may be a dight impact on performance.

While server-wide capture mode is enabled, using bcp saves query
plansin the master database. If you perform bep using alarge number
of tables or views, check sysqueryplans and the transaction log in
master.

Performance & Tuning: Optimizer and Abstract Plans 339

Abstract plans for stored procedures

Time and space to copy plans

If you have alarge number of query plansin ap_stdout, be sure there is
sufficient space to copy them on the system segment before starting the
copy. Use sp_spaceused to check the size of sysqueryplans, and
sp_helpsegment to check the size of the system segment.

Copying plans also requires space in the transaction log.

sp_copy_all_gplans calls sp_copy_gplan for each plan in the group to be
copied. If sp_copy_all_gplans failsat any time dueto lack of spaceor other
problems, any plans that were successfully copied remain in the target
query plan group.

Abstract plans for stored procedures

340

For abstract plans to be captured for the SQL statements that can be
optimized in stored procedures:

e Theproceduresmust be created while plan capture or plan association
mode is enabled. (This saves the text of the procedurein
sysprocedures.)

e Theprocedure must be executed with plan capture mode enabled, and
the procedure must be read from disk, not from the procedure cache.

This sequence of steps captures the query text and abstract plans for all
statements in the procedure that can be optimized:

set plan dunp dev_plans on

go

create procedure nyproc as ...
go

exec nyproc

go

If the procedure isin cache, so that the plans for the procedure are not
being captured, you can execute the procedure with recompile. Similarly,
once a stored procedure has been executed using an abstract query plan,
the planin the procedure cache is used so that query plan association does
not take place unless the procedure is read from disk.

Adaptive Server Enterprise

CHAPTER 15 Abstract Query Plan Guide

Procedures and plan ownership

When plan capture mode is enabled, abstract plans for the statementsin a
stored procedure that can be optimized are saved with the user 1D of the
owner of the procedure.

During plan association mode, association for stored procedures is based
ontheuser ID of the owner of the procedure, not the user who executesthe
procedure. This means that once an abstract query plan is created for a
procedure, all users who have permission to execute the procedure use the
same abstract plan.

Procedures with variable execution paths and optimization

Executing a stored procedure saves abstract plans for each statement that
can be optimized, even if the stored procedure contains control-of-flow
statements that can cause different statements to be run depending on
parameters to the procedure or other conditions. If the query isrun a
second time with different parametersthat use adifferent code path, plans
for any statements that were optimized and saved by the earlier execution,
and the abstract plan for the statement is associated with the query.

However, abstract plans for procedures do not solve the problem with
procedures with statements that are optimized differently depending on
conditions or parameters. One exampleisaprocedure where users provide
the low and high values for a between clause, with a query such as:

select title_id
fromtitles
where price between @o and @i

Depending on the parameters, the best plan could either beindex access or
atable scan. For these procedures, the abstract plan may specify either
access method, depending on the parameters when the procedure was first
executed. For more information on optimization of procedures, see
Performance & Tuning: Optimizer.

Performance & Tuning: Optimizer and Abstract Plans 341

Ad Hoc queries and abstract plans

Ad Hoc queries and abstract plans

Abstract plan capture savesthe full text of the SQL statement and abstract
plan association is based on the full text of the SQL query. If users submit
ad hoc SQL statements, rather than using stored procedures or Embedded
SQL, abstract plans are saved for each different combination of query
clauses. This can result in avery large number of abstract plans.

If users check the price of a specific title_id using select statements, an
abstract plan is saved for each statement. The following two queries each
generate an abstract plan:

"T19245"
"T40007"

select price fromtitles where title_id
select price fromtitles where title_id

In addition, there is one plan for each user, that is, if several users check
for thetitle_id “T40007”, aplan is save for each user ID.

If such queries are included in stored procedures, there are two benefits:
* Only only one abstract plan is saved, for example, for the query:

select price fromtitles where title_id =
@itle_id

e Theplanissaved with the user ID of the user who owns the stored
procedure, and abstract plan association is made based on the
procedure owner’s 1D.

Using Embedded SQL, the only abstract plan is saved with the host
variable:

select price fromtitles
where title_id = :host_var_id

342 Adaptive Server Enterprise

CHAPTER 16

Creating and Using Abstract
Plans

This chapter provides an overview of the commands used to capture
abstract plans and to associate incoming SQL queries with saved plans.
Any user can issue session-level commands to capture and load plans
during asession, and a System Administrator can enable server-wide
abstract plan capture and association. This chapter also describes how to
specify abstract plans using SQL.

Topic Page
Using set commands to capture and associate plans 343
set plan exists check option 348
Using other set options with abstract plans 348
Server-wide abstract plan capture and association Modes 350
Creating plans using SQL 350

Using set commands to capture and associate plans

At the session level, any user can enable and disable capture and use of
abstract planswith the set plan dump and set plan load commands. The set
plan replace command determines whether existing plans are overwritten
by changed plans.

Enabling and disabling abstract plan modes takes effect at the end of the
batch in which the command isincluded (similar to showplan). Therefore,
change the mode in a separate batch before you run your queries:

set plan dunp on
go

/*queries to run*/
go

Any set plan commands used in a stored procedure do not affect the
procedure in which they are included, but remain in effect after the
procedure compl etes.

Performance & Tuning: Optimizer and Abstract Plans 343

Using set commands to capture and associate plans

Enabling plan capture mode with set plan dump

The set plan dump command activates and deactivates the capture of
abstract plans. You can save the plans to the default group, ap_stdout, by
using set plan dump with no group name;

set plan dunp on

To start capturing plansin aspecific abstract plan group, specify the group
name. This example sets the group dev_plans as the capture group:

set plan dunp dev_plans on

The group that you specify must exist before you issue the set command.
The system procedure sp_add_gpgroup creates abstract plan groups; only
the System Administrator or Database Owner can create an abstract plan
group. Once an abstract plan group exists, any user can dump plansto the
group. See “Creating agroup” on page 356 for information on creating a
plan group.

To deactivate the capturing of plans, use:
set plan dunp off

You do not need to specify a group name to end capture mode. Only one
abstract plan group can be active for saving or matching abstract plans at
any onetime. If you are currently saving plans to a group, you must turn
off the plan dump mode, and reenable it for the new group, as shown here:

set plan dunp on /*save to the default group*/
go

/*sonme queries to be captured */

go

set plan dunp off

go

set plan dunp dev_plans on

go

/*addi tional queries*/

go

The use of the use database command while set plan dump isin effect
disables plan dump mode.

Associating queries with stored plans

The set plan load command activates and deactivates the association of
queries with stored abstract plans.

344 Adaptive Server Enterprise

CHAPTER 16 Creating and Using Abstract Plans

To start the association mode using the default group, ap_stdin, use the
command:

set plan | oad on

To enable association mode using another abstract plan group, specify the
group name:

set plan load test_plans on

Only one abstract plan group can be active for plan association at onetime.
If plan association is active for a group, you must deactivate the current
group and start association for the new group, as shown here:

set plan | oad test_plans on

go
/*sonme queries*/

go

set plan | oad off

go

set plan | oad dev_plans on
go

The use of the use database command while set plan load isin effect
disables plan load mode.

Using replace mode during plan capture

While plan capture mode s active, you can choose whether to have plans
for the same query replace existing plans by enabling or disabling set plan
replace. This command activates plan replacement mode:

set plan replace on

You do not specify agroup namewith set plan replace; it affectsthe current
active capture group.

To disable plan replacement:
set plan replace off

The use of the use database command while set plan replace isin effect
disables plan replace mode.

Performance & Tuning: Optimizer and Abstract Plans 345

Using set commands to capture and associate plans

When to use replace mode

When you are capturing plans, and a query has the same query text as an
already-saved plan, the existing plan is not replaced unless replace mode
isenabled. If you have captured abstract plansfor specific queries, and you
are making physical changesto the database that affect optimizer choices,
you need to replace existing plans for these changes to be saved.

Some actions that might require plan replacement are:

* Adding or dropping indexes, or changing the keys or key ordering in
indexes

* Changing the partitioning on atable
* Adding or removing buffer pools
» Changing configuration parameters that affect query plans

For plans to be replaced, plan load mode should not be enabled in most
cases. When plan association is active, any plan specifications are used as
inputs to the optimizer. For example, if afull query plan includes the
prefetch property and an 1/O size of 2K, and you have created a 16K pool
and want to replace the prefetch specification in the plan, do not enable
plan load mode.

You may want to check query plans and replace some abstract plans as
data distribution changesin tables, or after rebuilds on indexes, updating
statistics, or changing the locking scheme.

Using dump, load, and replace modes simultaneously

You can have both plan dump and plan load mode active simultaneously,
with or without replace mode active.

Using dump and load to the same group

346

If you have enabled dump and load to the same group, without replace
mode enabled:

e If avalid plan exists for the query, it isloaded and used to optimize
the query.

e If aplan existsthat is not valid (say, because an index has been
dropped) a new plan is generated and used to optimize the query, but
is not saved.

Adaptive Server Enterprise

CHAPTER 16 Creating and Using Abstract Plans

If the plan isapartia plan, afull planis generated, but the existing
partial plan is not replaced

If aplan does not exist for the query, aplan is generated and saved.

With replace mode also enabled:

If avalid plan exists for the query, it isloaded and used to optimize
the query.

If the plan isnot valid, a new plan is generated and used to optimize
the query, and the old plan is replaced.

If theplanisapartial plan, acomplete planisgenerated and used, and
the existing partial plan is replaced. The specifications in the partial
plan are used as input to the optimizer.

If aplan does not exist for the query, aplan is generated and saved.

Using dump and load to different groups

If you have dump enabled to one group, and load enabled from another
group, without replace mode enabled:

If avalid plan exists for the query in the load group, it is loaded and
used. The planis saved in the dump group, unless aplan for the query
already existsin the dump group.

If the plan in theload group is not valid, anew plan is generated. The
new plan is saved in the dump group, unless a plan for the query
already existsin the dump group.

If the plan in the load group isa partial plan, afull planis generated
and saved in the dump group, unless a plan already exists. The
specificationsin the partial plan are used as input to the optimizer.

If thereisno plan for the query in theload group, the plan isgenerated
and saved in the dump group, unless aplan for the query existsin the
dump group.

With replace mode active:

If avalid plan exists for the query in the load group, it is loaded and
used.

If the plan in the load group is not valid, anew plan is generated and
used to optimize the query. The new plan is saved in the dump group.

Performance & Tuning: Optimizer and Abstract Plans 347

set plan exists check option

e If theplanintheload group isapartia plan, afull plan is generated
and saved inthe dump group. The specificationsinthe partial plan are
used as input to the optimizer.

e |If aplan doesnot exist for the query in the load group, anew planis
generated. The new plan is saved in the dump group.

set plan exists check option

The exists check mode can be used during query plan association to speed
performance when users require abstract plans for fewer than 20 queries
from an abstract plan group. If asmall number of queries require plansto
improve their optimization, enabling exists check mode speeds execution
of all queriesthat do not have abstract plans, because they do not check for
plansin sysqueryplans.

When set plan load and set exists check are both enabled, the hash keysfor
up to 20 queriesin theload group are cached for the user. If theload group
contains more than 20 queries, exists check mode is disabled. Each
incoming query is hashed; if its hash key is not stored in the abstract plan
cache, then thereis no plan for the query and no search is made. This
speeds the compilation of all queries that do not have saved plans.

The syntax is:
set plan exists check {on | off}
You must enable load mode before you enable plan hash-key caching.

A System Administrator can configure server-wide plan hash-key caching
with the configuration parameter abstract plan cache. To enable server-
wide plan caching, use:

sp_configure "abstract plan cache", 1

Using other set options with abstract plans

348

You can combine other set tuning options with set plan dump and set plan
load.

Adaptive Server Enterprise

CHAPTER 16 Creating and Using Abstract Plans

Using showplan

Using noexec

Using forceplan

When showplan isturned on, and abstract plan association mode has been
enabled with set plan load, showplan prints the plan 1D of the matching
abstract plan at the beginning of the showplan output for the statement:

QUERY PLAN FOR STATEMENT 1 (at line 1).
Optimzed using an Abstract Plan (I D : 832005995).

If you run queries using the plan clause added to a SQL statement,
showplan displays:

Optim zed using the Abstract Plan in the PLAN cl ause.

You can use noexec mode to capture abstract plans without actually
executing the queries. If noexec modeisin effect, queries are optimized
and abstract plans are saved, but no query results are returned.

To use noexec mode while capturing abstract plans, execute any needed
procedures (such as sp_add_gpgroup) and other set options (such as set
plan dump) before enabling noexec mode. Thefollowing example showsa
typical set of steps:

sp_add_qgpgroup pubs_dev

go

set plan dunp pubs_dev on

go

set noexec on

go

sel ect type, sum(price) fromtitles group by type
go

If set forceplan on isin effect, and query association is also enabled for the
session, forceplan isignored if afull abstract plan is used to optimize the
query. If apartial plan does not completely specify the join order:

« First, thetablesin the abstract plan are ordered, as specified.
e Theremaining tables are ordered as specified in the from clause.

¢ Thetwo lists of tables are merged.

Performance & Tuning: Optimizer and Abstract Plans 349

Server-wide abstract plan capture and association Modes

Server-wide abstract plan capture and association

Modes

A System Administrator can enabl e server-wide plan capture, association,
and replacement modes with these configuration parameters:

* abstract plan dump — enables dumping to the default abstract plans
capture group, ap_stdout.

* abstract plan load — enables |oading from the default abstract plans
loading group, ap_stdin.

* abstract plan replace —when plan dump mode is also enabled, enables
plan replacement.

* abstract plan cache — enables caching of abstract plan hash IDs;
abstract plan load must also be enabled. See “set plan exists check
option” on page 348 for more information.

By default, these configuration parameters are set to 0, which means that
capture and association modes are off. To enable amode, set the
configuration valueto 1:

sp_configure "abstract plan dunp”, 1

Enabling any of the server-wide abstract plan modesis dynamic; you do
not have to reboot the server.

Server-wide capture and association allows the System Administrator to
capture al plansfor all users on a server. You cannot override he server-
wide modes at the session level.

Creating plans using SQL

350

You can directly specify the abstract plan for a query by:
e Using the create plan command

e Adding the plan clause to select, insert...select, update, delete and
return commands, and to if and while clauses

For information on writing plans, see Chapter 15, “ Abstract Query Plan
Guide”

Adaptive Server Enterprise

CHAPTER 16 Creating and Using Abstract Plans

Using create plan

The create plan command specifies the text of a query, and the abstract
plan to save for the query.

This example creates an abstract plan:

create plan
"sel ect avg(price) fromtitles"
"(plan
(i_scan type_price_ix titles)
()
)"
Theplanissavedinthe current active plan group. You can also specify the
group name:

create plan
"select avg(price) fromtitles"
"(plan
(i_scan type_price_ix titles)
()
)"
into dev_pl ans
If aplan already existsfor the specified query in the current plan group, or
the plan group that you specify, you must first enable replace mode in
order to overwrite the existing plan.

If you want to seethe plan ID that is used for aplan you create, create plan
can return the ID as avariable. You must declare the variable first. This
example returns the plan I1D:

declare @d int
create plan
"sel ect avg(price) fromtitles"
"(plan
(i_scan type_price_ix titles)
()
)"
into dev_pl ans
and set @d
select @d

When you use create plan, the query in the plan is not executed. This
means that:

e Thetext of the query isnot parsed, so the query is not checked for
valid SQL syntax.

Performance & Tuning: Optimizer and Abstract Plans 351

Creating plans using SQL

e Theplansare not checked for valid abstract plan syntax.

e The plans are not checked to determine whether they are compatible
with the SQL text.

To guard against errors and problems, you should immediately executethe
specified query with showplan enabled.

Using the plan Clause

You can use the plan clause with the following SQL statements to specify
the plan to use to execute the query:

* select

o insert...select

e delete
* update
o if

e while

* return

This exampl e specifies the plan to use to execute the query:

sel ect avg(price) fromtitles
pl an
" (plan
(i_scan type_price_ix titles)
()
X
When you specify an abstract plan for aquery, the query is executed using
the specified plan. If you have showplan enabled, this message is printed:

Optim zed using the Abstract Plan in the PLAN cl ause.

When you use the plan clause with aquery, any errorsin the SQL text, the
plan syntax, and any mismatches between the plan and the SQL text are
reported aserrors. For example, this plan omitsthe empty parenthesesthat
specify the step of returning the aggregate:

/* step missing! */

sel ect avg(price) fromtitles

pl an
" (plan

352 Adaptive Server Enterprise

CHAPTER 16 Creating and Using Abstract Plans

(i_scan type_price titles)
)II
It returns the following message:

Msg 1005, Level 16, State 1:

Server ‘snj’, Line 2:

Abstract Plan (AP) : The nunmber of operands of the PLAN operator
inthe AP differs fromthe nunber of steps needed to conpute the
query. The extra itens will be ignored. Check the AP syntax and
its correspondence to the query.

Plans specified with the plan clause are saved in sysqueryplans only if plan
captureis enabled. If aplan for the query already existsin the current
capture group, you must enable replace mode in order to replace an
existing plan.

Performance & Tuning: Optimizer and Abstract Plans 353

Creating plans using SQL

354 Adaptive Server Enterprise

charTER 17 Managing Abstract Plans with
System Procedures

This chapter provides an introduction to the basi ¢ functionality and use of
the system procedures for working with abstract plans. For detailed
information on each procedure, see the Adaptive Server Reference

Manual.
Topic Page
System procedures for managing abstract plans 355
Managing an abstract plan group 356
Finding abstract plans 360
Managing individual abstract plans 361
Managing all plansin agroup 364
Importing and exporting groups of plans 368

System procedures for managing abstract plans

The system procedures for managing abstract plans work on individual
plans or on abstract plan groups.

Managing an abstract plan group
* sp_add_gpgroup
* sp_drop_gpgroup
* sp_help_qgpgroup

* sp_rename_gpgroup
Finding abstract plans

* sp_find_gplan

Managing individual abstract plans
* sp_help_gplan

Performance & Tuning: Optimizer and Abstract Plans

355

Managing an abstract plan group

* sp_copy_gplan
* sp_drop_gplan

* sp_cmp_gplans
* sp_set _gplan
e Managing al plansin agroup
* sp_copy_all_gplans
* sp_cmp_all_gplans
e sp_drop_all_gplans
e Importing and exporting groups of plans
* sp_export_gpgroup

® sp_import_qpgroup

Managing an abstract plan group

Creating a group

356

You can use system procedures to create, drop, rename, and provide
information about an abstract plan group.

sp_add_gpgroup creates and names an abstract plan group. Unlessyou are
using the default capture group, ap_stdout, you must create a plan group
before you can begin capturing plans. For example, to start saving plansin
agroup called dev_plans, you must create the group, thenissuethe set plan
dump command, specifying the group name:

sp_add_gpgroup dev_pl ans
set plan dunp dev_pl ans on
/*SQL queries to capture*/

Only a System Administrator or Database Owner can add abstract plan
groups. Once agroup is created, any user can dump or load plansfrom the

group.

Adaptive Server Enterprise

CHAPTER 17 Managing Abstract Plans with System Procedures

Dropping a group
sp_drop_gpgroup drops an abstract plan group.
The following restrictions apply to sp_drop_gpgroup:

e Only aSystem Administrator or Database Owner can drop abstract
plan groups.

e You cannot drop agroup that contains plans. To removeall plansfrom
agroup, use sp_drop_all_gplans, specifying the group name.

* You cannot drop the default abstract plan groups ap_stdin and
ap_stdout.

This command drops the dev_plans plan group:

sp_drop_qpgroup dev_pl ans

Getting information about a group

sp_help_gpgroup printsinformation about an abstract plan group, or about
all abstract plan groups in a database.

When you use sp_help_gpgroup without agroup name, it prints the names
of al abstract plan groups, the group I Ds, and the number of plansin each

group:

sp_hel p_gpgroup
Query plan groups in database ‘ pubtune’

G oup ab Pl ans

ap_stdin 1 0
ap_st dout 2 2
p_prod 4 0
priv_test 8 1
pt est 3 51
pt est 2 7 189

When you use sp_help_gpgroup with a group name, the report provides
statistics about plans in the specified group. This example reports on the
group ptest2:

sp_hel p_qpgroup ptest2
Query plans group 'ptest2’, @D 7

Total Rows Total QueryPl ans

Performance & Tuning: Optimizer and Abstract Plans 357

Managing an abstract plan group

358

452 189
sysquerypl ans rows consunption, nunber of query
pl ans per row count

Rows Pl ans

5 2

3 68

2 119
Query plans that use the npbst sysquerypl ans rows
Rows Pl an

5 1932533918
5 1964534032
Hashkeys

123
There is no hash key collision in this group.

When reporting on an individual group, sp_help_gpgroup reports;

e Thetotal number of abstract plans, and the total number of rowsinthe
sysqueryplans table.

e The number of plansthat have multiple rows in sysqueryplans. They
are listed in descending order, starting with the plans with the largest
number of rows.

e Information about the number of hash keys and hash-key collisions,
Abstract plans are associated with queries by a hashing algorithm
over the entire query.

When a System Administrator or the Database Owner executes
sp_help_gpgroup, the procedure reports on all of the plansin the database
or in the specified group. When any other user executes sp_help_gpgroup,
it reports only on plans that he or she owns.

sp_help_gpgroup provides several report modes. The report modes are;

Mode Information returned

full The number of rows and number of plansin the group, the number of
plansthat use two or more rows, the number of rowsand plan IDsfor
the longest plans, and number of hash keys, and has- key collision
information. Thisis the default report mode.

stats All of the information from the full report, except hash-key
information.

Adaptive Server Enterprise

CHAPTER 17 Managing Abstract Plans with System Procedures

Mode

Information returned

hash

The number of rows and number of abstract plans in the group, the
number of hash keys, and hash-key collision information.

list

The number of rows and number of abstract plans in the group, and
thefollowing information for each query/plan pair: hashkey, plan|D,
first few characters of the query, and the first few characters of the
plan.

queries

The number of rows and number of abstract plans in the group, and
the following information for each query: hash key, plan ID, first few
characters of the query.

plans

The number of rows and number of abstract plans in the group, and
the following information for each plan: hash key, plan 1D, first few
characters of the plan.

counts

The number of rows and number of abstract plans in the group, and
the following information for each plan: number of rows, number of
characters, hash key, plan ID, first few characters of the query.

This example shows the output for the counts mode:

sp_hel p_qpgroup ptestl, counts
Query plans group 'ptestl’, G D 3

Total Rows Total QueryPl ans

Query plans in this group

Rows Chars hashkey

623 1801454852 876530156 select title fromtitles ...
576 476063777 700529529 sel ect au_l nane, au_fnane. ..
513 444226348 652529358 sel ect aul.au_l nanme, aul....
470 792078608 716529586 sel ect au_l nane, au_fnane. ..
430 789259291 684529472 sel ect aul.au_l nanme, aul....

1929666826 668529415 sel ect au_|l name, au_fnane. ..

421 169283426 860530099 select title fromtitles ...
382 571605257 524528902 sel ect pub_nane from publ. ..
355 845230887 764529757 del ete sal esdetail where ...
347 846937663 796529871 del ete sal esdetail where ...
379 1400470361 732529643 update titles set price =. ..

N WWWWowowowwww
I
)
(63}

Performance & Tuning: Optimizer and Abstract Plans 359

Finding abstract plans

Renaming a group

A System Administrator or Database Owner can rename an abstract plan
group with sp_rename_gpgroup. This example changes the name of the
group from dev_plans to prod_plans:

sp_renane_gpgroup dev_pl ans, prod_pl ans

The new group name cannot be the name of an existing group.

Finding abstract plans

sp_find_gplan searches both the query text and the plan text to find plans
that match a given pattern.

This example finds all plans where the query includes the string “from
titles”:
sp_find _gplan "% romtitl es®%
This example searches for all abstract plans that perform atable scan:
sp_find_qgplan "% _scan%

When a System Administrator or Database Owner executessp_find_gplan,
the procedure examines and reports on plans owned by all users. When
other users execute the procedure, it searches and reports on only plans
that they own.

If you want to search just one abstract plan group, specify the group name
with sp_find_gplan. This example searches only the test_plans group,
finding all plansthat use a particular index:

sp_find_gplan "% _scan title_id_ix%, test_plans

For each matching plan, sp_find_gplan printsthe group ID, plan ID, query
text, and abstract plan text.

360 Adaptive Server Enterprise

CHAPTER 17 Managing Abstract Plans with System Procedures

Managing individual abstract plans

You can use system procedures to print the query and text of individual
plans, to copy, drop, or compare individual plans, or to change the plan
associated with a particular query.

Viewing a plan
sp_help_gplan reportson individual abstract plans. It provides three types
of reports that you can specify: brief, full, and list. The brief report prints
only thefirst 78 characters of the query and plan; use full to see the entire
query and plan, or list to display only the first 20 characters of the query
and plan.

This example prints the default brief report:

sp_hel p_qgpl an 588529130
gid hashkey id

8 1460604254 588529130

sel ect min(price) fromtitles

pl an
(plan
(i_scan type_price titles)
()
)
(prop titles

(parallel

A System Administrator or Database Owner can use sp_help_gplan to
report on any plan inthe database. Other users can only view the plansthat
they own.

sp_help_gpgroup reportson al plansin agroup. For moreinformation see
“Getting information about a group” on page 357.

Performance & Tuning: Optimizer and Abstract Plans 361

Managing individual abstract plans

Copying a plan to another group

sp_copy_gplan copies an abstract plan from one group to another existing
group. This example copies the plan with plan ID 316528161 from its
current group to the prod_plans group:

sp_copy_qpl an 316528161, prod_pl ans

sp_copy_gplan checks to make sure that the query does not already exist
in the destination group. If apossible conflict exists, it runs
sp_cmp_gplans to check plans in the destination group. In addition to the
message printed by sp_cmp_gplans, sp_copy_gplan prints messages when:

e Thequery and plan you are trying to copy aready existsin the
destination group

e Another plan in the group has the same user 1D and hash key

e Another plan in the group has the same hash key, but the queries are
different

If thereisahash-key coallision, the planiscopied. If the plan already exists
inthedestination group or if it would give an association key collision, the
plan is not copied. The messages printed by sp_copy_gplan contain the
plan ID of the plan in the destination group, so you can use sp_help_gplan
to check the query and plan.

A System Administrator or the Database Owner can copy any abstract
plan. Other users can copy only plansthat they own. The original plan and
group are not affected by sp_copy_gplan. The copied plan isassigned a
new plan ID, the ID of the destination group, and the user 1D of the user
who ran the query that generated the plan.

Dropping an individual abstract plan

362

sp_drop_gplan dropsindividual abstract plans. This example drops the
specified plan:

sp_drop_qgpl an 588529130

A System Administrator or Database Owner can drop any abstract planin
the database. Other users can drop only plans that they own.

To find abstract plan IDs, use sp_find_gplan to search for plansusing a
pattern from the query or plan, or sp_help_gpgroup to list the plansin a
group.

Adaptive Server Enterprise

CHAPTER 17 Managing Abstract Plans with System Procedures

Comparing two abstract plans

Given two plan IDs, sp_cmp_gplans compares two abstract plans and the
associated queries. For example:

sp_cnp_gpl ans 588529130, 1932533918

sp_cmp_gplans prints one message reporting the comparison of the query,
and a second message about the plan, asfollows:

e For thetwo queries, one of:
e Thequeries are the same.
e Thequeries are different.
e Thequeries are different but have the same hash key.
e Fortheplans
e Thequery plans are the same.
e Thequery plans are different.
This example compares two plans where the queries and plans both match:

sp_cnp_gpl ans 411252620, 1383780087
The queries are the sane.
The query plans are the sane.

This example compares two plans where the queries match, but the plans
are different:

sp_cnp_gpl ans 2091258605, 647777465
The queries are the sane.
The query plans are different.

sp_cmp_gplans returns a status value showing the results of the
comparison. The status values are shown in Table 17-1

Table 17-1: Return status values for sp_cmp_gplans

Return value Meaning

0 The query text and abstract plans are the same.

+1 The queries and hash keys are different.

+2 The queries are different, but the hash keys are the same.
+10 The abstract plans are different.

100 One or both of the plan IDs does not exist.

A System Administrator or Database Owner can compare any two abstract
plans in the database. Other users can compare only plans that they own.

Performance & Tuning: Optimizer and Abstract Plans 363

Managing all plans in a group

Changing an existing plan

Managing all pla

Copying all plans in

364

sp_set_gplan changes the abstract plan for an existing plan ID without
changing the ID or the query text. It can be used only when the plan text
is 255 or fewer characters.

sp_set _gpl an 588529130, "(i_scan title_ix titles)"

A System Administrator or Database Owner can change the abstract plan
for any saved query. Other users can modify only plans that they own.

When you execute sp_set_gplan, the abstract plan is not checked against
the query text to determine whether the new plan isvalid for the query, or
whether the tables and indexes exist. To test the validity of the plan,
execute the associated query.

You can also use create plan and the plan clause to specify the abstract plan
for aquery. See“ Creating plansusing SQL” on page 350.

ns in agroup

These system procedures help manage groups of plans:
* sp_copy_all_gplans

* sp_cmp_all_gplans

* sp_drop_all_gplans

agroup

sp_copy_all_gplans copies all of the plansin one abstract plan group to
another group. This example copies all of the plans from the test_plans
group to the helpful_plans group:

sp_copy_al | _gpl ans test_pl ans, hel pful _pl ans

Thehelpful_plans group must exist beforeyou executesp_copy_all_gplans.
It can contain other plans.

sp_copy_all_gplans copies each plan in the group by executing
sp_copy_gplan, so copying a plan may fail for the same reasons that
sp_copy_gplan might fail. See “Comparing two abstract plans’ on page
363.

Adaptive Server Enterprise

CHAPTER 17 Managing Abstract Plans with System Procedures

Each planiscopied asaseparate transaction, and failureto copy any single
plan does not cause sp_copy_all_gplans to fail. If sp_copy_all_gplans fails
for any reason, and has to be restarted, you see a set of messages for the
plansthat have already been successfully copied, telling you that they exist
in the destination group.

A new plan ID is assigned to each copied plan. The copied plans have the
original user’sD. To copy abstract plans and assign new user IDs, you
must use sp_export_gpgroup and sp_import_gpgroup. See “Importing and
exporting groups of plans’ on page 368.

A System Administrator or Database Owner can copy al plansin the
database. Other users can copy only plans that they own.

Comparing all plans in a group
sp_cmp_all_gplans compares all abstract plansin two groups and reports:
e The number of plansthat are the same in both groups

e Thenumber of plansthat have the same association key, but different
abstract plans

e Thenumber of plans that are present in one group, but not the other
This example compares the plansin ap_stdout and ap_stdin:

sp_cnp_al |l _gpl ans ap_stdout, ap_stdin
If the two query plans groups are |large, this mght take sone
time.
Query plans that are the sane
count

338
Di fferent query plans that have the same association key

25

Query plans present only in group 'ap_stdin’

Performance & Tuning: Optimizer and Abstract Plans 365

Managing all plans in a group

366

With the additional specification of a report-mode parameter,
sp_cmp_all_gplans provides detailed information, including the IDs,
queries, and abstract plans of the queriesin the groups. The mode
parameter |ets you get the detailed information for al plans, or just those
with specific types of differences.Table 17-2 shows the report modes and
what type of information is reported for each mode.

Table 17-2: Report modes for sp_cmp_all_gplans

Mode

Reported information

counts

The counts of: plansthat are the same, plans that have the same
association key, but different groups, and plansthat exist in one
group, but not the other. Thisis the default report mode.

brief

Theinformation provided by counts, plusthe IDs of the abstract
plans in each group where the plans are different, but the
association key isthe same, and the IDs of plansthat arein one
group, but not in the other.

same

All counts, plusthe IDs, queries, and plansfor all abstract plans
where the queries and plans match.

diff

All counts, plusthe IDs, queries, and plansfor all abstract plans
where the queries and plans are different.

first

All counts, plusthe IDs, queries, and plansfor all abstract plans
that arein the first plan group, but not in the second plan group.

second

All counts, plusthe IDs, queries, and plansfor all abstract plans
that are in the second plan group, but not in the first plan group.

offending

All counts, plusthe IDs, queries, and plansfor all abstract plans
that have different association keys or that do not exist in both
groups. Thisisthe combination of the diff, first, and second
modes.

full

All counts, plusthelDs, queries, and plansfor all abstract plans.
Thisis the combination of same and offending modes.

This example shows the brief report mode:

sp_cnp_al |l _gpl ans ptestl, ptest2, brief
If the two query plans groups are large, this might take

sone tine.

Query plans that are the sane

count

39
gquery plans that have the sane association key

D fferent

Adaptive Server Enterprise

CHAPTER 17 Managing Abstract Plans with System Procedures

ptestl ptest2

764529757 1580532664
780529814 1596532721
796529871 1612532778
908530270 1724533177
Query plans present only in group 'ptestl’

524528902
1292531638
1308531695

Query plans present only in group ’'ptest?2’

count
1
id
2108534545

Dropping all abstract plans in a group

sp_drop_all_gplans dropsall abstract plansin agroup. Thisexampledrops
all abstract plansin the dev_plans group:

sp_drop_all _qgpl ans dev_pl ans

Performance & Tuning: Optimizer and Abstract Plans 367

Importing and exporting groups of plans

When a System Administrator or the Database Owner executes
sp_drop_all_gplans, all plans belonging to all users are dropped from the
specified group. When another user executesthis procedure, it affectsonly
the plans owned by that users.

Importing and exporting groups of plans

sp_export_gpgroup and sp_import_gpgroup copy groups of plans between
sysqueryplans and a user table. This allows a System Administrator or
Database Owner to:

» Copy abstract plans from one database to another on the same server

* Create atablethat can be copied out of the current server with bep,
and copied into another server

» Assign different user IDsto existing plans in the same database

Exporting plans to a user table

368

sp_export_gpgroup copiesall plansfor aspecific user from an abstract plan
group to a user table. This example copies plans owned by the Database
Owner (dbo) from the fast_plans group, creating atable called transfer:

sp_export_qgpgroup dbo, fast_plans, transfer

sp_export_gpgroup USeS select...into to create atable with the same
columns and datatypes as sysqueryplans. If you do not have the

select into/bulkcopy/plisort option enabled in the database, you can specify
the name of another database. This command creates the export table in
tempdb:

sp_export_qgpgroup mary, ap_stdout, "tenpdb..nplans”

The table can be copied out using bcp, and copied into atable on another
server. The plans can also be imported to sysqueryplans in another
database on the same server, or the plans can be imported into
sysqueryplans in the same database, with a different group name or user
ID.

Adaptive Server Enterprise

CHAPTER 17 Managing Abstract Plans with System Procedures

Importing plans from a user table

sp_import_gpgroup copies plans from tables created by sp_export_gpgroup
into agroup insysqueryplans. Thisexample copiesthe plansfromthetable
tempdb..mplans into ap_stdin, assigning the user ID for the Database
Owner:

sp_i mport _gpgroup "tenpdb. . nplans”, dbo, ap_stdin

You cannot copy plansinto a group that already contains plans for the
specified user.

Performance & Tuning: Optimizer and Abstract Plans 369

Importing and exporting groups of plans

370 Adaptive Server Enterprise

cuarpTErR 18 Abstract Plan Language
Reference

This chapter describes the operators and other language elementsin the

abstract plan language.

Topic Page
Keywords 371
Operands 371
Schema for examples 372

Keywords

The following words are keywords in the abstract query plan language.
They are not reserved words, and do not conflict with the names of tables
or indexes used in abstract plans. For example, atable or index may be

named hints.

Operands

The following operands are used in the abstract plan syntax statements:

Performance & Tuning: Optimizer and Abstract Plans

371

Schema for examples

Table 18-1: Identifiers used

Identifier Describes

table_name The name of abasetable, that is, a user or system table

correlation_name The correlation name specified for atable in aquery

derived_table A table that results from the scan of astored table

stored_table A base table or aworktable

worktable_name The name of aworktable

view_name The name of aview

index_name The name of an index

subquery _id Aninteger identifying the order of the subqueriesinthe
query

table_name and view_name can be specified using the notation
database.owner.object_name.

Abstract plan derived tables

An abstract plan derived tableis aresult of accessto astored table during
guery execution. It can be:

» Theresult set generated by the query

* Anintermediate result during query execution; that is, theresult of the
join of thefirst two tablesin thejoin order, whichisthen joined with
athird table

Abstract plan derived tables result from one of the scan operators that
specify the access method: scan, i_scan, or t_scan, for example, (i_scan
title_id_ix titles).

Note Abstract plan derived tables should not be confused with SQL
derived tables. For information on SQL derived tables, see the Transact-
0L User’'s Guide.

Schema for examples

372

To simplify the sample abstract plan examples, the following tables are
used in this section:

Adaptive Server Enterprise

CHAPTER 18 Abstract Plan Language Reference

g_join

Description

Syntax

Parameters
Return value

Examples

create table t1 (cl1l1l int, cl2 int)
create table t2 (c21 int, c22 int)
create table t3 (c31 int, ¢c32 int)

The following indexes are used:

create index i_cl1l1l on t1(cll)
create index i_cl12 on t1(cl2)
create index i_cll cl12 on t1(cll, cl2)

i i
i i
i i
create index i_c21 on t2(c2l)
i i
i i
i i

create index i_c22 on t2(c22)
create index i_c31 on t3(c31)
create index i_c32 on t3(c32)

Specifies the join of two or more abstract plan derived tables without
specifying the join type (nested-loop or sort-merge).

(g_join derived_tablel derived_table2

(g_join (derived_tablel)
(derived_table2)

(”ollerived_tabIeN)
)
derived tablel...derived tableN
are the abstract plan derived tables to be united.

An abstract plan derived table that isthejoin of the specified abstract plan
derived tables.

Example 1

sel ect *
fromtl, t2
where ¢c21 = 0
and c22 = c12

(g_join
(i_scani_c21t2)
(i_scan i_cl1l2 t1)

Performance & Tuning: Optimizer and Abstract Plans 373

g_join

Tablet2 isthe outer table, and t1 the inner tablein the join order.
Example 2

sel ect *
fromtl, t2, t3
where ¢c21 = 0

and c22 = cl12
and cl11 = c31
(g_join

(i_scani_c21t2)
(i_scani_cl2 t1)
(i_scani_c311t3)
)

Tablet2 isjoined with t1, and the abstract plan derived tableisjoined with
t3.

Usage » Theg_join operator isageneric logical operator that describes all
binary joins (inner join, outer join, or existence join).

» Theg_join operator is never used in generated plans; nl_g_join and
m_g_join operators indicate the join type used.

* The optimizer chooses between a nested-loop join and a sort-merge
joinwhentheg_join operator isused. To specify asort-mergejoin, use
m_g_join. To specify anested-loop join, use nl_g_join.

* Thesyntax providesashorthand method of described ajoininvolving
multiple tables. This syntax:
(g_join
(scan t1)

(scan t2)
(scan t3)

klgcan tN-1)
(scan tN)
)

is shorthand for:
(gjoin
(g_join
~ (gjoin
(g_join
(scan t1)

374 Adaptive Server Enterprise

CHAPTER 18 Abstract Plan Language Reference

See also

(scan t2)

)

(scan t3)

)

(scan tN-1)

)
(scan tN)

)

e If g_join isused to specify the join order for some, but not all, of the

tablesin aquery, the optimizer uses the join order specified, but may
insert other tables between the g_join operands. For example, for this
query:

sel ect *

fromtl, t2, t3
where ...

the following partial abstract plan describes only the join order of t1
and t2:
(g_join
(scan t2)
(scan t1)

)

The optimizer can choose any of the threejoin orders: t3-t2-t1, t2-t3-
tl or t2-t1-t3.

¢ Thetables arejoined in the order specified in the g_join clause.

e |f setforceplan on isin effect, and query association isalso enabled for

the session, forceplan isignored if afull abstract plan is used to
optimize the query. If apartial plan does not completely specify the
join order:

e First, thetablesin the abstract plan are ordered as specified.
« Theremaining tables are ordered as specified in the from clause.
e Thetwo lists of tables are merged.

m_g_join, nl_g_join

Performance & Tuning: Optimizer and Abstract Plans 375

hints

hints

Description

Syntax

Parameters

Return value

Examples

Usage

376

Introduces and groups itemsin a partial abstract plan.
(‘hints (derived_table)

)
derived table

is one or more expressions that generate an abstract plan derived table.
An abstract plan derived table.

sel ect *

fromtl, t2

where cl12 = c21
and c11 > 0
and c22 < 1000

(hints
(g_join
(t_scan t2)
(i_scan () t1)

)

Specifiesapartial plan, including atable scan on t2, the use of someindex
ontl, and the join order t1-t2. The index choice for t1 and the type of join
(nested-loop or sort-merge) is left to the optimizer.

e The specified hints are used during query optimization.

e Thehints operator appears as the root of a partial abstract plan that
includes multiple steps. If apartial plan contains only one expression,
hints is optional.

e Thehints operator does not appear in plans generated by the
optimizer; these are always full plans.

» Hints can be associated with queries:
e By changing the plan for an existing query with sp_set_gplan.

e By specifying the plan for a query with the plan clause. To save
the query and hints, set plan dump must be enabled.

e By using the create plan command.

Adaptive Server Enterprise

CHAPTER 18 Abstract Plan Language Reference

|_scan
Description

Syntax

Parameters

Return value

Examples

e When hints are specified in the plan clause for a SQL statement, the
plans are checked to be sure they are valid. When hints are specified
using sp_set_gplan, plans are not checked before being saved.

Specifies an index scan of abase table.
(i_scan index_name base_table)
(i_scan () base_table)

index_name
is the name or index ID of the index to use for an index scan of the
specified stored table. Use of empty parentheses specify that an index
scan (rather than table scan) isto be performed, but leaves the choice of
index to the optimizer.

base table
is the name of the base table to be scanned.

An abstract plan derived table produced by a scan of the base table.
Example 1

select * fromtl where c11 =0

(i_scani_cl1t1)

Specifies the use of index i_c11 for a scan of t1.

Example 2
sel ect *
fromtl, t2
where c¢l11 = 0
and c22 = 1000
and c12 = c21
(g join
(scan t2)
(i_scan () t1)
)

Performance & Tuning: Optimizer and Abstract Plans 377

Usage

See also

In
Description

Syntax

378

Specifies a partial plan, indicating the join order, but allowing the
optimizer to choose the access method for t2, and the index for t1.

select * fromtl where c12 = 0

(i_scan 2 t1)

Identifies the index on t1 by index ID, rather than by name.

Theindex is used to scan the table, or, if no index is specified, an
index is used rather than atable scan.

Use of empty parentheses after thei_scan operator allows the
optimizer to choose the index or to perform atable scan if no index
exists on the table.

Whenthei_scan operator isspecified, acovering index scanisaways
performed when all of the required columns areincluded in theindex.
No abstract plan specification is needed to describe a covering index
scan.

Use of thei_scan operator suppresses the choice of the reformatting
strategy and the OR strategy, even if the specified index does not
exist. The optimizer chooses another useful index and an advisory
messageis printed. If no index isspecified fori_scan, or if noindexes
exist, atable scan is performed, and an advisory message is printed.

Although specifying an index using theindex 1D isvalid in abstract
query plans, using an index ID is not recommended. If indexes are
dropped and re-created in a different order, plans become invalid or
perform suboptimally.

scan, t_scan

Identifies the location of atable that is specified in a subquery or view.

(in ([subqg subquery_id | view view_name])

Adaptive Server Enterprise

CHAPTER 18 Abstract Plan Language Reference

Parameters subgq subquery_id
isan integer identifying a subquery. In abstract plans, subquery
numbering isbased on the order of the leading open parenthesesfor the
subqueriesin a query.
view view_name
isthe name of aview. The specification of database and owner namein

the abstract plan must match the usage in the query in order for plan
association to be performed.

Examples Example 1
create view vl as

select * fromt1l

select * fromvl

(t_scan (table t1 (in (viewvl))))
Identifies the view in which table t1 is used.
Example 2

sel ect *

fromt2

where c21

in (select c12 fromt1l)

(g join
(t_scan t2)
(t_scan (table t1 (in (subg 1))))

)
Identifies the scan of tabletl in subquery 1.

Example 3

create view v9

as

sel ect *

fromtl

where c11 in (select c21 fromt?2)

create view v10
as

Performance & Tuning: Optimizer and Abstract Plans 379

380

g_join

t_scan t3)

i_scan i_c21 (table
i_scan i_cl11 (table
i_scan i_cl11 (table
i_scan i_cl11 (table

select * fromv9
where cl1l1l in (select cl1ll fromyv9)

select * fromv10, t3
where cl1 in

t2
tl
tl
tl

i__scan i_c21l (tablet2(
i_scani_cll (tablet1 (

i_scani_c21 (tablet2 (
i_scan i_c21 (table t2(in(subg 1)(viewv9)(subg 1)(view vl

ubg 1))))

(select cl11 fromv10 where cl12 = t3.c31)

in(subg 1) (viewv9) (viewvl0))))

in(viewv9) (viewvl10))))

in (viewv9) (viewvl0) (subg 1))))

in(viewv9) (subg 1) (viewvl10))))

in(subql) (viewv9) (subg1l) (viewvlO

in(viewv9) (subg1l) (viewvl0) (subg 1
1
0

~ N~

)))
)))
)))

(

)
)
in(subql) (viewv9) (viewvl0) (subg 1)
)

An example of multiple nesting of views and subqueries.

Identifies the occurrence of atablein view or subqueryof the SQL
query.

Thein list has the innermost items to the left, near the table’s name
(itself the deeply nested item), and the outermost items (the ones
occurring in the top level query) to theright. For example, the
qualification:

(table t2 (in (subg 1) (view v9) (subg 1) (view
v10) (subg 1)))

can beread in either direction:

Reading left to right, starting from the table: the basetablet2 as
scanned in thefirst subquery of view v9 , which occursin thefirst
subquery of view v10 , which occursin the first subquery of the
main query

Reading from right to l€eft, that is, starting from the main query:
inthe main query there’s afirst subquery, that scansthe view v10
, that contains afirst subquery that scans the view v9 , that
contains a first subquery that scans the base table t2

Adaptive Server Enterprise

CHAPTER 18 Abstract Plan Language Reference

See also

Iru
Description

Syntax

Parameters

Examples

Usage

See also

m_g_join
Description

Syntax

Parameters

nested, subq, table, view

Specifies LRU cache strategy for the scan of a stored table.
(prop table_name
(Iru)
table name
is the table to which the property isto be applied.

select * fromt1l

(prop tl
(lru)
)

Specifiesthe use of LRU cache strategy for the scan of t1.

* LRU strategy is used in the resulting query plan.

e Partia plans can specify scan properties without specifying other
portions of the query plan.

e Full query plans alwaysinclude all scan properties.

mru, prop

Specifies amerge join of two abstract plan derived tables.

(m_g_join (
(derived_tablel)
(derived_table2)

)

derived tablel...derived tableN
are the abstract plan derived tables to be united. derived_tablel is
aways the outer table and derived table2 isthe inner table

Performance & Tuning: Optimizer and Abstract Plans 381

m_g_join

Return value An abstract plan derived tablethat isthe join of the specified abstract plan
derived tables.
Examples Example 1

select tl1l.cl11, t2.c21
fromtl, t2, t3
where t1l.cl11 =1t2.c21
and t1.cl11 = t3.c31

(nl_gjoin
(mg_join
(i_scan i_c31t3)
(i_scan i_c11 t1)
)
(t_scan t2)
)

Specifiesaright-merge join of tablestl and t3, followed by a nested-loop
join with table t2.

Example 2

select * fromtl, t2, t3
where t1.c11 =t2.¢21 and t1.c11 = t3.c31
and t2.c22 =7

(nl _g_join
(mg join
(i_scani_c21t2)
(i_scan i_cl1l1 t1)
)
(i_scani_c311t3)
)

Specifies afull-mergejoin of tablest2 (outer) and t1 (inner), followed in
the join order by a nested-loop join with t3.

Example 3

sel ect cl11, c22, c32
fromtl, t2, t3
where tl1l.cl1l1 = t2.c21
and t2.¢c22 = t3.¢c32

(mg_join

382 Adaptive Server Enterprise

CHAPTER 18 Abstract Plan Language Reference

Usage

See also

mru

Description

Syntax

Parameters

Examples

Usage

(nl _g join
(i _scan i_cl11 t1)
(i_scan i_c12 t2)

)

(i_scan i_c32_ix t3)

)
Specifies a nested-loop join of t1 and t2, followed by amergejoin with t3.
* Thetablesarejoined in the order specified in the m_g_join clause.

e The sort step and worktable required to process sort-merge join
queries are not represented in abstract plans.

e Ifthem_g_join operator is used to specify ajoin that cannot be
performed as a merge join, the specification is silently ignored.

g_join, nl_g_join

Specifies MRU cache strategy for the scan of a stored table.
(prop table_name
(‘mru)
table name
is the table to which the property isto be applied.

select * fromtl

(prop tl
(nmru)
)
Specifies the use of MRU cache strategy for the table.
« MRU strategy is specified in the resulting query plan

e Partia plans can specify scan properties without specifying other
portions of the query plan.

e Generated query plans always include all scan properties.

Performance & Tuning: Optimizer and Abstract Plans 383

nested

e |If sp_cachestrategy has been used to disable MRU replacement for a
table or index, and the query plan specifiesMRU, the specificationin
the abstract planis silently ignored.

See also Iru, prop

nested

Description Describes the nesting of subqueries on an abstract plan derived table.
Syntax (nested

(derived_table)
(subquery_specification)
)
Parameters derived table
is the abstract plan derived table over which to nest the specified
subquery.
subquery_specification
is the subquery to nest over derived table
Return value An abstract plan derived table.
Examples Example 1

select cl11 fromt1l
where c12 =
(select c21 fromt2 where c22 = t1.cll)

(nested
(t_scan tl)
(subg 1
(t_scan (table t2 (in (subg 1))))
)

A single nested subquery.
Example 2

select c11 fromtl
where c12 =
(select c21 fromt2 where c22
and cl2 =
(select ¢31 fromt3 where ¢32 = t1.cll)

t1.c11)

384 Adaptive Server Enterprise

CHAPTER 18 Abstract Plan Language Reference

(nested
(nested
(t_scan t1)
(subg 1
(t_scan (table t2 (in (subg 1))))
)
)
(subg 2
(t_scan (table t3 (in (subg 2))))
)

The two subqueries are both nested in the main query.
Example 3

select c11 fromt1l
where c12 =
(select c21 fromt2 where c22 =
(select c31 fromt3 where c32 = t1l.cll))

(nested
(t_scan tl)
(subg 1
(nested
(t_scan (table t2 (in (subg 1))))
(subg 2
(t_scan (table t3 (in (subg 2))))
)

A level 2 subquery nested into alevel 1 subquery nested in the main query.

Usage « Thesubquery is executed at the specified attachment point in the
query plan.

e Materialized and flattened subqueries do not appear under a nested
operator. See subq on page 394 for examples.

See also in, subq

Performance & Tuning: Optimizer and Abstract Plans 385

nl_g_join

nl_g_join
Description

Syntax

Parameters
Return value

Examples

Usage

386

Specifies a nested-loop join of two or more abstract plan derived tables.

(nl_g_join (derived_tablel)
(derived_table2)

(derived_tableN)
)
derived tablel...derived_tableN
are the abstract plan derived tables to be united.

An abstract plan derived table that isthejoin of the specified abstract plan
derived tables.

Example 1

sel ect *
fromtl, t2
where ¢c21 = 0
and c22 = cl12

(nl_g_join
(i_scan i_c21t2)
(i_scani_cl2 t1)

)
Tablet2 isthe outer table, and t1 the inner table in the join order.
Example 2

sel ect *
fromtl, t2, t3
where ¢c21 = 0

and c22 = cl2
and c11 = c31
(nl _gjoin

i_scan i_c21 t2)
i_scan i_cl12 t1l)
i_scan i_c31t3)

(
(
(
)

Tablet2 isjoined with t1, and the abstract plan derived tableisjoined with
t3.

e Thetablesarejoined in the order specified in thenl_g_join clause

Adaptive Server Enterprise

CHAPTER 18 Abstract Plan Language Reference

See also

parallel

Description

Syntax

Parameters

Examples

Usage

e Thenl_g_join operator is a generic logical operator that describes all
binary joins (inner join, outer join, or semijoin). The joins are
performed using the nested-loops query execution method.

g_join,m g join

Specifies the degree of parallelism for the scan of a stored table.

(prop table_name
(parallel degree)
)

table name
is the table to which the property isto be applied.

degree
is the degree of parallelism to use for the scan.

select * fromt1l

(prop t1l
(parallel 5)
)

Specifies that 5 worker processes should be used for the scan of the t1
table.

e Thescanis performed using the specified number of worker
processes, if available.

e Partia plans can specify scan properties without specifying other
portions of the query plan.

e |f asaved plan specifiesthe use of anumber of worker processes, but
session-level or server-level values are different when the query is
executed:

e |f theplan specifiesmoreworker processes than permitted by the
current settings, the current settings are used or the query is
executed using a serial plan.

e Iftheplan specifiesfewer worker processesthan permitted by the
current settings, the valuesin the plan are used.

Performance & Tuning: Optimizer and Abstract Plans 387

plan

See also

plan

Description

Syntax

Parameters

Return value

Examples

388

These changes to the query plan are performed transparently to the
user, SO No warning messages are issued.

prop

Provides a mechanism for grouping the query plan steps of multi-step
queries, such as queries requiring worktables, and queries computing
aggregate values.

(plan
query_stepl

d“uery_stepN

query_stepl...query stepN —
specify the abstract plan steps for the execution of each step in the
query.

An abstract plan derived table.

Example 1

sel ect max(cll) fromtl
group by cl12

(plan
(store Worktabl
(t_scan t1)

)
(t_scan (work_t Worktabl))

)

Returns a vector aggregate. The first operand of the plan operator creates
Worktabl and specifies atable scan of the base table. The second operand
scans the worktabl e to return the resullts.

Example 2

sel ect max(cll) fromt1l

(plan

Adaptive Server Enterprise

CHAPTER 18 Abstract Plan Language Reference

(t_scan tl)
()

)
Returns a scalar aggregate. The last abstract plan derived table is empty,
because scalar aggregates accumulate the result value in an internal
variable rather than aworktable.

Example 3

sel ect *
fromtl
where cl1ll = (select count(*) fromt2)

(plan
(i_scan i_c21 (table t2 (in_subg 1)))
(i_scani_cl1 t1)

)

Specifies the execution of a materialized subquery.
Example 4

create view v3
as
select distinct * fromt3

select * fromtl, v3
where cll1 = c31

(plan
(store Worktabl

(t_scan (table t3 (in_viewv3)))

)
(nl_gjoin
(t_scan tl)
(t_scan (work_t Worktabl))

)
Specifies the execution of a materialized view.

Usage e Tablesare accessed in the order specified, with the specified access
methods.

Performance & Tuning: Optimizer and Abstract Plans 389

prefetch

See also

prefetch

Description

Syntax

Parameters

Examples

Usage

390

e Theplan operator is required for multistep queries, including:

e Queriesthat generate worktables, such as queries that perform
sorts and those that compute vector aggregates

e Queriesthat compute scalar aggregates
e Queriesthat include materialized subqueries

e Anabstract plan for a query that requires multiple execution steps
must include operands for each step in query execution if it begins
with the plan keyword. Use the hints operator to introduce partial
plans.

hints

Specifiesthe I/O size to use for the scan of a stored table.
(prop table_name
(prefetch size)

table name
is the table to which the property is to be applied.

size
isavalid|/Osize: 2, 4, 8 or 16.

select * fromtl

(proptl
(prefetch 16)
)

16K 1/O size is used for the scan of t1.

e The specified I/O sizeis used in the resultant query plan if apool of
that size exists in the cache used by the table.

« Partia plans can specify scan properties without specifying other
portions of the query plan.

« If large 1/O specificationsin a saved plan do not match current pool
configuration or other options:

Adaptive Server Enterprise

CHAPTER 18 Abstract Plan Language Reference

See also

prop
Description

Syntax

Parameters

Examples

Usage

e Iftheplan specifies 16K 1/0O, and the 16K pool doesnot exist, the
next largest available 1/0 size is used.

e |fsessionor server-level optionshave madelarge |/O unavail able
for the query (set prefetch for the session, or sp_cachestrategy for
the table), 2K /O isused.

e |f you save plansthat specify only 2K 1/O for the scan properties, and
|ater createlarge |/O pools, enablereplace modeto savethe new plans
if you want these plansto use larger 1/0 sizes.

prop

Specifies propertiesto use for the scan of a stored table.

(prop table_name
(property_specification) ...

property_specification:

(prefetch size)
(Iru [mru)
(parallel degree)
table name
is the table to which the property isto be applied.

select * fromtl

(t_scan tl)

(proptil
(parallel 1)
(prefetch 16)

(Iru)
)

Shows the property values used by the scan of t1.
e The specified properties are used for the scan of the table

e Partia plans can specify scan properties without specifying other
portions of the query plan.

Performance & Tuning: Optimizer and Abstract Plans 391

scan

See also

scan

Description
Syntax

Parameters

Return value

Examples

Usage

392

e Generated plansinclude the parallel, prefetch, and cache strategy
properties used for each table in the query.

Iru, mru, parallel, prefetch

Specifies the scan of a stored table, without specifying the type of scan.

(' scan stored_table)

stored table
is the name of the stored table to be scanned. It can be a base table or
worktable.

An abstract plan derived table produced by the scan of the stored table.
Example 1

select * fromtl where c11 > 10

(scan t1)

Specifiesascan of t1, leaving the optimizer to choose whether to perform
atable scan or index scan.

Example 2
sel ect *
fromtl, t2
where cl11 = 0
and c22 = 1000
and cl1l2 = c21
(nl_g_join

(scan t2)
(i_scani_c22 t1)
)

Specifies a partial plan, indicating the join order, but allowing the
optimizer to choose the access method for t2.

e The optimizer chooses the access method for the stored table.

Adaptive Server Enterprise

CHAPTER 18 Abstract Plan Language Reference

e Thescan operator is used when the choice of the type of scan should
be left to the optimizer. The resulting access method can be one of the
following:

e A full table scan

e Anindex scan, with access to data pages

e A covering index scan, with no access to data pages
A RID scan, used for the OR strategy

e For an example of an abstract plan that specifies the reformatting
strategy, see store.

See also i_scan, store, t_scan

store

Description Stores the results of ascan in aworktable.
Syntax (store worktable_name

([scan | i_scan | t_scan] table_name)

Parameters worktable_name
is the name of the worktable to be created.

table name
is the name of the base table to be scanned.
Return value A worktable that is the result of the scan.
Examples select c12, max(cll) fromtl

group by c12

(plan
(store Worktabl

(t_scan tl)

)
(t_scan (work_t Worktabl))

)

Specifies the two-step process of selecting the vector aggregate into a
worktable, then selecting the results of the worktable.

Performance & Tuning: Optimizer and Abstract Plans 393

subq

Usage

See also

subq

Description

Syntax

Parameters

Examples

394

e The specified table is scanned, and the result is stored in aworktable
e Thelegal placesfor astore operator in an abstract plan are:

e Under aplan or union operator, where the store operator signifies
apreprocessing step resulting in aworktable

e Under ascan operator (but not under ani_scan or t_scan
operator)

e During plan capture mode, worktables are identified as Worktabl,
Worktab2, and so on. For manually entered plans, any naming
convention can be used.

e Theuse of the reformatting strategy can be described in an abstract
plan using the scan (store ()) combination of operators. For example,
if 2 hasnoindexesand isvery large, the abstract plan below indicates
that t2 should be scanned once, viaatable scan, with the results stored
in aworktable:

sel ect *
fromtl, t2
where cl11 > 0
and cl12 = c21
and c22 between 0 and 10000
(nl_g_join
(i_scan i_c11 t1)
(scan (store (t_scan t2)))

Scan

Identifies a subquery.
('subg subquery _id
)
subquery id
isan integer identifying the subquery. In abstract plans, subquery

numbering is based on the order of the leading parenthesis for the
subqueriesin a query.

Example 1

Adaptive Server Enterprise

CHAPTER 18 Abstract Plan Language Reference

select cl11 fromtl
where cl12 =
(select c21 fromt2 where c22 = t1.cll)

(nested
(t_scan tl)
(subg 1
(t_scan (tablet2 (in(subgl))))
)
)

A single nested subquery.
Example 2

select c11 fromt1l
where c12 =
(select c21 fromt2 where c22 = t1.cll)
and cl2 =
(select c31 fromt3 where ¢32 = t1.cll)

(nested
(nested
(t_scan t1)
(subg 1
(t_scan (table t2 (in (
subg 1))))
)
)
(subg 2
(t_scan (tablet3 (in(subgq2))))
)
)

The two subqueries are both nested in the main query.
Example 3

select c11 fromtl
where c12 =
(select c21 fromt2 where c22 =
(select ¢c31 fromt3 where ¢32 = t1.cll))

(nested
(t_scan tl)

Performance & Tuning: Optimizer and Abstract Plans 395

subq

(subg 1
(nested
(t_scan (tablet2 (in(subgl))))
(subqg 2
(t_scan (table t3 (in (subg
2))))

)

A level 2 subguery nested into alevel 1 subquery nested in the main query.

Usage .

396

The subqg operator has two meanings in an abstract plan expression:

* Under anested operator, it describes the attachment of a nested
subquery to atable

* Under anin operator, it describes the nesting of the base tables
and views that the subquery contains

To specify the attachment of a subquery without providing a plan
specification, use an empty hint:

(nested
(t_scan t1)
(subg 1
()
)
)

To provide a description of the abstract plan for a subquery, without
specifying its attachment, specify an empty hint as the abstract plan
derived table in the nested operator:

(nested
0
(subg 1
(t_scan (table t1 (in (subg 1))))
)
)

When subqueries are flattened to ajoin, the only reference to the
subquery inthe abstract plan istheidentification of the table specified
in the subquery:

sel ect *

fromt2

where c21 in (select c12 fromt1l)
(nl _gjoin

Adaptive Server Enterprise

CHAPTER 18 Abstract Plan Language Reference

(t_scan tl)
(t_scan (table t2 (in (subg 1))))

¢ When asubquery is materialized, the subquery appearsin the store
operation, identifying the table to be scanned during the
materialization step:

sel ect *
fromtil
where c11 in (select max(c22) fromt2 group by
c21)
(plan
(store Worktabl
(t_scan (tablet2 (in(subg1))))

)
(nl_g_join
(t_scan tl)
(t_scan (work_t Worktabl))
)
)
See also in, nested, table
t scan
Description Specifies atable scan of a stored table.
Syntax (t_scan stored_table)
Parameters stored table
is the name of the stored table to be scanned.
Return value An abstract plan derived table produced by the scan of the stored table.
Examples select * fromtl
(t_scan tl)
Performs a table scan of t1.
Usage e Instructs the optimizer to perform atable scan on the stored table.
e Specifyingt_scan forbids the use of reformatting and the OR strategy.
See also i_scan, scan, store

Performance & Tuning: Optimizer and Abstract Plans 397

table

table

Description

Syntax

Parameters

Examples

398

Identifies abase table that occursin asubquery or view or that is assigned
acorrelation name in the from clause of the query.

(table table_name [qualification])
(table (correlation_name table_name))

table name
isabasetable. If the query uses the database name and/or owner name,
the abstract plan must also provide them.

correlation_name
isthe correlation name, if a correlation name is used in the query.

qualification
is either in (subqg subquery _id) or in (view view_name).

Example 1

select * fromtl tablel, t2 table2
where tablel.cll = table2.c21

(nl _g_join
(t_scan (table (tablel t1)))
(t_scan (table (table2 t2)))

)

Tablestl and t2 are identified by reference to the correlation names used
in the query.

Example 2

select cl1l1 fromtl
where cl2 =
(select c21 fromt2 where c22 = t1.cll)

(nested
(t_scan tl)
(subg 1
(t_scan (tablet2 (in(subgl))))
)
)

Table t2 in the subquery isidentified by reference to the subquery.

Example 3

Adaptive Server Enterprise

CHAPTER 18 Abstract Plan Language Reference

Usage

See also

union

Description

Syntax

Parameters

Return value

create view vl
as
select * fromt1l where cl12 > 100

select t1.c11 fromtl, vi
where t1.c12 = vil.cll

(nl _g_join
(t_scan tl)
(i_scan 2 (table tl (in (viewvl))))

Tabletl intheview isidentified by reference to the view.

The specified abstract plan derived tables in the abstract plan are
matched against the positionally corresponding tables specified in the
query.

Thetable operator isused to link table namesin an abstract planto the
corresponding table in a SQL query in queries that contain views,
subqueries, and correlation names for tables.

When correlation namesare used, all referencesto thetabl e, including
those in the scan properties section, are in the form:

(table (correlation_nane table_nane))

Thetable operator isused for all referencesto the table, including the
scan properties for the table under the props operator.

in, subg, view

Describes the union of the two or more abstract plan derived tables.

(union

)

derived_tablel

'Elerived_tableN

derived tablel...derived tableN

is the abstract plan derived tables to be united.

An abstract plan derived table that is the union of the specified operands.

Performance & Tuning: Optimizer and Abstract Plans 399

union

Examples

Usage

400

Example 1

select * fromtl
uni on
select * fromt2
uni on
select * fromt3

(uni on
(t_scan t1)
(t_scan t2)
(t_scan t3)
)

Returns the union of the three full table scans.

Example 2

select 1,2
uni on
select * fromt2

(uni on

()
(tscan t2)

)

Sincethefirst side of the union isnot an optimizable query, the first union
operand is empty.

The specified abstract plan derived tablesin the abstract plan are
matched against the positionally corresponding tables specified in the
query.

The union operator describes the processing for:
* union, which removes duplicate values and
* union all, which preserves duplicate values

The union operator in an abstract query plan must have the same
number of union sidesasthe SQL query and the order of the operands
for the abstract plan must match the order of tablesin the query.

The sort step and worktabl e required to process union queries are not
represented in abstract plans.

Adaptive Server Enterprise

CHAPTER 18 Abstract Plan Language Reference

See also

view
Description

Syntax

Parameters

Examples

Usage

See also

work _t

Description

Syntax

Parameters

e If union queries list nonoptimizable elements, an empty operand is
required. A select query that has no from clause is shown in example

i_scan, scan, t_scan

Identifies aview that contains the base table to be scanned.
view view_name

view_name
isthe name of aview specified in the query. If the query uses the
database name and/or owner name, the abstract plan must also provide
them.

create view vl as
select * fromtl

select * fromvl

(t_scan (table t1 (in (viewv))))
Identifies the view in which tablet1 is used.

¢ Whenaquery includesaview, thetable must beidentified using table
(tablename (in view_name)).

in, table

Describes a stored worktable.
(work_t [worktable_name
| (correlation_name worktable_name)]

worktable_name
is the name of aworktable.

Performance & Tuning: Optimizer and Abstract Plans 401

work_t

correlation_name
is the correlation name specified for aworktable, if any.

Return value A stored table.

Examples select c12, nmax(cl1l) fromt1l
group by c12

(plan
(store Worktabl
(t_scan t1)

)
(t_scan (work_t Worktabl))

)

Specifies the two-step process of selecting vector aggregatesinto a
worktable, then selecting the results of the worktable.

Usage e Matches the stored table against a work table in the query plan.

e Thestore operator creates aworktable; the work_t operator identifies
astored worktable for later accessin the abstract plan.

e During plan capture mode, worktables are identified as Worktabl,
Worktab2, and so on. For manually entered plans, any naming
convention can be used.

» |f the scan of the worktable is never specified explicitly with a scan
operator, the worktable does not have to be named and the work_t
operator can be omitted. The following plan uses an empty scan
operator “())” in place of thet_scan and work_t specificationsused in

example
(plan
(store
(t_scan titles)
)

0
)

e Correlation names for worktables are needed only for self-joined
materialized views, for example:

create view v
as
select distinct ¢cl11 fromt1l

sel ect *

402 Adaptive Server Enterprise

CHAPTER 18 Abstract Plan Language Reference

fromv vl, v v2
where ...

(plan
(store Worktabl

(t_scan (table t1 (in (viewv))))

)

(g_join
(t_scan (work_t (vl Worktabl)))
(t_scan (work_t (v2 Worktabl)))

)

See also store, view

Performance & Tuning: Optimizer and Abstract Plans 403

work_t

404 Adaptive Server Enterprise

Index

Symbols

> (greater than)
optimizing 14
(pound sign)
temporary table identifier prefix 279
() (parentheses)
empty, for i_scan operator 378
empty, for worktable scans 402
empty, in union queries 401
empty, subqueriesand 396

A

abstract plan cache configuration parameter 350
abstract plan derived table

defined 372
abstract plan derived tables 318
abstract plan dump configuration parameter 350
abstract plan groups

adding 356

creating 356

dropping 357

exporting 368

importing 369

information about 357

overview of use 313

plan associationand 313

plan ceptureand 313

procedures for managing 355-369
abstract plan load configuration parameter 350
abstract plan replace configuration parameter 350
abstract plans

comparing 363

copying 362

finding 360

information about 361

pattern matching 360

viewing with sp_help_gplan 361

access
See also access methods
optimizer methods 174-185
access methods 174
hash-based 174
hash-based scan 174
paralled 174-186
partition-based 174
range-based scan 174
selectionof 185
adding
abstract plan groups 356
aggregate functions
denormalization and temporary tables 281
optimization of 90, 91
paralel optimization of 201
subqueriesincluding 136

all keyword

union, optimization of 140
ALS

log writer 51

user log cache 49
whentouse 50
ALS, see Asynchronous Log Service 48
alter database command and tempdbs 265
alter table command
parallel sortingand 220
and keyword
subqueries containing 137
any keyword
subquery optimizationand 130
application design
cursorsand 308
index specification 41
temporary tablesin 281
asc index option 79-80
ascending sort 79, 82
associating queries with plans
plangroupsand 313
session-level 344

Performance and Tuning: Optimizer and Abstract Plans

405

Index

association key
defined 314
plan associationand 314
sp_cmp_all_gplans and 365
sp_copy_gplan and 362

asynchronous prefetch 237, 248
dbcc and 241, 252
during recovery 240
fragmentationand 245
hash-based scansand 250
largel/Oand 248
look-ahead set 238
maintenancefor 252
MRU replacement strategy and 250
nonclustered indexesand 241
page chain fragmentationand 245
page chain kinksand 245, 252
parallel query processingand 250
partition-based scansand 251
performance monitoring 254
pool limitsand 244
recovery and 251
sequential scansand 240
tuning goals 247

B
batch processing
temporary tablesand 287
bep (bulk copy utility)
temporary tables 279
between keyword
optimization 9
between operator selectivity
statistics 21
binary expressions xxii
binding
tempdb 284
binding an sato itsown tempdb 261

binding user-created tempdbs to a data cache 266

bindings and tempdbs 256
buffer pools

specifying /0 size 390
buffers

sorting 223-224

406

unavailable 44

C

cache hit ratio
partitioningand 165
cache strategy property
specifying 381, 383
caches, data
parallel sortingand 222
sortsand 223-224
subquery results 138
tablescansand 63
tempdb bound to own 284
caching characteristics and tempdbs 266
canceling
querieswith adjusted plans 204
capturing plans
session-level 344
changed system procedures 51
character expressions xxii
cheap direct updates 94
close command
memory and 296
close on endtran option, set 308
clustered indexes
asynchronous prefetch and scans 240
create index requirements 219
point query cost 69
prefetchand 43
range query cost 70
scans and asynchronous prefetch 240
space requirements 229
commands for configuration 248
comparing abstract plans 363
concurrency optimization
for small tables 55
concurrency optimization threshold
deadlocksand 56
configuration server)
parallel query processing 153
configuring
tempdbs for applications 273
the number of open databases in tempdbs
connections

Adaptive Server Enterprise

cursorsand 308
constants xxii
consumer process 215, 232

contention

system tablesintempdb 284
conventions

used in manuals xx
conversion

datatypes 31

in liststoor clauses 85
subqueriesto equijoins 135
coordinating process 143, 216
copying
abstract plans 362
plan groups 364
plans 362, 364
correlation names
for tables 398
for views 402
cost
parallel clustered index partitionscan 178
parallel hash-based tablescan 180
parallel nonclustered index hash-based scan 181
parallel partition scan 176
point query 69
range query using clustered index 70
range query using nonclustered index 72, 73
sort operations 77
count col_name aggregate function
optimizationof 91
count(*) aggregate function
optimizationof 91
covered queries
specifying cache strategy for 45
covering nonclustered indexes
asynchronous prefetch and 240
cost 73
nonequality operatorsand 16
range query cost 72

CPU
guidelines for parallel queries 163
saturation 162, 164
utilization 161, 166
CPU usage
CPU-intensive queries 161
CPU usages

Performance and Tuning: Optimizer and Abstract Plans

Index

parallel queriesand 166
create index command

logging considerationsof 230

number of sort buffers parameter and

227

space requirements 229

with consumers clauseand 220
creating

abstract plan groups 356
cursor rows option, set 307
Cursors

execute 296

Halloween problem 298

indexesand 297

isolationlevelsand 304

lockingand 294

modes 297

multiple 308

or strategy optimizationand 89

read-only 297

stored proceduresand 296

updatable 297

213, 222—

D

data caches
flushing during table scans 63
parallel sortingand 225, 228
sort buffersand 225
subquery cache 138
tempdb bound to own
data modification
update modes 92
data pages
prefetching 43
database devices
parallel queriesand 163
datatypes
matching in queries 24
dbcc (database c+onsistency checker)
configuring asynchronous prefetch for 252
dbcc (database consistency checker)
asynchronous prefetchand 241
dbcc addtempdb and tempdbs 272
dbcc pravailabletempdbs and tempdbs 271

283, 284

407

Index

deadlocks
concurrency optimization threshold settings 56
descending scansand 84
tablescansand 56
deallocate cursor command
memory and 296
debugging aids
set forceplanon 37
decision support system (DSS) applications
parallel queriesand 143, 166
declare cursor command
memory and 296
default settings
index statistics 22
number of tablesoptimized 39
deferred index updates 96
deferred updates 95
degree of paralelism 152, 186-194
definition of 186
joinsand 190, 191
optimization of 187
parallel sortingand 220
query-level 156
runtime adjustment of 194, 202-205
server-level 153
session-level 155
specifying 387
upper limitto 187
delete operations
joinsand update mode 95
update modeinjoins 95
deleting
plans 362, 367
denormalization
temporary tablesand 281

density

index, and joins 106, 129
rangecell 19

total 19

derived tables

abstract plan derived tables 318
SQL derived tables 318

desc index option 79-80

descending order (desc keyword) 79, 82
covered queriesand 83

descending scans

408

deadlocksand 84

devices

RAID 163

direct updates 92

cheap 94
expensive 94
in-place 93
joinsand 95

disk devices

[/Ospeed 163
parallel queriesand 158, 162
parallel sortingand 228, 230

disk i/o structures configuration parameter

asynchronous prefetchand 244

distinct keyword

parallel optimization of 211

distribution map 215, 232
dropping

abstract plan groups 357
indexes specified withindex 41
plans 362, 367

tempdbs 264

dump database command

parallel sortingand 230

dumping tempdbs 269
duplicate rows

removing from worktables 88

duplication

update performance effect of 96

dynamic index

or query optimization 86

dynamic indexes 89

empty parentheses

i_scan operator and 378
inunion queries 401
subqueriesand 396
worktable scansand 402

engines

number of 161

equality selectivity

dbcc traceon(302) output 22
statistics 21

Adaptive Server Enterprise

equijoins

subqueries convertedto 135
equivaentsin search arguments 9
error messages

process_limit_action 204

runtime adjustments 204
estimated cost

fast and slow query processing 5

indexes 4

joins 22

materialization 136

or clause 87

reformatting 129

subquery optimization 139
execute cursors

memory useof 296
exists check mode 348
exists keyword

parallel optimization of 201
exists keyword

subquery optimizationand 130
expensive direct updates 94, 95
exporting plan groups 368
expression subqueries

optimizationof 135

extending
model database 265
tempdbs 265

F

failover

scenarios and tempdbs 269
FALSE, return valueof 131
family of worker processes 144
fetching cursors

memory and 296
finding abstract plans 360
fixed-length columns

indexes and update modes 102
flattened subqueries 130, 396
floating-point data xxii
for update option, declare cursor

optimizingand 307
forceplan

Performance and Tuning: Optimizer and Abstract Plans

Index

abstract plansand 375
forceplan option, set 37
aternatives 38
risksof 38
fragmentation, data
effects on asynchronous prefetch 245
pagechain 245

G

g_join operator 373-375
global list of temporary databases 258

H

Halloween problem
cursorsand 298
hard bindings and tempdbs 261
hardware
parallel query processing guidelines 163
hash-based scans
asynchronous prefetch and 250
heap tablesand 185
[/Oand 174
indexingand 185
limiting with set scan_parallel_degree 156
nonclustered indexesand 180-181, 185
tablescans 179-180
worker processesand 174
high availability
configuring for tempdbs 268
mounting tempdbs 269
tempdbsand 267
hints operator 376-377

110
Seealso large 1/0
asynchronous prefetch 237, 72-254
direct updatesand 93
prefetch keyword 42
range queriesand 42

409

Index

saturation 162
saving with reformatting 128
specifying sizein queries 42
spreading between caches 284
update operationsand 94
/O size
specifying 390
i_scan operator 377
identifiers
listof 371
IDENTITY columns
cursorsand 298
importing abstract plan groups 369
in keyword
optimization of 85
subquery optimizationand 130
in operator (abstract plans) 378-381
in-between selectivity 21
index covering
sort operationsand 83
index keys
asc option for ordering 79-80
desc option for ordering 79-80
index scans
i_scan operator 377
indexes
avoiding sortswith 77
creating 211
cursorsusing 297
dynamic 89
largel/Ofor 42
parallel creation of 211
specifying for queries 40
temporary tablesand 279, 287
update modesand 101
update operationsand 93, 94
inner tables of joins 112
in-place updates 93
insert operations
loggingand 285
installation and tempdbsissues 272
integer data
inSQL xxii
optimizing querieson 14
isolation levels
cursors 304

410

J

join operator
g_join 373
m_g_join 381

mergejoin 381
nested-loop join 386
nl_g_join 386
join order
outer join restrictions 110
join transitive closure

defined 11
enabling 11
joins

datatype compatibility in 31
index density 106, 129
indexing by optimizer 22
many tablesin 107, 108
nested-loop 110
number of tables considered by optimizer 39
optimizing 105
or clause optimization 140
parallel optimization of 190-192, 197-200
processof 22
tableorderin 37
table order in parallel 190-192, 197-200
temporary tablesfor 281
union operator optimization 140
update modeand 95
updatesusing 93, 94, 95
jtc option, set 52

K

keys, index

update operationson 93
keywords

listof 371

L

large 1/O
asynchronous prefetchand 248
index leaf pages 42

like optimization 9

Adaptive Server Enterprise

limits
parallel query processing 152, 155
parallel sort 152
worker processes 152, 155
loading tempdbs 269
locking
tempdband 284
worktablesand 284
log truncation and tempdbs 263
logging
minimizing intempdb 285
parallel sortingand 230
logical expressions xxii
look-ahead set 238
dbccand 241
during recovery 240
nonclustered indexesand 241
sequential scansand 240
LRU replacement strategy
specifying 46
Iru scan property 381

M

m_g_join operator 381-383

mai ntenance tasks
forced indexes 41
forceplan checking 37

materialized subqueries 135, 397

max aggregate function
min used with 91
optimizationof 91

max async i/os per engine configuration parameter
asynchronous prefetch and 244

max async i/os per server configuration parameter
asynchronous prefetch and 244

max parallel degree configuration parameter 153,

192, 193

sortsand 218

max scan parallel degree configuration parameter
153, 188

memory

cursorsand 294
mergejoin

abstract plansfor 383

Index

mergeruns, parallel sorting 216, 223

reducing 223
merging index results 216
messages

dropped index 41
min aggregate function
max used with 91
optimizationof 91
model database, extending 265
modifying abstract plans 364
MRU replacement strategy
asynchronous prefetch and 250
disabling 47
specifying 46
mru scan property 383-384
multiple matching index scans 86, 90
multiple temporary databases. See tempdbs.
multiple-database transactions and tempdbs 272

N

names
column, in search arguments 15
index clauseand 41
index prefetchand 43
nested operator 384-385
nested-loop joins 110

specifying 386

nesting

temporary tablesand 288
networks

cursor activity of 302
nl_g_join operator 386-387
nonclustered indexes

asynchronous prefetchand 241

covered queries and sorting 83

create index requirements 219

hash-based scans 180-181

point query cost 69

range query cost 72,73

sortingand 84
nonmatching index scans

nonequality operatorsand 16
normal companion behavior in high-availability failover

and tempdbs 269

Performance and Tuning: Optimizer and Abstract Plans 411

Index

normalization
temporary tablesand 281
null columns
optimizing updateson 101
number (quantity of)
cursor rows 307
engines 161
tables considered by optimizer 39
number of sort buffers 224
number of sort buffers configuration parameter
parallel sort messagesand 231
parallel sortingand 213, 222227
number of worker processes configuration parameter
153
numeric expressions xxii

O

OAM . Seeobject allocation map
object allocation map
costing 64
online transaction processing (OLTP)
parallel queriesand 173
open command
memory and 296
operands
listof 371
operators
nonequality, in search arguments 16
in search arguments 15
optimization
See also parallel query optimization
cursors 296
in keywordand 85
OAM scans 179
order by queries 79
parallel query 171-208
SQL derived tablesand 7
subquery processing order 139
optimizer 3-33, 61-103, 105-140, 171-208
See also parallel query optimization
aggregatesand 90, 201
diagnosing problemsof 6, 206
expression subqueries 135
joinorder 190-192

412

or clausesand 85
overriding 35
parallel queriesand 171-208
procedure parametersand 21
quantified predicate subqueries 130
reformatting strategy 128
sources of problems 6
subqueriesand 129
temporary tablesand 286
updatesand 100
or keyword
estimated cost 87
optimizationand 85
optimization of join clausesusing 140
processing 86
subqueriescontaining 138
OR strategy 86
cursorsand 306
order
joins 190-192
tablesinajoin 37,108
order by clause
parallel optimization of 201
order by clause
optimizationof 79
parallel optimization of 211
outer join
permutations 110
outer joins 112
joinorder 110
overhead
cursors 302
deferred updates 96
parallel query 173-174

P

page chain kinks

asynchronous prefetchand 245, 252

clustered indexesand 253

defined 245

heap tablesand 253

nonclustered indexesand 253
pages, data

prefetchand 43

Adaptive Server Enterprise

parallel clustered index partition scan 176-178
cost of using 178
definition of 176
requirementsfor using 178
summary of 185

parallel hash-based tablescan 179180
cost of using 180
definition of 179
requirementsfor using 180
summary of 185

parallel keyword, select command 205

parallel nonclustered index hash-based scan 180-181

cost of using 181
summary of 185
parallel partition scan 175176
cost of using 176
definition of 175
exampleof 195
requirementsfor using 176
summary of 185
parallel queries
worktablesand 201
parallel queriesand tempdbs 272
parallel query optimization 171-208
aggregate queries 201
definition of 172
degree of parallelism 186-194
examplesof 195205
existsclause 201
joinorder 190-192, 197-200
order by clause 201
overhead 172, 173-174
partitioning considerations 173, 174
requirementsfor 172
resource limits 208
select into queries 202
serial optimization comparedto 172
single-tablescans 195-197
speedasgoa 172
subqueries 200
systemtablesand 173
troubleshooting 206
union operator 201
parallel query processing 142-170, 171-208
asynchronous prefetchand 250
configuring for 153

Performance and Tuning: Optimizer and Abstract Plans

Index

configuring worker processes 155
CPU usageand 161, 163, 166
disk devicesand 162
execution phases 145
hardware guidelines 163
[/Oand 162

joinsand 150

mergetypes 146

query typesand 142
resources 161

worker processlimits 153

parallel scan property 387-388
parallel sorting 211-236

clustered index requirements 219
commands affected by 211
conditions for performing 212
configuring worker processes 155
coordinating processand 216

degree of parallelismof 220, 231
distributionmap 215, 232

dynamic range partitioning for 215
examplesof 232-234

logging of 230

mergeruns 216

merging results 216

nonclustered index requirements 219
number of sort buffers parameter and 213
observation of 230-234

overview of 213

producer processand 215
rangesortingand 216

recovery and 230

resourcesrequired for 212, 216
sampling datafor 215, 232

select into/bulk copy/plisort optionand 212
sort buffersand 223-224, 231
sort_resources option 231
sub-indexesand 216

target segment 218

tempdband 229

tuning tools 230

with consumers clauseand 220
worktablesand 220, 221

parameters, procedure

optimizationand 21

parrellel sort

413

Index

configure enough sort buffers 224
partial plans
hints operator and 376
specifying with create plan 313
partition-based scans 175-176, 176-178, 185
asynchronous prefetchand 251
partitioned tables
createindex and 219, 230
parallel optimizationand 174, 186
skew in datadistribution 176
worktables 184
partitions
cachehitratioand 165
guidelinesfor configuring 165
parallel optimizationand 173
RAID devicesand 163
performance
costing queries for data-only-locked tables 64
diagnosing slow queries 206
number of tables considered by optimizer 39
order by and 79-80
runtime adjustmentsand 204
tempdband 277-288
plan dump option, set 343
plan groups
adding 356
copying 364
copyingtoatable 368
creating 356
dropping 357
dropping al plansin 367
exporting 368
information about 357
overview of use 313
plan associationand 313
plan captureand 313
reports 357
plan load option, set 345
plan operator 388-390
plan replace option, set 345
plans
changing 364
comparing 363
copying 362, 364
deleting 367
dropping 362, 367

414

finding 360

modifying 364

searching for 360

pool size

specifying 390

pools, worker process 144

size 157

prefetch

asynchronous 237-??

datapages 43

disabling 45

enabling 45

queries 42
sp_cachestrategy 47
prefetch keyword

[/Osizeand 42
prefetch scan property 390-391
prefix subset

defined 18
examplesof 18

order by and 83
private temporary tables 257
procedural temp tables 257
dropping 258
processing power 161
producer process 215, 232
prop operator 391-392
proxy database support and tempdbs

Q

quantified predicate subqueries
aggregatesin 136
optimization of 130
queries
parallel 171-208
specifying /O size 42
specifying index for 40
query anadysis 61-103, 105-140
sp_cachestrategy 47
toolsfor 57-60
guery optimization 6
OAM scans 64
query plans
optimizer and 3

Adaptive Server Enterprise

268

runtime adjustment of 203

suboptimal 40

updatable cursorsand 306
guery processing

parallel 142-170

stepsin 4

R

RAID devices
consumersand 220
create index and 220
partitioned tablesand 163
range
partition sorting 216
range cell density 19
range queries
largel/Ofor 42
range selectivity 21
range-based scans
[/Oand 174
worker processesand 174
read-only cursors 297
indexesand 297
lockingand 302
recompilation
avoiding runtime adjustments 205
recovery
asynchronous prefetch and 240
configuring asynchronous prefetch for 251
parallel sortingand 230
referential integrity
update operationsand 93
updatesusing 95
reformatting 128
joinsand 128
parallel optimization of 212
reformatting strategy
prohibiting withi_scan 378
prohibiting witht_scan 397
specifying in abstract plans 394
replication
update operationsand 93
reports
cache strategy 47

Performance and Tuning: Optimizer and Abstract Plans

Index

plan groups 357
resource limits 205
response time

parallel optimization for 172
rollback and recovery, and tempdbs 263
row ID (RID)

update operationsand 93
runtime adjustment 194, 202—-205

avoiding 205

defined 157

effectsof 204

recognizing 204

S

sampling for parallel sort 215, 232
SARGS. See search arguments

saturation
CPU 162
/0 162

scan operator 392393

scan properties

specifying 391

scans, table

costsof 63
search arguments
equivalentsin 9
examplesof 16

indexable 15

indexesand 15

matching datatypesin 24
operatorsin 15

parallel query optimization 176
statisticsand 17

syntax 15

transitive closurefor 10
searching for abstract plans 360
segments

parallel sortingand 218
performance of parallel sort 229
target 218, 231

tempdb 282
select * command

logging of 285
select command

415

Index

parallel clause 156 computing maximum alowed 225
specifyingindex 40 configuring 223-224
select into command guidelines 223
parallel optimization of requirementsfor parallel sorting 213
202 set sort_resources and 231
in parallel queries 202 sort operations (order by)
select into/bulkcopy/plisort database option Seeal_so parallel sorting
parallel sortingand 212 covering indexesand 83
session binding and tempdbs 261 nonclustered indexesand 84
session temp tables 257 performance problems 278
set command sorting plans 230
forceplan 37 without indexes 77
jtc 52 sort order
noexec and statistics io interaction 59 ascendi ng 79,82
parallel degree 155 descending . 79, 82
plan dump 343 sort_merge option, set 51
plan exists 348 sort_resources option, set 231234
planload 345 sources of optimization problems 6

sp_add_gpgroup system procedure 356
sp_bindcache and tempdbs 270
sp_cachestrategy system procedure 47

plan replace 345
scan_parallel_degree 156
sort_merge 51

sort resources 230 sp_changedbowner and tempdbs 271
statistics io 59 sp_chgattribute system procedure
subquery cache statistics 138 concurrency_opt_threshold 55
set forceplan on sp_cmp_gplans system procedure 363
abstract plansand 375 sp_copy_all_gplans system procedure 364
set plan dump command 344 sp_copy_gplan system procedure 362
set plan exists check 348 sp_dboption
set plan load command 344 andtempdbs 270, 271
set plan replace command 345 sp_defaultloc and tempdbs 271
set theory operations sp_drop_all_gplans system procedure 367
compared to row-oriented programming 292 sp_drop_gpgroup system procedure 357
shareabletemp tables 258, 273 sp_drop_gplan system procedure 362
shared keyword sp_dropuser and tempdbs 271
cursorsand 297 sp_export_gpgroup system procedure 368
shared locks sp_find_gplan system procedure 360
read-only cursors 297 sp_help_gpgroup system procedure 357
size sp_help_gplan system procedure 361
tempdb database 280 sp_helpdb and tempdbs 270
sizing tempdbs for applications 273 sp_import_gpgroup system procedure 369
skew in partitioned tables sp_renamedb and tempdbs 271
defined 176 sp_set_gplan system procedure 364
effect on query plans 176 sp_sysmon system procedure
sow queries 6 paralel sortingand 236
soft bindings and tempdbs 261 sortingand 236
sort buffers sp_tempdb stored procedure 259

416 Adaptive Server Enterprise

syntax 259
space
worktable sort requirements 229
space allocation
tempdb 283
specia OR strategy 86, 90
speed (server)
cheap direct updates 94
deferred index deletes 99
deferred updates 95
direct updates 92
expensive direct updates 94
in-place updates 93
selectinto 285
dow queries 6
sort operations 216
updates 92
splitting
procedures for optimization 20, 21
SQL derived tables 318
optimizationand 7
SQL standards
cursorsand 292
statistics
between selectivity 21
equality selectivity 21
subquery cacheusage 138
statistics subquerycache option, set 138
steps
deferred updates 95
direct updates 92
key valuesin distribution table 18
store operator 393-394
materialized subqueriesand 397
stored procedures
cursorswithin -~ 300
optimization 21
splitting 20, 21
temporary tablesand 288
stored procedures, processing for tempdbs 266
striping tempdb 280
sort performanceand 229
subq operator 394-397
subqueries
any, optimization of 130
attachment 139

exists, optimization of 130

expression, optimization of 135

flattened 396

flattening 130

identifying inplans 394

in, optimization of 130

materiaizationand 135

materialized 397

nesting and views 380

nesting examples 395

nesting of 384

optimization 129, 200

parallel optimization of 200

quantified predicate, optimization of 130

resultscaching 138, 200
symbols

in SQL statements xx, xxi
symptoms of optimization problems 6
sysattributes and tempdbs 262
sysdatabases and tempdbs 262
system procedures, changed 51
system tables

andtempdbs 261

T

t_scan operator 397
table count option, set 39
table operator 398-399
table scans
asynchronous prefetchand 240
cacheflushingand 63
evaluating costsof 63
forcing 40
OAM scancost 179
specifying 397
tables
norma intempdb 279
target segment 218, 231
tasks
CPU resourcesand 161
tempdb database
datacaches 283
loggingin 285
performanceand 277-288

Performance and Tuning: Optimizer and Abstract Plans

Index

417

Index

placement 282
segments 282
space alocation 283
striping 280
tempdb_id() function 263
@@tempdbid global variable 262
tempdbs
alter database and 265
binding an sato itsown tempdb 261
binding objects explicitly 256
binding user-created tempdbs to adatacache 266
bindingsand 256
caching characteristics 266
changing the cache binding of adatabase 266
configuring the number of open databases 270
dbcc addtempdb and 272
dbcc pravailabletempdbs and 271
described 255
downgrading to an earlier version of Adaptive Server
275
dropping 258, 264
dumping 269
explicitly dropping temporary tablesby asession 257
extending 265
failover
scenariosfor 269
global list 258
hard bindingsand 261
high availability and 267
high availability configuration for 268
installation issues 272
loading 269
log truncationand 263
mounting during failover 269
multiple-database transactions 272
normal companion behavor in high-availability failover
269
parallel queriesand 272
privatetemp tables 257
procedural temp tables 257
procedural temp tables, dropping 258
proxy database support for 268
rollback and recovery 263
session binding 261
session temp tables 257
shareabletemp tables 258, 273

418

sizing and configuring for applications 273
soft bindingsand 261

sp_bindcache and 270
sp_changedbowner and 271
sp_dboption and 271

sp_dboptions and 270

sp_defaultloc and 271

sp_dropuser and 271

sp_helpdb and 270

sp_renamedb and 271

sp_tempdb 259

sp_tempdb syntax 259

stored procedures, processing 266
sysattributesand 262
sysdatabasesand 262

system table changes
tempdb_id()function

261
263

@@tempdbid global varigbleand 262

updating user-created stored procedures 273

user-created temporary databases 256
tempdbs and the system tempdb 256

temporary tables
denormalization and
indexing 287

281

nesting proceduresand 288
normalizationand 281

optimizing 286

performance considerations 278

permanent 279
testing

index forcing 40
total density 19

total work compared to response time optimization

172
transaction logs
update operation and
transactions
loggingand 285
transitive closure
joins 11

93

transitive closure for SARGs 10

triggers

update modeand 100

update operations and
TRUE, return value of
tuning

93
131

Adaptive Server Enterprise

advanced techniquesfor 35-56
asynchronous prefetch 247
parallel query 164

parallel query processing 161-167
parallel sorts 221230

range queries 40

U

union operator
parallel optimization of 201
union operator 399401
cursorsand 306
optimization of joinsusing 140
parallel optimization of 212
subquery cache numberingand 139
unique indexes
update modesand 101
update cursors 297
update locks
cursorsand 297
update modes
cheap direct 94
deferred 95
deferred index 96
direct 95
expensivedirect 94, 95
indexingand 101
in-place 93
joinsand 95
optimizing for 100
triggersand 100
update operations 92
user IDs
changing with sp_import_gpgroup 369
user log cache, inALS 49
user-created tempdbs 256
Using Asynchronous log service 48
Using Asynchronous log service, ALS 48

V

vaues
unknown, optimizing 33

Performance and Tuning: Optimizer and Abstract Plans

Index

variables
optimizerand 21
view operator 401
views
correlation names 402
nesting of subqueries 380
specifying location of tablesin 379

w

wash area
parallel sortingand 228
whentouse ALS 50
with consumers clause, create index 220
work_t operator 401-403
worker processes 144
clustered indexesand 219
configuring 155
consumer process 215
coordinating process 216
joinsand 190
nonclustered indexesand 219
overhead of 173
parallel sort requirements 217
parallel sortingand 220
pool 144
pool sizeand 157
producer process 215
resource limitswith 208
runtime adjustment of 194, 202-205
specifying 387
worktable sortsand 221
worktable scans
empty scan operators 402
worktables
lockingand 284
or clausesand 88
parallel queriesand 184, 201
parallel sortingand 220, 223
parallel sortson 201
partitioning of 184
reformattingand 129
space requirements 229
store operator and 393
tempdband 280

419

Index

420 Adaptive Server Enterprise

	Performance and Tuning: Optimizer and Abstract Plans
	About This Book
	CHAPTER 1 Introduction to Performance and Tuning
	CHAPTER 2 Optimizer Overview
	Definition
	Steps in query processing
	Working with the optimizer

	Object sizes are important to query tuning
	Query optimization
	SQL derived tables and optimization

	Factors examined during optimization
	Preprocessing can add clauses for optimizing
	Converting clauses to search argument equivalents
	Converting expressions into search arguments
	Search argument transitive closure
	Join transitive closure
	Enabling join transitive closure

	Predicate transformation and factoring
	Example

	Guidelines for creating search arguments
	Search arguments and useful indexes
	Search argument syntax
	Nonequality operators
	Examples of SARGs

	How statistics are used for SARGS
	Histogram cells
	Density values
	Range cell density and total density
	How the optimizer uses densities and histograms

	Using statistics on multiple search arguments
	Default values for search arguments
	SARGs using variables and parameters

	Join syntax and join processing
	How joins are processed
	When statistics are not available for joins
	Density values and joins
	Multiple column joins
	Search arguments and joins on a table

	Datatype mismatches and query optimization
	Overview of the datatype hierarchy and index issues
	Comparison of numeric and decimal datatypes
	Comparing numeric types to other datatypes

	Datatypes for parameters and variables used as SARGs
	Troubleshooting datatype mismatch problems fo SARGs

	Compatible datatypes for join columns
	Troubleshooting datatype mismatch problems for joins

	Suggestions on datatypes and comparisons
	Forcing a conversion to the other side of a join

	Splitting stored procedures to improve costing
	Basic units of costing

	CHAPTER 3 Advanced Optimizing Tools
	Special optimizing techniques
	Specifying optimizer choices
	Specifying table order in joins
	Risks of using forceplan
	Things to try before using forceplan

	Specifying the number of tables considered by the optimizer
	Specifying an index for a query
	Risks
	Things to try before specifying an index

	Specifying I/O size in a query
	Index type and large I/O
	When prefetch specification is not followed
	set prefetch on

	Specifying the cache strategy
	In select, delete, and update statements

	Controlling large I/O and cache strategies
	Getting information on cache strategies

	Asynchronous log service
	Understanding the user log cache (ULC) architecture
	When to use ALS
	Using the ALS
	ULC flusher
	Log writer

	Changed system procedures

	Enabling and disabling merge joins
	Enabling and disabling join transitive closure
	Suggesting a degree of parallelism for a query
	Query level parallel clause examples

	Concurrency optimization for small tables
	Changing locking scheme

	CHAPTER 4 Query Tuning Tools
	Overview
	How tools may interact
	Using showplan and noexec together
	noexec and statistics io

	How tools relate to query processing

	CHAPTER 5 Access Methods and Query Costing for Single Tables
	Table scan cost
	Cost of a scan on allpages-locked table
	Cost of a scan on a data-only-locked tables

	From rows to pages
	How cluster ratios affect large I/O estimates
	Data page cluster ratio
	Index page cluster ratio

	Evaluating the cost of index access
	Query that returns a single row
	Query that returns many rows
	Range queries using clustered indexes (allpages locking)

	Range queries with covering indexes
	Range queries with noncovering indexes
	Result-set size and index use
	Costing for noncovering index scans
	Costing for forwarded rows

	Costing for queries using order by
	Prefix subset and sorts
	Key ordering and sorts
	Specifying ascending or descending order for index keys

	How the optimizer costs sort operations
	Allpages-locked tables with clustered indexes
	Sorts when index covers the query
	Sorts and noncovering indexes
	Backward scans and joins
	Deadlocks and descending scans

	Access Methods and Costing for or and in Clauses
	or syntax
	in (values_list) converts to or processing
	Methods for processing or clauses
	When table scans are used for or queries
	Dynamic index (OR strategy)
	Multiple matching index scans (special OR strategy)

	How aggregates are optimized
	Combining max and min aggregates
	Queries that use both min and max

	How update operations are performed
	Direct updates
	In-place updates
	Cheap direct updates
	Expensive direct updates

	Deferred updates
	When deferred updates are required

	Deferred index inserts
	Restrictions on update modes through joins
	Joins and subqueries in update and delete statements
	Deletes and updates in triggers versus referential integrity

	Optimizing updates
	Designing for direct updates
	Effects of update types and indexes on update modes

	Using sp_sysmon while tuning updates

	CHAPTER 6 Accessing Methods and Costing for Joins and Subqueries
	Costing and optimizing joins
	Processing
	Index density and joins
	Multicolumn densities

	Datatype mismatches and joins
	Join permutations
	Outer joins and join permutations

	Nested-loop joins
	Cost formula
	How inner and outer tables are determined

	Self join
	Access methods and costing for sort-merge joins
	How a full-merge is performed
	How a right-merge or left-merge is performed
	How a sort-merge is performed
	Mixed example
	showplan messages for sort-merge joins

	Costing for merge joins
	Costing for a full-merge with unique values
	Example: allpages-locked tables with clustered indexes
	Costing for a full-merge with duplicate values
	Costing sorts
	Worktable size for sort-merge joins

	When merge joins cannot be used
	Use of worker processes
	Recommendations for improved merge performance

	Enabling and disabling merge joins
	At the server level
	At the session level

	Reformatting strategy
	Subquery optimization
	Flattening in, any, and exists subqueries
	When flattening can be done
	Exceptions to flattening
	Flattening methods
	Join order and flattening methods
	Flattened subqueries executed as regular joins
	Flattened subqueries executed as existence joins
	Flattened subqueries executed using unique reformatting
	Flattened subqueries using duplicate elimination

	Flattening expression subqueries
	Materializing subquery results
	Noncorrelated expression subqueries
	Quantified predicate subqueries containing aggregates

	Subquery introduced with an and clause
	Subquery introduced with an or clause
	Subquery results caching
	Displaying subquery cache information

	Optimizing subqueries

	or clauses versus unions in joins

	CHAPTER 7 Parallel Query Processing
	Types of queries that can benefit from parallel processing
	Adaptive Server’s worker process model
	Parallel query execution
	Returning results from parallel queries

	Types of parallel data access
	Hash-based table scans
	Partition-based scans
	Hash-based index scans
	Parallel processing for two tables in a join
	showplan messages

	Controlling the degree of parallelism
	Configuration parameters for controlling parallelism
	How limits apply to query plans
	How the limits work in combination
	Examples of setting parallel configuration parameters

	Using set options to control parallelism for a session
	set command examples

	Controlling parallelism for a query
	Query level parallel clause examples

	Worker process availability and query execution
	Other configuration parameters for parallel processing

	Commands for working with partitioned tables
	Balancing resources and performance
	CPU resources
	Disk resources and I/O
	Tuning example: CPU and I/O saturation

	Guidelines for parallel query configuration
	Hardware guidelines
	Working with your performance goals and hardware guidelines
	Examples of parallel query tuning
	Improving the performance of a table scan
	Improving the performance of a nonclustered index scan

	Guidelines for partitioning and parallel degree
	Experimenting with data subsets

	System level impacts
	Locking issues
	Device issues
	Procedure cache effects

	When parallel query results can differ
	Queries that use set rowcount
	Queries that set local variables
	Achieving consistent results

	CHAPTER 8 Parallel Query Optimization
	What is parallel query optimization?
	Optimizing for response time versus total work

	When is optimization performed?
	Overhead costs
	Factors that are not considered

	Parallel access methods
	Parallel partition scan
	Requirements for consideration
	Cost model

	Parallel clustered index partition scan (allpages-locked tables)
	Requirements for consideration
	Cost model

	Parallel hash-based table scan
	Hash-based table scans on allpages-locked tables
	Hash-based table scans on data-only-locked tables
	Requirements for consideration
	Cost model

	Parallel hash-based index scan
	Cost model and requirements

	Parallel range-based scans
	Requirements for consideration

	Additional parallel strategies
	Partitioned worktables
	Parallel sorting

	Summary of parallel access methods
	Selecting parallel access methods

	Degree of parallelism for parallel queries
	Upper limit
	Optimized degree
	Worker processes for partition-based scans
	Worker processes for hash-based scans
	Worker processes for range-based scans

	Nested-loop joins
	Alternative plans
	Computing the degree of parallelism for nested-loop joins
	Parallel queries and existence joins

	Examples
	Partitioned heap table
	Nonpartitioned heap table
	Table with clustered index

	Runtime adjustments to worker processes

	Parallel query examples
	Single-table scans
	Table partition scan

	Multitable joins
	Parallel join optimization and join orders

	Subqueries
	Queries that require worktables
	union queries
	Queries with aggregates
	select into statements

	Runtime adjustment of worker processes
	How Adaptive Server adjusts a query plan
	Evaluating the effect of runtime adjustments
	Recognizing and managing runtime adjustments
	Using set process_limit_action
	Using showplan

	Reducing the likelihood of runtime adjustments
	Checking runtime adjustments with sp_sysmon

	Diagnosing parallel performance problems
	Query does not run in parallel
	Parallel performance is not as good as expected
	Calling technical support for diagnosis

	Resource limits for parallel queries

	CHAPTER 9 Parallel Sorting
	Commands that benefits from parallel sorting
	Requirements and resources overview
	Overview of the parallel sorting strategy
	Creating a distribution map
	Dynamic range partitioning
	Range sorting
	Merging results

	Configuring resources for parallel sorting
	Worker process requirements for parallel sorts
	Worker process requirements for creating indexes
	Using with consumers while creating indexes

	Worker process requirements for select query sorts
	Worker processes for merge-join sorts
	Other worktable sorts

	Caches, sort buffers, and parallel sorts
	Cache bindings
	Number of sort buffers can affect sort performance
	Sort buffer configuration guidelines
	Using less than the configured number of sort buffers
	Configuring the number of sort buffers parameter
	Procedure for estimating merge levels and I/O
	Configuring caches for large I/O during parallel sorting
	Balancing sort buffers and large I/O configuration

	Disk requirements
	Space requirements for creating indexes
	Space requirements for worktable sorts
	Number of devices in the target segment

	Recovery considerations
	Tools for observing and tuning sort behavior
	Using set sort_resources on
	Examples

	Using sp_sysmon to tune index creation
	Using parellel sort to speed the create index

	CHAPTER 10 Tuning Asynchronous Prefetch
	How asynchronous prefetch improves performance
	Improving query performance by prefetching pages
	Prefetching control mechanisms in a multiuser environment
	Look-ahead set during recovery
	Prefetching log pages
	Prefetching data and index pages

	Look-ahead set during sequential scans
	Look-ahead set during nonclustered index access
	Look-ahead set during dbcc checks
	Allocation checking
	checkdb and checktable

	Look-ahead set minimum and maximum sizes

	When prefetch is automatically disabled
	Flooding pools
	I/O system overloads
	Unnecessary reads
	Page chain fragmentation

	Tuning Goals for asynchronous prefetch
	Commands for configuration

	Other Adaptive Server performance features
	Large I/O
	Sizing and limits for the 16k pool
	Limits for the 2K pool

	Fetch-and-discard (MRU) scans
	Parallel scans and large I/Os
	Hash-based table scans
	Partition-based scans

	Special settings for asynchronous prefetch limits
	Setting limits for recovery
	Setting limits for dbcc

	Maintenance activities for high prefetch performance
	Eliminating kinks in heap tables
	Eliminating kinks in clustered index tables
	Eliminating kinks in nonclustered indexes

	Performance monitoring and asynchronous prefetch

	CHAPTER 11 Multiple Temporary Databases
	Overview
	After creating a temporary database
	Using sp_tempdb
	Binding with temporary databases
	Session binding

	Multiple temporary database and the system
	System table changes
	sysattributes
	sysdatabases

	@@tempdbid global variable
	tempdb_id() function
	Log truncation
	Rollback and recovery
	Dropping a temporary database
	Dropping other databases

	alter database
	Caching characteristics
	Binding usercreated temporary databases to a data cache

	Processing stored procedures
	tempdb write optimization
	Highavailability considerations
	Highavailability configuration
	Proxy database support
	Failover scenarios
	Normal companion behavior
	Mount/Unmount

	Dumping and loading temporary databases
	sp_dboption stored procedure
	Configuring the number of open databases
	Changed procedures
	Unchanged yet notable procedures

	Changed and additional DBCCs
	dbcc pravailabletempdbs
	dbcc addtempdb

	Additional changes

	Installation issues
	Sizing and configuring temporary databases for applications
	Shareable temporary tables
	Updating usercreated stored procedures
	Downgrading to an earlier version

	CHAPTER 12 tempdb Performance Issues
	How management of tempdb affects performance
	Main solution areas for tempdb performance

	Types and uses of temporary tables
	Truly temporary tables
	Regular user tables
	Worktables

	Initial allocation of tempdb
	Sizing the tempdb
	Placing tempdb
	Dropping the master device from tempdb segments
	Using disks for parallel query performance

	Binding tempdb to its own cache
	Commands for cache binding

	Temporary tables and locking
	Minimizing logging in tempdb
	With select into
	By using shorter rows

	Optimizing temporary tables
	Creating indexes on temporary tables
	Creating nested procedures with temporary tables
	Breaking tempdb uses into multiple procedures

	CHAPTER 13 Cursors and Performance
	Definition
	Set-oriented versus row-oriented programming
	Example

	Resources required at each stage
	Memory use and execute cursors

	Cursor modes
	Index use and requirements for cursors
	Allpages-locked tables
	Data-only-locked tables
	Table scans to avoid the Halloween problem

	Comparing performance with and without cursors
	Sample stored procedure without a cursor
	Sample stored procedure with a cursor
	Cursor versus noncursor performance comparison

	Locking with read-only cursors
	Isolation levels and cursors
	Partitioned heap tables and cursors
	Optimizing tips for cursors
	Optimizing for cursor selects using a cursor
	Using union instead of or clauses or in lists
	Declaring the cursor’s intent
	Specifying column names in the for update clause
	Using set cursor rows
	Keeping cursors open across commits and rollbacks
	Opening multiple cursors on a single connection

	CHAPTER 14 Overview on Abstract Plans
	Definition
	Managing abstract plans
	Relationship between query text and query plans
	Limits of options for influencing query plans

	Full versus partial plans
	Creating a partial plan

	Abstract plan groups
	How abstract plans are associated with queries

	CHAPTER 15 Abstract Query Plan Guide
	Introduction
	Abstract plan language
	Queries, access methods, and abstract plans
	Derived tables

	Identifying tables
	Identifying indexes
	Specifying join order
	Shorthand notation for joins
	Join order examples
	Match between execution methods and abstract plans
	Specifying join order for queries using views

	Specifying the join type
	Specifying partial plans and hints
	Grouping multiple hints
	Inconsistent and illegal plans using hints

	Creating abstract plans for subqueries
	Materialized subqueries
	Flattened subqueries
	Example: changing the join order in a flattened subquery
	Nested subqueries
	Subquery identification and attachment
	More subquery examples: reading ordering and attachment
	Modifying subquery nesting

	Abstract plans for materialized views
	Abstract plans for queries containing aggregates
	Specifying the reformatting strategy
	OR strategy limitation
	When the store operator is not specified

	Tips on writing abstract plans
	Comparing plans “before” and “after”
	Effects of enabling server-wide capture mode
	Time and space to copy plans

	Abstract plans for stored procedures
	Procedures and plan ownership
	Procedures with variable execution paths and optimization

	Ad Hoc queries and abstract plans

	CHAPTER 16 Creating and Using Abstract Plans
	Using set commands to capture and associate plans
	Enabling plan capture mode with set plan dump
	Associating queries with stored plans
	Using replace mode during plan capture
	When to use replace mode

	Using dump, load, and replace modes simultaneously
	Using dump and load to the same group
	Using dump and load to different groups

	set plan exists check option
	Using other set options with abstract plans
	Using showplan
	Using noexec
	Using forceplan

	Server-wide abstract plan capture and association Modes
	Creating plans using SQL
	Using create plan
	Using the plan Clause

	CHAPTER 17 Managing Abstract Plans with System Procedures
	System procedures for managing abstract plans
	Managing an abstract plan group
	Creating a group
	Dropping a group
	Getting information about a group
	Renaming a group

	Finding abstract plans
	Managing individual abstract plans
	Viewing a plan
	Copying a plan to another group
	Dropping an individual abstract plan
	Comparing two abstract plans
	Changing an existing plan

	Managing all plans in a group
	Copying all plans in a group
	Comparing all plans in a group
	Dropping all abstract plans in a group

	Importing and exporting groups of plans
	Exporting plans to a user table
	Importing plans from a user table

	CHAPTER 18 Abstract Plan Language Reference
	Keywords
	Operands
	Abstract plan derived tables

	Schema for examples
	g_join
	hints
	i_scan
	in
	lru
	m_g_join
	mru
	nested
	nl_g_join
	parallel
	plan
	prefetch
	prop
	scan
	store
	subq
	t_scan
	table
	union
	view
	work_t

	Index

