
Deploying Applications and Components to .NET

PowerBuilder®

11.1

DOCUMENT ID: DC00586-01-1110-01

LAST REVISED: November 2007

Copyright © 1991-2007 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the marks listed
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

Deploying Applications and Components to .NET iii

About This Book ... ix

PART 1 CHOOSING A .NET TARGET

CHAPTER 1 Overview and Configuration of .NET Targets............................... 3
Choosing a .NET application target ... 3
How .NET deployment works ... 5
Configuring ASP.NET for a .NET project ... 6

Installing IIS... 6
Selecting the default ASP.NET version..................................... 7
Viewing and modifying global properties in IIS Manager 8
Directory structure on the server ... 9
Setting up a SQL Anywhere database connection.................. 10
Setting up IE Web Controls on the server 12
Additional configuration requirements for Windows Vista 13

Checklist for deployment .. 15

PART 2 WEB FORMS TARGETS

CHAPTER 2 Moving PowerBuilder Applications to the Web 23
About PowerBuilder Web Forms applications................................ 23
Creating a PowerBuilder .NET Web Forms target 24
Deploying and running a .NET Web Forms project........................ 28
Sharing data across sessions .. 32

CHAPTER 3 Client-Side Events and Default Event Handlers......................... 35
About client-side programming... 35
Default event handlers ... 37
Client-side support for the Web DataWindow control..................... 39
Alphabetical list of Web DataWindow client-side events................ 41
ButtonClicked ... 42

Contents

iv PowerBuilder

ButtonClicking .. 43
Clicked ... 44
DoubleClicked .. 45
ItemChanged.. 46
ItemError .. 47
ItemFocusChanged.. 48
RButtonDown ... 49
RowFocusChanged.. 50
RowFocusChanging... 51

CHAPTER 4 User Management and Registry Operations in Web Forms 53
Creating permanent user accounts .. 53
Managing permanent user accounts.. 58
Using the registry functions.. 60

CHAPTER 5 Print, File, Mail Profile, and Theme Managers 63
Using the Web Forms Print Manager ... 63

Print Manager icon display .. 64
Where printed output is saved... 65
Requirements for saving files in PDF or XSL format............... 65
Installing GPL Ghostscript... 67
Where PDF and XSL-FO output is saved 68

Using the Web Forms File Manager .. 68
Using the Web Forms Mail Profile Manager 75
Using the Web Forms Theme Manager ... 78

CHAPTER 6 Properties for .NET Web Forms ... 81
About Web Forms properties ... 81
Global Web configuration properties.. 82
Creating custom global properties ... 88

AutoPostBack.. 88
Embedded ... 88
HasFileManager .. 89
HasMailManager ... 90
HasPrintManager .. 91
HasThemeManager... 92

CHAPTER 7 Functions for .NET Web Forms .. 93
About system functions for Web Forms applications 93
DownloadFile ... 94
GetConfigSetting.. 96

Contents

Deploying Applications and Components to .NET v

GetDownloadFileURL .. 96
MapVirtualPath... 97
OpenFileManager .. 98
OpenMailManager.. 98
OpenPrintManager... 98
OpenThemeManager ... 99
UploadFiles .. 99

CHAPTER 8 Modified and Unsupported Features in Web Forms
Projects ... 103
About unsupported features... 103
Unsupported objects .. 105
Unsupported system functions... 106
Restrictions on supported controls... 108
Modified display of visual controls.. 119
Unsupported functions for controls in Web Forms 121
Unsupported events for controls in Web Forms........................... 125
Unsupported properties for controls in Web Forms 127

PART 3 WINDOWS FORMS TARGETS

CHAPTER 9 Deploying PowerBuilder Applications as .NET Windows
Forms .. 135
About PowerBuilder .NET Windows Forms applications 135
Creating a .NET Windows Forms target 138
Creating a .NET Windows Forms project..................................... 139

Setting properties for a .NET Windows Forms project 140
Intelligent update pages .. 143
Resource files and publish type .. 143
Security requirements ... 144

Deploying the project from PowerBuilder..................................... 146
Running the project from PowerBuilder 147

CHAPTER 10 Intelligent Deployment and Update... 149
About intelligent deployment and update 149
Publishing an application for the first time.................................... 150

Create a project and set publishing properties...................... 151
Locations for publish, install, and update 151
Security settings .. 152
Publish the application .. 152

Installing the application on the user’s computer 154
Updating the application... 155

Contents

vi PowerBuilder

Using the bootstrapper... 158
Customizing the Prerequisites page...................................... 159
Packages on the Prerequisites page..................................... 159

Rolling back.. 160
Using MobiLink synchronization... 161

CHAPTER 11 Unsupported Features in Windows Forms Projects 163
About unsupported features... 163
Unsupported nonvisual objects and structures in Windows Forms 165
Unsupported system functions in Windows Forms 169
Partially supported visual controls for Windows Forms................ 170
Unsupported functions for controls in Windows Forms................ 174
Unsupported events for controls in Windows Forms.................... 175
Unsupported properties for controls in Windows Forms 176

PART 4 .NET COMPONENT TARGETS

CHAPTER 12 .NET Assembly Targets... 181
The .NET Assembly target wizard.. 181
Modifying a .NET Assembly project ... 184
Supported datatypes .. 187
Deploying and running a .NET Assembly project......................... 187

CHAPTER 13 .NET Web Service Targets .. 189
The .NET Web Service target wizard... 189
Modifying a .NET Web Service project .. 191
Configuring ASP.NET for a .NET Web Service project 194
Deploying and running a .NET Web Service project 195

PART 5 .NET LANGUAGE INTEROPERABILITY

CHAPTER 14 Referencing .NET Classes in PowerScript 199
About conditional compilation .. 199
Writing code inside a .NET block ... 202
PowerScript syntax for .NET calls .. 202
Adding .NET assemblies to the target.. 205
Calling assembly methods from PowerScript............................... 205

Contents

Deploying Applications and Components to .NET vii

Support for .NET language features .. 207
Bitwise operator support.. 208
User-defined enumerations ... 209
Accessing indexes for .NET classes 210

Limitations .. 211
Functions cannot be called on basic types............................ 211
Case sensitivity ... 211
Calls to PowerScript from .NET functions are not supported 211
Delegates are not supported ... 211
.NET classes and interfaces cannot be used as parameters 212
Inheriting from .NET classes ... 212
Implementing .NET interfaces ... 212
Consuming .NET generics .. 212
AutoScript does not support .NET classes............................ 212
DYNAMIC and POST do not support .NET methods 213
.NET arrays of arrays .. 213
Reference static members with type name 213

Handling exceptions in the .NET environment 213

CHAPTER 15 Best Practices for .NET Projects ... 217
Coding restrictions ... 217

Syntax issues .. 218
Semantic issues .. 219
External functions.. 220

Design-level considerations ... 221
Use PowerBuilder system functions...................................... 221
Use the DESTROY statement... 222
Use regional formats based on client or server settings 222
Work around unsupported features....................................... 223
Avoid hindrances to application performance 224

Take advantage of global configuration properties 224
DataWindow pagination .. 225
DataWindow page navigation.. 226

Use client-side events to delay postbacks 227
DataWindow property for setting a customized event

handler.. 228
DataWindow properties for calling client-side events............ 228
Client-Side CommandButton property................................... 229
AutoPostBack.. 229

Contents

viii PowerBuilder

PART 6 COMPILING, DEBUGGING, AND TROUBLESHOOTING

CHAPTER 16 Compiling and Debugging .. 233
Incremental rebuild for .NET application targets 233

Target level.. 233
Build and deploy directories .. 234
Rebuild scope.. 234
.NET modules.. 234
PBD generation ... 235
Triggering build and deploy operations 236
System option.. 236
How incremental builds work... 237

Debugging a .NET application ... 238
.NET debugger restrictions.. 238
Release and Debug builds .. 240
DEBUG preprocessor symbol ... 240
Attaching to a running Windows Forms process 241
Breaking into the debugger when an exception is thrown..... 242

Debugging a .NET component... 243

CHAPTER 17 Troubleshooting .NET Targets ... 245
Troubleshooting deployment errors ... 245
Troubleshooting tips for Web Forms applications 246

Failure to deploy to local machine alias 247
Browser error messages ... 247
Problem with toolbars and menu controls 248
Failure to connect to database .. 248
DataWindows do not display ... 249
Pictures do not display .. 250
Excessive flickering on Web page... 250
Posted events are not executed.. 250
External DLLs cannot be loaded ... 250
Print failure .. 251
Log files ... 251
Problems on Windows 2003.. 251

Troubleshooting tips for Windows Forms applications................. 252
Runtime errors... 252
Publish errors .. 253
Installation errors... 254
Update errors .. 255

Index ... 257

Deploying Applications and Components to .NET ix

About This Book

Audience This book is for programmers who plan to convert traditional client-server
PowerBuilder® applications to PowerBuilder .NET Web Forms or
Windows Forms applications, or to develop new .NET applications or
.NET components in PowerBuilder.

How to use this book This book describes how to use PowerBuilder .NET wizards to generate
both Web Forms and Windows Forms applications and to generate Web
services and .NET assemblies from PowerBuilder custom class user
objects. It provides information on design and coding considerations for
converting PowerBuilder applications to .NET applications. It also
describes the client-side events and event handlers you can use to enhance
the performance of your Web Forms applications.

Related documents For a description of books in the PowerBuilder documentation set, see the
preface of the PowerBuilder Getting Started book. The Getting Started
book also has tutorials for .NET Web Forms and Windows Forms
applications.

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase
Product Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation
guides in PDF format, and may also contain other documents or
updated information not included on the SyBooks CD. It is included
with your software. To read or print documents on the Getting Started
CD, you need Adobe Acrobat Reader, which you can download at no
charge from the Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access
the manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or
print the PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or
the README.txt file on the SyBooks CD for instructions on installing
and starting SyBooks.

x PowerBuilder

• The Sybase Product Manuals Web site is an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://www.sybase.com/support/manuals/.

Conventions The formatting conventions used in this manual are:

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

Formatting example Indicates

Retrieve and Update When used in descriptive text, this font indicates:

• Command, function, and method names

• Keywords such as true, false, and null

• Datatypes such as integer and char

• Database column names such as emp_id and
f_name

• User-defined objects such as dw_emp or
w_main

variable or file name When used in descriptive text and syntax
descriptions, oblique font indicates:

• Variables, such as myCounter

• Parts of input text requiring substitution, such as
pblname.pbd

• File and path names

File>Save Menu names and menu items are displayed in plain
text. The greater than symbol (>) shows you how
to navigate menu selections. For example,
File>Save indicates “select Save from the File
menu.”

dw_1.Update() Monospace font indicates:

• Information that you enter in a dialog box or on
a command line

• Sample script fragments

• Sample output fragments

P A R T 1 Choosing a .NET Target

This part describes differences between .NET Windows
Forms and Web Forms targets. It also describes
configuration requirements for .NET Web Forms and Web
Service targets.

Deploying Applications and Components to .NET 3

C H A P T E R 1 Overview and Configuration of
.NET Targets

About this chapter In PowerBuilder 11 you can deploy PowerBuilder applications as
ASP.NET Web or Windows Forms applications. You can also deploy
custom class objects as Web service components or .NET assemblies.

This chapter provides an overview of the Web Forms and Windows Forms
target choices and describes configuration requirements that apply to
.NET Web Forms and .NET Web Service projects.

Contents

Choosing a .NET application target
Web Forms applications have several advantages over traditional
client-server and Windows Forms applications. Web Forms applications
do not require client-side installation, are easy to upgrade, have no
distribution costs, and offer broad-based user access. Any user with a Web
browser and an online connection can run Web Forms applications.

Windows Forms applications with the smart client feature combine the
reach of the Web with the power of local computing hardware. They
provide a rich user experience, with a response time as quick as the
response times of equivalent client-server applications. The smart client
feature simplifies application deployment and updates, and can take
advantage of Sybase’s MobiLink technology to provide occasionally
connected capability.

Table 1-1 displays some of the relative advantages and disadvantages of
Web Forms and Windows Forms applications.

Topic Page

Choosing a .NET application target 3

How .NET deployment works 5

Configuring ASP.NET for a .NET project 6

Checklist for deployment 15

CHAPTER 1 Overview and Configuration of .NET Targets

4 PowerBuilder

Table 1-1: Relative advantages of Web Forms and Windows Forms
applications

Smart client applications
The PowerBuilder smart client feature makes Windows Forms applications
easy to upgrade while maintaining the advantages of quick response times and
the ability to use local resources. For more information, see Chapter 10,
“Intelligent Deployment and Update.”

Although PowerBuilder continues to support traditional client-server as well as
distributed applications, PowerBuilder 11 provides you with the ability to
transform these applications into Web Forms and Windows Forms applications
with relative ease.

The decision to convert an application to use Web Forms or Windows Forms
depends upon the type of application you plan to convert. Simple inquiry,
browsing, or reporting applications are suitable candidates for Web Forms
deployment. If you need only part of an application to run in a browser, you can
move this part and its dependent objects to a new target that you deploy with a
Web Forms project.

Applications that require significant data entry, retrieve large amounts of data
(for example, more than 3 MB per request), or have a complex user interface
are more suitably deployed as Windows Forms.

Application type Advantages Disadvantages

Web Forms • No installation

• Easy to upgrade

• Broader reach

• Slower response

• Must be online

Windows Forms • Rich user experience

• Quicker response
time

• Availability of
client-side resources,
such as 3D animation

• Offline capability

• Requires client-side
installation

• Difficult to upgrade

Windows Forms with
smart client feature

• Same advantages as
Windows Forms

• Easy to deploy and
upgrade

• Requires first time
client-side installation

CHAPTER 1 Overview and Configuration of .NET Targets

Deploying Applications and Components to .NET 5

If you need to deploy data entry intensive applications as Web Forms, you must
allow for slower response times. However, you can enhance the performance
of Web Forms applications by reducing postbacks to the server. You do this
through the use of client-side events, or by refactoring code so that events
associated with individual controls are combined and submitted in a single
postback.

For more information on the relative advantages of Web Forms and Windows
Forms, see the Microsoft Web site at http://msdn2.microsoft.com/en-
us/library/5t6z562c(VS.80).aspx.

How .NET deployment works
When you deploy a .NET project, PowerBuilder compiles existing or newly
developed PowerScript code into .NET assemblies. At runtime, the generated
.NET assemblies execute using the .NET Common Language Runtime (CLR).
PowerBuilder's .NET compiler technology is as transparent as the P-code
compiler in standard PowerBuilder client-server applications.

Depending on their application target type, the assemblies you generate from a
.NET project are built into Web Forms or Windows Forms applications. If you
generate assemblies from a component target type, the assemblies are deployed
as independent .NET components or as Web services.

PowerBuilder Web Forms applications have a three-tier architecture, with the
client running in a Web browser on the front end and PowerBuilder
components running on the Microsoft IIS server using ASP.NET 2.0
technology. A session is created and is dedicated to processing each user
request on the client side, ensuring that the applications are stateful. The
session manages the runtime environment, makes required connections to the
database, retrieves data, renders HTML responses, and keeps the session active
in the server until the user closes the application or the session times out.

PowerBuilder Windows Forms applications run on the .NET 2.0 Framework
using local computer hardware resources. The smart client feature permits you
to publish Windows Forms applications to an IIS or FTP server, and leverages
Microsoft's ClickOnce technology, making it easier for users to get and run the
latest version of an application and easier for administrators to deploy it.

Figure 1-1 is a high level architectural diagram showing the conversion of
PowerBuilder applications and custom class objects to applications and
components on the .NET platform.

CHAPTER 1 Overview and Configuration of .NET Targets

6 PowerBuilder

Figure 1-1: Conversion of applications and components to .NET

Configuring ASP.NET for a .NET project
You can configure ASP.NET for a Web Forms or smart client project before or
after you deploy the project to an IIS 5.0 or later server. All files and directories
that you access from a Web Forms application or a smart client application on
a Web server must have appropriate ASPNET (IIS 5.0), IIS_WPG (IIS 6.0), or
IIS_IUSRS (IIS 7.0) user permissions.

For an example of granting user permissions to a directory, see “Granting
ASP.NET user permissions” on page 10.

Installing IIS
You can install IIS from the Control Panel, but you might need a Windows
operating system CD. Select Add and Remove Programs from the Control
Panel, then click Add/Remove Windows Components, select the Internet
Information Services check box, and click Next. You can then follow
instructions to install IIS. On Vista, go to the Programs and Features page in
the Control Panel, select Turn Windows features on or off, and select Internet
Information Services.

CHAPTER 1 Overview and Configuration of .NET Targets

Deploying Applications and Components to .NET 7

If IIS 5.0 or later is installed after the .NET Framework 2.0, you must register
IIS with ASP.NET manually or reinstall the .NET Framework 2.0. To manually
register IIS with ASP.NET 2.0, go to the .NET Framework 2.0 path, run
aspnet_regiis.exe -i in the command line console, and restart IIS.

If you use IIS 7.0 for your Web applications and components, make sure you
install the IIS 6 Compatibility Component and IIS 6 script tool.

Selecting the default ASP.NET version
If you installed multiple versions of the .NET Framework on the target Web
server, you should make sure that IIS uses the 2.0 version for PowerBuilder
.NET applications. You can make this change globally, for all ASP.NET Web
site applications, or for individual applications that you deploy to IIS.

The following procedure applies to IIS 5 and 6. In IIS 7, you set the .NET
Framework version for the application pool your applications use. For more
information, see “Additional configuration requirements for Windows Vista”
on page 13.

❖ To configure the ASP.NET version for all new Web sites:

1 Select Start>Run from the Windows Start menu.

2 Type “InetMgr” in the Run dialog box drop-down list.

The IIS Manager displays.

3 In the left pane of the IIS Manager, expand the local computer node and
its Web Sites sub-node.

4 Right-click the Default Web Site node and select Properties from its
pop-up menu.

The Default Web Site Properties dialog box displays.

5 Click the ASP.NET tab of the Default Web Site Properties dialog box and
select 2.0.50727 or later for the ASP.NET version.

CHAPTER 1 Overview and Configuration of .NET Targets

8 PowerBuilder

Figure 1-2: Setting the default ASP.NET version

Changing the ASP.NET version for an existing Web Forms project
If you have already deployed a PowerBuilder .NET project, you can follow the
procedure to configure the ASP.NET version for all new Web sites, but instead
of right-clicking on the Default Web Site node in step 4, expand the node and
right-click on the .NET application that you deployed from PowerBuilder.
Then proceed with step 5.

Viewing and modifying global properties in IIS Manager
Although you set global properties for a Web Forms application on the
Configuration page of the Project painter before you deploy the project, you
can also view and modify the global properties in the IIS Manager after the
project is deployed.

For information about global properties generated with a PowerBuilder .NET
Web Forms project, see “Global Web configuration properties” on page 82.

❖ To view and edit global properties in IIS Manager:

1 Expand the nodes in the left pane of the IIS Manager until you see the node
for the Web Forms application whose properties you want to examine.

CHAPTER 1 Overview and Configuration of .NET Targets

Deploying Applications and Components to .NET 9

2 Right-click on the Web Forms application and select Properties from the
pop-up menu.

3 Click the ASP.NET tab and change the ASP.NET version to 2.0.50727 if
necessary.

4 Click Edit Configuration.

The ASP.NET Configuration dialog box displays for the current .NET
Web Forms application. You can view its global properties in the list box
at the bottom of the General tab.

Modifying a global property for the application
You modify a global property by selecting that property in the Application
Settings list box and clicking Edit. You can then type in a new value for
that property and click OK. The next time you run the Web Forms
application, the new global property value is used.

Directory structure on the server
When you deploy a PowerBuilder .NET Web Forms application, PowerBuilder
creates two top-level directories for the application under the IIS root. One of
the directories takes the name of the application specified in the Web Forms
project, and the other appends “_root” to the application name.

The applicationName directory contains the generated cs and aspx files, as
well as subdirectories for any resource files, PowerBuilder libraries, and
external modules that you deploy with your application.

The applicationName_root directory contains directories named File, Mail,
Log, and Print. The File directory contains the Common, Session, User, and
Icon subdirectories. The File\Common directory holds read-only files
specified in the Web Forms project. The paths to the read-only files mirror the
paths on the development computer, with the drive letter serving as the name
for the top subdirectory under File\Common directory.

The subdirectories under the File\Common directory include the initial current
directory that you assigned in the .NET Web Forms Application wizard or in
the Project painter. If an application user performs write operations on a file in
a File\Common subdirectory, a SessionID folder is created under the
File\Session directory (or, if the application user has a permanent user account,
a UserName folder is created under the File\User directory), and the read-only
file is copied there in a mirrored path before a user can save the modified file.

CHAPTER 1 Overview and Configuration of .NET Targets

10 PowerBuilder

The File\User directory contains files saved by logged-in users whose profiles
are included in a permanent user database. For information about creating user
profiles, see “Creating permanent user accounts” on page 53.

The File\Icon directory is used by the PowerBuilder .NET Web Forms runtime
engine to convert .ICO files to .GIFs and .BMPs. Its contents are not visible to
Web Forms application users.

Setting up a SQL Anywhere database connection
Before a PowerBuilder .NET Web Forms application connects to a SQL
Anywhere® database, you must either start the database manually or grant the
ASPNET user (IIS 5 on Windows XP), the IIS_WPG user group (IIS 6 on
Windows 2003), or IIS_IUSRS (IIS 7 on Windows Vista) default permissions
for the Sybase\Shared and Sybase SQL Anywhere directories, making sure to
replace permissions of all child objects in those directories.

Full control permissions are required for directories containing databases that
you need to access from your Web Forms applications.

Starting the database manually
If your database configuration uses a server name, you must provide the
database server name in the start-up options when you start the database
manually, in addition to the name of the database file you are accessing.

Granting ASP.NET
user permissions

If you do not grant the appropriate user permissions for Sybase directories and
your database configuration is set to start the database automatically, your
application will fail to connect to the database. SQL Anywhere cannot access
files unless the ASPNET, IIS_WPG, or IIS_IUSRS user group has the right to
access them.

❖ To grant an ASP.NET user permissions for Sybase directories:

1 In Windows Explorer, right-click the Sybase, Sybase\Shared or Sybase
SQL Anywhere directory and select Properties from the pop-up menu.

The Properties dialog box displays for the selected directory.

2 Select the Security tab of the Properties dialog box for the directory and
click the Add button. On Vista, click Edit and then Add.

The Select Users, Computers, or Groups dialog box displays.

CHAPTER 1 Overview and Configuration of .NET Targets

Deploying Applications and Components to .NET 11

If the Security tab does not display
To display the Security tab, you might need to modify a setting on the
View tab of the Folder Options dialog box for your current directory. You
open the Folder Options dialog box by selecting the Tools>Folder Options
menu item from Windows Explorer. To display the Security tab, you must
clear the check box labeled “Use simple file sharing (Recommended)”.

3 Click Locations and choose the server computer name from the Locations
dialog box and click OK.

4 Type ASPNET (IIS 5), IIS_WPG (IIS 6), or IIS_IUSRS (IIS 7) in the list
box labeled “Enter the object names to select” and click OK.

If valid for your server, the account name you entered is added to the
Security tab for the current directory. (You can check the validity of a
group or user name by clicking Check Names before you click OK.)

5 Select the new account in the top list box on the Security tab, then select
the check boxes for the access permissions you need under the Allow
column in the bottom list box.

You must select the Full Control check box for a directory containing a
database that you connect to from your application.

6 Click the Advanced button.

The Advanced Security Settings dialog box displays for the current
directory.

7 Select the check box labeled “Replace permission entries on all child
objects with entries shown here that apply to child objects” and click OK.

A Security dialog box displays, warns you that it will remove current
permissions on child objects and propagate inheritable permissions to
those objects, and prompts you to respond.

8 Click Yes at the Security dialog box prompt, then click OK to close the
Properties dialog box for the current directory.

Tracing runtime exceptions
The pbtrace.log file is created in the applicationName_root directory. This file
records all runtime exceptions thrown by the application and can be used to
troubleshoot the application.

CHAPTER 1 Overview and Configuration of .NET Targets

12 PowerBuilder

Setting up IE Web Controls on the server
PowerBuilder .NET Web Forms use Internet Explorer Web Controls to display
correctly and to provide functionality for the Menu, Toolbar, and TreeView
controls.

Preview of alternative controls from Telerik
The PowerBuilder 11.1 setup program installs Telerik RadControls for
ASP.NET, and PowerBuilder automatically deploys these controls with your
Web Forms applications. RadControls provide enhanced functionality for Web
Forms toolbars and menus, and can be used in place of the IE Web Controls.
The installed RadControl set also includes DatePicker and MonthCalendar
controls, but not the TreeView control.

You can download IE Web Controls from the Microsoft Web site at
http://www.asp.net/IEWebControls/Download.aspx. The download comes with a
Readme file that provides instructions for installing the controls.

After you install the IE Web Controls by running the build.bat file included in
the download, you must copy the controls to a webctrl_client\1_0 directory
under the IIS root.

❖ To copy the IE Web Controls:

1 Open a DOS command box.

2 Change directories to the directory where you installed the IE Web
Controls.

3 Type the following line at the command prompt, modifying the server IIS
root directory if you do not use the default c:\Inetpub\wwwroot directory:

xcopy /s /i .\build\Runtime
c:\Inetpub\wwwroot\webctrl_client\1_0 /y

4 Press Enter.

This creates the following directory structure under the root:
\webctrl_client\1_0

 [images]
[treeimages]

The \webctrl_client\1_0 directory should contain the following files:
MultiPage.htc, TabStrip.htc, toolbar.htc, treeview.htc, webservice.htc, and
webserviced.htc

CHAPTER 1 Overview and Configuration of .NET Targets

Deploying Applications and Components to .NET 13

Additional configuration requirements for Windows Vista
Virtual directories in IIS 7 are hosted in an application pool. An application
pool is the host process for one or more Web applications. When you deploy a
PowerBuilder Web Forms application to IIS 7, the application is deployed to
the DefaultAppPool. By default, this application pool uses the Integrated
managed pipeline mode, where managed code is integrated into the request
processing pipeline.

To avoid compatibility issues, Web Forms applications deployed from
PowerBuilder must run in an application pool that uses the Classic managed
pipeline mode, where ASP.NET runs as an ISAPI extension.

Although you can configure the DefaultAppPool to use the Classic mode,
changing the setting will affect all applications running in that application pool.
A better option is to create a new application pool for PowerBuilder Web
Forms applications.

Creating a
PowerBuilder Web
Forms application
pool

If you choose not to create a new application pool, you must complete steps 4
and 5 in the following procedure for the application pool that hosts your
application.

❖ To create and configure an application pool for PowerBuilder Web
Forms applications:

1 In IIS Manager, select Application Pools.

2 In the Actions pane, select Add Application Pool.

3 Provide a name, such as PBWebForms, for the application pool.

4 Set .NET Framework version to .NET Framework v2.0.50727.

5 Set Managed Pipeline Mode to Classic and click OK.

CHAPTER 1 Overview and Configuration of .NET Targets

14 PowerBuilder

The new application pool displays in the list.

Enabling 32-bit
applications on 64-bit
Vista

On 64-bit Vista, you must enable the application pool to run 32-bit
applications.

❖ To enable 32-bit applications on 64-bit Vista:

1 In IIS Manager, select Application Pools.

2 In the list of Application Pools, select the application pool you have
configured for use with PowerBuilder Web Forms.

3 In the Actions pane, select Advanced Settings under Edit Application
Pool.

4 Expand the General settings, set Enable 32-bit Applications to True, and
click OK.

Moving an application
into a different
application pool

If you have created and configured a new application pool for PowerBuilder,
you need to move your PowerBuilder Web Forms applications into the pool.

❖ To move an application into a different application pool:

1 In IIS Manager, expand Web Sites and Default Web Site.

2 Right-click the virtual directory for your application and click Advanced
Settings.

CHAPTER 1 Overview and Configuration of .NET Targets

Deploying Applications and Components to .NET 15

3 Select the drop-down list next to the Application Pool property, select the
application pool you created, and click OK

4 Reload the application.

Application directory
permissions

When you deploy a new Web Forms target, a temp directory is created in the
Inetpub\wwwroot\application_name directory, where application_name is the
name of your application, and several subdirectories are created in the
Inetpub\wwwroot\application_name_root directory. Files are written to and
deleted from these directories, therefore the IIS_IUSRS group must have full
permissions on temp and application_name_root.

Checklist for deployment
For all .NET targets For deployment of all .NET target types, production servers or target

computers must have:

• Windows XP SP2, Windows 2003, or Windows Vista operating system

• .NET Framework 2.0

• The Microsoft Visual C++ runtime libraries msvcr71.dll and msvcp71.dll
and the Microsoft .NET Active Template Library (ATL) module, atl71.dll

• PowerBuilder .NET assemblies in the global assembly cache (GAC)

• PowerBuilder runtime dynamic link libraries in the system path

For more information, see “Deploying PowerBuilder runtime files” on
page 16.

For .NET Web Forms
and Web Service
targets

For .NET Web Forms and Web Service targets, production servers must also
have:

• IIS 5, IIS 6, or IIS 7

For information on configuring IIS, see “Installing IIS” on page 6.

• ASP.NET Framework 2.0

For information on configuring the .NET Framework, see “Selecting the
default ASP.NET version” on page 7

CHAPTER 1 Overview and Configuration of .NET Targets

16 PowerBuilder

• IE Web Controls installed (Web Forms only)

For information on installing IE Web Controls, see “Setting up IE Web
Controls on the server” on page 12. For some types of controls, you can
use Telerik RadControls in place of IE Web Controls. For information on
using RadControls, see the description for the PBWebControlSource
global property in Table 6-1.

• ASP.NET permissions for all files and directories used by your
applications

For an example of how to grant ASP.NET permissions, see “Setting up a
SQL Anywhere database connection” on page 10. For command line
instructions granting ASP.NET permissions to deployed application
directories, see “Granting ASP .NET user permissions” on page 31.

For information on three different methods for deploying .NET Web Forms
applications to a production server, see “Deploying to a production server” on
page 29. These methods are also valid for deployment of .NET Web Service
components.

Deploying
PowerBuilder runtime
files

The simplest way to deploy PowerBuilder runtime DLLs and .NET assemblies
to production servers or target computers is to use the PowerBuilder Runtime
Packager tool. The Runtime Packager creates an MSI file that installs the files
you select, registers any self-registering DLLs, and installs the .NET
assemblies into the global assembly cache (GAC).

Runtime file version
When you deploy any PowerBuilder application or component, you should
always make sure that the version and build number of the PowerBuilder
runtime files on the target computer or server is the same as the version and
build number of the DLLs on the development computer. Mismatched DLLs
can result in unexpected errors in all applications. If the development computer
is updated with a new build, PowerBuilder .NET applications and components
must be rebuilt and redeployed with the new runtime files.

For more information about using the Runtime Packager, see the chapter on
“Deploying Applications and Components” in Application Techniques. That
chapter lists the base components deployed when you select PowerBuilder
.NET Components in the Runtime Packager. The Runtime Packager also
installs additional components depending on your selections in the tool’s user
interface.

CHAPTER 1 Overview and Configuration of .NET Targets

Deploying Applications and Components to .NET 17

You can choose to use another tool to install the runtime files on the server or
target computer. You should install the runtime files listed in Table 1-2 that
your application requires. You should also install the database interfaces your
application uses. The database interfaces are listed in Table 1-3.

Sybase.PowerBuilder files are strong-named .NET assemblies that can be
installed into the GAC. For more information about the GAC, see “Installing
assemblies in the global assembly cache” on page 19.

Table 1-2: PowerBuilder runtime files for .NET targets

Name Required for

pbshr110.dll, Sybase.PowerBuilder.ADO.dll,
Sybase.PowerBuilder.Common.dll,
Sybase.PowerBuilder.Core.dll,
Sybase.PowerBuilder.Interop.dll,
Sybase.PowerBuilder.Web.dll, Sybase.PowerBuilder.Win.dll

All

pbrth110.dll .NET Web Forms
and ADO.NET

pbdwm110.dll, Sybase.PowerBuilder.Datawindow.Web.dll,
Sybase.PowerBuilder.DataWindow.Win.dll,
Sybase.PowerBuilder.Datawindow.Interop.dll

DataWindows and
DataStores

pbdpl110.dll Data pipelines
(Windows Forms
only)

Sybase.PowerBuilder.EditMask.Win.dll,
Sybase.PowerBuilder.EditMask.Interop.dll

Edit masks

Sybase.PowerBuilder.Graph.Web.dll,
Sybase.PowerBuilder.Graph.Win.dll,
Sybase.PowerBuilder.Graph.Core.dll,
Sybase.PowerBuilder.Graph.Interop.dll

Graphs

pbrtc110.dll, Sybase.PowerBuilder.RTC.Win.dll,
Sybase.PowerBuilder.RTC.Interop.dll, tp13.dll,
tp13_bmp.flt, tp13_css.dll, tp13_doc.dll, tp13_gif.flt,
tp13_htm.dll, tp13_ic.dll, tp13_ic.ini, tp13_jpg.flt,
tp13_obj.dll, tp13_pdf.dll, tp13_png.flt, tp13_rtf.dll,
tp13_tif.flt, tp13_tls.dll, tp13_wmf.flt, tp13_wnd.dll,
tp4ole13.ocx

 Rich text

PBXerces110.dll, xerces-c_2_6.dll, xerces-depdom_2_6.dll XML export and
import

Sybase.PowerBuilder.WebService.Runtime.dll,
Sybase.PowerBuilder.WebService.RuntimeRemoteLoader.dll

Web service
DataWindows

CHAPTER 1 Overview and Configuration of .NET Targets

18 PowerBuilder

Table 1-3 lists the files you need to deploy if your application uses a
PowerBuilder database interface.

Table 1-3: Database connectivity runtime files for .NET targets

ExPat110.dll, libeay32.dll, ssleay32.dll, xerces-c_2_6.dll,
xerces-depdom_2_6.dll, EasySoap110.dll,
pbnetwsruntime110.dll, pbsoapclient110.pbx,
pbwsclient110.pbx,
Sybase.PowerBuilder.WebService.Runtime.dll,
Sybase.PowerBuilder.WebService.RuntimeRemoteLoader.dll

Web service clients

pblab110.ini Label DataWindow
presentation-style
predefined formats

pbtra110.dll, pbtrs110.dll Database connection
tracing

Name Required for

pbin9110.dll Informix I-Net 9 native interface

pbo84110.dll Oracle8i native interface

pbo90110.dll Oracle9i native interface

pbo10110.dll Oracle 10g native interface

pbsnc110.dll SQL Native Client for Microsoft SQL Server
native interface

pbdir110.dll Sybase DirectConnect native interface

pbase110.dll Sybase Adaptive Server Enterprise native
interface (Version 15 and later)

pbsyc110.dll Sybase Adaptive Server Enterprise native
interface

pbado110.dll, pbrth110.dll,
Sybase.PowerBuilder.Db.dll,
Sybase.PowerBuilder.DbExt.dll

ADO.NET standard interface

pbjvm110.dll, pbjdb110.dll,
pbjdbc12110.jar

JDBC standard interface

pbodb110.dll, pbodb110.ini ODBC standard interface

pbole110.dll, pbodb110.ini OLE DB standard interface

Name Required for

CHAPTER 1 Overview and Configuration of .NET Targets

Deploying Applications and Components to .NET 19

Installing assemblies
in the global assembly
cache

When the Common Language Runtime (CLR) is installed on a computer as
part of the .NET Framework, a machine-wide code cache called the global
assembly cache (GAC) is created. The GAC stores assemblies that can be
shared by multiple applications. If you do not want or need to share an
assembly, you can keep it private and place it in the same directory as the
application.

If you do not want to use the Runtime Packager to deploy your application, you
should use Windows Installer or another installation tool that is designed to
work with the GAC. Windows Installer provides assembly reference counting
and other features designed to maintain the cache.

On the development computer, you can use a tool provided with the .NET
Framework SDK, gacutil.exe, to install assemblies into the GAC, or you can
use Windows Explorer to drag and drop assemblies into the Windows\assembly
directory.

You can also use the .NET Framework 2.0 Configuration tool to add
assemblies to the GAC. In the Windows Control Panel, select Administrative
Tools>Microsoft .NET Framework 2.0 Configuration, then select Manage the
Assembly Cache. The configuration tool is installed with the .NET Framework
2.0 SDK.

Assemblies deployed in the global assembly cache must have a strong name.
A strong name includes the assembly's identity as well as a public key and a
digital signature. The GAC can contain multiple copies of an assembly with the
same name but different versions, and it might also contain assemblies with the
same name from different vendors, so strong names are used to ensure that the
correct assembly and version is called.

About strong names
Sybase.PowerBuilder assemblies are strongly named, but there is currently no
mechanism for giving .NET assemblies generated by PowerBuilder strong
names.

For more information about assemblies and strong names, see the Microsoft
library at http://msdn2.microsoft.com/en-us/library/wd40t7ad.aspx.

CHAPTER 1 Overview and Configuration of .NET Targets

20 PowerBuilder

P A R T 2 Web Forms Targets

This part describes how to create and deploy Web Forms
applications.

Deploying Applications and Components to .NET 23

C H A P T E R 2 Moving PowerBuilder
Applications to the Web

About this chapter In PowerBuilder 11 you can deploy PowerBuilder applications as
ASP.NET Web applications.

This chapter explains how to generate PowerBuilder applications as Web
Forms applications.

Contents

About PowerBuilder Web Forms applications
The PowerBuilder .NET Web Forms solution employs ASP.NET
technology. It has a three-tier architecture, with the browser client as the
front end, and the PowerBuilder components on the IIS server as the
middle tier. The database tier remains unchanged.

Moving an existing application from client-server architecture to
three-tier Web architecture typically requires a significant effort in
modifying the application code and the tolerance of various functionality
restrictions due to constraints of the Web environment. The PowerBuilder
.NET Web Forms solution is intended to ease the deployment of existing
client-server applications to the Web and allow you to use your
PowerBuilder skills to create new Web applications.

You must take into account the Internet bandwidth available, the rendering
capability of client Web browsers, and IIS server environment factors
when determining whether .NET Web Forms are an optimal solution for
new or existing applications.

Topic Page

About PowerBuilder Web Forms applications 23

Creating a PowerBuilder .NET Web Forms target 24

Deploying and running a .NET Web Forms project 28

Sharing data across sessions 32

CHAPTER 2 Moving PowerBuilder Applications to the Web

24 PowerBuilder

Creating a PowerBuilder .NET Web Forms target
System requirements You must install version 2.0 of the Microsoft .NET Framework on the same

computer as PowerBuilder 11, and you must make sure that the system PATH
environment variable includes the location of the .NET Framework. If you
installed the 1.x and 2.0 versions of the .NET Framework, you must make sure
the PATH variable lists the 2.0 version first.

Some functionality might require the installation of IE Web Controls on the IIS
server where you deploy a .NET Web Forms target.

For more information about installation and configuration, see “Configuring
ASP.NET for a .NET project” on page 6.

If you are deploying .NET applications from a computer with the Vista
operating system, you must run PowerBuilder as the computer administrator.

About the .NET Web
Forms target

You can use the PowerBuilder .NET Web Forms Application target wizard to
create a Web Forms target “from scratch” or from an existing PowerBuilder
application.

The existing application object that you select to use as a Web Forms
application can be an application object from any type of PowerBuilder target.
By default, if the existing application is already included in a target in the
current workspace, the wizard reuses the entire library list from the existing
target as the library list for the Web Forms target that the wizard creates.

After the wizard creates a Web Forms target from an existing application, all
objects from that application are visible in the System Tree for the Web Forms
target except project objects for other types of PowerBuilder targets.

About the .NET Web
Forms project

Whether you use the target wizard to create a new target from scratch or from
an existing application, the target wizard always creates a new project. It
automatically launches the .NET Web Forms Application project wizard. A
.NET Web Forms project object is required to deploy the Web Forms
application to an IIS 5.0 or later server. Once the application is deployed to a
server, end users can run it from a Web browser.

Although you can always start the .NET Web Forms Application project
wizard from the Project tab of the New dialog box, you can start it for a .NET
Web Forms target type only. If the current workspace does not have a target of
this type, PowerBuilder does not let you run the .NET Web Forms Application
project wizard.

Table 2-1 lists optional and required items in the .NET Web Forms Application
project wizard:

CHAPTER 2 Moving PowerBuilder Applications to the Web

Deploying Applications and Components to .NET 25

Table 2-1: .NET Web Forms Application project wizard fields

Using the .NET Web
Forms Project painter

After you click Finish in the project wizard, PowerBuilder creates a .NET Web
Forms project and opens the project in the Project painter. The Project painter
displays the values you entered in the wizard and allows you to modify them.
The painter also includes functionality that is not available in the .NET Web
Forms Application project wizard.

Wizard field Description

Project name Name of the .NET Web Forms project.

Project library Library where you want to store the .NET Web
Forms project.

Web application name Name of the .NET Web Forms application. By
default, this is the name of the application for the
current PowerBuilder target.

Application URL preview Address for starting the .NET Web Forms
application in a browser (minus the default.aspx
or default.htm start-up file name).

Resource file and directory list Specifies a list of resource files, or directories
containing resource files, that you want to deploy
with the project.

When you select a directory, the resource files in
all of its subdirectories are also selected by
default. However, after you complete the wizard,
you can clear the check box in the Recursive
column on the Resource Files tab page for the
project. If you do that, the resource files in the
selected directory, but not in any of its
subdirectories, are selected for deployment.

Win32 dynamic library file list Specifies any Win32 DLLs that you want to
include with your project. Modules in this list are
deployed to the bin directory in the application
Web site under the virtual root folder.

JavaScript file list Specifies JavaScript files you want to deploy
with the project.

Generate setup file option and
Setup file name

Select this option and a setup file name if you are
not deploying directly to an IIS server.

Direct deploy to IIS and IIS
server address

Select this option to deploy to an IIS server and
enter the address of the server where you want to
deploy the .NET Web Forms application.

CHAPTER 2 Moving PowerBuilder Applications to the Web

26 PowerBuilder

Table 2-2: Additional functionality in the Project painter

Project tab
page Functionality not available in the .NET Web Forms wizard

General Includes the following radio button build options:

• Build Type Debug (default) or Release

• Rebuild Incremental (default) or Full

You use debug builds for debugging purposes. Release builds have
better performance, but when you run a release build in the debug
mode, the debugger does not stop at breakpoints.

For information on the rebuild scope, see “Incremental rebuild for
.NET application targets” on page 233.

The General tab also includes the Enable DEBUG Symbol check
box that you can select to activate code inside conditional
compilation blocks using the DEBUG symbol. This selection does
not affect and is not affected by the project’s debug build or release
build setting. This check box is selected by default.

Resource
Files

The wizard automatically includes the resource files from all
subdirectories of a directory that you add to the wizard’s Resource
Files page. In the Project painter, a check box displays under the
Recursive column for each directory in the Resource Files page list
box. You can clear the check box to deploy only the files in the
directory that is listed. You can also select a registry XML file that
you want to deploy to the File/Common directory for your
application.

For more information on using registry files, see “Using the registry
functions” on page 60.

Library Files The Library Files tab has separate list boxes for target libraries
(PBLs and PBDs) and for dynamic Win32 library files (DLLs) that
you want to deploy with your project. The PBLs you select are
generated as PBDs if they contain DataWindow or Query objects.

By default, all target libraries are selected, but you need to select a
PBL only if it contains DataWindow or Query objects that you use
in your application. If your target library list includes a PBD file that
contains other types of PowerBuilder objects, such as functions or
user objects, you cannot reference those objects in your Web Forms
application.

These types of objects must be contained in a PBL file rather than in
a PBD file before you deploy them to a Web Forms target. For a Web
Services client, you can import a PBX file into a target PBL using
the Import PB Extension item on the library’s pop-up menu, rather
than using the PBD file that contains the SoapConnection and
SoapError classes.

CHAPTER 2 Moving PowerBuilder Applications to the Web

Deploying Applications and Components to .NET 27

Figure 2-1 displays the General page of the Project painter for a .NET Web
Forms project.

Configuration On this Project painter page, you can modify global properties for
the project before it is deployed. You or the application server
manager can also change global properties after the project is
deployed.

For more information about global properties, see “Global Web
configuration properties” on page 82.

Version You can specify version information for the project on this Project
painter page. The version information includes values for the
product name, company name, description, and copyright, as well as
major, minor, build, and revision version numbers for the product,
file, and assembly that you generate when you build the project. The
values you enter display in the generated assembly file's Properties
dialog box in Windows Explorer. They are viewable on the Web
Forms server, but are not typically available to end users of Web
Forms applications.

Post-build You can use this Project painter page to select an application, such
as a code obfuscator program, to process the generated Web Forms
application immediately after it is deployed. You can select different
applications for post-build processing of debug and run versions of
your project.

Run Contains the Application field where you can enter the path to a
browser you want to have run the Web Forms application and the
Arguments field where you can enter the URL for the Web Forms
application. By default, the path to the Internet Explorer browser is
displayed for the Application field. The Arguments field is
populated by default with the value for the project’s Application
URL Preview, with Localhost as the default server name.

Project tab
page Functionality not available in the .NET Web Forms wizard

CHAPTER 2 Moving PowerBuilder Applications to the Web

28 PowerBuilder

Figure 2-1: .NET Web Forms Application Project painter

Deploying and running a .NET Web Forms project
Deploying and running
the project from the
PowerBuilder UI

When a .NET Web Forms project is open in the Project painter and no other
painters are open, you can select Design>Deploy Project from the Project
painter to deploy the project. When all painters are closed, including the
Project painter, you can right-click a .NET Web Forms project in the System
Tree and select Deploy from its pop-up menu.

The Output window displays the progress of the deployment and provides a list
of application functions, events, and properties that are not supported in the
Web Forms version of the application. Most of these warnings are benign and
do not prevent users from running the application as Web Forms.

CHAPTER 2 Moving PowerBuilder Applications to the Web

Deploying Applications and Components to .NET 29

If the 2.0 version is the only version of the Microsoft .NET Framework
installed on the server, or if you configured the server to use the 2.0 version for
all Web sites by default, you can run the application immediately after you
deploy it. You can run the application from PowerBuilder by selecting
Design>Run Project from the Project painter menu or selecting the Run Project
toolbar icon from the Project painter toolbar. The System Tree pop-up menu for
the .NET Web Forms project also has a Run Project menu item.

Deploying to a setup
file

If you are deploying a .NET project to an MSI file, you must have a file named
License.rtf in the PowerBuilder DotNET\bin directory. The PowerBuilder
setup program installs a dummy License.rtf file in this directory, but you should
modify this file’s contents or replace the file with another file of the same
name. The License.rtf file should contain any license information you want to
distribute with your application. You can run the .NET application only after
the setup file is extracted to an IIS server. The contents of the License.rtf file
display in the setup file extraction wizard.

After you create and distribute the MSI file to an IIS server, you must extract
the MSI file on the server. By default the extraction directory is set to
C:\Program Files\Webform\applicationName, and the extraction wizard
creates the C:\Program Files\Webform\applicationName\applicationName and
C:\Program Files\Webform\applicationName\applicationName_root virtual
directories, where applicationName is the name of your application.

Although you do not need to modify the default extraction directory to run the
application, the extraction wizard does let you change the location of the
application directories you extract. If you prefer to keep all your applications
directly under the server’s virtual root, you could set the extraction directory to
server’s Inetpub\wwwroot directory.

Deploying to a
production server

You can deploy a Web Forms application to a production server either by:

• Extracting an MSI file that you build from a Web Forms project

• Deploying directly from the development computer to a mapped server

• Copying all application folders and files from IIS on a local server to IIS
on a production server

CHAPTER 2 Moving PowerBuilder Applications to the Web

30 PowerBuilder

Production servers must meet the requirements described in “Configuring
ASP.NET for a .NET project” on page 6. You must install all database clients
and have access to all data sources on the production computer. For
applications that you deploy to a production server, you should add required
database driver DLLs to the Win32 dynamic library list on the Library Files tab
page of your Web Forms projects. If you are using ODBC to connect to a
database, you should add the PBODB110.INI file to the list of resource files on
the Resource Files tab page of Web Forms projects.

The production server must have the following DLLs in its system path:
atl71.dll, msvcr71.dll, msvcp71.dll, pbshr110.dll, and if your application uses
DataWindow objects, pbdwm110.dll. You can also use the Runtime Packager
to deploy required PowerBuilder runtime files to the ASP.NET server. After
you install the package created by the Runtime Packager, you must restart the
server.

For a complete list of required runtime files and for information on the Runtime
Packager, see “Deploying Applications and Components” in Application
Techniques.

Deploying to a remote
server

You can deploy directly to a mapped server only if the server is in the same
domain or workgroup as the development computer. In addition, you must add
the development computer user’s Windows login ID as a member of the
Administrators group on the remote computer hosting the IIS server. Also, you
must share the wwwroot directory with the wwwroot$ share name.

If you copy a Web Forms application from a development computer to a
production server, you must copy both the applicationName and
applicationName_root folders (and their contents) that were created when you
deployed the application locally. Direct deployment to a mapped server
automatically adds the necessary ASP.NET user permissions to access these
directories, but if you copy files to the server, you must add these permissions
manually.

About the directory file structure
For information on the directory file structure of a deployed Web Forms
application under the IIS virtual root directory (\inetpub\wwwroot), see “Using
the Web Forms File Manager” on page 68.

CHAPTER 2 Moving PowerBuilder Applications to the Web

Deploying Applications and Components to .NET 31

Granting ASP .NET
user permissions

If you copy files to a production server, or extract your Web Forms application
from an MSI file, you can use Windows Explorer to grant ASP.NET
permissions to the application directories. This method is described in “Setting
up a SQL Anywhere database connection” on page 10. You can also grant
ASP.NET permissions from a command line. The commands are different
depending on whether your server is running IIS 5, 6, or 7.

Table 2-3: Commands granting permissions to Web Forms directories

Event logging on the
production server

If you log Web Forms application events to a production server’s event log (by
setting the PBTraceTarget global property to “EventLog”), you must have a
registry entry key for PBExceptionTrace. If you use an MSI file to deploy an
application to a production server, the PBExceptionTrace key is created
automatically. If you deploy directly to a mapped production server or if you
copy a Web Forms application to a production server, you must import the
PBExceptionTrace key or create it manually.

When you deploy to a local computer, PowerBuilder creates the following key:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Even

tlog\Application\PBExceptionTrace. You can export this key to a
.REG file and import it to the production server’s registry.

For information on the PBTraceTarget global property, see “Global Web
configuration properties” on page 82.

If your Web Forms application uses any ActiveX DLLs, such as
HTML2RTF.DLL or RTF2HTML.DLL, you must also register these files on the
production server.

Running the project When you debug or run the project from PowerBuilder, a system option setting
can cause a message box to display if the application has been modified since
it was last deployed. The message box prompts you to redeploy the application,
although you can select No to debug or run the older application, and you can
set the system option to prevent the message box from displaying.

For information about the message box, see “Triggering build and deploy
operations” on page 236. For information about the system option, see
“System option” on page 236.

IIS version Commands for granting appropriate user permissions

5 cacls applicationName\temp /t /e /c /g ASPNET:f

cacls applicationName_root /t /e /c /g ASPNET:f

6 cacls applicationName\temp /t /e /c /g IIS_WPG:f

cacls applicationName_root /t /e /c /g IIS_WPG:f

7 cacls applicationName\temp /t /e /c /g IIS_IUSRS:f

cacls applicationName_root /t /e /c /g IIS_IUSRS:f

CHAPTER 2 Moving PowerBuilder Applications to the Web

32 PowerBuilder

The Web browser that opens when you run a Web Forms project from
PowerBuilder does not include the browser menu and toolbar. This is because
PowerBuilder does not append the starting page, default.aspx, to the URL
listed in the project. You can see the application in a browser window that
includes the browser menu and toolbar by typing the URL in the browser
location window or address bar. The URL address is not case-sensitive.

Starting an application with command line parameters
If your application requires command line parameters, you can assign values
to the PBCommandParm global property before you deploy the application.
For information on setting global properties, see “Global Web configuration
properties” on page 82.

Application users can override the PBCommandParm parameter set at design
time by adding it at the end of the application’s URL, preceded by a question
mark. Multiple parameters are separated by the ASCII character code for an
empty space (%20). For example, the following address, entered on a single
line, uses two start-up parameters for the mypbapp Web Forms application
deployed to the www.mysite.com Web site:

http://www.mysite.com/mypbapp/default.aspx?PBCommandPa
rm=p1%20p2

If you do not include the starting page, default.aspx, in a URL that you type in
a browser address bar, or if you append default.htm as the starting page, IIS still
redirects you to the default.aspx page, but the browser menu and toolbar do not
display.

Sharing data across sessions
Sharing DataWindow
objects

You can share the data from primary, delete, and filter buffers of read-only
DataWindow objects across Web Forms application sessions. The Web.config
file global property PBCachedAndSharedDWs is available for this purpose.
You must set its value to the string of comma-delimited names of the
DataWindow objects you want to share across application sessions.

For information on modifying global properties, see “Configuring ASP.NET
for a .NET project” on page 6.

CHAPTER 2 Moving PowerBuilder Applications to the Web

Deploying Applications and Components to .NET 33

The following restrictions apply to DataWindow controls that have a
DataWindow object included in the PBCachedAndSharedDWs property
setting:

• Only a single invocation of Retrieve is allowed, and the Retrieve call must
not include parameters.

• No filtering or sorting is allowed.

• No deletions, insertions, data modifications, or updates are allowed.

• No invocation of ShareData or ShareDataOff is allowed.

When this form of sharing is used, the retrieval events are not fired. This is
because the Retrieve method shares the data in the cache and no actual retrieval
occurs.

Sharing DDDW
objects

It is also possible to share the data of DropDownDataWindow objects across
Web Forms application sessions. The global property
PBCachedAndSharedDDDWs is used for this purpose. You can set its value to
a string of comma-delimited names of DataWindow objects. Each
DataWindow object that you list can then be shared as the child DataWindow
of a DropDownDataWindow column.

Response windows affect DDDW visibility
In a Web Forms application, response windows are components of main
windows rather than separate browser instances. By default, when a response
window is opened, DDDW columns are temporarily hidden behind a layer
displaying the response window. The columns become visible again when the
response window is closed. You can prevent the temporary visibility issue by
changing the value of the PBDataWindowEnableDDDW global property.

For more information about rendering DDDW columns, see “Modified display
of DataWindow objects and controls” on page 120.

The following restrictions apply to DataWindowChild object references
included in the PBCachedAndSharedDDDWs property setting:

• No invocation of Retrieve is allowed.

• No filtering or sorting is allowed.

• No deletions, insertions, data modifications, or updates are allowed.

• No invocation of ShareData or ShareDataOff is allowed.

CHAPTER 2 Moving PowerBuilder Applications to the Web

34 PowerBuilder

Deploying Applications and Components to .NET 35

C H A P T E R 3 Client-Side Events and Default
Event Handlers

About this chapter This chapter describes the client-side events available to Web Forms
DataWindow controls and the default JavaScript event handlers that post
back to the server.

Contents

About client-side programming
Using client-side events to
interrupt default event
handlers

The use of client-side events can improve application performance
because they do not require round trips to the server. In most cases, an
event that is triggered in a PowerBuilder Web Forms application calls a
default JavaScript event handler that posts back to the server and triggers
the same event on the server side control. However, when you code a
client-side event for a DataWindow control, the call to the default
JavaScript event handler for that event is aborted and the round trip to the
server can be avoided.

To code for a client-side event at design time, you must enclose an event
handler assignment in a conditional compilation code block in a
PowerBuilder painter Script view. The start tag for the code block includes
a symbol to indicate that the code inside the block is for a .NET Web
Forms application. The event handler assignment is a hook into a
JavaScript file that you also assign in a conditional compilation code
block.

Topic Page

About client-side programming 35

Default event handlers 37

Client-side support for the Web DataWindow control 39

Alphabetical list of Web DataWindow client-side events 41

About client-side programming

36 PowerBuilder

Although coding for a client-side event normally interrupts postbacks to the
server, you can explicitly code for a postback in your customized JavaScript
event handler by calling Document.Form.Submit or by calling a default event
handler for the triggered event.

Example code for an
event handling script

The following is an example of a customized, client-side JavaScript event
handler for the ItemChanged event of a DataWindow. The event handler
determines whether the item changed is in the first or second column of the
DataWindow. If the item is in one of the first two columns, this event handler
calls the default JavaScript event handler that rejects item changes. In this case,
the default event handler does not cause a postback. If the item changed is not
in the first or second column, no client-side action is taken, and the server-side
action is delayed until a postback is triggered by a different event or function
call:

//Start MyScriptFile.js
function MyItemChanged(sender, rowNumber, columnName,
newValue)
{
 if(columnName == “column1” || columnName == “column2”)
 {
 // The default function is invoked
 return PBDataWindow_ItemChangedReject(sender,

rowNumber, columnName, newValue)
 }
 else
 {
 //do nothing
 }
}
//End MyScriptFile.js

The hook into the customized JavaScript event handler is added at design time
in a conditional compilation code block:

#IF DEFINED PBWEBFORM THEN
dw_1.JavaScriptFile = “MyScriptFile.js”
 dw_1.OnClientItemChanged = “MyItemChanged”
#END IF

Default event handlers
and postbacks

The default event handlers for the ItemChanged and ItemError events do not
trigger postbacks. If active, the default ItemChanged event handler returns
immediately to reject the entered value or causes the Web Forms application to
wait for a cascade of user events to occur before a postback is allowed. The
cascade of events that must occur before a postback is triggered is:
ItemChanged, Clicked, RowFocusChanging, RowFocusChanged, and
ItemFocusChanged.

CHAPTER 3 Client-Side Events and Default Event Handlers

Deploying Applications and Components to .NET 37

Some versions of the default Clicked event handler set a timer for postbacks
because the DHTML DoubleClicked event also triggers the Clicked event.

If a DataWindow object’s HTMLGen.PagingMethod property is set to
XMLClientSide!, postbacks are not called until an Update is issued, since the
data is stored in its entirety in the client browser cache. Also, if the
corresponding server-side event does not contain any script, the default event
handlers do not cause a postback or cause client-side Web Forms to be re-
rendered.

For more information on default event handlers, see “Default event handlers”
next.

Default event handlers
Default event handlers for the Web DataWindow control are contained in the
PBDataWindow.js file that deploys with your application to the
applicationName\Scripts directory under the server’s virtual root. The default
event handlers typically cause a postback or delayed postback to the
corresponding server-side event. Default event handlers can call more than one
server-side event, but each default event handler name includes a reference to
the main event that it handles.

The choice of handlers that attach to each event follows the logic described by
Table 3-1. The table also indicates whether the event handler causes a
postback, a delayed postback, or no postback.

If you call a customized client-side event handler, the default event handler
does not get invoked, postbacks are not made to the server, and the
corresponding server-side event does not get triggered. You can explicitly call
a default event handler from a customized event handler if you want to trigger
the corresponding server-side event. When you call a default event handler
directly in a JavaScript function, you must use the same arguments and return
value that you would for the principal client-side event that it handles.

For information on client-side event signatures, see the event descriptions
under “Alphabetical list of Web DataWindow client-side events” on page 41.

Default event handlers

38 PowerBuilder

Table 3-1: List of default event handlers by event type

Client-side Event
Default JavaScript handler
(postback action)

Used under the following conditions
for server-side events:

Clicked PBDataWindow_Clicked (postback) Clicked is handled, but DoubleClicked is
not

Clicked and ButtonClicked are handled, but
DoubleClicked is not

Clicked and ButtonClicking is handled, but
DoubleClicked is not

PBDataWindow_DelayedClicked (delayed
postback)

Clicked and DoubleClicked are handled

Clicked, DoubleClicked, and
ButtonClicked are handled

Clicked, DoubleClicked, and
ButtonClicking are handled

PBDataWindow_ClickedDifferentRow
(postback)

RowFocusChanging is handled, but
Clicked and DoubleClicked are not

RowFocusChanged is handled, but Clicked
and DoubleClicked are not

PBDataWindow_DelayedClickedDifferent
Row (delayed postback)

RowFocusChanging and DoubleClicked
are handled, but Clicked is not

RowFocusChanged and DoubleClicked are
handled, but Clicked is not

DoubleClicked PBDataWindow_DoubleClicked
(postback)

DoubleClicked is handled

RButtonDown PBDataWindow_RButtonDown (postback) RButtonDown is handled

ButtonClicked PBDataWindow_ButtonClicked (postback) ButtonClicked is handled and/or
ButtonClicking is handled

ButtonClicking PBDataWindow_ButtonClicking
(postback)

ButtonClicked is handled and/or
ButtonClicking is handled

ItemFocusChanged PBDataWindow_ItemFocusChanged
(postback)

ItemFocusChanged is handled

PBDataWindow_ItemFocusChanged_AN
D_ItemChanged_OR_ItemError (postback)

ItemChanged and ItemError are handled,
but ItemFocusChanged is not

PBDataWindow_ItemFocusChanged_AN
D_ItemChanged (postback)

ItemChanged is handled, but
ItemFocusChanged and ItemError are not

PBDataWindow_ItemFocusChanged_AN
D_ItemError (postback)

ItemError is handled, but ItemChanged and
ItemFocusChanged are not

ItemError PBDataWindow_ItemError (no postback) ItemChanged is handled and/or ItemError is
handled

ItemChanged PBDataWindow_ItemChangedReject (no
postback)

ItemChanged is handled

CHAPTER 3 Client-Side Events and Default Event Handlers

Deploying Applications and Components to .NET 39

Client-side support for the Web DataWindow control
The Web Forms version of the DataWindow is a subclass of the
DataWindow .NET™ Web DataWindow control. The client-side
programming capabilities of the Web DataWindow enable the use of
client-side JavaScript event handlers.

The ClientEvent properties of the Web DataWindow have also been exposed,
allowing the creation of customized event handlers that can override the default
event handlers in the PBDataWindow.js file. The names of the ClientEvent
properties consist of the name of a client-side event with an “OnClient” prefix.
For example, the ClientEvent property that corresponds to the Clicked event
would be OnClientClicked. You can circumvent the default event handler for
the Clicked event by setting OnClientClicked to the name of a JavaScript
function that uses the client-side Clicked event arguments.

The Web DataWindow client control supports the events listed in Table 3-2.
The signatures of the client-side events and the effects of their return values are
the same as for the Web DataWindow control in DataWindow .NET. For a
description of each event, see “Alphabetical list of Web DataWindow
client-side events” on page 41.

Table 3-2: Web DataWindow control client-side events

RowFocusChanged PBDataWindow_RowFocusChanged
(postback)

RowFocusChanging is handled, but
ItemFocusChanged is not

RowFocusChanged is handled, but
ItemFocusChanged is not

Client-side Event
Default JavaScript handler
(postback action)

Used under the following conditions
for server-side events:

Event Arguments Return Codes

ButtonClicked sender, rowNumber,
buttonName

0 – Continue processing

ButtonClicking sender, rowNumber,
buttonName

0 – Execute action assigned to button,
then trigger ButtonClicked

1 – Do not execute action or trigger
ButtonClicked

Clicked sender, rowNumber,
objectName

0 – Continue processing

1 – Prevent focus change

Client-side support for the Web DataWindow control

40 PowerBuilder

About return values
for DataWindow
events

In client events, you can use a return statement as the last statement in the event
script. The datatype of the value is number.

For example, in the ItemChanged event, set the return code to 2 to reject an
empty string as a data value:

if (newValue = "") {
return 2;

}

This example prevents focus from changing if the user tries to go back to an
earlier row:

function dwCustomer_RowFocusChanging(sender,
currentRowNumber, newRowNumber)
{
if (newRowNumber < currentRowNumber)

{ return 1; }
}

DoubleClicked sender, rowNumber,
objectName

0 – Continue processing

1 – Prevent focus change

ItemChanged sender, rowNumber,
columnName,
newValue

0 – Accept data value

1 – Reject data value and prevent
focus change

2 – Reject data value but allow focus
change

ItemError sender, rowNumber,
columnName,
newValue

0 – Reject data value and show error
message

1 – Reject data value with no error
message

2 – Accept data value

3 – Reject data value but allow focus
change

ItemFocusChanged sender, rowNumber,
columnName

0 – Continue processing

RButtonDown sender, rowNumber,
objectName

0 – Continue processing

1 – Prevent focus change

RowFocusChanged sender,
newRowNumber

0 – Continue processing

RowFocusChanging sender,
currentRowNumber,
newRowNumber

0 – Continue processing

1 – Prevent focus change

Event Arguments Return Codes

CHAPTER 3 Client-Side Events and Default Event Handlers

Deploying Applications and Components to .NET 41

This example displays a message box informing the user which column and
row number were clicked:

function dwCustomer_Clicked(sender, rowNumber,
objectName)
{
alert ("You clicked the " + objectName +

" column in row " + rowNumber)
}

Note that displaying an Alert message box for all clicked objects in a
DataWindow could prevent data entry or modification.

Alphabetical list of Web DataWindow client-side events
The list of Web DataWindow control client-side events follows in alphabetical
order.

For information on calling client-side scripts, see “About client-side
programming” on page 35.

ButtonClicked

42 PowerBuilder

ButtonClicked
Description Occurs when the user clicks a button inside a DataWindow object.

Applies to Web DataWindow client control

Return codes There are no special outcomes for this event. The only code is:

0 Continue processing

Usage ButtonClicked fires only for buttons with the UserDefined action. Other
buttons cause the page to be reloaded from the server. The ButtonClicked event
executes code after the action assigned to the button has occurred.

Postback calls to the ButtonClicked server-side event
The corresponding server-side event can be triggered by the following default
event handlers: PBDataWindow_ButtonClicked,
PBDataWindow_ButtonClicking, PBDataWindow_Clicked, and
PBDataWindow_DelayedClicked.

This event is fired only if you have not selected Suppress Event Processing for
the button. If Suppress Event Processing is on, only the Clicked event and the
action assigned to the button are executed when the button is clicked.

If Suppress Event Processing is off, the Clicked event and the ButtonClicked
event are fired. If the return code of the ButtonClicking event is 0, the action
assigned to the button is executed and the ButtonClicked event is fired. If the
return code of the ButtonClicking event is 1, neither the action nor the
ButtonClicked event is executed.

See also ButtonClicking

Argument Description

sender String. Identifier for the button the user clicked.

row Number. The number of the current row when the user
clicked the button.

objectName String. The name of the control within the DataWindow
under the pointer when the user clicked.

CHAPTER 3 Client-Side Events and Default Event Handlers

Deploying Applications and Components to .NET 43

ButtonClicking
Description Occurs when the user clicks a button. This event occurs before the

ButtonClicked event.

Applies to Web DataWindow client control

Return codes Set the return code to affect the outcome of the event:

0 Execute the action assigned to the button, then trigger the
ButtonClicked event
1 Prevent the action assigned to the button from executing and the
ButtonClicked event from firing

Usage Use the ButtonClicking event to execute code before the action assigned to the
button occurs. If the return code is 0, the action assigned to the button is then
executed and the ButtonClicked event is fired. If the return code is 1, the action
and the ButtonClicked event are inhibited.

Postback calls to the ButtonClicking server-side event
The corresponding server-side event can be triggered by the following default
event handlers: PBDataWindow_ButtonClicked,
PBDataWindow_ButtonClicking, PBDataWindow_Clicked, and
PBDataWindow_DelayedClicked.

This event is fired only if you have not selected Suppress Event Processing for
the button.

The Clicked event is fired before the ButtonClicking event.

See also ButtonClicked

Argument Description

sender String. Identifier for the button the user clicked.

row Number. The number of the current row when the user
clicked the button.

objectName String. The name of the control within the DataWindow
under the pointer when the user clicked.

Clicked

44 PowerBuilder

Clicked
Description Occurs when the user clicks anywhere in a DataWindow control.

Applies to Web DataWindow client control

Return codes Set the return code to affect the outcome of the event:

0 Continue processing
1 Prevent the focus from changing

Usage When the user clicks on a DataWindow button, the Clicked event occurs before
the ButtonClicking event. When the user clicks anywhere else, the Clicked
event occurs when the mouse button is released.

Postback calls to the Clicked server-side event
The corresponding server-side event can be triggered by the following default
event handlers: PBDataWindow_Clicked and
PBDataWindow_DelayedClicked.

Examples This script in an .aspx file that submits the value of the selected row in the
DataWindow to the server:

function objdwCustomers_Clicked(sender, rowNumber,
objectName) {

document.Form1.rownum.value = rowNumber;
document.Form1.submit();

}

See also ButtonClicked
ButtonClicking
DoubleClicked
ItemFocusChanged
RButtonDown
RowFocusChanged
RowFocusChanging

Argument Description

sender String. Identifier for the client-side control.

row Number. The number of the row the user clicked.

objectName String. The name of the control within the DataWindow
under the pointer when the user clicked.

CHAPTER 3 Client-Side Events and Default Event Handlers

Deploying Applications and Components to .NET 45

DoubleClicked
Description Occurs when the user double-clicks anywhere in a DataWindow control.

Applies to Web DataWindow client control

Return codes Set the return code to affect the outcome of the event:

0 Continue processing
1 Prevent the focus from changing

Usage When the user double-clicks on a DataWindow button, the DoubleClicked
event occurs before the ButtonClicking event. When the user double-clicks
anywhere else, the DoubleClicked event occurs when the mouse button is
released.

Postback calls to the DoubleClicked server-side event
The corresponding server-side event can be triggered by the following event
handlers: PBDataWindow_DoubleClicked, PBDataWindow_DelayedClicked,
and PBDataWindow_DelayedClickedDifferent Row.

Examples This script in an .aspx file submits the value of the selected row in the
DataWindow to the server:

function objdwCustomers_DoubleClicked(sender,
rowNumber, objectName) {
document.Form1.rownum.value = rowNumber;
document.Form1.submit();

}

See also ButtonClicked
ButtonClicking
Clicked
RButtonDown

Argument Description

sender String. Identifier for the client-side control.

row Number. The number of the row the user double-clicked.

objectName String. The name of the control within the DataWindow
under the pointer when the user double-clicked.

ItemChanged

46 PowerBuilder

ItemChanged
Description Occurs when a field in a DataWindow control has been modified and loses

focus (for example, the user presses Enter, the Tab key, or an arrow key or
clicks the mouse on another field within the DataWindow). It occurs before the
change is applied to the item. ItemChanged can also occur when the Update
function is called.

Applies to Web DataWindow client control

Return codes Set the return code to affect the outcome of the event:

0 (Default) Accept the data value
1 Reject the data value and do not allow focus to change
2 Reject the data value but allow the focus to change

Usage The ItemChanged event does not occur when the DataWindow control itself
loses focus.

Postback calls to the server-side ItemChanged event
The corresponding server-side event is triggered by default event handlers only
after a cascade of events occurs: ItemChanged, Clicked, RowFocusChanging,
RowFocusChanged, and ItemFocusChanged. Default postback scripts for this
event are PBDataWindow_ItemFocusChanged_AND_ItemChanged and
PBDataWindow_ItemFocusChanged_AND_ItemChanged_OR_ItemError.
The default event handler PBDataWindow_ItemChangedReject does not cause
a postback, but instead rejects the changed value entered by the user.

See also ItemError

Argument Description

sender String. Identifier for the client-side control.

row Number. The number of the row containing the item whose
value is being changed.

columnName String. The name of the column containing the item.

newValue String. The new data the user has specified for the item.

CHAPTER 3 Client-Side Events and Default Event Handlers

Deploying Applications and Components to .NET 47

ItemError
Description Occurs when a field has been modified, the field loses focus (for example, the

user presses Enter, Tab, or an arrow key or clicks the mouse on another field in
the DataWindow), and the data in the field does not pass the validation rules
for its column.

Applies to Web DataWindow client control

Return codes Set the return code to affect the outcome of the event:

0 (Default) Reject the data value and show an error message box
1 Reject the data value with no message box
2 Accept the data value
3 Reject the data value but allow focus to change

Usage If the Return code is 0 or 1 (rejecting the data), the field with the incorrect data
regains the focus.

The ItemError event occurs instead of the ItemChanged event when the new
data value fails a validation rule. You can force the ItemError event to occur by
rejecting the value in the ItemChanged event.

Postback calls to the server-side ItemError event
Default postback scripts for this event are called only after an
ItemFocusChanged event occurs on the client side. The default event handlers
that invoke the server-side ItemError event are
PBDataWindow_ItemFocusChanged_AND_ItemError and
PBDataWindow_ItemFocusChanged_AND_ItemChanged_OR_ItemError.
The default event handler PBDataWindow_ItemError does not cause a
postback, but instead rejects the value entered by the user.

Argument Description

sender String. Identifier for the client-side control.

row Number. The number of the row containing the item whose
new value has failed validation.

columnName String. The name of the column containing the item.

newValue String. The new data the user has specified for the item.

ItemFocusChanged

48 PowerBuilder

Examples This script in the .aspx file displays an alert message:

function objwdw_ItemError(sender, rowNumber,
columnName, newValue) {

alert("ItemError: " + rowNumber + columnName +
newValue);

}

See also ItemChanged

ItemFocusChanged
Description Occurs when the current item in the control changes.

Applies to Web DataWindow client control

Return codes There are no special outcomes for this event. The only code is:

0 Continue processing

Usage ItemFocusChanged occurs when focus is set to another column in the
DataWindow, including when the DataWindow is first displayed. The row and
column together uniquely identify an item in the DataWindow.

In Web Forms targets, once a DataWindow loses focus and a postback event is
triggered, the DataWindow loses memory of its current column. If the same
cell regains the focus, the ItemFocusChanged event is triggered because the
current column is lost after the page posts back to the client.

Postback calls to the server-side ItemFocusChanged event
The corresponding server-side event can be triggered by the following event
handler: PBDataWindow_ItemFocusChanged.

See also RowFocusChanged
RowFocusChanging

Argument Description

sender String. Identifier for the client-side control.

row Number. The number of the row containing the item that has just
gained focus.

columnName String. The name of the column containing the item.

CHAPTER 3 Client-Side Events and Default Event Handlers

Deploying Applications and Components to .NET 49

RButtonDown
Description Occurs when the user right-clicks anywhere in a DataWindow control.

Applies to Web DataWindow client control

Return codes Set the return code to affect the outcome of the event:

0 Continue processing
1 Prevent the focus from changing

Usage When the user right-clicks on a DataWindow button, the RButtonDown event
occurs before the ButtonClicking event. When the user right-clicks anywhere
else, the RButtonDown event occurs when the mouse button is released.

Postback calls to the RButtonDown server-side event
The corresponding server-side event can be triggered by the following event
handler: PBDataWindow_RButtonDown.

Examples This script in an .aspx file submits the value of the selected row in the
DataWindow to the server:

function objdwCustomers_RButtonDown(sender,
rowNumber, objectName) {
document.Form1.rownum.value = rowNumber;
document.Form1.submit();

}

See also ButtonClicked
ButtonClicking
Clicked
DoubleClicked

Argument Description

sender String. Identifier for the client-side control.

row Number. The number of the row the user right-clicked.

objectName String. The name of the control within the DataWindow
under the pointer when the user right-clicked.

RowFocusChanged

50 PowerBuilder

RowFocusChanged
Description Occurs when the current row changes in the DataWindow.

Applies to Web DataWindow client control

Return codes There are no special outcomes for this event. The only code is:

0 Continue processing

Usage The SetRow function, as well as user actions, can trigger the
RowFocusChanged and ItemFocusChanged events.

Postback calls to the server-side RowFocusChanged event
The corresponding server-side event can be triggered by the following default
event handlers: PBDataWindow_RowFocusChanged,
PBDataWindow_ClickedDifferentRow, and
PBDataWindow_DelayedClickedDifferentRow.

Examples This script in the .aspx file displays an alert message when the row focus
changes:

function objdw_RowFocusChanged(sender, newRowNumber) {
alert("Focus changed to row " + newRowNumber);

}

See also ItemFocusChanged
RowFocusChanging

Argument Description

sender String. Identifier for the client-side control.

newRow Number. The number of the row that has just become
current.

CHAPTER 3 Client-Side Events and Default Event Handlers

Deploying Applications and Components to .NET 51

RowFocusChanging
Description Occurs when the current row is about to change in the DataWindow. (The

current row of the DataWindow is not necessarily the same as the current row
in the database.)

The RowFocusChanging event occurs just before the RowFocusChanged
event.

Applies to Web DataWindow client control

Return codes Set the return code to affect the outcome of the event:

0 Continue processing (setting the current row)
1 Prevent the current row from changing

Usage Typically the RowFocusChanging event is coded to respond to a mouse-click
or keyboard action that would change the current row in the DataWindow
object.

Postback calls to the server-side RowFocusChanging event
The corresponding server-side event can be triggered by the following default
event handlers: PBDataWindow_RowFocusChanged,
PBDataWindow_ClickedDifferentRow, and
PBDataWindow_DelayedClickedDifferentRow.

See also ItemFocusChanged
RowFocusChanged

Argument Description

sender String. Identifier for the client-side control.

currentRow Number. The number of the row that is current (before the
row is deleted or its number changes). If the DataWindow
object is empty, currentrow is 0 to indicate there is no current
row.

newRow Number. The number of the row that is about to become
current. If the new row is going to be an inserted row,
newrow is 0 to indicate that it does not yet exist.

RowFocusChanging

52 PowerBuilder

Deploying Applications and Components to .NET 53

C H A P T E R 4 User Management and Registry
Operations in Web Forms

About this chapter This chapter describes how to create permanent user accounts for Web
Forms applications and the use of registry functions in these applications.

Contents

Creating permanent user accounts
Using the ASP.NET
membership feature

Due to the stateless nature of the HTTP protocol, file and directory
operations in a Web application typically do not persist after a user session
has ended. However, for PowerBuilder .NET Web Forms applications,
you can store user names in a database and persist data and files created
by application users across Web Forms sessions. PowerBuilder .NET Web
Forms can take advantage of the ASP.NET membership feature to
maintain permanent user accounts and store files created or modified by
application users.

The default ASP.NET membership provider is defined in the
machine.config file that is typically installed in the
C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\CONFIG
directory. The machine.config file assigns SQL Server Express
(.\SQLEXPRESS) as the default membership data source.

Installing SQL Server
Express

You can download the SQL Server 2005 Express Edition from the
Microsoft download site at
http://www.microsoft.com/downloads/details.aspx?familyid=220549b5-0b07-
4448-8848-dcc397514b41&displaylang=en.

Topic Page

Creating permanent user accounts 53

Managing permanent user accounts 58

Using the registry functions 60

Creating permanent user accounts

54 PowerBuilder

Before you install SQL Server Express, you might need to uninstall SQL
Native Client before installing SQL Server 2005 Express. The SQL Server
Express setup produces an error if it finds an incompatible version of SQL
Native Client. The SQL Server Express setup includes a compatible version of
SQL Native Client that it installs if it does not find an existing version of this
driver on the server computer.

If you are using a
different DBMS

You do not need to install SQL Server Express if you are using SQL Server for
the permanent user database, but then you must replace the default connection
string in the machine.config file or add a connection string to the web.config
file for the Web Forms application. Changes to the machine.config file affect
all .NET Web applications.

The connection string you add to the web.config file should have the following
format for a remote database server using SQL Authentication:

<connectionStrings>
<add name="MySQLServer"
connectionString="Server=dbsevername;
Database=aspnetdb; User Id=uid; password=pwd"

providerName="System.Data.SqlClient" />
</connectionStrings>

The following connection string specifies a local SQL Server database with
Windows Authentication (SSPI):

<connectionStrings>
<add name="MyDbConn"
connectionString="Initial Catalog=MyDb;

Data Source=MyServer;
Integrated Security=SSPI;"/>

</connectionStrings>

Creating permanent
user accounts

Permanent user accounts are disabled by default. After a Web Forms
application is successfully deployed, the IIS server administrator can use the
following procedure to set up permanent user accounts. This procedure uses
the default ASP.NET membership provider and data source assignment,
although a note in the procedure describes a required change to the web.config
file when you use a nondefault connection string.

❖ To create permanent user accounts:

1 Run aspnet_regsql from a DOS command prompt window.

This starts the ASP.NET SQL Server Setup wizard.

CHAPTER 4 User Management and Registry Operations in Web Forms

Deploying Applications and Components to .NET 55

You can enter Aspnet_regsql /? at the command line to obtain a list of
optional parameters for SQL Server or SQL Server Express that you can
use to bypass the wizard. If you are using a local SQL Server database, for
example, you can enter aspnet_regsql -S (local) -E -A m, where
-S (local) indicates that the server is local, -E indicates that the
connection uses Windows Authentication, and -A m adds the membership
feature.

2 Use the ASP.NET SQL Server Setup wizard to create the user database.

In the wizard, you can enter .\SQLEXPRESS as the server name. This is the
default name for the local server as defined in the machine.config file. The
wizard should give you a success message.

3 In a text editor, modify the web.config file in the virtual root directory for
your deployed Web Forms application (typically,
C:\Inetpub\wwwroot\applicationName) to remove comment tags
(<!-- and -->) from the following lines:

<!-- <roleManager enabled=”true” /> -->
...
<!-- <add name="AspNetSqlMembershipProvider"
...
passwordStrengthRegularExpression=""/> -->

These lines should now appear in the web.config file as:

<roleManager enabled=”true” />
...
<add name="AspNetSqlMembershipProvider"
...
passwordStrengthRegularExpression=""/>

If you are using a nondefault database
You can change the connectionStringName parameter assignment in the
uncommented lines to a value other than LocalSqlServer if you modified
the connection string in the machine.config file, or if you added a
connection string in the application web.config file. For example, if you
named a connection string as MySqlServer, you should change the
connectionStringName parameter value to MySqlServer.

Creating permanent user accounts

56 PowerBuilder

4 Make sure that the appropriate user or user group (ASPNET for IIS 5,
IIS_WPG for IIS 6, or IIS_IUSRS for IIS 7) has write authority for the
virtual root directory of your deployed Web Forms application.

The next step in this procedure creates the App_Data directory and saves
database files to this directory. However, it cannot do this if the ASPNET
user (Windows XP), the IIS_WPG user group (Windows 2003), or the
IIS_IUSRS user group (Windows Vista) does not have write authority for
the Web Forms virtual root directory.

If you proceed to the next step without modifying write permissions, you
might get an error page indicating that you do not have write authority for
this directory. The error page also explains how to grant write authority for
the directory.

5 Open the UsersInit.aspx file for the Web Forms application in a Web
browser.

The full URL for this file is typically
http://ServerName/ApplicationName/UsersInit.aspx. When you open this
file in a Web browser, the App_Data directory is created under the
application virtual root directory and the permanent accounts database is
created with the following entries:

The UsersInit.aspx returns a success page after the above user accounts are
created.

Delete the UsersInit.aspx file after this step
For security reasons, you should delete the UsersInit.aspx file after you go
to the next step or complete this procedure.

6 Open the Login.aspx file for the Web Forms application in a Web browser.

The full URL for this file is typically
http://ServerName/ApplicationName/Login.aspx. The Login page
displays.

7 On the Login page, enter admin for the User Name and a123456& for the
Password.

The Welcome page for an administrator role has a hyperlink labeled Users
that opens a page to manage users.

User name Password Role

admin a123456& admin

user a123456& user

CHAPTER 4 User Management and Registry Operations in Web Forms

Deploying Applications and Components to .NET 57

8 Click the Users hyperlink, then click the Search button in the page to
manage users.

The page for managing users displays the application users in the
permanent user database.

9 Click the Create New User hyperlink.

The page for adding users displays.

10 Enter a new user name, password, and e-mail. Enter the password a second
time in the Confirm Password text box and click Create User.

A new user account is added to the database for the current Web Forms
application.

11 Select the Admin Role check box if the new user should have
administrative privileges, and click Finish.

When you return to the page for managing users and click the Search
button again, you should see the user account you created in the list of user
accounts.

12 Repeat steps 10-12 to create as many user accounts as necessary, then click
the Logout hyperlink to log out from the user management role.

If you redeploy
Accounts that you create are maintained in the database after you redeploy
the Web Forms application, but you must edit the web.config file as
described in step 4 above after each redeployment.

Managing permanent user accounts

58 PowerBuilder

Managing permanent user accounts
In your administrator role, in addition to creating permanent user accounts, you
can edit, delete, and unlock accounts, and you can reset user passwords. To
perform any of these tasks, you must first set up your Web site membership
provider as described in the procedure for “Creating permanent user accounts”
on page 53.

❖ To edit, delete, or unlock user accounts

1 Open the Login.aspx file for the Web Forms application in a Web browser.

The full URL for this file is typically
http://ServerName/ApplicationName/Login.aspx. The Login page
displays.

2 On the Login page, log in with an admin role account.

The default login for an admin account is described in the procedure for
“Creating permanent user accounts” on page 53.

The Welcome page for an administrator role has a hyperlink labeled Users
that opens a page to manage users.

3 Click the Users hyperlink, then click the Search button in the page to
manage users.

The page for managing users displays the application users in the
permanent user database.

4 Click the Edit hyperlink for a user in the list of user accounts.

CHAPTER 4 User Management and Registry Operations in Web Forms

Deploying Applications and Components to .NET 59

The page for editing and deleting user accounts displays. An Unlock User
button appears on this page only when a user is locked out. Lockouts occur
when the number of attempts to log in with a faulty password exceeds the
number of attempts authorized by the MaxInvalidPasswordAttempts
parameter in the application web.config file.

5 Enter any changes you want for the user role or e-mail, and click Update
User to apply those changes.

The Update User button also applies your selections for whether the
membership user can be authenticated (Enable check box) and whether the
user has administrative privileges (Admin Role check box).

6 If you want to change the user password, enter a new password for the user
account and click Reset Password to apply the change.

7 If the selected user account is currently locked, click Unlock User to
unlock the account and allow the user to log back in.

8 If you want to remove the current user account from the permanent user
database, click Delete User.

9 Repeat steps 4-8 for all the user accounts you want to edit, delete, or
unlock.

10 Click the Logout hyperlink to log out of your user management role.

Using the registry functions

60 PowerBuilder

Using the registry functions
Searching and setting
registry entries

PowerBuilder Web Forms applications can read registry entries at the server
side and can write registry entries to a registry.xml file.

The RegistryGet, RegistryKeys, or RegistryValues functions can search the
server registry for registry entries if a registry.xml file does not exist in the
applicationName_root/File/Common directory under the IIS virtual root,
where applicationName is the name of the current Web Forms application. The
registry search functions also search the server registry when the registry.xml
file exists but the entries you are searching for are not contained in the current
application’s registry.xml file.

The RegistrySet function creates the registry.xml file—if one does not already
exist—in the applicationName_root/File/Session/SessionID for the current
Web Forms session or in the applicationName_root/File/User/UserName
directory when the current user has logged in with a permanent user account.
If a registry.xml file already exists, the arguments of the RegistrySet function
are added to the contents of the existing registry.xml file.

The RegistrySet function can also copy a registry.xml file from
applicationName_root/File/Common to
applicationName_root/File/Session/SessionID or to
applicationName_root/File/User/UserName, but it writes to the registry.xml
file in the SessionID or UserName directory only.

For information about permanent user accounts, see “Creating permanent user
accounts” on page 53.

Rules for registry
searching and setting

The following rules apply to registry search and setting operations:

• Searches for registry entries, keys, or values are conducted first in the
registry.xml file. The search uses the server registry only if the registry
entry, key, or value cannot be found in the registry.xml file.

• Application users can set or write registry entries only in the registry.xml
file in the applicationName_root/File/Session/SessionID folder for the
current session or in the applicationName_root/File/User/UserName
folder for the current user.

• Application users can delete registry keys or values only from the
registry.xml file in the SessionID folder for the current session or the
UserName folder for the current user.

CHAPTER 4 User Management and Registry Operations in Web Forms

Deploying Applications and Components to .NET 61

Deploying a
registry.xml file

A text box at the bottom of the Resource Files tab of a Web Forms project
allows you to select a registry.xml file for deployment to the
applicationName_root/File/Common directory under the virtual root for IIS
Web sites. If the Web Forms application searches for a registry entry, key, or
value, the registry.xml file is copied to the
applicationName_root/File/Session/SessionID folder for the current session or
to the applicationName_root/File/User/UserName folder for the current user.

The following is sample content of a registry.xml file:

<?xml version="1.0"?>
<RegistryRoot>
 <k name="HKEY_LOCAL_MACHINE">
 <k name="Software">
 <k name="MyApp">
 <k name="Fonts">
 <v name="Title">MyTrueType</v>
 </k>
 </k>
 </k>
 </k>
</RegistryRoot>

The first time the registry function is called, the system copies registry.xml
from the Common directory to the SessionID or UserName directory; after
that, the system uses the registry.xml copy under the SessionID or UserName
directory.

Using the registry functions

62 PowerBuilder

Deploying Applications and Components to .NET 63

C H A P T E R 5 Print, File, Mail Profile, and
Theme Managers

About this chapter This chapter describes the print, file, and mail profile managers that
application users can access from a PowerBuilder .NET Web Forms
application.

Contents

Using the Web Forms Print Manager
Print function support In Web Forms applications, output from supported PowerScript print

functions is published as PDF files on the server side. These PDF files are
visible in the client-side Web browser through links in the Web Forms
Print Manager, and they can be printed on the client side.

The following system print functions are supported in .NET Web Forms
applications: Print, PrintCancel, PrintClose, PrintDefineFontDefine,
PrintLine, PrintOpen, PrintOval, PrintPage, PrintRect, PrintRoundRect,
PrintSetSpacing, PrintText, PrintWidth, PrintX, PrintY. PrintSetFont is also
supported, but its return value is not the same as in a standard
PowerBuilder application.

File operation output You can also use the PowerScript SaveAs method to print DataWindows
and their data as PDF or XSL files. These files are not visible in the Web
Forms Print Manager and cannot be printed on the client side without the
intervention of the IIS administrator.

Topic Page

Using the Web Forms Print Manager 63

Using the Web Forms File Manager 68

Using the Web Forms Mail Profile Manager 75

Using the Web Forms Theme Manager 78

Using the Web Forms Print Manager

64 PowerBuilder

Print Manager icon display
When supported print functions are used to print text in a Web Forms
application, a printer icon displays in the right-top corner of the main browser
window.

Figure 5-1: Print icon on a Web Forms application

The application user can double-click the icon to open the Web Forms
application Print Manager. The Print Manager lets the application user open a
window to view the printed output as PDF files.

Figure 5-2 shows the Print Manager with hyperlinks to printed files.

Figure 5-2: Print Manager for a Web Forms application

If you do not want the Print Manager icon to display on a specific window in
your application, you can set the HasPrintManager property for that window to
false. The Print Manager icon automatically disappears on browser refresh
after all the printed files are removed from the Print Manager window.

You can also code an application event to open the Print Manager by calling
the OpenPrintManager function.

For information on the HasPrintManager property, see HasPrintManager on
page 91. For information on the OpenPrintManager function, see
OpenPrintManager on page 98.

CHAPTER 5 Print, File, Mail Profile, and Theme Managers

Deploying Applications and Components to .NET 65

Where printed output is saved
Printed output is saved to files in the
applicationName_root\Print\Session\SessionID directory under the virtual root
for IIS Web sites, or in the applicationName_root\Print\User\UserName
directory if the current application user is logged in with a permanent user
account profile. The applicationName_root\Print\Session and the
applicationName_root\Print\User directories are created when you deploy
your application. The SessionID or UserName directory is created by the
ASP.NET runtime engine after a PrintOpen call.

The SessionID directory created under the Print\Session directory uses the
same session ID number as the subdirectory created under the
applicationName_root\File\Session directory when the user saves a
DataWindow as a PDF or writes to a file from the current application session,
or when the PBWebFileProcessMode global property has been set to Copy
mode. The actual SessionID directory name is a long 24-character string with
letters and numbers such as cdxgel554rkxxsbn1221uh55. Unless the user
creating the printed files has logged in as a permanent user, the SessionID
directories are deleted when the Web Forms session is ended.

Requirements for saving files in PDF or XSL format
The default PDF printing feature uses the Sybase DataWindow PS printer to
print output to a PostScript (PS) file, and then convert it to a PDF file format.
You must grant print permissions to the ASPNET, IIS_WPG, or IIS_IUSRS
user group for the Sybase DataWindow PS printer.

Alternatively, you could use the Apache Formatting Objects (FO) processor to
save a DataWindow and its data in the PDF or XSL-FO format.

PostScript printing
method

The Sybase DataWindow PS printer profile is added automatically to a
computer’s printer list when you save a DataWindow to a PDF file from a
PowerBuilder application. This does not occur automatically with a Web
Forms application; however, Web Forms users can use the Sybase
DataWindow PS printer that you create on the server computer from a standard
client-server application at design time or runtime.

You can also add the Sybase DataWindow PS profile manually to the server
computer using the Windows Add Printer wizard. If a PostScript driver has not
been previously installed on the IIS server computer, the Add Printer wizard
might ask you to insert the Windows installation CD.

Using the Web Forms Print Manager

66 PowerBuilder

Once a postscript driver is installed, you (or the server administrator) can add
a Sybase DataWindow PS profile from the Install Printer Software page of the
wizard in one of the following ways:

• Click the Have Disk button and browse to the Adist5.inf file (installed with
PowerBuilder) in the Shared\PowerBuilder\drivers directory, or to
another PostScript driver file.

• Select a printer with PS in its name (such as “Apple Color LW 12/660 PS”)
from the list of printers of the wizard.

You must then rename the printer to “Sybase DataWindow PS” on the Name
Your Printer page of the Add Printer wizard or in the Properties dialog box for
the added printer.

To enable PDF printing from a Web Forms application using the postscript
processing method, you must also install Ghostscript on the IIS server
computer.

For more information about installing Ghostscript, see “Installing GPL
Ghostscript” next.

Apache FO
processing method

If a Web Forms application uses the Apache processor to save a DataWindow
and its data in PDF or XSL-FO format, you must include the fop-0.20.4
directory and the Java Runtime Environment (JRE) on the server computer.
The bin\client folder of the JRE must be in the server computer’s system path.

The processor directory and the JRE must be in the same path as the
PowerBuilder runtime files. For example, if pbvm110.dll and the other
PowerBuilder runtime files are included in a server computer directory called
ServerPB, the Apache processor must be copied to ServerPB\fop-0.20.4 and
the JRE to ServerPB\jre, respectively. However, you do not need to place a
copy of the JRE in this location if the full JDK is installed on the server
computer and is in its classpath.

The following JAR files must be in the server computer’s classpath:

• fop-0.20.4\build\fop.jar

• fop-0.20.4\lib\batik.jar

• fop-0.20.4\lib\xalan-2.3.1.jar

• fop-0.20.4\lib\xercesImpl-2.1.0.jar

• fop-0.20.4\lib\xml-apis.jar

• fop-0.20.4\lib\avalon-framework-cvs-20020315.jar

CHAPTER 5 Print, File, Mail Profile, and Theme Managers

Deploying Applications and Components to .NET 67

You might also need to restart the IIS server before you can use this method to
print to a PDF file from a Web Forms application.

DBCS platforms
If the Web Forms server computer is a DBCS platform, you also need to
include a file that supports DBCS characters in the Windows font directory, for
example, C:\WINDOWS\fonts. For more information about configuring fonts,
see the Apache Web site at http://xml.apache.org/fop/fonts.html.

Installing GPL Ghostscript
To enable Web Forms users to save their data in PDF format using the
postscript processing method, you must download and install Ghostscript on
the IIS server computer as described in the procedure that follows. Ghostscript
is not required on the client for Web Forms applications.

The use of Ghostscript is subject to the terms and conditions of the General
Public License (GPL). A copy of the GPL is available on the GNU Project Web
server at http://www.gnu.org/licenses/gpl.html.

❖ To install Ghostscript:

1 Download the self-extracting executable file for the Ghostscript version
you want from one of the locations listed on the Ghostscript Web site at
http://www.ghostscript.com/awki.

2 Run the executable file to install Ghostscript on the server computer.

The default installation directory is C:\program files\gs. You can select a
different directory and/or choose to install shortcuts to the Ghostscript
console and readme file.

Location of files When a Web Forms application user saves a DataWindow
object as a PDF, the Web Forms server searches in the following locations for
an installation of Ghostscript:

• The Windows registry

• The relative path of the pbdwm110.dll file (typically in the
Sybase\Shared\PowerBuilder directory)

• The system PATH environment variable

If Ghostscript is installed using the Ghostscript executable file, the path is
added to the Windows registry.

Using the Web Forms File Manager

68 PowerBuilder

If the Ghostscript files are in the relative path of the pbdwm110.dll file, they
must be installed in this directory structure:

dirname\pbdwm110.dll
dirname\gs\gsN.NN
dirname\gs\fonts

where dirname is the directory that contains the runtime DLLs and N.NN
represents the release version number for Ghostscript.

For information about fonts supplied with Ghostscript, see the APFL
Ghostscript Web site at http://www.ghostscript.com/doc/current/Fonts.htm.

You must also make sure the default PostScript printer driver and related files
in Sybase\Shared\PowerBuilder\drivers are included in the IIS server path.

Where PDF and XSL-FO output is saved
If a full path is not provided in the SaveAs command, the PDF and XSL-FO
files that users generate from Web Forms DataWindow objects are saved by
default in the virtual root path for IIS Web sites under the
applicationName_root\File\Session\SessionID\currentInitialDirectory or the
applicationName_root\File\User\UserName\currentInitialDirectory directory,
where currentInitialDirectory is a directory that you assign at design time for
the Web Forms application.

IIS server administrator role
The IIS server administrator can change the default current initial directory by
modifying the PBCurrentDirectory global property in the ASP.NET
Configuration Settings dialog box or in the Web.Config file for the Web Forms
application.

Using the Web Forms File Manager
Virtual file system When you deploy a PowerBuilder application as a .NET Web Forms

application, PowerBuilder creates a virtual file system that Web Forms users
can access from client-side Web browsers. The virtual file system is maintained
on the server. Application users can read from and write to files in the virtual
file system as long as user permissions for file operations are not restricted.

CHAPTER 5 Print, File, Mail Profile, and Theme Managers

Deploying Applications and Components to .NET 69

File operations with external functions
You cannot use external functions to do file operations in Web Forms targets.

The virtual file system for a PowerBuilder .NET Web Forms application is
contained in the applicationName_root\File\Common directory under the
virtual root of the IIS server, where applicationName is the name of the current
Web Forms application.

Subdirectories of the Common directory store read-only files that are shared by
all users of a Web Forms application. PowerBuilder creates these
subdirectories at deployment time. A top-level subdirectory is created for each
development computer drive containing a file deployed with the PowerBuilder
application. The entire path to each application file is mirrored in the virtual
file system to reflect the path to the application files on the desktop file system.
The name of each top-level subdirectory in the virtual file system consists only
of a drive letter that mirrors the desktop drive from where an application file
was copied.

Figure 5-3 shows the Common directory and its subdirectories for the
FilmCatalog Web Forms application. It also shows a SessionID subdirectory
with a single subdirectory where a PDF file was written in Share mode. At
runtime, the Web Forms application creates a SessionID folder in the
File\Session directory for each user for storing files uploaded or created by that
user. The exact name of the SessionID directory is generated by the ASP.NET
runtime engine.

Using the Web Forms File Manager

70 PowerBuilder

Figure 5-3: Virtual file system under the IIS root directory

File process mode There are two file process modes: Share mode and Copy mode. The
PBWebFileProcessMode global property defines the mode for the current Web
Forms application. It is set to Share mode by default.

Share mode: Files are copied from the Common directory to the
File\Session\SessionID or the File\User\UserName directory only as needed.

Copy mode: In Copy mode, the first time a file operation is called, all folders
and files under the Common directory are copied to the SessionID or
UserName directory. In Copy mode, all file operations are handled in
subdirectories of the SessionID or UserName directory.

The File Manager presents a merged view of the files under the Common and
SessionID or UserName directories. If a read-only file in the Common
directory has the same name as a read-write file in the SessionID or UserName
directory, only the SessionID or UserName file is displayed.

CHAPTER 5 Print, File, Mail Profile, and Theme Managers

Deploying Applications and Components to .NET 71

Although users can delete and move folders or files that they create under the
SessionID or UserName directory, files and folders that are copied from the
Common directory cannot be deleted because the File Manager presents a
merged view of these virtual file paths, and removing a file or folder from the
SessionID or UserName directory does not cause its removal from the
Common directory.

The common dialog boxes for all file operations are supported regardless of
file process mode. You can display these dialog boxes with the
GetOpenFileName, GetSaveFileName, and GetFolder functions.

Using the File
Manager

When you set the PBFileManager property to true, the File Manager icon
normally displays in every window of your Web Forms application. Users can
open the File Manager at any time by clicking the File Manager icon. You can
also code an application event to open the File Manager by calling the
OpenFileManager function.

Although you can choose to render the File Manager icon at design time, you
can change your selection after deployment by modifying the application’s
PBFileManager global property. If you do not want the File Manager icon to
display on a specific window in your application, you can set the
HasFileManager property for that window to false.

For information on the HasFileManager property, see HasFileManager on
page 89. For information on the OpenFileManager function, see
OpenFileManager on page 98.

The File Manager icon displays in the upper right corner of Web Forms, just to
the right of the Mail Profile Manager icon when that icon is also rendered. The
File Manager opens in the current browser window when a user clicks the File
Manager icon.

Figure 5-4 shows the File Manager for a Web Forms application.

Using the Web Forms File Manager

72 PowerBuilder

Figure 5-4: File Manager displaying an uploaded text file

Creating a directory The File Manager allows users to create directories, rename and delete selected
files or directories, and upload and download selected files. It allows users to
view all files in the virtual file system for the Web Forms application unless
those files are located in a directory or subdirectory listed in the
PBDenyDownloadFolders global property.

❖ To create a folder using the File Manager

1 Select the directory in the left pane under which you want to create a
folder.

2 Type the name you want for the new folder in the New text box.

3 Click Create Folder.

CHAPTER 5 Print, File, Mail Profile, and Theme Managers

Deploying Applications and Components to .NET 73

The new directory is created in the SessionID (or UserName) path under
the directory you selected in Step 1. No other application user can use the
Web Forms File Manager to see the new directory. When an application
user leaves the current session, the SessionID directory and any files
uploaded to it are removed. (If an application user is logged in with a
permanent user account, the UserName directory and its contents are not
removed.)

Renaming and deleting a directory
You can rename a directory by selecting it in the left pane, entering a new
name in the New text box, and clicking Rename Folder. You delete a
directory by selecting it in the left pane and clicking Delete Folder.

You cannot rename or delete a directory if it was not created in the current
Web Forms session. The Rename Folder and Delete Folder buttons are
disabled when a directory under the Common path of the virtual file
directory is selected in the left pane of the File Manager.

Users can close the File Manager and return to the current Web Forms window
by clicking the close (x) button at the upper right corner of the manager frame.

Uploading files The files that a user uploads through the Web Forms File Manager are saved
under the SessionID (or UserName) path. The uploaded files are copied from
the client-side computer. They are deleted from the server-side SessionID path
(but not from the UserName path) at the end of the Web Forms session.

Figure 5-5 shows the PowerBuilder Upload File dialog box for a Web Forms
application.

Using the Web Forms File Manager

74 PowerBuilder

Figure 5-5: Upload dialog box

❖ To upload a file using the File Manager:

1 In the left pane of the File Manager, select the directory where you want
to copy a file.

The Upload File link displays to the right of the New text box.

2 Click the Upload File link.

The PowerBuilder Upload File dialog box displays.

3 Type the file name or browse to the file or files you want to upload.

4 Click Upload.

A message displays in the dialog box to indicate whether the upload is
successful.

5 Click Close & Refresh to close the dialog box and refresh the file listings
in the right pane of the File Manager.

Downloading a file Users can download any file listed in the right pane of the File Manager. The
files are downloaded to the client-side computer from either the SessionID
(UserName) or Common path on the server. (The actual server path is never
displayed in the virtual file directory.)

CHAPTER 5 Print, File, Mail Profile, and Theme Managers

Deploying Applications and Components to .NET 75

❖ To download a file using the File Manager

1 From the right pane of the File Manager, select the file you want to
download.

The Download File link displays near the bottom right corner of the File
Manager, just above the Upload File link.

2 Click Download File.

The File Download dialog box lists the file name and file type and the
name of the server from which the file can be downloaded. It prompts you
to save the file or cancel the download. (On some operating systems, the
File Download dialog box can also include Open and More Info buttons.)

3 Click Save.

The Save As dialog box displays.

4 Browse to the path on the local computer where you want to save the file,
and click Save.

The Download Complete dialog box displays. Its appearance depends on
the client operating system. It typically prompts you to open the
downloaded file, open the folder where you saved the file, or close the
dialog box.

5 Click Close to close the Download Complete dialog box and return to the
File Manager.

Using the Web Forms Mail Profile Manager
Using the Mail Profile
Manager

If you set the PBMailManager global property to true on the Configuration tab
for a Web Forms application, application users can open the Mail Profile
Manager at any time from that application. Although you can choose to render
the Mail Manager icon at design time, the IIS server administrator can change
your selection after deployment by modifying the PBMailManager global
property in the application’s Web.Config file.

When you set the PBMailManager property to true, the Mail Manager icon
displays in every window of your application. If you do not want the Mail
Manager icon to display on a specific window in your application, set the
HasMailManager property for that window to false.

Using the Web Forms Mail Profile Manager

76 PowerBuilder

You can also code an application event to open the Mail Profile Manager by
calling the OpenMailManager function.

For information on the HasMailManager property, see HasMailManager on
page 90. For information on the OpenMailManager function, see
OpenMailManager on page 98.

The Mail Manager icon displays in the upper right corner of the Web Forms
page, just to the left of the File Manager icon, when that icon is also rendered.
The Mail Profile Manager opens in the current browser window after a user
clicks the Mail Manager icon.

Automatic display of the Mail Profile Manager
The Mail Profile Manager displays automatically if a user triggers a MailSend
call from a Web Forms application before a mail profile has been defined or if
a default mail profile has not been set.

Figure 5-6 shows the Mail Profile Manager for a Web Forms application.

Figure 5-6: Mail Profile Manager for Web Forms applications

The Mail Profile Manager is divided into sections for user profile information
and outgoing mail parameters. Information that the application user enters in
the Mail Profile Manager can be saved in a profile that is available to the Web
Forms application.

Table 5-1 lists and describes the fields in the Web Forms Mail Profile Manager.

CHAPTER 5 Print, File, Mail Profile, and Theme Managers

Deploying Applications and Components to .NET 77

Table 5-1: Mail Profile Manager fields

Creating, updating,
and deleting mail
profiles

Users can always enter new mail profile names in the Profile Name drop-down
list. After entering all the Mail Profile Manager fields for a given profile, the
application user must click Create/Update to save the entries to a profile file in
the applicationName_root\Mail\session\sessionID virtual file directory. The
profile is saved in an XML file with an encoded version of the user password.
Unless the user has logged in as a permanent user, all mail profiles are deleted
after the user terminates an application session.

Permanent user accounts
If the application user is logged in as a permanent user, the XML mail profile
file is saved in the applicationName_root\Mail\user\userName directory.

For information about the permanent user functionality, see Chapter 4, “User
Management and Registry Operations in Web Forms.”

An application user can display an existing mail profile by selecting it in the
Profile Name drop-down list. The user can then edit the fields of the selected
profile and save those changes by clicking Create/Update, or can remove the
profile by clicking Delete. The Delete button is enabled only after an existing
mail profile is selected in the Profile Name drop-down list.

Section Field Description

— Profile Name Name of the mail profile.

Set as Default
Mail Profile

Select to make the current mail profile the
default profile for a Web Forms application.

User Profile Name Display name for the user.

E-mail address E-mail address the Web Forms user wants to use.

Outgoing Mail Server address Address for the outgoing mail server, such as
smtp.sybase.com.

Port The default outgoing mail port is 25.

Requires
authentication

Select this check box if the outgoing mail server
requires authentication.

User ID Alias used to log in to the e-mail server.

Password Password for the user ID. The password a user
enters is encoded using an MD5 algorithm.

Using the Web Forms Theme Manager

78 PowerBuilder

Modifications required
for Web Forms
applications

Before you issue a MailSend call, you must create a MailSession object. This
requirement is the same in Web Forms and standard client-server applications.
However, in standard applications, you must also issue MailLogon and
MailLogoff calls for the MailSession object. This is not necessary for Web
Forms applications, and these calls are ignored by the PowerBuilder to .NET
compiler if you include them in a Web Forms application.

For a standard PowerBuilder client-server application, you can use a MailSend
call without arguments to open a new message window in the client’s default
mail application. Because you cannot do this from a Web Forms application,
you can use a MailSend call only if you include a mailmessage argument.

You populate a MailMessage object the same way for a Web Forms application
as you do for a standard client-server application. The properties of the
MailMessage object include the text, subject line, and recipient information for
the message that the application user sends. Some of the properties of a
MailMessage object are ignored in a Web Forms application. For a list of
unsupported properties, see Table 8-4 on page 108.

Unsupported mail functions
The MailAddress, MailDeleteMessage, MailGetMessages, MailHandle,
MailLogon, MailLogoff, MailReadMessage, MailRecipientDetails,
MailResolveRecipient, and MailSaveMessage functions are not supported in
Web Forms applications. Although these functions are ignored by the
PowerBuilder to .NET compiler, they do not produce application errors and do
not interfere with supported mail functionality in Web Forms applications.

Using the Web Forms Theme Manager
The Theme Manager allows users to change the appearance of controls in Web
Forms applications. By default, the controls display with themes that are
consistent with the operating system of the client browser. However, the
Theme Manager allows users to change the controls to display with Windows
XP or Windows Classic themes regardless of the underlying operating system.
You can also change the default themes for all browsers by modifying the
PBDefaultTheme global property at design time.

For a description of global properties, see “Global Web configuration
properties” on page 82.

CHAPTER 5 Print, File, Mail Profile, and Theme Managers

Deploying Applications and Components to .NET 79

Another global property, PBThemeManager, determines whether the Theme
Manager is available to users at runtime. When you set the PBThemeManager
property to true, the Theme Manager icon normally displays in every window
of your Web Forms application. Users can open the Theme Manager at any
time by clicking the Theme Manager icon. You can also code an application
event to open the Theme Manager by calling the OpenThemeManager function.

Although you can choose to render the Theme Manager icon at design time, if
you do not want it to display on a specific window in your application, you can
set the HasThemeManager property for that window to false.

For information on the HasThemeManager property, see HasThemeManager
on page 92. For information on the OpenThemeManager function, see
OpenThemeManager on page 99.

The Theme Manager icon displays in the upper right corner of Web Forms, just
to the left of the Mail Profile Manager icon when that icon is also rendered. The
Theme Manager opens in the current browser window when a user clicks the
Theme Manager icon.

Using the Web Forms Theme Manager

80 PowerBuilder

Deploying Applications and Components to .NET 81

C H A P T E R 6 Properties for .NET Web Forms

About this chapter This chapter describes global properties and built-in control properties
that are available to .NET Web Forms applications.

Contents

About Web Forms properties
In addition to PowerScript properties that are converted to .NET
properties and JavaScript attributes, a .NET Web Forms application has
global properties that you can set at design time on the Configuration tab
of the Project painter or after deployment in the generated Web.Config file
for your application.

Several built-in control properties are also available for Web Forms
applications that are not valid for other types of PowerBuilder targets. You
must surround the calls to the built-in control properties in a conditional
compilation block for .NET Web Forms. You can set these properties to
reduce postbacks, embed hyperlinked Web pages, or remove the display
of file, mail, print, and theme manager icons from specific windows when
a global display property is set. You cannot set global properties in script.

For information on global properties, see “Global Web configuration
properties” next.

Topic Page

About Web Forms properties 81

Global Web configuration properties 82

Creating custom global properties 88

AutoPostBack 88

Embedded 88

HasFileManager 89

HasMailManager 90

HasPrintManager 91

HasThemeManager 92

Global Web configuration properties

82 PowerBuilder

Global Web configuration properties
Table 6-1 lists global properties of a PowerBuilder .NET Web Forms
application that you can set at design time on the Configuration tab of the
Project painter before you deploy the application. The default global properties
and their values display only when the “System defined configuration settings”
radio button is selected. This radio button is selected by default.

For information on modifying global properties after you deploy a Web Forms
application, see “Viewing and modifying global properties in IIS Manager” on
page 8.

Additional global properties are described in Table 6-2. They are included in
the Web.Config file that is generated in the main application directory under the
IIS virtual root directory.

You can also create custom global properties. For information about custom
global properties, see “Creating custom global properties” next.

When you select a global property from the Key and Value list and click the
Edit button, the Set Configuration Value dialog box displays. You can use this
dialog box to change the values of system or custom global properties.

Table 6-1: Global properties on the Project painter Configuration tab

Property Default value Description

PBAutoTriggerMenuSelec
tedEvents

False Indicates whether to trigger the menu Selected event for
all menu items before Web Forms are rendered in the
browser. The Selected event can be handled on the server
only for simple tasks related to the appearance of the
menu items. The Selected event is always disabled on the
client side to prevent unnecessary postbacks when a menu
item is highlighted.

PBCachedAndSharedDDD
Ws

— A comma-delimited set of names for DataWindow objects
that you want to use in DropDownDataWindow edit style
controls for sharing across application sessions. For more
information, see “Sharing data across sessions” on page
32.

PBCachedAndSharedDWs — A comma-delimited set of names for DataWindow objects
that you want to share across application sessions. For
more information, see “Sharing data across sessions” on
page 32.

PBCommandParm — Sets command line parameters for your application. Users
can override the default by setting this property in a URL.

CHAPTER 6 Properties for .NET Web Forms

Deploying Applications and Components to .NET 83

PBCultureSource Server Enumeration that specifies the source of regional settings
for data formats. Values are Server or Client.

For more information about regional settings, see “Use
regional formats based on client or server settings” on
page 222

PBDataWindowEnableDD
DW

False Indicates whether to render a DropDownDataWindow
(DDDW) or a DropDownListBox control for a column
using the DDDW edit style. Values are true to render the
drop-down object as a DDDW, or false to render it as a list
box. The value you set applies to all DDDW objects in the
application, although if you set this value to true, you can
still render a specific DDDW object as a list box by setting
its HTMLGen.GenerateDDDWFrames property (the
“Generate DDDW Frames” field on the Web Generation
page of the DataWindow painter Properties view) to false.

PBDataWindowGoToButt
onText

Go Sets the label for a navigation bar button that takes a user
to a designated DataWindow page.

PBDataWindowGoToDesc
ription

Go To: Sets the label for the navigation control that takes a user
to a designated DataWindow page.

PBDataWindowNavigatio
nBarPosition

PBDWBottom Sets the position where the page navigation controls
display. Values are PBDWBottom for display at the
bottom of the DataWindow, PBDWTop for display at the
top of the DataWindow, or PBDWTopAndBottom for
display at the top and bottom of the DataWindow.

PBDataWindowPageCount
PerGroup

10 Sets a limit to the number of pages that display for the
Numeric or NumericWithQuickGo style navigation bars.

PBDataWindowPageNavig
atorType

NextPrev Values are NextPrev, Numeric, QuickGo,
NextPrevWithQuickGo, or NumericWithQuickGo. For
more information, see “Take advantage of global
configuration properties” on page 224.

PBDataWindowQuickGoP
ageNavigatorType

DropDownList Sets the type of control to use for the Quick Go navigation
bar. Values are DropDownList or Edit.

PBDataWindowRowsPerP
age

20 Sets the number of DataWindow rows to display in Web
Forms when the HTMLGen.PageSize property of the
DataWindow object is not set. HTMLGen.PageSize and
PBDataWindowRowsPerPage have no effect on
DataWindow objects with the Label presentation style.
Composite and Crosstab presentation styles do not
support pagination.

PBDataWindowScriptCall
backDDDW

False Set this to true to load a DropDownDataWindow on
demand using ASP.NET script callbacks when
PBDataWindowEnableDDDW is also set to true.

Property Default value Description

Global Web configuration properties

84 PowerBuilder

PBDataWindowStatusInfo
Format

Page {C} of {T} Sets the text to display for the DataWindow page count
{C} and the total number of pages {T}. The other
variables you can use are placeholders for the starting {S}
and ending {E} page of a group range that you set in the
PBDataWindowPageCountPerGroup global property.

PBDBFetchBuffers 1 The default value causes values to be entered in the
database trace log for each fetch request when tracing is
enabled. Set to 0 to disable tracing on each fetch request.

PBDBLogFileName c:\dbtrace.log The name of the database log file when tracing is enabled.
The log file is saved under the application root directory
in the virtual file system on the IIS server. You can use
PowerBuilder file functions to open and read the log file.

PBDBShowBindings 1 The default value causes metadata from the database
result set columns to be entered in the database trace log
when tracing is enabled. Set to 0 to disable these entries.

PBDBShowDBINames 0 If you set this value to 1, the original database interface
command names are included in a database trace log file
when tracing is enabled. By default, these names are not
included in the log file.

PBDBSqlTraceFile c:\pbtrsql.log The name of the database log file when SQL command
tracing is enabled. The log file is saved under the
application root directory in the virtual file system on the
IIS server. You can use PowerBuilder file functions to
open and read the log file.

PBDBSumTiming 1 The default value causes the cumulative total of timings
since the database connection began to be entered in the
database trace log file when tracing is enabled. Set to 0 to
disable these entries.

PBDBTiming 1 The default value causes the time required to process
database interface commands to be entered in the database
trace log file when tracing is enabled. Set to 0 to disable
these entries.

PBDefaultTheme Auto The default theme selection causes controls in the Web
Forms application to display with Windows Classic
themes for Windows 2000 and 2003 operating systems
and Windows XP themes for all other operating systems.
If you want the controls to display with Windows XP
themes, regardless of the client operating system, you can
select “XP”. If you want the controls to display in all
client browsers with a Windows Classic appearance, you
can select “Classic”.

Property Default value Description

CHAPTER 6 Properties for .NET Web Forms

Deploying Applications and Components to .NET 85

PBDeleteTempFileInterval 600 (minutes) Sets the number of minutes before temporary files created
by composite DataWindows are deleted. A value of 0
prevents the temporary files from being deleted.

PBDenyDownloadFolders c:\~pl_ A comma-delimited string of directory names.
Application users are not able to use the Web Forms File
Manager to download files in any of the directories listed
in this string.

PBEventLogID 1100 The event ID if exceptions are logged to the EventLog.

PBFileManager False Set to true if you want to render the File Manager icon in
a Web Forms application.

PBFormExitMessage “If there is any unsaved
data, it will be lost.”

Use to set custom message when users exit the current
form. The custom message is sandwiched between two
default sentences in the same message box: “Are you sure
you want to navigate away from this page?” and “Press
OK to continue, or Cancel to stay on the current page.”

PBIdleInterval 0 (seconds) Factor that adjusts the interval for the Idle event in a Web
Forms application. The actual interval is determined by
the application idle interval multiplied by the
PBIdleInterval value. A value of 0 prevents the Idle event
from being triggered.

PBJVMLogFileName vm.out Name of the file that logs information about the JVM for
applications using a JDBC connection. By default, this
file is saved to the applicationName_root\Log directory
under the virtual root directory of the Web server.

PBLibDir c:\~pl_ The directory on the server where dynamic libraries are
generated.

PBMailManager False Set to true if you want to render the Mail Manager icon in
a Web Forms application.

PBMailTimeout 1200000 (milliseconds) Time in milliseconds before an SMTP session expires.
The default value is equivalent to 20 minutes, which is
also the HTTP session timeout period. It should be set
higher if the mail includes file or data attachments. The
SMTP session also expires after an e-mail is sent from the
Web Forms application.

PBMaxSession 0 Sets the maximum number of Web Forms sessions that
can be open at the same time. The default value of 0 places
no limitation on the number of sessions that can be open
simultaneously.

PBShowDenyDownloadFo
lders

False Set to true to allow application users to see the server-side
folders to which you restrict download access by listing
them in the PBDenyDownloadFolders global property. By
default, these folders are not visible in the File Manager .

Property Default value Description

Global Web configuration properties

86 PowerBuilder

PBShowFormExitMessage True Set to false to prevent a message box from displaying
when application users exit the current form. If you set
this to true, you can add a custom message to the message
box by setting the PBFormExitMessage global property.

PBTempDir c:\temp A temporary directory under the virtual file root on the
server.

PBThemeManager False Set to true if you want to render the Theme Manager icon
in a Web Forms application.

PBTimerInterval 0 (seconds) Factor that adjusts the interval for the window Timer
event in a Web Forms application. The actual interval is
determined by the window’s Timer interval multiplied by
the PBTimerInterval value. A value of 0 prevents the
Timer event from being triggered.

PBTrace Enabled Indicates whether to log exceptions thrown by the Web
Forms application. Values are Enabled or Disabled.

PBTraceFileName PBTrace.log Name of the file that logs exceptions thrown by the Web
Forms application. By default, this file is saved to the
applicationName_root\Log directory under the virtual
root directory on the Web Forms server.

PBTraceLevel Critical By default, the .NET runtime logs critical exceptions only.
However, if you set this property to SystemFunction, the
.NET runtime logs all exceptions caught by system
functions.

PBTraceTarget File Defines where to log exceptions thrown by the Web
Forms application. Values are File or EventLog.

PBWebControlSource IE This setting determines whether the application usese IE
Web Controls for application toolbars and menus, and
“old style” controls for DatePicker and MonthCalendar
controls. Select RAD if you want to use the RadControl
equivalents for these controls. The RadControl set is
included for preview purposes and does not include the
TreeView control.

If your application uses a TreeView control or if you use
the IE setting, you must install IE Web Controls as
described in “Setting up IE Web Controls on the server”
on page 12. The PowerBuilder setup program includes
RadControls and PowerBuilder deploys them
automatically with your Web Forms application.

Property Default value Description

CHAPTER 6 Properties for .NET Web Forms

Deploying Applications and Components to .NET 87

Table 6-2 displays global properties that you cannot set on the Configuration
tab. However, you can change these properties in the Web.Config file after
deployment. Also, the selection that you make for Web Application Name on
the General tab affects default values generated for these global properties.

Table 6-2: Additional global properties for a Web Forms application

PBWebFileProcessMode Share Share mode maintains files in a read-only state when a
write file operation is not explicitly coded. If an
application requires multiple file operations, you might
want to change this property setting to Copy mode.

For more information on Share and Copy mode, see
“Using the Web Forms File Manager” on page 68.

PBWindowDefaultHeight 600 (pixels) Specifies the default height of the client area of the Web
browser when MDI, MDIHelp, and main type windows
are opened as maximized for the first time.

PBWindowDefaultWidth 1003 (pixels) Specifies the default width of the client area of the Web
browser when MDI, MDIHelp, and main type windows
are opened as maximized for the first time.

PBYieldTimeout 10000 (milliseconds) Time in milliseconds before the Yield function causes a
postback to the server. Yield calls are ignored if you set
this value to 0. When you set this value to 0, however, you
must make sure your application does not call Yield inside
a loop, as in the following example:

do while flag

yield()

loop

Property Default value Description

Property Default value Description

FileFolder WebAppDir..\appName_r
oot\file

Base directory for the virtual file manager. It contains the
File\Common directory structure and files that mirror
paths for the application resource files on the
development computer. If you switch to Copy mode, a
sessionID directory is created under the File\Session
directory that mirrors the File\Common directory
structure and file contents.

MailFolder WebAppDir..\appName__
root\mail

Base directory for the mail manager.

PrintFolder WebAppDir..\appName__
root\print

Base directory for files that your application prints in
PDF format.

LogFolder WebAppDir..\appName__
root\log

Folder that contains the PBTrace.log file.

Creating custom global properties

88 PowerBuilder

Creating custom global properties
You can create custom global properties for a Web Forms project after you
select the “Custom defined configuration settings” radio button on the
Configuration tab page of the Project painter. This selection enables the Add
button. Clicking Add causes the Add User Defined Configuration Setting
dialog box to display. You use this dialog box to add a custom global property
and a value for that property.

You cannot use a system global property name as the name for a custom global
property. When you select a custom global property in the Key and Value list
box on the Configuration tab page of the Project painter, the Edit and Delete
buttons become enabled. You click the Edit button to change the value of a
custom global property. You click Delete to remove a custom global property
and its value.

AutoPostBack
Applies to CheckBox and RadioButton controls

Description You can reduce postbacks and improve performance by setting the
AutoPostBack property for certain controls to false. When you set a control’s
AutoPostBack property to false, all events related to that control are triggered
only in the processing of the next postback caused by another control in the
Web Forms application.

Usage In scripts

You must surround the AutoPostBack property in a conditional compilation
code block for Web Forms applications:

#IF DEFINED PBWEBFORM THEN
cbx_1.AutoPostBack = false

#END IF

Embedded
Applies to StaticHyperLink controls

CHAPTER 6 Properties for .NET Web Forms

Deploying Applications and Components to .NET 89

Description When you set the Embedded property to true for a StaticHyperLink control, the
IFRAME element is used to embed the Web page that you defined in the
control’s URL property. The Web page displays inline on the Web Forms page.

Usage In scripts

The following code sets the Embedded property to “true”. You must surround
the Embedded property in a conditional compilation code block for Web Forms
applications:

#IF DEFINED PBWEBFORM THEN
shl_1.Embedded = true

#END IF

If you place the above code in the Open event for a window containing the
StaticHyperLink control, or in the control’s Constructor event, the hyperlink
text does not display, but the page referenced in the URL property opens in the
area defined by the control in the Web Forms page. When you enable the
Embedded property, you must consider enlarging the size of the
StaticHyperLink control to permit adequate viewing of the embedded Web
page, although at runtime, the IFRAME element that replaces the control
includes horizontal and vertical scroll bars if the page size exceeds the size of
the original control.

Some Web sites use Javascript code to make sure their pages display as top
level HTML windows. This can cause Javascript errors and erratic behavior
when Embedded is set to true.

HasFileManager
Applies to Window controls

Description This property is valid for .NET Web Forms applications only when the
PBFileManager global property is set to true. The global property allows the
File Manager icon to display on all window forms in your Web Forms
applications. The File Manager icon gives users access to a file manager on the
Web Forms server.

By default, the HasFileManager property is set to true and the PBFileManager
is set to false. When you change the PBFileManager global property to true, all
window forms display the File Manager icon unless you set the
HasFileManager for a particular window to false.

HasMailManager

90 PowerBuilder

Icon display in MDI Web Forms applications
In MDI applications, manager icons display on the frame window. To hide the
File Manager icon when the PBFileManager global property is set to true, you
must set the HasFileManager property of both the frame and the active sheet to
false.

Usage In scripts

You must surround the HasFileManager property in a conditional compilation
code block for Web Forms applications:

#if defined PBWEBFORM then
w_mywindow.HasFileManager = false

#end if

HasMailManager
Applies to Window controls

Description This property is valid for .NET Web Forms applications only when the
PBMailManager global property is set to true. The global property allows the
Mail Profile Manager icon to display on all window forms in your Web Forms
applications. The Mail Profile Manager icon gives users access to a mail profile
manager on the Web Forms server.

By default, the HasMailManager property is set to true and the
PBMailManager is set to false. When you change the PBMailManager global
property to true, all window forms display the Mail Profile Manager icon
unless you set the HasMailManager for a particular window to false.

Icon display in MDI Web Forms applications
In MDI applications, manager icons display on the frame window. To hide the
Mail Profile Manager icon when the PBMailManager global property is set to
true, you must set the HasMailManager property of both the frame and the
active sheet to false.

CHAPTER 6 Properties for .NET Web Forms

Deploying Applications and Components to .NET 91

Usage In scripts

You must surround the HasMailManager property in a conditional compilation
code block for Web Forms applications:

#if defined PBWEBFORM then
w_mywindow.HasMailManager = false

#end if

HasPrintManager
Applies to Window controls

Description This property is valid for .NET Web Forms applications only when the Print
Manager is activated. You activate the Print Manager by calling a supported
print method.

When activated, the Print Manager icon displays on all window forms in your
Web Forms applications. The Print Manager icon gives users access to a print
manager for files on the Web Forms server.

Icon display in MDI Web Forms applications
In MDI applications, manager icons display on the frame window. To hide the
Print Manager icon after it is activated, you must set the HasPrintManager
property of both the frame and the active sheet to false.

By default, the HasPrintManager property is set to true. When you activate the
Print Manager, all window forms display the Print Manager icon unless you set
the HasPrintManager for a particular window to false.

For information on activating the Print Manager, see “Using the Web Forms
Print Manager” on page 63.

Usage In scripts

You must surround the HasPrintManager property in a conditional compilation
code block for Web Forms applications:

#if defined PBWEBFORM then
w_mywindow.HasPrintManager = false

#end if

HasThemeManager

92 PowerBuilder

HasThemeManager
Applies to Window controls

Description This property is valid for .NET Web Forms applications only when the
PBThemeManager global property is set to true. The global property allows the
Theme Manager icon to display on all window forms in your Web Forms
applications. The Theme Manager icon allows users to change the display of
controls in your application.

By default, the HasThemeManager property is set to true and the
PBThemeManager is set to false. When you change the PBThemeManager
global property to true, all window forms display the Theme Manager icon
unless you set the HasThemeManager for a particular window to false.

Icon display in MDI Web Forms applications
In MDI applications, manager icons display on the frame window. To hide the
Theme Manager icon when the PBThemeManager global property is set to
true, you must set the HasThemeManager property of both the frame and the
active sheet to false.

Usage In scripts

You must surround the HasThemeManager property in a conditional
compilation code block for Web Forms applications:

#if defined PBWEBFORM then
w_mywindow.HasThemeManager = false

#end if

Deploying Applications and Components to .NET 93

C H A P T E R 7 Functions for .NET Web Forms

About this chapter This chapter describes system functions that are restricted to .NET Web
Forms applications. You cannot use them in other types of PowerBuilder
applications.

Contents

About system functions for Web Forms applications
PowerBuilder provides system functions that are specific for .NET Web
Forms applications. These functions allow you to open the various
managers for Web Forms applications, to obtain global configuration
settings, to download files for viewing or printing by the application user,
or to upload files to the Web server.

You must surround calls to these system functions in a conditional
compilation block for .NET Web Forms. These functions cannot be used
with standard PowerBuilder client-server applications.

Topic Page

About system functions for Web Forms applications 93

DownloadFile 94

GetConfigSetting 96

GetDownloadFileURL 96

MapVirtualPath 97

OpenFileManager 98

OpenMailManager 98

OpenPrintManager 98

OpenThemeManager 99

UploadFiles 99

DownloadFile

94 PowerBuilder

Functionality for downloading and uploading files is also available from the
File Manager. The Print Manager allows application users to view files printed
to the Web server in PDF format. You can enable the managers through global
properties or by calling Web Forms system functions.

For information on using the managers, see Chapter 5, “Print, File, Mail
Profile, and Theme Managers.”

DownloadFile
Description Downloads a file from the Web server to a client computer.

Syntax void DownloadFile (string serverFile, boolean open)

Return value None

Usage Some types of files cannot be displayed directly in a browser window. For these
types of files, the open argument is disregarded. Instead, the File Download
dialog box displays as if you set the open argument to false, but the dialog box
provides no option to open the file directly. In this case, users can only save the
file to disk or cancel the download operation.

If the file you indicate in the serverFile argument is not present on the server,
application users do not see an error message. You can use the FileExists
PowerScript function to make sure the file exists in the server directory before
you call DownloadFile.

Examples The following example opens the file aaa.txt in download mode:

#if defined PBWEBFORM then
DownloadFile("c:\aaa.txt", false)

#end if

Argument Description

serverFile A string containing the name of the file on the application’s
virtual file path on the Web server.

open A boolean that determines whether to access the file in open
mode or download mode. Values are:

• true Display the file directly in a browser window (open
mode).

• false Display a dialog box that lets the user open the file,
save the file, or cancel the download operation (download
mode).

CHAPTER 7 Functions for .NET Web Forms

Deploying Applications and Components to .NET 95

The download mode causes the File Download dialog box to display, giving the
user the choice of opening the file, saving the file, or cancelling the operation.
The File Download dialog box displays the file name, the file type, the number
of bytes in the file, and the name of the server that hosts the file.

The following code opens a dialog box that allows users to select a directory
and download multiple files from the same directory:

string docpath, docname[]
boolean lb_open
integer i, li_cnt, li_rtn, li_filenum

lb_open = true //or false
li_rtn = GetFileOpenName("Select File", docpath, &

+ docname[], "DOC", &
 + "Text Files (*.TXT),*.TXT," &
 + "Doc Files (*.DOC),*.DOC," &
 + "All Files (*.*), *.*", &
 "C:\Program Files\Sybase", 18)
IF li_rtn < 1 THEN return
li_cnt = Upperbound(docname)
// if only one file is picked, docpath contains the
// path and file name
if li_cnt = 1 then
 mle_1.text = string(docpath)

#if defined PBWEBFORM then
DownloadFile(string(docpath), lb_open)

#end if
else
// if multiple files are picked, docpath contains
// the path only - concatenate docpath and docname

for i=1 to li_cnt
 string s
 s = string(docpath) + "\" +(string(docname[i]))

#if defined PBWEBFORM then
DownloadFile(s, lb_open)

#end if
mle_1.text += s +"~r~n"
next

end if

See also GetDownloadFileURL

GetConfigSetting

96 PowerBuilder

GetConfigSetting
Description Returns the value of a global configuration property.

Syntax string GetConfigSetting (string key)

Return value String. Returns the value of the global property passed in the key parameter.

Examples The following code returns “N/A” for not applicable if the global property
“myKey” is not found:

string v, k
k = "myKey"

#if defined PBWEBFORM then
v = GetConfigSetting(k)

#else
v = "N/A"

#end if

See also DownloadFile

GetDownloadFileURL
Description Returns the URL for a file on the Web server.

Syntax string GetDownloadFileURL (string serverFile, boolean open)

Return value String. Returns the URL of the file in ASCII format.

Argument Description

key A string for the name of a global property in the Web.Config file.

Argument Description

serverFile A string containing the name of the file on the application’s
virtual file path on the Web server.

open A boolean that determines whether to access the file in open
mode or download mode. Values are:

• true Display the file directly in a browser window (open
mode).

• false Display a dialog box that lets the user open the file,
save the file, or cancel the download operation (download
mode).

CHAPTER 7 Functions for .NET Web Forms

Deploying Applications and Components to .NET 97

Usage The open argument applies only if a Web Forms application user copies the
returned URL in the current browser Address box or if you set a hyperlink in
the current browser to the returned URL address.

Examples The following code places the URL for a text file in a MultiLineEdit box and
includes it as a hyperlink in a StaticHyperLink control:

#if defined PBWEBFORM then
string s
s = GetDownloadFileUrl("c:\aaa.txt", false)
mle_1.text += "~r~n" + s
shl_1.url = s //shl_1: static hyperlink

#end if

See also DownloadFile

MapVirtualPath
Description Allows you to get the actual path of a file on the Web Forms server.

Syntax string MapVirtualPath (string virtualPath)

Return value String. Returns the actual path of a file in the virtual file system on a Web Forms
server.

Usage You can use the MapVirtualPath function to get the actual path of files for file
operations required by .NET DLLs.

Examples The following code returns the actual path on a new line in a MultiLineEdit
control:

#if defined PBWEBFORM then
mle_1.text +=''~r~nActual Path='' &
+ MapVirtualPath(''c:\a.txt'')

#end if

Argument Description

virtualPath A string for a virtual path on the Web Forms server

OpenFileManager

98 PowerBuilder

OpenFileManager
Description Opens the Web Forms File Manager.

Syntax void OpenFileManager ()

Return value None

Usage For information on using the File Manager, see “Using the Web Forms File
Manager” on page 68.

Examples You can use this code to open the Web Forms File Manager:

#if defined PBWEBFORM then
OpenFileManager()

#end if

OpenMailManager
Description Opens the Web Forms Mail Profile Manager.

Syntax void OpenMailManager ()

Return value None

Usage For information on using the Mail Profile Manager, see “Using the Web Forms
Mail Profile Manager” on page 75.

Examples You can use this code to open the Web Forms Mail Profile Manager:

#if defined PBWEBFORM then
OpenMailManager()

#end if

OpenPrintManager
Description Opens the Web Forms Print Manager.

Syntax void OpenPrintManager ()

Return value None

Usage For information on using the Print Manager, see “Using the Web Forms Print
Manager” on page 63.

CHAPTER 7 Functions for .NET Web Forms

Deploying Applications and Components to .NET 99

Examples You can use this code to open the Web Forms Print Manager:

#if defined PBWEBFORM then
OpenPrintManager()

#end if

OpenThemeManager
Description Opens the Web Forms Theme Manager.

Syntax void OpenThemeManager ()

Return value None

Usage For information on using the Theme Manager, see “Using the Web Forms
Theme Manager” on page 78.

Examples You can use this code to open the Web Forms Theme Manager:

#if defined PBWEBFORM then
OpenThemeManager()

#end if

UploadFiles
Description Opens the Upload Files dialog box that enables an application user to upload

files from the local computer to the Web server.

Syntax void UploadFiles (string serverFolder, long bgColor, int fileNum, boolean
showServerFolder, string description, string allowExts {, string
callbackFunctionName}{, PowerObject po })

Argument Description

serverFolder The folder on the server to which you want to copy one
or more files from the client computer. PowerBuilder
creates this folder under the server virtual root in the
applicationName_root\session\sessionID directory, or
for someone logged in as a permanent user, in the
applicationName_root\users\userName directory.

bgColor A long for the background color of the Upload Files
dialog box.

UploadFiles

100 PowerBuilder

Return value None.

Usage You can use the UploadFiles function in conjunction with a private callback
function that you create for a PowerBuilder object.

The callback function should return an integer and take a string array for its
only argument. The callback function script should include an iteration to fill
up the string array with the names of files selected by the application user to
upload to the server. For example, the following code can be added to a
callback function “myuploadfiles_callback” with an upfiles[] string array
argument:

int i
for i = 1 to upperbound(up_files)
 this.mle_1.text += "~r~n" + up_files[i]
next
return i

fileNum An integer for the number of text boxes to display in
the Upload Files dialog boxes. Application users can
upload as many files as there are text boxes in a single
upload operation.

showServerFolder A boolean specifying whether to display the server
folder name in the Upload Files dialog box. Values are:

• true Display the server folder name.

• false Do not display the server folder name.

description Text that you want to display near the top of the
Upload Files dialog box. You can use an empty string
if you do not want to display additional text in this
dialog box.

allowExts A string that lets you limit the files a user can upload
to files with the extensions you list. If you set this
argument to an empty string, files with any file
extension can be uploaded. If you list multiple
extensions, you must separate each extension with a
semicolon. You must include the “.” (dot) in the
extensions you list.

callbackFunctionName
(optional)

The callback function that lets you know whether the
file is correctly uploaded to the Web server.

po
(optional)

The name of a PowerBuilder object that has the
callback function set in the callbackFunctionName
argument.

Argument Description

CHAPTER 7 Functions for .NET Web Forms

Deploying Applications and Components to .NET 101

If the “myuploadfiles_callback” function is created on the window w_main,
you can use this window name as the value of the po argument in your Upload
Files call. If you create the “myuploadfiles_callback” function as a global
function, you can use the UploadFiles callback syntax without the po argument.

If your application uses sequential UploadFiles calls in the same script, only the
callback function in the last of the UploadFiles calls is valid. The other
UploadFiles calls can still upload selected files to the Web server, but further
processing of the names of the uploaded files does not occur, even when the
syntax for these calls includes a callback function that codes for such
processing.

If the last UploadFiles call in a script containing sequential UploadFiles calls
does not use a callback function, no callback processing occurs.

Examples The following example uploads the file to the application’s virtual root d:\hhh
directory on the server, sets the color of the Upload Files dialog box to the
background color of the w_main application window, limits the number of files
to be uploaded in a single operation to 3, does not display the server directory
name in the Upload Files dialog box but does display the “my description” text,
and limits the types of files that can be uploaded to JPG and TXT files:

#if defined PBWEBFORM then
 UploadFiles("d:\hhh", w_main.BackColor, 3, false,

"my description", ".jpg;.txt",
"myuploadfiles_callback", w_main)

#end if

This example uses green as the background color for the Upload Files dialog
box, limits the number of files to be uploaded in a single operation to 1,
displays the server folder name in the Upload Files dialog box, and does not
restrict the types of files a user can upload to the Web server:

#if defined PBWEBFORM then
UploadFiles("c:\hhh", RGB(0, 255, 0), 1, true,
"", "", "myuploadfiles_callback", w_main)

#end if

See also DownloadFile
GetDownloadFileURL

UploadFiles

102 PowerBuilder

Deploying Applications and Components to .NET 103

C H A P T E R 8 Modified and Unsupported
Features in Web Forms Projects

About this chapter You can use most of the PowerScript methods and properties in
PowerBuilder applications that you deploy with a .NET Web Forms
project. This chapter lists features of PowerBuilder and PowerScript that
are not supported in Web Forms targets.

Contents

About unsupported features
When you deploy a PowerBuilder application as a Web Forms application
to an IIS server, PowerBuilder lists any unsupported features in the Output
window. For the most part, unsupported features fail silently in the Web
Forms application, but unexpected results can also occur. If an
unsupported feature prevents the PowerBuilder to .NET compiler from
compiling your application, the failure and its cause are noted in the
Output window in PowerBuilder.

DataWindow support Presentation styles Currently all DataWindow presentation styles are
supported except RichText and OLE. All DataWindow dialog boxes
(Specify Retrieval Arguments, Specify Retrieval Criteria, Import File,
Save As, Print, Sort, Filter, and Crosstab) are supported.

Topic Page

About unsupported features 103

Unsupported objects 105

Unsupported system functions 106

Restrictions on supported controls 108

Modified display of visual controls 119

Unsupported functions for controls in Web Forms 121

Unsupported events for controls in Web Forms 125

Unsupported properties for controls in Web Forms 127

About unsupported features

104 PowerBuilder

DataWindow expressions Most of the built-in functions for DataWindow
expressions are supported, but they do not include the Describe,
LookupDisplay, Case, Page, PageAbs, ProfileInt, and ProfileString expression
functions or the aggregate expression functions. User-defined expression
functions are also not supported in Web Forms applications.

Client-side DataWindow expressions
DataWindow expressions that change UI properties are not supported on the
client side. To work around this issue, you can trigger the Clicked or
RowFocusChanged event to force a postback. DataWindow expressions are
fully supported on the server side with the exception of expression functions
noted above.

Controls in DataWindow controls The controls you can add to a
DataWindow are not all supported in Web Forms applications. The Oval,
RoundRectangle, InkPicture, OLE Object, and OLE Database Blob controls
are not supported in a Web Forms DataWindow. For a list of unsupported
properties of controls that are supported in Web Forms DataWindow objects,
see Table 8-5.

JavaScript keywords You cannot use JavaScript reserved words to name
fields or bands in a DataWindow control that you deploy to the Web. The list
of reserved words is available on the Sun Microsystems Web site at
http://docs.sun.com/source/816-6410-10/keywords.htm.

DataWindow pagination The Web DataWindow control uses a simplified
version of DataWindow pagination rules, and provides a choice of page
navigation bars instead of scroll bars to support page navigation.

For information on pagination display in Web Forms DataWindow controls,
see “Take advantage of global configuration properties” on page 224. For a
description of changes to the visual display of DataWindow controls in Web
Forms applications, see “Modified display of DataWindow objects and
controls” on page 120.

Printing DataWindow objects Although the PrintDataWindow or PrintScreen
print functions are not supported, users can save DataWindow objects and their
data as PDF files, and can print the current Web Forms page using a browser’s
print menu when those are available. (Browser menus are available only when
the default.aspx page name is included in the URL used to start the Web Forms
application.)

CHAPTER 8 Modified and Unsupported Features in Web Forms Projects

Deploying Applications and Components to .NET 105

Mail support Although you can send e-mail from Web Forms applications, there is no
support for receiving e-mail. When you call MailSend, you must supply a
MailMessage argument. The MailSend syntax without a parameter is not
supported.

The MailSend function returns an enumerated value of type MailReturnCode.
The following values of the MailReturnCode enumeration are not supported in
Web Forms applications:

PBNI feature You can use the built-in Web services client extension (pbwsclient110.pbx) in
applications that you plan to deploy to .NET. You cannot use any other PBNI
extensions in .NET Web Forms targets.

Hot keys Hot keys, shortcut keys, and accelerator keys are not supported in .NET Web
Forms targets.

Functions on .NET
primitive types

You cannot call functions on .NET primitive types that map to PowerBuilder
primitive types. See Table 14-3 for the list of datatype mappings from .NET to
PowerBuilder.

Unsupported objects
The PowerScript objects listed in Table 8-1 cannot be used in applications
deployed to ASP.NET.

Table 8-1: Unsupported PowerScript objects in Web Forms applications

MailReturnAccessDenied MailReturnNoMessages

MailReturnDiskFull MailReturnTextTooLarge

MailReturnInsufficientMemory MailReturnTooManyFiles

MailReturnInvalidMessage MailReturnTooManyRecipients

MailReturnMessageInUse MailReturnTooManySessions

Category Objects

Data reproduction Pipeline

EAServer integration RemoteObject

Menu MenuCascade

Unsupported system functions

106 PowerBuilder

Using structures in inherited objects Using local structures in inherited
objects can prevent deployment of a .NET project. To deploy the project,
replace all local structures defined in inherited objects with global structures.

Unsupported system functions
Table 8-2 lists categories of system functions that are not supported or are
deferred until a future release:

Table 8-2: Unsupported system functions by category

OLE OleStorage
OleStream
OmStorage
OmStream

Profiling and tracing ProfileCall
ProfileClass
ProfileLine
ProfileRoutine
Profiling
TraceFile
TraceTree
TraceTreeNode and descendants
TraceActivityNode and descendants

Timing Timing

Tablet PC InkEdit
InkPicture

Category Objects

Category Functions

Clipboard functions Clipboard, also any object function that uses the
clipboard, such as Copy, Paste, Clear, and so on

DDE functions CloseChannel, ExecRemote, GetCommandDDE,
GetCommandDDEOrigin, GetDataDDE,
GetDataDDEOrigin, GetRemote, OpenChannel,
RespondRemote, SetDataDDE, SetRemote,
StartHotLink, StartServerDDE, StopHotLink,
StopServerDDE

Debugging functions DebugBreak

Garbage collection functions GarbageCollect, GarbageCollectGetTimeLimit,
GarbageCollectSetTimeLimit

CHAPTER 8 Modified and Unsupported Features in Web Forms Projects

Deploying Applications and Components to .NET 107

Partially supported
system function

IsNull function The IsNull function is supported for simple datatypes only. It
is not very useful for structure and class objects, since in .NET targets,
uninitialized variables always return true for an IsNull call even when they are
not explicitly set to null. However, you can use IsValid to test for valid instances
of these object types. You can also use IsNull for class objects after they have
been created.

Timer function The concept of “current window” does not exist in Web
Forms applications. Therefore, you must use the optional PowerScript syntax
with the window name parameter and the name of an active window as the
parameter value. The Timer function fails when the active window does not
exist.

Yield function Due to the thread-model design of Web Forms applications,
you cannot use the Yield function and the Selected event of a menu object
concurrently. Doing this causes a JavaScript error.

Registry functions System registry functions can read and write registry
entries, keys, and values on the server side, but do not perform these operations
on the server computer’s registry in the same way as they do on a client
computer’s registry in a standard PowerBuilder application.

For more information on system registry functions, see “Using the registry
functions” on page 60.

Help functions ShowHelp, ShowPopupHelp

Input method functions IMEGetCompositionText, IMEGetMode,
IMESetMode

Mail functions MailAddress, MailDeleteMessage,
MailGetMessages, MailHandle, MailLogoff,
MailLogon, MailReadMessage,
MailRecipientDetails, MailResolveRecipient,
MailSaveMessage

Messaging functions Post, Send

Miscellaneous functions DoScript, DraggedObject, Handle, Run, Restart

Print functions PrintDataWindow, PrintScreen, PrintSend,
PrintSetPrinter, PrintSetup, PrintSetupPrinter

Profiling and tracing functions TraceBegin, TraceClose, TraceDisableActivity,
TraceDump, TraceEnableActivity, TraceEnd,
TraceError, TraceOpen, TraceUser

Category Functions

Restrictions on supported controls

108 PowerBuilder

Restrictions on supported controls
Almost all PowerBuilder controls are supported in .NET Web Forms
applications. However some of the methods and properties on supported
controls do not work in Web Forms applications. Table 8-3 lists functions,
events, and properties that are not supported on any control.

Table 8-3: Unsupported functions, events, and properties

Table 8-4 lists the functions, events, and properties that are not supported on
some individual objects or controls. Table 8-4 does not include the items listed
in Table 8-3. The entry “No additional” in Table 8-4 indicates that all items
except those listed in Table 8-3 are supported for that control.

Table 8-4: Additional unsupported functions, events, and properties by
control

Category Unsupported feature

Control Functions Clear (supported for EditMask controls)
Cut, Copy, Paste
CanUndo, Undo
Drag
Print (can be used for DataWindows and DataStores to

print to PDF files)
SetActionCode
SetRedraw

Events Drag and drop events
GetFocus, LoseFocus events (supported when a call to

the SetFocus function causes the focus change)
Help event
MouseMove event
Other event

Properties Accelerator
AccessibleDescription
AccessibleName
AccessibleRole
DragAuto
DragIcon
IMEMode

Supported object
or control Unsupported functions

Unsupported
events Unsupported properties

Animation (Playback
behavior depends on
Windows Media
Player on client side.)

Play (supported, but
parameters ignored)

Seek

Click
DoubleClick
Help
Start
Stop

OriginalSize
Transparent

CHAPTER 8 Modified and Unsupported Features in Web Forms Projects

Deploying Applications and Components to .NET 109

ClassDefinition No additional No additional LibraryName
VariableList (supported, but

the sequence of variables
might differ in .NET

applications)

DataStore Same as DataWindow Destructor
Error
ItemChanged
PrintEnd
PrintPage
PrintStart

No additional

DataWindow control AcceptText
CopyRTF, PasteRTF
Find, FindNext
GenerateResultSet
GetText
ImportClipboard
InsertDocument
LineCount
OLEActivate
Position
PrintCancel
ReplaceText
ResetInk
SaveInk functions
Scroll
Selected functions
SelectText functions
SetActionCode
SetDetailHeight
SetFocus
SetRedraw
SetText
ShowHeadFoot
TextLine

EditChanged
GetFocus
LoseFocus
PrintEnd
PrintMarginChange
PrintPage
PrintStart
ScrollHorizontal
ScrollVertical

(The Clicked event is
not triggered on
editable text columns
that already have
focus. For more
information, see
“Partially supported
control events” on
page 127.)

ControlMenu
HSplitScroll
Icon
LiveScroll
MaxBox
MinBox
Resizable
RightToLeft
Title
TitleBar

Supported object
or control Unsupported functions

Unsupported
events Unsupported properties

Restrictions on supported controls

110 PowerBuilder

DataWindow object
(See “DataWindow
support” on page 103
for a list of controls
that are not supported
in a DataWindow
object. See Table 8-5
for unsupported
properties of controls
that you can place in a
DataWindow object.)

Has no functions Has no events Bandname.Height.Autosize
Bandname.Pointer
Bandname.Text
Grid.ColumnMove
Header.#.Suppress
Help.Property
HorizontalScrollProperty
HideGrayLine
Label.Ellipse_Property
Label.Shape (support
rectangle shape only)
OLE.Client
Pointer
Print.Preview.Property
Retrieve.AsNeeded
RichText.Property
Row.Resize
Sparse
Storage.Property
Tree.Property
VerticalScrollProperty
Zoom

DataWindowChild Same as DataWindow Has no events No additional

DatePicker GetCalendar Clicked
CloseUp
DoubleClicked
DropDown
UserString
ValueChanged

AllowEdit
DropDownRight
RightToLeft
ShowUpDown
TodaySection
WeekNumbers

DropDownListBox,
DropDownPictureList
Box

Position
ReplaceText
SelectedLength
SelectedStart
SelectedText
SelectText

DoubleClicked AllowEdit
AutoHScroll
Limit
RightToLeft
ShowList

Supported object
or control Unsupported functions

Unsupported
events Unsupported properties

CHAPTER 8 Modified and Unsupported Features in Web Forms Projects

Deploying Applications and Components to .NET 111

EditMask CanUndo
LineCount
LineLength
Position
ReplaceText
Scroll
SelectedLength
SelectedLine
SelectedStart
SelectedText
SelectText
TextLine
Undo

No additional AutoHScroll
AutoSkip
AutoVScroll
DisplayData
DropDownRight
HideSelection
IgnoreDefaultButton
Increment
Limit
MinMax
Spin
TabStop
UseCodeTable

Graph Clipboard
ImportClipboard
ImportFile
SaveAs
SetFocus

No additional FocusRectangle

HProgressBar No additional DoubleClicked SmoothScroll

HScrollBar No additional RButtonDown No additional

HTrackBar SelectionRange No additional SliderSize
TickFrequency
TickMarks

ListBox SetTop
Top

DoubleClicked DisableNoScroll
ExtendedSelect
RightToLeft
TabStop

Supported object
or control Unsupported functions

Unsupported
events Unsupported properties

Restrictions on supported controls

112 PowerBuilder

ListView Arrange
EditLabel
FindItem (partial

support: see “Control
functions with partial
support” on page 125
for more information)

GetItemAtPointer
GetOrigin
SetOverlayPicture

BeginDrag
BeginLabelEdit
BeginRightDrag
DeleteAllItems
EndLabelEdit
ItemActivate
Key
RightClicked

RightDoubleClicked
Sort

AutoArrange
ButtonHeader
DeleteItems
ExtendedSelect
FixedLocations
GridLines
HeaderDragDrop
HideSelection
LabelWrap
LayoutRTL
OneClickActivate
RightToLeft
ShowHeader
TrackSelect
TwoClickActivate
UnderlineCold
UnderlineHot

ListViewItem No additional No additional CutHighlighted
DropHighlighted
ItemX
ItemY

MailFileDescription No additional No additional FileType
Position

MailMessage No additional No additional ConversationID
DateRecieved
MessageType
MessageSent
ReceiptRequested
Unread

MailRecipient No additional No additional EntryID

MailSession MailDeleteMessage
MailGetMessages
MailHandle
MailLogon
MailLogoff
MailReadMessage
MailRecipientDetails
MailResolveRecipient
MailSaveMessage

(For MailSend restrictions,
see “Mail support” on page
105.)

No additional MessageID
SessionID

Supported object
or control Unsupported functions

Unsupported
events Unsupported properties

CHAPTER 8 Modified and Unsupported Features in Web Forms Projects

Deploying Applications and Components to .NET 113

Menu No additional Selected
(Can be supported
for simple tasks that
are run prior to the
rendering of Web
Forms in a client
browser. For more
information, see
“Partially supported
control events” on
page 127.)

BitmapBackColor
BitmapGradient
MenuAnimation
MenuBitmaps
MenuImage
MenuTitles
MenuTitleText
MergeOption
MicroHelp
TitleBackColor
TitleGradient
ToolbarAnimation
ToolbarItemDown
ToolbarItemDownName
ToolbarItemSpace

MonthCalendar GetDisplayRange Clicked
DoubleClicked

AutoSize
MaxSelectCount
RightToLeft
ScrollRate
TodaySection
WeekNumbers

MultiLineEdit LineCount
LineLength
Position
Scroll
SelectedLine
SelectedStart
TextLine

RButtonDown AutoHScroll
AutoVScroll
HideSelection
TabStop

Picture No additional No additional FocusRectangle
Map3DColors

PictureButton No additional No additional Map3DColors

PictureHyperLink No additional No additional FocusRectangle
Map3DColors

PictureListBox SetTop
Top

DoubleClicked DisableNoScroll
ExtendedSelect
RightToLeft
TabStop

RadioButton No additional No additional BorderStyle

Supported object
or control Unsupported functions

Unsupported
events Unsupported properties

Restrictions on supported controls

114 PowerBuilder

RichTextEdit CopyRTF
DataSource
Find
FindNext
GetAlignment
GetParagraphSetting
GetSpacing
GetTextColor
GetTextStyle
InputField functions
InsertDocument
(supported for TXT
format only)

InsertPicture
IsPreview
LineCount
LineLength
PageCount
PasteRTF
Position
Preview
PrintEx
ReplaceText
SaveDocument
(see “Partial support
for SaveDocument
function” on page 117)

Scroll functions
Selected functions
SelectText functions
Set functions (except

SetFocus, which is
supported)

ShowHeadFoot
TextLine

DoubleClicked
FileExists
InputFieldSelected
Key
Modified
Mouse events
PictureSelected
RButtonUp

Accelerator
BottomMargin
ControlCharsVisible
HeaderFooter
HScrollbar
InputField properties
LeftMargin
Modified
PictureAsFrame
PopMenu
Resizable
RightMargin
RulerBar
SelectedStartPos
SelectedTextLength
StatusBar
TabBar
TopMargin
VScrollBar
WordWrap

ScriptDefinition No additional No additional AliasName
ExternalUserFunction

(not supported for system
functions; supported for
external functions only)

LocalVariableList
Source
SystemFunction

Supported object
or control Unsupported functions

Unsupported
events Unsupported properties

CHAPTER 8 Modified and Unsupported Features in Web Forms Projects

Deploying Applications and Components to .NET 115

SimpleTypeDefinition No additional No additional LibraryName

SingleLineEdit No additional RButtonDown AutoHScroll
HideSelection

StaticHyperLink No additional No additional FillPattern
FocusRectangle
RightToLeft

StaticText No additional No additional FillPattern
FocusRectangle
RightToLeft

Tab No additional DoubleClicked
RightDoubleClicked

Alignment (supported in
TabsOnTop style when
ShowPicture is set to false)

FixedWidth (supported in
TabsOnTop style, single-line
mode)

FocusOnButtonDown
Multiline (supported in

TabsOnTop style)
Perpendicular (supported in

single-line mode)
RaggedRight (supported in

TabsOnTop style; always
true inTabsOnLeft style)

TabPosition (Enum values
supported for TabsOnTop
and TabsOnLeft only)

TreeView AddStatePicture
DeleteStatePicture
DeleteStatePictures
EditLabel
GetItemAtPointer
SetDropHighlight
SetFirstVisible
SetLevelPictures
SetOverlayPicture

BeginDrag
BeginLabelEdit
BeginRightDrag
EndLabelEdit
Key
Notify

RightDoubleClicked
Sort

DeleteItems
DisableDragDrop
EditLabels
FullRowSelect
HideSelection
LayoutRTL
LinesAtRoot
PictureHeight
PictureWidth
RightToLeft
SingleExpand
StatePictureHeight
StatePictureWidth
TrackSelect

Supported object
or control Unsupported functions

Unsupported
events Unsupported properties

Restrictions on supported controls

116 PowerBuilder

TreeViewItem No additional No additional Bold
CutHighlighted
DropHighlighted
ExpandedOnce
HasFocus
OverlayPictureIndex
Selected

TypeDefinition No additional No additional LibraryName

UserObject AddItem
DeleteItem
EventParmDouble
EventParmString
InsertItem

No additional ColumnsPerPage
LibraryName
LinesPerPage
Style
TabBackColor
UnitsPerColumn
UnitsPerLine

VariableDefinition No additional No additional OverridesAncestorValue

Supported only for descriptions
of instance variables:

IsConstant
ReadAccess
WriteAccess

Supported only for descriptions
of instance variables and
primitive-type properties, such as
int, string, long, and so on:

InitialValue

VProgressBar No additional DoubleClicked SmoothScroll

VScrollBar No additional RButtonDown No additional

Supported object
or control Unsupported functions

Unsupported
events Unsupported properties

CHAPTER 8 Modified and Unsupported Features in Web Forms Projects

Deploying Applications and Components to .NET 117

Partial support for
SaveDocument
function

The SaveDocument function for RichTextEdit controls is supported for the
TXT format, but HTML tags are saved in the text file. SaveDocument can also
save text and images to HTML and DOC file formats, however, it cannot
correctly save Unicode characters in these file formats. SaveDocument does not
support RTF or PDF formats in Web Forms applications.

VTrackBar SelectionRange No additional SliderSize
TickFrequency
TickMarks

Window DDE functions
GetToolbar
GetToolbarPos
InputField functions
SetMicroHelp
SetToolbar
SetToolbarPos

DDE events
Deactivate
DoubleClicked
Hide
Key
Mouse events
SystemKey
ToolbarMoved

Border, ClientEdge
ColumnsPerPage
ContextHelp
HScrollbar
KeyboardIcon
LinesPerPage
PaletteWindow
Resizable
RightToLeft
TitleBar
Toolbar properties
(except ToolbarVisible)

UnitsPerColumn
UnitsPerLine
VScrollbar

Supported for child, popup, and
response windows only:

Center
ControlMenu
MaxBox
MinBox

Supported object
or control Unsupported functions

Unsupported
events Unsupported properties

Restrictions on supported controls

118 PowerBuilder

Controls in
DataWindow objects

Table 8-5 lists the properties that are not supported in Web Forms applications
for controls that you can place in a DataWindow object.

Table 8-5: Unsupported properties of controls in a DataWindow

Control in
DataWindow Unsupported properties

Button AccessibleProperty, Font.Escapement, Font.Width,
HideSnaked, Moveable, Pointer, Resizeable, SlideLeft,
SlideUp, VTextAlign

Column AccessibleProperty, CheckBox.Scale, CheckBox.Other,
ddlb.AllowEdit, ddlb.Limit, ddlb.ShowList, ddlb.Sorted,
ddlb.UseAsBorder, dddw.AllowEdit, dddw.Lines,
dddw.PercentWidth, dddw.ShowList, dddw.UseAsBorder,
Edit.AutoHScroll, Edit.AutoVScroll, Edit.Case,
Edit.HScrollBar, Edit.VScrollBar, EditMask.CodeTable,
EditMask.DDCal_Property, EditMask.SpinProperty,
Font.Escapement, Font.Width, Height.Autosize,
HideSnaked, Ink.Property, InkEdit.Property, Moveable,
Pointer, RadioButtons.Scale, Resizeable, SlideLeft, SlideUp,
UseEllipsis

Computed field AccessibleProperty, Font.Escapement, Font.Width,
Height.Autosize, HideSnaked, Moveable, Pointer,
Resizeable, SlideLeft, SlideUp

Graph AccessibleProperty, HideSnaked, Moveable, Pointer,
Resizeable, SlideLeft, SlideUp

Group box AccessibleProperty, Font.Escapement, Font.Width,
Moveable, Pointer, Resizeable, SlideLeft, SlideUp

Line (diagonal line is
unsupported)

Moveable, Pen.Style, Pen.Width, Pointer, Resizeable,
SlideLeft, SlideUp

Picture AccessibleProperty, HideSnaked, Invert, Moveable, Pointer,
Resizeable, SlideLeft, SlideUp

Rectangle Brush.Hatch, Moveable, Pen.Style, Pen.Width, Pointer,
Resizeable, SlideLeft, SlideUp

Report Border, Height.Autosize, Height, HideSnaked, Moveable,
NewPage, Pointer, Resizeable, SlideLeft, SlideUp,
Trail_Footer

Text AccessibleProperty, Font.Escapement, Font.Width,
HideSnaked, Moveable, Pointer, Resizeable, SlideLeft,
SlideUp

CHAPTER 8 Modified and Unsupported Features in Web Forms Projects

Deploying Applications and Components to .NET 119

Modified display of visual controls
Windows themes By default, the rendering of visual controls in Web Forms applications uses

themes consistent with the operating system of the client browser. However, by
changing the value of the PBDefaultTheme global property, you can change
the rendering of visual controls so that they display in the same way on all
browsers, regardless of the underlying operating system.

If you select “XP” as the value for PBDefaultTheme, visual controls display
with XP themes even when XP themes are not enabled on the client or Web
server. If you select “Classic” as the PBDefaultTheme value, controls display
with Windows Classic themes in all browsers.

You can let the application user change the control appearance by enabling the
Theme Manager. The Theme Manager allows the end user to change the
themes type to Windows Classic or Windows XP in a specific browser,
however it does not let the user change the PBDefaultTheme value on the
server.

For information about enabling the Theme Manager, see “Using the Web
Forms Theme Manager” on page 78.

Visual properties and
controls

Table 8-6 describes the behavior of visual properties and controls that differs
in Web Forms applications from the behavior of the same properties or controls
in a standard PowerBuilder environment. For a description of changes to the
visual display of DataWindow controls in Web Forms applications, see
“Modified display of DataWindow objects and controls” next.

Table 8-6: Modified display of supported visual properties and controls

Visual component
or control Behavior in Web Forms applications

Animation When autoplay is set to false, the initial frame of the
animation displays as a black area.

Border style:
StyleBox!

The borders for RichTextEdit controls display as a white
box frame around the outside of the control, with black lines
along the top and left interior edges of the frame.

Border style:
StyleLowered!

The borders for CheckBox, DatePicker,
DropDownListBox, DropDownPictureListBox, EditMask,
ListView, MonthCalendar, MultiLineEdit, PictureButton,
SingleLineEdit, and TreeView controls display as a blue
box (the default XP theme display) surrounding the control.
Changing the color scheme does not alter the border color.
RichTextEdit controls display with a thicker frame than in
standard PowerBuilder applications.

Modified display of visual controls

120 PowerBuilder

Modified display of
DataWindow objects
and controls

In Web Forms applications, DataWindow objects with the freeform
presentation style can display part of a row when the height of all rows exceeds
the height of the DataWindow control. For example, if one and a half rows can
be displayed, the DataWindow displays one and a half rows. In standard
PowerBuilder applications, only entire rows are displayed.

Border style:
StyleRaised!

The borders for GroupBox controls that use a raised border
style are not as distinct as in standard PowerBuilder
applications. RichTextEdit controls display with a thicker
frame than in standard PowerBuilder applications.

Border style:
StyleShadowBox!

For RichTextEdit controls, this style displays like the
StyleBox! border style, except that the white-line box frame
is slightly thicker.

Color Selection dialog
box

Does not use a vertical track bar to change colors.

CommandButton Text alignment is set to the left when the text length exceeds
the control's width, not to the center of the button.

EditMask You cannot use the Shift key to select text in the control.

Listview Icon colors for the listview items appear inverted when
selected.

SingleLineEdit Password characters can display in a strange font. To get
consistent behavior in all environments, use TrueType fonts
only.

StaticText Text is truncated to fit the size of the control, even if that is
in the middle of a word.

Tab If you change the X and Y positions of a user object on a
Tab control when the MultiLine property is set to true and
the tab positions are set to TabsOnTop, the user object can
overlap the tab page tabs. If you need to change the position
of the user object or if you want to place it so that it covers
the entire tab page without overlapping the tabs, you must
first set MultiLine to false.

Treeview Bitmap pictures for the treeview items are displayed in their
original sizes. Also, when you call SelectItem (0), a
selected item does not lose focus. In Web Forms
applications, at least one node must remain selected.

Window MDI sheet windows display as tab pages instead of
cascading sheets.

Visual component
or control Behavior in Web Forms applications

CHAPTER 8 Modified and Unsupported Features in Web Forms Projects

Deploying Applications and Components to .NET 121

ScrollToRow The ScrollToRow method changes the row specified in the
method argument to be the current row, but the specified row displays
differently in standard PowerBuilder and Web Forms DataWindow controls. In
Web Forms applications, when the ScrollToRow call causes the DataWindow to
scroll up, the top of the specified row aligns with the top of the DataWindow
control. When the ScrollToRow call causes the DataWindow to scroll down, the
specified row displays in one of the following ways:

• If the row height is greater than the DataWindow control height, the top of
the specified row aligns with the top of the DataWindow control

• If the row height is less than the DataWindow control height, the bottom
of the specified row aligns with the bottom of the DataWindow control

For information on pagination display in Web Forms DataWindow controls,
see “Take advantage of global configuration properties” on page 224.

Drop-down edit styles in DataWindow objects By default,
DropDownDataWindow (DDDW) objects display as list boxes in Web Forms
applications. When you open a response window or a message box in front of
a DataWindow that has DDDW objects displayed as list boxes or that has
columns with DropDownListBox (DDLB) edit styles, the DDDW objects and
DDLB columns disappear until the response window or message box is closed.

The same temporary object and column disappearance occurs when an event
such as Clicked, DropDown, ItemFocusChanged, or RowFocusChanged is
handled. This is due to a limitation of the HTML SELECT element used to
create a list box. You can prevent the disappearance of DDDW objects and
DataWindow columns with the DDLB edit style by setting the
PBDataWindowEnableDDDW global property to true. With this setting,
DDLB column edit styles are automatically rendered as DDDW edit styles in
Web Forms applications, and DDDW objects are not changed to list boxes.

For information on global properties, see “Global Web configuration
properties” on page 82.

Unsupported functions for controls in Web Forms
Table 8-7 lists unsupported functions, the controls on which they are not
supported, and any notes that apply to specific controls. If your application
uses these functions, rework it to avoid their use.

Unsupported functions for controls in Web Forms

122 PowerBuilder

Table 8-7: Unsupported functions by control in Web Forms projects

Function Controls not supporting function

AcceptText DataWindow

AddData Graph (supported for all datatypes except string values)

AddItem UserObject

AddStatePicture TreeView

Arrange ListView

CanUndo All controls

Check Menu (supported in all menu controls, but check mark
appearance is not the same as in PowerBuilder applications)

Clear Most controls (supported in EditMask controls)

Clipboard Graph

CloseChannel Window

Copy All controls

CopyRTF DataStore, DataWindow, RichTextEdit

Cut All controls

DataSource RichTextEdit

DeleteItem UserObject

DeleteStatePicture TreeView

DeleteStatePictures TreeView

Drag Most controls (supported in list box controls)

EditLabel ListView, TreeView

EventParmDouble UserObject

EventParmString UserObject

ExecRemote Window

Find DataWindow, RichTextEdit

FindNext DataWindow, RichTextEdit

GenerateResultSet DataStore, DataWindow

GetAlignment RichTextEdit

GetCalendar DatePicker

GetCommandDDE Window

GetCommandDDEO
rigin

Window

GetContextService Window (supported for ClassDefinition, ScriptDefinition,
TypeDefinition, and VariableDefinition objects)

GetDataDDE Window

GetDataDDEOrigin Window

GetDisplayRange MonthCalendar

CHAPTER 8 Modified and Unsupported Features in Web Forms Projects

Deploying Applications and Components to .NET 123

GetNextSheet Window (returns sheet instead of frame)

GetItemAtPointer ListView, TreeView

GetOrigin ListView

GetParagraphSetting RichTextEdit

GetRemote Window

GetSpacing RichTextEdit

GetText DataWindow

GetTextColor RichTextEdit

GetTextStyle RichTextEdit

GetToolbar Window

GetToolbarPos Window

ImportClipboard DataWindow, Graph

ImportFile Graph

InputField functions RichTextEdit

InsertData Graph (supported for all datatypes except string value.)

InsertDocument DataWindow

InsertItem UserObject

InsertPicture RichTextEdit

IsPreview RichTextEdit

LineCount DataWindow, EditMask, MultiLineEdit, RichTextEdit

LineLength DataWindow, EditMask, MultiLineEdit, RichTextEditt

OLEActivate DataWindow

OpenChannel Window

PageCount RichTextEdit

Paste All controls

PasteRTF DataStore, DataWindow, RichTextEdit

Position DataWindow, DropDownListBox,
DropDownPictureListBox, EditMask, MultiLineEdit,
RichTextEdit

Preview RichTextEdit

Print All controls (can be used for DataWindows and DataStores to
print to PDF files)

PrintEx RichTextEdit

ReplaceText DataWindow, DropDownListBox,
DropDownPictureListBox, EditMask, RichTextEdit

RespondRemote Window

SaveAs Graph

Function Controls not supporting function

Unsupported functions for controls in Web Forms

124 PowerBuilder

Scroll DataWindow, EditMask, MultiLineEdit, RichTextEdit

Seek Animation

SelectedColumn RichTextEdit

SelectedLength DataWindow, DropDownListBox,
DropDownPictureListBox, EditMask, RichTextEdit

SelectedLine DataWindow, EditMask, MultiLineEdit, RichTextEdit

SelectedStart DataWindow, DropDownListBox,
DropDownPictureListBox, EditMask, MultiLineEdit,
RichTextEdit

SelectedText DataWindow, DropDownListBox,
DropDownPictureListBox, EditMask, RichTextEdit

SelectionRange HTrackbar, VTrackbar

SelectText DataWindow, DropDownListBox,
DropDownPictureListBox, EditMask, RichTextEdit

SelectTextAll RichTextEdit

SelectTextLine RichTextEdit

SelectTextWord RichTextEdit

SetActionCode All controls

SetAlignment RichTextEdit

SetDataDDE Window

SetDetailHeight DataWindow

SetDropHighLight TreeView

SetFirstVisible TreeView

SetFocus DataWindow, Graph

SetLevelPictures TreeView

SetMicroHelp Window

SetOverlayPicture ListView, TreeView

SetParagraphSetting RichTextEdit

SetPosition RichTextEdit

SetRedraw All controls

SetRemote Window

SetSpacing RichTextEdit

SetText DataWindow

SetTextColor RichTextEdit

SetTextStyle RichTextEdit

SetToolbar Window

SetToolbarPos Window

Function Controls not supporting function

CHAPTER 8 Modified and Unsupported Features in Web Forms Projects

Deploying Applications and Components to .NET 125

Control functions with
partial support

FindItem In Web Forms applications, the FindItem function is supported for
all list box controls and the TreeView control. The syntax for finding an item
by its label is also fully supported for the ListView control. However, the
syntax for finding an item by its relative position in a ListView control is only
partially supported. In Web Forms applications, the cuthighlighted and
drophighlighted arguments are not supported and DirectionAll! is the only
supported value for the direction argument.

Unsupported events for controls in Web Forms
Table 8-8 lists unsupported events, the controls on which they are not
supported, and any notes that apply to specific controls. If your application
uses these events, rework it to avoid their use.

Custom events
Custom events based on PowerBuilder Message (pbm) event IDs are not
supported in Web Forms applications. However, you can call user-defined
events without event IDs using the TriggerEvent and PostEvent functions.

Table 8-8: Unsupported events by control in Web Forms projects

SetTop ListBox, PictureListBox

ShowHeadFoot DataWindow, RichTextEdit

StartHotLink Window

StartServerDDE Window

StopHotLink Window

StopServerDDE Window

TextLine DataWindow, EditMask, MultiLineEdit, RichTextEdit

Top ListBox, PictureListBox

Undo All controls

Function Controls not supporting function

Event Controls

BeginDrag All controls

BeginLabelEdit ListView, TreeView

BeginRightDrag All controls

Unsupported events for controls in Web Forms

126 PowerBuilder

Clicked DatePicker, MonthCalendar
(supported for DataWindow, but not triggered on editable
controls that already have focus)

CloseUp DatePicker

Deactivate Window

DeleteAllItems ListView

DoubleClicked DatePicker, DropDownListBox, DropDownPictureListBox,
HProgressBar, MonthCalendar, RichTextEdit, Tab,
VProgressBar, Window (supported for other controls, but the
Clicked event is not triggered on a double-click in a Picture
or StaticText control)

DragDrop All controls

DragEnter All controls

DragLeave All controls

DragWithin All controls

DropDown DatePicker

EditChanged DataWindow

EndLabelEdit ListView, TreeView

FileExists RichTextEdit

GetFocus All controls

Help All controls

Hide Window

HotLinkAlarm Window

InputFieldSelected RichTextEdit

ItemActivate ListView

ItemChanged DataStore

Key All controls

LoseFocus All controls

MouseDown RichTextEdit, Window

MouseMove RichTextEdit, Window

MouseUp RichTextEdit, Window

Notify TreeView

Other All controls

PrintEnd DataWindow

PrintMarginChange DataWindow

PrintPage DataWindow

PrintStart DataWindow

RButtonDown MultiLineEdit, SingleLineEdit, HScrollBar, VScrollBar

Event Controls

CHAPTER 8 Modified and Unsupported Features in Web Forms Projects

Deploying Applications and Components to .NET 127

Partially supported
control events

Clicked event In a Web Forms application, if an editable DataWindow text
column does not have focus, clicking it sets the focus on the column and
triggers the Clicked event. If the column already has focus, clicking it does not
trigger the Clicked event. This intended behavior reduces postbacks.

Selected event The Selected event on a menu is not generally supported in
Web Forms applications. However, if you set the
AutoTriggerMenuSelectedEvents global property to true, the Selected event is
supported for simple tasks that can be run prior to the rendering of Web Forms
in a client browser.

Unsupported properties for controls in Web Forms
Table 8-9 lists unsupported properties, the controls on which they are not
supported, and any notes that apply to specific controls. If your application
uses these properties, rework it to avoid their use.

Table 8-9: Unsupported properties in Web Forms projects

RButtonUp RichTextEdit

RemoteExec Window

RemoteHotLinkStart Window

RemoteHotLinkStop Window

RemoteRequest Window

RemoteSend Window

RightClicked ListView

RightDoubleClicked All controls

ScrollHorizontal DataWindow

ScrollVertical DataWindow

Selected Menu

Sort ListView, TreeView

SystemKey Window

ToolbarMoved Window

ValueChanged DatePicker

Event Controls

Property Controls

Accelerator All controls

AccessibleDescription Most controls

Unsupported properties for controls in Web Forms

128 PowerBuilder

AccessibleName Most controls

AccessibleRole All controls

AllowEdit DatePicker, DropDownListBox,
DropDownPictureListBox

AutoArrange ListView

AutoHScroll DropDownListBox, DropDownPictureListBox,
EditMask, MultiLineEdit, SingleLineEdit

AutoSize MonthCalendar

AutoSkip EditMask

AutoVScroll EditMask, MultiLineEdit

BitmapBackColor Menu

BitmapGradient Menu

Border Window

BorderStyle RadioButton

BottomMargin RichTextEdit

ButtonHeader ListView

Center Window (supported in child, popup, and response
windows)

ClientEdge Window

ColumnsPerPage UserObject, Window

ContextHelp Window

ControlCharsVisible RichTextEdit

ControlMenu DataWindow, Window (supported in child, popup, and
response windows)

DeleteItems ListView, TreeView

DisableDragDrop TreeView

DisableNoScroll ListBox, PictureListBox

DisplayData EditMask

DisplayOnly MultiLineEdit (supported, but control cannot get focus
when set to true)

DragAuto All controls

DragIcon All controls

DropDownRight DatePicker, EditMask

EditLabels TreeView

ExtendedSelect ListBox, ListView, PictureListBox

FillPattern StaticHyperLink, StaticText

FixedLocations ListView

Property Controls

CHAPTER 8 Modified and Unsupported Features in Web Forms Projects

Deploying Applications and Components to .NET 129

FocusOnButtonDown Tab

FocusRectangle Graph, Picture, PictureHyperlink, StaticText,
StaticHyperlink

FullRowSelect TreeView

GridLines ListView

HeaderDragDrop ListView

HeaderFooter RichTextEdit

Height RoundRectangle (does not change height if width is
changed first; for HTrackBar, this property has no effect
in a Windows application, but does in a Web application)

HideSelection EditMask, ListView, MultiLineEdit, TreeView

HScrollbar ListBox, RichTextEdit, Window

HSplitScroll DataWindow

Icon DataWindow

IgnoreDefaultButton EditMask

IMEMode All controls

Increment EditMask

InputField properties RichTextEdit

KeyboardIcon Window

LabelWrap ListView

LayoutRTL ListView, TreeView

LeftMargin RichTextEdit

LibraryName UserObject

Limit DropDownListBox, DropDownPictureListBox,
EditMask

LinesAtRoot TreeView

LinesPerPage UserObject, Window

LiveScroll DataWindow

Map3DColors Picture, PictureButton, PictureHyperLink

MaxBox DataWindow, Window (supported in child, popup, and
response windows)

MaxSelectCount MonthCalendar

MenuAnimation Menu

MenuBitmaps Menu

MenuTitles Menu

MenuTitleText Menu

MergeOption Menu

Property Controls

Unsupported properties for controls in Web Forms

130 PowerBuilder

MicroHelp Menu

MinBox DataWindow, Window (supported in child, popup, and
response windows)

MinMax EditMask

Modified RichTextEdit

OneClickActivate ListView

OriginalSize Animation

PaletteWindow Window

PictureAsFrame RichTextEdit

PictureHeight TreeView

PictureWidth TreeView

PopMenu RichTextEdit

Resizable DataWindow, RichTextEdit, Window

RightMargin RichTextEdit

RightToLeft DataWindow, DatePicker, DropDownListBox,
DropDownPictureListBox, ListBox, ListView,
MonthCalendar, PictureListBox, StaticText,
StaticHyperlink, TreeView, Window

RulerBar RichTextEdit

Scrolling ListView

ScrollRate MonthCalendar

SelectedStartPos RichTextEdit

SelectedTextLength RichTextEdit

ShowHeader ListView

ShowList DropDownListBox, DropDownPictureListBox

ShowToolbarText Window (supported, but width of text is changed)

ShowUpDown DatePicker

SingleExpand TreeView

SliderSize HTrackBar, VTrackBar

SmoothScroll HProgressBar, VProgressBar (smooth scrolling is
supported, but not step increments)

Spin EditMask

StatePictureHeight TreeView

StatePictureWidth TreeView

StatusBar RichTextEdit

Style UserObject

TabBackColor UserObject

Property Controls

CHAPTER 8 Modified and Unsupported Features in Web Forms Projects

Deploying Applications and Components to .NET 131

TabBar RichTextEdit

TabStop EditMask, ListBox, MultiLineEdit, PictureListBox

TickFrequency HTrackBar, VTrackBar

TickMarks HTrackBar, VTrackBar

Title DataWindow

TitleBackColor Menu

TitleBar DataWindow, Window

TitleGradient Menu

TodaySection DatePicker, MonthCalendar

ToolbarAlignment Window

ToolbarAnimation Menu

ToolBarFrameTitle Application

ToolBarHeight Window

ToolbarItemDown Menu

ToolbarItemDownName Menu

ToolbarItemSpace Menu

ToolBarPopMenuText Application

ToolBarSheetTitle Application

ToolBarUserControl Window

ToolBarWidth Window

ToolBarX Window

ToolBarY Window

TopMargin RichTextEdit

TrackSelect ListView, TreeView

TwoClickActivate ListView

UnderlineCold ListView

UnderlineHot ListView

UnitsPerColumn UserObject, Window

UnitsPerLine UserObject, Window

UseCodeTable EditMask

VScrollbar RichTextEdit, Window

WeekNumbers DatePicker, MonthCalendar

Width VTrackBar (has no effect in a Windows Form
application, but does in a Web Forms application)

WordWrap RichTextEdit

Property Controls

Unsupported properties for controls in Web Forms

132 PowerBuilder

P A R T 3 Windows Forms Targets

This part describes how to create and deploy Windows
Forms applications.

Deploying Applications and Components to .NET 135

C H A P T E R 9 Deploying PowerBuilder
Applications as .NET Windows
Forms

About this chapter PowerBuilder includes the .NET Windows Forms Application wizard,
which helps you deploy your PowerBuilder applications as .NET
Windows Forms applications. You can also use intelligent update
technology to deploy and maintain applications.

This chapter explains how to generate, deploy, and run PowerBuilder
applications as Windows Forms applications.

Contents

About PowerBuilder .NET Windows Forms
applications

PowerBuilder applications that have a rich user interface that relies on
resources available on the client computer, such as a complex MDI design,
graphics, or animations, or that perform intensive data entry or require a
rapid response time, make good candidates for deployment as .NET
Windows Forms applications. For a comparison of design considerations
between Web Forms and Windows Forms applications, see “Choosing a
.NET application target” on page 3.

Topic Page

About PowerBuilder .NET Windows Forms applications 135

Creating a .NET Windows Forms target 138

Creating a .NET Windows Forms project 139

Setting properties for a .NET Windows Forms project 140

Deploying the project from PowerBuilder 146

Running the project from PowerBuilder 147

About PowerBuilder .NET Windows Forms applications

136 PowerBuilder

Adapting an existing
application

The changes required to transform a PowerBuilder application into a Windows
Forms application depend on the nature of the application, the scripting
practices used to encode the application functionality, and the number of
properties, functions, and events the application uses that are not supported in
the .NET Windows Forms environment.

For a list of restrictions, most of which apply to both Windows and Web Forms
applications, see Chapter 15, “Best Practices for .NET Projects.”

For tables of unsupported and partially supported objects, controls, functions,
events, and properties, see Chapter 11, “Unsupported Features in Windows
Forms Projects.”

Setting up a target
and project

You set up a target for a .NET Windows Forms application using the wizard on
the Target page of the New dialog box. You can start from scratch and create a
new library and new objects, use an existing application object and library, or
use the application object and library list of an existing target.

You define some of the characteristics of the deployed application in the .NET
Windows Forms Application wizard. Additional properties are set in the
Project painter. For more information, see “Creating a .NET Windows Forms
target” on page 138, “Creating a .NET Windows Forms project” on page 139,
and “Setting properties for a .NET Windows Forms project” on page 140.

Smart client
applications

One of the choices you can make in the wizard or Project painter is whether the
application will be deployed as a smart client application. A smart client
application can work either online (connected to distributed resources) or
offline, and can take advantage of “intelligent update” technology for
deployment and maintenance. For more information, see Chapter 10,
“Intelligent Deployment and Update.”

Deploying from the
Project painter

When you deploy a PowerBuilder application from the .NET Windows Forms
Project painter, PowerBuilder builds an executable file and deploys it along
with any PBLs, PBDs, resources, .NET assemblies, and other DLLs that the
application requires. For more information, see “Deploying the project from
PowerBuilder” on page 146.

Deploying to a
production
environment

The simplest way to deploy a Window Forms application to a production
environment is to use smart client deployment. If you cannot or do not want to
use smart client deployment, use the following procedure to install the
application.

❖ To deploy a .NET Windows Forms application:

1 Install the .NET Framework 2.0 on the target computer.

CHAPTER 9 Deploying PowerBuilder Applications as .NET Windows Forms

Deploying Applications and Components to .NET 137

2 Generate a PowerBuilder .NET components MSI file using the
PowerBuilder Runtime Packager.

For more information about using the Runtime Packager, see the chapter
on deploying applications and components in Application Techniques.

3 Install the generated MSI file on the target computer and restart the
computer.

4 Copy the output from the build directory to the target computer.

5 Install any required database client software and configure related DSNs.

6 If necessary, register ActiveX controls used by your application.

For information about requirements for deployed applications, see “Checklist
for deployment” on page 15.

Using preprocessor
symbols

If you share PBLs among different kinds of target, such as a target for a
standard PowerBuilder application and a Windows Forms target, you might
want to write code that applies to a specific target. For example, use the
following template to enclose a block of code that should be parsed by the
pb2cs code emitter in a Windows Forms target and ignored by the PowerScript
compiler:

#if defined PBWINFORM then
/*action to be performed in a Windows Forms target*/

#else
/*other action*/

#end if

You can use the Paste Special>Preprocessor pop-up menu item in the Script
view to paste a template into a script.

For more information about using preprocessor symbols, see “About
conditional compilation” on page 199.

Creating a .NET Windows Forms target

138 PowerBuilder

Creating a .NET Windows Forms target
System requirements You must install version 2.0 of the Microsoft .NET Framework on the same

computer as PowerBuilder 11. For intelligent update applications, you must
also install the .NET Framework 2.0 SDK. Make sure that the system PATH
environment variable includes:

• The location of the .NET Framework. The location of the GA version is
typically C:\Windows\Microsoft.NET\Framework\v2.0.50727.

• For intelligent update applications, the location of the .NET Framework
SDK Bin directory. This is typically C:\Program Files\Microsoft Visual
Studio 8\SDK\v2.0\Bin or C:\Program
Files\Microsoft.NET\SDK\v2.0\Bin.

The SDK is available from the Microsoft .NET Framework Developer Center at
http://msdn2.microsoft.com/en-us/netframework/aa731542.aspx.

If you installed the 1.x and 2.0 versions of the .NET Framework or SDK, you
must make sure the PATH variable lists the 2.0 version first.

To publish your application as a smart client from a Web server, you must have
access to a Web server. For information about configuring IIS on your local
computer, see “Selecting the default ASP.NET version” on page 7.

About the .NET
Windows Forms target
wizard

You use the PowerBuilder .NET Windows Forms Application Wizard on the
Target page in the New dialog box to create a Windows Forms application and
target, and optionally a project. The project lets you deploy the PowerBuilder
application to the file system or, if you select the smart client option, to publish
it to a server. For more about publishing options, see Chapter 10, “Intelligent
Deployment and Update.”

If you have an existing PowerBuilder application or target that you want to
deploy as a .NET Windows Forms application, you can select either in the
wizard. If you choose to start from scratch, the wizard creates a new library and
application object

❖ To build a .NET Windows Forms application and target from scratch:

1 Select Start from scratch on the Create the Application page in the wizard.

2 Specify the name of the .NET Windows Forms application and the name
and location of the PowerBuilder library (PBL) and target (PBT). By
default, the application name is used for the library and target.

3 Specify project information as described in “Creating a .NET Windows
Forms project” next.

CHAPTER 9 Deploying PowerBuilder Applications as .NET Windows Forms

Deploying Applications and Components to .NET 139

❖ To build a .NET Windows Forms application from an existing application
and library:

1 Select Use an existing library and application object on the Create the
Application page in the wizard.

2 On the Choose Library and Application page, expand the tree view and
select an existing application.

3 On the Set Library Search Path page, click the ellipsis (...) button to
navigate to and select additional libraries.

4 On the Specify Target File page, specify the name of the new target file.

5 Specify project information as described in “Creating a .NET Windows
Forms project” next.

❖ To build a .NET Windows Forms application from an existing target:

1 Select Use the library list and application object of an existing target on
the Create the Application page in the wizard.

2 On the Choose a Target page, select a target from the current workspace.

3 On the Specify Target File page, specify the name of the new target file.

4 Specify project information as described in “Creating a .NET Windows
Forms project” next.

Adding .NET
assemblies to the
target

If you want to call methods in .NET assemblies in your Windows Forms
application, you can import the assemblies into the target. For more
information, see “Adding .NET assemblies to the target” on page 205.

Creating a .NET Windows Forms project
You can create a project to deploy the application in the target wizard or by
using the .NET Windows Forms wizard on the Project page of the New dialog
box.

❖ To build a .NET Windows Forms project object:

1 On the Specify Project Information page, specify the name of the project
and the library in which the project object will be saved.

2 On the Specify Application General Information page, optionally specify
a product name for the application.

Creating a .NET Windows Forms project

140 PowerBuilder

This can be different from the name of the application and is used as the
name of the product on the General page in the Project painter.

You can also specify the name of the .NET Windows Forms executable file
(by default, this is the name of the application object with the extension
.exe) and the major and minor versions and build and revision numbers for
the current build (the default is 1.0.0.0).

3 On the Specify Win32 Dynamic Library Files page, click the Add button
to specify the names of any dynamic libraries required by your application.

The list is prepopulated with the names of libraries referenced in the
application’s code.

4 On the Specify Support for Smart Client page, select the check box if you
want to publish the application as a smart client. Otherwise, click Next and
then Finish.

If you select this check box, the wizard displays additional pages on which
you set publish and update options. For more information about
completing these wizard pages, see Chapter 10, “Intelligent Deployment
and Update.”

Setting properties for a .NET Windows Forms project
After you click Finish in the wizard, PowerBuilder creates a .NET Windows
Forms project in the target library that you selected and opens the project in the
Project painter. The painter displays all the values you entered in the wizard
and allows you to modify them. It also displays additional properties that you
can set only in the painter.

CHAPTER 9 Deploying PowerBuilder Applications as .NET Windows Forms

Deploying Applications and Components to .NET 141

Table 9-1: Properties in the Project painter

Tab page Properties

General The output path is where the application is deployed in the file
system. This is not the same as the location where the application is
published if you choose to publish the application as a smart client
application.

The build type determines whether the project is deployed as a
debug build (default selection) or a release build. You use debug
builds for debugging purposes. If you select Release, no PDB files
are generated. Release builds have better performance, but when
you run a release build in the debugger, the debugger does not stop
at breakpoints.

The rebuild scope determines whether the project build is
incremental (default) or full. For information on the rebuild scope,
see “Incremental rebuild for .NET application targets” on page 233.

Clear the Enable DEBUG Symbol check box if you do not want any
DEBUG preprocessor statements you have added to your code to be
included in your deployed application. This selection does not affect
and is not affected by the project’s debug build or release build
setting. For more information about using preprocessor statements,
see “About conditional compilation” on page 199.

Resource
Files

PowerBuilder .NET Windows Forms do not support PBR files, and
they are unable to locate images embedded in PBD files. You can,
however, search a PBR file for images required by the application.

All resource files must be relative to the path of the .NET Windows
Forms target. If the files your application requires are in another
directory, copy them into the target’s directory structure and click
the Search PBR, Add Files, or Add Directory button again.

Clear the check box in the Recursive column for a directory to
deploy only the files in the directory, or select it to deploy files in its
subdirectories as well.

The Publish Type column indicates whether the file is a static
file that should be installed in the Application directory, or
application-managed data that should be installed in a Data
directory. For more information, see “Resource files and
publish type” on page 143.

Creating a .NET Windows Forms project

142 PowerBuilder

Library Files Use the Library Files tab page to make sure all the PowerBuilder
library files (PBLs or PBDs) that contain DataWindow, Query, and
Pipeline objects used by the application are deployed with the
application. If you select the check box next to the name of a PBL
that contains these types of objects, PowerBuilder compiles the
selected PBL into a PBD file before deploying it.

Objects you can reference in PBD files
You can reference only DataWindow, Query, or Pipeline objects in
a PBD file. The PBD files that are generated when you compile a
Windows Forms project do not contain other PowerBuilder objects,
such as functions or user objects. If you include a PBD file in your
target that contains these other types of objects, you cannot
reference them from the Windows Forms application. They can be
referenced only from a target PBL that is converted to a .NET
assemblye.

If your application uses external functions, use the Add button to
include the DLL files in which they reside to the list of files to be
deployed. You can also add PowerBuilder runtime files, including
pbshr110.dll and pbdwe110.dll (if the project uses DataWindows),
on this page, or you can add them on the Prerequisites page.

Version Use the Version tab page to specify information that displays in the
generated executable file’s Properties dialog box in Windows
Explorer. The company name is used if you publish the application.
For more information, see “Publish the application” on page 152.

Post-build Use the Post-build tab page to specify a set of commands to be
executed after building the application, but before the deployment
process starts. A command can be the name of a stand-alone
executable file or an operating system command such as copy or
move. You can save a separate processing sequence for debug builds
and release builds. (You change the build type of a project
deployment on the General tab of the Project painter.)

Security Use the Security tab page to generate a manifest file (either external
or embedded) and to set the execution level of the application.To
meet the certification requirements of the Windows Vista Logo
program the application executable must have an embedded
manifest that defines the execution level and specifies whether
access to the user interface of another window is required.

For further information, see “Security requirements” on page 144.

Run Use the Run tab page to specify any command line arguments that
the application requires, as well as the name of the working
directory in which the application starts.

Tab page Properties

CHAPTER 9 Deploying PowerBuilder Applications as .NET Windows Forms

Deploying Applications and Components to .NET 143

Intelligent update pages
The remaining pages in the Project painter are enabled if you checked the smart
client check box in the wizard or on the General page. Check this box if you
want to publish the application to a server so that users can download it and
install updates as you make them available. For more information, see Chapter
10, “Intelligent Deployment and Update.”

Resource files and publish type
Click the Add Files button on the Resource Files page to select image files that
your application requires. PowerBuilder .NET Windows Forms do not support
PBR files, and they are unable to locate images embedded in PBD files. All
resource files must be relative to the path of the .NET Windows Forms target.
If the files your application requires are not in the directory structure accessible
from the Choose Required Resource Files dialog box, copy them into the
directory structure, then reopen the dialog box.

Image files are designated as Include files. They are installed in the same
directory as the application’s executable files, libraries, and other static files.
You can also specify that a file’s Publish Type is “Data File.” Files of this type
are installed to a data directory. When an update to the application occurs, a
data file might be migrated by the application.

The data directory is intended for application-managed data—data that the
application explicitly stores and maintains. To read from and write to the data
directory, you can use code enclosed in a conditional compilation block to
obtain its path:

string is_datafilename
long li_datafileid

is_datafilename="datafile.txt"

#if defined PBWINFORM Then
if System.Deployment.Application.
ApplicationDeployment.IsNetworkDeployed=true then
is_datafilename=System.Windows.Forms.
Application.LocalUserAppDataPath+
"\\"+is_datafilename

end if
#end if

li_datafileid = FileOpen (is_datafilename, linemode!,

Creating a .NET Windows Forms project

144 PowerBuilder

write!, lockwrite!, append!)

For more information about using preprocessor symbols and conditional
compilation, see Chapter 14, “Referencing .NET Classes in PowerScript.”

If your application uses .NET assemblies, as in the previous example, specify
them on the .NET Assemblies tab page in the target’s Properties dialog box.
Before you deploy a PowerBuilder .NET smart client application that uses data
files, make sure the System.Windows.Forms.dll and System.Deployment.dll
assemblies are listed on this page.

Other files, such as database drivers and PowerBuilder DLLs, should be
included on the Prerequisites page if you are publishing a smart client
application, or on the Library Files page.

Security requirements
Use the Security tab page to specify whether the application has a manifest file
and whether it is external or embedded in the application.

If you want to deploy an application to the Windows Vista operating system
that meets the certification requirements of the Windows Vista Logo program,
you must follow User Account Control (UAC) guidelines. The executable file
must have an embedded manifest that defines the execution level and specifies
whether access to the user interface of another window is required. The Vista
Application Information Service (AIS) checks the manifest file to determine
the privileges with which to launch the process.

Generate options Select Embedded manifest if your application needs to be certified for Vista. A
manifest file with the execution level you select is embedded in the
application’s executable file.

CHAPTER 9 Deploying PowerBuilder Applications as .NET Windows Forms

Deploying Applications and Components to .NET 145

You can also select External manifest to generate a standalone manifest file in
XML format that you ship with your application’s executable file, or No
manifest if you do not need to distribute a manifest file.

.NET 2.0 SDK required for embedded manifest
If you select Embedded manifest for a Windows Forms target, you must have
the .NET 2.0 SDK installed on your system, because the process that embeds
the manifest in the executable file uses the mt.exe tool that is distributed with
the SDK.

Execution level Select As Invoker if the application does not need elevated or administrative
privileges. Selecting a different execution level will probably require that you
modify your application to isolate administrative features in a separate process
to receive Vista certification.

Select Require Administrator if the application process must be created by a
member of the Administrators group. If the application user does not start the
process as an administrator, a message box displays so that the user can enter
the appropriate credentials.

Select Highest Available to have the AIS retrieve the highest available access
privileges for the user who starts the process.

UI access If the application needs to drive input to higher privilege windows on the
desktop, such as an on-screen keyboard, select the “Allow access to protected
system UI” check box. For most applications you should not select this check
box. Microsoft provides this setting for user interface Assistive Technology
(Section 508) applications.

Authenticode signing required
If you check the Allow access to protected system UI check box, the
application must be Authenticode signed and must reside in a protected
location, such as Program Files or Windows\system32.

Deploying the project from PowerBuilder

146 PowerBuilder

Deploying the project from PowerBuilder
When a .NET Windows Forms project is open in the Project painter, you can
select Design>Deploy Project or the Deploy icon on the PainterBar to deploy
the project. When all painters are closed, including the Project painter, you can
right-click a .NET Windows Forms target or project in the System Tree and
select Deploy from its pop-up menu. If the target has more than one project,
specify which of them to deploy when you select Deploy from the target’s
pop-up menu on the Deploy tab page in the target’s Properties dialog box.

The Output window displays the progress of the deployment. PowerBuilder
compiles PBLs into PBD files when they contain DataWindow, Query, or
Pipeline objects that are referenced in the application. The application and its
supporting files are deployed to the location specified in the Output Path field
on the General page.

Among the files deployed is a file with the name appname.exe.config, where
appname is the name of your application. This file is a .NET configuration file
that defines application settings. For a sample configuration file that includes
database configuration settings for an ADO.NET connection, see the chapter
on ADO.NET in Connecting to Your Database. The sample shows how to
configure tracing in the appname.exe.config file, as shown in “Runtime errors”
on page 252.

If there are any unsupported properties, functions, or events that are used in the
application that are not supported in PowerBuilder .NET Windows Forms
applications, they display on the Unsupported Features tab page in the Output
view. For more information, see Chapter 11, “Unsupported Features in
Windows Forms Projects.”

If the application uses features that might cause it to run incorrectly, they
display on the Warnings tab page in the Output view. For a list of restrictions,
most of which apply to both Windows and Web Forms applications, see
Chapter 15, “Best Practices for .NET Projects.”

CHAPTER 9 Deploying PowerBuilder Applications as .NET Windows Forms

Deploying Applications and Components to .NET 147

Running the project from PowerBuilder
After you deploy the application, you can run it by selecting Design>Run
Project from the Project painter menu or selecting the Run Project toolbar icon
from the Project painter toolbar. The pop-up menus for the .NET Windows
Forms target and project in the System Tree also have a Run menu item. If the
target has more than one project, specify which of them to run when you select
Run from the target’s pop-up menu on the Run tab page in the target’s
Properties dialog box. Run Project starts running the deployed executable file
from the location it was deployed to.

When you debug or run the project from PowerBuilder, a system option setting
can cause a message box to display if the application has been modified since
it was last deployed. The message box prompts you to redeploy the application,
although you can select No to debug or run the older application, and you can
set the system option to prevent the message box from displaying.

For information about the message box, see “Triggering build and deploy
operations” on page 236. For information about the system option, see
“System option” on page 236.

For information on debugging .NET Windows Forms targets, see “Debugging
a .NET application” on page 238.

Running the project from PowerBuilder

148 PowerBuilder

Deploying Applications and Components to .NET 149

C H A P T E R 1 0 Intelligent Deployment and
Update

About this chapter This chapter describes how to deploy a PowerBuilder application as a
Windows Forms application that can use the smart client intelligent
update feature.

Contents

About intelligent deployment and update
One of the features of .NET smart client applications is that they can be
deployed and updated from a file or Web server using Microsoft .NET
ClickOnce technology, making it easier for users to get and run the latest
version of an application and easier for administrators to deploy it.
PowerBuilder .NET Windows Forms applications can use this “intelligent
update” feature.

As the developer of a PowerBuilder .NET Windows Forms application,
you can specify:

• Whether the application is installed on the user’s computer or run
from a browser.

• When and how the application checks for updates.

• Where updates are made available.

• What files and resources need to be deployed with the application.

• What additional software needs to be installed on the user’s computer.

Topic Page

About intelligent deployment and update 149

Publishing an application for the first time 150

Installing the application on the user’s computer 154

Updating the application 155

Using the bootstrapper 158

Rolling back 160

Publishing an application for the first time

150 PowerBuilder

All these properties can be set in the Project painter before you publish the
application. Support for these features is built into the .NET Framework and
runtime.

To support intelligent update, you (or a system administrator) need to set up a
central HTTP, FTP, or UNC file server that supports file downloads. This is the
server to which updates are published and from which they are deployed to the
user’s computer.

When the user clicks on a link, typically on a Web page or in an email, the
application files are downloaded to a secure cache on the user’s computer and
executed. The application itself contains an updater component. If the
application can only be run when the user is connected, the latest version is
always downloaded. If the application can also be run offline, the updater
component polls the server to check whether updates are available. If they are,
the user can choose to download them.

Publishing an application for the first time
When you are ready to deploy an application to users, you publish it to the
server. Users can then download the application, usually from a publish page
that contains a link to the server.

Figure 10-1: Deploying an intelligent update application

You need to:

• Create a project and set publishing properties

• Publish the application

CHAPTER 10 Intelligent Deployment and Update

Deploying Applications and Components to .NET 151

Create a project and set publishing properties
After you develop a PowerBuilder application that will be published as a .NET
Windows Forms application with intelligent update capabilities, if you did not
create a project when you built the application, select the .NET Windows
Forms Application wizard or project icon on the Project page of the New dialog
box to build a project.

To specify that the application uses intelligent update, select the check box on
the Specify Support for Smart Client page in the wizard. Selecting this check
box enables additional pages in the wizard:

• On the Specify Application Running Mode page, specify whether the
application can be used both online and offline (the default), or online
only.

• On the Specify How Application Will be Installed page, specify whether
the user installs the application from a Web site, a shared path, or from a
CD or DVD.

• On the Specify Application Update Mode page, specify whether the
application checks for updates before starting, after starting, or neither. For
more information, see “Updating the application” on page 155.

You can also select the Publish as a Smart Client Application check box on the
General page in the Project painter. Selecting the check box enables the tab
pages in the dialog box where you set publishing properties. You can set
additional properties in the Project painter. For example, if you want to publish
the application to an FTP site, select that option and specify details on the
Publish page.

Locations for publish, install, and update
The publish location, specified on the Publish page in the Project painter,
determines where the application files are generated or copied to when you
publish the application. It can be an HTTP address, an FTP site, or a UNC
address.

The install location, specified on the Install/Update page, determines where the
end user obtains the initial version of the application. It can be an HTTP
address or UNC address, by default the same address as the publish location
specified in the wizard, or a CD or DVD. The install location does not need to
be the same as the publish location. For example, you can publish the
application to an FTP site, but specify that users get the application and updates
from a Web site.

Publishing an application for the first time

152 PowerBuilder

The update location, also specified on the Install/Update page, determines
where the user obtains updated versions of the application. If the install
location is an HTTP address or UNC address, the update location is always the
same as the install location. If the application was installed from a CD or DVD,
updates must be obtained from an HTTP or UNC address.

Security settings
When you deploy and run an application from a network path (either a path on
a mapped drive or a UNC path), the .NET Framework on the computer must be
configured to have Full Trust permissions at runtime.

To set these permissions, select Administrative Tools>Microsoft .NET
Framework 2.0 Configuration from the Windows Control Panel. In the .NET
Framework Configuration tool, expand My Computer and select Runtime
Security Policy>Machine>Code Groups>All_Code>LocalIntranet_Zone.
Select Properties from the pop-up menu and select FullTrust in the Permission
set drop-down list on the Permission Set tab page.

Publish the application
After you set publish properties, click the Publish button on the toolbar in the
Project painter to publish the application to the server.

PowerBuilder checks whether your publish settings are valid and prompts you
to correct them if necessary. If the application is not up to date, PowerBuilder
rebuilds and redeploys it before publishing it to the server. The files that the
application needs at runtime are then published to the server. If you select the
defaults in the wizard, the application is deployed to a subdirectory of the IIS
root directory on your local computer, usually C:\Inetpub\wwwroot.

If you encounter problems when publishing the application, see
“Troubleshooting tips for Windows Forms applications” on page 252.

CHAPTER 10 Intelligent Deployment and Update

Deploying Applications and Components to .NET 153

The following additional files are created on the server:

• The application manifest is an XML file that describes the deployed
application, including all the files included in the deployment, and is
specific to a single version of the application. The file is named
appname.exe.manifest, where appname is the name of your Windows
Forms application. This file is stored in a version-specific subdirectory of
the application deployment directory.

• The deployment manifest is an XML file that describes an intelligent
update deployment, including the current version and other deployment
settings. The file is named appname.application, where appname is the
name of your Windows Forms application. It references the correct
application manifest for the current version of the application and must
therefore be updated when you make a new version of the application
available. The deployment manifest must be strongly named. It can
contain certificates for publisher validation.

• If you specified any prerequisites for the application, such as the .NET
Framework or database drivers, PowerBuilder uses a bootstrapper
program to collect the details in a configuration file called
configuration.xml and adds the prerequisites to a setup.exe program. For
more information, see “Using the bootstrapper” on page 158.

• The publish.htm file is a Web page that is automatically generated and
published along with the application. The default page contains the name
of the application and links to install and run the application and, if you
specified any, a button to install prerequisites.

By default, the application name is the same as the name of the target and
the company name is Sybase, Inc. In this publish page, both have been
changed by setting the Product Name and Company Name properties on
the General page in the Project painter.

Installing the application on the user’s computer

154 PowerBuilder

Figure 10-2: Publish page with prerequisites

Installing the application on the user’s computer
Users can install the application from a CD or DVD or from a file server or
Web site. The system administrator or release engineer is responsible for
writing the files to the disk if a CD or DVD is used. If the files are available to
the user on a server, the publish.htm file provides easy access to the application
and its prerequisites. For more information about prerequisites, see “Using the
bootstrapper” on page 158.

CHAPTER 10 Intelligent Deployment and Update

Deploying Applications and Components to .NET 155

The application can be available both online and offline or online only. If you
select online only, the application can be run only from the Web. Otherwise, the
application is installed on the client. It can be run from the Windows Start menu
and is added to the Add or Remove Programs page in the Windows Control
Panel (Programs and Features page on Vista) so that the user can roll back to
the previous version or remove the application.

Whether the application is available online only or offline as well, all the files
it needs except optional assemblies are downloaded to the client and stored in
an application-specific secure cache in the user’s Local Settings directory.
Keeping the files in a separate cache enables the intelligent updater to manage
updates to the physical files on the user’s computer.

Updating the application
When you update an application and publish the updates, the revision number
is incremented automatically unless you clear the check box in the Publish
Version group box on the Publish page.

PowerBuilder creates a new directory on the server for the new version with a
new application manifest file, and updates the deployment manifest file in the
top-level directory. Figure 10-3 shows an overview of the directory structure
for an application with one revision. The deployment manifest for each version
is saved in a numbered file, which enables you to force a rollback from the
server if you need to. For more information, see “Rolling back” on page 160.

Updating the application

156 PowerBuilder

Figure 10-3: Published file structure

Online only
applications

If the application is available online only, the latest updates are always
downloaded before the application runs.

Online and offline
applications

If the application is available offline as well as online, the user is notified of
new updates according to the update strategy you specified in the wizard or
Project painter. Whether the application was originally installed from the Web,
a file server, or a CD or DVD, the intelligent updater component always checks
for updates on the Web.

When to check for
updates

You can specify that the application never checks for updates (if it does not
require automatic updating or uses a custom update), or that it checks for
updates either before or after it starts. If you specify a check after the
application starts and an update is available, it can be installed the next time the
application is run.

For high-bandwidth network connections, you might want to use the before
startup option, and for low-bandwidth network connections or large
applications, use the after startup option to avoid a delay in starting the
application. If you specify that the intelligent updater performs the check after
the application starts, you can choose to perform the check every time the
application starts or only when a specified interval has elapsed since the last
check.

CHAPTER 10 Intelligent Deployment and Update

Deploying Applications and Components to .NET 157

If an update is available, a dialog box displays to inform the user, who can
choose to download the update immediately or skip the current update and
check again later. The user cannot skip the update if you have specified that it
is mandatory. You set all these properties on the Install/Update page.

Figure 10-4: Checking for updates

Intelligent notifier When you select either of the check for updates options for an application that
is available offline, the Notify tab page is enabled. The notifier enables users
to check for updates and download them manually while the application is
running. When the application starts, a notifier icon displays in the task bar. By
default, the icon is a PowerBuilder icon, but you can choose a custom icon in
the Project painter.

The pop-up menu that displays when a user right-clicks the notifier icon
displays the current version and contains Check for Update, Retrieve Update,
Restart with New Version, Poll for Updates, and Options menu items.

Check for Update opens a pop-up window that contains information about the
availability of updates. If any are available, the Retrieve Update item is
enabled, and if the update is downloaded and installed, the Restart with New
Version item is enabled.

Using the bootstrapper

158 PowerBuilder

Selecting the Poll for Updates item enables or disables polling for updates.
When Poll for Updates is enabled, the notifier checks for updates at the interval
specified in the dialog box that displays when the user selects the Options item.
In this dialog box, the user can also specify the title of the pop-up window that
displays when the user selects Check for Update.

Using the bootstrapper
To ensure that your application can be successfully installed and run, you must
first make sure that all components on which it depends are already installed
on the target computer. For example, most applications have a dependency on
the .NET Framework. The correct version of the common language runtime
must be present on the destination computer before the application is installed.
You can use tools to help you install the .NET Framework and other
redistributable packages as a part of your installation, a practice often referred
to as bootstrapping.

Bootstrapper for
intelligent update

The bootstrapper is a simple setup packager that can be used to install
application prerequisites such as the .NET Framework, MDAC, database
drivers, or PowerBuilder runtime files. You specify what prerequisites your
application has and where they can be found. The bootstrapper downloads and
installs the prerequisites.

If you select one or more prerequisites on the Prerequisites page, PowerBuilder
generates a Windows executable program named Setup.exe that installs these
dependencies before your application runs. The packages are copied to a
SupportFiles directory on the server.

If a Setup.exe is generated, the Publish.htm page contains a link to install just
the application, and a button to install both the application and the bootstrapped
components, as shown in Figure 10-2.

The bootstrapper lets you provide users with a simple, automated way to
detect, download, and install an application and its prerequisites. It serves as a
single installer that integrates the separate installers for all the components
making up an application.

How the bootstrapper
works

When the user clicks the Install button on the Publish.htm page, the
bootstrapper downloads and installs the application and the prerequisites you
specified if they are not already installed on the user’s computer.

CHAPTER 10 Intelligent Deployment and Update

Deploying Applications and Components to .NET 159

For example, suppose you specified that the application required the .NET
Framework and the PowerBuilder 11 runtime files. If neither of these
components is already installed on the user’s computer, they both display in the
Installation dialog box. If both are already installed, they do not display. If the
user clicks the Advanced button on the Installation dialog box, the Components
List dialog box displays. This dialog box shows that both components are
already installed.

The bootstrapper also detects whether a component is supported on the target
computer's operating system. If the component cannot run on the target
platform, the bootstrapper notifies the user and ends the installation before
downloading the component.

Customizing the Prerequisites page
The selections available on the Prerequisites page can be customized by adding
a new subdirectory to the PowerBuilder 11.0\DotNET\pbiu\BootStrapper\
Packages directory. To this subdirectory, you add the package you want to
make available and an XML configuration file that specifies where to obtain
the package and what to check on the user’s system to determine whether the
package needs to be installed.

PowerBuilder 11 does not supply a tool to customize prerequisites. You can use
the PowerBuilder Runtime Packager tool to build an MSI file that contains the
database drivers and other PowerBuilder runtime files that your application
needs, and use the configuration.xml file in the BootStrapper\Packages\
1-PBRuntime directory as an example when creating your own
configuration.xml file.

You can use the InstallerEditor (dotnetInstaller) open source tool to set up your
own customizations. It is described on the DevAge Web site at
http://www.devage.com/ and can be downloaded from the dotnetInstaller project
page on the SourceForge Web site at http://www.sourceforge.net. Read the
instructions on the DevAge Web site to learn how to use the tool.

Packages on the Prerequisites page
There are two packages available on the Prerequisites page: the .NET
Framework 2.0 runtime files and the PowerBuilder 11 Runtime Library. If you
look in the BootStrapper\Packages directory, you see two subdirectories, each
of which contains a configuration.xml file.

Rolling back

160 PowerBuilder

To enable your application to deploy the .NET Framework 2.0 package, you
need to copy the .NET Framework 2.0 redistributable package, dotnetfx.exe, to
the 0-dotnetfx directory. This file can be downloaded from the Microsoft Web
site. You also need to edit the configuration.xml file to ensure that the
application name and locations specified in the file are correct for your
installation. The file uses http://localhost/SampleApp as the source URL for the
package.

The PowerBuilder 11 Runtime Library package is in the 1-PBRuntime
subdirectory. The PBRuntime.msi file installs the same files as the
PowerBuilder Runtime Packager (with .NET and all database interfaces and
other options selected) into a directory on the target computer, and it installs
the same .NET assemblies into the global assembly cache. For more
information, see “Installing assemblies in the global assembly cache” on page
19.

If you do not require all the files included in the package, you can create your
own package. For more information, see “Customizing the Prerequisites page”
on page 159.

For more information about the Runtime Packager, see the chapter on
deployment in Application Techniques.

For more information about editing configuration.xml files, see the
documentation for the available on the DevAge Web site at
http://www.devage.com/.

Rolling back
You can roll back a version on the server by replacing the current deployment
manifest with the deployment manifest of the version to which you want to roll
back. As shown in Figure 10-3 on page 156, the deployment manifests for each
version are saved in the application deployment folder.

Suppose the current appname.application file in the deployment folder is for
version 1.0.0.2, but you have found a bug and you want all users to revert to
version 1.0.0.1. You can delete the current appname.application file, which
points to version 1.0.0.2, and save the appname_1_0_0_1.application file as
appname.application.

CHAPTER 10 Intelligent Deployment and Update

Deploying Applications and Components to .NET 161

Users on whose computers the application has been installed for use offline as
well as online can roll back to the previous version or uninstall the application
completely from the Windows Control Panel’s Add/Remove Programs dialog
box. Users can roll back only one update.

Using MobiLink synchronization
You can use MobiLink synchronization with smart client applications to take
advantage of the “occasionally connected” nature of a Windows Forms
application that has been installed on a client so that it can be run from the Start
menu as well as from a browser.

MobiLink is a session-based synchronization system that allows two-way
synchronization between a main database, called the consolidated database,
and many remote databases. The user on the client computer can make updates
to a database when not connected, then synchronize changes with the
consolidated database when connected.

You need to deploy the SQL Anywhere database driver and the MobiLink
synchronization client file to the client computer. You can simplify this process
by adding the required files to a package and adding the package to the
Prerequisites page in the Project painter.

For more information, see “Using the ASA MobiLink synchronization wizard”
in the User’s Guide and Chapter 13, “Using MobiLink Synchronization,” in
Application Techniques.

Using MobiLink synchronization

162 PowerBuilder

CHAPTER 11 Unsupported Features in Windows Forms Projects

Deploying Applications and Components to .NET 163

C H A P T E R 1 1 Unsupported Features in
Windows Forms Projects

About this chapter This chapter lists controls, classes, and system functions that are not fully
supported in Windows Forms applications in this release.

Contents

About unsupported features
PowerBuilder .NET Windows Forms applications do not currently support
some features. Some are not implemented in PowerBuilder 11.0 and some have
been partially implemented.

The tables in this chapter provide detailed lists of all objects, controls,
functions, events, and properties and indicate whether they are supported

The following list summarizes support in Windows Forms for features in this
release:

• All DataWindow presentation styles are supported, but there are some
restrictions on RichText and OLE presentation styles.

• External function calls are supported except when the function has a
reference structure parameter.

Topic Page

About unsupported features 163

Unsupported nonvisual objects and structures in Windows Forms 165

Unsupported system functions in Windows Forms 169

Partially supported visual controls for Windows Forms 170

Unsupported functions for controls in Windows Forms 174

Unsupported events for controls in Windows Forms 175

Unsupported properties for controls in Windows Forms 176

About unsupported features

164 PowerBuilder

• You cannot call functions on .NET primitive types that map to
PowerBuilder primitive types. See Table 14-3 for the list of datatype
mappings from .NET to PowerBuilder.

• You can use the built-in Web services client extension (pbwsclient110.pbx)
in applications that you plan to deploy to .NET Windows Forms. You
cannot use any other PBNI extensions in a .NET target.

• In-process OLE controls (controls with the extension .ocx or .dll) are
partially supported. Most of the OLE control container’s events are not
supported, but events of the control in the container are supported with the
exception of the Help event. Other OLE features are not supported. You
cannot create an ActiveX control dynamically, and you must set the initial
properties of an ActiveX control in code because the implementation does
not support saving to or retrieving from structured storage.

Support for OLE controls requires the Microsoft ActiveX Control
Importer (aximp.exe). This tool generates a wrapper class for an ActiveX
control that can be hosted on a Windows Form. It imports the DLL or OCX
and produces a set of assemblies that contain the common language
runtime metadata and control implementation for the types defined in the
original type library. When you deploy the application, you deploy these
assemblies. You do not need to deploy aximp.exe.

The aximp.exe tool is part of the .NET Framework 2.0 SDK, which can be
freely downloaded from the Microsoft Web site. For more information, see
“System requirements” on page 138.

• The following features are not currently supported in .NET targets: shared
objects, EAServer integration, COM/COM+ components, OLE
automation server, tracing and profiling, DDE functions, and
SSLCallback.

• The .NET Framework replaces fonts that are not TrueType fonts, such as
MS Sans Serif, with TrueType fonts. This replacement can cause
unexpected display issues. For example, the cursor does not display when
you click in an EditMask control that does not use a TrueType font. To
avoid such issues, always use a TrueType font such as Tahoma.

CHAPTER 11 Unsupported Features in Windows Forms Projects

Deploying Applications and Components to .NET 165

Unsupported nonvisual objects and structures in
Windows Forms

This section contains two tables:

• Table 11-1 lists all PowerBuilder nonvisual objects and structures and
indicates whether they are supported in this release.

• When there is an X in the partially supported column in Table 11-1, see
Table 11-2 on page 167 for detailed information about what is supported.
XX in the Unsupported column indicates that there are currently no plans
to support the object.

Objects used for profiling and tracing, DDE, and OLE storage and streams are
not supported.

Table 11-1: Support for nonvisual objects in Windows forms

Class name Supported Partially supported Unsupported

AdoResultSet X

Application X

ArrayBounds X

ClassDefinition * X

ClassDefinitionObject X

Connection X

ConnectionInfo X

ConnectObject X

ContextInformation X

ContextKeyword XX

CorbaCurrent X

CorbaObject X

CorbaSystemException (and its
descendants)

X

CorbaUnion X

CorbaUserException X

DataStore X

DataWindowChild X

DivideByZeroError X

DWObject X

DWRuntimeError X

DynamicDescriptionArea X

DynamicStagingArea X

Unsupported nonvisual objects and structures in Windows Forms

166 PowerBuilder

EnumerationDefinition X

EnumerationItemDefinition X

Environment X

ErrorLogging X

Exception X

Graxis X

GrDispAttr X

Inet X

InternetResult X

JaguarOrb XX

MailFileDescription X

MailMessage X

MailRecipient X

MailSession X

Message X

NonVisualObject X

NullObjectError X

OleObject X

OleRuntimeError X

OleStorage XX

OleStream XX

OleTxnObject X

OmObject X

OmStorage XX

OmStream XX

Orb X

PbxRuntimeError X

Pipeline X

ProfileCall XX

ProfileClass XX

ProfileLine XX

ProfileRoutine XX

Profiling XX

RemoteObject XX

ResultSet X

ResultSets X

RuntimeError X

Class name Supported Partially supported Unsupported

CHAPTER 11 Unsupported Features in Windows Forms Projects

Deploying Applications and Components to .NET 167

* The order of the array items in the VariableList property of the ClassDefinition object may not

be the same in .NET applications as in standard PowerBuilder applications.

Table 11-2: Unsupported functions, events, and properties by class

ScriptDefinition X

Service X

SimpleTypeDefinition X

SSLCallback X

SSLServiceProvider X

Throwable X

Timing X

TraceActivityNode XX

TraceBeginEnd XX

TraceError XX

TraceESQL XX

TraceFile XX

TraceGarbageCollect XX

TraceTreeLine XX

TraceTreeNode XX

TraceTreeObject XX

TraceTreeRoutine XX

TraceTreeUser XX

TraceUser XX

Transaction X

TransactionServer X

TypeDefinition X

VariableCardinalityDefinition X

VariableDefinition X

WSConnection X

Class name Supported Partially supported Unsupported

Class name Unsupported functions
Unsupported
events

Unsupported
properties

Application SetLibraryList
SetTransPool

None ToolbarUserControl

CorbaSystemException
(and its descendants)

Class
Line
Number

Unsupported nonvisual objects and structures in Windows Forms

168 PowerBuilder

DataStore CopyRTF
GenerateHTMLForm
GenerateResultSet
GetStateStatus
InsertDocument
PasteRTF
Print (supported but not for data
with rich text formatting)

Destructor None

DataWindowChild DBErrorCode
DBErrorMessage
SetRedraw
SetRowFocusIndicator

None None

OmObject GetAutomationNativePointer
SetAutomationLocale
SetAutomationTimeOut

None None

RuntimeError (and its
descendants)

Class
Line
Number

ScriptDefinition AliasName
ExternalUserFunction
(supported for external
functions only)
LocalVariableList
Source
SystemFunction

SimpleTypeDefinition LibraryName

TypeDefinition LibraryName

VariableDefinition InitialValue (supported
for instance variables
and primitive types)
IsConstant (supported
for instance variables)
OverridesAncestorValue
ReadAccess (supported
for instance variables)
WriteAccess (supported
for instance variables)

Class name Unsupported functions
Unsupported
events

Unsupported
properties

CHAPTER 11 Unsupported Features in Windows Forms Projects

Deploying Applications and Components to .NET 169

Unsupported system functions in Windows Forms
Table 11-3 lists categories of system functions that are not supported in
Windows Forms applications.

Table 11-3: Unsupported system functions by category

Post function Post function calls with reference parameters are not
supported.

IsNull function In .NET applications, if you call the IsNull function with a
variable of a reference type (a type derived from the PowerObject base class)
as the argument, IsNull returns true if the variable has not been initialized by
assigning an instantiated object to it. To ensure consistent behavior between
standard and .NET PowerBuilder applications, use the IsValid function to check
whether the variable has been instantiated. For more information, see the
description of the IsNull function.

Category Functions

DDE functions CloseChannel, ExecRemote, GetCommandDDE,
GetCommandDDEOrigin, GetDataDDE,
GetDataDDEOrigin, GetRemote, OpenChannel,
RespondRemote, SetDataDDE, SetRemote,
StartHotLink, StartServerDDE, StopHotLink,
StopServerDDE

Garbage collection functions GarbageCollectGetTimeLimit,
GarbageCollectSetTimeLimit

Input method functions IMEGetCompositionText, IMEGetMode,
IMESetMode

Profiling and tracing functions TraceBegin, TraceClose, TraceDisableActivity,
TraceDump, TraceEnableActivity, TraceEnd,
TraceError, TraceOpen, TraceUser

Shared Object functions SharedObjectDirectory, SharedObjectGet,
SharedObjectRegister, SharedObjectUnRegister

Partially supported visual controls for Windows Forms

170 PowerBuilder

Partially supported visual controls for Windows Forms
Table 11-4 lists all PowerBuilder visual controls and indicates whether they are
fully or partially supported in this release.

For many visual controls, the only unsupported event is the Other event and the
only unsupported property is IMEMode. If a control has no other unsupported
events, properties, or functions, it is listed in the fully supported column in
Table 11-4.

When there is an X in the partially supported column, see Table 11-5 on
page 171 for detailed information about which functions, events, and
properties are not supported.

Table 11-4: Support for visual controls

Class name Supported Partially supported

Animation X

Checkbox X

CommandButton X

DataWindow X

DatePicker X

DropDownListBox X

DropDownPictureListBox X

EditMask X

Graph X

GroupBox X

HProgressBar X

HScrollBar X

HTrackBar X

InkEdit X

InkPicture X

Line X

ListBox X

ListView X

ListViewItem X

Menu X

MenuCascade X

MonthCalendar X

MultiLineEdit X

OleControl X

OleCustomControl X

CHAPTER 11 Unsupported Features in Windows Forms Projects

Deploying Applications and Components to .NET 171

Table 11-5: Unsupported functions, events, and properties by control

OmCustomControl X

OmEmbeddedControl X

Oval X

Picture X

PictureButton X

PictureHyperLink X

PictureListBox X

RadioButton X

Rectangle X

RichTextEdit X

RoundRectangle X

SingleLineEdit X

StaticHyperLink X

StaticText X

Tab X

TreeView X

TreeViewItem X

UserObject X

VProgressBar X

VScrollBar X

VTrackBar X

Window X

Class name Supported Partially supported

Supported control Unsupported functions Unsupported events Unsupported properties

DataWindow DBErrorCode
DBErrorMessage
GenerateHTMLForm
GetStateStatus

Other RightToLeft

DatePicker GetCalendar
Resize (does not support
changing height,
otherwise supported)

DoubleClicked
Other
UserString

AllowEdit
Border
BorderStyle

DropDownListBox None Other HScrollBar
IMEMode

Partially supported visual controls for Windows Forms

172 PowerBuilder

Graph None
AddData, GetDataValue,
InsertData, ModifyData
do not support string
values

Other BorderStyle

ListBox None Other TabStop

ListView AddColumn,
InsertColumn, SetColumn
limitation: the alignment
of the first column cannot
be set to center or right

Other IMEMode

Menu None Help MenuItemType
MergeOption
ToolbarAnimation
ToolbarHighlightColor
ToolbarItemSpace

MenuCascade None Help Columns
CurrentItem
DropDown
MenuItemType
MergeOption
ToolbarAnimation
ToolbarHighlightColor
ToolbarItemSpace

MonthCalendar None DoubleClicked
Other

MultiLineEdit None Other IMEMode
TabStop

OmCustomControl None None Alignment
Cancel
Default

Supported control Unsupported functions Unsupported events Unsupported properties

CHAPTER 11 Unsupported Features in Windows Forms Projects

Deploying Applications and Components to .NET 173

OmEmbeddedControl _Get_DocFileName
_Get_ObjectData
_Set_ObjectData
Drag
InsertClass
InsertFile
InsertObject
LinkTo
Open
PasteLink
PasteSpecial
SaveAs
SelectObject
UpdateLinksDialog

None Activation
ContentsAllowed
DisplayType
DocFileName
LinkUpdateOptions
ObjectData
ParentStorage
Resizable
SizeMode

PictureButton None Other Map3DColors

StaticHyperLink None Other BorderColor
FillPattern

StaticText None Other BorderColor
FillPattern

Tab None Other BackColor
RaggedRight (see “Tab
properties” on page 177)

TreeView None Other IMEMode
StatePictureHeight
StatePictureWidth

UserObject AddItem
DeleteItem
EventParmDouble
EventParmString
InsertItem

Other BackColor, TabTextColor
(for tab pages—see “Tab
properties” on page 177)
Style

Supported control Unsupported functions Unsupported events Unsupported properties

Unsupported functions for controls in Windows Forms

174 PowerBuilder

Unsupported functions for controls in Windows Forms
Table 11-6 is an alphabetical listing of unsupported functions, the controls on
which they are not supported, and any notes that apply to specific controls. If
your application uses these functions, rework it to avoid their use.

Table 11-6: Unsupported functions for Windows Forms deployment

Window CloseChannel
ExecRemote
GetCommandDDE
GetCommandDDEOrigin
GetDataDDE
GetDataDDEOrigin
GetRemote
OpenChannel
RespondRemote
SetDataDDE
SetRemote
StartHotLink
StartServerDDE
StopHotLink
StopServerDDE

Other None

Supported control Unsupported functions Unsupported events Unsupported properties

Function Controls

AddItem UserObject

CloseChannel Window

DBErrorCode DataWindow

DBErrorMessage DataWindow

DeleteItem UserObject

Drag OmEmbeddedControl

EventParmDouble UserObject

EventParmString UserObject

ExecRemote Window

GenerateHTMLForm DataWindow

_Get_DocFileName OmEmbeddedControl

_Get_ObjectData OmEmbeddedControl

GetStateStatus DataWindow

GetCommandDDE Window

CHAPTER 11 Unsupported Features in Windows Forms Projects

Deploying Applications and Components to .NET 175

Unsupported events for controls in Windows Forms
Table 11-7 is an alphabetical listing of unsupported events, the controls on
which they are not supported, and any notes that apply to specific controls. If
your application uses these events, rework it to avoid their use.

Table 11-7: Unsupported events for Windows Forms deployment

GetCommandDDEOrigin Window

GetDataDDE Window

GetDataDDEOrigin Window

GetRemote Window

InsertClass OmEmbeddedControl

InsertFile OmEmbeddedControl

InsertItem UserObject

LinkTo OmEmbeddedControl

Open OmEmbeddedControl

OpenChannel Window

PasteLink OmEmbeddedControl

PasteSpecial OmEmbeddedControl

Resize DatePicker (only changing height is unsupported)

RespondRemote Window

SaveAs OmEmbeddedControl

SelectObject OmEmbeddedControl

SetDataDDE Window

_Set_ObjectData OmEmbeddedControl

SetRemote Window

SetWSObject DataWindow

StartHotLink Window

StartServerDDE Window

StopHotLink Window

StopServerDDE Window

UpdateLinksDialog OmEmbeddedControl

Function Controls

Event Controls

DoubleClicked DatePicker, MonthCalendar

Unsupported properties for controls in Windows Forms

176 PowerBuilder

Unsupported properties for controls in Windows
Forms

Table 11-8 is an alphabetical listing of unsupported properties, the controls on
which they are not supported, and any notes that apply to specific controls. If
your application uses these properties, rework it to avoid their use.

Table 11-8: Unsupported properties for Windows Forms deployment

Help Menu, MenuCascade

Notify TreeView

Other All controls

Resize DatePicker

UserString DatePicker

Event Controls

Property Controls

Alignment OmCustomControl

AllowEdit DatePicker

Activation OmEmbeddedControl

BackColor Tab, UserObject (see “Tab properties”)

Border DatePicker

BorderColor StaticHyperLink, StaticText

BorderStyle DatePicker, Graph

Cancel OmCustomControl

Columns MenuCascade

ColumnsPerPage UserObject

ContentsAllowed OmEmbeddedControl

CurrentItem MenuCascade

Default OmCustomControl

DisplayType OmEmbeddedControl

DocFileName OmEmbeddedControl

DropDown MenuCascade

FillPattern StaticHyperLink, StaticText

Height DatePicker

Help Menu, MenuCascade

HScrollbar DropDownListBox

CHAPTER 11 Unsupported Features in Windows Forms Projects

Deploying Applications and Components to .NET 177

FaceName property If you use a bitmap (screen) font such as MS Sans Serif
instead of a TrueType font for the FaceName property, make sure you select a
predefined font size from the TextSize drop-down list. PowerBuilder and .NET
use different functions (CreateFontDirect and GdipCreateFont) to render bitmap
fonts and they may display larger in the .NET application than in the
development environment or a standard PowerBuilder application. For
example, text that uses the MS Sans Serif type face and the undefined text size
16 looks the same as size 14 in PowerBuilder, but looks larger in .NET.

Tab properties The RaggedRight property for a Tab control works correctly
if the sum of the widths of all the tab pages is greater that the width of the Tab
control, and the MultiLine property is set to true.

The BackColor and TabTextColor properties for a tab page in a Tab control are
not supported if the XP style is used.

IMEMode All controls

LinkUpdateOptions OmEmbeddedControl

Map3DColors PictureButton

MenuItemType Menu

MergeOption Menu

ObjectData OmEmbeddedControl

ParentStorage OmEmbeddedControl

RaggedRight Tab (see “Tab properties”)

RightToLeft DataWindow, ListBox, ListView, TreeView

SizeMode OmEmbeddedControl

StatePictureHeight TreeView

StatePictureWidth TreeView

Style UserObject

TabStop ListBox, MultiLineEdit

TabTextColor UserObject (see “Tab properties”)

ToolbarAnimation Menu

ToolbarHighLightColor Menu

ToolbarItemSpace Menu

Property Controls

Unsupported properties for controls in Windows Forms

178 PowerBuilder

P A R T 4 .NET Component Targets

This part describes how to create and deploy PowerBuilder
nonvisual objects as .NET assemblies and as .NET Web
services.

Deploying Applications and Components to .NET 181

C H A P T E R 1 2 .NET Assembly Targets

About this chapter PowerBuilder includes targets for creating .NET assemblies from
nonvisual custom class objects. This chapter describes how to create .NET
Assembly targets “from scratch” and from objects in existing
PowerBuilder libraries.

Contents

The .NET Assembly target wizard
You can create .NET assembly targets from scratch or by using PBLs from
an existing target that contain at least one nonvisual custom class object.

Creating a target from
scratch

When you use the .NET Assembly target wizard to create a target from
scratch, the wizard also creates an Application object, a project object that
allows you to deploy the assembly, and a nonvisual object (NVO).
However, you must add and implement at least one public method in the
wizard-created NVO before it can be used to create a .NET assembly.

For .NET Assembly targets you create from scratch, you must provide the
information described in Table 12-1.

Topic Page

The .NET Assembly target wizard 181

Modifying a .NET Assembly project 184

Supported datatypes 187

Deploying and running a .NET Assembly project 187

The .NET Assembly target wizard

182 PowerBuilder

Table 12-1: Wizard fields for a .NET Assembly target created from
scratch

Wizard field Description

Project name Name of the project object the wizard creates.

Library Name of the library file the wizard creates. By default, this
includes the current Workspace path and takes the name you
enter for the project object with a PBL extension.

Target Name of the target the wizard creates. By default, this
includes the current Workspace path and takes the name you
enter for the project object with a PBT extension.

Library search path Lets you add PBLs and PBDs to the search path for the new
target.

PowerBuilder object
name

Name of the nonvisual object the wizard creates. By default
this takes the name that you entered for a project object with
an “n_” prefix.

Description Lets you add a description for the project object the wizard
creates.

Namespace Provides a globally unique name to assembly elements and
attributes, distinguishing them from elements and attributes
of the same name but in different assemblies.

Assembly file name Name of the assembly created by the wizard. By default, the
assembly file name takes the namespace name with a DLL
suffix.

Resource file and
directory list

List of resource files, or directories containing resource files,
that you want to deploy with the project.

You can use the Add Files, Add Directories, or Search PBR
Files buttons to add files and directories to the list box. You
can select a file or directory in the list and click the Delete
button to remove that file or directory from the list.

When you select a directory, the resource files in all of its
subdirectories are also selected by default. However, you can
use the Resource Files tab in the Project painter to prevent
deployment of subdirectory files. For more information, see
“Resource Files and Library Files tabs” on page 185.

Win32 dynamic
library file list

Specifies any Win32 DLLs you want to include with your
project. Click the Add button to open a file selection dialog
box and add a DLL to the list. Select a DLL in the list and
click Delete to remove the DLL from the list.

Setup file name Name of the setup file the wizard creates. You can copy this
MSI file to client computers, then double-click the files to
install the .NET assembly on those computers.

CHAPTER 12 .NET Assembly Targets

Deploying Applications and Components to .NET 183

Creating a target from
an existing target

If you select the option to use an existing target, the wizard creates only the
.NET Assembly target and a .NET Assembly project. The target you select
must include a PBL with at least one nonvisual object having at least one public
method. The public method must be implemented by the nonvisual object or
inherited from a parent. The AutoInstantiate property of the nonvisual object
must be set to false.

System Tree display
All objects from an existing target display in the System Tree for the .NET
Assembly target created from the existing target, except for any project objects
that are incompatible with the new target. Although visual objects, as well as
the application object, are not used in a .NET Assembly target, you can view
them in the System Tree under the new target’s PBLs.

When you use the wizard to create a .NET Assembly target from an existing
target, the wizard prompts you for the same information as when you create a
target from scratch, except that it omits the PowerBuilder object name and
library search path fields. These fields are unnecessary because the existing
target must have a usable nonvisual object and the library search path for the
target is already set. The wizard does, however, present fields that are not
available when you create a target from scratch. Table 12-2 describes these
additional fields.

Table 12-2: Additional fields for the existing target wizard selection

Wizard field Description

Choose a target Select a target from the list of targets in the current
workspace.

Specify a project name Select a name for the project you want to create. You
must create a project object to deploy nonvisual
objects as .NET components.

Choose a project library Specify a library from the list of target libraries
where you want to store the new project object.

Choose NVO objects to be
deployed

Expand the library node or nodes in the list box and
select check boxes next to the nonvisual objects that
you want to deploy.

Use .NET nullable types Select this check box to map PowerBuilder standard
datatypes to .NET nullable datatypes. Nullable
datatypes are not Common Type System (CTS)
compliant, but they can be used with .NET Generic
classes if a component accepts or returns null
arguments or if reference arguments are set to null.

Modifying a .NET Assembly project

184 PowerBuilder

After you create a .NET Assembly target, you can create as many .NET
Assembly projects as you need. You start the .NET Assembly project wizard
from the Project tab of the New dialog box. The fields in the wizard include all
the fields in Table 12-1 except the “PowerBuilder object name” and
“Description” fields and all the fields in Table 12-2 except the “Choose a
target” field.

Whether you opt to build a new target from scratch or from an existing target,
most of the project-related fields listed in Table 12-1 and Table 12-2 are
available for modification in the Project painter. For more information, see
“Modifying a .NET Assembly project” next.

Modifying a .NET Assembly project
You can modify a .NET Assembly project from the Project painter. In addition
to the values for fields that you entered in the target and project wizards, you
can also modify version, debug, and run settings from the Project painter. The
Objects tab of the Project painter lets you select and rename functions of the
nonvisual objects you deploy to a .NET assembly.

Each .NET Assembly project has seven tab pages: General, Objects, Resource
Files, Library Files, Version, Post-build, and Run.

General tab The General tab in the Project painter allows you to modify the namespace,
assembly file name, and setup file name for a .NET Assembly project. It also
has a check box you can select to use .NET nullable datatypes. These fields are
described in Table 12-1 or Table 12-2.

In addition, the General tab has fields that are not available in the target or
project wizards. Table 12-3 describes these additional fields.

Table 12-3: Additional fields available on the General tab

Project field Description

Debug or Release Radio button options that determine whether the project is
deployed as a debug build (default selection) or a release build.
You use debug builds for debugging purposes. Release builds
have better performance, but when you debug a release build,
the debugger does not stop at breakpoints.

Enable DEBUG
symbol

Select to activate code inside conditional compilation blocks
using the DEBUG symbol. This selection does not affect and is
not affected by the project’s debug build or release build setting.
This check box is selected by default.

CHAPTER 12 .NET Assembly Targets

Deploying Applications and Components to .NET 185

Objects tab The Objects tab in the Project painter lists all the nonvisual user objects
available for deployment from the current .NET Assembly target. The Custom
Class field lists all these objects even if you did not select them in the target or
project wizard.

Objects that you selected in the wizard display with a user object icon in the
Custom Class treeview. All methods for the objects selected in the wizard are
also selected for deployment by default, but you can use the Objects tab to
prevent deployment of some of these methods and to change the method names
in the deployed component.

Table 12-4 describes all the fields available on the Objects tab.

Table 12-4: Fields available on the Objects tab

Resource Files and
Library Files tabs

The fields that you can edit on the Resource Files and Library Files tabs of the
Project painter are the same as the fields available in the target and project
wizards. These fields are described in Table 12-1.

Project field Description

Custom class Select an object in this treeview list to edit its list of functions for
inclusion in or exclusion from the assembly component. You can
edit the list for all the objects you want to include in the
assembly, but you must do this one object at a time.

Object name,
Class name, and
Namespace

You can change the object name only by selecting a different
object in the Custom Class treeview. By default, the class name
is the same as the object name, but it is editable. In the Project
painter, the namespace is editable only on the General tab.

Method names
and Function
prototypes

Select the check box for each function of the selected custom
class object you want to deploy to a .NET assembly. Clear the
check box for each function you do not want to deploy. You can
modify the method names in the Method Names column. The
Function Prototype column is for descriptive purposes only.

Change method
name and
description

You enable these buttons by selecting a method in the list of
method names. PowerBuilder allows overloaded functions, but
each function you deploy in an assembly class must have a
unique name. After you click the Change Method Name button,
you can edit the selected method name in the Method Name
column. The Change Method Description button lets you add or
edit a method description.

Select All and
Unselect All

Click the Select All button to select all the functions of the
current custom class object for deployment. Click the Unselect
All button to clear the check boxes of all functions of the current
custom class object. Functions with unselected check boxes are
not deployed to a .NET assembly.

Modifying a .NET Assembly project

186 PowerBuilder

The Resource Files page of the Project painter does have an additional field
that is not included in the project or target wizard. The additional field is a
Recursive check box next to each directory that you add to the Resource Files
list. By default, this check box is selected for each directory when you add it to
the list, but you can clear the check box to avoid deployment of unnecessary
subdirectory files.

Version, Post-build,
and Run tabs

The fields on the Version, Post-build, and Run tabs of the Project painter are
not available in the .NET Assembly target or project wizards. Table 12-5
describes these fields.

Table 12-5: Fields available on the Version, Post-build, and Run tabs

Project field Description

Product name,
Company,
Description, and
Copyright
(Version tab)

You can specify identification, description, and copyright
information that you want to associate with the assembly you
generate for the project.

Product version,
File version, and
Assembly
(Version tab)

You can enter major, minor, build, and revision version numbers
for the product, file, and assembly.

Post-build
command line list
(Post-build tab)

You can use the Add button to include command lines that run
immediately after you deploy the project. For example, you can
include a command line to process the generated component in a
code obfuscator program, keeping the component safe from
reverse engineering.

The command lines run in the order listed, from top to bottom.
You can save separate sequences of command lines for debug
and release build types.

Application
(Run tab)

You use this text box to enter the name of an application with
code that invokes the classes and methods of the generated
assembly. If you do not enter an application name, you get an
error message when you try to run or debug the deployed project
from the PowerBuilder IDE.

Argument
(Run tab)

You use this text box to enter any parameters for an application
that invokes the classes and methods of the deployed project.

Start In
(Run tab)

You use this text box to enter the starting directory for an
application that invokes the classes and methods of the deployed
project.

CHAPTER 12 .NET Assembly Targets

Deploying Applications and Components to .NET 187

Supported datatypes
The PowerBuilder to .NET compiler converts PowerScript datatypes to .NET
datatypes. Table 12-6 shows the datatype mapping between PowerScript and
C#. Arrays are also supported for all standard datatypes.

Table 12-6: Datatype mapping between PowerScript and C#

Deploying and running a .NET Assembly project
After you create a .NET Assembly project, you can deploy it from the Project
painter or from a pop-up menu on the project object in the System Tree.

When you deploy a .NET Assembly project, PowerBuilder creates an assembly
DLL from the nonvisual user objects you selected in the wizard or project
painter. If you also listed a setup file name, PowerBuilder creates an MSI file
that includes the assembly DLL, PowerBuilder system libraries for .NET, and
any resource files you listed in the wizard or project painter.

PowerScript datatype C# datatype

boolean bool

blob byte []

byte byte

int, uint short, ushort

long, ulong int, uint

longlong long

decimal decimal

real float

double double

string string

user-defined structure struct

user-defined nonvisual object class

Date DateTime

Time DateTime

DateTime DateTime

Deploying and running a .NET Assembly project

188 PowerBuilder

Deploying required PowerBuilder files
You can use the Runtime Packager to copy required PowerBuilder runtime
files to deployment computers.

For information on required runtime files, see “Checklist for deployment” on
page 15. For information about the Runtime Packager, see “Deploying
Applications and Components” in Application Techniques.

You can run or debug an assembly project from the PowerBuilder UI if you fill
in the Application field (and optionally, the Argument and Start In fields) on
the project Run tab in the Project painter.

For more information about debugging .NET targets, including .NET assembly
components, see Chapter 16, “Compiling and Debugging.”

Deploying Applications and Components to .NET 189

C H A P T E R 1 3 .NET Web Service Targets

About this chapter PowerBuilder includes targets for creating .NET Web service applications
from nonvisual custom class objects. This chapter describes how to create
.NET Web Service targets “from scratch” and from objects in existing
PowerBuilder libraries.

Contents

The .NET Web Service target wizard
Creating a target from
scratch

The .NET Web Service target wizard gives you the option of creating a
target from scratch or from an existing PowerBuilder target.

The .NET Web Service target wizard shares the following fields in
common with the .NET Assembly target: Project Name, Target Name,
Library, Library Search Path, PowerBuilder Object Name, Description,
Resource Files, and Win32 Dynamic DLLs.

Table 12-1 provides descriptions for these fields. In this table, the
Namespace and Assembly File Name fields are specific to the .NET
Assembly wizard and are not relevant to the .NET Web Service target. The
table also describes the Setup File Name field, which is also available in
the .NET Web Service target wizard, but only as the subsidiary field of a
deployment option selection.

Table 13-1 shows wizard fields that are unique to the .NET Web Service
target with the “from scratch” option selected.

Topic Page

The .NET Web Service target wizard 189

Modifying a .NET Web Service project 191

Configuring ASP.NET for a .NET Web Service project 194

Deploying and running a .NET Web Service project 195

The .NET Web Service target wizard

190 PowerBuilder

Table 13-1: Wizard fields specific to .NET Web Service targets and
projects

When you click Finish in the wizard after selecting the option to create a target
from scratch, the wizard generates an Application object, a project object, a
target, and a nonvisual object. You must add and implement a public method in
the nonvisual object generated by the wizard before you can deploy it as a Web
service.

Creating a target from
an existing target

As with the other .NET target wizards (.NET Web Forms, .NET Windows
Forms, and .NET Assembly), you can use the .NET Web Service target wizard
to create a target from an existing PowerBuilder target. The existing target must
be added to the current workspace and must include a PBL with at least one
nonvisual object having at least one public method. The public method must be
implemented by the nonvisual object or inherited from a parent. The
AutoInstantiate property of the nonvisual object must be set to false.

When you click Finish in the .NET Web Service target wizard, the wizard
creates a .NET Web Service target and a .NET Web Service project. The .NET
Web Service target uses the same library list as the existing target from which
you select nonvisual user objects.

As with the .NET Assembly target wizard, the .NET Web Service target wizard
has additional fields for selecting nonvisual user objects when you use the
existing target option. Table 13-2 lists these additional fields.

Wizard field Description

Web service virtual directory name The directory path you want to use as the
current directory in the virtual file system
on the server. By default, this is the full
path name for the current PowerBuilder
target.

This field is similar to the “Initial current
directory” field in the Web Forms wizard.

Web service URL preview Address for accessing the .NET Web
service from an application.

Generate setup file Select this option to deploy the Web
service in an MSI file. When you select
this option, you must provide a name for
the setup file.

Directly deploy to IIS Select this option to deploy the Web
service directly to an IIS server. When
you select this option, you must provide
an IIS server address. By default, the
server address is “localhost”.

CHAPTER 13 .NET Web Service Targets

Deploying Applications and Components to .NET 191

Table 13-2: Additional fields for the existing target wizard selection

Modifying a .NET Web Service project
You can modify a .NET Web Service project from the Project painter. The
Project painter displays all the values you selected in .NET Web Service target
or project wizards. However, you can also modify version, debug, and run
settings from the Project painter. The Objects tab of the Project painter lets you
select and rename functions of the nonvisual objects that you deploy to a .NET
Web Service component.

.NET Web Service
project tab pages

Each .NET Web Service project has the following tab pages: General, Deploy,
Objects, Resource Files, Library Files, Version, Post-build, and Run.

General and Deploy tabs See Table 12-3 for a description of the debug
fields available on the General tab of the Project painter. The fields on the
Deploy tab are all available in the .NET Web Service project wizard. For
descriptions of fields available on the Deploy tab, see Table 13-1.

Wizard field Description

Choose a target Select a target from the list of targets in the current
workspace.

Specify a project name Select a name for the project you want to create. You
must create a project object to deploy nonvisual
objects as .NET components.

Choose a project library Specify a library from the list of target libraries
where you want to store the new project object.

Choose NVO objects to be
deployed

Expand the library node or nodes in the list box and
select check boxes next to the nonvisual objects that
you want to deploy.

Use .NET nullable types Select this check box to map PowerBuilder standard
datatypes to .NET nullable datatypes. Nullable
datatypes are not Common Type System (CTS)
compliant, but they can be used with .NET Generic
classes if a component accepts or returns null
arguments or if reference arguments are set to null.

Modifying a .NET Web Service project

192 PowerBuilder

Resource Files tab The Resource Files tab fields in the Project painter are
the same as those in the project wizard. However, as for the .NET Assembly
project, there is one additional field that is not included in the project or target
wizard. This field is a Recursive check box next to each directory you add to
the Resource Files list. By default, this check box is selected for each directory
when you add it to the list, but you can clear the check box to avoid deployment
of unnecessary subdirectory files.

Library Files tab The Library Files tab of the Project painter includes fields
for the Win 32 dynamic libraries you want to deploy with your project. These
fields are described in Table 12-1. The Library Files tab also includes a list of
PBL files for the target. You can select a check box next to each of these PBL
files to make sure they are compiled and deployed as PBD files, in addition to
.NET assemblies, when the PBLs contain DataWindow or Query objects.

You can clear the check box next to each PBL that you do not want to deploy
as a PBD with your project. You need to select only the PBLs containing
DataWindow or Query objects that are used by the custom class objects you
include in a Web service component. You can use the Select All button to select
all the check boxes for the PBLs or the Unselect All button to clear all the check
boxes.

Objects tab The Objects tab allows you to select the methods you want to
make available for each nonvisual object you deploy as a Web service. You can
rename the methods as Web service messages. Table 13-3 describes the
Objects tab fields for a .NET Web Service project.

Table 13-3: Fields on the .NET Web Service Objects tab

Objects tab field Description

Custom class Select an object in this treeview list to edit its list of
methods for inclusion in or exclusion from the Web
service component. You can edit the list for all the objects
you want to include in the component, but you must do
this for one object at a time.

Object name You can change the object name only by selecting a
different object in the Custom Class treeview.

Web service name Specifies the name for the Web service. By default, this
takes the name of the current custom class user object.

Target namespace Specifies the target namespace. The default namespace
for an IIS Web service is: http://tempurl.org.
Typically you change this to a company domain name.

Web service URL Specifies the deployment location for the current custom
class user object. This is a read-only field. The location
combines selections on the General, Deploy, and Objects
tabs for the current project.

CHAPTER 13 .NET Web Service Targets

Deploying Applications and Components to .NET 193

Version, Post-build, and Run tabs See Table 12-5 for a description of the
version, post-build, and run settings fields. These are the same fields that are
available with .NET Assembly projects. They cannot be set in the target or
project wizards.

Web service WSDL Specifies the WSDL file created for the project. This is a
read-only field. It appends the “?WSDL” suffix to the
Web service URL.

Browse Web Service If you have previously deployed the project to the named
IIS server on the Deploy tab of the current project, you
can click this button to display a test page for the existing
Web service. If a Web service has not been deployed yet
for the current custom class object, a browser error
message displays. The button is disabled if you selected
the option to deploy the current project to a setup file.

View WSDL If you previously deployed the project to the named IIS
server on the Deploy tab of the current project, you can
click this button to display the existing WSDL file. If a
Web service has not been deployed yet for the current
custom class object, a browser error message displays.
The button is disabled if you selected the option to deploy
the current project to a setup file.

Message names and
Function prototypes

Select the check box for each function of the selected
custom class object that you want to deploy in a .NET
Web service component. Clear the check box for each
function you do not want to deploy. You can modify the
message names in the Message Names column. The
Function Prototype column is for descriptive purposes
only.

Change message name You enable this button by selecting a function in the list
of message names. PowerBuilder allows overloaded
functions, but each function you deploy in a component
class must have a unique name. After you click the
Change Message Name button, you can edit the selected
function name in the Message Name column.

Select All and Unselect
All

Click the Select All button to select all the functions of
the current custom class object for deployment. Click the
Unselect All button to clear the check boxes of all
functions of the current custom class object. Functions
with unselected check boxes are not deployed as
messages for a Web service component.

Objects tab field Description

Configuring ASP.NET for a .NET Web Service project

194 PowerBuilder

The Run tab settings for a Web Service project typically have default values for
the Application and Arguments fields. The Application field default is the path
to the Internet Explorer browser on the development computer and the
Arguments field default is the URL for a Web Service project test page that is
created when you deploy the project.

Configuring ASP.NET for a .NET Web Service project
IIS and ASP.NET You configure ASP.NET for .NET Web Service projects
the same way you configure ASP.NET for .NET Web Forms projects. This
includes making sure the Web server has a compatible version of IIS and the
2.0 version of ASP.NET is selected for your Web service components. .NET
Web Service projects also use the same directory structure on the server as
.NET Web Forms projects.

For information on installing IIS and setting the default version of ASP.NET,
see “Configuring ASP.NET for a .NET project” on page 6. For information on
the directory structure for deployed projects, see “Directory structure on the
server” on page 9.

SQL Anywhere database connection If you set up a database connection
for your Web service components, you configure the connection in the same
way as for a Web Forms application. For information on configuring a SQL
Anywhere database connection, see “Setting up a SQL Anywhere database
connection” on page 10.

Global properties Most of the global properties for Web Forms applications
that do not involve visual controls also apply to Web service components. The
following global properties can be used by Web service projects: LogFolder,
FileFolder, PrintFolder, PBWebFileProcessMode, PBCurrentDir, PBTempDir,
PBLibDir, PBDenyDownloadFolders, PBCommandParm, PBTrace,
PBTraceTarget, PBTraceFileName, PBMaxSession, PBEventLogID, and
PBDeleteTempFileInterval.

For information on viewing and modifying global properties, see “Viewing and
modifying global properties in IIS Manager” on page 8. For descriptions of the
global properties, see “Global Web configuration properties” on page 82.

CHAPTER 13 .NET Web Service Targets

Deploying Applications and Components to .NET 195

Deploying and running a .NET Web Service project
After you create a .NET Web Service project, you can deploy it from the
Project painter or from a pop-up menu on the project object in the System Tree.

When you deploy directly to an IIS server, PowerBuilder creates an application
directory under the IIS virtual root and creates an ASMX file in the application
directory. The ASMX file created by the project is an ASP.NET executable file
rather than a true WSDL file, so you might need to add the “?WSDL” suffix to
the URL when you try to access this Web service from certain types of
applications.

In addition to the application directory and the ASMX file, deploying the
project creates a directory structure that is substantially the same as that created
by a .NET Web Forms project. In fact, PowerBuilder deploys a Web Service
target as a Web Forms target, but it creates an additional assembly containing
the Web service wrapper class. The file name for this assembly is generated by
appending the characters “_ws” to the file name of the main application
assembly. It is generated with the main assembly in the application’s bin
directory.

For more information on the directory structure, see “Directory structure on
the server” on page 9.

Access permissions for Web service components
In some versions of IIS for the Windows XP platform, ASPNET Web services
use the Temp system directory during method processing. If the ASPNET user
(IIS 5), the IIS_WPG user group (IIS 6), or the IIS_IUSRS user group (IIS 7)
does not have read or write access to the Temp directory on the server,
applications invoking methods on those services receive an error message
stating that temporary classes cannot be generated. You can prevent this error
by granting appropriate user or user group permissions to the Temp directory
in the same way you grant permissions for the Sybase and database directories.

For more information on granting ASPNET user permissions, see “Setting up
a SQL Anywhere database connection” on page 10.

When you deploy to a setup file in a .NET Web Service project, the project
builds an MSI file that includes the ASMX file, PowerBuilder system libraries
for .NET, and any resource files you listed in the project wizard or painter.

Deploying and running a .NET Web Service project

196 PowerBuilder

Deploying required PowerBuilder files
You can use the Runtime Packager to copy required PowerBuilder runtime
files to deployment servers. After you install the package created by the
runtime packager, you must restart the server.

For information on required runtime files, see “Checklist for deployment” on
page 15. For information about the Runtime Packager, see “Deploying
Applications and Components” in Application Techniques.

You can run or debug a .NET Web Service project from the PowerBuilder UI
if you fill in the Application field (and optionally, the Argument and Start In
fields) on the project Run tab in the Project painter. The Application field is
typically filled in automatically with the name of the Internet Explorer
executable on the development computer.

For more information about debugging .NET targets, including .NET Web
Service components, see Chapter 16, “Compiling and Debugging.”

P A R T 5 .NET Language
Interoperability

This part describes how to use conditional compilation
blocks in PowerScript code. These coding blocks allow you
to reference .NET objects and methods in PowerScript
without triggering error messages from the PowerScript
compiler.

A chapter on best practices provides suggestions for
enhancing the .NET applications and components you build
in PowerBuilder.

Deploying Applications and Components to .NET 199

C H A P T E R 1 4 Referencing .NET Classes in
PowerScript

About this chapter This chapter describes the special syntax you can use to add processing
code for PowerBuilder .NET projects.

Contents

About conditional compilation
In PowerBuilder 11.0, you can use the number sign (#) at the start of a line
or block of code to mark the code for specialized processing prior to
PowerScript compilation. Each line of code or block of conditional code
set off by a leading number sign is automatically parsed by a
PowerBuilder preprocessor before it is passed to the design-time
PowerScript compiler or the PowerBuilder-to-C# (pb2cs) compiler.

Preprocessing symbols There are six default code-processing symbols that affect the code passed
to the PowerScript compiler at design time. Four of these symbols
correspond to different PowerBuilder target types, one applies to all .NET
target types, and one applies to both standard PowerBuilder and .NET
target types.

The preprocessor enables PowerBuilder to compile project code specific
to a particular deployment target without hindering the compiler’s ability
to handle the same code when a different deployment target is selected.

Topic Page

About conditional compilation 199

Writing code inside a .NET block 202

PowerScript syntax for .NET calls 202

Adding .NET assemblies to the target 205

Calling assembly methods from PowerScript 205

Support for .NET language features 207

Limitations 211

Handling exceptions in the .NET environment 213

About conditional compilation

200 PowerBuilder

The preprocessor substitutes blank lines for all declarative statements and
conditional block delimiters having leading number sign characters before
passing the code to the PowerScript compiler or the pb2cs compiler. The
contents of the conditional blocks are converted to blank lines or passed to the
compiler depending on which preprocessor symbol is used.

Table 14-1 displays the default preprocessing symbols, the project types to
which they correspond, and their effects on the code passed to the PowerScript
compiler engine or the pb2cs compiler.

Table 14-1: Default preprocessing symbols for conditional compilation

Preprocessing
symbols Project type Code in this processing block

PBNATIVE PowerBuilder
client-server or
distributed applications

Fully parsed by the PowerScript
compiler. It is converted to blank
lines for the pb2cs compiler.

PBWEBFORM .NET Web Forms
application

Fully parsed by the pb2cs compiler
for .NET Web Forms targets only. It
is converted to blank lines for the
PowerScript compiler and all other
types of .NET targets.

PBWINFORM .NET Windows Forms
applications

Fully parsed by the pb2cs compiler
for .NET Windows Forms targets
only. It is converted to blank lines
for the PowerScript compiler and
all other types of .NET targets.

PBWEBSERVICE .NET Web Service
component targets

Fully parsed by the pb2cs compiler
for .NET Web Service targets only.
It is converted to blank lines for the
PowerScript compiler and all other
types of .NET targets.

PBDOTNET .NET Web Forms and
Windows Forms
applications, and .NET
Assembly and .NET
Web Service
components

Fully parsed by the pb2cs compiler
for all .NET target types. It is
converted to blank lines for the
PowerScript compiler.

DEBUG Standard PowerBuilder
targets and all .NET
application and
component targets

When a project’s Enable DEBUG
Symbol check box is selected, code
is fully parsed in deployed
applications by the PowerScript
compiler, or for .NET targets, by the
pb2cs compiler. Code is converted
to blank lines when the check box is
cleared.

CHAPTER 14 Referencing .NET Classes in PowerScript

Deploying Applications and Components to .NET 201

Conditional syntax You indicate a conditional block of code with a statement of the following type,
where symbolType is any of the symbols defined by PowerBuilder:

#IF defined symbolType then

You can use the NOT operator to include code for all target types that are not
of the symbol type that you designate. For example, the following code is
parsed for all targets that are not of the type PBNative:

#IF NOT defined PBNATIVE then

You can also use #ELSE statements inside the code block to include code for all
target types other than the one defined at the start of the code block. You can
use #ELSEIF defined symbolType then statements to include code for a
specific target type that is different from the one defined at the start of the code
block.

The closing statement for a conditional block is always:

#END IF

Comments can be added to conditional code if they are preceded by double
slash marks (//) in the same line of code. Although you cannot use the
PowerScript line continuation character (&) in a conditional code statement,
you must use it in code that you embed in the conditional block when you use
more than one line for a single line of code.

Limitations and error
messages

Conditional compilation is not supported in DataWindow syntax, in structure
or menu objects, or in JSP targets. You cannot edit the source code for an object
to include conditional compilation blocks that span function, event, or variable
definition boundaries.

You must rebuild your application after you add a DEBUG conditional block.

Table 14-2 shows the types of error messages displayed for incorrect
conditional compilation code.

Table 14-2: Types of error messages returned by the preprocessor

Error message Description

Invalid if statement #if statement without a defined symbol, with an
incorrectly defined symbol, or without a then
clause

#end if directive expected #if statement without an #end if statement

Unexpected preprocessor
directive

Caused by an #else, #elseif, or #end if
statement when not preceded by an #if statement

Preprocessor syntax error Caused by including text after an #else or
#end if statement when the text is not preceded
by comment characters (//)

Writing code inside a .NET block

202 PowerBuilder

Writing code inside a .NET block
Because the main PowerBuilder compiler does not recognize the classes
imported from .NET assemblies, you must surround the code referencing those
classes in a conditional compilation block for a .NET application. For example,
to reference the .NET message box Show function, you must surround the
function call with preprocessor statements that hide the code from the main
PowerBuilder compiler:

#IF Defined PBDOTNET Then
System.Windows.Forms.MessageBox.Show ("This "&
+ "message box is from .NET, not "&
+ "PowerBuilder.")

#END IF

The PBDOTNET symbol can be used for all types of .NET targets supported
by PowerBuilder. You can also use the following symbols for specific types of
.NET targets: PBWEBFORM, PBWINFORM, and PBWEBSERVICE.

You can paste preprocessor statements into the Script view. Select Edit>Paste
Special>Preprocessor and select the statement you need.

For more information on conditional compilation symbols, see “About
conditional compilation” on page 199.

PowerScript syntax for .NET calls
When you make calls to .NET assemblies or their methods or properties from
PowerBuilder, you must follow PowerScript syntax rules. The following
syntax rules are especially important for C# developers to keep in mind:

Instantiating a class To instantiate a class, use “create”, not “new”. Even
when you are referencing a .NET type in a .NET conditional block, you must
use the PowerScript create syntax. The following line instantiates a .NET type
from the logger namespace:

ls = create logger.LogServer

Note that a single dot (.) is used as a namespace separator in .NET conditional
blocks.

CHAPTER 14 Referencing .NET Classes in PowerScript

Deploying Applications and Components to .NET 203

Compound statements You must use PowerScript syntax for compound
statements, such as “if”, “for”, or “switch”. The preprocessors for .NET
applications signal an error if C# compound statements are used. For example,
you cannot use the following C# statement, even inside a .NET conditional
block: for (int I=0;I<10;I++). The following script shows the
PowerScript equivalent, with looping calls to the .NET WriteLine method,
inside a PBDOTNET conditional block:

#IF Defined PBDOTNET THEN
int i
for I = 1 to 10

System.Console.WriteLine(i)
next

#END IF

PowerScript keywords The .NET Framework uses certain PowerBuilder
keywords such as “System” and “type”. To distinguish the .NET Framework
usage from the PowerBuilder keyword, you can prepend the @ symbol. For
example, you can instantiate a class in the .NET System namespace as follows:

#IF Defined PBDOTNET THEN
@System.Collections.ArrayList myList = create &

+ @System.Collections.ArrayList
#END IF

The PowerBuilder preprocessor includes logic to distinguish the .NET System
namespace from the PowerBuilder System keyword, therefore the use of the @
prefix is optional as a namespace identifier in the above example. However,
you must include the @ identifier when you reference the .NET Type class in
PowerScript code (@System.@Type or System.@Type). Also, if you use a
PowerBuilder keyword for a .NET namespace name other than System, you
must prefix the namespace name with the @ identifier.

Although PowerBuilder can support .NET Framework classes and
namespaces, it does not support .NET keywords. For example, you cannot use
the .NET keyword typeof, even if you prepend it with the @ identifier.

Line continuation and termination You must use PowerScript rules when
your script extends beyond a single line. The line return character indicates the
end of a line of script except when it is preceded by the ampersand (&)
character. Semicolons are not used to indicate the end of a PowerScript line.

PowerScript syntax for .NET calls

204 PowerBuilder

Rules for arrays To declare an array, use square brackets after the variable
name, not after the array datatype. You cannot initialize an array before making
array index assignments. PowerBuilder provides automatic support for
negative index identifiers. (In C#, you can have negative index identifiers only
if you use the System.Array.CreateInstance method.) The following example
illustrates PowerScript coding for an array that can hold seven index values.
The code is included inside a conditional compilation block for the .NET
environment:

#IF Defined PBDOTNET THEN
int myArray[-2 to 5]
//in C#, you would have to initialize array
//with code like: int[] myArray = new int[7]
myArray[-1]=10 //assigning a value to 2nd array index

#END IF

In PowerBuilder, unbounded arrays can have one dimension only. The default
start index for all PowerBuilder arrays is 1. The GetValue method on a C# array
returns 0 for a default start index identifier, so you would call
array_foo.GetValue (0) to return the first element of the array array_foo.
However, after a C# array is assigned to a PowerBuilder array, you access the
elements of the array with the PowerBuilder index identifier. In this example,
you identify the first element in PowerScript as array_foo[1].

Case sensitivity .NET is case sensitive, but PowerBuilder is not. The .NET
Framework does provide a way to treat lowercase and uppercase letters as
equivalent, and the PowerBuilder to .NET compiler takes advantage of this
feature. However, if the .NET resources you are accessing have or contain
names that differ only by the case of their constituent characters, PowerBuilder
cannot correctly compile .NET code for these resources.

Cross-language data exchange Code inside a .NET conditional
compilation block is not visible to the main PowerBuilder compiler. If you use
variables to hold data from the .NET environment that you want to access from
outside the conditional block, you must declare the variables outside the
conditional block. Variables you declare outside a .NET conditional block can
remain in scope both inside and outside the conditional block.

Declaring enumeration constants You use a terminal exclamation mark (!)
to access enumeration constants in PowerScript. For more information about
using enumeration constants in the .NET environment, see “User-defined
enumerations” on page 209.

CHAPTER 14 Referencing .NET Classes in PowerScript

Deploying Applications and Components to .NET 205

Adding .NET assemblies to the target
If you want to call methods in .NET assemblies in your .NET application, you
need to import the assemblies into the target.

❖ To import a private .NET assembly into a .NET target:

1 Right-click the target in the System Tree, select Properties from the pop-
up menu, and select the .NET Assemblies tab.

2 Click the Browse button to open the Browse for a .NET Assembly dialog
box.

3 Browse to select a private assembly with the .dll, .tlb, .olb, .ocx, or .exe
extension and click Open.

To import multiple assemblies, you must select and import them one at a
time.

❖ To import a shared .NET assembly into a .NET target:

1 Right-click the target in the System Tree, select Properties from the pop-
up menu, and select the .NET Assemblies tab.

2 Click the Add button to open the Import .NET Assembly dialog box.

3 Select a shared assembly from the list and click OK.

To import multiple assemblies, you must select and import them one at a
time. You can also use the Import .NET Assembly dialog box to import
recently used assemblies.

For more information about shared and private assemblies, see “Installing
assemblies in the global assembly cache” on page 19.

Calling assembly methods from PowerScript
When you call methods from managed assemblies in PowerScript, you must
use PowerBuilder datatypes in any method arguments or return values. Table
14-3 shows the mappings between .NET, C#, and PowerBuilder datatypes.

Table 14-3: Datatype mappings in managed assembly methods

.NET datatype C# datatype PowerBuilder datatype

System.Boolean boolean Boolean

System.Byte Byte Byte

Calling assembly methods from PowerScript

206 PowerBuilder

For example, suppose you want to reference a method foo with arguments that
require separate int and long datatype values when you call the method in C#
script. The class containing this method is defined in an assembly in the
following manner:

public class MyClass
{
 public int foo(int a, long b);
 {
 return a + b

}
}

In PowerScript code, you must replace the foo method datatypes with their
PowerBuilder datatype equivalents (long for int, longlong for long):

long p1, returnValue
longlong p2
#IF Defined PBWINFORM Then

MyClass instanceOfMyClass
instanceOfMyClass = create MyClass
returnValue = instanceOfMyClass.foo(p1, p2)

#END IF

System.Sbyte Sbyte Sbyte

System.Int16 short Int

System.UInt16 ushort Uint

System.Int32 int Long

System.UInt32 uint Ulong

System.Int64 long Longlong

System.UInt64 ulong Unsignedlonglong

System.Single float Real

System.Double Double Double

System.Decimal Decimal Decimal

System.Char Char Char

System.String String String

System.DateTime System.Datetime Datetime

.NET datatype C# datatype PowerBuilder datatype

CHAPTER 14 Referencing .NET Classes in PowerScript

Deploying Applications and Components to .NET 207

Unidirectional cross-language calls
Although you can call .NET methods in PowerScript, you cannot currently call
PowerBuilder functions from .NET methods. Some PowerBuilder datatypes
such as Blob, Date, and Time do not have equivalent datatypes in the C#
language. Because you cannot make calls to PowerBuilder functions, there is
no need to map these PowerBuilder datatypes to C# datatypes.

Support for .NET language features
When you use conditional blocks of code for the .NET environment, you can
take advantage of the following features that are not available in the standard
PowerBuilder application environment:

• Support for sbyte and ulonglong Sbyte is the signed format of the byte
datatype and ulonglong is the unsigned format of the longlong datatype.

• Bitwise operators See “Bitwise operator support” next.

• Parameterized constructors Arguments are not permitted in
constructors for standard PowerBuilder applications, but they are
supported in conditional code blocks for the .NET environment.

• Static fields and methods Static fields and methods are not permitted
in standard PowerBuilder applications, but they are supported in
conditional code blocks for the .NET environment.

• Namespaces, interfaces, and user-defined enumerations You can
reference namespaces and .NET interfaces and enumerations in
conditional code blocks for the .NET environment. In standard
PowerScript code, namespaces are not available and you cannot declare an
interface or enumeration.

For more information on .NET enumerations, see “User-defined
enumerations” on page 209.

• .NET index access See “Accessing indexes for .NET classes” on page
210.

Support for .NET language features

208 PowerBuilder

Bitwise operator support
Standard PowerBuilder applications allow the use of the logical operators
AND, OR, and NOT to evaluate boolean expressions. In .NET applications and
components, in addition to evaluating boolean expressions, you can use these
same operators to perform bitwise evaluations. For the AND and OR operators,
a bitwise evaluation compares the bits of one operand with the bits of a second
operand. For the NOT operator, a bitwise evaluation assigns the
complementary bit of the single operand to a result bit.

The operands in a bitwise comparison must have integral data types, such as
integer, uint, long, ulong, and longlong. However, if either of the operands (or the
sole operand in the case of a NOT operation) has an any datatype, the .NET
application or component treats the operation as a standard logical evaluation
rather than as a bitwise comparison.

You can perform a bitwise comparison only inside a .NET conditional
compilation block. If you try to evaluate operands with integral datatypes in a
standard PowerBuilder application, you will get a compiler error.

For .NET applications and components, you can also use the bitwise operator
XOR. If you use this operator to evaluate a boolean expression in the .NET
environment, the return result is true only when one of the operands is true and
the other is false. If both operands are true, or both are false, the return result
for the XOR operator is false.

Table 14-4 describes the result of using the bitwise operators.

Table 14-4: Bitwise operators in the .NET environment

Operator Description

AND The bitwise “AND” operator compares each bit of its first operand to
the corresponding bit of its second operand. If both bits are 1, the
corresponding result bit is set to 1. Otherwise, the corresponding
result bit is set to 0.

OR The bitwise “inclusive OR” operator compares each bit of its first
operand to the corresponding bit of its second operand. If either bit is
1, the corresponding result bit is set to 1. Otherwise, the
corresponding result bit is set to 0.

XOR The bitwise “exclusive OR” operator compares each bit of its first
operand to the corresponding bit of its second operand. If one bit is 0
and the other bit is 1, the corresponding result bit is set to 1.
Otherwise, the corresponding result bit is set to 0.

NOT This is a unary operator. It produces the bitwise complement of its
sole operand. If one bit is 1, the corresponding result bit is set to 0.
Otherwise, the corresponding result bit is set to 1.

CHAPTER 14 Referencing .NET Classes in PowerScript

Deploying Applications and Components to .NET 209

User-defined enumerations
Declaring .NET
enumerations in
PowerScript

To use enumerations that you import from a .NET assembly, you must surround
the enumeration references in a conditional compilation block that is valid for
your .NET target environment. You must also append an exclamation mark
(“!”) to each of the enumeration’s constant strings that you declare in the
conditional code block.

For example, the following code defines the .NET enumeration class
TimeOfDay:

Public enum TimeOfDay
{

Morning = 0,
AfterNoon,
Evening

}

In PowerScript, you reference a .NET enumeration constant string as follows,
when TimeOfDay is an enumeration class in the ns_1.ns_2 namespace:

#if defined PBDOTNET THEN
ns_1.ns_2.TimeOfDay a
a=ns_1.ns_2.TimeOfDay.Morning!

#end if

Scope of enumeration
constant

When you set a system-defined enumeration constant in standard
PowerBuilder applications, there is no issue regarding the scope of the constant
definition, since all system enumeration constants are uniquely defined.
However, for .NET enumerations, you must define a scope for the constant
using the syntax:

enumerationType.enumerationEntryName!

If the enumeration class is declared under a namespace, you must include the
namespace when you set an enumeration constant:

namespacename.enumerationType.enumerationEntryName!

If there is no enumerationType enumeration class prefacing the declaration of
a constant in a .NET conditional code block, PowerBuilder assumes the
enumeration is a system-defined type and returns an error if the system-defined
type is not found.

The syntax for a PowerBuilder system enumeration constant in the .NET
environment is:

[enumerationType.]enumerationEntryName!

Support for .NET language features

210 PowerBuilder

Although you cannot use dot notation in a constant declaration for a
system-defined enumeration in standard PowerScript, the pb2cs compiler must
let you use dot notation for constant declarations that you make in a conditional
compilation block for the .NET environment. Prefixing a constant declaration
in the .NET environment with a PowerBuilder system enumeration name is
equivalent to making the same declaration without a prefix.

The VM initially checks whether the enumerationType is a declared .NET
enumeration class. If it does not find the enumeration class, it checks whether
the enumerationType is a PowerBuilder system enumeration. When the
enumerationType matches the name of a PowerBuilder system enumeration,
the VM sets the constant for your .NET application or component.

Therefore, for the system Alignment enumeration, the constant declaration
Alignment.Left! produces the same result as the Left! declaration inside a
.NET conditional code block. Outside such a code block, the
Alignment.Left! declaration causes a compiler error.

Accessing indexes for .NET classes
You can access the indexes of .NET classes in the same way you access
PowerBuilder array elements. However, in standard PowerBuilder
applications, you can reference indexes only using integral datatypes, such as
integer, short, long, and so on. In the .NET environment, you are not restricted
to referencing indexes as integral types; you can reference the indexes using
any datatypes as parameters.

The following example shows how to use a string datatype to access the index
of the .NET hashtable class, countries:

#IF Defined PBDOTNET then
system.collections.hashtable countries
countries = create system.collections.hashtable
//Assign value to hashtable
countries["Singapore"] = 6
countries["China"] = 1300
countries["United States"] = 200
//Obtain value from hashtable
int singaporePopulation, USAPopulation
singaporePopulation = countries["Singapore"]
USAPopulation = countries["United States"]
#END IF

CHAPTER 14 Referencing .NET Classes in PowerScript

Deploying Applications and Components to .NET 211

Limitations
This section lists some limitations on the code that can be enclosed in
conditional compilation blocks.

Functions cannot be called on basic types
You cannot call a method on a basic type, such as int, long, double, or decimal,
in a conditional compilation block, or an enumerated type. For example, this
code generates the compiler error “C0316: Function scope cannot be of type
int”:

string s
#if defined PBDOTNET then

int i
s = i.ToString() // generates error
MessageBox("String", s)

#end if

Calling the ToString method on an enumerated type produces the same error.
PowerBuilder allows methods to be called only on classes and interfaces.

Case sensitivity
Powerscript is case insensitive, but C# is case sensitive. If a resource has the
same name as another resource with differences only in the case of one or more
characters, PowerBuilder cannot process the resource names correctly.

Calls to PowerScript from .NET functions are not supported
You cannot call a .NET method inside a conditional code block if that method
calls back into PowerScript functions.

Delegates are not supported
A delegate is a type that safely encapsulates a method, similar to a function
pointer in C and C++. You cannot use delegates in conditional code blocks.

Limitations

212 PowerBuilder

.NET classes and interfaces cannot be used as parameters
.NET classes and interfaces cannot be used as the parameters to functions and
events.

Inheriting from .NET classes
You cannot create user objects, windows, or window controls that inherit from
.NET classes.

Implementing .NET interfaces
You cannot create user objects that implement .NET interfaces.

Consuming .NET generics
You cannot consume .NET generic classes or generic methods in conditional
code blocks. The .NET Framework 2.0 introduced generics to act as templates
that allow classes, structures, interfaces, methods, and delegates to be declared
and defined with unspecified or generic type parameters instead of specific
types. Several namespaces, such as System Namespace and
System.Collections.Generic, provide generic classes and methods.

The System.Nullable type is a standard representation of optional values and
as such it is also classified as generic and therefore cannot be consumed in
PowerBuilder .NET applications.

In .NET Assembly and Web service targets, you can select a check box to map
PowerBuilder standard datatypes to .NET nullable datatypes. Nullable
datatypes are not Common Type System (CTS) compliant, but they can be used
with .NET Generic classes if a component accepts or returns null arguments or
if reference arguments are set to null.

AutoScript does not support .NET classes
AutoScript works as expected for PowerBuilder objects, properties, and
methods inside conditional code blocks, but it does not display for .NET
classes.

CHAPTER 14 Referencing .NET Classes in PowerScript

Deploying Applications and Components to .NET 213

DYNAMIC and POST do not support .NET methods
You cannot use the DYNAMIC or POST keywords when you call a .NET
method.

.NET arrays of arrays
.NET arrays of arrays are not supported.

Reference static members with type name
Static members of .NET classes must be accessed using the type name, not with
an instance reference. This example deploys without error because the type
name of the class is used to access the static variable ID:

long dept_id
#if defined pbwebform then

dept_id = PBInterOp.Department.ID
#end if

Handling exceptions in the .NET environment
Modified exception
hierarchy

The PowerBuilder to .NET compiler changes the exception hierarchy used by
the native PowerScript compiler. In the native PowerBuilder environment,
Throwable is the root datatype for all user-defined exception and system error
types. Two other system object types, RuntimeError and Exception, inherit
directly from Throwable.

In the .NET environment, System.Exception is the root datatype. The
PowerBuilder to .NET compiler redefines the Throwable object type as a
subtype of the System.Exception class, and maps the .NET
System.IndexOutOfRangeException class to the PowerBuilder RuntimeError
object type with the error message “Array boundary exceeded.” The
PowerBuilder to .NET compiler also maps the following .NET exceptions to
PowerBuilder error objects:

• System.NullReferenceException class to the NullObjectError object type

• System.DivideByZeroException class to the DivideByZeroError object
type

Handling exceptions in the .NET environment

214 PowerBuilder

Figure 14-1 shows the exception hierarchy for PowerBuilder applications in
the .NET environment.

Figure 14-1: Exception hierarchy for PowerBuilder in the .NET
environment

Example using a .NET
system exception
class

Even though a .NET exception class is mapped to a PowerBuilder object type,
you must use the PowerBuilder object type in your PowerScript code. For
example, suppose you define a .NET test class to test for division by zero errors
as follows:

public class Test
{

public int division_test (int a)
{

return a/0;
 //pops a System.DivideByZero exception

}
}

CHAPTER 14 Referencing .NET Classes in PowerScript

Deploying Applications and Components to .NET 215

To catch the error in PowerScript, you can use the DivideByZeroError object
type or either of its ancestors, RuntimeError or Throwable. The following
PowerScript code catches the error caused by the call to the .NET Test class
method for invoking division by zero errors:

int i = 10
string ls_error
try
 #IF Defined PBDOTNET Then

Test t = create Test
i = t.division_test(i)

 #END IF
catch (DivideByZeroError e)
//the following lines would also work:
//catch (RuntimeError e)
//catch (Throwable e)

ls_error = e.getMessage ()
end try

Example using a
custom .NET
exception class

Suppose the .NET Test class is modified to catch a custom .NET exception:

public class Test
{

public int second_test (int a)
{

a = a/2;
 throw new MyUserException();

}
}

Because MyUserException is a user-defined exception in the .NET
environment, it cannot be caught by either the PowerBuilder Exception or
Throwable object types. It must be handled inside a .NET conditional
compilation block:

int i = 10
string ls_error
#IF Defined PBDOTNET Then

try
Test t = create Test
i = t.second_test

catch (MyUserException e)
 //this will also work: catch (System.Exception e)

ls_error = e.getMessage()
end try

#END IF

Handling exceptions in the .NET environment

216 PowerBuilder

Deploying Applications and Components to .NET 217

C H A P T E R 1 5 Best Practices for .NET Projects

About this chapter This chapter provides tips on design and coding for the .NET
environment.

Contents

The changes required to transform a PowerBuilder application into a
.NET application depend on the nature of the application, the scripting
practices used to encode the application functionality, and the number of
methods the application uses that are not supported in the .NET
environment.

Coding restrictions
Although PowerScript is essentially a compiled language, it is quite
tolerant. For the sake of performance, the PowerBuilder .NET compiler is
not designed to be as tolerant as the PowerBuilder native compiler. To be
able to compile your applications with .NET, you should avoid certain
practices in your PowerScript code.

The following language-level items apply when you plan to transform a
PowerBuilder application to a Windows Forms or Web Forms application.

Topic Page

Coding restrictions 217

Design-level considerations 221

Take advantage of global configuration properties 224

Use client-side events to delay postbacks 227

CHAPTER 15 Best Practices for .NET Projects

218 PowerBuilder

Syntax issues
Avoid the GoTo statement Jumping into a branch of a compound statement
is legal in PowerBuilder, because the concept of scope inside a function does
not exist in PowerScript. For example, the following code works well in
PowerBuilder:

if b = 0 then
 label: …
else
 …
end if
goto label

This PowerScript translates conceptually into the following C# code:

if (b == 0)
{ // opening a new scope
 label: …
}
else
{
 …
}
goto label;

Since a GoTo statement is not allowed to jump to a label within a different
scope in .NET, the C# code would not compile. For this reason, avoid using
GoTo statements.

Do not call an indirect ancestor event in an override event Suppose that
there are three classes, W1, W2, and W3. W1 inherits from Window, W2
inherits from W1, and W3 inherits from W2. Each of these classes handles the
clicked event. In the Clicked event of W3, it is legal to code the following in
PowerScript:

call w1::clicked

However, in C#, calling the base method of an indirect base class from an
override method is not allowed. The previous statement translates into the
following C# code, which might produce different behavior:

base.clicked();

In this example, a possible workaround is to move code from the Clicked event
of the indirect ancestor window to a window function, and then call the
function, rather than the original Clicked event, from the descendant window.

CHAPTER 15 Best Practices for .NET Projects

Deploying Applications and Components to .NET 219

Semantic issues
Do not use the This keyword in global functions A global function is
essentially a static method of a class. Although the PowerBuilder compiler
does not prevent you from using the This pronoun in a global function, the C#
compiler does not allow this.

Do not change an event's signature The PowerBuilder compiler does not
prevent you from changing the signature of an event defined by its super class,
but .NET does not allow this. For example, suppose the w_main class contains
the following event:

Event type integer ue_update(int e)

The subclasses of the w_main class should not change the parameters or the
return type of the event.

Do not change the access modifier of an inherited function to public If
your application contains a class that inherits from another class, do not change
to public access the access modifiers of functions whose access level in the
parent class was protected or private. The PowerBuilder compiler does not
prevent you from changing the access modifier of a function in an inherited
class from protected or private to public, but if you attempt to deploy a .NET
target that contains such a function, you receive an error indicating that a
private or protected function cannot be accessed.

Do not code Return statements in Finally clauses PowerBuilder allows
you to code a Return statement in the Finally clause of a Try-Catch-Finally-
End-Try statement, but C# does not support Return statements in Finally
clauses. If your code includes such statements, the compiler returns the error
“Return statement cannot be used in finally clause.”

Do not cast to object without inheritance relationship The PowerBuilder
compiler allows you to cast an object to classes that are not ancestors of the
object you are casting, such as sibling object classes. However, this is not
considered good coding practice, and is not allowed for .NET targets.

CHAPTER 15 Best Practices for .NET Projects

220 PowerBuilder

External functions
Differences in passing a structure by reference PowerBuilder allows you
to declare an external function that has a parameter of type Structure passed by
reference. For example:

Subroutine CopyMemory(ref structure s, int size)
library "abc.dll"

The s parameter can accept any datatype that is a pointer to something.

A PowerBuilder external function is mapped to the .NET Platform Invoke
functionality. This functionality requires that the structure passed into the
external function be exactly of the type declared. Therefore, when compiling
the following PowerScript code, the PowerBuilder .NET compiler issues an
error, because the parameter, li, references a LogInfo structure, which is
different from the function’s declared structure class.

LogInfo li
CopyMemory(ref li, 20) // error!

To solve this problem, you can declare an additional external function as
follows:

Subroutine CopyMemory(ref LogInfo li, int size) library
"abc.dll"

Structures as parameters in .NET Applications External functions that
have structures for parameters must be passed by reference rather than value if
you call them in a .NET Windows Forms or .NET Web Forms application when
the parameter is a const pointer. For example, a PowerScript call to the
SystemTimeToFileTime function in kernel32.dll could use the following
declaration, with the first parameter being passed by value and the second
parameter by reference:

Function boolean SystemTimeToFileTime(os_systemtime
lpSystemTime, ref os_filedatetime lpFileTime) library
"KERNEL32.DLL"

 For .NET Windows Forms or Web Forms applications, you must modify the
declaration to pass both parameters by reference:

Function boolean SystemTimeToFileTime(ref os_systemtime
lpSystemTime, ref os_filedatetime lpFileTime) library
"KERNEL32.DLL"

CHAPTER 15 Best Practices for .NET Projects

Deploying Applications and Components to .NET 221

The SystemTimeToFileTime function is declared as a local external function and
used in pfc_n_cst_filesrvunicode, pfc_n_cst_filesrvwin32, and other
operating-system-specific classes in the pfcapsrv.pbl in the PFC library. If you
use this library in a .NET Windows Forms or Web Forms application, you must
change the declaration as described above.

Allocate space before passing a string by reference Before passing a
string to an external function by reference in PowerBuilder, you should allocate
memory for the string by calling the Space system function. In subsequent calls
to the function, if you pass the same string to the function, PowerBuilder
continues to work well even if the string becomes empty, because memory
allocated for the string is not yet freed by the PowerBuilder VM.

This is not the case in the .NET environment. If the string passed to an external
function by reference is empty, and if the external function writes something to
the string, an exception is thrown. Therefore, you must make sure to allocate
enough space for a string before passing it to an external function by reference.

Design-level considerations
Although stricter compiler enforcement for the .NET environment can catch
coding errors typically tolerated by the PowerScript compiler, the .NET
environment might also require changes in application design that are not
necessarily caught by the compiler.

Use PowerBuilder system functions
For a PowerBuilder .NET Web Forms application, use PowerBuilder system
functions instead of external functions whenever possible. Some system
functions, such as the functions for file operations, are implemented differently
for Windows Forms and Web Forms. If you always use PowerBuilder system
functions, you do not need to worry about these differences.

Use GetCurrentDirectory Some applications use external DLL functions to
get the current directory. For PowerBuilder Web Forms applications, you must
use the GetCurrentDirectory standard system function instead.

CHAPTER 15 Best Practices for .NET Projects

222 PowerBuilder

PowerBuilder Web Forms use a virtual file system to emulate a file system on
the server for each client. The virtual file system is actually a folder on the
server computer to which the ASPNET user (IIS 5), the IIS_WPG user group
(IIS 6), or the IIS_IUSRS user group (IIS 7) has write permission. Calling an
external function to get the current directory from the virtual file system fails.

Use the DESTROY statement
The .NET garbage collection service does not trigger the Destructor event for
PowerBuilder objects. If you need to trigger the Destructor event for a
nonvisual object, you must explicitly call the PowerScript DESTROY
statement for that object.

Use regional formats based on client or server settings
The PBCultureSource global property determines whether a .NET Web Forms
application uses client or server regional settings. Client regional settings are
specified by the first language listed in the Language Preference dialog box of
the Internet Explorer browser. However, If you set PBCultureSource to “client”
and no language is listed in the Language Preference dialog box, server-side
regional settings are used instead.

Server regional settings are those set for the ASP.NET user or user group on the
server computer. You can use the IIS Manager to change the default regional
settings in the Globalization section of the Web.config files for your Web Forms
applications, or you can modify the Web.config files manually after you deploy
your applications.

The regional settings specify formats for the following items:

• numeric separators (decimals or commas)

• number of digits per group to the left of a separator

• currency symbol location when a specific EditMask is not used

• date and time values

The regional settings apply to DataWindow columns of relevant datatypes and
to the following PowerScript controls and functions:

• DatePicker control using the DtfLongDate!, DtfShortDate! or DtfTime!
format

CHAPTER 15 Best Practices for .NET Projects

Deploying Applications and Components to .NET 223

• EditMask control when the mask contains a [DATE], [TIME], or
[CURRENCY [{digit number}] format

• MonthCalendar control

• System String (v) function when the data argument datatype is Date, Time,
or DateTime (the formats for these datatypes are [SHORTDATE], [TIME],
or [SHORTDATE][TIME], respectively)

• System String (v, f) function when the format argument is [SHORTDATE],
[LONGDATE], [DATE], [TIME], or [DATETIME]

The regional settings selection can also apply to objects you include in .NET
conditional compilation blocks. It does not apply to button labels in message
boxes or other system dialog boxes.

You can set the PBCultureSource global property on the Configurations tab in
the Web Forms Project painter before you deploy a project. By default,
applications use the regional settings specified by the Web Forms server.

Work around unsupported features
Avoid using Handle Some applications call the Handle function to get the
window handle of a control and pass it to an external function. This does not
work in a Web Forms application.

Restrict impact of unsupported events Since unsupported events are
never triggered, do not allow the logic in unsupported events to affect the logic
flow of other events or functions. For example, if the code in an unsupported
event changes the value of an instance variable, it can affect the logic flow in
a supported event that uses that variable. Remove this type of coding from
unsupported events.

Avoid name conflicts PowerBuilder allows two objects to have the same
name if they are of different types. For example, you can use the name
s_address to define a structure and a static text control or a nonvisual object in
the same PowerBuilder application. The .NET environment does not allow two
classes to have the same name. To enable your application to compile in .NET,
you must not give the same name to multiple objects, even if they are of
different types.

Using structures in inherited objects Using local structures in inherited
objects can prevent deployment of a .NET project. To deploy the project,
replace all local structures defined in inherited objects with global structures.

CHAPTER 15 Best Practices for .NET Projects

224 PowerBuilder

AcceptText is redundant In the Web Forms deployment version of the
DataWindow, explicit invocations of AcceptText are redundant but harmless.
Any loss of focus of a DataWindow implicitly invokes AcceptText.

Avoid hindrances to application performance
Some functions and features that are fully supported can hinder application
performance. Use these functions and features sparingly and avoid them where
possible.

Response windows and message boxes Although response windows and
message boxes are supported in Web Forms, use them only when absolutely
necessary. Response windows and message boxes require more server-side
resources than other kinds of windows.

Hiding a response window in a Web Forms application does not work properly
and can cause the application to fail. Instead of hiding a response window,
always close it when the user has finished with it.

Yield Although the Yield function works in a Web Forms application, avoid it
whenever possible, because it requires additional server-side resources.

Timers Timers are supported in Web Forms applications, but they
periodically generate postbacks and can impede data entry. Use them sparingly
and avoid including them on forms that require data entry. When you use them,
delay the postbacks by appropriate scripting of client-side events.

PFC The DataWindow service in PFC handles many DataWindow events.
Each event causes a postback for each mouse-click, which adversely affects
application performance. Delay postbacks by scripting client-side events or
cache DataWindow data in the client browser by setting the paging method
property for the DataWindow object to XMLClient!.

Take advantage of global configuration properties
Properties have been added to standard PowerBuilder controls to enhance the
application presentation in the .NET environment and to improve application
performance. These properties are listed in “Global Web configuration
properties” on page 82. You can set them on the Configuration tab in the .NET
Web Forms project painter.

CHAPTER 15 Best Practices for .NET Projects

Deploying Applications and Components to .NET 225

The global properties are generated in the Web.config file in the main folder for
your PowerBuilder .NET Web Forms project under the IIS server root. After
deployment, you can edit the file directly, or you can modify the global
properties using the IIS Manager.

For information on how to modify global properties in the IIS Manager, see
“Viewing and modifying global properties in IIS Manager” on page 8.

Global properties also allow you to share data across application sessions. For
information on sharing DataWindows, see “Sharing data across sessions” on
page 32.

DataWindow pagination
If the HTMLGen.PageSize property (RowsPerPage property in DataWindow
.NET and Rows Per Page in the DataWindow painter) of a DataWindow object
is not set, the Web.config file property PBDataWindowRowsPerPage limits the
number of rows per page for a Web DataWindow control to 20 rows by default.
Because this renders only the specified number of rows at a time, the
PBDataWindowRowsPerPage helps reduce the size of the HTML response and
thereby enhances performance. This property is global, since it applies to all
DataWindows in the application for which HTMLGen.PageSize is not set.

Pagination and DataWindow presentation style
The PBDataWindowRowsPerPage setting has no effect on the number of rows
in a DataWindow object with the Label presentation style. Composite and
Crosstab presentation styles do not support pagination.

To disable pagination of Web Forms DataWindow objects, set the
PBDataWindowRowsPerPage property to -1. To disable pagination for a
specific DataWindow object, set its HTMLGen.PageSize property to -1.

CHAPTER 15 Best Practices for .NET Projects

226 PowerBuilder

DataWindow page navigation
There are several global properties related to DataWindow page
navigation.You can set the navigation bar at the top or the bottom of a
DataWindow page by modifying the PBDataWindowNavigationBarPosition
property. You can edit labels for the “QuickGo” navigation bar and the text for
the current and total page counts by modifying the
PBDataWindowGoToDescription, PBDataWindowGoToButtonText, and
PBDataWindowStatusInfoFormat properties.

The PBDataWindowPageNavigatorType property lets you select the type of
navigation bar you want to use: NextPrev, Numeric, QuickGo, or combined
types. Figure 15-1 shows the default “NextPrev” navigation bar. It also
displays page status information with the default text for the current and total
page count. You can set the text in the PBDataWindowStatusInfoFormat
property.

Figure 15-1: “NextPrev” navigation bar with page count display

The NextPrev navigation bar includes the “>” symbol for navigating to the next
page, and the “<” symbol for navigating to the previous page. Doubled
symbols are controls for navigating to the first page (“<<”) or last page (“>>”).
The navigation bar folds up to display only symbols that are functional when a
user displays the first or last page of a DataWindow. For example, the user
cannot navigate to a previous page from the first page, and navigating to the
first page is unnecessary, so the “<” and “<<” symbols do not display on the
first page.

Figure 15-2 displays the “NumericWithQuickGo” navigation bar. The numeric
portion of the navigation bar lists each page by its page number. You can set
the PBDataWindowPageNavigatorType to “Numeric” or to “QuickGo” if you
want to use these styles separately. You can also combine the NextPrev style
with the QuickGo style by setting the PBDataWindowPageNavigatorType
property to “NextPrevWithQuickGo”.

CHAPTER 15 Best Practices for .NET Projects

Deploying Applications and Components to .NET 227

Figure 15-2: “NumericWithQuickGo” navigation bar and page count

Although the QuickGo navigation control defaults to a drop-down list, you can
change this to a text box with an associated command button by setting the
PBDataWindowQuickGoPageNavigatorType property to “Button”. You can
edit the button label by setting the PBDataWindowGoToButtonText property.
You set the label for the text box or the drop-down list by modifying the
PBDataWindowGoToDescription property.

Use client-side events to delay postbacks
Before the .NET target is deployed, you can code client-side events in
JavaScript and set properties to reference the JavaScript code that handles
client-side events. You must set the properties in #IF DEFINED -#END IF
conditional compilation code blocks for .NET targets. The beginning and end
tags for these code blocks signal the PowerBuilder native compiler to ignore
the code contained inside them.

For more information, see “About conditional compilation” on page 199.

The code inside the conditional compilation code blocks is passed to the Web
browser client from the server at runtime. You use this code to designate
JavaScript functions that handle events on client-side objects. Most events on
client-side objects cause a postback to controls on the server side, because the
events have server-side analogs that are written originally in PowerScript, then
transformed to run in the .NET environment.

If you write any JavaScript code for the client-side events, the postback to the
server is interrupted. To resume a postback, you can call the submit method for
Web Forms or one of the postback methods generated in the PBDataWindow.JS
file. The PBDataWindow.JS file is generated in the Scripts subdirectory of the
main project directory under the IIS virtual root.

The postback methods of the PBDataWindow.JS file are described in Chapter
3, “Client-Side Events and Default Event Handlers.”

CHAPTER 15 Best Practices for .NET Projects

228 PowerBuilder

DataWindow property for setting a customized event handler
Properties of the DataWindow class allow you to handle client-side events in
JavaScript code. The JavaScriptFile property specifies the JS file that contains
JavaScript functions for handling individual client-side events. Make sure to
deploy the JavaScript file that contains your customized event handling code.
You assign the JavaScriptFile property in an #IF DEFINED -#END IF code
block:

#IF Defined PBWEBFORM THEN
dw_1.JavaScriptFile = “D:\Scripts\MyScriptFile.js”

#end if

DataWindow properties for calling client-side events
The following DataWindow events can be handled on the client side in
JavaScript code:

• Clicked

• ButtonClicking

• ButtonClicked

• DoubleClicked

• ItemChanged

• ItemError

• ItemFocusChanged

• RButtonDown

• RowFocusChanged

• RowFocusChanging

For more information on client-side events, see Chapter 3, “Client-Side Events
and Default Event Handlers.”

To specify a JavaScript function for handling a client-side event, you must
indicate the function to call in the corresponding Web DataWindow property.
The name of the corresponding property consists of the name of the client-side
event with an “OnClient” prefix. For example, the property corresponding to
the ItemChanged event is OnClientItemChanged.

CHAPTER 15 Best Practices for .NET Projects

Deploying Applications and Components to .NET 229

The following example references a script called MyDwClickedEventHandler
for the client-side DataWindow Clicked event. The script for the
MyDwClickedEventHandler event handler must use the syntax for the
client-side Clicked event described in Chapter 3, “Client-Side Events and
Default Event Handlers.”

#IF Defined PBDOTNET THEN
dw_1.JavaScriptFile = “D:\Scripts\MyScriptFile.js”
dw_1.OnClientClicked = “MyDWClickedEventHandler”

#END IF

Client-Side CommandButton property
The OnClientClick CommandButton property specifies a snippet of JavaScript
code that executes when a command button is clicked.

AutoPostBack
You can reduce postbacks and increase performance by setting the
AutoPostBack property for CheckBox and RadioButton controls to false.

#IF DEFINED PBWEBFORM THEN
cbx_1.AutoPostBack = false

#END IF

For more information on the built-in Web Forms control properties, see
Chapter 6, “Properties for .NET Web Forms.”

CHAPTER 15 Best Practices for .NET Projects

230 PowerBuilder

P A R T 6 Compiling, Debugging, and
Troubleshooting

This part provides information about compiling, debugging,
and troubleshooting .NET targets.

Deploying Applications and Components to .NET 233

C H A P T E R 1 6 Compiling and Debugging

About this chapter This chapter discusses what happens when you use incremental builds for
.NET application targets and explains how to debug .NET application and
component targets.

Contents

Incremental rebuild for .NET application targets
Incremental builds allow you to save time while deploying applications
for testing or production purposes. For incremental builds, only object
classes that are affected by one or more changes are recompiled during the
build process.

Target level
The incremental rebuild process for .NET targets is conducted as the first
step of a project's deployment to a .NET platform. Although deployment
remains at the project level, incremental rebuilds are done at the target
level. This means that multiple projects within a single target are able to
benefit from this time saving feature by sharing the same incremental
build assemblies or .NET modules.

.NET Web Service and .NET Assembly targets
Incremental builds are not available for .NET component targets. The
PowerBuilder .NET compiler always does full rebuilds for these target
types.

Topic Page

Incremental rebuild for .NET application targets 233

Debugging a .NET application 238

Debugging a .NET component 243

CHAPTER 16 Compiling and Debugging

234 PowerBuilder

Build and deploy directories
When you deploy a .NET application project, PowerBuilder creates a build
directory under the directory for the current target. The name of the build
directory is TargetName.pbt_build, where TargetName is the name of the
current target. If the project you deploy has a debug build type, the build files
are generated in a “debug” subdirectory of the TargetName.pbt_build directory.
If the project you deploy has a release build type, the build files are generated
in a subdirectory named “release.”

The debug and release subdirectories store incremental build results only.
PowerBuilder does a full rebuild if files are missing or damaged in one of these
subdirectories. The subdirectories or their parent directory cannot be used for
a project's output path or working path.

In addition to the debug and release directories, PowerBuilder creates a deploy
directory when you first deploy a project from the current target. The deploy
directory contains an XML file for each project in the target that you deploy.

Rebuild scope
An option on the General tab page of .NET Windows Forms and Web Forms
Project painters allows you to choose whether you want to do a full rebuild or
an incremental build when deploying a .NET project. The default option is
incremental.

If the application has not been previously deployed, a full build is triggered by
the PowerBuilder IDE even when the incremental rebuild option is selected.
The incremental rebuild option is also overridden if you remove the build
directory that PowerBuilder generates from a previous build, or if some of the
build files are missing or damaged in the build directory or its subdirectories.

.NET modules
For a debug build, the PowerBuilder .NET compiler creates a .NET module for
each PowerBuilder class or class group. A class group consists of a container
object that instantiates a primary class, and the controls in that container object,
that are instances of subsidiary classes. For example, a window normally
contains several controls. The window and the controls are declared as separate
classes that are bound together as a class group in the .NET build process.

CHAPTER 16 Compiling and Debugging

Deploying Applications and Components to .NET 235

For a release build, the compiler creates a .NET module for each PBL rather
than for each class or class group. Although basing the generated .NET
modules on classes and class groups increases performance for incremental
builds, this is mostly needed at development time when the application is being
debugged. At production time, basing the generated .NET modules on target
PBLs is more advantageous, since it minimizes the number of modules that
need to be deployed.

Incremental rebuilds are supported for deployment to remote servers as well as
for MSI file generation. In addition to saving time on deployment, the
generation of .NET modules is especially beneficial for smart client Windows
Forms applications, because the modules can reduce the size of the assembly
files that need to be updated.

PBD generation
In addition to .NET modules or assemblies, PowerBuilder can generate PBD
files for application PBLs containing DataWindow, Query, or Pipeline objects.
(Pipeline objects are supported in Windows Forms targets, but are not currently
supported in Web Forms targets or in the .NET component targets.) The PBD
files are linked as external resources with the generated .NET modules and
assemblies.

If you use incremental builds for your Windows Forms or Web Forms targets,
the PBD files are generated only for selected PBLs in which modifications
have been made to DataWindow, Query, or Pipeline objects. For these target
types, the PBD files are generated in a “pbd” subdirectory of the
TargetName.pbt_build directory. The PBD files are deployed together with the
generated .NET modules or assemblies. On deployment, they are not deleted
from this subdirectory since they are used to check for changes during
subsequent incremental builds.

If you use full builds, PBD files are always generated for selected PBLs
containing DataWindow, Query, or Pipeline objects even when there are no
changes to these objects—although you can prevent generation by clearing the
check box next to the PBL name on the Library Files tab page of the Project
painter. Since you cannot use incremental builds with .NET component targets,
PBD files are always generated by default for these target types.

CHAPTER 16 Compiling and Debugging

236 PowerBuilder

Triggering build and deploy operations
PowerBuilder lets you trigger build and deploy operations when you run or
debug a .NET Web Forms or Windows Forms project. By default, when you
click the running man or debugging icon in the PowerBuilder toolbar, or select
Run from a project menu or context menu for one of these target types,
PowerBuilder determines if there is a corresponding build directory for the
selected target. If there is, PowerBuilder checks whether the .NET modules in
the build directory are consistent with the latest changes to each object in your
current application.

If implementation or interface changes are detected or if the build directory
does not exist for the current target, PowerBuilder displays a message box that
tells you the project is out of date and that prompts you to redeploy the project.
The message box has three buttons (Yes, No, and Cancel) and a check box that
lets you prevent the display of the message box the next time you click or select
run or debug.

If you click Yes in the message box, PowerBuilder builds the project using an
incremental or full rebuild—depending on the current rebuild scope—and then
redeploys it, using the current project’s deployment specifications. If you click
No in the message box with the redeployment prompt, PowerBuilder attempts
to run or debug the currently deployed target even though it is out of date.
Clicking Cancel terminates the run or debug request.

If you select this “Do not ask me again” check box and then click the Yes or
No button, PowerBuilder modifies a drop-down list selection on the General
tab of the System Options dialog box.

System option
The “On click Run, if .NET application projects are out of date” drop-down list
selection on the General tab of the System Options dialog box determines
whether a message box displays when you run or debug a project and project
objects have been modified. Table 16-1 shows the choices available in this
drop-down list:

CHAPTER 16 Compiling and Debugging

Deploying Applications and Components to .NET 237

Table 16-1: Drop-down list selections for incremental builds

The message box that prompts you to redeploy an out-of-date project can
display only when the drop-down list selection is “Ask me.” This selection
changes automatically to “Always redeploy” if you click Yes in the message
box when the “Do not ask me again” check box is selected. It changes to
“Never redeploy” if you click No in the message box when the “Do not ask me
again” check box is selected.

How incremental builds work
When you save recently edited code, the PowerBuilder IDE first invokes the
PowerScript compiler to get information for updating the System Tree and the
property sheet.

There are basically three kinds of changes that the compiler handles:

• Implementation changes, such as modifications to a function body or to
the properties of a class.

• Interface changes, such as the removal of a function or the modification of
a function prototype.

• Data changes, including edits made to a DataWindow, Query, or Pipeline
object.

The IDE collects the information that has changed, performs a full or
incremental PowerScript rebuild, and passes the necessary information to the
pb2cs .NET translator. If the PowerScript compiler reports any errors the IDE
does not invoke the .NET translator.

Selection Effect when you click or select Run or Debug

Ask me (Default selection.) Causes a message box to display if the
current project has been modified since the last time it was
deployed or if it has never been deployed before.

Always redeploy Always redeploys a project before running or debugging it. It
first rebuilds the project using the rebuild scope set in the
Project painter.

Never redeploy Never redeploys a project before trying to run it, although it
does deploy a project that has not been previously deployed,
and then attempts to run or debug that project. (You should not
use this option if you want to debug a project that you have
previously deployed.)

CHAPTER 16 Compiling and Debugging

238 PowerBuilder

An interface change that is successfully compiled by the PowerScript compiler
and then passed to pb2cs can also affect code in classes that are compiled in a
different .NET module of the same target. In this case, if you rebuild the project
using the incremental rebuild process, the .NET runtime throws an exception
when you try to run the application.

PowerBuilder catches and translates .NET runtime exceptions to error
messages describing the exception source. Before redeploying the application,
you can correct this type of error by changing the PowerScript code based on
the contents of the error message or by performing a full rebuild. If there are
many places in other .NET modules affected by the interface change, it is best
to do a full rebuild.

If you only make data changes to DataWindow objects before an incremental
rebuild, the .NET rebuild process is skipped entirely and only application PBD
files are redeployed.

Debugging a .NET application
After you have deployed a PowerBuilder Web Forms or Windows Forms
application, you can debug it. To launch the application and open the debugger,
right-click the target or project in the System Tree and select Debug from its
pop-up menu. You can also select the Debug Project button or the
Design>Debug Project menu item in the Project painter, or the Debug button
in the PainterBar.

.NET debugger restrictions
The .NET debugger supports most features of the debugger for standard
PowerBuilder applications, including expression evaluation and conditional
breakpoints. It does not support the Objects in Memory view or variable
breakpoints, which are not supported in .NET. Local variables that are declared
but not used do not display in the Local Variables view in .NET targets.

Additional debugging restrictions include the following:

• Debugger icon display in .NET Web Forms projects When you close
a .NET Web Forms application that is being debugged, the Stop
Debugging icon remains enabled in the debugger, and the StartDebugging
icon is disabled.

CHAPTER 16 Compiling and Debugging

Deploying Applications and Components to .NET 239

• Single-stepping between events In the .NET debugger, when you step
into a statement or function in an event script, the debugger displays the
next line of code. However, if you step into a different event script, the
debugger continues execution to the next breakpoint. You should add a
breakpoint to each event that you want to debug.

For example, if you have set a breakpoint in the application's Open event,
and the script opens a window, the debugger does not step into the
window's Open event. You should set a breakpoint in the window's Open
event or in a user-defined event that is called from the Open event.

• Setting breakpoints in modified code If you modify your code after
successfully debugging a .NET application, you must redeploy the
application before you debug it again. Although you can still set
breakpoints in modified lines of code before you redeploy an application,
the debugger debugs only the last deployed version of your application.

• Server support restrictions for .NET Web Forms projects The .NET
debugger does not support IIS 6 if the maximum number of worker
processes is set to greater than one. This is because it cannot determine
whether the process to be debugged is newly created or is recycled from a
pool of worker processes. (The debugger must attach to the worker process
in Web garden mode.) It also does not support the Cassini Web server that
ships with .NET Framework 2.0.

• Multiple applications using the same PBLs When you run or debug a
Web Forms application, its PBLs can remain cached in the ASP.NET
process. If you then try to debug a second Web Forms application that
shares a PBL with the first application, the ASP.NET process lets the
debugger know that the first module is loaded and the debugger binds to
breakpoints in that module. In this case, the debugger never binds to
breakpoints in the second application. You can avoid this issue by not
sharing PBLs among Web Forms projects or by restarting IIS before you
begin debugging.

• Remote debugging Debugging of Web Forms or Web Service targets is
not supported for applications or components deployed to remote IIS
servers.

For information about standard PowerBuilder debugger features, see
“Debugging an application” in the User’s Guide.

CHAPTER 16 Compiling and Debugging

240 PowerBuilder

Release and Debug builds
On the General page in the Project painter, you can choose to build a release
build or a debug build. If you choose a debug build, an extra file with the
extension .PDB is generated in the output directory and additional information
displays in the Output window. If you want to stop at breakpoints in your code,
you must use a debug build. Select a release build when your application is
ready to distribute to users.

DEBUG preprocessor symbol
You can also enable or disable the DEBUG preprocessor symbol. This is useful
if you want to add code to your application to help you debug while testing the
application. Although you do not typically enable the DEBUG symbol in a
release build, if a problem is reported in a production application, you can
redeploy the release build with the DEBUG symbol enabled to help determine
the nature or location of the problem.

When the DEBUG symbol is enabled, code that is enclosed in a code block
with the following format is parsed by the pb2cs code emitter:

#if defined DEBUG then
/*debugging code*/

#else
/* other action*/

#end if

Adding breakpoints in a DEBUG block
When you use the DEBUG symbol, you can add breakpoints in the DEBUG
block only for lines of code that are not in an ELSE clause that removes the
DEBUG condition. If you attempt to add a breakpoint in the ELSE clause, the
debugger automatically switches the breakpoint to the last line of the clause
defining the DEBUG condition.

In the previous pseudocode example, if you add a breakpoint to the comment
line “/* other action*/”, the breakpoint automatically switches to the
“/*debugging code*/” comment line.

Figure 16-1 shows the pop-up menu item that you can use to paste the #If
Defined DEBUG Then template statement in the Script view.

CHAPTER 16 Compiling and Debugging

Deploying Applications and Components to .NET 241

Figure 16-1: Menu cascade for pasting a template into a script

For more information about using preprocessor symbols, see “About
conditional compilation” on page 199.

Attaching to a running Windows Forms process
For Windows Forms projects, you can start your deployed application from its
executable file before starting the debugger, and then attach to the running
process from the debugger. To attach to a process that is already running, select
Run>Attach to .NET Process in the Project painter to open a dialog box from
which you can select the process.

After you attach to the process, it starts running in the debugger and you can
set breakpoints as you normally do. Select Run>Detach to detach from the
process. This gives you more flexibility than simply using just-in-time (JIT)
debugging.

CHAPTER 16 Compiling and Debugging

242 PowerBuilder

Breaking into the debugger when an exception is thrown
When an application throws an exception while it is being debugged, the
debugger sees the exception before the program has a chance to handle it.The
debugger can allow the program to continue, or it can handle the exception.
This is usually referred to as the debugger’s first chance to handle the
exception. If the debugger does not handle the exception, the program sees the
exception. If the program does not handle the exception, the debugger gets a
second chance to handle it.

You can control whether the debugger handles first-chance exceptions in the
Exception Setting dialog box. To open the dialog box, open the Debugger and
select Exceptions from the Debug menu. By default, all exceptions inherit from
their parent and all are set to Continue. Figure 16-2 shows the
DWRuntimeError exception has been set to “Break into the debugger.”

Figure 16-2: Exception Setting dialog box

When this exception is thrown, a dialog box displays so that you can choose
whether to open the debugger or pass the exception to the program.

CHAPTER 16 Compiling and Debugging

Deploying Applications and Components to .NET 243

Debugging a .NET component
.NET Assembly component You can run or debug an assembly project from
the PowerBuilder UI if you fill in the Application field (and optionally, the
Argument and Start In fields) on the project Run tab in the Project painter.
Table 12-3 describes the Run tab fields for a .NET Assembly project.

.NET Web Service component When you start the debugger and Internet
Explorer is listed as the application to run a Web Service project, a browser test
page opens with links to the Web services deployed from your project.

Using the DEBUG symbol If you used the DEBUG conditional compilation
symbol in code for the nonvisual objects you deploy as a Web service and you
want this code to run, you must make sure that the enable DEBUG symbol
check box is selected before you deploy the project. If you plan to debug the
assembly or Web service, you should make sure the project is deployed as a
debug build.

CHAPTER 16 Compiling and Debugging

244 PowerBuilder

Deploying Applications and Components to .NET 245

C H A P T E R 1 7 Troubleshooting .NET Targets

About this chapter This chapter provides troubleshooting tips for PowerBuilder .NET
applications and components.

Contents

Troubleshooting deployment errors
The deployment process has two steps: the PowerBuilder to C# emitter
(pb2cs) runs, then the project is compiled. Errors are written to the output
window, and the progress of the deployment process is written to the
DeployLog.txt file.

PB2CS errors If pb2cs fails, make sure that:

• The PBNET_HOME system environment variable is set to the
location of your PowerBuilder 11.0\DotNET directory.

• The pbc2cs.exe file is present in the PowerBuilder 11.0\DotNET\bin
directory and is the version distributed with the current PowerBuilder
release.

If pb2cs fails and your application has any objects or controls whose
names include dashes, open a painter with a Script view and select
Design>Options from the menu bar. Make sure the Allow Dashes in
Identifiers option is selected on the Script page in the Design Options
dialog box.

Topic Page

Troubleshooting deployment errors 245

Troubleshooting tips for Web Forms applications 246

Troubleshooting tips for Windows Forms applications 252

CHAPTER 17 Troubleshooting .NET Targets

246 PowerBuilder

If your application uses local structures in inherited objects, the .NET project
might fail to deploy. To deploy the project successfully, replace all local
structures defined in inherited objects with global structures. Also, your
application must not include calls to functions, such as ToString, on primitive
.NET datatypes, such as System.String, that map to PowerBuilder datatypes.
See Table 14-3 for the list of datatype mappings from .NET to PowerBuilder.

If your application uses conditional compilation blocks, see “Limitations” on
page 211 to make sure that you have not used any .NET classes, interfaces, or
methods in ways that are not supported.

You should also read “Coding restrictions” on page 217 and “Design-level
considerations” on page 221.

Errors that display in the Output window with a C0 prefix, such as error C0312,
are generated by the PowerBuilder compiler. There is a link from these errors
back to the source code in PowerBuilder painters. Explanations for
PowerBuilder compiler errors can be found in the online Help.

Build errors If there is a build failure, make sure the 2.0 version of the .NET Framework is
installed and is listed in your PATH environment variable before any other
versions of the .NET Framework.

Errors that display in the Output window with a CS prefix, such as error
CS0161, are generated by the Microsoft C# compiler. There is no link from
these errors back to the source code in PowerBuilder painters. Explanations for
C# compiler errors can be found at the Microsoft Web site at
http://msdn2.microsoft.com/en-us/library/ms228296(VS.80).aspx.

Runtime errors If a Web Forms application displays a blank page, or if any .NET application
or component produces unexpected errors, make sure that the PowerBuilder
runtime files on the target computer or server have the same version and build
number as the PowerBuilder files on the development computer.

Troubleshooting tips for Web Forms applications
After successfully deploying a PowerBuilder .NET project, you might
encounter some of the following common, easy-to-fix issues at runtime.

CHAPTER 17 Troubleshooting .NET Targets

Deploying Applications and Components to .NET 247

Failure to deploy to local machine alias
You can deploy a Web Forms project to a local IIS server using “localhost” or
one of the following aliases:

• Machine name

• Machine IP address

• 127.0.0.1 (the generic DNS address for the local computer)

However, in order to use the machine IP address or the generic DNS address
for the local machine, you must share the wwwroot directory as “wwwroot$”
and enable write permissions for this directory.

If you are deploying .NET applications from a computer with the Vista
operating system, you must run PowerBuilder as the computer administrator.

Browser error messages
Null reference exception The “Object reference not set to an instance of an
object” error message might display in a client browser for a Web Forms
application if the application uses an unsupported version of the .NET
Framework. The error message description indicates that “an unhandled
exception occurred during the execution of the current web request,” and the
exception details display a “System.NullReferenceException”.

You can resolve this type of error by opening a command window on the server,
changing directories to the Microsoft.NET\Framework\v2.0.50727 directory
in the Windows system path, and typing the following command:
aspnet_regiis -i. This upgrades all IIS scriptmaps to use the 2.0 release
version of ASP.NET. After running this command and restarting the server, the
error message should no longer display.

Could not load <Global.app> This error is usually due to an incorrect
ASP.NET or IIS configuration setup. To resolve this issue, make sure .NET
Framework 2.0 is installed on the server computer, register ASP.NET 2.0 with
IIS by running aspnet_regiis.exe -I from the .NET Framework 2.0
directory, and make sure ASP.NET 2.0 is the version set for your Web
application in the IIS Manager. You might also need to restart IIS.

Exception from HRESULT: 0x8007007E This error can be caused by
different versions of PowerBuilder 11.0 .NET assemblies in the server
environment. To resolve this issue, remove extra copies of PowerBuilder 11
.NET assemblies from the Global Assembly Cache (GAC), leaving only the
latest copies of each assembly.

CHAPTER 17 Troubleshooting .NET Targets

248 PowerBuilder

Page cannot be displayed This error is also known as the “404 file not
found” error. If you see this error, make sure all the application files and folders
have been generated under the wwwroot directory on the IIS server computer.
If you are using a TCP port number other than 80 (the default port number),
you must include the port number in the URL for the Web Forms application.

If you are trying to open the page from a remote client, ping the server to make
sure it is accessible. If the firewall is on for the server you are accessing, turn
it off and open the page again.

File not found exception After successfully deploying a Web Forms
application, you might see an error such as the following when you try to run
the application: System.IO.FileNotFoundException: The specified
module could not be found. This is typically because IIS cannot locate
PowerBuilder runtime DLLs, such as pbdwm110.dll or pbshr110.dll, or the
Microsoft Visual C++ runtime libraries msvcr71.dll and msvcp71.dll and the
Microsoft .NET Active Template Library (ATL) module, atl71.dll. To resolve
this issue, make sure the DLLs are available on the server and that the directory
where the DLLs are located is included in the system path on the server.

Problem with toolbars and menu controls
If the application toolbar and menu controls are not working properly, this is
most likely due to the improper installation of the Microsoft IE Web controls.
For more information, see “Setting up IE Web Controls on the server” on page
12.

You can use Telerik RadControls instead of IE Web Controls for application
toolbars and menus. You make this substitution by changing the
PBWebControlSource global property to RAD. For more information on global
properties, see “Global Web configuration properties” on page 82.

Failure to connect to database
DSN Due to limited access rights of ASP.NET user and user group accounts,
data sources created as User DSNs cannot be loaded. You must create the data
sources for your Web Forms application as System DSNs.

CHAPTER 17 Troubleshooting .NET Targets

Deploying Applications and Components to .NET 249

Oracle The appropriate user or user group must be granted full control rights
to the Oracle Client directory. For example, if the Oracle client is installed in
the c:\oracle\ora9 directory, the ASPNET user (IIS 5), the IIS_WPG user group
(IIS 6), or the IIS_IUSRS user group (IIS 7) must have full control rights to this
directory.

SQL Anywhere To launch a SQL Anywhere database automatically from a
Web Forms application, the appropriate user or user group must be granted at
least read and execution rights to the directory indicated by the SQLANY10 or
ASANY9 environment variable. The ASPNET user, the IIS_WPG user group,
or the IIS_IUSRS user group must also have full control privileges to the
directory that contains the database.

Database connections using an INI file If your application uses an INI file
to get database connection information, make sure to add the INI file to the
resource file list of your .NET Web Forms project before you deploy it.

JDBC connections If an error message indicates that the Java VM cannot be
initialized, make sure that the system CLASSPATH and JAVA_HOME
environment variables have been set correctly. If an error message indicates
that you are attempting to read from or write to protected memory, make sure
the ASPNET user, the IIS_WPG user group, or the IIS_IUSRS user group has
at least read, execute, and list folder contents permissions for the vendor's
JDBC directory.

After making any changes to the directory permissions or system environment
variables, restart the IIS service and either ASPNET_WP.EXE (IIS 5) or
W3WP.EXE (IIS 6 and IIS 7). Alternatively, you can restart the IIS server to
make sure that the changes take effect.

DataWindows do not display
Make sure the PBL files that contain the DataWindows you want to display are
copied to the directory you assigned to the PBLibDir global property. By
default, the PBLibDir global property assigns C:\~PL_ as the directory for
application PBL files. This corresponds to the File\Common\C\~PL_
subdirectory of the applicationName_root directory in the server’s virtual file
system path.

CHAPTER 17 Troubleshooting .NET Targets

250 PowerBuilder

Pictures do not display
Before you deploy a .NET Web Forms project, make sure you add all picture
files used by the application to the resource file list for the project.

Resource files might not be accessible if you change the default value for the
initial current directory of the virtual file system for the Web Forms project.
The default value in the .NET Web Forms Application wizard is the current
target path. Modifying the PBCurrentDirectory global property in the project’s
ASP.NET configuration settings or directly in the Web.config file might also
make the resource files inaccessible.

Excessive flickering on Web page
A Web Forms application user might encounter excessive flickering in an
application if a default browser setting has been changed. When this occurs, the
user must select the “Enable page transitions” check box on the Advanced tab
of the Internet Options dialog box to minimize or eliminate the flickering
problem. The user can open the Internet Options dialog box from the Tools
menu of Internet Explorer.

Posted events are not executed
If you post an event in a response window that closes the response window, and
call posted events in the Open event for a main window that displays when the
response window is closed, the posted events in the Open event are not
executed. This is due to a limitation of the threading model in Web Forms
applications.

To make sure that the posted events of the main window are executed, close the
response window directly in a triggered event rather than in a posted event.
Alternatively, move the code from posted events in the main window to events
that are triggered directly by the user.

External DLLs cannot be loaded
Make sure the DLLs you want to load are copied to the bin subdirectory of the
main Web Forms application directory in the server’s virtual file system path.

CHAPTER 17 Troubleshooting .NET Targets

Deploying Applications and Components to .NET 251

Print failure
Some of the PowerScript print functions are not supported in the current
release. If your applications saves or exports DataWindows as PDF or XSL-FO
files, make sure you read the instructions for installing the appropriate printing
software on the Web Forms server.

For more information, see “Requirements for saving files in PDF or XSL
format” on page 65.

Log files
Log.txt A PowerBuilder application that compiles successfully with the
PowerBuilder native compiler might not compile successfully with the
PowerBuilder to .NET compiler. At deployment time, PowerBuilder logs all
compilation errors and warnings into the application’s log.txt file. The
PowerBuilder to .NET compiler is stricter than the PowerBuilder native
compiler, as described in Chapter 15, “Best Practices for .NET Projects.” If
deployment fails, or if issues occur at runtime, review the errors and warnings
in the log.txt file.

Pbtrace.log At runtime, a Web application logs all exceptions in the
pbtrace.log file located in the applicationName_root\log directory. You can
look into the call stack when an exception is thrown and map the call stack back
to PowerScript code, from which you might find the root cause of any runtime
errors.

Problems on Windows 2003
Enabling ASP.NET services By default, IIS is installed on Windows Server
2003 in a secure mode that prohibits ASP.NET. This means that only static
pages can be served. To enable ASP.NET, do the following:

1 From the Start menu, click Administrative Tools and then choose the
Internet Information Services (IIS) Manager.

2 Select Web Service Extensions in the left pane.

In the right pane, you should see a list of allowed and prohibited Web
service extensions.

3 Click “ASP.NET v2.0.50727” in the right pane, then click Allow to enable
ASP.NET services.

CHAPTER 17 Troubleshooting .NET Targets

252 PowerBuilder

Enabling ActiveX controls and plug-ins You might also need to enable
running and scripting ActiveX controls and plug-ins. To enable ActiveX
controls and plug-ins:

1 Open Internet Explorer.

2 Select Internet Options from the Tools menu.

3 On the Security tab, select the Internet zone and click the Custom Level
button.

4 Under the “ActiveX controls and plug-ins” settings, change the “Run
ActiveX controls and plug-ins” and the “Script ActiveX controls marked
safe for scripting” settings to Enable.

Troubleshooting tips for Windows Forms applications
If you experience difficulty deploying, running, publishing, or updating an
application, make sure you have installed the .NET Framework and SDK as
described in “System requirements” on page 138, then review the suggestions
in this section. Also review the known issues listed in the PowerBuilder
Release Bulletin.

Runtime errors
The application might not run correctly when you select Design>Run Project
in the Project painter, when you run the executable file in the deployment
folder, or when a user runs the installed application. When you or a user runs
the executable file, PowerBuilder creates a file called PBTrace.log in the same
directory as the executable. This file can help you trace runtime errors. It can
be configured by editing the appname.exe.config file, where appname is the
name of the executable file:

 <appSettings>
 <!-- The value could be "enabled" or "disabled"-->
 <add key ="PBTrace" value ="enabled"/>
 <!-- The target can be File, EventLog or
File|EventLog -->
 <add key ="PBTraceTarget" value="File"/>
 <!-- If the Target is File, PBTraceFileName should
also be

specified.-->

CHAPTER 17 Troubleshooting .NET Targets

Deploying Applications and Components to .NET 253

 <add key ="PBTraceFileName" value ="PBTrace.log"/>
 <!-- EventLogId is optional(0 is default), and it
only

works when EventLog is enabled-->
 <add key ="PBEventLogID" value ="1101"/>

...

The following problems might also occur:

• If the application cannot be launched from another computer, make sure
the required PowerBuilder runtime files, pbshr110.dll and pbdwm110.dll,
and the Microsoft runtime files on which they depend, at71.dll,
msvcp71.dll, and msvcr71.dll, are available on the other computer and in
the application’s path.

If the executable file is located on a network path, the .NET Framework
must be configured to have Full Trust permissions at runtime. See
“Security settings” on page 152.

• If the application cannot connect to a database, make sure that the required
PowerBuilder database interface, such as pbodb110.dll, has been added to
the Win32 dynamic library files section of the Library Files tab page and
that the required client software is available on the target computer. If the
application uses a configuration file, such as myapp.ini, select it on the
Resource Files tab page. For ODBC connections, make sure that the DSN
file is created on the client.

• If no data displays in DataWindow objects, select the PBLs that contain
them on the Library Files tab page.

• If graphics fail to display, select them on the Resource Files tab page.

Publish errors
There are two steps in the publication process. First, publish files are generated,
and then they are transferred to the publish location. Publish errors are
displayed in the Output window and recorded in a file called pbiupub.log in the
output directory.

The following errors might be reported during file generation:

• Failure to create local folder structure Check that you have
permission to create a folder in the specified directory.

CHAPTER 17 Troubleshooting .NET Targets

254 PowerBuilder

• Failure to generate application manifest file Check that the .NET
Framework 2.0 SDK bin directory is in your PATH environment variable.
If a certificate file is specified, check that it exists in the specified location
and is a valid certificate.

Use different output paths for multiple projects
If you create more than one Windows Forms project for a single
application, make sure you specify a different output path on the General
page for each project. If you do not, the application manifest files
generated for each project conflict with each other.

The following errors might be reported during file transfer:

• Publish location is a Web server: http://servername/appname
Check that servername and the development computer are in the same
network domain and that you are in the administrators group of
servername or have write access to the wwwroot directory on servername.

• Publish location is a file share: \\servername\appname Check that
servername and the development computer are on the same network and
that you have write access to the appname directory on \\servername.

• Publish location is an FTP site: ftp://servername/appname Check
that servername can be accessed using the specified user name and
password and that you have write access to the appname directory on
\\servername.

You should also check that the publish location name is typed correctly, that the
PBNET_HOME environment variable is set correctly, and that network
connections are working correctly.

Installation errors
If installation on the client computer fails, make sure that:

• The files exist in the location specified on the server.

• The link on the publish page matches the location where the files have
been published.

• The user has access rights to the publish server.

• There is sufficient space on the user’s computer.

CHAPTER 17 Troubleshooting .NET Targets

Deploying Applications and Components to .NET 255

• The network connection to the publish server is working correctly.

• You have not used localhost as the publish or install location.

If the publish page fails to open on the client, check the firewall settings on the
publish server. The firewall must be turned off on the server.

If the setup.exe file is not downloaded when a prerequisite is selected, open the
Properties dialog box for the HTTP directory in IIS Manager and make sure the
script source access permission is enabled. If the Execute Permissions property
is not set to Scripts only, select Scripts only from the drop-down list and refresh
the server.

Update errors
If update fails, make sure that the update mode has been set as you intended
and that the update files are in the specified location.

CHAPTER 17 Troubleshooting .NET Targets

256 PowerBuilder

Deploying Applications and Components to .NET 257

A
access permissions, ASP.NET 10, 195
application

directory structure 155
installing 151, 154
manifest file for smart client 153
publishing 150
running mode 151, 155
update mode 151, 156
updating 155

application pools in IIS 7 13
arrays of arrays, not supported 213
ASP.NET

configuring 6
setting user permissions 10
version 7

assemblies, importing 139, 205
AutoPostBack property 88, 229
AutoScript, does not support .NET classes 212

B
best practices 136
bootstrapper

about 158
customizing 159

build
directories 234
incremental 233
PBD generation 235

ButtonClicked event 42
ButtonClicking event 43

C
Clicked event 44
ClickOnce technology 149

client-side, event handlers 36
command line parameters 32
company name, setting 142, 154
components

.NET Assembly target 181

.NET Web Service target 189
conditional compilation, about 199
configuring

application directory permissions 15
ASP.NET 6, 194
IE Web Controls 12
SQL Anywhere database connection 10

controls, supported 170
conventions x
copy mode, global property 70

D
data, synchronizing 161
datatype mapping 187, 205
DataWindow

page navigation 226
pagination 225
saving as PDF 65
saving as XSL 66

Debug builds 240
DEBUG preprocessor symbol 240
debugging

.NET applications 238

.NET components 243
deploy

.NET Assembly project 187

.NET Web Service project 195
checklist for production servers 15
troubleshooting 245
Web Forms project 28
Windows Forms project 146

deployment manifest file for smart clients 153

Index

Index

258 PowerBuilder

directory structure, on server 155
DLLs, deploying 15, 142
DoubleClicked event 45
DownloadFile Web Forms function 94
downloading files 74
DYNAMIC keyword, cannot be used with .NET methods

213

E
Embedded property 89
event handlers

and postback events 36
client-side 36
default 37

events
ClientEvent properties 39
Web DataWindow client control 39

exceptions, handling in .NET environment 213

F
File Manager

creating a folder 72
downloading a file 74
uploading a file 73
virtual file system 68

file process mode 70
file server, setting up 150
files, runtime 17
fonts, using TrueType in controls in Windows Forms 164
FTP server, setting up 150

G
GAC

and Runtime Packager 16
installing assemblies into 19

generic .NET classes or methods, cannot be used in
conditional code block 212

GetConfigSetting Web Forms function 96
GetDownloadFileURL Web Forms function 96
Ghostscript, installing 67

global assembly cache. See GAC
global properties

and .NET Web Service targets 194
creating 88
descriptions of 82
list of 82
taking advantage of 224

H
handling exceptions, in .NET environment 213
HasFileManager property 89
HasMailManager property 90
HasPrintManager property 91
HasThemeManager property 92
HTMLGen.PagingMethod property 37

I
IE Web Controls

configuring 12
problem with toolbars and tab controls 248

IIS
directory structure 9
installing 6

IIS 7, application pools 13
IIS 7.0, requirement for IIS 6 Compatibility

Component 7
IIS Manager, viewing global properties 8
images

for Windows Forms targets 143
images, deploying 143
incremental builds 233, 237
intelligent notifier 157
intelligent update 149, 156
interop. See interoperability
interoperability

datatype mappings 205
referencing .NET classes 199
support for .NET language features 207
writing code in a .NET block 202

ItemChanged event 46
ItemError event 47
ItemFocusChanged event 48

Index

Deploying Applications and Components to .NET 259

L
library files 142
log file, pbtrace 11

M
Mail Profile Manager 75
mail, sending 78
mandatory updates 157
manifest files

for smart client application 153
for smart client deployment 153
for Windows Forms applications 144

MapVirtualPath Web Forms function 97
MobiLink synchronization, for smart clients 161

N
navigation controls 226
.NET assemblies

importing 139, 205
strong names 19

.NET Assembly
component project 184
component target wizard 181

.NET calls, PowerScript syntax for 202

.NET classes and interfaces, limitations in conditional
code 212

.NET compiler 23, 135

.NET environment
debugging 238, 243
handling exceptions 213
support for language features 207

.NET Framework 2.0 SDK 138

.NET generics, cannot be used in conditional code
block 212

.NET language features, support for 207

.NET modules 234

.NET Web Forms
application wizard 24, 138
code block 35, 202
coding restrictions 217

configuring for 6
global properties 8, 82

.NET Web Service
component project 191
component target wizard 189

.NET Windows Forms
application project 138
application wizard 136

notifier
icon 157
options 157

nullable, cannot be used in conditional code 212

O
OnClient event prefix 39
online only 155
OpenFileManager Web Forms function 98
OpenMailManager Web Forms function 98
OpenPrintManager Web Forms function 98
OpenThemeManager Web Forms function 99

P
PATH environment variable 138
PBDataWindow.JS file 37
PBDs, deploying 142
PBLs, deploying 142
PBTrace.Log file 11
PBTrace.log file 252
PDF

Apache FO printing method 66
postscript printing method 65

permanent user accounts 53
permissions

adding manually for copied files 30
ASP.NET 6, 16
for Web service components 195
Full Trust required for smart client 152
granting from command line 31
required for printing to PDF 65
Sybase directories 10
troubleshooting deployment failure 247

Index

260 PowerBuilder

troubleshooting Windows Forms applications 253
under wwwroot 15

POST keyword, cannot be used with .NET methods 213
postbacks

and client-side events 227
avoiding 37
from default event handlers 37

post-build commands 142
PowerBuilder runtime files, deploying 142
PowerScript

registry functions 60
unsupported events 125, 175
unsupported functions 121, 174
unsupported properties 127, 176

preprocessor statements, pasting into script 202
preprocessor symbols

about 199
DEBUG 240
list of 200

prerequisites
for application 153, 158
for deployment 15
for development 138

printing
Apache FO software processing 66
DataWindow as PDF 65
DataWindow as XSL 66
Ghostscript software processing 67
output location 65, 68

projects, out of date message 236
properties, global 8, 82
publish page

link to server 150
prerequisites 158
view of 154

publishing an application 150

R
RButtonDown event 49
rebuild scope 234
registry functions, in Web Forms applications 60
Release builds 240
requirements, system 24, 138

resource files
for .NET assembly targets 185
for .NET Web service targets 192
for .NET Windows Forms targets 143
inaccessible 250

resources, deploying 143
RowFocusChanged event 50
RowFocusChanging event 51
running an application 147
runtime files, deploying 15

S
script

.NET code block 35
client-side events 35

security
Full Trust required for smart client 152
manifest files for Windows Forms

applications 144
share mode, global property 70
sharing data

across sessions 32
DropDownDataWindows 33

smart client
intelligent update feature 149
rolling back 160

SQL Anywhere database connection, setting up 10
Start menu, adding to 155
static members of .NET classes, referencing 213
strong-named assemblies 19
structures, supported 165
supported features 163
system objects, supported 165
System options, redeployment 236
system requirements 24, 138
System.Nullable, cannot be used in conditional code

block 212

T
troubleshooting

conditional code 211

Index

Deploying Applications and Components to .NET 261

deployment errors 245
tips for Web Forms applications 246
tips for Windows Forms applications 252

TrueType fonts, using in controls in Windows
Forms 164

typographical conventions x

U
unsupported features 163
updates

checking for 156, 157
mandatory 157
online and offline 156
online only 156
polling for 158

UploadFiles Web Forms function 99
uploading files 73
users, permanent accounts 53

V
Vista

additional requirements for IIS 7 13
additional requirements for Windows Forms 144

visual controls, supported 170

W
Web browser

command line parameters 32
default start page 31, 147

Web DataWindow
client-side scripts 39
events for client control 39

Web Forms applications
advantages 3
directory structure 9
global properties 8
sending mail 78
start page 32
supported controls 108
unsupported features 103

using registry functions 60
virtual file system 68

Web Forms function
DownloadFile 94
GetConfigSetting 96
GetDownloadFileURL 96
MapVirtualPath 97
OpenFileManager 98
OpenMailManager 98
OpenPrintManager 98
OpenThemeManager 99
UploadFiles 99

Web server, setting up 150
Web service components, access permissions 195
Windows and Web Forms applications,

advantages of 135
Windows Forms Application project 138
Windows Forms Application wizard 136
Windows Forms applications

supported controls 171
supported objects 167

Windows Vista
additional requirements for IIS 7 13
additional requirements for Windows Forms 144

wwwroot
copying IE Web controls to 12
setting permissions on subdirectories 15

Index

262 PowerBuilder

	Deploying Applications and Components to .NET
	About This Book
	PART 1 Choosing a .NET Target
	CHAPTER 1 Overview and Configuration of .NET Targets
	Choosing a .NET application target
	How .NET deployment works
	Configuring ASP.NET for a .NET project
	Installing IIS
	Selecting the default ASP.NET version
	Viewing and modifying global properties in IIS Manager
	Directory structure on the server
	Setting up a SQL Anywhere database connection
	Setting up IE Web Controls on the server
	Additional configuration requirements for Windows Vista

	Checklist for deployment

	PART 2 Web Forms Targets
	CHAPTER 2 Moving PowerBuilder Applications to the Web
	About PowerBuilder Web Forms applications
	Creating a PowerBuilder .NET Web Forms target
	Deploying and running a .NET Web Forms project
	Sharing data across sessions

	CHAPTER 3 Client-Side Events and Default Event Handlers
	About client-side programming
	Default event handlers
	Client-side support for the Web DataWindow control
	Alphabetical list of Web DataWindow client-side events
	ButtonClicked
	ButtonClicking
	Clicked
	DoubleClicked
	ItemChanged
	ItemError
	ItemFocusChanged
	RButtonDown
	RowFocusChanged
	RowFocusChanging

	CHAPTER 4 User Management and Registry Operations in Web Forms
	Creating permanent user accounts
	Managing permanent user accounts
	Using the registry functions

	CHAPTER 5 Print, File, Mail Profile, and Theme Managers
	Using the Web Forms Print Manager
	Print Manager icon display
	Where printed output is saved
	Requirements for saving files in PDF or XSL format
	Installing GPL Ghostscript
	Where PDF and XSL-FO output is saved

	Using the Web Forms File Manager
	Using the Web Forms Mail Profile Manager
	Using the Web Forms Theme Manager

	CHAPTER 6 Properties for .NET Web Forms
	About Web Forms properties
	Global Web configuration properties
	Creating custom global properties
	AutoPostBack
	Embedded
	HasFileManager
	HasMailManager
	HasPrintManager
	HasThemeManager

	CHAPTER 7 Functions for .NET Web Forms
	About system functions for Web Forms applications
	DownloadFile
	GetConfigSetting
	GetDownloadFileURL
	MapVirtualPath
	OpenFileManager
	OpenMailManager
	OpenPrintManager
	OpenThemeManager
	UploadFiles

	CHAPTER 8 Modified and Unsupported Features in Web Forms Projects
	About unsupported features
	Unsupported objects
	Unsupported system functions
	Restrictions on supported controls
	Modified display of visual controls
	Unsupported functions for controls in Web Forms
	Unsupported events for controls in Web Forms
	Unsupported properties for controls in Web Forms

	PART 3 Windows Forms Targets
	CHAPTER 9 Deploying PowerBuilder Applications as .NET Windows Forms
	About PowerBuilder .NET Windows Forms applications
	Creating a .NET Windows Forms target
	Creating a .NET Windows Forms project
	Setting properties for a .NET Windows Forms project
	Intelligent update pages
	Resource files and publish type
	Security requirements

	Deploying the project from PowerBuilder
	Running the project from PowerBuilder

	CHAPTER 10 Intelligent Deployment and Update
	About intelligent deployment and update
	Publishing an application for the first time
	Create a project and set publishing properties
	Locations for publish, install, and update
	Security settings
	Publish the application

	Installing the application on the user’s computer
	Updating the application
	Using the bootstrapper
	Customizing the Prerequisites page
	Packages on the Prerequisites page

	Rolling back
	Using MobiLink synchronization

	CHAPTER 11 Unsupported Features in Windows Forms Projects
	About unsupported features
	Unsupported nonvisual objects and structures in Windows Forms
	Unsupported system functions in Windows Forms
	Partially supported visual controls for Windows Forms
	Unsupported functions for controls in Windows Forms
	Unsupported events for controls in Windows Forms
	Unsupported properties for controls in Windows Forms

	PART 4 .NET Component Targets
	CHAPTER 12 .NET Assembly Targets
	The .NET Assembly target wizard
	Modifying a .NET Assembly project
	Supported datatypes
	Deploying and running a .NET Assembly project

	CHAPTER 13 .NET Web Service Targets
	The .NET Web Service target wizard
	Modifying a .NET Web Service project
	Configuring ASP.NET for a .NET Web Service project
	Deploying and running a .NET Web Service project

	PART 5 .NET Language Interoperability
	CHAPTER 14 Referencing .NET Classes in PowerScript
	About conditional compilation
	Writing code inside a .NET block
	PowerScript syntax for .NET calls
	Adding .NET assemblies to the target
	Calling assembly methods from PowerScript
	Support for .NET language features
	Bitwise operator support
	User-defined enumerations
	Accessing indexes for .NET classes

	Limitations
	Functions cannot be called on basic types
	Case sensitivity
	Calls to PowerScript from .NET functions are not supported
	Delegates are not supported
	.NET classes and interfaces cannot be used as parameters
	Inheriting from .NET classes
	Implementing .NET interfaces
	Consuming .NET generics
	AutoScript does not support .NET classes
	DYNAMIC and POST do not support .NET methods
	.NET arrays of arrays
	Reference static members with type name

	Handling exceptions in the .NET environment

	CHAPTER 15 Best Practices for .NET Projects
	Coding restrictions
	Syntax issues
	Semantic issues
	External functions

	Design-level considerations
	Use PowerBuilder system functions
	Use the DESTROY statement
	Use regional formats based on client or server settings
	Work around unsupported features
	Avoid hindrances to application performance

	Take advantage of global configuration properties
	DataWindow pagination
	DataWindow page navigation

	Use client-side events to delay postbacks
	DataWindow property for setting a customized event handler
	DataWindow properties for calling client-side events
	Client-Side CommandButton property
	AutoPostBack

	PART 6 Compiling, Debugging, and Troubleshooting
	CHAPTER 16 Compiling and Debugging
	Incremental rebuild for .NET application targets
	Target level
	Build and deploy directories
	Rebuild scope
	.NET modules
	PBD generation
	Triggering build and deploy operations
	System option
	How incremental builds work

	Debugging a .NET application
	.NET debugger restrictions
	Release and Debug builds
	DEBUG preprocessor symbol
	Attaching to a running Windows Forms process
	Breaking into the debugger when an exception is thrown

	Debugging a .NET component

	CHAPTER 17 Troubleshooting .NET Targets
	Troubleshooting deployment errors
	Troubleshooting tips for Web Forms applications
	Failure to deploy to local machine alias
	Browser error messages
	Problem with toolbars and menu controls
	Failure to connect to database
	DataWindows do not display
	Pictures do not display
	Excessive flickering on Web page
	Posted events are not executed
	External DLLs cannot be loaded
	Print failure
	Log files
	Problems on Windows 2003

	Troubleshooting tips for Windows Forms applications
	Runtime errors
	Publish errors
	Installation errors
	Update errors

	Index

