
Copyright 1991-2008 by Sybase, Inc. All rights reserved. Sybase trademarks can be viewed at the Sybase trademarks page
at http://www.sybase.com/detail?id=1011207. Sybase and the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States
of America. Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. Unicode
and the Unicode Logo are registered trademarks of Unicode, Inc. All other company and product names mentioned may be trademarks of the respec-
tive companies with which they are associated.

 New Features
PowerBuilder® 11.2

Document ID: DC00357-01-1120-01

Last revised: March 2008

AJAX update functionality for Web Forms applications
PowerBuilder® 11.2 introduces AJAX (Asynchronous JavaScript and
XML) update functionality for Web Forms applications. With ASP.NET
AJAX, Web Forms pages are updated by refreshing individual regions of
each page asynchronously.

Asynchronous postbacks enhance application performance by
minimizing the content requested from the Web server and rendered
again in the client browser. The rest of the Web page remains unchanged,
therefore data traffic and page flickering are significantly reduced.

The AJAX enhancement for Web Forms applications does not require
any changes in the PowerBuilder IDE. To use the AJAX feature, you do
not need to learn anything new or alter your PowerScript® code.

However, PowerBuilder cannot deploy a Web Forms application unless
AJAX is installed on the Web server. You can download and install the
Microsoft ASP.NET AJAX Extensions version 1.0 on both the
development and deployment computers from the ASP.NET Web site at
http://www.asp.net/ajax/downloads/archive.

For information on how Web Forms applications work with AJAX
extensions, see the chapter on “Overview and Configuration of .NET
Targets” in the Deploying Applications and Components to .NET book.

http://www.sybase.com/detail?id=1011207
http://www.asp.net/ajax/downloads/archive

AJAX waiting message properties

2 New Features

Using synchronous update functionality
If you must use synchronous update functionality, you can change the
PBPostbackType global property to “Synchronous” in the Web.config file that
PowerBuilder creates when you deploy your Web Forms application. However,
support for synchronous update functionality will be removed in future
releases of PowerBuilder and you cannot modify the PBPostbackType property
in the PowerBuilder IDE.

For information on global properties, see the chapter on “Properties for .NET
Web Forms” in the Deploying Application and Components to .NET book. For
information on modifying the Web.config file, see the section on “Viewing and
modifying global properties in IIS Manager” in the same book.

AJAX waiting message properties
In PowerBuilder 11.2, six new global properties allow you to set text and
formatting properties for the messages that your applications display to end
users while they wait for new content to be rendered in their browsers. The
messages display only if you use the default asynchronous AJAX update
functionality for your Web Forms applications.

You can set the global properties at design time on the Configuration tab of the
Project painter or after deployment in the generated Web.Config file for your
application. Support for message text localization is currently limited, but will
be enhanced in future releases of PowerBuilder.

The new global properties are listed and described in the following table:

Property Default value Description

PBAjaxWaitingMessage Loading Please
wait...

Status message text displayed to the user during AJAX
request processing. To disable the status message set the
value to an empty string (“”).

PBAjaxWaitingMessage
FontFamily

Tahoma Font family for the text of the AJAX waiting message.

PBAjaxWaitingMessage
FontSize

10 Font size of the text of the AJAX waiting message.

PBAjaxWaitingMessage
BoxPosition

Center Position of the AJAX waiting message box. Valid values
are: Center, TopLeft, TopRight, BottomLeft, and
BottomRight.

Telerik RadControls support

PowerBuilder 11.2 Windows 3

Telerik RadControls support
PowerBuilder 11.2 uses Telerik RadControls for menus, toolbars, and other
controls in Web Forms applications by default. Although not recommended,
you can use IE Web Controls instead of the RadControls, but you must change
the PBWebControlSource global property for your application and install the
IE Web Controls on the server.

Telerik RadControls provide enhanced functionality for Web Forms toolbars
and menus, DatePicker and MonthCalendar controls, and TreeView controls.
There are minor display differences for TreeView controls, depending on your
PBWebControlSource selection.

For information on the effect of the PBWebControlSource selection on the
HasButtons and Indent TreeView control properties, see the chapter on
“Modified and Unsupported Features in Web Forms Projects” in the Deploying
Applications and Components to .NET book.

If you must use IE Web Controls, you need to download IE Web Controls from
the Microsoft Web site at http://www.asp.net/IEWebControls/Download.aspx and
install the controls on the Web server. After you install the controls, you must
set the PBWebControlSource selection to “IE”, either on the Configuration tab
of the Project painter before you deploy your application, or in the Web.config
file after you deploy your application.

For information on installing IE Web Controls, see “Setting up IE Web
Controls on the server” in the Deploying Applications and Components to
.NET book.

PBAjaxWaitingMessage
BoxHeight

— Height in pixels of the AJAX waiting message box. If no
value is specified (default), PowerBuilder calculates the
best fit for the message box text.

PBAjaxWaitingMessage
BoxWidth

— Width in pixels of the AJAX waiting message box. If no
value is specified (default), PowerBuilder calculates the
best fit for the message box text.

Property Default value Description

http://www.asp.net/IEWebControls/Download.aspx

Building .NET clients for EAServer

4 New Features

Building .NET clients for EAServer
In PowerBuilder 11.2, you can build a .NET client application that invokes
methods of Enterprise JavaBeans (EJB) components or PowerBuilder
EAServer components running in EAServer 6.1 or later. This capability is
based on the .NET client ORB library introduced in EAServer 6.1.

Installation requirement
When you install EAServer, you must install the .NET support option.

You can use either the Connection object or the JaguarORB object to connect
to the component in EAServer, and you can connect from PowerBuilder .NET
Windows Forms and Web Forms applications and from PowerBuilder .NET
assemblies and Web services.

For information on the differences in behavior of Connection objects and
JaguarOrb objects when you connect to EAServer from a .NET client, see the
“Building .NET clients for EAServer” chapter in the Deploying Applications
and Components to .NET book. This chapter also provides a table of supported
CORBA datatypes and describes how to connect to EAServer using an SSL
connection.

For detailed information on building an EAServer client, see the “Building an
EAServer Client” chapter in Application Techniques.

Changing application pools for Web Forms in IIS 7
Virtual directories in IIS 7 are hosted in an application pool. An application
pool is the host process for one or more Web applications. When you deploy a
PowerBuilder Web Forms application to IIS 7 in PowerBuilder 11.2, the
application is deployed to a PowerBuilder-specific application pool named
PBAppPool. On 64-bit Vista, the PBAppPool pool is configured to run 32-bit
applications.

To avoid compatibility issues with some features, such as the TreeView
control, Web Forms applications deployed from PowerBuilder must run in an
application pool that uses the classic managed pipeline mode, where ASP.NET
runs as an ISAPI extension. The PBAppPool application pool uses the
integrated managed pipeline mode by default, but you should change it to use
the classic mode if you use TreeView controls.

Using a certificate store for smart client applications

PowerBuilder 11.2 Windows 5

❖ To change the PBAppPool managed pipeline mode to classic:

1 In IIS Manager, select Application Pools.

2 In the list of Application Pools, double-click PBAppPool.

3 Set Managed Pipeline Mode to Classic and click OK.

Using a certificate store for smart client applications
In PowerBuilder 11.2, you can select a digital certificate from a certificate store
to sign your smart client application manifests. Previously you could only
select a certificate from a file browser. You make the selection on the Publish
page in the Project painter for a .NET Windows Forms target when Publish as
a smart client application is selected on the General page. You can also select
a password protected certificate.

A digital certificate is a file that contains a cryptographic public/private key
pair, along with metadata describing the publisher to whom the certificate was
issued and the agency that issued the certificate.

Digital certificates are a core component of the Microsoft Authenticode
authentication and security system. Authenticode is a standard part of the
Windows operating system. To be compatible with the .NET Framework
security model, all PowerBuilder .NET applications must be signed with a
digital certificate, regardless of whether they participate in Trusted Application
Deployment.

Use the Select from Store or Select from File buttons to select a certificate from
a certificate store or from your file system. If the certificate requires a
password, a dialog box displays so that you can enter it. When you select a
valid certificate, detailed information displays in the Project painter.

If you do not specify a certificate, PowerBuilder generates a test certificate for
you automatically, but you should not deploy an application with a test
certificate when you are ready to publish a production application.

For more information about Trusted Application Deployment, see the Microsoft
Web site at http://msdn2.microsoft.com/en-us/library/01daf08f.aspx.

http://msdn2.microsoft.com/en-us/library/01daf08f.aspx

Usability and user interface enhancements

6 New Features

Usability and user interface enhancements
PowerBuilder 11.2 includes the following user interface enhancements:

• Target-relative paths and shared projects

• Library tab and wizard in the New dialog box

• Library list and .NET Assemblies context menu items on targets in the
System Tree

• Publish context menu item on smart client projects in the System Tree

• Files opened in File editor added to most recently used objects list

• File editor Open dialog box lists additional file types

• Current database connection displays in the PowerBuilder title bar

• UseEllipsis property available in edit styles in the Database painter

Target-relative paths and shared projects
All paths used in projects are stored as target-relative paths, if possible. If you
later move the application to a different location in the file system, or another
user copies or checks out the application, the paths are adjusted relative to the
new target location.

For example, suppose user A has an application target stored in the following
directory structure, where pbl_1.pbl contains the application object:

C:\target1\target1.pbt
C:\target1\pbls\pbl_1.pbl
C:\target1\pbls\pbl_2.pbl
C:\target1\res\target1.pbr
C:\target1\out\target1.exe

When user B copies the application to the following directory structure, no
changes need to be made in the Project painter, because the paths reflect the
new directory structure:

D:\PB\My Targets\Target 1\target1.pbt
D:\PB\My Targets\Target 1\pbls\pbl_1.pbl
D:\PB\My Targets\Target 1\pbls\pbl_2.pbl
D:\PB\My Targets\Target 1\res\target1.pbr
D:\PB\My Targets\Target 1\out\target1.exe

Usability and user interface enhancements

PowerBuilder 11.2 Windows 7

A project that was created in an earlier version of PowerBuilder using
hard-coded paths must be opened and resaved before the files it references are
modified with target-relative paths.

However, if a path is not on the drive where the target is stored, then the path
is stored as an absolute path. For example, the path to image files stored on a
shared network directory such as J:\res\images\common is stored as an
absolute path in the project file.

References to files outside the target path
If a project references a PBL or another file on a local drive that is outside the
path of the target, make sure that the PBL or file is copied to the new target
location and that it is referenced correctly in the project.

Library tab and wizard in the New dialog box
When you create a new target, PowerBuilder creates a new library
automatically. If you need additional libraries, you no longer need to open the
Library painter to create them. The New dialog box has a new Library tab with
a Library icon that opens a wizard. In the wizard, you provide a name, location,
and optional description for the library. When you click Finish, the new library
is added to the target’s library list.

If you open the New dialog box from the menu bar or PowerBar, the new
library is added to the library list of the current target (the target in bold in the
System Tree). If you select New from the pop-up menu of a specific target, the
library is added to the library list for that target.

Library list and .NET Assemblies context menu items on targets in
the System Tree

The pop-up menu for targets in the System Tree now contains a Library List
item to make it easier to access the Library List page in the target’s Properties
dialog box. .NET targets also have a .NET Assemblies pop-up menu item that
opens the .NET Assemblies page in the target’s Properties dialog box.

You still need to close any open painters in the target to make changes to the
library or .NET assemblies lists.

Usability and user interface enhancements

8 New Features

Publish context menu item on smart client projects in the System
Tree

The pop-up menu for a .NET Windows Forms project that has the “Publish as
smart client application” check box selected now contains a Publish item. You
can deploy, run, debug, and publish the application from the System Tree,
without opening the Project painter, if you do not need to change any settings
in the painter.

Files opened in File editor added to most recently used objects list
The File>Recent Objects menu item lists PowerBuilder objects that were
opened recently in painters or in the Source editor. In PowerBuilder 11.2, it also
lists files opened in the File editor.

File editor Open dialog box lists additional file types
In PowerBuilder 11.2, you can select JavaScript or HTML from the Files of
Type drop-down list in the File Open dialog box for the File editor.

Current database connection displays in the PowerBuilder title bar
If PowerBuilder is connected to a database, the three-letter abbreviation for the
database interface followed by the name of the database profile displays in
PowerBuilder’s main title bar. If you are working with a DataWindow®, this
visual cue makes it easier to check that you are using the right connection.

For example, if you open the PowerBuilder Code Examples workspace and
connect to the EAS Demo database, the title bar displays “pbexamples - ODB
[EAS Demo DB V110] - PowerBuilder.”

Database connectivity enhancements

PowerBuilder 11.2 Windows 9

UseEllipsis property available in edit styles in the Database painter
The UseEllipsis DataWindow object property was added in PowerBuilder 11.0.
The property displays an ellipsis at the end of character data that is too long for
a column with the Edit or EditMask edit style. In PowerBuilder 11.2, the
property is available on the General page of the Object Details view in the
Database painter when you select or create an Edit or EditMask edit style in the
Extended Attributes view.

Database connectivity enhancements
PowerBuilder 11.2 includes the following database connectivity
enhancements:

• DisableBind DBParm supported by ASE and SYC database interfaces

• Support for Oracle 10.2 NCHAR literal replacement

DisableBind DBParm supported by ASE and SYC database
interfaces

For DBMSs that support bind variables, PowerBuilder can bind input
parameters to a compiled SQL statement. The DisableBind database parameter
allows you to specify whether you want to disable this binding. When
DisableBind is set to 1 to disable binding, PowerBuilder replaces the input
variable with the value entered by the application user or specified in code.

In PowerBuilder 11.2, the ASE and SYC native database interfaces for
Adaptive Server® Enterprise support the DisableBind database parameter. The
default value is 1. For more information, see the description of DisableBind in
the online Help.

Support for Oracle 10.2 NCHAR literal replacement
By default, in a SQL statement, the text of any literal is encoded in the same
character set as the rest of the statement. The character set on the client is
determined by the client character set defined in NLS_LANG. When the
statement is executed, the character set on the client is converted to the
character set on the database server.

Enabling the DEBUG condition in ORCA and OrcaScript

10 New Features

Data in string literals is lost in the conversion if the character set on the
database server does not contain the characters used on the client. NChar string
literals are most affected by this issue because they are designed to be
independent of the character set on the database server.

To avoid this data loss, set the NCharLiteral database parameter to ‘Yes”. This
setting causes the Oracle client to encode all literals prefixed with N in the
statement on the client with an internal format. The database server decodes the
literals to Unicode when the statement is executed.

For example, when NCharLiteral is set to “Yes”, the string “some unicode
data” in the following SQL statement is transferred from the client to the server
with no data loss:

insert into table1 (id, ncharcol) values(1, N'some
unicode data')

Oracle 10.2 or higher required
The NCharLiteral database parameter requires Oracle 10.2 or higher on both
the client and the database server.

For more information, see the description of NCharLiteral in the online Help.

Enabling the DEBUG condition in ORCA and
OrcaScript

PowerBuilder 11.2 includes a new property and method that allow you to
programmatically compile standard PowerBuilder applications using or
excluding script contained in conditional compilation blocks set with the
DEBUG preprocessor symbol. The ORCA tool and OrcaScript commands do
not use Project objects to compile applications of standard client-server
PowerBuilder targets, even though the Project object is currently where you set
inclusion or exclusion of the DEBUG condition while compiling from the IDE.

Enabling the DEBUG condition in ORCA and OrcaScript

PowerBuilder 11.2 Windows 11

Windows Forms applications
ORCA and OrcaScript use Project objects to compile Windows Forms
applications. For these applications, the Enable DEBUG Condition check box
selection in a Project object determines whether or not the script in DEBUG
conditional compilation directives is compiled—even when you compile code
using ORCA or OrcaScript.

For information on the DEBUG conditional compilation directive, see “Using
the DEBUG preprocessor symbol” in the PowerBuilder User’s Guide.

ORCA methods In ORCA 11.2, you can enable or disable the DEBUG condition for an entire
ORCA session using the new boolean bDebug property of the
PBORCA_CONFIG_SESSION structure. Otherwise, you can call the
PBORCA_SetDebug method whenever you want to enable or disable the
DEBUG condition during an ORCA session. This allows you to enable the
DEBUG condition for some of the objects in a target and to disable it for other
objects. The Pcode for an object stored in a target PBL reflects the DEBUG
conditional setting in use when the object was last compiled or regenerated.

IDE regeneration
All objects compiled in the PowerBuilder IDE are compiled with the DEBUG
condition enabled. When a PowerBuilder developer saves changes to an object
or regenerates it in the IDE, the Pcode stored for the object in the target PBL
automatically includes code from any DEBUG conditional directive scripted
for the object.

For more information on the bDebug property and the PBORCA_SetDebug
method, see the ORCA Guide PDF that the setup program installs in the
PowerBuilder 11.0\SDK\ORCA directory.

OrcaScript method The set debug OrcaScript command invokes the ORCA PBORCA_SetDebug
method and can be called any time after the start session command. The value
you set affects all objects used by subsequent regenerate and build application
commands. It also affects all objects retrieved with scc refresh target and scc get
latest version commands.

The build application full command in the following example recompiles all of
the objects in the application PBL with the DEBUG condition disabled, and the
buildapp_p.exe application created by the build executable command behaves
exactly like a production application (without any debug code).

start session
set debug false

Enabling the DEBUG condition in ORCA and OrcaScript

12 New Features

set liblist "testdebug\buildapp.pbl"
set application "testdebug\buildapp.pbl" "testdebug"
build application full
build executable "destination_1\buildapp_p.exe" "icon\icon9.ico" "" "N"
end session

Setting the debug value only affects objects that are compiled or regenerated
after the set debug command is issued. The following example copies the PBL
generated from the previous example after it was compiled with the debug
condition disabled. In this example, even though set debug true is called before
it builds the debug_copy.exe executable, the code in DEBUG conditional
compilation blocks is not enabled because none of the commands that follow
the set debug call invoke the PowerScript compiler.

start session
set debug TRUE
file copy "testdebug\buildapp.pbl" "testdebug\copy.pbl" clobber alwaysset
liblist "testdebug\copy.pbl"
set application "testdebug\copy.pbl" "testdebug"
build executable "destination_1\debug_copy.exe" "icon\icon9.ico" "" "N"
end session

However, if you add a build application command or a regenerate command
after the set debug command in the previous example, the script inside
DEBUG conditional compilation blocks will be enabled.

	New Features PowerBuilder® 11.2
	AJAX update functionality for Web Forms applications
	AJAX waiting message properties
	Telerik RadControls support
	Building .NET clients for EAServer
	Changing application pools for Web Forms in IIS 7
	Using a certificate store for smart client applications
	Usability and user interface enhancements
	Target-relative paths and shared projects
	Library tab and wizard in the New dialog box
	Library list and .NET Assemblies context menu items on targets in the System Tree
	Publish context menu item on smart client projects in the System Tree
	Files opened in File editor added to most recently used objects list
	File editor Open dialog box lists additional file types
	Current database connection displays in the PowerBuilder title bar
	UseEllipsis property available in edit styles in the Database painter

	Database connectivity enhancements
	DisableBind DBParm supported by ASE and SYC database interfaces
	Support for Oracle 10.2 NCHAR literal replacement

	Enabling the DEBUG condition in ORCA and OrcaScript

