
Copyright 1991-2007 by Sybase, Inc. All rights reserved. Sybase trademarks can be viewed at the Sybase trademarks page
at http://www.sybase.com/detail?id=1011207. Sybase and the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States
of America. Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. Unicode
and the Unicode Logo are registered trademarks of Unicode, Inc. All other company and product names mentioned may be trademarks of the respec-
tive companies with which they are associated.

 New Features
PowerBuilder 11.0

Document ID: DC00357-01-1100-01

Last revised: May 2007

Topic Page

.NET deployment features 2

 .NET Web Forms deployment 3

 .NET Windows Forms and smart client deployment 3

 Deploying nonvisual objects as .NET classes in .NET assemblies 4

 Deploying nonvisual objects as .Net Web services 4

 .NET debugger 5

 Conditional compilation 5

 .NET language interop 6

 .NET assembly import 6

PowerBuilder user interface and usability features 7

 New target types 8

 Setting the current target 8

 Project painter enhancements 9

 System Tree enhancements 9

 Output window enhancements 10

 Resizable dialog boxes 10

 Updated menus and toolbars 10

 PowerBuilder Application Server Plug-in 11

 Application Server Profiles dialog box available in wizards 11

 Suppressing warning messages for objects in source control 12

 Setting AutoScript options 12

 Modified date displays for copy and paste 12

 Target field in Browser resized 13

 Edit styles are created in the Object Details view 13

 Breaking into the debugger when an exception is thrown 13

 Selecting EAServer components for debugging 13

New features for Window controls 14

http://www.sybase.com/detail?id=1011207

.NET deployment features

2 New Features

.NET deployment features
PowerBuilder 11 introduces the ability to build applications and components in
PowerBuilder and deploy them to the .NET Framework version 2.0. New
wizards let you deploy your PowerBuilder applications as .NET Web Forms or
as Windows Forms applications with optional intelligent update (smart client)
capability. You can also deploy custom class user objects as .NET Web services
and assemblies.

• .NET Web Forms deployment

• .NET Windows Forms and smart client deployment

• Deploying nonvisual objects as .NET classes in .NET assemblies

• Deploying nonvisual objects as .Net Web services

• .NET debugger

• Conditional compilation

• .NET language interop

• .NET assembly import

 Opening and closing windows with an animated effect 14

 Transparency for windows 14

DataWindow features 15

 TreeView DataWindow features 15

 Web service as a DataWindow data source 16

 Remember DataWindow retrieval arguments 16

 UseEllipsis DataWindow object property 17

Database connectivity features 17

 Enhanced support for MobiLink synchronization 18

 Support for Adaptive Server Enterprise 15 20

 Support for Adaptive Server 15 unsigned datatypes 20

 Support for Microsoft SQL Server 2005 21

 Support for HA event notification in Oracle 10g 21

New and modified functions 22

Topic Page

.NET deployment features

PowerBuilder 11.0 3

For more information about all .NET features, see Deploying Applications and
Components to .NET.

.NET Web Forms deployment
Web Forms applications have several advantages over traditional client-server
and Windows Forms applications. Web Forms applications do not require
client-side installation, are easy to upgrade, have no distribution costs, and
offer broad-based user access. Any user with a Web browser and an online
connection can run Web Forms applications. Simple inquiry, browsing, or
reporting applications are suitable candidates for Web Forms deployment.

Use the.NET Web Forms Application target wizard to create a Web Forms
target and deploy the application from the .NET Web Forms Project painter.
After you deploy, you can test the Web application by right-clicking on the
project in the System Tree and selecting the Run menu item in the context
menu. Your end users will access the deployed application through a browser
with a URL that you provide.

For more information, see “Web Forms Targets” in Deploying Applications
and Components to .NET.

.NET Windows Forms and smart client deployment
Windows Forms applications with the smart client feature combine the reach
of the Web with the power of local computing hardware. They provide a rich
user experience, with a response time as quick as the response times of
equivalent client-server applications. The smart client feature simplifies
application deployment and updates, and can take advantage of Sybase’s
MobiLink technology to provide occasionally connected capability.
Applications that require significant data entry, retrieve large amounts of data
(for example, more than 3 MB per request), or have a complex user interface
are suitable candidates for Windows Forms deployment.

.NET deployment features

4 New Features

Use the .NET Windows Forms Application target wizard to create a Windows
Forms target and deploy the application with the .NET Windows Forms Project
painter. Enable intelligent deployment and update by selecting the smart client
check box in the wizard or the painter. You can test the Windows Forms
application by right-clicking on the project in the System Tree and selecting the
Run menu item in the context menu. Click the Publish button in the Project
painter to publish the application to a Web or FTP site or to the network file
system so that your users can have easy access to the latest version.

For more information, see “Windows Forms Targets” in Deploying
Applications and Components to .NET.

Deploying nonvisual objects as .NET classes in .NET assemblies
You can deploy nonvisual objects as .NET classes in .NET assemblies using
the .NET Assembly target wizard and Project painter. Datatypes are mapped
automatically from PowerScript to C#.

When you deploy a .NET Assembly project, PowerBuilder creates an assembly
DLL fron the nonvisual user objects you selected in the wizard or Project
painter. If you also listed a setup file name, PowerBuilder creates an MSI file
that includes the assembly DLL, PowerBuilder system libraries for .NET, and
any resource files you listed in the wizard or project painter.

For more information, see “.NET Assembly and Web Service Targets” in
Deploying Applications and Components to .NET.

Deploying nonvisual objects as .Net Web services
Web services are ideal for cross-platform communication in heterogeneous
environments because of their use of open standards such as XML and the
Simple Object Access Protocol (SOAP).

PowerBuilder .NET Web service components are built on top of the Microsoft
.NET Framework. When you deploy a .NET Web Service target to IIS,
PowerBuilder creates .asmx files and the .disco file for the PowerBuilder
nonvisual objects you select in an application directory on the server.

The .NET Web Service wizard guides you through a series of steps, collecting
the information needed to deploy the project. After you deploy the Web
service, you can run and debug Web service methods from a test application
that you assign to the .NET Web Service project in the Project painter.

.NET deployment features

PowerBuilder 11.0 5

For more information, see “.NET Assembly and Web Service Targets” in
Deploying Applications and Components to .NET.

.NET debugger
When you have deployed a .NET target, you can debug it in the PowerBuilder
debugger. Invoke the debugger by clicking the Debug icon in the toolbar in the
Project painter, or by right-clicking on the project in the System Tree and
selecting the Debug menu item. If a Windows Forms application is already
running, you can attach the debugger to the running process.

The debugger has almost the same operations for .NET targets as for standard
PowerBuilder targets. Most PowerBuilder debugging features, including
expression evaluation and conditional breakpoints, are supported in .NET
applications. The Objects in Memory view and variable breakpoints are not
supported due to limitations of the .NET platform. In both .NET and standard
applications, you can break into the debugger when an exception is thrown (see
“Breaking into the debugger when an exception is thrown” on page 13).

For more information, see “Debugging and Troubleshooting” in Deploying
Applications and Components to .NET.

Conditional compilation
You can use conditional compilation to differentiate among target types when
you are developing an application that you plan to deploy to more than one
platform. PowerBuilder provides five preprocessor symbols for different target
types. You can wrap code that should be parsed only in a specific target type in
a #if defined symbol...#end if statement. There is also a DEBUG symbol that you
can use to tag code that should only be compiled in a debug build.

For more information, see “About conditional compilation” in Deploying
Applications and Components to .NET and “Conditional compilation” in the
PowerScript Reference.

.NET deployment features

6 New Features

.NET language interop
The .Net Framework and other associated third-party managed libraries
provide a very rich resource. PowerBuilder users can use these libraries to
extend the functionality of PowerBuilder .NET targets and save development
time.

.NET language interoperability makes it possible to consume .NET classes and
methods in PowerBuilder .NET targets. With .NET language interoperability,
you can use PowerBuilder syntax to create .NET classes, call .NET methods,
and access .NET properties. You can make use of .NET collection classes, such
as Hashtable and Set, and you can also make use of powerful .NET
communication classes and other .NET services.

For more information, see “Referencing .NET classes in PowerScript” in
Deploying Applications and Components to .NET and “.NET assembly
import” next.

.NET assembly import
You can import .NET assemblies into .NET targets from the .NET Assemblies
tab page in the Properties dialog box for the target.

Click the Browse button to open the Browse for a .NET Assembly dialog box,
from which you can browse to import private assemblies with the .dll, .tlb, .olb,
.ocx, or .exe extension. To import an assembly, select it and click Open. To
import multiple assemblies, you must select and import them one at a time.

Click the Add button to open the Import .NET Assembly dialog box, from
which you can import a shared assembly into your target. Assemblies must
have a strong name. To import an assembly, select it and click OK. To import
multiple assemblies, you must select and import them one at a time.

You can also use the Import .NET Assembly dialog box to import recently used
assemblies.

System Tree display The System Tree shows the classes, methods, structures, and enumerations for
C# assemblies that you import into your .NET targets. However, a
language-related limitation affecting managed C++ assemblies prevents the
System Tree from displaying members of classes, structures, and enumeration
types. It also causes managed C++ classes to display as structures.

PowerBuilder user interface and usability features

PowerBuilder 11.0 7

By default, the full name of each class in an assembly is displayed in the
System Tree. If you prefer to show only the final name, add the following line
to the [PB] section of your pb.ini file:

SystemTree_DotNetFullName=0

For example, with this setting the Microsoft.SqlServer.Server.DataAccessKind
class in System.Data.dll displays as DataAccessKind. You can right-click the
class and select Properties from the pop-up menu to display the full class name.

PowerBuilder user interface and usability features
The following changes to the PowerBuilder user interface have been made in
PowerBuilder 11:

• New target types

• Setting the current target

• Project painter enhancements

• System Tree enhancements

• Output window enhancements

• Resizable dialog boxes

• Updated menus and toolbars

• PowerBuilder Application Server Plug-in

• Application Server Profiles dialog box available in wizards

• Suppressing warning messages for objects in source control

• Setting AutoScript options

• Modified date displays for copy and paste

• Target field in Browser resized

• Edit styles are created in the Object Details view

• Breaking into the debugger when an exception is thrown

• Selecting EAServer components for debugging

PowerBuilder user interface and usability features

8 New Features

New target types
In previous versions of PowerBuilder, you could create only two kinds of
target: PowerScript targets and Web (JSP) targets. When you selected
EAServer Component, COM/COM+ Component, or Automation Server on the
Target page in the New dialog box, you created a component in a PowerScript
application target. To enhance usability in the PowerBuilder 11 development
environment, the items on the Target page now create a specific type of target.

PowerBuilder 11 has several new target types. The Application Server
Component wizard creates a component that you can deploy to a J2EE server.
For more information, see “PowerBuilder Application Server Plug-in” on
page 11. There are four .NET wizards. For more information, see “.NET
deployment features” on page 2.

The existing EAServer Component item in the New>Target page displays a
wizard that creates an EAServer target, not an Application target as in previous
versions of PowerBuilder.

The Automation Server and COM/COM+ wizards have been removed from
the Target page in the New dialog box. To create COM/COM+ or Automation
Server components, you must first create an application target, and then use the
wizard on the Object page to create the component.

Each of the new targets has an associated project type. You provide deploy, run,
and debug instructions in the project object. If a library in your target contains
projects for a different target type, they do not display in the System Tree.

Setting the current target
Your current target displays in the System Tree using a bold font. The current
target is the default target used in the New dialog box and for Run and Debug.
The current target is set whenever you:

• Invoke an action in the System Tree, Library painter, or main menu that
affects a target or a child of a target , such as Build, Migrate, Run, or
Debug. Some actions, such as Search and Migrate, display a dialog box. If
you cancel the action by clicking the Cancel button in the dialog box, the
current target is not changed.

• Open an object painter or a file in a JSP target.

• Change the active object painter.

PowerBuilder user interface and usability features

PowerBuilder 11.0 9

If you prefer to set the current target explicitly using the Set as Current Target
pop-up menu item for the target in the System Tree or the File>Set Current
Target menu item, clear the Automatically Set Current Target check box on the
Workspaces tab page in the System Options dialog box.

Project painter enhancements
In Project painters, the Select Objects and Properties dialog boxes have been
removed. Property tab pages display in the painter workspace. The choices that
you used to make in the Select Objects dialog box can now be made on the
Components tab page in the Project painter workspace. To get online Help,
right-click in the painter workspace to display the Help pop-up menu.

Most Project painters have a Run tab page. The settings you can make on this
page depend on the target. In most projects you can specify command-line
arguments and change the directory in which the application starts. In a Web
Forms target, you can choose the browser that the application will run in. For
EAServer and application server components, you can choose to start a client
application that calls the component or run the client application in the
debugger in another instance of PowerBuilder.

System Tree enhancements
There are several enhancements to the System Tree in PowerBuilder 11:

• You can double-click an event or function in the System Tree to open its
script in a painter.

• Events and functions that have scripts are identified by a script icon.

• If you import a .NET assembly into a .NET project, the assembly displays
in the System Tree and can be expanded to display its classes and methods.

PowerBuilder user interface and usability features

10 New Features

Output window enhancements
The Output window displays the messages that displayed in one pane in
previous versions of PowerBuilder in separate tabs for different message types.

When you start a new PowerBuilder session, the Output window has a single
tab, Default. New tabs are added as you perform operations. Tabs display in the
order in which they are created and remain in the Output window for the rest
of the PowerBuilder session. To clear the output from the tabs when you start
a new build, make sure that the Automatically Clear Output Window check box
on the General page of the System Options dialog box is selected.

When a message refers to a specific object or script, you can double-click the
message to open the object.

Resizable dialog boxes
Dialog boxes in the PowerBuilder 11 development environment are resizable.
For example, select File>New to display the New dialog box and then click the
Project tab. In PowerBuilder 11, you can resize the New dialog box to display
all the project types with no scrolling. In PowerBuilder 10.5, you had to scroll
down to display all the project types.

Updated menus and toolbars
Menus and toolbars in the PowerBuilder 11 development environment use the
contemporary style introduced for deployed applications in PowerBuilder
10.5.

Tab Contents

Default General information about the progress of full or
incremental builds and project deployment

Debug Debugger output, such as the paths of assemblies loaded
to support .NET debugging

Errors Messages that indicate problems that prevent the build or
deploy process from completing successfully

Warnings Warning and informational messages

Search Output from search operations

Unsupported features For .NET targets, names and locations of features not
supported in the target type

PowerBuilder user interface and usability features

PowerBuilder 11.0 11

PowerBuilder Application Server Plug-in
The PowerBuilder Application Server Plug-In is a standalone product that
enables PowerBuilder users to deploy components to and write clients for
third-party application servers. Supported servers in the first release of the
product are WebSphere 6.1, WebLogic 9.2, and JBoss 4.0.4.

The EAServer Profiles dialog box has been renamed “Application Server
Profiles” and can now be used to specify profiles for other J2EE servers.

New icons for the Application Server Component generator have been added
to the Target, PB Object, and Project pages in the New dialog box in
PowerBuilder Enterprise. New icons for the Application Server Proxy
generator have been added to the Project page.The new wizards and their usage
are very similar to the related EAServer wizards.

Some new features added to EAServer components also apply to application
server components. For example, they can be deployed as EJB 2.1 Web
services, and you can specify security roles and custom EJB properties in the
Project painter.

These changes are also in PowerBuilder 10.5.1.

Application Server Profiles dialog box available in wizards
In the EAServer and Application Server Component and Proxy wizards, there
is now a Manage Profiles button on the Choose EAServer Profile or Choose
Application Server Profile page. Clicking this button opens the Application
Server Profiles dialog box so that you can add a new profile or modify an
existing profile without leaving the wizard.

The Profile Name in the Edit Application Server Profile dialog box cannot be
edited. This is because the name is now stored in the project object along with
the other properties of the profile. If the profile name cannot be found in the
registry when the project is deployed, the description in the project object is
used.

PowerBuilder user interface and usability features

12 New Features

Suppressing warning messages for objects in source control
Although you can open objects in a PowerBuilder painter when they are
checked in to source control, until you check them out again, any changes you
make to those objects cannot be saved. By default, when you try to open an
object under source control, PowerBuilder provides a warning message to let
you know when the object is not checked out. You can avoid this type of
warning message by clearing the “Suppress prompts to overwrite read-only
files” check box on the Source Control tab of the Workspace Properties dialog
box.

If you did not change the default, you can still select a check box on the first
warning message that displays. After you select the “Do not display this
message again” check box in a warning message box and click Yes, the check
box on the Source Control tab is automatically cleared. This prevents warning
messages from displaying the next time you open objects that are checked in to
source control. Although warning messages do not display, you still cannot
save any changes you make to these objects in a PowerBuilder painter.

Setting AutoScript options
In painters with a Script view, you can set AutoScript options from the
Design>Options menu. A new Show Return Types check box has been added
to the Options page.

When you paste statements into a script using the Edit>Paste Special menu
item, prototype values display in the syntax to indicate conditions or actions.
By default, the statements are pasted in lowercase. To paste statements in
uppercase, add the following line to the [PB] section of the PB.INI file:

PasteLowercase=0

This PB.INI setting now applies to AutoScript as well as Paste Special.

Modified date displays for copy and paste
The message prompt that displays when you copy an object from one PBL to
another PBL that already has an object of that name now includes the
modification date and time to help you determine whether to confirm the copy.

PowerBuilder user interface and usability features

PowerBuilder 11.0 13

Target field in Browser resized
The Target field at the top of the Browser has been resized to the full width of
the Browser to make it easier to see which target is selected.

Edit styles are created in the Object Details view
When you create or modify an edit style in the Database painter, you specify
the style in the Object Details view, as you do for Display Formats and
Validation Rules, instead of in a separate dialog box. You can now also create
a custom edit style for the InkEdit edit style.

Breaking into the debugger when an exception is thrown
When an application throws an exception while it is being debugged, the
debugger sees the exception before the program has a chance to handle it.The
debugger can allow the program to continue or it can handle the exception.
This is usually referred to as the debugger’s first chance to handle the
exception. If the debugger does not handle the exception, the program sees the
exception. If the program does not handle the exception, the debugger gets a
second chance to handle it.

You can control whether the debugger handles first chance exceptions in the
Exception Setting dialog box. To open the dialog box, open the Debugger and
select Exceptions from the Debug menu. By default, all exceptions inherit from
their parent and all are set to Continue.

When one of these exceptions is thrown, a dialog box displays so that you can
choose whether to open the debugger or pass the exception to the program.

Selecting EAServer components for debugging
When you debug an EAServer target, the set of components that can be
debugged is determined from the project. The set includes all components
selected on the Components page in the Project painter for which the Remote
Debugging check box is selected. If you want to select a different set of
components or debug components from more than one package, select
Debug>Select Components from the menu bar in the EAServer debugger or
click the Select Components button on the PainterBar.

New features for Window controls

14 New Features

New features for Window controls
New properties for the Window control allow you to add some special effects
to your applications:

• Opening and closing windows with an animated effect

• Transparency for windows

You set the properties on the General page in the window’s Properties view.

Opening and closing windows with an animated effect
You can use a special effect when a window opens or closes. Effects include
fading in or out, opening from the center, and sliding or rolling from the top,
bottom, left, or right. Set the AnimationTime property to between 1 and 5000
milliseconds to specify how long the animation effect takes to complete.

For example, if your application displays a splash screen while the
application’s main window is initializing, you can set the CloseAnimation
property to have the window fade out rather than just disappearing when the
application is initialized or after a timeout:

w_splash.CloseAnimation = FadeAnimation!

For more information, see the OpenAnimation , CloseAnimation, and
AnimationTime properties for the Window control in Objects and Controls or
the online Help.

Transparency for windows
You can specify a value between 1 and 100% for the Transparency property of
a window. This property is useful if you want a non-modal dialog box to remain
visible but become semi-transparent when it loses focus.

For more information, see the Transparency property for the Window control
in Objects and Controls or the online Help.

DataWindow features

PowerBuilder 11.0 15

DataWindow features
The following new DataWindow features are available in PowerBuilder 11:

• TreeView DataWindow features

• Web service as a DataWindow data source

• Remember DataWindow retrieval arguments

• UseEllipsis DataWindow object property

TreeView DataWindow features
The following changes have been made to the TreeView DataWindow:

• You can hide tree nodes in the detail band by setting a height of 0 for the
detail.

• You can move rows in a TreeView and they will retain their expanded or
collapsed state.

• You no longer need to define user-defined events for the Collapsing,
Collapsed, Expanding, and Expanded events—they are now standard
events on the DataWindow object.

The TreeView DataWindow style can also be used to create Web DataWindows
in .NET Web Forms applications in PowerBuilder 11.0. (The TreeView Web
DataWindow style for Web DataWindows is not supported in JSP targets.)

The TreeView Web DataWindow supports most of the features available in the
TreeView DataWindow in Windows applications. The ShowConnectLines and
ShowLeafNodeConnectLines properties are not supported in the current
release for performance reasons.

Image files used for tree node icons, like other image files, must be deployed
to the Web site with the PBL. To do this, select the icon on the Resource Files
page in the Project painter.

DataWindow features

16 New Features

Web service as a DataWindow data source
In PowerBuilder 11 you can use a Web service as the data source for
DataWindow objects with any presentation style except RichText and OLE.

For more information on using a Web service data source for DataWindow
objects, see the “Defining DataWindow Objects” chapter in the PowerBuilder
User’s Guide.

For information on updating DataWindow objects using a Web service data
source, see the “Controlling Updates in DataWindow Objects” chapter in the
PowerBuilder User’s Guide.

Remember DataWindow retrieval arguments
In previous versions of PowerBuilder, when you specified retrieval arguments
for a DataWindow object in the Specify Retrieval Arguments dialog box, the
retrieval argument values that you specified were not remembered by the
DataWindow object.

To enhance usability, the Specify Retrieval Arguments dialog box now has a
Remember retrieval arguments check box. When the Remember retrieval
arguments check box is selected, the data values are saved and the check box
remains selected when you press the OK button. Clearing the Remember
retrieval arguments check box and clicking OK removes the data values. This
feature is only available in the development environment.

Not for nested and Composite DataWindows
You cannot use the Remember Retrieval Arguments feature in a nested or
Composite DataWindow, so the Remember Retrieval Arguments check box is
grayed out.

In a new DataWindow, the Remember retrieval arguments check box is
disabled until you save the DataWindow and name it. You must close and
reopen the DataWindow object or the Preview view to enable the checkbox.

Database connectivity features

PowerBuilder 11.0 17

UseEllipsis DataWindow object property
If a column with the Edit or EditMask edit style contains character data that is
too long for the display column in the DataWindow, the data is truncated. You
can choose to display an ellipsis at the end of the truncated data. To do so, select
the Use Ellipsis check box on the Format page in the Properties view or specify
the UseEllipsis DataWindow object property in a script:

dw1.Object.col1.Edit.UseEllipsis = Yes
dw1.Modify("col1.Edit.UseEllipsis=Yes")

dw1.Object.col1.EditMask.UseEllipsis = Yes
dw1.Modify("col1.EditMask.UseEllipsis=Yes")

For displayed text, if the end of the string does not fit in the rectangle, it is
truncated and the ellipsis is displayed. The ellipsis does not display when the
column has focus.

The property is ignored if you:

• Check Autosize Height on the Position page or set the Height.Autosize
property in a script.

• Specify an expression for the Escapement property on the Font page to
rotate the text or set the Font.Escapement property in a script.

The UseEllipsis DataWindow object property is not supported in Web Forms
applications.

Database connectivity features
The following database connectivity features are available in PowerBuilder 11:

• Enhanced support for MobiLink synchronization

• Support for Adaptive Server Enterprise 15

• Support for Adaptive Server 15 unsigned datatypes

• Support for Microsoft SQL Server 2005

• Support for HA event notification in Oracle 10g

Database connectivity features

18 New Features

Enhanced support for MobiLink synchronization
MobiLink is a session-based synchronization system that allows two-way
synchronization between a main database, called the consolidated database,
and multiple remote databases. The ASA MobiLink Synchronization wizard
on the Database tab of the New dialog box creates objects that facilitate control
of database synchronization from a PowerBuilder application.

Modifications to the
wizard

In PowerBuilder 11, system objects have been added to enable MobiLink
functionality to work with .NET applications. Although the ASA MobiLink
Synchronization wizard still generates objects that facilitate control of
database synchronization from PowerBuilder applications, the main nonvisual
object generated by the wizard is now an instance of the MLSync system object
(that inherits from the MLSynchronization base class).

The wizard no longer generates a global structure object for storage of
synchronization parameters entered by the user, but the synchronization
window that it generates uses the SyncParm system structure instead. These
differences apply even in targets that are not deployed to .NET platforms.

Migrating MobiLink objects
In PowerBuilder 10.5 MobiLink applications that you migrate to
PowerBuilder 11, Sybase strongly recommends that you rerun the MobiLink
wizard and generate new synchronization objects. You must rerun the wizard
if you are deploying to .NET Windows Forms targets.

Synchronization applications that you migrate can still work with standard
PowerBuilder applications without rerunning the wizard, but you must modify
the library object references in the pb_run_dbmlsync and pb_cancel_dbmlsync
functions of the wizard-generated nvo_appname_mlsync object. For
PowerBuilder 11, the referenced library for these functions must be
pbodb110.dll, not pbvm105.dll.

The following table shows objects that can be generated by the wizard, listed
by their default object names, where appname stands for the name of the
current application.

Database connectivity features

PowerBuilder 11.0 19

Creating an instance
of MLSync

With the new MLSync system object in PowerBuilder 11, you no longer have
to use the MobiLink Synchronization Wizard to create a nonvisual object that
launches Dbmlsync.exe. You can include an MLSync object in your
applications:

• Programmatically with PowerScript

For an example showing how to add an MLSync object programmatically,
see the chapter on MobiLink Synchronization in Application Techniques.

• By selecting it from the New dialog box

Default name Description

nvo_appname_mlsync An instance of the MLSync standard class user object
that starts synchronization from the remote client. In
PowerBuilder 10.5, this was a simple nonvisual user
object.

Name change for PowerBuilder 11
The default suffix “_mlsync” replaces the “_sync”
default suffix used by earlier versions of the wizard.

gf_appname_sync Global function that instantiates
nvo_appname_mlsync to start the synchronization.
This function includes the logic to start the
synchronization with or without a feedback window.

w_appname_syncprogress Optional feedback window that can be used to
display synchronization status to the client.

Name change for PowerBuilder 11
The default suffix “syncprogress” replaces the
“_sync” default suffix used by earlier versions of the
the wizard.

gf_appname_configure_sync Optional global function that calls the
w_appname_sync_options window, which allows
the user to configure the dbmlsync client.

w_appname_sync_options Optional window that allows the application user to
change connection arguments at runtime.

Database connectivity features

20 New Features

For more information about MobiLink synchronization, see the chapter on
“Managing the Database” in the User’s Guide and the chapter on “Using
MobiLink Synchronization” in Application Techniques. For more information
on system objects related to synchronization, and their functions, events, and
properties, see MLSynchronization, MLSync, and SyncParm in the online
Help.

Auxiliary objects for
MobiLink
synchronization

If you create an instance of MLSync by PowerScript code or from the New
dialog box, you should also consider using auxiliary objects that can be
generated automatically by the wizard, or that you can customize in the
PowerBuilder Window painter.

The chapter on MobiLink synchronization in Application Techniques includes
a section describing the default progress and options windows and suggestions
for customizing them.

Support for Adaptive Server Enterprise 15
A new database interface, the ASE interface, has been added to support
Adaptive Server® Enterprise 15 and later releases. This interface is identical
to the existing SYC interface, except that:

• It currently supports only Adaptive Server 15 (the Release database
parameter can only be set to 15).

• It supports large identifiers with up to 128 characters. This support is not
available in the SYC interface.

To use this interface, the Adaptive Server 15 client must be installed on the
client computer. The ASE interface will also be available in PowerBuilder
10.5.1.

Support for Adaptive Server 15 unsigned datatypes
In PowerBuilder 10.5, support for Adaptive Server 15 unsigned datatypes was
added for the SYC and JDBC interfaces. In PowerBuilder 11, this support is
also available for the ODBC interface and the new ASE interface.

Database connectivity features

PowerBuilder 11.0 21

Support for Microsoft SQL Server 2005
A new database interface, the SNC interface, has been added to support
Microsoft SQL Server. The new interface uses the SQL Server 2005 native
client (sqlncli.h and sqlncli.dll) on the client side and connects using OLE DB.

PBODB initialization file not used
Connections made directly through OLE DB use the PBODB initialization file
to set some parameters, but connections made using the SNC interface do not
depend on the PBODB initialization file.

The SNC interface can be used to connect to SQL Server 2005 and SQL Server
2000.

For SQL Server 2000, the SQL client SDK was provided with the Microsoft
Database Access Components (MDAC). MDAC does not support new features
in SQL Server 2005. To use the SNC interface, the SQL Server 2005 SQL
Native Client and the .NET Framework 2.0 must be installed on the client
computer.

For more information, see the chapter on Microsoft SQL Server in Connecting
to Your Database.

Support for HA event notification in Oracle 10g
Oracle Real Application Clusters (RAC) is a cluster database that uses a shared
cache architecture. In Oracle 10g Release 2, a High Availability (HA) client
connected to an RAC database can register a callback to indicate that it wants
the server to notify it in case of a database failure event that affects a connection
made by the client.

To take advantage of this feature, PowerBuilder users can script a new event,
DBNotification, that has been added to the Transaction object. For more
information, see the description of the DBNotification event and the
HANotification database parameter in the online Help.

New and modified functions

22 New Features

New and modified functions
Byte array conversion
functions

A new PowerScript function, GetByteArray, and a new syntax for the Blob
function have been added to enable conversion between blobs and byte arrays.

The syntaxes are:

Blob (any stringorbytearray) returns blob
GetByteArray (blob input) returns Any

Two ways to use trim
functions

A new overloaded version of the Trim, LeftTrim, and RightTrim functions has
been added. By default, these functions trim only space characters. To trim all
types of white space characters, such as tabs and carriage returns, set the
optional second argument to true. The default is false.

Using \s in a filter
expression

You can now append \s to the filter expression you use with the SetFilter
DataWindow function if you want to compare strings in ASCII order instead
of dictionary order. For example, the following expression shows only rows in
which column 2 begins with a or b, because the ASCII values of uppercase
letters are lower than the ASCII values of lowercase letters:

#2 >= 'a' and #2 < 'c' \s

Without the \s, rows in which column 2 begins with A, a, B, or b would
display.

See the function descriptions in the online Help for more information.

	New Features PowerBuilder 11.0
	.NET deployment features
	.NET Web Forms deployment
	.NET Windows Forms and smart client deployment
	Deploying nonvisual objects as .NET classes in .NET assemblies
	Deploying nonvisual objects as .Net Web services
	.NET debugger
	Conditional compilation
	.NET language interop
	.NET assembly import

	PowerBuilder user interface and usability features
	New target types
	Setting the current target
	Project painter enhancements
	System Tree enhancements
	Output window enhancements
	Resizable dialog boxes
	Updated menus and toolbars
	PowerBuilder Application Server Plug-in
	Application Server Profiles dialog box available in wizards
	Suppressing warning messages for objects in source control
	Setting AutoScript options
	Modified date displays for copy and paste
	Target field in Browser resized
	Edit styles are created in the Object Details view
	Breaking into the debugger when an exception is thrown
	Selecting EAServer components for debugging

	New features for Window controls
	Opening and closing windows with an animated effect
	Transparency for windows

	DataWindow features
	TreeView DataWindow features
	Web service as a DataWindow data source
	Remember DataWindow retrieval arguments
	UseEllipsis DataWindow object property

	Database connectivity features
	Enhanced support for MobiLink synchronization
	Support for Adaptive Server Enterprise 15
	Support for Adaptive Server 15 unsigned datatypes
	Support for Microsoft SQL Server 2005
	Support for HA event notification in Oracle 10g

	New and modified functions

