
Developers Guide

Sybase RAP - The Trading Edition

DOCUMENT ID: DC00794-01-0100-01

LAST REVISED: March 2008

Copyright © 2005-2008 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the marks listed
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents
About This Book .. vii

CHAPTER 1 Platform Architecture .. 1
Overview .. 2

Feed handlers ... 2
Publishers.. 3
Subscribers ... 3
Operations Console... 4

Processing market data messages .. 4
Building messages ... 5
Transferring messages .. 5

Increasing publisher performance ... 6
Increasing subscriber performance ... 7

Loading messages ... 8
RAPCache performance tuning... 9
RAPStore performance tuning .. 10

Message filtering .. 11
Use cases for feed handlers .. 12

Sending a market data message... 12
Shutting down a feed handler.. 13

CHAPTER 2 RAP Data Stream Templates.. 15
Overview .. 16
Datatype conversion .. 16

Supported datatypes ... 17
Unsupported datatypes ... 17
Integer conversions ... 17
Numeric conversions... 18
Date and time conversions.. 18
Lookup tables .. 19
Recommended RDS datatype to SQL datatype mappings 19

CHAPTER 3 Publisher API... 21
Developers Guide iii

Contents
Overview .. 22
Initialization.. 22
Configuration Property Values .. 23
Message Description... 23

Constants ... 25
Error Codes ... 25
Publisher API Data Structures... 25

Methods ... 26
pub_initialize.. 27
pub_beginMessage ... 28
pub_cancelMessage ... 28
pub_setField.. 29
pub_sendMessage .. 30
pub_flush... 30
pub_shutdown... 31

CHAPTER 4 FAST Feed Handler.. 33
Overview .. 34

Implementing a FAST feed handler... 34
Sample code ... 34

FAST feed handler API interface ... 35
initializeRAPHandler.. 36
finalizeRAPCallback .. 36
processRAPCallback... 37
initialize.. 37
receiveMessage .. 38
finalize ... 39
publisherShutdown.. 39

CHAPTER 5 Logging... 41
Overview .. 42
Logging levels .. 42
Logging API interfaces ... 42

log_open.. 43
log_message ... 43
log_close ... 44
log_get_context ... 44
log_init_from_context .. 44
log_message_force ... 45
log_hexdump... 45

APPENDIX A Sample Configuration and Template Files 47
iv Sybase RAP - The Trading Edition

Contents
Publisher configuration... 48
Publisher element descriptions ... 49

FAST Feed Handler configuration.. 50
FAST Feed Handler element descriptions 51

RDS template... 53
RDS template XML element descriptions................................ 55

CHAPTER 6 FIX Message to data model mappings.. 59
General processing notes .. 60

Instrument blocks .. 60
Data aggregation and missing data... 60
RDS message types.. 61
Determining instrument type ... 61

Advertisement FIX message .. 63
Stock trade RDS mapping... 63
Mutual fund history RDS mapping... 63
Bond trade RDS mapping ... 64
Option trade RDS mapping ... 64

Mass quote FIX message .. 65
Stock quote RDS mapping .. 65
Bond quote RDS mapping... 65

Security status fix message ... 66
Stock history RDS mapping .. 66

Installing a signal handler... 66

Index ... 69
Developers Guide v

Contents
vi Sybase RAP - The Trading Edition

Developers Guide vii

About This Book

Audience Sybase RAP - The Trading Edition Developers Guide is intended for
developers who are creating custom feed handlers and statistics
monitoring for Sybase RAP.

How to use this book Before using the information in this book to write applications that
interface between market data feeds and the Sybase RAP components,
refer to the Sybase RAP - The Trading Edition Release Bulletin for any last
minute information regarding this product.

Related documents Refer to the following documents for more information:

• Sybase RAP - The Trading Edition Release Bulletin

• Sybase RAP - The Trading Edition Installation and Configuration
Guide

• Sybae RAP - The Trading Edition Users Guide

• Sybase RAP - The Trading Edition Operations Console Users Guide

• Sybase IQ 12.7 product documentation

• Adaptive Server® Enterprise 15.0 product documentation

• OpenSwitch™ 15.1 product documentation

• PowerDesigner® 12.5 product documentation

• Open Client™ 15.0 product documentation

• White paper titled Using Sybase NonStopIQ and EMC CLARiiON for
Backup/Restore, High Availability, and Disaster Recovery at
http://www.sybase.com/detail?id=1054761

• White paper titled Time Series in finance: the array database approach
at http://cs.nyu.edu/shasha/papers/jagtalk.html

• White paper titled FinTime --- a financial time series benchmark at
http://www.cs.nyu.edu/cs/faculty/shasha/fintime.html

Note This product includes software developed by The Apache Software
Foundation at http://www.apache.org/.

http://www.sybase.com/detail?id=1054761
http://cs.nyu.edu/shasha/papers/jagtalk.html
http://www.cs.nyu.edu/cs/faculty/shasha/fintime.html
http://www.apache.org

viii Sybase RAP - The Trading Edition

Other sources of
information

Use the Sybase Getting Started CD, the Sybase Infocenter Web site, and the
Sybase Product Manuals Web site to learn more about your product:

• The Getting Started CD contains the release bulletin, installation and
configuration guide, administration guide, and users guide in PDF format.
It is included with your software. To read or print documents on the
Getting Started CD, you need Adobe Acrobat Reader, which you can
download at no charge from the Adobe Web site using a link provided on
the CD.

• The Sybase Infocenter Web site is an online version of the product
manuals that you can access using a standard Web browser.

To access the Infocenter Web site, go to Sybooks Online Help at
http://infocenter.sybase.com/help/index.jsp

• The Sybase Product Manuals Web site is an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click Certification Report.

3 In the Certification Report filter select a product, platform, and timeframe
and then click Go.

4 Click a Certification Report title to display the report.

❖ Finding the latest information on component certifications

1 Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

2 Either select the product family and product under Search by Base
Product; or select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

http://infocenter.sybase.com/help/index.jsp
http://www.sybase.com/support/manuals
http://www.sybase.com/support/techdocs
http://certification.sybase.com

 About This Book

Developers Guide ix

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Accessibility
features

This document is available in an HTML version that is specialized for
accessibility. You can navigate the HTML with an adaptive technology such as
a screen reader, or view it with a screen enlarger.

Sybase RAP documentation complies with U.S. government Section 508
Accessibility requirements. Documents that comply with Section 508
generally also meet non-U.S. accessibility guidelines, such as the World Wide
Web Consortium (W3C) guidelines for Web sites.

http://www.sybase.com/support/techdocs
http://www.sybase.com/support

x Sybase RAP - The Trading Edition

For information about accessibility support in the Sybase IQ plug-in for Sybase
Central, see “Using accessibility features” in Chapter 1, “Introducing Sybase
IQ” in Introduction to Sybase IQ. The online help for Sybase IQ, which you
can navigate using a screen reader, also describes accessibility features,
including Sybase Central keyboard shortcuts.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT as initials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

Note If you need to contact Sybase regarding this product, use the internal
version Sybase RAP 1.0 to identify this release.

http://www.sybase.com/accessibility

Developers Guide 1

C H A P T E R 1 Platform Architecture

About this Chapter This chapter provides an overview of the software tools that can be used
to write applications that interface between market data feeds and Sybase
RAP components.

Contents Topic Page

Overview 2

Processing market data messages 4

Building messages 12

Transferring messages 12

Loading messages 12

Message filtering 11

Use cases for feed handlers 12

Overview

2 Sybase RAP - The Trading Edition

Overview
Sybase RAP writes in-bound market data to an in-memory cache database and
a historical data store. The cache database is an Adaptive Server Enterprise (ASE)
database; the historical data store is a Sybase IQ database. The platform architecture of
Sybase RAP includes Feed Handlers, Publishers, and Subscribers.

Unified Agent Framework (UAF) provides a common set of discovery
services, and host agent plug-ins that manage server resources or perform
various operations. Agent plug-ins can perform product-specific commands,
including status, start, stop, and restart.

Feed handlers
Feed handlers direct inbound market data into the Sybase RAP environment.
Feed handlers are publishers that manage connectivity and message
transformation directly from exchanges, like the NYSE, or consolidated
service providers, like Reuters. Although all feed handlers are currently third
party, Sybase RAP provides a common API publisher that allows vendors to
integrate proprietary data feeds with the Sybase RAP API handler.

CHAPTER 1 Platform Architecture

Developers Guide 3

Sybase RAP includes a Sybase feed handler that reads comma-delimited
market data from a demo file. This component is intended to help developers
become familiar with the Publisher API and demonstrate network message
flow.

Publishers
Publishers format incoming market data messages, and forward those
messages to a subscriber in an internal Sybase RAP Data Stream (RDS) format.
A publisher consists of two layers: Publisher API and Network layer.

The Publisher API is intended for Sybase feed handlers (Demo Feed Handler and
FAST Feed Handler), and developers who want to map proprietary market data into
Sybase RAP. The Publisher API uses an RDS template-processing module that
identifies the message type, formats the messages, and calls the Network layer.
The Network Layer buffers the messages into packets, and sends the packets to
across multiple data streams to a subscriber.

Subscribers
Subscriber consists of two components. The Open Subscriber component,
handles all network interface issues, and queues up messages to be consumed
by a data stream handler component. The data stream handler routes the
messages to their final destination.

Each data stream listens for packets on one UDP broadcast channel. When a
packet arrives on a channel, the subscriber checks and records the packet
sequence number to determine potentially missing packets. The packet
recorder has a fixed size window. If the packet recorder is full, the subscriber
asks the publisher to resend the missing packet on the publisher resend channel.
The packet recorder will then shift its window by one packet.

Sybase RAP includes two data stream handlers: the RAPCache Data Stream
Handler (Cache DSH) and the RAPStore Data Stream Handler (Store DSH).
The Cache DSH loads messages into ASE. The Store DSH loads messages into
Sybase IQ. The Demo Subscriber component includes a Demo Data Stream
Handler that can be configured to write or discard messages.

Processing market data messages

4 Sybase RAP - The Trading Edition

Operations Console
Operations Console is a Web-based console that monitors system status and
performs routine administration tasks. UAF plug-ins running on each server
handle communication between Operations Console and Sybase RAP
components. When an agent starts on a server, the agent starts all of its plug-
ins and registers with the JINI server. Operations Console queries the JINI
server to learn about all agents and their plug-ins.

Communication between Operations Console and the plug-ins occurs via RMI
(remote method invocation). Publisher and subscriber plug-ins communicate
with publishers and subscribers components via TCP over a local socket. Each
publisher and subscriber has an administration channel listening on a specific
port. When Operations Console issues a command, the agent intercepts the
request, and contacts the component. The component sends a response through
the agent back to Operations Console.

Processing market data messages
The bulk of the messaging used within the Sybase RAP system contains market
data. Market data messages are buffered within a message of type
RDS_PACKET. An RDS_PACKET is used as a container for one or more market
data messages.

For market data messages, Sybase RAP uses a template to encode (and decode)
each message in the proper format. The message format consists of a message
header, a fixed-length portion of the message, and a variable-length portion.
Each fixed-length field will be packed into the fixed-length portion of the
message, according to the offset for the field obtained from the template. Each
variable-length field will be appended to the message after the fixed-length
portion, preceded by a one-byte length.

The market data message header contains the market data message type and
total length. The fixed-length portion of the message appears after the market
data header. Each variable-length field will follow, preceded by a single byte
which indicates field length.

CHAPTER 1 Platform Architecture

Developers Guide 5

Building messages
Use the Sybase RAP Publisher API to create messages to the first data
processing stage. The following parameter, defined in the configuration file
publisher.xml, affects performance.

Transferring messages
Transferring messages from a publisher to a subscriber is the second data
processing stage. Minimizing or eliminating packet re-transmission due to
dropped packets is the single most important factor in maximizing Sybase RAP
performance.

Why packets are
dropped

UDP packets can be dropped by the system for a number of reasons:

• The publisher is sending packets too fast for the network to keep up. In this
case, the publishing socket SO_SNDBUF is too small, or the network is too
slow, or the subscriber's socket SO_RCVBUF is too small, to keep up with
the workload.

The maximum values for SO_SNDBUF and SO_RCVBUF can be changed
by reconfiguring the operating system. Sybase RAP publisher and
subscriber software allocate the maximum buffer space allowed by the
operating system for SO_SNDBUF and SO_RCVBUF buffering.

• The subscriber is not loading data as fast as the data is being received. This
is likely due to CPU speed, or the number of CPUs on the subscriber
system. This could also be due to an improperly tuned or configured ASE
or Sybase IQ server, preventing data from loading as fast as possible.

Parameter Description

NumMessageBuffers A message buffer is an in memory storage area used by the publisher API
to store the information for a message that is in the process of being built.

One message buffer is required for each message that is being
simultaneously built. Multi-threaded custom applications require this
value to be set at least as large as the number of threads that are
concurrently creating messages.

Application designers should be aware that the definition of many
message buffers can result in CPU contention, and should limit the
number of threads building messages concurrently accordingly. Since the
message buffers are an in memory storage area, the number of message
buffers that can be created will be bound by available system memory.

Transferring messages

6 Sybase RAP - The Trading Edition

Eliminating or
reducing dropped
packets

To reduce or eliminate dropped packets:

• Use multiple multicast channels. Each DataStream channel defined in a
publisher or subscriber is a separate multicast channel. Each channel is a
multicast IP address and port number pair, and contains its own operating
system buffers and network interface.

• Use a high-speed network interface. The interface is specified when the
channel is configured, and should reference the highest-speed network
interface on your system. This interface should be at least 1gigabit/second
(1000base-T/SX/LX).

• Use multiple network interfaces. If you have more than one network
interface in your machine, you can configure one or more Sybase RAP
DataStream Channels over each of them, for maximum transmission rates.
This will allow greater throughput by the network, by splitting the data
channels over two or more separate high-speed interfaces.

• Use multiple network interfaces. If you have more than one network
interface in your machine, you can configure one or more Sybase RAP
DataStream Channels over each of them, for maximum transmission rates.
This will allow greater throughput by the network, by splitting the data
channels over two or more separate high-speed interfaces.

• Use systems with more CPUs or cores, so that the multi-threaded
subscriber can process incoming data in parallel. Each DataStream
Channel is managed by its own thread, and separate threads are used to
load each table in ASE or Sybase IQ. Therefore, there is ample opportunity
to leverage parallel processing, if sufficient CPU and cores are available
on the system.

• Configure your system so that the host computers for publishers and
subscribers are on the same subnet, eliminating the need for packets to
pass through routers.

• Configure your network to allow larger MTU sizes. The Maximum
Transmission Unit (MTU) is the largest size of IP datagram which may be
transferred in one frame using a specific data link connection, and can be
configured to be larger than the default (which is typically 1500 bytes).

Increasing publisher performance
The following parameters defined in the configuration file publisher.xml affect
the publisher performance.

CHAPTER 1 Platform Architecture

Developers Guide 7

Table 1-1: Publisher performance settings.

Increasing subscriber performance
The following parameters defined in the configuration file opensubscriber.xml
affect subscriber performance.

Table 1-2: Subscriber performance settings.

Parameter Description

LogLevel This parameter controls how much information is logged during system
operation. Logging information is an expensive operation, and this level
should be adjusted to log as little information as possible for effective
operation of the system in your operational environment. For optimal
performance this value should be set to error or warning.

NumPacketBuffers This parameter controls the ability of the system to respond to a loss of
information over the network. Specifically, this setting controls the
number of packets to cache, on a per data stream basis, for use in
responding to resend requests by a subscriber. Higher values of this
setting will cause the system to allocate more memory to store previously
sent information, and will increase the reliability of the system. This
parameter should be tuned in conjunction with the MTU size of the host
interface on which this publisher is operating. If the MTU size of the host
interface is large, a much lower number of packet buffers will be required
to achieve overall system reliability. It will also improve overall system
performance.

DataStreamChannelList The data stream channel is an independent pipeline through which
messages are transmitted. Each data stream channel has its own set of
packet, and network buffers. Adding multiple data streams to a publisher
increases the amount of data that can be sent across the network reliably.
This parameter should be increased in situations where the subscribers are
not receiving the data sent by the publishers over the network, and when
the subscribers themselves cannot keep up with the data sent by the
publisher. Any changes made to the data channels in a publisher, must
also be made to the subscribers who are subscribed to the publisher and
may affect the performance of the subscribers.

Parameter Description

LogLevel This parameter controls how much information is logged during system
operation. Logging information is an expensive operation, and this level
should be adjusted to log as little information as possible for effective
operation of the system in your operational environment. For optimal
performance this value should be set to error or warning.

Loading messages

8 Sybase RAP - The Trading Edition

Loading messages
Loading messages into the target databases (RAPCache and RAPStore) is the
final data processing stage. Subscribers convert messages into their native
binary format before loading the messages.

NumPacketBuffers Packet buffers are in memory buffers used on the subscriber side to store
arriving packets until they are processed by the subscriber. The number
of packet buffers is specified on a per data stream channel basis. This
parameter should be increased if the message sending rate of the
publisher exceeds the message receiving rate of the subscriber. If the
subscriber can process data at a rate matching the data sent by the
publisher, a value of 20-35 packet buffers per data stream channel is
ample to allow for small bursts of increased traffic.

PacketWindowSize The subscribers may receive network packets in an order other than the
order the packets were sent. If a packet is received out of sequence, this
parameter determines how many additional packets can be received
before a resend request is sent for the missing packet. A very small value
can result in requesting resends for packets that will arrive out of order
due to network latencies. A very large value will increase the latency that
occurs when packets are actually lost over the network.

The packet window size is related to the number of packets cached by the
publishers sending data to this subscriber (NumPacketBuffers). The
packet window size of a subscriber should be 70-80% of the number of
packets cached by the publisher to ensure that the publisher has the ability
to send missing packets in response to resend requests. This setting
should never be set to a value that exceeds the number of packet buffers
allocated to its publisher as this will result in data loss in situations where
resends are required.

DataStreamChannelList This parameter lists the data stream channel definitions for the subscriber.
The list should match the data stream channel list defined for the
publishers to which this subscriber is subscribed.

The number of data stream channels should be increased if the message
sending rate of the publisher exceeds the message receiving rate of the
subscriber. It should be noted, however, that a very large number of data
channels has a negative impact on the overall system performance as it
results in resource contention.

Parameter Description

CHAPTER 1 Platform Architecture

Developers Guide 9

RAPCache performance tuning
Tuning the RAPCache database can increase overall system performance.
Increasing the number of partitions per database table, CPUs (engines) in the
database server and the cache size can significantly improve the overall system
performance. For detailed information about RAPCache configuration
parameters and performance tuning suggestions, please refer to the ASE
documentation.

Adjusting these configuration parameters in rapcache.xml can affect the
RAPCache message loading performance.

Table 1-3: RAPCache performance options.

Parameter Description

TDSPacketSize The TDS packet size affects the maximum size of the packets that
are transmitted between the RAPCachee subscriber and the
RAPCache database. Larger TDS packet size (8K or 16K) values
reduce network communication overhead between the subscriber
and the cache and help improve system performance.

To use a large TDS packet size, adjust these parameters in the
RAPCache database:

• Set the additional network memory parameter to allow for
(TDSPacketSize x The number of loaders) additional memory.
The number of loaders in the system will be the number of
database tables x the number of partitions per table.

• Set the max network packet size to allow for the packet size
set in the RAPCache subscriber configuration. Additional
information on these parameters can be found in the ASE
documentation.

BulkInsertArraySize This parameter affects the amount of buffer the RAPCache
Subscriber will use before transferring data to the RAPCache.
Large values for this parameter along with a large TDS packet size
can result in reduced network overhead between the RAPCache
and the subscriber. The value set for this parameter is constrained
by overall system memory.

BulkBatchSize Information loaded into the RAPCache is committed to the
database periodically and made available to readers.

This parameter controls how much information can be loaded into
the RAPCache before it is committed. Higher values of this
parameter increase the latency of the system, and require the
number of locks in the RAPCache to be increased to
accommodate larger database transactions. Smaller values for this
parameter introduce the extra overhead of frequently committing
transactions to the database and result in slower load performance.

Loading messages

10 Sybase RAP - The Trading Edition

RAPStore performance tuning
Adjusting these configuration parameters in rapstore.xml can affect the
RAPStore message loading performance.

Table 1-4: RAPStore performance options.

IdleBufferWriteDelayMSec This parameter determines the number of milliseconds to wait
before data is transferred to the RAPCache when the system is not
receiving data from the publisher. Low values of this parameter
will ensure lower system latency in periods where the information
flow is not steady.

Parameter Description

Parameter Description

PrimaryFileLocation &
OverflowFileLocation

These parameters control where binary files containing data to be
loaded into the RAPStore are stored. For optimal system
performance, these files should be stored on separate physical disk
controllers than the RAPStore system itself. As well, the primary
and overflow locations should be placed on separate file systems.

IOBuffferSizeMB This parameter determines the amount of data stored in memory per
database table before the data is written out to a file. Larger values
for this parameter result in higher system throughput, but the
parameter is constrained by the amount of available system memory.

NumIOBuffers IO buffers are in memory storage locations that allow the system to
continue to receive data when it is writing previously received data
out to a file. This parameter determines the number of IO buffers
created per table. Increasing the number of IO buffers beyond a
value of 3 or 4 does not increase the performance of the system.

TargetFileSizeMB This parameter determines the size of each binary file that is loaded
into the RAPStore. Larger values for this parameter will increase the
latency of the system. Small values for this parameter will affect
system performance due to the I/O consequences of writing out and
loading many individual files.

IdleBufferWriteDelaySec This parameter determines the number of seconds to wait before data
is written out to file when the system is not receiving data from the
publisher. Larger values for this parameter will caused increase
latency in situations where data flow is not steady. Very small values
will increase the file overhead costs in the system, and will reduce
performance.

CHAPTER 1 Platform Architecture

Developers Guide 11

Message filtering
Both the RAPCache and RAPStore subscribers can be configured to
automatically filter certain messages. A rule definition specifies a message
type (by it's ID, which is set in the template for that message type), whether the
rule is an include rule or an exclude rule, and the condition. For include rules,
only messages that match the condition are loaded. For exclude rules, messages
that match the condition are excluded.

 It is not valid to define both an include rule and an exclude rule for the same
message type. However, the same message type can have multiple rules of the
same type. These rules are defined by using multiple Rule tag blocks in the
configuration XML file, as shown in the sample file below.

Message filtering is configured in messagefilter.xml. This file lives in the
config directory of the RAP Cache and RAP Store. The file should be identical
for both subscribers. There is a messagefilter.xsd file that is in the same
directory.

 The file below is a sample. The file shipped with the product does not contain
any rules. It contains only the MessageFilter and RuleList tags.

 <?xml version="1.0" encoding="UTF-8"?>
<MessageFilter>

<RuleList>
<Rule>

<MessageType>4</MessageType>
<RuleType>exclude</RuleType>
<FieldRule>

<FieldName>Exchange</FieldName>
<FieldValue>NYSE</FieldValue>

</FieldRule>
</Rule>
<Rule>

<MessageType>13</MessageType>
<RuleType>include</RuleType>
<FieldRule>

<FieldName>Symbol</FieldName>
<FieldValue>SY</FieldValue>

</FieldRule>
</Rule>

</RuleList>
</MessageFilter>

Use cases for feed handlers

12 Sybase RAP - The Trading Edition

The following table explains the meaning of each of the XML elements in the
template.

Table 1-5: Message Filterin Element Descriptions

Use cases for feed handlers
This section provides several examples of use cases for feed handlers. Note that
in the examples, error checking has been ignored for simplicity; production
code should include error checking.

Sending a market data message
The Publisher API offers your methods that allow the feed handler to build a
message to be sent to the Sybase RAP system. After initializing the Publisher
API, do the following to build a message:

PUB_CALLBACKS * callbacks;
PUB_STARTUP * startup;
PUB_SEND_MESSAGE_CONTEXT * msg;

 Element Description

MessageFilter Root element for the message filters configuration file.

RuleList A list of rules for filtering messages.

Rule Contains conditions for a rule. Contains one MessageType element
and zero or one FieldRule elements.

MessageType The type of message to include/exclude.

RuleType Indicates the type of rule. Valid values are:

• exclude – if the rules holds true, exclude the message

• include – if the rule holds true, include the message

FieldRule Contains conditions for rules on a particular field.

FieldName The name of the field to include/exclude when the value of the field
matches FieldValue.

FieldValue The value of the field to match. This value must be non-null.

• If the value is a time, the format of the value must be hh:mm:ss
or hh:mm:ss.sss

• If the value is a date, the format must be YYYY-MM-DD

• If the value is a DateTime, then the format must be YYYY-MM-
DDThh:mm:ss or YYYY-MM-DDThh:mm:ss.sss

CHAPTER 1 Platform Architecture

Developers Guide 13

uint16_t error_code;

callbacks = Allocate a PUB_CALLBACKS structure;
callbacks->shutdown = &myShutdownEventReceiver;

startup = Allocate a PUB_STARTUP structure;
startup->config_dir = configuration file directory or null;
startup->template_dir = “templates”;
startup->strict_check = false;
startup->component_subtype = “FAST Feed Handler”;
startup->callbacks = callbacks;

pub_initialize(startup);
msg = Allocate a PUB_SEND_MESSAGE_CONTEXT structure;
loop for each message {

error_code = pub_beginMessage(<message_type>, msg);
error_code = pub_setInt32Field(msg, <field_name>, <field_value>);
error_code = pub_setStringField(msg, <field_name>, <field_value>);
error_code = pub_setInt16Field(msg, <field_name>, <field_value>);
error_code = pub_sendMessage(msg);

}
error_code = pub_flush();
error_code = pub_shutdown(false);

Free the PUB_SEND_MESSAGE_CONTEXT structure;
Free the PUB_CALLBACKS structure;

To build multiple messages at once, allocate several
PUB_SEND_MESSAGE_CONTEXT structures and use one structure per message
being simultaneously built. Only one call should be made to initialize the
Publisher, not one per thread. Similarly, only a single call should be made to
shut down the Publisher.

The feed handler does not need to call flush. This call is optional. The
shutdown API accepts a Boolean parameter which indicates whether to flush
any buffered messages before shutting down.

Shutting down a feed handler
When the Publisher receives a shutdown request (likely initiated by the
Operations Console), the Publisher calls the feed handler shutdown callback.
The Publisher does not perform any shutdown action upon receipt of this
request, since the feed handler may need to perform its shutdown actions first.
The feed handler should perform its shutdown activities, call cancelMessage
for any messages that are in progress of being built (or finish building them),
and then call the Publisher shutdown method.

Use cases for feed handlers

14 Sybase RAP - The Trading Edition

Developers Guide 15

C H A P T E R 2 RAP Data Stream Templates

About this Chapter This chapter provides a description of the function and format of RAP
Data Stream (RDS) templates to use for customizing template files for
your particular data feed application.

Contents Topic Page

Overview 16

Datatype conversion 16

Overview

16 Sybase RAP - The Trading Edition

Overview
The Publisher API and the subscribers look up information about message
formats in a set of RAP Data Stream (RDS) templates. RDS templates are
XML documents that represent the data structure of specific message types.
The Publisher API uses templates to build the messages it sends to subscribers;
subscribers use templates to parse messages and store them in a database.

The use of RDS templates minimizes the network bandwidth required for
message transmission across the network. In addition, RDS templates increase
processing efficiency by minimizing the number of CPU cycles needed to
process each message.

Templates are located using a directory passed into the Publisher initialization
method. All files that reside in that directory are read into memory. There may
be one or more template files and each file may contain one or more message
definitions. templateprocessor.a is the static library containing the Template
Processing module that is shipped with Sybase RAP.

Notes

• See “RDS template” on page 53 for a sample RDS template file and list of
XML element definitions.

• Publishers and subscribers can reside on different computers, but the same
templates and same version of the software must be used by both the
publisher and subscriber.

• All message types must be expressed in the proper template format. A
template specifies all fields included in a message, as well as the sequence
of those fields. Each field within a message must be set in the order in
which it is defined in the template.

Datatype conversion
The RAPCache and RAPStore subscribers attempt automatic datatype
conversion between the RAP Data Stream (RDS) datatypes used to transfer
messages between the publisher and subscriber sides, and the database column
datatypes used to store the information. In general, datatype conversion is
attempted, if the types are compatible and no loss of precision occurs.

CHAPTER 2 RAP Data Stream Templates

Developers Guide 17

Supported datatypes
• 8, 16, 32 and 64-bit SIGNED INTEGER and UNSIGNED INTEGER

• NUMERIC and DECIMAL datatypes with precision from 1 to 18, inclusive

• DATE

• DATETIME

• CHARACTER strings less than or equal to 255 bytes

Note Due to the underlying differences between the RAPCache and RAPStore
databases, if a message contains an empty string, the empty string is stored as
NULL in the RAPCache database and is stored as an empty string in the
RAPStore database.

Unsupported datatypes
Sybase RAP does not support RDS message definitions that reference a table
which has a CHAR or VARCHAR column which is non-null and has a default
value, where that column is not explicitly set by the RDS message. The
following is a list of datatypes which are not supported by Sybase RAP:

• LOB (large object binary or text)

• MONEY datatype is not supported (however, SMALLMONEY is

supported)

• FLOAT

• CHAR or VARCHAR datatypes with size greater than 255 have their data
truncated on INSERT at 255 characters.

• BIT

Integer conversions
Any signed or unsigned integer can be converted to a larger signed integer.
Only unsigned integers can be converted to a larger unsigned integer.

Datatype conversion

18 Sybase RAP - The Trading Edition

Any signed or unsigned integer can be converted into a NUMERIC or DECIMAL
datatype with (precision minus scale) greater than or equal to precision
required to represent the maximum value of the type of the integer. Unsigned
64-bit integers cannot be converted into numeric, as they require a numeric
with precision at least 19, which is unsupported.

Numeric conversions
A NUMERIC or DECIMAL datatype with scale 0 can be converted into a
SIGNED INTEGER, provided the precision required to represent the maximum
value of the integer is greater than or equal to the precision of the NUMERIC or
DECIMAL datatype.

NUMERIC or DECIMAL datatypes with a scale other than zero cannot be
converted to an integer, and numerics cannot be converted into unsigned
integers.

A NUMERIC or DECIMAL datatype can be converted to other numeric or
decimal types, provided that the scale of the target type is greater than or equal
to the scale of the source numeric, and the precision of the target numeric is
greater than or equal to the precision of the source numeric plus the difference
between the target scale and the source scale.

Examples NUMERIC(4, 2) can be converted into a NUMERIC(4, 4)
NUMERIC(2, 2) can be converted into a NUMERIC(4, 4)
NUMERIC(2, 4) cannot be converted into a NUMERIC(4, 0)
NUMERIC(2, 4) cannot be converted into a NUMERIC(3, 6)

Date and time conversions
• TIME datatypes cannot be converted between types.

• DATE datatypes are converted to DATETIME by setting the time portion to
midnight.

• DATETIME datatypes cannot be converted to dates or times.

CHAPTER 2 RAP Data Stream Templates

Developers Guide 19

Lookup tables
The lookup data is loaded once during initialization. The lookup column must
be convertible into the RDS type of the lookup data. The lookup return column
data type must be convertible into the data type of the destination column of
the target table.

Recommended RDS datatype to SQL datatype mappings
For optimal performance, Sybase recommends that you map the following
RDS datatypes to the following database column types.

Table 2-1: RDS datatype to SQL datatype mappings

Notes

• If you know that data for a column is always be less than a specific length,
then setting n to be as small as possible yields better performance.

• For maximum performance using the Publisher API to set decimal fields,
the pub_setDecimalFieldFromMantissa API should be used instead of
the pub_setDecimal API, if you can obtain the desired value in a format
other than a double.

RDS
datatype ASE datatype Sybase IQ datatype

uint8 tinyint tinyint

uint16 unsigned smallint unsigned int (IQ has no unsigned
smallint)

uint32 unsigned int unsigned int

uint64 unsigned bigint unsigned bigint

sint8 smallint (ASE has no signed 8-bit
integer)

smallint (IQ has no signed 8-bit
integer)

sint16 smallint smallint

sint32 int int

sint64 bigint bigint

decimal(p, s) numeric(p, s) or decimal(p, s) numeric(p, s) or decimal(p, s)

datetime datetime or smalldatetime timestamp

date date or smalldate date

time time time

string char(n) or varchar(n) n <255* char(n) or varchar(n) n <255*

Datatype conversion

20 Sybase RAP - The Trading Edition

Developers Guide 21

C H A P T E R 3 Publisher API

About this Chapter This chapter describes Publisher classes, objects, and methods.

Contents Topic Page

Overview 22

Constants 25

Methods 26

Overview

22 Sybase RAP - The Trading Edition

Overview
The Publisher API is a mechanism that is invoked by market data feed handlers
to build and process messages that allow users to publish data in a standard
format.

Notes

• See “Publisher configuration” on page 48 for a sample publisher.xml
template and list of XML element definitions.

• Subscribers must be running before the Publisher is started so that the
subscribers are ready to receive messages when the Publisher sends them.

• If multiple Publishers are running, each instance must use a unique UDP
broadcast address

Initialization
Initialization starts the publication mechanism by performing the following
operations:

• Obtains configuration parameters from publisher.xml and establishes
communications with subscribers.

• Provides the Sybase Unified Agent Framework (UAF) Interface.
Operations Console uses the UAF to provide an agent for each host on
which Sybase RAP components are installed. The UAF agent interfaces
with the Operations Console, receiving commands and requests for
component information and configuration. The UAF also forwards
requests as needed to each Sybase RAP component installed on the host.

• Preallocates message buffers. The Publisher API accepts messages from
the feed handler application and forwards them to subscribers. There are 2
types of buffering: the first is used to buffer messages, which saves
memory allocation time for each new message; the second is for resend
packets, which is used to resend packets.

• Initializes timing services. Initialization starts a timing service, which is a
thread that sleeps or wakes according to an interval timer. This thread
notifies a message send service when it is time to send a partially full
buffer to ensure minimal latency of market data messages. The task also
marks intervals for statistics collection.

CHAPTER 3 Publisher API

Developers Guide 23

• Initializes the heartbeat mechanism. In order to facilitate a highly-
available configuration, each Sybase RAP component must respond to a
heartbeat sent by a separate program. The sender of the heartbeat message
uses the response (or lack thereof) to determine availability of the
component. If necessary, a Sybase RAP FAILOVER is invoked. The
heartbeat is initialized during Init() processing.

• Initializes statistics. The Publisher API manages statistics on message
traffic and reports these statistics to UAF on request.

• Initializes the Resend infrastructure. If the Publisher API uses
multicasting to publish messages, resending messages may be necessary,
when asked to do so by any subscriber. The Publisher API caches
candidates for resend in a circular buffer.

Configuration Property Values
The Publisher API enables access to configuration property values by name.
Not all configuration properties may be intended for internal consumption by
the Publisher API. Some may be intended for use by the feed handler
application itself.

Message Description
The Publisher API code uses the field name to check that the SetField()
functions have been called in the correct order and that the data value passed
in is the correct data type.

Note Each field within a message must be set in the order in which it is defined
in the template.

Begin Message

Begin message signals the Sybase RAP code that a new message is being
started.

Each network buffer has one network buffer header to indicate the sequential
packet number being sent. Buffering is necessary to ensure multicast ordering
and to allow possible resend requests.

Overview

24 Sybase RAP - The Trading Edition

The Publisher API encodes each value sent to it via SetField() directly into the
wire-ready format buffer. Each successive value of a message is directly
appended to make one string to be sent over the network. Since messages may
contain as few as 60 characters, multiple messages can be inserted into a single
network packet buffer. MTU size is used to determine the packet size.

The following diagram illustrates the role of glue code using the feed handler
SetField API to send data to the Publisher. The Publisher API then sends the
code out on the network.

SendMessage

When the SendMessage() function is called, the buffer to be sent is already in
the appropriate format. The message template number used to construct the
message is the first field of the wire format message.

SendMessage() places one or more messages into one wire format network
buffer.

When SendMessage() is called, it must have been configured to define the
channels over which to multicast the packet. SendMessage() is also responsible
for placing a sequential network packet number on each packet that it
multicasts.

CHAPTER 3 Publisher API

Developers Guide 25

Publisher uses multiple channels for sending messages to maintain high
performance through parallelism.

Returns SUCCEED or FAIL

Constants

Error Codes
The following constants are defined to represent error codes.

Publisher API Data Structures
The following structure holds information for callbacks to the feed handler.
Only one callback is listed.

typedef struct {
void (*shutdown)(void);
/* notifies caller of shutdown

request */
} PUB_CALLBACKS;

Initialization Information

The following structure holds information needed by the Publisher for
initialization. See the initialization method for an explanation of the members
of this class.

typedef struct {

/* directory in which to locate configuration file */
const char * config_dir;

Constant Description Value

ERR_NONE No error. Success. 0

ERR_PB_ Constants for error codes returned by
the Publisher API are prefixed with
ERR_PB.

2000-2999 This range is reserved
for the use of the Publisher API.

Methods

26 Sybase RAP - The Trading Edition

/* directory in which to locate RDS templates */
const char * template_dir;

/* indicates what type of publisher this is */
const char * component_subtype;

/* enables/disables strict checking of messages as
they’re being built */

bool strict_check;
/* indicates whether the feed handler has initialized
the logger */

bool own_logger;
/* callbacks to the feed handler */

PUB_CALLBACKS callbacks;
} PUB_STARTUP;

Data Message Information

The following structure holds context information about a market data message
that is being built to be sent to subscribers.

typedef struct {
/* MESSAGE_DEFN pointer */

void * message_defn;
uint16_t current_field_num;
/* location of destination message buffer */

uchar * dest_buffer;
/* location of next fixed length value */

uchar * current_fixed_data;
/* location of next variable length value */

uchar * current_variable_data
/* length of market data message */

uint16_t message_length;}
PUB_SEND_MESSAGE_CONTEXT;

Methods
Description The Publisher API is invoked by feed handlers to build and process messages.

See the section entitled “Use cases for feed handlers” on page 12 for examples
of how a feed handler can use the Publisher API.

The Publisher API uses the template processing module as its source of
information about message formats.

CHAPTER 3 Publisher API

Developers Guide 27

Methods • pub_initialize

• pub_beginMessage

• pub_cancelMessage

• pub_setField

• pub_sendMessage

• pub_flush

• pub_shutdown

pub_initialize
Description Initializes the Publisher API. This method must be called before any other API

in the Publisher API. This method should be called only once.

Syntax uint16_t pub_initialize(PUB_STARTUP * startup_settings);

Parameters PUB_STARTUP * startup_settings
Contains information needed by the publisher in order to initialize.

char * config_dir
The directory in which to locate the publisher.xml file.

char * template_dir
The directory in which to locate RDS templates.

bool strict_check
A value indicating whether strict checking should be performed on
messages being built. True indicates that strict checking should be
performed. This setting is recommended during development. False
indicates that strict checking should not be performed. This setting is
recommended in production.

bool own_logger
True if the feed handler has initialized the log file and false if the Publisher
should initialize the log file.

char * component_subtype
 A value indicating the type of publisher this is. For example, “Fast Feed
Handler” or “Demo Feed Handler”. This information is used to identify the
type of publisher when displaying information in the Operations Console.

Methods

28 Sybase RAP - The Trading Edition

PUB_CALLBACKS * callbacks
Callbacks used to notify the caller of the Publisher API of events. One
callback is currently supported, which is a function to call if the Publisher
receives a request to shutdown.

The caller of the Publisher API may need to perform shutdown activities that
need to occur prior to the shutdown of the Publisher API. The Publisher API
invokes this callback function to notify the caller that a request to shut down
has been received. The caller is responsible for performing whatever actions
need to be taken and then invoke the Publisher's shutdown API.

Return value uint16_t error_code

 An error code or ERR_NONE (value 0).

pub_beginMessage
Description Indicates to the Publisher that a new message is being built. This method must

be called before setting any of the fields on the message.

Syntax uint16_t pub_beginMessage(uint16_t message_type,
PUB_SEND_MESSAGE_CONTEXT * msg).

Parameters uint16_t message_type
The type of message. This value needs to match the message type indicated
in the template.

PUB_SEND_MESSAGE_CONTEXT * msg
The message context for the message being built. This structure must be
allocated before calling this method. To build multiple messages at once
from multiple threads, allocate several PUB_SEND_MESSAGE_CONTEXT
structures and use one per message being simultaneously built.

Return value uint16_t error_code

 An error code or ERR_NONE (value 0).

pub_cancelMessage
Description Indicates to the Publisher that a message that was being built is to be cancelled.

This method is called after beginMessage to free up any resources being used
by the message context.

Syntax uint16_t pub_cancelMessage(PUB_SEND_MESSAGE_CONTEXT * msg);

CHAPTER 3 Publisher API

Developers Guide 29

Parameters PUB_SEND_MESSAGE_CONTEXT * msg
The message context for the message being built.

Return value uint16_t error_code

 An error code or ERR_NONE (value 0).

pub_setField
Description Sets the value of a field in a message that is being built.

Syntax uint16_t pub_setInt8Field(PUB_SEND_MESSAGE_CONTEXT * msg, char *
field_name, int8_t field_value);

uint16_t pub_setInt16Field(PUB_SEND_MESSAGE_CONTEXT * msg, char
* field_name, int16_t field_value);

uint16_t pub_setInt32Field(PUB_SEND_MESSAGE_CONTEXT * msg, char
* field_name, int32_t field_value);

uint16_t pub_setInt64Field(PUB_SEND_MESSAGE_CONTEXT * msg, char
* field_name, int64_t field_value);

uint16_t pub_setUInt8Field(PUB_SEND_MESSAGE_CONTEXT * msg, char
* field_name, uint8_t field_value);

uint16_t pub_setUInt16Field(PUB_SEND_MESSAGE_CONTEXT * msg,
char * field_name, uint16_t field_value);

uint16_t pub_setUInt32Field(PUB_SEND_MESSAGE_CONTEXT * msg,
char * field_name, uint32_t field_value);

uint16_t pub_setUInt64Field(PUB_SEND_MESSAGE_CONTEXT * msg,
char * field_name, uint64_t field_value);

uint16_t pub_setDecimalField(PUB_SEND_MESSAGE_CONTEXT * msg,
char * field_name, double field_value);

The following method accepts a mantissa (the significant digits) and an
exponent. The value of the decimal is mantissa x 10^exponent.

uint16_t pub_setDecimalFieldFromMantissa(
PUB_SEND_MESSAGE_CONTEXT * msg, char * field_name, int64_t
mantissa, int8_t exponent);

uint16_t pub_setDateField(PUB_SEND_MESSAGE_CONTEXT * msg,
char * field_name, uint32_t field_value);

uint16_t pub_setTimeField(PUB_SEND_MESSAGE_CONTEXT * msg,
char * field_name, uint32_t field_value);

uint16_t pub_setDateTimeField(PUB_SEND_MESSAGE_CONTEXT *
msg, char * field_name, uint64_t field_value);

uint16_t pub_setStringField(PUB_SEND_MESSAGE_CONTEXT * msg,
char * field_name, uchar * field_value);

Methods

30 Sybase RAP - The Trading Edition

Parameters PUB_SEND_MESSAGE_CONTEXT * msg
The message context for the message being built.

char * field_name
The name of the field being set. This name is only used when strict checking
is on.

<data type> field_value
The value of the field which is to be placed into the message.

Date values
Express the number of days since year 0000.

Time values
Express the number of microseconds since midnight.

Datetime values
Consist of a 32-bit date value followed by a 32-bit time value.

String values
All string values are in UTF-8 format.

Return value uint16_t error_code

An error code or ERR_NONE (value 0).

pub_sendMessage
Description Sends a market data message. This method may or may not physically send a

message. Messages are buffered until a packet is full, and then sent over the
network.

Syntax uint16_t pub_sendMessage(PUB_SEND_MESSAGE_CONTEXT * msg);

Parameters PUB_SEND_MESSAGE_CONTEXT * msg
The message context for the message being built.

Return value uint16_t error_code

An error code or ERR_NONE (value 0).

pub_flush
Description Sends any buffered market data messages over the network to the subscribers.

Syntax uint16_t pub_flush(void);

Return value uint16_t error_code

CHAPTER 3 Publisher API

Developers Guide 31

 An error code or ERR_NONE (value 0).

pub_shutdown
Description Disconnects from the network and discards any resources being used by the

Publisher API. This method is called when the feed handler is finished using
the Publisher API.

Syntax uint16_t pub_shutdown(bool flush);

Parameters bool flush
 Indicates whether any buffered messages should be sent before
disconnecting.

Return value uint16_t error_code

 An error code or ERR_NONE (value 0).

Methods

32 Sybase RAP - The Trading Edition

Developers Guide 33

C H A P T E R 4 FAST Feed Handler

About this Chapter This chapter describes Sybase RAP FAST Feed Message Handler classes,
objects, and methods.

Contents Topic Page

Overview 34

FAST feed handler API interface 35

Overview

34 Sybase RAP - The Trading Edition

Overview
The FIX Adapted for Streaming (FAST) protocol is an emerging standard
defined by the FIX Protocol, Ltd., as a method of compressing messages to be
exchanged over a network connection.

The Sybase RAP FAST Feed Handler provides a mechanism for passing FAST-
formatted data to the RAP Publisher. The Sybase RAP FAST feed handler
connects directly to a market data feeds, receives FAST-encoded messages,
decodes them, and makes the decoded data available to message handler plug-
ins.

Notes

• The Sybase RAP FAST Feed Handler supports FAST SCP 1.1

• See “FAST Feed Handler configuration” on page 50 for a sample
fastfeedhandler.xml template and list of XML element definitions.

Implementing a FAST feed handler
The Sybase RAP Message Handler receives decoded FAST messages and
maps them into the RAP Publisher API. The library is compiled into a separate
shared library which is dynamically loaded at runtime. The library exposes the
symbols for the initialization, finalization, and process routines as C APIs so
that they can be loaded from the FAST Feed Handler executable.

The implementation of the Sybase RAP Message Handler for FIX will be
provided as a C++ class which is instantiated during the initialize function, a
reference to which is stored in the ffh_mh_info structure so that it can be
retrieved later during the process and finalize functions.

Sample code
/* Initialization function */

typedef int32_t (*ffh_mh_init_function)(

ffh_mh_info *, /* handler info */
ffh_init_param *, /* array of init_param */
int32_t); /* num ffhinit_param items */

/* Finalization function */

CHAPTER 4 FAST Feed Handler

Developers Guide 35

typedef void (*ffh_mh_fini_fuction)(ffh_mh_info *);

/* Process Function */

typedef int32_t (*ffh_mh_process_function)(ffh_mh_event *);

/* Return value from the above functions which retun int32_t indicating success.
Any other values indicate an error and are defined internally by the library. */
#define FFH_MH_SUCESS 0

/* Callback functions */
typedef void (*ffh_mh_p_session_shutdown)(ffh_mh_info *);
typedef void (*ffh_mh_p_release_message)(ffh_mh_info *,

ffh_fast_message *);
typedef struct {const char * name;const char * value;}

ffh_init_param;

typedef enum ffh_mh_event_type {MHET_RECEIVE_MESSAGE = 0};

typedef struct {
int16_t version;
void * handlerID;
void * loggerID;
ffh_mh_p_session_shutdown shutdown;
ffh_mh_p_release_message release_message;
void * user_data;

} ffh_mh_info;

typedef struct {

int16_t version;
ffh_mh_event_type event;
ffh_mh_info * info;
ffh_fast_message * message;

} ffh_mh_event;

FAST feed handler API interface
Description The following C API defines the function signatures that you must implement

to build a message handler.

Methods • initializeRAPHandler

• finalizeRAPCallback

• processRAPCallback

FAST feed handler API interface

36 Sybase RAP - The Trading Edition

• initialize

• publisherShutdown

initializeRAPHandler
Description Create and initialize the Sybase RAP message handler. This method is invoked

from the FAST Feed Handler code by dynamically looking up this function
pointer in the message handler shared library.

Syntax extern “C” int32_t initializeRAPHandler
(ffh_mh_info * info,
ffh_init_param * initParams,
int32_t initParamLen);

Parameters ffh_mh_info * info

the info structure for calls to the message handler

ffh_init_param * initParams

the initialization parameters for the handler

int32_t initParamLen

the number of elements in the initParams array

Return value int32_t 0 if the initialization succeeded, non 0 error code otherwise.

Usage 1 Create a new instance of the RAP message handler, and assign it to the
user_data field of the ffh_mh_info.

2 Invoke the initialize method on the RAP message handler and return the
result.

finalizeRAPCallback
Description Invoke the Message Handler finalize method and clean up any remaining

resources. This method is invoked from the FAST Feed Handler code by
dynamically looking up this function pointer in the message handler shared
library.

Syntax extern “C” void finalizeRAPHandler
(ffh_mh_info * info);

Parameters ffh_mh_info * info
the info structure for calls to the message handler

Usage 1 Cast the user_data field of the ffh_mh_info to a RAP message handler
object.

CHAPTER 4 FAST Feed Handler

Developers Guide 37

2 Invoke the finalize method on the message handler object.

3 Delete the handler object and set the user_data pointer in the
ffh_mh_info to null.

processRAPCallback
Description Invoke the Message Handler process method. This method is invoked from the

FAST Feed Handler code by dynamically looking up this function pointer in
the message handler shared library.

1 Cast the user_data field of the ffh_mh_info to a RAP message handler
object.

2 If the event type is MHET_RECEIVE_MESSAGE, invoke the receiveMessage
method on the message handler object and return the result.

Syntax extern “C” int32_t processRAPCallback (ffh_mh_event * event);

Parameters ffh_mh_event * event

 the event to be processed

Return value int32_t error_code

initialize
Description Initialize the Message Handler with any necessary setup actions. In particular,

initialize the publisher API. The following table gives the initialization
parameters required to be in the message handler definition in the FAST Feed
Handler main configuration file.

Syntax int32_t initialize(
ffh_mh_info * info
ffh_init_param * initParams,
int32_t initParamLen

);

Parameters PublisherConfigFile
This should point at the configuration file for the publisher.

ffh_mh_info * info
 the info structure for calls to the message handler

Name Value Description

PublisherConfigFile This should point at the
configuration file for the publisher.

FAST feed handler API interface

38 Sybase RAP - The Trading Edition

ffh_init_param * initParams
the initialization parameters for the handler

int32_t initParamLen
he number of elements in the initParams array

Return value int32_t 0 if initialization succeeded, error code != 0 otherwise.

Usage 1 Initialize the RAP Publisher API, passing a reference to the static
publisherShutdown method and pass in the loggerID pointer. If an error
occurs, log it and return false.

2 Create a new RAP publisher send message context.

3 Store the ffh_mh_info in the provided pointer.

4 Return 0.

receiveMessage
Description Process a decoded FAST message by mapping it into the publisher API.

Syntax

Parameters ffh_mh_info * info

the info structure for this message handler

ffh_fast_meesage * fastMsg
the decoded FAST message

Return value int32_t 0 if processing succeeded; error code != 0 otherwise

Usage This method will contain hard-coded entries for processing specific FIX
messages. The general semantics are as follows:

1 Walk the FIX message.

• If it is a message that is recognized, store any data required for a RAP
Publisher message, and once a RAP Publisher message is complete,
invoke the publisher begin message API, plug in the available data,
and call the publisher send message API.

• Repeat for each Publisher message contained within the FIX message.
Details on the mappings can be found in Section 9 below. In the event
that the FIX message is not supported, log a message indicating that
the message type was not processed. In the event of an error from the
publisher API, log the error and call the publisher cancelMessage
API.

CHAPTER 4 FAST Feed Handler

Developers Guide 39

2 Once the entire FIX message has been processed (or if the message was
not processed, or if an error has occurred), invoke the releaseMessage
callback from the handler info structure.

finalize
Description Clean up any resources allocated in the initialize method.

Syntax void finalize();

Usage 1 Call the publisher API shutdown method.

2 Free the send message context.

3 Clean up any remaining data structures.

publisherShutdown
Description This is the callback method required by the Publisher API in order to indicate

that a shutdown has been requested.

Syntax static void publisherShutdown();

Usage If the ffh_mh_info structure is not null, invoke the structure session
shutdown function, passing in the ffh_mh_info.

FAST feed handler API interface

40 Sybase RAP - The Trading Edition

Developers Guide 41

C H A P T E R 5 Logging

About this Chapter This chapter briefly describes the Logging API interfaces.

Contents Topic Page

Overview 42

Logging levels 42

Logging API interfaces 42

Overview

42 Sybase RAP - The Trading Edition

Overview
Sybase RAP uses log4cxx version 1.2, an open source logging API, to log
events. Log4cxx allows you to control which log statements are output. You
can find information about log4cxx at
http://logging.apache.org/log4cxx/index.html.

The logging library is made available to feed handler developers so that you
can use the same logging utility as the Sybase RAP modules. This allows
events from custom feed handlers to be logged to the same log file as the file
being used by Sybase RAP modules.

Note At higher log levels, more log information is reported. Processing is
slower to execute at higher levels.

Logging levels
Log4cxx has 7 log levels. Sybase RAP maps these to 4 log levels, defined
below, that are internally mapped to standard log4cxx. You should use these
Sybase RAP log levels during feed handler development.

An include file, logger.h defines the following log levels, from highest to low-
est:

LOGGER_DEBUG
LOGGER_INFO
LOGGER_WARNING
LOGGER_ERROR

Logging API interfaces
Description The following API functions are declared in logger.h. Modules requiring

logging must include this header file. The header file contains the datatype:

Methods • log_open

• log_message

• log_close

http://logging.apache.org/log4cxx/index.html

CHAPTER 5 Logging

Developers Guide 43

• log_init_from_context

• log_get_context

• log_hexdump

• log_message_force

In addition to the method references, logger.h also contains the datatype:

typedef struct logger_context logger_context;

log_open
Description Initializes RAPLogging. This method must be called before any other API in

the RAPLogging API. This method should be called only once.

Syntax uint16_t log_open(char * filepath , uint16_t log_level);

Parameters char * filepath
 The name and location of the log file. The file path can be either relative or
absolute.

 Uint16_t log_level

The log level defined in the configuration file. The log_level acts as filter, any
message with lower log level will be ignored and not written into the log file.
It can be defined in the configuration file as default filter value, or you can
explicitly set the filter level dynamically.

Return value uint16_t error_code (an error code) or ERR_NONE (value 0).

log_message
Description Writes the logging message and level into the log file.

Syntax uint16_t log_message(uint16_t log level, uint16_t err_number, char *
message);

Parameters log level
Only the log levels defined in the “Logging levels” section are valid values.

 err_number
Error number.

char * message
Message to be written out.

Logging API interfaces

44 Sybase RAP - The Trading Edition

Return value uint16_t error code (an error code) or ERR_NONE (value 0).

log_close
Description Close the log file and log hierarchy. The clog_close method must be called after

other log operations and must be called only once.

Syntax vuint16_t log_close();

Return value uint16_t error_code (an error code) or ERR_NONE (value 0).

log_get_context
Description Returns a pointer to the logger_context used by current RAPLogging instance.

This pointer can be used to initialize the RAPLogging in a shared library. For
a description of steps needed to initialize RAPLogging in a shared library, see
the “log_init_from_context”section.

Syntax logger_context * log_get_context();

Return value logger_context * A pointer to the logger_context used by the current
RAPLogging instance.

log_init_from_context
Description Initializes the RAPLogging from an existing context that was created by a

previous call to log_open(). This can be used to pass a logger instance to a
shared library function. This function must be called before any other API in
the RAPLogging API is invoked in the shared library.

The following sequence of calls should be used in your main executable to pass
a logger instance to a shared library:

• Initialize the logger as usual by invoking log_open()

• Get the pointer to the logger_context by invoking log_get_context()

• Invoke your shared library function passing it the logger_context pointer.

In your shared library function:

• Invoke log_init_from_context() passing it the logger_context pointer as
the argument.

CHAPTER 5 Logging

Developers Guide 45

• Invoke the log_message() function to log messages from your shared
library.

Syntax uint16_t log_init_from_context(logger_context * ctx);

Parameters logger_context * ctx
The logger_context pointer to be used to initialize the RAPLogging in a
shared library.

Return value uint16_t error_code (an error code) or ERR_NONE (value 0).

log_message_force
Description Write the logging message and level into the log file. This method forces the

message into the log file regardless of the filter value of the log level. The filter
value can be set in the configuration file (RAP) or explicitly set by calling
log_open() on the feed handler side.

Syntax uint16_t log_message_force(uint16_t level, uint16_t err_num, const char *
message);

Parameters log level: error number.
Only the values defined in section “Logging levels” are valid. For this
method, log level is used primarily as informational display in the log file,
as the message will be always be written into the log file.

 err_number
error number.

char * message
The message to be written out to the log.

Return value uint16_t error code (an error code) or ERR_NONE (value 0).

log_hexdump
Description Format and log a traditional memory dump starting at the address supplied and

for the length supplied. Use the supplied context string at the top and bottom
to make it easy to identify. Uses the internal logger-> debug function to write
it to the current log file.

Logging API interfaces

46 Sybase RAP - The Trading Edition

A typical dump file (with the date, time and thread values removed) looks like
the following:

DEBUG rap4 - ===== DSHTable in Loader:Run New Work ========
DEBUG rap4 - 26583E0 >B0236800 00000000 C0C16502 00000000< .#h.......e..... 00000000
DEBUG rap4 - 26583F0 >36000700 00000000 90846502 00000000< 6.........e..... 00000010
DEBUG rap4 - 2658400 >58886702 00000000 F8C86E00 00000000< X.g.......n..... 00000020
DEBUG rap4 - 2658410 >F07E6502 00000000 707F6502 00000000< .~e.....p.e..... 00000030
DEBUG rap4 - 2658420 >687E6502 00000000< h~e..... 00000040
DEBUG rap4 - ===== DSHTable in Loader:Run New Work ========

Syntax log_hexdump (char * contextString, void * address, long length)

Parameters contextString
The string printed at the beginning and end of the trace segment for
identification.

address
The beginning of the memory to dump.

length
The number of bytes to log.

Return value uint16_t error_code (an error code) or ERR_NONE (value 0).

Developers Guide 47

A P P E N D I X A Sample Configuration and
Template Files

Refer to this appendix to review the structure of the configuration and
template files.

Topic Page
Publisher configuration 48

FAST Feed Handler configuration 50

RDS template 53

Publisher configuration

48 Sybase RAP - The Trading Edition

Publisher configuration
The file publisher.xml is an XML document that contains configuration settings
for the Publisher. A sample template is shown below. Each of the elements that
is allowed in the template is described in the table that follows the sample. An
XML schema (.xsd) describing the XML format is shipped as part of the
product.

<?xml version=”1.0” encoding=”UTF-8”?>
<Publisher>

<Logger>
<LogLevel>error</LogLevel>
<LogFile>Publisher.log</LogFile>

</Logger>

<NumMessageBuffers>10</NumMessageBuffers>
<NumPacketBuffers>250</NumPacketBuffers>
<MessageFlushInterval>1</MessageFlushInterval>
<LatencyCheckInterval>30</LatencyCheckInterval>

<AdminChannel>
<AdminPort>10001</AdminPort>

</AdminChannel>

<ResendChannel>
<ResendPort>10002</ResendPort>

</ResendChannel>

<DataStreamChannelList>
<DataStreamChannel>

<ChannelName>Channel 1</ChannelName>
<LocalInterface>localhost</LocalInterface>
<IPAddress>224.0.0.1</IPAddress>
<Port>12001</Port>

</DataStreamChannel>
<DataStreamChannel>

<ChannelName>Channel 2</ChannelName>
<LocalInterface>localhost</LocalInterface>
<IPAddress>224.0.0.2</IPAddress>
<Port>12002</Port>

</DataStreamChannel>
</DataStreamChannelList>
</Publisher>

APPENDIX A Sample Configuration and Template Files

Developers Guide 49

Publisher element descriptions
See the table below for Publisher template element descriptions.

Table A-1: Publisher XML element definitions

Element Description

Publisher Root element for the configuration file.

Logger Contains settings for logging activities

LogLevel The level of logging. Valid values are: error: only log errors warning:
log warnings in addition to errors info: log informational messages
in addition to messages logged at the warning level debug: log
debugging messages in addition to messages logged at the info level

LogFile The name and location of the log file. The file name can be relative
or a full path.

NumMessageBuffers The number of message buffers. One message buffer is required for
each message that is being simultaneously built. This setting can
have a value from 1 to 65535, though the machine must have enough
memory to hold the number of buffers specified.

NumPacketBuffers The maximum number of packets to cache in order to satisfy
requests by a subscriber to resend a packet. This number of packets
is cached per data stream channel. This setting can have a value from
1 to 4 billion, though the machine must have enough memory to hold
the number of packets specified. This number of buffers is allocated
on initialization of the Publisher.

MessageFlushInterval The number of seconds after which to send any buffered messages.
This setting can have a value from 1 to 65535.

LatencyCheckInterval The number of seconds after which to do a latency check on a
message. This setting can have a value from 1 to 65535.

AdminChannel Information about the administration channel. This channel accepts
requests for version information, statistics, and shutdown.

AdminPort The port on which the Publisher will listen for incoming
administration requests.

ResendChannel Information about the resend channel. This channel listens for
connections from subscribers. Subscribers will open a connection to
a publisher and issue requests to resend packets.

ResendPort The port on which the Publisher will listen for incoming connection
requests from subscribers.

DataStreamChannelList A list of data stream channel definitions. There can be up to 255 data
stream channels.

DataStreamChannel Contains information for one data stream channel. This name is used
to identify the channel when logging.

ChannelName A descriptive name for the channel.

LocalInterface The local interface over which UDP packets will be sent.

FAST Feed Handler configuration

50 Sybase RAP - The Trading Edition

FAST Feed Handler configuration
The fastfeedhandler.xml configuration file stores the information needed to
initialize the Sybase RAP FAST Feed Handler. See the XML file and table
below for a description of this file. A sample template is also shown below.
Each of the elements that is allowed in the template is described in the table
that follows the sample. An XML schema (.xsd) describing the XML format
ships as part of the product.

<?xml version="1.0" encoding="UTF-8"?>
<FASTFeedHandler>

<Logger>
<LogLevel>debug</LogLevel>
<LogFile>FASTFeedHandler.log</LogFile>

</Logger>

<FASTTemplateLibrary>
<TemplateLibraryFile>
filename.xml

</TemplateLibraryFile>
...

</FASTTemplateLibrary>
<SessionManager>

<FASTDataMode>stream</FASTDataMode>
</SessionManager>

<MessageHandler>
<SharedLibrary>

ffhfixmsghandler.so
</SharedLibrary>
<InitFunctionName>

initializeRAPHandler
</InitFunctionName>
<FiniFunctionName>

finalizeRAPHandler
</FiniFunctionName>
<ProcessFunctionName>

 processRAPCallback

IPAddress The IP address under which messages will be broadcast.

Port The port over which messages will be broadcast.

Element Description

APPENDIX A Sample Configuration and Template Files

Developers Guide 51

</ProcessFunctionName>

 <InitParams>
<InitParamname=”paramName”>

paramValue
</InitParam>
...

 </InitParams>
</MessageHandler>

<Session>
<SessionName>MySession</SessionName>
<SessionConnection>

<ListenHost>localhost</ListenHost>
<MulticastHost>299.30.215.22</MulticastHost>
<ListenPort>8899</ListenPort>

</SessionConnection>
</Session>

</FASTFeedHandler>

FAST Feed Handler element descriptions
See the table below for FAST Feed Handler template element descriptions.

Table A-2: FAST Feed Handler element descriptions

Element Description

FASTFeedHandler This is the root element of the configuration file.

Logger This groups log related information.

LogLevel The level of logging. Valid values are: error: only log errors warning:
log warnings in addition to errors info: log informational messages
in addition to messages logged at the warning level debug: log
debugging messages in addition to messages logged at the info level

LogFile The file where the log should be written.

FASTTemplateLibrary This defines a FAST template library. The library must contain at
least one TemplateLibraryFile tag. If duplicate FAST templates are
present within the definition of the library, the definition which
appears last will be used.

TemplateLibraryFile This tag specifies an absolute or relative location of a file which is
in the FAST template XML format, or the absolute or relative
location of a directory containing files which are in the FAST
template XML format. The tag may be repeated 1 or more times in
a template library.

FAST Feed Handler configuration

52 Sybase RAP - The Trading Edition

MessageHandler This tag contains configuration parameters related to the message
handler.

SharedLibrary This is the name of the shared library to load for the message
handler.

InitFunctionName This is the name of the initialization function to use for the message
handler from the handlers shared library.

FiniFunctionName This is the name of the finalization function to use for the message
handler from the handlers shared library.

ProcessFunctionName This is the name of the process function to use for the message
handler from the message handlers shared library.

InitParams This is a list of initialization parameters to be passed to the
initialization function.

InitParam This is an individual initialization parameter which provides the
name and value which will be passed as strings to the initialization
function.

SessionManager This defines a session manager.

FASTDataMode This determines whether the FAST data being received is using
stream mode or block mode. Valid values are stream and block.

Session This provides information on how the UDP connection should be
established.

SessionName This is the name of the session.

SessionConnection A group of session connection information.

ListenHost This is the local interface that a listener port should be opened on.

MulticastHost This is the multicast interface that a listener port should be opened
on. It is optional, and if omitted, socket will not accept multicast
packets.

ListenPort This is the local port that should be used for incoming messages.

Element Description

APPENDIX A Sample Configuration and Template Files

Developers Guide 53

RDS template
The standard RDS template file, template.xml, defines the information required
by the Publisher API and subscribers. Since the subscriber allows lookups of a
field value from a database table before inserting the value into the Sybase
RAP schema, the template also allows the information required for this lookup
to be defined.

A sample template is shown below. Each of the elements that are allowed in the
template is described in the table that follows the sample. An XML schema
(.xsd) describing the XML format is shipped as part of the product.

<Template>
<MessageDefnList>

<MessageDefn>
<MessageDesc>Stock Quote</MessageDesc>
<MessageType>1</MessageType>
<DestTableName>STOCK_QUOTE</DestTableName>
<FieldDefnList>

<FieldDefn>
<FieldName>Instrument ID</FieldName>
<IntegerField>

<IntegerDataType>
uint32

</IntegerDataType>
</IntegerField>
<DestColumName>

INSTRUMENT_ID
</DestColumnName>
<Lookup>

<LookupTableName>
INSTRUMENT

</LookupTableName>
<LookupColumnName>

INSTRUMENT_ID
</LookupColumnName>
<LookupColumnReturn>

INSTRUMENT_NAME
</LookupColumnReturn>

</Lookup>
</FieldDefn >
<FieldDefn>

<FieldName>
Quote Date

</FieldName>
<DateField/>

RDS template

54 Sybase RAP - The Trading Edition

<DestColumnName>
QUOTE_DATE

</DestColumnName>
</FieldDefn>
<FieldDefn>

<FieldName>Quote Time</FieldName>
<TimeField/>
<DestColumnName>

QUOTE_TIME
</DestColumnName>

</FieldDefn>
<FieldDefn>

<FieldName>
Trading Symbol

</FieldName>
<StringField/>
<DestColumnName>

TRADING_SYMBOL
</DestColumnName>

</FieldDefn>
<FieldDefn>

<FieldName>Ask Price</FieldName>
<DecimalField>

<Precision>10</Precision>
<Scale>2</Scale>

</DecimalField>
<DestColumnName>

ASK_PRICE
</DestColumnName>

</FieldDefn>
</FieldDefnList>

</MessageDefn>
<MessageDefn>

...
</MessageDefn>

</MessageDefnList>
</Template>

APPENDIX A Sample Configuration and Template Files

Developers Guide 55

RDS template XML element descriptions
See the table below for RDS template XML element descriptions.

Table A-3: RDS Template XML element descriptions.

Element Description

Template Root element for the template.

MessageDefnList Contains a list of one or more message definitions.

MessageDefn Contains information that defines a single message type.

MessageDesc A description of the type of market data message. For example,
Stock Quote. This element is used purely for descriptive purposes.
The value can contain any string.

MessageType A unique number representing the type of market data message. This
number must uniquely identify the message type across all message
definitions within all templates. The value can contain any integer
from 1 to 65535.

DestTableName The name of the database table into which the message should be
stored. There is one database table per message type. The value can
contain any string.

FieldDefnList Contains a list of one or more field definitions.

FieldDefn Contains information that defines a single field.

FieldName Name of the field. The value can contain any string.

IntegerField Indicates that the field is some type of integer. The field definition
will only contain one of the following: IntegerField, DecimalField,
StringField, DateField, TimeField, DateTimeField.

IntegerDataType The data type of an integer field. Valid values are: uint8, uint16,
uint32, uint64, sint8, sint16, sint32, sint64

DecimalField Indicates that the field is a decimal value. The field definition will
only contain one of the following: IntegerField, DecimalField,
StringField, DateField, TimeField, DateTimeField.

Precision The precision of a decimal field.

Scale The scale of a decimal field (the number of digits after the decimal
point).

StringField Indicates that the field is a string. The field definition will only
contain one of the following: IntegerField, DecimalField,
StringField, DateField, TimeField, DateTimeField.

DateField Indicates that the field is a date. The field definition will only contain
one of the following: IntegerField, DecimalField, StringField,
DateField, TimeField, DateTimeField.

TimeField Indicates that the field is a time. The field definition will only
contain one of the following: IntegerField, DecimalField,
StringField, DateField, TimeField, DateTimeField.

RDS template

56 Sybase RAP - The Trading Edition

DateTimeField Indicates that the field is a datetime. The field definition will only
contain one of the following: IntegerField, DecimalField,
StringField, DateField, TimeField, DateTimeField.

DestColumnName The name of the column into which the field data should be stored.
There is one column per field. The value of this element can contain
any string.

Lookup Indicates that the data in the field should be used as a lookup for
another table. This is an optional element. If it does not appear in a
field definition, then no lookup is required.

LookupTableName The name of the table to use to look up a value.

LookupColumnName The name of the column to use to look up a value.

LookupColumnReturn The name of the column from which to return data when doing a
lookup.

Element Description

APPENDIX A Sample Configuration and Template Files

Developers Guide 57

RDS template

58 Sybase RAP - The Trading Edition

Developers Guide 59

C H A P T E R 6 FIX Message to data model
mappings

About this Chapter This chapter identifies FIX Message to data model mappings.

Contents Topic Page

General processing notes 60

Advertisement FIX message 63

Mass quote FIX message 65

Security status fix message 66

Installing a signal handler 66

General processing notes

60 Sybase RAP - The Trading Edition

General processing notes
The message mappings defined here use the FIX field names. For details on the
actual field numbers and allowed values, see the FIX protocol specification
version 4.4 at http://fixprotocol.org/specifications/fix4.4fiximate/index.html.

Instrument blocks
Each of the messages described below contains at least one instrument block
that provides information on the entity for which data is present in the message.
Some messages can contain information on multiple instruments. In general,
the Symbol or Security ID fields of the instrument block map onto the stock
symbol of the corresponding Sybase RAP table, and this is used to
automatically look up instrument IDs in the instrument table. The lookup is
completed via the RDS template mechanism as described in Chapter 2, “RAP
Data Stream Templates.”

Note A default value for lookup table failures must be specified by the site in
the template.

Data aggregation and missing data
The data in FIX messages can be unordered and many FIX fields in a message
are optional. The RDS format does not support optional values. Thus, it may
be necessary to perform the following steps before invoking the Publisher API
to send data:

1 Iterate over the available message and fill in a data structure representing
the required data.

2 If, after processing, the FIX message does not contain sufficient data, log
an error.

3 If the message contains enough data, then call the Publisher API to begin
processing the correct RDS message, set the field data, and then send the
message.

http://fixprotocol.org/specifications/fix4.4fiximate/index.html

CHAPTER 6 FIX Message to data model mappings

Developers Guide 61

These steps should be performed on a per-instrument basis for FIX messages
that support multiple instruments. For FIX messages that support multiple
destination RDS messages for a single instrument, it may be necessary to
aggregate data for multiple RDS messages concurrently, since the FIX data for
the different RDS messages may be interleaved.

RDS message types
Since RDS does not support optional fields and not all of the FIX data
mappings defined in this chapter contain all of the data to fully populate the
standard RDS messages, it is necessary to define RDS message types which are
similar to the full RDS messages, but have fields omitted.

Determining instrument type
Some FIX messages apply to different instruments, and determining which
RDS messages to generate depends on the type of the instrument being
processed.

Stock Instruments

If the Product field of the Instrument block is present and has the value 5
(EQUITY), then the instrument is a stock.

If Product is not present but Security Type is present and has the value CS or
PS (common stock or preferred stock), then the instrument is a stock.

If both Product and Security Type are not present and the CFICode field is
present and the first character of the field is E (for equity) and the second letter
is one of S, P, R, C, F, or V, then this is a stock.

Otherwise, this is not a stock.

Note Sybase RAP - The Trading Edition does not support multi-leg securities.

For more information, see CFI Code values at
http://www.iso.org/iso/catalogue_detail?csnumber=32835 for full
documentation.

http://www.iso.org/iso/catalogue_detail?csnumber=32835

General processing notes

62 Sybase RAP - The Trading Edition

Bond instruments

If the CFICode is present and the first character of the field is D (for debt) and
the second character is B (for bond), then the instrument is a bond.

Mutual fund instruments

If the Security Type is present and has the value of MF, then this is a mutual
fund instrument.

Otherwise, if the Security Type is not present and the CFICode is present and
the first character of the field is E (for equity) and the second is U (units), then
this is a mutual fund.

Option instruments

If the Security Type is present and has the value of OPT, then the instrument is
an option instrument.

Otherwise, if the Security Type is not present and the CFICode is present and
the first character of the field is O (for options), then the instrument is an
option.

Index instruments

If the Product field of the Instrument block is present and has the value 7
(INDEX), then the instrument is an index.

If Product is not present, but Security Type is present and has the value INDEX,
then the instrument is an index.

If both Product and Security Type are not present and the CFICode field is
present and the first character of the field is M (for miscellaneous), and the
second letter is one of R (for referential instruments) and the third letter is I (for
indices), then the instrument is an index.

Otherwise, this is not an index.

CHAPTER 6 FIX Message to data model mappings

Developers Guide 63

Advertisement FIX message

Stock trade RDS mapping

Mutual fund history RDS mapping

Table STOCK_TRADE

Missing Data None

Condition The TradeDate field must exist in FIX message and this must be a stock
instrument. See “Stock Instruments” on page 61 for more information.

FIX Message Field Table Column

SecurityID/Symbol INSTRUMENT_ID

TradeDate TRADE_DATE

AdvID TRADE_SEQ_NBR

SecurityID/Symbol TRADING_SYMBOL

TransactTime TRADE_TIME

Price TRADE_PRICE

Quantity TRADE_SIZE

Table MUTL_FUND_HIST

Missing Data None

Condition The TradeDate field must exist in FIX message and this must be a mutual
fund instrument. See see “Mutual fund instruments” on page 62 for more
information.

FIX Message Field Table Column

SecurityID/Symbol INSTRUMENT_ID

TradeDate or current
date

TRADE_DATE

SecurityID/Symbol TRADING_SYMBOL

Price PRICE

Advertisement FIX message

64 Sybase RAP - The Trading Edition

Bond trade RDS mapping

Option trade RDS mapping

Table BOND_TRADE

Missing Data None

Condition The TradeDate field must exist in FIX message and this must be a bond
instrument. See “Bond instruments” on page 62 for more information.

FIX Message Field Table Column

SecurityID/Symbol INSTRUMENT_ID

TradeDate TRADE_DATE

AdvID TRADE_SEQ_NBR

Yield TRADE_YIELD

TransactTime TRADE_TIME

Price TRADE_PRICE

Quantity TRADE_SIZE

Table OPTION_TRADE

Missing Data None

Condition The TradeDate field must exist in FIX message and this must be an option
instrument. See “Option instruments” on page 62 for more information.

FIX Message Field Table Column

SecurityID/Symbol INSTRUMENT_ID

TradeDate TRADE_DATE

AdvID TRADE_SEQ_NBR

There is no
OPEN_INTEREST in
Advertisement

OPEN_INTEREST

TransactTime TRADE_TIME

Price TRADE_PRICE

Quantity TRADE_SIZE

CHAPTER 6 FIX Message to data model mappings

Developers Guide 65

Mass quote FIX message
Mass Quote FIX messages contain repeating groups for instruments. For each
repeated grouping that instrument can have a repeated block of quote data.
Each one of these quotes is processed in the same manner that a Quote FIX
message is processed, as described below.

Stock quote RDS mapping

Bond quote RDS mapping

Table STOCK_QUOTE

Missing Data None

Condition This must be a stock instrument. See “Stock Instruments” on page 61 for
more information.

FIX Message Field Table Column

SecurityID/Symbol INSTRUMENT_ID

TransactTime QUOTE_DATE

QuoteID QUOTE_SEQ_NBR

SecurityID/Symbol TRADING_SYMBOL

TransactTime QUOTE_TIME

OfferPx ASK_PRICE

OfferSize ASK_SIZE

BidPx BID_PRICE

BidSize BID_SIZE

Table BOND_QUOTE

Missing Data None

Condition This must be a bond instrument. See “Bond instruments” on page 62 for
more information.

FIX Message Field Table Column

SecurityID/Symbol INSTRUMENT_ID

TransactTime QUOTE_DATE

QuoteID QUOTE_SEQ_NBR

Security status fix message

66 Sybase RAP - The Trading Edition

Security status fix message

Stock history RDS mapping

Installing a signal handler
The following describes how to install a signal handler to handle SIGINT
(signal 3, or Ctrl-C) interrupts.

The following installs the signal handler:

struct sigaction sigAction;

Yield YIELD

TransactTime QUOTE_TIME

OfferPx ASK_PRICE

OfferSize ASK_SIZE

BidPx BID_PRICE

BidSize BID_SIZE

FIX Message Field Table Column

Table STOCK_HISTORY

Missing Data OPEN_PRICE, CLOSE_PRICE

Condition This must be a stock instrument. See “Stock Instruments” on page 61 for
more information.

FIX Message Field Table Column

SecurityID/Symbol INSTRUMENT_ID

TransactTime TRADE_DATE

SecurityID/Symbol TRADING_SYMBOL

LowPx LOW_PRICE

HighPx HIGH_PRICE

BuyVolume/SellVolume VOLUME

CHAPTER 6 FIX Message to data model mappings

Developers Guide 67

sigAction.sa_handler = sigIntHandler;

sigaction(SIGINT,&sigAction, NULL);

The following is the actual handler code itself. For the FAST Feed Handler, the
handler simply sets the global active flag to false. Other programs which need
to use similar code may choose to signal or broadcast to a mutex.

static void sigIntHandler(int signum) {

active = false;

}

Installing a signal handler

68 Sybase RAP - The Trading Edition

Index
A
Advertisement FIX Message 63

Bond Trade RDS Mapping 64
Mutual Fund History RDS Mapping 63
Option Trade RDS Mapping 64
Stock Trade RDS Mapping 63

Aggregation (FIX Mappings) 60
API

Publisher 25, 26
Publisher data structures 25

B
Bond Quote RDS Mapping 65
Bond Trade RDS Mapping 64

C
configuration file

FAST Feed Handler 50
Publisher 48
XML elements 49, 51

Constants
Publisher 25

D
Data model mappings (FIX)

Advertisement FIX Message 63
Aggregation 60
Determining Instrument Type 61
General Processing Notes 60
Instrument Blocks 60
Mass Quote FIX Message 65
RDS Message Types 61
Security Status Fix Message 66
Developers Guide
datatype conversion
date and times 18
integer conversions 17
Lookup tables 19
numeric conversions 18
RDS to SQL datatype mappings 19
supported datatypes 17
unsupported datatypes 17

date and times (supported formats) 18
Determining Instrument Type (FIX Mappings) 61
development environment 1

E
error codes

Publisher 25

F
FAST Feed Handler

configuration file format 50
FAST feed handler

API interface 35
code sample 34
implementing 34
overview 34

FAST feed handler API
finalize 39
finalizeRAPCallback 36
initialize 37
initializeRAPHandler 36
ireceiveMessage 38
processRAPCallback 37
publisherShutdown 39

feed handlers
overview 2

finalize 39
finalizeRAPCallback 36
69

Index
functions
function reference 33

G
General Processing Notes (FIX Mappings) 60

I
initialize 37
initializeRAPHandler 36
installing

signal handler 66
Instrument Blocks (FIX Mappings) 60

L
log_close() 44
log_message 43
log_open 43, 44, 45
logging

log_close 44
log_message 43
log_open 43, 44, 45

Logging API Interfaces
log_close() 44
log_message 43
log_open 43, 44, 45

Lookup tables 19

M
mappings

RDS to SQL datatype 19
Mass Quote FIX Message 65

Bond Quote RDS Mapping 65
Stock Quote RDS Mapping 65

message to model mappings
Advertisement FIX Message 63
Aggregation 60
Determining Instrument Type 61
General Processing Notes 60
70
Instrument Blocks 60
Mass Quote FIX Message 65
RDS Message Types 61
Security Status Fix Message 66

methods
pub_beginMessage 28
pub_cancelMessage 28
pub_flush 30
pub_initialize 27
pub_sendMessage 30
pub_setField 29
pub_shutdown 31

Mutual Fund History RDS Mapping 63

N
numeric conversions 18

O
Operations Console

overview 4
Option Trade RDS Mapping 64
overview

feed handlers 2
Operations Console 4
publishers 3
subscribers 3

P
platform overview

overview

platform 2
processRAPCallback 37
pub_beginMessage 28
pub_cancelMessage 28
pub_flush 30
pub_initialize 27
pub_sendMessage 30
pub_setField 29
pub_shutdown 31
Publisher
Sybase RAP - The Trading Edition

API 26
API Constants 25
API data structures 25
configuration file format 48
error codes 25
overview 22

Publisher API 26, 27, 28, 29, 30, 31
publishers

overview 3

R
RDS Message Types (FIX Mappings) 61
RDS to SQL datatype mappings 19
receiveMessage 38
rpublisherShutdow 39

S
Security Status Fix Message 66

Stock History RDS Mapping 66
SIGINT

installing 66
signal handler

installing SIGINT 66
Stock History RDS Mapping 66
Stock Quote RDS Mapping 65
Stock Trade RDS Mapping 63
subscribers

overview 3
supported datatypes 17
Sybase RAP

development environment 1
Sybase RAP Data Stream Templates

datatype conversion 16
overview 16

U
unsupported datatypes 17
Developers Guide 71

X
XML

FAST Feed Handler

configuatrion file 51
Publisher configuatrion file 49

XML elements
FAST Feed Handler configuration file 51
Publisher configuration file 49
72 Sybase RAP - The Trading Edition

	Developers Guide
	About This Book
	CHAPTER 1 Platform Architecture
	Overview
	Feed handlers
	Publishers
	Subscribers
	Operations Console

	Processing market data messages
	Building messages
	Transferring messages
	Increasing publisher performance
	Increasing subscriber performance

	Loading messages
	RAPCache performance tuning
	RAPStore performance tuning

	Message filtering
	Use cases for feed handlers
	Sending a market data message
	Shutting down a feed handler

	CHAPTER 2 RAP Data Stream Templates
	Overview
	Datatype conversion
	Supported datatypes
	Unsupported datatypes
	Integer conversions
	Numeric conversions
	Date and time conversions
	Lookup tables
	Recommended RDS datatype to SQL datatype mappings

	CHAPTER 3 Publisher API
	Overview
	Initialization
	Configuration Property Values
	Message Description
	Begin Message
	SendMessage

	Constants
	Error Codes
	Publisher API Data Structures
	Initialization Information
	Data Message Information

	Methods
	pub_initialize
	pub_beginMessage
	pub_cancelMessage
	pub_setField
	pub_sendMessage
	pub_flush
	pub_shutdown

	CHAPTER 4 FAST Feed Handler
	Overview
	Implementing a FAST feed handler
	Sample code

	FAST feed handler API interface
	initializeRAPHandler
	finalizeRAPCallback
	processRAPCallback
	initialize
	receiveMessage
	finalize
	publisherShutdown

	CHAPTER 5 Logging
	Overview
	Logging levels
	Logging API interfaces
	log_open
	log_message
	log_close
	log_get_context
	log_init_from_context
	log_message_force
	log_hexdump

	CHAPTER 6 FIX Message to data model mappings
	General processing notes
	Instrument blocks
	Data aggregation and missing data
	RDS message types
	Determining instrument type
	Stock Instruments
	Bond instruments
	Mutual fund instruments
	Option instruments
	Index instruments

	Advertisement FIX message
	Stock trade RDS mapping
	Mutual fund history RDS mapping
	Bond trade RDS mapping
	Option trade RDS mapping

	Mass quote FIX message
	Stock quote RDS mapping
	Bond quote RDS mapping

	Security status fix message
	Stock history RDS mapping

	Installing a signal handler

	APPENDIX A Sample Configuration and Template Files
	Publisher configuration
	Publisher element descriptions

	FAST Feed Handler configuration
	FAST Feed Handler element descriptions

	RDS template
	RDS template XML element descriptions

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	N
	O
	P
	R
	S
	U
	X

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

