
Reference Manual

Sybase® IQ
12.7

DOCUMENT ID: DC38151-01-1270-01

LAST REVISED: June 2006

Copyright © 1991-2006 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, SYBASE (logo), ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server, Adaptive Server
Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication, Adaptive Server Everywhere, Advantage
Database Server, Afaria, Answers Anywhere, Applied Meta, Applied Metacomputing, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute,
APT-Translator, APT-Library, ASEP, Avaki, Avaki (Arrow Design), Avaki Data Grid, AvantGo, Backup Server, BayCam, Beyond Connected, Bit-Wise,
BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional Logo, ClearConnect, Client-Library, Client
Services, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data Pipeline, Data Workbench, DataArchitect,
Database Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Dejima, Dejima Direct, Developers Workbench,
DirectConnect Anywhere, DirectConnect, Distribution Director, Dynamic Mobility Model, e-ADK, E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway,
ECMAP, ECRTP, eFulfillment Accelerator, EII Plus, Electronic Case Management, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/
Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise Portal (logo), Enterprise SQL Server Manager, Enterprise Work
Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works
Together, EWA, ExtendedAssist, Extended Systems, ExtendedView, Financial Fusion, Financial Fusion (and design), Financial Fusion Server, Formula One,
Fusion Powered e-Finance, Fusion Powered Financial Destinations, Fusion Powered STP, Gateway Manager, GeoPoint, GlobalFIX, iAnywhere, iAnywhere
Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InstaHelp, Intelligent
Self-Care, InternetBuilder, iremote, irLite, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Legion, Logical Memory Manager, M2M Anywhere,
Mach Desktop, Mail Anywhere Studio, Mainframe Connect, Maintenance Express, Manage Anywhere Studio, MAP, M-Business Anywhere, M-Business
Channel, M-Business Network, M-Business Suite, MDI Access Server, MDI Database Gateway, media.splash, Message Anywhere Server, MetaWorks,
MethodSet, mFolio, Mirror Activator, ML Query, MobiCATS, MobileQ, MySupport, Net-Gateway, Net-Library, New Era of Networks, Next Generation
Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS logo, ObjectConnect, ObjectCycle, OmniConnect, OmniQ, OmniSQL Access
Module, OmniSQL Toolkit, OneBridge, Open Biz, Open Business Interchange, Open Client, Open ClientConnect, Open Client/Server, Open Client/Server
Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, Partnerships that Work, PB-Gen, PC APT Execute, PC DB-Net, PC
Net Library, Pharma Anywhere, PhysicalArchitect, Pocket PowerBuilder, PocketBuilder, Power++, Power Through Knowledge, power.stop, PowerAMC,
PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerScript,
PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare
Enterprise, ProcessAnalyst, Pylon, Pylon Anywhere, Pylon Application Server, Pylon Conduit, Pylon PIM Server, Pylon Pro, QAnywhere, Rapport, Relational
Beans, RemoteWare, RepConnector, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication Server, Replication Server
Manager, Replication Toolkit, Resource Manager, RFID Anywhere, RW-DisplayLib, RW-Library, SAFE, SAFE/PRO, Sales Anywhere, Search Anywhere,
SDF, Search Anywhere, Secure SQL Server, Secure SQL Toolset, Security Guardian, ShareSpool, ShareLink, SKILS, smart.partners, smart.parts, smart.script,
SOA Anywhere Trademark,SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL
Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server
SNMP SubAgent, SQL Station, SQLJ, Stage III Engineering, Startup.Com, STEP, SupportNow, S.W.I.F.T. Message Format Libraries, Sybase Central, Sybase
Client/Server Interfaces, Sybase Development Framework, Sybase Financial Server, Sybase Gateways, Sybase IQ, Sybase Learning Connection, Sybase MPP,
Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase Virtual Server Architecture, Sybase User Workbench,
SybaseWare, Syber Financial, SyberAssist, SybFlex, SybMD, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, The
Enterprise Client/Server Company, The Extensible Software Platform, The Future Is Wide Open, The Learning Connection, The Model For Client/Server
Solutions, The Online Information Center, The Power of One, TotalFix, TradeForce, Transact-SQL, Translation Toolkit, Turning Imagination Into Reality,
UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viafone, Viewer, VisualWriter, VQL,
WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit,
Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, XcelleNet, XP Server, XTNDAccess and XTNDConnect are
trademarks of Sybase, Inc. or its subsidiaries. 05/06

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

Reference Manual iii

About This Book .. xxv

CHAPTER 1 File Locations and Installation Settings 1
Installation directory structure .. 2
How Sybase IQ locates files .. 3

Simple file searching ... 4
Extensive file searching... 5

Environment variables.. 6
Setting environment variables ... 6
ASCHARSET environment variable .. 8
ASDIR environment variable ... 8
ASIQPORT environment variable ... 9
ASIQTIMEOUT environment variable 9
ASLANG environment variable ... 10
ASLOGDIR environment variable ... 10
ASTMP environment variable.. 11
LIBRARY PATH environment variable 12
PATH environment variable .. 12
SQLCONNECT environment variable 12
SYBASE environment variable.. 13
SYBASE_JRE environment variable....................................... 13
SYBASE_OCS environment variable...................................... 14
TZ environment variable.. 14

Registry entries .. 20
Current user and local machine settings 20
Registry structure .. 21
Registry settings on installation... 21

CHAPTER 2 Database Options.. 23
Introduction to database options .. 24

Setting options... 24
Finding option settings .. 25
Scope and duration of database options................................. 26

Contents

iv Sybase IQ

Setting public options .. 28
Deleting option settings ... 28
Option classification .. 29
Initial option settings.. 29

General database options .. 30
Transact-SQL compatibility options ... 35
DBISQL options ... 37
Alphabetical list of options.. 39

AGGREGATION_PREFERENCE option 39
ALLOW_NULLS_BY_DEFAULT option [TSQL]...................... 40
ANSI_CLOSE_CURSORS_ON_ROLLBACK option [TSQL] .. 40
ANSI_PERMISSIONS option [TSQL]...................................... 41
ANSINULL option [TSQL].. 41
ANSI_UPDATE_CONSTRAINTS option................................. 42
APPEND_LOAD option ... 43
ASE_BINARY_DISPLAY option.. 44
ASE_FUNCTION_BEHAVIOR option 44
AUDITING option [database]... 45
AUTO_COMMIT option [DBISQL]... 46
AUTO_REFETCH option [DBISQL] .. 46
AUTOMATIC_TIMESTAMP option [TSQL] 47
BELL option [DBISQL]... 47
BIT_VECTOR_PINNABLE_CACHE_PERCENT option 47
BLOCKING option ... 48
BT_PREFETCH_MAX_MISS option 48
BT_PREFETCH_SIZE option.. 49
CACHE_PARTITIONS option ... 49
CHAINED option [TSQL] ... 51
CHECKPOINT_TIME option ... 51
CIS_ROWSET_SIZE option.. 51
CLOSE_ON_ENDTRANS option [TSQL]................................ 52
COMMAND_DELIMITER option [DBISQL] 52
COMMIT_ON_EXIT option [DBISQL] 52
CONTINUE_AFTER_RAISERROR option [TSQL] 53
CONVERSION_ERROR option [TSQL] 53
CONVERSION_MODE option... 54
CONVERT_HG_TO_1242 option.. 60
CONVERT_VARCHAR_TO_1242 option 61
COOPERATIVE_COMMIT_TIMEOUT option......................... 61
COOPERATIVE_COMMITS option... 61
CURSOR_WINDOW_ROWS option 62
DATE_FIRST_DAY_OF_WEEK option................................... 63
DATE_FORMAT option... 63
DATE_ORDER option ... 65

Contents

Reference Manual v

DBCC_LOG_PROGRESS option ... 66
DBCC_PINNABLE_CACHE_PERCENT option...................... 66
DDL_OPTIONS2 option .. 67
DEBUG_MESSAGES option... 68
DEDICATED_TASK option ... 68
DEFAULT_HAVING_SELECTIVITY option 69
DEFAULT_ISQL_ENCODING option [DBISQL] 69
DEFAULT_LIKE_MATCH_SELECTIVITY option.................... 70
DEFAULT_LIKE_RANGE_SELECTIVITY option.................... 71
DELAYED_COMMIT_TIMEOUT option 72
DELAYED_COMMITS option.. 72
DISABLE_RI_CHECK option .. 72
DISK_STRIPING option .. 72
DISK_STRIPING_PACKED option ... 73
DIVIDE_BY_ZERO_ERROR option [TSQL] 74
EARLY_PREDICATE_EXECUTION option 74
ECHO option [DBISQL] ... 75
ENABLE_THREAD_ALLOWANCE option 75
ENABLED_ORDERED_PUSHDOWN_INSERTION option.... 76
EXTENDED_JOIN_SYNTAX option 76
FLATTEN_SUBQUERIES option .. 77
FLOAT_AS_DOUBLE option [TSQL] 77
FORCE_DROP option... 78
FORCE_NO_SCROLL_CURSORS option 79
FORCE_UPDATABLE_CURSORS option.............................. 80
FPL_EXPRESSION_MEMORY_KB option............................. 80
FP_PREDICATE_WORKUNIT_PAGES option 80
GARRAY_FILL_FACTOR_PERCENT option 81
GARRAY_INSERT_PREFETCH_SIZE option........................ 81
GARRAY_RO_PREFETCH_SIZE option................................ 82
HASH_PINNABLE_CACHE_PERCENT option 82
HASH_THRASHING_PERCENT option 82
HEADINGS option [DBISQL]... 83
HG_DELETE_METHOD option... 83
HG_SEARCH_RANGE option .. 84
IDENTITY_ENFORCE_UNIQUENESS option........................ 84
IDENTITY_INSERT option .. 85
INDEX_ADVISOR option .. 85
INDEX_ADVISOR_MAX_ROWS option 87
INDEX_PREFERENCE option .. 88
INFER_SUBQUERY_PREDICATES option............................ 89
IN_SUBQUERY_PREFERENCE option 90
IQGOVERN_MAX_PRIORITY option 91
IQGOVERN_PRIORITY option ... 91

Contents

vi Sybase IQ

IQGOVERN_PRIORITY_TIME option..................................... 91
IQMSG_LENGTH_MB option.. 92
ISOLATION_LEVEL option ... 93
ISQL_COMMAND_TIMING option [DBISQL].......................... 93
ISQL_ESCAPE_CHARACTER option [DBISQL] 94
ISQL_FIELD_SEPARATOR option [DBISQL]......................... 95
ISQL_LOG option [DBISQL].. 95
ISQL_QUOTE option [Interactive SQL]................................... 96
JAVA_HEAP_SIZE option... 96
JAVA_NAMESPACE_SIZE option .. 97
JOIN_EXPANSION_FACTOR option...................................... 97
JOIN_OPTIMIZATION option.. 98
JOIN_PREFERENCE option... 99
JOIN_SIMPLIFICATION_THRESHOLD option..................... 100
LARGE_DOUBLES_ACCUMULATOR option 101
LF_BITMAP_CACHE_KB option... 101
LOAD_MEMORY_MB option .. 102
LOAD_ZEROLENGTH_ASNULL option 103
LOCAL_KB_PER_STRIPE option... 103
LOCAL_RESERVED_DBSPACE_MB option 104
LOG_CONNECT option .. 105
LOG_CURSOR_OPERATIONS option................................. 105
LOGIN_MODE option.. 105
LOGIN_PROCEDURE option ... 106
MAIN_CACHE_MEMORY_MB option 108
MAIN_KB_PER_STRIPE option ... 109
MAIN_RESERVED_DBSPACE_MB option 110
MAX_CARTESIAN_RESULT option 110
MAX_CLIENT_NUMERIC_PRECISION option 111
MAX_CLIENT_NUMERIC_SCALE option 111
MAX_CUBE_RESULT option.. 112
MAX_CURSOR_COUNT option ... 113
MAX_HASH_ROWS option... 113
MAX_IQ_THREADS_PER_CONNECTION option 114
MAX_IQ_THREADS_PER_TEAM option 114
MAX_JOIN_ENUMERATION option 114
MAX_QUERY_PARALLELISM option 115
MAX_QUERY_TIME option .. 116
MAX_STATEMENT_COUNT option 116
MAX_WARNINGS option .. 117
MINIMIZE_STORAGE option.. 117
MIN_NLPDJ_FILTERED_PPM option 118
MIN_NLPDJ_TABLE_SIZE option .. 118
MIN_PASSWORD_LENGTH option 119

Contents

Reference Manual vii

MIN_SMPDJ_OR_HPDJ_FILTERED_PPM option............... 119
MIN_SMPDJ_OR_HPDJ_FILTERED_SIZE option............... 120
MIN_SMPDJ_OR_HPDJ_INDIRECT_SIZE option 120
MIN_SMPDJ_OR_HPDJ_TABLE_SIZE option..................... 121
MONITOR_OUTPUT_DIRECTORY option........................... 121
MPX_GLOBAL_TABLE_PRIV option.................................... 122
MPX_LOCAL_SPEC_PRIV option.. 123
NEAREST_CENTURY option [TSQL]................................... 123
NOEXEC option .. 124
NON_ANSI_NULL_VARCHAR option 124
NON_KEYWORDS option [TSQL] .. 125
NOTIFY_MODULUS option .. 125
NULLS option [DBISQL].. 126
ODBC_DISTINGUISH_CHAR_AND_VARCHAR option....... 126
ON_CHARSET_CONVERSION_FAILURE option................ 126
ON_ERROR option [DBISQL] ... 127
ON_TSQL_ERROR option [TSQL] 128
OS_FILE_CACHE_BUFFERING option 128
OUT_OF_DISK_MESSAGE_REPEAT option 129
OUT_OF_DISK_WAIT_TIME option 130
OUTPUT_FORMAT option [ISQL] .. 130
OUTPUT_LENGTH option [ISQL] ... 131
OUTPUT_NULLS option [ISQL] .. 132
PARALLEL_GBH_ENABLED option..................................... 132
PARALLEL_GBH_MIN_ROWS_PER_UNIT option 133
PARALLEL_GBH_UNITS option... 133
PERCENT_AS_COMMENT option [TSQL]........................... 134
PRECISION option.. 135
PREFETCH option .. 135
PREFETCH_BUFFER_LIMIT option..................................... 136
PREFETCH_BUFFER_PERCENT option............................. 136
PREFETCH_GARRAY_PERCENT option............................ 136
PREFETCH_SORT_PERCENT option 137
PRESERVE_SOURCE_FORMAT option [database]............ 137
QUERY_DETAIL option .. 138
QUERY_NAME option .. 138
QUERY_PLAN option ... 139
QUERY_PLAN_AFTER_RUN option.................................... 139
QUERY_PLAN_AS_HTML option... 140
QUERY_PLAN_AS_HTML_DIRECTORY option.................. 140
QUERY_ROWS_RETURNED_LIMIT option 141
QUERY_TEMP_SPACE_LIMIT option 142
QUERY_TIMING option .. 142
QUOTED_IDENTIFIER option [TSQL].................................. 143

Contents

viii Sybase IQ

RECOVERY_TIME option... 143
RETURN_DATE_TIME_AS_STRING option 143
ROW_COUNT option .. 144
SCALE option.. 145
SIGNIFICANTDIGITSFORDOUBLEEQUALITY option......... 145
SORT_PHASE1_HELPERS option....................................... 146
SORT_PINNABLE_CACHE_PERCENT option 146
SQL_FLAGGER_ERROR_LEVEL option [TSQL]................. 147
SQL_FLAGGER_WARNING_LEVEL option [TSQL] 147
STATISTICS option [DBISQL]... 148
STRING_RTRUNCATION option [TSQL] 148
SUBQUERY_PLACEMENT_PREFERENCE option............. 148
SUPPRESS_TDS_DEBUGGING option............................... 149
SWEEPER_THREADS_PERCENT option 150
TDS_EMPTY_STRING_IS_NULL option [database] 150
TEMP_CACHE_MEMORY_MB option 151
TEMP_KB_PER_STRIPE option .. 152
TEMP_EXTRACT_APPEND option 152
TEMP_EXTRACT_BINARY option 153
TEMP_EXTRACT_COLUMN_DELIMITER option 154
TEMP_EXTRACT_DIRECTORY option................................ 155
TEMP_EXTRACT_NAMEn options....................................... 155
TEMP_EXTRACT_NULL_AS_EMPTY option 157
TEMP_EXTRACT_NULL_AS_ZERO option......................... 158
TEMP_EXTRACT_QUOTE option .. 159
TEMP_EXTRACT_QUOTES option...................................... 159
TEMP_EXTRACT_QUOTES_ALL option 160
TEMP_EXTRACT_ROW_DELIMITER option....................... 161
TEMP_EXTRACT_SIZEn options ... 161
TEMP_EXTRACT_SWAP option .. 163
TEMP_RESERVED_DBSPACE_MB option 163
TEMP_SPACE_LIMIT_CHECK option.................................. 164
TIME_FORMAT option.. 165
TIMESTAMP_FORMAT option ... 166
TRIM_PARTIAL_MBC option.. 168
TRUNCATE_WITH_AUTO_COMMIT option 168
TRUNCATION_LENGTH option [DBISQL] 169
TSQL_HEX_CONSTANT option [TSQL]............................... 169
TSQL_VARIABLES option [TSQL].. 169
USER_RESOURCE_RESERVATION option 170
VERIFY_PASSWORD_FUNCTION option 170
WASH_AREA_BUFFERS_PERCENT option 171
WAIT_FOR_COMMIT option .. 172

Contents

Reference Manual ix

CHAPTER 3 SQL Language Elements.. 173
Keywords ... 174

Reserved words .. 174
Identifiers.. 177
Strings .. 178
Expressions.. 179

Constants in expressions .. 180
Column names in expressions .. 180
Subqueries in expressions .. 181
SQL operators ... 181
IF expressions ... 184
CASE expressions .. 185
Compatibility of expressions.. 186

Search conditions... 189
Comparison conditions.. 190
Subqueries in search conditions ... 191
ALL or ANY conditions .. 192
BETWEEN conditions ... 193
LIKE conditions ... 193
IN conditions.. 196
CONTAINS conditions... 196
EXISTS conditions .. 197
IS NULL conditions.. 197
Conditions with logical operators... 197
NOT conditions.. 198
Truth value conditions ... 198
Three-valued logic... 198
User-supplied condition hints .. 199

Special values .. 205
CURRENT DATABASE special value................................... 205
CURRENT DATE special value .. 205
CURRENT PUBLISHER special value.................................. 205
CURRENT TIME special value ... 205
CURRENT TIMESTAMP special value 206
CURRENT USER special value .. 206
LAST USER special value... 206
SQLCODE special value ... 207
SQLSTATE special value.. 207
TIMESTAMP special value.. 208
USER special value... 208

Variables .. 209
Local variables .. 209
Connection-level variables .. 211
Global variables... 211

Contents

x Sybase IQ

Comments.. 217
NULL value .. 218

CHAPTER 4 SQL Data Types ... 221
Character data types.. 222
Numeric data types .. 224
Binary data types ... 229
Bit data type ... 234
Date and time data types ... 234
Sending dates and times to the database.................................... 236
Retrieving dates and times from the database............................. 236
Comparing dates and times ... 237
Using unambiguous dates and times ... 238
Domains ... 239
Data type conversions.. 241
Year 2000 compliance ... 244

CHAPTER 5 SQL Functions ... 249
Overview .. 250
Aggregate functions ... 250
Analytical functions .. 252
Date and time functions ... 256

Date parts.. 259
Data type conversion functions .. 261
HTTP functions .. 261
Numeric functions .. 262
String functions .. 264
System functions.. 266

Connection properties ... 269
Properties available for the server... 269
Properties available for each database 270

SQL and Java user-defined functions .. 270
Miscellaneous functions ... 271
Alphabetical list of functions... 272

ABS function [Numeric] ... 272
ACOS function [Numeric] .. 273
ARGN function [Miscellaneous]... 273
ASCII function [String] ... 274
ASIN function [Numeric] .. 274
ATAN function [Numeric]... 274
ATAN2 function [Numeric]... 275
AVG function [Aggregate].. 275
BIGINTTOHEX function [Data type conversion].................... 276

Contents

Reference Manual xi

BIT_LENGTH function [String] .. 277
BYTE_LENGTH function [String] .. 277
CAST function [Data type conversion] 278
CEIL function [Numeric] .. 279
CEILING function [Numeric] .. 279
CHAR function [String] .. 280
CHAR_LENGTH function [String].. 280
CHARINDEX function [String] ... 281
COALESCE function [Miscellaneous] 282
COL_LENGTH function [System].. 282
COL_NAME function [System] .. 282
CONNECTION_PROPERTY function [System].................... 283
CONVERT function [Data type conversion] 284
COS function [Numeric]... 287
COT function [Numeric] ... 287
COUNT function [Aggregate] .. 287
DATALENGTH function [System].. 288
DATE function [Date and time].. 289
DATEADD function [Date and time] 289
DATEDIFF function [Date and time]...................................... 290
DATEFORMAT function [Date and time]............................... 292
DATENAME function [Date and time] 293
DATEPART function [Date and time] 293
DATETIME function [Date and time] 294
DAY function [Date and time] .. 294
DAYNAME function [Date and time]...................................... 295
DAYS function [Date and time].. 295
DB_ID function [System] ... 296
DB_NAME function [System] .. 296
DB_PROPERTY function [System] 297
DEGREES function [Numeric]... 298
DENSE_RANK function [Analytical] 298
DIFFERENCE function [String] ... 299
DOW function [Date and time]... 300
EVENT_CONDITION function [System]................................ 300
EVENT_CONDITION_NAME function [System] 302
EVENT_PARAMETER function [System] 302
EXP function [Numeric] ... 303
FLOOR function [Numeric] .. 303
GETDATE function [Date and time] 304
GROUPING function [Aggregate].. 304
GROUP_MEMBER function [System]................................... 305
HEXTOBIGINT function [Data type conversion].................... 305
HEXTOINT function [Data type conversion] 306

Contents

xii Sybase IQ

HOUR function [Date and time]... 307
HOURS function [Date and time] .. 308
HTML_DECODE function [HTTP] ... 309
HTML_ENCODE function [HTTP] ... 309
HTTP_DECODE function [HTTP].. 310
HTTP_ENCODE function [HTTP].. 310
HTTP_HEADER function [HTTP] .. 311
HTTP_VARIABLE function [HTTP] 311
IFNULL function [Miscellaneous]... 312
INDEX_COL function [System] ... 313
INSERTSTR function [String] .. 313
INTTOHEX function [Data type conversion].......................... 314
ISDATE function [Date and time] .. 316
ISNULL function [Miscellaneous] .. 316
ISNUMERIC function [Miscellaneous]................................... 317
LCASE function [String]... 318
LEFT function [String].. 318
LEN function [String] ... 319
LENGTH function [String].. 320
LN function [Numeric].. 320
LOCATE function [String] .. 321
LOG function [Numeric]... 322
LOG10 function [Numeric]... 323
LOWER function [String] ... 323
LTRIM function [String].. 324
MAX function [Aggregate] ... 324
MIN function [Aggregate]... 325
MINUTE function [Date and time].. 325
MINUTES function [Date and time] 326
MOD function [Numeric] .. 327
MONTH function [Date and time] .. 327
MONTHNAME function [Date and time]................................ 327
MONTHS function [Date and time].. 328
NEWID function [Miscellaneous] ... 329
NEXT_CONNECTION function [System] 330
NEXT_DATABASE function [System] 331
NEXT_HTTP_HEADER function [HTTP] 331
NEXT_HTTP_VARIABLE function [HTTP]............................ 332
NOW function [Date and time]... 333
NTILE function [Analytical] .. 333
NULLIF function [Miscellaneous]... 335
NUMBER function [Miscellaneous] 335
OBJECT_ID function [System] .. 337
OBJECT_NAME function [System] 337

Contents

Reference Manual xiii

OCTET_LENGTH function [String].. 338
PATINDEX function [String] .. 338
PERCENT_RANK function [Analytical] 339
PERCENTILE_CONT function [Analytical]............................ 340
PERCENTILE_DISC function [Analytical] 343
PI function [Numeric] ... 345
POWER function [Numeric] ... 345
PROPERTY function [System] .. 345
PROPERTY_DESCRIPTION function [System] 346
PROPERTY_NAME function [System].................................. 347
PROPERTY_NUMBER function [System] 347
QUARTER function [Date and time]...................................... 348
RADIANS function [Numeric] .. 348
RAND function [Numeric] .. 349
RANK function [Analytical] .. 349
REMAINDER function [Numeric]... 351
REPEAT function [String] .. 351
REPLACE function [String].. 352
REPLICATE function [String] .. 353
REVERSE function [String] ... 354
RIGHT function [String] ... 355
ROUND function [Numeric] ... 355
ROWID function [Miscellaneous]... 356
RTRIM function [String] ... 358
SECOND function [Date and time] .. 358
SECONDS function [Date and time]...................................... 359
SIGN function [Numeric].. 360
SIMILAR function [String] .. 360
SIN function [Numeric] .. 361
SORTKEY function [String] ... 361
SOUNDEX function [String]... 364
SPACE function [String] .. 364
SQRT function [Numeric] .. 365
SQUARE function [Numeric] ... 365
STDDEV function [Aggregate]... 365
STDDEV_POP function [Aggregate] 367
STDDEV_SAMP function [Aggregate] 368
STR function [String] ... 369
STR_REPLACE function [String] .. 370
STRING function [String] ... 371
STRTOUUID function [String] ... 372
STUFF function [String] ... 373
SUBSTRING function [String] ... 373
SUM function [Aggregate] ... 374

Contents

xiv Sybase IQ

SUSER_ID function [System].. 375
SUSER_NAME function [System] ... 375
TAN function [Numeric] ... 376
TODAY function [Date and time] ... 376
TRIM function [String].. 376
TRUNCATE function [Numeric]... 377
TRUNCNUM function [Numeric].. 378
UCASE function [String] .. 378
UPPER function [String] .. 379
USER_ID function [System] .. 379
USER_NAME function [System] ... 380
UUIDTOSTR function [String] ... 381
VAR_POP function [Aggregate] .. 381
VAR_SAMP function [Aggregate].. 382
VARIANCE function [Aggregate]... 383
WEEKS function [Date and time] .. 385
WIDTH_BUCKET function [Numerical] 386
YEAR function [Date and time].. 388
YEARS function [Date and time] ... 388
YMD function [Date and time] ... 390

CHAPTER 6 SQL Statements ... 391
Using the SQL statement reference... 391

Common elements in SQL syntax... 391
Syntax conventions ... 392
Statement applicability indicators .. 393

ALLOCATE DESCRIPTOR statement [ESQL] 394
ALTER DATABASE statement... 396
ALTER DBSPACE statement... 398
ALTER DOMAIN statement ... 400
ALTER EVENT statement.. 401
ALTER INDEX statement... 403
ALTER PROCEDURE statement... 404
ALTER SERVER statement ... 405
ALTER SERVICE statement .. 407
ALTER TABLE statement .. 409
ALTER VIEW statement... 416
BACKUP statement.. 416
BEGIN... END statement.. 422
BEGIN PARALLEL IQ ... END PARALLEL IQ statement............. 425
BEGIN TRANSACTION statement .. 426
CALL statement ... 429
CASE statement... 431
CHECKPOINT statement... 433

Contents

Reference Manual xv

CLEAR statement [DBISQL] .. 433
CLOSE statement [ESQL] [SP].. 434
COMMENT statement.. 435
COMMIT statement.. 436
CONFIGURE statement [DBISQL]... 438
CONNECT statement [ESQL] [DBISQL]...................................... 439
CREATE DATABASE statement.. 442
CREATE DBSPACE statement.. 453
CREATE DOMAIN statement .. 456
CREATE EVENT statement... 458
CREATE EXISTING TABLE statement.. 465
CREATE EXTERNLOGIN statement ... 467
CREATE FUNCTION statement .. 468
CREATE INDEX statement.. 473
CREATE JOIN INDEX statement... 481
CREATE MESSAGE statement [T-SQL] 484
CREATE PROCEDURE statement.. 485
CREATE PROCEDURE statement [T-SQL] 491
CREATE SCHEMA statement ... 493
CREATE SERVER statement .. 494
CREATE SERVICE statement ... 496
CREATE TABLE statement ... 499
CREATE VARIABLE statement ... 511
CREATE VIEW statement.. 512
DEALLOCATE DESCRIPTOR statement [ESQL] 514
Declaration section [ESQL] .. 514
DECLARE statement ... 515
DECLARE CURSOR statement [ESQL] [SP] 516
DECLARE CURSOR statement [T-SQL] 522
DECLARE LOCAL TEMPORARY TABLE statement 523
DELETE statement .. 525
DELETE (positioned) statement [ESQL] [SP] 527
DESCRIBE statement [ESQL] ... 528
DISCONNECT statement [DBISQL] .. 532
DROP statement .. 533
DROP CONNECTION statement... 536
DROP DATABASE statement.. 536
DROP EXTERNLOGIN statement ... 538
DROP SERVER statement .. 538
DROP SERVICE statement ... 539
DROP STATEMENT statement [ESQL]....................................... 539
DROP VARIABLE statement ... 540
EXECUTE statement [ESQL]... 541
EXECUTE statement [T-SQL].. 543

Contents

xvi Sybase IQ

EXECUTE IMMEDIATE statement [ESQL] [SP] 544
EXIT statement [DBISQL] .. 546
FETCH statement [ESQL] [SP] .. 547
FOR statement... 551
FORWARD TO statement.. 552
FROM clause ... 553
GET DESCRIPTOR statement [ESQL].. 558
GOTO statement [T-SQL] .. 558
GRANT statement.. 559
HELP statement [DBISQL]... 564
IF statement ... 564
IF statement [T-SQL].. 566
INCLUDE statement [ESQL] .. 567
INSERT statement ... 568
INSTALL statement.. 574
IQ UTILITIES statement... 576
LEAVE statement... 578
LOAD TABLE statement .. 580
LOCK TABLE statement .. 597
LOOP statement .. 598
MESSAGE statement... 600
OPEN statement [ESQL] [SP].. 603
OUTPUT statement [DBISQL] ... 605
PARAMETERS statement [DBISQL] ... 610
PREPARE statement [ESQL]... 611
PRINT statement [T-SQL] .. 613
PUT statement [ESQL]... 615
RAISERROR statement [T-SQL] ... 616
READ statement [DBISQL] .. 617
RELEASE SAVEPOINT statement .. 619
REMOVE statement... 619
RESIGNAL statement .. 620
RESTORE statement ... 621
RESUME statement ... 626
RETURN statement ... 627
REVOKE statement ... 628
ROLLBACK statement ... 630
ROLLBACK TO SAVEPOINT statement...................................... 631
SAVEPOINT statement.. 632
SELECT statement .. 632
SET statement ... 641
SET statement [T-SQL].. 643
SET CONNECTION statement [DBISQL] [ESQL] 645
SET DESCRIPTOR statement [ESQL] .. 646

Contents

Reference Manual xvii

SET OPTION statement... 647
SET OPTION statement [DBISQL] .. 650
SET SQLCA statement [ESQL].. 651
SIGNAL statement ... 652
START DATABASE statement [DBISQL] 652
START ENGINE statement [DBISQL].. 653
START JAVA statement... 654
STOP DATABASE statement [DBISQL] 655
STOP ENGINE statement [DBISQL].. 656
STOP JAVA statement... 656
SYNCHRONIZE JOIN INDEX statement 657
TRIGGER EVENT statement ... 658
TRUNCATE TABLE statement .. 658
UNION operation.. 659
UPDATE statement.. 661
UPDATE (positioned) statement [ESQL] [SP].............................. 664
WAITFOR statement.. 666
WHENEVER statement [ESQL] ... 667
WHILE statement [T-SQL] ... 668

CHAPTER 7 Differences from Other SQL Dialects.. 671
Sybase IQ features .. 672

CHAPTER 8 Physical Limitations ... 675
Size and number limitations ... 676

CHAPTER 9 System Tables... 679
System tables diagrams... 680
System tables descriptions .. 685
DUMMY system table .. 685
IQ_MPX_INFO system table.. 686
IQ_MPX_STATUS system table .. 687
IQ_MPX_VERSIONLIST system table... 688
IQ_SYSTEM_LOGIN_INFO_TABLE system table 688
IQ_USER_LOGIN_INFO_TABLE system table 689
SYSARTICLE system table.. 689
SYSARTICLECOL system table .. 690
SYSCAPABILITY system table .. 690
SYSCAPABILITYNAME system table.. 691
SYSCHECK system table .. 691
SYSCOLLATION system table .. 692
SYSCOLLATIONMAPPINGS system table 692

Contents

xviii Sybase IQ

SYSCOLPERM system table ... 693
SYSCOLUMN system table ... 694
SYSCONSTRAINT system table ... 696
SYSDOMAIN system table .. 697
SYSEVENT system table... 697
SYSEVENTTYPE system table ... 698
SYSEXTERNLOGINS system table... 699
SYSFILE system table ... 699
SYSFKCOL system table... 700
SYSFOREIGNKEY system table ... 701
SYSGROUP system table.. 702
SYSINDEX system table.. 703
SYSINFO system table .. 704
SYSIQCOLUMN system table ... 705
SYSIQFILE system table ... 706
SYSIQINDEX system table .. 708
SYSIQINFO system table .. 708
SYSIQJOININDEX system table.. 710
SYSIQJOINIXCOLUMN system table.. 711
SYSIQJOINIXTABLE system table .. 712
SYSIQTABLE system table.. 712
SYSIXCOL system table .. 713
SYSJAR system table .. 714
SYSJARCOMPONENT system table... 715
SYSJAVACLASS system table .. 715
SYSLOGIN system table.. 716
SYSOPTION system table ... 717
SYSOPTIONDEFAULTS system table .. 718
SYSPROCEDURE system table.. 718
SYSPROCPARM system table .. 720
SYSPROCPERM system table .. 721
SYSPUBLICATION system table... 721
SYSREMOTEOPTION system table.. 722
SYSREMOTEOPTIONTYPE system table 722
SYSREMOTETYPE system table .. 723
SYSREMOTEUSER system table ... 723
SYSSCHEDULE system table ... 725
SYSSERVERS system table.. 726
SYSSQLSERVERTYPE system table ... 727
SYSSUBSCRIPTION system table.. 727
SYSTABLE system table ... 728
SYSTABLEPERM system table ... 730
SYSTYPEMAP system table.. 732
SYSUSERMESSAGES system table... 732

Contents

Reference Manual xix

SYSUSERPERM system table .. 733
SYSUSERTYPE system table ... 734
SYSWEBSERVICE system table... 735

CHAPTER 10 System Procedures .. 737
System procedure overview... 738

Syntax rules for stored procedures 738
Understanding statistics reported by stored procedures 739

System stored procedures ... 740
sa_verify_password procedure ... 740
sp_iqaddlogin procedure ... 741
sp_iqcheckdb procedure ... 743
sp_iqcheckoptions procedure.. 749
sp_iqcolumn procedure ... 751
sp_iqconnection procedure ... 753
sp_iqconstraint procedure ... 756
sp_iqcontext procedure ... 757
sp_iqcursorinfo procedure... 759
sp_iqdatatype procedure... 762
sp_iqdbsize procedure .. 764
sp_iqdbspace procedure ... 766
sp_iqdbspaceinfo procedure ... 769
sp_iqdbstatistics procedure... 770
sp_iqdroplogin procedure.. 772
sp_iqestjoin procedure .. 773
sp_iqestdbspaces procedure .. 774
sp_iqestspace procedure .. 776
sp_iqevent procedure.. 776
sp_iqhelp procedure.. 779
sp_iqindex and sp_iqindex_alt procedures 786
sp_iqindexadvice procedure.. 788
sp_iqindexfragmentation procedure 789
sp_iqindexinfo procedure .. 790
sp_iqindexmetadata procedure ... 792
sp_iqindexsize procedure.. 793
sp_iqjoinindex procedure .. 795
sp_iqjoinindexsize procedure .. 798
sp_iqlistexpiredpasswords procedure 799
sp_iqlistlockedusers procedure ... 800
sp_iqlistpasswordexpirations procedure 801
sp_iqlocklogin procedure... 802
sp_iqlocks procedure .. 804
sp_iqmodifyadmin procedure .. 806
sp_iqmodifylogin procedure .. 809

Contents

xx Sybase IQ

sp_iqpassword procedure ... 810
sp_iqpkeys procedure ... 812
sp_iqprocedure procedure .. 813
sp_iqprocparm procedure ... 816
sp_iq_process_login procedure .. 819
sp_iqrebuildindex procedure ... 820
sp_iqrelocate procedure.. 822
sp_iqrename procedure .. 823
sp_iq_reset_identity procedure ... 825
sp_iqrowdensity procedure ... 826
sp_iqshowpsexe procedure... 827
sp_iqspaceinfo procedure ... 829
sp_iqspaceused procedure ... 830
sp_iqstatus procedure ... 831
sp_iqsysmon procedure .. 833
sp_iqtable procedure... 839
sp_iqtablesize procedure .. 841
sp_iqtransaction procedure ... 842
sp_iqversionuse procedure ... 846
sp_iqview procedure ... 848
sp_iqwho procedure .. 849

Catalog stored procedures... 853
sa_audit_string system procedure .. 853
sa_checkpoint_execute system procedure 853
sa_conn_activity system procedure 854
sa_conn_info system procedure ... 855
sa_conn_properties system procedure 856
sa_conn_properties_by_conn system procedure.................. 856
sa_conn_properties_by_name system procedure 857
sa_db_info system procedure ... 858
sa_db_properties system procedure 859
sa_enable_auditing_type system procedure......................... 859
sa_eng_properties system procedure 860
sa_table_page_usage system procedure 861
sa_disable_auditing_type system procedure 861
sa_flush_cache system procedure.. 862
sa_make_object system procedure....................................... 862
sa_rowgenerator system procedure...................................... 864
sa_server_option system procedure 865
sa_set_http_header system procedure 870
sa_set_http_option system procedure 870
sa_validate system procedure... 870
sa_verify_password system procedure 871
sp_login_environment system procedure.............................. 872

Contents

Reference Manual xxi

sp_remote_columns system procedure 872
sp_remote_exported_keys system procedure 873
sp_remote_imported_keys system procedure 874
sp_remote_primary_keys system procedure 875
sp_remote_tables system procedure 876
sp_servercaps system procedure ... 877
sp_tsql_environment system procedure................................ 879

Multiplex system procedures.. 880
sp_iqmpxcountdbremote procedure...................................... 880
sp_iqmpxgetconnversion procedure 881
sp_iqmpxreplacewriteserver procedure 881
sp_iqmpxvalidate procedure ... 882
sp_iqmpxversioninfo procedure .. 883
sp_mpxcfg_<servername> procedure................................... 883

Adaptive Server Enterprise system and catalog procedures 884
Adaptive Server Enterprise system procedures 884
Adaptive Server Enterprise catalog procedures.................... 886

CHAPTER 11 System Views .. 887
SYSARTICLECOLS system view .. 889
SYSARTICLES system view.. 889
SYSCAPABILITIES system view ... 889
SYSCATALOG system view .. 890
SYSCOLAUTH system view .. 890
SYSCOLUMNS system view ... 891
SYSFOREIGNKEYS system view ... 891
SYSGROUPS system view.. 892
SYSINDEXES system view.. 893
SYSOPTIONS system view ... 893
SYSPROCAUTH system view ... 894
SYSPROCPARMS system view .. 894
SYSPUBLICATIONS system view ... 895
SYSREMOTEOPTIONS system view.. 895
SYSREMOTETYPES system view .. 895
SYSREMOTEUSERS system view.. 896
SYSSUBSCRIPTIONS system view .. 897
SYSTABAUTH system view... 897
SYSUSERAUTH system view.. 898
SYSUSERLIST system view.. 898
SYSUSEROPTIONS system view ... 898
SYSUSERPERMS system view... 899
SYSVIEWS system view.. 899
Transact-SQL compatibility view.. 900

Contents

xxii Sybase IQ

APPENDIX A Compatibility with Other Sybase Databases............................. 903
An overview of Transact-SQL support ... 905
Adaptive Server architectures .. 906

Servers and databases ... 906
Space allocation and device management............................ 907
System tables, Catalog Store, and IQ Store 908
Administrative roles ... 909

Data types .. 910
Bit data type .. 910
Character data types ... 911
Binary data types... 912
Date, time, datetime, and timestamp data types 912
Numeric data types ... 914
Approximate numeric data types... 914
Text data type.. 914
Image data type... 915
Java data types ... 915

Data definition language .. 915
Creating a Transact-SQL-compatible database 915
Case sensitivity ... 916
Ensuring compatible object names 917
CREATE TABLE statement... 918
CREATE DEFAULT, CREATE RULE, and CREATE DOMAIN

statements .. 921
CREATE TRIGGER statement.. 921
CREATE INDEX statement ... 922
Users, groups, and permissions.. 923
Load formats ... 925
BCP support in loading.. 925
Setting options for Transact-SQL compatibility 926

Data manipulation language .. 926
General guidelines for writing portable SQL.......................... 926
Writing compatible queries .. 927
Subqueries .. 928
GROUP BY clause .. 928
COMPUTE clause ... 929
WHERE clause.. 929
Joins .. 930
Null comparisons... 931
Zero-length strings .. 931
HOLDLOCK, SHARED, and FOR BROWSE........................ 932
SQL functions.. 932
OLAP functions ... 933
System functions ... 934

Reference Manual xxiii

User-defined functions... 934
Arithmetic expressions on dates.. 935
SELECT INTO ... 935
Updatable views .. 935
FROM clause in UPDATE and DELETE 936

Transact-SQL procedure language overview 936
Transact-SQL stored procedure overview............................. 936
Transact-SQL batch overview ... 937
SQL statements in procedures and batches.......................... 937

Automatic translation of stored procedures 939
Using Sybase Central to translate stored procedures 939

Returning result sets from Transact-SQL procedures 940
Variables in Transact-SQL procedures .. 941
Error handling in Transact-SQL procedures................................. 942

Using the RAISERROR statement in procedures.................. 943
Transact-SQL-like error handling in the Watcom-SQL dialect 944

Adaptive Server Anywhere and Sybase IQ 944
Server and database start-up and administration.................. 945
Database options... 945
Data definition language (DDL) ... 946
Data manipulation language (DML) 947

Index.. 949

xxiv Sybase IQ

Reference Manual xxv

About This Book

Subject This book provides reference material for many aspects of Sybase IQ,
including SQL statements, language elements, data types, functions,
system procedures, and system tables. Other books provide more context
on how to perform particular tasks. This reference book is the place to
look for information such as available SQL syntax, parameters, and
options. For command line utility start-up parameters, see the Sybase IQ
Utility Guide.

Audience This manual is a reference for all users of Sybase IQ.

How to use this book This book provides comprehensive descriptions of Sybase IQ features, but
it does not describe why you might want to use each feature. This book is
designed to be used as a reference together with the other books in the
Sybase IQ documentation set.

Windows platforms
The Windows information in this book applies to all supported Windows
platforms, unless otherwise noted. For supported Windows platforms, see
the Release Bulletin Sybase IQ for Windows.

Related documents The Sybase IQ document set consists of these documents:

• Introduction to Sybase IQ – contains information and exercises for
users unfamiliar with Sybase IQ and with the Sybase Central™
database management tool.

• New Features in Sybase IQ 12.7 – includes a brief description of new
features in Sybase IQ.

• Sybase IQ Performance and Tuning Guide – describes query
optimization, design, and tuning issues for very large databases.

• Sybase IQ System Administration Guide – describes administrative
concepts, procedures and performance tuning recommendations
supported by Sybase IQ, including how to manage the IQ Store.

• Sybase IQ Troubleshooting and Recovery Guide – Shows how to
solve problems and perform system recovery and database repair.

xxvi Sybase IQ

• Sybase IQ Error Messages – refers to IQ error messages which are
referenced by SQLCode, SQLState, and Sybase error code, and SQL
preprocessor errors and warnings.

• Sybase IQ Utility Guide – contains Sybase IQ utility program reference
material, such as available syntax, parameters, and options.

• Large Objects Management in Sybase IQ – describes storage and retrieval
of Binary Large Objects (BLOBs) and Character Large Objects (CLOBs)
within the Sybase IQ data repository. You need a separate license to install
this product option.

• Sybase IQ Installation and Configuration Guide – contains platform-
specific instructions on installing Sybase IQ, migrating to a new version
of Sybase IQ, and configuring Sybase IQ for a particular platform.

• Sybase IQ Release Bulletin – contains last-minute changes to the product
and documentation.

• Encrypted Columns in Sybase IQ – describes the use of user encrypted
columns within the Sybase IQ data repository. You need a separate license
to install this product option.

Sybase IQ and Adaptive Server Anywhere
Because Sybase IQ is an extension of Adaptive Server® Anywhere, a
component of SQL Anywhere® Studio, Sybase IQ supports many of the same
features as Adaptive Server Anywhere. The Sybase IQ documentation set
refers you to SQL Anywhere Studio documentation where appropriate.

Documentation for Adaptive Server Anywhere:

• Adaptive Server Anywhere Programming Guide – Intended for application
developers writing programs that directly access the ODBC, Embedded
SQL™, or Open Client™ interfaces, this book describes how to develop
applications for Adaptive Server Anywhere.

• Adaptive Server Anywhere Database Administration Guide – Intended for
all users, this book covers material related to running, managing, and
configuring databases and database servers.

• Adaptive Server Anywhere SQL Reference Manual – Intended for all users,
this book provides a complete reference for the SQL language used by
Adaptive Server Anywhere. It also describes the Adaptive Server
Anywhere system tables and procedures.

 About This Book

Reference Manual xxvii

You can also refer to the Adaptive Server Anywhere documentation in the SQL
Anywhere Studio 9.0.2 collection on the Sybase Product Manuals Web site. To
access this site, go to Product Manuals at http://www.sybase.com/support/
manuals/.

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product
Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and might also contain other documents or updated
information not included on the SyBooks CD. It is included with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at http://www.sybase.com/
support/techdocs/.

2 Click Certification Report.

3 In the Certification Report filter select a product, platform, and timeframe
and then click Go.

http://www.sybase.com/support
http://www.sybase.com/support/manuals
http://www.sybase.com

xxviii Sybase IQ

4 Click a Certification Report title to display the report.

❖ Finding the latest information on component certifications

1 Point your Web browser to Availability and Certification Reports at http://
certification.sybase.com/.

2 Either select the product family and product under Search by Product; or
select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at http://www.sybase.com/
support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at http://
www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, type your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBF/Maintenance releases
displays.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

http://certification.sybase.com
http://certification.sybase.com
http://www.sybase.com
http://www.sybase.com/support
http://www.sybase.com/support

 About This Book

Reference Manual xxix

Syntax conventions This documentation uses the following syntax conventions in syntax
descriptions:

• Keywords SQL keywords are shown in UPPERCASE. However, SQL
keywords are case insensitive, so you can enter keywords in any case;
SELECT is the same as Select, which is the same as select.

• Placeholders Items that must be replaced with appropriate identifiers or
expressions are shown in italics.

• Continuation Lines beginning with an ellipses (...) are a continuation of
the statements from the previous line.

• Repeating items Lists of repeating items are shown with an element of
the list followed by an ellipsis. One or more list elements are allowed. If
more than one is specified, they must be separated by commas.

• Optional portions Optional portions of a statement are enclosed by
square brackets. For example:

RELEASE SAVEPOINT [savepoint-name]

It indicates that the savepoint-name is optional. Do not type the square
brackets.

• Options When none or only one of a list of items must be chosen, the
items are separated by vertical bars and the list enclosed in square
brackets. For example:

[ASC | DESC]

It indicates that you can choose one of ASC, DESC, or neither. Do not type
the square brackets.

• Alternatives When precisely one of the options must be chosen, the
alternatives are enclosed in curly braces. For example:

QUOTES { ON | OFF }

You must include either ON or OFF Do not type the braces.

Typographic
conventions

Table 1 lists the typographic conventions that this documentation uses.

xxx Sybase IQ

Table 1: Typographic conventions

The sample
database

Sybase IQ includes a sample database used by many of the examples in the
Sybase IQ documentation.

The sample database represents a small company. It contains internal
information about the company (employees, departments, and financial data),
as well as product information (products), sales information (sales orders,
customers, and contacts), and financial information (fin_code, fin_data).

The sample database is held in a file named asiqdemo.db, located in the
directory $ASDIR/demo on UNIX systems and %ASDIR%\demo on Windows
systems.

Accessibility
features

This document is available in an HTML version that is specialized for
accessibility. You can navigate the HTML with an adaptive technology such as
a screen reader, or view it with a screen enlarger.

Sybase IQ 12.7 and the HTML documentation have been tested for compliance
with U.S. government Section 508 Accessibility requirements. Documents that
comply with Section 508 generally also meet non-U.S. accessibility guidelines,
such as the World Wide Web Consortium (W3C) guidelines for Web sites.

For information about accessibility support in the Sybase IQ plug-in for Sybase
Central, see “Using accessibility features” in Introduction to Sybase IQ. The
online help for this product, which you can navigate using a screen reader, also
describes accessibility features, including Sybase Central keyboard shortcuts.

Configuring your accessibility tool
You might need to configure your accessibility tool for optimal use. Some
screen readers pronounce text based on its case; for example, they pronounce
ALL UPPERCASE TEXT as initials, and MixedCase Text as words. You
might find it helpful to configure your tool to announce syntax conventions.
Consult the documentation for your tool and see “Using screen readers” in
Introduction to Sybase IQ.

Item Description

Code SQL and program code is displayed in a mono-spaced
(fixed-width) font.

User entry Text entered by the user is shown in serif type.

emphasis Emphasized words are shown in italic.

file names File names are shown in italic.

database objects Names of database objects, such as tables and procedures,
are shown in san-serif type in print, and in italic online.

 About This Book

Reference Manual xxxi

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

For a Section 508 compliance statement for Sybase IQ, go to Sybase
Accessibility at http://www.sybase.com/products/accessibility.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

http://www.sybase.com/accessibility
http://www.sybase.com/products/accessibility

xxxii Sybase IQ

Reference Manual 1

C H A P T E R 1 File Locations and Installation
Settings

About this chapter This chapter describes the installation and operating system settings used
by Sybase IQ. Depending on the operating system, these settings may be
stored as environment variables, initialization file entries, or registry
entries.

Contents Topic Page

Installation directory structure 2

How Sybase IQ locates files 3

Environment variables 6

Registry entries 20

Installation directory structure

2 Sybase IQ

Installation directory structure
When you install Sybase IQ, several directories may be created. The directories
created depend on which options are chosen during installation and which
directories already exist in your Sybase directory (the directory defined by
$SYBASE on UNIX or %SYBASE% on Windows). This section describes the
directory structure.

By default, Sybase IQ software is installed in a unique subdirectory under the
Sybase directory. This subdirectory is called the installation directory. Other
tools provided with Sybase IQ have unique subdirectories under the Sybase
directory. This section describes only the subdirectory structure for Sybase IQ.

The Sybase IQ
directory

By default, the Sybase IQ directory is ASIQ-12_7. The location of ASIQ-12_7
varies, depending on where you install Sybase IQ. The ASIQ-12_7 directory is
also referred to by the environment variable $ASDIR on UNIX or %ASDIR%
on Windows.

The Sybase IQ directory holds a number of directories and files:

• Demo directory (ASIQ-12_7/demo) – holds the sample database used in
documentation examples. The database is held in the files asiqdemo.db,
asiqdemo.iq, asiqdemo.iqmsg, and asiqdemo.iqtmp. When you start the
database, an asiqdemo.log file is also created. This directory is not
essential, but Sybase recommends that you keep it.

The subdirectory /demo/demodata holds the data to create the demo
database, asiqdemo. You can use demo/mkasiqdemo.sql to re-create the
demo database. The sample database can be used to demonstrate problems
to Technical Support.

• Scripts directory (ASIQ-12_7/scripts) – holds some scripts used in
examples and when creating catalog objects like stored procedures. Do not
edit these scripts. If you edit, delete, or move these scripts, the server will
not operate properly.

• Samples directories (/asa/c and /asa/javaSQL) – /c holds C++ examples
that illustrate using ESQL (embedded SQL) and C with Adaptive Server
Anywhere. Because Adaptive Server Anywhere and Sybase IQ share
common code, you can modify these examples for use with Sybase IQ.
The /javaSQL directory holds Java examples.

• Executable directories – hold executables, libraries, help files, and the
like.

CHAPTER 1 File Locations and Installation Settings

Reference Manual 3

On UNIX, executable subdirectories include ASIQ-12_7 subdirectories /
bin, /lib, /logfiles, /res, /tix, and /usrlib. On Windows, these include ASIQ-
12_7 subdirectories \h, \install, \java, and \win32.

• Readme file – contains the latest information about installing and running
Sybase IQ. Sybase strongly suggests that you print this file and read it.

ASIQ-12_7/readme.txt on UNIX or ASIQ-12_7\readme.txt on Windows

How Sybase IQ locates files
When starting and running, Sybase IQ must find and access several types of
files. Understanding how Sybase IQ finds these files is important, to ensure
that the correct files are used. Several directories or files with identical names
may reside on a system. Sybase IQ uses both Adaptive Server Enterprise and
Adaptive Server Anywhere libraries. (If either of these products have already
been installed on your system, you should know the directory where they are
installed, to avoid confusion.)

The types of files include but are not limited to:

• Libraries – might include product libraries, system libraries, or Adaptive
Server Enterprise libraries. File name extensions include .so.nnn or .so on
UNIX (.sl.nnn or .sl on HP), or .dll or .lib on Windows. These files are
required to run Sybase IQ. If an incorrect DLL is located, for example,
there is the possibility of version mismatch errors. For example, library
files might be found in $ASDIR/lib or $SYBASE/$SYBASE_OCS/lib on
UNIX, or %ASDIR%\win32 or %SYBASE\%SYBASE_OCS\dll on
Windows. An empty directory, $ASDIR/usrlib, lets you supersede default
libraries with custom libraries and patches, because start_asiq includes
usrlib before regular library directories.

• Interface files – required to run Sybase IQ. For example, .odbc.ini and
utility_db.ini on UNIX, and util_db.ini on Windows. For more information
about these files, see Chapter 4, “Configuring Sybase IQ” in the Sybase IQ
Installation and Configuration Guide.

• Configuration files – used to specify connection parameters. Examples
include default.cfg on Windows or asiqdemo.cfg.

• Database files – store the data and metadata. For example: asiqdemo.db,
asiqdemo.iq, asiqdemo.iqmsg, asiqdemo.iqtmp.

How Sybase IQ locates files

4 Sybase IQ

• Log files – store information about the current session on the server and
connected database. For example, a server log might be named
ASIQ-12_7/logfiles/janed_asiqdemo.006.srvlog. The database log (for
example, ASIQ-12_7/demo/asiqdemo.log) is created when you connect to
the database and stored in the directory where the server is started. For
more information about these files, see the Sybase IQ Installation and
Configuration Guide.

• Product scripts – are sample files that show how to create, populate, and
upgrade databases.

• User files – include flat files used with the LOAD command and SQL
scripts used with tools such as Interactive SQL.

• Temporary files – created by Sybase IQ to store temporary information for
operations like performing sorts for queries.

Some file names are specified in SQL statements and must be located at
runtime. Examples of SQL statements that use file names include the
following:

• INSTALL statement – the name of the file that holds Java classes.

• LOAD TABLE statement – the name of the file from which data should be
loaded.

• CREATE DATABASE statement – A file name is needed for this statement
and similar statements that can create files.

In some cases, Sybase IQ uses a simple algorithm to locate files. In other cases,
a more extensive search is carried out.

Simple file searching
In many SQL statements such as LOAD TABLE or CREATE DATABASE, the file
name is interpreted as relative to the current working directory of the database
server; that is, where the server was started.

Also, when a database server is started and a database file name (DBF
parameter) is supplied, the path is interpreted as relative to the directory in
which the server was started.

CHAPTER 1 File Locations and Installation Settings

Reference Manual 5

Extensive file searching
Sybase IQ programs, including the database server and administration utilities,
carry out extensive searches for required files, such as DLLs or shared
libraries. In these cases, Sybase IQ programs look for files in the following
order:

1 The executable directory – The directory in which the program executable
is held. Also, directories with the following paths relative to the program
executable directory:

• Parent of the executable directory.

• A child of the parent directory named scripts. The UNIX server does
not search in this location.

2 Current working directory – When a program is started, it has a current
working directory (the directory from which it is started). This directory is
searched for required files.

3 Location registry entry – On a Windows installation, Sybase IQ adds a
LOCATION registry entry. The indicated directory is searched, followed
by the following:

• A child named scripts

• A child with the operating system name (win32, win, and so on)

4 System-specific directories – This includes directories where common
operating system files are held, such as the Windows directory and the
Windows\system directory on Windows.

5 CLASSPATH directories – For Java files, directories listed in the
CLASSPATH environment variable are searched to locate files.

6 PATH directories – Directories in the system path and the user’s path are
searched to locate files.

7 LIBRARY PATH directories – Directories listed in the
LD_LIBRARY_PATH_64, LIBPATH, or SHLIB_PATH (depending on
platform) environment variable are searched for shared libraries.

Environment variables

6 Sybase IQ

Environment variables
Sybase IQ uses environment variables to store various types of information.
Not all variables need to be set in all circumstances. These environment
variables are listed in this section.

Setting environment variables
Required environment variables are set by environment source files on UNIX
and by the Sybase IQ installation on Windows.

❖ Running UNIX environment source files

Issue the following command to set all required environment variables.

1 For the Bourne/Korn shell:

. $SYBASE/ASIQ-12_7/ASIQ-12_7.sh

2 For the C shell:

source $SYBASE/ASIQ-12_7/ASIQ-12_7.csh;
rehash

On Windows platforms, the installation program automatically sets all
environmental variables, so no changes are necessary. However, if you must set
optional variables or change defaults, use one of the following procedures, as
appropriate for your operating system.

❖ Setting environment variables on Windows

1 On your desktop, right-click My Computer and select Properties from the
submenu.

2 Click the Advanced tab.

3 Click the Environment Variables button.

The Environment Variables dialog opens.

a If the environment variable does not already exist, click New and type
the variable name and its value in the spaces provided; then click OK.

CHAPTER 1 File Locations and Installation Settings

Reference Manual 7

b If the variable does exist, select it from the list of System Variables or
User Variables, click Edit, and make any modifications in the Variable
Value field. Then click OK to capture the setting.

Note See the Microsoft Windows documentation for an explanation
of user variables and system variables.

❖ Setting environment variables on UNIX

1 To check the setting for an environment variable, use:

echo $variable-name

For example, to see the setting for the $SYBASE variable:

% echo $SYBASE
/server1/users/janed/sybase

2 In one of your start-up files (.cshrc, .shrc, .login), add a line that sets the
variable.

In some shells (such as sh, bash, ksh) the line is:

 VARIABLE=value;export VARIABLE

In other shells (such as csh, tsch) the line is:

setenv VARIABLE value

For details about variables Sybase IQ uses, see the following topics:

• “ASCHARSET environment variable” on page 8

• “ASDIR environment variable” on page 8

• “ASIQPORT environment variable” on page 9

• “ASIQTIMEOUT environment variable” on page 9

• “ASLANG environment variable” on page 10

• “ASLOGDIR environment variable” on page 10

• “ASTMP environment variable” on page 11

• “LIBRARY PATH environment variable” on page 12

• “PATH environment variable” on page 12

• “SQLCONNECT environment variable” on page 12

• “SYBASE environment variable” on page 13

• “SYBASE_JRE environment variable” on page 13

Environment variables

8 Sybase IQ

• “SYBASE_OCS environment variable” on page 14

• “TZ environment variable” on page 14

ASCHARSET environment variable
Setting ASCHARSET=charset

Description Charset is a character set name. For example, setting ASCHARSET=cp1252
sets the default character set to cp1252.

The first of the following values set determines the default character set.

• ASCHARSET environment variable

• Query the operating system

If no character set information is specified, use iso_1 for UNIX, or cp850
otherwise.

ASDIR environment variable
Setting ASDIR = ${SYBASE}/ASIQ-12_7

Operating system Required. Set by the environment source file or the installation program. This
default setting can be changed on Windows.

Description ASDIR identifies the location of the Sybase IQ directory and is the location for
other directories and files under that directory:

• $ASDIR/bin/util_db.ini holds the login ID and password for the utility
database, utility_db. The installation program lets you change these from
their default values, login ID “dba” and password “sql.”

• $ASDIR/logfiles is the default location for the server log and backup/
restore log (the backup history file). You can override this default by
setting the ASLOGDIR environment variable.

• $ASDIR/demo is the location for the asiqdemo database files.

CHAPTER 1 File Locations and Installation Settings

Reference Manual 9

ASIQPORT environment variable
Setting ASIQPORT = 5556

Operating system Optional. If the user did not specify ASIQPORT in the environment source file,
the port number defaults to 1099. You can change this default value, provided
you do so before the plug-in starts. You can set this variable as described in
“Setting environment variables” on page 6 or by supplying the -DASIQPORT
argument to the scjview command when starting Sybase Central. For example:

scjview -DASIQPORT=3345

Description Overrides the default value for the Sybase IQ Agent port number, which is used
for communications between the Sybase IQ plug-in and Agent.

Note Once the plug-in starts, you cannot change the port value.

1099 is the plug-in default value when searching for an agent process on any
given port. If the plug-in finds no agent on this port, it displays a prompt so that
you can specify the correct port value.

This functionality lets you run IQ Agents for Sybase IQ 12.6 and 12.7 on the
same system. It also lets you run any number of 12.7 IQ Agents on a given host.

ASIQTIMEOUT environment variable
Setting ASIQTIMEOUT = nnn

Operating system Optional but recommended in multiplex environments.

Description The Sybase IQ Agent waits indefinitely for a process to complete. Setting a
wait time is recommended when creating or synchronizing query servers for a
multiplex with a very large catalog store. Large catalog stores extend the time
needed for the dbbackup part of synchronization, and increasing the wait time
accommodates a larger synchronize.

This variable overrides the default wait time of five minutes, and the argument
nnn is the number of minutes for the Sybase IQ Agent to wait. For example:

• To wait 45 minutes (Korn or Bourne shell):

ASIQTIMEOUT=45
export ASIQTIMEOUT

• To wait an hour (C shell):

Environment variables

10 Sybase IQ

setenv ASIQTIMEOUT 60

Note Make these settings before you invoke the agent startup option. See
“Before you Install” and “Starting the Sybase IQ Agent” in the Sybase IQ
Installation and Configuration Guide and “Running the Sybase IQ Agent” in
Introduction to Sybase IQ.

ASLANG environment variable
Setting ASLANG=language_code

Operating system Optional but recommended in non-English environments.

Description Language_code is the two-letter combination representing a language. For
example, setting ASLANG=DE sets the default language to German.

The first of the following values set determines the default language.

• ASLANG environment variable

• Registry (Windows only) as set by the installer or dblang.exe

• Query the operating system

If no language information is set, English is the default.

ASLOGDIR environment variable
Setting ASLOGDIR = path

Operating system Optional.

Description The ASLOGDIR environment variable is not set by the installation program. It
defines the location of various log files:

• The backup log is .backup.syb, in the directory specified by $ASLOGDIR.

• The server log is in the file servername.nnn.srvlog (where nnn is the
number of times the server has been started) in the directory specified by
$ASLOGDIR.

If ASLOGDIR is not set to a valid, write enabled directory, then most utilities,
including start_asiq, use the default location $ASDIR/logfiles for all server
logs.

CHAPTER 1 File Locations and Installation Settings

Reference Manual 11

ASTMP environment variable
Setting ASTMP = temp_directory

Operating system Optional on UNIX. Not used on Windows platforms.

Description The ASTMP environment variable is not set by the installation program.
ASTMP is used by Sybase IQ to indicate a directory where temporary files are
kept.

The ASTMP environment variable should point to a local directory for those
using NFS (network file system), which permits the ASTMP directory to purge
directories and files that are no longer needed as client connections are closed.
Each client connection creates several directories and files in a temporary
directory. These are needed only for the duration of the connection. The
directory must have write permissions for all users who connect to the server.

Note The temporary files whose location is defined by ASTMP are files used
by the client and server. This variable does not control the default location of
your IQ Temporary Store. For information on how Sybase IQ determines the
location of your temporary store, see the CREATE DATABASE statement on
page 442.

If you do not set ASTMP explicitly, or if it is set to $SYBASE or $ASDIR, then
the Sybase IQ Agent sets ASTMP to a subdirectory in the UNIX directory /
tmp.

If more than one database server is running on a machine, each server and
associated local client needs a separate temporary directory to avoid conflicts.
(Sybase IQ uses shared memory connectivity instead of network connectivity
when you do not specify the port or engine number for connection.)

To avoid conflicts when using shared memory:

• Create a temporary directory dedicated to each server. Make sure that each
local client uses the same temporary directory as its server by setting the
ASTMP environment variable explicitly in both environments.

• Create a data source name in the .odbc.ini file (on UNIX) for each server
and provide detailed connection information. For details, see the Sybase
IQ Installation and Configuration Guide.

• Use connection strings that specify explicit parameters instead of relying
on defaults.

• Confirm connections by issuing:

Environment variables

12 Sybase IQ

SELECT "database name is" = db_name(),
"servername_is" = @@servername

LIBRARY PATH environment variable
Settings For AIX:

LIBPATH = installation_path/lib

For HP UNIX:
SHLIB_PATH = installation_path/lib

For Solaris:
LD_LIBRARY_PATH_64 = installation_path/lib

Operating system Required. Variable name is platform dependent. UNIX only.

Description This variable is set to include the directories where Sybase IQ shared libraries
are located. On UNIX, set the library path variable by running the environment
source file.

PATH environment variable
Setting PATH = installation_path

Operating system Required.

Description The PATH environment variable is an operating system required variable that
includes the directories where Sybase IQ executables are located. On
Windows, the installation program modifies PATH. On UNIX, run the
environment source file to include the necessary directories. The environment
source file adds the $SYBASE/$SYBASE_OCS/bin directory to your UNIX
path.

On Windows, PATH takes the place of the LIBRARY_PATH variable, so
executables and DLLs are located using the PATH variable. Installing Sybase
IQ on Windows adds %SYBASE%\%SYBASE_OCS%\bin and
%SYBASE%\%SYBASE_OCS%\dll to your Windows path.

SQLCONNECT environment variable
Settings SQLCONNECT = parameter#value ; ...

Operating system Optional.

CHAPTER 1 File Locations and Installation Settings

Reference Manual 13

Description The SQLCONNECT environment variable is optional, and is not set by the
installation program.

SQLCONNECT specifies connection parameters that are used by several of
the database administration utilities, such as DBISQL, DBINFO, DBCOLLAT,
and DBSTOP, when connecting to a database server. This string is a list of
parameter settings, of the form parameter=value, delimited by semicolons.

The number sign “#” is an alternative to the equals sign; use it if you are setting
the connection parameters string in the SQLCONNECT environment variable.
Using “=” inside an environment variable setting is a syntax error. The = sign
is allowed only in Windows.

Note Specifying connection parameters in SQLCONNECT rather than on the
command line offers greater security on UNIX systems. It prevents users from
being able to display your password with the ps -ef command. This is especially
useful if you run DBISQL or other utilities in quiet mode.

See also For a description of the connection parameters, see “Connection parameters”
in Chapter 4, “Connection and Communication Parameters” in the Sybase IQ
System Administration Guide.

SYBASE environment variable
Setting SYBASE = path

Operating system Required.

Description The SYBASE variable identifies the location of Sybase applications, such as
Open Client and Open Server. You must set the SYBASE variable before you
can install Sybase IQ on UNIX systems. This variable is required for using
Sybase Central on UNIX systems.

SYBASE_JRE environment variable
Setting SYBASE_JRE= "${SYBASE}/shared/jre-1_42"

Operating system Required by SDK only.

Description On UNIX, run SYBASE.csh (C shell) or SYBASE.sh (Bourne or Korn shell)
environment source file. On Windows, the installation program sets
SYBASE_JRE when it installs Open Client Software Developer’s Kit.

Environment variables

14 Sybase IQ

SYBASE_OCS environment variable
Setting On Linux 32-bit systems:

SYBASE_OCS = “OCS-12_5

On all other systems:

SYBASE_OCS = "OCS-15_0"

Operating system Required.

Description On UNIX, run the environment source file to set SYBASE_OCS. Installing
Sybase IQ on UNIX does not automatically reset SYBASE_OCS, and if the
value has been set by another Sybase product, that value remains in effect
unless you unset SYBASE_OCS, and then run the source file. See the Sybase
IQ Installation and Configuration Guide for details.

 On Windows, the installation program sets SYBASE_OCS when it installs
Open Client/Server Software Developers Kit.

TZ environment variable
Setting When using Component Integration Services (CIS) in certain geographic

regions, connection attempts return the error No Suitable Driver. Java Developer
Kits used with Sybase IQ 12.7 support only the time zone codes shown in Table
1-1 and Table 1-2.

• For databases using default JDK 1.1.8:

Substitute JST for unsupported time zone KST, which gives the same
GMT+9 time, as follows:

setenv TZ JST

See Table 1-1 for the appropriate time zone code and settings.

• For databases using JDK 1.3:

setenv TZ Asia/Seoul

See Table 1-2 for the appropriate time zone code and settings.

Description Set the time zone environment variable to a supported setting, start the server,
and CIS works as expected. To ensure that the correct setting is always used,
you can set the time zone in the start_asiq script.

CHAPTER 1 File Locations and Installation Settings

Reference Manual 15

Table 1-1: JDK 1.1.8

Table 1-2: JDK 1.3

Time
zone
setting Time zone code

Time
zone
setting Time zone code

0 GMT 16 SST

1 UTC 17 NST
2 ECT 18 MIT
3 EET 19 HST
4 ART 20 AST
5 EAT 21 PST
6 MET 22 PNT
7 NET 23 MST
8 PLT 24 CST
9 IST 25 EST
10 BST 26 IET
11 VST 27 PRT
12 CTT 28 CNT
13 JST 29 AGT
14 ACT 30 BET
15 AET 31 CAT

Time
zone
setting Time zone code

Time
zone
setting Time zone code

0 Pacific/Niue 161 Europe/Belgrade
1 Pacific/Apia 162 Europe/Paris
2 MIT 163 ECT
3 Pacific/Pago_Pago 164 Africa/Bujumbura
4 Pacific/Tahiti 165 Africa/Gaborone
5 Pacific/Fakaofo 166 Africa/Lubumbashi
6 Pacific/Honolulu 167 Africa/Maseru
7 HST 168 Africa/Blantyre
8 America/Adak 169 Africa/Maputo
9 Pacific/Rarotonga 170 Africa/Kigali
10 Pacific/Marquesas 171 Africa/Khartoum
11 Pacific/Gambier 172 Africa/Mbabane
12 America/Anchorage 173 Africa/Lusaka
13 AST 174 Africa/Harare

Environment variables

16 Sybase IQ

14 Pacific/Pitcairn 175 CAT
15 America/Vancouver 176 Africa/Johannesburg
16 America/Tijuana 177 Europe/Sofia
17 America/Los_Angeles 178 Europe/Minsk
18 PST 179 Asia/Nicosia

19 America/Dawson_Creek 180 Europe/Tallinn
20 America/Phoenix 181 Africa/Cairo
21 PNT 182 ART
22 America/Edmonton 183 Europe/Helsinki
23 America/Mazatlan 184 Europe/Athens
24 America/Denver 185 Asia/Jerusalem
25 MST 186 Asia/Amman
26 America/Belize 187 Asia/Beirut
27 America/Regina 188 Europe/Vilnius
28 Pacific/Galapagos 189 Europe/Riga
29 America/Guatemala 190 Europe/Chisinau
30 America/Tegucigalpa 191 Europe/Bucharest
31 America/El_Salvador 192 Europe/Kaliningrad
32 America/Costa_Rica 193 Asia/Damascus
33 America/Winnipeg 194 Europe/Kiev
34 Pacific/Easter 195 Europe/Istanbul
35 America/Mexico_City 196 EET
36 America/Chicago 197 Asia/Bahrain
37 CST 198 Africa/Djibouti
38 America/Porto_Acre 199 Africa/Asmera
39 America/Bogota 200 Africa/Addis_Ababa
40 America/Guayaquil 201 EAT
41 America/Jamaica 202 Africa/Nairobi
42 America/Cayman 203 Indian/Comoro
43 America/Managua 204 Asia/Kuwait
44 America/Panama 205 Indian/Antananarivo
45 America/Lima 206 Asia/Qatar
46 America/Indianapolis 207 Africa/Mogadishu
47 IET 208 Africa/Dar_es_Salaam
48 America/Nassau 209 Africa/Kampala

Time
zone
setting Time zone code

Time
zone
setting Time zone code

CHAPTER 1 File Locations and Installation Settings

Reference Manual 17

49 America/Montreal 210 Asia/Aden
50 America/Havana 211 Indian/Mayotte
51 America/Port-au-Prince 212 Asia/Riyadh
52 America/Grand_Turk 213 Asia/Baghdad
53 America/New_York 214 Europe/Simferopol
54 EST 215 Europe/Moscow
55 America/Antigua 216 Asia/Tehran
56 America/Anguilla 217 MET
57 America/Curacao 218 Asia/Dubai
58 America/Aruba 219 Indian/Mauritius
59 America/Barbados 220 Asia/Muscat
60 America/La_Paz 221 Indian/Reunion
61 America/Manaus 222 Indian/Mahe
62 America/Dominica 223 Asia/Yerevan
63 America/Santo_Domingo 224 NET
64 America/Grenada 225 Asia/Baku
65 America/Guadeloupe 226 Asia/Aqtau
66 America/Guyana 227 Europe/Samara
67 America/St_Kitts 228 Asia/Kabul
68 America/St_Lucia 229 Indian/Kerguelen
69 America/Martinique 230 Asia/Tbilisi
70 America/Montserrat 231 Indian/Chagos
71 America/Puerto_Rico 232 Indian/Maldives
72 PRT 233 Asia/Dushanbe
73 America/Port_of_Spain 234 Asia/Ashkhabad
74 America/St_Vincent 235 Asia/Tashkent
75 America/Tortola 236 Asia/Karachi
76 America/St_Thomas 237 PLT
77 America/Caracas 238 Asia/Bishkek
78 Antarctica/Palmer 239 Asia/Aqtobe
79 Atlantic/Bermuda 240 Asia/Yekaterinburg
80 America/Cuiaba 241 Asia/Calcutta
81 America/Halifax 242 IST
82 Atlantic/Stanley 243 Asia/Katmandu
83 America/Thule 244 Antarctica/Mawson

Time
zone
setting Time zone code

Time
zone
setting Time zone code

Environment variables

18 Sybase IQ

84 America/Asuncion 245 Asia/Thimbu
85 America/Santiago 246 Asia/Colombo
86 America/St_Johns 247 Asia/Dacca
87 CNT 248 BST
88 America/Fortaleza 249 Asia/Almaty
89 America/Cayenne 250 Asia/Novosibirsk
90 America/Paramaribo 251 Indian/Cocos
91 America/Montevideo 252 Asia/Rangoon
92 America/Buenos_Aires 253 Indian/Christmas
93 AGT 254 Asia/Jakarta
94 America/Godthab 255 Asia/Phnom_Penh
95 America/Miquelon 256 Asia/Vientiane
96 America/Sao_Paulo 257 Asia/Saigon
97 BET 258 VST
98 America/Noronha 259 Asia/Bangkok
99 Atlantic/South_Georgia 260 Asia/Krasnoyarsk
100 Atlantic/Jan_Mayen 261 Antarctica/Casey
101 Atlantic/Cape_Verde 262 Australia/Perth
102 America/Scoresbysund 263 Asia/Brunei
103 Atlantic/Azores 264 Asia/Hong_Kong
104 Africa/Ouagadougou 265 Asia/Ujung_Pandang
105 Africa/Abidjan 266 Asia/Macao
106 Africa/Accra 267 Asia/Kuala_Lumpur
107 Africa/Banjul 268 Asia/Manila
108 Africa/Conakry 269 Asia/Singapore
109 Africa/Bissau 270 Asia/Taipei
110 Atlantic/Reykjavik 271 Asia/Shanghai
111 Africa/Monrovia 272 CTT
112 Africa/Casablanca 273 Asia/Ulan_Bator
113 Africa/Timbuktu 274 Asia/Irkutsk
114 Africa/Nouakchott 275 Asia/Jayapura
115 Atlantic/St_Helena 276 Asia/Pyongyang
116 Africa/Freetown 277 Asia/Seoul
117 Africa/Dakar 278 Pacific/Palau
118 Africa/Sao_Tome 279 Asia/Tokyo

Time
zone
setting Time zone code

Time
zone
setting Time zone code

CHAPTER 1 File Locations and Installation Settings

Reference Manual 19

119 Africa/Lome 280 JST
120 GMT 281 Asia/Yakutsk
121 UTC 282 Australia/Darwin
122 Atlantic/Faeroe 283 ACT
123 Atlantic/Canary 284 Australia/Adelaide
124 Europe/Dublin 285 Australia/Broken_Hill
125 Europe/Lisbon 286 Australia/Hobart
126 Europe/London 287 Antarctica/

DumontDUrville
127 Africa/Luanda 288 Pacific/Truk
128 Africa/Porto-Novo 289 Pacific/Guam
129 Africa/Bangui 290 Pacific/Saipan
130 Africa/Kinshasa 291 Pacific/Port_Moresby
131 Africa/Douala 292 Australia/Brisbane
132 Africa/Libreville 293 Asia/Vladivostok
133 Africa/Malabo 294 Australia/Sydney
134 Africa/Niamey 295 AET
135 Africa/Lagos 296 Australia/Lord_Howe
136 Africa/Ndjamena 297 Pacific/Ponape
137 Africa/Tunis 298 Pacific/Efate
138 Africa/Algiers 299 Pacific/Guadalcanal
139 Europe/Andorra 300 SST
140 Europe/Tirane 301 Pacific/Noumea
141 Europe/Vienna 302 Asia/Magadan
142 Europe/Brussels 303 Pacific/Norfolk
143 Europe/Zurich 304 Pacific/Kosrae
144 Europe/Prague 305 Pacific/Tarawa
145 Europe/Berlin 306 Pacific/Majuro
146 Europe/Copenhagen 307 Pacific/Nauru
147 Europe/Madrid 308 Pacific/Funafuti
148 Europe/Gibraltar 309 Pacific/Wake
149 Europe/Budapest 310 Pacific/Wallis
150 Europe/Rome 311 Pacific/Fiji
151 Europe/Vaduz 312 Antarctica/McMurdo
152 Europe/Luxembourg 313 Asia/Kamchatka

Time
zone
setting Time zone code

Time
zone
setting Time zone code

Registry entries

20 Sybase IQ

Registry entries
On Windows operating systems, Sybase IQ uses several Registry settings.
These settings are made for you by the software, and in general operation you
should not need to access the registry. The settings are provided here if you
modify your operating environment.

 Warning! Sybase recommends not modifying the Registry, as incorrect
changes might damage your system.

Current user and local machine settings
Some operating systems, such as Windows, hold two levels of system settings.
Some settings are specific to an individual user and are used only when that
user is logged on; these settings are called current user settings. Some settings
are global to the machine and are available no matter which user is logged on;
these are called local machine settings. You must have administrator
permissions on your machine to make local machine settings.

Sybase IQ permits the use of both current user and local machine settings. For
Windows, these settings are held in the HKEY_CURRENT_USER registry
and HKEY_LOCAL_MACHINE registry, respectively.

The Sybase IQ installation lets you choose whether the settings it makes are for
the current user only or at the local machine level.

153 Africa/Tripoli 314 Pacific/Aucklandoo

154 Europe/Monaco 315 NST
155 Europe/Malta 316 Pacific/Chatham
156 Africa/Windhoek 317 Pacific/Enderbury
157 Europe/Amsterdam 318 Pacific/Tongatapu
158 Europe/Oslo 319 Asia/Anadyr
159 Europe/Warsaw 320 Pacific/Kiritimati
160 Europe/Stockholm

Time
zone
setting Time zone code

Time
zone
setting Time zone code

CHAPTER 1 File Locations and Installation Settings

Reference Manual 21

If you make settings in both current user and local machine registries, the
current user setting takes precedence over the local machine setting.

When local machine
settings are needed

If you are running a Sybase IQ program as a service on Windows, you should
ensure that the settings are made at the local machine level.

Services can continue to run under a special account when you log off a
machine, as long as you do not shut the machine down entirely. Services can
be made independent of individual accounts and need access to local machine
settings.

In general, Sybase recommends using local machine settings.

Registry structure
On Windows, you can access the registry directly using the registry editor.

To start the editor, select Start > Run and type in the Open box

regedt32

Note Read Only Mode protects your registry data from accidental changes. To
use it, click Read Only Mode on the Options menu in the registry editor.

The Sybase IQ registry entry is held in the HKEY_LOCAL_MACHINE key,
in the following location:

SOFTWARE
Sybase

Adaptive Server IQ

Registry settings on installation
The installation program makes the following registry settings in the Sybase
registry:

• Current version – In the Adaptive Server IQ registry, this entry holds the
version number. For example:

CurrentVersion:REG_SZ:12.7.0

• Description – In the Adaptive Server IQ registry, this entry holds the
product name. For example:

Description:REG_SZ:Adaptive Server IQ

Registry entries

22 Sybase IQ

• Location – In the Adaptive Server IQ registry, this entry holds the
installation directory location. For example:

Location:REG_SZ:C:\Program Files\Sybase
\ASIQ-12_7

• Install date – In the Adaptive Server IQ\12.7 registry, this entry holds the
date the software was installed. For example:

InstallDate:REG_SZ:10-20-2004

• Install type – In the Adaptive Server IQ\12.7 registry, this entry holds the
type of installation. For example:

InstallType:REG_SZ:Server

The Adaptive Server IQ registry includes other entries for the programs
installed. The Sybase Central registry holds information about the Sybase
Central version and installed plug-ins.

Reference Manual 23

C H A P T E R 2 Database Options

About this chapter This chapter describes the database and DBISQL options you can set to
customize and modify database behavior.

Contents Topic Page

Introduction to database options 24

General database options 30

Transact-SQL compatibility options 35

DBISQL options 37

Alphabetical list of options 39

Introduction to database options

24 Sybase IQ

Introduction to database options
Database options control many aspects of database behavior. For example, you
can use database options for the purposes such as the following:

• Compatibility – lets you control how much like Adaptive Server
Enterprise your Sybase IQ database operates, and whether SQL that does
not conform to SQL92 generates errors.

• Error handling – lets you control what happens when errors, such as
dividing by zero or overflow errors, occur.

• Concurrency and transactions – lets you control the degree of concurrency
and details of COMMIT behavior using options.

Setting options
You set options with the SET OPTION statement. It has the following general
syntax:

SET [EXISTING] [TEMPORARY] OPTION
... [userid. | PUBLIC.]option-name = [option-value]

Specify a user ID or group name to set the option only for that user or group.
Every user belongs to the PUBLIC group. If no user ID or group is specified,
the option change is applied to the currently logged on user ID that issued the
SET OPTION statement.

For example, the following statement applies an option change to the user DBA,
if DBA is the user that issues it:

SET OPTION login_mode = mixed

The following statement applies a change to the PUBLIC user ID, a user group
to which all users belong.

SET OPTION Public.login_mode = standard

Note For all database options that accept integer values, Sybase IQ truncates
any decimal option-value setting to an integer value. For example, the value 3.8
is truncated to 3.

CHAPTER 2 Database Options

Reference Manual 25

The maximum length of option-value when set to a string is 127 bytes.

 Warning! Do not change option settings while fetching rows.

For more information, see the SET OPTION statement on page 647.

Finding option settings
You can obtain a list of option settings, or the values of individual options, in
a variety of ways.

Getting a list of option
values

• For the connected user, the sp_iqcheckoptions stored procedure displays a
list of the current value and the default value of database options that have
been changed from the default. sp_iqcheckoptions considers all Sybase IQ
and ASA database options. Sybase IQ modifies some ASA option
defaults, and these modified values become the new default values. Unless
the new Sybase IQ default value is changed again, sp_iqcheckoptions does
not list the option.

sp_iqcheckoptions also lists server start-up options that have been changed
from the default values.

When a DBA runs sp_iqcheckoptions, he or she sees all options set on a
permanent basis for all groups and users and sees temporary options set for
DBA. Users who are not DBAs see their own temporary options. All users
see nondefault server start-up options.

The sp_iqcheckoptions stored procedure requires no parameters. In
Interactive SQL, run the following command:

sp_iqcheckoptions

For more information, see “sp_iqcheckoptions procedure” on page 749.

The system table DBA.SYSOPTIONDEFAULTS contains all of the
names and default values of the Sybase IQ and ASA options. You can
query this table to see all option default values.

• Current option settings for your connection are available as a subset of
connection properties. You can list all connection properties using the
sa_conn_properties system procedure.

call sa_conn_properties

To order this list, you can call sa_conn_properties_by_name.

Introduction to database options

26 Sybase IQ

For more information, see the section “sa_conn_properties_by_name
system procedure” on page 857.

• In Interactive SQL, the SET statement with no arguments lists the current
setting of options.

SET

• In Sybase Central, right-click a database and select Options from the
submenu.

• Use the following query on the SYSOPTIONS system view:

SELECT *
FROM SYSOPTIONS

This shows all PUBLIC values, and those USER values that have been
explicitly set.

Getting individual
option values

You can obtain a single setting using the connection_property system function.
For example, the following statement reports the value of the Ansinull option:

SELECT connection_property ('Ansinull')

Scope and duration of database options
You can set options at three levels of scope: public, user, and temporary.

Temporary options take precedence over user and public settings. User-level
options take precedence over public settings. If you set a user-level option for
the current user, the corresponding temporary option is set as well.

Some options, such as COMMIT behavior, are database-wide in scope. Setting
these options requires DBA permissions. Other options, such as
ISOLATION_LEVEL, can also be applied to only the current connection, and
need no special permissions.

Changes to option settings take place at different times, depending on the
option. Changing a global option such as RECOVERY_TIME takes place the
next time the server is started. The following list contains some of the options
that take effect after the server is restarted.

Database options that require restarting the server:

CACHE_PARTITIONS

CHECKPOINT_TIME

DISK_STRIPING

MAIN_CACHE_MEMORY_MB

CHAPTER 2 Database Options

Reference Manual 27

Options that affect only the current connection generally take place
immediately. You can change option settings in the middle of a transaction, for
example.

 Warning! Changing options when a cursor is open can lead to unreliable
results. For example, changing DATE_FORMAT might not change the format
for the next row when a cursor is opened. Depending on the way the cursor is
being retrieved, it might take several rows before the change works its way to
the user.

Setting temporary
options

Adding the TEMPORARY keyword to the SET OPTION statement changes the
duration of the change. Ordinarily an option change is permanent: it will not
change until it is explicitly changed using the SET OPTION statement.

When the SET TEMPORARY OPTION statement is executed, the new option
value takes effect only for the current connection, and only for the duration of
the connection.

When the SET TEMPORARY OPTION is used to set a PUBLIC option, the
change is in place for as long as the database is running. When the database is
shut down, Temporary options for the PUBLIC user ID revert back to their
permanent value.

Setting an option for the PUBLIC user ID temporarily offers a security
advantage. For example, when the LOGIN_MODE option is enabled the
database relies on the login security of the system on which it is running.
Enabling it temporarily means that a database relying on the security of a
Windows domain will not be compromised if the database is shut down and
copied to a local machine. In this case, the LOGIN_MODE option reverts to its
permanent value, which could be Standard, a mode where integrated logins are
not permitted.

MAIN_RESERVED_DBSPACE_MB

OS_FILE_CACHE_BUFFERING

OUT_OF_DISK_MESSAGE_REPEAT

OUT_OF_DISK_WAIT_TIME

PREFETCH_BUFFER_LIMIT

PREFETCH_BUFFER_PERCENT

RECOVERY_TIME

TEMP_CACHE_MEMORY_MB

TEMP_RESERVED_DBSPACE_MB

Database options that require restarting the server:

Introduction to database options

28 Sybase IQ

Setting public options
Only users with DBA privileges have the authority to set an option for the
PUBLIC user ID.

Changing the value of an option for the PUBLIC user ID sets the value of the
option for all users who have not set their own value. An option value cannot
be set for an individual user ID unless there is already a PUBLIC user ID setting
for that option.

Deleting option settings
If option-value is omitted, the specified option setting is deleted from the
database. If option-value was a personal option setting, the value reverts back
to the PUBLIC setting. If a TEMPORARY option is deleted, the option setting
reverts back to the permanent setting.

For example, the following statement resets the ANSINULL option to its default
value:

SET OPTION ANSINULL =

If you incorrectly type the name of an option when you are setting the option,
the incorrect name is saved in the SYSOPTION table. You can remove the
incorrectly typed name from the SYSOPTION table by setting the option
PUBLIC with an equality after the option name and no value:

SET OPTION PUBLIC.a_mistyped_name=;

For example, if you set an option and incorrectly type the name, you can verify
that the option was saved by selecting from the SYSOPTIONS view:

SET OPTION PUBLIC.a_mistyped_name='ON';
SELECT * FROM SYSOPTIONS ORDER BY 2;

You can remove the incorrectly typed option by setting it to no value, then
verify that the option is removed:

SET OPTION PUBLIC.a_mistyped_name=;

user_name option setting

PUBLIC a_mistyped_name ON

PUBLIC Abort_On_Error_File

PUBLIC Abort_On_Error_Line 0

PUBLIC Abort_On_Error_Number 0

...

CHAPTER 2 Database Options

Reference Manual 29

SELECT * FROM SYSOPTIONS ORDER BY 2;

Option classification
Sybase IQ provides many options. It is convenient to divide them into a few
general classes. The classes of options are:

• General database options

• Transact-SQL compatibility database options

• Interactive SQL (DBISQL) options

Note Each class of options is listed in a separate table in the following sections.

Initial option settings
Connections to Sybase IQ can be made through the TERANODE Design Suite
(TDS) protocol—Open Client and jConnect™ for JDBC™ connections—or
through the Sybase IQ protocol—ODBC, Embedded SQL.

If users have both TDS and the Sybase IQ-specific protocol, you can configure
their initial settings using stored procedures. As it is shipped, Sybase IQ uses
this method to set Open Client connections and jConnect connections to reflect
default Adaptive Server Enterprise behavior.

The initial settings are controlled using the LOGIN_PROCEDURE option. This
option names a stored procedure to run when users connect. The default setting
is to use the sp_iq_process_login system stored procedure, which checks
whether the user is permitted to log in, and then calls the sp_login_environment
system procedure. You can change this behavior.

In its turn, sp_login_environment checks to see if the connection is being made
over TDS. If it is, it calls the sp_tsql_environment procedure, which sets several
options to new default values for the current connection.

user_name option setting

PUBLIC Abort_On_Error_File

PUBLIC Abort_On_Error_Line 0

PUBLIC Abort_On_Error_Number 0

...

General database options

30 Sybase IQ

For more information, including exceptions, see “LOGIN_PROCEDURE
option” on page 106, or the sp_iq_process_login, sp_login_environment, and
sp_tsql_environment system procedures in Chapter 10, “System Procedures.”

General database options
Table 2-1 lists database-specific options, their allowed values, and their default
settings.

 See the sections “Transact-SQL compatibility options” on page 35 and
“DBISQL options” on page 37 for lists of the other classes of options.

Note There are additional internal options not listed in this table that Sybase
Technical Support might ask you to use.

Table 2-1: General database options

OPTION VALUES DEFAULT

AGGREGATION_PREFERENCE -3 to 3 0

APPEND_LOAD ON, OFF OFF

AUDITING ON, OFF OFF

BIT_VECTOR_PINNABLE_CACHE_PERCENT* 0 – 100 40

BLOCKING OFF OFF

BT_PREFETCH_MAX_MISS 0 – 1000 2

BT_PREFETCH_SIZE 0 – 100 10

CACHE_PARTITIONS power of 2, 0 to 64 0

CHECKPOINT_TIME number of minutes 60

CIS_ROWSET_SIZE integer 50

CONVERSION_MODE 0, 1 0

CONVERT_HG_TO_1242 ON, OFF OFF

CONVERT_VARCHAR_TO_1242 ON, OFF OFF

COOPERATIVE_COMMIT_TIMEOUT integer 250

COOPERATIVE_COMMITS ON, OFF ON

CURSOR_WINDOW_ROWS 20 – 100000 200

DATE_FIRST_DAY_OF_WEEK 0 – 6 0

DATE_FORMAT string 'YYYY-MM-DD'

DATE_ORDER 'YMD', 'DMY', 'MDY' 'YMD'

DBCC_LOG_PROGRESS ON, OFF OFF

CHAPTER 2 Database Options

Reference Manual 31

DBCC_PINNABLE_CACHE_PERCENT 0 – 100 50

DDL_OPTIONS2 0 – 3 0

DEBUG_MESSAGES ON, OFF OFF

DEDICATED_TASK ON, OFF OFF

DEFAULT_HAVING_SELECTIVITY 0 – 100 0

DEFAULT_LIKE_MATCH_SELECTIVITY 0 – 100 15

DEFAULT_LIKE_RANGE_SELECTIVITY 0 – 100 15

DELAYED_COMMIT_TIMEOUT integer 500

DELAYED_COMMITS OFF OFF

DISABLE_RI_CHECK ON, OFF OFF

DISK_STRIPING ON, OFF ON

DISK_STRIPING_PACKED ON, OFF ON

EARLY_PREDICATE_EXECUTION ON, OFF ON

ESCAPE_CHARACTER ON, OFF ON

ENABLED_ORDERED_PUSHDOWN_INSERTION ON, OFF ON

EXTENDED_JOIN_SYNTAX ON, OFF ON

FLATTEN_SUBQUERIES ON, OFF OFF

FORCE_DROP ON, OFF OFF

FORCE_NO_SCROLL_CURSORS ON, OFF OFF

FORCE_UPDATABLE_CURSORS ON, OFF OFF

FPL_EXPRESSION_MEMORY_KB 0 – 20000 1024

FP_PREDICATE_WORKUNIT_PAGES integer 400

FP_PREFETCH_SIZE 0 – 100 10

GARRAY_FILL_FACTOR_PERCENT 0 – 1000 25

GARRAY_INSERT_PREFETCH_SIZE 0 – 100 3

GARRAY_RO_PREFETCH_SIZE 0 – 100 10

HASH_PINNABLE_CACHE_PERCENT* 0 – 100 20

HASH_THRASHING_PERCENT 0 – 100 10

HG_DELETE_METHOD 0 – 3 0

HG_SEARCH_RANGE integer 10

IDENTITY_ENFORCE_UNIQUENESS ON, OFF OFF

IDENTITY_INSERT string' '' (empty string)

INDEX_ADVISOR ON, OFF OFF

INDEX_PREFERENCE -10 – 10 0

INFER_SUBQUERY_PREDICATES ON, OFF OFF

IN_SUBQUERY_PREFERENCE -3 – 3 0

IQGOVERN_MAX_PRIORITY 1 – 3 2

OPTION VALUES DEFAULT

General database options

32 Sybase IQ

IQGOVERN_PRIORITY 1 – 3 2

IQGOVERN_PRIORITY_TIME 1 – 1,000,000 seconds 0 (disabled)

IQMSG_LENGTH_MB 0 – 2047 0

ISOLATION_LEVEL 0, 1, 2, 3 0

JAVA_HEAP_SIZE integer 1000000

JAVA_NAMESPACE_SIZE integer 4000000

JOIN_EXPANSION_FACTOR 0 – 100 30

JOIN_OPTIMIZATION ON, OFF ON

JOIN_PREFERENCE -7 – 7 0

JOIN_SIMPLIFICATION_THRESHOLD 1 – 64 15

LARGE_DOUBLES_ACCUMULATOR ON, OFF OFF

LF_BITMAP_CACHE_KB 1 – 8 4

LOAD_MEMORY_MB 0 – 2000 0

LOCAL_KB_PER_STRIPE integer > 0 in KB 1

LOAD_ZEROLENGTH_ASNULL ON, OFF OFF

LOCAL_RESERVED_DBSPACE_MB integer > 0 in MB 200

LOG_CONNECT ON, OFF ON

LOG_CURSOR_OPERATIONS ON, OFF OFF

LOGIN_MODE STANDARD, MIXED,
INTEGRATED

STANDARD

LOGIN_PROCEDURE string sp_iq_process_login

MAIN_CACHE_MEMORY_MB 1 – 4194303 16

MAIN_KB_PER_STRIPE integer > 0 in KB 1

MAIN_RESERVED_DBSPACE_MB integer > 0 in MB 200

MAX_CARTESIAN_RESULT integer 10000000

MAX_CLIENT_NUMERIC_PRECISION 0 – 126 0

MAX_CLIENT_NUMERIC_SCALE 0 – 126 0

MAX_CUBE_RESULT 0 – 250000000 10000000

MAX_CURSOR_COUNT integer 50

MAX_HASH_ROWS integer to 250000000 2500000

MAX_IQ_THREADS_PER_CONNECTION 3 – 1000 72

MAX_IQ_THREADS_PER_TEAM 1 – 1000 48

MAX_JOIN_ENUMERATION 1 – 64 15

MAX_QUERY_PARALLELISM integer <= # CPUs 24

MAX_QUERY_TIME 0 – 232 - 1 0 (disabled)

MAX_STATEMENT_COUNT integer 100

MAX_WARNINGS integer 264 - 1

OPTION VALUES DEFAULT

CHAPTER 2 Database Options

Reference Manual 33

MINIMIZE_STORAGE ON, OFF OFF

MIN_NLPDJ_FILTERED_PPM 1 – 1000000 2500

MIN_NLPDJ_TABLE_SIZE 1 – 4294967295 10000

MIN_PASSWORD_LENGTH integer >= 0 0 characters

MIN_SMPDJ_OR_HPDJ_FILTERED_PPM 1 – 1000000 2500

MIN_SMPDJ_OR_HPDJ_FILTERED_SIZE 1 – 4294967295 25000

MIN_SMPDJ_OR_HPDJ_INDIRECT_SIZE 1 – 4294967295 500000

MIN_SMPDJ_OR_HPDJ_TABLE_SIZE 1 – 4294967295 100000

MONITOR_OUTPUT_DIRECTORY string database directory

MPX_GLOBAL_TABLE_PRIV ON, OFF OFF

MPX_LOCAL_SPEC_PRIV 0 to 63 0

NOEXEC ON, OFF OFF

NON_ANSI_NULL_VARCHAR ON, OFF OFF

NOTIFY_MODULUS integer 100000

ODBC_DISTINGUISH_CHAR_AND_VARCHAR ON, OFF OFF

ON_CHARSET_CONVERSION_FAILURE string IGNORE

OS_FILE_CACHE_BUFFERING ON, OFF OFF

OUT_OF_DISK_MESSAGE_REPEAT integer 120

OUT_OF_DISK_WAIT_TIME integer 30

PARALLEL_GBH_ENABLED ON, OFF ON

PARALLEL_GBH_MIN_ROWS_PER_UNIT 0 – 4294967295 3000000

PARALLEL_GBH_UNITS 0 – 100 0

PRECISION 126 126

PREFETCH ON, OFF ON

PREFETCH_BUFFER_LIMIT integer 0

PREFETCH_BUFFER_PERCENT 0 – 100 40

PREFETCH_GARRAY_PERCENT 0 – 100 60

PREFETCH_SORT_PERCENT 0 – 100 50

PRESERVE_SOURCE_FORMAT ON, OFF ON

QUERY_DETAIL ON, OFF OFF

QUERY_NAME string '' (empty string)

QUERY_PLAN ON, OFF ON

QUERY_PLAN_AFTER_RUN ON, OFF OFF

QUERY_PLAN_AS_HTML ON, OFF OFF

QUERY_PLAN_AS_HTML_DIRECTORY string '' (empty string)

QUERY_ROWS_RETURNED_LIMIT integer 0

QUERY_TEMP_SPACE_LIMIT integer 2000

OPTION VALUES DEFAULT

General database options

34 Sybase IQ

QUERY_TIMING ON, OFF OFF

RECOVERY_TIME number of minutes 2

RETURN_DATE_TIME_AS_STRING ON, OFF OFF

ROW_COUNT integer 0

SCALE 0 – 126 38

SIGNIFICANTDIGITSFORDOUBLEEQUALITY 0 – 15 0

SORT_PHASE1_HELPERS integer 3

SORT_PINNABLE_CACHE_PERCENT* 0 – 100 20

SUBQUERY_PLACEMENT_PREFERENCE -1 – 1 0

SUPPRESS_TDS_DEBUGGING ON, OFF OFF

SWEEPER_THREADS_PERCENT 1 to 40 10

TDS_EMPTY_STRING_IS_NULL ON, OFF OFF

TEMP_CACHE_MEMORY_MB 1 – 4194303 12

TEMP_DISK_PER_STRIPE integer > 0 in KB 1

TEMP_EXTRACT_APPEND ON, OFF OFF

TEMP_EXTRACT_BINARY ON, OFF OFF

TEMP_EXTRACT_COLUMN_DELIMITER string ','

TEMP_EXTRACT_DIRECTORY string '' (empty string)

TEMP_EXTRACT_NAME1 –
TEMP_EXTRACT_NAME8

string '' (empty string)

TEMP_EXTRACT_NULL_AS_EMPTY ON, OFF OFF

TEMP_EXTRACT_NULL_AS_ZERO ON, OFF OFF

TEMP_EXTRACT_QUOTE string '' (empty string)

TEMP_EXTRACT_QUOTES ON, OFF OFF

TEMP_EXTRACT_QUOTES_ALL ON, OFF OFF

TEMP_EXTRACT_ROW_DELIMITER string '' (empty string)

TEMP_EXTRACT_SIZE1 – TEMP_EXTRACT_SIZE8 AIX & HP-UX:
0 – 64GB
Sun Solaris: & Linux
0 – 512GB
Windows:
0 – 128GB

0

TEMP_EXTRACT_SWAP ON, OFF OFF

TEMP_KB_PER_STRIPE integer > 0 in KB 1

TEMP_RESERVED_DBSPACE_MB integer > 0 in MB 200

TEMP_SPACE_LIMIT_CHECK ON, OFF OFF

TIME_FORMAT string 'HH:NN:ss.SSS'

OPTION VALUES DEFAULT

CHAPTER 2 Database Options

Reference Manual 35

Data extraction
options

The data extraction facility allows you to extract data from a database by
redirecting the output of a SELECT statement from the standard interface to one
or more disk files or named pipes. Several database options listed in Table 2-1
(TEMP_EXTRACT_...) are used to control this feature. For details on the use of
these options, see Data extraction options in Chapter 7, “Moving Data In and
Out of Databases” in the Sybase IQ System Administration Guide.

Transact-SQL compatibility options
The following options allow Sybase IQ behavior to be compatible with
Adaptive Server Enterprise, or to both support old behavior and allow ISO
SQL92 behavior.

For further compatibility with Adaptive Server Enterprise, you can set some of
these options set for the duration of the current connection using the Transact-
SQL SET statement instead of the Sybase IQ SET OPTION statement. For a
listing of such options, see the SET statement on page 641.

Default settings The default setting for some of these options differs from the Adaptive Server
Enterprise default setting. To ensure compatible behavior, you should
explicitly set the options.

When a connection is made using the Open Client or JDBC interfaces, some
option settings are explicitly set for the current connection to be compatible
with Adaptive Server Enterprise. These options are listed in Table 2-2.

For information on how the settings are made, see Chapter 10, “System
Procedures.”

TIMESTAMP_FORMAT string 'YYYY-
MM-DD HH:NN:ss.SSS'

TRIM_PARTIAL_MBC ON, OFF OFF

TRUNCATE_WITH_AUTO_COMMIT ON, OFF ON

USER_RESOURCE_RESERVATION integer 1

VERIFY_PASSWORD_FUNCTION string '' (empty string)

WASH_AREA_BUFFERS_PERCENT 1 – 100 20

WAIT_FOR_COMMIT ON, OFF OFF

OPTION VALUES DEFAULT

Transact-SQL compatibility options

36 Sybase IQ

Table 2-2: Transact-SQL options set explicitly for ASE compatibility

List of options Table 2-3 lists the compatibility options, their allowed values, and their default
settings.

See “General database options” on page 30 and “DBISQL options” on page
37 for lists of the other classes of options.

Table 2-3: Transact-SQL compatibility options

Option ASE-compatible setting

ALLOW_NULLS_BY_DEFAULT OFF

ANSINULL OFF

CHAINED OFF

CONTINUE_AFTER_RAISERROR ON

DATE_FORMAT YYYY-MM-DD

DATE_ORDER MDY

ESCAPE_CHARACTER OFF

FLOAT_AS_DOUBLE ON

ISOLATION_LEVEL 1

ON_TSQL_ERROR CONDITIONAL

QUOTED_IDENTIFIER OFF

TIME_FORMAT HH:NN:SS.SSS

TIMESTAMP_FORMAT YYYY-MM-DD HH:NN:SS.SSS

TSQL_HEX_CONSTANT ON

TSQL_VARIABLES OFF

Option Values Default

ALLOW_NULLS_BY_DEFAULT ON, OFF ON

ANSI_BLANKS*

ANSI_CLOSE_CURSORS_ON_ROLLBACK ON ON

ANSI_INTEGER_OVERFLOW*

ANSI_PERMISSIONS ON, OFF ON

ANSINULL ON, OFF ON

ANSI_UPDATE_CONSTRAINTS OFF, CURSORS, STRICT CURSORS

ASE_BINARY_DISPLAY ON, OFF ON

ASE_FUNCTION_BEHAVIOR ON, OFF OFF

AUTOMATIC_TIMESTAMP OFF OFF

CHAINED ON, OFF ON

CLOSE_ON_ENDTRANS ON ON

CONTINUE_AFTER_RAISEERROR ON, OFF ON

CONVERSION_ERROR ON, OFF ON

CHAPTER 2 Database Options

Reference Manual 37

Note An asterisk (*) next to the option name in Table 2-3 indicates an option
currently not supported by Sybase IQ.

DBISQL options
These options change how DBISQL interacts with the database.

Syntax 1 SET OPTION
... [userid. | PUBLIC.]option-name = [option-value]

Syntax 2 SET PERMANENT

Syntax 3 SET

Parameters userid:
identifier, string or host-variable

option-name:
identifier, string or host-variable

DIVIDE_BY_ZERO_ERROR ON, OFF ON

ESCAPE_CHARACTER* ON ON

FIRE_TRIGGERS*

FLOAT_AS_DOUBLE ON, OFF OFF

NEAREST_CENTURY 0 – 100 50

NON_KEYWORDS Comma-separated keywords list No keywords turned off

ON_TSQL_ERROR STOP, CONTINUE,
CONDITIONAL

CONDITIONAL

PERCENT_AS_COMMENT ON, OFF ON

QUERY_PLAN_ON_OPEN*

QUOTED_IDENTIFIER ON, OFF ON

RI_TRIGGER_TIME*

SQL_FLAGGER_ERROR_LEVEL E, I, F, W W

SQL_FLAGGER_WARNING_LEVEL E, I, F, W W

STRING_RTRUNCATION ON, OFF OFF

TEXTSIZE*

TSQL_HEX_CONSTANT ON, OFF OFF

TSQL_VARIABLES ON, OFF OFF

Option Values Default

DBISQL options

38 Sybase IQ

option-value:
host-variable (indicator allowed), string, identifier,
or number

Description SET PERMANENT (Syntax 2) stores all current DBISQL options in the
SYSOPTIONS system table. These settings are automatically established
every time DBISQL is started for the current user ID.

Syntax 3 is used to display all of the current option settings. If there are
temporary options set for DBISQL or the database server, these are displayed;
otherwise, the permanent option settings are displayed.

Table 2-4 lists the DBISQL options, their allowed values, and their default
settings.

See “General database options” on page 30 and “Transact-SQL compatibility
options” on page 35 for lists of the other classes of options.

Table 2-4: DBISQL options

Option Values Default

AUTO_COMMIT ON, OFF OFF

AUTO_REFETCH ON, OFF ON

BELL ON, OFF ON

COMMAND_DELIMITER string ';'

COMMIT_ON_EXIT ON, OFF ON

DEFAULT_ISQL_ENCODING identifier or string empty string (use
system code page)

ECHO ON, OFF ON

HEADINGS ON, OFF ON

INPUT_FORMAT*

ISQL_COMMAND_TIMING ON, OFF ON

ISQL_ESCAPE_CHARACTER single character \ (backslash)

ISQL_FIELD_SEPARATOR string , (comma)

ISQL_LOG file name ''

ISQL_QUOTE string ' (single apostrophe)

NULLS ON, OFF NULL

ON_ERROR STOP, CONTINUE, PROMPT, EXIT,
NOTIFY_CONTINUE,
NOTIFY_STOP, NOTIFY_EXIT

PROMPT

OUTPUT_FORMAT ASCII, DBASEII, DBASEIII,
EXCEL, FIXED, FOXPRO, HTML,
LOTUS, SQL, XML,

ASCII

OUTPUT_LENGTH Integer 0

CHAPTER 2 Database Options

Reference Manual 39

Note An asterisk (*) next to the option name in Table 2-4 indicates an option
currently not supported by Sybase IQ.

Alphabetical list of options
This section lists options alphabetically.

Some option names are followed by an indicator in square brackets that
indicates the class of the option. These indicators are as follows:

• [DBISQL] – The option changes how DBISQL interacts with the
database.

• [TSQL] – The option allows Sybase IQ behavior to be made compatible
with Adaptive Server Enterprise, or to both support old behavior and allow
ISO SQL92 behavior.

AGGREGATION_PREFERENCE option
Function Controls the choice of algorithms for processing an aggregate.

Allowed values -3 – 3

Default 0

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Description For aggregation (GROUP BY, DISTINCT, SET functions) within a query, the
Sybase IQ optimizer has a choice of several algorithms for processing the
aggregate. This AGGREGATION_PREFERENCE option lets you override the
optimizer’s costing decision when choosing the algorithm. It does not override
internal rules that determine whether an algorithm is legal within the query
engine.

OUTPUT_NULLS String 'NULL'

STATISTICS 0, 3, 4, 5, 6 3

TRUNCATION_LENGTH integer 256

Option Values Default

Alphabetical list of options

40 Sybase IQ

This option is normally used for internal testing and for manually tuning
queries that the optimizer does not handle well. Only experienced DBAs
should use it. Inform Sybase Technical Support if you need to set
AGGREGATION_PREFERENCE, as setting this option might mean that a
change to the optimizer is appropriate.

Table 2-5 describes the valid values and their actions for the
AGGREGATION_PREFERENCE option.

Table 2-5: AGGREGATION_PREFERENCE values

ALLOW_NULLS_BY_DEFAULT option [TSQL]
Function Controls whether new columns created without specifying either NULL or

NOT NULL are allowed to contain NULL values.

Allowed values ON, OFF

Default ON

OFF for Open Client and JDBC connections

Description The ALLOW_NULLS_BY_DEFAULT option is included for Transact-SQL
compatibility.

See also Appendix A, “Compatibility with Other Sybase Databases.’

ANSI_CLOSE_CURSORS_ON_ROLLBACK option [TSQL]
Function Controls whether cursors that were opened WITH HOLD are closed when a

ROLLBACK is performed.

Allowed values ON

Default ON

Value Action

0 Let the optimizer choose

1 Prefer aggregation with a sort

2 Prefer aggregation using IQ indexes

3 Prefer aggregation with a hash

-1 Avoid aggregation with a sort

-2 Avoid aggregation using IQ indexes

-3 Avoid aggregation with a hash

CHAPTER 2 Database Options

Reference Manual 41

Description The ANSI SQL/3 standard requires all cursors be closed when a transaction is
rolled back. This option forces that behavior and cannot be changed. The
CLOSE_ON_ENDTRANS option overrides this option.

ANSI_PERMISSIONS option [TSQL]
Function Controls permissions checking for DELETE and UPDATE statements.

Allowed values ON, OFF

Default ON

Description With ANSI_PERMISSIONS ON, SQL92 permissions requirements for DELETE
and UPDATE statements are checked. The default value is OFF in Adaptive
Server Enterprise. Table 2-6 outlines the differences.

Table 2-6: Effect of ANSI_PERMISSIONS option

The ANSI_PERMISSIONS option can be set only for the PUBLIC group. No
private settings are allowed.

ANSINULL option [TSQL]
Function Controls the interpretation of using = and != with NULL.

Allowed values ON, OFF

SQL statement

Permissions required
with ANSI_PERMISSIONS
OFF

Permissions required
with ANSI_PERMISSIONS
ON

UPDATE UPDATE permission on the
columns where values are
being set

UPDATE permission on the
columns where values are
being set

SELECT permission on all
columns appearing in the
WHERE clause.

SELECT permission on all
columns on the right side of
the set clause.

DELETE DELETE permission on table DELETE permission on table.

SELECT permission on all
columns appearing in the
WHERE clause.

Alphabetical list of options

42 Sybase IQ

Default ON

Description With ANSINULL ON, results of comparisons with NULL using '=' or '!=' are
unknown. This includes results of comparisons implied by other operations
such as CASE.

Setting ANSINULL to OFF allows comparisons with NULL to yield results that
are not unknown, for compatibility with Adaptive Server Enterprise.

Note Unlike Adaptive Server Anywhere, Sybase IQ does not generate the
warning “null value eliminated in aggregate function” (SQLSTATE=01003)
for aggregate functions on columns containing NULL values.

ANSI_UPDATE_CONSTRAINTS option
Function Controls the range of updates that are permitted.

Allowed values OFF, CURSORS, STRICT

Default CURSORS in new databases.

OFF in databases created before version 12.4.3.

Description Sybase IQ provides several extensions that allow updates that are not permitted
by the ANSI SQL standard. These extensions provide powerful, efficient
mechanisms for performing updates. However, in some cases, they cause
behavior that is not intuitive. This behavior might produce anomalies such as
lost updates if the user application is not designed to expect the behavior of
these extensions.

The ANSI_UPDATE_CONSTRAINTS option controls whether updates are
restricted to those permitted by the SQL92 standard.

If the option is set to STRICT, the following updates are prevented:

• Updates of cursors containing JOINS

• Updates of columns that appear in an ORDER BY clause

• The FROM clause is not allowed in UPDATE statements.

If the option is set to CURSORS, these same restrictions are in place, but only
for cursors. If a cursor is not opened with FOR UPDATE or FOR READ ONLY,
the database server determines whether updates are permitted based on the
SQL92 standard.

CHAPTER 2 Database Options

Reference Manual 43

If the ANSI_UPDATE_CONSTRAINTS option is set to CURSORS or STRICT,
cursors containing an ORDER BY clause default to FOR READ ONLY;
otherwise, they continue to default to FOR UPDATE.

Example The following code has a different effect, depending on the setting of
ANSI_UPDATE_CONSTRAINTS.

create table mmg (a char(3));
create table mmg1 (b char(3));

insert into mmg values ('001');
insert into mmg values ('002');
insert into mmg values ('003')
insert into mmg1 values ('003');
select * from mmg;
select * from mmg1;

Option 1: Set ANSI_UPDATE_CONSTRAINTS to STRICT:

set option public.Ansi_update_constraints = 'strict';
DELETE MMG FROM MMG1 WHERE A=B;

This results in an error indicating that the attempted update operation is not
allowed.

Option 2: Set ANSI_UPDATE_CONSTRAINTS to CURSORS or OFF:

set option public.Ansi_update_constraints = 'CURSORS';
// or 'OFF'
DELETE MMG FROM MMG1 WHERE A=B;

In this case, the deletion should complete without the error.

See also UPDATE statement on page 661.

APPEND_LOAD option
Function Helps reduce space usage from versioned pages.

Allowed values ON, OFF

Default OFF

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Description The APPEND_LOAD option applies to LOAD, INSERT...SELECT, and
INSERT...VALUES statements. It takes effect on the next LOAD,
INSERT...SELECT, or INSERT...VALUES statement.

Alphabetical list of options

44 Sybase IQ

When the APPEND_LOAD option is OFF, Sybase IQ reuses row IDs from
deleted rows. Setting this option ON appends new data to the end of the table.

ASE_BINARY_DISPLAY option
Function Specifies that the display of Sybase IQ binary columns is consistent with the

display of Adaptive Server Enterprise binary columns.

Allowed values ON, OFF

Default ON

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Description The ASE_BINARY_DISPLAY option affects the output of the SELECT
statement.

This option affects only columns in the IQ Store. It does not affect variables,
Catalog Store columns or Adaptive Server Anywhere columns. When this
option is ON, Sybase IQ displays the column in readable ASCII format; for
example, 0x1234567890abcdef). When this option is OFF, Sybase IQ displays
the column as binary output (not ASCII).

Set ASE_BINARY_DISPLAY OFF to support bulk copy operations (using
iq_bcp) on binary data types.

See also “Bulk Copy utility (iq_bcp),” Chapter 3, “Database Administration Utilities”
in the Sybase IQ Utility Guide.

ASE_FUNCTION_BEHAVIOR option
Function Specifies that output of Sybase IQ functions, including INTTOHEX and

HEXTOINT, is consistent with the output of Adaptive Server Enterprise
functions.

Allowed values ON, OFF

Default OFF

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

CHAPTER 2 Database Options

Reference Manual 45

Description When the ASE_BEHAVIOR_FUNCTION option is ON, some of the Sybase IQ
data type conversion functions, including HEXTOINT and INTTOHEX, return
output that is consistent with the output of Adaptive Server Enterprise
functions. The differences in the ASE and Sybase IQ output, with respect to
formatting and length, exist because ASE primarily uses signed 32-bit as the
default and Sybase IQ primarily uses unsigned 64-bit as the default.

Sybase IQ does not provide support for 64-bit integer, as ASE does not have a
64-bit integer data type.

For details on the behavior of the INTTOHEX and HEXTOINT functions when
the ASE_FUNCTION_BEHAVIOR option is enabled, see “INTTOHEX function
[Data type conversion]” on page 314 and “HEXTOINT function [Data type
conversion]” on page 306 in Chapter 5, “SQL Functions.”

Example In this example, the HEXTOINT function returns a different value based on
whether the ASE_FUNCTION_BEHAVIOR option is ON or OFF.

The HEXTOINT function returns 4294967287 with
ASE_FUNCTION_BEHAVIOR OFF:

select hextoint(‘fffffff7’) from iq_dummy

The HEXTOINT function returns -9 with ASE_FUNCTION_BEHAVIOR ON:

select hextoint(‘fffffff7’) from iq_dummy

See also “HEXTOINT function [Data type conversion]” on page 306.

“INTTOHEX function [Data type conversion]” on page 314.

“CONVERSION_ERROR option [TSQL]” on page 53.

AUDITING option [database]
Function Enables and disables auditing in the database.

Allowed values ON, OFF

Default OFF

Description This option turns auditing on and off.

Auditing is the recording of detailed information about many events in the
database in the transaction log. Auditing provides some security features, at the
cost of some performance.

Alphabetical list of options

46 Sybase IQ

For the AUDITING option to work, you must set the AUDITING option to ON,
and also specify which types of information you want to audit using the
sa_enable_auditing_type system procedure. Auditing will not occur if either of
the following are true:

• AUDITING is set to OFF

• Auditing options have been disabled

If you set AUDITING ON, and do not specify auditing options, all types of
auditing information are recorded. Alternatively, you can choose to record any
combination of the following: audit permission checks, connection attempts,
DDL statements, public options, and triggers.

Can be set for the PUBLIC group only. Takes effect immediately. Requires DBA
permissions to set this option.

See also “sa_enable_auditing_type system procedure” on page 859.

AUTO_COMMIT option [DBISQL]
Function Controls whether a COMMIT is performed after each statement.

Allowed values ON, OFF

Default OFF

Description If AUTO_COMMIT is ON, a database COMMIT is performed after each
successful statement. If the COMMIT fails, you have the option to execute
additional SQL statements and perform the COMMIT again, or execute a
ROLLBACK statement.

By default, a COMMIT or ROLLBACK is performed only when the user issues a
COMMIT or ROLLBACK statement or a SQL statement that causes an automatic
commit (such as the CREATE TABLE statement).

AUTO_COMMIT basically performs the same function as CHAINED, except that
AUTO_COMMIT takes effect only if you are running DBISQL.

AUTO_REFETCH option [DBISQL]
Function Controls whether query results are fetched again after deletes, updates, and

inserts.

Allowed values ON, OFF

CHAPTER 2 Database Options

Reference Manual 47

Default ON

Description If AUTO_REFETCH is ON, then the current query results are refetched from the
database after any INSERT, UPDATE or DELETE statement. Depending on how
complicated the query is, this might take some time. For this reason, it can be
turned OFF.

AUTOMATIC_TIMESTAMP option [TSQL]
Function Controls interpretation of new columns with TIMESTAMP data type.

Allowed values OFF

Default OFF

Description Controls whether any new columns with the TIMESTAMP data type that do not
have an explicit default value defined are given a default value of the Transact-
SQL timestamp value. Currently, Sybase IQ does not support this feature, so the
default and only value allowed is OFF.

BELL option [DBISQL]
Function Controls whether the bell sounds when an error occurs.

Allowed values ON, OFF

Default ON

Description Set this option according to your preference.

BIT_VECTOR_PINNABLE_CACHE_PERCENT option
Function Maximum percentage of a user’s temp memory that a persistent bit-vector

object can pin.

Allowed values 0 – 100

Default 40

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Alphabetical list of options

48 Sybase IQ

Description BIT_VECTOR_PINNABLE_CACHE_PERCENT controls the percentage of a
user’s temp memory allocation that any one persistent bit-vector object can pin
in memory. It defaults to 40%, and should not generally be changed by users.

This option is primarily for use by Sybase Technical Support. If you change the
value of BIT_VECTOR_PINNABLE_CACHE_PERCENT, do so with extreme
caution; first analyze the effect on a wide variety of queries.

See also “HASH_PINNABLE_CACHE_PERCENT option” on page 82.

“SORT_PINNABLE_CACHE_PERCENT option” on page 146.

BLOCKING option
Function Controls the behavior in response to locking conflicts.

Allowed values OFF

Default OFF

Scope Can be set for an individual connection or the PUBLIC group. Takes effect
immediately.

Description When BLOCKING is OFF, a transaction receives an error when it attempts a
write operation and it is blocked by another transaction’s read lock.

BT_PREFETCH_MAX_MISS option
Function Controls the way Sybase IQ determines whether to continue prefetching B-tree

pages for a given query.

Allowed values 0 – 1000

Default 2

Scope Can be set for an individual connection or for the PUBLIC group. Takes effect
immediately.

Description Use only if instructed to do so by Sybase Technical Support. For queries that
use HG (High_Group) indexes, Sybase IQ prefetches B-tree pages sequentially
until it determines that prefetching is no longer useful. For some queries, it
might turn off prefetching prematurely. Increasing the value of
BT_PREFETCH_MAX_MISS makes it more likely that Sybase IQ continues
prefetching, but also might increase I/O unnecessarily.

CHAPTER 2 Database Options

Reference Manual 49

If queries using HG indexes run more slowly than expected, try gradually
increasing the value of this option.

Experiment with different settings to find the one that gives the best
performance. For most queries, useful settings are in the range of 1 to 10.

See also “BT_PREFETCH_SIZE option” on page 49.

“PREFETCH_BUFFER_LIMIT option” on page 136.

BT_PREFETCH_SIZE option
Function Restricts the size of the read-ahead buffer for the High_Group B-tree.

Allowed values 0 – 100. Setting to 0 disables B-tree prefetch.

Default 10

Scope Can be set only for an individual user. Takes effect immediately.

Description B-tree prefetch is activated by default for any sequential access to the
High_Group index such as INSERT, large DELETE, range predicates, and
DBCC (Database Consistency Checker commands).

This option limits the size of the read-ahead buffer for B-tree pages. Reducing
prefetch size frees buffers, but also degrades performance at some point.
Increasing prefetch size might have marginal returns. This option should be
used in conjunction with the options PREFETCH_GARRAY_PERCENT,
GARRAY_INSERT_PREFETCH_SIZE, and GARRAY_RO_PREFETCH_SIZE
for non-unique High_Group indexes.

CACHE_PARTITIONS option
Function Sets the number of partitions to be used for the main and temporary buffer

caches.

Allowed values 0, 1, 2, 4, 8, 16, 32, 64:

Alphabetical list of options

50 Sybase IQ

Table 2-7: CACHE_PARTITIONS values

Default 0 (Sybase IQ computes the number of partitions automatically).

Scope Can be set for the PUBLIC group only. Takes effect for the current database the
next time you start the database server.

Description Partitioning the buffer cache can sometimes improve performance on systems
with multiple CPUs by reducing lock contention. Normally you should rely on
the value that Sybase IQ calculates automatically, which is based on the
number of CPUs on your system. However, if you find that load or query
performance in a multi-CPU configuration is slower than expected, you might
be able to improve it by setting a different value for CACHE_PARTITIONS.

Both the number of CPUs and the platform can influence the ideal number of
partitions. Experiment with different values to determine the best setting for
your configuration.

The value you set for CACHE_PARTITIONS applies to both the main and temp
buffer caches. The absolute maximum number of partitions is 64, for each
buffer cache.

The -iqpartition server option sets the partition limit at the server level. If
-iqpartition is specified at server start-up, it always overrides the
CACHE_PARTITIONS setting.

The number of partitions does not affect other buffer cache settings. It also does
not affect statistics collected by the IQ monitor; statistics for all partitions are
rolled up and reported as a single value.

Example In a system with 100 CPUs, if you do not set CACHE_PARTITIONS, Sybase IQ
automatically sets the number of partitions to 16 as follows:

100 cpus/8 = 12, rounded to 16.

With this setting, there are 16 partitions for the main cache and 16 partitions for
the temp cache.

In the same system with 100 CPUs, to explicitly set the number of partitions to
8, specify:

SET OPTION "PUBLIC".CACHE_PARTITIONS=8

Value Description

0 Sybase IQ computes the number of partitions
automatically as number_of_cpus/8, rounded to the nearest
power of 2, up to a maximum of 64.

1 1 partition only; this value disables partitioning.

2 – 64 Number of partitions; must be a power of 2.

CHAPTER 2 Database Options

Reference Manual 51

See also -iqpartition in Server command-line switches in the Sybase IQ Utility Guide.

“Managing lock contention” on page 495 in Chapter 10, “Transactions and
Versioning” in the Sybase IQ System Administration Guide.

CHAINED option [TSQL]
Function Controls transaction mode in the absence of a BEGIN TRANSACTION

statement.

Allowed values ON, OFF

OFF for Open Client and JDBC connections

Default ON

Description Controls the Transact-SQL transaction mode. In unchained mode (CHAINED =
OFF) each statement is committed individually unless an explicit BEGIN
TRANSACTION statement is executed to start a transaction. In chained mode
(CHAINED = ON) a transaction is implicitly started before any data retrieval or
modification statement. For Adaptive Server Enterprise, the default setting is
OFF.

CHECKPOINT_TIME option
Function Set the maximum length of time, in minutes, that the database server runs

without doing a checkpoint.

Allowed values Integer

Default 60

Scope Can be set only for the PUBLIC group. Requires DBA permissions to set the
option. You must shut down and restart the database server for the change to
take effect.

Description This option is used with the “RECOVERY_TIME option” on page 143 to
decide when checkpoints should be done.

CIS_ROWSET_SIZE option
Function Set the number of rows that are returned from remote servers for each fetch.

Alphabetical list of options

52 Sybase IQ

Allowed values Integer

Default 50

Scope Can be set for an individual connection or the PUBLIC group. Takes effect
when a new connection is made to a remote server.

Description This option sets the ODBC FetchArraySize value when you are using ODBC to
connect to a remote database server.

See also For information on remote data access, see Chapter 16, “Accessing Remote
Data” in the Sybase IQ System Administration Guide.

CLOSE_ON_ENDTRANS option [TSQL]
Function Controls closing of cursors at the end of a transaction.

Allowed values ON

Default ON

Description When CLOSE_ON_ENDTRANS is set to ON (the default and only value
allowed), cursors are closed at the end of a transaction. With this option set ON,
it provides Transact-SQL compatible behavior.

COMMAND_DELIMITER option [DBISQL]
Function Sets the string indicating the termination of a statement in DBISQL.

Allowed values String

Default Semicolon (;)

Description If the command delimiter is set to a string beginning with a character that is
valid in identifiers, the command delimiter must be preceded by a space.

COMMIT_ON_EXIT option [DBISQL]
Function Controls behavior when DBISQL disconnects or terminates.

Allowed values ON, OFF

Default ON

CHAPTER 2 Database Options

Reference Manual 53

Description Controls whether a COMMIT or ROLLBACK is done when you leave DBISQL.
When COMMIT_ON_EXIT is set to ON, a COMMIT is performed; otherwise a
ROLLBACK is performed.

CONTINUE_AFTER_RAISERROR option [TSQL]
Function Controls behavior following a RAISERROR statement.

Allowed values ON, OFF

Default ON

Description The RAISERROR statement is used within procedures to generate an error.
When the option is set to OFF, the execution of the procedure is stopped when
the RAISERROR statement is encountered.

When the CONTINUE_AFTER_RAISERROR switch is ON, the RAISERROR
statement no longer signals an execution-ending error. Instead, the
RAISERROR status code and message are stored and the most recent
RAISERROR is returned when the procedure completes. If the procedure that
caused the RAISERROR was called from another procedure, the RAISERROR
is not returned until the outermost calling procedure terminates.

Intermediate RAISERROR statuses and codes are lost after the procedure
terminates. If, at return time, an error occurs along with the RAISERROR, then
the error information is returned and the RAISERROR information is lost. The
application can query intermediate RAISERROR statuses by examining
@@error global variable at different execution points.

The setting of the CONTINUE_AFTER_RAISERROR option is used to control
behavior following a RAISERROR statement only if the ON_TSQL_ERROR
option is set to CONDITIONAL (the default). If you set the ON_TSQL_ERROR
option to STOP or CONTINUE, the ON_TSQL_ERROR setting takes
precedence over the CONTINUE_AFTER_RAISERROR setting.

See also “ON_TSQL_ERROR option [TSQL]” on page 128.

CONVERSION_ERROR option [TSQL]
Function Controls reporting of data type conversion failures on fetching information

from the database.

Allowed values ON, OFF

Alphabetical list of options

54 Sybase IQ

Default ON

Description This option controls whether data type conversion failures, when data is
fetched from the database or inserted into the database, are reported by the
database as errors (CONVERSION_ERROR set to ON), or as warnings
(CONVERSION_ERROR set to OFF).

When CONVERSION_ERROR is set to ON, the SQLE_CONVERSION_ERROR
error is generated.

If the option is set to OFF, the warning SQLE_CANNOT_CONVERT is
produced. Each thread doing data conversion for a LOAD statement writes at
most one warning message to the .iqmsg file. In order to write all data
conversion warning messages to the.iqmsg file, you must set the
DDL_OPTIONS2 option to 8 after setting CONVERSION_ERROR OFF. For
example:

SET TEMPORARY OPTION CONVERSION_ERROR='OFF'
SET TEMPORARY OPTION DDL_OPTIONS2=8

If conversion errors are reported as warnings only, the NULL value is used in
place of the value that could not be converted. In Embedded SQL, an indicator
variable is set to -2 for the column or columns that cause the error.

CONVERSION_MODE option
Function Restricts implicit conversion between binary data types (BINARY, VARBINARY,

and LONG BINARY) and other non-binary data types (BIT, TINYINT, SMALLINT,
INT, UNSIGNED INT, BIGINT, UNSIGNED BIGINT, CHAR, VARCHAR, and
LONG VARCHAR) on various operations.

Allowed values 0, 1

Default 0

Scope Can be set either publicly or temporarily. DBA permissions are not required to
set this option.

Description The default value of 0 maintains implicit conversion behavior prior to version
12.7. Setting CONVERSION_MODE to 1 restricts implicit conversion of binary
data types to any other non-binary data type on INSERT, UPDATE, and in
queries. The restrict binary conversion mode also applies to LOAD TABLE
default values and CHECK constraint. The use of this option prevents implicit
data type conversions of encrypted data that would result in semantically
meaningless operations.

CHAPTER 2 Database Options

Reference Manual 55

Implicit conversion
restrictions

The CONVERSION_MODE option restrict binary mode value of 1 restricts
implicit conversion for the following operations.

LOAD TABLE The restrict implicit binary conversion mode applies to LOAD
TABLE with CHECK constraint or default value.

For example:

CREATE TABLE t3 (c1 INT,
 csi SMALLINT,
 cvb VARBINARY(2),
 CHECK (csi<cvb));

SET TEMPORARY OPTION CONVERSION_MODE = 1;

The following request:

LOAD TABLE t3(c1 ',', csi ',', cvb ',')
 FROM 't3.inp'
 QUOTES OFF ESCAPES OFF
 ROW DELIMITED BY '\n'

fails with the message:

"Invalid data type comparison in predicate
(t3.csi < t3.cvb), [-1001013] ['QFA13']"

INSERT The restrict implicit binary conversion mode applies to
INSERT...SELECT, INSERT...VALUE, and INSERT...LOCATION.

For example:

CREATE TABLE t1 (c1 INT PRIMARY KEY,
 cbt BIT NULL
 cti TINYINT,
 csi SMALLINT,
 cin INTEGER,
 cui UNSIGNED INTEGER,
 cbi BIGINT,
 cub UNSIGNED BIGINT,
 cch CHAR(10),
 cvc VARCHAR(10),
 cbn BINARY(8),
 cvb VARBINARY(8),
 clb LONG BINARY,
 clc LONG VARCHAR));

CREATE TABLE t2 (c1 INT PRIMARY KEY,
 cbt BIT NULL,
 cti TINYINT,
 csi SMALLINT,

Alphabetical list of options

56 Sybase IQ

 cin INTEGER,
 cui UNSIGNED INTEGER,
 cbi BIGINT,
 cub UNSIGNED BIGINT,
 cch CHAR(10),
 cvc VARCHAR(10),
 cbn BINARY(8),
 cvb VARBINARY(8),
 clb LONG BINARY,
 clc LONG VARCHAR));

CREATE TABLE t4 (c1 INT, cin INT DEFAULT 0x31);

SET TEMPORARY OPTION CONVERSION_MODE = 1;

The following request:

INSERT INTO t1(c1, cvb) SELECT 99, cin FROM T2
WHERE c1=1

fails with the message:

"Unable to convert column 'cvb' to the requested
datatype (varbinary) from datatype (integer).
[-1013043] ['QCA43']"

The following request:

INSERT INTO t4 VALUES (1, DEFAULT)

fails with the message:

"Unable to convert column 'cin' to the requested
datatype (integer) from datatype (varbinary).
[-1013043] ['QCA43']"

UPDATE The restrict implicit binary conversion mode applies to the
following types of UPDATE:

UPDATE SET VALUE FROM expression (including constant)
UPDATE SET VALUE FROM other column
UPDATE SET VALUE FROM host variable
JOIN UPDATE SET VALUE FROM column of other table

For example, the following request:

UPDATE t1 SET cbi=cbn WHERE c1=1

fails with the message:

"Unable to implicitly convert column 'cbi' to datatype
(bigint) from datatype (binary). [-1000187] ['QCB87']"

CHAPTER 2 Database Options

Reference Manual 57

Positioned INSERT and positioned UPDATE via updatable cursor The
restrict implicit binary conversion mode applies to the following types of
INSERT and UPDATE via updatable cursor:

PUT cursor-name USING ... host-variable
Positioned UPDATE from another column
Positioned UPDATE from a constant
Positioned UPDATE from a host variable

For example, the following request:

BEGIN
DECLARE curs SCROLL CURSOR FOR SELECT * FROM t1
FOR UPDATE;
OPEN curs WITH HOLD;
FETCH curs;
UPDATE t1 SET cbi=cbn WHERE CURRENT OF curs;

END

fails with the message:

"Unable to implicitly convert column 'cbn' to datatype
(bigint) from datatype (binary). [-1000187] ['QCB87']"

Queries The restrict implicit binary conversion mode applies to all aspects of
queries in general.

1 Comparison Operators
When CONVERSION_MODE = 1, the restriction applies to the following
operators:

=, !=, <, <=, >=, <>, !>, !<
BETWEEN .. AND
IN

used in a search condition for the following clauses:

WHERE clause
HAVING clause
CHECK clause
ON phrase in a join
IF/CASE expression

For example, the following query:

SELECT COUNT(*) FROM T1
WHERE cvb IN (SELECT csi FROM T2)

fails with the message:

Alphabetical list of options

58 Sybase IQ

"Invalid data type comparison in predicate (t1.cvb
IN (SELECT t1.csi ...)), [-1001013] ['QFA13']"

2 String Functions
When CONVERSION_MODE = 1, the restriction applies to the following
string functions:

CHAR
CHAR_LENGTH
DIFFERENCE
LCASE
LEFT
LOWER
LTRIM
PATINDEX
RIGHT
RTRIM
SIMILAR
SORTKEY
SOUNDEX
SPACE
STR
TRIM
UCASE
UPPER

For example, the following query:

SELECT ASCII(cvb) FROM t1 WHERE c1=1

fails with the message:

"Data exception - data type conversion is not
possible. Argument to ASCII must be string,
[-1009145] ['QFA2E']"

The following functions allow either a string argument or a binary
argument. When CONVERSION_MODE = 1, the restriction applies to
mixed type arguments, that is, one argument is string and the other
argument is binary.

INSERTSTR
LOCATE
REPLACE
STRING
STUFF

CHAPTER 2 Database Options

Reference Manual 59

For example, the following query:

SELECT STRING(cvb, cvc) FROM t1 WHERE c1=1

where the column cvb is defined as VARBINARY and the column cvc is
defined as VARCHAR, fails with the message:

"Data exception - data type conversion is not
possible. Arguments to STRING must be all binary or
all string, [-1009145] ['QFA2E']"

The restriction does not apply to the following string functions:

BIT_LENGTH
BYTE_LENGTH
CHARINDEX
LENGTH
OCTET_LENGTH
REPEAT
REPLICATE
SUBSTRING

3 Arithmetic Operations and Functions
When CONVERSION_MODE = 1, the restriction applies to the following
operators used in arithmetic operations:

+, -, *, /

The restriction applies to the following bitwise operators used in bitwise
expressions:

& (AND), | (OR), ^ (XOR)

The restriction also applies to integer arguments of the following
functions:

ROUND
"TRUNCATE"
TRUNCNUM

For example, the following query:

SELECT ROUND(4.4, cvb) FROM t1 WHERE C1=1

fails with the message:

"Data exception - data type conversion is not
possible. Second Argument to ROUND cannot be
converted into an integer, [-1009145] ['QFA2E']"

Alphabetical list of options

60 Sybase IQ

4 Integer Argument to Various Functions
When CONVERSION_MODE = 1, the restriction applies to integer
argument of the following functions:

ARGN
SUBSTRING
DATEADD
YMD

For example, the following query:

SELECT ARGN(cvb, csi, cti) FROM t1 WHERE c1=1

fails with the message:

"Data exception - data type conversion is not
possible. First Argument to ARGN cannot be converted
to an integer, [-1009145] ['QFA2E']"

5 Analytical Functions, Aggregate Functions, and Numeric Functions
When CONVERSION_MODE = 1, no further restriction applies to
analytical functions, aggregate functions, and numeric functions that
require numeric expressions as arguments.

See also For more information on data type conversion, see Chapter 7, “Moving Data
In and Out of Databases” in the Sybase IQ System Administration Guide.

For more information on column encryption, see Encrypted Columns in Sybase
IQ. Users must be specifically licensed to use the encrypted column
functionality of the Sybase IQ Encrypted Column Option.

CONVERT_HG_TO_1242 option
Function Converts pre-version 12.4.2 HG (High_Group) indexes to an improved format.

Allowed values ON, OFF

Default OFF

Scope Can be set only for the PUBLIC group. Takes effect when you run sp_iqcheckdb
in any mode.

Description Improves read performance of queries against HG indexes.

Set this option and then run sp_iqcheckdb only once, and only for columns with
HG indexes that were created before version 12.4.2.

CHAPTER 2 Database Options

Reference Manual 61

CONVERT_VARCHAR_TO_1242 option
Function Converts pre-version 12.4.2 VARCHAR data to compressed format.

Allowed values ON, OFF

Default OFF

Scope Can be set only for the PUBLIC group. Takes effect when you run sp_iqcheckdb
in any mode.

Description Helps further compress data and improve performance, especially for
databases with many variable character strings.

Set this option and then run sp_iqcheckdb only once, and only for VARCHAR
columns that were created before version 12.4.2.

COOPERATIVE_COMMIT_TIMEOUT option
Function Governs when a COMMIT entry in the transaction log is written to disk.

Allowed values Integer, in milliseconds

Default 250

Scope Can be set for an individual connection or the PUBLIC group. Takes effect
immediately.

Description This option only has meaning when COOPERATIVE_COMMITS is set to ON.
The database server waits for the specified number of milliseconds for other
connections to fill a page of the log before writing to disk. The default setting
is 250 milliseconds.

COOPERATIVE_COMMITS option
Function Controls when commits are written to disk.

Allowed values ON, OFF

Default ON

Scope Can be set for an individual connection or the PUBLIC group. Takes effect
immediately.

Description If COOPERATIVE_COMMITS is set to OFF, a COMMIT is written to disk as
soon as the database server receives it, and the application is then allowed to
continue.

Alphabetical list of options

62 Sybase IQ

If COOPERATIVE_COMMITS is set to ON, the default, the database server does
not immediately write the COMMIT to the disk. Instead, it requires the
application to wait for a maximum length set by the
COOPERATIVE_COMMIT_TIMEOUT option for something else to put on the
pages before the commit is written to disk.

Setting COOPERATIVE_COMMITS to ON, and increasing the
COOPERATIVE_COMMIT_TIMEOUT setting increases overall database server
throughput by cutting down the number of disk I/Os, but at the expense of a
longer turnaround time for each individual connection.

CURSOR_WINDOW_ROWS option
Function Defines the number of cursor rows to buffer.

Allowed values 20 – 100000

Default 200

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Description When an application opens a cursor, Sybase IQ creates a FIFO (first-in, first-
out) buffer to hold the data rows generated by the query.
CURSOR_WINDOW_ROWS defines how many rows can be put in the buffer.
If the cursor is opened in any mode other than NO SCROLL, Sybase IQ allows
for backward scrolling for up to the total number of rows allowed in the buffer
before it must restart the query. This is not true for NO SCROLL cursors as
they do not allow backward scrolling.

For example, with the default value for this option, the buffer initially holds
rows 1 through 200 of the query result set. If you fetch the first 300 rows, the
buffer holds rows 101 through 300. You can scroll backward or forward within
that buffer with very little overhead cost. If you scroll before row 101, Sybase
IQ restarts that query until the desired row is back in the buffer. This can be an
expensive operation to perform, so your application should avoid it where
possible. An option is to increase the value for CURSOR_WINDOW_ROWS to
accommodate a larger possible scrolling area; however, the default setting of
200 is sufficient for most applications.

CHAPTER 2 Database Options

Reference Manual 63

DATE_FIRST_DAY_OF_WEEK option
Function Determines the first day of the week.

Allowed values 0 – 6

Default 0 (Sunday)

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Description This option can specify which day is the first day of the week. By default,
Sunday is day 1, Monday is day 2, Tuesday is day 3, and so on. Table 2-
9defines the valid values for the DATE_FIRST_DAY_OF_WEEK option.

Table 2-8: DATE_FIRST_DAY_OF_WEEK values

For example, if you change the value for the DATE_FIRST_DAY_OF_WEEK
option to 3, Wednesday becomes day 1, Thursday becomes day 2, and so on.
This option only affects the DOW and DATEPART functions, so its effect is
quite narrow.

See also The Adaptive Server Anywhere option FIRST_DAY_OF_WEEK performs the
same function but assigns the values 1 through 7 instead of 0 through 6. 1
stands for Monday and 7 for Sunday (the default). If you receive unexpected
results, see Ordering query results in Sybase IQ Performance and Tuning
Guide.

DATE_FORMAT option
Function Sets the format used for dates retrieved from the database.

Allowed values String

Default 'YYYY-MM-DD'. This corresponds to ISO date format specifications.

Value First Day

0 Sunday

1 Monday

2 Tuesday

3 Wednesday

4 Thursday

5 Friday

6 Saturday

Alphabetical list of options

64 Sybase IQ

Scope Can be set for an individual connection or the PUBLIC group. Takes effect
immediately.

Description The format is a string using the following symbols:

Table 2-9: Symbols used in DATE_FORMAT string

Note Multibyte characters are not supported in date format strings. Only
single-byte characters are allowed, even when the collation order of the
database is a multibyte collation order like 932JPN. Use the concatenation
operator to include multibyte characters in date format strings. For example, if
'?' represents a multibyte character, use the concatenation operator to move the
multibyte character outside of the date format string:

SELECT DATEFORMAT (start_date, ‘yy’) + ‘?’
FROM employee;

Symbol Description

yy 2-digit year

yyyy 4-digit year

mm 2-digit month, or 2-digit minutes if following a colon (as in
'hh:mm')

mmm 3-character name of month

mmmm[m...] Character long form for months—as many characters as there
are m's, until the number of m’s specified exceeds the number
of characters in the month’s name.

d Single-digit day of week, (0 = Sunday, 6 = Saturday)

dd 2-digit day of month

ddd 3-character name of the day of week.

dddd[d...] Character long form for day of the week—as many characters
as there are d's, until the number of d’s specified exceeds the
number of characters in the day’s name.

hh 2-digit hours

nn 2-digit minutes

ss[.s...s] Seconds and parts of a second; up to six digits can follow the
decimal point

aa AM or PM (12 hour clock)

pp PM if needed (12 hour clock)

jjj Day of the year, from 1 to 366

CHAPTER 2 Database Options

Reference Manual 65

Each symbol is substituted with the appropriate data for the date being
formatted. Any format symbol that represents character rather than digit output
can be put in uppercase which causes the substituted characters to also be in
uppercase. For numbers, using mixed case in the format string suppresses
leading zeros.

You can control the padding of numbers by changing the case of the symbols.
Same-case values (MM, mm, DD, or dd) all pad number with zeros. Mixed-
case (Mm, mM, Dd, or dD) cause the number to not be zero-padded; the value
takes as much room as required. For example:

SELECT dateformat (cast ('1998/01/01' as date), 'yyyy/
Mm/Dd')

returns the following value:

1998/1/1

Examples Table 2-10 illustrates DATE_FORMAT settings, together with the output from
the following statement, executed on Thursday May 21, 1998:

SELECT CURRENT DATE

Table 2-10: DATE_FORMAT settings

See also “Setting options” on page 24.

“RETURN_DATE_TIME_AS_STRING option” on page 143.

“TIME_FORMAT option” on page 165.

DATE_ORDER option
Function Controls the interpretation of date formats.

Allowed values 'MDY', 'YMD', or 'DMY'

Default 'YMD'. This corresponds to ISO date format specifications.

Description The database option DATE_ORDER is used to determine whether 10/11/12 is
Oct 11 1912, Nov 12 1910, or Nov 10 1912. The option can have the value
'MDY', 'YMD', or 'DMY'.

DATE_FORMAT SELECT CURRENT DATE

yyyy/mm/dd/ddd 1998/05/21/thu

jjj 141

mmm yyyy may 1998

mm-yyyy 05-1998

Alphabetical list of options

66 Sybase IQ

DBCC_LOG_PROGRESS option
Function Reports the progress of the sp_iqcheckdb system stored procedure.

Allowed values ON, OFF

Default OFF

Scope Can be set for an individual connection or the PUBLIC group. Takes effect at
the next execution of sp_iqcheckdb.

Description When the DBCC_LOG_PROGRESS option is ON, the sp_iqcheckdb system
stored procedure sends progress messages to the IQ message file. These
messages allow the user to follow the progress of the sp_iqcheckdb operation.

Examples The following is sample progress log output of the command sp_iqcheckdb
‘check database’

IQ Utility Check Database
Start CHECK STATISTICS table: tloansf
Start CHECK STATISTICS for field: aqsn_dt
Start CHECK STATISTICS processing index:
ASIQ_IDX_T444_C1_FP
Start CHECK STATISTICS processing index:
tloansf_aqsn_dt_HNG
Done CHECK STATISTICS field: aqsn_dt

The following is sample progress log output of the command sp_iqcheckdb
‘allocation table nation’

Start ALLOCATION table: nation
Start ALLOCATION processing index: nationhg1
Done ALLOCATION table: nation
Done ALLCOATION processing index: nationhg1

See also Chapter 2, “System Recovery and Database Repair” in the Sybase IQ
Troubleshooting and Recovery Guide

“sp_iqcheckdb procedure” on page 743.

DBCC_PINNABLE_CACHE_PERCENT option
Function Controls the percent of the cache used by the sp_iqcheckdb system stored

procedure.

Allowed values 0 – 100

Default 50

CHAPTER 2 Database Options

Reference Manual 67

Scope Can be set for an individual connection or the PUBLIC group. Takes effect at
the next execution of sp_iqcheckdb.

Description The sp_iqcheckdb system stored procedure works with a fixed number of
buffers, as determined by this option. By Default, a large percentage of the
cache is reserved to maximize sp_iqcheckdb performance.

See also “sp_iqcheckdb procedure” on page 743.

Resource issues running sp_iqcheckdb in Chapter 2, “System Recovery and
Database Repair”in the Sybase IQ Troubleshooting and Recovery Guide.

Chapter 2, “System Recovery and Database Repair” in the Sybase IQ
Troubleshooting and Recovery Guide.

DDL_OPTIONS2 option
Function Displays information about how long it took to insert or delete rows from an

index.

Allowed values 0 – 3

Default 0

Scope Can be set for an individual connection or the PUBLIC group. Takes effect
immediately

Description DDL_OPTIONS2 displays messages telling how long it took to insert or delete
rows in each index. The following settings are allowed:

• 0 – Suppress messages

• 1 – Show messages on insert operations, such as LOAD TABLE

• 2 – Show messages on delete operations

• 3 – Show messages on insert and delete operations

For example, the following command displays messages that show how long it
took to insert rows in each index:

SET TEMPORARY OPTION DDL_OPTIONS2 = 1
2004-04-06 09:24:10 0000000002 [20902]: Insert
completed. Index 'yahoo.DBA.ASIQ_IDX_T200_C10_FP', in 0
seconds.

See also Interpreting notification messages in Chapter 7, “Moving Data In and Out of
Databases” in the Sybase IQ System Administration Guide.

Alphabetical list of options

68 Sybase IQ

DEBUG_MESSAGES option
Function Controls whether or not MESSAGE statements that include a DEBUG ONLY

clause are executed.

Allowed values ON, OFF

Default OFF

Description This option allows you to control the behavior of debugging messages in stored
procedures that contain a MESSAGE statement with the DEBUG ONLY clause
specified. By default, this option is set to OFF and debugging messages do not
appear when the MESSAGE statement is executed. By setting
DEBUG_MESSAGES to ON, you can enable the debugging messages in all
stored procedures.

Note
DEBUG ONLY messages are inexpensive when the DEBUG_MESSAGES
option is set to OFF, so these statements can usually be left in stored procedures
on a production system. However, they should be used sparingly in locations
where they would be executed frequently; otherwise, they might result in a
small performance penalty.

See also MESSAGE statement on page 600.

DEDICATED_TASK option
Function Dedicates a request handling task to handling requests from a single

connection.

Allowed values ON, OFF

Default OFF

Scope Can be set as a temporary option only, for the duration of the current
connection. Requires DBA permissions to set this option.

Description When the DEDICATED_TASK connection option is set to ON, a request
handling task is dedicated exclusively to handling requests for the connection.
By pre-establishing a connection with this option enabled, you can gather
information about the state of the database server if it becomes otherwise
unresponsive.

CHAPTER 2 Database Options

Reference Manual 69

DEFAULT_HAVING_SELECTIVITY option
Function Provides default selectivity estimates to the optimizer for most HAVING

clauses.

Allowed values 0 – 100

Default 0

Scope Can be set for an individual connection or the PUBLIC group. Takes effect
immediately.

Description DEFAULT_HAVING_SELECTIVITY sets the selectivity for HAVING clauses,
overriding optimizer estimates. A HAVING clause filters the results of a
GROUP BY clause or a query with a select list consisting solely of aggregate
functions. When DEFAULT_HAVING_SELECTIVITY is set to the default of 0,
the optimizer estimates how many rows are filtered by the HAVING clause.
Sometimes the IQ optimizer does not have sufficient information to choose an
accurate selectivity, and in these cases chooses a generic estimate of 40%.
DEFAULT_HAVING_SELECTIVITY allows a user to replace the optimizer
estimate for all HAVING predicates in a query.

Users can also specify the selectivity of individual HAVING clauses in the
query, as described in the section “User-supplied condition hints” on page 199
in the “Search conditions” section, Chapter 3, “SQL Language Elements.”

See also Chapter 3, “Optimizing Queries and Deletions” in the Sybase IQ Performance
and Tuning Guide.

DEFAULT_ISQL_ENCODING option [DBISQL]
Function Specifies the code page that should be used by READ and OUTPUT statements.

Allowed values identifier or string

Default Use system code page (empty string)

Scope Can be set as a temporary option only, for the duration of the current
connection.

Description DEFAULT_ISQL_ENCODING option is used to specify the code page to use
when reading or writing files. It cannot be set permanently. The default code
page is the default code page for the platform you are running on. On English
Windows machines, the default code page is 1252.

Alphabetical list of options

70 Sybase IQ

Interactive SQL determines the code page that is used for a particular OUTPUT
or READ statement as follows, where code page values occurring earlier in the
list take precedence over those occurring later in the list:

• The code page specified in the ENCODING clause of the OUTPUT or READ
statement

• The code page specified with the DEFAULT_ISQL_ENCODING option (if
this option is set)

• The code page specified with the -codepage command line option when
Interactive SQL was started

• The default code page for the computer Interactive SQL is running on

For a complete list of supported code pages, see the Adaptive Server Anywhere
Database Administration Guide.

Example Set the encoding to UTF-16 (for reading Unicode files):

SET TEMPORARY OPTION DEFAULT_ISQL_ENCODING = 'UTF-16'

See also READ statement [DBISQL] and OUTPUT statement [DBISQL] in Chapter 6,
“SQL Statements” in the Sybase IQ Reference Manual.

Pieces in the character set puzzle in Chapter 11, “International Languages and
Character Sets” in the Sybase IQ System Administration Guide.

DEFAULT_LIKE_MATCH_SELECTIVITY option
Function Provides default selectivity estimates to the optimizer for most LIKE

predicates.

Allowed values 0 to 100

Default 15

Scope Can be set for an individual connection or the PUBLIC group. Takes effect
immediately.

Description DEFAULT_LIKE_MATCH_SELECTIVITY sets the default selectivity for generic
LIKE predicates, for example, LIKE 'string%string' where % is a
wildcard character. The optimizer relies on this option when other selectivity
information is not available and the match string does not start with a set of
constant characters followed by a single wildcard.

If the column has either a LF index or a 1- or 2-byte FP index, the optimizer
can get exact information and does not need to use this value.

CHAPTER 2 Database Options

Reference Manual 71

Users can also specify selectivity in the query, as described in the section
“User-supplied condition hints” on page 199 in Chapter 3, “SQL Language
Elements.”

See also “DEFAULT_LIKE_RANGE_SELECTIVITY option” on page 71.

“LIKE conditions” on page 193.

Chapter 3, “Optimizing Queries and Deletions” in the Sybase IQ Performance
and Tuning Guide

DEFAULT_LIKE_RANGE_SELECTIVITY option
Function Provides default selectivity estimates to the optimizer for leading constant

LIKE predicates.

Allowed values 0 to 100

Default 15

Scope Can be set for an individual connection or the PUBLIC group. Takes effect
immediately.

Description DEFAULT_LIKE_RANGE_SELECTIVITY sets the default selectivity for LIKE
predicates, of the form LIKE 'string%' where the match string is a set of
constant characters followed by a single wildcard character (%). The optimizer
relies on this option when other selectivity information is not available.

If the column has either a LF index or a 1- or 2-byte FP index, the optimizer
can get exact information and does not need to use this value.

Users can also specify selectivity in the query, as described in “User-supplied
condition hints” on page 199 in the Sybase IQ Reference Manual.

See also “DEFAULT_LIKE_MATCH_SELECTIVITY option” on page 70

“LIKE conditions” on page 193.

Chapter 3, “Optimizing Queries and Deletions” in the Sybase IQ Performance
and Tuning Guide

Alphabetical list of options

72 Sybase IQ

DELAYED_COMMIT_TIMEOUT option
Function Determines when the server returns control to an application following a

COMMIT.

Allowed values Integer, in milliseconds.

Default 500

Description This option is ignored by Sybase IQ since DELAYED_COMMITS can only be set
OFF.

DELAYED_COMMITS option
Function Determines when the server returns control to an application following a

COMMIT.

Allowed values OFF

Default OFF. This corresponds to ISO COMMIT behavior.

Description When set to OFF (the only value allowed by Sybase IQ), the application must
wait until the COMMIT is written to disk. This option must be set to OFF for
ANSI/ISO COMMIT behavior.

DISABLE_RI_CHECK option
Function Allows load, insert, update, or delete operations to bypass the referential

integrity check, improving performance.

Allowed values ON, OFF

Default OFF

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Description Users are responsible for ensuring that no referential integrity violation occurs
during requests while DISABLE_RI_CHECK is set to ON.

DISK_STRIPING option
Function Turns internal disk striping on or off.

CHAPTER 2 Database Options

Reference Manual 73

Allowed values ON, OFF

Default ON

Scope Can be set for the PUBLIC group only. Requires DBA permissions. Takes effect
at the next checkpoint.

Description This option can force disk striping to be set or unset for performance reasons.
In Sybase IQ, disk striping places data in each dbspace file segment in a round-
robin fashion; for example, the first database page written goes to the first
dbspace, the second page written goes to the next dbspace, and so on). If the
dbspace is in read-only or relocate mode, it is skipped.

When this option is ON, the data is distributed in all dbspace segments, and the
spaces tend to fill up together, evenly. When this option is OFF, the spaces tend
to fill up in order, from the first to the last.

See also For more information about disk striping and performance, see Balancing I/O
in Chapter 5, “Managing System Resources” in the Sybase IQ Performance
and Tuning Guide.

DISK_STRIPING_PACKED option
Function Sets database block allocation policy.

Allowed values ON, OFF

Default ON

Scope Can be set for the PUBLIC group only. Requires DBA permissions. Takes effect
at the next checkpoint.

Description In general, disk space fragmentation is much lower with the default setting,
DISK_STRIPING_PACKED OFF. DISK_STRIPING_PACKED OFF causes
Sybase IQ to check first for the first available space fragments to use when
allocating space.

Change this option only if Sybase Support instructs you to do so. When this
option is ON, Sybase IQ allocates space starting from the next available last
block allocated on the current dbspace.

See also For more information about disk striping and performance, see Balancing I/O
in Chapter 5, “Managing System Resources” of the Sybase IQ Performance
and Tuning Guide.

Alphabetical list of options

74 Sybase IQ

DIVIDE_BY_ZERO_ERROR option [TSQL]
Function Controls the reporting of division by zero.

Allowed values ON, OFF

Default ON

Description This option indicates whether division by zero is reported as an error. If the
option is set ON, then division by zero results in an error with SQLSTATE
22012.

If the option is set OFF, division by zero is not an error. Instead, a NULL is
returned.

EARLY_PREDICATE_EXECUTION option
Function Controls whether simple local predicates are executed before query

optimization.

Allowed values ON or OFF

Default ON

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Description If this option is ON (the default), the optimizer finds, prepares, and executes
predicates containing only local columns and constraints before query
optimization, including join ordering, join algorithm selection, and grouping
algorithm selection, so that the values of “Estimated Result Rows” in the query
plan are more precise. If this option is OFF, the optimizer finds and prepares
the simple predicates, but does not execute them before query optimization.
The resulting values of “Estimated Result Rows” are less precise, if the
predicates are not executed.

In general, the EARLY_PREDICATE_EXECUTION option should always be left
ON, as this results in improved query plans for many queries.

Note that when the EARLY_PREDICATE_EXECUTION option is ON, Sybase IQ
executes the local predicates for all queries before generating a query plan,
even when the NOEXEC option is ON. The generated query plan is the same
as the runtime plan.

Query plan root node information – The following information is included in
the query plan for the root node:

CHAPTER 2 Database Options

Reference Manual 75

• Threads used for executing local invariant predicates: if greater than 1,
indicates parallel execution of local invariant predicates

• Early_Predicate_Execution: indicates if the option is OFF

• Time of Cursor Creation: the time of cursor creation

Query plan leaf node information – The simple predicates whose execution is
controlled by this option are referred to as invariant predicates in the query
plan.The following information is included in the query plan for a leaf node, if
there are any local invariant predicates on the node:

• Generated Post Invariant Predicate Rows: actual result after executing
local invariant predicate

• Estimated Post Invariant Predicate Rows: calculated by using estimated
local invariant predicates selectivity

• Time of Condition Start: starting time of the execution of local invariant
predicates

• Time of Condition Done: ending time of the execution of local invariant
predicates

• Elapsed Condition Time: elapsed time for executing local invariant
predicates

ECHO option [DBISQL]
Function Controls whether statements are echoed before they are executed.

Allowed values ON, OFF

Default ON

Description This option is most useful when using the Windows READ statement to execute
a DBISQL command file.

ENABLE_THREAD_ALLOWANCE option
Function Allows optimizer to estimate thread allowance for each table that contains

invariant predicates.

Allowed values ON, OFF

Default OFF

Alphabetical list of options

76 Sybase IQ

Scope Can be set temporary, for an individual connection, or for the PUBLIC group.
Takes effect immediately.

Description The IQ optimizer assigns a thread quota to each table that contains invariant
predicates based on the row counts after high selectivity filters. This algorithm
provides better thread allocation, which prevents the server from running out
of threads.

ENABLED_ORDERED_PUSHDOWN_INSERTION option
Function Controls how the query optimizer adds in the semijoin predicates for push-

down joins selected by the join optimizer.

Allowed values ON, OFF

Default ON

Scope Can be set temporary, for an individual connection, or for the PUBLIC group.
Takes effect immediately.

Description Change this option only if Sybase Support instructs you to do so.

If OFF (the default), this option reverts the optimizer to the behavior seen in
Sybase IQ 12.6.

If ON, this option allows the insertion of semijoin predicates in projection-
savings order.

EXTENDED_JOIN_SYNTAX option
Function Controls whether queries with an ambiguous syntax for multi-table joins are

allowed, or reported as an error.

Allowed values ON, OFF

Default ON

Description This option reports a syntax error for those queries containing outer joins that
have ambiguous syntax due to the presence of duplicate correlation names on
a null-supplying table.

The following join clause illustrates the kind of query that is reported where C1
is a condition.

(R left outer join T , T join S on (C1))

CHAPTER 2 Database Options

Reference Manual 77

If the EXTENDED_JOIN_SYNTAX option is set to ON, this query is interpreted
as follows, where C1 and C2 are conditions:

(R left outer join T on (C1)) join S on (C2)

FLATTEN_SUBQUERIES option
Function Enables the transformation of some simple correlated EXISTS and NOT

EXISTS subqueries into equivalent join-based queries.

Allowed values ON, OFF

Default OFF

Scope Can be set temporary, for an individual connection, or for the PUBLIC group.
Takes effect immediately.

Description Use only if instructed to do so by Sybase Technical Support. This option
enables the transformation of some simple correlated EXISTS and NOT
EXISTS subqueries into equivalent join-based queries. In most cases in which
the optimizer can apply this transformation, the query runs faster with the
transformation than without the transformation applied. There are some
exceptions to this performance improvement and some queries might run more
slowly, so be sure that use of this option is appropriate for your environment.

FLOAT_AS_DOUBLE option [TSQL]
Function Controls the interpretation of the FLOAT keyword.

Allowed values ON, OFF

Default OFF

Description Turning on the FLOAT_AS_DOUBLE option makes the IQ FLOAT keyword
behave like the Adaptive Server Enterprise FLOAT keyword when a precision
is not specified.

When set to ON, Sybase IQ interprets all occurrences of the keyword FLOAT
as equivalent to the keyword DOUBLE within SQL statements.

Note When using JDBC and Client Library connections, for example, running
Sybase Central, you must set the FLOAT_AS_DOUBLE option to ON. If you do
not do this, CREATE JOIN INDEX operations fails.

Alphabetical list of options

78 Sybase IQ

By default, IQ FLOAT values are interpreted by Sybase IQ as REAL values.
Since Adaptive Server Enterprise treats its own FLOAT values as DOUBLE,
enabling this option makes Sybase IQ to treat FLOAT values in the same way
Adaptive Server Enterprise treats FLOAT values.

REAL values are four bytes, DOUBLE values are eight bytes. According to the
ANSI SQL92 specification, FLOAT can be interpreted based on the platform.
It is up to the database to decide what size it is, so long as it can handle the
necessary precision. Adaptive Server Enterprise and Sybase IQ exhibit
different default behavior.

Note If a join column is a REAL datatype, you must set FLOAT_AS_DOUBLE
to OFF when creating join indexes, or an error occurs. Issues might also result
when using inexact numerics for join columns.

The FLOAT_AS_DOUBLE option only takes effect when no precision is
specified. For example the following statement is not affected by the option
setting:

create table t1(
 c1 float(5)
)

The following statement is affected by the option setting:

create table t2(
 c1 float)
// affected by option setting

FORCE_DROP option
Function Causes Sybase IQ to leak, rather than reclaim, database disk space during a

DROP command.

Allowed values ON, OFF

Default OFF

Scope Requires DBA permissions to set this option. Can be set temporary, for an
individual connection, or for the PUBLIC group. Takes effect immediately.

CHAPTER 2 Database Options

Reference Manual 79

Description You must drop a corrupt index, join index, column or table and set the
FORCE_DROP option to ON. This prevents the free list from being incorrectly
updated from incorrect or suspect file space allocation information in the object
being dropped. After dropping corrupt objects, you can reclaim the file space
using the -iqfrec and -iqdroplks server switches.

When force dropping objects, you must ensure that only the DBA is connected
to the database. The server must be restarted immediately after a force drop.

If FORCE_DROP is set to ON, you cannot drop a join index on a multiplex
write server. If you need to force drop a join index on a multiplex write server,
you must first start the server in single-node mode. If FORCE_DROP = ON on
the write server and an object is dropped, the FORCE_DROP option settings,
on query servers are unaffected. After the drop restart only the write server.

Do not attempt to force drop objects unless Sybase Technical Support has
instructed you to do so.

See also For important information on using the FORCE_DROP option, see Chapter 2,
“System Recovery and Database Repair” in the Sybase IQ Troubleshooting
and Recovery Guide.

FORCE_NO_SCROLL_CURSORS option
Function Forces all cursors to be non-scrolling.

Allowed values ON, OFF

Default OFF

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Description By default, all cursors are scrolling. Scrolling cursors with no host variable
declared cause Sybase IQ to create a buffer for temporary storage of results.
Each row in the result set is stored to allow for backward scrolling.

Setting FORCE_NO_SCROLL_CURSORS to ON forces all cursors to be non-
scrolling, thereby saving on temporary storage requirements. This option can
be useful if you are retrieving very large numbers (millions) of rows, however
some front-end applications make use of scrolling cursor operations and
require this option to be set OFF.

If scrolling cursors are never used in your application, you should make this a
permanent public option. It uses less memory and makes a modest
improvement in query performance.

Alphabetical list of options

80 Sybase IQ

FORCE_UPDATABLE_CURSORS option
Function Controls whether cursors that have not been declared as updatable can be

updated.

Allowed values ON, OFF

Default OFF

Scope Can be set temporary, for an individual connection, for a group, or PUBLIC.
Does not require DBA permissions. Takes effect immediately.

Description When the FORCE_UPDATABLE_CURSORS option is ON, cursors which have
not been declared as updatable can be updated. This option allows updatable
cursors to be used in front-end applications without specifying the FOR
UPDATE clause of the DECLARE CURSOR statement.

Sybase does not recommend the use of the FORCE_UPDATABLE_CURSORS
option unless absolutely necessary.

FPL_EXPRESSION_MEMORY_KB option
Function Controls the use of memory for the optimization of queries involving

functional expressions against columns having enumerated storage.

Allowed values 0 – 20000

Default 1024 kilobytes

Scope Can be set temporary, for an individual connection, or for the PUBLIC group.
Takes effect immediately.

Description FPL_EXPRESSION_MEMORY_KB option controls the use of memory for the
optimization of queries involving functional expressions against columns
having enumerated storage. The option enables the DBA to constrain the
memory used by this optimization and balance it with other Sybase IQ memory
requirements, such as caches and LOAD_MEMORY_MB. Setting this option to
0 switches off optimization.

FP_PREDICATE_WORKUNIT_PAGES option
Function Specifies degree of parallelism used in the default index.

Allowed values Integer

Default 400

CHAPTER 2 Database Options

Reference Manual 81

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Description The default index calculates some predicates such as SUM, RANGE, MIN,
MAX and COUNT DISTINCT in parallel.
FP_PREDICATE_WORKUNIT_PAGES affects the degree of parallelism used by
specifying the number of pages worked on by each thread. To increase the
degree of parallelism, decrease the value of this option.

GARRAY_FILL_FACTOR_PERCENT option
Function Specifies the amount of space to reserve for an HG index.

Allowed values 0 – 1000

Default 25

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Description An HG index can reserve some storage on a per-group basis (where group is
defined as a group of rows with identical values). Reserving space consumes
some disk space but can help the performance of incremental inserts into the
HG index and reduce fragmentation.

If you plan to do future incremental inserts into an HG index, and those new
rows have values that are already present in the index, a nonzero value for this
option helps.

GARRAY_INSERT_PREFETCH_SIZE option
Function Specifies number of pages used for prefetch.

Allowed values 0 – 100

Default 3

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Description This option defines the number of database pages read ahead during an insert
to a column that has an HG index.

Do not set this option unless advised to do so by Sybase Technical Support.

Alphabetical list of options

82 Sybase IQ

GARRAY_RO_PREFETCH_SIZE option
Function Specifies number of pages used for prefetch.

Allowed values 0 – 100

Default 10

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Description This option defines the number of database pages read ahead during a query to
a column that has an HG index.

Do not set this option unless advised to do so by Sybase Technical Support.

HASH_PINNABLE_CACHE_PERCENT option
Function Maximum percentage of a user’s temp memory that a hash object can pin.

Allowed values 0 – 100

Default 20

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Description HASH_PINNABLE_CACHE_PERCENT controls the percentage of a user’s temp
memory allocation that any one hash object can pin in memory. It defaults to
20%, but reduce this number to 10% for sites that run complex queries, or
increase to 50% for sites with simple queries that need a single large hash
object to run, such as a large IN subquery.

The HASH_PINNABLE_CACHE_PERCENToption is for use by primarily
Sybase Technical Support. If you change the value of it, do so with extreme
caution; first analyze the effect on a wide variety of queries.

See also “BIT_VECTOR_PINNABLE_CACHE_PERCENT option” on page 47.

“SORT_PINNABLE_CACHE_PERCENT option” on page 146.

HASH_THRASHING_PERCENT option
Function Specifies the percent of hard disk I/Os allowed during the execution of a

statement that includes a query involving hash algorithms, before the statement
is rolled back and an error message is reported.

CHAPTER 2 Database Options

Reference Manual 83

Allowed values 0 – 100

Default 10

Scope Can be set for an individual connection or the PUBLIC group. Takes effect
immediately.

Description If a query that uses hash algorithms causes an excessive number of hard disk I/
Os (paging buffers from memory to disk), query performance is negatively
affected, and server performance might also be affected. The
HASH_THRASHING_PERCENT option controls the percentage of hard disk I/
Os allowed before the statement is rolled back and an error message is
returned. The text of the error message is either “Hash insert thrashing
detected” or “Hash find thrashing detected.”

The default value of HASH_THRASHING_PERCENT is 10%. Increasing it
permits more paging to disk before a rollback and decreasing it permits less
paging before a rollback.

See also For more information on controlling excessive paging and using the
HASH_THRASHING_PERCENT option, see Unexpectedly long loads or
queries in Chapter 1, “Troubleshooting Hints,” in the Sybase IQ
Troubleshooting and Recovery Guide.

Also see “HASH_PINNABLE_CACHE_PERCENT option” on page 82.

HEADINGS option [DBISQL]
Function Controls whether headings display for the results of a SELECT statement.

Allowed values ON, OFF

Default ON

Description Set this option according to your preference.

HG_DELETE_METHOD option
Function Specifies the algorithm used during a delete in a HG index.

Allowed values 0 – 3

Default 0

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Alphabetical list of options

84 Sybase IQ

Description This option chooses the algorithm used by the HG index during a delete
operation. The cost model considers the CPU related costs as well as I/O
related costs in selecting the appropriate delete algorithm. The cost model takes
into account:

• Rows deleted

• Index size

• Width of index data type

• Cardinality of index data

• Available temporary cache

• Machine related I/O and CPU characteristics

• Available CPUs and threads

• Referential integrity costs

To force a “small” method, set this option to 1. To force the “large” method, set
the option to 2. To force a “midsize” method, set the option to 3.

See also For more details about these methods, see Optimizing delete operations in
Sybase IQ Performance and Tuning Guide.

HG_SEARCH_RANGE option
Function Specifies the maximum number of Btree pages used in evaluating a range

predicate in the HG index.

Allowed values Integer

Default 10

Scope Can be set for an individual connection or the PUBLIC group. Takes effect
immediately.

Description The default setting of this option is appropriate for most queries.

IDENTITY_ENFORCE_UNIQUENESS option
Function Creates a unique HG index on each Identity/Autoincrement column if the

column is not already a primary key.

Allowed values ON, OFF

CHAPTER 2 Database Options

Reference Manual 85

Default OFF

Scope Can only be set temporary (for a connection), for a user, or for the PUBLIC
group. Takes effect immediately.

Description When option is set ON, HG indexes are created on future identity columns. The
index can only be deleted if the deleting user is the only one using the table and
the table is not a local temporary table.

See also “QUERY_PLAN option” on page 139.

IDENTITY_INSERT option
Function Enables users to insert values into or to update an IDENTITY or

AUTOINCREMENT column.

Allowed values = 'tablename'

Default Option not set.

Scope Can be set only temporary (for a connection), for a user, or for the PUBLIC
group. Takes effect immediately.

Description When option is set, insert/update is enabled. A table name must be specified to
identify the column to insert or update. If you are not the table owner, qualify
the table name with the owner name.

To drop a table with an IDENTITY column, IDENTITY_INSERT must not be
set to that table.

Example For example, if you use the table employees to run explicit inserts:

SET TEMPORARY OPTION IDENTITY_INSERT = 'employees'

To turn the option off, specify the equals sign and an empty string:

SET TEMPORARY OPTION IDENTITY_INSERT = ''

See also “QUERY_PLAN option” on page 139

INDEX_ADVISOR option
Function Generates messages suggesting additional column indexes that may improve

performance of one or more queries.

Allowed values ON, OFF

Alphabetical list of options

86 Sybase IQ

Default OFF

Scope Can be set temporary (for a connection), for a user, or for the PUBLIC group.
Takes effect immediately.

Description When set ON, the index advisor prints index recommendations as part of the
Sybase IQ query plan or as a separate message in the Sybase IQ message log
file if query plans are not enabled. These messages begin with the string “Index
Advisor:” and you can use that string to search and filter them from a Sybase
IQ message file. The output is in OWNER.TABLE.COLUMN format.

Set both INDEX_ADVISOR and INDEX_ADVISOR_MAX_ROWS to accumulate
index advice.

Note When INDEX_ADVISOR_MAX_ROWS is set ON, index advice will not
be written to the Sybase IQ message file as separate messages. Advice will,
however, continue to be displayed on query plans in the Sybase IQ message
file.

Table 2-11: Index Advisor

It is up to you to decide how many queries benefit from the additional index
and whether it is worth the expense to create and maintain the indexes. In some
cases, you cannot determine how much, if any, performance improvement
results from adding the recommended index.

Situation Recommendation

Local predicates on a single column where an HG, LF, HNG, DATE,
TIME or DATETIME index would be desirable, as appropriate.

Recommend adding an <index-type>
index to column <col>

Single column join keys where an LF or HG index would be useful. Add an LF or HG index to join key <col>

Single column candidate key indexes where a HG exists, but could be
changed to a unique HG or LF

Change join key <col> to a unique LF or
HG index

Join keys have mismatched data types, and regenerating one column
with a matched data type would be beneficial.

Make join keys <col1> and <col2>
identical data types

Subquery predicate columns where an LF or HG index would be
useful.

Add an LF or HG index to subquery
column <col>

Grouping columns where an LF or HG index would be useful. Create an LF or HG index on grouping
column <col>

Single-table intercolumn comparisons where the two columns are
identical data types, a CMP index are recommended.

Create a CMP index on <col1>, <col2>

Columns where an LF or HG index exists, and the number of distinct
values allows, suggest converting the FP to a 1 or 2-byte FP index.

Rebuild <col> with ‘optimize
storage=on’

CHAPTER 2 Database Options

Reference Manual 87

For example, consider columns used as a join key. Sybase IQ uses metadata
provided by HG or LF indexes extensively to generate better/faster query plans
to execute the query. Putting an HG or LF index on a join column without one
makes the IQ optimizer far more likely to choose a faster join plan, but without
adding the index and running the query again, it is very hard to determine
whether query performance stays the same or improves with the new index.

Example Index advisor output with query plan set OFF.

I. 03/30 14:18:45. 0000000002 Advice: Add HG or LF index
on DBA.ta.c1 Predicate: (ta2.c1 < BV(1))

Index advisor output with query plan set ON.

Note This method accumulates index advisor information for multiple queries
so that advice for several queries can be tracked over time in a central location.

I. 03/30 14:53:24. 0000000008 [20535]: 6 #03:
Leaf
I. 03/30 14:53:24. 0000000008
[20535]: Table Name: tb
I. 03/30 14:53:24. 0000000008
[20535]: Condition 1 (Invariant): (tb.c3
=tb.c4)
I. 03/30 14:53:24. 0000000008
[20535]: Condition 1 Index Advisor: Add a
CMP index on DBA.tb (c3,c4)

See also “QUERY_PLAN option” on page 139

Message logging in Chapter 1, “Overview of Sybase IQ System
Administration” in the Sybase IQ System Administration Guide

“INDEX_ADVISOR_MAX_ROWS option” on page 87

“sp_iqindexadvice procedure” on page 788

INDEX_ADVISOR_MAX_ROWS option
Function Sets the maximum number of unique advice messages stored to max_rows.

Allowed values
Value Description

0 Minimum value disables collection of index advice

4294967295 Maximum value allowed

Alphabetical list of options

88 Sybase IQ

Default 0

Scope Can be set temporary (for the current connection), or persistent for a user/group
(such as PUBLIC or DBA). Takes effect immediately.

Description The INDEX_ADVISOR_MAX_ROWS option is used to limit the number of
messages stored by the index advisor. Once the specified limit has been
reached, the INDEX_ADVISOR will not store new advice. It will, however,
continue to update counts and timestamps for existing advice messages.

SET OPTION public.Index_Advisor_Max_Rows = max_rows;

See also “INDEX_ADVISOR option” on page 85

“sp_iqindexadvice procedure” on page 788

INDEX_PREFERENCE option
Function Controls the choice of indexes to use for queries.

Allowed values -10 to 10

Default 0

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Description The Sybase IQ optimizer normally chooses the best index available to process
local WHERE clause predicates and other operations that can be done within an
IQ index. INDEX_PREFERENCE is used to override the optimizer choice for
testing purposes; under most circumstances, it should not be changed. Table 2-
12 describes the valid values for this option and their action.

CHAPTER 2 Database Options

Reference Manual 89

Table 2-12: INDEX_PREFERENCE values

INFER_SUBQUERY_PREDICATES option
Function Controls the optimizer’s inference of additional subquery predicates.

Allowed values ON, OFF

Default OFF

Scope Can be set temporary for an individual connection or the PUBLIC group. Takes
effect immediately. DBA permissions are not required to set this option.

Description INFER_SUBQUERY_PREDICATES controls whether the optimizer is allowed
to infer additional subquery predicates from an existing subquery predicate
through transitive closure across a simple equality join predicate. In most cases
in which the optimizer chooses to make this inference, the query runs faster.
There are some exceptions to this performance improvement, so you may need
to experiment to be sure that this option is appropriate for your environment.

Value Action

0 Let the optimizer choose

1 Prefer LF indexes

2 Prefer HG indexes

3 Prefer HNG indexes

4 Prefer CMP indexes

5 Prefer the default index

6 Prefer WD indexes

8 Prefer DATE indexes

9 Prefer TIME indexes

10 Prefer DTTM indexes

-1 Avoid LF indexes

-2 Avoid HG indexes

-3 Avoid HNG indexes

-4 Avoid CMP indexes

-5 Avoid the default index

-6 Avoid WD indexes

-8 Avoid DATE indexes

-9 Avoid TIME indexes

-10 Avoid DTTM indexes

Alphabetical list of options

90 Sybase IQ

IN_SUBQUERY_PREFERENCE option
Function Controls the choice of algorithms for processing an IN subquery.

Allowed values -3 to 3

Default 0

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Description The IQ optimizer has a choice of several algorithms for processing IN
subqueries. This option allows you to override the optimizer's costing decision
when choosing the algorithm to use. It does not override internal rules that
determine whether an algorithm is legal within the query engine.

IN_SUBQUERY_PREFERENCE is normally used for internal testing and for
manually tuning queries that the optimizer does not handle well. Only
experienced DBAs should use it. The only reason to use this option is if the
optimizer seriously underestimates the number of rows produced by a
subquery, and the hash object is thrashing. Before setting this option, try to
improve the mistaken estimate by looking for missing indexes and dependent
predicates.

Inform Sybase Technical Support if you need to set
IN_SUBQUERY_PREFERENCE, as setting this option might mean that a
change to the optimizer is appropriate.

Table 2-13 describes the valid values for this option and their actions.

Table 2-13: IN_SUBQUERY_PREFERENCE values

Value Action

0 Let the optimizer choose

1 Prefer sort-based IN subquery

2 Prefer vertical IN subquery (where a subquery is a child of a
leaf node in the query plan)

3 Prefer hash-based IN subquery

-1 Avoid sort-based IN subquery

-2 Avoid vertical IN subquery

-3 Avoid hash-based IN subquery

CHAPTER 2 Database Options

Reference Manual 91

IQGOVERN_MAX_PRIORITY option
Function Limits the allowed IQGOVERN_PRIORITY setting.

Allowed values 1 – 3

Default 2

Scope Can be set temporary, per user, or PUBLIC. Requires DBA permissions to set.
Takes effect immediately.

Description Limits the allowed IQGOVERN_PRIORITY setting, which affects the order in
which a user’s queries are queued for execution. In the range of allowed values,
1 indicates high priority, 2 (the default) medium priority, and 3 low priority.
Sybase IQ returns an error if a user sets IQGOVERN_PRIORITY higher than
IQGOVERN_MAX_PRIORITY.

IQGOVERN_PRIORITY option
Function Assigns a priority to each query waiting in the -iqgovern queue.

Allowed values 1 – 3

Default 2

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Description Assigns a value that determines the order in which a user’s queries are queued for
execution. In the range of allowed values, 1 indicates high priority, 2 (the default)
medium priority, and 3 low priority. This switch can be set temporary, per user, or public
by any user. Queries with a lower priority will not run until all higher priority queries
have executed.

This option is limited by the per user or per group value of the option
IQGOVERN_MAX_PRIORITY.

IQGOVERN_PRIORITY_TIME option
Function Limits the time a high priority query waits in the queue before starting.

Allowed values 1 – 1,000,000 seconds. Must be lower than IQGOVERN_MAX_PRIORITY.

Default 0 (disabled)

Alphabetical list of options

92 Sybase IQ

Scope Can be set for the PUBLIC group only. Requires DBA permissions. Takes effect
immediately.

Description Limits the time a high priority (priority 1) query waits in the queue before
starting. When the limit is reached, the query is started even if it exceeds the
number of queries allowed by the -iqgovern setting. You must belong to group
DBA in order to change this switch. The range is from 1 to 1,000,000 seconds.
The default (0) disables this feature.

IQMSG_LENGTH_MB option
Function Enables IQ message log file wrapping, and sets maximum size of this file.

Allowed values Integer between 0 and 2047, in megabytes

Default 0 (message log wrapping disabled)

Scope Can be set only for the PUBLIC group. Requires DBA privileges to set. Takes
effect immediately.

Description When you start a database, messages are recorded in the .iqmsg log file, and
each new line is appended to the end of the file.

Initially, message log wrapping is disabled (IQMSG_LENGTH_MB is 0),
messages are always appended to the end of the file, and the file continues to
grow.

When message log wrapping is enabled (IQMSG_LENGTH_MB is greater than
0), the .iqmsg log file can grow only to the specified size. The maximum size
you can specify is 2047 (2GB). When it reaches that size, new messages are
written to the beginning of the file, overwriting existing messages on a line-by-
line basis.

If wrapping is enabled when the database is shut down, it is still enabled the
next time the database is started. If you then disable wrapping, by setting
IQMSG_LENGTH_MB = 0, Sybase IQ writes new messages continuously to the
ending position of the most recent message, overwriting any existing
messages, until it reaches the end of the file. From then on, it appends new
messages to the end of the file.

When wrapping is enabled, three tags remind you that the last message in the
file might not be the most recent message, and help you identify where new
messages are being placed.

• This tag indicates the ending position of the most recent message:

<next msg insertion place>

CHAPTER 2 Database Options

Reference Manual 93

• This tag occurs at the start of the file:

!!!!!! log wrapped back here from the end of the file
!!!!!!

• This tag occurs at the end of the file:

!!!!!! log wrapped back to the beginning of the file
!!!!!!

If a database file already exists and its .iqmsg file is larger than
IQMSG_LENGTH_MB, the maximum file size is the actual file size. Setting this
option does not truncate the file.

ISOLATION_LEVEL option
Function Controls the locking isolation level for Catalog Store tables.

Allowed values 0, 1, 2, or 3

Default 0

Description Each locking isolation level is defined as follows:

• 0 – Allow dirty reads, nonrepeatable reads, and phantom rows.

• 1 – Prevent dirty reads. Allow nonrepeatable reads and phantom rows.

• 2 – Prevent dirty reads and guarantee repeatable reads. Allow phantom
rows.

• 3 – Serializable. Do not allow dirty reads, guarantee repeatable reads, and
do not allow phantom rows.

ISOLATION_LEVEL determines the isolation level for tables in the Catalog
Store. Sybase IQ always enforces level 3 for tables in the IQ Store. Level 3 is
equivalent to ANSI level 4.

ISQL_COMMAND_TIMING option [DBISQL]
Function Controls whether SQL statements are timed or not.

Allowed values ON, OFF

Default ON

Alphabetical list of options

94 Sybase IQ

Description This boolean option controls whether SQL statements are timed or not. If you
set the option to ON, the time of execution appears in the Messages pane after
you execute a statement. If you set the option to OFF, the time does not appear.

You can also set this option on the Messages tab of the Options dialog.

ISQL_ESCAPE_CHARACTER option [DBISQL]
Function Controls the escape character used in place of unprintable characters in data

exported to ASCII files.

Allowed values Any single character

Default A backslash (\)

Description When Interactive SQL exports strings that contain unprintable characters (such
as a carriage return), it converts each unprintable character into a hexadecimal
format and precedes it with an escape character. The character you specify for
this setting is used in the output if your OUTPUT statement does not contain an
ESCAPE CHARACTER clause. This setting is used only if you are exporting to
an ASCII file.

Example • Create a table that contains one string value with an embedded carriage
return (denoted by the “\n” in the INSERT statement). Then export the data
to c:\escape.txt with a # sign as the escape character.

CREATE TABLE escape_test(TEXT varchar(10));
INSERT INTO escape_test VALUES('one\ntwo');
SET TEMPORARY OPTION ISQL_ESCAPE_CHARACTER='#';
SELECT * FROM escape_test;
OUTPUT TO c:\escape.txt FORMAT ASCII

This code places the following data in escape.txt:

'one#x0Atwo'

where # is the escape character and x0A is the hexadecimal equivalent of
the “\n” character.

The start and end characters (in this case, single quotation marks) depend
on the ISQL_QUOTE setting.

CHAPTER 2 Database Options

Reference Manual 95

ISQL_FIELD_SEPARATOR option [DBISQL]
Function Controls the default string used for separating values in data exported to ASCII

files.

Allowed values String

Default A comma (,)

Description Controls the default string used for separating (or delimiting) values in data
exported to ASCII files. If an OUTPUT statement does not contain a
DELIMITED BY clause, the value of this setting is used.

Example • Set the field separator to a colon in the data exported to c:\employee.txt.

SET TEMPORARY OPTION ISQL_FIELD_SEPARATOR=':';
SELECT emp_lname, emp_fname FROM employee
WHERE emp_id < 150;
OUTPUT TO c:\employee.txt FORMAT ASCII

This code places the following data in employee.txt:

'Whitney':'Fran'

'Cobb':'Matthew'

'Chin':'Philip'

'Jordan':'Julie'

The start and end characters (in this case, single quotation marks) depend
on the ISQL_QUOTE setting.

ISQL_LOG option [DBISQL]
Function Controls logging behavior.

Allowed values String containing a file name

Default '' (the empty string)

Description If ISQL_LOG is set to a nonempty string, all Interactive SQL statements are
added to the end of the named file. Otherwise, if ISQL_LOG is set to the empty
string, Interactive SQL statements are not logged.

This option logs an individual Interactive SQL session only.

Alphabetical list of options

96 Sybase IQ

ISQL_QUOTE option [Interactive SQL]
Function Controls the default string that begins and ends all strings in data exported to

ASCII files.

Allowed values String

Default A single apostrophe (')

Description Controls the default string that begins and ends all strings in data exported to
ASCII files. If an OUTPUT statement does not contain a QUOTE clause, this
value is used by default.

Example • To change the default string that begins and ends all strings to a double
quote character.

SET TEMPORARY OPTION ISQL_QUOTE='"'; SELECT
emp_lname, emp_fname FROM employee WHERE emp_id <
150; OUTPUT TO c:\employee.txt FORMAT ASCII

This code places the following data in employee.txt:

“Whitney”, “Fran”

“Cobb”,”Matthew”

“Chin”,”Philip”

“Jordan”,”Julie”

The separator characters (in this case, commas) depend on the
ISQL_FIELD_SEPARATOR setting.

JAVA_HEAP_SIZE option
Function Limits the memory used by Java applications for a connection.

Allowed values Integer

Default 1000000

Scope Can be set for an individual connection or the PUBLIC group. Takes effect
immediately. Requires DBA permissions to set this option for any connection.

Description This option sets the maximum size (in bytes) of that part of the memory that is
allocated to Java applications on a per connection basis. Per-connection
memory allocations typically consist of the user’s working set of allocated Java
variables and Java application stack space.

CHAPTER 2 Database Options

Reference Manual 97

While a Java application is executing on a connection, the per-connection
allocations come out of the fixed cache of the database server, so it is important
that a runaway Java application be disallowed from using up too much
memory.

JAVA_NAMESPACE_SIZE option
Function Limits the memory used by Java applications for a database.

Allowed values Integer

Default 4000000

Description This option sets the maximum size (in bytes) of that part of the memory that is
allocated to Java applications on a per-database basis.

Per-database memory allocations include Java class definitions. As class
definitions are effectively read-only, they are shared between connections.
Consequently, their allocations come directly from the fixed cache, and
JAVA_NAMESPACE sets a limit on the size of these allocations.

JOIN_EXPANSION_FACTOR option
Function Controls how conservative the optimizer’s join result estimates are in

unusually complex situations.

Allowed values 1 – 100

Default 30

Scope Can be set temporary, for an individual connection, or for the PUBLIC group.
Takes effect immediately.

Description This option controls how conservative the join optimizer’s result size estimates
are in situations where an input to a specific join has already passed through at
least one intermediate join that can result in multiple copies of rows projected
from the table being joined.

A level of zero indicates that the optimizer should use the same estimation
method above intermediate expanding joins as it would if there were no
intermediate expanding joins.

This results in the most aggressive (small) join result size estimates.

Alphabetical list of options

98 Sybase IQ

A level of 100 indicates that the optimizer should be much more conservative
in its estimates whenever there are intermediate expanding joins, and this
results in the most conservative (large) join result size estimates.

Normally, you should not need to change this value. If you do, Sybase
recommends setting JOIN_EXPANSION_FACTOR as a temporary or user
option.

JOIN_OPTIMIZATION option
Function Enables or disables the optimization of the join order.

Allowed values ON, OFF

Default ON

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Description When the JOIN_OPTIMIZATION option is ON, Sybase IQ optimizes the join
order to reduce the size of intermediate results and sorts, and to balance the
system load. When the option is OFF, the join order is determined by the order
of the tables in the FROM clause of the SELECT statement.

JOIN_OPTIMIZATION should always be set ON.

The JOIN_OPTIMIZATION option controls the order of the joins, but not the
order of the tables. To show the distinction, consider this example FROM clause
with four tables:

FROM A, B, C, D

By default, this FROM clause creates a left deep plan of joins that could also be
explicitly represented as:

FROM (((A, B), C), D)

If JOIN_OPTIMIZATION is turned OFF, then the order of these joins on the sets
of tables is kept precisely as specified in the FROM clause. Thus A and B must
be joined first, then that result must be joined to table C, and then finally joined
to table D. This option does not control the left/right orientation at each join.
Even with JOIN_OPTIMIZATION turned OFF, the optimizer, when given the
above FROM clause, can produce a join plan that looks like:

FROM ((C, (A, B)), D)

 or

CHAPTER 2 Database Options

Reference Manual 99

FROM (((B, A), C), D)

 or

FROM (D, ((A, B), C))

In all of these cases, A and B are joined first, then that result is joined to C, and
finally that result is joined to table D. The order of the joins remains the same,
but the order of the tables appears different.

In general, if JOIN_OPTIMIZATION is turned OFF, you probably should use
parentheses in the FROM clause, as in the above examples, to make sure that
you get the join order you want. If you want to join A and B to the join of C
and D, you can specify this join by using parentheses:

FROM ((A, B), (C, D))

Note that the above FROM clause is a different join order than the original
example FROM clause, even though all the tables appear in the same order.

JOIN_OPTIMIZATION should be set to OFF only to diagnose obscure join
performance issues or to manually optimize a small number of predefined
queries. With JOIN_OPTIMIZATION turned OFF, queries can join up to 128
tables, but might also suffer serious performance degradation.

 Warning! If you turn off JOIN_OPTIMIZATION, Sybase IQ has no way to
ensure optimal performance for queries containing joins. You assume full
responsibility for performance aspects of your queries.

JOIN_PREFERENCE option
Function Controls the choice of algorithms when processing joins.

Allowed values -7 to 7

Default 0

Scope DBA permissions are not required to set JOIN_PREFERENCE. Can be set
temporary, for an individual connection, or for the PUBLIC group. Takes effect
immediately.

Alphabetical list of options

100 Sybase IQ

Description For joins within a query, the IQ optimizer has a choice of several algorithms
for processing the join. JOIN_PREFERENCE allows you to override the
optimizer’s cost-based decision when choosing the algorithm to use. It does not
override internal rules that determine whether an algorithm is legal within the
query engine. If you set it to any nonzero value, every join in a query is
affected; you cannot use it to selectively modify one join out of several in a
query.

This option is normally used for internal testing, and only experienced DBAs
should use it. Table 2-14 describes the valid values for this option and their
action.

Table 2-14: JOIN_PREFERENCE values

JOIN_SIMPLIFICATION_THRESHOLD option
Function Controls the minimum number of tables being joined together before any join

optimizer simplifications are applied.

Allowed values 1 – 64

Default 15

Scope Can be set temporary, for an individual connection, or for the PUBLIC group.
Takes effect immediately.

Value Action

0 Let the optimizer choose

1 Prefer sort-merge

2 Prefer nested-loop

3 Prefer nested-loop push-down

4 Prefer hash

5 Prefer hash push-down

6 Prefer prejoin

7 Prefer sort-merge push-down

-1 Avoid sort-merge

-2 Avoid nested-loop

-3 Avoid nested-loop push-down

-4 Avoid hash

-5 Avoid hash push-down

-6 Avoid prejoin

-7 Avoid sort-merge push-down

CHAPTER 2 Database Options

Reference Manual 101

Description The query optimizer simplifies its optimization of join order by separate
handling of both lookup tables (that is, nonselective dimension tables) and
tables that are effective Cartesian products. After simplification, it optimizes
the remaining tables for join order, up to the limit set by
MAX_JOIN_ENUMERATION.

Setting this option to a value greater than the current value for
MAX_JOIN_ENUMERATION has no effect.

Setting this value below the value for MAX_JOIN_ENUMERATION might
improve the time required to optimize queries containing many joins, but may
also prevent the optimizer from finding the best possible join plan.

Normally, you should not need to change this value. If you do, Sybase
recommends setting JOIN_SIMPLIFICATION_THRESHOLD as a temporary or
user option, and to a value of at least 9.

LARGE_DOUBLES_ACCUMULATOR option
Function Controls which accumulator to use for SUM or AVG of floating-point

numbers.

Allowed values ON, OFF

Default OFF

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Description The small accumulator for floats and doubles is highly accurate for addends in
the range of magnitudes 1e-20 to 1e20. It loses some accuracy outside of this
range but is still good enough for many applications. The small accumulator
allows the optimizer to choose hash for faster performance more easily than the
large accumulator. The large accumulator is highly accurate for all floats and
doubles, but its size often precludes the use of hash optimization. The default
is the small accumulator.

LF_BITMAP_CACHE_KB option
Function Specifies the amount of memory to use for a load into a LF index.

Allowed values 1 – 8

Default 4

Alphabetical list of options

102 Sybase IQ

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Description LF_BITMAP_CACHE_KB defines the amount of heap memory (in KB) per
distinct value used during a load into an LF index. The default allots 4KB. If
the sum of the distinct counts for all LF indexes on a particular table is
relatively high (greater than 10,000), then heap memory use might increase to
the point of impacting load performance due to system page faulting. If this is
the case, reduce the value of LF_BITMAP_CACHE_KB.

The following formula shows how to calculate the heap memory used (in
bytes) by a particular LF index during a load:

Heap-memory-used = (lf_bitmap_cache_kb * 1024)
* lf-distinct-count-for-column

Using the default of 4KB, an LF index with 1000 distinct values can use up to
4MB of heap memory during a load.

LOAD_MEMORY_MB option
Function Specifies an upper bound (in MB) on the amount of heap memory subsequent

loads can use.

Allowed values 0 – 2000

Default 0 (zero)

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Description This option specifies an upper bound (in MB) on the amount of heap memory
subsequent loads can use. The default setting, 0, means that there is no upper
bound, and Sybase IQ can use as much heap memory as necessary to perform
the load. A nonzero value means that the user has set an upper bound. The
maximum upper bound is 2000MB (2GB). This option is typically used for
LOAD statements, but affects all operations where loads, inserts, or updates
occur, including SYNCHRONIZE, DELETE, INSERT and UPDATE operations.

CHAPTER 2 Database Options

Reference Manual 103

LOAD_ZEROLENGTH_ASNULL option
Function Specifies LOAD statement behavior under certain conditions.

Allowed values ON, OFF

DBA permissions are not required to set LOAD_ZEROLENGTH_ASNULL. Can
be set temporary, for an individual connection, or for the PUBLIC group. Takes
effect immediately.

Default OFF

Description This option specifies LOAD statement behavior under the following conditions:

• inserting a zero-length data value into a column of data type CHAR,
VARCHAR, LONG VARCHAR, BINARY, VARBINARY, or LONG BINARY

and

• a NULL column-spec; for example, NULL(ZEROS) or NULL(BLANKS)
is also given for that same column

Set LOAD_ZEROLENGTH_ASNULL ON to load a zero-length value as NULL
when the above conditions are met.

Set LOAD_ZEROLENGTH_ASNULL OFF to load a zero-length value as zero-
length, subject to the setting of option NON_ANSI_NULL_VARCHAR.

See also “NON_ANSI_NULL_VARCHAR option” on page 124

“LOAD TABLE statement” on page 580

LOCAL_KB_PER_STRIPE option
Function Defines the number of kilobytes (KB) to write to each dbspace before the disk

striping algorithm moves to the next stripe for the IQ Local Store.

Allowed values Integer greater than zero, in kilobytes

Default 1 (which rounds up to one page)

Scope Can be set only for the PUBLIC group. Requires DBA permissions to set the
option. Takes effect at the next checkpoint.

Alphabetical list of options

104 Sybase IQ

Description LOCAL_KB_PER_STRIPE lets you control the number of kilobytes written to
each dbspace before the IQ disk striping algorithm moves to the next stripe for
an IQ Local Store. The corresponding number of blocks is rounded up to a page
boundary, so the actual amount written to each stripe might be slightly larger
than requested. You can tune this option by measuring the time required to
complete I/O intensive updates and adjusting the option value accordingly.

See also Chapter 5, “Working with Database Objects” in the Sybase IQ System
Administration Guide.

“Balancing I/O” on page 135 in Chapter 5, “Managing System Resources” in
the Sybase IQ Performance and Tuning Guide.

LOCAL_RESERVED_DBSPACE_MB option
Function Controls the amount of space Sybase IQ reserves in the IQ Local Store on a

multiplex query server.

Allowed values Integer greater than zero, in megabytes

Default 200; Sybase IQ actually reserves the minimum of 200MB or 50% of the size of
the last dbspace

Scope Can be set only for the PUBLIC group. DBA permissions are required to set the
option. You must shut down and restart the database server for the change to
take effect.

Description LOCAL_RESERVED_DBSPACE_MB lets you control the amount of space
Sybase IQ sets aside in your IQ Local Store on a particular query server for
certain small but critical data structures used during release savepoint, commit,
and checkpoint operations. Set this value to between 200MB and 1GB. The
larger your IQ page size and number of concurrent connections, the more
reserved space you need.

Sybase IQ reserves the minimum of 200MB or 50% of the size of the last
dbspace, which helps DBAs avoid out-of-space conditions by reserving more
space automatically.

See also Reserving space to handle out-of-space conditions in Chapter 5, “Working
with Database Objects” in the Sybase IQ System Administration Guide.

CHAPTER 2 Database Options

Reference Manual 105

LOG_CONNECT option
Function Controls logging of user connections.

Allowed values ON, OFF

Default ON

Scope Can be set only for the PUBLIC group. Takes effect immediately.

Description When this option is ON, a message appears in the IQ message log (.iqmsg file)
every time a user connects to or disconnects from the Sybase IQ database.

Note If this option is set OFF (connection logging disabled) when a user
connects, and then turned on before the user disconnects, the message log
shows that user disconnecting but not connecting.

LOG_CURSOR_OPERATIONS option
Function Controls logging of cursor operations.

Allowed values ON, OFF

Default OFF

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Description When this option is ON, a message appears in the IQ message log every time
you open or close a cursor. Normally this option should be OFF, which is the
default. Turn it ON only if you are having a problem and must provide
debugging data to Sybase Technical Support.

LOGIN_MODE option
Function Controls the use of integrated logins for the database.

Allowed values Standard, Mixed, or Integrated

Default Standard

Scope Can be set only for the PUBLIC group. Takes effect immediately.

Description This option specifies whether integrated logins are permitted. Values are case
insensitive:

Alphabetical list of options

106 Sybase IQ

• Standard – The default setting, which does not permit integrated logins.
An error occurs if an integrated login connection is attempted.

• Mixed – Both integrated logins and standard logins are allowed.

• Integrated – With this setting, all logins to the database must be made
using integrated logins.

 Warning! Setting the LOGIN_MODE database option to Integrated restricts
connections to only those users who have been granted an integrated login
mapping. Attempting to connect using a user ID and password generates an
error. The only exceptions to this are users with DBA authority (full
administrative rights).

See also For more information on integrated logins, see Chapter 3, “Sybase IQ
Connections” in the Sybase IQ System Administration Guide.

LOGIN_PROCEDURE option
Function Specifies a login procedure that sets connection compatibility options at start-

up.

Allowed values String

Default DBA.sp_iq_process_login

Scope Can be set for an individual connection or the PUBLIC group. Requires DBA
permissions to set the option. Takes effect immediately.

Description The default login procedure, sp_iq_process_login, executes when a user
attempts to connect.

• When Sybase IQ Login Management is enabled, this procedure checks
that the user is not locked out, that the maximum number of connections
for the user and database is not exceeded, and that the user’s password has
not expired. It then either allows login to proceed, or sends an error
message.

• When Sybase IQ Login Management is disabled, this procedure allows
login to proceed.

• If sp_iq_process_login allows login to proceed, it calls the
sp_login_environment procedure, which calls to determine the database
connection settings.

CHAPTER 2 Database Options

Reference Manual 107

• In its turn, sp_login_environment checks to see if the connection is being
made over TDS. If it is, it calls the sp_tsql_environment procedure, which
sets several options to new default values for the current connection.

To use the Login Management facility, LOGIN_PROCEDURE must be set to
DBA.sp_iq_process_login.

You can also customize the default database option settings by creating a new
procedure and setting LOGIN_PROCEDURE to call that new procedure. Do not
edit sp_iq_process_login, sp_login_environment or sp_tsql_environment. The
customized login procedure must be created in every database you might use.

The Sybase jConnect driver and the iAnywhere ODBC driver reset certain
options in accordance with the ODBC specification. They will overwrite
settings by the LOGIN_PROCEDURE option for the following:

• Time_format = 'hh:nn:ss'

• Timestamp_format = 'yyyy-mm-dd hh:nn:ss.ssssss'

• Date_format = 'yyyy-mm-dd'

• Date_order = 'ymd'

• Isolation_level = 0

These options will overwrite settings by the LOGIN_PROCEDURE database
option. Because these option settings are mandated by the ODBC specification,
ODBC applications, including dbisqlapplications, must explicitly set these
options if they want different behavior. This could be done using the ODBC
connection parameter InitString, for example:

iqdsn -wu foo -c
"uid=dba;pwd=sql;eng=foo;InitString='SET OPTION
PUBLIC.DATE_ORDER = ' ' DMY ' ' ' ”

Example The following example shows an alternative to sp_iq_process_login. This
example disallows a connection by signaling the INVALID_LOGON error.

create procedure DBA.login_check()
begin
declare INVALID_LOGON exception for sqlstate '28000';
// Allow a maximum of 3 concurrent connections
if(db_property('ConnCount') > 3) then
signal INVALID_LOGON;
else
call sp_login_environment;
end if;

end
go

Alphabetical list of options

108 Sybase IQ

grant execute on DBA.login_check to PUBLIC
go
set option PUBLIC.LOGIN_PROCEDURE='DBA.login_check'
go

An alternative means to disallow a connection is by using the RAISERROR
statement:

CREATE MESSAGE 28000 AS 'User %1! is not allowed to
connect there are already %2! users logged on';
ALTER procedure DBA.login_check()
begin
declare INVALID_LOGON exception for sqlstate '28000';
// Allow a maximum of 3 concurrent connections
if(db_property('ConnCount') > 2) then
RAISERROR 28000, connection_property('Userid'),
db_property('ConnCount')

else
call sp_login_environment;

end if;
end

See also “Initial option settings” on page 29.

“sp_iq_process_login procedure” on page 819.

Managing IQ user accounts and connections in Chapter 12, “Managing User
IDs and Permissions” in the Sybase IQ System Administration Guide.

MAIN_CACHE_MEMORY_MB option
Function Specifies the size of the main shared buffer cache.

Allowed values 1 – 4294967295 (232 -1)

Default 16

Scope Can be set only for the PUBLIC group. Requires DBA permissions to set the
option. Shut down and restart the database server for the change to take effect.

Description This option sets the size of the main shared memory buffer cache for the
database. Sybase recommends that you do not use this option; instead, set the
main buffer cache size with the -iqmc server option.

CHAPTER 2 Database Options

Reference Manual 109

On 64-bit systems, you can allocate as much physical memory as you have to
IQ buffer caches; however, for values greater than 4GB, you must use the
server options -iqmc and -iqtc to set main and temporary buffer cache sizes. On
32-bit systems, the operating system limits the amount of memory you can
allocate. See the Sybase IQ Installation and Configuration Guide for your
platform for details.

For any active database, the default main buffer cache size of 16MB is too low.
For optimal performance, allocate as much memory as possible to the IQ main
and temporary buffer caches. For example, if you have 4GB of shared memory
on your machine available to Sybase IQ, you can split that amount between the
main and temporary shared buffer caches.

When setting the main cache size you must consider many factors, including
total physical memory, swap space, memory for the temporary buffer cache,
your mix of query and load processing, as well as memory requirements of the
operating system and other applications on the machine.

See also For information about setting buffer cache sizes, see Chapter 5, “Managing
System Resources” in the Sybase IQ Performance and Tuning Guide.

MAIN_KB_PER_STRIPE option
Function Defines the number of kilobytes (KB) to write to each dbspace before the disk

striping algorithm moves to the next stripe for the IQ Main Store.

Allowed values Integer greater than zero, in kilobytes

Default 1 (which rounds up to one page)

Scope Can be set only for the PUBLIC group. Requires DBA permissions to set the
option. Takes effect at the next checkpoint.

Description MAIN_KB_PER_STRIPE lets you control the number of kilobytes written to
each dbspace before the IQ disk striping algorithm moves to the next stripe for
the IQ Main Store. The corresponding number of blocks is rounded up to a
page boundary, so the actual amount written to each stripe might be slightly
larger than requested. You can tune this option by measuring the time required
to complete I/O intensive updates and adjusting the option value accordingly.

See also Chapter 5, “Working with Database Objects” in the Sybase IQ System
Administration Guide.

“Balancing I/O” on page 135 in Chapter 5, “Managing System Resources” in
the Sybase IQ Performance and Tuning Guide.

Alphabetical list of options

110 Sybase IQ

MAIN_RESERVED_DBSPACE_MB option
Function Controls the amount of space Sybase IQ reserves in the IQ Main Store.

Allowed values Integer greater than zero, in megabytes

Default 200; Sybase IQ actually reserves the minimum of 200MB and 50% of the size
of the last dbspace

Scope Can be set only for the PUBLIC group. Requires DBA permissions to set the
option. Shut down and restart the database server for the change to take effect.

Description MAIN_RESERVED_DBSPACE_MB lets you control the amount of space Sybase
IQ sets aside in your IQ Main Store for certain small but critical data structures
used during release savepoint, commit, and checkpoint operations. For a
production database, set this value to between 200MB and 1GB. The larger
your IQ page size and number of concurrent connections, the more reserved
space you need.

Sybase IQ reserves the minimum of 200MB and 50% of the size of the last
dbspace, which helps DBAs avoid out-of-space conditions by reserving more
space automatically.

See also Reserving space to handle out-of-space conditions in Chapter 5, “Working
with Database Objects” in the Sybase IQ System Administration Guide.

MAX_CARTESIAN_RESULT option
Function Limits the number of rows resulting from a Cartesian join.

Allowed values Any integer

Can be set temporary (for a connection), for a user, or for the PUBLIC group.
Takes effect immediately.

Default 10000000

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Description MAX_CARTESIAN_RESULT limits the number of result rows from a query
containing a Cartesian join (usually the result of missing one or more join
conditions when creating the query). If Sybase IQ cannot find a query plan for
the Cartesian join with an estimated result under this limit, it rejects the query
and returns an error. Setting MAX_CARTESIAN_RESULT to 0 disables the
check for the number of result rows of a Cartesian join.

CHAPTER 2 Database Options

Reference Manual 111

MAX_CLIENT_NUMERIC_PRECISION option
Function Controls the maximum precision for numeric data sent to the client.

Allowed values 0 – 126

Default 0

Scope Can be set by any user, at any level. This option takes effect immediately.

Description When Sybase IQ performs its calculation, it promotes data types to an
appropriate size that ensures accuracy. The promoted data type might be larger
in size than Open Client and some ODBC applications can handle correctly.

When MAX_CLIENT_NUMERIC_PRECISION is a nonzero value, Sybase IQ
checks that numeric result columns do not exceed this value. If the result
column is bigger than MAX_CLIENT_NUMERIC_PRECISION allows, and
Sybase IQ is unable to cast it to the specified precision, the query returns the
error:

Data Exception - data type conversion is not possible %1
SQLCODE = -1001006

See also “MAX_CLIENT_NUMERIC_SCALE option” on page 111.

To control precision for queries on the Catalog Store, see “PRECISION
option” on page 135.

MAX_CLIENT_NUMERIC_SCALE option
Function Controls the maximum scale for numeric data sent to the client.

Allowed values 0 – 126

Default 0

Scope Can be set by any user, at any level. This option takes effect immediately.

Description When Sybase IQ performs its calculation, it promotes data types to an
appropriate scale and size that ensure accuracy. The promoted data type might
be larger than the original defined data size. You can set this option to the scale
you want for numeric results.

Multiplication, division, addition, subtraction, and aggregate functions can all
have results that exceed the maximum precision and scale.

Alphabetical list of options

112 Sybase IQ

For example, when a DECIMAL(88,2) is multiplied with a DECIMAL(59,2),
the result could require a DECIMAL(147,4). With
MAX_CLIENT_NUMERIC_PRECISION of 126, only 126 digits are kept in the
result. If MAX_CLIENT_NUMERIC_SCALE is 4, the results are returned as a
DECIMAL(126,4). If MAX_CLIENT_NUMERIC_SCALE is 2, the result are
returned as a DECIMAL(126,2). In both cases, there is a possibility for
overflow.

See also “MAX_CLIENT_NUMERIC_PRECISION option” on page 111.

To control scale for queries on the Catalog Store, see “SCALE option” on page
145.

MAX_CUBE_RESULT option
Function Sets the maximum number of rows that the IQ optimizer considers for a

GROUP BY CUBE operation.

Allowed values 0 – 250000000

Default 10000000

Scope Can be set by any user, at any level. This option takes effect immediately.

Description When generating a query plan, the IQ optimizer estimates the total number of
groups generated by the GROUP BY CUBE hash operation. The IQ optimizer
uses a hash algorithm for the GROUP BY CUBE operation. This option sets an
upper boundary for the number of estimated rows the optimizer considers for
a hash algorithm that can be run. If the actual number of rows exceeds the
MAX_CUBE_RESULT option value, the optimizer stops processing the query
and returns the error message “Estimate number: nnn exceed the
DEFAUTL_MAX_CUBE_RESULT of GROUP BY CUBE or ROLLUP”,
where nnn is the number estimated by the IQ optimizer.

Set MAX_CUBE_RESULT to zero to override the default value. When this
option is set to zero, the IQ optimizer does not check the row limit and allows
the query to run. Setting MAX_CUBE_RESULT to zero is not recommended, as
the query might not succeed.

CHAPTER 2 Database Options

Reference Manual 113

MAX_CURSOR_COUNT option
Function Specifies a resource governor to limit the maximum number of cursors that a

connection can use at once.

Allowed values Integer

Default 50

Scope Can be set for an individual connection or the PUBLIC group. Takes effect
immediately. Requires DBA permissions to set this option for any connection.

Description The specified resource governor allows a DBA to limit the number of cursors
per connection that a user can have. If an operation exceeds the limit for a
connection, an error is generated indicating that the limit has been exceeded.

If a connection executes a stored procedure, that procedure is executed under
the permissions of the procedure owner. However, the resources used by the
procedure are assigned to the current connection.

You can remove resource limits by setting MAX_CURSOR_COUNT to 0 (zero).

MAX_HASH_ROWS option
Function Sets the maximum number of rows that the IQ optimizer considers for a hash

algorithm.

Allowed values Integer up to 250000000

Default 2500000

Scope Can be set temporary, per user, or for the PUBLIC group. DBA permissions are
not required to set the option. This option takes effect immediately.

Description When generating a query plan, the IQ optimizer might have several algorithms
(hash, sort, indexed) to choose from when processing a particular part of a
query. These choices often depend on estimates of the number of rows to
process or generate from that part of the query. This option sets an upper
boundary for how many estimated rows are considered for a hash algorithm.

For example, if there is a join between two tables, and the estimated number of
rows entering the join from both tables exceeds the value of
MAX_HASH_ROWS, the optimizer does not consider a hash join. On systems
with more than 50 MB per user of temporary buffer cache space, you might
want to consider a higher value for this option.

Alphabetical list of options

114 Sybase IQ

MAX_IQ_THREADS_PER_CONNECTION option
Function Controls the number of threads for each connection.

Allowed values 3 – 1000

Default 72

Scope Can be temporary or permanent. Requires DBA permissions to set. Can be set
for the PUBLIC group only. Takes effect immediately.

Description Allows you to constrain the number of threads (and thereby the amount of
system resources) the commands executed on a connection use. For most
applications, use the default.

MAX_IQ_THREADS_PER_TEAM option
Function Controls the number of threads allocated to perform a single operation (such as

a LIKE predicate on a column) executing within a connection.

Allowed values 1 – 1000

Default 48

Scope Can be temporary or permanent. Requires DBA permissions to set. Can be set
for the PUBLIC group only. Takes effect immediately.

Description Allows you to constrain the number of threads (and thereby the amount of
system resources) allocated to a single operation. The total for all
simultaneously executing teams for this connection is limited by the related
option, MAX_IQ_THREADS_PER_CONNECTION. For most applications, use
the default.

MAX_JOIN_ENUMERATION option
Function Controls the maximum number of tables to be optimized for join order after

optimizer simplifications have been applied.

Allowed values 1 – 64

Default 15

Scope Can be set temporary, for an individual connection, or for the PUBLIC group.
Takes effect immediately.

CHAPTER 2 Database Options

Reference Manual 115

Description The query optimizer simplifies its optimization of join order by separate
handling of both lookup tables (that is, nonselective dimension tables) and
tables that are effective Cartesian products. After simplification, it proceeds
with optimizing the remaining tables for join order, up to the limit set by
MAX_JOIN_ENUMERATION. If this limit is exceeded, the query is rejected with
an error. The user can then either simplify the query or try increasing the limit.

Normally, you should not need to change this value. If you do, Sybase
recommends setting MAX_JOIN_ENUMERATION as a temporary or user option.

MAX_QUERY_PARALLELISM option
Function Sets upper bound for parallel execution of GROUP BY operations and for arms

of a UNION.

Allowed values Integer less than or equal to number of CPUs.

Default 24

Scope Can be set temporary, for an individual connection, or for the PUBLIC group.
Takes effect immediately.

Description Sets an upper bound for parallelism the query optimizer can choose for GROUP
BY operations or arms of a UNION, regardless of how many CPUs are available.
This option is effective only on GROUP BY operations when
PARALLEL_GBH_UNITS is not set. The PARALLEL_GBH_UNITS option sets a
specific number for the degree of parallelism, whereas the
MAX_QUERY_PARALLELISM option value is an upper limit and allows the
optimizer more flexibility.

Normally, you should not set this option. However, if you have more than 16
CPUs and you see excessive CPU time spent on system usage, try setting
MAX_QUERY_PARALLELISM to a value less than 16. Experiment with this
value to determine the right setting for your platform, number of CPUs, and
queries. There is some overhead involved when you distribute execution across
multiple CPUs. In some configurations, this overhead may actually decrease
performance if parallelism is allowed across all available CPUs, while in
others, using all available CPUs may be beneficial.

See also “PARALLEL_GBH_UNITS option” on page 133.

Alphabetical list of options

116 Sybase IQ

MAX_QUERY_TIME option
Function Sets a time limit so that the optimizer can disallow very long queries.

Allowed values 0 to 232 - 1 minutes

Default 0 (disabled)

Scope Can be set at the session (temporary), user, or PUBLIC level.

Description If the query runs longer than the MAX_QUERY_TIME setting, Sybase IQ stops
the query and sends a message to the user and the IQ message file. For
example:

The operation has been cancelled -- Max_Query_Time
exceeded.

MAX_QUERY_TIME applies only to queries and not to any SQL statement that
is modifying the contents of the database.

MAX_STATEMENT_COUNT option
Function Specifies a resource governor to limit the maximum number of prepared

statements that a connection can use at once.

Allowed values Integer

Default 100

Scope Can be set for an individual connection or the PUBLIC group. Takes effect
immediately. Requires DBA permissions to set this option for any connection.

Description The specified resource governor allows a DBA to limit the number of prepared
statements per connection that a user can have. If an operation exceeds the limit
for a connection, an error is generated indicating that the limit has been
exceeded.

If a connection executes a stored procedure, that procedure is executed under
the permissions of the procedure owner. However, the resources used by the
procedure are assigned to the current connection.

You can remove resource limits by setting MAX_STATEMENT_COUNT to 0
(zero).

CHAPTER 2 Database Options

Reference Manual 117

MAX_WARNINGS option
Function Controls the maximum number of warnings allowed.

Allowed values Any integer

Default 264 - 1

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Description This option can limit the number of warnings about rejected values, row
mismatches, and so on during DDL commands. The default does not restrict
the number you can receive.

MINIMIZE_STORAGE option
Function Minimize use of disk space for newly created columns.

Allowed Values ON, OFF

Default OFF

Scope Can be set for the PUBLIC group or for temporary use. DBA authority is
required to set the option. This option takes effect immediately.

Description When MINIMIZE_STORAGE is ON, IQ optimizes storage for new columns by
using as little as one byte of disk space per row wherever appropriate. By
default, this option is OFF for the PUBLIC group, and one-byte storage is used
for all newly created columns; when it is OFF for the PUBLIC group but ON as
a temporary user option, one-byte storage is used for new columns created by
that user ID.

MINIMIZE_STORAGE=ON is equivalent to placing an IQ UNIQUE 255
clause on every new column, with the exception of certain data types that are
by nature too wide for one-byte storage. When MINIMIZE_STORAGE is ON,
there is no need to specify IQ UNIQUE except for columns with more than
65536 unique values.

Tables with few columns benefit when MINIMIZE_STORAGE is ON. Tables
with many columns generally benefit from turning this option OFF. The
definition of “few” depends on the processor; for larger processors, the number
can be greater than for smaller ones.

Specifying IQ UNIQUE explicitly in CREATE TABLE or ALTER TABLE ADD
COLUMN overrides the MINIMIZE_STORAGE option for that column.

Alphabetical list of options

118 Sybase IQ

See also Chapter 5, “Working with Database Objects” in Sybase IQ System
Administration Guide.

MIN_NLPDJ_FILTERED_PPM option
Function Constrains the join algorithm choices available to the optimizer under certain

circumstances.

Allowed values UNSIGNED INT1 – 1,000,000

Default 2500

Scope Can be set temporary, for a user, or for the PUBLIC group. Takes effect
immediately.

Description Specifies the minimum percentage of rows that must remain after all simple
local predicates (expressed in parts-per-million) before the optimizer will
consider using the nested-loop push-down join (NLPDJ) algorithm. The
default is equivalent to a selectivity of 0.0025, or one quarter of one percent of
the table.

This option only affects the optimizer when the target table is very large. Under
normal circumstances, you should not need to change this option.

MIN_NLPDJ_TABLE_SIZE option
Function Specifies the minimum number of rows that must be present in a table before

the join optimizer considers using the nested-loop push-down join (NLPD)
algorithm.

Allowed values 1 – 4294967295

Default 10000

Scope Can be set temporary, for a user or for the PUBLIC group. Takes effect
immediately.

Description This option allows you to control the minimum number of rows in a table
before the join optimizer considers using the nested-loop push-down join
algorithm. Under most circumstances, you do not need to change the value of
this option.

CHAPTER 2 Database Options

Reference Manual 119

MIN_PASSWORD_LENGTH option
Function Sets the minimum length for new passwords in the database.

Allowed values Integer greater than or equal to zero

The value is in bytes. For single-byte character sets, this is the same as the
number of characters.

Default 0 characters

Scope Can be set for the PUBLIC group. Takes effect immediately. Requires DBA
permissions to set this option.

Description This option allows the DBA to impose a minimum length on all new passwords
for greater security. Existing passwords are not affected.

Example • Sets the minimum length for new passwords to 6 bytes:

SET OPTION PUBLIC.MIN_PASSWORD_LENGTH = 6

MIN_SMPDJ_OR_HPDJ_FILTERED_PPM option
Function Constrains the join algorithm choices available to the optimizer under certain

circumstances.

Allowed values UNSIGNED INT1 – 1,000,000

Default 2500

Scope Can be set temporary, for a user, or for the PUBLIC group. Takes effect
immediately.

Description Specifies the minimum percentage of rows that must remain after all simple
local predicates (expressed in parts-per-million) before the optimizer considers
using either the hash push-down join (HPDJ) or sort-merge push-down join
(SMPDJ) algorithms. The default is equivalent to a selectivity of 0.0025, or one
quarter of one percent of the table.

This option affects the optimizer only when the target table is very large. Under
normal circumstances, you should not need to change this option.

Alphabetical list of options

120 Sybase IQ

MIN_SMPDJ_OR_HPDJ_FILTERED_SIZE option
Function Constrains the join algorithm choices available to the optimizer under certain

circumstances.

Allowed values 1 – 4294967295

Default 25000

Scope Can be set temporary, for a user or for the PUBLIC group. Takes effect
immediately.

Description MIN_SMPDJ_OR_HPDJ_FILTERED_SIZE allows you to control the minimum
number of rows a table (or a UNION ALL view of tables) must have left after
the filtering effects of all local predicates have been considered before the join
optimizer considers using either the hash push-down join (HPDJ) or the sort-
merge push-down join (SMPDJ) algorithms for situations where there are no
joins or only lookup joins between this join and the table (or the UNION ALL
view). Under most circumstances, you do not need to change the value of this
option.

MIN_SMPDJ_OR_HPDJ_INDIRECT_SIZE option
Function Constrains the join algorithm choices available to the optimizer under certain

circumstances.

Allowed values 1 – 4294967295

Default 500000

Scope Can be set temporary, for a user or for the PUBLIC group. Takes effect
immediately.

Description MIN_SMPDJ_OR_HPDJ_INDIRECT_SIZE allows you to control the minimum
number of rows a table (or a UNION ALL view of tables) must have left after
the filtering effects of all local predicates have been considered before the join
optimizer considers using either the hash push-down join (HPDJ) or the sort-
merge push-down join (SMPDJ) algorithms for situations where there are
nonlookup (many-to-many or many-to-1) joins between this join and the table
(or the UNION ALL view). Under most circumstances, you do not need to
change the value of this option.

CHAPTER 2 Database Options

Reference Manual 121

MIN_SMPDJ_OR_HPDJ_TABLE_SIZE option
Function Constrains the join algorithm choices available to the optimizer under certain

circumstances.

Allowed values 1 – 4294967295

Default 100000

Scope Can be set temporary, for a user or for the PUBLIC group. Takes effect
immediately.

Description MIN_SMPDJ_OR_HPDJ_TABLE_SIZE allows you to control the minimum
number of rows that must be present in a table (or a UNION ALL view of
tables) before the join optimizer considers using either the hash push-down join
(HPDJ) or the sort-merge push-down join (SMPDJ) algorithms. Under most
circumstances, you do not need to change the value of this option.

MONITOR_OUTPUT_DIRECTORY option
Function The MONITOR_OUTPUT_DIRECTORY option controls placement of output

files for the IQ buffer cache monitor. All monitor output files are used for the
duration of the monitor runs, which cannot exceed the lifetime of the
connection. The output file still exists after the monitor run stops. A connection
can run up to two performance monitors simultaneously, one for main cache
and one for temp cache. A connection can run a monitor any number of times,
successively.

MONITOR_OUTPUT_DIRECTORY controls the directory in which the monitor
output files are created, regardless of what is being monitored or what monitor
mode is used.

Allowed values String.

Default Same directory as the database.

Scope Can be set for the PUBLIC group. Takes effect immediately. Requires DBA
permissions to set this option.

Description The IQ monitor sends output to the directory specified by this option. The
dummy table used to start the monitor can be either a temporary or a permanent
table. The directory can be on any physical machine.

The DBA can use the PUBLIC setting to place all monitor output in the same
directory, or set different directories for individual users.

Alphabetical list of options

122 Sybase IQ

Example This example shows how you could declare a temporary table for monitor
output, set its location, and then have the monitor start sending files to that
location for the main and temp buffer caches.

Note In this example, the output directory string is set to both “/tmp” and “tmp/
”. The trailing slash (“/”) is correct and is supported by the interface. The
example illustrates that the buffer cache monitor does not require a permanent
table; a temporary table can be used.

declare local temporary table dummy_monitor
(dummy_column integer)

set option Monitor_Output_Directory = "/tmp"
iq utilities main into dummy_monitor start monitor '-
debug -interval 2'

set option Monitor_Output_Directory = "tmp/"
iq utilities private into dummy_monitor start monitor
'-debug -interval 2'

MPX_GLOBAL_TABLE_PRIV option
Function Lets a query server grant and revoke permissions on objects created by the

write server.

Allowed values ON, OFF

Scope DBA permissions are required to set this option. Can be set only for the
PUBLIC group. Takes effect immediately.

Default OFF

Description To enable this option, set it ON. Setting MPX_GLOBAL_TABLE_PRIV ON
allows grant and revoke of table and execute permissions of write server
objects on a query server.

See also “MPX_LOCAL_SPEC_PRIV option” on page 123.

CHAPTER 2 Database Options

Reference Manual 123

MPX_LOCAL_SPEC_PRIV option
Function Lets a query server create and drop users, groups, and group memberships.

Allowed values 0 – 63

A bitmask indicating the corresponding special privileges to be granted and
revoked on a query server:

• 0x01 = DBA

• 0x02 = create user through GRANT CONNECT and drop user through
REVOKE CONNECT

• 0x04 = RESOURCE

• 0x10 = GROUP

• 0x20 = MEMBERSHIP

To combine two or more privileges, add the bitmasks in hexadecimal (base 16),
then convert to decimal to determine the value for the option. For example, to
combine RESOURCE and GROUP privileges on a database, use the formula 4
+ 16 (10 in base 16) = 20 and set MPX_LOCAL_SPEC_PRIV to 20.

To allow all privileges, you must set all bits. To do this, set
MPX_LOCAL_SPEC_PRIV to 63.

Scope Can be set only for the PUBLIC group. Takes effect immediately.

Default 0

Description To enable MPX_LOCAL_SPEC_PRIV, set it to the appropriate value between 1
and 63. See “Allowed values” on page 122. DBA permissions are required to
set this option. This option takes effect immediately.

See also “MPX_GLOBAL_TABLE_PRIV option” on page 122.

NEAREST_CENTURY option [TSQL]
Function Controls the interpretation of 2-digit years, in string to date conversions.

Allowed values 0 – 100

Default 50

Description NEAREST_CENTURY controls the handling of 2-digit years, when converting
from strings to dates or timestamps.

Alphabetical list of options

124 Sybase IQ

The NEAREST_CENTURY setting is a numeric value that acts as a rollover
point. Two-digit years less than the value are converted to 20yy, whereas years
greater than or equal to the value are converted to 19yy.

 Adaptive Server Enterprise and Sybase IQ behavior is to use the nearest
century, so that if the year value yy is less than 50, then the year is set to 20yy.

NOEXEC option
Function Generates the optimizer query plans instead of executing the plan.

Allowed values ON, OFF

Default OFF

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Description When determining how to process a query, the IQ optimizer generates a query
plan to map how it plans to have the query engine process the query. If this
option is set ON, the optimizer sends the plan for the query to the IQ message
file rather than submitting it to the query engine. This option affects only
queries or commands that include a query.

Note that when the EARLY_PREDICATE_EXECUTION option is ON, IQ
executes the local predicates for all queries before generating a query plan,
even when the NOEXEC option is ON. The generated query plan is the same
as the runtime plan.

See also “EARLY_PREDICATE_EXECUTION option” on page 74.

NON_ANSI_NULL_VARCHAR option
Function Controls whether zero-length varchars are treated as NULLs for insert/load/

update purposes.

Allowed values ON, OFF

Default OFF

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

CHAPTER 2 Database Options

Reference Manual 125

Description NON_ANSI_NULL_VARCHAR lets you revert to non-ANSI (Version 12.03.1)
behavior for treating zero-length VARCHAR data during load or update
operations. When this option is set to OFF, zero-length varchars are stored as
zero-length during load, insert, or update. When this option is set to ON, zero-
length VARCHAR data is stored as NULLs on load, insert, or update.

NON_KEYWORDS option [TSQL]
Function Turns off individual keywords, allowing their use as identifiers.

Allowed values String

Default '' (the empty string)

Description NON_KEYWORDS turns off individual keywords. If you have an identifier in
your database that is now a keyword, you can either add double quotes around
the identifier in all applications or scripts, or you can turn off the keyword
using the NON_KEYWORDS option.

The following statement prevents TRUNCATE and SYNCHRONIZE from being
recognized as keywords:

SET OPTION NON_KEYWORDS = 'TRUNCATE, SYNCHRONIZE'

Each new setting of this option replaces the previous setting. This statement
clears all previous settings:

SET OPTION NON_KEYWORDS =

A side effect of the options is that SQL statements using a turned-off keyword
cannot be used; they produce a syntax error.

NOTIFY_MODULUS option
Function Controls the default frequency of notify messages issued by certain commands.

Allowed values Any integer

Default 100000

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Alphabetical list of options

126 Sybase IQ

Description This option sets the default number of notify messages Sybase IQ issues for
certain commands that produce them. The NOTIFY clause for some of the
commands (such as CREATE INDEX, LOAD TABLE, and DELETE) override this
value. Other commands that do not support the NOTIFY clause (such as
SYNCHRONIZE JOIN INDEX) always use this value. The default does not
restrict the number of messages you can receive.

NULLS option [DBISQL]
Function Specifies how NULL values in the database are displayed.

Allowed values ON, OFF

Default ON (NULL)

Description Set this according to your preference.

ODBC_DISTINGUISH_CHAR_AND_VARCHAR option
Function Controls how the Sybase IQ and Adaptive Server Anywhere ODBC driver

describes CHAR columns.

Allowed values ON, OFF

Default OFF

Description When a connection is opened, the Sybase IQ and Adaptive Server Anywhere
ODBC driver uses the setting of this option to determine how CHAR columns
are described. If ODBC_DISTINGUISH_CHAR_AND_VARCHAR is set to OFF
(the default), then CHAR columns are described as SQL_VARCHAR. If this
option is set to ON, then CHAR columns are described as SQL_CHAR.
VARCHAR columns are always described as SQL_VARCHAR.

See also Chapter 4, “SQL Data Types” in Sybase IQ Reference Manual.

ON_CHARSET_CONVERSION_FAILURE option
Function Controls what happens if an error is encountered during character conversion.

Allowed values String. See Description for allowed values.

Default IGNORE

CHAPTER 2 Database Options

Reference Manual 127

Description Controls what happens if an error is encountered during character conversion,
as follows:

• IGNORE Errors and warnings do not appear.

• WARNING Reports substitutions and illegal characters as warnings.
Illegal characters are not translated.

• ERROR Reports substitutions and illegal characters as errors.

Single-byte to single-byte converters are not able to report substitutions and
illegal characters, and must be set to IGNORE.

ON_ERROR option [DBISQL]
Function Controls what happens if an error is encountered while executing statements in

Interactive SQL.

Allowed values String. See Description for allowed values.

Default PROMPT

Description Controls what happens if an error is encountered while executing statements as
follows:

• STOP – DBISQL stops executing statements from the file and returns to
the statement window for input.

• PROMPT – DBISQL prompts the user to see if he or she wants to
continue.

• CONTINUE – The error displays and DBISQL continues executing
statements.

• EXIT – DBISQL terminates.

• NOTIFY_CONTINUE – The error is reported, and the user is prompted to
press ENTER or click OK to continue.

• NOTIFY_STOP – The error is reported, and the user is prompted to press
ENTER or click OK to stop executing statements.

• NOTIFY_EXIT – The error is reported, and the user is prompted to press
ENTER or click OK to terminate Interactive SQL.

When you are executing a .SQL file, the values STOP and EXIT are equivalent.

Alphabetical list of options

128 Sybase IQ

ON_TSQL_ERROR option [TSQL]
Function Controls error-handling in stored procedures.

Allowed values String. See Description for allowed values.

Default CONDITIONAL

Description This option controls error handling in stored procedures.

• STOP– Stops execution immediately upon finding an error.

• CONDITIONAL – If the procedure uses ON EXCEPTION RESUME, and
the statement following the error handles the error, continue, otherwise
exit.

• CONDITION – Continue execution, regardless of the following
statement. If there are multiple errors, the first error encountered in the
stored procedure is returned. This option most closely mirrors Adaptive
Server Enterprise behavior.

Both CONDITIONAL and CONTINUE settings for ON_TSQL_ERROR are
used for Adaptive Server Enterprise compatibility, with CONTINUE most
closely simulating Adaptive Server Enterprise behavior. The CONDITIONAL
setting is recommended, particularly when developing new Transact-SQL
stored procedures, as it allows errors to be reported earlier.

When this option is set to STOP or CONTINUE, it supersedes the setting of the
CONTINUE_AFTER_RAISERROR option. However, when this option is set to
CONDITIONAL (the default), behavior following a RAISERROR statement is
determined by the setting of the CONTINUE_AFTER_RAISERROR option.

See also CREATE PROCEDURE statement on page 485.

CREATE PROCEDURE statement [T-SQL] on page 491.

“CONTINUE_AFTER_RAISERROR option [TSQL]” on page 53.

“Transact-SQL procedure language overview” on page 936.

Appendix A, “Compatibility with Other Sybase Databases.’

OS_FILE_CACHE_BUFFERING option
Function Controls use of file system buffering.

Allowed values ON, OFF

Default OFF; default affects newly created databases only.

CHAPTER 2 Database Options

Reference Manual 129

Scope Can be set for the PUBLIC group only. You must shut down the database and
restart it for the change to take effect. Requires DBA permissions to set this
option.

Description This performance option is available on Solaris UFS file systems and Windows
file systems only. It does not affect databases on raw disk.

Setting OS_FILE_CACHE_BUFFERING OFF prevents file system buffering for
IQ Store files. Turning off file system buffering saves a data copy from the file
system buffer cache to the main IQ buffer cache. Usually this reduces paging
caused by competition for memory between the IQ buffer manager and the
operating system’s file system buffer. When it reduces paging, this option
improves performance; however, if the IQ page size for the database is less
than the file system’s block size (typically only in the case in testing situations),
performance decreases, especially during multiuser operation.

Experiment with this option to determine the best setting for different
conditions. You must restart the database for the new setting to take effect.

See also Chapter 5, “Managing System Resources” in the Sybase IQ Performance and
Tuning Guide.

OUT_OF_DISK_MESSAGE_REPEAT option
Function Controls the interval time between out of disk space messages.

Allowed values Any integer

Default 120

Scope Can be set only for the PUBLIC group. DBA authority is required to set the
option. You must shut down and restart the database server for the change to
take effect.

Description OUT_OF_DISK_MESSAGE_REPEAT resets the default amount of time at
which Sybase IQ should repeat the cycle of checking and then issuing an out-
of-space message. To determine this length of time, multiply this option value
with the value for OUT_OF_DISK_WAIT_TIME. For example, using the defaults
of 120 for OUT_OF_DISK_MESSAGE_REPEAT and 30 seconds for
OUT_OF_DISK_WAIT_TIME, Sybase IQ would issue an out-of-space message
every hour.

Alphabetical list of options

130 Sybase IQ

OUT_OF_DISK_WAIT_TIME option
Function Controls the default interval time to wait before checking again when out of

disk space.

Allowed values Any integer

Default 30 seconds

Scope Can be set only for the PUBLIC group. DBA authority is required to set the
option. You must shut down and restart the database server for the change to
take effect.

Description OUT_OF_DISK_WAIT_TIME resets the default number of seconds Sybase IQ
should wait in a sleep state when it is out of disk space. At the end of this time,
Sybase IQ checks to see if any space has been added. If none has been added,
it returns to a sleep state and waits before checking again. It repeats this process
until disk space is added.

OUTPUT_FORMAT option [ISQL]
Function Sets the output format for the data retrieved by the SELECT statement and

redirected into a file, or output using the OUTPUT statement.

Allowed values String. See Description for allowed values.

Default ASCII

Description The valid output formats are:

• ASCII The output is an ASCII format file with one row per line in the
file. All values are separated by commas, and strings are enclosed in
apostrophes (single quotes). The delimiter and quote strings can be
changed using the DELIMITED BY and QUOTE clauses. If ALL is specified
in the QUOTE clause, then all values (not just strings) are quoted.

Three other special sequences are also used. The two characters \n
represent a newline character; \\ represents a single backslash character,
and the sequence \xDD represents the character with hexadecimal code
DD.

• DBASEII The output is a dBASE II format file with the column
definitions at the top of the file. Note that a maximum of 32 columns can
be output. Column names are truncated to 11 characters, and each row of
data in each column is truncated to 255 characters.

CHAPTER 2 Database Options

Reference Manual 131

• DBASEIII The output is a dBASE III format file with the column
definitions at the top of the file. Note that a maximum of 128 columns can
be output. Column names are truncated to 11 characters, and each row of
data in each column is truncated to 255 characters.

• EXCEL The output is an Excel 2.1 worksheet. The first row of the
worksheet contains column labels (or names if there are no labels defined).
Subsequent worksheet rows contain the actual table data.

• FIXED The output is fixed format, with each column having a fixed
width. The width for each column can be specified using the COLUMN
WIDTH clause. If this clause is omitted, the width for each column is
computed from the data type for the column, and is large enough to hold
any value of that data type. No column headings are output in this format.

• FOXPRO The output is a FoxPro format file (the FoxPro memo field is
different than the dBASE memo field) with the column definitions at the
top of the file. Note that a maximum of 128 columns can be output.
Column names are truncated to 11 characters, and each row of data in each
column is truncated to 255 characters.

• HTML The output is in the HyperText Markup Language format.

• LOTUS The output is a Lotus WKS format worksheet. Column names
are the first row in the worksheet. Note that there are certain restrictions
on the maximum size of Lotus WKS format worksheets that other
software (such as Lotus 1-2-3) can load. There is no limit to the size of file
Interactive SQL can produce.

• SQL The output is an Interactive SQL INPUT statement required to
recreate the information in the table.

• XML The output is an XML file encoded in UTF-8 and containing an
embedded DTD. Binary values are encoded in CDATA blocks with the
binary data rendered as 2-hex-digit strings.

See also OUTPUT statement [DBISQL] on page 605.

OUTPUT_LENGTH option [ISQL]
Function Controls the length used when Interactive SQL exports information to an

external file.

Allowed values Integer

Default 0 (no truncation)

Alphabetical list of options

132 Sybase IQ

Description This option controls the length used when Interactive SQL exports information
to an external file (using output redirection with the OUTPUT statement). This
option affects only ASCII, HTML, and SQL output formats.

See also OUTPUT statement [DBISQL] on page 605.

OUTPUT_NULLS option [ISQL]
Function Controls the way NULL values appear in result sets.

Allowed values String

Default 'NULL'

Description This option controls the way NULL values appear in result sets. Every time a
NULL value is found in the result set, the string from this option is returned
instead. This setting applies to data displayed in Interactive SQL on the Results
tab in the Results pane as well as to data in output files generated by the
OUTPUT statement. This option affects only ASCII, HTML, and SQL output
formats.

See also OUTPUT statement [DBISQL] on page 605.

PARALLEL_GBH_ENABLED option
Function Allows GROUP BY operations on a single table to be executed in parallel using

all available CPUs, if determined appropriate by the optimizer.

Allowed values ON, OFF

Default ON

Scope Can be set temporary, for an individual connection, or for the PUBLIC group.
Takes effect immediately.

Description The PARALLEL_GBH_ENABLED option causes GROUP BY operations on
a single table to be done in parallel using all available CPUs. This option
provides significant performance gains for some queries in certain situations.

PARALLEL_GBH_ENABLED is ON by default. You can disable this feature
by setting PARALLEL_GBH_ENABLED to OFF or constrain the effect by
changing the value of the PARALLEL_GBH_UNITS option.

See also “PARALLEL_GBH_UNITS option” on page 133.

CHAPTER 2 Database Options

Reference Manual 133

PARALLEL_GBH_MIN_ROWS_PER_UNIT option
Function Can limit the degree of parallelism chosen by the optimizer for GROUP BY

operations.

Allowed values 0 – 4294967295

Default 3000000

Scope Can be set temporary, for an individual connection, or for the PUBLIC group.
Takes effect immediately.

Description When the PARALLEL_GBH_ENABLED option is ON, the value of
PARALLEL_GBH_MIN_ROWS_PER_UNIT can indirectly limit the degree of
parallelism chosen within the optimizer for GROUP BY operations by requiring
that each unit of work to be done in parallel must have at least this many rows.
The default of 3 million rows means that a table must have at least 6 million
rows before the optimizer chooses to execute GROUP BY in parallel over that
table.

The default of 3 million is appropriate for large databases on systems with
numerous CPUs. For smaller systems or for servers where GROUP BY
operations frequently involve more complex aggregates and grouping
expressions, performance of some queries can be improved by setting this
option to a lower value, such as 500,000.

See also “PARALLEL_GBH_ENABLED option” on page 132.

“PARALLEL_GBH_UNITS option” on page 133.

PARALLEL_GBH_UNITS option
Function Overrules the choice of the optimizer on the degree of parallelism of GROUP

BY operations.

Allowed values 0 – 100

Default 0

Scope Can be set temporary, for an individual connection, or for the PUBLIC group.
Takes effect immediately.

Description When the PARALLEL_GBH_ENABLED option is ON, you can constrain the
effect of this feature by changing the value of the PARALLEL_GBH_UNITS
option. The PARALLEL_GBH_UNITS option overrules the optimizer’s choice
on the degree of parallelism. Normally, you should not set this option.

Alphabetical list of options

134 Sybase IQ

The argument to PARALLEL_GBH_UNITS is a value that represents a specific
number of parts to break the GROUP BY into in order to execute in parallel. For
example, to run in eight parts, use

SET TEMPORARY OPTION PARALLEL_GBH_UNITS = 8

If PARALLEL_GBH_UNITS is 0, the optimizer chooses the degree of parallelism
based on the number of CPUs, the number of users on the server, and the
amount of data to be grouped.

See also “PARALLEL_GBH_ENABLED option” on page 132.

“MAX_QUERY_PARALLELISM option” on page 115.

PERCENT_AS_COMMENT option [TSQL]
Function Controls the interpretation of the percent (%) character.

Allowed values ON, OFF

Default ON

Description By default, Sybase IQ treats the percent character as a comment marker.
However, Sybase recommends that you do not use it as such; use one of the
alternative comment markers such as //, /* */, or -- (double dash) instead. The
double-dash style is the SQL92 comment delimiter.

Adaptive Server Enterprise treats the % as a modulo operator; it does not
support the Sybase IQ mod function. You can set this option to OFF for
compatibility with both environments.

Adaptive Server Anywhere treats the percent character exactly as Sybase IQ,
that is, as comment by default, but as a modulo operator if you set the
PERCENT_AS_COMMENT option to OFF.

Procedures and views created with %-style comments are converted to double-
dash comments when they are stored in the catalog. The Sybase Central code
editor does not highlight %-style comments. To have your comments
highlighted, use one of the other comment delimiters.

Note Existing procedures that contain %-style comments must be re-created
before you change the option setting; otherwise, the procedures fail to load.

CHAPTER 2 Database Options

Reference Manual 135

PRECISION option
Function Specifies the maximum number of digits in the result of any decimal

arithmetic, for queries on the Catalog Store only.

Allowed values 126

Default 126

Description Precision is the total number of digits to the left and right of the decimal point.
The default PRECISION value is fixed at 126. SCALE specifies the minimum
number of digits after the decimal point when an arithmetic result is truncated
to the maximum specified by PRECISION, for queries on the Catalog Store.

See also “SCALE option” on page 145.

For queries on the IQ Store, see “MAX_CLIENT_NUMERIC_PRECISION
option” on page 111.

PREFETCH option
Function Allows you to turn fetching on or off or to use the ALWAYS value to prefetch

the cursor results even for SENSITIVE cursor types and for cursors that
involve a proxy table.

Allowed values ON, OFF, ALWAYS

Default ON

Scope Can be set for an individual connection or the PUBLIC group. Takes effect
immediately.

Description For the Catalog Store only, PREFETCH controls whether rows are fetched to
the client side before being made available to the client application. Fetching a
number of rows at a time, even when the client application requests rows one
at a time (for example, when looping over the rows of a cursor) minimizes
response time and improves overall throughput by limiting the number of
requests to the database.

The setting of PREFETCH is ignored by Open Client and JDBC connections,
and for the IQ Store.

Alphabetical list of options

136 Sybase IQ

PREFETCH_BUFFER_LIMIT option
Function Specifies the amount of memory used for prefetching.

Allowed values Integer

Default 0

Scope Can be set only for the PUBLIC group. DBA authority is required to set the
option. Shut down and restart the database server to have the change take
effect.

Description PREFETCH_BUFFER_LIMIT defines the number of cache pages available to
Sybase IQ for use in prefetching (the read-ahead of database pages).

Do not set this option unless advised to do so by Sybase Technical Support.

PREFETCH_BUFFER_PERCENT option
Function Specifies the percent of memory used for prefetching.

Allowed values 0 – 100

Default 40

Scope Can be set only for the PUBLIC group. DBA authority is required to set the
option. Shut down and restart the database server to have the change take
effect.

Description PREFETCH_BUFFER_PERCENT is an alternative to
PREFETCH_BUFFER_LIMIT, as it specifies the percentage of cache available
for use in prefetching.

Do not set this option unless advised to do so by Sybase Technical Support.

PREFETCH_GARRAY_PERCENT option
Function Specifies the percent of prefetch resources designated for inserts to HG

indexes.

Allowed values 0 – 100

Default 60

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

CHAPTER 2 Database Options

Reference Manual 137

Description As with PREFETCH_SORT_PERCENT, this option designates a percentage
of prefetch resources for use when inserting into an HG index.

Do not set this option unless advised to do so by Sybase Technical Support.

PREFETCH_SORT_PERCENT option
Function Specifies the percent of prefetch resources designated for sorting objects.

Allowed values 0 – 100

Default 50

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Description PREFETCH_SORT_PERCENT designates a percentage of prefetch resources
for use by a single sort object. Increasing this value can improve the single-user
performance of inserts and deletes, but may have detrimental effects on
multiuser operations.

Do not set this option unless advised to do so by Sybase Technical Support.

PRESERVE_SOURCE_FORMAT option [database]
Function Controls whether the original source definition of procedures, views, and event

handlers is saved in system files. If saved, it is saved in the column source in
SYSTABLE, SYSPROCEDURE, and SYSEVENT.

Allowed values ON, OFF

Default ON

Description When PRESERVE_SOURCE_FORMAT is ON, the server saves the formatted
source from CREATE and ALTER statements on procedures, views, and events,
and puts it in the appropriate system table's source column.

Unformatted source text is stored in the same system tables, in the columns
proc_defn, and view_defn. However, these definitions are not easy to read in
Sybase Central. The formatted source column allows you to view the
definitions with the spacing, comments, and case that you want.

This option can be turned off to reduce space used to save object definitions in
the database. The option can be set only for the user PUBLIC.

Alphabetical list of options

138 Sybase IQ

QUERY_DETAIL option
Function Specifies whether or not to include additional query information.

Allowed values ON, OFF

Default OFF

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Description When QUERY_DETAIL and QUERY_PLAN (or QUERY_PLAN_AS_HTML) are
both turned on, Sybase IQ displays additional information about the query
when producing its query plan. When QUERY_PLAN and
QUERY_PLAN_AS_HTML are OFF, this option is ignored.

When QUERY_PLAN is ON (the default), especially if QUERY_DETAIL is also
ON, you might want to enable message log wrapping to avoid filling up your
message log file. See “IQMSG_LENGTH_MB option” on page 92 for details.

See also “QUERY_PLAN option” on page 139.

“QUERY_PLAN_AS_HTML option” on page 140.

QUERY_NAME option
Function Gives a name to an executed query.

Allowed values Quote-delimited string of up to 80 characters.

Default '' (the empty string)

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Description You can assign the QUERY_NAME option any quote-delimited string value, up
to 80 characters; for example:

set temporary option Query_Name = 'my third query'

When this option is set, query plans that are sent to the .iqmsg file or .html file
include a line near the top of the plan that looks like:

Query_Name: 'my third query'

If you set the option to a different value before each query in a script, it is much
easier to identify the correct query plan for a particular query. Doing this also
prevents previous query plans from being overwritten. This option has no other
effect on the query.

CHAPTER 2 Database Options

Reference Manual 139

QUERY_PLAN option
Function Specifies whether or not additional query messages are produced.

Allowed values ON, OFF

Default ON

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Description When this option is turned ON, Sybase IQ produces messages about queries.
These include messages about using join indexes, the join order, join
algorithms for the queries, and columns being extracted using the data
extraction options. When this option is turned OFF, those messages are
suppressed. The information is sent to the <dbname>.iqmsg file.

See also “QUERY_DETAIL option” on page 138.

“QUERY_PLAN_AS_HTML option” on page 140.

“QUERY_PLAN_AFTER_RUN option” on page 139.

QUERY_PLAN_AFTER_RUN option
Function Prints the entire query plan after query execution is complete.

Allowed values ON, OFF

Default OFF

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Description When QUERY_PLAN_AFTER_RUN is turned ON, the query plan is printed
after the query has finished running. This allows the query plan to include
additional information, such as the actual number of rows passed on from each
node of the query.

For this option to work, the QUERY_PLAN option must be set to ON (the
default). You can use this option in conjunction with QUERY_DETAIL to
generate additional information in the query plan report.

Alphabetical list of options

140 Sybase IQ

QUERY_PLAN_AS_HTML option
Function Generates graphical query plans in HTML format for viewing in a Web

browser.

Allowed values ON, OFF

Default OFF

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Description QUERY_PLAN_AS_HTML causes graphical query plans to be generated in
HTML format.

When you set this option, also set the QUERY_NAME option for each query, so
you know which query is associated with the query plan.

Sybase IQ writes the plans in the same directory as the .iqmsg file, in a file
named:

user-name_query-name_YYYYMMDD_HHMMSS.html

For example, if the user DBA sets the temporary option QUERY_NAME to
'Query_1123', a file created on April 18, 2002 at exactly 8:30 a.m. is called
DBA_Query_1123_20020418_083000.html. The date and time are appended
to the file name automatically to ensure that existing files are not overwritten.

Note If you use this feature, monitor your disk space usage so you leave
enough room for your .iqmsg and log files to grow. Enabling IQ message log
wrapping helps control the size of this file.

QUERY_PLAN_AS_HTML acts independently of the setting for the
QUERY_PLAN option. In other words, if QUERY_PLAN_AS_HTML is ON, you
get an HTML format query plan whether or not QUERY_PLAN is ON.

This feature is supported with newer versions of many commonly used
browsers. Some browsers might experience problems with plans generated for
very complicated queries.

QUERY_PLAN_AS_HTML_DIRECTORY option
Function Specifies the directory into which Sybase IQ writes the HTML query plans.

Allowed values String containing a directory path name

Default '' (the empty string)

CHAPTER 2 Database Options

Reference Manual 141

Scope Can be set temporary, for an individual connection, or for the PUBLIC group.
DBA authority is required to set the option. Takes effect immediately.

Description When the QUERY_PLAN_AS_HTML option is turned ON and a directory is
specified with the QUERY_PLAN_AS_HTML_DIRECTORY option, Sybase IQ
writes the HTML query plans in the specified directory. This option provides
additional security, as query plans can contain sensitive data. When the
QUERY_PLAN_AS_HTML_DIRECTORY option is not used, the query plans are
sent to the default directory (the .iqmsg file directory).

If the QUERY_PLAN_AS_HTML option is ON and
QUERY_PLAN_AS_HTML_DIRECTORY is set to a directory that does not exist,
Sybase IQ does not save the HTML query plan and no error is generated. In
this case, the query continues to run and a message is logged to the IQ message
file, so the DBA knows that the HTML query plan was not written. If the
specified directory path or permissions on the directory are not correct, the
message “Error opening HTML Query plan: file-name” is written in the .iqmsg
file.

Example Create the example directory /system1/users/DBA/html_plans and set the
correct permissions on the directory. Then set the options and run the query:

SET TEMPORARY OPTION QUERY_PLAN_AS_HTML = ‘ON’;
SET TEMPORARY OPTION QUERY_PLAN_AS_HTML_DIRECTORY = ‘/
system1/users/DBA/html_plans’;
SELECT col1 FROM tab1;

The HTML query plan is written to a file in the specified directory /system1/
users/DBA/html_plans.

See also “QUERY_PLAN_AS_HTML option” on page 140.

QUERY_ROWS_RETURNED_LIMIT option
Function Sets the row threshold for rejecting queries based on estimated size of result

set.

Allowed values Any integer

Default 0

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Alphabetical list of options

142 Sybase IQ

Description If Sybase IQ receives a query that has an estimated number of result rows
greater than the value of QUERY_ROWS_RETURNED_LIMIT, it rejects the
query with this message:

Query rejected because it exceeds resource:
Query_Rows_Returned_Limit

If you set this option to zero (the default), there is no limit and no queries are
ever rejected based on the number of rows in their output.

QUERY_TEMP_SPACE_LIMIT option
Function Constrains the use of temporary IQ dbspace by user queries.

Allowed values Any integer

Default 2000MB

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Description If Sybase IQ receives a query that requires a temporary result space larger than
value of this option, it rejects the query with this message:

Query rejected because it exceeds total space resource
limit

If you set this option to zero, there is no limit and no queries are ever rejected
based on their temporary dbspace requirements.

QUERY_TIMING option
Function Determines whether or not to collect specific timing statistics.

Allowed values ON, OFF

Default OFF

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Description This option controls the collection of timing statistics on subqueries and some
other repetitive functions in the query engine. This parameter should normally
be OFF (the default) because for very short correlated subqueries, timing every
subquery execution can slow down a query.

CHAPTER 2 Database Options

Reference Manual 143

QUOTED_IDENTIFIER option [TSQL]
Function Controls the interpretation of strings that are enclosed in double quotes.

Allowed values ON, OFF

OFF for Open Client connections.

Default ON

Description QUOTED_IDENTIFIER controls whether strings enclosed in double quotes are
interpreted as identifiers (ON) or as literal strings (OFF). This option is
included for Transact-SQL compatibility.

Sybase Central and Interactive SQL set QUOTED_IDENTIFER temporarily to
ON if it is set to OFF. A message is displayed informing you of this change.
The change is in effect only for the Sybase Central or Interactive SQL
connection. The JDBC driver also turns QUOTED_IDENTIFIER to ON.

See also Appendix A, “Compatibility with Other Sybase Databases.’

RECOVERY_TIME option
Function Sets the maximum length of time, in minutes, that the database server takes to

recover from system failure.

Allowed values Integer, in minutes

Default 2

Scope Can be set only for the PUBLIC group. Takes effect when the server is restarted.

Description Use this option with the CHECKPOINT_TIME option to decide when
checkpoints should be done.

A heuristic measures the recovery time based on the operations since the last
checkpoint. Thus, the recovery time is not exact.

See also Chapter 10, “Transactions and Versioning” in the Sybase IQ System
Administration Guide.

RETURN_DATE_TIME_AS_STRING option
Function Controls how a date, time, or timestamp value is passed to the client application

when queried.

Allowed values ON, OFF

Alphabetical list of options

144 Sybase IQ

Default OFF

Scope Can be set as a temporary option only, for the duration of the current
connection.

Description RETURN_DATE_TIME_AS_STRING indicates whether date, time, and
timestamp values are returned to applications as a date or time datatype or as a
string.

When this option is set to ON, the server converts the date, time, or timestamp
value to a string before it is sent to the client in order to preserve the
TIMESTAMP_FORMAT, DATE_FORMAT, or TIME_FORMAT option setting.

Sybase Central and Interactive SQL automatically turn the
RETURN_DATE_TIME_AS_STRING option ON.

See also “DATE_FORMAT option” on page 63.

“TIME_FORMAT option” on page 165.

“TIMESTAMP_FORMAT option” on page 166.

ROW_COUNT option
Function Limits the number of rows returned from a query.

Allowed values Integer.

Default 0 (no limit on rows returned)

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Description When this runtime option is set to a nonzero value, query processing stops after
the specified number of rows.

This option affects only statements with the keyword SELECT. It does not
affect UPDATE and DELETE statements.

The SELECT statement keywords FIRST and TOP also limit the number of
rows returned from a query. FIRST returns the first row and is equivalent to
setting ROW_COUNT equal to 1. TOP returns a specified number of rows and
is the same as setting ROW_COUNT equal to the same number of rows. TOP
has an upper limit of 32767, but ROW_COUNT has no upper limit. If both TOP
and ROW_COUNT are set, the value of TOP takes precedence.

See also “QUERY_ROWS_RETURNED_LIMIT option” on page 141.

SELECT statement on page 632.

CHAPTER 2 Database Options

Reference Manual 145

SCALE option
Function Specifies the minimum number of digits after the decimal point when an

arithmetic result is truncated to the maximum PRECISION, for queries on the
Catalog Store only.

Allowed values Integer, with a maximum of 126.

Default 38

Description This option specifies the minimum number of digits after the decimal point
when an arithmetic result is truncated to the maximum PRECISION, for queries
on the Catalog Store.

Multiplication, division, addition, subtraction, and aggregate functions may all
have results that exceed the maximum precision.

See also “PRECISION option” on page 135.

For queries on the IQ Store, see “MAX_CLIENT_NUMERIC_SCALE
option.”

SIGNIFICANTDIGITSFORDOUBLEEQUALITY option
Function Specifies the number of significant digits to the right of the decimal in

exponential notation that are used in equality tests between two complex
arithmetic expressions.

Allowed values 0 – 15

Default 0

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Description Because doubles are stored in binary (base 2) instead of decimal (base 10), this
setting gives the approximate number of significant decimal digits used. If set
to 0, all digits are used.

For example, when the option is set to 12, the following numbers compare as
equal. When set to 13, they do not:

• 1.23456789012345

• 1.23456789012389

This option affects equality tests between two complex arithmetic expressions,
not those done by the indexes.

Alphabetical list of options

146 Sybase IQ

SORT_PHASE1_HELPERS option
Function Specifies the number of threads to be used in a sort.

Allowed values Integer

Default 3

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Description Use SORT_PHASE1_HELPERS to control the number of helper threads used
by the sort object in phase1 (insertion). If set to 0, no helper threads are
requested.

Use this option for performance analysis and tuning. If you change this option,
experiment to find the best value to increase performance, as choosing the
wrong value might decrease performance. Sybase recommends using the
default value for SORT_PHASE1_HELPERS.

If your IQ temporary buffer cache is larger than 10GB, however, Sybase
recommends setting the SORT_PHASE1_HELPERS option between 5 and 10.

SORT_PINNABLE_CACHE_PERCENT option
Function Specifies the maximum percentage of currently available buffers a sort object

tries to pin.

Allowed values 0 – 100

Default 20

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Description For very large sorts, a larger value might help reduce the number of merge
phases required by the sort. A larger number, however, might impact other
users’ sorts and hashes running on the system. If you change this option,
experiment to find the best value to increase performance, as choosing the
wrong value might decrease performance. Sybase recommends that you use the
default value for SORT_PINNABLE_CACHE_PERCENT.

This option is primarily for use by Sybase Technical Support. If you change the
value of SORT_PINNABLE_CACHE_PERCENT, do so with extreme caution.

CHAPTER 2 Database Options

Reference Manual 147

SQL_FLAGGER_ERROR_LEVEL option [TSQL]
Function Controls the behavior in response to any SQL code that is not part of a specified

set of SQL92.

Allowed values E, I, F, or W

Default W

Description The SQL_FLAGGER_ERROR_LEVEL option flags as an error any SQL code
that is not part of a specified set of SQL92. Allowed values and meanings are
shown in Table 2-15.

Table 2-15: SQL_FLAGGER_ERROR_LEVEL values

SQL_FLAGGER_WARNING_LEVEL option [TSQL]
Function Controls the behavior in response to any SQL that is not part of a specified set

of SQL92.

Allowed values E, I, F, or W

Default W

Description SQL_FLAGGER_WARNING_LEVEL flags as a warning any SQL that is not part
of a specified set of SQL92. Allowed values of level and their meanings are
shown in Table 2-16:

Value Action

E Flag syntax that is not entry-level SQL92
syntax

I Flag syntax that is not intermediate-level
SQL92 syntax

F Flag syntax that is not full-SQL92
syntax

W Allow all supported syntax

Alphabetical list of options

148 Sybase IQ

Table 2-16: SQL_FLAGGER_WARNING_LEVEL values

STATISTICS option [DBISQL]
Function Controls whether execution times, optimization strategies, and other statistics

display in the statistics window.

Allowed values 0, 3, 4, 5, or 6

Default 3

Description When STATISTICS is set to 0, the statistics window is not displayed. Otherwise,
the value represents the height of the statistics window in lines.

STRING_RTRUNCATION option [TSQL]
Function Determines whether an error is raised when an INSERT or UPDATE truncates a

CHAR or VARCHAR string.

Allowed values ON, OFF

Default OFF

Description If the truncated characters consist only of spaces, no exception is raised. ON
corresponds to SQL92 behavior. When STRING_TRUNCATION is OFF, the
exception is not raised and the character string is silently truncated. If the
option is ON and an error is raised, a ROLLBACK occurs.

SUBQUERY_PLACEMENT_PREFERENCE option
Function Controls the placement of correlated subquery predicate operators within a

query plan.

Allowed Values -1 to 1

Value Action

E Flag syntax that is not entry-level SQL92
syntax

I Flag syntax that is not intermediate-level
SQL92 syntax

F Flag syntax that is not full-SQL92
syntax

W Allow all supported syntax

CHAPTER 2 Database Options

Reference Manual 149

Default 0

Scope Can be set for any scope, any user, takes immediate effect.

Description For correlated subquery operators within a query, the IQ optimizer may have a
choice of several different valid locations within that query’s plan.
SUBQUERY_PLACEMENT_PREFERENCE allows you to override the
optimizer’s cost-based decision when choosing the placement location. It does
not override internal rules that determine whether a location is valid, and in
some queries, there might be only one valid choice. If you set this option to a
nonzero value, it affects every correlated subquery predicate in a query; it
cannot be used to selectively modify the placement of one subquery out of
several in a query.

This option is normally used for internal testing, and only experienced DBAs
should use it. Table 2-17 describes the valid values for this option and their
actions.

Table 2-17: SUBQUERY_PLACEMENT_PREFERENCE values

The default setting of this option is almost always appropriate. Occasionally,
Sybase Technical Support might ask you to change this value.

SUPPRESS_TDS_DEBUGGING option
Function Determines whether TDS debugging information appears in the server

window.

Allowed values ON, OFF

Default OFF

Description When the server is started with the -z option, debugging information appears in
the server window, including debugging information about the TDS protocol.

Value Action

0 Let the optimizer choose.

1 Prefer a location high in the query plan,
thereby delaying the execution of the
subquery to as late as possible within the
query.

-1 Prefer a location as low as possible in the
query plan, thereby placing the execution
of the subquery as early as possible
within the query.

Alphabetical list of options

150 Sybase IQ

The SUPPRESS_TDS_DEBUGGING option restricts the debugging
information about TDS that appears in the server window. When this option is
set to OFF (the default), TDS debugging information appears in the server
window.

SWEEPER_THREADS_PERCENT option
Function Specifies the percentage of Sybase IQ threads used to sweep out buffer caches

Allowed Values 1 – 40

Default 10

Scope Can be set only for the PUBLIC group. DBA authority is required to set the
option. You must shut down and restart the database server for the change to
take effect.

Description Sybase IQ uses a small percentage of its processing threads as sweeper threads.
These sweeper threads clean out dirty pages in the main and temp buffer
caches.

In the IQ Monitor -cache report, the GDirty column shows the number of times
the LRU buffer was grabbed in a “dirty” (modified) state. If GDirty is greater
than 0 for more than a brief time, you might need to increase
SWEEPER_THREADS_PERCENT or WASH_AREA_BUFFERS_PERCENT.

The default setting of this option is almost always appropriate. Occasionally,
Sybase Technical Support might ask you to increase this value.

See also “WASH_AREA_BUFFERS_PERCENT option” on page 171.

Chapter 6, “Monitoring and Tuning Performance” in the Sybase IQ
Performance and Tuning Guide.

TDS_EMPTY_STRING_IS_NULL option [database]
Function Controls whether empty strings are returned as NULL or a string containing

one blank character for TDS connections.

Allowed values ON, OFF

Default OFF

CHAPTER 2 Database Options

Reference Manual 151

Description By default, TDS_EMPTY_STRING_IS_NULL is set to OFF and empty strings
are returned as a string containing one blank character for TDS connections.
When this option is set to ON, empty strings are returned as NULL strings for
TDS connections. Non-TDS connections distinguish empty strings from
NULL strings.

TEMP_CACHE_MEMORY_MB option
Function Specifies the size of the temporary shared buffer cache, in MB.

Allowed values 1 to 4294967295 (232 -1)

Default 12MB

Scope Can be set only for the PUBLIC group. DBA authority is required to set the
option. You must shut down and restart the database server for the change to
take effect.

Description This option sets the size of the temporary shared memory buffer cache for the
database. Sybase recommends that you do not use this option; instead, use the
-iqtc server option to set the temporary buffer cache size.

On 64-bit systems, you can allocate as much physical memory as you have to
IQ buffer caches; however, for values greater than 4GB, you must use the
server options -iqmc and -iqtc to set main and temporary buffer cache sizes. On
32-bit systems, the operating system limits the amount of memory you can
allocate. See the Sybase IQ Installation and Configuration Guide for your
platform for details.

In almost every case, the default temporary buffer cache size of 8MB is too
low. For optimal performance, allocate as much memory as possible to the IQ
main and temporary buffer caches. For example, if you have 4GB of shared
memory on your machine available to Sybase IQ, you can split that amount
between the main and temporary shared buffer caches.

If your IQ temporary buffer cache is larger than 10GB, Sybase also
recommends increasing the SORT_PHASE1_HELPERS database option.

When setting the temp cache size, you must consider many factors, including
total physical memory, swap space, memory for the main buffer cache, your
indexes and query types, your mix of query and load processing, the number of
concurrent users, and memory requirements of the operating system and other
applications on the machine.

See also Chapter 5, “Managing System Resources” in the Sybase IQ Performance and
Tuning Guide for important information about setting buffer cache sizes.

Alphabetical list of options

152 Sybase IQ

“SORT_PHASE1_HELPERS option” on page 146.

“Server command-line switches” on page 8 in Chapter 1, “Running the
Database Server,” in the Sybase IQ Utility Guide.

TEMP_KB_PER_STRIPE option
Function Defines the number of kilobytes (KB) to write to each dbspace before the disk

striping algorithm moves to the next stripe for the IQ Temporary Store.

Allowed values Integer greater than zero, in kilobytes

Default 1 (which rounds up to one page)

Scope Can be set only for the PUBLIC group. DBA authority is required to set the
option. Takes effect at the next checkpoint.

Description TEMP_KB_PER_STRIPE lets you control the number of kilobytes written to
each dbspace before the IQ disk striping algorithm moves to the next stripe for
the IQ Temporary Store. The corresponding number of blocks is rounded up to
a page boundary, so the actual amount written to each stripe might be slightly
larger than requested. You can tune this option by measuring the time required
to complete I/O intensive updates and adjusting the option value accordingly.

See also Chapter 5, “Working with Database Objects” in the Sybase IQ System
Administration Guide.

Balancing I/O in Chapter 5, “Managing System Resources,” in the Sybase IQ
Performance and Tuning Guide.

TEMP_EXTRACT_APPEND option
Function Specifies that any rows extracted by the data extraction facility are added to the

end of an output file.

Allowed values ON, OFF

Default OFF

Scope Can be set for an individual connection. Takes effect immediately.

CHAPTER 2 Database Options

Reference Manual 153

Description This option specifies that any rows extracted by the data extraction facility are
added to the end of an output file. You create the output file in a directory where
you have WRITE/EXECUTE permissions and you set WRITE permission on
the directory and output file for the user name used to start Sybase IQ (for
example, sybase). You can give permissions on the output file to other users as
appropriate. The name of the output file is specified in the
TEMP_EXTRACT_NAME1 option. The data extraction facility creates the
output file, if the file does not already exist.

TEMP_EXTRACT_APPEND is not compatible with the
TEMP_EXTRACT_SIZEn options. If you try to restrict the size of the extract
append output file, Sybase IQ reports an error.

See also For details on the data extraction facility and using the extraction options, see
Data extraction options in Chapter 7, “Moving Data In and Out of Databases”
in the Sybase IQ System Administration Guide.

“TEMP_EXTRACT_NAMEn options” on page 155.

TEMP_EXTRACT_BINARY option
Function In combination with the TEMP_EXTRACT_SWAP option, specifies the type of

extraction performed by the data extraction facility.

Allowed values ON, OFF

Default OFF

Scope Can be set for an individual connection. Takes effect immediately.

Description Use this option with the TEMP_EXTRACT_SWAP option to specify the type of
extraction performed by the data extraction facility.

Table 2-18: Extraction option settings for extraction type

The default extraction type is ASCII.

See also For details on the data extraction facility and using the extraction options, see
Data extraction options in Chapter 7, “Moving Data In and Out of Databases”
in the Sybase IQ System Administration Guide.

Extraction type
TEMP_EXTRACT_
BINARY

TEMP_EXTRACT_
SWAP

binary ON OFF

binary/swap ON ON

ASCII OFF OFF

Alphabetical list of options

154 Sybase IQ

“TEMP_EXTRACT_SWAP option” on page 163.

TEMP_EXTRACT_COLUMN_DELIMITER option
Function Specifies the delimiter between columns in the output of the data extraction

facility for an ASCII extraction.

Allowed values String

Default ','

Scope Can be set for an individual connection. Takes effect immediately.

Description Use TEMP_EXTRACT_COLUMN_DELIMITER to specify the delimiter between
columns in the output of the data extraction facility. In the case of an ASCII
extraction, the default is to separate column values with commas. Strings are
unquoted by default.

The delimiter must occupy 1 – 4 bytes, and must be valid in the collation order
you are using, if you are using a multibyte collation order. Choose a delimiter
that does not occur in any of the data output strings themselves.

 If you set this option to the empty string '' for ASCII extractions, the extracted
data is written in fixed-width ASCII with no column delimiter. Numeric and
binary data types are right-justified on a field of n blanks, where n is the
maximum number of bytes needed for any value of that type. Character data
types are left-justified on a field of n blanks.

Note The minimum column width in a fixed-width ASCII extraction is 4 bytes
to allow the string “NULL” for a NULL value. For example, if the extracted
column is CHAR(2) and TEMP_EXTRACT_COLUMN_DELIMITER is set to the
empty string '', there are two spaces after the extracted data.

See also “TEMP_EXTRACT_QUOTE option” on page 159.

“TEMP_EXTRACT_QUOTES option” on page 159.

“TEMP_EXTRACT_ROW_DELIMITER option” on page 161.

“TEMP_EXTRACT_QUOTES_ALL option” on page 160.

For details on the data extraction facility and using the extraction options, see
Data extraction options in Chapter 7, “Moving Data In and Out of Databases”
in the Sybase IQ System Administration Guide.

CHAPTER 2 Database Options

Reference Manual 155

TEMP_EXTRACT_DIRECTORY option
Function Controls whether a user is allowed to use the data extraction facility.

Allowed values string

Default '' (the empty string)

Scope Can be set temporary, per user, or for the PUBLIC group. DBA authority is
required to set the option. This option takes effect immediately.

Description If the TEMP_EXTRACT_DIRECTORY option is set to the string FORBIDDEN
(case insensitive) for a user, then that user is not allowed to perform data
extracts. An attempt by this user to use the data extraction facility results in an
error.

If TEMP_EXTRACT_DIRECTORY is set to FORBIDDEN for the PUBLIC
group, then no one can run data extraction.

This option provides increased security and helps control disk management by
restricting the creation of large data extraction files to the directories for which
a user has write access.

See also “TEMP_EXTRACT_NAMEn options” on page 155.

For details on the data extraction facility and using the extraction options, see
Data extraction options in Chapter 7, “Moving Data In and Out of Databases”
in the Sybase IQ System Administration Guide.

TEMP_EXTRACT_NAMEn options
Function Specifies the names of the output files or named pipes used by the data

extraction facility. There are eight options: TEMP_EXTRACT_NAME1 through
TEMP_EXTRACT_NAME8.

Allowed values string

Default '' (the empty string)

Scope Can be set for an individual connection. Takes effect immediately.

Description TEMP_EXTRACT_NAME1 through TEMP_EXTRACT_NAME8 specify the
names of the output files used by the data extraction facility. You must use
these options sequentially. For example, TEMP_EXTRACT_NAME3 has no
effect unless both the options TEMP_EXTRACT_NAME1 and
TEMP_EXTRACT_NAME2 are already set.

Alphabetical list of options

156 Sybase IQ

The most important of these options is TEMP_EXTRACT_NAME1. If
TEMP_EXTRACT_NAME1 is set to its default setting (the empty string ''),
extraction is disabled and no output is redirected. To enable extraction, set
TEMP_EXTRACT_NAME1 to a path name. Extract starts extracting into a file
with that name. Choose a path name to a file that is not otherwise in use. Sybase
recommends setting the TEMP_EXTRACT_NAME1 option as TEMPORARY.

You can also use TEMP_EXTRACT_NAME1 to specify the name of the output
file, when the TEMP_EXTRACT_APPEND option is set ON. In this case, before
you execute the SELECT statement, set WRITE permission for the user name
used to start Sybase IQ (for example, sybase) on the directory or folder
containing the named file and on the named file. In append mode, the data
extraction facility adds extracted rows to the end of the file and does not
overwrite the data that is already in the file. If the output file does not already
exist, the data extraction facility creates the file.

 Warning! If you choose the path name of an existing file and the
TEMP_EXTRACT_APPEND option is set OFF (the default), the file contents are
overwritten. This might be what you require if the file is for a weekly report,
for example, but not if the file is one of your database files.

The options TEMP_EXTRACT_NAME2 through TEMP_EXTRACT_NAME8 can
be used in addition to TEMP_EXTRACT_NAME1 to specify the names of
multiple output files.

If you are extracting to a single disk file or a single named pipe, leave the
options TEMP_EXTRACT_NAME2 through TEMP_EXTRACT_NAME8 and
TEMP_EXTRACT_SIZE1 through TEMP_EXTRACT_SIZE8 at their default
values.

When TEMP_EXTRACT_NAME1 is set, you cannot perform these operations:

• LOAD, DELETE, INSERT, or INSERT...LOCATION to a table that is the top
table in a join

• SYNCHRONIZE JOIN INDEX (issued explicitly or executed as part of
CREATE JOIN INDEX)

• INSERT...SELECT

Also note the following restrictions on the data extraction facility:

• Extract works only with data stored in the IQ Store.

• Extract does not work on system tables or cross database joins.

CHAPTER 2 Database Options

Reference Manual 157

• Extract does not work with queries that use user-defined functions or
system functions, except for the system functions suser_id() and
suser_name().

• If you run DBISQL (Interactive SQL Java) with the -q (quiet mode) option
and the data extraction commands are in a command file, you must first set
and make permanent the DBISQL option “Show multiple result sets.” If
this option is not set, the output file is not created.

To set the “Show multiple result sets” option, select Tools → Options in
the DBISQL window, then check the box “Show multiple result sets” and
click “Make permanent.”

See also “TEMP_EXTRACT_SIZEn options” on page 161.

“TEMP_EXTRACT_APPEND option” on page 152.

For details on the data extraction facility and using the extraction options, see
Data extraction options in Chapter 7, “Moving Data In and Out of Databases”
in the Sybase IQ System Administration Guide.

TEMP_EXTRACT_NULL_AS_EMPTY option
Function Controls the representation of null values in the output of the data extraction

facility for an ASCII extraction.

Allowed values ON, OFF

Default OFF

Scope Can be set for an individual connection. Takes effect immediately.

Description TEMP_EXTRACT_NULL_AS_EMPTY controls the representation of null values
in the output of the data extraction facility for ASCII extractions. When the
TEMP_EXTRACT_NULL_AS_EMPTY option is set to ON, a null value is
represented as '' (the empty string) for all data types.

The quotes shown above are not present in the extract output file. When the
TEMP_EXTRACT_NULL_AS_EMPTY option is set to OFF, the string 'NULL' is
used in all cases to represent a NULL value. OFF is the default value.

See also For details on the data extraction facility and using the extraction options, see
Data extraction options in Chapter 7, “Moving Data In and Out of Databases”
in the Sybase IQ System Administration Guide.

Alphabetical list of options

158 Sybase IQ

TEMP_EXTRACT_NULL_AS_ZERO option
Function Controls the representation of null values in the output of the data extraction

facility for an ASCII extraction.

Allowed values ON, OFF

Default OFF

Scope Can be set for an individual connection. Takes effect immediately.

Description TEMP_EXTRACT_NULL_AS_ZERO controls the representation of null values
in the output of the data extraction facility for ASCII extractions. When
TEMP_EXTRACT_NULL_AS_ZERO is set to ON, a null value is represented as
follows:

• '0' for arithmetic type

• '' (the empty string) for the CHAR and VARCHAR character types

• '' (the empty string) for dates

• '' (the empty string) for times

• '' (the empty string) for timestamps

The quotes shown above are not present in the extract output file. When the
TEMP_EXTRACT_NULL_AS_ZERO option is set to OFF, the string 'NULL' is
used in all cases to represent a NULL value. OFF is the default value.

Note In Sybase IQ 12.5, an ASCII extract from a CHAR or VARCHAR column
in a table always returns at least four characters to the output file. This is
required if TEMP_EXTRACT_NULL_AS_ZERO is set to OFF, because Sybase
IQ needs to write out the word NULL for any row in a column that has a null
value. Reserving four spaces is not required if
TEMP_EXTRACT_NULL_AS_ZERO is set to ON.

In Sybase IQ 12.6, if TEMP_EXTRACT_NULL_AS_ZERO is set to ON, the
number of characters that an ASCII extract writes to a file for a CHAR or
VARCHAR column equals the number of characters in the column, even if that
number is less than four.

See also For details on the data extraction facility and using the extraction options, see
Data extraction options in Chapter 7, “Moving Data In and Out of Databases”
in the Sybase IQ System Administration Guide.

CHAPTER 2 Database Options

Reference Manual 159

TEMP_EXTRACT_QUOTE option
Function Specifies the string to be used as the quote to enclose fields in the output of the

data extraction facility for an ASCII extraction, when either the
TEMP_EXTRACT_QUOTES option or the TEMP_EXTRACT_QUOTES_ALL
option is set ON.

Allowed values String

Default '' (the empty string)

Scope Can be set for an individual connection. Takes effect immediately.

Description This option specifies the string to be used as the quote to enclose fields in the
output of the data extraction facility for an ASCII extraction, if the default
value is not suitable. TEMP_EXTRACT_QUOTE is used with the
TEMP_EXTRACT_QUOTES and TEMP_EXTRACT_QUOTES_ALL options.The
quote string specified in the TEMP_EXTRACT_QUOTE option has the same
restrictions as the row and column delimiters. The default for this option is the
empty string, which Sybase IQ converts to the single quote mark.

The string specified in the TEMP_EXTRACT_QUOTE option must occupy from
1 to a maximum of 4 bytes and must be valid in the collation order you are
using, if you are using a multibyte collation order. Be sure to choose a string
that does not occur in any of the data output strings themselves.

See also For details on the data extraction facility and using the extraction options, see
Data extraction options in Chapter 7, “Moving Data In and Out of Databases”
in the Sybase IQ System Administration Guide.

“TEMP_EXTRACT_COLUMN_DELIMITER option” on page 154.

“TEMP_EXTRACT_QUOTES option” on page 159.

“TEMP_EXTRACT_QUOTES_ALL option” on page 160.

“TEMP_EXTRACT_ROW_DELIMITER option” on page 161.

TEMP_EXTRACT_QUOTES option
Function Specifies that string fields are enclosed in quotes in the output of the data

extraction facility for an ASCII extraction.

Allowed values ON, OFF

Default OFF

Scope Can be set for an individual connection. Takes effect immediately.

Alphabetical list of options

160 Sybase IQ

Description This option specifies that string fields are enclosed in quotes in the output of
the data extraction facility for an ASCII extraction. The string used as the quote
is specified in the TEMP_EXTRACT_QUOTE option, if the default is not
suitable.

See also For details on the data extraction facility and using the extraction options, see
Data extraction options in Chapter 7, “Moving Data In and Out of Databases”
in the Sybase IQ System Administration Guide.

“TEMP_EXTRACT_COLUMN_DELIMITER option” on page 154.

“TEMP_EXTRACT_QUOTES option” on page 159.

“TEMP_EXTRACT_QUOTES_ALL option” on page 160.

“TEMP_EXTRACT_ROW_DELIMITER option” on page 161.

TEMP_EXTRACT_QUOTES_ALL option
Function Specifies that all fields are enclosed in quotes in the output of the data

extraction facility for an ASCII extraction.

Allowed values ON, OFF

Default OFF

Scope Can be set for an individual connection. Takes effect immediately.

Description TEMP_EXTRACT_QUOTES_ALL specifies that all fields are enclosed in quotes
in the output of the data extraction facility for an ASCII extraction. The string
used as the quote is specified in TEMP_EXTRACT_QUOTE if the default is not
suitable.

See also For details on the data extraction facility and using the extraction options, see
Data extraction options in Chapter 7, “Moving Data In and Out of Databases”
in the Sybase IQ System Administration Guide.

“TEMP_EXTRACT_COLUMN_DELIMITER option” on page 154.

“TEMP_EXTRACT_QUOTES option” on page 159.

“TEMP_EXTRACT_QUOTES_ALL option” on page 160.

“TEMP_EXTRACT_ROW_DELIMITER option” on page 161.

CHAPTER 2 Database Options

Reference Manual 161

TEMP_EXTRACT_ROW_DELIMITER option
Function Specifies the delimiter between rows in the output of the data extraction facility

for an ASCII extraction.

Allowed values String

Default '' (the empty string)

Scope Can be set for an individual connection. Takes effect immediately.

Description TEMP_EXTRACT_ROW_DELIMITER specifies the delimiter between rows in
the output of the data extraction facility. In the case of an ASCII extraction, the
default is to end the row with a newline on UNIX platforms and with a carriage
return/newline pair on Windows platforms.

The delimiter must occupy 1 – 4 bytes and must be valid in the collation order
you are using, if you are using a multibyte collation order. Choose a delimiter
that does not occur in any of the data output strings. The default for the
TEMP_EXTRACT_ROW_DELIMITER option is the empty string. Sybase IQ
converts the empty string default for this option to the newline on UNIX
platforms and to the carriage return/newline pair on Windows platforms.

See also For details on the data extraction facility and using the extraction options, see
Data extraction options in Chapter 7, “Moving Data In and Out of Databases”
in the Sybase IQ System Administration Guide.

“TEMP_EXTRACT_COLUMN_DELIMITER option” on page 154.

“TEMP_EXTRACT_QUOTES option” on page 159.

“TEMP_EXTRACT_QUOTES_ALL option” on page 160.

“TEMP_EXTRACT_ROW_DELIMITER option” on page 161.

TEMP_EXTRACT_SIZEn options
Function Specifies the maximum sizes of the corresponding output files used by the data

extraction facility. There are eight options: TEMP_EXTRACT_SIZE1 through
TEMP_EXTRACT_SIZE8.

Default 0

Scope Can be set for an individual connection. Takes effect immediately.

Alphabetical list of options

162 Sybase IQ

Description TEMP_EXTRACT_SIZE1 through TEMP_EXTRACT_SIZE8 are used to specify
the maximum sizes of the corresponding output files used by the data
extraction facility. TEMP_EXTRACT_SIZE1 specifies the maximum size of the
output file specified by TEMP_EXTRACT_NAME1, TEMP_EXTRACT_SIZE2
specifies the maximum size of the output file specified by
TEMP_EXTRACT_NAME2, and so on.

Note The default for the data extraction size options is 0. Sybase IQ converts
this default to the values shown in the following table.

*Tape devices currently are not supported.

When large file systems, such as JFS2, support file size larger than the default
value, set TEMP_EXTRACT_SIZEn to the value that the file system allows. For
example, to support lTB set option:

TEMP_EXTRACT_SIZE1 = 1073741824 KB

If you are extracting to a single disk file or a single named pipe, leave the
options TEMP_EXTRACT_NAME2 through TEMP_EXTRACT_NAME8 and
TEMP_EXTRACT_SIZE1 through TEMP_EXTRACT_SIZE8 at their default
values.

The TEMP_EXTRACT_SIZEn options are not compatible with
TEMP_EXTRACT_APPEND. If you try to restrict the size of the extract append
output file, Sybase IQ reports an error.

See also For details on the data extraction facility and using the extraction options, see
Data extraction options in Chapter 7, “Moving Data In and Out of Databases”
in the Sybase IQ System Administration Guide.

“TEMP_EXTRACT_NAMEn options” on page 155.

Device type Size

Disk file AIX and HP-UX: 0 – 64GB

Sun Solaris & Linux: 0 – 512GB

Windows: 0 – 128GB

Tape* 524288KB (0.5GB)

Other 9007199254740992KB (8192 Petabytes “unlimited”)

CHAPTER 2 Database Options

Reference Manual 163

TEMP_EXTRACT_SWAP option
Function In combination with the TEMP_EXTRACT_BINARY option, specifies the type

of extraction performed by the data extraction facility.

Allowed values ON, OFF

Default OFF

Scope Can be set for an individual connection. Takes effect immediately.

Description Use this option with the TEMP_EXTRACT_BINARY option to specify the type
of extraction performed by the data extraction facility.

Table 2-19: Extraction option settings for extraction type

The default extraction type is ASCII.

See also For details on the data extraction facility and using the extraction options, see
Data extraction options in the Sybase IQ System Administration Guide.

For details on the data extraction facility and using the extraction options, see
“Data extraction options” on page 321 in Chapter 7, “Moving Data In and Out
of Databases” in the Sybase IQ System Administration Guide

“TEMP_EXTRACT_BINARY option” on page 153

TEMP_RESERVED_DBSPACE_MB option
Function Controls the amount of space Sybase IQ reserves in the Temporary IQ Store.

Allowed values Integer greater than zero, in megabytes

Default 200; Sybase IQ actually reserves the minimum of 200MB and 50% of the size
of the last dbspace

Scope Can be set only for the PUBLIC group. DBA authority is required to set the
option. Shut down and restart the database server for the change to take effect.

Extraction type
TEMP_EXTRACT_
BINARY

TEMP_EXTRACT_
SWAP

binary ON OFF

binary/swap ON ON

ASCII OFF OFF

Alphabetical list of options

164 Sybase IQ

Description TEMP_RESERVED_DBSPACE_MB lets you control the amount of space
Sybase IQ sets aside in your Main IQ Store for certain small but critical data
structures used during release savepoint, commit, and checkpoint operations.
For a production database, set this value between 200MB and 1GB. The larger
your IQ page size and number of concurrent connections, the more reserved
space you need.

Sybase IQ reserves the minimum of 200MB and 50% of the size of the last
dbspace, which helps DBAs avoid out-of-space conditions by reserving more
space automatically.

See also Reserving space to handle out-of-space conditions in Chapter 5, “Working
with Database Objects” in the Sybase IQ System Administration Guide

TEMP_SPACE_LIMIT_CHECK option
Function Checks for Catalog Store temporary space on a per connection basis.

Allowed values ON, OFF (no limit checking occurs)

Default OFF

Scope Can be set only for the PUBLIC group. DBA authority required.

Description When TEMP_SPACE_LIMIT_CHECK is ON, the database server checks the
amount of Catalog Store temporary file space that a connection uses. If a
connection requests more than its quota of temporary file space when this
option is set to OFF, a fatal error can occur. When this option is set to ON, if a
connection requests more than its quota of temporary file space, the request
fails and the error “Temporary space limit exceeded” is returned.

CHAPTER 2 Database Options

Reference Manual 165

Two factors are used to determine the temporary file quota for a connection:
the maximum size of the temporary file, and the number of active database
connections. The maximum size of the temporary file is the sum of the current
size of the file and the amount of disk space available on the partition
containing the file. When limit checking is turned on, the server checks a
connection for exceeding its quota when the temporary file has grown to 80%
or more of its maximum size, and the connection requests more temporary file
space. Once this happens, any connection fails that uses more than the
maximum temporary file space divided by the number of active connections.

Note This option is unrelated to IQ Temporary Store space. To constrain the
growth of IQ temporary space, see “QUERY_TEMP_SPACE_LIMIT option”
on page 142.

Example A database is started with the temporary file on a drive with 100MB free and
no other active files on the same drive. The available temporary file space is
thus 100MB. The DBA issues:

SET OPTION PUBLIC.TEMP_SPACE_LIMIT_CHECK = 'ON'

As long as the temporary file stays below 80MB, the server behaves as it did
before. Once the file reaches 80MB, the new behavior might occur. Assume
that with 10 queries running, the temporary file needs to grow. When the server
finds that one query is using more than 8MB of temporary file space, that query
fails.

See also You can obtain information about the space available for the temporary file
using the sa_disk_free_space system procedure. For more information, see the
Adaptive Server Anywhere SQL Reference.

TIME_FORMAT option
Function Sets the format used for times retrieved from the database.

Allowed values A string composed of the symbols HH, NN, MM, SS, separated by colons.

Default 'HH:NN:ss.SSS'

For Open Client and JDBC connections the default is set to HH:NN:SS.SSS.

Description The format is a string using the following symbols:

• hh – Two-digit hours (24 hour clock).

• nn – Two-digit minutes.

Alphabetical list of options

166 Sybase IQ

• mm – Two-digit minutes if following a colon (as in 'hh:mm').

• ss[.s...s] – Two-digit seconds plus optional fraction.

Each symbol is substituted with the appropriate data for the date being
formatted. Any format symbol that represents character rather than digit output
can be in uppercase, which causes the substituted characters also to be in
uppercase. For numbers, using mixed case in the format string suppresses
leading zeros.

Multibyte characters are not supported in format strings. Only single-byte
characters are allowed, even when the collation order of the database is a
multibyte collation order like 932JPN.

See also “DATE_FORMAT option” on page 63

“RETURN_DATE_TIME_AS_STRING option” on page 143.

TIMESTAMP_FORMAT option
Function Sets the format used for timestamps retrieved from the database.

Allowed values A string composed of the symbols listed below.

Default 'YYYY-MM-DD HH:NN:ss.SSS'

Description The format is a string using the following symbols:

CHAPTER 2 Database Options

Reference Manual 167

Table 2-20: TIMESTAMP_FORMAT string symbols

Each symbol is substituted with the appropriate data for the date being
formatted. Any format symbol that represents character rather than digit output
can be in uppercase, which causes the substituted characters also to be in
uppercase. For numbers, using mixed case in the format string suppresses
leading zeros.

Multibyte characters are not supported in format strings. Only single-byte
characters are allowed, even when the collation order of the database is a
multibyte collation order like 932JPN.

See also “DATE_FORMAT option” on page 63

“RETURN_DATE_TIME_AS_STRING option” on page 143.

Symbol Description

yy 2-digit year.

yyyy 4-digit year.

mm 2-digit month, or two digit minutes if following a colon (as in
'hh:mm').

mmm 3-character short form for name of the month of year

mmmm[m...] Character long form for month name—as many characters as
there are m's, until the number of m’s specified exceeds the
number of characters in the month’s name.

dd 2-digit day of month.

ddd 3-character short form for name of the day of week.

dddd[d...] Character long form for day name—as many characters as there
are d's, until the number of d’s specified exceeds the number of
characters in the day’s name.

hh 2-digit hours.

nn 2-digit minutes.

ss.SSS Seconds (ss) and fractions of a second (SSS), up to six decimal
places. Not all platforms support timestamps to a precision of six
places.

aa a.m. or p.m. (12-hour clock).

pp p.m. if needed (12-hour clock.)

Alphabetical list of options

168 Sybase IQ

TRIM_PARTIAL_MBC option
Function Allows automatic trimming of partial multibyte character data.

Allowed values ON, OFF

Default OFF

Scope DBA permissions are not required to set this option. Can only be set for the
PUBLIC group. Takes effect immediately.

Description Provides consistent loading of data for collations that contain both single-byte
and multibyte characters. When TRIM_PARTIAL_MBC is ON:

• A partial multibyte character is replaced with a blank when loading into a
CHAR column.

• A partial multibyte character is truncated when loading into a VARCHAR
column.

When TRIM_PARTIAL_MBC is OFF, normal CONVERSION_ERROR semantics
are in effect.

See also “CONVERSION_ERROR option [TSQL]” on page 53.

TRUNCATE_WITH_AUTO_COMMIT option
Function Speeds up TRUNCATE TABLE statements in the Catalog Store.

Allowed values ON, OFF

Default ON

Description In the Catalog Store only, if TRUNCATE_WITH_AUTO_COMMIT is set to ON,
then a COMMIT is executed both before and after the TRUNCATE TABLE
statement is executed. The primary purpose of the option is to enable faster
table truncation (delete of all rows).

There are some cases where a fast TRUNCATE cannot be done:

• If there are foreign keys either to or from the table

• If the TRUNCATE TABLE statement is executed within an atomic statement

See also TRUNCATE TABLE statement on page 658.

CHAPTER 2 Database Options

Reference Manual 169

TRUNCATION_LENGTH option [DBISQL]
Function Controls the truncation of wide columns for displays to fit on a screen.

Allowed values Integer

Default 256

Description When SELECT statement results are displayed on the screen, each column of
output is limited to the width of the screen. The TRUNCATION_LENGTH
option is used to reduce the width of wide columns so that more than one
column fits on the screen. A value of 0 means that columns are not truncated.

The default TRUNCATION_LENGTH is 256. For character-mode systems,
this is an actual number of characters. For windowing systems,
TRUNCATION_LENGTH is used to estimate an area of the screen to be used
for display since proportional fonts are used.

TSQL_HEX_CONSTANT option [TSQL]
Function Controls whether hexadecimal constants are treated as binary typed constants.

Allowed values ON, OFF

Default ON

Description When set to ON, hexadecimal constants are treated as binary typed constants.

TSQL_VARIABLES option [TSQL]
Function Controls whether the @ sign can be used as a prefix for Embedded SQL host

variable names.

Allowed values ON, OFF

ON for Open Client and JDBC connections

Default OFF

Description When TSQL_VARIABLES is set to ON, you can use the @ sign instead of the
colon as a prefix for host variable names in Embedded SQL. This is
implemented primarily for the Open Server Gateway.

Alphabetical list of options

170 Sybase IQ

USER_RESOURCE_RESERVATION option
Function Adjusts memory use for the number of current users.

Allowed values Integer

Scope DBA permissions are not required to set this option. Can be set temporary, for
an individual connection, or for the PUBLIC group. Takes effect immediately.

Default 1

Description Sybase IQ tracks the number of open cursors and allocates memory
accordingly. In certain circumstances, you can use this option to adjust the
minimum number of current cursors that Sybase IQ thinks is currently using
the product, and allocate memory from the temporary cache more sparingly.

Set this option only after careful analysis shows it is actually required. If you
need to set this parameter, contact Sybase Technical Support with details.

VERIFY_PASSWORD_FUNCTION option
Function Specifies a user-supplied authentication function that can be used to implement

password rules. The function is called on a GRANT CONNECT TO userid
IDENTIFIED BY password statement.

Allowed values String

Scope Can be set temporary, per user, or for the PUBLIC group. DBA authority is
required to set the option. This option takes effect immediately.

Default '' (the empty string). (No function is called on GRANT CONNECT.)

Description When the VERIFY_PASSWORD_FUNCTION option value is set to a valid
string, the statement GRANT CONNECT TO userid IDENTIFIED BY password
calls the function specified by the option value.

The option value requires the form owner.function_name to prevent users from
overriding the function.

The function takes two parameters:

• user_name VARCHAR(128)

• new_pwd VARCHAR(255)

CHAPTER 2 Database Options

Reference Manual 171

It returns a value of type VARCHAR(255).

Note Perform an ALTER FUNCTION function-name SET HIDDEN on the
function to ensure that a user cannot step through it using the procedure
debugger.

If the VERIFY_PASSWORD_FUNCTION option is set, you cannot specify more
than one userid and password with the GRANT CONNECT statement.

Example For example, this statement creates a function that requires the password to be
different from the user name:

CREATE FUNCTION DBA.f_verify_pwd
(user_name varchar(128),
new_pwd varchar(255))
RETURNS varchar(255)
BEGIN
-- enforce password rules
IF new_pwd = user_name then
RETURN('Password cannot be the same as the user name');
END IF;
-- return success
RETURN(NULL);
END;
ALTER FUNCTION DBA.f_verify_pwd set hidden;
GRANT EXECUTE on DBA.f_verify_pwd to PUBLIC;
SET OPTION PUBLIC.VERIFY_PASSWORD_FUNCTION =
'DBA.f_verify_pwd';

To turn the option off, set it to the empty string:

SET OPTION PUBLIC.VERIFY_PASSWORD_FUNCTION = ''

WASH_AREA_BUFFERS_PERCENT option
Function Specifies the percentage of the buffer caches above the wash marker.

Allowed Values 1 – 100

Default 20

Scope Can be set only for the PUBLIC group. DBA authority is required to set the
option. Shut down and restart the database server to have the change take
effect.

Alphabetical list of options

172 Sybase IQ

Description Sybase IQ buffer caches are organized as a long MRU/LRU chain. The area
above the wash marker is used to sweep out (that is, write) dirty pages to disk.

In the IQ Monitor -cache report, the Gdirty column shows the number of times
the LRU buffer was grabbed in a “dirty” (modified) state. If GDirty is greater
than 0 for more than a brief time, you might need to increase
SWEEPER_THREADS_PERCENT or WASH_AREA_BUFFERS_PERCENT.

The default setting of this option is almost always appropriate. Occasionally,
Sybase Technical Support might ask you to increase this value.

See also Chapter 6, “Monitoring and Tuning Performance” in the Sybase IQ
Performance and Tuning Guide

“SWEEPER_THREADS_PERCENT option” on page 150.

WAIT_FOR_COMMIT option
Function Determines when foreign key integrity is checked as data is manipulated.

Allowed values ON, OFF

Default OFF

Scope Can be set for an individual connection or the PUBLIC group. Takes effect
immediately.

Description If this option is set to ON, the database does not check foreign key integrity
until the next COMMIT statement. Otherwise, all foreign keys not created with
the CHECK ON COMMIT option are checked as they are inserted, updated, or
deleted.

Reference Manual 173

C H A P T E R 3 SQL Language Elements

About this chapter This chapter presents detailed descriptions of the language elements and
conventions of Sybase IQ SQL.

Contents Topic Page

Keywords 174

Identifiers 177

Strings 178

Expressions 179

Search conditions 189

Special values 205

Variables 209

Comments 217

NULL value 218

Keywords

174 Sybase IQ

Keywords
Each SQL statement contains one or more keywords. SQL is not case sensitive
to keywords, but throughout these manuals, keywords are indicated in
uppercase.

For example, in the following statement, SELECT and FROM are keywords:

SELECT *
FROM employee

The following statements are equivalent to the one above:

Select *
From employee
select * from employee
sELECT * FRoM employee

Reserved words
Some keywords in SQL are also reserved words. To use a reserved word in a
SQL statement as an identifier, you must enclose the word in double quotes.
Many, but not all, of the keywords that appear in SQL statements are reserved
words. For example, you must use the following syntax to retrieve the contents
of a table named SELECT.

SELECT *
FROM "SELECT"

Because SQL is not case sensitive with respect to keywords, each of the words
in Table 3-1 may appear in uppercase, lowercase, or any combination of the
two. All strings that differ only in capitalization from these words are reserved
words.

If you are using Embedded SQL, you can use the database library function
sql_needs_quotes to determine whether a string requires quotation marks. A
string requires quotes if it is a reserved word or if it contains a character not
ordinarily allowed in an identifier.

Table 3-1 lists the SQL reserved words in Sybase IQ.

CHAPTER 3 SQL Language Elements

Reference Manual 175

Table 3-1: SQL reserved words

active add all algorithm

alter and any append

as asc auto backup

begin between bigint binary

bit bottom break by

calibrate calibration call cancel

capability cascade case cast

certificate char char_convert character

check checkpoint checksum clientport

close columns comment commit

committed comparisons computes conflict

connect constraint contains continue

convert create cross cube

current current_timestamp current_user cursor

date dbspace dbspacename deallocate

debug dec decimal declare

decoupled decrypted default delay

delete deleting density desc

deterministic disable distinct do

double drop dynamic elements

else elseif enable encapsulated

encrypted end endif escape

except exception exclude exec

execute existing exists explicit

express externlogin fastfirstrow fetch

first float following for

force foreign forward from

full gb goto grant

group grouping having hidden

history holdlock identified if

in inactive index index_lparen

inner inout input insensitive

insert inserting install instead

int integer integrated intersect

into iq is isolation

jdk join kb key

lateral left like lock

Keywords

176 Sybase IQ

logging login long mb

match membership message mode

modify namespace natural new

no noholdlock nolock not

notify null numeric of

off on open optimization

option options or order

others out outer over

pages paglock partial partition

passthrough password plan preceding

precision prepare primary print

privileges proc procedure proxy

publication raiserror range raw

readcommitted readonly readpast readtext

readuncommitted readwrite real recursive

reference references release relocate

remote remove rename reorganize

repeatable repeatableread reserve resizing

resource restore restrict return

revoke right rollback rollup

root row rowlock rows

save savepoint schedule scroll

secure select sensitive serializable

service session set setuser

share smallint soapaction some

space sqlcode sqlstate start

stop subtrans subtransaction synchronize

syntax_error table tablock tablockx

tb temporary then ties

time timestamp tinyint to

top tran transaction transactional

transfer tries trigger truncate

tsequal unbounded uncommitted union

unique uniqueidentifier unknown unsigned

update updating updlock url

user utc using validate

values varbinary varchar variable

varying virtual view wait

CHAPTER 3 SQL Language Elements

Reference Manual 177

Identifiers
Function Identifiers are names of objects in the database, such as user IDs, tables, and

columns.

Description Identifiers have a maximum length of 128 bytes. They must be enclosed in
double quotes or square brackets if any of the following conditions are true:

• The identifier contains spaces.

• The first character of the identifier is not an alphabetic character (as
defined below).

• The identifier contains a reserved word.

• The identifier contains characters other than alphabetic characters and
digits.

Alphabetic characters include the alphabet, as well as the underscore
character (_), at sign (@), number sign (#), and dollar sign ($). The
database collation sequence dictates which characters are considered
alphabetic or digit characters.

You can represent an apostrophe (single quote) inside an identifier by
following it with another apostrophe.

If the QUOTED_IDENTIFIER database option is set to OFF, double quotes are
used to delimit SQL strings and cannot be used for identifiers. However, you
can always use square brackets to delimit identifiers, regardless of the setting
of QUOTED_IDENTIFIER.

The default setting for the QUOTED_IDENTIFIER option is OFF for Open
Client and jConnect connections; otherwise the default is ON.

Examples The following are all valid identifiers.

Surname
"Surname"
[Surname]

waitfor web when where

while window with withauto

with_cube with_lparen with_rollup within

word work writeserver writetext

xlock xml

Strings

178 Sybase IQ

SomeBigName
"Client Number"

See also For a complete list of reserved words, see “Reserved words” on page 174.

For information on the QUOTED_IDENTIFIER option, see “The
quoted_identifier option” on page 187.

For additional restrictions on server and database names, see “Server
command-line switches” on page 8 in Chapter 1, “Running the Database
Server” of the Sybase IQ Utility Guide.

Strings
Strings are of the following types:

• Literal strings

• Expressions with CHAR or VARCHAR data types.

An expression with a CHAR data type might be a built-in or user-defined
function, or one of the many other kinds of expressions available.

For more information on expressions, see “Expressions” on page 179.

A literal string is any sequence of characters enclosed in apostrophes ('single
quotes'). A SQL variable of character data type can hold a string. This is a
simple example of a literal string:

'This is a string.'

Special characters in
strings

Represent special characters in strings by escape sequences, as follows:

• To represent an apostrophe inside a string, use two apostrophes in a row.
For example:

'John''s database'

• To represent a newline character, use a backslash followed by n (\n). For
example:

'First line:\nSecond line:'

• To represent a backslash character, use two backslashes in a row (\\). For
example:

'c:\\temp'

CHAPTER 3 SQL Language Elements

Reference Manual 179

• Hexadecimal escape sequences can be used for any character, printable or
not. A hexadecimal escape sequence is a backslash followed by an x
followed by two hexadecimal digits (for example, \x6d represents the
letter m). For example:

'\x00\x01\x02\x03'

Compatibility For compatibility with Adaptive Server Enterprise, you can set the
QUOTED_IDENTIFIER database option to OFF. With this setting, you can also
use double quotes to mark the beginning and end of strings. The option is ON
by default.

Expressions
Syntax expression:

case-expression
| constant
| [correlation-name .] column-name [java-ref]
| - expression
| expression operator expression
| (expression)
| function-name (expression, ...)
| if-expression
| [java-package-name.] java-class-name java-ref
| (subquery)
| variable-name [java-ref]

Parameters case-expression:
{ CASE search-condition
... WHEN expression THEN expression [, ...]
... [ELSE expression]
END
| CASE
... WHEN search-condition THEN expression [, ...]
... [ELSE expression]
END }

constant:
{ integer | number | 'string' | special-constant
| host-variable }

special-constant:
{ CURRENT { DATE | TIME | TIMESTAMP | USER }
| LAST USER
| NULL
| SQLCODE
| SQLSTATE }

Expressions

180 Sybase IQ

if-expression:
IF condition
... THEN expression
... [ELSE expression]
ENDIF

java-ref:
{ .field-name [java-ref]
| >> field-name [java-ref]
| .method-name ([expression] [, ...]) [java-ref]
| >> method-name ([expression] [, ...]) [java-ref] }

operator:
{ + | - | * | / | || | % }

Usage Anywhere

Authorization Must be connected to the database

Side effects None

Description Expressions are formed from several different kinds of element, discussed in
the following sections.

Compatibility • The IF condition is not supported in Adaptive Server Enterprise.

• Java expressions are not currently supported in Adaptive Server
Enterprise.

• For other differences, see the separate descriptions of each class of
expression, in the following sections.

Constants in expressions
Constants are numbers or strings. String constants are enclosed in apostrophes.
An apostrophe is represented inside the string by two apostrophes in a row.

Column names in expressions
A column name is an identifier preceded by an optional correlation name. A
correlation name is usually a table name. For more information on correlation
names, see FROM clause on page 553. If a column name has characters other
than letters, digits, and underscores, the name must be surrounded by quotation
marks (""). For example, the following are valid column names:

employee.name
address

CHAPTER 3 SQL Language Elements

Reference Manual 181

"date hired"
"salary"."date paid"

For more information, see “Identifiers” on page 177.

Subqueries in expressions
A subquery is a SELECT statement enclosed in parentheses. The SELECT
statement can contain one and only one select list item. When used as an
expression, a scalar subquery is allowed to return only zero or one value;

Within the SELECT list of the top level SELECT, or in the SET clause of an
UPDATE statement, you can use a scalar subquery anywhere that you can use a
column name. However, the subquery cannot appear inside a conditional
expression (CASE, IF, NULLIF, ARGN).

For example, the following statement returns the number of employees in each
department, grouped by department name:

SELECT dept_name, COUNT(*), ‘out of’,
(SELECT COUNT(*) FROM employee)
FROM department AS D, employee AS E
WHERE D.dept_id = E.dept_id
GROUP BY dept_name;

For other uses of subqueries, see “Subqueries in search conditions” on page
191.

SQL operators
This section describes the arithmetic, string, and bitwise operators available in
Sybase IQ. For information on comparison operators, see “Search conditions”
on page 189.

The normal precedence of operations applies. Expressions in parentheses are
evaluated first; then multiplication and division before addition and
subtraction. String concatenation occurs after addition and subtraction.

Arithmetic operators
expression + expression Addition. If either expression is the NULL value,
the result is the NULL value.

Expressions

182 Sybase IQ

expression - expression Subtraction. If either expression is the NULL
value, the result is the NULL value.

- expression Negation. If the expression is the NULL value, the result is the
NULL value.

expression * expression Multiplication. If either expression is the NULL
value, the result is the NULL value.

expression / expression Division. If either expression is the NULL value or
if the second expression is 0, the result is the NULL value.

expression % expression Modulo finds the integer remainder after a
division involving two whole numbers. For example, 21 % 11 = 10 because 21
divided by 11 equals 1 with a remainder of 10. You must turn off the
PERCENT_AS_COMMENT option to use the ‘%’ operator.

String operators
expression || expression String concatenation (two vertical bars). If either
string is the NULL value, the string is treated as the empty string for
concatenation.

expression + expression Alternative string concatenation. When using the
+ concatenation operator, you must ensure the operands are explicitly set to
character data types rather than relying on implicit data conversion.

Standards and
compatibility

• SQL92 The || operator is the SQL92 string concatenation operator.

• Sybase The + operator is supported by Adaptive Server Enterprise.

Bitwise operators

You can use the following operators on all unscaled integer data types, in both
Sybase IQ and Adaptive Server Enterprise.

The AND operator (&)

Operator Description

& AND

| OR

^ EXCLUSIVE OR

~ NOT

Bit 1 Bit 2 Bit 1 & Bit 2

0 0 0

CHAPTER 3 SQL Language Elements

Reference Manual 183

The AND operator compares 2 bits. If they are both 1, the result is 1.

Bitwise OR (|)

The OR operator compares 2 bits. If one or the other bit is 1, the result is 1.

EXCLUSIVE OR (^)

The EXCLUSIVE OR operator results in a 1 when either, but not both, of its
two operands is 1.

NOT (~)

The NOT operator is a unary operator that returns the inverse of its operand.

Join operators

The Transact-SQL outer join operators *= and =* are supported in Sybase IQ,
in addition to the SQL92 join syntax using a table expression in the FROM
clause.

0 1 0

1 0 0

1 1 1

Bit 1 Bit 2 Bit 1 & Bit 2

Bit 1 Bit 2 Bit 1 | Bit 2

0 0 0

0 1 1

1 0 1

1 1 1

Bit 1 Bit 2 Bit 1 ^Bit 2

0 0 0

0 1 1

1 0 1

1 1 0

Bit ~ Bit

1 0

0 1

Expressions

184 Sybase IQ

Compatibility • Modulo You can use the % operator in Sybase IQ only if the
PERCENT_AS_COMMENT option is set to OFF. The default value is OFF
for new databases.

• String concatenation When you are using the + concatenation operator
in Sybase IQ, ensure the operands are explicitly set to strings rather than
relying on implicit data conversion. For example, the following query
returns the integer value 579:

SELECT 123 + 456

whereas the following query returns the character string 123456:

SELECT '123' + '456'

You can use the CAST or CONVERT function to explicitly convert data
types.

Note When used with BINARY or VARBINARY data types, the + operator
is concatenation, not addition.

The || concatenation operator is not supported by Adaptive Server
Enterprise.

Operator precedence

When you are using more than one operator in an expression, Sybase
recommends that you make the order of operation explicit using parentheses,
rather than relying on an identical operator precedence between Adaptive
Server Enterprise and Sybase IQ.

IF expressions
The syntax of the IF expression is as follows:

IF condition
THEN expression1
[ELSE expression2]
ENDIF

This expression returns:

• If condition is TRUE, the IF expression returns expression1.

• If condition is FALSE, the IF expression returns expression2.

CHAPTER 3 SQL Language Elements

Reference Manual 185

• If condition is FALSE, and there is no expression2, the IF expression
returns NULL.

• If condition is NULL, the IF expression returns NULL.

For more information about TRUE, FALSE, and UNKNOWN conditions, see
“NULL value” on page 218 and “Search conditions” on page 189.

IF statement is different from IF expression
Do not confuse the syntax of the IF expression with that of the IF statement.

For information on the IF statement, see IF statement on page 564.

CASE expressions
The CASE expression provides conditional SQL expressions. You can use case
expressions anywhere you can use an expression.

The syntax of the CASE expression is as follows:

CASE expression
WHEN expression THEN expression [, …]
[ELSEexpression] END

You cannot use a subquery as a value expression in a CASE statement.

If the expression following the CASE statement is equal to the expression
following the WHEN statement, then the expression following the THEN
statement is returned. Otherwise, the expression following the ELSE statement
is returned, if it exists.

For example, the following code uses a case expression as the second clause in
a SELECT statement.

SELECT id,
 (CASE name
 WHEN 'Tee Shirt' THEN 'Shirt'
 WHEN 'Sweatshirt' THEN 'Shirt'
 WHEN 'Baseball Cap' THEN 'Hat'
 ELSE 'Unknown'
 END) as Type
FROM "DBA".Product

An alternative syntax is:

CASE
WHEN search-condition THEN expression [, …]
[ELSEexpression] END

Expressions

186 Sybase IQ

If the search condition following the WHEN statement is satisfied, the
expression following the THEN statement is returned. Otherwise the expression
following the ELSE statement is returned, if it exists.

For example, the following statement uses a case expression as the third clause
of a SELECT statement to associate a string with a search condition.

SELECT id, name,
 (CASE
 WHEN name='Tee Shirt' THEN 'Sale'
 WHEN quantity >= 50 THEN 'Big Sale'
 ELSE 'Regular price'
 END) as Type
FROM "DBA".Product

NULLIF function for
abbreviated CASE
expressions

The NULLIF function provides a way to write some CASE statements in short
form. The syntax for NULLIF is as follows:

NULLIF (expression-1, expression-2)

NULLIF compares the values of the two expressions. If the first expression
equals the second expression, NULLIF returns NULL. If the first expression
does not equal the second expression, NULLIF returns the first expression.

Compatibility of expressions
Table 3-2 and Table 3-3 describe the compatibility of expressions and
constants between Adaptive Server Enterprise and Sybase IQ. These tables are
a guide only, and a marking of Both may not mean that the expression performs
in an identical manner for all purposes under all circumstances. For detailed
descriptions, see the Adaptive Server Enterprise documentation and the Sybase
IQ documentation on the individual expression.

In Table 3-2, expr represents an expression, and op represents an operator.

CHAPTER 3 SQL Language Elements

Reference Manual 187

Table 3-2: Compatibility of expressions between ASE and Sybase IQ

Table 3-3: Compatibility of constants between ASE and Sybase IQ

Default interpretation
of delimited strings

By default, Adaptive Server Enterprise and Sybase IQ give different meanings
to delimited strings: that is, strings enclosed in apostrophes (single quotes) and
in quotation marks (double quotes).

Sybase IQ employs the SQL92 convention, that strings enclosed in apostrophes
are constant expressions, and strings enclosed in quotation marks (double
quotes) are delimited identifiers (names for database objects). Adaptive Server
Enterprise employs the convention that strings enclosed in quotation marks are
constants, whereas delimited identifiers are not allowed by default and are
treated as strings.

The quoted_identifier option

Both Adaptive Server Enterprise and Sybase IQ provide a quoted_identifier
option that allows the interpretation of delimited strings to be changed. By
default, the quoted_identifier option is set to OFF in Adaptive Server Enterprise,
and to ON in Sybase IQ.

You cannot use SQL reserved words as identifiers if the quoted_identifier option
is off.

Expression Supported by

constant Both

column name Both

variable name Both

function (expr) Both

- expr Both

expr op expr Both

(expr) Both

(subquery) Both

if-expression Sybase IQ only

Constant Supported by

integer Both

number Both

'string' Both

special-constant Both

host-variable Sybase IQ

Expressions

188 Sybase IQ

For a complete list of reserved words, see Table 3-1 on page 175.

Setting the option Although the Transact-SQL SET statement is not supported for most Adaptive
Server Enterprise connection options, SET is supported for the quoted_identifier
option.

The following statement in either Sybase IQ or Adaptive Server Enterprise
changes the setting of the quoted_identifier option to ON:

SET quoted_identifier ON

With the quoted_identifier option set to ON, Adaptive Server Enterprise allows
table, view, and column names to be delimited by quotes. Other object names
cannot be delimited in Adaptive Server Enterprise.

The following statement in Sybase IQ or Adaptive Server Enterprise changes
the setting of the quoted_identifier option to OFF:

SET quoted_identifier OFF

You can choose to use either the SQL92 or the default Transact-SQL
convention in both Adaptive Server Enterprise and Sybase IQ as long as the
quoted_identifier option is set to the same value in each DBMS.

Examples If you operate with the quoted_identifier option ON (the default Sybase IQ
setting), the following statements involving the SQL keyword user are valid for
both types of DBMS.

CREATE TABLE "user" (
col1 char(5)

) ;
INSERT "user" (col1)
VALUES ('abcde') ;

If you operate with the quoted_identifier option OFF (the default Adaptive
Server Enterprise setting), the following statements are valid for both types of
DBMS.

SELECT *
FROM employee
WHERE emp_lname = "Chin"

CHAPTER 3 SQL Language Elements

Reference Manual 189

Search conditions
Function To specify a search condition for a WHERE clause, a HAVING clause, a CHECK

clause, a JOIN clause, or an IF expression.

Syntax { expression compare expression
| expression compare { ANY | SOME| ALL } (subquery)
| expression IS [NOT] NULL
| expression [NOT] BETWEEN expression AND expression
| expression [NOT] LIKE expression [ESCAPE expression]
| expression [NOT] IN ({ expression | subquery |
... value-expr1 , value-expr2 [, value-expr3] … })
| column-name [NOT] CONTAINS (… word1 [, word2,] [, word3] …)
| EXISTS (subquery)
| NOT condition
| condition AND condition
| condition OR condition
| (condition)
| (condition , estimate)
| condition IS [NOT] { TRUE | FALSE | UNKNOWN }

Parameters compare:
{ = | > | < | >= | <= | <> | != | !< | !> }

Usage Anywhere

Authorization Must be connected to the database

Example For example, the following query retrieves the names and birth years of the
oldest employees:

SELECT name, year_of_birth
FROM employees
WHERE year_of_birth <= ALL (SELECT year_of_birth FROM
employees);

The subqueries that provide comparison values for quantified comparison
predicates might retrieve multiple rows but can have only one column.

Side effects None

See also “Expressions” on page 179.

Description Conditions are used to choose a subset of the rows from a table, or in a control
statement such as an IF statement to determine control of flow.

Search conditions

190 Sybase IQ

SQL conditions do not follow Boolean logic, where conditions are either true
or false. In SQL, every condition evaluates as one of TRUE, FALSE, or
UNKNOWN. This is called three-valued logic. The result of a comparison is
UNKNOWN if either value being compared is the NULL value. For tables
showing how logical operators combine in three-valued logic, see “Three-
valued logic” on page 198.

Rows satisfy a search condition if and only if the result of the condition is
TRUE. Rows for which the condition is UNKNOWN do not satisfy the search
condition. For more information, see “NULL value” on page 218.

Subqueries form an important class of expression that is used in many search
conditions. For more information, see “Subqueries in search conditions” on
page 191.

The different types of search conditions are discussed in the following sections.

Comparison conditions
The syntax for comparison conditions is as follows:

expression compare expression

where compare is a comparison operator. Table 3-4 lists the comparison
operators available in Sybase IQ.

Table 3-4: Comparison operators available in Sybase IQ

Example For example, the following query retrieves the names and birth years of the
oldest employees:

SELECT name, year_of_birth
FROM employees
WHERE year_of_birth <= ALL (SELECT MIN(year_of_birth)

operator description

 = Equal to

> Greater than

< Less than

>= Greater than or equal to

 <= Less than or equal to

 != Not equal to

 <> Not equal to

!> Not greater than

 !< Not less than

CHAPTER 3 SQL Language Elements

Reference Manual 191

FROM employees);

The subqueries that provide comparison values for quantified comparison
predicates, as in the preceding example, might retrieve multiple rows but can
only have one column.

Note All string comparisons are:

• Case sensitive if the database was created as case respect (the default)

• Case insensitive if the database was created as case ignore

Compatibility • Trailing blanks Any trailing blanks in character data are ignored for
comparison purposes by Adaptive Server Enterprise. The behavior of
Sybase IQ when comparing strings is controlled by an option when
creating the database.

• Case sensitivity By default, Sybase IQ databases, like Adaptive
Server Enterprise databases, are created as case sensitive. Comparisons
are carried out with the same attention to case as the database they are
operating on. You can control the case sensitivity of Sybase IQ databases
when creating the database.

Subqueries in search conditions
A subquery is a SELECT statement enclosed in parentheses. Such a SELECT
statement must contain one and only one select list item.

A column can be compared to a subquery in a comparison condition (for
example, >,<, or !=) as long as the subquery returns no more than one row. If
the subquery (which must have one column) returns one row, the value of that
row is compared to the expression. If a subquery returns no rows, its value is
NULL.

Subqueries that return exactly one column and any number of rows can be used
in IN conditions, ANY conditions, ALL conditions, or EXISTS conditions. These
conditions are discussed in the following sections.

Sybase IQ supports UNION only in uncorrelated subquery predicates, not in
scalar value subqueries or correlated subquery predicates.

Subqueries cannot be used inside a CONTAINS or LIKE predicate.

Sybase IQ does not support multiple subqueries in a single OR clause. For
example, the following query has two subqueries joined by an OR:

Search conditions

192 Sybase IQ

CREATE VARIABLE @ln int;

SELECT @ln = 1;select count(*) FROM lineitem

WHERE l_shipdate IN (select l_shipdate FROM lineitem
WHERE l_orderkey IN (2,4,6))

OR l_shipdate IN (select l_shipdate FROM lineitem WHERE
l_orderkey IN (1,3,5))

OR l_linenumber = @ln;

Similar subqueries joined by AND and BETWEEN are allowed.

For more information, see “Comparison conditions” on page 190.

ALL or ANY conditions
The syntax for ANY conditions is:

expression compare ANY (subquery)

where compare is a comparison operator.

For example, an ANY condition with an equality operator:

expression = ANY (subquery)

is TRUE if expression is equal to any of the values in the result of the subquery,
and FALSE if the expression is not NULL and does not equal any of the
columns of the subquery. The ANY condition is UNKNOWN if expression is
the NULL value, unless the result of the subquery has no rows, in which case
the condition is always FALSE.

The keyword SOME can be used instead of ANY.

Restrictions If there is more than one expression on either side of a quantified comparison
predicate, an error message is returned. For example:

Subquery allowed only one select list item

Queries of this type can always be expressed in terms of IN subqueries or scalar
subqueries using MIN and MAX set functions.

Compatibility ANY and ALL subqueries are compatible between Adaptive Server Enterprise
and Sybase IQ. Only Sybase IQ supports SOME as a synonym for ANY.

CHAPTER 3 SQL Language Elements

Reference Manual 193

BETWEEN conditions
The syntax for BETWEEN conditions is as follows:

expr [NOT] BETWEEN start-expr AND end-expr

The BETWEEN condition can evaluate as TRUE, FALSE, or UNKNOWN.
Without the NOT keyword, the condition evaluates as TRUE if expr is between
start-expr and end-expr. The NOT keyword reverses the meaning of the
condition but leaves UNKNOWN unchanged.

The BETWEEN condition is equivalent to a combination of two inequalities:

expr >= start-expr AND expr <= end-expr

A BETWEEN predicate is of the form “A between B and C.” In Sybase IQ 12.6
and prior versions, “A”, “B”, and “C” all had to be value expressions or
columns.

Now either “B” or “C” or both “B” and “C” can be subqueries. “A” must still
be a value expression or column.

Compatibility The BETWEEN condition is compatible between Sybase IQ and Adaptive
Server Enterprise.

LIKE conditions
The syntax for LIKE conditions is:

expression [NOT] LIKE pattern [ESCAPE escape-expr]

The LIKE condition can evaluate as TRUE, FALSE, or UNKNOWN. You can
use LIKE only on string data.

You cannot use subqueries inside a LIKE predicate.

Leading substring searches are supported for LIKE conditions as follows:

• col LIKE 'ABC% DEF%' accelerates the entire LIKE

• col LIKE '%ABC% DEF%' accelerates only the DEF% word

• col LIKE 'ABC% DEF%' accelerates only the ABC word

Certain LIKE predicates execute faster, if a WD index is available.

Without the NOT keyword, the condition evaluates as TRUE if expression
matches the pattern. If either expression or pattern is the NULL value, this
condition is UNKNOWN. The NOT keyword reverses the meaning of the
condition but leaves UNKNOWN unchanged.

Search conditions

194 Sybase IQ

The pattern might contain any number of wildcard characters. The wildcard
characters are:

All other characters must match exactly.

For example, the search condition:

name LIKE 'a%b_'

is TRUE for any row where name starts with the letter a and has the letter b as
its second-to-last character.

If you specify an escape-expr, it must evaluate to a single character. The
character can precede a percent, an underscore, a left square bracket, or another
escape character in the pattern to prevent the special character from having its
special meaning. When escaped in this manner, a percent matches a percent,
and an underscore matches an underscore.

All patterns of 126 characters or less are supported. Patterns of length greater
than 254 characters are not supported. Some patterns of length between 127
and 254 characters are supported, depending on the contents of the pattern.

Searching for one of a
set of characters

You can specify a set of characters to look for by listing the characters inside
square brackets. For example, the following condition finds the strings smith
and smyth:

LIKE 'sm[iy]th'

Searching for one of a
range of characters

Specify a range of characters to look for by listing the ends of the range inside
square brackets, separated by a hyphen. For example, the following condition
finds the strings bough and rough, but not tough:

LIKE '[a-r]ough'

The range of characters [a-z] is interpreted as “greater than or equal to a, and
less than or equal to z,” where the greater than and less than operations are
carried out within the collation of the database. For information on ordering of
characters within a collation, see Chapter 11, “International Languages and
Character Sets” in the Sybase IQ System Administration Guide.

Wildcard Matches

_ (underscore) Any one character

% (percent) Any string of zero or more characters

[] Any single character in the specified range or set

[^] Any single character not in the specified range or set

CHAPTER 3 SQL Language Elements

Reference Manual 195

The lower end of the range must precede the higher end of the range. For
example, a LIKE condition containing the expression [z-a] returns no rows,
because no character matches the [z-a] range.

Unless the database is created as case-sensitive, the range of characters is case
insensitive. For example, the following condition finds the strings Bough,
rough, and TOUGH:

LIKE '[a-z]ough'

If the database is created as a case-sensitive database, the search condition is
case sensitive also.

Combining searches
for ranges and sets

You can combine ranges and sets within square brackets. For example, the
following condition finds the strings bough, rough, and tough:

LIKE '[a-rt]ough'

The bracket [a-mpqs-z] is interpreted as “exactly one character that is either in
the range a to m inclusive, or is p, or is q, or is in the range s to z inclusive.”

Searching for one
character not in a
range

Use the caret character (^) to specify a range of characters that is excluded from
a search. For example, the following condition finds the string tough, but not
the strings rough, or bough:

LIKE '[^a-r]ough'

The caret negates the entire contents of the brackets. For example, the bracket
[^a-mpqs-z] is interpreted as “exactly one character that is not in the range a to
m inclusive, is not p, is not q, and is not in the range s to z inclusive.”

Special cases of
ranges and sets

Any single character in square brackets indicates that character. For example,
[a] matches just the character a. [^] matches just the caret character, [%]
matches only the percent character (the percent character does not act as a
wildcard character in this context), and [_] matches just the underscore
character. Also, [[] matches only the character [.

Other special cases are:

• The expression [a-] matches either of the characters a or -.

• The expression [] is never matched and always returns no rows.

• The expressions [or [abp-q are ill-formed expressions, and give syntax
errors.

• You cannot use wildcard characters inside square brackets. The expression
[a%b] finds one of a, %, or b.

• You cannot use the caret character to negate ranges except as the first
character in the bracket. The expression [a^b] finds one of a, ^, or b.

Search conditions

196 Sybase IQ

Compatibility The ESCAPE clause is supported by Sybase IQ only.

IN conditions
The syntax for IN conditions is:

{ expression [NOT] IN (subquery)
| expression [NOT] IN (expression)
| expression [NOT] IN (value-expr1 , value-expr2
 [, value-expr3] …) }

Without the NOT keyword, the IN condition is TRUE if expression equals any
of the listed values, UNKNOWN if expression is the NULL value, and FALSE
otherwise. The NOT keyword reverses the meaning of the condition but leaves
UNKNOWN unchanged.

The maximum number of values allowed in an IN condition list is 250,000.

Compatibility IN conditions are compatible between Adaptive Server Enterprise and Sybase
IQ.

CONTAINS conditions
The syntax for CONTAINS conditions is as follows:

{ column-name [NOT] CONTAINS ((word1 [,word2
] [, word3]
…)

The column-name must be either a CHAR or VARCHAR column in a base table
and must have a WD index. The word1, word2 and word3 expressions must be
string constants no longer than 255 bytes, each containing exactly one word.
The length of that word cannot exceed the maximum permitted word length of
the column’s word index.

Without the NOT keyword, the CONTAINS condition is TRUE if column-name
contains each of the words, UNKNOWN if column-name is the NULL value,
and FALSE otherwise. The NOT keyword reverses these values but leaves
UNKNOWN unchanged.

For example, this search condition:

varchar_col CONTAINS ('cat', ‘mat’)

is TRUE if the value of varchar_col is The cat is on the mat. If the value
of varchar_col is The cat chased the mouse, this condition is FALSE.

CHAPTER 3 SQL Language Elements

Reference Manual 197

When Sybase IQ executes a statement containing both LIKE and CONTAINS,
the CONTAINS condition takes precedence.

Avoid using the CONTAINS predicate in a view that has a user-defined function,
because the CONTAINS criteria are ignored. Use the LIKE predicate with
wildcards instead, or issue the query outside of a view.

EXISTS conditions
The syntax for EXISTS conditions is as follows:

EXISTS(subquery)

The EXISTS condition is TRUE if the subquery result contains at least one row,
and FALSE if the subquery result does not contain any rows. The EXISTS
condition cannot be UNKNOWN.

Compatibility The EXISTS condition is compatible between Adaptive Server Enterprise and
Sybase IQ.

IS NULL conditions
The syntax for IS NULL conditions is:

expression IS [NOT] NULL

Without the NOT keyword, the IS NULL condition is TRUE if the expression is
the NULL value, and FALSE otherwise. The NOT keyword reverses the
meaning of the condition.

Compatibility The IS NULL condition is compatible between Adaptive Server Enterprise and
Sybase IQ.

Conditions with logical operators
Search conditions can be combined using AND, OR, and NOT.

Conditions are combined using AND as follows:

condition1 AND condition2

The combined condition is TRUE if both conditions are TRUE, FALSE if
either condition is FALSE, and UNKNOWN otherwise.

Conditions are combined using OR as follows:

Search conditions

198 Sybase IQ

condition1 OR condition2

The combined condition is TRUE if either condition is TRUE, FALSE if both
conditions are FALSE, and UNKNOWN otherwise.

Compatibility The AND and OR operators are compatible between Sybase IQ and Adaptive
Server Enterprise.

NOT conditions
The syntax for NOT conditions is:

NOT condition1

The NOT condition is TRUE if condition1 is FALSE, FALSE if condition1 is
TRUE, and UNKNOWN if condition1 is UNKNOWN.

Truth value conditions
The syntax for truth value conditions is:

IS [NOT] truth-value

Without the NOT keyword, the condition is TRUE if the condition evaluates to
the supplied truth-value, which must be one of TRUE, FALSE, or
UNKNOWN. Otherwise, the value is FALSE. The NOT keyword reverses the
meaning of the condition but leaves UNKNOWN unchanged.

Compatibility Truth-valued conditions are supported by Sybase IQ only.

Three-valued logic
The following tables show how the AND, OR, NOT, and IS logical operators of
SQL work in three-valued logic.

AND operator

OR operator

AND TRUE FALSE UNKNOWN

TRUE TRUE FALSE UNKNOWN

FALSE FALSE FALSE FALSE

UNKNOWN UNKNOWN FALSE UNKNOWN

OR TRUE FALSE UNKNOWN

TRUE TRUE TRUE TRUE

CHAPTER 3 SQL Language Elements

Reference Manual 199

NOT operator

IS operator

User-supplied condition hints
The Sybase IQ query optimizer uses information from the available indexes to
select an appropriate strategy for executing a query. For each condition in the
query, the optimizer decides whether the condition can be executed using
indexes, and if so, the optimizer chooses which index and in what order with
respect to the other conditions on that table. The most important factor in these
decisions is the selectivity of the condition; that is, the fraction of the table’s
rows that satisfy that condition.

The optimizer normally decides without user intervention, and it generally
makes optimal decisions. In some situations, however, the optimizer might not
be able to accurately determine the selectivity of a condition before it has been
executed. These situations normally occur only where either the condition is on
a column with no appropriate index available, or where the condition involves
some arithmetic or function expression and is, therefore, too complex for the
optimizer to accurately estimate.

If you have a query that is run frequently, then you may want to experiment to
see whether you can improve the performance of that query by supplying the
optimizer with additional information to aid it in selecting the optimal
execution strategy.

User-supplied condition selectivity

The simplest form of condition hint is to supply a selectivity value that will be
used instead of the value the optimizer would have computed.

FALSE TRUE FALSE UNKNOWN

UNKNOWN TRUE UNKNOWN UNKNOWN

OR TRUE FALSE UNKNOWN

TRUE FALSE UNKNOWN

FALSE TRUE UNKNOWN

IS TRUE FALSE UNKNOWN

TRUE TRUE FALSE FALSE

FALSE FALSE TRUE FALSE

UNKNOWN FALSE FALSE TRUE

Search conditions

200 Sybase IQ

Selectivity hints are supplied within the text of the query by wrapping the
condition within parentheses. Then within the parentheses, after the condition,
you add a comma and a numeric value to be used as the selectivity.

This selectivity value is expressed as a percentage of the table’s rows, which
satisfy the condition. Possible numeric values for selectivity thus range from
100.0 to 0.0.

Note In query plans, selectivity is expressed as a fraction instead of as a
percentage; so a user-supplied selectivity of 35.5 appears in that query’s plan
as a selectivity of 0.355000.

Examples • The following query provides an estimate that one and one half percent of
the ship_date values will be before than 1994/06/30:

SELECT ship_date
FROM sales_order_items
WHERE (ship_date < '1994/06/30', 1.5)
ORDER BY ship_date DESC

• The following query estimates that half a percent of the rows satisfy the
condition:

SELECT *
FROM customer c, sales_order o
WHERE (c.unpaid_balance > 10000.0, 0.5)

AND c.id o.cust_id

Fractional percentages enable more precise user estimates to be specified and
can be particularly important for large tables.

Compatibility SQL Anywhere Studio supports user-supplied selectivity estimates.

Adaptive Server Enterprise does not support user-supplied selectivity
estimates.

User-supplied condition hint strings

In addition to supporting user-supplied selectivity estimates, Sybase IQ also
lets users supply additional hint information to the optimizer through a
condition hint string. These per-condition hint strings let users specify
additional execution preferences for a condition, which the optimizer follows,
if possible. These preferences include which index to use for the condition, the
selectivity of the condition, the phase of execution when the condition is
executed, and the usefulness of the condition, which affects its ordering among
the set of conditions executed within one phase of execution.

CHAPTER 3 SQL Language Elements

Reference Manual 201

Condition hint strings, like the user-supplied selectivity estimates, are supplied
within the text of the query by wrapping the condition within parentheses. Then
within the parentheses and after the condition, you add a comma and a supply
a quoted string containing the desired hints. Within that quoted string each hint
appears as a hint type identifier, followed by a colon and the value for that hint
type. Multiple hints within the same hint string are separated from each other
by a comma, and multiple hints can appear in any order. White space is allowed
between any of two elements within a hint string.

There are four different supported hint types:

• Selectivity hints, which are equivalent to the user-supplied selectivity
estimates

• Index preference hints

• Execution phase hints

• Usefulness hints

Selectivity hints

The first hint type that can appear within a hint string is a selectivity hint. A
selectivity hint is identified by a hint type identifier of either “S” or “s”. Like
user-supplied selectivity estimates, the selectivity value is always expressed as
a percentage of the table’s rows, which satisfy the condition.

Example The following example is exactly equivalent to the second example in “User-
supplied condition selectivity” on page 199.

SELECT *
FROM customer c, sales_order o
WHERE (c.unpaid_balance > 10000.0, 's: 0.5')

AND c.id = o.cust_id

Index preference hints

The next supported hint type is an index preference hint, which is identified by
a hint type identifier of either “I” or “i”. The value for an index preference hint
can be any integer between -10 and 10. The meaning of each positive integer
value is to prefer a specific index type, while negative values indicate that the
specific index type is to be avoided.

Search conditions

202 Sybase IQ

The effect of an index preference hint is the same as that of the
INDEX_PREFERENCE option, except that the preference applies only to the
condition it is associated with rather than all conditions within the query. An
index preference can only affect the execution of a condition if the specified
index type exists on that column and that index type is valid for use when
evaluating the associated condition; not all index types are valid for use with
all conditions. See “INDEX_PREFERENCE option” on page 88 for the
specific meanings of integers between -10 and 10.

Example The following example specifies a 3 percent selectivity and indicates that, if
possible, the condition should be evaluated using an HG index:

SELECT *
FROM customer c, sales_order o
WHERE (c.unpaid_balance > 8000.0, 'S:3.00, I:+2')

AND c.id = o.cust_id

The next example specifies a 37.5 percent selectivity and indicates that if
possible the condition should not be evaluated using an HG index:

SELECT *
FROM customer c, sales_order o
WHERE (c.unpaid_balance > 3000.0, 'i:-2, s:37.500')

AND c.id = o.cust_id

Execution phase hints

The third supported hint type is the execution phase hint, which is identified
with a hint type identifier of either “E” or “e”.

Within the Sybase IQ query engine there are four distinct phases of execution
where conditions can be evaluated. These phases are named invariant, delayed,
bound, and horizontal.

By default, the optimizer chooses to evaluate each condition within the earliest
phase of execution where all the information needed to evaluate that condition
is available. Every condition. therefore, has a default execution phase where it
is evaluated.

Because no condition can be evaluated before the information it needs is
available, the execution phase hint can only be used to delay the execution of
a condition to a phase after its default phase. It cannot be used to force a
condition to be evaluated within any phase earlier than its default phase.

The four phases of condition execution from earliest to latest are described as
follows:

CHAPTER 3 SQL Language Elements

Reference Manual 203

Invariant A condition that refers to only one column (or two columns from
the same table) and that can be evaluated using an index is generally referred
to as a simple invariant condition. Simple invariant condition are normally
evaluated early within the optimization process.

This means that the number of rows satisfying all of those invariant conditions
is available to guide the optimizer’s decisions on the best join order and join
algorithms to use. Because this is the earliest phase of execution, a user can
never force a condition into this phase, but conditions can be forced out of this
phase into later phases.

Delayed Some conditions cannot be evaluated until some other part of a
query has been executed. These delayed conditions are evaluated once when
the query node to which they are attached is first fetched. These conditions fall
into two categories, uncorrelated subquery conditions and IN or
PROBABLY_IN pushdown join conditions created by the optimizer.

Bound Some conditions must be evaluated multiple times. These conditions
generally fall into two categories: conditions containing outer references
within a correlated subquery, and pushdown equality join conditions created by
the optimizer. The outer reference conditions, for example, are reevaluated
each time the outer reference value changes during the query's execution.

Horizontal Some conditions, such as those which contain more than two
columns from a table, must be evaluated one row at a time, rather than by using
an index.

An execution phase hint accepts a values that identifies in which execution
phase the user wants the condition to be evaluated. Each value is a case
insensitive single character:

• D – Delayed

• B – Bound

• H – Horizontal

Example The following example shows a condition hint string which indicates that the
condition should be moved into the “Delayed” phase of execution, and it
indicates that if possible the condition should be evaluated using an LF index.:

SELECT *
FROM customer c, sales_order o
WHERE (c.unpaid_balance > 10000.0, 'E:D, I:1')

AND c.id = o.cust_id AND o.order_price > 5000.0

Search conditions

204 Sybase IQ

Usefulness hints

The final supported hint type is the usefulness hint, which is identified by a hint
type identifier of either “U” or “u”. The value for a usefulness hint can be any
numeric value between 0.0 and 10.0. Within the optimizer a usefulness value
is computed for every condition, and the usefulness value is then used to
determine the order of evaluation among the set of conditions to be evaluated
within the same phase of execution. The higher the usefulness value, the earlier
it appears in the order of evaluation. Supplying a usefulness hint lets users
place a condition at a particular point within the order of evaluation, but it
cannot change the execution phase within which the condition is evaluated.

Example The following example shows a condition hint string which indicates that the
condition should be moved into the “Delayed” phase of execution, and that its
usefulness should be set to 3.25 within that “Delayed” phase.

SELECT *
FROM customer c, sales_order o
WHERE (c.unpaid_balance > 10000.0, 'U: 3.25, E: D')
AND c.id = o.cust_id AND o.order_price > 5000.0

Compatibility SQL Anywhere Studio does not support user-supplied condition hint strings.

Adaptive Server Enterprise does not support user-supplied condition hint
strings.

Guidelines for usage of user-supplied condition hints

Condition hints are generally appropriate only within frequently run queries.

Only advanced users should experiment with condition hints. The optimizer
generally makes optimal decisions, except where it cannot infer accurate
information about a condition from the available indexes.

The optimizer often rewrites or simplifies the original conditions, and it also
infers new conditions from the original conditions. Condition hints are not
carried through new to conditions inferred by the optimizer, nor are they
carried through to simplified conditions.

CHAPTER 3 SQL Language Elements

Reference Manual 205

Special values
Special values can be used in expressions, and as column defaults when
creating tables.

CURRENT DATABASE special value
Function CURRENT DATABASE returns the name of the current database.

Data type STRING

See also “Expressions” on page 179

CURRENT DATE special value
Function The current year, month and day.

Data type DATE

See also “Expressions” on page 179

“Date and time data types” on page 234

CURRENT PUBLISHER special value
Function CURRENT PUBLISHER returns a string that contains the publisher user ID of

the database for SQL Remote replications.

Data type STRING

CURRENT PUBLISHER can be used as a default value in columns with
character data types.

See also “Expressions” on page 179

Sybase IQ Troubleshooting and Recovery Guide

CURRENT TIME special value
Function The current hour, minute, second, and fraction of a second.

Data type TIME

Special values

206 Sybase IQ

Description The fraction of a second is stored to 6 decimal places, but the accuracy of the
current time is limited by the accuracy of the system clock.

See also “Expressions” on page 179

“Date and time data types” on page 234

CURRENT TIMESTAMP special value
Function Combines CURRENT DATE and CURRENT TIME to form a TIMESTAMP value

containing the year, month, day, hour, minute, second and fraction of a second.
As with CURRENT TIME, the accuracy of the fraction of a second is limited by
the system clock.

CURRENT TIMESTAMP defaults to 3 digits.

Data type TIMESTAMP

See also “Expressions” on page 179

“Date and time data types” on page 234

CURRENT USER special value
Function CURRENT USER returns a string that contains the user ID of the current

connection.

Data type STRING

CURRENT USER can be used as a default value in columns with character data
types.

Description On UPDATE, columns with a default value of CURRENT USER are not
changed.

See also “Expressions” on page 179

LAST USER special value
Function The name of the user who last modified the row.

Data type STRING

CHAPTER 3 SQL Language Elements

Reference Manual 207

LAST USER can be used as a default value in columns with character data
types.

Description On INSERT and LOAD, this constant has the same effect as CURRENT USER.
On UPDATE, if a column with a default value of LAST USER is not explicitly
modified, it is changed to the name of the current user.

When combined with the DEFAULT TIMESTAMP, a default value of LAST
USER can be used to record (in separate columns) both the user and the date
and time a row was last changed.

See also “CURRENT USER special value” on page 206

“CURRENT TIMESTAMP special value” on page 206

CREATE TABLE statement on page 499

SQLCODE special value
Function Current SQLCODE value.

DATA TYPE STRING

DESCRIPTION The SQLCODE value is set after each statement. You can check the SQLCODE
to see whether or not the statement succeeded.

See also “Expressions” on page 179

Sybase IQ Troubleshooting and Recovery Guide

SQLSTATE special value
Function Current SQLSTATE value.

Data type STRING

Description The SQLSTATE value is set after each statement. You can check the SQLSTATE
to see whether or not the statement succeeded.

See also “Expressions” on page 179

Sybase IQ Troubleshooting and Recovery Guide

Special values

208 Sybase IQ

TIMESTAMP special value
Function TIMESTAMP indicates when each row in the table was last modified.

Data type TIMESTAMP

Description When a column is declared with DEFAULT TIMESTAMP, a default value is
provided for insert and load operations. The value is updated with the current
date and time whenever the row is updated.

On INSERT and LOAD, DEFAULT TIMESTAMP has the same effect as
CURRENT TIMESTAMP. On UPDATE, if a column with a default value of
TIMESTAMP is not explicitly modified, the value of the column is changed to
the current date and time.

Note Sybase IQ does not support DEFAULT values of UTC TIMESTAMP or
CURRENT UTC TIMESTAMP, nor does IQ support the database option
DEFAULT_TIMESTAMP_INCREMENT. Sybase IQ generates an error every time
an attempt is made to insert or update the DEFAULT value of a column of type
UTC TIMESTAMP or CURRENT UTC TIMESTAMP.

See also “Date and time data types” on page 234

USER special value
Function USER returns a string that contains the user ID of the current connection.

Data type STRING

USER can be used as a default value in columns with character data types.

Description On UPDATE, columns with a default value of USER are not changed.

See also “Expressions” on page 179

“CURRENT USER special value” on page 206

“LAST USER special value” on page 206

CHAPTER 3 SQL Language Elements

Reference Manual 209

Variables
Sybase IQ supports three levels of variables:

• Local variables These are defined inside a compound statement in a
procedure or batch using the DECLARE statement. They exist only inside
the compound statement.

• Connection-level variables These are defined with a CREATE
VARIABLE statement. They belong to the current connection, and
disappear when you disconnect from the database or when you use the
DROP VARIABLE statement.

• Global variables These are variables that have system-supplied values.

Local and connection-level variables are declared by the user, and can be used
in procedures or in batches of SQL statements to hold information. Global
variables are system-supplied variables that provide system-supplied values.
All global variables have names beginning with two @ signs. For example, the
global variable @@version has a value that is the current version number of
the database server. Users cannot define global variables.

Local variables
Local variables are declared using the DECLARE statement, which can be used
only within a compound statement (that is, bracketed by the BEGIN and END
keywords). The variable is initially set as NULL. You can set the value of the
variable using the SET statement, or you can assign the value using a SELECT
statement with an INTO clause.

The syntax of the DECLARE statement is as follows:

DECLARE variable-name data-type

You can pass local variables as arguments to procedures, as long as the
procedure is called from within the compound statement.

Examples • The following batch illustrates the use of local variables:

BEGIN
DECLARE local_var INT ;
SET local_var = 10 ;
MESSAGE 'local_var = ', local_var ;
END

Running this batch from ISQL displays this message on the server
window:

Variables

210 Sybase IQ

local_var = 10

• The variable local_var does not exist outside the compound statement in
which it is declared. The following batch is invalid, and displays a column
not found error:

-- This batch is invalid.
BEGIN
DECLARE local_var INT ;
SET local_var = 10 ;
MESSAGE 'local_var = ', local_var ;
END;
MESSAGE 'local_var = ', local_var ;

• The following example illustrates the use of SELECT with an INTO clause
to set the value of a local variable:

BEGIN
DECLARE local_var INT ;
SELECT 10 INTO local_var ;
MESSAGE 'local_var = ', local_var ;
END

Running this batch from ISQL displays this message on the server
window:

local_var = 10

Compatibility • Names Adaptive Server Enterprise and Sybase IQ both support local
variables. In Adaptive Server Enterprise, all variables must be prefixed
with an @ sign. In Sybase IQ, the @ prefix is optional. To write
compatible SQL, ensure all your variables have the @ prefix.

• Scope The scope of local variables is different in Sybase IQ and
Adaptive Server Enterprise. Sybase IQ supports the use of the DECLARE
statement to declare local variables within a batch. However, if the
DECLARE is executed within a compound statement, the scope is limited
to the compound statement.

• Declaration Only one variable can be declared for each DECLARE
statement in Sybase IQ. In Adaptive Server Enterprise, more than one
variable can be declared in a single statement.

CHAPTER 3 SQL Language Elements

Reference Manual 211

Connection-level variables
Connection-level variables are declared with the CREATE VARIABLE
statement. The CREATE VARIABLE statement can be used anywhere except
inside compound statements. Connection-level variables can be passed as
parameters to procedures.

The syntax for CREATE VARIABLE is:

CREATE VARIABLE variable-name data-type

When a variable is created, it is initially set to NULL. You can set the value of
connection-level variables in the same way as local variables, using the SET
statement or using a SELECT statement with an INTO clause.

Connection-level variables exist until the connection is terminated, or until you
explicitly drop the variable using the DROP VARIABLE statement. The
following statement drops the variable con_var:

DROP VARIABLE con_var

Example • The following batch of SQL statements illustrates the use of connection-
level variables.

CREATE VARIABLE con_var INT;
SET con_var = 10;
MESSAGE 'con_var = ', con_var;

Running this batch from ISQL displays this message on the server
window:

con_var = 10

Compatibility Adaptive Server Enterprise does not support connection-level variables.

Global variables
Global variables have values set by Sybase IQ. For example, the global
variable @@version has a value that is the current version number of the
database server.

Global variables are distinguished from local and connection-level variables
by two @ signs preceding their names. For example, @@error is a global
variable. Users cannot create global variables, and cannot update the value of
global variables directly.

Variables

212 Sybase IQ

Some global variables, such as @@spid, hold connection-specific information
and therefore have connection-specific values. Other variables, such as
@@connections, have values that are common to all connections.

Global variable and
special constants

The special constants such as CURRENT DATE, CURRENT TIME, USER,
SQLSTATE, and so on are similar to global variables.

The following statement retrieves the value of the version global variable:

SELECT @@version

In procedures, global variables can be selected into a variable list. The
following procedure returns the server version number in the ver parameter.

CREATE PROCEDURE VersionProc (OUT ver
VARCHAR (100))

BEGIN
SELECT @@version
INTO ver;

END

In Embedded SQL, global variables can be selected into a host variable list.

List of global variables Table 3-5 lists the global variables available in Sybase IQ.

CHAPTER 3 SQL Language Elements

Reference Manual 213

Table 3-5: Sybase IQ global variables

Variable name Meaning

@@error Commonly used to check the error status (succeeded or
failed) of the most recently executed statement. Contains
0 if the previous transaction succeeded; otherwise,
contains the last error number generated by the system. A
statement such as if @@error != 0 return causes an exit if
an error occurs. Every SQL statement resets @@error, so
the status check must immediately follow the statement
whose success is in question.

@@fetch_status Contains status information resulting from the last fetch
statement. @@fetch_status may contain the following
values

• 0 The fetch statement completed successfully.

• -1 The fetch statement resulted in an error.

• -2 There is no more data in the result set.

This feature is the same as @@sqlstatus, except that it
returns different values. It is for Microsoft SQL Server
compatibility.

@@identity The last value inserted into an Identity/Autoincrement
column by an insert, load or update statement.
@@identity is reset each time a row is inserted into a
table. If a statement inserts multiple rows, @@identity
reflects the Identity/Autoincrement value for the last row
inserted. If the affected table does not contain an Identity/
Autoincrement column, @@identity is set to 0. The value
of @@identity is not affected by the failure of an insert,
load, or update statement, or the rollback of the
transaction that contained the failed statement.
@@identity retains the last value inserted into an
Identity/Autoincrement column, even if the statement
that inserted that value fails to commit.

@@isolation Current isolation level. @@isolation takes the value of
the active level.

@@procid Stored procedure ID of the currently executing
procedure.

@@servername Name of the current database server.

@@sqlstatus Contains status information resulting from the last
FETCH statement.

@@version Version number of the current version of Sybase IQ.

Variables

214 Sybase IQ

Compatibility Table 3-6 includes all Adaptive Server Enterprise global variables supported in
Sybase IQ. Adaptive Server Enterprise global variables not supported by
Sybase IQ are not included in the list. In contrast to Table 3-5, this list includes
all global variables that return a value, including those for which the value is
fixed at NULL, 1, -1, or 0, and might not be meaningful.

Table 3-6: ASE global variables supported in Sybase IQ

Global variable Returns

@@char_convert Returns 0.

@@client_csname In Adaptive Server Enterprise, the client’s character set
name. Set to NULL if client character set has never been
initialized; otherwise, contains the name of the most
recently used character set. Returns NULL in Sybase IQ.

@@client_csid In Adaptive Server Enterprise, the client’s character set ID.
Set to -1 if client character set has never been initialized;
otherwise, contains the most recently used client character
set ID from syscharsets. Returns -1 in Sybase IQ.

@@connections The number of logins since the server was last started.

@@cpu_busy In Adaptive Server Enterprise, the amount of time, in ticks,
that the CPU has spent performing Adaptive Server
Enterprise work since the last time Adaptive Server
Enterprise was started. In Sybase IQ, returns 0.

@@error Commonly used to check the error status (succeeded or
failed) of the most recently executed statement. Contains 0
if the previous transaction succeeded; otherwise, contains
the last error number generated by the system. A statement
such as:

if @@error != 0 return

causes an exit if an error occurs. Every statement resets
@@error, including PRINT statements or IF tests, so the
status check must immediately follow the statement whose
success is in question.

@@identity In Adaptive Server Enterprise, the last value inserted into
an IDENTITY column by an INSERT, LOAD, or SELECT
INTO statement. @@identity is reset each time a row is
inserted into a table. If a statement inserts multiple rows,
@@identity reflects the IDENTITY value for the last row
inserted. If the affected table does not contain an IDENTITY
column, @@identity is set to 0. The value of @@identity
is not affected by the failure of an INSERT or SELECT
INTO statement, or the rollback of the transaction that
contained the failed statement. @@identity retains the last
value inserted into an IDENTITY column, even if the
statement that inserted that value fails to commit.

CHAPTER 3 SQL Language Elements

Reference Manual 215

@@idle In Adaptive Server Enterprise, the amount of time, in ticks,
that Adaptive Server Enterprise has been idle since the
server was last started. In Sybase IQ, returns 0.

@@io_busy In Adaptive Server Enterprise, the amount of time, in ticks,
that Adaptive Server Enterprise has spent performing input
and output operations since the server was last started. In
Sybase IQ, returns 0.

@@isolation Current isolation level of the connection. In Adaptive
Server Enterprise, @@isolation takes the value of the
active level.

@@langid In Adaptive Server Enterprise, defines the local language
ID of the language currently in use. In Sybase IQ, returns 0.

@@language In Adaptive Server Enterprise, defines the name of the
language currently in use. In Sybase IQ, returns “English”.

@@maxcharlen In Adaptive Server Enterprise, maximum length, in bytes,
of a character in the Adaptive Server Enterprise default
character set. In Sybase IQ, returns 1.

@@max_
connections

For the network server, the maximum number of active
clients (not database connections, as each client can
support multiple connections). For Adaptive Server
Enterprise, the maximum number of connections to the
server.

@@ncharsize In Adaptive Server Enterprise, average length, in bytes, of
a national character. In Sybase IQ, returns 1.

@@nestlevel In Adaptive Server Enterprise, nesting level of current
execution (initially 0). Each time a stored procedure or
trigger calls another stored procedure or trigger, the nesting
level is incremented. In Sybase IQ, returns -1.

@@pack_received In Adaptive Server Enterprise, number of input packets
read by Adaptive Server Enterprise since the server was
last started. In Sybase IQ, returns 0.

@@pack_sent In Adaptive Server Enterprise, number of output packets
written by Adaptive Server Enterprise since the server was
last started. In Sybase IQ, returns 0.

@@packet_errors In Adaptive Server Enterprise, number of errors that have
occurred while Adaptive Server Enterprise was sending
and receiving packets. In Sybase IQ, returns 0.

@@procid Stored procedure ID of the currently executing procedure.

@@servername Name of the local Adaptive Server Enterprise or Sybase IQ
server.

Global variable Returns

Variables

216 Sybase IQ

@@spid In Adaptive Server Enterprise, server process ID number
of the current process. In Sybase IQ, the connection handle
for the current connection. This is the same value as that
displayed by the sa_conn_info procedure.

@@sqlstatus Contains status information resulting from the last FETCH
statement. @@sqlstatus may contain the following values:

• 0 – the FETCH statement completed successfully.

• 1 – the FETCH statement resulted in an error.

• 2 – there is no more data in the result set.

@@thresh_hysteresis In Adaptive Server Enterprise, change in free space
required to activate a threshold. In Sybase IQ, returns 0.

@@timeticks In Adaptive Server Enterprise, number of microseconds
per tick. The amount of time per tick is machine-
dependent. In Sybase IQ, returns 0.

@@total_errors In Adaptive Server Enterprise, number of errors that have
occurred while Adaptive Server Enterprise was reading or
writing. In Sybase IQ, returns 0.

@@total_read In Adaptive Server Enterprise, number of disk reads by
Adaptive Server Enterprise since the server was last
started. In Sybase IQ, returns 0.

@@total_write In Adaptive Server Enterprise, number of disk writes by
Adaptive Server Enterprise since the server was last
started. In Sybase IQ, returns 0.

@@tranchained Current transaction mode of the Transact-SQL program.
@@tranchained returns 0 for unchained or 1 for chained.

@@trancount Nesting level of transactions. Each BEGIN TRANSACTION
in a batch increments the transaction count.

@@transtate In Adaptive Server Enterprise, current state of a transaction
after a statement executes. In Sybase IQ, returns -1.

@@version Information on the current version of Adaptive Server
Enterprise or Sybase IQ.

Global variable Returns

CHAPTER 3 SQL Language Elements

Reference Manual 217

Comments
Comments are used to attach explanatory text to SQL statements or statement
blocks. The database server does not execute comments.

Several comment indicators are available in Sybase IQ:

• -- (Double hyphen) The database server ignores any remaining
characters on the line. This is the SQL92 comment indicator.

• // (Double slash) The double slash has the same meaning as the double
hyphen.

• /* … */ (Slash-asterisk) Any characters between the two comment
markers are ignored. The two comment markers might be on the same or
different lines. Comments indicated in this style can be nested. This style
of commenting is also called C-style comments.

• % (Percent sign) The percent sign has the same meaning as the double
hyphen, if the PERCENT_AS_COMMENT option is set to ON. Using % as
a comment indicator is not recommended.

Note The double-hyphen and the slash-asterisk comment styles are compatible
with Adaptive Server Enterprise.

Examples • This example illustrates the use of double-dash comments:

CREATE FUNCTION fullname (firstname CHAR(30),
lastname CHAR(30))

RETURNS CHAR(61)
-- fullname concatenates the firstname and lastname
-- arguments with a single space between.
BEGIN

DECLARE name CHAR(61);
SET name = firstname || ' ' || lastname;
RETURN (name);

END

• This example illustrates the use of C-style comments:

/*
Lists the names and employee IDs of employees
who work in the sales department.

*/
CREATE VIEW SalesEmployee AS
SELECT emp_id, emp_lname, emp_fname

NULL value

218 Sybase IQ

FROM "dba".employee
WHERE dept_id = 200

NULL value
Function To specify a value that is unknown or not applicable

Syntax NULL

Usage Anywhere

Permissions Must be connected to the database

Side effects None

Description The NULL value is a special value that is different from any valid value for any
data type. However, the NULL value is a legal value in any data type. The
NULL value is used to represent missing or inapplicable information. These
are two separate and distinct cases where NULL is used:

SQL allows columns to be created with the NOT NULL restriction. This means
that those particular columns cannot contain the NULL value.

The NULL value introduces the concept of three valued logic to SQL. The
NULL value compared using any comparison operator with any value
including the NULL value is UNKNOWN. The only search condition that
returns TRUE is the IS NULL predicate. In SQL, rows are selected only if the
search condition in the WHERE clause evaluates to TRUE; rows that evaluate
to UNKNOWN or FALSE are not selected.

You can also use the IS [NOT] truth-value clause, where truth-value is one of
TRUE, FALSE or UNKNOWN, to select rows where the NULL value is
involved. See “Search conditions” on page 189 for a description of this clause.

In the following examples, the column Salary contains the NULL value.

Situation Description

missing The field does have a value, but that value is unknown.

inapplicable The field does not apply for this particular row.

Condition Truth value Selected?

Salary = NULL UNKNOWN NO

Salary <> NULL UNKNOWN NO

NOT (Salary = NULL) UNKNOWN NO

CHAPTER 3 SQL Language Elements

Reference Manual 219

The same rules apply when comparing columns from two different tables.
Therefore, joining two tables together does not select rows where any of the
columns compared contain the NULL value.

The NULL value also has an interesting property when used in numeric
expressions. The result of any numeric expression involving the NULL value
is the NULL value. This means that if the NULL value is added to a number,
the result is the NULL value—not a number. If you want the NULL value to be
treated as 0, you must use the ISNULL(expression, 0) function (see Chapter 5,
“SQL Functions”).

Many common errors in formulating SQL queries are caused by the behavior
of NULL. Be careful to avoid these problem areas. See “Search conditions” on
page 189 for a description of the effect of three-valued logic when combining
search conditions.

Example The following INSERT statement inserts a NULL into the date_returned
column of the Borrowed_book table.

INSERT
INTO Borrowed_book
(date_borrowed, date_returned, book)
VALUES (CURRENT DATE, NULL, '1234')

NOT (Salary <> NULL) UNKNOWN NO

Salary = 1000 UNKNOWN NO

Salary IS NULL TRUE YES

Salary IS NOT NULL FALSE NO

Salary = 1000 IS
UNKNOWN

TRUE YES

Condition Truth value Selected?

NULL value

220 Sybase IQ

Reference Manual 221

C H A P T E R 4 SQL Data Types

About this chapter This chapter describes the data types supported by Sybase IQ.

Contents Topic Page

Character data types 222

Numeric data types 224

Binary data types 229

Bit data type 234

Date and time data types 234

Sending dates and times to the database 236

Retrieving dates and times from the database 236

Comparing dates and times 237

Using unambiguous dates and times 238

Domains 239

Data type conversions 241

Year 2000 compliance 244

Character data types

222 Sybase IQ

Character data types
Description For storing strings of letters, numbers and symbols.

Syntax CHAR [(max-length)]

CHARACTER [(max-length)]

CHARACTER VARYING [(max-length)]

VARCHAR [(max-length)]

UNIQUEIDENTIFIERSTR

Usage CHAR Character data of maximum length max-length bytes. If max-length
is omitted, the default is 1. The maximum size allowed is 32KB – 1. See Notes
for restrictions on CHAR data greater than 255 bytes.

See the notes below on character data representation in the database, and on
storage of long strings.

All CHAR values are blank padded up to max-length, regardless of whether the
BLANK PADDING option is specified. When multibyte character strings are
held as a CHAR type, the maximum length is still in bytes, not characters.

CHARACTER Same as CHAR.

CHARACTER VARYING Same as VARCHAR.

LONG VARCHAR Arbitrary length character data. The maximum size is
limited by the maximum size of the database file (currently 2 gigabytes).

TEXT This is a user-defined data type. It is implemented as a LONG
VARCHAR allowing NULL.

VARCHAR Same as CHAR, except that no blank padding is added to the
storage of these strings, and VARCHAR strings can have a maximum length of
(32KB – 1). See Notes for restrictions on VARCHAR data greater than 255
bytes.

UNIQUEIDENTIFIERSTR Domain implemented as CHAR(36). This data
type is used for remote data access, when mapping Microsoft SQL Server
uniqueidentifier columns.

Notes

As a separately licensed option, Sybase IQ supports Character Large Object
(CLOB) data with a length ranging from zero (0) to 512TB (terabytes) for an
IQ page size of 128KB or 2PB (petabytes) for an IQ page size of 512KB. (The
maximum length is equal to 4GB multiplied by the database page size.) For
more information, see Large Objects Management in Sybase IQ.

Storage sizes Table 4-1 lists the storage size of character data.

CHAPTER 4 SQL Data Types

Reference Manual 223

Table 4-1: Storage size of character data

Character sets and
code pages

Character data is placed in the database using the exact binary representation
that is passed from the application. This usually means that character data is
stored in the database with the binary representation of the character set used
by your system. You can find documentation about character sets in the
documentation for your operating system.

On Windows, code pages are the same for the first 128 characters. If you use
special characters from the top half of the code page (accented international
language characters), you must be careful with your databases. In particular, if
you copy the database to a different machine using a different code page, those
special characters are retrieved from the database using the original code page
representation. With the new code page, they appear on the screen to be the
wrong characters.

This problem also appears if you have two clients using the same multiuser
server, but running with different code pages. Data inserted or updated by one
client might appear incorrect to another.

This problem also shows up if a database is used across platforms.
PowerBuilder and many other Windows applications insert data into the
database in the standard ANSI character set. If non-Windows applications
attempt to use this data, they do not properly display or update the extended
characters.

This problem is quite complex. If any of your applications use the extended
characters in the upper half of the code page, make sure that all clients and all
machines using the database use the same or a compatible code page.

Indexes All index types, except DATE, TIME, and DTTM, are supported for CHAR data
and VARCHAR data less than or equal to 255 bytes in length.

Restriction on CHAR and VARCHAR data over 255 bytes

Only the default index, WD, and CMP index types are supported for CHAR and
VARCHAR columns over 255 bytes. You cannot create an LF, HG, HNG, DATE,
TIME, or DTTM index for these columns.

Data type Column definition Input data Storage

CHARACTER,
CHAR

width of (32K – 1) bytes (32K – 1) bytes (32K – 1) bytes

VARCHAR,
CHARACTER
VARYING

width of (32K – 1) bytes (32K – 1) bytes (32K – 1) bytes

Numeric data types

224 Sybase IQ

Compatibility

• The CHARACTER (n) alternative for CHAR is not supported in Adaptive
Server Enterprise.

• Sybase IQ does not support the NCHAR , NVARCHAR, UNICHAR, and
UNIVARCHAR data types provided by Adaptive Server Enterprise. Sybase
IQ supports Unicode in the CHAR and VARCHAR data types.

• Sybase IQ supports a longer LONG VARCHAR data type than Adaptive
Server Anywhere. For more information on the Sybase IQ data type LONG
VARCHAR, see Large Objects Management in Sybase IQ.

• For compatibility between Sybase IQ and Adaptive Server Enterprise,
always specify a length for character data types.

Long strings Adaptive Server Anywhere treats CHAR, VARCHAR, and LONG VARCHAR
columns all as the same type. Values up to 254 characters are stored as short
strings, with a preceding length byte. Any values that are longer than 255 bytes
are considered long strings. Characters after the 255th are stored separate from
the row containing the long string value.

There are several functions (see SQL Functions) that will ignore the part of any
string past the 255th character. They are soundex, similar, and all of the date
functions. Also, any arithmetic involving the conversion of a long string to a
number will work on only the first 255 characters. It would be extremely
unusual to run in to one of these limitations.

All other functions and all other operators work with the full length of long
strings.

Numeric data types
Description For storing numerical data.

Syntax [UNSIGNED] BIGINT

[UNSIGNED] { INT | INTEGER }

SMALLINT

TINYINT

DECIMAL [(precision [, scale])]

NUMERIC [(precision [, scale])]

DOUBLE

CHAPTER 4 SQL Data Types

Reference Manual 225

FLOAT [(precision)]

REAL

Usage BIGINT A signed 64-bit integer, requiring 8 bytes of storage.

You can specify integers as UNSIGNED. By default the data type is signed. Its
range is between -9223372036854775808 and 9223372036854775807
(signed) or from 0 to 18446744073709551615 (unsigned).

INT or INTEGER A signed 32-bit integer with a range of values between
-2147483648 and 2147483647 requiring 4 bytes of storage.

The INTEGER data type is an exact numeric data type; its accuracy is preserved
after arithmetic operations.

You can specify integers as UNSIGNED; by default the data type is signed. The
range of values for an unsigned integer is between 0 and 4294967295.

SMALLINT A signed 16-bit integer with a range between -32768 and 32767,
requiring 2 bytes of storage.

The SMALLINT data type is an exact numeric data type; its accuracy is
preserved after arithmetic operations.

TINYINT An unsigned 8-bit integer with a range between 0 and 255,
requiring 1 byte of storage.

The TINYINT data type is an exact numeric data type; its accuracy is preserved
after arithmetic operations.

DECIMAL A signed decimal number with precision total digits and with
scale of the digits after the decimal point. The precision can equal 1 to 126, and
the scale can equal 0 up to precision value. The defaults are scale = 38 and
precision = 126. Results are calculated based on the actual data type of the
column to ensure accuracy, but you can set the maximum scale of the result
returned to the application. For more information, see the
“MAX_CLIENT_NUMERIC_SCALE option” on page 111 and the SET
OPTION statement on page 647.

Table 4-2 lists the storage required for a decimal number.

Numeric data types

226 Sybase IQ

Table 4-2: Storage size for a decimal number

The storage requirement in bytes for a decimal value with a precision greater
than 18 can be calculated using the following formula:

4 + 2 * (int(((prec - scale) + 3) / 4) +
int((scale + 3) / 4) + 1)

where int takes the integer portion of its argument. The storage used by a
column is based upon the precision and scale of the column. Each cell in the
column has enough space to hold the largest value of that precision and scale.
For example:

NUMERIC(18,4) takes 8 bytes per cell
NUMERIC(19,4) takes 16 bytes per cell

The DECIMAL data type is an exact numeric data type; its accuracy is preserved
to the least significant digit after arithmetic operations. Its maximum absolute
value is the number of nines defined by [precision - scale], followed by the
decimal point, and then followed by the number of nines defined by scale. The
minimum absolute nonzero value is the decimal point, followed by the number
of zeros defined by [scale - 1], then followed by a single one. For example:

NUMERIC (3,2) Max positive = 9.99 Min non-zero = 0.01
Max negative = -9.99

If neither precision nor scale is specified for the explicit conversion of NULL
to NUMERIC, the default is NUMERIC(1,0). For example,

SELECT CAST(NULL AS NUMERIC) A,
CAST(NULL AS NUMERIC(15,2)) B

is described as:

A NUMERIC(1,0)
B NUMERIC(15,2)

NUMERIC Same as DECIMAL.

Precision Storage

1 to 4 2 bytes

5 to 9 4 bytes

10 to 18 8 bytes

19 to 126 See below

CHAPTER 4 SQL Data Types

Reference Manual 227

DOUBLE A signed double-precision floating-point number stored in 8 bytes.
The range of absolute, nonzero values is between 2.2250738585072014e-308
and 1.797693134862315708e+308. Values held as DOUBLE are accurate to 15
significant digits, but might be subject to rounding errors beyond the fifteenth
digit.

The DOUBLE data type is an approximate numeric data type; it is subject to
rounding errors after arithmetic operations.

FLOAT If precision is not supplied, the FLOAT data type is the same as the
REAL data type. If precision supplied, then the FLOAT data type is the same as
the REAL or DOUBLE data type, depending on the value of the precision. The
cutoff between REAL and DOUBLE is platform-dependent, and it is the number
of bits used in the mantissa of single-precision floating point number on the
platform.

When a column is created using the FLOAT data type, columns on all
platforms are guaranteed to hold the values to at least the specified minimum
precision. In contrast, REAL and DOUBLE do not guarantee a platform-
independent minimum precision.

The FLOAT data type is an approximate numeric data type; it is subject to
rounding errors after arithmetic operations.

You can tune the behavior of the FLOAT data type for compatibility with
Adaptive Server Enterprise using the “FLOAT_AS_DOUBLE option
[TSQL]” on page 77.

REAL A signed single-precision floating-point number stored in 4 bytes. The
range of absolute, nonzero values is 1.175494351e-38 to 3.402823466e+38.
Values held as REAL are accurate to 6 significant digits, but might be subject to
rounding errors beyond the sixth digit.

The REAL data type is an approximate numeric data type; it is subject to
rounding errors after arithmetic operations.

Notes

• The INTEGER, NUMERIC, and DECIMAL data types are sometimes called
exact numeric data types, in contrast to the approximate numeric data
types FLOAT, DOUBLE, and REAL. Only exact numeric data is guaranteed
to be accurate to the least significant digit specified after arithmetic
operations.

• If a join column is a REAL data type, you must set FLOAT_AS_DOUBLE to
OFF when creating join indexes, or an error occurs. Issues may also result
when using inexact numerics for join columns.

Numeric data types

228 Sybase IQ

• Do not fetch TINYINT columns into Embedded SQL variables defined as
CHAR or UNSIGNED CHAR, since the result is an attempt to convert the
value of the column to a string and then assign the first byte to the variable
in the program.

Indexes • The CMP and HNG index types do not support the FLOAT, DOUBLE, and
REAL data types, and the HG index type is not recommended.

• The WD, DATE, TIME, and DTTM index types do not support the numeric
data types.

Compatibility

• In embedded SQL, fetch TINYINT columns into 2-byte or 4-byte integer
columns. Also, to send a TINYINT value to a database, the C variable
should be an integer.

• Adaptive Server Enterprise 12.5.x versions do not support unsigned
integers. You can map Sybase IQ unsigned integers to Adaptive Server
Enterprise signed integers or numeric data, and the data are converted
implicitly.

• Map IQ UNSIGNED SMALLINT data to ASE INT

• If you have negative values, map IQ UNSIGNED BIGINT to ASE
NUMERIC (precision, scale)

To avoid performance issues for cross-database joins on UNSIGNED
BIGINT columns, the best approach is to cast to a (signed) BIGINT on
the Sybase IQ side.

• You should avoid default precision and scale settings for NUMERIC and
DECIMAL data types, as these differ by product:

• The FLOAT (p) data type is a synonym for REAL or DOUBLE, depending
on the value of p. For Adaptive Server Enterprise, REAL is used for p less
than or equal to 15, and DOUBLE for p greater than 15. For Sybase IQ, the
cutoff is platform-dependent, but on all platforms, the cutoff value is
greater than 22.

Database Default precision Default scale

Sybase IQ 126 38

Adaptive Server
Enterprise

18 0

Adaptive Server
Anywhere

3 6

CHAPTER 4 SQL Data Types

Reference Manual 229

• Sybase IQ includes two user-defined data types, MONEY and
SMALLMONEY, which are implemented as NUMERIC(19,4) and
NUMERIC(10,4) respectively. They are provided primarily for
compatibility with Adaptive Server Enterprise.

Binary data types
Description For storing raw binary data, such as pictures, in a hexadecimal-like notation,

up to a length of (32K – 1) bytes. The UNIQUEIDENTIFIER data type is used for
storage of UUID (also known as GUID) values.

Syntax BINARY [(length)]

VARBINARY [(max-length)]

UNIQUEIDENTIFIER

Usage Binary data begins with the characters “0x” or “0X” and can include any
combination of digits and the uppercase and lowercase letters A through F. You
can specify the column length in bytes, or use the default length of 1 byte. Each
byte stores 2 hexadecimal digits. Even though the default length is 1 byte,
Sybase recommends that you always specify an even number of characters for
BINARY and VARBINARY column length. If you enter a value longer than the
specified column length, Sybase IQ truncates the entry to the specified length
without warning or error.

BINARY Binary data of length length bytes. If length is omitted, the default
is 1 byte. The maximum size allowed is 255 bytes. Use the fixed-length binary
type BINARY for data in which all entries are expected to be approximately
equal in length. Because entries in BINARY columns are zero-padded to the
column length length, they might require more storage space than entries in
VARBINARY columns.

VARBINARY Binary data up to a length of max-length bytes. If max-length
is omitted, the default is 1 byte. The maximum size allowed is (32K – 1) bytes.
Use the variable-length binary type VARBINARY for data that is expected to
vary greatly in length.

Notes

As a separately licensed option, Sybase IQ supports Binary Large Object
(BLOB) data with a length ranging from zero (0) to 512TB (terabytes) for an
IQ page size of 128KB or 2PB (petabytes) for an IQ page size of 512KB. (The
maximum length is equal to 4GB multiplied by the database page size.) For
more information, see Large Objects Management in Sybase IQ.

Binary data types

230 Sybase IQ

Treatment of trailing zeros All BINARY columns are padded with zeros to the
full width of the column. Trailing zeros are truncated in all VARBINARY
columns.

The following example creates a table with all four variations of BINARY and
VARBINARY data types defined with NULL and NOT NULL. The same data is
inserted in all four columns and is padded or truncated according to the data
type of the column.

CREATE TABLE zeros (bnot BINARY(5) NOT NULL,
bnull BINARY(5) NULL,
vbnot VARBINARY(5) NOT NULL,
vbnull VARBINARY(5) NULL);

INSERT zeros VALUES (0x12345000, 0x12345000,
0x12345000, 0x12345000);

INSERT zeros VALUES (0x123, 0x123, 0x123, 0x123);
INSERT zeros VALUES (0x0, 0x0, 0x0, 0x0);
INSERT zeros VALUES ('002710000000ae1b',
'002710000000ae1b', '002710000000ae1b',
'002710000000ae1b');
SELECT * FROM zeros;

Because each byte of storage holds 2 hexadecimal digits, Sybase IQ expects
binary entries to consist of the characters “0x” followed by an even number of
digits. When the “0x” is followed by an odd number of digits, Sybase IQ
assumes that you omitted the leading 0 and adds it for you.

Input values “0x00” and “0x0” are stored as “0x00” in variable-length binary
columns (VARBINARY). In fixed-length binary columns (BINARY), the value is
padded with zeros to the full length of the field:

INSERT zeros VALUES (0x0, 0x0, 0x0, 0x0);
SELECT * FROM zeros WHERE bnot = 0x00;

If the input value does not include the “0x”, Sybase IQ assumes that the value
is an ASCII value and converts it. For example:

bnot bnull vbnot vbnull

0x1234500000 0x1234500000 0x12345000 0x12345000

0x0123000000 0x0123000000 0x0123 0x0123

0x0000000000 0x0000000000 0x00 0x00

0x3030323731 0x3030323731 0x3030323731 0x3030323731

bnot bnull vbnot vbnull

0x0000000000 0x0000000000 0x00 0x00

CHAPTER 4 SQL Data Types

Reference Manual 231

CREATE TABLE sample (col_bin BINARY(8));
INSERT sample VALUES ('002710000000ae1b');
SELECT * FROM sample;

Loading ASCII data
from a flat file

Any ASCII data loaded from a flat file into a binary type column (BINARY or
VARBINARY) is stored as nibbles. For example, if 0x1234 or 1234 is read from
a flat file into a binary column, Sybase IQ stores the value as hexadecimal
1234. Sybase IQ ignores the “0x” prefix. If the input data contains any
characters out of the range 0 – 9, a – f, and A – F, the data is rejected.

Storage size Table 4-3 lists the storage size of binary data.

Table 4-3: Storage size of binary data

Platform dependence The exact form in which you enter a particular value
depends on the platform you are using. Therefore, calculations involving
binary data might produce different results on different machines.

For platform-independent conversions between hexadecimal strings and
integers, use the INTTOHEX and HEXTOINT functions rather than the platform-
specific CONVERT function. For details, see the section “Data type conversion
functions” on page 261.

String operators The concatenation string operators || and + both support binary type data.
Explicit conversion of binary operands to character data types is not necessary
with the || operator. Explicit and implicit data conversion produce different
results, however.

Restrictions on BINARY and VARBINARY data

The following restrictions apply to columns containing BINARY and
VARBINARY data:

• You cannot use the aggregate functions SUM, AVG, STDDEV, or
VARIANCE with the binary data types. The aggregate functions MIN, MAX,
and COUNT do support the binary data types BINARY and VARBINARY.

col_bin

0x3030323731303030

Data type Column definition Input data Storage

VARBINARY width of (32K – 1) bytes (32K – 1) bytes
binary

(32K – 1) bytes

VARBINARY width of (32K– 1) bytes (64K – 2) bytes
ASCII

(32K – 1) bytes

BINARY width of 255 bytes 255 bytes binary 255 bytes

BINARY width of 255 bytes 510 bytes ASCII 255 bytes

Binary data types

232 Sybase IQ

• HNG, WD, DATE, TIME, and DTTM indexes do not support BINARY or
VARBINARY data.

• Only the default index and CMP index types are supported for VARBINARY
data greater than 255 bytes in length.

• Bit operations are supported on BINARY and VARBINARY data that is 8
bytes or less in length.

Compatibility

The treatment of trailing zeros in binary data types is the same in Adaptive
Server Anywhere and Sybase IQ, but is different in Adaptive Server
Enterprise. Table 4-4 shows the differences.

Table 4-4: Treatment of trailing zeros

Adaptive Server Enterprise, Adaptive Server Anywhere, and Sybase IQ all
support the STRING_RTRUNCATION database option, which affects error
message reporting when an INSERT or UPDATE string is truncated. For
Transact-SQL compatible string comparisons, set the STRING_RTRUNCATION
option to the same value in both databases.

You can also set the STRING_RTRUNCATION option ON when loading data
into a table, to alert you that the data is too large to load into the field. The
default value is OFF.

Bit operations on binary type data are not supported by ASE. ASA only
supports bit operations against the first four bytes of binary type data. Sybase
IQ supports bit operations against the first 8 bytes of binary type data.

UNIQUEIDENTIFIER Used for storage of UUID (also known as GUID)
values. The UNIQUEIDENTIFIER data type is often used for a primary key or
other unique column to hold UUID (Universally Unique Identifier) values that
can be used to uniquely identify rows. The NEWID function generates UUID
values in such a way that a value produced on one computer does not match a
UUID produced on another computer. UNIQUEIDENTIFIER values generated
using NEWID can therefore be used as keys in a synchronization environment.

For example, the following statement updates the table mytab and sets the value
of the column uid_col to a unique identifier generated by the NEWID function,
if the current value of the column is NULL.

Data type ASA and IQ ASE

BINARY NOT NULL padded padded

BINARY NULL padded truncated

VARBINARY NOT NULL not padded, not truncated truncated

VARBINARY NULL not padded, not truncated truncated

CHAPTER 4 SQL Data Types

Reference Manual 233

UPDATE mytab
SET uid_col = NEWID()

WHERE uid_col IS NULL

If you execute the following statement,

SELECT NEWID()

the unique identifier is returned as a BINARY(16). For example, the value might
be 0xd3749fe09cf446e399913bc6434f1f08. You can convert this string into a
readable format using the UUIDTOSTR() function.

UUID values are also referred to as GUIDs (Globally Unique Identifier).

The STRTOUUID and UUIDTOSTR functions are used to convert values
between UNIQUEIDENTIFIER and string representations.

UNIQUEIDENTIFIER values are stored and returned as BINARY(16).

Because UNIQUEIDENTIFIER values are large, using UNSIGNED BIGINT or
UNSIGNED INT identity columns instead of UNIQUEIDENTIFIER is more
efficient, if you do not need cross database unique identifiers.

Standards and compatibility for UNIQUEIDENTIFIER

• SQL92 Vendor extension.

• Sybase Supported by Adaptive Server Anywhere. Not supported by
Adaptive Server Enterprise.

• Backwards compatibility In databases created before version 12.7, the
STRTOUUID, UUIDTOSTR, and NEWID functions were supported through
CIS functional compensation. The STRTOUUID, UUIDTOSTR, and NEWID
functions are native Sybase IQ functions in Sybase IQ 12.7.

See also

For more information related to UNIQUEIDENTIFIER see also:

• “NEWID function [Miscellaneous]” on page 329

• “UUIDTOSTR function [String]” on page 381

• “STRTOUUID function [String]” on page 372

Bit data type

234 Sybase IQ

Bit data type
Description For storing Boolean values.

Usage BIT stores only the values 0 or 1. Inserting any non-zero value into a BIT
column stores a 1 in the column. Inserting any zero value into a BIT column
stores a 0.

Only the default index type is supported for BIT data.

Compatibility

 Adaptive Server Enterprise BIT datatypes only allow 0 or 1 values.

Date and time data types
Description For storing dates and times.

Syntax DATE

DATETIME

SMALLDATETIME

TIME

TIMESTAMP

Usage DATE A calendar date, such as a year, month and day. The year can be from
0001 to 9999. The day must be a nonzero value, so that the minimum date is
0001-01-01. A DATE value requires 4 bytes of storage.

DATETIME A domain, implemented as TIMESTAMP. DATETIME is provided
primarily for compatibility with Adaptive Server Enterprise. For an exception,
see “Compatibility of string to datetime conversions” on page 242.

SMALLDATETIME A domain, implemented as TIMESTAMP.
SMALLDATETIME is provided primarily for compatibility with Adaptive
Server Enterprise. For an exception, see “Compatibility of string to datetime
conversions” on page 242.

Data type Values Supported by

BIT 0 or 1 Sybase IQ and Enterprise

CHAPTER 4 SQL Data Types

Reference Manual 235

TIME Time of day, containing hour, minute, second, and fraction of a second.
The fraction is stored to 6 decimal places. A TIME value requires 8 bytes of
storage. (ODBC standards restrict TIME data type to an accuracy of seconds.
For this reason, do not use TIME data types in WHERE clause comparisons that
rely on a higher accuracy than seconds.)

TIMESTAMP Point in time, containing year, month, day, hour, minute,
second, and fraction of a second. The fraction is stored to 6 decimal places. The
day must be a nonzero value. A TIMESTAMP value requires 8 bytes of storage.

The valid range of the TIMESTAMP data type is from 0001-01-01
00:00:00.000000 to 9999-12-31 23:59:59.999999. The display of TIMESTAMP
data outside the range of 1600-02-28 23:59:59 to 7911-01-01 00:00:00 might
be incomplete, but the complete datetime value is stored in the database; you
can see the complete value by first converting it to a character string. You can
use the CAST() function to do this, as in the following example, which first
creates a table with DATETIME and TIMESTAMP columns, then inserts values
where the date is greater 7911-01-01.

create table mydates (id int, descript char(20),
datetime_null datatime, timestamp_null timestamp);

insert into mydates values (1, 'example', '7911-12-30
23:59:59','7911-12-30 06:03:44');

commit;

When you select without using CAST, hours and minutes are set to 00:00:

select * from mydates;

1, 'example', '7911-12-30 00:00:59', '7911-12-30 00:00:44'

When you select using cast, you see the complete timestamp:

select id, descript, cast(datatime_null as char(21)),
cast(timestamp_null as char(21)) from mydates;

1, 'example', '7911-12-30 23:59:59', '7911-12-30
06:03:44'

Notes

The following index types are supported by date and time data:

• All date and time data types support the CMP, HG, HNG, and LF index
types; the WD index type is not supported.

• DATE data supports the DATE index.

• TIME data supports the TIME index.

• DATETIME and TIMESTAMP data support the DTTM index.

Sending dates and times to the database

236 Sybase IQ

Sending dates and times to the database
Description You can send dates and times to the database in one of the following ways:

• Using any interface, as a string

• Using ODBC, as a TIMESTAMP structure

• Using Embedded SQL, as a SQLDATETIME structure

When you send a time to the database as a string (for the TIME data type) or as
part of a string (for TIMESTAMP or DATE data types), hours, minutes, and
seconds must be separated by colons in the format hh:mm:ss:sss, but can appear
anywhere in the string. As an option, a period can separate the seconds from
fractions of a second, as in hh:mm:ss.sss. The following are valid and
unambiguous strings for specifying times:

21:35 -- 24 hour clock if no am or pm specified
10:00pm -- pm specified, so interpreted as 12 hour clock
10:00 -- 10:00am in the absence of pm
10:23:32.234 -- seconds and fractions of a
 second included

When you send a date to the database as a string, conversion to a date is
automatic. You can supply the string in one of two ways:

• As a string of format yyyy/mm/dd or yyyy-mm-dd, which is interpreted
unambiguously by the database

• As a string interpreted according to the DATE_ORDER database option

Date format strings cannot contain any multibyte characters. Only single-byte
characters are allowed in a date/time/datetime format string, even when the
collation order of the database is a multibyte collation order like 932JPN.

Retrieving dates and times from the database
Description You can retrieve dates and times from the database in one of the following

ways:

• Using any interface, as a string

• Using ODBC, as a TIMESTAMP structure

• Using embedded SQL, as a SQLDATETIME structure

CHAPTER 4 SQL Data Types

Reference Manual 237

When a date or time is retrieved as a string, it is retrieved in the format
specified by the database options DATE_FORMAT, TIME_FORMAT and
TIMESTAMP_FORMAT. For descriptions of these options, see SET OPTION
statement on page 647.

For information on functions dealing with dates and times, see “Date and time
data types” on page 234. The following operators are allowed on dates:

• timestamp + integer Add the specified number of days to a date or
timestamp.

• timestamp - integer Subtract the specified number of days from a date
or timestamp.

• date - date Compute the number of days between two dates or
timestamps.

• date + time Create a timestamp combining the given date and time.

Comparing dates and times
Description To compare a date to a string as a string, use the DATEFORMAT function or

CAST function to convert the date to a string before comparing. For example:

DATEFORMAT(invoice_date,'yyyy/mm/dd') = '1992/05/23'

You can use any allowable date format for the DATEFORMAT string expression.

Date format strings must not contain any multibyte characters. Only single-
byte characters are allowed in a date/time/datetime format string, even when
the collation order of the database is a multibye collation order like SJIS2.

If '?' represents a multibyte character, then the following query fails:

SELECT DATEFORMAT (start_date, ‘yy?’) FROM employee;

Instead, move the multibyte character outside of the date format string using
the concatenation operator:

SELECT DATEFORMAT (start_date, ‘yy’) + ‘?’ FROM
employee;

Using unambiguous dates and times

238 Sybase IQ

Using unambiguous dates and times
Description Dates in the format yyyy/mm/dd or yyyy-mm-dd are always recognized as dates

regardless of the DATE_ORDER setting. You can use other characters as
separators; for example, a question mark, a space character, or a comma. You
should use this format in any context where different users might be employing
different DATE_ORDER settings. For example, in stored procedures, use of the
unambiguous date format prevents misinterpretation of dates according to the
user's DATE_ORDER setting.

A string of the form hh:mm:ss.sss is also interpreted unambiguously as a time.

For combinations of dates and times, any unambiguous date and any
unambiguous time yield an unambiguous date-time value. Also, the following
form is an unambiguous date-time value:

YYYY-MM-DD HH.MM.SS.SSSSSS

You can use periods in the time only in combination with a date.

In other contexts, you can use a more flexible date format. Sybase IQ can
interpret a wide range of strings as formats. The interpretation depends on the
setting of the database option DATE_ORDER. The DATE_ORDER database
option can have the value ‘MDY’, ‘YMD’, or ‘DMY’ (see SET OPTION
statement on page 647). For example, the following statement sets the
DATE_ORDER option to ‘DMY’:

SET OPTION DATE_ORDER = 'DMY' ;

The default DATE_ORDER setting is ‘YMD’ The ODBC driver sets the
DATE_ORDER option to ‘YMD’ whenever a connection is made. The value
can still be changed using the SET OPTION statement.

The database option DATE_ORDER determines whether the string 10/11/12 is
interpreted by the database as Oct 11 1912, Nov 12 1910, or Nov 10 1912. The
year, month, and day of a date string should be separated by some character (for
example “/”, “-”, or space) and appear in the order specified by the
DATE_ORDER option.

You can supply the year as either 2 or 4 digits. The value of the option
NEAREST_CENTURY affects the interpretation of 2-digit years: 2000 is added
to values less than NEAREST_CENTURY, and 1900 is added to all other values.
The default value of this option is 50. Thus, by default, 50 is interpreted as
1950, and 49 is interpreted as 2049. For more information, see the
“NEAREST_CENTURY option [TSQL]”.

The month can be the name or number of the month. The hours and minutes
are separated by a colon, but can appear anywhere in the string.

CHAPTER 4 SQL Data Types

Reference Manual 239

Sybase recommends that you always specify the year using the 4-digit format.

With an appropriate setting of DATE_ORDER, the following strings are all valid
dates:

99-05-23 21:35
99/5/23
1999/05/23
May 23 1999
23-May-1999
Tuesday May 23, 1999 10:00pm

If a string contains only a partial date specification, default values are used to
fill out the date. The following defaults are used:

year 1900

month No default

day 1 (useful for month fields; for example, ‘May 1999’ is the date ‘1999-05-
01 00:00’)

hour, minute, second, fraction 0

Domains
Description Domains are aliases for built-in data types, including precision and scale values

where applicable.

Domains, also called user-defined data types, allow columns throughout a
database to be defined automatically on the same data type, with the same
NULL or NOT NULL condition. This encourages consistency throughout the
database. Domain names are case insensitive. Sybase IQ returns an error if you
attempt to create a domain with the same name as an existing domain except
for case.

Simple domains You create domains using the CREATE DOMAIN statement. For a full
description of the syntax, see CREATE DOMAIN statement on page 456.

The following statement creates a data type named street_address, which is a
35-character string:

CREATE DOMAIN street_address CHAR(35)

Domains

240 Sybase IQ

You can use CREATE DATATYPE as an alternative to CREATE DOMAIN, but this
is not recommended, as CREATE DOMAIN is the syntax used in the draft SQL/3
standard.

Resource authority is required to create data types. Once a data type is created,
the user ID that executed the CREATE DOMAIN statement is the owner of that
data type. Any user can use the data type, and unlike other database objects, the
owner name is never used to prefix the data type name.

The street_address data type may be used in exactly the same way as any other
data type when defining columns. For example, the following table with two
columns has the second column as a street_address column:

CREATE TABLE twocol (id INT,
street street_address)

Owners or DBAs can drop domains using the DROP DOMAIN statement:

DROP DOMAIN street_address

You can carry out this statement only if no tables in the database are using data
type.

Constraints and
defaults with user-
defined data types

Many of the attributes associated with columns, such as allowing NULL
values, having a DEFAULT value, and so on, can be built into a user-defined
data type. Any column that is defined on the data type automatically inherits
the NULL setting, CHECK condition, and DEFAULT values. This allows
uniformity to be built into columns with a similar meaning throughout a
database.

For example, many primary key columns in the sample database are integer
columns holding ID numbers. The following statement creates a data type that
may be useful for such columns:

CREATE DOMAIN id INT
NOT NULL
DEFAULT AUTOINCREMENT
CHECK(@col > 0)

Any column created using the data type id is not allowed to hold NULLs,
defaults to an autoincremented value, and must hold a positive number. Any
identifier could be used instead of col in the @col variable.

The attributes of the data type can be overridden if needed by explicitly
providing attributes for the column. A column created on data type id with
NULL values explicitly allowed does allow NULLs, regardless of the setting
in the id data type.

CHAPTER 4 SQL Data Types

Reference Manual 241

Compatibility • Named constraints and defaults In Sybase IQ, user-defined data types
are created with a base data type, and optionally a NULL or NOT NULL
condition. Named constraints and named defaults are not supported.

• Creating data types In Sybase IQ, you can use the sp_addtype system
procedure to add a domain, or you can use the CREATE DOMAIN
statement. In Adaptive Server Enterprise, you must use sp_addtype.

Data type conversions
Description Type conversions happen automatically, or you can explicitly request them

using the CAST or CONVERT function.

If a string is used in a numeric expression or as an argument to a function
expecting a numeric argument, the string is converted to a number before use.

If a number is used in a string expression or as a string function argument, then
the number is converted to a string before use.

All date constants are specified as strings. The string is automatically
converted to a date before use.

There are certain cases where the automatic data type conversions are not
appropriate.

'12/31/90' + 5 -- Tries to convert the string to a number
'a' > 0 -- Tries to convert 'a' to a number

You can use the CAST or CONVERT function to force type conversions.

The following functions can also be used to force type conversions:

• DATE(expression) – converts the expression into a date, and removes any
hours, minutes or seconds. Conversion errors might be reported.

• DATETIME(expression) – converts the expression into a timestamp.
Conversion errors might be reported.

• STRING(expression) – similar to CAST(value AS CHAR), except that
string(NULL) is the empty string (''), whereas CAST(NULL AS CHAR) is
the NULL value.

For information about the CAST and CONVERT functions, see “Data type
conversion functions” on page 261.

Data type conversions

242 Sybase IQ

Compatibility of string
to datetime
conversions

There are some differences in behavior between Sybase IQ and Adaptive
Server Enterprise when converting strings to date and time data types.

If a string containing only a time value (no date) is converted to a date/time data
type, Sybase IQ and Adaptive Server Enterprise both use a default date of
January 1, 1900. Adaptive Server Anywhere uses the current date.

If the milliseconds portion of a time is less than 3 digits, Adaptive Server
Enterprise interprets the value differently depending on whether it was
preceded by a period or a colon. If preceded by a colon, the value means
thousandths of a second. If preceded by a period, 1 digit means tenths, 2 digits
mean hundredths, and 3 digits mean thousandths. Sybase IQ and Adaptive
Server Anywhere interpret the value the same way, regardless of the separator.

Example • Adaptive Server Enterprise converts the values below as shown.

12:34:56.7 to 12:34:56.700
12.34.56.78 to 12:34:56.780
12:34:56.789 to 12:34:56.789
12:34:56:7 to 12:34:56.007
12.34.56:78 to 12:34:56.078
12:34:56:789 to 12:34:56.789

• Sybase IQ converts the milliseconds value in the manner that Adaptive
Server Enterprise does for values preceded by a period, in both cases:

12:34:56.7 to 12:34:56.700
12.34.56.78 to 12:34:56.780
12:34:56.789 to 12:34:56.789
12:34:56:7 to 12:34:56.700
12.34.56:78 to 12:34:56.780
12:34:56:789 to 12:34:56.789

Compatibility of
exported dates

For dates in the first 9 days of a month and hours less than 10, Adaptive Server
Enterprise supports a blank for the first digit; Sybase IQ supports a zero or a
blank. For details on how to load such data from Adaptive Server Enterprise
into Sybase IQ, see Chapter 7, “Moving Data In and Out of Databases” in
Sybase IQ System Administration Guide.

Conversion of BIT to
BINARY data type

Sybase IQ supports BIT to BINARY and BIT to VARBINARY implicit and explicit
conversion and is compatible with ASE support of these conversions. Sybase
IQ implicitly converts BIT to BINARY and BIT to VARBINARY data types for
comparison operators, arithmetic operations, and INSERT and UPDATE
statements.

CHAPTER 4 SQL Data Types

Reference Manual 243

For BIT to BINARY conversion, bit value ‘b’ is copied to the first byte of the
binary string and the rest of the bytes are filled with zeros. For example, BIT
value ‘1’ is converted to BINARY(n) string ‘0x0100...00 having 2n nibbles. BIT
value ‘0’ is converted to BINARY string ‘0x00...00’.

For BIT to VARBINARY conversion, BIT value ‘b’ is copied to the first byte of
the BINARY string and the remaining bytes are not used; that is, only one byte
is used. For example, BIT value ‘1’ is converted to VARBINARY(n) string ‘0x01’
having 2 nibbles.

The result of both implicit and explicit conversions of BIT to BINARY and BIT
to VARBINARY data types is the same. The following table contains examples
of BIT to BINARY and VARBINARY conversions.

BIT to BINARY and BIT to VARBINARY conversion examples These
examples illustrate both implicit and explicit conversion of BIT to BINARY and
BIT to VARBINARY data types.

Given the following tables and data:

CREATE TABLE tbin(c1 BINARY(9))
CREATE TABLE tvarbin(c2 VARBINARY(9))
CREATE TABLE tbar(c2 BIT)

INSERT tbar VALUES(1)
INSERT tbar VALUES(0)

Implicit conversion of BIT to BINARY:

INSERT tbin SELECT c2 FROM tbar

c1

0x010000000000000000 (18 nibbles)
0x000000000000000000 (18 nibbles)

Implicit conversion of BIT to VARBINARY:

INSERT tvarbin SELECT c2 FROM tbar

c2

Conversion of BIT value ‘1’ to Result

BINARY(3) 0x010000

VARBINARY(3) 0x01

BINARY(8) 0x0100000000000000

VARBINARY(8) 0x01

Year 2000 compliance

244 Sybase IQ

0x01
0x00

Explicit conversion of BIT to BINARY:

INSERT tbin SELECT CONVERT (BINARY(9), c2) FROM tbar

c1

0x010000000000000000 (18 nibbles)
0x000000000000000000 (18 nibbles)

Explicit conversion of BIT to VARBINARY:

INSERT tvarbin SELECT CONVERT(VARBINARY(9), c2) FROM
tbar

c2

0x01
0x00

Year 2000 compliance
Description The problem of handling dates, especially year values beyond the year 2000,

has been a significant issue for the computer industry.

This section examines year 2000 compliance by Sybase IQ. It illustrates how
Sybase IQ handles date values internally, and how it handles ambiguous date
information such as the conversion of a 2-digit year string value.

Users of Sybase Anywhere and its predecessors can be assured that dates are
handled and stored internally in a manner not adversely effected by the
transition from the 20th century to the 21st century.

Consider the following measurements of Sybase IQ year 2000 compliance:

• It always returns correct values for any legal arithmetic and logical
operations on dates, regardless of whether the calculated values span
different centuries.

• At all times, the internal storage of dates explicitly includes the century
portion of a year value.

• The operation is unaffected by any return value, including the current date.

CHAPTER 4 SQL Data Types

Reference Manual 245

• Date values can always be output in full century format.

Many of the date-related topics summarized in this section are explained in
greater detail in other parts of the documentation.

How dates and times
are stored

Dates containing year values are used internally and stored in Sybase IQ
databases using the data types listed in Table 4-5.

Table 4-5: Storage of dates containing year values

For more information on Sybase IQ date and time data types see “Date and
time data types” on page 234.

Sending and retrieving
date values

Date values are stored within Sybase IQ as either a DATE or TIMESTAMP data
type. Time values are stored as a TIME or TIMESTAMP data type. They are
passed to and retrieved from it using either of three methods:

• As a string, using any Sybase IQ programming interface.

• As a TIMESTAMP structure using ODBC.

• As a SQLDATETIME structure using Embedded SQL.

A string containing a date value is considered unambiguous and is
automatically converted to a DATE or TIMESTAMP data type without potential
for misinterpretation if it is passed using the following format: yyyy-mm-dd
(the dash separator is one of several characters that are permitted).

To use date formats other than yyyy-mm-dd set the DATE_FORMAT database
option (see SET OPTION statement on page 647).

Data type Contains Stored in
Range of possible
values

DATE Calendar date
(year, month, day)

4 bytes 0001-01-01 to 9999-12-31

TIMESTAMP Time stamp (year,
month, day, hour
minute, second,
and fraction of
second accurate to
6 decimal places)

8 bytes 0001-01-01
00:00:00.000000 to 9999-
12-31 23:59:59.999999

TIME Time of day (hour
minute, second,
and fraction of
second accurate to
6 decimal places)
since midnight

8 bytes 00:00:00.000000 to
23:59:59.999999

Year 2000 compliance

246 Sybase IQ

Similarly, a string containing a time value is considered unambiguous and is
automatically converted to a TIME or TIMESTAMP data type without potential
for misinterpretation if it is passed using the following format:
hh:mm:ss.ssssss.

For more information on unambiguous date formats, see the section “Using
unambiguous dates and times” on page 238.

For more information on the ODBC TIMESTAMP structure see the Microsoft
Open Database Connectivity SDK, or the section “Sending dates and times to
the database” on page 236.

Used in the development of C programs, an Embedded SQL SQLDATETIME
structure’s year value is a 16-bit signed integer.

Leap years The year 2000 is also a leap year, with an additional day in the month of
February. Sybase IQ uses a globally accepted algorithm for identifying leap
years. A year is considered a leap year if it is divisible by four, unless the year
is a century date (such as the year 1900), in which case it is a leap year if it is
divisible by 400.

Sybase IQ handles all leap years correctly. For example, this SQL statement
results in a return value of “Tuesday”:

SELECT DAYNAME('2000-02-29');

It accepts Feb 29, 2000—a leap year—as a date and using this date determines
the day of the week on which that date occurs.

However, the following statement is rejected:

SELECT DAYNAME('2001-02-29');

This statement results in an error (cannot convert’2001-02-29’ to a date)
because Feb 29 does not exist in the year 2001.

Ambiguous string to
date conversions

Sybase IQ automatically converts a string into a date when a date value is
expected, even if the year is represented in the string by only 2 digits.

If the century portion of a year value is omitted, the conversion method is
determined by the NEAREST_CENTURY database option.

The NEAREST_CENTURY database option is a numeric value that acts as a
break point between 19yy date values and 20yy date values.

Two-digit years less than the NEAREST_CENTURY value are converted to
20yy, while years greater than or equal to the value are converted to 19yy.

If this option is not set, the default setting of 50 is assumed (0 to 49 are in the
21st century, 50 to 99 are in the 20th century).

CHAPTER 4 SQL Data Types

Reference Manual 247

This NEAREST_CENTURY option was introduced in Anywhere Release 5.5.

Ambiguous date
conversion example

The following statement creates a table that can be used to illustrate the
conversion of ambiguous date information in Sybase IQ.

CREATE TABLE T1 (C1 DATE);

The table T1 contains one column, C1, of the type DATE.

The following statement inserts a date value into the column C1. It
automatically converts a string that contains an ambiguous year value, one with
2 digits representing the year but nothing to indicate the century.

INSERT INTO T1 VALUES('00-01-01');

By default, the NEAREST_CENTURY option is set to 50, thus Sybase IQ
converts the string into the date 2000-01-01. Verify the result of this insert by
entering:

SELECT * FROM T1;

Change the NEAREST_CENTURY option using the following statement to alter
the conversion process:

SET OPTION NEAREST_CENTURY = 0;

When NEAREST_CENTURY is set to 0, executing the previous insert using the
same statement creates a different date value:

INSERT INTO T1 VALUES('00-01-01');

The above statement now results in the insertion of the date 1900-01-01. Use
the following statement to verify the results:

SELECT * FROM T1;

Date-to-string
conversions

Sybase IQ provides several functions for converting date and time values into
a wide variety of strings and other expressions. You can, in converting a date
value into a string, reduce the year portion into a two-digit number representing
the year, thereby losing the century portion of the date.

Wrong century values Consider the following statement, which incorrectly converts a string
representing Jan 1, 1900 into a string representing Jan 1, 2000 even though no
database error occurs.

SELECT DATEFORMAT (DATEFORMAT('1900-01-01',
'Mmm dd/yy'), 'yyyy-Mmm-dd') AS Wrong_year;

Year 2000 compliance

248 Sybase IQ

Although the unambiguous date string 1900-01-01 is automatically and
correctly converted by Sybase IQ into a date value, the 'Mmm dd/yy'
formatting of the inner, or nested DATEFORMAT function drops the century
portion of the date when it is converted back to a string and passed to the outer
DATEFORMAT function.

Because the database option NEAREST_CENTURY, in this case, is set to 50 the
outer DATEFORMAT function converts the string representing a date with a 2-
digit year value into a year in the 21st century.

For more information about ambiguous string conversions, see the section
“Ambiguous string to date conversions” above.

For more information on date and time functions, see “Date and time data
types” on page 234.

Reference Manual 249

C H A P T E R 5 SQL Functions

About this chapter This chapter describes the built-in functions that Sybase IQ supports.

Contents Topic Page

Overview 250

Aggregate functions 250

Analytical functions 252

Date and time functions 256

Data type conversion functions 261

Date and time functions 256

HTTP functions 261

Numeric functions 262

String functions 264

System functions 266

SQL and Java user-defined functions 270

Miscellaneous functions 271

Alphabetical list of functions 272

Overview

250 Sybase IQ

Overview
Functions return information from the database and are allowed anywhere an
expression is allowed.

Remember the following when using functions with Sybase IQ:

• Unless otherwise stated, any function that receives the NULL value as a
parameter returns a NULL value.

• If you omit the FROM clause, or if all tables in the query are in the
SYSTEM dbspace, Adaptive Server Anywhere processes the query,
instead of Sybase IQ, and might behave differently, especially with regard
to syntactic and semantic restrictions and the effects of option settings. See
the Adaptive Server Anywhere documentation for rules that might apply
to processing.

• If you have a query that does not require a FROM clause, you can force
Sybase IQ to process the query by adding the clause “FROM iq_dummy,”
where iq_dummy is a one-row, one-column table that you create in your
database.

Aggregate functions
Function Aggregate functions summarize data over a group of rows from the database.

The groups are formed using the GROUP BY clause of the SELECT statement.

Usage Simple aggregate functions, such as SUM(), MIN(), MAX(), AVG() and COUNT()
are allowed only in the select list and in the HAVING and ORDER BY clauses of
a SELECT statement. These functions summarize data over a group of rows
from the database. Groups are formed using the GROUP BY clause of the
SELECT statement.

A new class of aggregate functions, called window functions, provides
moving averages and cumulative measures that compute answers to queries
such as, “What is the quarterly moving average of the Dow Jones Industrial
average,” or “List all employees and their cumulative salaries for each
department.”

• Simple aggregate functions, such as AVG(), COUNT(), MAX(), MIN(), and
SUM() summarize data over a group of rows from the database. The groups
are formed using the GROUP BY clause of the SELECT statement.

CHAPTER 5 SQL Functions

Reference Manual 251

• Newer statistical aggregate functions that take one argument include
STDDEV(), STDDEV_SAMP(), STDDEV_POP(), VARIANCE(),
VAR_SAMP(), and VAR_POP().

Both the simple and newer categories of aggregates can be used as a
windowing function that incorporates a <WINDOW CLAUSE> in a SQL query
specification (a window) that conceptually creates a moving window over a
result set as it is processed. See “Analytical functions” on page 252.

Table 5-1 lists the aggregate functions and their parameters.

Table 5-1: Aggregate functions

The aggregate functions AVG, SUM, STDDEV, and VARIANCE do not support
the binary data types (BINARY and VARBINARY).

See also See the individual analytical function descriptions in this chapter for specific
details on the use of each function.

For more information about using the OLAP functions, see Chapter 4, “Using
OLAP” in the Sybase IQ Performance and Tuning Guide.

Aggregate function Parameters

AVG ([DISTINCT] { column-name | numeric-expr })

COUNT (*)

COUNT ([DISTINCT] { column-name | numeric-expr })

MAX ([DISTINCT] { column-name | numeric-expr })

MIN ([DISTINCT] { column-name | numeric-expr })

STDDEV ([ALL] expression)

SUM ([DISTINCT] { column-name | numeric-expr })

VARIANCE ([ALL] expression)

Analytical functions

252 Sybase IQ

Analytical functions
Function Analytical functions include the following:

• Simple aggregates — AVG, COUNT, MAX, MIN, and SUM, STDDEV and
VARIANCE

Note All simple aggregates, except the Grouping() function, can be used
in with an OLAP windowed function.

• Window functions:

• Windowing aggregates — AVG, COUNT, MAX, MIN, and SUM

• Ranking functions — RANK, DENSE_RANK, PERCENT_RANK, and
NTILE

• Statistical functions — STDDEV, STDDEV_SAMP, STDDEV_POP,
VARIANCE, VAR_SAMP, and VAR_POP

• Distribution functions — PERCENTILE_CONT and
PERCENTILE_DISC

• Numeric functions — WIDTH_BUCKET, CEIL, and LN, EXP, POWER,
SQRT, and FLOOR

Windowing aggregate
function usage

A major feature of the ANSI SQL extensions for OLAP is a construct called a
window. This windowing extension let users divide result sets of a query (or a
logical partition of a query) into groups of rows called partitions and determine
subsets of rows to aggregate with respect to the current row.

You can use three classes of window functions with a window: ranking
functions, the row numbering function, and window aggregate functions.

Windowing extensions specify a window function type over a window name or
specification and are applied to partitioned result sets within the scope of a
single query expression. A window partition is a subset of rows returned by a
query, as defined by one or more columns in a special OVER clause:

olap_function() OVER (PARTITION BY col1, col2...)

Windowing operations let you establish information such as the ranking of
each row within its partition, the distribution of values in rows within a
partition, and similar operations. Windowing also lets you compute moving
averages and sums on your data, enhancing the ability to evaluate your data and
its impact on your operations.

CHAPTER 5 SQL Functions

Reference Manual 253

A window partition is a subset of rows returned by a query, as defined by one
or more columns in a special OVER() clause:

OLAP_FUNCTION() OVER (PARTITION BY col1, col2...)

Ranking functions
usage

The OLAP ranking functions let application developers compose single-
statement SQL queries that answer questions such as “Name the top 10
products shipped this year by total sales,” or “Give the top 5% of salespeople
who sold orders to at least 15 different companies.” These functions include the
ranking functions, RANK(), DENSE_RANK(), PERCENT_RANK() and NTILE()
with a PARTITION BY clause.

Rank analytical functions rank items in a group, compute distribution, and
divide a result set into a number of groupings. The rank analytical functions,
RANK, DENSE_RANK, PERCENT_RANK, and NTILE all require an OVER
(ORDER BY) clause. For example:

RANK() OVER ([PARTITION BY] ORDER BY <expression>
[ASC | DESC])

The ORDER BY clause specifies the parameter on which ranking is performed
and the order in which the rows are sorted in each group. This ORDER BY
clause is used only within the OVER clause and is not an ORDER BY for
SELECT. No aggregation functions in the rank query are allowed to specify
DISTINCT.

The OVER clause indicates that the function operates on a query result set. The
result set is the rows that are returned after the FROM, WHERE, GROUP BY,
and HAVING clauses have all been evaluated. The OVER clause defines the data
set of the rows to include in the computation of the rank analytical function.

The value expression is a sort specification that can be any valid expression
involving a column reference, aggregates, or expressions invoking these items.

The ASC or DESC parameter specifies the ordering sequence as ascending or
descending. Ascending order is the default.

Rank analytical functions are only allowed in the select list of a SELECT or
INSERT statement or in the ORDER BY clause of the SELECT statement. Rank
functions can be in a view or a union. You cannot use rank functions in a
subquery, a HAVING clause, or in the select list of an UPDATE or DELETE
statement. More than one rank analytical function is allowed per query in
Sybase IQ 12.7.

Analytical functions

254 Sybase IQ

Statistical aggregate
analytic function
usage

Summarize data over a group of rows from the database. The groups are
formed using the GROUP BY clause of the SELECT statement. Aggregate
functions are allowed only in the select list and in the HAVING and ORDER BY
clauses of a SELECT statement. These functions include STDDEV,
STDDEV_POP, STDDEV_SAMP, VARIANCE, VAR_POP, and VAR_SAMP.

The OLAP functions can be used as a window function with an OVER() clause
in a SQL query specification that conceptually creates a moving window over
a result set as it is processed.

Distribution functions
usage

The inverse distribution analytical functions PERCENTILE_CONT and
PERCENTILE_DISC take a percentile value as the function argument and
operate on a group of data specified in the WITHIN GROUP clause, or operate
on the entire data set. These functions return one value per group. For
PERCENTILE_DISC, the data type of the results is the same as the data type of
its ORDER BY item specified in the WITHIN GROUP clause. For
PERCENTILE_CONT, the data type of the results is either numeric, if the
ORDER BY item in the WITHIN GROUP clause is a numeric, or double, if the
ORDER BY item is an integer or floating point.

The inverse distribution analytical functions require a WITHIN GROUP
(ORDER BY) clause. For example:

PERCENTILE_CONT (expression1) WITHIN GROUP (ORDER BY
expression2 [ASC | DESC])

The value of expression1 must be a constant of numeric data type and range
from 0 to 1 (inclusive). If the argument is NULL, then a “wrong argument for
percentile” error is returned. If the argument value is less than 0, or greater than
1, then a “data value out of range” error is returned.

The ORDER BY clause, which must be present, specifies the expression on
which the percentile function is performed and the order in which the rows are
sorted in each group. This ORDER BY clause is used only within the WITHIN
GROUP clause and is not an ORDER BY for the SELECT.

The WITHIN GROUP clause distributes the query result into an ordered data set
from which the function calculates a result.

The value expression2 is a sort specification that must be a single expression
involving a column reference. Multiple expressions are not allowed and no
rank analytical functions, set functions, or subqueries are allowed in this sort
expression.

The ASC or DESC parameter specifies the ordering sequence as ascending or
descending. Ascending order is the default.

CHAPTER 5 SQL Functions

Reference Manual 255

Inverse distribution analytical functions are allowed in a subquery, a HAVING
clause, a view, or a union. The inverse distribution functions can be used
anywhere the simple non analytical aggregate functions are used. The inverse
distribution functions ignore the NULL value in the data set.

Table 5-2 lists the analytical functions and their parameters. Unlike aggregate
functions in Table 5-1, you cannot specify DISTINCT in window functions.

Table 5-2: Analytical functions

* The OLAP SQL standard allows Grouping() in GROUP BY CUBE, or GROUP
BY ROLLUP operations only.

Compatibility The ranking and inverse distribution analytical functions are not supported by
Adaptive Server Enterprise.

See also See the individual analytical function descriptions in this chapter for specific
details on the use of each function.

For more information about using the OLAP functions, see Chapter 4, “Using
OLAP” in the Sybase IQ Performance and Tuning Guide

Function Parameters

AVG ({ column-name | numeric-expr })

COUNT (*)

COUNT ({ column-name | expression })

DENSE_RANK ()

GROUPING * ({ GROUPING group-by-expression })

MAX ({ column-name | expression })

MIN ({ column-name | expression })

NTILE (integer)

PERCENT_RANK ()

PERCENTILE_CONT (numeric-expr)

PERCENTILE_DISC (numeric-expr)

RANK ()

STDDEV ([ALL] expression)

STDDEV_POP ([ALL] expression)

STDDEV_SAMP ([ALL] expression)

SUM ({ column-name | expression })

VAR_POP ([ALL] expression)

VAR_SAMP ([ALL] expression)

VARIANCE ([ALL] expression)

Date and time functions

256 Sybase IQ

Date and time functions
Function Date and time functions perform conversion, extraction, or manipulation

operations on date and time data types and can return date and time
information.

Table 5-3 and Table 5-4 list the date and time functions and their parameters.

CHAPTER 5 SQL Functions

Reference Manual 257

Syntax 1 Table 5-3: Date and time functions

Date and time functions Parameters

DATE (expression)

DATEFORMAT (datetime-expr, string-expr)

DATENAME (date-part, date-expr)

DATETIME (expression)

DAY (date-expr)

DAYNAME (date-expr)

DAYS (date-expr)

DAYS (date-expr, date-expr)

DAYS (date-expr, integer-expr)

DOW (date-expr)

HOUR (datetime-expr)

HOURS (datetime-expr)

HOURS (datetime-expr, datetime-expr)

HOURS (datetime-expr, integer-expr)

ISDATE (string)

MINUTE (datetime-expr)

MINUTES (datetime-expr)

MINUTES (datetime-expr, datetime-expr)

MINUTES (datetime-expr, integer-expr)

MONTH (date-expr)

MONTHNAME (date-expr)

MONTHS (date-expr)

MONTHS (date-expr, date-expr)

MONTHS (date-expr, integer-expr)

NOW (*)

QUARTER (date-expr)

SECOND (datetime-expr)

SECONDS (datetime-expr)

SECONDS (datetime-expr, datetime-expr)

SECONDS (datetime-expr, integer-expr)

TODAY (*)

WEEKS (date-expr)

WEEKS (date-expr, date-expr)

WEEKS (date-expr, integer-expr)

YEAR (date-expr)

YEARS (date-expr)

Date and time functions

258 Sybase IQ

Syntax 2 Table 5-4: Transact-SQL compatible date and time functions

Description Sybase IQ provides two classes of date and time functions that can be used
interchangeably, but have different styles. One set is Transact-SQL compatible.

The date and time functions listed in Table 5-3 allow manipulation of time
units. Most time units (such as MONTH) have four functions for time
manipulation, although only two names are used (such as MONTH and
MONTHS).

The functions listed in Table 5-4 are the Transact-SQL date and time functions.
They allow an alternative way of accessing and manipulating date and time
functions.

You should convert arguments to date functions to dates before used them. For
example, this is incorrect:

days ('1995-11-17', 2)

This is correct:

days (date('1995-11-17'), 2)

Sybase IQ does not have the same constants or data type promotions as
Adaptive Server Anywhere, with which it shares a common user interface. If
you issue a SELECT statement without a FROM clause, the statement is passed
through to Adaptive Server Anywhere. The following statement is handled
exclusively by Adaptive Server Anywhere:

SELECT WEEKS(‘1998/11/01’);

YEARS (date-expr, date-expr)

YEARS (date-expr, integer-expr)

YMD (year-num, month-num, day-num)

Date and time functions Parameters

Transact-SQL
compatible date and
time functions Parameters

DATEADD (date-part, numeric-expression, date-expr)

DATEDIFF (date-part, date-expr1, date-expr2)

DATENAME (date-part, date-expr)

DATEPART (date-part, date-expr)

GETDATE ()

CHAPTER 5 SQL Functions

Reference Manual 259

The following statement, processed by Sybase IQ, uses a different starting
point for the WEEKS function and returns a different result than the statement
above:

SELECT WEEKS(‘1998/11/01’) FROM iq_dummy;

Consider another example. The MONTHS function returns the number of
months since an “arbitrary starting date”. The “arbitrary starting date” of
Sybase IQ, the imaginary date 0000-01-01, is chosen to produce the most
efficient date calculations and is consistent across various data parts. Adaptive
Server Anywhere does not have a single starting date. The following
statements, the first processed by Adaptive Server Anywhere, the second by
Sybase IQ, both return the answer 12:

SELECT MONTHS('0001/01/01');
SELECT MONTHS('0001/01/01') FROM iq_dummy;

On the other hand, consider the following statements:

SELECT DAYS('0001/01/01');
SELECT DAYS('0001/01/01') FROM iq_dummy;

,The first, processed by Adaptive Server Anywhere, yields the value 307, but
the second, processed by Sybase IQ, yields 166.

For the most consistent results, therefore, you should always include the table
name in the FROM clause whether you need it or not.

Note Create a dummy table with only one column and row. You can then
reference this table in the FROM clause for any SELECT statement with date or
time functions, thus insuring processing by Sybase IQ, and consistent results.

Date parts
Many of the date functions use dates built from date parts. Table 5-5 displays
allowed values of date-part.

Date and time functions

260 Sybase IQ

Table 5-5: Date part values

Note By default, Sunday is the first day of the week. To make Monday be the
first day, set the following option:

set option ‘Date_First_Day_Of_Week’ = ‘1’

For more information on specifying which day is the first day of the week, see
“DATE_FIRST_DAY_OF_WEEK option” on page 63.

Compatibility For compatibility with Adaptive Server Enterprise, use the Transact-SQL date
and time functions.

Date part Abbreviation Values

Year yy 0001 – 9999

Quarter qq 1 – 4

Month mm 1 – 12

Week wk 1 – 54

Day dd 1 – 31

Dayofyear dy 1 – 366

Weekday dw 1 – 7 (Sun. – Sat.)

Hour hh 0 – 23

Minute mi 0 – 59

Second ss 0 – 59

Millisecond ms 0 – 999

Calyearofweek cyr Integer. The year in which the week begins.
The week containing the first few days of
the year can be part of the last week of the
previous year, depending upon which day
it begins. If the new year starts on a
Thursday through Saturday, its first week
starts on the last Sunday of the previous
year. If the new year starts on a Sunday
through Wednesday, none of its days are
part of the previous year.

Calweekofyear cwk An integer from 1 to 54 representing the
week number within the year that contains
the specified date.

Caldayofweek cdw The day number within the week (Sunday
= 1, Saturday = 7).

CHAPTER 5 SQL Functions

Reference Manual 261

Data type conversion functions
Function Data type conversion functions convert arguments from one data type to

another.

Table 5-6 lists the data type conversion functions and their parameters.

Table 5-6: Date type conversion functions

Description The DATE, DATETIME, DATEFORMAT, and YMD functions that convert
expressions to dates, timestamps, or strings based on a date format are listed in
“Date and time functions” on page 256. The STRING function, which converts
expressions to a string, is discussed in the section “String functions” on page
264.

The database server carries out many type conversions automatically. For
example, if a string is supplied where a numerical expression is required, the
string is automatically converted to a number. For more information on
automatic data type conversions carried out by Sybase IQ, see “Data type
conversions” on page 241.

HTTP functions
Function HTTP functions facilitate the handling of HTTP requests within Web services.

Table 5-7 lists all HTTP functions and their parameters.

Table 5-7: HTTP functions

Data type conversion function Parameters

BIGINTTOHEX (integer-expression)

CAST (expression AS datatype)

CONVERT (datatype, expression [, format-style])

HEXTOBIGINT (hexadecimal-string)

HEXTOINT (hexadecimal-string)

INTTOHEX (integer-expr)

ISDATE (string)

ISNUMERIC (string)

HTTP function Parameters

HTML_DECODE (string)

HTML_ENCODE (string)

Numeric functions

262 Sybase IQ

Numeric functions
Function Numeric functions perform mathematical operations on numerical data types

or return numeric information.

Sybase IQ does not have the same constants or data type promotions as
Adaptive Server Anywhere, with which it shares a common user interface. If
you issue a SELECT statement without a FROM clause, the statement is passed
through to Adaptive Server Anywhere. For the most consistent results, include
the table name in the FROM clause whether you need it or not.

Note Consider creating a dummy table to use in such cases.

Table 5-8 lists numeric functions and their parameters.

Table 5-8: Numeric functions

HTTP_DECODE (string)

HTTP_ENCODE (string)

HTTP_VARIABLE (var-name [[, instance], header-field])

NEXT_HTTP_HEADER header-name

NEXT_HTTP_VARIABLE var-name

HTTP function Parameters

Numeric function Parameters

ABS (numeric-expr)

ACOS (numeric-expr)

ASIN (numeric-expr)

ATAN (numeric-expr)

ATAN2 (numeric-expr1, numeric-expr2)

CEIL (numeric-expr)

CEILING (numeric-expr)

COS (numeric-expr)

COT (numeric-expr)

DEGREES (numeric-expr)

EXP (numeric-expr)

FLOOR (numeric-expr)

LN (numeric-expr)

CHAPTER 5 SQL Functions

Reference Manual 263

LOG (numeric-expr)

LOG10 (numeric-expr)

MOD (dividend, divisor)

PI (*)

POWER (numeric-expr1, numeric-expr2)

RADIANS (numeric-expr)

RAND ([integer-expr])

REMAINDER (numeric-expr, numeric-expr)

ROUND (numeric-expr, integer-expr)

SIGN (numeric-expr)

SIN (numeric-expr)

SQRT (numeric-expr)

SQUARE (numeric-expr)

TAN (numeric-expr)

“TRUNCATE” (numeric-expr, integer-expr)

TRUNCNUM (numeric-expression, integer-expression)

WIDTH_BUCKET (expression, min_value, max_value,
num_buckets)

Numeric function Parameters

String functions

264 Sybase IQ

String functions
Function String functions perform conversion, extraction, or manipulation operations on

strings, or return information about strings.

When working in a multibyte character set, check carefully whether the
function being used returns information concerning characters or bytes.

Most of the string functions accept binary data (hexadecimal strings) in the
string-expr parameter, but some of the functions, such as LCASE, UCASE,
LOWER, and LTRIM, expect the string expression to be a character string.

Unless you supply a constant LENGTH argument to a function that produces a
VARCHAR result (such as SPACE or REPEAT), the default length is the
maximum allowed. See the “Field Size” column in Table 8-1 on page 676.

Sybase IQ queries containing one or more of such functions might return one
of the following errors:

ASA Error -1009080: Key doesn't fit on a single database
page: 65560(4, 1)

ASA Error -1009119: Record size too large for database
page size

For example:

SELECT COUNT(*) FROM test1 a WHERE (a.col1 + SPACE(4-
LENGTH(a.col1)) + a.col2 + space(2- LENGTH(a.col2))) IN
(SELECT (b.col3) FROM test1 b);

To avoid such errors, cast the function result with an appropriate maximum
length; for example:

SELECT COUNT(*) FROM test1 a WHERE (a.col1 +
CAST(SPACE(4-LENGTH(a.col1)) AS VARCHAR(4)) + a.col2 +
CAST(SPACE(2-LENGTH (a.col2)) AS VARCHAR(4))) IN
(SELECT (b.col3) FROM test1 b);

The errors are more likely with an IQ page size of 64K or a multibyte collation.

Table 5-9 lists string functions and their parameters.

CHAPTER 5 SQL Functions

Reference Manual 265

Table 5-9: String functions

String function Parameters

ASCII (string-expr)

BIT_LENGTH (column-name)

BYTE_LENGTH (string-expr)

CHAR (integer-expr)

CHAR_LENGTH (string-expr)

CHARINDEX (string-expr1, string-expr2)

DIFFERENCE (string-expr1, string-expr2)

INSERTSTR (numeric-expr, string-expr1, string-expr2)

LCASE (string-expr)

LEFT (string-expr, numeric-expr)

LEN (string-expr)

LENGTH (string-expr)

LOCATE (string-expr1, string-expr2 [, numeric-expr])

LOWER (string-expr)

LTRIM (string-expr)

OCTET_LENGTH (column-name)

PATINDEX ('%pattern%', string_expr)

REPEAT (string-expr, numeric-expr)

REPLACE (original-string, search-string, replace-string)

REVERSE (expression | uchar_expr)

REPLICATE (string-expr, integer-expr)

RIGHT (string-expr, numeric-expr)

RTRIM (string-expr)

SIMILAR (string-expr1, string-expr2)

SORTKEY (string_expr [collation-name])

SOUNDEX (string-expr)

SPACE (integer-expr)

STR (numeric_expr [, length [, decimal]])

STR_REPLACE (string_expr1, string_expr2 , string_expr3)

STRING (string1 [, string2, ..., string99])

STUFF (string-expr1, start, length, string-expr2)

SUBSTRING (string-expr, integer-expr [, integer-expr])

TRIM (string-expr)

UCASE (string-expr)

UPPER (string-expr)

System functions

266 Sybase IQ

System functions
Function System functions return system information.

Table 5-10 lists the system functions and their parameters.

Table 5-10: System functions

Description Databases currently running on a server are identified by a database name and
a database ID number. The db_id and db_name functions provide information
on these values.

System function Parameters

COL_LENGTH (table-name, column-name)

COL_NAME (table-id, column-id [,database-id])

CONNECTION_PROPERTY ({ property-id | property-name } ... [,
connection-id])

DATALENGTH (expression)

DB_ID ([database-name])

DB_NAME ([database-id])

DB_PROPERTY ({ property-id | property-name } ...
[,{database-id | database-name }])

EVENT_CONDITION (condition-name)

EVENT_CONDITION_NAME (integer)

EVENT_PARAMETER (context-name)

GROUP_MEMBER (group-name-string-expression [, user-
name-string-expression])

INDEX_COL (table-name, index-id, key_# [,user-id])

NEXT_CONNECTION ({ NULL | connection-id })

NEXT_DATABASE ({ NULL | database-id })

OBJECT_ID (object-name)

OBJECT_NAME (object-id [, database-id])

PROPERTY ({ property-number | property-name })

PROPERTY_DESCRIPTION ({ property-number | property-name })

PROPERTY_NAME (property-number)

PROPERTY_NUMBER (property-name)

SUSER_ID ([user-name])

SUSER_NAME ([user-id])

USER_ID ([user-name])

USER_NAME ([user-id])

CHAPTER 5 SQL Functions

Reference Manual 267

A set of system functions provides information about properties of a currently
running database, or of a connection, on the database server. These system
functions take the database name or ID, or the connection name, as an optional
argument to identify the database or connection for which the property is
requested.

Performance System functions are processed differently than other Sybase IQ functions. For
this reason, when queries to Sybase IQ tables include system functions, their
performance is reduced.

Compatibility Table 5-11 shows the Adaptive Server Enterprise system functions and their
status in Sybase IQ:

System functions

268 Sybase IQ

Table 5-11: Status of ASE system functions in Sybase IQ

Notes • Some of the system functions are implemented in Sybase IQ as system
stored procedures.

• The db_id, db_name, datalength, suser_id, and suser_name functions are
implemented as built-in functions.

Function Status

col_length Implemented

col_name Implemented

db_id Implemented

db_name Implemented

index_col Implemented

object_id Implemented

object_name Implemented

proc_role Always returns 0

show_role Always returns NULL

tsequal Not implemented

user_id Implemented

user_name Implemented

suser_id Implemented

suser_name Implemented

datalength Implemented

curunreservedpgs Not implemented

data_pgs Not implemented

host_id Not implemented

host_name Not implemented

lct_admin Not implemented

reserved_pgs Not implemented

rowcnt Not implemented

used_pgs Not implemented

valid_name Not implemented

valid_user Not implemented

CHAPTER 5 SQL Functions

Reference Manual 269

Connection properties
Connection properties apply to an individual connection. This section
describes how to retrieve the value of a specific connection property or the
values of all connection properties. For descriptions of all of the connection
properties, see the section “Database properties” in the chapter “Database
Performance and Connection Properties” in the Adaptive Server Anywhere
Database Administration Guide.

Examples

❖ Retrieving the value of a connection property

• Use the connection_property system function. The following statement
returns the number of pages that have been read from file by the current
connection:

select connection_property ('DiskRead')

❖ Retrieving the values of all connection properties

• Use the sa_conn_properties system procedure.

call sa_conn_properties

A separate row is displayed for each connection, for each property.

Properties available for the server
Server properties apply across the server as a whole.This section describes how
to retrieve the value of a specific server property or the values of all server
properties. For descriptions of all of the server properties, see the section
“Database properties” in the chapter “Database Performance and Connection
Properties” in the Adaptive Server Anywhere Database Administration Guide.

Examples

❖ Retrieving the value of a server property

• Use the property system function. The following statement returns the
number of cache pages being used to hold the main heap.

select property ('MainHeapPages') from iq_dummy

❖ Retrieving the values of all server properties

• Use the sa_eng_properties system procedure.

call sa_eng_properties

SQL and Java user-defined functions

270 Sybase IQ

Properties available for each database
Database properties apply to an entire database. This section describes how to
retrieve the value of a specific database property or the values of all database
properties. For descriptions of all of the database properties, see the section
“Database properties” in the chapter “Database Performance and Connection
Properties” in the Adaptive Server Anywhere Database Administration Guide

Examples

❖ Retrieving the value of a database property

• Use the db_property system function. The following statement returns the
page size of the current database.

select db_property ('PageSize') from iq_dummy

❖ Retrieving the values of all database properties

• Use the sa_db_properties system procedure.

call sa_db_properties

SQL and Java user-defined functions
There are two mechanisms for creating user-defined functions in Sybase IQ.
You can use the SQL language to write the function, or you can use Java.

Note User-defined functions are processed by Adaptive Server Anywhere.
They do not take advantage of the performance features of Sybase IQ. Queries
that include user-defined functions run at least 10 times slower than queries
without them.

In very few cases, differences in semantics between ASA and Sybase IQ can
produce different results for a query if it is issued in a user-defined function.
For example, Sybase IQ treats the CHAR and VARCHAR data types as distinct
and different, while ASA treats CHAR data as if it were VARCHAR.

User-defined functions
in SQL

You can implement your own functions in SQL using the CREATE FUNCTION
statement. The RETURN statement inside the CREATE FUNCTION statement
determines the data type of the function.

CHAPTER 5 SQL Functions

Reference Manual 271

Once you have created a SQL user-defined function, you can use it anywhere
a built-in function of the same data type is used.

Note Avoid using the CONTAINS predicate in a view that has a user-defined
function, because the CONTAINS criteria is ignored. Use the LIKE predicate
instead, or issue the query outside of a view.

For more information on creating SQL functions, see Chapter 8, “Using
Procedures and Batches” in the Sybase IQ System Administration Guide.

User-defined functions
in Java

Although SQL functions are useful, Java classes provide a more powerful and
flexible way of implementing user-defined functions, with the additional
advantage that you can move them from the database server to a client
application if desired.

Any class method of an installed Java class can be used as a user-defined
function anywhere a built-in function of the same data type is used.

Instance methods are tied to particular instances of a class, and so have
different behavior from standard user-defined functions.

For more information on creating Java classes, and on class methods, see “A
Java Seminar” in the chapter “Introduction to Java in the Database” in the
Adaptive Server Anywhere Programming Guide.

Miscellaneous functions
Function Miscellaneous functions perform operations on arithmetic, string, or date/time

expressions, including the return values of other functions.

Table 5-12 lists the miscellaneous functions and their parameters.

Alphabetical list of functions

272 Sybase IQ

Table 5-12: Miscellaneous functions

Compatibility Adaptive Server Enterprise does not support these miscellaneous functions.

Alphabetical list of functions
This section describes each function individually. The function type, for
example, Numeric or String, is indicated in brackets next to the function name.

Some of the results in the examples have been rounded or truncated.

The actual values of database object IDs, such as the object ID of a table or the
column ID of a column, might differ from the values shown in the examples.

ABS function [Numeric]
Function Returns the absolute value of a numeric expression.

Syntax ABS (numeric-expression)

Parameters numeric-expression The number whose absolute value is to be returned.

Example The following statement returns the value 66:

SELECT ABS(-66) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Compatible with Adaptive Server Enterprise.

Miscellaneous functions Parameters

ARGN (integer-expr, expression [, ...])

COALESCE (expression, expression [, expression ...])

IFNULL (expression1, expression2 [, expression3])

ISNULL (expression, expression [, expression ...])

NULLIF (expression1, expression2)

NUMBER (*)

ROWID (table-name)

CHAPTER 5 SQL Functions

Reference Manual 273

ACOS function [Numeric]
Function Returns the arc-cosine, in radians, of a numeric expression.

Syntax ACOS (numeric-expression)

Parameters numeric-expression The cosine of the angle.

Example The following statement returns the value 1.023945:

SELECT ACOS(0.52) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Compatible with Adaptive Server Enterprise.

See also “ASIN function [Numeric]” on page 274

“ATAN function [Numeric]” on page 274

“ATAN2 function [Numeric]” on page 275

“COS function [Numeric]” on page 287

ARGN function [Miscellaneous]
Function Returns a selected argument from a list of arguments.

Syntax ARGN (integer-expression, expression [, ...])

Parameters integer-expression The position of an argument within a list of expressions.

expression An expression of any data type passed into the function. All
supplied expressions must be of the same data type.

Example The following statement returns the value 6:

SELECT ARGN(6, 1,2,3,4,5,6) FROM iq_dummy

Usage Using the value of integer-expression as n returns the nth argument (starting at
1) from the remaining list of arguments. While the expressions can be of any
data type, they must all be of the same data type. The integer expression must
be from one to the number of expressions in the list or NULL is returned.
Multiple expressions are separated by a comma.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

Alphabetical list of functions

274 Sybase IQ

ASCII function [String]
Function Returns the integer ASCII value of the first byte in a string-expression.

Syntax ASCII (string-expression)

Parameters string-expression The string

Example The following statement returns the value 90, when the collation sequence is
set to the default ISO_BINENG:

SELECT ASCII('Z') FROM iq_dummy

Usage If the string is empty, ASCII returns zero. Literal strings must be enclosed in
quotes.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

ASIN function [Numeric]
Function Returns the arc-sine, in radians, of a number.

Syntax ASIN (numeric-expression)

Parameters numeric-expression The sine of the angle

Example The following statement returns the value 0.546850.

SELECT ASIN(0.52) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Compatible with Adaptive Server Enterprise.

See also “ACOS function [Numeric]” on page 273

“ATAN function [Numeric]” on page 274

“ATAN2 function [Numeric]” on page 275

“SIN function [Numeric]” on page 361

ATAN function [Numeric]
Function Returns the arc-tangent, in radians, of a number.

Syntax ATAN (numeric-expression)

Parameters numeric-expression The tangent of the angle

CHAPTER 5 SQL Functions

Reference Manual 275

Example The following statement returns the value 0.479519:

SELECT ATAN(0.52) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Compatible with Adaptive Server Enterprise.

See also “ACOS function [Numeric]” on page 273

“ASIN function [Numeric]” on page 274

“ATAN2 function [Numeric]” on page 275

“TAN function [Numeric]” on page 376

ATAN2 function [Numeric]
Function Returns the arc-tangent, in radians, of the ratio of two numbers.

Syntax ATAN2 (numeric-expression1, numeric-expression2)

Parameters numeric-expression1 The numerator in the ratio whose arc tangent is
calculated.

numeric-expression2 The denominator in the ratio whose arc-tangent is
calculated.

Example The following statement returns the value 0.00866644968879073143:

SELECT ATAN2(0.52, 060) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase ATAN2 is not supported by Adaptive Server Enterprise

See also “ACOS function [Numeric]” on page 273

“ASIN function [Numeric]” on page 274

“ATAN function [Numeric]” on page 274

“TAN function [Numeric]” on page 376

AVG function [Aggregate]
Function Computes the average of a numeric expression for a set of rows, or computes

the average of a set of unique values.

Syntax AVG (numeric-expression | DISTINCT column-name)

Alphabetical list of functions

276 Sybase IQ

Parameters numeric-expression The value whose average is calculated over a set of
rows.

DISTINCT column-name Computes the average of the unique values in
column-name. This is of limited usefulness, but is included for completeness.

Example The following statement returns the value 49988.6:

SELECT AVG (salary) FROM employee

Usage This average does not include rows where numeric -expression is the NULL
value. Returns the NULL value for a group containing no rows.

Standards and
compatibility

• SQL92 SQL92 compatible.

• Sybase Compatible with Adaptive Server Enterprise.

See also “COUNT function [Aggregate]” on page 287

“SUM function [Aggregate]” on page 374

Chapter 4, “Using OLAP” in the Sybase IQ Performance and Tuning Guide

BIGINTTOHEX function [Data type conversion]
Function Returns the hexadecimal equivalent in VARCHAR(16) of a decimal integer.

Syntax BIGINTTOHEX (integer-expression)

Parameters integer-expression The integer to be converted to hexadecimal.

Examples The following statement returns the value 0000000000000009:

SELECT BIGINTTOHEX(9) FROM iq_dummy

The following statement returns the value FFFFFFFFFFFFFFF7:

SELECT BIGINTTOHEX (-9) FROM iq_dummy

Usage The BIGINTTOHEX function accepts an integer expression that evaluates to
BIGINT and returns the hexadecimal equivalent. Returned values are left
appended with zeros up to a maximum of 16 digits. All types of unscaled
integer data types are accepted as integer expressions.

Conversion is done automatically, if required. Constants are truncated, only if
the fraction values are zero. A column cannot be truncated, if the column is
declared with a positive scale value. If conversion fails, Sybase IQ returns an
error unless the CONVERSION_ERROR option is OFF. In that case, the result
is NULL.

CHAPTER 5 SQL Functions

Reference Manual 277

Standards and
compatibility

• SQL92 Transact-SQL extension

• Sybase Compatible with Adaptive Server Enterprise

See also “CONVERSION_ERROR option [TSQL]” on page 53

“HEXTOBIGINT function [Data type conversion]” on page 305

“HEXTOINT function [Data type conversion]” on page 306

“INTTOHEX function [Data type conversion]” on page 314

BIT_LENGTH function [String]
Function Returns an unsigned 64-bit value containing the bit length of the column

parameter.

Syntax BIT_LENGTH(column-name)

Parameters column-name The name of a column

Usage The return value of a NULL argument is NULL.

The BIT_LENGTH function supports all Sybase IQ data types.

Standards and
compatibility

Sybase Not supported by Adaptive Server Anywhere or Adaptive Server
Enterprise

See also “OCTET_LENGTH function [String]” on page 338

BYTE_LENGTH function [String]
Function Returns the number of bytes in a string.

Syntax BYTE_LENGTH (string-expression)

Parameters string-expression The string whose length is to be calculated

Example The following statement returns the value 12:

SELECT BYTE_LENGTH('Test Message') FROM iq_dummy

Usage Trailing white space characters are included in the length returned.

The return value of a NULL string is NULL.

If the string is in a multibyte character set, the BYTE_LENGTH value differs
from the number of characters returned by CHAR_LENGTH.

Alphabetical list of functions

278 Sybase IQ

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

See also “CHAR_LENGTH function [String]” on page 280

“DATALENGTH function [System]” on page 288

“LENGTH function [String]” on page 320

CAST function [Data type conversion]
Function Returns the value of an expression converted to a supplied data type.

Syntax CAST (expression AS data type)

Parameters expression The expression to be converted

data type The target data type

Examples The following function ensures a string is used as a date:

CAST('2000-10-31' AS DATE)

The value of the expression 1 + 2 is calculated, and the result cast into a single-
character string, the length the data server assigns:

CAST(1 + 2 AS CHAR)

You can use the CAST function to shorten strings:

SELECT CAST(lname AS CHAR(5)) FROM customer

Usage If you do not indicate a length for character string types, Sybase IQ chooses an
appropriate length. If neither precision nor scale is specified for a DECIMAL
conversion, the database server selects appropriate values.

If neither precision nor scale is specified for the explicit conversion of NULL
to NUMERIC, the default is NUMERIC(1,0). For example,

SELECT CAST(NULL AS NUMERIC) A,
CAST(NULL AS NUMERIC(15,2)) B

is described as:

A NUMERIC(1,0)
B NUMERIC(15,2)

Standards and
compatibility

• SQL92 This function is SQL92 compatibl.

• Sybase Not supported in Adaptive Server Enterprise

See also “CONVERT function [Data type conversion]” on page 284

CHAPTER 5 SQL Functions

Reference Manual 279

CEIL function [Numeric]
Function Returns the the smallest integer greater than or equal to the specified

expression.

CEIL is as synonym for CEILING.

Syntax CEIL (numeric-expression)

Parameters expression A column, variable, or expression with a data type that is either
exact numeric, approximate numeric, money, or any type that can be implicitly
converted to one of these types. For other data types, CEIL generates an error.
The return value has the same data type as the value supplied.

Usage For a given expression, the CEIL function takes one argument. For example,
CEIL (-123.45) returns -123. CEIL (123.45) returns 124.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

See also “CEILING function [Numeric]” on page 279

Chapter 11, “International Languages and Character Sets” in the Sybase IQ
System Administration Guide

CEILING function [Numeric]
Function Returns the ceiling (smallest integer not less than) of a number.

CEIL is as synonym for CEILING.

Syntax CEILING (numeric-expression)

Parameters numeric-expression The number whose ceiling is to be calculated

Examples The following statement returns the value 60.00000:

SELECT CEILING(59.84567) FROM iq_dummy

The following statement returns the value 123:

SELECT CEILING(123) FROM iq_dummy

The following statement returns the value 124.00:

SELECT CEILING(123.45) FROM iq_dummy

The following statement returns the value -123.00:

SELECT CEILING(-123.45) FROM iq_dummy

Alphabetical list of functions

280 Sybase IQ

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

See also “FLOOR function [Numeric]” on page 303

CHAR function [String]
Function Returns the character with the ASCII value of a number.

Syntax CHAR (integer-expression)

Parameters integer-expression The number to be converted to an ASCII character. The
number must be in the range 0 to 255, inclusive.

Examples The following statement returns the value “Y”:

SELECT CHAR(89) FROM iq_dummy

The following statement returns the value “S”:

SELECT CHAR(83) FROM iq_dummy

Usage The character in the current database character set corresponding to the
supplied numeric expression modulo 256 is returned.

CHAR returns NULL for integer expressions with values greater than 255 or
less than zero.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

CHAR_LENGTH function [String]
Function Returns the number of characters in a string.

Syntax CHAR_LENGTH (string-expression)

Parameters string-expression The string whose length is to be calculated

Usage Trailing white space characters are included in the length returned.

The return value of a NULL string is NULL.

If the string is in a multibyte character set, the CHAR_LENGTH value may be
less than the BYTE_LENGTH value.

Example The following statement returns the value 8:

CHAPTER 5 SQL Functions

Reference Manual 281

SELECT CHAR_LENGTH('Chemical') FROM iq_dummy

Standards and
compatibility

• SQL92 This function is SQL92 compatible

• Sybase Compatible with Adaptive Server Enterprise

See also “BYTE_LENGTH function [String]” on page 277

CHARINDEX function [String]
Function Returns the position of the first occurrence of one string in another.

Syntax CHARINDEX (string-expression1, string-expression2)

Parameters string-expression1 The string you are searching for. This string is limited to
255 bytes.

string-expression2 The string to be searched.

Example The statement:

SELECT emp_lname, emp_fname
FROM employee
WHERE CHARINDEX('K', emp_lname) = 1

returns the following values:

The position of the first character in the string being searched is 1.

Usage If the string being searched contains more than one instance of the other string,
CHARINDEX returns the position of the first instance.

If the string being searched does not contain the other string, CHARINDEX
returns 0.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

See also “SUBSTRING function [String]” on page 373

emp_lname emp_fname

Klobucher James

Kuo Felicia

Kelly Moira

Alphabetical list of functions

282 Sybase IQ

COALESCE function [Miscellaneous]
Function Returns the first non-NULL expression from a list.

Syntax COALESCE (expression, expression [, ...])

Parameters expression Any expression

Example The following statement returns the value 34:

SELECT COALESCE(NULL, 34, 13, 0) FROM iq_dummy

Standards and
compatibility

• SQL92 SQL92

• Sybase Not supported by Adaptive Server Enterprise

COL_LENGTH function [System]
Function Returns the defined length of a column.

Syntax COL_LENGTH (table-name, column-name)

Parameters table-name The table name

column-name The column name

Example The following statement returns the column length 35:

SELECT COL_LENGTH ('CUSTOMER', 'ADDRESS') FROM
iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Adaptive Server Enterprise function implemented for Sybase IQ

See also “DATALENGTH function [System]” on page 288

COL_NAME function [System]
Function Returns the column name.

Syntax COL_NAME (table-id, column-id [, database-id])

Parameters table-id The object ID of the table

column-id The column ID of the column

database-id The database ID

CHAPTER 5 SQL Functions

Reference Manual 283

Examples The following statement returns the column name lname. The object ID of the
customer table is 100209, as returned by the OBJECT_ID function. The column
ID is stored in the column_id column of the syscolumn system table. The
database ID of the asiqdemo database is 0, as returned by the DB_ID function.

SELECT COL_NAME(100209, 3, 0) FROM iq_dummy

The following statement returns the column name city.

SELECT COL_NAME (100209, 5)FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Adaptive Server Enterprise function implemented for Sybase IQ

See also “DB_ID function [System]” on page 296

“OBJECT_ID function [System]” on page 337

“SYSCOLUMN system table” on page 694

CONNECTION_PROPERTY function [System]
Function Returns the value of a given connection property as a string.

Syntax CONNECTION_PROPERTY ({ integer-expression1 | string-expression }
 ... [, integer-expression2])

Parameters integer-expression1 In most cases, it is more convenient to supply a string
expression as the first argument. If you do supply integer-expression1, it is the
connection property ID. You can determine this using the PROPERTY_NUMBER
function.

string-expression The connection property name. You must specify either
the property ID or the property name.

integer-expression2 The connection ID of the current database connection.
The current connection is used if this argument is omitted.

Example The following statement returns the number of prepared statements being
maintained, for example, 4:

SELECT connection_property('PrepStmt')FROM iq_dummy

Usage The current connection is used if the second argument is omitted.

Standards and
compatibility

• SQL92 Vendor extension

• Sybase Compatible with Adaptive Server Enterprise

See also “Connection properties” on page 269

Alphabetical list of functions

284 Sybase IQ

“PROPERTY_NUMBER function [System]” on page 347

CONVERT function [Data type conversion]
Function Returns an expression converted to a supplied data type.

Syntax CONVERT (data-type, expression [, format-style])

Parameters data-type The data type to which the expression is converted

expression The expression to be converted

format-style For converting strings to date or time data types and vice versa,
format-style is a style code number that describes the date format string to be
used. Table 5-13 lists the meanings of the values of the format-style argument.

CHAPTER 5 SQL Functions

Reference Manual 285

Table 5-13: CONVERT format style code output

If no format-style argument is provided, style code 0 is used.

Examples The following statements illustrate the use of format styles:

SELECT CONVERT(CHAR(20), order_date, 104)
FROM sales_order

SELECT CONVERT(CHAR(20), order_date, 7)

Without
century (yy)

With
century
(yyyy) Output

- 0 or 100 mmm dd yyyy hh:nnAM (or PM)

1 101 mm/dd/yy[yy]

2 102 [yy]yy.mm.dd

3 103 dd/mm/yy[yy]

4 104 dd.mm.yy[yy]

5 105 dd-mm-yy[yy]

6 106 dd mmm yy[yy]

7 107 mmm dd, yy[yy]

8 108 hh:nn:ss

- 9 or 109 mmm dd yyyy hh:nn:ss:sssAM (or PM)

10 110 mm-dd-yy[yy]

11 111 [yy]yy/mm/dd

12 112 [yy]yymmdd

13 113 dd mmm yyyy hh:nn:ss:sss (24 hour clock,
Europe default + milliseconds, 4-digit year)

14 114 hh:nn:ss (24 hour clock)

20 120 yyyy-mm-dd hh:nn:ss (24-hour clock, ODBC
canonical, 4-digit year)

21 121 yyyy-mm-dd hh:nn:ss.sss (24 hour clock, ODBC
canonical with milliseconds, 4-digit year)

- 365 yyyyjjj (as a string or integer, where jjj is the
Julian day number from 1 to 366 within the year)

order_date

16.03.1993

20.03.1993

23.03.1993

25.03.1993

...

Alphabetical list of functions

286 Sybase IQ

FROM sales_order

The following statements illustrate the use of the format style 365, which
converts data of type DATE and DATETIME to and from either string or integer
type data:

CREATE TABLE tab
(date_col DATE, int_col INT, char7_col CHAR(7));

INSERT INTO tab (date_col, int_col, char7_col)
VALUES (‘Dec 17, 2004’, 2004352, ‘2004352’);

SELECT CONVERT(VARCHAR(8), tab.date_col, 365) FROM tab;

returns ‘2004352’

SELECT CONVERT(INT, tab.date_col, 365) from tab;

returns 2004352

SELECT CONVERT(DATE, tab.int_col, 365) FROM TAB;

returns 2004-12-17

SELECT CONVERT(DATE, tab.char7_col, 365) FROM tab;

returns 2004-12-17

The following statement illustrates conversion to an integer, and returns the
value 5.

SELECT CONVERT(integer, 5.2) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Compatible with Adaptive Server Enterprise and Adaptive
Server Anywhere, except for format style 365, which is an IQ only
extension.

See also “CAST function [Data type conversion]” on page 278

order_date

mar 16, 93

mar 20, 93

mar 23, 93

mar 25, 93

...

CHAPTER 5 SQL Functions

Reference Manual 287

COS function [Numeric]
Function Returns the cosine of a number, expressed in radians.

Syntax COS (numeric-expression)

Parameters numeric-expression The angle, in radians.

Example The following statement returns the value 0.86781:

SELECT COS(0.52) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Compatible with Adaptive Server Enterprise.

See also “ACOS function [Numeric]” on page 273

“COT function [Numeric]” on page 287

“SIN function [Numeric]” on page 361

“TAN function [Numeric]” on page 376

COT function [Numeric]
Function Returns the cotangent of a number, expressed in radians.

Syntax COT (numeric-expression)

Parameters numeric-expression The angle, in radians.

Example The following statement returns the value 1.74653:

SELECT COT(0.52) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Compatible with Adaptive Server Enterprise.

See also “COS function [Numeric]” on page 287

“SIN function [Numeric]” on page 361

“TAN function [Numeric]” on page 376

COUNT function [Aggregate]
Function Counts the number of rows in a group, depending on the specified parameters.

Syntax COUNT (* | expression | DISTINCT column-name)

Alphabetical list of functions

288 Sybase IQ

Parameters * Returns the number of rows in each group.

expression Returns the number of rows in each group where expression is
not the NULL value.

DISTINCT column-name Returns the number of different values in column-
name. Rows where the value is the NULL value are not included in the count.

Example The following statement returns each unique city, and the number of rows with
that city value:

SELECT city , Count(*)
FROM employee
GROUP BY city

Standards and
compatibility

• SQL92 SQL92 compatible.

• Sybase Compatible with Adaptive Server Enterprise.

See also “AVG function [Aggregate]” on page 275

“SUM function [Aggregate]” on page 374

Chapter 4, “Using OLAP” in the Sybase IQ Performance and Tuning Guide

DATALENGTH function [System]
Function Returns the length of the expression in bytes.

Syntax DATALENGTH (expression)

Parameters expression The expression is usually a column name. If the expression is a
string constant, it must be enclosed in quotes.

Usage Table 5-14 lists the return values of DATALENGTH.

Table 5-14: DATALENGTH return values

Example The following statement returns the value 35, the longest string in the
company_name column:

SELECT MAX(DATALENGTH(company_name))

Data type DATALENGTH

SMALLINT 2

INTEGER 4

DOUBLE 8

CHAR Length of the data

BINARY Length of the data

CHAPTER 5 SQL Functions

Reference Manual 289

FROM customer

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Adaptive Server Enterprise function implemented for Sybase
IQ.

See also “CHAR_LENGTH function [String]” on page 280

“COL_LENGTH function [System]” on page 282

DATE function [Date and time]
Function Converts the expression into a date, and removes any hours, minutes, or

seconds.

Syntax DATE (expression)

Parameters expression The value to be converted to date format. The expression is
usually a string.

Example The following statement returns the value 1988-11-26 as a date.

SELECT DATE('1988-11-26 21:20:53') FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

DATEADD function [Date and time]
Function Returns the date produced by adding the specified number of the specified date

parts to a date.

Syntax DATEADD (date-part, numeric-expression, date-expression)

Parameters date part The date part to be added to the date.

For a complete listing of allowed date parts, see “Date parts” on page 259.

numeric-expression The number of date parts to be added to the date. The
numeric-expression can be any numeric type; the value is truncated to an
integer.

date-expression The date to be modified.

Example The following statement returns the value 1995-11-02 00:00:00.000:

SELECT DATEADD(month, 102, '1987/05/02') FROM iq_dummy

Alphabetical list of functions

290 Sybase IQ

Usage DATEADD is a Transact-SQL compatible data manipulation function.

Standards and
compatibility

• SQL92 Transact-SQL extension.

• Sybase Compatible with Adaptive Server Enterprise.

DATEDIFF function [Date and time]
Function Returns the interval between two dates.

Syntax DATEDIFF (date-part, date-expression1, date-expression2)

Parameters date-part Specifies the date part in which the interval is to be measured.

For a complete listing of allowed date parts, see “Date parts” on page 259.

date-expression1 The starting date for the interval. This value is subtracted
from date-expression2 to return the number of date parts between the two
arguments.

date-expression2 The ending date for the interval. date-expression1 is
subtracted from this value to return the number of date parts between the two
arguments.

Examples The following statement returns 1:

SELECT DATEDIFF(hour, '4:00AM', '5:50AM') FROM
iq_dummy

The following statement returns 102:

SELECT DATEDIFF(month, '1987/05/02', '1995/11/15')
FROM iq_dummy

The following statement returns 0:

SELECT DATEDIFF(day, '00:00', '23:59') FROM iq_dummy

The following statement returns 4:

SELECT DATEDIFF(day, '1999/07/19 00:00', '1999/07/23
23:59') FROM iq_dummy

The following statement returns 0:

SELECT DATEDIFF(month, '1999/07/19', '1999/07/23')
FROM iq_dummy

The following statement returns 1:

SELECT DATEDIFF(month, '1999/07/19', '1999/08/23')
FROM iq_dummy

CHAPTER 5 SQL Functions

Reference Manual 291

Usage This function calculates the number of date parts between two specified dates.
The result is a signed integer value equal to (date2 - date1), in date parts.

DATEDIFF results are truncated, not rounded, when the result is not an even
multiple of the date part.

When you use day as the date part, DATEDIFF returns the number of midnights
between the two times specified, including the second date, but not the first.
For example, the following statement returns the value 5. Midnight of the first
day 2003/08/03 is not included in the result. Midnight of the second day is
included, even though the time specified is before midnight.

SELECT DATEDIFF(day, '2003/08/03 14:00', '2003/08/08
14:00') FROM iq_dummy

When you use month as the date part, DATEDIFF returns the number of first-of-
the-months between two dates, including the second date but not the first. For
example, both of the following statements return the value 9:

SELECT DATEDIFF(month, '2003/02/01', '2003/11/15')
FROM iq_dummy;
SELECT DATEDIFF(month, '2003/02/01', '2003/11/01')
FROM iq_dummy;

The first date 2003/02/01 is a first-of-month, but is not included in the result of
either query. The second date 2003/11/01 in the second query is also a first-of-
month and is included in the result.

When you use week as the date part, DATEDIFF returns the number of Sundays
between the two dates, including the second date but not the first. For example,
in the month 2003/08, the dates of the Sundays are 03, 10, 17, 24, and 31. The
following query returns the value 4:

SELECT DATEDIFF(week, '2003/08/03', '2003/08/31')
FROM iq_dummy;

The first Sunday (2003/08/03) is not included in the result.

For smaller time units, there are overflow values:

• milliseconds 24 days.

• seconds 68 years.

• minutes 4083 years.

• others No overflow limit

.

The function returns an overflow error if you exceed these limits.

Alphabetical list of functions

292 Sybase IQ

Standards and
compatibility

• SQL92 Transact-SQL extension.

• Sybase Compatible with Adaptive Server Enterprise.

DATEFORMAT function [Date and time]
Function Returns a string representing a date expression in the specified format.

Syntax DATEFORMAT (datetime-expression, string-expression)

Parameters datetime-expression The date/time to be converted. Must be a date, time,
timestamp, or character string.

string-expression The format of the converted date.

For information on date format descriptions, see “DATE_FORMAT option” on
page 63.

Example The following statement returns string values like “Jan 01, 1989”:

SELECT DATEFORMAT(start_date, 'Mmm dd, yyyy') from
employee;

The following statement returns the string “Feb 19, 1987”.

SELECT DATEFORMAT(CAST (‘1987/02/19’ AS DATE), ‘Mmm
Dd, yyyy’) FROM iq_dummy

Usage The datetime-expression to convert must be a date, time, or timestamp data
type, but can also be a CHAR or VARCHAR character string. If the date is a
character string, Sybase IQ implicitly converts the character string to date,
time, or timestamp data type, so an explicit cast, as in the example above, is not
necessary.

Any allowable date format can be used for string-expression. Date format
strings cannot contain any multibyte characters. Only single-byte characters
are allowed in a date/time/datetime format string, even when the collation
order of the database is a multibyte collation order like SJIS2.

If '?' represents a multibyte character, then the following query fails:

SELECT DATEFORMAT (start_date, ‘yy?’) FROM employee;

Instead, move the multibyte character outside of the date format string using
the concatenation operator:

SELECT DATEFORMAT (start_date, ‘yy’) + ‘?’ FROM
employee;

CHAPTER 5 SQL Functions

Reference Manual 293

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Compatible with Adaptive Server Anywhere.

Year 2000 compliance
Do not use the DATEFORMAT function to produce a string with the year value
represented by only two digits. This can cause problems with year 2000
compliance even though no error has occurred.

For more information on year 2000 compliance, see “Year 2000 compliance”
on page 244.

See also “DATE_FORMAT option” on page 63

DATENAME function [Date and time]
Function Returns the name of the specified part (such as the month “June”) of a date/time

value, as a character string.

Syntax DATENAME (date-part, date-expression)

Parameters date-part The date part to be named.

For a complete listing of allowed date parts, see “Date parts” on page 259.

date-expression The date for which the date part name is to be returned. The
date must contain the requested date-part.

Example The following statement returns the value May:

SELECT datename(month , '1987/05/02') FROM iq_dummy

Usage DATENAME returns a character string, even if the result is numeric, such as 23,
for the day.

Standards and
compatibility

• SQL92 Transact-SQL extension.

• Sybase Compatible with Adaptive Server Enterprise.

DATEPART function [Date and time]
Function Returns an integer value for the specified part of a date/time value.

Syntax DATEPART (date-part, date-expression)

Parameters date-part The date part to be returned.

Alphabetical list of functions

294 Sybase IQ

For a complete listing of allowed date parts, see “Date parts” on page 259.

date-expression The date for which the part is to be returned. The date must
contain the date-part field.

Example The following statement returns the value 5:

SELECT DATEPART(month , '1987/05/02') FROM iq_dummy

Usage Note that the DATE, TIME, and DTTM indexes do not support some date parts
(Calyearofweek, Calweekofyear, Caldayofweek, Dayofyear, Millisecond).

Standards and
compatibility

• SQL92 Transact-SQL extension.

• Sybase Compatible with Adaptive Server Enterprise.

DATETIME function [Date and time]
Function Converts an expression into a timestamp.

Syntax DATETIME (expression)

Parameters expression The expression to be converted. The expression is usually a
string. Conversion errors may be reported.

Example This statement:

SELECT DATETIME('1998-09-09 12:12:12.000') FROM
iq_dummy

returns a timestamp with value 1998-09-09 12:12:12.000:

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

DAY function [Date and time]
Function Returns an integer from 1 to 31 corresponding to the day of the month of the

date specified.

Syntax DAY (date-expression)

Parameters date-expression The date.

Example The following statement returns the value 12:

SELECT DAY('2001-09-12') FROM iq_dummy

CHAPTER 5 SQL Functions

Reference Manual 295

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

DAYNAME function [Date and time]
Function Returns the name of the day of the week from the specified date.

Syntax DAYNAME(date-expression)

Parameters date-expression The date.

Example The following statement returns the value Saturday:

SELECT DAYNAME ('1987/05/02') FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

DAYS function [Date and time]
Function Returns the number of days since an arbitrary starting date, returns the number

of days between two specified dates, or adds the specified integer-expression
number of days to a given date.

Syntax DAYS (datetime-expression)
| (datetime-expression, datetime-expression)
| (datetime-expression, integer-expression)

Parameters datetime-expression A date and time.

integer-expression The number of days to be added to the datetime-
expression. If the integer-expression is negative, the appropriate number of
days are subtracted from the date/time. If you supply an integer expression, the
datetime-expression must be explicitly cast as a date.

For information on casting data types, see “CAST function [Data type
conversion]” on page 278.

DAYS ignores hours, minutes, and seconds.

Examples The following statement returns the integer value 729948:

SELECT DAYS('1998-07-13 06:07:12') FROM iq_dummy

The following statement returns the integer value -366, which is the difference
between the two dates:

Alphabetical list of functions

296 Sybase IQ

SELECT DAYS('1998-07-13 06:07:12',
'1997-07-12 10:07:12') FROM iq_dummy

The following statement returns the value 1999-07-14:

SELECT DAYS(CAST('1998-07-13' AS DATE), 366)
FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

DB_ID function [System]
Function Returns the database ID number.

Syntax DB_ID ([database-name])

Parameters database-name A string expression containing the database name. If
database-name is a string constant, it must be enclosed in quotes. If no
database-name is supplied, the ID number of the current database is returned.

Examples The following statement returns the value 0, if asiqdemo is the only running
database:

SELECT DB_ID('asiqdemo') FROM iq_dummy

The following statement returns the value 0, if executed against the only
running database:

SELECT DB_ID() FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Adaptive Server Enterprise function implemented for Sybase
IQ.

See also “DB_NAME function [System]” on page 296

“OBJECT_ID function [System]” on page 337

DB_NAME function [System]
Function Returns the database name.

Syntax DB_NAME ([database-id])

Parameters database-id The ID of the database. The database-id must be a numeric
expression.

CHAPTER 5 SQL Functions

Reference Manual 297

Example The following statement returns the database name asiqdemo, when executed
against the sample database.

SELECT DB_NAME(0) FROM iq_dummy

Usage If no database-id is supplied, the name of the current database is returned.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Adaptive Server Enterprise function implemented for Sybase
IQ.

See also “COL_NAME function [System]” on page 282

“DB_ID function [System]” on page 296

“OBJECT_NAME function [System]” on page 337

DB_PROPERTY function [System]
Function Returns the value of the given property.

Syntax DB_PROPERTY ({ property-id | property-name }
[, { database-id | database-name }])

Parameters property-id The database property ID.

property-name The database property name.

database-id The database ID number, as returned by DB_ID. Typically, the
database name is used.

database-name The name of the database, as returned by DB_NAME.

Example The following statement returns the page size of the current database, in bytes.

SELECT DB_PROPERTY('PAGESIZE') FROM iq_dummy

Usage Returns a string. The current database is used if the second argument is
omitted.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

See also “Properties available for each database” on page 270

“DB_ID function [System]” on page 296

“DB_NAME function [System]” on page 296

Alphabetical list of functions

298 Sybase IQ

DEGREES function [Numeric]
Function Converts a number from radians to degrees.

Syntax DEGREES (numeric-expression)

Parameters numeric-expression An angle in radians.

Example The following statement returns the value 29.793805:

SELECT DEGREES(0.52) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Compatible with Adaptive Server Enterprise.

DENSE_RANK function [Analytical]
Function Ranks items in a group.

Syntax DENSE_RANK () OVER (ORDER BY expression [ASC | DESC])

Parameters expression A sort specification that can be any valid expression involving a
column reference, aggregates, or expressions invoking these items.

Example The following statement illustrates the use of the DENSE_RANK function:

SELECT s_suppkey, DENSE_RANK()
OVER (ORDER BY (SUM(s_acctBal) DESC)
AS rank_dense FROM supplier GROUP BY s_suppkey;

s_suppkey sum_acctBal rank_dense
supplier#011 200000 1
supplier#002 200000 1
supplier#013 123000 2
supplier#004 110000 3
supplier#035 110000 3
supplier#006 50000 4
supplier#021 10000 5

Usage DENSE_RANK is a rank analytical function. The dense rank of row R is defined
as the number of rows preceding and including R that are distinct within the
groups specified in the OVER clause or distinct over the entire result set. The
difference between DENSE_RANK and RANK is that DENSE_RANK leaves no
gap in the ranking sequence when there is a tie. RANK leaves a gap when there
is a tie.

CHAPTER 5 SQL Functions

Reference Manual 299

DENSE_RANK requires an OVER (ORDER BY) clause. The ORDER BY clause
specifies the parameter on which ranking is performed and the order in which
the rows are sorted in each group. This ORDER BY clause is used only within
the OVER clause and is not an ORDER BY for the SELECT. No aggregation
functions in the rank query are allowed to specify DISTINCT.

The OVER clause indicates that the function operates on a query result set. The
result set is the rows that are returned after the FROM, WHERE, GROUP BY,
and HAVING clauses have all been evaluated. The OVER clause defines the data
set of the rows to include in the computation of the rank analytical function.

The ASC or DESC parameter specifies the ordering sequence ascending or
descending. Ascending order is the default.

DENSE_RANK is allowed only in the select list of a SELECT or INSERT
statement or in the ORDER BY clause of the SELECT statement. DENSE_RANK
can be in a view or a union. The DENSE_RANK function cannot be used in a
subquery, a HAVING clause, or in the select list of an UPDATE or DELETE
statement. Only one rank analytical function is allowed per query.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise or Adaptive
Server Anywhere.

See also “Analytical functions” on page 252

“RANK function [Analytical]” on page 349

Chapter 4, “Using OLAP” in the Sybase IQ Performance and Tuning Guide

DIFFERENCE function [String]
Function Compares two strings, evaluates the similarity between them, and returns a

value from 0 to 4. The best match is 4.

Syntax DIFFERENCE (string-expression1, string-expression2)

Parameters string-expression1 The first string to compare.

string-expression2 The second string to compare.

Examples The following statement returns the value 4:

SELECT DIFFERENCE('Smith', 'Smith') FROM iq_dummy

The following statement returns the value 4:

SELECT DIFFERENCE('Smith', 'Smyth') FROM iq_dummy

Alphabetical list of functions

300 Sybase IQ

The following statement returns the value 3:

SELECT DIFFERENCE('Smith', 'Sweeney') FROM iq_dummy

The following statement returns the value 2:

SELECT DIFFERENCE('Smith', 'Jones') FROM iq_dummy

The following statement returns the value 1:

SELECT DIFFERENCE('Smith', 'Rubin') FROM iq_dummy

The following statement returns the value 0:

SELECT DIFFERENCE('Smith', 'Wilkins') FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Compatible with Adaptive Server Enterprise.

See also “SOUNDEX function [String]” on page 364

DOW function [Date and time]
Function Returns a number from 1 to 7 representing the day of the week of the specified

date, with Sunday=1, Monday=2, and so on.

Syntax DOW (date-expression)

Parameters date-expression The date.

Example The following statement returns the value 5:

SELECT DOW('1998-07-09') FROM iq_dummy

Usage See “DATE_FIRST_DAY_OF_WEEK option” on page 63 if you need
Monday (or another day) to be the first day of the week.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

EVENT_CONDITION function [System]
Function To specify when an event handler is triggered.

Syntax EVENT_CONDITION (condition-name)

CHAPTER 5 SQL Functions

Reference Manual 301

Parameters condition-name The condition triggering the event. The possible values are
preset in the database, and are case insensitive. Each condition is valid only for
certain event types. Table 5-15 lists the conditions and the events for which
they are valid.

Table 5-15: Valid conditions for events

Example The following event definition uses the EVENT_CONDITION function:

create event LogNotifier
type LogDiskSpace
where event_condition('LogFreePercent') < 50
handler
begin

message 'LogNotifier message'
end

Condition
name Units Valid for Comment

DBFreePercent N/A DBDiskSpace DBDiskSpace shows
free space in the
system database file
(.db file), not the IQ
Store.

DBFreeSpace Megabytes DBDiskSpace

DBSize Megabytes GrowDB

ErrorNumber N/A RAISERROR

IdleTime Seconds ServerIdle

Interval Seconds All Time since handler
last executed.

LogFreePercent N/A LogDiskSpace

LogFreeSpace Megabytes LogDiskSpace

LogSize Megabytes GrowLog

RemainingValues Integer GlobalAutoincrement The number of
remaining values.

TempFreePercent N/A TempDiskSpace TempDiskSpace
shows free space in
the system temporary
file (pointed to by
TEMP or ASTMP
environment
variable), not the IQ
Temporary Store.

TempFreeSpace Megabytes TempDiskSpace

TempSize Megabytes GrowTemp

Alphabetical list of functions

302 Sybase IQ

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

See also “CREATE EVENT statement” on page 458

EVENT_CONDITION_NAME function [System]
Function Can be used to list the possible parameters for EVENT_CONDITION.

Syntax EVENT_CONDITION_NAME (integer)

Parameters integer Must be greater than or equal to zero.

Usage You can use EVENT_CONDITION_NAME to obtain a list of all
EVENT_CONDITION arguments by looping over integers until the function
returns NULL.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

See also “CREATE EVENT statement” on page 458

EVENT_PARAMETER function [System]
Function Provides context information for event handlers.

Syntax EVENT_PARAMETER (context-name)

context-name:
 'ConnectionID'
| 'User'
| 'EventName'
| 'Executions'
| 'NumActive'
| 'TableName'
| condition-name

Parameters context-name One of the preset strings. The strings are case insensitive, and
carry the following information:

• ConnectionId The connection ID, as returned by

connection_property('id')

• User The user ID for the user that caused the event to be triggered.

• EventName The name of the event that has been triggered.

CHAPTER 5 SQL Functions

Reference Manual 303

• Executions The number of times the event handler has been executed.

• NumActive The number of active instances of an event handler. This is
useful if you want to limit an event handler so that only one instance
executes at any given time.

• TableName The name of the table, for use with RemainingValues.

In addition, you can access any of the valid condition-name arguments to the
EVENT_CONDITION function from the EVENT_PARAMETER function.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

See also “EVENT_CONDITION function [System]” on page 300

CREATE EVENT statement on page 458

EXP function [Numeric]
Function Returns the exponential function, e to the power of a number.

Syntax EXP (numeric-expression)

Parameters numeric-expression The exponent.

Example The following statement returns the value 3269017.372472109:

SELECT EXP(15) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Compatible with Adaptive Server Enterprise.

FLOOR function [Numeric]
Function Returns the floor of (largest integer not greater than) a number.

Syntax FLOOR (numeric-expression)

Parameters numeric-expression The number, usually a float.

Examples The following statement returns the value 123.00:

SELECT FLOOR (123) FROM iq_dummy

The following statement returns the value 123:

SELECT FLOOR (123.45) FROM iq_dummy

Alphabetical list of functions

304 Sybase IQ

The following statement returns the value -124.00.

SELECT FLOOR (-123.45) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Compatible with Adaptive Server Enterprise.

See also “CEILING function [Numeric]” on page 279

GETDATE function [Date and time]
Function Returns the current date and time.

Syntax GETDATE ()

Example The following statement returns the system date and time.

SELECT GETDATE() FROM iq_dummy

Usage GETDATE is a Transact-SQL compatible data manipulation function.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Compatible with Adaptive Server Enterprise.

GROUPING function [Aggregate]
Function Identifies whether a column in a ROLLUP or CUBE operation result set is

NULL because it is part of a subtotal row, or NULL because of the underlying
data.

Syntax GROUPING (group-by-expression)

Parameters group-by-expression An expression appearing as a grouping column in the
result set of a query that uses a GROUP BY clause with the ROLLUP or CUBE
keyword. The function identifies subtotal rows added to the result set by a
ROLLUP or CUBE operation.

Currently, Sybase IQ does not support the PERCENTILE_CONT or
PERCENTILE_DISC functions with GROUP BY CUBE operations.

Return value • 1 Indicates that group-by-expression is NULL because it is part of a
subtotal row. The column is not a prefix column for that row.

• 0 Indicates that group-by-expression is a prefix column of a subtotal row.

Standards and
compatibility

• SQL92 Vendor extension.

CHAPTER 5 SQL Functions

Reference Manual 305

• SQL99 SQL/foundation feature outside of core SQL.

• Sybase Not supported by Adaptive Server Enterprise.

See also SELECT statement on page 632

Chapter 4, “Using OLAP” in the Sybase IQ Performance and Tuning Guide

GROUP_MEMBER function [System]
Function Identifies whether the user belongs to the specified group.

Syntax GROUP_MEMBER (group-name-string-expression [, user-name-string-ex-
pression])

Parameters group-name-string-expression Identifies the group to be considered.

user-name-string-expression Identifies the user to be considered. If not
supplied, then the current user name is assumed.

Return value • 0 Returns 0 if the group does not exist, if the user does not exist, or if the
user does not belong to the specified group.

• 1 Returns an integer other than 0 if the user is a member of the specified
group.

Standards and
compatibility

• SQL92 Vendor extension.

• SQL99 SQL/foundation feature outside of core SQL.

• Sybase Not supported by Adaptive Server Enterprise.

HEXTOBIGINT function [Data type conversion]
Function Returns the BIGINT equivalent of a hexadecimal string.

Syntax HEXTOBIGINT (hexadecimal-string)

Parameters hexadecimal-string The hexadecimal value to be converted to a big integer
(BIGINT). Input can be in the following forms, with either a lowercase or
uppercase “0x” in the prefix, or no prefix:

0xhex-string
0Xhex-string
hex-string

Examples The following statements return the value 4294967287:

SELECT HEXTOBIGINT ('0xfffffff7') FROM iq_dummy

Alphabetical list of functions

306 Sybase IQ

SELECT HEXTOBIGINT ('0Xfffffff7') FROM iq_dummy
SELECT HEXTOBIGINT ('fffffff7') FROM iq_dummy

Usage The HEXTOBIGINT function accepts hexadecimal integers and returns the
BIGINT equivalent. Hexadecimal integers can be provided as CHAR and
VARCHAR value expressions, as well as BINARY and VARBINARY expressions.

The HEXTOBIGINT function accepts a valid hexadecimal string, with or
without a “0x” or “0X” prefix, enclosed in single quotes.

Input of fewer than 16 digits is assumed to be left-padded with zeros.

For data type conversion failure on input, Sybase IQ returns an error unless the
CONVERSION_ERROR option is set to OFF. When CONVERSION_ERROR is
OFF, invalid hexadecimal input returns NULL.

An error is returned if a BINARY or VARBINARY value exceeds 8 bytes and a
CHAR or VARCHAR value exceeds 16 characters, with the exception of the
value being appended with ‘0x.’

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Compatible with Adaptive Server Enterprise.

See also “CONVERSION_ERROR option [TSQL]” on page 53

“BIGINTTOHEX function [Data type conversion]” on page 276

“HEXTOINT function [Data type conversion]” on page 306

“INTTOHEX function [Data type conversion]” on page 314

HEXTOINT function [Data type conversion]
Function Returns the unsigned BIGINT equivalent of a hexadecimal string.

Syntax HEXTOINT (hexadecimal-string)

Parameters hexadecimal-string The string to be converted to an integer. Input can be in
the following forms, with either a lowercase or uppercase “x” in the prefix, or
no prefix:

0xhex-string
0Xhex-string
hex-string

Examples The following statements return the value 420:

SELECT HEXTOINT ('0x1A4') FROM iq_dummy
SELECT HEXTOINT ('0X1A4') FROM iq_dummy

CHAPTER 5 SQL Functions

Reference Manual 307

SELECT HEXTOINT ('1A4') FROM iq_dummy

Usage For invalid hexadecimal input, Sybase IQ returns an error unless the
CONVERSION_ERROR option is set to OFF. When CONVERSION_ERROR is
OFF, invalid hexadecimal input returns NULL.

The database option ASE_FUNCTION_BEHAVIOR specifies that output of
Sybase IQ functions, including INTTOHEX and HEXTOINT, is consistent with
the output of Adaptive Server Enterprise functions. When the
ASE_FUNCTION_BEHAVIOR option is enabled (the value is ON):

• Sybase IQ HEXTOINT assumes input is a hexadecimal string of 8
characters; if the length is less than 8 characters long, the string is left
padded with zeros.

• Sybase IQ HEXTOINT accepts a maximum of 16 characters prefixed with
0x (a total of 18 characters); use caution, as a large input value can result
in an integer value that overflows the 32-bit signed integer output size.

• The data type of the output of the Sybase IQ HEXTOINT function is
assumed to be a 32-bit signed integer.

• Sybase IQ HEXTOINT accepts a 32-bit hexadecimal integer as a signed
representation.

• For more than 8 hexadecimal characters, Sybase IQ HEXTOINT considers
only relevant characters.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Compatible with Adaptive Server Enterprise.

See also “ASE_FUNCTION_BEHAVIOR option” on page 44

“CONVERSION_ERROR option [TSQL]” on page 53

“INTTOHEX function [Data type conversion]” on page 314

HOUR function [Date and time]
Function Returns a number from 0 to 23 corresponding to the hour component of the

specified date/time.

Syntax HOUR (datetime-expression)

Parameters datetime-expression The date/time.

Example The following statement returns the value 21:

SELECT HOUR('1998-07-09 21:12:13') FROM iq_dummy

Alphabetical list of functions

308 Sybase IQ

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

HOURS function [Date and time]
Function Returns the number of hours since an arbitrary starting date and time, the

number of whole hours between two specified times, or adds the specified
integer-expression number of hours to a time.

Syntax HOURS (datetime-expression
| datetime-expression, datetime-expression
| datetime-expression, integer-expression)

Parameters datetime-expression A date and time.

integer-expression The number of hours to be added to the datetime-
expression. If integer-expression is negative, the appropriate number of hours
are subtracted from the date/time. If you supply an integer expression, the
datetime-expression must be explicitly cast as a datetime data type.

For information on casting data types, see “CAST function [Data type
conversion]” on page 278.

Examples The following statement returns the value 17518758:

SELECT HOURS('1998-07-13 06:07:12') FROM iq_dummy

The following statement returns the value 4, to signify the difference between
the two times:

SELECT HOURS('1999-07-13 06:07:12',
'1999-07-13 10:07:12') FROM iq_dummy

The following statement returns the datetime value 1999-05-13 02:05:07.000:

SELECT HOURS(CAST('1999-05-12 21:05:07'
AS DATETIME), 5) FROM iq_dummy

Usage The second syntax returns the number of whole hours from the first date/time
to the second date/time. The number might be negative.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

CHAPTER 5 SQL Functions

Reference Manual 309

HTML_DECODE function [HTTP]
Function Decodes special character entities that appear in HTML literal strings.

Syntax HTML_DECODE (string)

Parameters string An arbitrary literal string used in an HTML document.

Usage This function returns the string argument after making the following set of
substitutions:

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

See also “HTML_ENCODE function [HTTP]” on page 309

“HTTP_ENCODE function [HTTP]” on page 310

HTML_ENCODE function [HTTP]
Function Encodes special characters within strings to be inserted into HTML documents.

Syntax HTML_ENCODE (string)

Parameters string An arbitrary literal string used in an HTML document.

Usage This function returns the string argument after making the following set of
substitutions:

Characters Substitution

" "

' '

& &

< <

> >

&#xnn; character nn

Characters Substitution

" "

' '

& &

< <

> >

codes no less
than 0X20

&#xnn

Alphabetical list of functions

310 Sybase IQ

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

See also “HTML_DECODE function [HTTP]” on page 309

“HTTP_ENCODE function [HTTP]” on page 310

HTTP_DECODE function [HTTP]
Function Decodes special characters within strings for use with HTTP.

Syntax HTTP_DECODE (string)

Parameters string Arbitrary string to be used in an HTTP request.

Usage This function returns the string argument after replacing all character
sequences of the form %nn, where nn is a hexadecimal value, with the
character with code nn. In addition, all plus signs (+) are replaced with spaces.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

See also “HTML_ENCODE function [HTTP]” on page 309

“HTTP_ENCODE function [HTTP]” on page 310

HTTP_ENCODE function [HTTP]
Function Encodes special characters in strings for use with HTTP.

Syntax HTML_ENCODE (string)

Parameters string Arbitrary string to be used in an HTTP request.

Usage This function returns the string argument after making the following set of
substitutions. In addition, all characters with hexadecimal codes less than 1F or
greater than 7E are replaced with %nn, where nn is the character code.

Character Substitution

space %20

" %22

%23

& %26

, %2C

; %3B

CHAPTER 5 SQL Functions

Reference Manual 311

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

See also “HTML_ENCODE function [HTTP]” on page 309

“HTTP_DECODE function [HTTP]” on page 310

HTTP_HEADER function [HTTP]
Function Gets the value of an HTTP header.

Syntax HTML_HEADER (field-name)

Parameters field-name The name of an HTTP header field.

Usage This function returns the value of the named HTTP header field. It is used when
processing an HTTP request through a Web service.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

See also “HTTP_VARIABLE function [HTTP]” on page 311

“NEXT_HTTP_HEADER function [HTTP]” on page 331

“NEXT_HTTP_VARIABLE function [HTTP]” on page 332

HTTP_VARIABLE function [HTTP]
Function Gets the value of an HTTP variable.

Syntax HTML_VARIABLE (var-name [[, instance] , header-field)

< %3C

> %3E

[%5B

\ %5C

] %5D

` %60

{ %7B

| %7C

} %7D

Character Substitution

Alphabetical list of functions

312 Sybase IQ

Parameters var-name The name of the an HTTP variable.

instance If more than one variable has the same name, the instance number
of the field instance, or NULL to get the first one. Useful for select lists that
permit multiple selections.

header-field In a multipart request, a header field name associated with the
named field.

Usage This function returns the value of the named HTTP variable. It is used when
processing an HTTP request through a Web service.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

“HTML_DECODE function [HTTP]” on page 309

“NEXT_HTTP_HEADER function [HTTP]” on page 331

“NEXT_HTTP_VARIABLE function [HTTP]” on page 332

IFNULL function [Miscellaneous]
Function If the first expression is the NULL value, then the value of the second

expression is returned. If the first expression is not NULL, the value of the third
expression is returned. If the first expression is not NULL and there is no third
expression, then the NULL value is returned.

Syntax IFNULL (expression1, expression2 [, expression3])

Parameters expression1 The expression to be evaluated. Its value determines whether
expression2 or expression3 is returned.

expression2 The return value if expression1 is NULL.

expression3 The return value if expression1 is not NULL.

Examples The following statement returns the value -66:

SELECT IFNULL(NULL, -66) FROM iq_dummy

The following statement returns NULL, because the first expression is not
NULL and there is no third expression:

SELECT IFNULL(-66, -66) FROM iq_dummy

Standards and
compatibility

• SQL92 Transact-SQL extension.

• Sybase Not supported by Adaptive Server Enterprise.

CHAPTER 5 SQL Functions

Reference Manual 313

INDEX_COL function [System]
Function Returns the name of the indexed column.

Syntax INDEX_COL (table-name, index-id, key_# [, user-id])

Parameters table-name A table name.

index-id The index ID of an index of table-name.

key_# A key in the index specified by index-id. This parameter specifies the
column number in the index. For a single column index, key_# is equal to 0.
For a multicolumn index, key_# is equal to 0 for the first column, 1 for the
second column, and so on.

user-id The user ID of the owner of table-name. If user-id is not specified,
this value defaults to the caller’s user ID.

Examples The following statement returns the indexed column name id, which is the first
column of the multicolumn index with index-id equal to 6:

SELECT INDEX_COL('sales_order_items', 6, 0)

The following statement returns the indexed column name line_id, which is the
second column of the multicolumn index with index-id equal to 6:

SELECT INDEX_COL('sales_order_items', 6, 1)

The following statement returns the indexed column name file_id, which is the
only column in the single column index with index-id equal to 1:

SELECT INDEX_COL('ul_statement', 1, 0, 3)

The following statement returns the indexed column name quantity, which is
the only column in the single column index with index-id equal to 4:

SELECT INDEX_COL('sales_order_items', 4, 0, 1)

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Adaptive Server Enterprise function implemented for Sybase
IQ.

See also “OBJECT_ID function [System]” on page 337

INSERTSTR function [String]
Function Inserts a string into another string at a specified position.

Syntax INSERTSTR (numeric-expression, string-expression1, string-
expression2)

Alphabetical list of functions

314 Sybase IQ

Parameters numeric-expression The position after which string-expression2 is to be
inserted. Use zero to insert a string at the beginning.

string-expression1 The string into which string-expression2 is to be
inserted.

string-expression2 The string to be inserted.

Note The result datatype of an INSERTSTR function is a LONG VARCHAR. If
you use INSERTSTR in a SELECT INTO statement, you must have a Large
Objects Management option license or use CAST and set INSERTSTR to the
correct datatype and size.

See “REPLACE function [String]” for more information.

Example The following statement returns the value “backoffice”:

SELECT INSERTSTR(0, 'office ', 'back') FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported in Adaptive Server Enterprise. The STUFF
function is equivalent and is supported in both Adaptive Server Enterprise
and Sybase IQ.

See also “STUFF function [String]” on page 373

INTTOHEX function [Data type conversion]
Function Returns the hexadecimal equivalent of a decimal integer.

Syntax INTTOHEX (integer-expression)

Parameters integer-expression The integer to be converted to hexadecimal.

Examples The following statement returns the value 3B9ACA00:

SELECT INTTOHEX(1000000000) FROM iq_dummy

The following statement returns the value 00000002540BE400:

SELECT INTTOHEX (10000000000) FROM iq_dummy

Usage If data conversion of input to INTTOHEX conversion fails, Sybase IQ returns an
error, unless the CONVERSION_ERROR option is OFF. In that case, the result
is NULL.

CHAPTER 5 SQL Functions

Reference Manual 315

ASE_FUNCTION_BEHAVIOR option The database option
ASE_FUNCTION_BEHAVIOR specifies that output of IQ functions, including
INTTOHEX and HEXTOINT, be consistent with the output of Adaptive Server
Enterprise functions. The default value of ASE_FUNCTION_BEHAVIOR is
OFF.

When the ASE_FUNCTION_BEHAVIOR option is disabled (the value is OFF):

• The output of INTTOHEX is compatible with Adaptive Server Anywhere.

• Depending on the input, the output of INTTOHEX can be 8 digits or 16
digits and is left padded with zeros; the return data type is VARCHAR.

• The output of INTTOHEX does not have a ‘0x’ or ‘0X’ prefix.

• The input to INTTOHEX can be up to a 64-bit integer.

When the ASE_FUNCTION_BEHAVIOR option is enabled (the value is ON):

• The output of INTTOHEX is compatible with ASE.

• The output of INTTOHEX is always 8 digits and is left-padded with zeros;
the return data type is VARCHAR.

• The output of INTTOHEX does not have a ‘0x’ or ‘0X’ prefix.

• Sybase IQ INTTOHEX assumes input is a 32-bit signed integer; a larger
value can overflow and a conversion error can result. For example, the
statement:

SELECT INTTOHEX(1000000000) FROM iq_dummy

returns the value 3B9ACA00. But the statement:

SELECT INTTOHEX(1000000000) FROM iq_dummy

results in a conversion error.

Standards and
compatibility

• SQL92 Transact-SQL extension.

• Sybase Compatible with Adaptive Server Enterprise.

See also “CONVERSION_ERROR option [TSQL]” on page 53

“ASE_FUNCTION_BEHAVIOR option” on page 44

“HEXTOINT function [Data type conversion]” on page 306

Alphabetical list of functions

316 Sybase IQ

ISDATE function [Date and time]
Function Tests whether a string argument can be converted to a date. If a conversion is

possible, the function returns 1; otherwise, it returns 0. If the argument is null,
0 is returned.

Syntax ISDATE (string)

Parameters string The string to be analyzed to determine whether the string represents a
valid date.

Example The following example tests whether the birth_date column holds valid dates,
returning invalid dates as NULL, and valid dates in date format.

select birth_date from MyData;

1990/32/89,
0101/32/89,
1990/12/09,

select
case when isdate(birth_date)=0 then NULL
else cast(birth_date as date)
end
from MyData;

(NULL)
(NULL)
1990-12-09

Standards and
compatibility

• SQL92 Vendor extension.

• SQL99 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

ISNULL function [Miscellaneous]
Function Returns the value of the first non-NULL expression in the parameter list.

Syntax ISNULL (expression, expression [... , expression])

Parameters expression An expression to be tested against NULL.

At least two expressions must be passed to the function.

Example The following statement returns the value -66:

SELECT ISNULL(NULL ,-66, 55, 45, NULL, 16) FROM
iq_dummy

CHAPTER 5 SQL Functions

Reference Manual 317

Usage The ISNULL function is the same as the COALESCE function.

Standards and
compatibility

• SQL92 Transact-SQL extension.

• Sybase Not supported by Adaptive Server Enterprise.

See also “COALESCE function [Miscellaneous]” on page 282

ISNUMERIC function [Miscellaneous]
Function Tests whether a string argument can be converted to a numeric. If a conversion

is possible, the function returns 1; otherwise, it returns 0. If the argument is
null, 0 is returned.

Syntax ISNUMERIC (string)

Parameters string The string to be analyzed to determine whether the string represents a
valid numeric value.

Usage For optimal performance, avoid using ISNUMERIC in predicates, where it is
processed by the Adaptive Server Anywhere portion of the product and cannot
take advantage of the performance features of Sybase IQ.

Example The following example tests whether the height_in_cms column holds valid
numeric data, returning invalid numeric data as NULL, and valid numeric data
in int format.

data height_in_cms

asde
asde
180
156

select case
when isnumeric(height_in_cms)=0
then NULL
else cast(height_in_cms as int)
end

from MyData

Standards and
compatibility

• SQL92 Vendor extension.

• SQL99 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

Alphabetical list of functions

318 Sybase IQ

LCASE function [String]
Function Converts all characters in a string to lowercase.

Syntax LCASE (string-expression)

Parameters string-expression The string to be converted to lowercase.

Note The result datatype of an LCASE function is a LONG VARCHAR. If you
use LCASE in a SELECT INTO statement, you must have a Large Objects
Management option license or use CAST and set LCASE to the correct datatype
and size.

See “REPLACE function [String]” for more information.

Example The following statement returns the value “lower case”:

SELECT LCASE('LOWER CasE') FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase LCASE is not supported in Adaptive Server Enterprise; you can
use LOWER to get the same functionality.

See also “LOWER function [String]” on page 323

“UCASE function [String]” on page 378

“UPPER function [String]” on page 379

LEFT function [String]
Function Returns a specified number of characters from the beginning of a string.

Syntax LEFT (string-expression, numeric-expression)

Parameters string-expression The string.

numeric-expression The number of characters to return.

Example The following statement returns the value “choco”:

SELECT LEFT('chocolate', 5) FROM iq_dummy

CHAPTER 5 SQL Functions

Reference Manual 319

Usage If the string contains multibyte characters, and the proper collation is being
used, the number of bytes returned may be greater than the specified number
of characters.

Note The result datatype of a LEFTfunction is a LONG VARCHAR. If you use
LEFT in a SELECT INTO statement, you must have a Large Objects
Management option license or use CAST and set LEFT to the correct datatype
and size.

See “REPLACE function [String]” for more information.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

See also “RIGHT function [String]” on page 355

Chapter 11, “International Languages and Character Sets” in the Sybase IQ
System Administration Guide

LEN function [String]
Function Takes one argument as an input of type BINARY or STRING and returns the

number of characters, as defined by the database's collation sequence, of a
specified string expression, excluding trailing blanks. The result may differ
from the string’s byte length for multi-byte character sets.

BINARYand VARBINARY are also allowed, in which case LEN() returns the
number of bytes of the input.

LEN is an alias of LENGTH function

Syntax LEN (string_expr)

Parameters string_expr is the string expression to be evaluated.

Example Returns the characters:

select len(notes) from titles
where title_id = "PC9999"

39

Usage This function is the equivalent of CHAR_LENGTH (string_expression).

Permissions Any user can execute LEN.

Alphabetical list of functions

320 Sybase IQ

Standards and
compatibility

ANSI SQL – Compliance level: Transact-SQL extension

See also Data types CHAR, NCHAR, VARCHAR, NVARCHAR.

See Chapter 4, “SQL Data Types.”

Functions “CHAR_LENGTH function [String]” on page 280 and
“STR_REPLACE function [String]” on page 370.

For general information about string functions, see “String functions” on page
264.

LENGTH function [String]
Function Returns the number of characters in the specified string.

Syntax LENGTH (string-expression)

Parameters string-expression The string.

Example The following statement returns the value 9:

SELECT LENGTH('chocolate') FROM iq_dummy

Usage If the string contains multibyte characters, and the proper collation is being
used, LENGTH returns the number of characters, not the number of bytes. If the
string is of BINARY data type, the LENGTH function behaves as
BYTE_LENGTH.

The LENGTH function is the same as the CHAR_LENGTH function.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise. Use the
CHAR_LENGTH function instead.

See also “BYTE_LENGTH function [String]” on page 277

“CHAR_LENGTH function [String]” on page 280

Chapter 11, “International Languages and Character Sets” in the Sybase IQ
System Administration Guide

LN function [Numeric]
Function Returns the natural logarithm of the specified expression.

Syntax LN (numeric-expression)

CHAPTER 5 SQL Functions

Reference Manual 321

Parameters expression Is a column, variable, or expression with a data type that is either
exact numeric, approximate numeric, money, or any type that can be implicitly
converted to one of these types. For other data types, the LN function generates
an error. The return value is of DOUBLE data type.

Usage LN takes one argument. For example, LN (20) returns 2.995732.

The LN function is an alias of the LOG function.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise. Use the LOG
function instead.

See also “LOG function [Numeric]” on page 322

Chapter 11, “International Languages and Character Sets” in the Sybase IQ
System Administration Guide

LOCATE function [String]
Function Returns the position of one string within another.

Syntax LOCATE (string-expression1, string-expression2
[, numeric-expression])

Parameters string-expression1 The string to be searched.

string-expression2 The string to be searched for. This string is limited to
255 bytes.

numeric-expression The character position at which to begin the search in
the string. The first character is position 1. If the starting offset is negative,
LOCATE returns the last matching string offset, rather than the first. A negative
offset indicates how much of the end of the string to exclude from the search.
The number of bytes excluded is calculated as (-1 * offset) - 1.

Examples The following statement returns the value 8:

SELECT LOCATE('office party this week – rsvp as soon
as possible', 'party', 2) FROM iq_dummy

In the second example, the numeric-expression starting offset for the search is
a negative number.

CREATE TABLE t1(name VARCHAR(20), dirname VARCHAR(60));
INSERT INTO t1

VALUES(‘m1000’,’c:\test\functions\locate.sql’);
INSERT INTO t1

Alphabetical list of functions

322 Sybase IQ

VALUES(‘m1001’,’d:\test\functions\trim.sql’);
COMMIT;

SELECT LOCATE(dirname, ‘\’, -1), dirname FROM t1;

The result is:

18 c:\test\functions\locate.sql
18 d:\test\functions\trim.sql

Usage If numeric-expression is specified, the search starts at that offset into the string.

The first string can be a long string (longer than 255 bytes), but the second is
limited to 255 bytes. If a long string is given as the second argument, the
function returns a NULL value. If the string is not found, 0 is returned.
Searching for a zero-length string returns 1. If any of the arguments are NULL,
the result is NULL.

If multibyte characters are used, with the appropriate collation, then the starting
position and the return value may be different from the byte positions.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

LOG function [Numeric]
Function Returns the natural logarithm of a number.

LN is an alias of LOG.

Syntax LOG (numeric-expression)

Parameters numeric-expression The number.

Example The following statement returns the value 3.912023:

SELECT LOG(50) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Compatible with Adaptive Server Enterprise.

See also “LOG10 function [Numeric]” on page 323

CHAPTER 5 SQL Functions

Reference Manual 323

LOG10 function [Numeric]
Function Returns the base 10 logarithm of a number.

Syntax LOG10 (numeric-expression)

Parameters numeric-expression The number.

Example The following statement returns the value 1.698970.

SELECT LOG10(50) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Compatible with Adaptive Server Enterprise.

See also “LOG function [Numeric]” on page 322

LOWER function [String]
Function Converts all characters in a string to lowercase.

Syntax LOWER (string-expression)

Parameters string-expression The string to be converted.

Note The result datatype of a LOWER function is a LONG VARCHAR. If you
use LOWER in a SELECT INTO statement, you must have a Large Objects
Management option license or use CAST and set LOWER to the correct
datatype and size.

See “REPLACE function [String]” for more information.

Example The following statement returns the value “lower case”:

SELECT LOWER('LOWER CasE') FROM iq_dummy

Standards and
compatibility

• SQL92 SQL92 compatible.

• Sybase Compatible with Adaptive Server Enterprise.

See also “LCASE function [String]” on page 318

“UCASE function [String]” on page 378

“UPPER function [String]” on page 379

Alphabetical list of functions

324 Sybase IQ

LTRIM function [String]
Function Removes leading blanks from a string.

Syntax LTRIM (string-expression)

Parameters string-expression The string to be trimmed.

Note The result data type of an LTRIM function is a LONG VARCHAR. If you
use LTRIM in a SELECT INTO statement, you must have a Large Objects
Management option license or use CAST and set LTRIM to the correct data type
and size.

See “REPLACE function [String]” on page 352 for more information.

Example The following statement returns the value “Test Message” with all leading
blanks removed:

SELECT LTRIM(' Test Message') FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Compatible with Adaptive Server Enterprise.

See also “RTRIM function [String]” on page 358

“TRIM function [String]” on page 376

MAX function [Aggregate]
Function Returns the maximum expression value found in each group of rows.

Syntax MAX (expression
| DISTINCT column-name)

Parameters expression The expression for which the maximum value is to be calculated.
This is commonly a column name.

DISTINCT column-name Returns the same as MAX (expression), and is
included for completeness.

Example The following statement returns the value 138948.000, representing the
maximum salary in the employee table:

SELECT MAX (salary)
FROM employee

Usage Rows where expression is NULL are ignored. Returns NULL for a group
containing no rows.

CHAPTER 5 SQL Functions

Reference Manual 325

Standards and
compatibility

• SQL92 SQL92 compatible.

• Sybase Compatible with Adaptive Server Enterprise.

See also “MIN function [Aggregate]” on page 325

Chapter 4, “Using OLAP” in the Sybase IQ Performance and Tuning Guide

MIN function [Aggregate]
Function Returns the minimum expression value found in each group of rows.

Syntax MIN (expression
| DISTINCT column-name)

Parameters expression The expression for which the minimum value is to be calculated.
This is commonly a column name.

DISTINCT column-name Returns the same as MIN (expression), and is
included for completeness.

Example The following statement returns the value 24903.000, representing the
minimum salary in the employee table:

SELECT MIN (salary)
FROM employee

Usage Rows where expression is NULL are ignored. Returns NULL for a group
containing no rows.

Standards and
compatibility

• SQL92 SQL92 compatible.

• Sybase Compatible with Adaptive Server Enterprise.

See also “MAX function [Aggregate]” on page 324

Chapter 4, “Using OLAP” in the Sybase IQ Performance and Tuning Guide

MINUTE function [Date and time]
Function Returns a number from 0 to 59 corresponding to the minute component of the

specified date/time value.

Syntax MINUTE (datetime-expression)

Parameters datetime-expression The date/time value.

Example The following statement returns the value 22:

Alphabetical list of functions

326 Sybase IQ

SELECT MINUTE('1998-07-13 12:22:34') FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Compatible with Adaptive Server Enterprise.

MINUTES function [Date and time]
Function Returns the number of minutes since an arbitrary date and time, the number of

whole minutes between two specified times, or adds the specified integer-
expression number of minutes to a time.

Syntax MINUTES (datetime-expression
| datetime-expression, datetime-expression
| datetime-expression, integer-expression)

Parameters datetime-expression A date and time.

integer-expression The number of minutes to be added to the datetime-
expression. If integer-expression is negative, the appropriate number of
minutes are subtracted from the date/time. If you supply an integer expression,
the datetime-expression must be explicitly cast as a datetime data type.

For information on casting data types, see “CAST function [Data type
conversion]” on page 278.

Examples The following statement returns the value 1051125487:

SELECT MINUTES('1998-07-13 06:07:12') FROM iq_dummy

The following statement returns the value 240, to signify the difference
between the two times:

SELECT MINUTES('1999-07-13 06:07:12',
'1999-07-13 10:07:12') FROM iq_dummy

The following statement returns the datetime value 1999-05-12 21:10:07.000:

SELECT MINUTES(CAST('1999-05-12 21:05:07'
AS DATETIME), 5) FROM iq_dummy

Usage The second syntax returns the number of whole minutes from the first date/
time to the second date/time. The number might be negative.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

CHAPTER 5 SQL Functions

Reference Manual 327

MOD function [Numeric]
Function Returns the remainder when one whole number is divided by another.

Syntax MOD (dividend, divisor)

Parameters dividend The dividend, or numerator of the division.

divisor The divisor, or denominator of the division.

Example The following statement returns the value 2:

SELECT MOD(5, 3) FROM iq_dummy

Usage Division involving a negative dividend gives a negative or zero result. The sign
of the divisor has no effect.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported in Adaptive Server Enterprise. The % operator is
used as a modulo operator in Adaptive Server Enterprise.

See also “REMAINDER function [Numeric]” on page 351

MONTH function [Date and time]
Function Returns a number from 1 to 12 corresponding to the month of the given

date.

Syntax MONTH (date-expression)

Parameters date-expression A date/time value.

Example The following statement returns the value 7:

SELECT MONTH('1998-07-13') FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

MONTHNAME function [Date and time]
Function Returns the name of the month from the specified date expression.

Syntax MONTHNAME (date-expression)

Parameters date-expression The datetime value.

Alphabetical list of functions

328 Sybase IQ

Example The following statement returns the value September, when the
DATE_ORDER option is set to the default value of ymd.

SELECT MONTHNAME('1998-09-05') FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

See also “DATE_ORDER option” on page 65

MONTHS function [Date and time]
Function Returns the number of months since an arbitrary starting date/time or the

number of months between two specified date/times, or adds the specified
integer-expression number of months to a date/time.

Syntax MONTHS (date-expression
| date-expression, datetime-expression
| date-expression, integer-expression)

Parameters date-expression A date and time.

integer-expression The number of months to be added to the date-
expression. If integer-expression is negative, the appropriate number of months
are subtracted from the date/time value. If you supply an integer expression,
the date-expression must be explicitly cast as a datetime data type.

For information on casting data types, see the section “CAST function [Data
type conversion]” on page 278.

Examples The following statement returns the value 23982:

SELECT MONTHS('1998-07-13 06:07:12') FROM iq_dummy

The following statement returns the value 2, to signify the difference between
the two dates:

SELECT MONTHS('1999-07-13 06:07:12',
'1999-09-13 10:07:12') FROM iq_dummy

The following statement returns the datetime value 1999-10-12 21:05:07.000:

SELECT MONTHS(CAST('1999-05-12 21:05:07'
AS DATETIME), 5) FROM iq_dummy

Usage The first syntax returns the number of months since an arbitrary starting date.
This number is often useful for determining whether two date/time expressions
are in the same month in the same year.

CHAPTER 5 SQL Functions

Reference Manual 329

MONTHS(invoice_sent) = MONTHS(payment_received)

Note that comparing the MONTH function would incorrectly include a payment
made 12 months after the invoice was sent.

The second syntax returns the number of months from the first date to the
second date. The number might be negative. It is calculated from the number
of the first days of the month between the two dates. Hours, minutes and
seconds are ignored.

The third syntax adds integer-expression months to the given date. If the new
date is past the end of the month (such as MONTHS ('1992-01-31', 1)) the result
is set to the last day of the month. If integer-expression is negative, the
appropriate number of months are subtracted from the date. Hours, minutes and
seconds are ignored.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

NEWID function [Miscellaneous]
Function Generates a UUID (Universally Unique Identifier) value. A UUID is the same

as a GUID (Globally Unique Identifier).

Syntax NEWID ()

Parameters There are no parameters associated with NEWID().

Example The following statement updates the table mytab and sets the value of the
column uid_col to a unique identifier generated by the NEWID function, if the
current value of the column is NULL.

UPDATE mytab
SET uid_col = NEWID()

WHERE uid_col IS NULL

If you execute the following statement,

SELECT NEWID()

the unique identifier is returned as a BINARY(16). For example, the value might
be 0xd3749fe09cf446e399913bc6434f1f08. You can convert this string into a
readable format using the UUIDTOSTR() function.

Usage The NEWID() function generates a unique identifier value.

Alphabetical list of functions

330 Sybase IQ

UUIDs can be used to uniquely identify objects in a database. The values are
generated such that a value produced on one computer does not match that
produced on another, hence they can also be used as keys in replication and
synchronization environments.

The NEWID function is supported only in the following positions:

• SELECT list of a top level query block

• SET clause of an UPDATE statement

• VALUES clause of INSERT...VALUES

You cannot use the NEWID function as a column default for a Sybase IQ table.

Standards and
compatibility

• SQL92 Vendor extension.

• SQL99 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

See also “STRTOUUID function [String]” on page 372

“UUIDTOSTR function [String]” on page 381

UNIQUEIDENTIFIER in “Binary data types” on page 229

UNIQUEIDENTIFIERSTR in Character data types on page 222

NEXT_CONNECTION function [System]
Function Returns the next connection number, or the first connection if the parameter is

NULL.

Syntax NEXT_CONNECTION ({NULL | connection-id })

Parameters connection-id An integer, usually returned from a previous call to
NEXT_CONNECTION. If connection-id is NULL, NEXT_CONNECTION returns
the first connection ID.

Examples The following statement returns an identifier for the first connection. The
identifier is an integer value like 569851433.

SELECT NEXT_CONNECTION(NULL) FROM iq_dummy

The following statement returns a value like 1661140050:

SELECT NEXT_CONNECTION(569851433) FROM iq_dummy

CHAPTER 5 SQL Functions

Reference Manual 331

Usage You can use NEXT_CONNECTION to enumerate the connections to a database.
To get the first connection, pass NULL; to get each subsequent connection,
pass the previous return value. The function returns NULL when there are no
more connections.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

NEXT_DATABASE function [System]
Function Returns the next database ID number, or the first database if the parameter is

NULL.

Syntax NEXT_DATABASE ({ NULL | database-id })

Parameters database-id An integer that specifies the ID number of the database.

Examples The following statement returns the value 0, the first database value:

SELECT NEXT_DATABASE(NULL) FROM iq_dummy

The following statement returns NULL, indicating that there are no more
databases on the server:

SELECT NEXT_DATABASE(0) FROM iq_dummy

Usage You can use NEXT_DATABASE to enumerate the databases running on a
database server. To get the first database, pass NULL; to get each subsequent
database, pass the previous return value. The function returns NULL when
there are no more databases.

Standards and
compatibility

• SQL92 Transact-SQL extension.

• Sybase Not supported by Adaptive Server Enterprise.

See also “OBJECT_ID function [System]” on page 337

NEXT_HTTP_HEADER function [HTTP]
Function Gets the next HTTP header name.

Syntax NEXT_HTTP_HEADER (header-name)

Parameters header-name The name of the previous header. If header-name is null, this
function returns the name of the first HTTP header.

Alphabetical list of functions

332 Sybase IQ

Usage This function iterates over the HTTP headers included within a request. Calling
it with NULL causes it to return the name of the first header. Subsequent
headers are retrieved by passing the function the name of the previous header.
This function returns NULL when called with the name of the last header.

Calling this function repeatedly returns all the header fields exactly once, but
not necessarily in the order in which they appear in the HTTP request.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

NEXT_HTTP_VARIABLE function [HTTP]
Function Get the next HTTP variable name.

Syntax NEXT_HTTP_VARIABLE (var-name)

Parameters var-name The name of the previous variable. If var-name is null, this
function returns the name of the first HTTP variable.

Usage This function iterates over the HTTP variables included within a request.
Calling it with NULL causes it to return the name of the first variable.
Subsequent variables are retrieved by passing the function the name of the
previous variable. This function returns NULL when called with the name of
the final variable.

Calling this function repeatedly returns all the variables exactly once, but not
necessarily in the order in which they appear in the HTTP request. The
variables url or url1, url2, …, url10 are included if URL PATH is set to ON or
ELEMENTS, respectively.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

See also “HTML_DECODE function [HTTP]” on page 309

“HTTP_VARIABLE function [HTTP]” on page 311

“NEXT_HTTP_HEADER function [HTTP]” on page 331

CHAPTER 5 SQL Functions

Reference Manual 333

NOW function [Date and time]
Function Returns the current date and time. This is the historical syntax for CURRENT

TIMESTAMP.

Syntax NOW (*)

Example The following statement returns the current date and time.

SELECT NOW(*) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

NTILE function [Analytical]
Function Distributes query results into a specified number of “buckets” and assigns the

bucket number to each row in the bucket.

Syntax NTILE (expression1)
OVER (ORDER BY expression2 [ASC | DESC])

Parameters expression1 A constant integer from 1 to 32767, which specifies the number
of buckets.

expression2 A sort specification that can be any valid expression involving
a column reference, aggregates, or expressions invoking these items.

Example The following example uses the NTILE function to determine the sale status of
car dealers. The dealers are divided into four groups based on the number of
cars each dealer sold. The dealers with ntile = 1 are in the top 25% for car sales.

SELECT dealer_name, sales,
NTILE(4) OVER (ORDER BY sales DESC)
FROM carSales;

dealer_name sales ntile
Boston 1000 1
Worcester 950 1
Providence 950 1
SF 940 1
Lowell 900 2
Seattle 900 2
Natick 870 2
New Haven 850 2
Portland 800 3
Houston 780 3

Alphabetical list of functions

334 Sybase IQ

Hartford 780 3
Dublin 750 3
Austin 650 4
Dallas 640 4
Dover 600 4

To find the top 10% of car dealers by sales, you specify NTILE(10) in the
example SELECT statement. Similarly, to find the top 50% of car dealers by
sales, specify NTILE(2).

Usage NTILE is a rank analytical function that distributes query results into a specified
number of buckets and assigns the bucket number to each row in the bucket.
You can divide a result set into one-hundredths (percentiles), tenths (deciles),
fourths (quartiles), or other numbers of groupings.

NTILE requires an OVER (ORDER BY) clause. The ORDER BY clause specifies
the parameter on which ranking is performed and the order in which the rows
are sorted in each group. Note that this ORDER BY clause is used only within
the OVER clause and is not an ORDER BY for the SELECT. No aggregation
functions in the rank query are allowed to specify DISTINCT.

The OVER clause indicates that the function operates on a query result set. The
result set is the rows that are returned after the FROM, WHERE, GROUP BY,
and HAVING clauses have all been evaluated. The OVER clause defines the data
set of the rows to include in the computation of the rank analytical function.

The ASC or DESC parameter specifies the ordering sequence ascending or
descending. Ascending order is the default.

NTILE is allowed only in the select list of a SELECT or INSERT statement or in
the ORDER BY clause of the SELECT statement. NTILE can be in a view or a
union. The NTILE function cannot be used in a subquery, a HAVING clause, or
in the select list of an UPDATE or DELETE statement. Only one NTILE function
is allowed per query.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise or Adaptive
Server Anywhere.

See also “Analytical functions” on page 252

Chapter 4, “Using OLAP” in the Sybase IQ Performance and Tuning Guide

CHAPTER 5 SQL Functions

Reference Manual 335

NULLIF function [Miscellaneous]
Function Provides an abbreviated CASE expression by comparing expressions.

Syntax NULLIF (expression1, expression2)

Parameters expression1 An expression to be compared.

expression2 An expression to be compared.

Examples The following statement returns a:

SELECT NULLIF('a', 'b') FROM iq_dummy

The following statement returns NULL:

SELECT NULLIF('a', 'a') FROM iq_dummy

Usage NULLIF compares the values of the two expressions.

If the first expression equals the second expression, NULLIF returns NULL.

If the first expression does not equal the second expression, or if the second
expression is NULL, NULLIF returns the first expression.

The NULLIF function provides a short way to write some CASE expressions.
NULLIF is equivalent to:

CASE WHEN expression1 = expression2 THEN NULL
ELSE expression1 END

Standards and
compatibility

• SQL92 Transact-SQL extension.

• Sybase Not supported by Adaptive Server Enterprise.

See also “CASE expressions” on page 185

NUMBER function [Miscellaneous]
Function Generates numbers starting at 1 for each successive row in the results of the

query.

Syntax NUMBER (*)

Example The following statement returns this numbered list:

Alphabetical list of functions

336 Sybase IQ

SELECT NUMBER(*)
FROM department
WHERE dept_id > 10

Usage Use the NUMBER function only in a select list or a SET clause of an UPDATE
statement. For example, the following statement updates each row of the seq_id
column with a number 1 greater than the previous row. The number is applied
in the order specified by the ORDER BY clause.

update empl
set seq_id = number(*)
order by empl_id

In an UPDATE statement, if the NUMBER(*) function is used in the SET clause
and the FROM clause specifies a one-to-many join, NUMBER(*) generates
unique numbers that increase, but may not increment sequentially due to row
elimination.

NUMBER can also be used to generate primary keys when using the INSERT
from SELECT statement, although using IDENTITY/AUTOINCREMENT is a
preferred mechanism for generating sequential primary keys.

Note A syntax error is generated if you use NUMBER in a DELETE statement,
WHERE clause, HAVING clause, ORDER BY clause, subquery, query involving
aggregation, any constraint, GROUP BY, DISTINCT, a query containing UNION
ALL, or a derived table.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

number(*)

1

2

3

4

5

CHAPTER 5 SQL Functions

Reference Manual 337

OBJECT_ID function [System]
Function Returns the object ID.

Syntax OBJECT_ID (object-name)

Parameters object-name The name of the object.

Examples The following statement returns the object ID 100209 of the customer table:

SELECT OBJECT_ID ('CUSTOMER') FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Adaptive Server Enterprise function implemented for Sybase
IQ.

See also “COL_NAME function [System]” on page 282

“DB_ID function [System]” on page 296

“OBJECT_NAME function [System]” on page 337

OBJECT_NAME function [System]
Function Returns the object name.

Syntax OBJECT_NAME (object-id [, database-id])

Parameters object-id The object ID.

database-id The database ID.

Examples The following statement returns the name “customer:”

SELECT OBJECT_NAME (100209) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Adaptive Server Enterprise function implemented for Sybase
IQ.

See also “COL_NAME function [System]” on page 282

“DB_NAME function [System]” on page 296

“OBJECT_ID function [System]” on page 337

Alphabetical list of functions

338 Sybase IQ

OCTET_LENGTH function [String]
Function Returns an unsigned 64-bit value containing the byte length of the column

parameter.

Syntax OCTET_LENGTH(column-name)

Parameters column-name The name of a column.

Usage The return value of a NULL argument is NULL.

The OCTET_LENGTH function supports all Sybase IQ data types.

Standards and
compatibility

Sybase Not supported by Adaptive Server Anywhere or Adaptive Server
Enterprise.

See also “BIT_LENGTH function [String]” on page 277

PATINDEX function [String]
Function Returns the starting position of the first occurrence of a specified pattern.

Syntax PATINDEX ('%pattern%', string-expression)

Parameters pattern The pattern to be searched for. This string is limited to 255 bytes. If
the leading percent wildcard is omitted, PATINDEX returns one (1) if the pattern
occurs at the beginning of the string, and zero if not. If pattern starts with a
percent wildcard, then the two leading percent wildcards are treated as one.

The pattern uses the same wildcards as the LIKE comparison. Table 5-16 lists
the pattern wildcards.

Table 5-16: PATINDEX pattern wildcards

string-expression The string to be searched for the pattern.

Examples The following statement returns the value 2:

SELECT PATINDEX('%hoco%', 'chocolate') FROM iq_dummy

The following statement returns the value 11:

SELECT PATINDEX ('%4_5_', '0a1A 2a3A 4a5A') FROM
iq_dummy

Wildcard Matches

_ (underscore) Any one character

% (percent) Any string of zero or more characters

[] Any single character in the specified range or set

[^] Any single character not in the specified range or set

CHAPTER 5 SQL Functions

Reference Manual 339

Usage PATINDEX returns the starting position of the first occurrence of the pattern. If
the pattern is not found, it returns zero (0).

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Compatible with Adaptive Server Enterprise.

See also “LIKE conditions” on page 193

“LOCATE function [String]” on page 321

PERCENT_RANK function [Analytical]
Function Computes the (fractional) position of one row returned from a query with

respect to the other rows returned by the query, as defined by the ORDER BY
clause. Returns a decimal value between 0 and 1.

Syntax PERCENT_RANK () OVER (ORDER BY expression [ASC | DESC])

Parameters expression A sort specification that can be any valid expression involving a
column reference, aggregates, or expressions invoking these items.

Example The following statement illustrates the use of the PERCENT_RANK function:

SELECT s_suppkey, SUM(s_acctBal) AS sum_acctBal,
PERCENT_RANK() OVER (ORDER BY SUM(s_acctBal) DESC)
AS percent_rank_all FROM supplier GROUP BY s_suppkey;

s_suppkey sum_acctBal percent_rank_all
supplier#011 200000 0
supplier#002 200000 0
supplier#013 123000 0.3333
supplier#004 110000 0.5
supplier#035 110000 0.5
supplier#006 50000 0.8333
supplier#021 10000 1

Usage PERCENT_RANK is a rank analytical function. The percent rank of a row R is
defined as the rank of a row in the groups specified in the OVER clause minus
one divided by the number of total rows in the groups specified in the OVER
clause minus one. PERCENT_RANK returns a value between 0 and 1. The first
row has a percent rank of zero.

The PERCENT_RANK of a row is calculated as

(Rx - 1) / (NtotalRow - 1)

Alphabetical list of functions

340 Sybase IQ

where Rx is the rank position of a row in the group and NtotalRow is the total
number of rows in the group specified by the OVER clause.

PERCENT_RANK requires an OVER (ORDER BY) clause. The ORDER BY
clause specifies the parameter on which ranking is performed and the order in
which the rows are sorted in each group. This ORDER BY clause is used only
within the OVER clause and is not an ORDER BY for the SELECT. No
aggregation functions in the rank query are allowed to specify DISTINCT.

The OVER clause indicates that the function operates on a query result set. The
result set is the rows that are returned after the FROM, WHERE, GROUP BY,
and HAVING clauses have all been evaluated. The OVER clause defines the data
set of the rows to include in the computation of the rank analytical function.

The ASC or DESC parameter specifies the ordering sequence ascending or
descending. Ascending order is the default.

PERCENT_RANK is allowed only in the select list of a SELECT or INSERT
statement or in the ORDER BY clause of the SELECT statement.
PERCENT_RANK can be in a view or a union. The PERCENT_RANK function
cannot be used in a subquery, a HAVING clause, or in the select list of an
UPDATE or DELETE statement. Only one rank analytical function is allowed
per query.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise or Adaptive
Server Anywhere.

See also “Analytical functions” on page 252

Chapter 4, “Using OLAP” in the Sybase IQ Performance and Tuning Guide

PERCENTILE_CONT function [Analytical]
Function Given a percentile, returns the value that corresponds to that percentile.

Assumes a continuous distribution data model.

Note If you are simply trying to compute a percentile, use the NTILE function
instead, with a value of 100.

Syntax PERCENTILE_CONT (expression1)
WITHIN GROUP (ORDER BY expression2 [ASC | DESC])

CHAPTER 5 SQL Functions

Reference Manual 341

Parameters expression1 A constant of numeric data type and range from 0 to 1
(inclusive). If the argument is NULL, a “wrong argument for percentile” error
is returned. If the argument value is less than 0 or greater than 1, a “data value
out of range” error is returned.

expression2 A sort specification that must be a single expression involving
a column reference. Multiple expressions are not allowed and no rank
analytical functions, set functions, or subqueries are allowed in this sort
expression.

Example The following example uses the PERCENTILE_CONT function to determine
the 10th percentile value for car sales in a region.

The following data set is used in the example:

sales region dealer_name
900 Northeast Boston
800 Northeast Worcester
800 Northeast Providence
700 Northeast Lowell
540 Northeast Natick
500 Northeast New Haven
450 Northeast Hartford
800 Northwest SF
600 Northwest Seattle
500 Northwest Portland
400 Northwest Dublin
500 South Houston
400 South Austin
300 South Dallas
200 South Dover

The following SELECT statement contains the PERCENTILE_CONT function:

SELECT region, PERCENTILE_CONT(0.1)
WITHIN GROUP (ORDER BY sales DESC)
FROM carSales GROUP BY region;

The result of the SELECT statement lists the 10th percentile value for car sales
in a region:

region percentile_cont
Northeast 840
Northwest 740
South 470

Alphabetical list of functions

342 Sybase IQ

Usage The inverse distribution analytical functions return a k-th percentile value,
which can be used to help establish a threshold acceptance value for a set of
data. The function PERCENTILE_CONT takes a percentile value as the function
argument, and operates on a group of data specified in the WITHIN GROUP
clause, or operates on the entire data set. The function returns one value per
group. If the GROUP BY column from the query is not present, the result is a
single row. The data type of the results is the same as the data type of its
ORDER BY item specified in the WITHIN GROUP clause. The data type of the
ORDER BY expression for PERCENTILE_CONT must be numeric.

PERCENTILE_CONT requires a WITHIN GROUP (ORDER BY) clause.

The ORDER BY clause, which must be present, specifies the expression on
which the percentile function is performed and the order in which the rows are
sorted in each group. For the PERCENTILE_CONT function, the data type of
this expression must be numeric. This ORDER BY clause is used only within
the WITHIN GROUP clause and is not an ORDER BY for the SELECT.

The WITHIN GROUP clause distributes the query result into an ordered data set
from which the function calculates a result. The WITHIN GROUP clause must
contain a single sort item. If the WITHIN GROUP clause contains more or less
than one sort item, an error is reported.

The ASC or DESC parameter specifies the ordering sequence ascending or
descending. Ascending order is the default.

The PERCENTILE_CONT function is allowed in a subquery, a HAVING clause,
a view, or a union. PERCENTILE_CONT can be used anywhere the simple
nonanalytical aggregate functions are used. The PERCENTILE_CONT function
ignores the NULL value in the data set.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise or Adaptive
Server Anywhere.

See also “Analytical functions” on page 252

“NTILE function [Analytical]” on page 333

“PERCENTILE_DISC function [Analytical]” on page 343

Chapter 4, “Using OLAP” in the Sybase IQ Performance and Tuning Guide

CHAPTER 5 SQL Functions

Reference Manual 343

PERCENTILE_DISC function [Analytical]
Function Given a percentile, returns the value that corresponds to that percentile.

Assumes a discrete distribution data model.

Note If you are simply trying to compute a percentile, use the NTILE function
instead, with a value of 100.

Syntax PERCENTILE_DISC (expression1)
WITHIN GROUP (ORDER BY expression2 [ASC | DESC])

Parameters expression1 A constant of numeric data type and range from 0 to 1
(inclusive). If the argument is NULL, then a “wrong argument for percentile”
error is returned. If the argument value is less than 0 or greater than 1, then a
“data value out of range” error is returned.

expression2 A sort specification that must be a single expression involving
a column reference. Multiple expressions are not allowed and no rank
analytical functions, set functions, or subqueries are allowed in this sort
expression.

Example The following example uses the PERCENTILE_DISC function to determine the
10th percentile value for car sales in a region.

The following data set is used in the example:

sales region dealer_name
900 Northeast Boston
800 Northeast Worcester
800 Northeast Providence
700 Northeast Lowell
540 Northeast Natick
500 Northeast New Haven
450 Northeast Hartford
800 Northwest SF
600 Northwest Seattle
500 Northwest Portland
400 Northwest Dublin
500 South Houston
400 South Austin
300 South Dallas
200 South Dover

The following SELECT statement contains the PERCENTILE_DISC function:

SELECT region, PERCENTILE_DISC(0.1)
WITHIN GROUP (ORDER BY sales DESC)
FROM carSales GROUP BY region;

Alphabetical list of functions

344 Sybase IQ

The result of the SELECT statement lists the 10th percentile value for car sales
in a region:

region percentile_cont
Northeast 900
Northwest 800
South 500

Usage The inverse distribution analytical functions return a k-th percentile value,
which can be used to help establish a threshold acceptance value for a set of
data. The function PERCENTILE_DISC takes a percentile value as the function
argument and operates on a group of data specified in the WITHIN GROUP
clause or operates on the entire data set. The function returns one value per
group. If the GROUP BY column from the query is not present, the result is a
single row. The data type of the results is the same as the data type of its
ORDER BY item specified in the WITHIN GROUP clause. PERCENTILE_DISC
supports all data types that can be sorted in Sybase IQ.

PERCENTILE_DISC requires a WITHIN GROUP (ORDER BY) clause.

The ORDER BY clause, which must be present, specifies the expression on
which the percentile function is performed and the order in which the rows are
sorted in each group. This ORDER BY clause is used only within the WITHIN
GROUP clause and is not an ORDER BY for the SELECT.

The WITHIN GROUP clause distributes the query result into an ordered data set
from which the function calculates a result. The WITHIN GROUP clause must
contain a single sort item. If the WITHIN GROUP clause contains more or less
than one sort item, an error is reported.

The ASC or DESC parameter specifies the ordering sequence ascending or
descending. Ascending order is the default.

The PERCENTILE_DISC function is allowed in a subquery, a HAVING clause, a
view, or a union. PERCENTILE_DISC can be used anywhere the simple
nonanalytical aggregate functions are used. The PERCENTILE_DISC function
ignores the NULL value in the data set.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise or Adaptive
Server Anywhere.

See also “Analytical functions” on page 252

“NTILE function [Analytical]” on page 333

“PERCENTILE_CONT function [Analytical]” on page 340

CHAPTER 5 SQL Functions

Reference Manual 345

Chapter 4, “Using OLAP” in the Sybase IQ Performance and Tuning Guide

PI function [Numeric]
Function Returns the numeric value PI.

Syntax PI (*)

Example The following statement returns the value 3.141592653....

SELECT PI(*) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase The PI() function is supported in Adaptive Server Enterprise, but
PI(*) is not.

POWER function [Numeric]
Function Calculates one number raised to the power of another.

Syntax POWER (numeric-expression1, numeric-expression2)

Parameters numeric-expression1 The base.

numeric-expression2 The exponent.

Example The following statement returns the value 64:

SELECT Power(2, 6) FROM iq_dummy

Usage Raises numeric-expression1 to the power numeric-expresson2.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Compatible with Adaptive Server Enterprise.

PROPERTY function [System]
Function Returns the value of the specified server-level property as a string.

Syntax PROPERTY ({ property-id | property-name })

Parameters property-id An integer that is the property-number of the server-level
property. This number can be determined from the PROPERTY_NUMBER
function. The property-id is commonly used when looping through a set of
properties.

Alphabetical list of functions

346 Sybase IQ

property-name A string giving the name of the property. See “Properties
available for the server” on page 269 for a list of server property names.

Example The following statement returns the name of the current database server:

SELECT PROPERTY('Name') FROM iq_dummy

Usage Each property has both a number and a name, but the number is subject to
change between versions, and should not be used as a reliable identifier for a
given property.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

See also “Properties available for the server” on page 269

PROPERTY_DESCRIPTION function [System]
Function Returns a description of a property.

Syntax PROPERTY_DESCRIPTION ({ property-id | property-name })

Parameters property-id An integer that is the property number of the property. This
number can be determined from the PROPERTY_NUMBER function. The
property-id is commonly used when looping through a set of properties.

property-name A string giving the name of the property. For property
names, see the lists in “Connection properties” on page 269, “Properties
available for the server” on page 269, and “Properties available for each
database” on page 270.

Example The following statement returns the description “Number of index insertions:”

SELECT PROPERTY_DESCRIPTION('IndAdd') FROM iq_dummy

Usage Each property has both a number and a name, but the number is subject to
change between releases, and should not be used as a reliable identifier for a
given property.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

See also “Connection properties” on page 269

“Properties available for the server” on page 269

“Properties available for each database” on page 270

CHAPTER 5 SQL Functions

Reference Manual 347

PROPERTY_NAME function [System]
Function Returns the name of the property with the supplied property number.

Syntax PROPERTY_NAME (property-id)

Parameters property-id The property number of the property.

Example The following statement returns the property associated with property number
126. The actual property to which this refers changes from version to version.

SELECT PROPERTY_NAME(126) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

See also “Connection properties” on page 269

“Properties available for the server” on page 269

“Properties available for each database” on page 270

PROPERTY_NUMBER function [System]
Function Returns the property number of the property with the supplied property name.

Syntax PROPERTY_NUMBER (property-name)

Parameters property-name A property name. For property names, see the lists in
“Connection properties” on page 269, “Properties available for the server” on
page 269, and “Properties available for each database” on page 270.

Example The following statement returns an integer value. The actual value changes
from version to version.

SELECT PROPERTY_NUMBER('PAGESIZE') FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

See also “Connection properties” on page 269

“Properties available for the server” on page 269

“Properties available for each database” on page 270

Alphabetical list of functions

348 Sybase IQ

QUARTER function [Date and time]
Function Returns a number indicating the quarter of the year from the supplied date

expression.

Syntax QUARTER(date-expression)

Parameters date-expression A date.

Example With the DATE_ORDER option set to the default of ymd, the following
statement returns the value 2:

SELECT QUARTER ('1987/05/02') FROM iq_dummy

Usage Table 5-17 lists the dates in the quarters of the year.

Table 5-17: Values of quarter of the year

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

See also “DATE_ORDER option” on page 65

RADIANS function [Numeric]
Function Converts a number from degrees to radians.

Syntax RADIANS (numeric-expression)

Parameters numeric-expression A number, in degrees. This angle is converted to
radians.

Example The following statement returns a value of approximately 0.5236:

SELECT RADIANS(30) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Compatible with Adaptive Server Enterprise.

Quarter Period (inclusive)

1 January 1 to March 31

2 April 1 to June 30

3 July 1 to September 30

4 October 1 to December 31

CHAPTER 5 SQL Functions

Reference Manual 349

RAND function [Numeric]
Function Returns a double precision, random number x, where 0 <= x <1, with an

optional seed.

Syntax RAND ([integer-expression])

Parameters integer-expression The optional seed used to create a random number. This
argument allows you to create repeatable random number sequences.

If RAND is called with a FROM clause and an argument in a query containing
only tables in IQ stores, the function returns an arbitrary but repeatable value.

When no argument is called, RAND is a non-deterministic function. Successive
calls to RAND might return different values. The query optimizer does not
cache the results of the RAND function

Note The values returned by RAND vary depending on whether you use a
FROM clause or not and whether the referenced table was created in SYSTEM
or in an IQ store.

Examples The following statement returns a 5% sampling of a table:

SELECT AVG(table1.number_of_cars),
AVG(table1.number_of_tvs)FROM table1 WHERE
RAND(ROWID(table1)) < .05 and table1.income < 50000;

The following statement returns a value of approximately
941392926249216914:

SELECT RAND(4) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Compatible with Adaptive Server Enterprise.

RANK function [Analytical]
Function Ranks items in a group.

Syntax RANK () OVER (ORDER BY expression [ASC | DESC])

Parameters expression A sort specification that can be any valid expression involving a
column reference, aggregates, or expressions invoking these items.

Example The following statement illustrates the use of the RANK function:

SELECT s_suppkey, SUM(s_acctBal) AS sum_acctBal,

Alphabetical list of functions

350 Sybase IQ

RANK() OVER (ORDER BY SUM(s_acctBal) DESC)
AS rank_all FROM supplier GROUP BY s_suppkey;

s_suppkey sum_acctBal rank_all
supplier#011 200000 1
supplier#002 200000 1
supplier#013 123000 3
supplier#004 110000 4
supplier#035 110000 4
supplier#006 50000 6
supplier#021 10000 7

Usage RANK is a rank analytical function. The rank of row R is defined as the number
of rows that precede R and are not peers of R. If two or more rows are not
distinct within the groups specified in the OVER clause or distinct over the
entire result set, then there are one or more gaps in the sequential rank
numbering. The difference between RANK and DENSE_RANK is that
DENSE_RANK leaves no gap in the ranking sequence when there is a tie. RANK
leaves a gap when there is a tie.

RANK requires an OVER (ORDER BY) clause. The ORDER BY clause specifies
the parameter on which ranking is performed and the order in which the rows
are sorted in each group. This ORDER BY clause is used only within the OVER
clause and is not an ORDER BY for the SELECT. No aggregation functions in
the rank query are allowed to specify DISTINCT.

The OVER clause indicates that the function operates on a query result set. The
result set is the rows that are returned after the FROM, WHERE, GROUP BY,
and HAVING clauses have all been evaluated. The OVER clause defines the data
set of the rows to include in the computation of the rank analytical function.

The ASC or DESC parameter specifies the ordering sequence ascending or
descending. Ascending order is the default.

RANK is allowed only in the select list of a SELECT or INSERT statement or in
the ORDER BY clause of the SELECT statement. RANK can be in a view or a
union. The RANK function cannot be used in a subquery, a HAVING clause, or
in the select list of an UPDATE or DELETE statement. Only one rank analytical
function is allowed per query.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise or Adaptive
Server Anywhere.

See also “Analytical functions” on page 252

“DENSE_RANK function [Analytical]” on page 298

CHAPTER 5 SQL Functions

Reference Manual 351

Chapter 4, “Using OLAP” in the Sybase IQ Performance and Tuning Guide

REMAINDER function [Numeric]
Function Returns the remainder when one whole number is divided by another.

Syntax REMAINDER (dividend, divisor)

Parameters dividend The dividend, or numerator of the division.

divisor The divisor, or denominator of the division.

Example The following statement returns the value 2:

SELECT REMAINDER(5, 3) FROM iq_dummy

Usage REMAINDER is the same as the MOD function.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported in Adaptive Server Enterprise. The % (modulo)
operator and the division operator can be used to produce a remainder.

See also “MOD function [Numeric]” on page 327

REPEAT function [String]
Function Concatenates a string a specified number of times.

Syntax REPEAT (string-expression, integer-expression)

Parameters string-expression The string to be repeated.

integer-expression The number of times the string is to be repeated. If
integer-expression is negative, an empty string is returned.

Note The result datatype of a REPEAT function is a LONG VARCHAR. If you
use REPEAT in a SELECT INTO statement, you must have a Large Objects
Management option license or use CAST and set REPEAT to the correct
datatype and size.

See “REPLACE function [String]” for more information.

Example The following statement returns the value “repeatrepeatrepeat:”

SELECT REPEAT('repeat', 3) FROM iq_dummy

Alphabetical list of functions

352 Sybase IQ

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported in Adaptive Server Enterprise, but REPLICATE
provides the same capabilities.

See also “REPLICATE function [String]” on page 353

REPLACE function [String]
Function Replaces all occurrences of a substring with another substring.

Syntax REPLACE (original-string, search-string, replace-string)

Parameters If any argument is NULL, the function returns NULL.

original-string The string to be searched. This string can be any length.

search-string The string to be searched for and replaced with replace-string.
This string is limited to 255 bytes. If search-string is an empty string, the
original string is returned unchanged.

replace-string The replacement string, which replaces search-string. This
can be any length. If replace-string is an empty string, all occurrences of
search-string are deleted.

If you need to control the width of the resulting column when replace-string is
wider than search-string, use the CAST function. For example,

CREATE TABLE aa(a CHAR(5));
INSERT INTO aa VALUES(‘CCCCC’);
COMMIT;
SELECT a, CAST(REPLACE(a,’C’,’ZZ’) AS CHAR(5)) FROM aa;

Examples The following statement returns the value “xx.def.xx.ghi:”

SELECT REPLACE('abc.def.abc.ghi', 'abc', 'xx') FROM
iq_dummy

The following statement generates a result set containing ALTER PROCEDURE
statements which, when executed, repair stored procedures that reference a
table that has been renamed. (To be useful, the table name must be unique.)

SELECT REPLACE(
replace(proc_defn,'OldTableName','NewTableName'),
'create procedure',
'alter procedure')

FROM SYS.SYSPROCEDURE
WHERE proc_defn LIKE '%OldTableName%'

Use a separator other than the comma for the LIST function:

CHAPTER 5 SQL Functions

Reference Manual 353

SELECT REPLACE(list(table_id), ',', '--')
FROM SYS.SYSTABLE
WHERE table_id <= 5

Usage The result datatype of a REPLACE function is a LONG VARCHAR. If you use
REPLACE in a SELECT INTO statement, you must have a Large Objects
Management option license or use CAST and set REPLACE to the correct
datatype and size.

There are two ways to work around this issue:

• Declare a local temporary table and then do an INSERT:

declare local temporary table #mytable
(name_column char(10)) on commit preserve rows;

insert into #mytable select replace(name,'0','1')
from dummy_table01;

• Use CAST:

SELECT CAST(replace(name, '0', '1') AS Char(10))
into #mytable from dummy_table01;

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Compatible with Adaptive Server Enterprise.

See also “SUBSTRING function [String]” on page 373

REPLICATE function [String]
Function Concatenates a string a specified number of times.

Syntax REPLICATE (string-expression, integer-expression)

Parameters string-expression The string to be repeated.

integer-expression The number of times the string is to be repeated.

Example The following statement returns the value “repeatrepeatrepeat:”

SELECT REPLICATE('repeat', 3) FROM iq_dummy

Alphabetical list of functions

354 Sybase IQ

Usage REPLICATE is the same as the REPEAT function.

Note The result datatype of a REPLICATE function is a LONG VARCHAR. If
you use REPLICATE in a SELECT INTO statement, you must have a Large
Objects Management option license or use CAST and set REPLICATE to the
correct datatype and size.

See “REPLACE function [String]” on page 352 for more information.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Compatible with Adaptive Server Enterprise.

See also “REPEAT function [String]” on page 351

REVERSE function [String]
Function Takes one argument as an input of type BINARY or STRING and returns the

specified string with characters listed in reverse order.

Syntax REVERSE (expression | uchar_expr)

Parameters expression is a character or binary-type column name, variable, or constant
expression of CHAR, VARCHAR, NCHAR, NVARCHAR, BINARY, or
VARBINARY type.

Example 1 select reverse("abcd")

dcba

Example 2 select reverse(0x12345000)

0x00503412

Usage • REVERSE, a string function, returns the reverse of expression.

• If expression is NULL, reverse returns NULL.

• Surrogate pairs are treated as indivisible and are not reversed.

Permissions Any user can execute REVERSE.

Standards and
compatibility

ANSI SQL – Compliance level: Transact-SQL extension

See also Functions “LOWER function [String]” on page 323 and “UPPER function
[String]” on page 379.

CHAPTER 5 SQL Functions

Reference Manual 355

For general information about string functions, see “String functions” on page
264.

RIGHT function [String]
Function Returns the rightmost characters of a string.

Syntax RIGHT (string-expression, numeric-expression)

Parameters string-expression The string to be left-truncated.

numeric-expression The number of characters at the end of the string to
return.

Example The following statement returns the value “olate:”

SELECT RIGHT('chocolate', 5) FROM iq_dummy

Usage If the string contains multibyte characters, and the proper collation is being
used, the number of bytes returned might be greater than the specified number
of characters.

Note The result datatype of a RIGHT function is a LONG VARCHAR. If you use
RIGHT in a SELECT INTO statement, you must have a Large Objects
Management option license or use CAST and set RIGHT to the correct data type
and size.

See “REPLACE function [String]” on page 352 for more information.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Compatible with Adaptive Server Enterprise.

See also “LEFT function [String]” on page 318

Chapter 11, “International Languages and Character Sets” in the Sybase IQ
System Administration Guide

ROUND function [Numeric]
Function Rounds the numeric-expression to the specified integer-expression number of

places after the decimal point.

Syntax ROUND (numeric-expression, integer-expression)

Parameters numeric-expression The number, passed to the function, to be rounded.

Alphabetical list of functions

356 Sybase IQ

integer-expression A positive integer specifies the number of significant
digits to the right of the decimal point at which to round. A negative expression
specifies the number of significant digits to the left of the decimal point at
which to round.

Examples The following statement returns the value 123.200:

SELECT ROUND(123.234, 1) FROM iq_dummy

Additional results of the ROUND function are shown in the following table:

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Compatible with Adaptive Server Enterprise.

See also “TRUNCNUM function [Numeric]” on page 378

ROWID function [Miscellaneous]
Function Returns the internal row ID value for each row of the table.

Syntax ROWID (table-name) ... FROM table-name

Parameters table-name The name of the table. Specify the name of the table within the
parentheses with either no quotes or with double quotes.

Examples The following statement returns the row ID values 1 through 10:

SELECT ROWID(“PRODUCT”) FROM PRODUCT

Value ROUND (Value)

123.4567 round (a.n,4)

123.4570 round (a.n,3)

123.4600 round (a.n,2)

123.5000 round (a.n,1)

123.0000 round (a.n, 0)

120.0000 round (a.n,-1)

100.0000 round (a.n,-2)

0.0000 round(a.n,-3)

CHAPTER 5 SQL Functions

Reference Manual 357

The following statement returns the product ID and row ID value of all rows
with a product ID value less than 400:

SELECT PRODUCT.ID, ROWID (PRODUCT)
FROM PRODUCT
WHERE PRODUCT.ID < 400

The following statement deletes all rows with row ID values greater than 50:

DELETE FROM PRODUCT
WHERE ROWID (PRODUCT) > 50

Usage You can use the ROWID function in conjunction with other clauses to
manipulate specific rows of the table.

You must specify the FROM table-name clause.

A limitation of the ROWID function is that it cannot use a join index of that
table, eliminating any performance benefits that would normally use that join
index.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

rowid(product)

1

2

3

.

.

.

10

id rowid(product)

300 1

301 2

302 3

Alphabetical list of functions

358 Sybase IQ

RTRIM function [String]
Function Returns a string with trailing blanks removed.

Syntax RTRIM (string-expression)

Parameters string-expression The string to be trimmed.

Note The result data type of an RTRIM function is a LONG VARCHAR. If you
use RTRIM in a SELECT INTO statement, you must have a Large Objects
Management option license or use CAST and set RTRIM to the correct data type
and size.

See “REPLACE function [String]” on page 352 for more information.

Example The following statement returns the string “Test Message” with all trailing
blanks removed.

SELECT RTRIM('Test Message ') FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Compatible with Adaptive Server Enterprise.

See also “LTRIM function [String]” on page 324

SECOND function [Date and time]
Function Returns a number from 0 to 59 corresponding to the second component of the

given date/time value.

Syntax SECOND (datetime-expression)

Parameters datetime-expression The date/time value.

Example The following statement returns the value 5:

SELECT SECOND('1998-07-13 08:21:05') FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Compatible with Adaptive Server Enterprise.

CHAPTER 5 SQL Functions

Reference Manual 359

SECONDS function [Date and time]
Function Returns the number of seconds since an arbitrary starting date and time, the

number of seconds between two times, or adds an integer amount of seconds
to a time.

Syntax SECONDS (datetime-expression
| datetime-expression, datetime-expression
| datetime-expression, integer-expression)

Parameters datetime-expression A date and time.

integer-expression The number of seconds to be added to the datetime-
expression. If integer-expression is negative, the appropriate number of
minutes are subtracted from the date/time value. If you supply an integer
expression, the datetime-expression must be explicitly cast as a datetime data
type.

For information on casting data types, see “CAST function [Data type
conversion]” on page 278.

Examples The following statement returns the value 3600:

SELECT (SECONDS('1998-07-13 06:07:12') -
SECONDS('1998-07-13 05:07:12')) FROM iq_dummy

The following statement returns the value 14400, to signify the difference
between the two times:

SELECT SECONDS('1999-07-13 06:07:12',
'1999-07-13 10:07:12') FROM iq_dummy

The following statement returns the datetime value 1999-05-12 21:05:12.000:

SELECT SECONDS(CAST('1999-05-12 21:05:07'
AS TIMESTAMP), 5) FROM iq_dummy

Usage The second syntax returns the number of whole seconds from the first date/
time to the second date/time. The number might be negative.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

Alphabetical list of functions

360 Sybase IQ

SIGN function [Numeric]
Function Returns the sign of a number.

Syntax SIGN (numeric-expression)

Parameters numeric-expression The number for which the sign is to be returned.

Example The following statement returns the value -1:

SELECT SIGN(-550) FROM iq_dummy

Usage For negative numbers, SIGN returns -1.

For zero, SIGN returns 0.

For positive numbers, SIGN returns 1.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Compatible with Adaptive Server Enterprise.

SIMILAR function [String]
Function Returns an integer between 0 and 100 representing the similarity between two

strings.

Syntax SIMILAR (string-expression1, string-expression2)

Parameters string-expression1 The first string to be compared.

string-expression2 The second string to be compared.

Example The following statement returns the value 75:

SELECT SIMILAR('toast', 'coast') FROM iq_dummy

This signifies that the two values are 75% similar.

Usage The function returns an integer between 0 and 100 representing the similarity
between the two strings. The result can be interpreted as the percentage of
characters matched between the two strings. A value of 100 indicates that the
two strings are identical.

This function can be used to correct a list of names (such as customers). Some
customers might have been added to the list more than once with slightly
different names. Join the table to itself and produce a report of all similarities
greater than 90 percent but less than 100 percent.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

CHAPTER 5 SQL Functions

Reference Manual 361

SIN function [Numeric]
Function Returns the sine of a number, expressed in radians.

Syntax SIN (numeric-expression)

Parameters numeric-expression The angle, in radians.

Example The following statement returns the value 0.496880:

SELECT SIN(0.52) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Compatible with Adaptive Server Enterprise.

See also “ASIN function [Numeric]” on page 274

“COS function [Numeric]” on page 287

“COT function [Numeric]” on page 287

“TAN function [Numeric]” on page 376

SORTKEY function [String]
Function Generates values that can be used to sort character strings based on alternate

collation rules.

Syntax SORTKEY (string-expression [, collation-name])

Parameters string-expression The string expression may contain only characters that
are encoded in the database’s character set. String expression is usually one of
the table fields upon which users want the query results to be ordered.

If string-expression is an empty string, SORTKEY returns a zero-length binary
value. If string-expression is NULL, SORTKEY returns a null value. An empty
string has a different sort order value than a null string from a database column.

The maximum length of the string that SORTKEY can handle is 254 bytes. Any
longer part is ignored.

collation-name A string or character variable that specifies the name of the
sort order to use.

If you do not specify a collation, the default is “thaidict”. Although the
following are all valid values for collation name, Sybase IQ is certified only
with “thaidict”.

Alphabetical list of functions

362 Sybase IQ

Table 5-18: Collation name for sort order

Examples Assume the following table schema:

CREATE TABLE T1(id int, c1 varchar(40) shadowc1
varbinary(240))

SORTKEY() returns values in the sort order thaidict (Thai dictionary), the Thai
character set in UTF8 form. The following statements generate the same result:

SELECT c1, SORTKEY(c1) from T1 where rid=3
SELECT c1, SORTKEY(c1, ‘thaidict’) from T1 where rid=3)
SELECT
‘\340\270\201\340\271\207’,SORTKEY(‘\340\279\201\340\2
71\207’) from T1 where rid=3

Note Sybase IQ provides a utility to convert data files in CP874 format into
UTF8 collation. For details, see “CP874toUTF8 utility” in Chapter 3,
“Database Administration Utilities” in the Sybase IQ Utility Guide.

The following table shows SORTKEY results using thaidict:

Sort order description Collation name

Binary sort binary

Default Unicode multilingual default

CP850 Alternative: no accent altnoacc

CP850 Alternative: lowercase first altdict

CP850 Alternative: no case preference altnocsp

CP850 Scandinavian dictionary scandict

CP850 Scandinavian: no case preference scannocp

Latin-1 English, French, German dictionary dict

Latin-1 English, French German no case nocase

Latin-1 English, French German no case preference nocasep

Latin-1 English, French German no accent noaccent

Latin-1 Spanish dictionary espdict

Latin-1 Spanish no case espnocs

Latin-1 Spanish no accent espnoac

Thai dictionary thaidict

c1 in ascii c1 in binary SORTKEY()

à, à1 \340\270\201\340\271\20
7

0x11a3011c

CHAPTER 5 SQL Functions

Reference Manual 363

Usage The following statements generate the same result. SORTKEY() returns values
in the sort order default Unicode multilingual:

SELECT c1, SORTKEY(c1, ‘dict’) from T1 where rid=3
SELECT ‘coop’, SORTKEY(‘coop’, ‘dict’) from T1 where
rid=3

The following table shows SORTKEY results using dict:

The SORTKEY function generates values that can be used to order results based
on predefined sort order behavior. This allows you to work with character sort
order behaviors that are beyond the limitation of collations supported by
Sybase IQ. The returned value is a binary value that contains coded sort order
information for the input string retained from the SORTKEY function.

For example, you can issue the following SELECT statement to retrieve data
from table T1 in the sorted order of c1 according to the Thai dictionary:

SELECT rid, c1 from T1 ORDER BY SORTKEY(c1)

You could instead store the value returned by SORTKEY in a column with the
source character string. When you need to retrieve the character data in the
desired order, the SELECT statement needs to include only an ORDER BY
clause on the column that contains the results of running SORTKEY.

UPDATE T1 SET shadowc1=SORTKEY(c1) FROM T1;
SELECT rid, c1 FROM T1 ORDER BY shadowc1

The SORTKEY function guarantees that the values it returns for a given set of
sort order criteria work for the binary comparisons that are performed on
varbinary data types.

The input of SORTKEY can generate up to six bytes of sort order information
for each input character. The output of SORTKEY is of type varbinary and has a
maximum length of (254 * 6) bytes.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Compatible with Adaptive Server Enterprise, except that
Adaptive Server Enterprise does not allow the use of self-defined sort
orders.

See also Chapter 11, “International Languages and Character Sets” in Sybase IQ
System Administration Guide

c1 SORTKEY()

0x08890997099709b30008000800080008 0x11a3011c

Alphabetical list of functions

364 Sybase IQ

SOUNDEX function [String]
Function Returns a number representing the sound of a string.

Syntax SOUNDEX (string-expression)

Parameters string-expression The string.

Example The following statement returns two numbers, representing the sound of each
name. The SOUNDEX value for each argument is 3827.

SELECT SOUNDEX('Smith'), SOUNDEX('Smythe') FROM
iq_dummy

SOUNDEX ('Smith') is equal to SOUNDEX ('Smythe').

Usage The SOUNDEX function value for a string is based on the first letter and the
next three consonants other than H, Y, and W. Doubled letters are counted as
one letter. For example:

SOUNDEX('apples') FROM iq_dummy

is based on the letters A, P, L, and S.

Multibyte characters are ignored by the SOUNDEX function.

Although it is not perfect, SOUNDEX normally returns the same number for
words that sound similar and that start with the same letter.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Compatible with Adaptive Server Enterprise, except that
Adaptive Server Enterprise returns a CHAR(4) result and Sybase IQ returns
an integer.

SPACE function [String]
Function Returns a specified number of spaces.

Syntax SPACE (integer-expression)

Parameters integer-expression The number of spaces to return.

Example The following statement returns a string containing 10 spaces:

SELECT SPACE(10) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Compatible with Adaptive Server Enterprise.

CHAPTER 5 SQL Functions

Reference Manual 365

SQRT function [Numeric]
Function Returns the square root of a number.

Syntax SQRT (numeric-expression)

Parameters numeric-expression The number for which the square root is to be
calculated.

Example The following statement returns the value 3:

SELECT SQRT(9) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Compatible with Adaptive Server Enterprise.

SQUARE function [Numeric]
Function Returns the square of the specified expression as a float.

Syntax SQUARE (numeric-expression)

Parameters expression Is a column, variable, or expression with a data type that is either
exact numeric, approximate numeric, money, or any type that can be implicitly
converted to one of these types. For other data types, the SQUARE function
generates an error. The return value is of DOUBLE data type.

Usage SQUARE function takes one argument. For example, SQUARE (12.01) returns
144.240100.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Compatible with Adaptive Server Enterprise.

STDDEV function [Aggregate]
Function Returns the standard deviation of a set of numbers.

Syntax STDDEV ([ALL] expression)

Parameters expression Any numeric data type (float, real, or double precision)
expression.

NULL Returns null values on one-element input sets in Sybase IQ versions
prior to 12.7.

Examples Given this data:

Alphabetical list of functions

366 Sybase IQ

SELECT salary FROM employee WHERE dept_id = 300

The following statement returns the value 32617.8446712838471:

SELECT STDDEV (salary) FROM employee
WHERE dept_id = 300

Given this data:

SELECT unit_price FROM product WHERE name = 'Tee Shirt'

The following statement returns the value 2.88675134594813049:

SELECT STDDEV (unit_price) FROM product
WHERE name = 'Tee Shirt'

Usage The formula used to calculate STDDEV is

STDDEV returns a result of data type double precision floating point. If applied
to the empty set, the result is NULL.

STDDEV does not support the keyword DISTINCT. A syntax error is returned
if DISTINCT is used with STDDEV.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

salary

51432.000

57090.000

42300.000

43700.00

36500.000

138948.000

31200.000

58930.00

75400.00

name unit_price

Tee Shirt 9.00

Tee Shirt 14.00

Tee Shirt 14.00

CHAPTER 5 SQL Functions

Reference Manual 367

See also “STDDEV_SAMP function [Aggregate]” on page 368

“VARIANCE function [Aggregate]” on page 383

Chapter 4, “Using OLAP” in the Sybase IQ Performance and Tuning Guide

STDDEV_POP function [Aggregate]
Function Computes the standard deviation of a population consisting of a numeric-

expression, as a DOUBLE.

Syntax STDDEV_POP ([ALL] expression)

Parameters expression The expression (commonly a column name) whose population-
based standard deviation is calculated over a set of rows.

Examples The following statement lists the average and variance in the number of items
per order in different time periods:

SELECT year(ship_date) AS Year, quarter(ship_date)
AS Quarter, AVG(quantity) AS Average,
STDDEV_POP (quantity) AS Variance

FROM sales_order_items GROUP BY Year, Quarter
ORDER BY Year, Quarter;

Usage Computes the population standard deviation of the provided value expression
evaluated for each row of the group or partition (if DISTINCT was specified,
then each row that remains after duplicates have been eliminated), defined as
the square root of the population variance.

Standards and
compatibility

• SQL99 SQL/foundation feature outside of core SQL.

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

See also “Analytical functions” on page 252

Year Quarter Average Variance

2000 1 25.775148 14.2794

2000 2 27.050847 15.0270

...

Alphabetical list of functions

368 Sybase IQ

Chapter 4, “Using OLAP” in the Sybase IQ Performance and Tuning Guide

STDDEV_SAMP function [Aggregate]
Function Computes the standard deviation of a sample consisting of a numeric-

expression, as a DOUBLE.

Note STDDEV_SAMP is an alias for STDDEV.

Syntax STDDEV_SAMP ([ALL] expression)

Parameters expression The expression (commonly a column name) whose sample-
based standard deviation is calculated over a set of rows.

NULL Returns null values on one-element input sets in Sybase IQ versions
prior to 12.7.

Examples The following statement lists the average and variance in the number of items
per order in different time periods:

SELECT year(ship_date) AS Year, quarter(ship_date)
AS Quarter, AVG(quantity) AS Average,
STDDEV_SAMP(quantity) AS Variance

FROM sales_order_items GROUP BY Year, Quarter
ORDER BY Year, Quarter;

Usage Computes the sample standard deviation of the provided value expression
evaluated for each row of the group or partition (if DISTINCT was specified,
then each row that remains after duplicates have been eliminated), defined as
the square root of the sample variance.

Standard deviations are computed according to the following formula, which
assumes a normal distribution:

Year Quarter Average Variance

2000 1 25.775148 14.3218

2000 2 27.050847 15.0696

...

CHAPTER 5 SQL Functions

Reference Manual 369

Standards and
compatibility

• SQL99 SQL/foundation feature outside of core SQL.

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

See also “Analytical functions” on page 252

“STDDEV function [Aggregate]” on page 365

Chapter 4, “Using OLAP” in the Sybase IQ Performance and Tuning Guide

STR function [String]
Function Returns the string equivalent of a number.

Syntax STR (numeric-expression [, length [, decimal]])

Parameters numeric-expression Any approximate numeric (float, real, or double
precision) expression.

length The number of characters to be returned (including the decimal point,
all digits to the right and left of the decimal point, the sign, if any, and blanks).
The default is 10 and the maximum length is 255.

decimal The number of digits to the right of the decimal point to be returned.
The default is 0.

Examples The following statement returns a string of six spaces followed by 1234, for a
total of ten characters:

SELECT STR(1234.56) FROM iq_dummy

The following statement returns the result 1234.5:

SELECT STR(1234.56, 6, 1) FROM iq_dummy

Usage If the integer portion of the number cannot fit in the length specified, then the
result is NULL. For example, the following statement returns NULL:

SELECT STR(1234.56, 3) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Compatible with Adaptive Server Enterprise.

Alphabetical list of functions

370 Sybase IQ

STR_REPLACE function [String]
Function Takes three arguments as input of type BINARY or STRING and replaces any

instances of the second string expression (string_expr2) that occur within the
first string expression (string_expr1) with a third expression (string_expr3).

STR_REPLACE is an alias of REPLACE function

Syntax REPLACE (string_expr1, string_expr2 , string_expr3)

Parameters string_expr1 is the source string, or the string expression to be searched,
expressed as CHAR, VARCHAR, UNICHAR, UNIVARCHAR, VARBINARY, or
BINARY data type.

string_expr2 is the pattern string, or the string expression to find within the
first expression (string_expr1) and is expressed as CHAR, VARCHAR,
UNICHAR, UNIVARCHAR, VARBINARY, or BINARY data type.

string_expr3 is the replacement string expression, expressed as CHAR,
VARCHAR, UNICHAR, UNIVARCHAR, VARBINARY, or BINARY data type.

Example 1 Replaces the string def within the string cdefghi with yyy.

replace("cdefghi","def","yyy")

cyyyghi
(1 row(s) affected)

Example 2 Replaces all spaces with “toyota”

select str_replace ("chevy, ford, mercedes",
"","toyota")

chevy,toyotaford,toyotamercedes
(1 row(s) affected)

Example 3 Accepts NULL in the third parameter and treats it as an attempt to replace
string_expr2 with NULL, effectively turning STR_REPLACE into a “string
cut” operation. Returns “abcghijklm”:

select str_replace("abcdefghijklm", "def", NULL)

abcghijklm
(1 row affected)

Usage • Takes any data type as input and returns STRING or BINARY.

For example, an empty string passed as an argument (“”) is replaced with
one space (“ ”) before further evaluation occurs. This is true for both
BINARY and STRING types.

CHAPTER 5 SQL Functions

Reference Manual 371

• All arguments can have a combination of BINARY and STRING data types.

• The result length may vary, depending upon what is known about the
argument values when the expression is compiled. If all arguments are
columns or host variables assigned to constants, Sybase IQ calculates the
result length as:

result_length = ((s/p)*(r-p)+s)
WHERE

s = length of source string
p = length of pattern string
r = length of replacement string

IF (r-p) <= 0, result length = s

• If Sybase IQ cannot calculate the result length because the argument
values are unknown when the expression is compiled, the result length
used is 255.

• RESULT_LEN never exceeds 32767.

Permissions Any user can execute STR_REPLACE.

Standards and
compatibility

ANSI SQL – Compliance level: Transact-SQL extension

See also Data types CHAR, VARCHAR, UNICHAR, UNIVARCHAR, VARBINARY, or
BINARY. See Chapter 4, “SQL Data Types.”

Function “LENGTH function [String]” on page 320.

For general information about string functions, see “String functions” on page
264.

STRING function [String]
Function Concatenates one or more strings into one large string.

Syntax STRING (string-expression [, ...])

Parameters string-expression A string.

If only one argument is supplied, it is converted into a single expression. If
more than one argument is supplied, they are concatenated into a single string.

A NULL is treated as an empty string ('').

Example The following statement returns the value testing123:

SELECT STRING('testing', NULL, 123)
FROM iq_dummy

Alphabetical list of functions

372 Sybase IQ

Usage Numeric or date parameters are converted to strings before concatenation. You
can also use the STRING function to convert any single expression to a string
by supplying that expression as the only parameter.

If all parameters are NULL, STRING returns NULL.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

STRTOUUID function [String]
Function Converts a string value to a unique identifier (UUID or GUID) value.

Syntax STRTOUUID (string-expression)

Parameters string-expression A string in the format xxxxxxxx-xxxx-xxxx-xxxx-
xxxxxxxxxxxx

Example CREATE TABLE T (
pk uniqueidentifier primary key,
c1 int);

INSERT INTO T (pk, c1)
VALUES (STRTOUUID
('12345678-1234-5678-9012-123456789012'), 1);

Usage Converts a string in the format xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx where x
is a hexadecimal digit, to a unique identifier value. If the string is not a valid
UUID string, NULL is returned.

This function is useful for inserting UUID values into a Sybase IQ database.

Standards and
compatibility

• SQL92 Vendor extension.

• SQL99 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

See also “NEWID function [Miscellaneous]” on page 329

“UUIDTOSTR function [String]” on page 381

UNIQUEIDENTIFIER in “Binary data types” on page 229

CHAPTER 5 SQL Functions

Reference Manual 373

STUFF function [String]
Function Deletes a number of characters from one string and replaces them with another

string.

Syntax STUFF (string-expression1, start, length, string-expression2)

Parameters string-expression1 The string to be modified by the STUFF function.

start The character position at which to begin deleting characters. The first
character in the string is position 1.

length The number of characters to delete.

string-expression2 The string to be inserted.

Example The following statement returns the value “chocolate pie”:

SELECT STUFF('chocolate cake', 11, 4, 'pie')
FROM iq_dummy

Usage To delete a portion of a string using STUFF, use a replacement string of NULL.
To insert a string using STUFF, use a length of zero.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Compatible with Adaptive Server Enterprise.

See also “INSERTSTR function [String]” on page 313

SUBSTRING function [String]
Function Returns a substring of a string.

Syntax { SUBSTRING | SUBSTR } (string-expression, start [, length])

Parameters string-expression The string from which a substring is to be returned.

start The start position of the substring to return, in characters. A negative
starting position specifies a number of characters from the end of the string
instead of the beginning. The first character in the string is at position 1.

length The length of the substring to return, in characters. A positive length
specifies that the substring ends length characters to the right of the starting
position, while a negative length specifies that the substring ends length
characters to the left of the starting position.

Examples The following statement returns “back”:

SELECT SUBSTRING ('back yard', 1 , 4)
FROM iq_dummy

Alphabetical list of functions

374 Sybase IQ

The following statement returns yard:

SELECT SUBSTR ('back yard', -1 , -4)
FROM iq_dummy

The following statement returns 0x2233:

SELECT SUBSTR (0x112233445566, 2, 2)
FROM iq_dummy

Usage If length is specified, the substring is restricted to that length. If no length is
specified, the remainder of the string is returned, starting at the start position.

Both start and length can be negative. Using appropriate combinations of
negative and positive numbers, you can get a substring from either the
beginning or end of the string.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase SUBSTR is not supported by Adaptive Server Enterprise. Use
SUBSTRING instead.

SUM function [Aggregate]
Function Returns the total of the specified expression for each group of rows.

Syntax SUM (expression | DISTINCT column-name)

Parameters expression The object to be summed. This is commonly a column name.

DISTINCT column-name Computes the sum of the unique values in column-
name for each group of rows. This is of limited usefulness, but is included for
completeness.

Example The following statement returns the value 3749146.740:

SELECT SUM(salary)
FROM employee

Usage Rows where the specified expression is NULL are not included.

Returns NULL for a group containing no rows.

Standards and
compatibility

• SQL92 SQL92 compatible.

• Sybase Compatible with Adaptive Server Enterprise.

See also “AVG function [Aggregate]” on page 275

“COUNT function [Aggregate]” on page 287

Chapter 4, “Using OLAP” in the Sybase IQ Performance and Tuning Guide

CHAPTER 5 SQL Functions

Reference Manual 375

SUSER_ID function [System]
Function Returns an integer user identification number.

Syntax SUSER_ID ([user-name])

Parameters user-name The user name.

Examples The following statement returns the user identification number 1:

SELECT SUSER_ID ('DBA') FROM iq_dummy

The following statement returns the user identification number 0:

SELECT SUSER_ID ('SYS') FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Adaptive Server Enterprise function implemented for Sybase
IQ.

See also “SUSER_NAME function [System]” on page 375

“USER_ID function [System]” on page 379

SUSER_NAME function [System]
Function Returns the user name.

Syntax SUSER_NAME ([user-id])

Parameters user-id The user identification number.

Examples The following statement returns the value DBA:

SELECT SUSER_NAME (1) FROM iq_dummy

The following statement returns the value SYS:

SELECT SUSER_NAME (0) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Adaptive Server Enterprise function implemented for Sybase
IQ. In Adapter Server Enterprise, SUSER_NAME returns the server user
name.

See also “SUSER_ID function [System]” on page 375

“USER_NAME function [System]” on page 380

Alphabetical list of functions

376 Sybase IQ

TAN function [Numeric]
Function Returns the tangent of a number.

Syntax TAN (numeric-expression)

Parameters numeric-expression An angle, in radians.

Example The following statement returns the value 0.572561:

SELECT TAN(0.52) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Compatible with Adaptive Server Enterprise.

See also “COS function [Numeric]” on page 287

“SIN function [Numeric]” on page 361

TODAY function [Date and time]
Function Returns the current date. This is the historical syntax for CURRENT DATE.

Syntax TODAY (*)

Example The following statement returns the current day according to the system clock.

SELECT TODAY(*) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

TRIM function [String]
Function Removes leading and trailing blanks from a string.

Syntax TRIM (string-expression)

Parameters string-expression The string to be trimmed.

Note The result data type of a TRIM function is a LONG VARCHAR. If you use
TRIM in a SELECT INTO statement, you must have a Large Objects
Management option license, or use CAST and set TRIM to the correct data type
and size.

See “REPLACE function [String]” on page 352 for more information.

CHAPTER 5 SQL Functions

Reference Manual 377

Example The following statement returns the value “chocolate” with no leading or
trailing blanks.

SELECT TRIM(' chocolate ') FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise. Use LTRIM and
RTRIM instead.

See also “LTRIM function [String]” on page 324

“RTRIM function [String]” on page 358

TRUNCATE function [Numeric]
Function Truncates a number at a specified number of places after the decimal point.

Deprecated in favor of TRUNCNUM.

Syntax "TRUNCATE" (numeric-expression, integer-expression)

Parameters numeric-expression The number to be truncated.

integer-expression A positive integer specifies the number of significant
digits to the right of the decimal point at which to round. A negative expression
specifies the number of significant digits to the left of the decimal point at
which to round.

Examples The following statement returns the value 600:

SELECT "TRUNCATE"(655, -2) FROM iq_dummy

The following statement returns the value 655.340:

SELECT "TRUNCATE"(655.348, 2) FROM iq_dummy

Usage This function is the same as TRUNCNUM. Using TRUNCNUM is recommended,
as it does not cause keyword conflicts.

The quotation marks are required because of a keyword conflict with the
TRUNCATE TABLE statement. You can use TRUNCATE without the quotation
marks only if the QUOTED_IDENTIFIER option is set to OFF.

You can use combinations of ROUND, FLOOR, and CEILING to provide similar
functionality.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported in Adaptive Server Enterprise.

See also “QUOTED_IDENTIFIER option [TSQL]” on page 143

Alphabetical list of functions

378 Sybase IQ

“TRUNCNUM function [Numeric]” on page 378

TRUNCNUM function [Numeric]
Function Truncates a number at a specified number of places after the decimal point.

Syntax TRUNCNUM (numeric-expression, integer-expression)

Parameters numeric-expression The number to be truncated.

integer-expression A positive integer specifies the number of significant
digits to the right of the decimal point at which to round. A negative expression
specifies the number of significant digits to the left of the decimal point at
which to round.

Examples The following statement returns the value 600:

SELECT TRUNCNUM(655, -2) FROM iq_dummy

The following statement: returns the value 655.340:

SELECT TRUNCNUM(655.348, 2) FROM iq_dummy

Usage This function is the same as TRUNCATE, but does not cause keyword conflicts.

You can use combinations of ROUND, FLOOR, and CEILING to provide similar
functionality.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported in Adaptive Server Enterprise.

See also “ROUND function [Numeric]” on page 355

“TRUNCATE function [Numeric]” on page 377

UCASE function [String]
Function Converts all characters in a string to uppercase.

Syntax UCASE (string-expression)

Parameters string-expression The string to be converted to uppercase.

See “REPLACE function [String]” on page 352 for more information.

Example The following statement returns the value “CHOCOLATE”:

SELECT UCASE('ChocoLate') FROM iq_dummy

CHAPTER 5 SQL Functions

Reference Manual 379

Usage The result datatype of a UCASE function is a LONG VARCHAR. If you use
UCASE in a SELECT INTO statement, you must have a Large Objects
Management option license or use CAST and set UCASE to the correct
datatype and size.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase UCASE is not supported by Adaptive Server Enterprise, but
UPPER provides the same feature in a compatible manner.

See also “LCASE function [String]” on page 318

“UPPER function [String]” on page 379

UPPER function [String]
Function Converts all characters in a string to uppercase.

Syntax UPPER (string-expression)

Parameters string-expression The string to be converted to uppercase.

See “REPLACE function [String]” for more information.

Example The following statement returns the value “CHOCOLATE”:

SELECT UPPER('ChocoLate') FROM iq_dummy

Usage The result datatype of an UPPER function is a LONG VARCHAR. If you use
UPPER in a SELECT INTO statement, you must have a Large Objects
Management option license or use CAST and set UPPER to the correct
datatype and size.

Standards and
compatibility

• SQL92 This function is SQL92 compatible.

• Sybase Compatible with Adaptive Server Enterprise.

See also “LCASE function [String]” on page 318

“LOWER function [String]” on page 323

“UCASE function [String]” on page 378

USER_ID function [System]
Function Returns an integer user identification number.

Syntax USER_ID ([user-name])

Alphabetical list of functions

380 Sybase IQ

Parameters user-name The user name.

Examples The following statement returns the user identification number 1:

SELECT USER_ID ('DBA') FROM iq_dummy

The following statement returns the user identification number 0:

SELECT USER_ID ('SYS') FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Adaptive Server Enterprise function implemented for Sybase
IQ.

See also “SUSER_ID function [System]” on page 375

“USER_NAME function [System]” on page 380

USER_NAME function [System]
Function Returns the user name.

Syntax USER_NAME ([user-id])

Parameters user-id The user identification number.

Examples The following statement returns the value “DBA”:

SELECT USER_NAME (1) FROM iq_dummy

The following statement returns the value “SYS”:

SELECT USER_NAME (0) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Adaptive Server Enterprise function implemented for Sybase
IQ. In Adapter Server Enterprise, USER_NAME returns the user name, not
the server user name.

See also “SUSER_NAME function [System]” on page 375

“USER_ID function [System]” on page 379

CHAPTER 5 SQL Functions

Reference Manual 381

UUIDTOSTR function [String]
Function Converts a unique identifier value (UUID, also known as GUID) to a string

value.

Syntax NEWIDuuid-expression)

Parameters uuid-expression A unique identifier value.

Example To convert a unique identifier value into a readable format, execute a query
similar to:

SELECT UUIDTOSTR(uid_col),c1 FROM mytab

Usage Converts a unique identifier to a string value in the format xxxxxxxx-xxxx-xxxx-
xxxx-xxxxxxxxxxxx, where x is a hexadecimal digit. If the binary value is not a
valid unique identifier, NULL is returned.

Standards and
compatibility

• SQL92 Vendor extension.

• SQL99 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

See also “NEWID function [Miscellaneous]” on page 329

“STRTOUUID function [String]” on page 372

UNIQUEIDENTIFIER in “Binary data types” on page 229

VAR_POP function [Aggregate]
Function Computes the statistical variance of a population consisting of a numeric-

expression, as a DOUBLE.

Syntax VAR_POP ([ALL] expression)

Parameters expression The expression (commonly a column name) whose population-
based variance is calculated over a set of rows.

Examples The following statement lists the average and variance in the number of items
per order in different time periods:

SELECT year(ship_date) AS Year, quarter(ship_date)
AS Quarter, AVG(quantity) AS Average,
VAR_POP(quantity) AS Variance

FROM sales_order_items GROUP BY Year, Quarter
ORDER BY Year, Quarter

Alphabetical list of functions

382 Sybase IQ

Usage Computes the population variance of the provided value expression evaluated
for each row of the group or partition (if DISTINCT was specified, then each
row that remains after duplicates have been eliminated), defined as the sum of
squares of the difference of value expression, from the mean of value
expression, divided by the number of rows (remaining) in the group or
partition.

Population-based variances are computed according to the following formula:

Standards and
compatibility

• SQL99 SQL/foundation feature outside of core SQL.

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

See also “Analytical functions” on page 252

Chapter 4, “Using OLAP” in the Sybase IQ Performance and Tuning Guide

VAR_SAMP function [Aggregate]
Function Computes the statistical variance of a sample consisting of a numeric-

expression, as a DOUBLE.

Note VAR_SAMP is an alias of VARIANCE.

Syntax VAR_SAMP ([ALL] expression)

Parameters expression The expression (commonly a column name) whose sample-
based variance is calculated over a set of rows.

NULL Returns null values on one-element input sets in Sybase IQ versions
prior to 12.7.

Year Quarter Average Variance

2000 1 25.775148 203.9021

2000 2 27.050847 225.8109

...

CHAPTER 5 SQL Functions

Reference Manual 383

Examples The following statement lists the average and variance in the number of items
per order in different time periods:

SELECT year(ship_date) AS Year, quarter(ship_date)
AS Quarter, AVG(quantity) AS Average,
VAR_POP(quantity) AS Variance

FROM sales_order_items GROUP BY Year, Quarter
ORDER BY Year, Quarter

Usage Computes the sample variance of value expression evaluated for each row of
the group or partition (if DISTINCT was specified, then each row that remains
after duplicates have been eliminated), defined as the sum of squares of the
difference of value expression, from the mean of value expression, divided by
one less than the number of rows (remaining) in the group or partition.

Variances are computed according to the following formula, which assumes a
normal distribution:

Standards and
compatibility

• SQL99 SQL/foundation feature outside of core SQL.

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

See also “Analytical functions” on page 252

“VARIANCE function [Aggregate]” on page 383

Chapter 4, “Using OLAP” in the Sybase IQ Performance and Tuning Guide

VARIANCE function [Aggregate]
Function Returns the variance of a set of numbers.

Syntax VARIANCE ([ALL] expression)

Parameters expression Any numeric data type (FLOAT, REAL, or DOUBLE) expression.

Year Quarter Average Variance

2000 1 25.775148 205.1158

2000 2 27.050847 227.0939

...

Alphabetical list of functions

384 Sybase IQ

NULL Returns null values on one-element input sets in Sybase IQ versions
prior to 12.7.

Examples Given this data:

SELECT salary FROM employee WHERE dept_id = 300

The following statement returns the value 1063923790.99999994:

SELECT VARIANCE (salary) FROM employee
WHERE dept_id = 300

Given this data:

SELECT unit_price FROM product WHERE name = 'Tee Shirt'

The following statement returns the value 8.33333333333334327:

SELECT VARIANCE (unit_price) FROM product
WHERE name = 'Tee Shirt'

Usage The formula used to calculate VARIANCE is

VARIANCE returns a result of data type double precision floating point. If
applied to the empty set, the result is NULL.

salary

51432.000

57090.000

42300.000

43700.00

36500.000

138948.000

31200.000

58930.00

75400.00

name unit_price

Tee Shirt 9.00

Tee Shirt 14.00

Tee Shirt 14.00

CHAPTER 5 SQL Functions

Reference Manual 385

VARIANCE does not support the keyword DISTINCT. A syntax error is
returned if DISTINCT is used with VARIANCE.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

See also “STDDEV function [Aggregate]” on page 365

“VAR_SAMP function [Aggregate]” on page 382

Chapter 4, “Using OLAP” in the Sybase IQ Performance and Tuning Guide

WEEKS function [Date and time]
Function Returns the number of weeks since an arbitrary starting date/time, returns the

number of weeks between two specified date/times, or adds the specified
integer-expression number of weeks to a date/time.

Syntax WEEKS (datetime-expression
| datetime-expression, datetime-expression
| datetime-expression, integer-expression)

Parameters datetime-expression A date and time.

integer-expression The number of weeks to be added to the datetime-
expression. If integer-expression is negative, the appropriate number of weeks
are subtracted from the date/time value. Hours, minutes, and seconds are
ignored. If you supply an integer expression, the datetime-expression must be
explicitly cast as a DATETIME data type.

For information on casting data types, see “CAST function [Data type
conversion]” on page 278.

Examples The following statement returns the value 104278:

SELECT WEEKS('1998-07-13 06:07:12') FROM iq_dummy

The following statement returns the value 9, to signify the difference between
the two dates:

SELECT WEEKS('1999-07-13 06:07:12',
'1999-09-13 10:07:12') FROM iq_dummy

The following statement returns the timestamp value 1999-06-16
21:05:07.000:

SELECT WEEKS(CAST('1999-05-12 21:05:07'
AS TIMESTAMP), 5) FROM iq_dummy

Alphabetical list of functions

386 Sybase IQ

Usage Weeks are defined as going from Sunday to Saturday, as they do in a North
American calendar. The number returned by the first syntax is often useful for
determining if two dates are in the same week.

WEEKS (invoice_sent) = WEEKS (payment_received) FROM
iq_dummy

In the second syntax, the value of WEEKS is calculated from the number of
Sundays between the two dates. Hours, minutes, and seconds are ignored. This
function is not affected by the DATE_FIRST_DAY_OF_WEEK option.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

WIDTH_BUCKET function [Numerical]
Function For a given expression, the WIDTH_BUCKET function returns the bucket

number that the result of this expression will be assigned after it is evaluated.

Syntax WIDTH_BUCKET (expression, min_value, max_value, num_buckets)

Parameters expression is the expression for which the histogram is being created. This
expression must evaluate to a numeric or datetime value or to a value that can
be implicitly converted to a numeric or datetime value. If expr evaluates to null,
then the expression returns null.

min_value An expression that resolves to the end points of the acceptable
range for expr. Must also evaluate to numeric or datetime values and cannot
evaluate to null.

max_value An expression that resolves to the end points of the acceptable
range for expr. Must also evaluate to numeric or datetime values and cannot
evaluate to null.

num_buckets Is an expression that resolves to a constant indicating the
number of buckets. This expression must evaluate to a positive integer.

Examples The following example creates a ten-bucket histogram on the credit_limit
column for customers in Massachusetts in the sample table and returns the
bucket number (“Credit Group”) for each customer. Customers with credit
limits greater than the maximum value are assigned to the overflow bucket, 11:

SELECT customer_id, cust_last_name, credit_limit,
WIDTH_BUCKET(credit_limit, 100, 5000, 10) "Credit
Group"
FROM customers WHERE territory = 'MA'
ORDER BY "Credit Group";

CHAPTER 5 SQL Functions

Reference Manual 387

CUSTOMER_ID CUST_LAST_NAME CREDIT_LIMIT Credit Group

----------- -------------- ------------ ------------

825 Dreyfuss 500 1

826 Barkin 500 1

853 Palin 400 1

827 Siegel 500 1

843 Oates 700 2

844 Julius 700 2

835 Eastwood 1200 3

840 Elliott 1400 3

842 Stern 1400 3

841 Boyer 1400 3

837 Stanton 1200 3

836 Berenger 1200 3

848 Olmos 1800 4

849 Kaurusmdki 1800 4

828 Minnelli 2300 5

829 Hunter 2300 5

852 Tanner 2300 5

851 Brown 2300 5

850 Finney 2300 5

830 Dutt 3500 7

831 Bel Geddes 3500 7

832 Spacek 3500 7

838 Nicholson 3500 7

839 Johnson 3500 7

833 Moranis 3500 7

834 Idle 3500 7

845 Fawcett 5000 11

846 Brando 5000 11

847 Streep 5000 11

When the bounds are reversed, the buckets are open-closed intervals. For
example: WIDTH_BUCKET (credit_limit, 5000, 0, 5). In this example, bucket
number 1 is (4000, 5000], bucket number 2 is (3000, 4000], and bucket number
5 is (0, 1000]. The overflow bucket is numbered 0 (5000, +infinity), and the
underflow bucket is numbered 6 (-infinity, 0].

Usage You can generate equiwidth histograms with the WIDTH_BUCKET function.
Equiwidth histograms divide data sets into buckets whose interval size (highest
value to lowest value) is equal. The number of rows held by each bucket will
vary. A related function, NTILE, creates equiheight buckets.

Alphabetical list of functions

388 Sybase IQ

Equiwidth histograms can be generated only for numeric, date or datetime data
types; therefore, the first three parameters should be all numeric expressions or
all date expressions. Other types of expressions are not allowed. If the first
parameter is NULL, the result is NULL. If the second or the third parameter is
NULL, an error message is returned, as a NULL value cannot denote any end
point (or any point) for a range in a date or numeric value dimension. The last
parameter (number of buckets) should be a numeric expression that evaluates
to a positive integer value; 0, NULL, or a negative value will result in an error.

Buckets are numbered from 0 to (n+1). Bucket 0 holds the count of values less
than the minimum. Bucket(n+1) holds the count of values greater than or equal
to the maximum specified value..

Standards and
compatibility

• SQL03 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

See also “NTILE function [Analytical]” on page 333, which creates equiheight
histograms.

Chapter 4, “Using OLAP” in the Sybase IQ Performance and Tuning Guide

YEAR function [Date and time]
Function Returns a 4-digit number corresponding to the year of the given date/time.

Syntax YEAR (datetime-expression)

Parameters datetime-expression A date and time.

Example The following statement returns the value 1998:

SELECT YEAR('1998-07-13 06:07:12') FROM iq_dummy

Usage The YEAR function is the same as the first syntax of the YEARS function.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

See also “YEARS function [Date and time]” on page 388

YEARS function [Date and time]
Function Returns a 4-digit number corresponding to the year of a given date/time,

returns the number of years between two specified date/times, or adds the
specified integer-expression number of years to a date/time.

CHAPTER 5 SQL Functions

Reference Manual 389

Syntax YEARS (datetime-expression
| datetime-expression, datetime-expression
| datetime-expression, integer-expression)

Parameters datetime-expression A date and time.

integer-expression The number of years to be added to the datetime-
expression. If integer-expression is negative, the appropriate number of years
are subtracted from the datetime value. If you supply an integer expression, the
datetime-expression must be explicitly cast as a DATETIME data type.

For information on casting data types, see “CAST function [Data type
conversion]” on page 278.

Examples The following statement returns the value 1998:

SELECT YEARS('1998-07-13 06:07:12') FROM iq_dummy

The following statement returns the value 2, to signify the difference between
the two dates.

SELECT YEARS('1997-07-13 06:07:12',
'1999-09-13 10:07:12') FROM iq_dummy

The following statement returns the timestamp value 2004-05-12
21:05:07.000:

SELECT YEARS(CAST('1999-05-12 21:05:07'
AS TIMESTAMP), 5) FROM iq_dummy

Usage The first syntax of the YEARS function is the same as the YEAR function.

The second syntax returns the number of years from the first date to the second
date, calculated from the number of first days of the year between the two
dates. The number might be negative. Hours, minutes, and seconds are ignored.
For example, the following statement returns 2, which is the number of first
days of the year between the specified dates:

SELECT YEARS (‘2000-02-24’, ‘2002-02-24’) FROM
iq_dummy

The next statement also returns 2, even though the difference between the
specified dates is not two full calendar years. The value 2 is the number of first
days of the year (in this case January 01, 2001 and January 01, 2002) between
the two dates.

SELECT YEARS (‘2000-02-24’, ‘2002-02-20’) FROM
iq_dummy

Alphabetical list of functions

390 Sybase IQ

The third syntax adds an integer-expression number of years to the given date.
If the new date is past the end of the month (such as SELECT YEARS (CAST (
‘1992-02-29’ AS TIMESTAMP), 1)), the result is set to the last day of the
month. If integer-expression is negative, the appropriate number of years is
subtracted from the date. Hours, minutes, and seconds are ignored.

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

See also “YEAR function [Date and time]” on page 388

YMD function [Date and time]
Function Returns a date value corresponding to the given year, month, and day of the

month.

Syntax YMD (integer-expression1, integer-expression2, integer-expression3)

Parameters integer-expression1 The year.

integer-expression2 The number of the month. If the month is outside the
range 1–12, the year is adjusted accordingly.

integer-expression3 The day number. The day is allowed to be any integer,
the date is adjusted accordingly.

Examples The following statement returns the value 1998-06-12:

SELECT YMD(1998, 06, 12) FROM iq_dummy

If the values are outside their normal range, the date adjusts accordingly. For
example, the following statement returns the value 1993-03-01:

SELECT YMD(1992, 15, 1) FROM iq_dummy

The following statement returns the value 1993-02-28:

SELECT YMD (1992, 15, 1-1) FROM iq_dummy

The following statement returns the value 1992-02-29:

SELECT YMD (1992, 3, 1-1) FROM iq_dummy

Standards and
compatibility

• SQL92 Vendor extension.

• Sybase Compatible with Adaptive Server Enterprise

Reference Manual 391

C H A P T E R 6 SQL Statements

About this chapter This chapter presents an alphabetical listing of the SQL statements
available in Sybase IQ, including some that can be used only from
Embedded SQL or DBISQL.

Using the SQL statement reference
This section describes the conventions used in documenting the SQL
statements.

Common elements in SQL syntax
This section lists language elements that are found in the syntax of many
SQL statements.

 For more information on the elements described here, see “Identifiers” on
page 177; Chapter 4, “SQL Data Types,” “Search conditions” on page
189; “Expressions” on page 179; or “Strings” on page 178.

• column-name – an identifier that represents the name of a column.

• condition – an expression that evaluates to TRUE, FALSE, or
UNKNOWN.

• connection-name – a string representing the name of an active
connection.

• data-type – a storage data type.

• expression – an expression.

• filename – a string containing a file name.

• host-variable – a C language variable, declared as a host variable,
preceded by a colon.

Using the SQL statement reference

392 Sybase IQ

• indicator-variable – a second host variable of type short int immediately
following a normal host variable. An indicator variable must also be
preceded by a colon. Indicator variables are used to pass NULL values to
and from the database.

• number – any sequence of digits followed by an optional decimal part and
preceded by an optional negative sign. Optionally, the number can be
followed by an ‘e’ and then an exponent. For example,

42
-4.038
.001
3.4e10
1e-10

• owner – an identifier representing the user ID who owns a database object.

• role-name – an identifier representing the role name of a foreign key.

• savepoint-name – an identifier that represents the name of a savepoint.

• search-condition – a condition that evaluates to TRUE, FALSE, or
UNKNOWN.

• special-value – one of the special values described in “Special values” on
page 205.

• statement-label – an identifier that represents the label of a loop or
compound statement.

• table-list – a list of table names, which might include correlation names.
For more information, see FROM clause on page 553.

• table-name – an identifier that represents the name of a table.

• userid – an identifier representing a user name. The user ID is not case
sensitive and is unaffected by the setting of the CASE RESPECT property
of the database.

• variable-name – an identifier that represents a variable name.

Syntax conventions
The following conventions are used in the SQL syntax descriptions:

• Keywords – All SQL keywords appear in UPPERCASE; however, SQL
keywords are case insensitive, so you can type keywords in any case. For
example, SELECT is the same as Select, which is the same as select.

CHAPTER 6 SQL Statements

Reference Manual 393

• Placeholders – Items that must be replaced with appropriate identifiers or
expressions are shown in italics.

• Continuation – Lines beginning with an ellipsis (...) are a continuation
from the previous line.

• Optional portions – Optional portions of a statement are enclosed by
square brackets. For example:

RELEASE SAVEPOINT [savepoint-name]

This example indicates that the savepoint-name is optional. Do not type
the square brackets.

• Repeating items – Lists of repeating items are shown with an element of
the list followed by an ellipsis. One or more list elements are allowed.
When more than one is specified, they must be separated by commas if
indicated as such. For example:

UNIQUE (column-name [, ...])

The example indicates that you can specify column-name more than once,
separated by commas. Do not type the square brackets.

• Alternatives – When one option must be chosen, the alternatives are
enclosed in curly braces. For example:

[QUOTES { ON | OFF }]

The example indicates that if you choose the QUOTES option, you must
provide one of ON or OFF. Do not type the braces.

• One or more options – If you choose more than one, separate your choices
by commas. For example:

{ CONNECT, DBA, RESOURCE }

Statement applicability indicators
Some statement titles are followed by an indicator in square brackets that
shows where the statement can be used. These indicators are as follows:

• [ESQL] – The statement is for use in Embedded SQL.

• [DBISQL] – The statement is for use only in DBISQL.

• [SP] – The statement is for use in stored procedures or batches.

ALLOCATE DESCRIPTOR statement [ESQL]

394 Sybase IQ

• [TSQL] – The statement is implemented for compatibility with Adaptive
Server Enterprise. In some cases, the statement cannot be used in stored
procedures that are not Transact-SQL format. In other cases, there is an
alternative statement that is closer to the SQL92 standard that is
recommended unless Transact-SQL compatibility is an issue.

If two sets of brackets are used, the statement can be used in both
environments. For example, [ESQL] [SP] means a statement can be used either
in Embedded SQL or in stored procedures.

ALLOCATE DESCRIPTOR statement [ESQL]
Description Allocates space for a SQL descriptor area (SQLDA).

Syntax ALLOCATE DESCRIPTOR descriptor-name
... [WITH MAX { integer | host-variable }]

Parameters descriptor-name:
string

For more information, see Chapter 3, “SQL Language Elements.”

Examples The following sample program includes an example of ALLOCATE
DESCRIPTOR statement usage.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

EXEC SQL INCLUDE SQLCA;

#include <sqldef.h>

EXEC SQL BEGIN DECLARE SECTION;
int x;
short type;
int numcols;
char string[100];
a_sql_statement_number stmt = 0;
EXEC SQL END DECLARE SECTION;

int main(int argc, char * argv[])

CHAPTER 6 SQL Statements

Reference Manual 395

{
struct sqlda * sqlda1;

if(!db_init(&sqlca)) {
return 1;

}
db_string_connect(&sqlca,

"UID=dba;PWD=sql;DBF=d:\\ASIQ-12_5\\sample.db");

EXEC SQL ALLOCATE DESCRIPTOR sqlda1 WITH MAX 25;

EXEC SQL PREPARE :stmt FROM 'select * from
employee';

EXEC SQL DECLARE curs CURSOR FOR :stmt;
EXEC SQL OPEN curs;

EXEC SQL DESCRIBE :stmt into sqlda1;
EXEC SQL GET DESCRIPTOR sqlda1 :numcols=COUNT;

// how many columns?
if(numcols > 25) {

// reallocate if necessary
EXEC SQL DEALLOCATE DESCRIPTOR sqlda1;
EXEC SQL ALLOCATE DESCRIPTOR sqlda1

WITH MAX :numcols;
}
type = DT_STRING; // change the type to string
EXEC SQL SET DESCRIPTOR sqlda1 VALUE 2 TYPE = :type;
fill_sqlda(sqlda1); // allocate space for the

variables

EXEC SQL FETCH ABSOLUTE 1 curs USING DESCRIPTOR
sqlda1;

EXEC SQL GET DESCRIPTOR sqlda1 VALUE 2 :string =
DATA;

printf("name = %s", string);

EXEC SQL DEALLOCATE DESCRIPTOR sqlda1;
EXEC SQL CLOSE curs;
EXEC SQL DROP STATEMENT :stmt;

db_string_disconnect(&sqlca, "");
db_fini(&sqlca);

return 0;
}

ALTER DATABASE statement

396 Sybase IQ

Usage You must declare the following in your C code prior to using this statement:

struct sqlda * descriptor_name

The WITH MAX clause lets you specify the number of variables within the
descriptor area. The default size is 1.

You must still call fill_sqlda to allocate space for the actual data items before
doing a fetch or any statement that accesses the data within a descriptor area.

Standards • SQL92 Entry-level feature.

• Sybase Supported by Open Client/Open Server.

See also DEALLOCATE DESCRIPTOR statement [ESQL] on page 514

 The SQL descriptor area (SQLDA) in the Adaptive Server Anywhere
Programming Guide

ALTER DATABASE statement
Description Upgrades a database created with a previous version of the software or adds or

removes Java or jConnect support. Run this statement with Interactive SQL
Java.

Syntax ALTER DATABASE
UPGRADE

[JAVA { ON | OFF
| JDK { ‘ 1.1.8 ‘ | ‘ 1.3 ’ } }]

[JCONNECT { ON | OFF}]
| REMOVE JAVA

Examples Upgrade a database created with the Java options off:

ALTER DATABASE UPGRADE JAVA OFF JCONNECT OFF

Usage The ALTER DATABASE statement upgrades databases created with earlier
versions of the software. This applies to maintenance releases as well as major
releases. For example, you can upgrade a database created with version 12.6 to
12.7.

Note See the Sybase IQ Installation and Configuration Guide for backup
recommendations before you upgrade.

When you upgrade a database, Sybase IQ makes the following changes:

CHAPTER 6 SQL Statements

Reference Manual 397

• Upgrades the system tables to the current version.

• Adds any new database options.

You can also use ALTER DATABASE UPGRADE simply to add Java or jConnect
features if the database was created with the current version of the software.

 Warning! Be sure to start the server in a way that restricts user connections
before you run ALTER DATABASE UPGRADE. For instructions and other
upgrade caveats, see the chapter “Migrating Data,” in the Sybase IQ
Installation and Configuration Guide for your platform.

After using ALTER DATABASE UPGRADE, shut down the database.

Note If upgrade of a Sybase IQ 12.6 database returns a “Database upgrade not
possible” error, see “Insufficient procedure identifiers,” in Sybase IQ
Troubleshooting and Recovery Guide.

JAVA clause Controls support for Java in the upgraded database.

• Specify JAVA ON to enable support for Java in the database by adding
entries for the default Sybase runtime Java classes to the system tables. If
Java in the database is already installed, but is at a lower version than the
default classes, this clause upgrades it to the current default classes. The
default classes are the JDK 1.3 classes.

• Specify JAVA OFF to prevent the addition of Java in the database to
databases that do not already have it installed. For databases that already
have Java installed, setting JAVA OFF does not remove Java support: the
version of Java remains at the current version. To remove Java from the
database, use the REMOVE JAVA clause.

• Specify JAVA JDK ‘1.1.8’ or JAVA JDK ‘1.3’ to install support for the named
version of the JDK.

The ALTER DATABASE UPGRADE statement only upgrades your database
to a higher version of JDK. To downgrade, first remove Java from the
database, then add it back with the lower JDK version. For example, to
downgrade from JDK 1.3 to JDK 1.1.8:

ALTER DATABASE REMOVE JAVA
ALTER DATABASE UPGRADE JAVA JDK '1.1.8'

Classes for JDK 1.1.8 are stored in java/1.1/classes.zip under the Sybase
IQ installation directory. Classes for JDK 1.3 are stored in java/1.3/rt.jar.

ALTER DBSPACE statement

398 Sybase IQ

The default behavior is JAVA OFF.

To use Java after adding it in the database, you must restart the database.

JCONNECT clause To allow the Sybase jConnect JDBC driver to access
system catalog information, you must specify JCONNECT ON. This installs
jConnect system tables and procedures. To exclude the jConnect system
objects, specify JCONNECT OFF. You can still use JDBC, as long as you do
not access system catalog information. The default is to include jConnect
support (JCONNECT ON).

REMOVE JAVA clause Removes Java from a database. The operation leaves
the database as if it were created with JAVA OFF. When the statement is issued
Java in the database must not be in use. Remove all Java classes from the
database before executing this statement. The statement ignores stored
procedures and triggers that reference Java objects, and the presence of these
objects does not trigger an error in the ALTER DATABASE statement.

Side effects

• Automatic commit

Standards • SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

Permissions Must have DBA authority.

See also CREATE DATABASE statement on page 442

“Migrating Data” in the Sybase IQ Installation and Configuration Guide

“Introduction to Java in the Database” in the Adaptive Server Anywhere
Programming Guide

ALTER DBSPACE statement
Description Changes the read/write mode, changes the size, or extends an existing dbspace.

Syntax ALTER DBSPACE dbspace-name
{ READWRITE | READONLY | RELOCATE
| SIZE dbspace-size [KB | MB | GB | TB | PAGES]
| ADD dbspace-size [KB | MB | GB | TB | PAGES] }

Examples Example 1 Change the mode of a dbspace called mydb_tmp_2 to relocate.

ALTER DBSPACE mydb_tmp_2 RELOCATE;

CHAPTER 6 SQL Statements

Reference Manual 399

Example 2 Specify the new size of 10MB for the dbspace IQ_SYSTEM_MAIN.

ALTER DBSPACE IQ_SYSTEM_MAIN SIZE 10MB

Example 3 Increase the size of the dbspace IQ_SYSTEM_TEMP by 2GB.

ALTER DBSPACE IQ_SYSTEM_TEMP ADD 2 GB

Example 4 Specify the new size of 4MB for the dbspace IQ_SYSTEM_TEMP.
(SIZE defaults to megabytes.)

ALTER DBSPACE IQ_SYSTEM_TEMP SIZE 4

Example 5 Increase the size of the dbspace IQ_SYSTEM_MAIN by 1000 pages.
(ADD defaults to pages.)

ALTER DBSPACE IQ_SYSTEM_MAIN ADD 1000

Usage The ALTER DBSPACE statement changes the read/write mode, changes the
size, or extends an existing dbspace. The sp_iqdbspace system stored
procedure displays the mode and size of the dbspace. Dbspace names are case
sensitive for databases created with CASE RESPECT.

READWRITE clause Specifies that allocations can be made from the
dbspace. The mode of a newly created dbspace is readwrite.

READONLY clause Specifies that the server no longer writes to the dbspace.
You can still modify objects on the dbspace, but new versions are placed on the
remaining readwrite dbspaces.

RELOCATE clause Specifies that space is not allocated from the dbspace and
that the objects on the dbspace are subject to relocation. The server does not
write to an IQ Main dbspace in relocate mode.

SIZE clause Specifies the new size of the dbspace in units of pages, kilobytes
(KB), megabytes (MB), gigabytes (GB), or terabytes (TB). The default is
megabytes. You can increase the size of the dbspace only if the free list (an
allocation map) has sufficient room or if the dbspace has sufficient reserved
space. You can decrease the size of the dbspace only if the truncated portion is
not in use.

ADD clause ALTER DBSPACE ADD extends the dbspace by the specified
dbspace-size in units of pages, kilobytes (KB), megabytes (MB), gigabytes
(GB), or terabytes (TB). The default is PAGES. The page size of a database is
fixed when the database is created.

Note You can increase dbspace size only if the dbspace has sufficient reserved
space.

ALTER DOMAIN statement

400 Sybase IQ

You can also view and change the dbspace mode and size through the Sybase
Central Dbspaces window.

Side effects

• Automatic commit

• Automatic checkpoint

• A mode change to READONLY or RELOCATE causes immediate relocation
of the internal database structures on the dbspace to one of the read/write
dbspaces.

Standards • SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

Permissions Must have DBA authority.

See also CREATE DBSPACE statement on page 453

CREATE DATABASE statement on page 442

DROP statement on page 533

“sp_iqdbspace procedure” in Chapter 10, “System Procedures”

“Working with dbspaces” in Chapter 5, “Working with Database Objects,” of
the Sybase IQ System Administration Guide

ALTER DOMAIN statement
Description Renames a user-defined domain or data type. Does not rename Java types.

Syntax ALTER { DOMAIN | DATATYPE } user-type
RENAME new-name

Parameters new-name:
an identifier representing the new domain name.

user-type:
user-defined data type of the domain being renamed.

Examples The following renames the Address domain to MailingAddress:

ALTER DOMAIN Address RENAME MailingAddress

Usage The ALTER DOMAIN statement updates the name of the user-defined domain or
data type in the SYSUSERTYPE system table.

CHAPTER 6 SQL Statements

Reference Manual 401

You must recreate any procedures, views or events that reference the user-
defined domain or data type, or else they will continue to reference the former
name.

Side effects

Automatic commit.

Permissions Must have DBA authority or be the database user who created the domain.

See also CREATE DOMAIN statement on page 456

Chapter 4, “SQL Data Types”

 “SYSUSERTYPE system table” on page 734

ALTER EVENT statement
Description Changes the definition of an event or its associated handler for automating

predefined actions. Also alters the definition of scheduled actions.

Syntax ALTER EVENT event-name
[DELETE TYPE | TYPE event-type]
{ WHERE { trigger-condition | NULL }

| { ADD | [MODIFY] | DELETE } SCHEDULE schedule-spec
}
[ENABLE | DISABLE]
[[MODIFY] HANDLER compound-statement | DELETE HANDLER }

Parameters event-type:
BackupEnd | "Connect"
| ConnectFailed | DatabaseStart
| DBDiskSpace | "Disconnect"
| GlobalAutoincrement | GrowDB
| GrowLog | GrowTemp
| LogDiskSpace | "RAISERROR"
| ServerIdle | TempDiskSpace

trigger-condition:
[event_condition(condition-name) { = | < | > | != | <= | >= } value]

ALTER EVENT statement

402 Sybase IQ

schedule-spec:
[schedule-name]
{ START TIME start-time | BETWEEN start-time AND end-time }
[EVERY period { HOURS | MINUTES | SECONDS }]
[ON { (day-of-week, ...) | (day-of-month, ...) }]
[START DATE start-date]

event-name | schedule-name:
identifier

day-of-week :
string

value | period | day-of-month :
integer

start-time | end-time :
time

start-date :
date

Usage The ALTER EVENT statement lets you alter an event definition created with
CREATE EVENT. Possible uses include the following:

• Use ALTER EVENT to change an event handler during development.

• Define and test an event handler without a trigger condition or schedule
during a development phase, and then add the conditions for execution
using ALTER EVENT once the event handler is completed.

• Disable an event handler temporarily by disabling the event.

When you alter an event using ALTER EVENT, specify the event name and,
optionally, the schedule name.

List event names by querying the system table SYSEVENT. For example:

SELECT event_id, event_name FROM SYS.SYSEVENT

List schedule names by querying the system table SYSSCHEDULE. For
example:

SELECT event_id, sched_name FROM SYS.SYSSCHEDULE

Each event has a unique event ID. Use the event_id columns of SYSEVENT and
SYSSCHEDULE to match the event to the associated schedule.

DELETE TYPE clause Removes an association of the event with an event
type.

CHAPTER 6 SQL Statements

Reference Manual 403

ADD | MODIFY | DELETE SCHEDULE clause Changes the definition of a
schedule. Only one schedule can be altered in any one ALTER EVENT
statement.

WHERE clause The WHERE NULL option deletes a condition.

For descriptions of most of the parameters, see the CREATE EVENT
statement on page 458.

Side effects

Automatic commit.

Permissions Must have DBA authority.

See also BEGIN... END statement on page 422

CREATE EVENT statement on page 458

Chapter 18, “Automating Tasks Using Schedules and Events,” in the Sybase
IQ System Administration Guide

ALTER INDEX statement
Description Renames indexes in base or global temporary tables and foreign key role

names of indexes and foreign keys explicitly created by a user.

Syntax Syntax 1

ALTER INDEX index-name rename-spec

Syntax 2

ALTER [INDEX] FOREIGN KEY role-name rename-spec

Parameters rename-spec:
ON [owner.]table-name RENAME [AS | TO] new-name

Examples Example 1 Renames an index COL1_HG_OLD in the table jak.mytable to
COL1_HG_NEW:

ALTER INDEX COL1_HG_OLD ON jak.mytable
RENAME AS COL1_HG_NEW

Example 2 Renames a foreign key role name ky_dept_id in table dba.employee
to emp_dept_id:

ALTER INDEX FOREIGN KEY ky_dept_id
ON dba.employee
RENAME TO emp_dept_id

ALTER PROCEDURE statement

404 Sybase IQ

Usage The ALTER INDEX statement renames indexes and foreign key role names of
indexes and foreign keys that were explicitly created by a user. Only indexes
on base tables or global temporary tables can be renamed. You cannot rename
indexes created to enforce key constraints.

ON claus The ON clause specifies the name of the table that contains the
index or foreign key to rename.

RENAME [AS | TO] claus The RENAME clause specifies the new name of
the index or foreign key role.

Note Attempts to alter an index in a local temporary table return the error
“index not found.” Attempts to alter a nonuser-created index, such as a default
index (FP), return the error “Cannot alter index. Only indexes in base tables or
global temporary tables with an owner type of USER can be altered.”

Side Effects

Automatic commit. Clears the Results tab in the Results pane in Interactive
SQL. Closes all cursors for the current connection.

Standards • SQL92 Entry-level feature.

• Sybase Not supported by Adaptive Server Enterprise.

Permissions Must own the table, or have REFERENCES permissions on the table, or have
DBA authority.

See also ALTER TABLE statement on page 409

CREATE INDEX statement on page 473

CREATE TABLE statement on page 499

ALTER PROCEDURE statement
Description Replaces a procedure with a modified version. You must include the entire new

procedure in the ALTER PROCEDURE statement, and reassign user
permissions on the procedure.

Syntax ALTER PROCEDURE [owner.]procedure-name procedure-definition

Parameters procedure-definition:
CREATE PROCEDURE syntax following the name

CHAPTER 6 SQL Statements

Reference Manual 405

Usage The ALTER PROCEDURE statement is identical in syntax to the CREATE
PROCEDURE statement.

Existing permissions on the procedure are maintained and need not be
reassigned. If a DROP procedure and CREATE PROCEDURE were carried out,
execute permissions would have to be reassigned.

Side effects

Automatic commit is a side effect of this statement.

Standards • SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

Permissions Must be the owner of the procedure or a DBA. Automatic commit.

See also CREATE PROCEDURE statement on page 485

ALTER SERVER statement
Description Modifies the attributes of a remote server.

Syntax ALTER SERVER server-name
[CLASS 'server-class']
[USING 'connection-info']
[CAPABILITY 'cap-name' { ON | OFF }]

Parameters server-class:
{ASAJDBC | ASEJDBC
| ASAODBC | ASEODBC
| DB2ODBC | MSSODBC
| ORAODBC | ODBC }

connection-info:
{ machine-name:port-number [/dbname] | data-source-name }

cap-name:
the name of a server capability

Examples • Changes the server class of the Adaptive Server named ase_prod so its
connection to Sybase IQ is ODBC-based. The Data Source Name is
ase_prod.

ALTER SERVER ase_prod
CLASS 'ASEODBC'
USING 'ase_prod'

ALTER SERVER statement

406 Sybase IQ

• Changes a capability of server infodc:

ALTER SERVER infodc
CAPABILITY 'insert select' OFF

Usage Changes made by ALTER SERVER do not take effect until the next connection
to the remote server.

CLASS clause Use the CLASS clause to change the server class. For more
information on server classes, see Chapter 17, “Server Classes for Remote
Data Access” and Chapter 16, “Accessing Remote Data” in the Sybase IQ
System Administration Guide.

USING clause The USING clause changes the server’s connection
information. For more information about connection information, see
CREATE SERVER statement on page 494.

CAPABILITY clause The CAPABILITY clause turns a server capability ON or
OFF. Server capabilities are stored in the system table SYSCAPABILITY. The
names of these capabilities are stored in the system table
SYSCAPABILITYNAME. The SYSCAPABILITY table contains no entries for a
remote server until the first connection is made to that server. At the first
connection, Sybase IQ interrogates the server about its capabilities and then
populates SYSCAPABILITY. For subsequent connections, the server’s
capabilities are obtained from this table.

In general, you need not alter a server’s capabilities. It might be necessary to
alter capabilities of a generic server of class ODBC.

Side Effects

Automatic commit is a side effect of this statement.

Standards • SQL92 Entry-level feature.

• Sybase Supported by Open Client/Open Server.

Permissions Must have RESOURCE authority.

See also CREATE SERVER statement on page 494

DROP SERVER statement on page 538

Chapter 17, “Server Classes for Remote Data Access,” and Chapter 16,
“Accessing Remote Data,” in the Sybase IQ System Administration Guide

CHAPTER 6 SQL Statements

Reference Manual 407

ALTER SERVICE statement
Description Alters a Web service.

Syntax ALTER SERVICE service-name
[TYPE 'service-type-string']
[attributes]
[AS statement']

Parameters attributes:[AUTHORIZATION { ON | OFF }] [SECURE { ON | OFF }] [USER
user-name | NULL }] [URL [PATH] { PATH] {ON | OFF | ELEMENTS }] [
USING (SOAP-prefix | NULL }]

service-type-string: {‘RAW’ | ‘HTML’ | ‘XML’ | ‘SOAP’ | ’DISH’}

Examples To set up a Web server quickly, start a database server with the -xs switch, then
execute the following statements:

CREATE SERVICE tables TYPE 'HTML'

ALTER SERVICE tables
AUTHORIZATION OFF
USER DBA
AS SELECT * FROM SYS.SYSTABLE

After executing these statements, use any Web browser to open the URL http:/
/localhost/tables.

Usage The alter service statement causes the database server to act as a Web server.

service-name You cannot rename Web services.

service-type-string Identifies the type of the service. The type must be one of
the listed service types. There is no default value.

AUTHORIZATION clause Determines whether users must specify a user
name and password when connecting to the service. If authorization is OFF, the
AS clause is required and a single user must be identified by the USER clause.
All requests are run using that user’s account and permissions.

If authorization is ON, all users must provide a user name and password.
Optionally, you might limit the users that are permitted to use the service by
providing a user or group name using the USER clause. If the user name is
NULL, all known users can access the service.

The default value is ON. It is recommended that production systems be run
with authorization turned on and that you grant permission to use the service
by adding users to a group.

ALTER SERVICE statement

408 Sybase IQ

SECURE clause Indicates whether unsecure connections are accepted. ON
indicates that only HTTPS connections are to be accepted. Service requests
received on the HTTP port are automatically redirected to the HTTPS port. If
set to OFF, both HTTP and HTTPS connections are accepted. The default value
is OFF.

USER clause If authorization is disabled, this parameter becomes mandatory
and specifies the user id used to execute all service requests. If authorization is
enabled (the default), this optional clause identified the user or group permitted
access to the service. The default value is NULL, which grants access to all
users.

URL clause Determines whether URI paths are accepted and, if so, how they
are processed. OFF indicates that nothing must follow the service name in a
URI request. ON indicates that the remainder of the URI is interpreted as the
value of a variable named url. ELEMENTS indicates that the remainder of the
URI path is to be split at the slash characters into a list of up to 10 elements.
The values are assigned to variables named url plus a numeric suffix of
between 1 and 10; for example, the first three variable names are url1, url2, and
url3. If fewer than 10 values are supplied, the remaining variables are set to
NULL. If the service name ends with the character /, then URL must be set to
OFF. The default value is OFF.

USING clause This clause applies only to DISH services. The parameter
specifies a name prefix. Only SOAP services whose names begin with this
prefix are handled.

statement If the statement is NULL, the URI must specify the statement to be
executed. Otherwise, the specified SQL statement is the only one that can be
executed through the service. SOAP services must have statements; DISH
services must have none. The default value is NULL.

It is strongly recommended that all services run in production systems define a
statement. The statement can be NULL only if authorization is enabled.

RAW The result set is sent to the client without any further formatting. You
can produce formatted documents by generating the required tags explicitly
within your procedure.

HTML The result set of a statement or procedure is automatically formatted
into an HTML document that contains a table.

XML The result set is assumed to be in XML format. If it is not already so, it
is automatically converted to XML RAW format.

CHAPTER 6 SQL Statements

Reference Manual 409

SOAP The request must be a valid Simple Object Access Protocol, or SOAP,
request. The result set is automatically formatted as a SOAP response. For
more information about the SOAP standards, see www.w3.org/TR/SOAP at http:/
/www.w3.org/TR/SOAP.

DISH A Determine SOAP Handler, or DISH, service acts as a proxy for one
or more SOAP services. In use, it acts as a container that holds and provides
access to a number of SOAP services. A Web Services Description Language
(WSDL) file is automatically generated for each of the included SOAP
services. The included SOAP services are identified by a common prefix,
which must be specified in the USING clause.

Standards • SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise.

Permissions Must have DBA authority.

See also CREATE SERVICE statement on page 496

DROP SERVICE statement on page 539

“Using the Built-in Web Server” in the Adaptive Server Anywhere Database
Administration Guide

ALTER TABLE statement
Description Modifies a table definition.

Syntax ALTER TABLE [owner.]table-name
{ add-clause | modify-clause | drop-clause | rename-clause }

Parameters add-clause:
ADD column-definition [column-constraint]...

| ADD table-constraint

modify-clause:
MODIFY column-definition

| MODIFY column-name [IDENTITY | DEFAULT default-value]
[NOT] NULL

| MODIFY column-name [CONSTRAINT constraint-name] CHECK NULL
| MODIFY column-name CHECK (new-condition)
ALTER column-name column-modification

| ALTER CONSTRAINT constraint-name CHECK (new-condition)

http://www.w3.org/TR/SOAP
http://www.w3.org/TR/SOAP

ALTER TABLE statement

410 Sybase IQ

drop-clause:
{ DELETE | DROP } column-name

| { DELETE | DROP } CHECK
| { DELETE | DROP } CONSTRAINT constraint-name
| { DELETE | DROP } UNIQUE (column-name [, ...])
| { DELETE | DROP } PRIMARY KEY
| { DELETE | DROP } FOREIGN KEY role-name

rename-clause:
RENAME new-table-name
| RENAME column-name TO new-column-name
| RENAME constraint-name TO new-constraint-name

column-definition:
column-name data-type [NOT NULL]
[DEFAULT default-value | IDENTITY]

column-constraint:
[CONSTRAINT constraint-name] { UNIQUE
| PRIMARY KEY
| REFERENCES table-name [(column-name)] [actions]
| CHECK (condition)
| IQ UNIQUE (integer) }

default-value:
special-value
| string
| global variable
| [-] number
| (constant-expression)
| built-in-function (constant-expression)
| AUTOINCREMENT
| NULL
| TIMESTAMP
| LAST USER
| USER

special-value:
CURRENT { DATABASE | DATE | REMOTE USER | TIME
 | TIMESTAMP | USER | PUBLISHER }

CHAPTER 6 SQL Statements

Reference Manual 411

table-constraint:
{ UNIQUE (column-name [, ...])
| PRIMARY KEY (column-name [, ...])
| foreign-key-constraint
| CHECK (condition)}

foreign-key-constraint:
FOREIGN KEY [role-name] [(column-name [, ...])]
... REFERENCES table-name [(column-name [, ...])]
... [actions] [

actions:
[ON {UPDATE | DELETE} action]

action:
{ RESTRICT }

Examples • Adds a new column to the employees table showing which office they
work in:

ALTER TABLE employee
ADD office CHAR(20)

• Drops the office column from the employees table:

ALTER TABLE employee
DELETE office

• Adds a column to the customer table assigning each customer a sales
contact:

ALTER TABLE customer
ADD sales_contact INTEGER
REFERENCES employee (emp_id)

• Adds a new column cust_num to the customer table and assigns a default
value of 88:

ALTER TABLE customer
ADD cust_num INTEGER DEFAULT 88

Usage The ALTER TABLE statement changes table attributes (column definitions and
constraints) in a table that was previously created. The syntax allows a list of
alter clauses; however, only one table constraint or column constraint can be
added, modified, or deleted in each ALTER TABLE statement.

Note You cannot alter local temporary tables, but you can alter global
temporary tables when they are in use by only one connection.

ALTER TABLE statement

412 Sybase IQ

Sybase IQ enforces REFERENCES and CHECK constraints. Table and/or
column check constraints added in an ALTER TABLE statement are not
evaluated as part of that alter table operation. For details about CHECK
constraints, see CREATE TABLE statement on page 499.

If SELECT * is used in a view definition and you alter a table referenced by the
SELECT *, then you must run ALTER VIEW <viewname> RECOMPILE to
ensure that the view definition is correct and to prevent unexpected results
when querying the view.

ADD column-definition [column-constraint] Add a new column to the
table. The table must be empty to specify NOT NULL. The table might contain
data when you add an IDENTITY or DEFAULT AUTOINCREMENT column. If the
column has a default IDENTITY value, all rows of the new column are
populated with sequential values. You can also add a foreign key constraint as
a column constraint for a single column key. The value of the IDENTITY/
DEFAULT AUTOINCREMENT column uniquely identifies every row in a table.
The IDENTITY/DEFAULT AUTOINCREMENT column stores sequential numbers
that are automatically generated during inserts and updates. DEFAULT
AUTOINCREMENT columns are also known as IDENTITY columns. When
using IDENTITY/DEFAULT AUTOINCREMENT, the column must be one of the
integer data types, or an exact numeric type, with scale 0. See CREATE
TABLE statement on page 499 for more about column constraints and
IDENTITY/DEFAULT AUTOINCREMENT columns.

Note You cannot add foreign key constraints to an unenforced primary key
created with Sybase IQ version 12.4.3 or earlier.

ADD table-constraint Add a constraint to the table. You can also add a
foreign key constraint as a table constraint for a single-column or multicolumn
key. See CREATE TABLE statement on page 499 for a full explanation of
table constraints.

If PRIMARY KEY is specified, the table must not already have a primary key
created by the CREATE TABLE statement or another ALTER TABLE statement.

Note You cannot MODIFY a table or column constraint. To change a constraint,
DELETE the old constraint and ADD the new constraint.

MODIFY column-name [NOT] NULL Change the NOT NULL constraint on
the column to allow or disallow NULL values in the column.

CHAPTER 6 SQL Statements

Reference Manual 413

MODIFY column-name [DEFAULT default-value | IDENTITY] The value
of the IDENTITY or DEFAULT AUTOINCREMENT column uniquely identifies
every row in a table. The IDENTITY/DEFAULT AUTOINCREMENT column
stores sequential numbers that are automatically generated during inserts and
updates. DEFAULT AUTOINCREMENT columns are also known as IDENTITY
columns. When you use IDENTITY/DEFAULT AUTOINCREMENT, the column
must be one of the integer data types, or an exact numeric type, with scale 0.
See CREATE TABLE statement on page 499 for a full explanation of column
constraints and IDENTITY/DEFAULT AUTOINCREMENT columns.

ALTER TABLE also supports the modification of column default values other
than IDENTITY/DEFAULT AUTOINCREMENT. When modifying a column of a
table, you can specify a default value for the column using the DEFAULT
keyword. If a DEFAULT value is specified for a column, this DEFAULT value
is used as the value of the column in any INSERT (or LOAD) statement that does
not specify a value for the column.

For detailed information on the use of column DEFAULT values, see “Using
column defaults” in Chapter 9, “Ensuring Data Integrity” in the Sybase IQ
System Administration Guide.

MODIFY column-name CHECK NULL Delete the check constraint for the
column.

MODIFY column-name CHECK (new-condition) Replace the existing
CHECK condition for the column with the one specified.

ALTER column-name column-modification Change the definition of a
column. The permitted modifications are as follows:

• SET DEFAULT default-value Change the default value of an existing
column in a table. You can also use the MODIFY clause for this task, but
ALTER is SQL92 compliant, and MODIFY is not. Modifying a default value
does not change any existing values in the table.

• DROP DEFAULT Remove the default value of an existing column in a
table. You can also use the MODIFY clause for this task, but ALTER is
SQL92 compliant, and MODIFY is not. Dropping a default does not change
any existing values in the table.

• ADD Add a named constraint or a CHECK condition to the column. The
new constraint or condition applies only to operations on the table after its
definition. The existing values in the table are not validated to confirm that
they satisfy the new constraint or condition.

ALTER TABLE statement

414 Sybase IQ

• CONSTRAINT column-constraint-name The optional column
constraint name lets you modify or drop individual constraints at a later
time, rather than having to modify the entire column constraint.

• SET COMPUTE (expression) Change the expression associated with a
computed column. The values in the column are recalculated when the
statement is executed, and the statement fails if the new expression is
invalid.

• DROP COMPUTE Change a column from being a computed column to
being a noncomputed column. This statement does not change any
existing values in the table.

DELETE column-name Delete the column from the table. If the column is
contained in any multicolumn index, uniqueness constraint, foreign key, or
primary key, then the index, constraint, or key must be deleted before the
column can be deleted. This does not delete CHECK constraints that refer to
the column. An IDENTITY/DEFAULT AUTOINCREMENT column can only
be deleted if IDENTITY_INSERT is turned off and the table is not a local
temporary table.

DELETE CHECK Delete all check constraints for the table. This includes
both table check constraints and column check constraints.

DELETE UNIQUE (column-name,...) Delete a uniqueness constraint for this
table. Any foreign keys referencing this uniqueness constraint (rather than the
primary key) are also deleted. Reports an error if there are associated foreign-
key constraints. Use ALTER TABLE to delete all foreign keys that reference the
primary key before you delete the primary key constraint.

DELETE PRIMARY KEY Delete the primary key constraint for this table. All
foreign keys referencing the primary key for this table are also deleted. Reports
an error if there are associated foreign key constraints. If the primary key is
unenforced, DELETE returns an error if associated unenforced foreign key
constraints exist.

DELETE FOREIGN KEY role-name Delete the foreign key constraint for
this table with the given role name. Retains the implicitly created nonunique
HG index for the foreign key constraint. Users can explicitly remove the HG
index with the DROP INDEX statement.

RENAME new-table-name Change the name of the table to the new-table-
name. Any applications using the old table name must be modified. Also, any
foreign keys that were automatically assigned the same name as the old table
name do not change names.

CHAPTER 6 SQL Statements

Reference Manual 415

RENAME column-name TO new-column-name Change the name of the
column to the new-column-name. Any applications using the old column name
must be modified.

RENAME constraint-name TO new-constraint-name Change the name of
the constraint to the new-constraint-name. Any applications using the old
constraint name must be modified.

ALTER TABLE is prevented whenever the statement affects a table that is
currently being used by another connection. ALTER TABLE can be time
consuming, and the server does not process requests referencing the same table
while the statement is being processed.

Side effects

• Automatic commit. The MODIFY and DELETE options close all cursors for
the current connection. The DBISQL data window is also cleared.

• A checkpoint is carried out at the beginning of the ALTER TABLE
operation.

• Once you alter a column or table, any stored procedures, views or other
items that refer to the altered column no longer work.

Standards • SQL92 Intermediate-level feature. MODIFY clauses are not SQL92
compliant.

• Sybase Some clauses are supported by Adaptive Server Enterprise.

Permissions Must be the owner of the table or have DBA authority or ALTER permission on
the table. Requires exclusive access to the table.

See also CREATE TABLE statement on page 499

DROP statement on page 533

“IDENTITY_INSERT option” on page 85

Chapter 4, “SQL Data Types”

ALTER VIEW statement

416 Sybase IQ

ALTER VIEW statement
Description Replaces a view definition with a modified version. You must include the entire

new view definition in the ALTER VIEW statement.

Syntax ALTER VIEW
... [owner.]view-name [(column-name [, ...])]
... AS select-without-order-by
... [WITH CHECK OPTION]

Usage The ALTER VIEW statement is identical in syntax to the CREATE VIEW
statement. ALTER VIEW replaces the entire contents of CREATE VIEW with the
contents of ALTER VIEW. Existing permissions on the view are maintained, and
need not be reassigned. If a DROP VIEW followed by CREATE VIEW is used,
instead of ALTER VIEW, permissions on the view must be reassigned.

Note If SELECT * is used in a view definition and a table referenced by the
SELECT * is altered, then you must run ALTER VIEW <viewname>
RECOMPILE to ensure that the view definition is correct and to prevent
unexpected results when the view is queried.

Side Effects

Automatic commit.

Standards • SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

Permissions Must be owner of the view or have DBA authority.

See also CREATE VIEW statement on page 512

DROP statement on page 533

BACKUP statement
Description Backs up a Sybase IQ database on one or more archive devices.

Syntax BACKUP DATABASE
... [CRC { ON | OFF }]
... [ATTENDED { ON | OFF }]
... [BLOCK FACTOR integer]
... [{ FULL | INCREMENTAL | INCREMENTAL SINCE FULL }]
... [{ VIRTUAL DECOUPLED |

VIRTUAL ENCAPSULATED ‘shell_command’ }]

CHAPTER 6 SQL Statements

Reference Manual 417

...TO archive_device [SIZE integer] [STACKER integer] ...

... [WITH COMMENT string]

Examples The following UNIX example backs up the asiqdemo database onto tape
devices /dev/rmt/0 and /dev/rmt/2 on a Sun Solaris platform. On Solaris, the
letter n after the device name specifies the “no rewind on close” feature.
Always specify this feature with BACKUP , using the naming convention
appropriate for your UNIX platform (Windows does not support this feature).
This example backs up all changes to the database since the last full backup:

BACKUP DATABASE
INCREMENTAL SINCE FULL
TO '/dev/rmt/0n' SIZE 10000000
TO '/dev/rmt/2n' SIZE 15000000

Note Size units are kilobytes (KB). In this example, the specified sizes are
10GB and 15GB.

Usage The IQ database might be open for use by many readers and writers when you
execute a BACKUP command. It acts as a read-only user and relies on the Table
Level Versioning feature of Sybase IQ to achieve a consistent set of data.
BACKUP implicitly issues a CHECKPOINT prior to commencing, and then it
backs up the catalog tables that describe the database (and any other tables you
have added to the Catalog Store). During this first phase, Sybase IQ does not
allow any metadata changes to the database (such as adding or dropping
columns and tables). Correspondingly, a later RESTORE of the backup restores
only up to that initial CHECKPOINT.

The BACKUP command lets you specify full or incremental backups. You can
choose two kinds of incremental backups. INCREMENTAL backs up only those
blocks that have changed and committed since the last BACKUP of any type
(incremental or full). INCREMENTAL SINCE FULL backs up all of the blocks
that have changed since the last full backup. The first type of incremental
backup can be smaller and faster to do for BACKUP commands, but slower and
more complicated for RESTORE commands. The opposite is true for the other
type of incremental backup. The reason is that the first type generally results in
N sets of incremental backup archives for each full backup archive. If a restore
is required, the DBA must RESTORE the full backup archive first, and then
each incremental archive in the proper order. (Sybase IQ keeps track of which
ones are needed.) The second type requires the DBA to restore only the full
backup archive and the last incremental archive.

Incremental virtual backup is supported using the VIRTUAL DECOUPLED and
VIRTUAL ENCAPSULATED parameters of the BACKUP statement.

BACKUP statement

418 Sybase IQ

CRC clause Activates 32-bit cyclical redundancy checking on a per block
basis (in addition to whatever error detection is available in the hardware).
When you specify this clause, the numbers computed on backup are verified
during any subsequent RESTORE operation, affecting performance of both
commands. The default is ON.

ATTENDED clause Applies only when backing up to a tape device. If
ATTENDED ON (the default) is used, a message is sent to the application that
issued the BACKUP statement if the tape drive requires intervention. This might
happen, for example, when a new tape is required. If you specify OFF,
BACKUP does not prompt for new tapes. If additional tapes are needed and
OFF has been specified, Sybase IQ gives an error and aborts the BACKUP
command. However, a short delay is included to account for the time an
automatic stacker drive requires to switch tapes.

BLOCK FACTOR clause Specifies the number of blocks to write at one time.
Its value must be greater than 0, or Sybase IQ generates an error message. Its
default is 25 for UNIX systems and 15 for Windows systems (to accommodate
the smaller fixed tape block sizes). This clause effectively controls the amount
of memory used for buffers. The actual amount of memory is this value times
the block size times the number of threads used to extract data from the
database. Sybase recommends setting BLOCK FACTOR to at least 25.

FULL clause Specifies a full backup; all blocks in use in the database are
saved to the archive devices. This is the default action.

INCREMENTAL clause Specifies an incremental backup; all blocks changed
since the last backup of any kind are saved to the archive devices.

INCREMENTAL SINCE FULL clause Specifies an incremental backup; all
blocks changed since the last full backup are saved to the archive devices.

VIRTUAL DECOUPLED clause Specifies a decoupled virtual backup. For
the backup to be complete, you must copy the IQ dbspaces after the decoupled
virtual backup finishes, and then perform a nonvirtual incremental backup.

VIRTUAL ENCAPSULATED clause Specifies an encapsulated virtual
backup. The ‘shell-command’ argument can be a string or variable containing
a string that is executed as part of the encapsulated virtual backup. The shell
commands execute a system-level backup of the IQ Store as part of the backup
operation.

CHAPTER 6 SQL Statements

Reference Manual 419

TO clause Specifies the name of the archive_device to be used for backup,
delimited with single quotation marks. The archive_device is a file name or
tape drive device name for the archive file. If you are using multiple archive
devices, specify them using separate TO clauses. (A comma-separated list is
not allowed.) Archive devices must be distinct. The number of TO clauses
determines the amount of parallelism Sybase IQ attempts with regard to output
devices.

BACKUP overwrites existing archive files unless you move the old files or use
a different archive_device name or path.

The backup API DLL implementation lets you specify arguments to pass to
the DLL when opening an archive device. For third-party implementations, the
archive_device string has the following format:

'DLLidentifier::vendor_specific_information'

A specific example:

'spsc::workorder=12;volname=ASD002'

The archive_device string length can be up to 1023 bytes. The DLLidentifier
portion must be 1 to 30 bytes in length and can contain only alphanumeric and
underscore characters. The vendor_specific_information portion of the string
is passed to the third-party implementation without checking its contents. Do
not specify the SIZE or STACKER clauses of the BACKUP command when
using third-party implementations, as that information should be encoded in
the vendor_specific_information portion of the string.

Note Only certain third-party products are certified with Sybase IQ using this
syntax. See the Sybase IQ Release Bulletin for additional usage instructions or
restrictions. Before using any third-party product to back up your Sybase IQ
database in this way, make sure it is certified. See the Sybase IQ Release
Bulletin, or see the Sybase Certification Reports for the Sybase IQ product in
Technical Documents at http://www.sybase.com/support/techdocs/.

For the Sybase implementation of the backup API, you need to specify only the
tape device name or file name. For disk devices, you should also specify the
SIZE value, or Sybase IQ assumes that each created disk file is no larger than
2GB on UNIX, or 1.5GB on Windows. An example of an archive device for
the Sybase API DLL that specifies a tape device for certain UNIX systems is:

'/dev/rmt/0'

http://www.sybase.com/support/techdocs

BACKUP statement

420 Sybase IQ

SIZE clause Specifies maximum tape or file capacity per output device
(some platforms do not reliably detect end-of-tape markers). No volume used
on the corresponding device should be shorter than this value. This value
applies to both tape and disk files but not third-party devices. Units are
kilobytes (KB) so, for example, for a 3.5GB tape, you specify 3500000.
Defaults are by platform and medium.

The SIZE parameter is per output device. SIZE does not limit the number of
bytes per device; SIZE limits the file size. Each output device can have a
different SIZE parameter. During backup, when the amount of information
written to a given device reaches the value specified by the SIZE parameter,
BACKUP does one of the following:

• If the device is a file system device, BACKUP closes the current file and
creates another file of the same name, with the next ascending number
appended to the file name, for example, bkup1.dat1.1, bkup1.dat1.2,
bkup1.dat1.3.

• If the device is a tape unit, BACKUP closes the current tape and you need
to mount another tape.

It is your responsibility to mount additional tapes if needed, or to ensure that
the disk has enough space to accommodate the backup.

When multiple devices are specified, BACKUP distributes the information
across all devices.

Table 6-1: BACKUP default sizes

STACKER clause pecifies that the device is automatically loaded, and
specifies the number of tapes with which it is loaded. This value is not the tape
position in the stacker, which could be zero. When ATTENDED is OFF and
STACKER is ON, Sybase IQ waits for a predetermined amount of time to allow
the next tape to be autoloaded. The number of tapes supplied along with the
SIZE clause are used to determine whether there is enough space to store the
backed-up data. Do not use this clause with third-party media management
devices.

Platform Default SIZE for tape Default SIZE for disk

UNIX none 2GB

Windows 1.5GB

SIZE must be a multiple of 64. Other
values are rounded down to a multiple
of 64.

1.5GB

CHAPTER 6 SQL Statements

Reference Manual 421

WITH COMMENT clause Specifies an optional comment recorded in the
archive file and in the backup history file. Maximum length is 32KB. If you do
not specify a value, a NULL string is stored.

Other issues for BACKUP include:

• BACKUP does not support raw devices as archival devices.

• Windows systems support only fixed-length I/O operations to tape devices
(for more information about this limitation, see your Sybase IQ
Installation and Configuration Guide). Although Windows supports tape
partitioning, Sybase IQ does not use it, so do not use another application
to format tapes for BACKUP. Windows has a simpler naming strategy for
its tape devices, where the first tape device is \\.\tape0, the second is
\\.\tape1, and so on.

 Warning! For backup (and for most other situations) Sybase IQ treats the
leading backslash in a string as an escape character, when the backslash
precedes an n, an x, or another backslash. For this reason, when you
specify backup tape devices, you must double each backslash required by
the Windows naming convention. For example, indicate the first Windows
tape device you are backing up to as '\\\\.\\tape0', the second as '\\\\.\\tape1',
and so on. If you omit the extra backslashes, or otherwise misspell a tape
device name, and write a name that is not a valid tape device on your
system, Sybase IQ interprets this name as a disk file name.

• Sybase IQ does not rewind tapes before using them. You must ensure the
tapes used for BACKUP or RESTORE are at the correct starting point
before putting them in the tape device. Sybase IQ does rewind tapes after
using them on rewinding devices.

• During BACKUP and RESTORE operations, if Sybase IQ cannot open the
archive device (for example, when it needs the media loaded) and the
ATTENDED parameter is ON, it waits for ten seconds and tries again. It
continues these attempts indefinitely until either it is successful or the
operation is terminated with a Ctrl+C.

• If you enter Ctrl+C, BACKUP fails and returns the database to the state it
was in before the backup started.

• If disk striping is used, such as on a RAID device, the striped disks are
treated as a single device.

• If you are recovering an Adaptive Server Anywhere database, see
“Backup and Data Recovery” in Adaptive Server Anywhere Database
Administration Guide for additional options.

BEGIN... END statement

422 Sybase IQ

Side effects

Automatic commit.

Standards • SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

Permissions Must be the owner of the database or have DBA authority.

See also RESTORE statement on page 621

Chapter 14, “Data Backup, Recovery, and Archiving,” in Sybase IQ System
Administration Guide

BEGIN... END statement
Description Groups SQL statements together.

Syntax [statement-label :]
... BEGIN [[NOT] ATOMIC]
... [local-declaration ; ...]
... statement-list
... [EXCEPTION [exception-case ...]]
... END [statement-label]

Parameters local-declaration:
{ variable-declaration
| cursor-declaration
| exception-declaration
| temporary-table-declaration }

variable-declaration:
DECLARE variable-name data-type

exception-declaration:
DECLARE exception-name EXCEPTION
FOR
SQLSTATE [VALUE] string

exception-case:
WHEN exception-name [, ...] THEN statement-list
| WHEN OTHERS THEN statement-list

Examples The body of a procedure is a compound statement:

CREATE PROCEDURE TopCustomer (OUT TopCompany CHAR(35),
OUT TopValue INT)

CHAPTER 6 SQL Statements

Reference Manual 423

BEGIN
DECLARE err_notfound EXCEPTION FOR

SQLSTATE '02000' ;
DECLARE curThisCust CURSOR FOR

SELECT company_name, CAST(
sum(sales_order_items.quantity *
product.unit_price) AS INTEGER) VALUE

FROM customer
LEFT OUTER JOIN sales_order
LEFT OUTER JOIN sales_order_items
LEFT OUTER JOIN product

GROUP BY company_name ;
DECLARE ThisValue INT ;
DECLARE ThisCompany CHAR(35) ;
SET TopValue = 0 ;
OPEN curThisCust ;

CustomerLoop:
LOOP

FETCH NEXT curThisCust
INTO ThisCompany, ThisValue ;

IF SQLSTATE = err_notfound THEN
LEAVE CustomerLoop ;

END IF ;
IF ThisValue > TopValue THEN

SET TopValue = ThisValue ;
SET TopCompany = ThisCompany ;

END IF ;
END LOOP CustomerLoop ;

CLOSE curThisCust ;
END

Usage The body of a procedure or trigger is a compound statement. Compound
statements can also be used in control statements within a procedure or trigger.

BEGIN... END statement

424 Sybase IQ

A compound statement allows one or more SQL statements to be grouped
together and treated as a unit. A compound statement starts with BEGIN and
ends with END. Immediately following BEGIN, a compound statement can
have local declarations that exist only within the compound statement. A
compound statement can have a local declaration for a variable, a cursor, a
temporary table, or an exception. Local declarations can be referenced by any
statement in that compound statement, or in any compound statement nested
within it. Local declarations are not visible to other procedures that are called
from within a compound statement.

If the ending statement-label is specified, it must match the beginning
statement-label. The LEAVE statement can be used to resume execution at the
first statement after the compound statement. The compound statement that is
the body of a procedure has an implicit label that is the same as the name of the
procedure or trigger.

For a complete description of compound statements and exception handling,
see Chapter 8, “Using Procedures and Batches” in the Sybase IQ System
Administration Guide.

Side effects

None.

Standards • SQL92 Persistent Stored Module feature.

• Sybase Supported by Adaptive Server Enterprise. This does not mean
that all statements inside a compound statement are supported.

BEGIN and END keywords are not required in Transact-SQL.

BEGIN and END are used in Transact-SQL to group a set of statements into
a single compound statement, so that control statements such as IF ...
ELSE, which affect the performance of only a single SQL statement, can
affect the performance of the whole group. The ATOMIC keyword is not
supported by Adaptive Server Enterprise.

In Transact-SQL. DECLARE statements need not immediately follow
BEGIN, and the cursor or variable that is declared exists for the duration of
the compound statement. You should declare variables at the beginning of
the compound statement for compatibility.

Permissions None

See also DECLARE LOCAL TEMPORARY TABLE statement on page 523

DECLARE CURSOR statement [ESQL] [SP] on page 516

LEAVE statement on page 578

CHAPTER 6 SQL Statements

Reference Manual 425

RESIGNAL statement on page 620

SIGNAL statement on page 652

BEGIN PARALLEL IQ ... END PARALLEL IQ statement
Description Groups CREATE INDEX statements together for execution at the same time.

Syntax ... BEGIN PARALLEL IQ
 statement-list
... END PARALLEL IQ

Parameters statement-list
a list of CREATE INDEX statements

Examples The following statement executes atomically. If one command fails, the entire
statement rolls back:

BEGIN PARALLEL IQ
CREATE HG INDEX c1_HG on table1 (col1);
CREATE HNG INDEX c12_HNG on table1 (col12);
CREATE LF INDEX c1_LF on table1 (col1);
CREATE HNG INDEX c2_HNG on table1 (col2);

END PARALLEL IQ

Usage The BEGIN PARALLEL IQ ... END PARALLEL IQ statement lets you execute a
group of CREATE INDEX statements as though they are a single DDL
statement, creating indexes on multiple IQ tables at the same time. While this
statement is executing, you and other users cannot issue other DDL statements.

You can specify multiple tables within the statement list. Granularity is at the
column level. In other words, multiple indexes on the same column are
executed serially.

Side effects

Automatic commit.

Standards • SQL92 Not supported.

• Sybase Not supported by Adaptive Server Enterprise. For support of
statements inside the statement, see CREATE INDEX statement on page
473.

Permissions None

See also CREATE INDEX statement on page 473

BEGIN TRANSACTION statement

426 Sybase IQ

BEGIN TRANSACTION statement
Description Starts a user-defined transaction.

Syntax BEGIN TRAN[SACTION] [transaction-name]

Examples Example 1 Illustrates the effect of a BEGIN TRANSACTION statement on the
snapshot version of a table:

In the first case, assume that table t1 contains no data. Two connections, Conn1
and Conn2, are made at the same time. Table 6-2 is a timeline of the commands
executed within the two connections:

Table 6-2: first case command timeline

In the first case, user Conn2 issues a SELECT statement after user Conn1 issues
a COMMIT. Since the SELECT of Conn2 is the first command executed
following the connect, a transaction begins at this time and a snapshot is taken
of table t1 after t1 contains data. User Conn2 can see the updated table.

In the second case, assume again that table t1 contains no data. Two
connections, Conn1 and Conn2, are made at the same time. The commands
executed by the two users are in the following timeline:

Conn1 Conn2

CONNECT CONNECT

INSERT t1 VALUES(1)
(an implicit begin transaction)

…

COMMIT …

… SELECT * FROM t1
(an implicit begin transaction)

Data returned from table t1: 1

CHAPTER 6 SQL Statements

Reference Manual 427

Table 6-3: second command timeline

In this case, user Conn2 issues a BEGIN TRANSACTION statement after
connecting and Sybase IQ takes a snapshot of table t1 before user Conn1 inserts
any data. Even though Conn2 issues a SELECT after Conn1 has committed the
inserted data, Conn2 still has a snapshot of t1 before the data was inserted. In
this case, Conn2 cannot see the updated table and the SELECT returns no data.
Until the current transaction of user Conn2 ends, the image of table t1 remains
unchanged to user Conn2.

Example 2 The following batch reports successive values of @@trancount as
0, 1, 2, 1, 0. The values are printed on the server window:

PRINT @@trancount
BEGIN TRANSACTION
PRINT @@trancount
BEGIN TRANSACTION
PRINT @@trancount
COMMIT TRANSACTION
PRINT @@trancount
COMMIT TRANSACTION
PRINT @@trancount

See “Usage,” below, for more information about the @@trancount global
variable.

Usage The optional parameter transaction-name is the name assigned to this
transaction. It must be a valid identifier. Use transaction names only on the
outermost pair of nested BEGIN/COMMIT or BEGIN/ROLLBACK statements.

BEGIN TRANSACTION creates a transaction for the current connection, if the
connection does not currently have a transaction. When a transaction starts, it
selects the snapshot version that is used until the next commit or rollback.

Conn1 Conn2

CONNECT CONNECT

… BEGIN TRANSACTION

INSERT t1 VALUES(1)
(an implicit begin transaction)

…

COMMIT …

… SELECT * FROM t1

No data returned from table t1

BEGIN TRANSACTION statement

428 Sybase IQ

A transaction automatically starts at the start of the first command following a
connect, commit, or rollback, if there is no explicit BEGIN TRANSACTION.

When executed inside a transaction, BEGIN TRANSACTION increases the
nesting level of transactions by one. The nesting level is decreased by a
COMMIT statement. When transactions are nested, only the outermost COMMIT
makes the changes to the database permanent.

Chained and unchained modes

Adaptive Server Enterprise and Sybase IQ have two transaction modes.

The default Adaptive Server Enterprise transaction mode, called unchained
mode, commits each statement individually, unless an explicit BEGIN
TRANSACTION statement is executed to start a transaction. In contrast, the
SQL92-compatible chained mode commits a transaction only when an
explicit COMMIT is executed, or when a statement that carries out an
autocommit (such as data definition statements) is executed.

You can control the mode by setting the CHAINED database option. The default
setting for ODBC and Embedded SQL connections in Sybase IQ is ON, in
which case Sybase IQ runs in chained mode. (ODBC users should also check
the AutoCommit ODBC setting.) The default for TDS connections is OFF.

You cannot alter the CHAINED option within a transaction.

 Warning! When calling a stored procedure, ensure that it operates correctly
under the required transaction mode.

For more information about the CHAINED option and the chained mode, see
“CHAINED option [TSQL]” on page 51.

The current nesting level is held in the global variable @@trancount. The
@@trancount variable has a value of zero before a BEGIN TRANSACTION
statement is executed, and only a COMMIT executed when @@trancount is
equal to one makes changes to the database permanent.

A ROLLBACK statement without a transaction or savepoint name always rolls
back statements to the outermost BEGIN TRANSACTION (explicit or implicit)
statement, and cancels the entire transaction.

@@trancount values in Adaptive Server Enterprise and IQ

Do not rely on the value of @@trancount for more than keeping track of the
number of explicit BEGIN TRANSACTION statements that have been issued.

CHAPTER 6 SQL Statements

Reference Manual 429

When Adaptive Server Enterprise starts a transaction implicitly, @@trancount
is set to 1. Sybase IQ does not set the @@trancount value to 1 when a
transaction is started implicitly. Consequently, the IQ @@trancount variable
has a value of zero before any BEGIN TRANSACTION statement (even though
there is a current transaction), while in Adaptive Server Enterprise (in chained
mode) @@trancount has a value of 1.

For transactions starting with a BEGIN TRANSACTION statement,
@@trancount has a value of 1 in both Sybase IQ and Adaptive Server
Enterprise after the BEGIN TRANSACTION statement. If a transaction is started
implicitly with a different statement, and a BEGIN TRANSACTION statement is
then executed, @@trancount has a value of 2 in both Sybase IQ and Adaptive
Server Enterprise after the BEGIN TRANSACTION statement.

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase Supported by Adaptive Server Enterprise.

Permissions None.

See also “ISOLATION_LEVEL option” on page 93

COMMIT statement on page 436

ROLLBACK statement on page 630

SAVEPOINT statement on page 632

CALL statement
Description Invokes a procedure.

Syntax Syntax 1

[variable =] CALL procedure-name ([expression] [, ...])

Syntax 2

[variable =] CALL procedure-name ([parameter-name = expression] [,
...])

Examples • This example calls the sp_customer_list procedure. This procedure has no
parameters, and returns a result set:

CALL sp_customer_list()

CALL statement

430 Sybase IQ

• This DBISQL example creates a procedure to return the number of orders
placed by the customer whose ID is supplied, creates a variable to hold the
result, calls the procedure, and displays the result:

CREATE PROCEDURE OrderCount (IN customer_ID INT, OUT
Orders INT)
BEGIN
SELECT COUNT("DBA".sales_order.id)
INTO Orders
FROM "DBA".customer
KEY LEFT OUTER JOIN "DBA".sales_order
WHERE "DBA".customer.id = customer_ID ;
END
go
-- Create a variable to hold the result
CREATE VARIABLE Orders INT
go

-- Call the procedure, FOR customer 101
-- -----------------------------
CALL OrderCount (101, Orders)
go

-- Display the result
SELECT Orders FROM DUMMY
go

Usage CALL invokes a procedure that has been previously created with a CREATE
PROCEDURE statement. When the procedure completes, any INOUT or OUT
parameter values are copied back.

You can specify the argument list by position or by using keyword format. By
position, arguments match up with the corresponding parameter in the
parameter list for the procedure. By keyword, arguments match the named
parameters.

Procedure arguments can be assigned default values in the CREATE
PROCEDURE statement, and missing parameters are assigned the default
value, or, if no default is set, NULL.

Inside a procedure, CALL can be used in a DECLARE statement when the
procedure returns result sets (see Chapter 8, “Using Procedures and Batches”
in the Sybase IQ System Administration Guide).

Procedures can return an integer value (as a status indicator, say) using the
RETURN statement. You can save this return value in a variable using the
equality sign as an assignment operator:

CHAPTER 6 SQL Statements

Reference Manual 431

CREATE VARIABLE returnval INT ;
returnval = CALL proc_integer (arg1 = val1, ...)

Side effects

None.

Standards • SQL92 Persistent Stored Module feature.

• Sybase Not supported by Adaptive Server Enterprise. For an alternative
that is supported, see EXECUTE statement [ESQL] on page 541.

Permissions Must be the owner of the procedure, have EXECUTE permission for the
procedure, or have DBA authority.

See also CREATE PROCEDURE statement on page 485

GRANT statement on page 559

CASE statement
Description Selects execution path based on multiple cases.

Syntax CASE value-expression
... WHEN [constant | NULL] THEN statement-list ...
... [WHEN [constant | NULL] THEN statement-list] ...
... ELSE statement-list
... END CASE

Examples This procedure using a CASE statement classifies the products listed in the
product table of the sample database into one of shirt, hat, shorts, or unknown:

CREATE PROCEDURE ProductType (IN product_id INT, OUT
type CHAR(10))

BEGIN
DECLARE prod_name CHAR(20) ;
SELECT name INTO prod_name FROM "DBA"."product"
WHERE id = product_id;
CASE prod_name
WHEN 'Tee Shirt' THEN

SET type = 'Shirt'
WHEN 'Sweatshirt' THEN

SET type = 'Shirt'
WHEN 'Baseball Cap' THEN

SET type = 'Hat'
WHEN 'Visor' THEN

SET type = 'Hat'

CASE statement

432 Sybase IQ

WHEN 'Shorts' THEN
SET type = 'Shorts'

ELSE
SET type = 'UNKNOWN'

END CASE ;
END

Usage The CASE statement is a control statement that lets you choose a list of SQL
statements to execute based on the value of an expression. If a WHEN clause
exists for the value of value-expression, the statement-list in the WHEN clause
is executed. If no appropriate WHEN clause exists, and an ELSE clause exists,
the statement-list in the ELSE clause is executed. Execution resumes at the first
statement after the END CASE.

Note The ANSI standard allows two forms of CASE statements. Although
Sybase IQ allows both forms, when CASE is in the predicate, for best
performance you must use the form shown here.

If you require the other form (also called ANSI syntax) for compatibility with
Adaptive Server Anywhere, see CASE statement Syntax 2 in Adaptive Server
Anywhere SQL Reference.

CASE statement is different from CASE expression
Do not confuse the syntax of the CASE statement with that of the CASE
expression.

For information on the CASE expression, see “Expressions” on page 179.

Side effects

None.

Standards • SQL92 Persistent Stored Module feature.

• Sybase Not supported by Adaptive Server Enterprise.

Permissions None.

See also BEGIN... END statement on page 422

CHAPTER 6 SQL Statements

Reference Manual 433

CHECKPOINT statement
Description Checkpoints the database.

Syntax CHECKPOINT

Usage CHECKPOINT forces the database server to execute a checkpoint. Checkpoints
are also performed automatically by the database server according to an
internal algorithm. Applications do not normally need to issue CHECKPOINT.
For a full description of checkpoints, see Chapter 14, “Data Backup, Recovery,
and Archiving” in the Sybase IQ System Administration Guide.

Side effects

None.

Standards • SQL92 Vendor extension

• Sybase Supported by Adaptive Server Enterprise.

Permissions Must have DBA authority to checkpoint the network database server. No
permissions are required to checkpoint the personal database server.

CLEAR statement [DBISQL]
Description Clears the Interactive SQL (DBISQL) data window.

Syntax CLEAR

Side Effects

Closes the cursor associated with the data being cleared.

Usage The CLEAR statement is used to clear the DBISQL main window.

Side effects

Closes the cursor associated with the data being cleared.

Standards • SQL92 Vendor extension.

• Sybase Not applicable.

Permissions None.

See also EXIT statement [DBISQL] on page 546

CLOSE statement [ESQL] [SP]

434 Sybase IQ

CLOSE statement [ESQL] [SP]
Description Closes a cursor.

Syntax CLOSE cursor-name

Parameters cursor-name:
{ identifier | host-variable }

Examples • Close cursors in Embedded SQL:

EXEC SQL CLOSE employee_cursor;
EXEC SQL CLOSE :cursor_var;

• Uses a cursor:

CREATE PROCEDURE TopCustomer (OUT TopCompany
CHAR(35), OUT TopValue INT)
BEGIN
DECLARE err_notfound EXCEPTION

FOR SQLSTATE '02000' ;
DECLARE curThisCust CURSOR FOR
SELECT company_name, CAST(
sum(sales_order_items.quantity *
product.unit_price) AS INTEGER) VALUE
FROM customer
LEFT OUTER JOIN sales_order
LEFT OUTER JOIN sales_order_items
LEFT OUTER JOIN product
GROUP BY company_name ;

DECLARE ThisValue INT ;
DECLARE ThisCompany CHAR(35) ;
SET TopValue = 0 ;
OPEN curThisCust ;
CustomerLoop:
LOOP

FETCH NEXT curThisCust
INTO ThisCompany, ThisValue ;

IF SQLSTATE = err_notfound THEN
LEAVE CustomerLoop ;

END IF ;
IF ThisValue > TopValue THEN

SET TopValue = ThisValue ;
SET TopCompany = ThisCompany ;

END IF ;
END LOOP CustomerLoop ;

CLOSE curThisCust ;

CHAPTER 6 SQL Statements

Reference Manual 435

END

Usage This statement closes the named cursor.

Side effects

None.

Standards • SQL92 Entry-level feature.

• Sybase Supported by Adaptive Server Enterprise.

Permissions The cursor must have been previously opened.

See also DECLARE CURSOR statement [ESQL] [SP] on page 516

OPEN statement [ESQL] [SP] on page 603

PREPARE statement [ESQL] on page 611

COMMENT statement
Description Stores a comment in the system tables for a database object.

Syntax COMMENT ON
{ COLUMN [owner.]table-name.column-name
| EVENT event-name
| FOREIGN KEY [owner.]table-name.role-name
| INDEX [[owner.]table.]index-name
| JAVA CLASS java-class-name
|JAVA JAR java-jar-name
| LOGIN integrated_login_id
| PROCEDURE [owner.]procedure-name
| SERVICE web-service-name
| TABLE [owner.]table-name
| USER userid
| VIEW [owner.]view-name }
IS comment

Parameters comment:
{ string | NULL }

Examples These examples show how to add and remove a comment.

• Adds a comment to the employee table:

COMMENT
ON TABLE employee
IS "Employee information"

COMMIT statement

436 Sybase IQ

• Removes the comment from the employee table:

COMMENT
ON TABLE employee
IS NULL

Usage Several system tables have a column named Remarks that lets you associate a
comment with a database item:

Table 6-4: System tables with Remarks column

COMMENT ON lets you set the Remarks column in these system tables. You
can remove a comment by setting it to NULL.

Side effects

Automatic commit.

Standards • SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

Permissions Must either be the owner of the database object being commented, or have
DBA authority.

COMMIT statement
Description Makes changes to the database permanent, or terminates a user-defined

transaction.

Syntax Syntax 1

COMMIT [WORK]

Syntax 2

COMMIT TRAN[SACTION] [transaction-name]

SYSCOLUMN SYSLOGIN

SYSEVENT SYSPROCEDURE

SYSFOREIGNKEY SYSPROCPARM

SYSINDEX SYSPUBLICATION

SYSIQJOININDEX SYSREMOTETYPE

SYSJAR SYSTABLE

SYSJARCOMPONENT SYSUSERPERM

SYSJAVACLASS

CHAPTER 6 SQL Statements

Reference Manual 437

Examples • This statement commits the current transaction:

COMMIT

• The following Transact-SQL batch reports successive values of
@@trancount as 0, 1, 2, 1, 0:

PRINT @@trancount
BEGIN TRANSACTION
PRINT @@trancount
BEGIN TRANSACTION
PRINT @@trancount
COMMIT TRANSACTION
PRINT @@trancount
COMMIT TRANSACTION
PRINT @@trancount
go

Usage Syntax 1 The COMMIT statement ends a transaction and makes all changes
made during this transaction permanent in the database.

Data definition statements carry out commits automatically. For information,
see the Side effects listing for each SQL statement.

COMMIT fails if the database server detects any invalid foreign keys. This
makes it impossible to end a transaction with any invalid foreign keys. Usually,
foreign key integrity is checked on each data manipulation operation.
However, if the database option WAIT_FOR_COMMIT is set ON or a particular
foreign key was defined with a CHECK ON COMMIT clause, the database server
delays integrity checking until the COMMIT statement is executed.

Syntax 2 You can use BEGIN TRANSACTION and COMMIT
TRANSACTION statements in pairs to construct nested transactions. Nested
transactions are similar to savepoints. When executed as the outermost of a set
of nested transactions, the statement makes changes to the database permanent.
When executed inside a transaction, COMMIT TRANSACTION decreases the
nesting level of transactions by one. When transactions are nested, only the
outermost COMMIT makes the changes to the database permanent.

The optional parameter transaction-name is the name assigned to this
transaction. It must be a valid identifier. Use transaction names only on the
outermost pair of nested BEGIN/COMMIT or BEGIN/ROLLBACK statements.

CONFIGURE statement [DBISQL]

438 Sybase IQ

You can use a set of options to control the detailed behavior of the COMMIT
statement. For information, see “COOPERATIVE_COMMIT_TIMEOUT
option” on page 61, “COOPERATIVE_COMMITS option” on page 61,
“DELAYED_COMMITS option” on page 72, and
“DELAYED_COMMIT_TIMEOUT option” on page 72. You can use the
Commit connection property to return the number of commits on the current
connection.

Side effects

Closes all cursors except those opened WITH HOLD.

Deletes all rows of declared temporary tables on this connection, unless they
were declared using ON COMMIT PRESERVE ROWS.

Standards • SQL92 Entry-level feature.

• Sybase Supported by Adaptive Server Enterprise. Syntax 2 is a
Transact-SQL extension.

Permissions Must be connected to the database.

See also BEGIN TRANSACTION statement on page 426

CONNECT statement [ESQL] [DBISQL] on page 439

DISCONNECT statement [DBISQL] on page 532

ROLLBACK statement on page 630

SAVEPOINT statement on page 632

SET CONNECTION statement [DBISQL] [ESQL] on page 645

CONFIGURE statement [DBISQL]
Description Activates the DBISQL configuration window.

Syntax CONFIGURE

Usage The DBISQL configuration window displays the current settings of all
DBISQL options. It does not display or let you modify database options.

If you select Permanent, the options are written to the SYSOPTION table in the
database and the database server performs an automatic COMMIT. If you do not
choose Permanent, and instead click OK, options are set temporarily and
remain in effect for the current database connection only.

CHAPTER 6 SQL Statements

Reference Manual 439

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

Permissions None.

See also SET OPTION statement on page 647

CONNECT statement [ESQL] [DBISQL]
Description Establishes a connection to a database.

Syntax Syntax 1

CONNECT
... [TO engine-name]
... [DATABASE database-name]
... [AS connection-name]
... [USER] userid [IDENTIFIED BY password]

Syntax 2

CONNECT USING connect-string

Parameters engine-name:
identifier, string, or host-variable

database-name:
identifier, string, or host-variable

 connection-name:
identifier, string, or host-variable

userid:
identifier, string, or host-variable

 password:
identifier, strin,g or host-variable

 connect-string:
a valid connection string or host-variable

Examples These are examples of CONNECT usage within Embedded SQL:

EXEC SQL CONNECT AS :conn_name
USER :userid IDENTIFIED BY :password;

CONNECT statement [ESQL] [DBISQL]

440 Sybase IQ

EXEC SQL CONNECT USER "dba" IDENTIFIED BY "SQL";

These are examples of CONNECT usage from DBISQL.

• Connect to a database from DBISQL. Prompts display for user ID and
password:

CONNECT

• Connect to the default database as DBA, from DBISQL. A password
prompt displays:

CONNECT USER "DBA"

• Connect to the sample database as the DBA, from DBISQL:

CONNECT
TO asiqdemo
USER "DBA"
IDENTIFIED BY SQL

• Connect to the sample database using a connect string, from DBISQL:

CONNECT
USING 'UID=DBA;PWD=SQL;DBN=asiqdemo'

Usage The CONNECT statement establishes a connection to the database identified by
database-name running on the server identified by engine-name.

Embedded SQL behavior In Embedded SQL, if no engine-name is
specified, the default local database server is assumed (the first database server
started). If a local database server is not running and the Anywhere Client
(DBCLIENT) is running, the default server is assumed (the server name
specified when the client was started). If no database-name is specified, the
first database on the given server is assumed.

The WHENEVER statement, SET SQLCA, and some DECLARE statements do
not generate code and thus might appear before the CONNECT statement in the
source file. Otherwise, no statements are allowed until a successful CONNECT
statement has been executed.

The user ID and password are used for permission checks on all dynamic SQL
statements. By default, the password is case sensitive; the user ID is not.

For a detailed description of the connection algorithm, see “How Sybase IQ
makes connections” in Chapter 3, “Sybase IQ Connections” in the Sybase IQ
System Administration Guide.

CHAPTER 6 SQL Statements

Reference Manual 441

DBISQL behavior If no database or server is specified in the CONNECT
statement, DBISQL remains connected to the current database, rather than to
the default server and database. If a database name is specified without a server
name, DBISQL attempts to connect to the specified database on the current
server. You must specify the database name defined in the -n database switch,
not the database file name. If a server name is specified without a database
name, DBISQL connects to the default database on the specified server. For
example, if the following batch is executed while connected to a database, the
two tables are created in the same database.

CREATE TABLE t1(c1 int);
CONNECT DBA IDENTIFIED BY SQL;
CREATE TABLE t2 (c1 int);

No other database statements are allowed until a successful CONNECT
statement has been executed.

The user ID and password are used for checking the permissions on SQL
statements. If the password or the user ID and password are not specified, the
user is prompted to type the missing information. By default, the password is
case sensitive; the user ID is not.

Multiple connections are managed through the concept of a current connection.
After a successful connect statement, the new connection becomes the current
one. To switch to a different connection, use SET CONNECTION. Executing a
CONNECT statement does not close the existing connection (if any). Use
DISCONNECT to drop connections.

Static SQL statements use the user ID and password specified with the -l option
on the SQLPP statement line. If no -l option is given, then the user ID and
password of the CONNECT statement are used for static SQL statements also.

Connecting with no password If you are connected to a user ID with DBA
authority, you can connect to another user ID without specifying a password.
(The output of dbtran requires this capability.) For example, if you are
connected to a database from Interactive SQL as DBA, you can connect
without a password with the statement:

CONNECT other_user_id

In Embedded SQL, you can connect without a password by using a host
variable for the password and setting the value of the host variable to be the null
pointer.

CREATE DATABASE statement

442 Sybase IQ

AS clause A connection can optionally be named by specifying the AS
clause. This allows multiple connections to the same database, or multiple
connections to the same or different database servers, all simultaneously. Each
connection has its own associated transaction. You might even get locking
conflicts between your transactions if, for example, you try to modify the same
record in the same database from two different connections.

Syntax 2 A connect-string is a list of parameter settings of the form
keyword=value, and must be enclosed in single quotes.

Side effects

None.

Standards • SQL92 Syntax 1 is a full SQL feature; Syntax 2 is a vendor extension.

• Sybase Open Client Embedded SQL supports a different syntax for the
CONNECT statement.

Permissions None.

See also DISCONNECT statement [DBISQL] on page 532

GRANT statement on page 559

SET CONNECTION statement [DBISQL] [ESQL] on page 645

CREATE DATABASE statement
Description Creates a database consisting of several operating system files.

Syntax CREATE DATABASE db-name
... [[TRANSACTION] { LOG ON [log-file-name]

[MIRROR mirror-file-name] }]
... [CASE { RESPECT | IGNORE }]
... [PAGE SIZE page-size]
... [COLLATION collation-label] [ENCRYPTED
ON | OFF | key-spec}] {... [BLANK PADDING ON]
]
... [JAVA { ON | OFF }]
... [JCONNECT { ON | OFF }]
... [PASSWORD CASE { RESPECT | IGNORE }]
... [IQ PATH iq-file-name]
... [IQ SIZE iq-file-size]
... [IQ PAGE SIZE iq-page-size]
... [BLOCK SIZE block-size]
... [IQ RESERVE sizeMB]
... [TEMPORARY RESERVE sizeMB]

CHAPTER 6 SQL Statements

Reference Manual 443

... [MESSAGE PATH message-file-name]

... [TEMPORARY PATH temp-file-name]

.... [TEMPORARY SIZE temp-db-size]

Parameters db-name | log-file-name | mirror-file-name | iq-file-name
| message-file-name | temp-file-name:

 'file-name'

page-size:
{ 4096 | 8192 | 16384 | 32768 }

iq-page-size:
{ 65536 | 131072 | 262144 | 524288 }

block-size:
{ 4096 | 8192 | 16384 | 32768 }

collation-label:
string

key-spec: [ON] KEY key [ALGORITHM ’AES’]

Examples • The following Windows example creates an IQ database named mydb with
its corresponding mydb.db, mydb.iq, mydb.iqtmp, and mydb.iqmsg files in
the C:\s1\data directory:

CREATE DATABASE 'C:\\s1\\data\\mydb'
BLANK PADDING ON
IQ PATH 'C:\\s1\\data'
IQ SIZE 2000
IQ PAGE SIZE 65536

• The following UNIX command creates an IQ database with raw devices
for IQ PATH and TEMPORARY PATH. The default IQ page size of
128KB applies.

CREATE DATABASE '/s1/data/bigdb'
IQ PATH '/dev/md/rdsk/bigdb'
MESSAGE PATH '/s1/data'
TEMPORARY PATH '/dev/md/rdsk/bigtmp'

• The following Windows command creates an IQ database with a raw
device for IQ PATH. Note the doubled backslashes in the raw device name
(a Windows requirement):
CREATE DATABASE 'company'
IQ PATH '\\\\.\\E:'
JCONNECT OFF
IQ SIZE 40

CREATE DATABASE statement

444 Sybase IQ

• The following UNIX example creates a strongly encrypted IQ database
using the AES encryption algorithm with the key “is!seCret.”

CREATE DATABASE 'marvin.db'
JAVA OFF
BLANK PADDING ON
CASE RESPECT
COLLATION 'ISO_BINENG'
IQ PATH '/filesystem/marvin.main1'
IQ SIZE 6400
IQ PAGE SIZE 262144
TEMPORARY PATH '/filesystem/marvin.temp1'
TEMPORARY SIZE 3200
MESSAGE PATH '/filesystem/marvin.mess1'
ENCRYPTED ON KEY 'is!seCret' ALGORITHM 'AES'

Usage Creates an IQ database with the supplied name and attributes. The IQ PATH
clause is required for creating the IQ database. Otherwise, you create a
standard Adaptive Server Anywhere database. If you omit the IQ PATH option,
specifying any of the following options generates an error: IQ SIZE, IQ PAGE
SIZE, BLOCK SIZE, MESSAGE PATH, TEMPORARY PATH, and TEMPORARY
SIZE.

When Sybase IQ creates an IQ database, it automatically generates four
database files to store different types of data that constitute an IQ database.
Each file corresponds to a dbspace, the logical name by which Sybase IQ
identifies database files. The files are:

• db-name.db is the file that holds the catalog dbspace, SYSTEM. It contains
the system tables and stored procedures describing the database and any
standard Anywhere database objects you add. If you do not include the .db
extension, Sybase IQ adds it. This initial dbspace contains the Catalog
Store, and you can later add dbspaces to increase its size. It cannot be
created on a raw partition.

• db-name.iq is the default name of the file that holds the main data dbspace,
IQ_SYSTEM_MAIN, containing the IQ tables and indexes. You can specify
a different file name with the IQ PATH clause. This initial dbspace
contains the IQ Store, and you can later add dbspaces to increase its size.

• db-name.iqtmp is the default name of the file that holds the initial
temporary dbspace, IQ_SYSTEM_TEMP. It contains the temporary tables
generated by certain queries. The required size of this file can vary
depending on the type of query and amount of data. You can specify a
different name using the TEMPORARY PATH clause. This initial dbspace
contains the Temporary Store, and you can later add dbspaces to increase
its size.

CHAPTER 6 SQL Statements

Reference Manual 445

• db-name.iqmsg is the default name of the file that contains the messages
trace dbspace, IQ_SYSTEM_MSG. You can specify a different file name
using the MESSAGE PATH clause.

In addition to these files, an IQ database has a transaction log file
(db-name.log), and might have a transaction log mirror file.

File names

The file names (db-name, log-file-name, mirror-file-name, iq-file-name,
message-file-name, temp-file-name) are strings containing operating system
file names. As literal strings, they must be enclosed in single quotes.

• In Windows, if you specify a path, any backslash characters (\) must be
doubled if they are followed by an n or an x. This prevents them being
interpreted as a newline character (\n) or as a hexadecimal number (\x),
according to the rules for strings in SQL. It is safer to always double the
backslash. For example:

CREATE DATABASE 'c:\\sybase\\mydb.db'
LOG ON 'e:\\logdrive\\mydb.log'
JCONNECT OFF
IQ PATH 'c:\\sybase\\mydb'
IQ SIZE 40

• If you specify no path, or a relative path:

• The Catalog Store file (db-name.db) is created relative to the working
directory of the server.

• The IQ Store, Temporary Store, and message log files are created in
the same directory as, or relative to, the Catalog Store.

Relative path names are recommended.

 Warning! The database file, temporary dbspace, and transaction log file must
be located on the same physical machine as the database server. Do not place
database files and transaction log files on a network drive. The transaction log
should be on a separate device from its mirror, however.

On UNIX systems, you can create symbolic links, which are indirect pointers
that contain the path name of the file to which they point. You can use symbolic
links as relative path names. There are several advantages to creating a
symbolic link for the database file name:

• Symbolic links to raw devices can have meaningful names, while the
actual device name syntax can be obscure.

CREATE DATABASE statement

446 Sybase IQ

• A symbolic name might eliminate problems restoring a database file that
was moved to a new directory since it was backed up.

• In multiplex databases, symbolic links can be used to avoid device name
conflicts among multiple servers when you use raw devices for IQ
Temporary storage.

To create a symbolic link, use the ln -s command. For example:

ln -s /disk1/company/iqdata/company.iq company_iq_store

Once you create this link, you can specify the symbolic link in commands like
CREATE DATABASE or RESTORE instead of the fully qualified path name.

When you create a database or a dbspace, the path for every dbspace file must
be unique. If your CREATE DATABASE command specifies the identical path
and file name for these two stores, you receive an error.

Note Multiplex databases have a shared IQ Store, where they share all
dbspaces, and a local IQ Store. The local IQ Store consists of dbspaces that are
managed by only one query server and are not visible to any other query server.
To create multiplex databases, use the Create Database and Create Query
Server wizards in Sybase Central. See Chapter 5, “Working with Database
Objects” in the Sybase IQ System Administration Guide for more information.

You can create a unique path in any of these ways:

• Specify a different extension for each file (for example, mydb.iq and
mydb.iqtmp)

• Specify a different file name (for example, mydb.iq and mytmp.iq)

• Specify a different path name (for example, /iqfiles/main/iq and /iqfiles/
temp/iq) or different raw partitions

• Omit TEMPORARY PATH when you create the database. In this case, the
temporary store is created in the same path as the Catalog Store, with the
default name and extension dbname.iqtmp, where dbname is the database
name.

 Warning! On UNIX platforms, to maintain database consistency, you must
specify file names that are links to different files. Sybase IQ cannot detect the
target where linked files point. Even if the file names in the command differ, it
is your responsibility to make sure they do not point to the same file.

CHAPTER 6 SQL Statements

Reference Manual 447

Clauses and options of CREATE DATABASE

TRANSACTION LOG The transaction log is a file where the database server
logs all changes made to the database. The transaction log plays a key role in
system recovery. If you do not specify any TRANSACTION LOG clause, or if
you omit a path for the file name, it is placed in the same directory as the .db
file. However, you should place it on a different physical device from the .db
and .iq. It cannot be created on a raw partition.

MIRROR A transaction log mirror is an identical copy of a transaction log,
usually maintained on a separate device, for greater protection of your data. By
default, Sybase IQ does not use a mirrored transaction log. If you do want to
use a transaction log mirror, you must provide a file name. If you use a relative
path, the transaction log mirror is created relative to the directory of the
Catalog Store (db-name.db). Sybase recommends that you always create a
mirror copy of the transaction log.

CASE For databases created with CASE RESPECT, all affected values are
case sensitive in comparisons and string operations. Database object names
such as columns, procedures, or user IDs, are unaffected. Dbspace names are
case sensitive for databases created with CASE RESPECT. Password case
sensitivity follows data sensitivity unless you specify the PASSWORD CASE
clause of CREATE DATABASE.

Note When a database is created with CASE IGNORE, queries might return
data in either uppercase or lowercase, depending on the type of index the
optimizer chose to use. You can return all uppercase data in such a situation by
using this command:

SET TEMPORARY OPTION AGGREGATION_PREFERENCE=-2

Alternatively, you can use the LOWER or UPPER functions on columns to
display the column values in lowercase or uppercase.

This option is provided for compatibility with the ISO/ANSI SQL standard.
The default (RESPECT) is that all comparisons are case sensitive. CASE
RESPECT provides better performance than CASE IGNORE.

All databases are created with at least one user ID:

DBA

and password:

SQL

CREATE DATABASE statement

448 Sybase IQ

If you create a database requiring case-sensitive comparisons, the password
must be entered in uppercase, unless you specify PASSWORD CASE IGNORE.
The user ID is unaffected by the CASE RESPECT setting.

PAGE SIZE The page size for the Anywhere segment of the database
(containing the catalog tables) can be 4096, 8192, 16384, or 32768 bytes, with
4096 being the default. Other values for the size are changed to the next larger
size. Normally, you should use the default, 4096 (4KB). Large databases might
see performance benefits from a page size larger than this default. Smaller
values might limit the number of columns your database can support. If you
specify a page size smaller than 4096, Sybase IQ uses a page size of 4096.

When you start a database, its page size cannot be larger than the page size of
the current server. The server page size is taken from the first set of databases
started or is set on the server command line using the -gp command line option.

Command line length for any statement is limited to the Catalog page size. The
4KB default is large enough in most cases; however, in a few cases a larger
PAGE SIZE value is needed to accommodate very long commands, such as
RESTORE commands that reference numerous dbspaces.

COLLATION The collation sequence used for all string comparisons in the
database. The default collation sequence is ISO_BINENG, which provides the
best performance. In ISO_BINENG, the collation order is the same as the order
of characters in the ASCII character set. All uppercase letters precede all
lowercase letters (for example, both ‘A’ and ‘B’ precede ‘a’).

 For a list of available collation sequences, see “CP874toUTF8 utility” in
Chapter 3, “Database Administration Utilities” in the Sybase IQ Utility Guide.

Before creating a database with a nondefault collation, or a custom collating
sequence, see Chapter 11, “International Languages and Character Sets” in the
Sybase IQ System Administration Guide.

ENCRYPTED Encryption makes the data stored in your physical database
file unreadable. There are two levels of encryption:

• Simple encryption is equivalent to obfuscation. The data is unreadable, but
someone with cryptographic expertise could decipher the data. Simple
encryption is achieved by specifying the ENCRYPTED clause with no KEY
clause.

• Strong encryption is achieved through the use of a 128-bit algorithm and
a security key. The data is unreadable and virtually undecipherable
without the key.

CHAPTER 6 SQL Statements

Reference Manual 449

Encryption can be specified only during database creation. (To introduce
encryption to an existing database requires a complete unload, database
recreation, and reload of all data.) To create a strongly encrypted database,
specify the ENCRYPTED clause with the KEY clause. As with most passwords,
it is best to choose a key value that cannot be easily guessed. We recommend
that you choose a value for your key that is at least 16 characters long, contains
a mix of uppercase and lowercase, and includes numbers, letters and special
characters.

You require this key each time you start the database.

Using the ALGORITHM clause in conjunction with the ENCRYPTED and KEY
clauses lets you specify the encryption algorithm. Currently, the only supported
algorithm is AES. If the ENCRYPTED clause is used but no algorithm is
specified, the default is AES. Encryption is OFF by default.

 Warning! Protect your key! Be sure to store a copy of your key in a safe
location. A lost key results in a completely inaccessible database, from which
there is no recovery.

BLANK PADDING By default, trailing blanks are ignored for comparison
purposes (BLANK PADDING ON), and Embedded SQL programs pad strings
fetched into character arrays. This option is provided for compatibility with the
ISO/ANSI SQL standard.

 For example, these two strings are treated as equal in a database created with
BLANK PADDING ON:

'Smith'
'Smith '

Note CREATE DATABASE no longer supports BLANK PADDING OFF for new
databases. This change has no effect on existing databases. You can test the
state of existing databases using the BlankPadding database property:

select db_property (‘BlankPadding’)

Sybase recommends that you change any existing columns affected by BLANK
PADDING OFF, to ensure correct join results. Recreate join columns as CHAR
data type, rather than VARCHAR. CHAR columns are always blank padded.

CREATE DATABASE statement

450 Sybase IQ

JAVA To use Java in your database, you must install entries for the Sybase
runtime Java classes into the catalog system tables. By default, these entries are
installed. If you do not need to use Java, you can specify JAVA OFF to avoid
installing these entries. Platforms that support JAVA ON include the file
“libdbjava7”, with a platform-specific suffix, in the /lib directory.

JCONNECT To use the Sybase jConnect for JDBC driver to access system
catalog information, you must install jConnect support. Use this option to
exclude the jConnect system objects (the default is ON). You can still use
JDBC, as long as you do not access system information.

PASSWORD CASE You can specify whether passwords are case sensitive in
the database. The case sensitivity of passwords need not be the same as the
database's case-sensitivity setting for string comparisons. If you do not specify
the case sensitivity of passwords, passwords follow the case sensitivity of the
database, which defaults to CASE RESPECT. Extended characters used in
passwords (that is, characters above the first 128 in the code page) are case
sensitive, regardless of the password case-sensitivity setting.

IQ PATH The path name of the main segment file containing the Sybase IQ
data. You can specify an operating system file or a raw partition of an I/O
device. (The Sybase IQ Installation and Configuration Guide for your platform
describes the format for specifying a raw partition.) Sybase IQ automatically
detects which type based on the path name you specify. If you use a relative
path, the file is created relative to the directory of the Catalog Store (the .db
file).

See Chapter 8, “Physical Limitations” for an important note about initializing
raw devices on Sun Solaris.

IQ SIZE The size in MB of either the raw partition or the operating system
file you specify with the IQ PATH clause. For raw partitions, you should always
take the default, which allows Sybase IQ to use the entire raw partition; if you
specify a value for IQ SIZE, it must match the size of the I/O device or Sybase
IQ returns an error. For operating system files, you can specify a value based
on the size of your data, from the minimum in Table 6-5 up to a maximum of
128GB. The default for operating system files depends on IQ PAGE SIZE:

CHAPTER 6 SQL Statements

Reference Manual 451

Table 6-5: Default and minimum sizes of IQ and Temporary Store files

IQ PAGE SIZE The page size in bytes for the Sybase IQ segment of the
database (containing the IQ tables and indexes). The value must be a power of
2, from 65536 to 524288 bytes. The default is 131072 (128KB). Other values
for the size are changed to the next larger size. The IQ page size determines the
default I/O transfer block size and maximum data compression for your
database.

For the best performance, Sybase recommends the following minimum IQ
page sizes:

• 64KB (IQ PAGE SIZE 65536) for databases whose largest table contains up
to 1 billion rows, or a total size less than 8TB. This is the absolute
minimum for a new database. On 32-bit platforms, a 64KB IQ page size
gives the best performance.

• 128KB (IQ PAGE SIZE 131072) for databases on a 64-bit platform whose
largest table contains more than 1 billion rows and fewer than 4 billion
rows, or might grow to a total size of 8TB or greater. 128KB is the default
IQ page size.

• 256KB (IQ PAGE SIZE 262144) for databases on a 64-bit platform whose
largest table contains more than 4 billion rows, or might grow to a total
size of 8TB or greater.

Very wide tables, such as tables with multiple columns of wide VARCHAR data
(columns from 255 to 32,767 bytes) might need the next larger IQ PAGE SIZE.

BLOCK SIZE he I/O transfer block size in bytes for the Sybase IQ segment
of the database. The value must be less than IQ PAGE SIZE, and must be a
power of two between 4096 and 32768. Other values for the size are changed
to the next larger size. The default value depends on the value of the IQ PAGE
SIZE clause. For most applications, this default value is optimum. Before
specifying a different value, see Chapter 5, “Managing System Resources” in
the Sybase IQ Performance and Tuning Guide.

IQ PAGE
SIZE

IQ SIZE
default

TEMPORARY
SIZE default

Minimum
explicit IQ
SIZE

Minimum
explicit
TEMPORARY
SIZE

65536 4096000 2048000 4MB 2MB

131072 8192000 4096000 8MB 4MB

262144 16384000 8192000 16MB 8MB

524288 32768000 16384000 32MB 16MB

CREATE DATABASE statement

452 Sybase IQ

IQ RESERVE Specifies the size in megabytes of space to reserve for the
Main IQ Store (IQ_SYSTEM_MAIN dbspace), so that the dbspace can be
increased in size in the future. The sizeMB parameter can be any number
greater than 0. The reserve cannot be changed after the dbspace is created.

When IQ RESERVE is specified, the database uses more space for internal (free
list) structures. If reserve size is too large, the space needed for the internal
structures can be larger than the specified size, which results in an error.

TEMPORARY RESERVE clause Specifies the size in megabytes of space to
reserve for the Temporary IQ Store (IQ_SYSTEM_TEMP dbspace), so that the
dbspace can be increased in size in the future. The sizeMB parameter can be
any number greater than 0. The reserve cannot be changed after the dbspace is
created.

When TEMPORARY RESERVE is specified, the database uses more space for
internal (free list) structures. If reserve size is too large, the space needed for
the internal structures can be larger than the specified size, which results in an
error.

Note Reserve and mode for temporary dbspaces are lost if the database is
restored from a backup.

MESSAGE PATH The path name of the segment containing the Sybase IQ
messages trace file. You must specify an operating system file; the message file
cannot be on a raw partition. If you use a relative path or omit the path, the
message file is created relative to the directory of the .db file.

TEMPORARY PATH The path name of the temporary segment file
containing the temporary tables generated by certain queries. You can specify
an operating system file or a raw partition of an I/O device. (The Sybase IQ
Installation and Configuration Guide for your platform describes the format
for specifying a raw partition.) Sybase IQ automatically detects which type
based on the path name you specify. If you use a relative path or omit the path,
the temporary file is created relative to the directory of the .db file.

TEMPORARY SIZE The size in MB of either the raw partition or the
operating system file you specify with the TEMPORARY PATH clause. For raw
partitions, you should always take the default, which allows Sybase IQ to use
the entire raw partition. The default for operating system files is always one-
half the value of IQ SIZE. If the IQ Store is on a raw partition and the Temporary
Store is an operating system file, the default TEMPORARY SIZE is half the size
of the IQ Store raw partition.

CHAPTER 6 SQL Statements

Reference Manual 453

Side effects

Several operating system files are created.

Standards • SQL92 Vendor extension.

• Sybase Adaptive Server Enterprise provides a CREATE DATABASE
statement, but with different options.

Permissions The permissions required to execute this statement are set on the server
command line, using the -gu option. The default setting is to require DBA
authority.

The account under which the server is running must have write permissions on
the directories where files are created.

See also CREATE DBSPACE statement on page 453

DROP DATABASE statement on page 536

CREATE DBSPACE statement
Description Creates a new dbspace and the associated database file. This file can be on a

different device than the initial dbspace.

Syntax CREATE DBSPACE dbspace-name AS filename
... [{ IQ STORE | IQ TEMPORARY STORE

| IQ LOCAL STORE | CATALOG STORE }]
... [[SIZE] file-size]
... [RESERVE sizeMB]

Examples Example 1 On Windows, creates a dbspace called mydb_tmp_2 to add 200MB
to the IQ Temporary Store of the current Sybase IQ database (mydb):

CREATE DBSPACE mydb_tmp_2
AS 'e:\\s2\\data\\mydb_2.iqtmp'
IQ TEMPORARY STORE
SIZE 200 ;

Example 2 Adds a dbspace on a Windows raw device to a database:

CREATE DBSPACE main2 AS '\\\\.\\H:' IQ STORE

Always double the backslashes when naming raw devices on Windows in SQL
statements.

CREATE DBSPACE statement

454 Sybase IQ

Usage CREATE DBSPACE creates a new database file called a dbspace. When a
database is first initialized using CREATE DATABASE, it creates several
database files by default, including:

• db-name.db is the catalog dbspace containing the system tables and stored
procedures describing the database and any standard Adaptive Server
Anywhere database objects you add. It is known as the Catalog Store, and
is named SYSTEM.

• db-name.iq is the main data dbspace containing the IQ tables and indexes.
It is known as the IQ Store, and is named IQ_SYSTEM_MAIN.

• db-name.iqtmp is the initial temporary dbspace containing the temporary
tables generated by certain queries. It is known as the IQ Temporary Store,
and is called IQ_SYSTEM_TEMP.

CREATE DBSPACE adds a new dbspace to one of these stores. The default is
the IQ Store. The dbspace you add can be on a different disk device than the
initial dbspace, allowing the creation of stores larger than one physical device.

Note Multiplex databases have a shared IQ Store, where they share all
dbspaces, and a local IQ Store. The local IQ Store consists of dbspaces that are
managed by only one query server and are not visible to any other query server.
To create dbspaces for a multiplex database, see Chapter 5, “Working with
Database Objects” in the Sybase IQ System Administration Guide for details.

When you create a database or a dbspace, the path for the Temporary Store
must be unique. If your CREATE DBSPACE command specifies the identical
path and file name for these two stores, you receive an error.

You can create a unique path in any of these ways:

• Specify a different extension for each file (for example, mydb.iq and
mydb.iqtmp)

• Specify a different file name (for example, mydb.iq and mytmp.iq)

• Specify a different path name (for example, /iqfiles/main/iq and /iqfiles/
temp/iq) or different raw partitions

 Warning! On UNIX platforms, to maintain database consistency you must
specify file names that are links to different files. Sybase IQ cannot detect the
target where linked files point. Even if the file names in the command differ, it
is your responsibility to make sure they do not point to the same file.

CHAPTER 6 SQL Statements

Reference Manual 455

The dbspace-name is an internal name for the dbspace. The filename is the
actual file name of the dbspace, with a path where necessary. A filename
without an explicit directory is created in the same directory as the initial
dbspace of that store. Any relative directory is relative to that initial dbspace.
Each dbspace-name must be unique in a database. Dbspace names are case
sensitive for databases created with CASE RESPECT.

SIZE clause For operating system files, specifies the size in MB, from 0 to
4194304 (0 to 4 terabytes), of the file you specify in filename. See Chapter 8,
“Physical Limitations” for platform-specific limits and an important note
about initializing raw devices on Sun Solaris. The default depends on the store
type and block size. For the IQ Main Store, the default number of bytes equals
1000 * the block size. For the IQ Temporary Store, the default number of bytes
equals 100 * the block size. You cannot specify the SIZE clause for the Catalog
Store.

A SIZE value of 0 creates a dbspace of minimum size, which is 1000 blocks for
IQ Main Store and 100 blocks for IQ Temporary Store.

For raw partitions, do not specify SIZE explicitly. Sybase IQ sets this parameter
to the maximum raw partition size automatically, and returns an error if you
attempt to specify another size.

RESERVE clause Specifies the size in megabytes of space to reserve, so that
the dbspace can be increased in size in the future. The sizeMB parameter can
be any number greater than 0. The reserve cannot be changed after the dbspace
is created.

When RESERVE is specified, the database uses more space for internal (free
list) structures. If reserve size is too large, the space needed for the internal
structures can be larger than the specified size, which results in an error.

Note Reserve and mode for temporary dbspaces are lost if the database is
restored from a backup.

A database can have up to 2047 dbspaces, including the initial dbspaces created
when you create the database. However, your operating system might limit the
number of files per database.

Side effects

Automatic commit. Automatic checkpoint.

Standards • SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

CREATE DOMAIN statement

456 Sybase IQ

Permissions Must have DBA authority.

See also DROP statement on page 533

Chapter 5, “Working with Database Objects,” in the Sybase IQ System
Administration Guide.

CREATE DOMAIN statement
Description Creates a user-defined data type in the database.

Syntax CREATE { DOMAIN | DATATYPE } domain-name data-type
... [[NOT] NULL]
... [DEFAULT default-value]

Parameters domain-name:
identifier

data-type:
built-in data type, with precision and scale

default-value:
special-value
| string
| global variable
| [-] number
| (constant-expression)
| built-in-function(constant-expression)
| AUTOINCREMENT
| CURRENT DATABASE
| CURRENT REMOTE USER
| NULL
| TIMESTAMP
| LAST USER

special-value:
CURRENT { DATE | TIME | TIMESTAMP | USER | PUBLISHER }
| USER

Examples The following statement creates a data type named address, which holds a 35-
character string, and which may be NULL:

CREATE DOMAIN address CHAR(35) NULL

CHAPTER 6 SQL Statements

Reference Manual 457

Usage User-defined data types are aliases for built-in data types, including precision
and scale values, where applicable. They improve convenience and encourage
consistency in the database.

Sybase recommends that you use CREATE DOMAIN, rather than CREATE
DATATYPE, as CREATE DOMAIN is the ANSI/ISO SQL3 term.

The user who creates a data type is automatically made the owner of that data
type. No owner can be specified in the CREATE DATATYPE statement. The
user-defined data type name must be unique, and all users can access the data
type without using the owner as prefix.

User-defined data types are objects within the database. Their names must
conform to the rules for identifiers. User-defined data type names are always
case insensitive, as are built-in data type names.

By default, user-defined data types allow NULLs unless the
allow_nulls_by_default option is set to OFF. In this case, new user-defined data
types by default do not allow NULLs. The nullability of a column created on a
user-defined data type depends on the setting of the definition of the user-
defined data type, not on the setting of the allow_nulls_by_default option when
the column is referenced. Any explicit setting of NULL or NOT NULL in the
column definition overrides the user-defined data type setting.

The CREATE DOMAIN statement allows you to specify DEFAULT values on
user-defined data types. The DEFAULT value specification is inherited by any
column defined on the data type. Any DEFAULT value explicitly specified on
the column overrides that specified for the data type. For more information on
the use of column DEFAULT values, see “Using column defaults” in Chapter
9, “Ensuring Data Integrity” in the Sybase IQ System Administration Guide.

The CREATE DOMAIN statement lets you incorporate a rule, called a CHECK
condition, into the definition of a user-defined data type.

Sybase IQ enforces CHECK constraints for base, global temporary. local
temporary tables, and user-defined data types.

To drop the data type from the database, use the DROP statement. You must be
either the owner of the data type or have DBA authority in order to drop a user-
defined data type.

Side effects

Automatic commit.

Standards • SQL92 Intermediate-level feature.

CREATE EVENT statement

458 Sybase IQ

• Sybase Not supported by Adaptive Server Enterprise. Transact-SQL
provides similar functionality using the sp_addtype system procedure and
the CREATE DEFAULT and CREATE RULE statements.

Permissions Must have RESOURCE authority.

See also DROP statement on page 533

Chapter 4, “SQL Data Types”

CREATE EVENT statement
Description Defines an event and its associated handler for automating predefined actions.

Also defines scheduled actions.

Syntax CREATE EVENT event-name
... [TYPE event-type
 [WHERE trigger-condition [AND trigger-condition], ...]
 | SCHEDULE schedule-spec, ...]
... [ENABLE | DISABLE]
... [AT { CONSOLIDATED | REMOTE | ALL }]
...[HANDLER
 BEGIN
...
 END]

Parameters event-type:
BackupEnd | "Connect"
| ConnectFailed | DatabaseStart
| DBDiskSpace | "Disconnect"
| GlobalAutoincrement | GrowDB
| GrowLog | GrowTemp
| LogDiskSpace | "RAISERROR"
| ServerIdle | TempDiskSpace

trigger-condition:
event_condition(condition-name) { = | < | > | != | <= | >= } value

schedule-spec:
[schedule-name]
{ START TIME start-time | BETWEEN start-time AND end-time }
[EVERY period { HOURS | MINUTES | SECONDS }]
[ON { (day-of-week, ...) | (day-of-month, ...) }]
[START DATE start-date]

CHAPTER 6 SQL Statements

Reference Manual 459

event-name | schedule-name:
identifier

day-of-week :
string

day-of-month | value | period :
integer

start-time | end-time :
time

start-date :
date

Examples • This example instructs the database server to carry out an automatic
incremental backup daily at 1 a.m.:

CREATE EVENT IncrementalBackup
SCHEDULE
START TIME '1:00AM' EVERY 24 HOURS
HANDLER
BEGIN

BACKUP DATABASE INCREMENTAL
TO 'backups/daily.incr'

END

• This example instructs the database server to call the system stored
procedure sp_iqspaceused every 10 minutes, then store in a table the
returned current date and time, the current number of connections to the
database, and current information about the use of Main and Temporary IQ
Store:

CREATE TABLE mysummary(dt DATETIME,
users INT, mainKB UNSIGNED BIGINT,
mainPC UNSIGNED INT,
tempKB UNSIGNED BIGINT,
tempPC UNSIGNED INT) ;

CREATE EVENT mysummary
SCHEDULE sched_mysummary

START TIME '00:01 AM' EVERY 10 MINUTES
HANDLER
BEGIN

DECLARE mt UNSIGNED BIGINT;
DECLARE mu UNSIGNED BIGINT;
DECLARE tt UNSIGNED BIGINT;
DECLARE tu UNSIGNED BIGINT;
DECLARE conncount UNSIGNED INT;

CREATE EVENT statement

460 Sybase IQ

SET conncount = DB_PROPERTY('ConnCount');
CALL SP_IQSPACEUSED(mt,mu,tt,tu);

INSERT INTO mysummary VALUES(NOW(),
conncount, mu, (mu*100)/mt, tu,
(tu*100)/tt);

END ;

For more examples, see “Defining trigger conditions for events” in Chapter
18, “Automating Tasks Using Schedules and Events” in the Sybase IQ System
Administration Guide.

Usage Events can be used in two main ways:

• Scheduling actions The database server carries out a set of actions on a
schedule of times. You can use this capability to schedule backups,
validity checks, queries to fill up reporting tables, and so on.

• Event handling actions The database server carries out a set of actions
when a predefined event occurs. The events that can be handled include
disk space restrictions (when a disk fills beyond a specified percentage),
when the server is idle, and so on.

An event definition includes two distinct pieces. The trigger condition can be
an occurrence, such as a disk filling up beyond a defined threshold. A schedule
is a set of times, each of which acts as a trigger condition. When a trigger
condition is satisfied, the event handler executes. The event handler includes
one or more actions specified inside a compound statement (BEGIN... END).

If no trigger condition or schedule specification is supplied, only an explicit
TRIGGER EVENT statement can trigger the event. During development, you
might wantmight to develop and test event handlers using TRIGGER EVENT,
and add the schedule or WHERE clause once testing is complete.

Event errors are logged to the database server console.

CHAPTER 6 SQL Statements

Reference Manual 461

When event handlers are triggered, the server makes context information, such
as the connection ID that caused the event to be triggered, available to the event
handler using the EVENT_PARAMETER function.

Note Although statements that return result sets are disallowed in events, you
can allow an event to call a stored procedure and insert the procedure results
into a temporary table. For details, see “Extraction and events” in Chapter 7,
“Moving Data In and Out of Databases,”Sybase IQ System Administration
Guide.

CREATE EVENT The event name is an identifier. An event has a creator,
which is the user creating the event, and the event handler executes with the
permissions of that creator. This is the same as stored procedure execution. You
cannot create events owned by other users.

You can list event names by querying the system table SYSEVENT. For
example:

SELECT event_id, event_name FROM SYS.SYSEVENT

TYPE The event-type is one of the listed set of system-defined event types.
The event types are case insensitive. To specify the conditions under which this
event-type triggers the event, use the WHERE clause.

• DiskSpace event types If the database contains an event handler for
one of the DiskSpace types, the database server checks the available space
on each device associated with the relevant file every 30 seconds.

In the event the database has more than one dbspace, on separate drives,
DBDiskSpace checks each drive and acts depending on the lowest
available space.

The LogDiskSpace event type checks the location of the transaction log
and any mirrored transaction log, and reports based on the least available
space.

The disk space event types require Windows and are not available on
UNIX platforms.

• Globalautoincrement event type This event fires when the GLOBAL
AUTOINCREMENT default value for a table is within one percent of the
end of its range. A typical action for the handler could be to request a new
value for the GLOBAL_DATABASE_ID option.

You can use the EVENT_CONDITION function with RemainingValues as an
argument for this event type.

CREATE EVENT statement

462 Sybase IQ

• ServerIdle event type If the database contains an event handler for the
ServerIdle type, the server checks for server activity every 30 seconds.

WHERE clause The trigger condition determines the condition under which
an event is fired. For example, to take an action when the disk containing the
transaction log becomes more than 80% full, use the following triggering
condition:

...
WHERE event_condition('LogDiskSpacePercentFree') < 20
...

The argument to the EVENT_CONDITION function must be valid for the
event type.

You can use multiple AND conditions to make up the WHERE clause, but you
cannot use OR conditions or other conditions.

 For information on valid arguments, see “EVENT_CONDITION function
[System]” on page 300.

SCHEDULE This clause specifies when scheduled actions are to take place.
The sequence of times acts as a set of triggering conditions for the associated
actions defined in the event handler.

You can create more than one schedule for a given event and its associated
handler. This permits complex schedules to be implemented. While it is
compulsory to provide a schedule name when there is more than one schedule,
it is optional if you provide only a single schedule.

You can list schedule names by querying the system table SYSSCHEDULE. For
example:

SELECT event_id, sched_name FROM SYS.SYSSCHEDULE

Each event has a unique event ID. Use the event_id columns of SYSEVENT and
SYSSCHEDULE to match the event to the associated schedule.

When a nonrecurring scheduled event has passed, its schedule is deleted, but
the event handler is not deleted.

Scheduled event times are calculated when the schedules are created, and again
when the event handler completes execution. The next event time is computed
by inspecting the schedule or schedules for the event, and finding the next
schedule time that is in the future. If an event handler is instructed to run every
hour between 9:00 and 5:00, and it takes 65 minutes to execute, it runs at 9:00,
11:00, 1:00, 3:00, and 5:00. If you want execution to overlap, you must create
more than one event.

CHAPTER 6 SQL Statements

Reference Manual 463

The subclauses of a schedule definition are as follows:

• START TIME The first scheduled time for each day on which the event
is scheduled. If a START DATE is specified, the START TIME refers to that
date. If no START DATE is specified, the START TIME is on the current day
(unless the time has passed) and each subsequent day.

• BETWEEN ... AND A range of times during the day outside of which no
scheduled times occur. If a START DATE is specified, the scheduled times
do not occur until that date.

• EVERY An interval between successive scheduled events. Scheduled
events occur only after the START TIME for the day, or in the range
specified by BETWEEN ... AND.

• ON A list of days on which the scheduled events occur. The default is
every day. These can be specified as days of the week or days of the month.

Days of the week are Monday, Tuesday, and so on. The abbreviated forms
of the day, such as Mon, Tue, and so on, may also be used. The database
server recognizes both full-length and abbreviated day names in any of the
languages supported by Sybase IQ.

Days of the month are integers from 0 to 31. A value of 0 represents the
last day of any month.

• START DATE The date on which scheduled events are to start occurring.
The default is the current date.

Each time a scheduled event handler is completed, the next scheduled time and
date is calculated.

1 If the EVERY clause is used, find whether the next scheduled time falls on
the current day, and is before the end of the BETWEEN ... AND range. If so,
that is the next scheduled time.

2 If the next scheduled time does not fall on the current day, find the next
date on which the event is to be executed.

3 Find the START TIME for that date, or the beginning of the BETWEEN ...
AND range.

ENABLE | DISABLE By default, event handlers are enabled. When DISABLE
is specified, the event handler does not execute even when the scheduled time
or triggering condition occurs. A TRIGGER EVENT statement does not cause a
disabled event handler to be executed.

CREATE EVENT statement

464 Sybase IQ

AT To execute events at remote or consolidated databases in a SQL Remote
setup, use this clause to restrict the databases at which the event is handled. By
default, all databases execute the event.

HANDLER Each event has one handler. Like the body of a stored procedure,
the handler is a compound statement. There are some differences, though: you
can use an EXCEPTION clause within the compound statement to handle errors,
but not the ON EXCEPTION RESUME clause provided within stored
procedures.

Side effects

Automatic commit.

The actions of an event handler are committed if no error is detected during
execution, and rolled back if errors are detected.

Standards • SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

Permissions Must have DBA authority.

Event handlers execute on a separate connection, with the permissions of the
event owner. To execute with permissions other than DBA, you can call a
procedure from within the event handler: the procedure executes with the
permissions of its owner. The separate connection does not count towards the
ten-connection limit of the personal database server.

See also ALTER EVENT statement on page 401

BEGIN... END statement on page 422

COMMENT statement on page 435

DROP statement on page 533

TRIGGER EVENT statement on page 658

Chapter 18, “Automating Tasks Using Schedules and Events,” in the Sybase
IQ System Administration Guide.

CHAPTER 6 SQL Statements

Reference Manual 465

CREATE EXISTING TABLE statement
Description Creates a new proxy table representing an existing object on a remote server.

Syntax CREATE EXISTING TABLE [owner.]table_name
[(column-definition, ...)]
AT 'location-string'

Parameters column-definition:
column-name data-type [NOT NULL]

location-string:
remote-server-name.[db-name].[owner].object-name
| remote-server-name;[db-name];[owner];object-name

Examples • This example creates a proxy table named blurbs for the blurbs table at the
remote server server_a:

CREATE EXISTING TABLE blurbs
(author_id id not null,
copy text not null)
AT 'server_a.db1.joe.blurbs'

• This example creates a proxy table named blurbs for the blurbs table at the
remote server server_a. Sybase IQ derives the column list from the
metadata it obtains from the remote table:

CREATE EXISTING TABLE blurbs
AT 'server_a.db1.joe.blurbs'

• This example creates a proxy table named rda_employee for the employee
table at the Sybase IQ remote server asiqdemo:

CREATE EXISTING TABLE rda_employee
AT 'asiqdemo..dba.employee'

Usage CREATE EXISTING TABLE is a variant of the CREATE TABLE statement. The
EXISTING keyword is used with CREATE TABLE to specify that a table already
exists remotely and that its metadata is to be imported into Sybase IQ. This
establishes the remote table as a visible entity to its users. Sybase IQ verifies
that the table exists at the external location before it creates the table.

Tables used as proxy tables cannot have names longer than 30 characters.

If the object does not exist (either host data file or remote server object), the
statement is rejected with an error message.

CREATE EXISTING TABLE statement

466 Sybase IQ

Index information from the host data file or remote server table is extracted and
used to create rows for the system table sysindexes. This defines indexes and
keys in server terms and enables the query optimizer to consider any indexes
that might exist on this table.

Referential constraints are passed to the remote location when appropriate.

If column definitions are not specified, Sybase IQ derives the column list from
the metadata it obtains from the remote table. If column definitions are
specified, Sybase IQ verifies the column definitions. Column names, data
types, lengths, and null properties are checked for the following:

• Column names must match identically (although case is ignored).

• Data types in CREATE EXISTING TABLE must match or be convertible to
the data types of the column on the remote location. For example, a local
column data type is defined as NUMERIC, whereas the remote column data
type is MONEY.

• Each column’s NULL property is checked. If the local column’s NULL
property is not identical to the remote column’s NULL property, a warning
message is issued, but the statement is not aborted.

• Each column’s length is checked. If the lengths of CHAR, VARCHAR,
BINARY, DECIMAL, and NUMERIC columns do not match, a warning
message is issued, but the command is not aborted. You might choose to
include only a subset of the actual remote column list in your CREATE
EXISTING statement.

• AT specifies the location of the remote object. The AT clause supports the
semicolon (;) as a delimiter. If a semicolon is present anywhere in the
location string, the semicolon is the field delimiter. If no semicolon is
present, a period is the field delimiter. This allows file names and
extensions to be used in the database and owner fields. Semicolon field
delimiters are used primarily with server classes not currently supported;
however, you can also use them where a period would also work as a field
delimiter. For example, the following statement maps the table proxy_a to
the Adaptive Server Anywhere database mydb on the remote server
myasa:

CREATE EXISTING TABLE
proxy_a1
AT 'myasa;mydb;;a1'

Side effects

Automatic commit.

Standards • SQL92 Entry-level feature.

CHAPTER 6 SQL Statements

Reference Manual 467

• Sybase Supported by Open Client/Open Server.

Permissions Must have RESOURCE authority. To create a table for another user, you must
have DBA authority.

See also CREATE TABLE statement on page 499

Chapter 17, “Server Classes for Remote Data Access,” and Chapter 16,
“Accessing Remote Data,” in the Sybase IQ System Administration Guide.

CREATE EXTERNLOGIN statement
Description Assigns an alternate login name and password to be used when communicating

with a remote server.

Syntax CREATE EXTERNLOGIN login-name
TO remote-server
REMOTE LOGIN remote-user
[IDENTIFIED BY remote-password]

Examples Maps the local user named DBA to the user sa with password 4TKNOX when
connecting to the server sybase1:

CREATE EXTERNLOGIN dba
TO sybase1
REMOTE LOGIN sa
IDENTIFIED BY 4TKNOX

Usage By default, Sybase IQ uses the names and passwords of its clients whenever it
connects to a remote server on behalf of those clients. CREATE EXTERNLOGIN
assigns an alternate login name and password to be used when communicating
with a remote server. It stores the password internally in encrypted form. The
remote_server must be known to the local server by an entry in the sysservers
table. For more information, see CREATE SERVER statement on page 494.

Sites with automatic password expiration should plan for periodic updates of
passwords for external logins.

CREATE EXTERNLOGIN cannot be used from within a transaction.

login-name Specifies the local user login name. When using integrated
logins, the login-name is the database user to which the Windows user ID is
mapped.

TO The TO clause specifies the name of the remote server.

CREATE FUNCTION statement

468 Sybase IQ

REMOTE LOGIN The REMOTE LOGIN clause specifies the user account on
remote-server for the local user login-name.

IDENTIFIED BY The IDENTIFIED BY clause specifies remote-password is
the password for remote-user

The remote-user and remote-password combination must be valid on remote-
server.

Side effects

Automatic commit.

Standards • SQL92 Entry-level feature.

• Sybase Supported by Open Client/Open Server.

Permissions Only the login-name and the DBA account can add or modify an external login
for login-name.

See also DROP EXTERNLOGIN statement on page 538

CREATE FUNCTION statement
Description Creates a new function in the database.

Syntax CREATE FUNCTION [owner.]function-name ([parameter, …])
RETURNS data-type routine-characteristics
{ compound-statement

| AS tsql-compound-statement
| external-name }

Parameters parameter:
IN parameter-name data-type

routine-characteristics:
ON EXCEPTION RESUME | [NOT] DETERMINISTIC

tsql-compound-statement:
sql-statement
sql-statement ...

external-name:
EXTERNAL NAME library-call
| EXTERNAL NAME java-call LANGUAGE JAVA

library-call:
'[operating-system:]function-name@library.dll; ...'

mailto:name@library.dll

CHAPTER 6 SQL Statements

Reference Manual 469

operating-system:
 WindowsNT | UNIX

java-call:
'[package-name.]class-name.method-name method-signature'

method-signature:
([field-descriptor, ...]) return-descriptor

field-descriptor | return-descriptor:
Z | B | S | I | J | F | D | C | V | [descriptor | Lclass-name;

Examples Example 1 Concatenates a firstname string and a lastname string:

CREATE FUNCTION fullname (
firstname CHAR(30),
lastname CHAR(30))

RETURNS CHAR(61)
BEGIN

DECLARE name CHAR(61);
SET name = firstname || ' ' || lastname;
RETURN (name);

END

The following examples illustrate the use of the fullname function.

• To return a full name from two supplied strings, enter:

SELECT fullname ('joe','smith')

• To list the names of all employees, enter:

SELECT fullname (emp_fname, emp_lname)
FROM employee

Example 2 Uses Transact-SQL syntax:

CREATE FUNCTION DoubleIt (@Input INT)

fullname('joe', 'smith')

joe smith

fullname (emp_fname, emp_lname)

Fran Whitney

Matthew Cobb

Philip Chin

Julie Jordan

Robert Breault

...

CREATE FUNCTION statement

470 Sybase IQ

RETURNS INT
AS
DECLARE @Result INT
SELECT @Result = @Input * 2
RETURN @Result

The statement SELECT DoubleIt(5) returns a value of 10.

Example 3 Creates an external function written in Java:

CREATE FUNCTION dba.encrypt(IN name char(254))
RETURNS VARCHAR
EXTERNAL NAME
'Scramble.encrypt (Ljava/lang/String;)Ljava/lang/
String;'
LANGUAGE JAVA

Usage CREATE FUNCTION creates a user-defined function in the database. A function
can be created for another user by specifying an owner name. Subject to
permissions, a user-defined function can be used in exactly the same way as
other nonaggregate functions.

The following describes each clause of the CREATE FUNCTION statement.

CREATE FUNCTION Parameter names must conform to the rules for
database identifiers. They must have a valid SQL data type, and must be
prefixed by IN, signifying that the argument is an expression that provides a
value to the function.

compound-statement A set of SQL statements bracketed by BEGIN and
END, and separated by semicolons. See BEGIN... END statement on page 422

tsql-compound-statement A batch of Transact-SQL statements. See
“Transact-SQL batch overview” on page 814, and CREATE PROCEDURE
statement [T-SQL] on page 491.

EXTERNAL NAME A function using the EXTERNAL NAME clause is a
wrapper around a call to a function in an external library. A function using
EXTERNAL NAME can have no other clauses following the RETURNS clause.
The library name may include the file extension, which is typically .dll on
Windows, and .so on UNIX. In the absence of the extension, the software
appends the platform-specific default file extension for libraries.

For information about external library calls, see “Calling external libraries
from procedures” in Chapter 8, “Using Procedures and Batches” in the Sybase
IQ System Administration Guide.

EXTERNAL NAME LANGUAGE JAVA A function that uses EXTERNAL
NAME with a LANGUAGE JAVA clause is a wrapper around a Java method.

CHAPTER 6 SQL Statements

Reference Manual 471

For information on calling Java procedures, see CREATE PROCEDURE
statement on page 485.

ON EXCEPTION RESUME Use Transact-SQL -like error handling. For
more information, see CREATE PROCEDURE statement on page 485.

NOT DETERMINISTIC A function specified as NOT DETERMINISTIC is re-
evaluated each time it is called in a query. The results of functions not specified
in this manner may be cached for better performance, and re-used each time the
function is called with the same parameters during query evaluation.

Functions that have side effects such as modifying the underlying data should
be declared as NOT DETERMINISTIC. For example, a function that generates
primary key values and is used in an INSERT … SELECT statement should be
declared NOT DETERMINISTIC:

CREATE FUNCTION keygen(increment INTEGER)
RETURNS INTEGER
NOT DETERMINISTIC
BEGIN
DECLARE keyval INTEGER;
UPDATE counter SET x = x + increment;
SELECT counter.x INTO keyval FROM counter;
RETURN keyval

END
INSERT INTO new_table
SELECT keygen(1), ...
FROM old_table

Functions may be declared as DETERMINISTIC if they always return the same
value for given input parameters.

CREATE FUNCTION statement

472 Sybase IQ

Unless they are declared NOT DETERMINISTIC, all user-defined functions
return a consistent result for the same parameters and are free of side effects.
That is, the server assumes that two successive calls to the same function with
the same parameters will return the same result, and will not have any
unwanted side effects on the query's semantics.

Note User-defined functions are processed by Adaptive Server Anywhere.
They do not take advantage of the performance features of Sybase IQ. Queries
that include user-defined functions run at least 10 times slower than queries
without them.

In certain cases, differences in semantics between ASA and Sybase IQ can
produce different results for a query if it is issued in a user-defined function.
For example, Sybase IQ treats the CHAR and VARCHAR data types as distinct
and different, while Anywhere treats CHAR data as if it were VARCHAR.

To modify a user-defined function, or to hide the contents of a function by
scrambling its definition, use the ALTER FUNCTION statement. For more
information, see the Adaptive Server Anywhere SQL Reference.

Side effects

Automatic commit.

Standards • SQL/92 Persistent Stored Module feature.

• Sybase Not supported by Adaptive Server Enterprise.

Permissions Must have RESOURCE authority.

External functions, including Java functions, must have DBA authority.

See also BEGIN... END statement on page 422

CREATE PROCEDURE statement on page 485

DROP statement on page 533

RETURN statement on page 627

Chapter 8, “Using Procedures and Batches,” in the Sybase IQ System
Administration Guide

“ALTER FUNCTION statement” in the Adaptive Server Anywhere SQL
Reference.

CHAPTER 6 SQL Statements

Reference Manual 473

CREATE INDEX statement
Description Creates an index on a specified table, or pair of tables.

Syntax CREATE [UNIQUE] [index-type] INDEX index-name
... ON [owner.]table-name
... (column-name [, column-name] ...)
... [{ IN | ON } dbspace-name]
... [NOTIFY integer]
... [DELIMITED BY ‘separators-string ‘]
... [LIMIT maxwordsize-integer]

Parameters index-type:
{ CMP | HG | HNG | LF | WD | DATE | TIME | DTTM }

Examples • Creates a Compare index on the projected_earnings and current_earnings
columns. These columns are decimal columns with identical precision and
scale.

CREATE
CMP INDEX proj_curr_cmp
ON sales_data
(projected_earnings, current_earnings)

• Creates a High_Group index on the sales_order_items table for the product
ID column:

CREATE HG INDEX item_prod_hg
ON sales_order_items
(prod_id)

• Creates a Low_Fast index on the sales_order_items table for the same
product ID column without any notification messages:

CREATE LF INDEX item_prod
ON sales_order_items
(prod_id)
 NOTIFY 0

• Creates a WD index on the earnings_report table. Specify that the
delimiters of strings are space, colon, semicolon, and period. Limit the
length of the strings to 25.

CREATE WD INDEX earnings_wd
ON earnings_report_table(varchar)
DELIMITED BY ‘ :;.’
LIMIT 25

• Create a DTTM index on the sales_order table for the order_date column.

CREATE INDEX statement

474 Sybase IQ

CREATE DTTM INDEX order_dttm
ON sales_order
(order_date)

Usage The CREATE INDEX statement creates an index on the specified column of the
named table. Once an index is created, it is never referenced in a SQL statement
again except to delete it using the DROP INDEX statement.

For columns in Sybase IQ tables, you can specify an index-type of HG
(High_Group), HNG (High_Non_Group), LF (Low_Fast), WD (Word), DATE,
TIME, or DTTM (Datetime). If you do not specify an index-type, an HG index is
created by default.

To create an index on the relationship between two columns in an IQ table, you
can specify an index-type of CMP (Compare). Columns must be of identical
data type, precision and scale. For a CHAR, VARCHAR, BINARY or VARBINARY
column, precision means that both columns have the same width.

For maximum query speed, the correct type of index for a column depends on:

• The number of unique values in the column

• How the column is going to be used in queries

• The amount of disk space available

The Sybase IQ System Administration Guide describes the index types in detail
and tells how to determine the appropriate index types for your data.

You can specify multiple indexes on a column of an IQ table, but these must be
of different index types. CREATE INDEX does not let you add a duplicate index
type. Sybase IQ chooses the fastest index available for the current query or
portion of the query. However, each additional index type might significantly
add to the space requirements of that table.

column-name Specifies the name of the column to be indexed. A column
name is an identifier preceded by an optional correlation name. (A correlation
name is usually a table name. For more information on correlation names, see
FROM clause on page 553.) If a column name has characters other than letters,
digits, and underscore, enclose it in quotation marks (“”).

When you omit UNIQUE, you can specify only an HG index. Foreign keys
require nonunique HG indexes and composite foreign keys require nonunique
composite HG indexes. The multicolumn composite key for both unique and
nonunique HG indexes has a maximum width of 5300 bytes. CHAR or
VARCHAR data cannot be more than 255 bytes when it is part of a composite
key or single-column HG, LF, HNG, DATE, TIME, or DTTM indexes.

CHAPTER 6 SQL Statements

Reference Manual 475

UNIQUE UNIQUE ensures that no two rows in the table have identical values
in all the columns in the index. Each index key must be unique or contain a
NULL in at least one column. You can create unique HG indexes with more
than one column, but you cannot create multicolumn indexes using other index
types. You cannot specify UNIQUE with the CMP, HNG, WD, DATE, TIME, or
DTTM index types.

Sybase IQ allows the use of NULL in data values on a user created unique
multicolumn HG index, if the column definition allows for NULL values and
a constraint (primary key or unique) is not being enforced. See “Multicolumn
indexes” in “Notes” on page 477 for more information.

Index placement An index is always placed in the same type of dbspace (IQ
Store or Temporary Store) as its table. When you load the index, the data is
spread across any database files of that type with room available. Although the
CREATE INDEX command lets you specify the dbspace-name
IQ_SYSTEM_TEMP or IQ_SYSTEM_MAIN, this option has no real effect
for Sybase IQ indexes. Sybase IQ ensures that any dbspace-name you specify
is appropriate for the index. If you try to specify IQ_SYSTEM_MAIN for
indexes on temporary tables, or vice versa, you receive an error. Dbspace
names are case sensitive for databases created with CASE RESPECT.

DELIMITED BY Specifies separators to use in parsing a column string into
the words to be stored in that column’s WD index. If you omit this clause or
specify the value as an empty string, Sybase IQ uses the default set of
separators. The default set of separators is designed for the default collation
order (ISO-BINENG). It includes all 7-bit ASCII characters that are not 7-bit
ASCII alphanumeric characters, except for the hyphen and the single quotation
mark. The hyphen and the single quotation mark are part of words by default.
There are 64 separators in the default separator set. For example, if the column
value is this string:

The cat is on the mat

and the database was created with the CASE IGNORE setting using default
separators, the following words are stored in the WD index from this string:

cat is mat on the

If you specify multiple DELIMITED BY and LIMIT clauses, no error is returned,
but only the last clause of each type is used.

CREATE INDEX statement

476 Sybase IQ

separators-string The separators string must be a sequence of 0 or more
characters in the collation order used when the database was created. Each
character in the separators string is treated as a separator. If there are no
characters in the separators string, the default set of separators is used. (Each
separator must be a single character in the collation sequence being used.)
There cannot be more than 256 characters (separators) in the separators string.

To specify tab as a delimiter, you can either type a <TAB> character within the
separator string, or use the hexadecimal ASCII code of the tab character, \x09.
“\t” specifies two separators, \ and the letter t. To specify newline as a delimiter,
you can type a <RETURN> character or the hexadecimal ASCII code \x0a.

For example, the clause DELIMITED BY ' :;.\/t' specifies these seven
separators: space : ; . \ / t

Table 6-6: Tab and newline as delimiters

LIMIT Can be used for the creation of the WD index only. Specifies the
maximum word length that is permitted in the WD index. Longer words found
during parsing causes an error. The default is 255 bytes. The minimum
permitted value is 1 and the maximum permitted value is 255. If the maximum
word length specified in the CREATE INDEX statement or determined by
default exceeds the column width, the used maximum word length is silently
reduced to the column width. Using a lower maximum permitted word length
allows insertions, deletions, and updates to use less space and time. The empty
word (two adjacent separators) is silently ignored. After a WD index is created,
any insertions into its column are parsed using the separators and maximum
word size determined at create time. These separators and maximum word size
cannot be changed after the index is created.

NOTIFY Gives notification messages after n records are successfully added
for the index. The messages are sent to the standard output device. A message
contains information about memory usage, database space, and how many
buffers are in use. The default is 100,000 records. To turn off NOTIFY, set it to
0.

For these delimiters
Use this separators string in the
DELIMITED BY clause

tab ' ' (type <TAB>)

or

'\x09'

newline ' ' (type <RETURN>)
or
'\x0a'

CHAPTER 6 SQL Statements

Reference Manual 477

Notes

• Index ownership There is no way to specify the index owner in the
CREATE INDEX statement. Indexes are automatically owned by the owner
of the table on which they are defined. The index name must be unique for
each owner.

• No indexes on views Indexes cannot be created for views.

• Index name The name of each index must be unique for a given table.

• Exclusive table use CREATE INDEX is prevented whenever the
statement affects a table currently being modified by another connection.
However, queries are allowed on a table that is also adding an index.

• CHAR columns After a WD index is created, any insertions into its
column are parsed using the separators, and maximum word size cannot
be changed after the index is created.

For CHAR columns, Sybase recommends that you specify a space as at
least one of the separators or use the default separator set. Sybase IQ
automatically pads CHAR columns to the maximum column width. If your
column contains blanks in addition to the character data, queries on WD
indexed data might return misleading results. For example, column
company_name contains two words delimited by a separator, but the
second word is blank padded:

‘Concord’ ‘Farms ’

Suppose that a user entered the following query:

SELECT COUNT(*)FROM customers WHERE company_name
contains (‘Farms’)

The parser determines that the string contains:

‘Farms ’

instead of:

‘Farms’

and returns 0 instead of 1. You can avoid this problem by using VARCHAR
instead of CHAR columns.

CREATE INDEX statement

478 Sybase IQ

• Data types You cannot use CREATE INDEX to create an index on a
column with BIT data. Only the default index, CMP index, or WD index can
be created on CHAR and VARCHAR data with more than 255 bytes. Only
the default index and CMP index can be created on VARBINARY data with
more than 255 bytes. In addition, you cannot create an HNG index or a
CMP index on a column with FLOAT, REAL, or DOUBLE data. A TIME
index can be created only on a column having the data type TIME. A DATE
index can be created only on a column having the data type DATE. A DTTM
index can be created only on a column having the data type DATETIME or
TIMESTAMP.

• Multicolumn indexes You can create a unique or nonunique HG index
with more than one column. (Sybase IQ implicitly creates a nonunique HG
index on a set of columns that make up a foreign key.) HG and CMP are the
only types of indexes that can have multiple columns. You cannot create a
unique HNG or LF index with more than one column. You cannot create a
DATE, TIME, or DTTM index with more than one column.

The maximum width of a multicolumn concatenated key is 5KB (5300
bytes). The number of columns allowed depends on how many columns
can fit into 1KB. CHAR or VARCHAR data greater than 255 bytes is not
allowed as part of a composite key in single-column HG, LF, HNG, DATE,
TIME, or DTTM indexes.

Multicolumn indexes on base tables are not replicated in join indexes
created using those base tables.

An INSERT on a multicolumn index must include all columns of the index.

Sybase IQ allows the use of NULL in data values on a user created unique
multicolumn HG index, if the column definition allows for NULL values
and a constraint (primary key or unique) is not being enforced. The rules
for this feature are as follows:

• A NULL is treated as an undefined value.

• Multiple rows with NULL value(s) in a unique index column(s) are
allowed.

1 In a single column index, multiple rows with a NULL value in an
index column are allowed.

2 In a multicolumn index, multiple rows with a NULL value in
index column(s) are allowed, as long as non-NULL values in the
rest of the columns guarantee uniqueness in that index.

3 In a multicolumn index, multiple rows with NULL values in all
columns participating in the index are allowed.

CHAPTER 6 SQL Statements

Reference Manual 479

The following examples illustrate these rules. Given the table table1:

CREATE TABLE table1
(c1 INT NULL, c2 INT NULL, c3 INT NOT NULL);

Create a unique single column HG index on a column that allows NULLs:

CREATE UNIQUE HG INDEX c1_hg1 ON table1 (c1);

According to rule 1 above, you can insert a NULL value into an index
column in multiple rows:

INSERT INTO table1(c1,c2,c3) VALUES (NULL,1,1);
INSERT INTO table1(c1,c2,c3) VALUES (NULL,2,2);

Create a unique multicolumn HG index on a columns that allows NULLs:

CREATE UNIQUE HG INDEX c1c2_hg2 ON table1(c1,c2);

According to rule 2 above, you must guarantee uniqueness in the index.
The following INSERT does not succeed, since the multicolumn index
c1c2_hg2 on row 1 and row 3 has the same value:

INSERT INTO table1(c1,c2,c3) VALUES (NULL,1,3);

The following INSERT operations are successful, however, according to
rules 1 and 3:

INSERT INTO table1(c1,c2,c3) VALUES (NULL,NULL,3);
INSERT INTO table1(c1,c2,c3) VALUES (NULL,NULL,4);

Uniqueness is preserved in the multicolumn index.

The following UPDATE operation is successful, as rule 3 allows multiple
rows with NULL values in all columns in the multicolumn index:

UPDATE table1 SET c2=NULL WHERE c3=1

When a multicolumn HG index is governed by a unique constraint, a
NULL value is not allowed in any column participating in the index.

CREATE INDEX statement

480 Sybase IQ

• Parallel index creation You can use the BEGIN PARALLEL IQ ... END
PARALLEL IQ statement to group CREATE INDEX statements on multiple
IQ tables, so that they execute as though they are a single DDL statement.
See BEGIN PARALLEL IQ ... END PARALLEL IQ statement on page
425 for more information.

 Warning! Using the CREATE INDEX command on a local temporary table
containing uncommitted data fails and generates the following error message:
“Local temporary table, <tablename>, must be committed in order to create an
index.” Commit the data in the local temporary table before creating an index.

Side effects

Automatic commit.

Standards • SQL92 Vendor extension.

• Sybase Adaptive Server Enterprise has a more complex CREATE INDEX
statement than Sybase IQ. While the Adaptive Server Enterprise syntax is
permitted in Sybase IQ, some clauses and keywords are ignored. For the
full syntax of the Adaptive Server Enterprise CREATE INDEX statement,
see the Adaptive Server Enterprise Reference Manual, Volume 2:
Commands.

Adaptive Server Enterprise indexes can be either clustered or nonclustered.
A clustered index almost always retrieves data faster than a nonclustered index.
Only one clustered index is permitted per table.

Sybase IQ does not support clustered indexes. The CLUSTERED and
NONCLUSTERED keywords are allowed by SQL Anywhere, but are ignored
by Sybase IQ. If no index-type is specified, Sybase IQ creates an HG index on
the specified column(s).

Sybase IQ does not permit the DESC keyword.

Sybase IQ also allows, by ignoring, the following keywords:

• FILLFACTOR

• IGNORE_DUP_KEY

• SORTED_DATA

• IGNORE_DUP_ROW

• ALLOW_DUP_ROW

• ON

CHAPTER 6 SQL Statements

Reference Manual 481

Index names must be unique on a given table for both Sybase IQ and Adaptive
Server Enterprise.

Permissions Must be the owner of the table or have DBA authority.

See also CREATE JOIN INDEX statement on page 481

DROP statement on page 533

INDEX_PREFERENCE option on page 88

Chapter 6, “Using Sybase IQ Indexes,” in the Sybase IQ System
Administration Guide.

CREATE JOIN INDEX statement
Description Creates a join index, which defines a group of tables that are prejoined through

specific columns, to improve performance of queries using tables in a join
operation.

Syntax CREATE JOIN INDEX join-index-name FOR join-clause

Parameters join-clause:
[(] join-expression join-type join-expression
[ON search-condition] [)]

join-expression:
{ table-name | join-clause }

join-type:
[NATURAL] FULL [OUTER] JOIN

search-condition:
[(] search-expression [AND search-expression] [)]

search-expression:
[(] [table-name.] column-name = [table-name.] column-name [)]

Examples This example creates a join index between the department and employee tables
using the dept_id column, which is the primary key for department and foreign
key for employee.

CREATE JOIN INDEX emp_dept_join
FOR department FULL OUTER JOIN employee
ON department.dept_id = employee.dept_id

CREATE JOIN INDEX statement

482 Sybase IQ

Usage CREATE JOIN INDEX creates a join index on the specified columns of the
named tables. Once a join index is created, it is never referenced again except
to delete it using DROP JOIN INDEX or to synchronize it using SYNCHRONIZE
JOIN INDEX. This statement supports joins only of type FULL OUTER; the
OUTER keyword is optional.

Note In a Sybase IQ multiplex, always perform CREATE JOIN INDEX in
single-node mode on the write server, then synchronize query servers. CREATE
JOIN INDEX returns an error instead of propagating from write server to query
server.

ON References only columns from two tables. One set of columns must be
from a single table in the left subtree and the other set of columns must be from
a table in the right subtree. The only predicates supported are equijoin
predicates. Sybase IQ does not allow single-variable predicates, intra-column
comparisons, or nonequality joins.

Join index columns must have identical data type, precision, and scale.

To specify a multipart key, include more than one predicate linking the two
tables connected by a logical AND. A disjunct ON clause is not supported; that
is, Sybase IQ does not permit a logical OR of join predicates. Also, the ON
clause does not accept a standard WHERE clause, so you cannot specify an
alias.

You can use the NATURAL keyword instead of an ON clause. A NATURAL
join is one that pairs columns up by name and implies an equijoin. If the
NATURAL join generates predicates involving more than one pair of tables,
CREATE JOIN INDEX returns an error. You can specify NATURAL or ON, but
not both.

CREATE JOIN INDEX looks for a primary-key-to-foreign-key relationship in
the tables to determine the direction of the one-to-many relationship. (The
direction of a one-to-one relationship is not important.) The primary key is
always the “one” and the foreign key is always the “many”. If such information
is not defined, Sybase IQ assumes the subtree on the left is the “one” while the
subtree on the right is the “many”. If the opposite is true, CREATE JOIN INDEX
returns an error.

Note Query optimizations for all joins rely heavily on underlying primary
keys. They do not require foreign keys. However, you can benefit from using
foreign keys. Sybase IQ enforces foreign keys if you set up your loads to check
for primary key-foreign key relationships.

CHAPTER 6 SQL Statements

Reference Manual 483

Join index tables must be Sybase IQ base tables. They cannot be temporary
tables, remote tables, or proxy tables.

Multicolumn indexes on base tables are not replicated in join indexes created
using those base tables.

A star-join index is one in which a single table at the center of the star is joined
to multiple tables in a one-to-many relationship. To define a star-join index,
you must define single-column key and primary keys, and then use the key join
syntax in the CREATE JOIN INDEX statement. Sybase IQ does not support star-
join indexes that use multiple join key columns for any join.

The FLOAT_AS_DOUBLE option, which defaults to OFF, must be set ON for
JDBC and client connections for CREATE JOIN INDEX statements to succeed.

If a join column is a REAL datatype, however, you must set
FLOAT_AS_DOUBLE to OFF when creating join indexes, or an error occurs.
Issues might also result from using inexact numerics for join columns.

Note You must explicitly grant permissions on the underlying “join virtual
table” to other users in your group before they can manipulate tables in the join.
For information on granting privileges on the join virtual table, see “Inserting
or deleting from tables in a join index” in Chapter 6, “Using Sybase IQ
Indexes” in the Sybase IQ System Administration Guide.

Side effects

Automatic commit.

Standards • SQL92 Intermediate-level feature.

• Sybase Not supported by Adaptive Server Enterprise.

Permissions Must have DBA authority or have RESOURCE authority and be the owner of
all tables involved in the join.

See also CREATE INDEX statement on page 473

CREATE TABLE statement on page 499

Chapter 6, “Using Sybase IQ Indexes,” in Sybase IQ System Administration
Guide.

CREATE MESSAGE statement [T-SQL]

484 Sybase IQ

CREATE MESSAGE statement [T-SQL]
Description Adds a user-defined message to the SYSUSERMESSAGES system table for use

by PRINT and RAISERROR statements.

Syntax CREATE MESSAGE message-number
... AS 'message-text'

Usage CREATE MESSAGE associates a message number with a message string. The
message number can be used in PRINT and RAISERROR statements.

• message_number The message number of the message to add. The
message number for a user-defined message must be 20000 or greater.

• message_text The text of the message to add. The maximum length is
255 bytes. PRINT and RAISERROR recognize placeholders in the message
text to print out. A single message can contain up to 20 unique
placeholders in any order. These placeholders are replaced with the
formatted contents of any arguments that follow the message when the text
of the message is sent to the client.

Placeholders are numbered to allow reordering of the arguments when
translating a message to a language with a different grammatical structure.
A placeholder for an argument appears as “%nn!”—a percent sign (%),
followed by an integer from 1 to 20, followed by an exclamation mark
(!)—where the integer represents the position of the argument in the
argument list, “%1!” is the first argument, “%2!” is the second argument,
and so on.

There is no parameter corresponding to the language argument for
sp_addmessage.

Side effects

Automatic commit.

Standards • SQL92 Vendor extension.

• Sybase The functionality of CREATE MESSAGE is provided by the
sp_addmessage procedure in Adaptive Server Enterprise.

Permissions Must have RESOURCE authority.

See also PRINT statement [T-SQL] on page 613

RAISERROR statement [T-SQL] on page 616

CHAPTER 6 SQL Statements

Reference Manual 485

CREATE PROCEDURE statement
Description Creates a new procedure in the database.

Syntax CREATE PROCEDURE [owner.]procedure-name ([parameter , ...]) {
[RESULT (result-column, ...) | NO RESULT SET] [ON EXCEPTION
RESUME] compound statement | AT location-string | | [DYNAMIC
RESULT SETS integer-expression]
[EXTERNAL NAME java-call LANGUAGE JAVA]
}

Parameters parameter:
parameter_mode parameter-name data-type [DEFAULT expression]
| SQLCODE
| SQLSTATE

parameter_mode:
IN | OUT | INOUT

result-column:
 column-name data-type

library-call:
'function-name@library.dll; ...'

java-call:
'[package-name.]class-name.method-name method-signature'

method-signature:
([field-descriptor,...]) return-descriptor

field-descriptor | return-descriptor:
Z | B | S | I | J | F | D | C | V | [descriptor | Lclass-name;

Examples • This procedure uses a case statement to classify the results of a query.

CREATE PROCEDURE ProductType (IN product_id INT, OUT
type CHAR(10))
BEGIN

DECLARE prod_name CHAR(20) ;
SELECT name INTO prod_name FROM "DBA"."product"
WHERE id = product_id;
CASE prod_name
WHEN 'Tee Shirt' THEN

SET type = 'Shirt'
WHEN 'Sweatshirt' THEN

SET type = 'Shirt'
WHEN 'Baseball Cap' THEN

SET type = 'Hat'
WHEN 'Visor' THEN

mailto:name@library.dll

CREATE PROCEDURE statement

486 Sybase IQ

SET type = 'Hat'
WHEN 'Shorts' THEN

SET type = 'Shorts'
ELSE

SET type = 'UNKNOWN'
END CASE ;

END

• This procedure uses a cursor and loops over the rows of the cursor to return
a single value.

CREATE PROCEDURE TopCustomer (OUT TopCompany CHAR(35),
OUT TopValue INT)
BEGIN

DECLARE err_notfound EXCEPTION
FOR SQLSTATE '02000' ;
DECLARE curThisCust CURSOR FOR
SELECT company_name, CAST(

sum(sales_order_items.quantity *
product.unit_price) AS INTEGER) VALUE
FROM customer
LEFT OUTER JOIN sales_order
LEFT OUTER JOIN sales_order_items
LEFT OUTER JOIN product
GROUP BY company_name ;

DECLARE ThisValue INT ;
DECLARE ThisCompany CHAR(35) ;
SET TopValue = 0 ;
OPEN curThisCust ;
CustomerLoop:
LOOP

FETCH NEXT curThisCust
INTO ThisCompany, ThisValue ;
IF SQLSTATE = err_notfound THEN

LEAVE CustomerLoop ;
END IF ;
IF ThisValue > TopValue THEN

SET TopValue = ThisValue ;
SET TopCompany = ThisCompany ;
END IF ;

END LOOP CustomerLoop ;
CLOSE curThisCust ;

END

CHAPTER 6 SQL Statements

Reference Manual 487

Usage CREATE PROCEDURE creates a procedure in the database. Users with DBA
authority can create procedures for other users by specifying an owner. A
procedure is invoked with a CALL statement.

The body of a procedure consists of a compound statement. For information on
compound statements, see BEGIN... END statement on page 422.

CREATE PROCEDURE Parameter names must conform to the rules for
other database identifiers such as column names. They must be a valid SQL
data type (see Chapter 4, “SQL Data Types”), and must be prefixed by IN,
OUT or INOUT. The keywords have the following meanings:

• IN The parameter is an expression that provides a value to the procedure.

• OUT The parameter is a variable that could be given a value by the
procedure.

• INOUT The parameter is a variable that provides a value to the
procedure, and could be given a new value by the procedure.

When procedures are executed using CALL, not all parameters need to be
specified. If a default value is provided in the CREATE PROCEDURE
statement, missing parameters are assigned the default values. If an argument
is not provided in the CALL statement, and no default is set, an error is given.

SQLSTATE and SQLCODE are special parameters that output the SQLSTATE or
SQLCODE value when the procedure ends (they are OUT parameters). Whether
or not a SQLSTATE and SQLCODE parameter is specified, the SQLSTATE and
SQLCODE special values can always be checked immediately after a procedure
call to test the return status of the procedure.

The SQLSTATE and SQLCODE special values are modified by the next SQL
statement. Providing SQLSTATE or SQLCODE as procedure arguments allows
the return code to be stored in a variable.

RESULT The RESULT clause declares the number and type of columns in the
result set. The parenthesized list following the RESULT keyword defines the
result column names and types. This information is returned by the Embedded
SQL DESCRIBE or by ODBC SQLDescribeCol when a CALL statement is being
described. Allowed data types are listed in Chapter 4, “SQL Data Types.”

For more information on returning result sets from procedures, see Chapter 8,
“Using Procedures and Batches” in the Sybase IQ System Administration
Guide.

Some procedures can return more than one result set, with different numbers
of columns, depending on how they are executed. For example, the following
procedure returns two columns under some circumstances, and one in others.

CREATE PROCEDURE statement

488 Sybase IQ

CREATE PROCEDURE names(IN formal char(1))
BEGIN

IF formal = 'n' THEN
SELECT emp_fname
FROM employee

ELSE
SELECT emp_lname,emp_fname
FROM employee

END IF
END

Procedures with variable result sets must be written without a RESULT clause,
or in Transact-SQL. Their use is subject to the following limitations:

• Embedded SQL You must DESCRIBE the procedure call after the cursor
for the result set is opened, but before any rows are returned, in order to
get the proper shape of result set. The CURSOR cursor-name clause on the
DESCRIBE statement is required.

• ODBC Variable result-set procedures can be used by ODBC
applications. The proper description of the result sets is carried out by the
ODBC driver.

• Open Client applications Variable result-set procedures can be used by
Open Client applications.

If your procedure returns only one result set, use a RESULT clause. The
presence of this clause prevents ODBC and Open Client applications from
describing the result set again after a cursor is open.

To handle multiple result sets, ODBC must describe the currently executing
cursor, not the procedure’s defined result set. Therefore, ODBC does not
always describe column names as defined in the RESULT clause of the
procedure definition. To avoid this problem, use column aliases in the SELECT
statement that generates the result set.

NO RESULT SET This clause declares that this procedure returns no result
set. This is useful when an external environment needs to know that a
procedure does not return a result set.

ON EXCEPTION RESUME This clause enables Transact-SQL -like error
handling to be used within a Watcom-SQL syntax procedure.

If you use ON EXCEPTION RESUME, the procedure takes an action that
depends on the setting of the ON_TSQL_ERROR option. If ON_TSQL_ERROR
is set to CONDITIONAL (which is the default) the execution continues if the
next statement handles the error; otherwise, it exits.

CHAPTER 6 SQL Statements

Reference Manual 489

Error-handling statements include the following:

• IF

• SELECT @variable =

• CASE

• LOOP

• LEAVE

• CONTINUE

• CALL

• EXECUTE

• SIGNAL

• RESIGNAL

• DECLARE

• SET VARIABLE

Do not use explicit error-handling code with an ON EXCEPTION RESUME
clause.

For more information, see “ON_TSQL_ERROR option [TSQL]” on page 128.

AT location-string Create a proxy stored procedure on the current database
for a remote procedure specified by location-string. The AT clause supports the
semicolon (;) as a field delimiter in location-string. If no semicolon is present,
a period is the field delimiter. This allows file names and extensions to be used
in the database and owner fields.

For example, the following statement creates the proxy procedure remotewho
that calls the dbo.sp_who procedure on the master database of the bostonase
server:

CREATE PROCEDURE remotewho ()
AT 'bostonase.master.dbo.sp_who'

Remote procedures can return only up to 254 characters in output variables.

For information on remote servers, see CREATE SERVER statement on page
494. For information on using remote procedures, see the section “Using
remote procedure calls (RPCs)” in Chapter 16, “Accessing Remote Data” in
the Sybase IQ System Administration Guide.

CREATE PROCEDURE statement

490 Sybase IQ

DYNAMIC RESULT SETS This clause is for use with procedures that are
wrappers around Java methods. If the DYNAMIC RESULT SETS clause is not
provided, it is assumed that the method returns no result set.

EXTERNAL NAME LANGUAGE JAVA A procedure that uses EXTERNAL
NAME with a LANGUAGE JAVA clause is a wrapper around a Java method.

If the number of parameters is less than the number indicated in the method-
signature, the difference must equal the number specified in DYNAMIC
RESULT SETS, and each parameter in the method signature in excess of those
in the procedure parameter list must have a method signature of [Ljava/sql/
ResultSet;.

Java method signatures A Java method signature is a compact character
representation of the types of the parameters and the type of the return value.

The meanings of field-descriptor and return-descriptor are listed in Table 6-7.

Table 6-7: Java method signatures

For example:

double some_method(
 boolean a,
 int b,
 java.math.BigDecimal c,
 byte [][] d,
 java.sql.ResultSet[] d) {
}

would have the following signature:

Field type Java data type

B byte

C char

D double

F float

I int

J long

Lclass-name; an instance of the class class-name. The class name must be
fully qualified, and any dot in the name must be replaced by a
/. For example, java/lang/String

S short

V void

Z boolean

[use one for each dimension of an array

CHAPTER 6 SQL Statements

Reference Manual 491

'(ZILjava/math/BigDecimal;[[B[Ljava/sql/ResultSet;)D'

Note As procedures are dropped and created, databases created prior to Sybase
IQ 12.6 may eventually reach the maximum proc_id limit of 32767, causing
CREATE PROCEDURE to return an “Item already exists” error in Sybase IQ
12.6. For workaround, see “Insufficient procedure identifiers,” Sybase IQ
Troubleshooting and Recovery Guide.

Side effects

Automatic commit.

Standards • SQL92 Persistent Stored Module feature.

• Sybase The Transact-SQL CREATE PROCEDURE statement is
different.

• SQLJ The syntax extensions for Java result sets are as specified in the
proposed SQLJ1 standard.

Permissions Must have RESOURCE authority. For external procedures, must have DBA
authority.

See also BEGIN... END statement on page 422

CALL statement on page 429

DROP statement on page 533

EXECUTE IMMEDIATE statement [ESQL] [SP] on page 544

GRANT statement on page 559

“Copy Definition utility (defncopy)” in Chapter 3, “Database Administration
Utilities” of the Sybase IQ Utility Guide

CREATE PROCEDURE statement [T-SQL]
Description Creates a new procedure in the database in a manner compatible with Adaptive

Server Enterprise.

Syntax The following subset of the Transact-SQL CREATE PROCEDURE statement is
supported in Sybase IQ.

CREATE PROCEDURE [owner.]procedure_name
... [[(] @parameter_name data-type [= default] [OUTPUT] [, ..] [)]]
...[WITH RECOMPILE]

CREATE PROCEDURE statement [T-SQL]

492 Sybase IQ

...AS

...statement-list

Usage The following differences between Transact-SQL and Sybase IQ statements
are listed to help those writing in both dialects.

• Variable names prefixed by @ The “@” sign denotes a Transact-SQL
variable name, while Sybase IQ variables can be any valid identifier, and
the @ prefix is optional.

• Input and output parameters Sybase IQ procedure parameters are
specified as IN, OUT, or INOUT, while Transact-SQL procedure parameters
are INPUT parameters by default or can be specified as OUTPUT. Those
parameters that would be declared as INOUT or as OUT in Sybase IQ
should be declared with OUTPUT in Transact-SQL.

• Parameter default values Sybase IQ procedure parameters are given a
default value using the keyword DEFAULT, while Transact-SQL uses an
equality sign (=) to provide the default value.

• Returning result sets Sybase IQ uses a RESULT clause to specify
returned result sets. In Transact-SQL procedures, the column names or
alias names of the first query are returned to the calling environment.

CREATE PROCEDURE showdept @deptname varchar(30)
AS

SELECT employee.emp_lname, employee.emp_fname
FROM department, employee
WHERE department.dept_name = @deptname
AND department.dept_id = employee.dept_id

The following is the corresponding Sybase IQ procedure:

CREATE PROCEDURE showdept(in deptname
varchar(30))

RESULT (lastname char(20), firstname char(20))
ON EXCEPTION RESUME
BEGIN

SELECT employee.emp_lname, employee.emp_fname
FROM department, employee
WHERE department.dept_name = deptname
AND department.dept_id = employee.dept_id

END

• Procedure body The body of a Transact-SQL procedure is a list of
Transact-SQL statements prefixed by the AS keyword. The body of a
Sybase IQ procedure is a compound statement, bracketed by BEGIN and
END keywords.

CHAPTER 6 SQL Statements

Reference Manual 493

Side effects

Automatic commit.

Standards • SQL92 Transact-SQL extension.

• Sybase Sybase IQ supports a subset of the Adaptive Server Enterprise
CREATE PROCEDURE statement syntax.

If the Transact-SQL WITH RECOMPILE optional clause is supplied, it is
ignored. Adaptive Server Anywhere always recompiles procedures the
first time they are executed after a database is started, and stores the
compiled procedure until the database is stopped.

Groups of procedures are not supported.

Permissions Must have RESOURCE authority.

See also CREATE PROCEDURE statement on page 485

“Copy Definition utility (defncopy)” in Chapter 3, “Database Administration
Utilities” of the Sybase IQ Utility Guide

CREATE SCHEMA statement
Description Creates a schema, which is a collection of tables, views, and permissions and

their associated permissions, for a database user.

Syntax CREATE SCHEMA AUTHORIZATION userid
... [{ create-table-statement
| create-view-statement
| grant-statement }]...

Usage The userid must be the user ID of the current connection. You cannot create a
schema for another user. The user ID is not case sensitive.

If any of the statements in the CREATE SCHEMA statement fail, the entire
CREATE SCHEMA statement is rolled back.

CREATE SCHEMA statement is simply a way to collect individual CREATE and
GRANT statements into one operation. There is no SCHEMA database object
created in the database, and to drop the objects you must use individual DROP
TABLE or DROP VIEW statements. To revoke permissions, use a REVOKE
statement for each permission granted.

Note The CREATE SCHEMA statement is invalid on an active multiplex.

CREATE SERVER statement

494 Sybase IQ

Individual CREATE or GRANT statements are not separated by statement
delimiters. The statement delimiter marks the end of the CREATE SCHEMA
statement itself.

The individual CREATE or GRANT statements must be ordered such that the
objects are created before permissions are granted on them.

Although you can currently create more than one schema for a user, this is not
recommended, and might not be supported in future releases.

Side effects

Automatic commit.

Standards • SQL92 Entry-level feature.

• Sybase Sybase IQ does not support the use of REVOKE statements
within the CREATE SCHEMA statement, and does not allow its use within
Transact-SQL batches or procedures.

Permissions Must have RESOURCE authority.

See also CREATE TABLE statement on page 499

CREATE VIEW statement on page 512

GRANT statement on page 559

CREATE SERVER statement
Description Adds a server to the sysservers table.

Syntax CREATE SERVER server-name
CLASS 'server-class'
USING 'connection-info'
[READ ONLY]

Parameters server-class:
{ ASAJDBC| ASEJDBC
| ASAODBC | ASEODBC
 | DB2ODBC | MSSODBC
| ORAODBC | ODBC}

connection-info:
{ machine-name:port-number [/dbname] | data-source-name }

Examples • Creates a remote server for the JDBC-based Adaptive Server named
ase_prod. Its machine name is “banana” and port number is 3025.

CHAPTER 6 SQL Statements

Reference Manual 495

CREATE SERVER ase_prod
CLASS 'asejdbc'
USING 'banana:3025'

• Creates an Adaptive Server Anywhere remote server named testasa,
located on the machine “apple,” and listening on port number 2638. Use:

CREATE SERVER testasa
CLASS 'asajdbc'
USING 'apple:2638'

• Create a remote server for the Oracle server named oracle723. Its ODBC
Data Source Name is “oracle723.”

CREATE SERVER oracle723
CLASS 'oraodbc'
USING 'oracle723'

Usage CREATE SERVER defines a remote server from the Sybase IQ catalogs.

For more information on server classes and how to configure a server, see
Chapter 17, “Server Classes for Remote Data Access” in the Sybase IQ System
Administration Guide.

USING clause If a JDBC-based server class is used, the USING clause is
hostname:port-number [/dbname] where:

• hostname Is the machine on which the remote server runs.

• portnumber Is the TCP/IP port number on which the remote server
listens. The default port number for Sybase IQ and Adaptive Server
Anywhere is 2638.

• dbname For Adaptive Server Anywhere remote servers, if you do not
specify a dbname, the default database is used. For Adaptive Server
Enterprise, the default is the master database, and an alternative to using
dbname is to another database by some other means (for example, in the
FORWARD TO statement).

For more information, see “JDBC-based server classes” in the Sybase IQ
System Administration Guide.

If an ODBC-based server class is used, the USING clause is the data-source-
name. The data-source-name is the ODBC Data Source Name.

READ ONLY The READ ONLY clause specifies that the remote server is a
read-only data source. Any update request is rejected by Sybase IQ.

Side effects

Automatic commit.

CREATE SERVICE statement

496 Sybase IQ

Standards • SQL92 Entry-level feature.

• Sybase Supported by Open Client/Open Server.

Permissions Must have RESOURCE authority.

See also “ALTER SERVER statement” on page 405

“DROP SERVER statement” on page 538

CREATE SERVICE statement
Description Permits a database server to act as a Web server.

Syntax CREATE SERVICE service-name
TYPE service-type-string
[attributes] [
AS statement]

Parameters attributes:
[AUTHORIZATION { ON
| OFF }] [SECURE
 { ON | OFF }] [USER { user-name | NULL } [] URL [PATH] { ON | OFF |
ELEMENTS }] [USING { SOAP-prefix | NULL }]

service-type-string:
 { 'RAW ' | 'HTML ' |
'XML ' |
'SOAP ' |
' DISH ' }

service-name Web service names may be any sequence of alphanumeric
characters or "/", "-", "_", ".", "!", "~", "*", "'", "(", or "")", except that the first
character cannot begin with a slash (/) and the name cannot contain two or more
consecutive slash characters.

service-type-string Identifies the type of the service. The type must be one
of the listed service types. There is no default value.

CHAPTER 6 SQL Statements

Reference Manual 497

AUTHORIZATION clause Determines whether users must specify a user
name and password when connecting to the service. If authorization is OFF, the
AS clause is required and a single user must be identified by the USER clause.
All requests are run using that user's account and permissions.

If authorization is ON, all users must provide a user name and password.
Optionally, you can limit the users that are permitted to use the service by
providing a user or group name using the USER clause. If the user name is
NULL, all known users can access the service.

The default value is ON. Sybase recommends that production systems be
run with authorization turned on and that you grant permission to use the
service by adding users to a group.

SECURE clause Indicates whether unsecure connections are accepted. ON
indicates that only HTTPS connections are to be accepted. Service requests
received on the HTTP port are automatically redirected to the HTTPS port. If
set to OFF, both HTTP and HTTPS connections are accepted. The default value
is OFF.

USER clause If authorization is disabled, this parameter becomes mandatory
and specifies the user id used to execute all service requests. If authorization is
enabled (the default), this optional clause identifies the user or group permitted
access to the service. The default value is NULL, which grants access to all
users.

URL clause Determines whether URI paths are accepted and, if so, how they
are processed. OFF indicates that nothing must follow the service name in a
URI request. ON indicates that the remainder of the URI is interpreted as the
value of a variable named url. ELEMENTS indicates that the remainder of the
URI path is to be split at the slash characters into a list of up to 10 elements.
The values are assigned to variables named url plus a numeric suffix of
between 1 and 10; for example, the first three variable names are url1, url2,
and url3. If fewer than 10 values are supplied, the remaining variables are set
to NULL. If the service name ends with the character /, then URL must be set
to OFF. The default value is OFF.

USING clause This clause applies only to DISH services. The parameter
specifies a name prefix. Only SOAP services whose names begin with this
prefix are handled.

CREATE SERVICE statement

498 Sybase IQ

statement If the statement is NULL, the URI must specify the statement to
be executed. Otherwise, the specified SQL statement is the only one that can
be executed through the service. The statement is mandatory for SOAP
services, and ignored for DISH services. The default value is NULL.

Sybase strongly recommends that all services run in production systems
define a statement. The statement can be NULL only if authorization is
enabled.

RAW The result set is sent to the client without any further formatting. You
can produce formatted documents by generating the required tags explicitly
within your procedure, as demonstrated in an example, below.

HTML The result set of a statement or procedure is automatically formatted
into an HTML document that contains a table.

XML The result set is assumed to be in XML format. If it is not already so, it
is automatically converted to XML RAW format.

SOAP The request must be a valid Simple Object Access Protocol, or SOAP,
request. The result set is automatically formatted as a SOAP response. For
more information about the SOAP standards, see www.w3.org/TR/SOAP at http:/
/www.w3.org/TR/SOAP.

DISH A Determine SOAP Handler, or DISH, service acts as a proxy for one
or more SOAP services. In use, it acts as a container that holds and provides
access to a number of SOAP services. A Web Services Description Language
(WSDL) file is automatically generated for each of the included SOAP
services. The included SOAP services are identified by a common prefix,
which must be specified in the USING clause.

The create service statement causes the database server to act as a web
server. A new entry is created in the SYSWEBSERVICE system table.

Examples Example 1 To set up a Web server quickly, start a database server with the -xs
switch, then execute the following statement:

CREATE SERVICE tables TYPE 'HTML'
AUTHORIZATION OFF USER DBA
AS SELECT * FROM SYS.SYSTABLE

After executing this statement, use any Web browser to open the URL http://
localhost/tables.

Example 2 The following example demonstrates how to write a Hello World
program.

CREATE PROCEDURE hello_world_proc RESULT (html_doc long
varchar) BEGIN CALL dbo.sa_set_http_header('Content-

http://www.w3.org/TR/SOAP
http://www.w3.org/TR/SOAP
http://localhost/tables
http://localhost/tables

CHAPTER 6 SQL Statements

Reference Manual 499

Type', 'text/html'); SELECT '<html>\n' ||
'<head><title>Hello World</title></head>\n' ||
'<body>\n' || '<h1>Hello World!</h1>\n' ||
'</body>\n' || '</html>\n'; END;

CREATE SERVICE hello_world TYPE 'RAW' AUTHORIZATION OFF
USER DBA AS CALL hello_world_proc;

Usage The create service statement causes the database server to act as a web server.
A new entry is created in the SYSWEBSERVICE system table.

Standards • SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise.

Permissions Must have DBA authority.

See also “ALTER SERVICE statement” on page 407

“DROP SERVICE statement” on page 539

“Using the Built-in Web Server” in Adaptive Server Anywhere Database
Administration Guide.

CREATE TABLE statement
Description Creates a new table in the database or on a remote server.

Syntax CREATE [GLOBAL TEMPORARY] TABLE [owner.]table-name
... (column-definition [column-constraint]...
[, column-definition [column-constraint]...]
[, table-constraint]...)
... [{ IN | ON } dbspace-name]
... [ON COMMIT { DELETE | PRESERVE } ROWS
| NOT TRANSACTIONAL]
[AT location-string]

Parameters column-definition:
column-name data-type [[NOT] NULL] [DEFAULT default-value |
IDENTITY]

CREATE TABLE statement

500 Sybase IQ

default-value:
special-value
| string
| global variable
| [-] number
| (constant-expression)
| built-in-function(constant-expression)
| AUTOINCREMENT
| CURRENT DATABASE
| CURRENT REMOTE USER
| NULL
| TIMESTAMP
| LAST USER

special-value:
CURRENT { DATE | TIME | TIMESTAMP | USER | PUBLISHER }
| USER

column-constraint:
{ UNIQUE
| PRIMARY KEY
| REFERENCES table-name [(column-name)] [actions]
| CHECK (condition)
| IQ UNIQUE (integer) }

table-constraint:
{ UNIQUE (column-name [, column-name]...)
| PRIMARY KEY (column-name [, column-name]...)
| CHECK (condition)
| foreign-key-constraint }

foreign-key-constraint:
 FOREIGN KEY [role-name]
[(column-name [, column-name]...)]
... REFERENCES table-name [(column-name [, column-name]...)]
... [action] [

action:
ON { UPDATE | DELETE { RESTRICT }

location-string:
{ remote-server-name.[db-name].[owner].object-name
| remote-server-name;[db-name];[owner];object-name }

Examples • Creates a table for a library database to hold book information:

CHAPTER 6 SQL Statements

Reference Manual 501

CREATE TABLE library_books (

isbn CHAR(20) PRIMARY KEY IQ UNIQUE (150000),

copyright_date DATE,

title CHAR(100),

author CHAR(50)

)

• Creates a table for a library database to hold information on borrowed
books:

CREATE TABLE borrowed_book (

date_borrowed DATE NOT NULL,

date_returned DATE,

book CHAR(20)

 REFERENCES library_books (isbn),

CHECK(date_returned >= date_borrowed)

)

• Creates a table named t1at the remote server SERVER_A and create a
proxy table named t1 that is mapped to the remote table:

CREATE TABLE t1
(a INT,
 b CHAR(10))
AT 'SERVER_A.db1.joe.t1'

• Creates a table named tab1 that contains a column c1 with a default value
of the special constant LAST USER:

CREATE TABLE tab1(c1 CHAR(20) LAST USER)

Usage You can create a table for another user by specifying an owner name. If
GLOBAL TEMPORARY is not specified, the table is referred to as a base table.
Otherwise, the table is a temporary table.

A created global temporary table exists in the database like a base table and
remains in the database until it is explicitly removed by a DROP TABLE
statement. The rows in a temporary table are visible only to the connection that
inserted the rows. Multiple connections from the same or different applications
can use the same temporary table at the same time and each connection sees
only its own rows. A given connection inherits the schema of a global
temporary table as it exists when the connection first refers to the table. The
rows of a temporary table are deleted when the connection ends.

When you create a local temporary table, omit the owner specification. If you
specify an owner when creating a temporary table, as, for example, with
CREATE TABLE dbo.#temp(col1 int), a base table is incorrectly created.

CREATE TABLE statement

502 Sybase IQ

You cannot use a temporary table to create a join index.

Also, you cannot update a base table that is part of any join index. If you do,
you see the following error message:

-1000102 Cannot update table %2 because it is defined
in one or more join indexes

IN Specifies in which database file (dbspace) the table is to be created. You
can specify SYSTEM with this clause to put either a permanent or temporary
table in the Catalog Store. All other use of the IN clause is ignored. You cannot
use this clause to place an IQ table in a particular dbspace. By default, all
permanent tables are placed in the main IQ Store, and all temporary tables are
placed in the Temporary IQ Store. Global temporary tables can never be in the
IQ Store.

Note While executing CREATE TABLE statements propagated from a
multiplex write server, Sybase IQ resolves conflicts by renaming any existing
query server persistent objects that have the same names as proposed objects.
See “Resolving static collisions” in Chapter 5, “Working with Database
Objects” in the Sybase IQ System Administration Guide.

For more information about dbspaces, see CREATE DBSPACE statement on
page 453.

ON COMMIT Allowed for temporary tables only. By default, the rows of a
temporary table are deleted on COMMIT.

NOT TRANSACTIONAL Allowed only for temporary tables. A table created
using NOT TRANSACTIONAL is not affected by either COMMIT or ROLLBACK.

The NOT TRANSACTIONAL clause provides performance improvements in
some circumstances because operations on nontransactional temporary tables
do not cause entries to be made in the rollback log. For example, NOT
TRANSACTIONAL might be useful if procedures that use the temporary table
are called repeatedly with no intervening COMMITs or ROLLBACKs.

The parenthesized list following the CREATE TABLE statement can contain the
following clauses in any order:

CHAPTER 6 SQL Statements

Reference Manual 503

AT Used to create a table at the remote location specified by location-string.
The local table that is created is a proxy table that maps to the remote location.
Tables used as proxy tables must have names of 30 characters or less. The AT
clause supports the semicolon (;) as a delimiter. If a semicolon is present
anywhere in the location-string, the semicolon is the field delimiter. If no
semicolon is present, a period is the field delimiter. This allows file names and
extensions to be used in the database and owner fields.

Semicolon field delimiters are used primarily with server classes not currently
supported; however, you can also use them in situations where a period would
also work as a field delimiter. For example, the following statement maps the
table proxy_a to the Adaptive Server Anywhere database mydb on the remote
server myasa:

CREATE TABLE proxy_a1
AT 'myasa;mydb;;a1'

Foreign-key definitions are ignored on remote tables. Foreign-key definitions
on local tables that refer to remote tables are also ignored. Primary key
definitions are sent to the remote server if the server supports primary keys.

column-definition Defines a column in the table. Allowable data types are
described in Chapter 4, “SQL Data Types.” Two columns in the same table
cannot have the same name. If NOT NULL is specified, or if the column is in
a UNIQUE or PRIMARY KEY constraint, the column cannot contain any NULL
values. You can create up to 45,000 columns; however, there might be
performance penalties with more than 10,000 columns in a table.

• DEFAULT default-value When defining a column for a table, you can
specify a default value for the column using the DEFAULT keyword in the
CREATE TABLE (and ALTER TABLE) statement. If a DEFAULT value is
specified for a column, this DEFAULT value is used as the value of the
column in any INSERT (or LOAD) statement that does not specify a value
for the column.

For detailed information on the use of column DEFAULT values, see
“Using column defaults” in Chapter 9, “Ensuring Data Integrity” in the
Sybase IQ System Administration Guide.

CREATE TABLE statement

504 Sybase IQ

• DEFAULT AUTOINCREMENT The value of the DEFAULT
AUTOINCREMENT column uniquely identifies every row in a table.
Columns of this type are also known as IDENTITY columns, for
compatibility with Adaptive Server Enterprise. The IDENTITY/
DEFAULT AUTOINCREMENT column stores sequential numbers that
are automatically generated during inserts and updates. When using
IDENTITY or DEFAULT AUTOINCREMENT, the column must be one
of the integer data types, or an exact numeric type, with scale 0. The
column value might also be NULL. You must qualify the specified
tablename with the owner name.

ON inserts into the table. If a value is not specified for the IDENTITY/
DEFAULT AUTOINCREMENT column, a unique value larger than any
other value in the column is generated. If an INSERT specifies a value for
the column, it is used; if the specified value is not larger than the current
maximum value for the column, that value is used as a starting point for
subsequent inserts.

Deleting rows does not decrement the IDENTITY/AUTOINCREMENT
counter. Gaps created by deleting rows can only be filled by explicit
assignment when using an insert. The database option IDENTITY_INSERT
must be set to the table name to perform an insert into an IDENTITY/
AUTOINCREMENT column.

For example, the following creates a table with an IDENTITY column and
explicitly adds some data to it:

CREATE TABLE mytable(c1 INT IDENTITY);
SET TEMPORARY OPTION IDENTITY_INSERT =
"DBA".mytable;
INSERT INTO mytable VALUES(5);

After an explicit insert of a row number less then the maximum,
subsequent rows without explicit assignment are still automatically
incremented with a value of one greater than the previous maximum.

You can find the most recently inserted value of the column by inspecting
the @@identity global variable.

• IDENTITY A Transact-SQL-compatible alternative to using the
AUTOINCREMENT default. In Sybase IQ, the identity column may be
created using either the IDENTITY or the DEFAULT AUTOINCREMENT
clause.

table-constraint Helps ensure the integrity of data in the database. There
are four types of integrity constraints:

CHAPTER 6 SQL Statements

Reference Manual 505

• UNIQUE constraint Identifies one or more columns that uniquely
identify each row in the table. No two rows in the table can have the same
values in all the named columns. A table may have more than one unique
constraint.

• PRIMARY KEY constraint Is the same as a UNIQUE constraint except
that a table can have only one primary-key constraint. You cannot specify
the PRIMARY KEY and UNIQUE constraints for the same column. The
primary key usually identifies the best identifier for a row. For example,
the customer number might be the primary key for the customer table.

• FOREIGN KEY constraint Restricts the values for a set of columns to
match the values in a primary key or uniqueness constraint of another
table. For example, a foreign-key constraint could be used to ensure that a
customer number in an invoice table corresponds to a customer number in
the customer table.

Note You cannot create foreign-key constraints on local temporary tables.
Global temporary tables must be created with ON COMMIT PRESERVE
ROWS.

• CHECK constraint Allows arbitrary conditions to be verified. For
example, a check constraint could be used to ensure that a column called
Gender contains only the values male or female. No row in a table is
allowed to violate a constraint. If an INSERT or UPDATE statement would
cause a row to violate a constraint, the operation is not permitted and the
effects of the statement are undone.

Column identifiers in column check constraints that start with the symbol
‘@’ are placeholders for the actual column name. Thus a statement of the
form:

CREATE TABLE t1(c1 INTEGER CHECK (@foo < 5))

is exactly the same as the following statement:

CREATE TABLE t1(c1 INTEGER CHECK (c1 < 5))

Column identifiers appearing in table check constraints that start with the
symbol ‘@’are not placeholders.

If a statement would cause changes to the database that would violate an
integrity constraint, the statement is effectively not executed and an error is
reported. (Effectively means that any changes made by the statement before the
error was detected are undone.)

CREATE TABLE statement

506 Sybase IQ

Sybase IQ enforces single-column UNIQUE constraints by creating an HG
index for that column.

Note You cannot define a column with a BIT data type as a UNIQUE or
PRIMARY KEY constraint. Also, the default for columns of BIT data type is to
not allow NULL values; you can change this by explicitly defining the column
as allowing NULL values.

column-constraint Restricts the values the column can hold. Column and
table constraints help ensure the integrity of data in the database. If a statement
would cause a violation of a constraint, execution of the statement does not
complete, any changes made by the statement before error detection are
undone, and an error is reported. Column constraints are abbreviations for the
corresponding table constraints. For example, the following are equivalent:

CREATE TABLE Product (
product_num integer UNIQUE

)
CREATE TABLE Product (

product_num integer,
UNIQUE (product_num)

)

Column constraints are normally used unless the constraint references more
than one column in the table. In these cases, a table constraint must be used.

IQ UNIQUE constraint This constraint can be specified for columns only.
IQ UNIQUE defines the cardinality of the column, and it is used to optimize the
indexes internally. The default value is 0, which gives IQ no information for
optimizing the default index. The IQ UNIQUE constraint should be applied if
the expected distinct count (the number of unique values) for the column is less
than or equal to 65536. This allows Sybase IQ to optimize storage of this
column's data.

When the MINIMIZE_STORAGE option is ON (the default for new databases is
OFF), it is equivalent to specifying IQ UNIQUE 255 for every newly created
column, and there is no need to specify IQ UNIQUE except for columns with
more than 65536 unique values. For related information, see “Optimizing
storage and query performance,” Sybase IQ System Administration Guide.

Integrity constraints

UNIQUE or UNIQUE (column-name, ...) No two rows in the table can
have the same values in all the named columns. A table may have more than
one unique constraint.

CHAPTER 6 SQL Statements

Reference Manual 507

There is a difference between a unique constraint and a unique index.
Columns of a unique index are allowed to be NULL, while columns in a unique
constraint are not. A foreign key can reference either a primary key or a column
with a unique constraint, but not a unique index, because it can include multiple
instances of NULL.

PRIMARY KEY or PRIMARY KEY (column-name, ...) The primary key
for the table consists of the listed columns, and none of the named columns can
contain any NULL values. Sybase IQ ensures that each row in the table has a
unique primary key value. A table can have only one PRIMARY KEY.

When the second form is used (PRIMARY KEY followed by a list of columns),
the primary key is created including the columns in the order in which they are
defined, not the order in which they are listed.

When a column is designated as PRIMARY KEY, FOREIGN KEY, or UNIQUE,
Sybase IQ creates a High_Group index for it automatically. For multicolumn
primary keys, this index is on the primary key, not the individual columns. For
best performance, you should also index each column with a HG or LF index
separately.

REFERENCES primary-table-name [(primary-column-name)] This
clause defines the column as a foreign key for a primary key or a unique
constraint of a primary table. Normally, a foreign key would be for a primary
key rather than an unique constraint. If a primary column name is specified, it
must match a column in the primary table which is subject to a unique
constraint or primary key constraint, and that constraint must consist of only
that one column. Otherwise the foreign key references the primary key of the
second table. Primary key and foreign key must have the same data type and
the same precision, scale, and sign. Only a nonunique single-column HG index
is created for a single-column foreign key. For a multicolumn foreign key,
Sybase IQ creates a nonunique composite HG index. The maximum width of a
multicolumn composite key for a unique or nonunique HG index is 1KB.

A temporary table cannot have a foreign key that references a base table and a
base table cannot have a foreign key that references a temporary table. Local
temporary tables cannot have or be referenced by a foreign key.

FOREIGN KEY [role-name] [(...)] REFERENCES primary-table-name
[(...)] This clause defines foreign-key references to a primary key or a
unique constraint in another table. Normally, a foreign key would be for a
primary key rather than an unique constraint. (In this description, this other
table is called the primary table.)

CREATE TABLE statement

508 Sybase IQ

If the primary table column names are not specified, the primary table columns
are the columns in the table’s primary key. If foreign key column names are not
specified, the foreign-key columns have the same names as the columns in the
primary table. If foreign-key column names are specified, then the primary key
column names must be specified, and the column names are paired according
to position in the lists.

If the primary table is not the same as the foreign-key table, either the unique
or primary key constraint must have been defined on the referenced key. Both
referenced key and foreign key must have the same number of columns, of
identical data type with the same sign, precision, and scale.

The value of the row’s foreign key must appear as a candidate key value in one
of the primary table’s rows unless one or more of the columns in the foreign
key contains nulls in a null allows foreign key column.

Any foreign-key column not explicitly defined is automatically created with
the same data type as the corresponding column in the primary table. These
automatically created columns cannot be part of the primary key of the foreign
table. Thus, a column used in both a primary key and foreign key must be
explicitly created.

role-name is the name of the foreign key. The main function of role-name is to
distinguish two foreign keys to the same table. If no role-name is specified, the
role name is assigned as follows:

1 If there is no foreign key with a role-name the same as the table name, the
table name is assigned as the role-name.

2 If the table name is already taken, the role-name is the table name
concatenated with a zero-padded 3-digit number unique to the table.

The referential integrity action defines the action to be taken to maintain
foreign-key relationships in the database. Whenever a primary key value is
changed or deleted from a database table, there may be corresponding foreign
key values in other tables that should be modified in some way. You can specify
an ON DELETE clause, followed by the RESTRICT clause:

RESTRICT Generates an error if you try to update or delete a primary key
value while there are corresponding foreign keys elsewhere in the database.
Generates an error if you try to update a foreign key so that you create new
values unmatched by a candidate key. This is the default action, unless you
specify that LOAD optionally reject rows that violate referential integrity.This
enforces referential integrity at the statement level.

CHAPTER 6 SQL Statements

Reference Manual 509

If you use CHECK ON COMMIT without specifying any actions, then
RESTRICT is implied as an action for DELETE. Sybase IQ does not support
CHECK ON COMMIT.

A global temporary table cannot have a foreign key that references a base table
and a base table cannot have a foreign key that references a global temporary
table. Local temporary tables cannot have or be referenced by a foreign key.

CHECK (condition) No row is allowed to fail the condition. If an INSERT
statement would cause a row to fail the condition, the operation is not permitted
and the effects of the statement are undone.

The change is rejected only if the condition is FALSE; in particular, the change
is allowed if the condition is UNKNOWN. (See “NULL value” on page 218
and “Search conditions” on page 189 in Chapter 3, “SQL Language Elements”
for more information about TRUE, FALSE, and UNKNOWN conditions.)
CHECK condition is not enforced by Sybase IQ.

Note Sybase recommends that you not define referential integrity foreign key-
primary key relationships in Sybase IQ unless you are certain there are no
orphan foreign keys.

Remote tables

Foreign-key definitions are ignored on remote tables. Foreign-key definitions
on local tables that refer to remote tables are also ignored. Primary-key
definitions are sent to the remote server if the server supports it.

Side effects

Automatic commit.

Standards • SQL92 Entry-level feature.

The following are vendor extensions:

• The { IN | ON } dbspace-name clause

• The ON COMMIT clause

• Some of the default values

• Sybase Supported by Adaptive Server Enterprise, with some
differences.

CREATE TABLE statement

510 Sybase IQ

• Temporary tables You can create a temporary table by preceding
the table name in a CREATE TABLE statement with a pound sign (#).
These temporary tables are Sybase IQ declared temporary tables,
which are available only in the current connection. For information
about declared temporary tables, see DECLARE LOCAL
TEMPORARY TABLE statement on page 523.

• Physical placement Physical placement of a table is carried out
differently in Sybase IQ and in Adaptive Server Enterprise. The ON
segment-name clause supported by Adaptive Server Enterprise is
supported in Sybase IQ, but segment-name refers to an IQ dbspace.

• Constraints Sybase IQ does not support named constraints or
named defaults, but does support user-defined data types that allow
constraint and default definitions to be encapsulated in the data type
definition. It also supports explicit defaults and CHECK conditions in
the CREATE TABLE statement.

• NULL default By default, columns in Adaptive Server Enterprise
default to NOT NULL, whereas in Sybase IQ the default setting is
NULL, to allow NULL values. This setting can be controlled using
the ALLOW_NULLS_BY_DEFAULT option. For information on this
option, see ALLOW_NULLS_BY_DEFAULT option [TSQL] on
page 40. You should explicitly specify NULL or NOT NULL to make
your data definition statements transferable.

Permissions Must have RESOURCE authority. To create a table for another user, you must
have DBA authority.

See also ALTER TABLE statement on page 409

CREATE DBSPACE statement on page 453

CREATE INDEX statement on page 473

DECLARE LOCAL TEMPORARY TABLE statement on page 523

DROP statement on page 533

MINIMIZE_STORAGE option on page 117

Chapter 5, “Working with Database Objects” in Sybase IQ System
Administration Guide

CHAPTER 6 SQL Statements

Reference Manual 511

CREATE VARIABLE statement
Description Creates a SQL variable.

Syntax CREATE VARIABLE identifier data-type

Examples • The following code fragment inserts a large text value into the database:

EXEC SQL BEGIN DECLARE SECTION;
char buffer[5000];
EXEC SQL END DECLARE SECTION;
EXEC SQL CREATE VARIABLE hold_blob VARCHAR;
EXEC SQL SET hold_blob = '';
for(;;) {

/* read some data into buffer ... */
size = fread(buffer, 1, 5000, fp);
if(size <= 0) break;
/* add data to blob using concatenation
Note that concatenation works for binary
data too! */
EXEC SQL SET hold_blob = hold_blob || :buffer;

}
EXEC SQL INSERT INTO some_table VALUES (1, hold_blob);
EXEC SQL DROP VARIABLE hold_blob;

Usage The CREATE VARIABLE statement creates a new variable of the specified data
type. The variable contains the NULL value until it is assigned a different value
by the SET VARIABLE statement.

A variable can be used in a SQL expression anywhere a column name is
allowed. If a column name exists with the same name as the variable, the
variable value is used.

Variables belong to the current connection, and disappear when you disconnect
from the database, or when you use the DROP VARIABLE statement. Variables
are not visible to other connections. Variables are not affected by COMMIT or
ROLLBACK statements.

In Version 12.5 and above, variables created with the CREATE VARIABLE
statement persist for a connection even when the statement is issued within a
(BEGIN...END) statement. You must use DECLARE to create variables that only
persist within a (BEGIN...END) statement, for example, within stored
procedures.

Variables are useful for creating large text or binary objects for INSERT or
UPDATE statements from Embedded SQL programs.

CREATE VIEW statement

512 Sybase IQ

Local variables in procedures and triggers are declared within a compound
statement . See “Using compound statements” in Chapter 8, “Using
Procedures and Batches” in the Sybase IQ System Administration Guide.

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

Permissions None.

See also BEGIN... END statement on page 422

DECLARE statement on page 515

DROP VARIABLE statement on page 540

SET statement, Chapter 4, “SQL Data Types”

CREATE VIEW statement
Description Creates a view on the database. Views are used to give a different perspective

on the data even though it is not stored that way.

Syntax CREATE VIEW
... [owner.]view-name [(column-name [, ...])]
... AS select-without-order-by
... [WITH CHECK OPTION]

Examples • Creates a view showing all information for male employees only. This
view has the same column names as the base table.

CREATE VIEW male_employee
AS SELECT *
FROM Employee
WHERE Sex = 'M'

• Creates a view showing employees and the departments they belong to:

CREATE VIEW emp_dept
AS SELECT emp_lname, emp_fname, dept_name
FROM Employee JOIN Department
ON Employee.dept_id = Department.dept_id

Usage A view can be created for another user by specifying the owner. You must have
DBA authority to create a view for another user.

CHAPTER 6 SQL Statements

Reference Manual 513

A view name can be used in place of a table name in SELECT, DELETE,
UPDATE, and INSERT statements. Views, however, do not physically exist in
the database as tables. They are derived each time they are used. The view is
derived as the result of the SELECT statement specified in the CREATE VIEW
statement. Table names used in a view should be qualified by the user ID of the
table owner. Otherwise, a different user ID might not be able to find the table
or might get the wrong table.

The columns in the view are given the names specified in the column name list.
If the column name list is not specified, then the view columns are given names
from the select list items. To use the names from the select list items, the items
must be a simple column name or they must have an alias name specified (see
SELECT statement on page 632). You cannot add or drop IDENTIY/
AUTOINCREMENT columns from a view.

Views can be updated unless the SELECT statement defining the view contains
a GROUP BY clause, an aggregate function, or involves a UNION operation. An
update to the view causes the underlying tables to be updated.

view-name An identifier. The default owner is the current user ID.

column-name The columns in the view are given the names specified in the
column-name list. If the column name list is not specified, the view columns
are given names from the select list items. To use the names from the select list
items, each item must be a simple column name or have an alias name specified
(see SELECT statement on page 632).

AS The SELECT statement on which the view is based must not have an
ORDER BY clause on it. It may have a GROUP BY clause and may be a UNION.

WITH CHECK OPTION Rejects any updates and inserts to the view that do
not meet the criteria of the views as defined by its SELECT statement.
However, Sybase IQ currently ignores this option (it supports the syntax for
compatibility reasons).

Side effects

Automatic commit.

Standards • SQL92 Entry-level feature.

• Sybase Supported by Adaptive Server Enterprise.

Permissions Must have RESOURCE authority and SELECT permission on the tables in the
view definition.

See also CREATE TABLE statement on page 499

DROP statement on page 533

DEALLOCATE DESCRIPTOR statement [ESQL]

514 Sybase IQ

“Copy Definition utility (defncopy)” in Chapter 3, “Database Administration
Utilities” in the Sybase IQ Utility Guide

DEALLOCATE DESCRIPTOR statement [ESQL]
Description Frees memory associated with a SQL descriptor area.

Syntax DEALLOCATE DESCRIPTOR descriptor-name:
string

Examples See ALLOCATE DESCRIPTOR statement [ESQL] on page 394.

Usage Frees all memory associated with a descriptor area, including the data items,
indicator variables, and the structure itself.

Side effects

None.

Standards • SQL92 Entry-level feature.

• Sybase Supported by Open Client/Open Server.

Permissions None.

See also SET DESCRIPTOR statement [ESQL] on page 646

“The Embedded SQL Interface” in Adaptive Server Anywhere Programming
Interface Guide

Declaration section [ESQL]
Description Declares host variables in an Embedded SQL program. Host variables are used

to exchange data with the database.

Syntax EXEC SQL BEGIN DECLARE SECTION;
... C declarations
EXEC SQL END DECLARE SECTION;

Examples EXEC SQL BEGIN DECLARE SECTION;
char *emp_lname, initials[5];
int dept;
EXEC SQL END DECLARE SECTION;

CHAPTER 6 SQL Statements

Reference Manual 515

Usage A declaration section is simply a section of C variable declarations surrounded
by the BEGIN DECLARE SECTION and END DECLARE SECTION statements.
A declaration section makes the SQL preprocessor aware of C variables that
are used as host variables. Not all C declarations are valid inside a declaration
section. See the chapter “Embedded SQL Programming” in the Adaptive
Server Anywhere Programming Guide for more information.

Standards • SQL92

• Sybase

Permissions None.

See also BEGIN... END statement on page 422

DECLARE statement
Description Declares a SQL variable within a compound statement (BEGIN... END).

Syntax DECLARE variable_name data-type

Examples The following batch illustrates the use of the DECLARE statement and prints a
message on the server window:

BEGIN
 DECLARE varname CHAR(61) ;
 SET varname = 'Test name';
 MESSAGE name;
END

Usage Variables used in the body of a procedure can be declared using the DECLARE
statement. The variable persists for the duration of the compound statement in
which it is declared.

The body of a procedure is a compound statement, and variables must be
declared immediately following BEGIN. In a Transact-SQL procedure or
trigger, there is no such restriction.

Standards • SQL92 Persistent Stored Module feature.

• Sybase Supported by Adaptive Server Enterprise.

• To be compatible with Adaptive Server Enterprise, the variable name
must be preceded by an @.

DECLARE CURSOR statement [ESQL] [SP]

516 Sybase IQ

• In Adaptive Server Enterprise, a variable that is declared in a
procedure or trigger exists for the duration of the procedure or trigger.
In Sybase IQ, if a variable is declared inside a compound statement,
it exists only for the duration of that compound statement (whether it
is declared in a Sybase IQ SQL or Transact-SQL compound
statement).

Permissions None

DECLARE CURSOR statement [ESQL] [SP]
Description Declares a cursor. Cursors are the primary means for manipulating the results

of queries.

Syntax DECLARE cursor-name
[SCROLL

| NO SCROLL
| DYNAMIC SCROLL

]
CURSOR FOR
{ select-statement
| statement-name

[FOR {READ ONLY | UPDATE [OF column-name-list] }]
| USING variable-name }

Parameters cursor-name:
identifier

statement-name:
identifier | host-variable

column-name-list:
identifiers

variable-name:
identifier

Examples • Illustrates how to declare a scroll cursor in Embedded SQL:

EXEC SQL DECLARE cur_employee SCROLL CURSOR
FOR SELECT * FROM employee ;

• Illustrates how to declare a cursor for a prepared statement in Embedded
SQL:

EXEC SQL PREPARE employee_statement
FROM 'SELECT emp_lname FROM employee' ;

CHAPTER 6 SQL Statements

Reference Manual 517

EXEC SQL DECLARE cur_employee CURSOR
FOR employee_statement ;

• Illustrates the use of cursors in a stored procedure:

BEGIN
 DECLARE cur_employee CURSOR FOR
 SELECT emp_lname
 FROM employee ;
 DECLARE name CHAR(40) ;
 OPEN cur_employee;
 LOOP
 FETCH NEXT cur_employee INTO name ;
 ...
 END LOOP
 CLOSE cur_employee;
END

Usage The DECLARE CURSOR statement declares a cursor with the specified name
for a SELECT statement or a CALL statement.

SCROLL A cursor declared as SCROLL supports the NEXT, PRIOR, FIRST,
LAST, ABSOLUTE, and RELATIVE options of the FETCH statement. A
SCROLL cursor lets you fetch an arbitrary row in the result set while the
cursor is open.

NO SCROLL A cursor declared as NO SCROLL is restricted to moving
forward through the result set using only the FETCH NEXT and FETCH
ABSOLUTE (0) seek operations.

Since rows cannot be returned to once the cursor leaves the row, there are no
sensitivity restrictions on the cursor. Consequently, when a NO SCROLL
cursor is requested, Sybase IQ supplies the most efficient kind of cursor, which
is an asensitive cursor.

DYNAMIC SCROLL A cursor declared as DYNAMIC SCROLL supports
the NEXT, PRIOR, FIRST, LAST, ABSOLUTE, and RELATIVE options of
the FETCH statement. A DYNAMIC SCROLL cursor lets you fetch an
arbitrary row in the result set while the cursor is open.

FOR statement-name Statements are named using the PREPARE statement.
Cursors can be declared only for a prepared SELECT or CALL.

FOR READ ONLY A cursor declared FOR READ ONLY may not be used in
a positioned UPDATE or a positioned DELETE operation.

FOR UPDATE You can update the cursor result set of a cursor declared FOR
UPDATE. Only asensitive behavior is supported for updatable cursors; any
other sensitivity is ignored.

DECLARE CURSOR statement [ESQL] [SP]

518 Sybase IQ

When the cursor is opened, exclusive table locks are taken on all tables that are
opened for update. Standalone LOAD TABLE, UPDATE, INSERT, DELETE, and
TRUNCATE statements are not allowed on tables that are opened for update in
the same transaction, since Sybase IQ permits only one statement to modify a
table at a time. You can open only one updatable cursor on a specific table at a
time.

Updatable cursors are allowed to scroll, except over Open Client.

READ ONLY is the default value of the FOR clause.

OF column-name-list The list of columns from the cursor result set
(specified by the select-statement) defined as updatable.

USING variable-name You can declare a cursor on a variable in stored
procedures and user-defined functions. The variable is a string containing a
SELECT statement for the cursor. The variable must be available when the
DECLARE is processed, and so must be one of the following:

• A parameter to the procedure. For example:

create function get_row_count(in qry varchar)

returns int

begin

 declare crsr cursor using qry;

 declare rowcnt int;

 set rowcnt = 0;

 open crsr;

 lp: loop

 fetch crsr;

 if SQLCODE <> 0 then leave lp end if;

 set rowcnt = rowcnt + 1;

 end loop;

 return rowcnt;

end

• Nested inside another BEGIN…END after the variable has been assigned a
value. For example:

CHAPTER 6 SQL Statements

Reference Manual 519

create procedure get_table_name(

in id_value int, out tabname char(128)

)

begin

declare qry varchar;

set qry = 'select table_name from SYS.SYSTABLE ' ||

 'where table_id=' || string(id_value);

begin

declare crsr cursor using qry;

open crsr;

fetch crsr into tabname;

close crsr;

end

end

Embedded SQL

Statements are named using the PREPARE statement. Cursors can be declared
only for a prepared SELECT or CALL.

Updatable cursor support

Sybase IQ support of updatable cursors is similar to Adaptive Server
Anywhere support of updatable cursors. For a full discussion of cursor types
and working with cursors, see the Adaptive Server Anywhere Programming
Guide. This section contains information important to the use of updatable
cursors in Sybase IQ.

Sybase IQ supports one type of cursor sensitivity, which is defined in terms of
which changes to underlying data are visible. All Sybase IQ cursors are
asensitive, which means that changes might be reflected in the membership,
order, or values of the result set seen through the cursor, or might not be
reflected at all.

With an asensitive cursor, changes effected by positioned UPDATE and
positioned DELETE statements are visible in the cursor result set, except where
client-side caching prevents seeing these changes. Inserted rows are not
visible.

Rows that are updated so that they no longer meet the requirements of the
WHERE clause of the open cursor are still visible.

When using cursors, there is always a tradeoff between efficiency and
consistency. Asensitive cursors provide efficient performance at the expense of
consistency.

DECLARE CURSOR statement [ESQL] [SP]

520 Sybase IQ

Sybase IQ supports updatable cursors on single tables.

Supported query specifications for updatable cursors in Sybase IQ are as
follows:

• Expressions in the select list against columns that are not functionally
dependent on columns being updated

• Arbitrary subqueries with asensitive behavior, that is, changes to data
referenced by subqueries are not visible in the cursor result set

• ORDER BY clause; the ORDER BY columns may be updated, but the result
set does not reorder

• Columns that meet these requirements:

• No CAST on a column

• Base columns of a base table in the SELECT clause

• There are no expressions or functions on that column in the SELECT
clause and it is not duplicated in the select list (for example, SELECT
c1, c1).

• Base columns of a base table restricted to those listed in the FOR
UPDATE OF column-name-list clause, if the clause is specified.

Sybase IQ does not permit updatable cursors on queries that contain any
operator that precludes a one-to-one mapping of result set rows to rows in a
base table; specifically:

• SELECT DISTINCT

• Operator that has a UNION

• Operator that has a GROUP BY

• Operator that has a SET function (single group or extended GROUP BY)

• Operator that has an OLAP function, with the exception of RANK()

See the description of the UPDATE (positioned) statement [ESQL] [SP] on
page 664 for information on the columns and expressions allowed in the SET
clause for the update of a row in the result set of a cursor.

Sybase IQ supports inserts only on updatable cursors where all nonnullable,
nonidentity columns are both selected and updatable.

In Sybase IQ, COMMIT and ROLLBACK are not allowed inside an open
updatable cursor, even if the cursor is opened as a hold cursor. Sybase IQ does
support ROLLBACK TO SAVEPOINT inside an updatable cursor.

CHAPTER 6 SQL Statements

Reference Manual 521

Any failure that occurs after the cursor is open results in a rollback of all
operations that have been performed through this open cursor.

Updatable cursor limitations

A declared cursor is read-only and not updatable in cases where:

• The data extraction facility is enabled with the TEMP_EXTRACT_NAME1
option set to a pathname

• As a join index, or within a join index

• ANSI_CLOSE_CURSORS_ON_ROLLBACK is set OFF

• CHAINED is set OFF

• The statement is INSERT SELECT or SELECT INTO

• More than one table is included

• No updatable columns exist

If Sybase IQ fails to set an updatable cursor when requested, see the .iqmsg file
for related information.

There is a limitation regarding updatable cursors and ODBC. A maximum of
65535 rows or records can be updated, deleted, or inserted at a time using the
following ODBC functions:

• SQLSetPos SQL_UPDATE, SQL_DELETE, and SQL_ADD

• SQLBulkOperations SQL_ADD, SQL_UPDATE_BY_BOOKMARK, and
SQL_DELETE_BY_BOOKMARK

There is an implementation-specific limitation to the maximum value in the
statement attribute that controls the number of effected rows to the largest
value of an UNSIGNED SMALL INT, which is 65535.

SQLSetStmtAttr(HANDLE,SQL_ATTR_ROW_ARRAY_SIZE,
VALUE,0)

This information should be added to “Updatable cursor limitations” in the
“Usage” section for the DECLARE CURSOR statement description in the “SQL
Statements” chapter.

Updatable cursor differences

Sybase IQ updatable cursors differ from ANSI SQL3 standard behavior as
follows:

• Hold cursor update close on commit.

• Sybase IQ locks tables when the cursor is open.

DECLARE CURSOR statement [T-SQL]

522 Sybase IQ

• All updates, deletes, and insert operations are applied when the cursor is
closed, in the following order: deletes first, then updates, then inserts.

Side effects

None.

Standards • SQL92 Entry-level feature.

• Sybase Supported by Open Client/Open Server.

Permissions None.

See also CALL statement on page 429

DELETE (positioned) statement [ESQL] [SP] on page 527

OPEN statement [ESQL] [SP] on page 603

PREPARE statement [ESQL] on page 611

SELECT statement on page 632

UPDATE (positioned) statement [ESQL] [SP] on page 664

“sp_iqcursorinfo procedure” on page 759

DECLARE CURSOR statement [T-SQL]
Description Declares a cursor in a manner compatible with Adaptive Server Enterprise.

Syntax DECLARE cursor-name
... CURSOR FOR select-statement
... [FOR { READ ONLY | UPDATE }]

Usage Sybase IQ supports a DECLARE CURSOR syntax that is not supported in
Adaptive Server Enterprise. For information on the full DECLARE CURSOR
syntax, see DECLARE CURSOR statement [ESQL] [SP] on page 516.

This section describes the overlap between the Sybase IQ and Adaptive Server
Enterprise versions of DECLARE CURSOR.

Side effects

None.

Standards • SQL92 Entry-level compliant. The FOR UPDATE and FOR READ
ONLY options are Transact-SQL extensions.

CHAPTER 6 SQL Statements

Reference Manual 523

• Sybase There are some features of the Adaptive Server Enterprise
DECLARE CURSOR statement that are not supported in Sybase IQ.

• In the Sybase IQ dialect, DECLARE CURSOR in a procedure or batch
must immediately follow the BEGIN keyword. In the Transact-SQL
dialect, there is no such restriction.

• In Adaptive Server Enterprise, when a cursor is declared in a
procedure or batch, it exists for the duration of the procedure or batch.
In Sybase IQ, if a cursor is declared inside a compound statement, it
exists only for the duration of that compound statement (whether it is
declared in a Sybase IQ or Transact-SQL compound statement).

Permissions None.

See also DECLARE CURSOR statement [ESQL] [SP] on page 516

“sp_iqcursorinfo procedure” on page 759

DECLARE LOCAL TEMPORARY TABLE statement
Description Declares a local temporary table.

Syntax DECLARE LOCAL TEMPORARY TABLE table-name
... (column-definition [column-constraint]...
[, column-definition [column-constraint]...]
[, table-constraint]...)
... [ON COMMIT { DELETE | PRESERVE } ROWS
NOT TRANSACTIONAL]

Examples • Illustrates how to declare a local temporary table in Embedded SQL:

EXEC SQL DECLARE LOCAL TEMPORARY TABLE MyTable (
 number INT

);

• Illustrates how to declare a local temporary table in a stored procedure:

BEGIN
 DECLARE LOCAL TEMPORARY TABLE TempTab (
 number INT
);
 ...
END

Usage The DECLARE LOCAL TEMPORARY TABLE statement declares a temporary
table.

DECLARE LOCAL TEMPORARY TABLE statement

524 Sybase IQ

A local temporary table and the rows in it are visible only to the connection that
created the table and inserted the rows. By default, the rows of a temporary
table are deleted on COMMIT.

Declared local temporary tables within compound statements exist within the
compound statement. Otherwise, the declared local temporary table exists until
the end of the connection.

See CREATE TABLE statement on page 499 for definitions of column-
definition, column-constraint, and table-constraint, and the NOT
TRANSACTIONAL clause. See SELECT statement on page 632 for an
example of how to select data into a temporary table.

Once you create a local temporary table, either implicitly or explicitly, you
cannot create another temporary table of that name for as long as the temporary
table exists. For example, you could create a local temporary table implicitly
by entering:

select * into #tmp from table1

Or, you could create a local temporary table explicitly by declaring it:

declare local temporary table foo

If you then try to select into #tmp or foo, or declare #tmp or foo again, you
receive an error indicating that #tmp or foo already exists.

When you declare a local temporary table, omit the owner specification. If you
specify the same owner.table in more than one DECLARE LOCAL TEMPORARY
TABLE statement in the same session, a syntax error is reported. For example,
an error is reported when the following statements are executed in the same
session:

DECLARE LOCAL TEMPORARY TABLE user1.temp(col1 int);
DECLARE LOCAL TEMPORARY TABLE user1.temp(col1 int);

If the owner name is omitted, then the error “Item temp already exists” is
reported:

DECLARE LOCAL TEMPORARY TABLE temp(col1 int);
DECLARE LOCAL TEMPORARY TABLE temp(col1 int);

You cannot use the ALTER TABLE and DROP INDEX statements on local
temporary tables.

You cannot use the sp_iqindex, sp_iqtablesize, and sp_iqindexsize stored
procedures on local temporary tables.

Side effects

None.

CHAPTER 6 SQL Statements

Reference Manual 525

Standards • SQL92 Conforms to SQL92 standard

• Sybase Adaptive Server Enterprise does not support DECLARE
TEMPORARY TABLE.

Permissions None.

See also CREATE TABLE statement on page 499

SELECT statement on page 632

DELETE statement
Description Deletes rows from the database.

Syntax DELETE [FROM] [owner.]table-name
... [FROM table-list]
... [WHERE search-condition]

Examples • Removes employee 105 from the database:

DELETE
FROM employee
WHERE emp_id = 105

• Removes all data prior to 1993 from the fin_data table:

DELETE
FROM fin_data
WHERE year < 1993

• Removes all names from the contact table if they are already present in the
customer table:

DELETE
FROM contact
FROM contact, customer
WHERE contact.last_name = customer.lname
AND contact.first_name = customer.fname

Usage DELETE deletes all the rows from the named table that satisfy the search
condition. If no WHERE clause is specified, all rows from the named table are
deleted.

DELETE can be used on views provided the SELECT statement defining the
view has only one table in the FROM clause and does not contain a GROUP BY
clause, an aggregate function, or involve a UNION operation.

DELETE statement

526 Sybase IQ

The optional second FROM clause in the DELETE statement allows rows to be
deleted based on joins. If the second FROM clause is present, the WHERE
clause qualifies the rows of this second FROM clause. Rows are deleted from
the table name given in the first FROM clause.

The effects of a DELETE on a table can be passed on to any of the join indexes
that reference that table through the SYNCHRONIZE JOIN INDEX command.
For performance reasons, you should do as many deletes as possible before
synchronizing the join indexes.

Note You cannot use the DELETE statement on a join virtual table. If you
attempt to delete from a join virtual table, an error is reported.

Correlation name resolution

The following statement illustrates a potential ambiguity in table names in
DELETE statements with two FROM clauses that use correlation names:

DELETE
FROM table_1
FROM table_1 AS alias_1, table_2 AS alias_2
WHERE ...

The table table_1 is identified without a correlation name in the first FROM
clause, but with a correlation name in the second FROM clause. In this case,
table_1 in the first clause is identified with alias_1 in the second clause; there
is only one instance of table_1 in this statement.

This is an exception to the general rule that where a table is identified with a
correlation name and without a correlation name in the same statement, two
instances of the table are considered.

Consider the following example:

DELETE
FROM table_1
FROM table_1 AS alias_1, table_1 AS alias_2
WHERE ...

In this case, there are two instances of table_1 in the second FROM clause.
There is no way of identifying which instance the first FROM clause should be
identified with. The usual rules of correlation names apply, and table_1 in the
first FROM clause is identified with neither instance in the second clause: there
are three instances of table_1 in the statement.

Side effects

None.

CHAPTER 6 SQL Statements

Reference Manual 527

Standards • SQL92 Entry-level compliant. The use of more than one table in the
FROM clause is a vendor extension.

• Sybase Supported by Adaptive Server Enterprise, including the vendor
extension.

The Transact-SQL ROWCOUNT option has no effect on DELETE
operations in Sybase IQ.

Permissions Must have DELETE permission on the table.

See also FROM clause on page 553

INSERT statement on page 568

SYNCHRONIZE JOIN INDEX statement on page 657

TRUNCATE TABLE statement on page 658

DELETE (positioned) statement [ESQL] [SP]
Description Deletes the data at the current location of a cursor.

Syntax DELETE
WHERE CURRENT OF cursor-name

Parameters cursor-name:
identifier | hostvar

Examples The following statement removes the current row from the database:

DELETE WHERE CURRENT OF cur_employee

Usage This form of the DELETE statement deletes the current row of the specified
cursor. The current row is defined to be the last row fetched from the cursor.

The positioned DELETE statement can be used on a cursor open on a view as
long as the view is updatable.

Changes effected by positioned DELETE statements are visible in the cursor
result set, except where client-side caching prevents seeing these changes.

Standards • SQL92 Entry-level feature. The range of cursors that can be updated may
contain vendor extensions if the ANSI_UPDATE_CONSTRAINTS option is
set to OFF.

• SQL99 Core feature. The range of cursors that can be updated may
contain vendor extensions if the ANSI_UPDATE_CONSTRAINTS option is
set to OFF.

DESCRIBE statement [ESQL]

528 Sybase IQ

• Sybase Embedded SQL use is supported by Open Client/Open Server.
Procedure and trigger use is supported in Adaptive Server Anywhere.

Permissions Must have DELETE permission on tables used in the cursor.

See also DECLARE CURSOR statement [ESQL] [SP] on page 516

INSERT statement on page 568

UPDATE statement on page 661

UPDATE (positioned) statement [ESQL] [SP] on page 664

“sp_iqcursorinfo procedure” on page 759

DESCRIBE statement [ESQL]
Description Gets information about the host variables required to store data retrieved from

the database or host variables used to pass data to the database.

Syntax DESCRIBE
... [USER TYPES]
... [{ ALL | BIND VARIABLES FOR | INPUT
| OUTPUT | SELECT LIST FOR }]
... [{ LONG NAMES [long-name-spec] | WITH VARIABLE RESULT }]
... [FOR] { statement-name | CURSOR cursor-name }
... INTO sqlda-name

Parameters long-name-spec:
{ OWNER.TABLE.COLUMN | TABLE.COLUMN | COLUMN }

statement-name:
identifier | host-variable

cursor-name:
declared cursor

sqlda-name:
identifier

Examples The following example shows how to use the DESCRIBE statement:

sqlda = alloc_sqlda(3);
EXEC SQL DESCRIBE OUTPUT
 FOR employee_statement
 INTO sqlda;
if(sqlda->sqld > sqlda->sqln) {
 actual_size = sqlda->sqld;

CHAPTER 6 SQL Statements

Reference Manual 529

 free_sqlda(sqlda);
 sqlda = alloc_sqlda(actual_size);
 EXEC SQL DESCRIBE OUTPUT
 FOR employee_statement
 INTO sqlda;
}

Usage DESCRIBE sets up the named SQLDA to describe either the OUTPUT
(equivalently SELECT LIST) or the INPUT (BIND VARIABLES) for the named
statement.

In the INPUT case, DESCRIBE BIND VARIABLES does not set up the data types
in the SQLDA: this needs to be done by the application. The ALL keyword lets
you describe INPUT and OUTPUT in one SQLDA.

If you specify a statement name, the statement must have been previously
prepared using the PREPARE statement with the same statement name and the
SQLDA must have been previously allocated (see the ALLOCATE
DESCRIPTOR statement [ESQL] on page 394).

If you specify a cursor name, the cursor must have been previously declared
and opened. The default action is to describe the OUTPUT. Only SELECT
statements and CALL statements have OUTPUT. A DESCRIBE OUTPUT on any
other statement indicates no output by setting the sqld field of the SQLDA to
zero.

USER TYPES A DESCRIBE statement with the USER TYPES clause returns
information about user-defined data types of a column. Typically, such a
DESCRIBE is done when a previous DESCRIBE returns an indicator of
DT_HAS_USERTYPE_INFO.

The information returned is the same as for a DESCRIBE without the USER
TYPES keywords, except that the sqlname field holds the name of the user-
defined data type, instead of the name of the column.

If DESCRIBE uses the LONG NAMES clause, the sqldata field holds this
information.

SELECT DESCRIBE OUTPUT fills in the data type and length in the SQLDA
for each select list item. The name field is also filled in with a name for the
select list item. If an alias is specified for a select list item, the name is that
alias. Otherwise, the name derives from the select list item: if the item is a
simple column name, it is used; otherwise, a substring of the expression is
used. DESCRIBE also puts the number of select list items in the sqld field of the
SQLDA.

DESCRIBE statement [ESQL]

530 Sybase IQ

If the statement being described is a UNION of two or more SELECT
statements, the column names returned for DESCRIBE OUTPUT are the same
column names which would be returned for the first SELECT statement.

CALL The DESCRIBE OUTPUT statement fills in the data type, length, and
name in the SQLDA for each INOUT or OUT parameter in the procedure.
DESCRIBE OUTPUT also puts the number of INOUT or OUT parameters in the
sqld field of the SQLDA.

CALL (result set) DESCRIBE OUTPUT fills in the data type, length, and
name in the SQLDA for each RESULT column in the procedure definition.
DESCRIBE OUTPUT also puts the number of result columns in the sqld field
of the SQLDA.

A bind variable is a value supplied by the application when the database
executes the statements. Bind variables can be considered parameters to the
statement. DESCRIBE INPUT fills in the name fields in the SQLDA with the
bind variable names. DESCRIBE INPUT also puts the number of bind variables
in the sqld field of the SQLDA.

DESCRIBE uses the indicator variables in the SQLDA to provide additional
information. DT_PROCEDURE_IN and DT_PROCEDURE_OUT are bits
that are set in the indicator variable when a CALL statement is described.
DT_PROCEDURE_IN indicates an IN or INOUT parameter and
DT_PROCEDURE_OUT indicates an INOUT or OUT parameter. Procedure
RESULT columns has both bits clear. After a describe OUTPUT, these bits can
be used to distinguish between statements that have result sets (need to use
OPEN, FETCH, RESUME, CLOSE) and statements that do not (need to use
EXECUTE). DESCRIBE INPUT sets DT_PROCEDURE_IN and
DT_PROCEDURE_OUT appropriately only when a bind variable is an
argument to a CALL statement; bind variables within an expression that is an
argument in a CALL statement sets the bits.

DESCRIBE ALL lets you describe INPUT and OUTPUT with one request to the
database server. This has a performance benefit in a multiuser environment.
The INPUT information is filled in the SQLDA first, followed by the OUTPUT
information. The sqld field contains the total number of INPUT and OUTPUT
variables. The DT_DESCRIBE_INPUT bit in the indicator variable is set for
INPUT variables and clear for OUTPUT variables.

Retrieving long column names

The LONG NAMES clause is provided to retrieve column names for a statement
or cursor. Without this clause, there is a 29-character limit on the length of
column names: with the clause, names of an arbitrary length are supported.

CHAPTER 6 SQL Statements

Reference Manual 531

If LONG NAMES is used, the long names are placed into the SQLDATA field
of the SQLDA, as if you were fetching from a cursor. None of the other fields
(SQLLEN, SQLTYPE, and so on) are filled in. The SQLDA must be set up like
a FETCH SQLDA: it must contain one entry for each column, and the entry
must be a string type.

The default specification for the long names is TABLE.COLUMN.

Describing variable result sets

The WITH VARIABLE RESULT statement is used to describe procedures that
might have more than one result set, with different numbers or types of
columns.

If WITH VARIABLE RESULT is used, the database server sets the SQLCOUNT
value after the describe to one of the following values:

• 0 The result set may change: the procedure call should be described
again following each OPEN statement.

• 1 The result set is fixed. No re-describing is required.

 For more information on the use of the SQLDA structure, see the chapter
“Embedded SQL Programming” in the Adaptive Server Anywhere
Programming Guide.

Side effects

None.

Standards • SQL92 Part of the SQL92 standard. Some clauses are vendor extensions.

• Sybase Some clauses supported by Open Client/Open Server.

Permissions None.

See also DECLARE CURSOR statement [ESQL] [SP] on page 516

OPEN statement [ESQL] [SP] on page 603

PREPARE statement [ESQL] on page 611

DISCONNECT statement [DBISQL]

532 Sybase IQ

DISCONNECT statement [DBISQL]
Description Drops a connection with the database.

Syntax DISCONNECT [{ connection-name | CURRENT | ALL }]

Parameters connection-name:
identifier, string, or host-variable

Examples • The following statement shows how to use DISCONNECT in Embedded
SQL:

EXEC SQL DISCONNECT :conn_name

• The following statement shows how to use DISCONNECT from DBISQL
to disconnect all connections:

DISCONNECT ALL

Usage The DISCONNECT statement drops a connection with the database server and
releases all resources used by it. If the connection to be dropped was named on
the CONNECT statement, then the name can be specified. Specifying ALL drops
all of the application’s connections to all database environments. CURRENT is
the default and drops the current connection.

An implicit ROLLBACK is executed on connections that are dropped.

Side effects

None.

Standards • SQL92 Intermediate-level feature.

• Sybase Supported by Open Client/Open Server.

Permissions None

See also CONNECT statement [ESQL] [DBISQL] on page 439

SET CONNECTION statement [DBISQL] [ESQL] on page 645

CHAPTER 6 SQL Statements

Reference Manual 533

DROP statement
Description Removes objects from the database.

Syntax DROP
{ DBSPACE dbspace-name
| { DATATYPE | DOMAIN } datatype-name
| EVENT event-name
| INDEX [[owner].table-name.]index-name
| JOIN INDEX [owner.]join-index-name
| MESSAGE message-number
| TABLE [owner.]table-name
| VIEW [owner.]view-name
| PROCEDURE [owner.]procedure-name
| FUNCTION [owner.]function-name }

Examples • Drops the department table from the database:

DROP TABLE department

• Drops the emp_dept view from the database:

DROP VIEW emp_dept

Usage DROP removes the definition of the indicated database structure. If the
structure is a dbspace, then all tables with any data in that dbspace must be
dropped or relocated prior to dropping the dbspace; other structures are
automatically relocated. If the structure is a table, all data in the table is
automatically deleted as part of the dropping process. Also, all indexes and
keys for the table are dropped by DROP TABLE. However, you cannot drop the
table if any join indexes use that table. You must first use DROP JOIN INDEX
to remove the join indexes.

Note In a Sybase IQ multiplex, always perform DROP JOIN INDEX operations
in single-node mode on the write server, then synchronize query servers. DROP
JOIN INDEX returns an error instead of propagating from write server to query
server.

DROP INDEX deletes any explicitly created index. It only deletes an implicitly
created index if there is no associated primary key, unique, or foreign-key
constraints.

DROP statement

534 Sybase IQ

DROP INDEX for a nonunique HG index fails if an associated unenforced
foreign key exists.

 Warning! Do not delete views owned by the DBO user. Deleting such views
or changing them into tables might cause problems.

DROP TABLE, DROP INDEX, DROP JOIN INDEX, and DROP DBSPACE are
prevented whenever the statement affects a table that is currently being used by
another connection.

DROP TABLE is prevented if the primary table has foreign-key constraints
associated with it, including unenforced foreign-key constraints

DROP TABLE is also prevented if the table has an IDENTITY column and
IDENTITY_INSERT is set to that table. To drop the table you must clear
IDENTITY_INSERT, that is, set it to ' ' (an empty string), or set it to another
table name.

A foreign key can have either a nonunique single or a multicolumn HG index.
A primary key may have unique single or multicolumn HG indexes. You cannot
drop the HG index implicitly created for an existing foreign key, primary key,
and unique constraint. If a DBA is dropping a join index belonging to another
user, the join index name must be qualified with an owner name.

The four initial dbspaces are SYSTEM, IQ_SYSTEM_MAIN,
IQ_SYSTEM_TEMP, and IQ_SYSTEM_MSG. Any dbspace, except SYSTEM
and IQ_SYSTEM_MSG, can be dropped using DROP DBSPACE, as long as
there is at least one remaining dbspace with readwrite mode. You must relocate
or drop tables in the dbspace, before you can drop the dbspace. An error is
returned if the dbspace still contains user data; other structures are
automatically relocated when the dbspace is dropped. Dbspace names are case
sensitive for databases created with CASE RESPECT.

Note A dbspace may contain data at any point after it is used by a command,
thereby preventing a DROP DBSPACE on it.

See the section “Working with dbspaces” in Chapter 5, “Working with
Database Objects” in the Sybase IQ System Administration Guide for more
information on modifying dbspaces.

DROP PROCEDURE is prevented when the procedure is in use by another
connection.

CHAPTER 6 SQL Statements

Reference Manual 535

DROP DATATYPE is prevented if the data type is used in a table. You must
change data types on all columns defined on the user-defined data type to drop
the data type. It is recommended that you use DROP DOMAIN rather than DROP
DATATYPE, as DROP DOMAIN is the syntax used in the ANSI/ISO SQL3 draft.

Note Do not use DROP DOMAIN on a multiplex query server without a local
IQ Main Store. Synchronizing the multiplex removes domains from query
servers without local stores. If the Query Server has a local store, then both
CREATE DOMAIN and DROP DOMAIN are permitted.

Side effects

Automatic commit. Clears the Data window in DBISQL. DROP TABLE and
DROP INDEX close all cursors for the current connection.

Local temporary tables are an exception; no commit is performed when one is
dropped.

Standards • SQL92 Entry-level feature.

• Sybase Supported by Adaptive Server Enterprise.

Permissions For DROP DBSPACE, must have DBA authority and must be the only
connection to the database.

For others, must be the owner of the object, or have DBA authority.

Global temporary tables cannot be dropped unless all users that have
referenced the temporary table have disconnected.

See also ALTER DBSPACE statement on page 398

ALTER TABLE statement on page 409

CREATE DBSPACE statement on page 453

CREATE DOMAIN statement on page 456

CREATE EVENT statement on page 458

CREATE INDEX statement on page 473

CREATE MESSAGE statement [T-SQL] on page 484

CREATE PROCEDURE statement on page 485

CREATE TABLE statement on page 499

CREATE VIEW statement on page 512

“sp_iqdbspace procedure” in Chapter 10, “System Procedures”

DROP CONNECTION statement

536 Sybase IQ

Chapter 5, “Working with Database Objects” in the Sybase IQ System
Administration Guide.

DROP CONNECTION statement
Description Drops any user’s connection to the database.

Syntax DROP CONNECTION connection-id

Examples • The following statement drops connection with ID number 4:

DROP CONNECTION 4

Usage DROP CONNECTION disconnects a user from the database by dropping the
connection to the database.

The connection-id for the connection is obtained using the connection_property
function to request the connection number. The following statement returns the
connection ID of the current connection:

SELECT connection_property('number')

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

Permissions Must have DBA authority.

See also CONNECT statement [ESQL] [DBISQL] on page 439

DROP DATABASE statement
Description Drops a database and its associated dbspace segment files.

Syntax DROP DATABASE db-filename [KEY key-spec]

Parameters key-spec:
A string, including mixed cases, numbers, letters, and special characters. It
might be necessary to protect the key from interpretation or alteration by the
command shell.

CHAPTER 6 SQL Statements

Reference Manual 537

Examples • Drops database mydb:

DROP DATABASE mydb.db

• Drops the encrypted database marvin.db, which was created with the key
is!seCret:

DROP DATABASE 'marvin.db' KEY 'is!seCret'

• The following UNIX example drops the database temp.db from the /s1/
temp directory:

DROP DATABASE '/s1/temp/temp.db'

Usage DROP DATABASE drops all the database segment files associated with the IQ
Store and Temporary Store before it drops the Catalog store files.

The database must be stopped before you can drop it. If the connection
parameter AUTOSTOP=no is used, you might need to issue a STOP DATABASE
statement.

The db-filename you specify corresponds to the database filename you defined
for the database using CREATE DATABASE. If you specified a directory path
for this value in the CREATE DATABASE command, you must also specify the
directory path for DROP DATABASE. Otherwise, Sybase IQ looks for the
database files in the default directory where the server files reside.

If you use Interactive SQL instead of Sybase Central to drop databases, always
provide an explicit path. For example, if you drop the write server’s database
before dropping the query servers on the same machine, the following might
return an error:

DROP DATABASE 'mydbname'

To avoid the error, specify the full database path, for example:

DROP DATABASE '/s1/mpx/wsrvr/mydbname.db'

You cannot execute a DROP DATABASE statement to drop an IQ database that
has a DatabaseStart event defined for it.

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

Permissions Required permissions are set using the database server -gu command line
option. The default setting is to require DBA authority.

See also CREATE DATABASE statement on page 442

DROP EXTERNLOGIN statement

538 Sybase IQ

DROP EXTERNLOGIN statement
Description Drops an external login from the Sybase IQ system tables.

Syntax DROP EXTERNLOGIN login-name
TO remote-server

Examples DROP EXTERNLOGIN dba TO sybase1

Usage DROP EXTERNLOGIN deletes an external login from the Sybase IQ system
tables.

login-name Specifies the local user login name.

TO The TO clause specifies the name of the remote server. The local user's
alternate login name and password for that server is the external login that is
deleted.

Side effects

Automatic commit.

Standards • SQL92 Entry-level feature.

• Sybase Supported by Open Client/Open Server.

Permissions Only the login name and the DBA account can delete an external login for login
name.

See also CREATE EXTERNLOGIN statement on page 467

DROP SERVER statement
Description Drops a remote server from the Sybase IQ system tables.

Syntax DROP SERVER server-name

Examples DROP SERVER ase_prod

Usage You must drop all the proxy tables that have been defined for the remote server
before this statement succeeds.

Side effects

Automatic commit.

Standards • SQL92 Entry-level feature.

• Sybase Supported by Open Client/Open Server.

Permissions Only the DBA account can delete a remote server.

CHAPTER 6 SQL Statements

Reference Manual 539

See also CREATE SERVER statement on page 494

DROP SERVICE statement
Description Deletes a Web service.

Syntax DROP SERVICE service-name

Examples To drop a Web service named “tables”, execute the following statement:

DROP SERVICE tables

Usage DROP SERVICE deletes a Web service.

Side effects

None.

Standards • SQL92 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise.

Permissions Must have DBA authority.

See also ALTER SERVICE statement on page 407

CREATE SERVICE statement on page 496

“Using the Built-in Web Server” in Adaptive Server Anywhere Database
Administration Guide

DROP STATEMENT statement [ESQL]
Description Frees statement resources.

Syntax DROP STATEMENT [owner.]statement-name

Parameters statement-name:
identifier or host-variable

Examples The following are examples of DROP STATEMENT use:

EXEC SQL DROP STATEMENT S1;
EXEC SQL DROP STATEMENT :stmt;

DROP VARIABLE statement

540 Sybase IQ

Usage DROP STATEMENT frees resources used by the named prepared statement.
These resources are allocated by a successful PREPARE statement, and are
normally not freed until the database connection is released.

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase Not supported in Open Client/Open Server

Permissions Must have prepared the statement.

See also PREPARE statement [ESQL] on page 611

DROP VARIABLE statement
Description Eliminates a SQL variable.

Syntax DROP VARIABLE identifier

Usage DROP VARIABLE eliminates a SQL variable previously created using CREATE
VARIABLE. Variables are automatically eliminated when the database
connection is released. However, variables are often used for large objects.
Thus, eliminating them after use might free up significant resources (primarily
disk space).

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase Not supported in Adaptive Server Enterprise.

Permissions None

See also CREATE VARIABLE statement on page 511

SET statement on page 641

CHAPTER 6 SQL Statements

Reference Manual 541

EXECUTE statement [ESQL]
Description Executes a SQL statement.

Syntax Syntax 1

EXECUTE statement-name
... [{ USING DESCRIPTOR sqlda-name | USING host-variable-list }]
... [{ INTO DESCRIPTOR into-sqlda-name | INTO into-host-variable-list]
... [ARRAY :nnn }]

Syntax 2

EXECUTE IMMEDIATE statement

Parameters statement-name:
identifier or host-variable

sqlda-name:
identifier

into-sqlda-name:
identifier

statement:
string or host-variable

Examples • Executes a DELETE:

EXEC SQL EXECUTE IMMEDIATE
'DELETE FROM employee WHERE emp_id = 105';

• Executes a prepared DELETE statement:

EXEC SQL PREPARE del_stmt FROM
'DELETE FROM employee WHERE emp_id = :a';
EXEC SQL EXECUTE del_stmt USING :employee_number;

• Executes a prepared query:

EXEC SQL PREPARE sel1 FROM
'SELECT emp_lname FROM employee WHERE emp_id = :a';
EXEC SQL EXECUTE sel1 USING :employee_number INTO
:emp_lname;

Usage Syntax 1 executes the named dynamic statement that was previously prepared.
If the dynamic statement contains host variable placeholders which supply
information for the request (bind variables), then either the sqlda-name must
specify a C variable which is a pointer to an SQLDA containing enough
descriptors for all bind variables occurring in the statement, or the bind
variables must be supplied in the host-variable-list.

EXECUTE statement [ESQL]

542 Sybase IQ

The optional ARRAY clause can be used with prepared INSERT statements, to
allow wide inserts, which insert more than one row at a time and which might
improve performance. The value nnn is the number of rows to be inserted. The
SQLDA must contain nnn * (columns per row) variables. The first row is
placed in SQLDA variables 0 to (columns per row)-1, and so on.

OUTPUT from a SELECT statement or a CALL statement is put either into the
variables in the variable list or into the program data areas described by the
named SQLDA. The correspondence is one to one from the OUTPUT (selection
list or parameters) to either the host variable list or the SQLDA descriptor
array.

If EXECUTE is used with an INSERT statement, the inserted row is returned in
the second descriptor. For example, when using autoincrement primary keys
that generate primary-key values, EXECUTE provides a mechanism to refetch
the row immediately and determine the primary-key value assigned to the row.

Syntax 2 is a short form to PREPARE and EXECUTE a statement that does not
contain bind variables or output. The SQL statement contained in the string or
host variable is immediately executed.

EXECUTE can be used for any SQL statement that can be prepared. Cursors are
used for SELECT statements or CALL statements that return many rows from
the database.

After successful execution of an INSERT, UPDATE, or DELETE statement, the
sqlerrd[2] field of the SQLCA (SQLCOUNT) is filled in with the number of
rows affected by the operation.

Side effects

None.

Standards • SQL92 Intermediate-level feature.

• Sybase Supported in Open Client/Open Server.

Permissions Permissions are checked on the statement being executed.

See also DECLARE CURSOR statement [ESQL] [SP] on page 516

PREPARE statement [ESQL] on page 611

CHAPTER 6 SQL Statements

Reference Manual 543

EXECUTE statement [T-SQL]
Description Invokes a procedure, as an Adaptive Server Enterprise-compatible alternative

to the CALL statement.

Syntax EXECUTE [@return_status =] [owner.]procedure_name
... { [@parameter-name =] expression
| [@parameter-name =] @variable [output] } ,...

Examples • Illustrates the EXECUTE statement:

CREATE PROCEDURE p1(@var INTEGER = 54)
AS
PRINT 'on input @var = %1! ', @var
DECLARE @internal_var integer
SELECT @intvar=123
SELECT @var=@intvar
PRINT 'on exit @var = %1!', @var

• The following statement executes the procedure, supplying the input value
of 23 for the parameter. If you are connected from an Open Client
application, PRINT messages are displayed on the client window. If you
are connected from an ODBC or Embedded SQL application, messages
display on the database server window.

EXECUTE p1 23

• An alternative way of executing the procedure, which is useful if there are
several parameters:

EXECUTE p1 @var = 23

• Executes the procedure, using the default value for the parameter:

EXECUTE p1

• Executes the procedure, and stores the return value in a variable for
checking return status:

EXECUTE @status = p1 23

Usage EXECUTE executes a stored procedure, optionally supplying procedure
parameters and retrieving output values and return status information.

EXECUTE is implemented for Transact-SQL compatibility, but can be used in
either Transact-SQL or Sybase IQ batches and procedures.

Side effects

None.

EXECUTE IMMEDIATE statement [ESQL] [SP]

544 Sybase IQ

Permissions Must be the owner of the procedure, have EXECUTE permission for the
procedure, or have DBA authority.

See also CALL statement on page 429

EXECUTE IMMEDIATE statement [ESQL] [SP]
Description Enables dynamically constructed statements to be executed from within a

procedure.

Syntax Syntax 1

EXECUTE IMMEDIATE [execute-option] string-expression

execute-option:
WITH QUOTES [ON | OFF]
| WITH ESCAPES { ON | OFF }
| WITH RESULT SET { ON | OFF }

Syntax 2

EXECUTE (string-expression)

Examples The following procedure creates a table, where the table name is supplied as a
parameter to the procedure. The full EXECUTE IMMEDIATE statement must be
on a single line.

CREATE PROCEDURE CreateTableProc(
IN tablename char(30)
)

BEGIN
EXECUTE IMMEDIATE 'CREATE TABLE ' || tablename ||

' (column1 INT PRIMARY KEY)'
END

To call the procedure and create a table mytable:

CALL CreateTableProc('mytable')

Usage EXECUTE IMMEDIATE extends the range of statements that can be executed
from within procedures. It lets you execute dynamically prepared statements,
such as statements that are constructed using the parameters passed in to a
procedure.

Literal strings in the statement must be enclosed in single quotes, and must
differ from any existing statement name in a PREPARE or EXECUTE
IMMEDIATE statement. The statement must be on a single line.

CHAPTER 6 SQL Statements

Reference Manual 545

Only global variables can be referenced in a statement executed by EXECUTE
IMMEDIATE.

Only syntax 2 can be used inside Transact-SQL stored procedures.

WITH QUOTES When you specify WITH QUOTES or WITH QUOTES
ON, any double quotes in the string expression are assumed to delimit an
identifier. When you do not specify WITH QUOTES, or specify WITH
QUOTES OFF, the treatment of double quotes in the string expression depends
on the current setting of the QUOTED_IDENTIFIER option.

WITH QUOTES is useful when an object name that is passed into the stored
procedure is used to construct the statement that is to be executed, but the name
might require double quotes and the procedure might be called when
QUOTED_IDENTIFIER is set to OFF.

For more information, see “QUOTED_IDENTIFIER option [TSQL]” on page
143

WITH ESCAPES WITH ESCAPES OFF causes any escape sequences (such
as \n, \x, or \\) in the string expression to be ignored. For example, two
consecutive backslashes remain as two backslashes, rather than being
converted to a single backslash. The default setting is equivalent to WITH
ESCAPES ON.

You can use WITH ESCAPES OFF for easier execution of dynamically
constructed statements referencing file names that contain backslashes.

In some contexts, escape sequences in the string-expression are transformed
before EXECUTE IMMEDIATE is executed. For example, compound statements
are parsed before being executed, and escape sequences are transformed during
this parsing, regardless of the WITH ESCAPES setting. In these contexts,
WITH ESCAPES OFF prevents further translations from occurring. For
example:

BEGIN
DECLARE String1 LONG VARCHAR;
DECLARE String2 LONG VARCHAR;
EXECUTE IMMEDIATE
'SET String1 = ''One backslash: \\\\ ''';
EXECUTE IMMEDIATE WITH ESCAPES OFF
'SET String2 = ''Two backslashes: \\\\ ''';
SELECT String1, String2
END

EXIT statement [DBISQL]

546 Sybase IQ

WITH RESULT SET You can have an EXECUTE IMMEDIATE statement
return a result set by specifying WITH RESULT SET ON. With this clause, the
containing procedure is marked as returning a result set. If you do not include
this clause, an error is reported when the procedure is called if the statement
does not produce a result set.

Note The default option is WITH RESULT SET OFF, meaning that no result
set is produced when the statement is executed.

Side effects

None. However, if the statement is a data definition statement with an
automatic commit as a side effect, then that commit does take place.

Standards • SQL92 Intermediate-level feature.

• Sybase Supported in Open Client/Open Server.

Permissions None. The statement is executed with the permissions of the owner of the
procedure, not with the permissions of the user who calls the procedure.

See also BEGIN... END statement on page 422

CREATE PROCEDURE statement on page 485

EXIT statement [DBISQL]
Description Leaves DBISQL.

Syntax { EXIT | QUIT | BYE }

Usage Leaves the DBISQL environment and return to the operating system. This
closes your connection with the database. Before doing so, DBISQL performs
a COMMIT if the COMMIT_ON_EXIT option is ON. If the option is OFF,
DBISQL performs a ROLLBACK. The default action is to COMMIT any changes
you have made to the database.

Side effects

Does a commit if option COMMIT_ON_EXIT is ON (default); otherwise does do
a rollback.

Standards • SQL92 Vendor extension.

• Sybase Not applicable in Adaptive Server Enterprise.

CHAPTER 6 SQL Statements

Reference Manual 547

Permissions None

See also SET OPTION statement on page 647

FETCH statement [ESQL] [SP]
Description Repositions a cursor and gets data from it.

Syntax FETCH
{ NEXT | PRIOR | FIRST | LAST
| ABSOLUTE row-count | RELATIVE row-count }
... cursor-name
... { [INTO host-variable-list]
| USING DESCRIPTOR sqlda-name
| INTO variable-list }
... [PURGE] [BLOCK n] [ARRAY fetch-count]
... INTO variable-list
... IQ CACHE row-count

Parameters cursor-name:
identifier or host variable

sqlda-name:
identifier

host-variable-list:
may contain indicator variables

row-count:
number or host variable

fetch-count:
integer or host variable

Examples • An Embedded SQL example:

EXEC SQL DECLARE cur_employee CURSOR FOR
SELECT emp_id, emp_lname FROM employee ;
EXEC SQL OPEN cur_employee;
EXEC SQL FETCH cur_employee
INTO :emp_number, :emp_name:indicator;

• A procedure example:

BEGIN
DECLARE cur_employee CURSOR FOR

SELECT emp_lname
FROM employee ;

FETCH statement [ESQL] [SP]

548 Sybase IQ

DECLARE name CHAR(40) ;
OPEN cur_employee;
LOOP

FETCH NEXT cur_employee into name ;
 ...

END LOOP
CLOSE cur_employee;

END

Usage FETCH retrieves one row from the named cursor.

The ARRAY clause allows wide fetches, which retrieve more than one row at a
time, and which might improve performance.

The cursor must have been previously opened.

One row from the result of SELECT is put into the variables in the variable list.
The correspondence from the select list to the host variable list is one-to-one.

One or more rows from the result of SELECT are put either into the variables
in the variable list or into the program data areas described by the named
SQLDA. In either case, the correspondence from the select list to either the
host variable list or the SQLDA descriptor array is one-to-one.

The INTO clause is optional. If it is not specified, then FETCH positions the
cursor only (see the following paragraphs).

An optional positional parameter can be specified that allows the cursor to be
moved before a row is fetched. The default is NEXT, which causes the cursor
to be advanced one row before the row is fetched. PRIOR causes the cursor to
be backed up one row before fetching.

RELATIVE positioning is used to move the cursor by a specified number of
rows in either direction before fetching. A positive number indicates moving
forward and a negative number indicates moving backwards. Thus, a NEXT is
equivalent to RELATIVE 1 and PRIOR is equivalent to RELATIVE -1. RELATIVE
0 retrieves the same row as the last fetch statement on this cursor.

The ABSOLUTE positioning parameter is used to go to a particular row. A zero
indicates the position before the first row . See Chapter 8, “Using Procedures
and Batches” in the Sybase IQ System Administration Guide.

CHAPTER 6 SQL Statements

Reference Manual 549

A one (1) indicates the first row, and so on. Negative numbers are used to
specify an absolute position from the end of the cursor. A negative one (-1)
indicates the last row of the cursor. FIRST is a short form for ABSOLUTE 1.
LAST is a short form for ABSOLUTE -1.

Note Sybase IQ does not handle the FIRST, LAST, ABSOLUTE, and negative
RELATIVE options very efficiently, so there is a performance impact when
using them.

OPEN initially positions the cursor before the first row.

If the fetch includes a positioning parameter and the position is outside the
allowable cursor positions, then the SQLE_NOTFOUND warning is issued.

The IQ CACHE clause specifies the maximum number of rows buffered in the
FIFO queue. If you do not specify a value for it, the value of the
CURSOR_WINDOW_ROWS database option is used. The default setting of
CURSOR_WINDOW_ROWS is 200.

Using the FETCH statement in Embedded SQL

The following clauses are for use in Embedded SQL only:

• USING DESCRIPTOR sqlda-name

• INTO host-variable-list

• PURGE

• BLOCK n

• ARRAY fetch-count

• Use of host-variable in cursor-name and row-count.

DECLARE CURSOR must appear before FETCH in the C source code, and the
OPEN statement must be executed before FETCH. If a host variable is being
used for the cursor name, then the DECLARE statement actually generates code
and thus must be executed before FETCH.

In the multiuser environment, rows can be fetched by the client more than one
at a time. This is referred to as block fetching or multirow fetching. The first
fetch causes several rows to be sent back from the server. The client buffers
these rows and subsequent fetches are retrieved from these buffers without a
new request to the server.

FETCH statement [ESQL] [SP]

550 Sybase IQ

The BLOCK clause gives the client and server a hint as to how many rows may
be fetched by the application. The special value of 0 means the request is sent
to the server and a single row is returned (no row blocking).

The PURGE clause causes the client to flush its buffers of all rows and then
send the fetch request to the server. This fetch request may return a block of
rows.

If the SQLSTATE_NOTFOUND warning is returned on the fetch, then the
sqlerrd[2] field of the SQLCA (SQLCOUNT) contains the number of rows
that the attempted fetch exceeded the allowable cursor positions. (A cursor can
be on a row, before the first row or after the last row.) The value is 0 if the row
was not found but the position is valid, for example, executing FETCH
RELATIVE 1 when positioned on the last row of a cursor. The value is positive
if the attempted fetch was further beyond the end of the cursor, and negative if
the attempted fetch was further before the beginning of the cursor.

After successful execution of the FETCH statement, the sqlerrd[1] field of the
SQLCA (SQLIOCOUNT) is incremented by the number of input/output
operations required to perform the fetch. This field is actually incremented on
every database statement.

To use wide fetches in Embedded SQL, include the FETCH statement in your
code as follows:

EXEC SQL FETCH . . . ARRAY nnn

where ARRAY nnn is the last item of the FETCH statement. The fetch count nnn
can be a host variable. The SQLDA must contain nnn * (columns per row)
variables. The first row is placed in SQLDA variables 0 to (columns per row)-
1, and so on.

The server returns in SQLCOUNT the number of records fetched and always
returns a SQLCOUNT greater than zero unless there is an error. Older versions
of the server only return a single row and the SQLCOUNT is set to zero. Thus
a SQLCOUNT of zero with no error condition indicates one valid row has been
fetched.

Side effects

None.

Standards • SQL92 Entry-level feature. Use in procedures is a Persistent Stored
Module feature.

• Sybase Supported in Adaptive Server Enterprise.

Permissions The cursor must be opened and the user must have SELECT permission on the
tables referenced in the declaration of the cursor.

CHAPTER 6 SQL Statements

Reference Manual 551

See also CURSOR_WINDOW_ROWS option on page 62

DECLARE CURSOR statement [ESQL] [SP] on page 516

OPEN statement [ESQL] [SP] on page 603

PREPARE statement [ESQL] on page 611

FOR statement
Description Repeats the execution of a statement list once for each row in a cursor.

Syntax [statement-label:]
... FOR for-loop-name AS cursor-name
... CURSOR FOR statement
... [{ FOR UPDATE | FOR READ ONLY }]
... DO statement-list
... END FOR [statement-label]

Examples The following fragment illustrates the use of the FOR loop:

FOR names AS curs CURSOR FOR
SELECT emp_lname
FROM employee
DO

CALL search_for_name(emp_lname);
END FOR;

Usage FOR is a control statement that lets you execute a list of SQL statements once
for each row in a cursor. The FOR statement is equivalent to a compound
statement with a DECLARE for the cursor and a DECLARE of a variable for each
column in the result set of the cursor followed by a loop that fetches one row
from the cursor into the local variables and executes statement-list once for
each row in the cursor.

The name and data type of the local variables that are declared are derived from
the statement used in the cursor. With a SELECT statement, the data type is the
data type of the expressions in the select list. The names are the select list item
aliases where they exist; otherwise, they are the names of the columns. Any
select list item that is not a simple column reference must have an alias. With
a CALL statement, the names and data types are taken from the RESULT clause
in the procedure definition.

The LEAVE statement can be used to resume execution at the first statement
after the END FOR. If the ending statement-label is specified, it must match the
beginning statement-label.

FORWARD TO statement

552 Sybase IQ

Side effects

None.

Standards • SQL92 Persistent Stored Module feature.

• Sybase Not supported by Adaptive Server Enterprise.

Permissions None

See also DECLARE CURSOR statement [ESQL] [SP] on page 516

FETCH statement [ESQL] [SP] on page 547

LEAVE statement on page 578

LOOP statement on page 598

FORWARD TO statement
Description Sends native syntax to a remote server.

Syntax Syntax 1

FORWARD TO server-name { sql-statement }

Syntax 2

FORWARD TO [server-name]

Examples Shows a passthrough session with the remote server ase_prod:

FORWARD TO aseprod
SELECT * from titles
SELECT * from authors
FORWARD TO

Usage The FORWARD TO statement enables users to specify the server to which a
passthrough connection is required. The statement can be used in two ways:

• To send a statement to a remote server (Syntax 1)

• To place Sybase IQ into passthrough mode for sending a series of
statements to a remote server (Syntax 2)

When establishing a connection to server-name on behalf of the user, the server
uses:

• A remote login alias set using CREATE EXTERNLOGIN

CHAPTER 6 SQL Statements

Reference Manual 553

• If a remote login alias is not set up, the name and password used to
communicate with Sybase IQ.

If the connection cannot be made to the server specified, the reason is
contained in a message returned to the user.

After statements are passed to the requested server, any results are converted
into a form that can be recognized by the client program.

server-name is the name of the remote server.

sql-statement is a command in the remote server’s native syntax. The command
or group of commands is enclosed in curly braces ({}).

When you specify a server_name, but do not specify a statement in the
FORWARD TO query, your session enters passthrough mode, and all
subsequent queries are passed directly to the remote server. To turn
passthrough mode off, issue FORWARD TO without a server_name
specification.

Side effects

The remote connection is set to AUTOCOMMIT (unchained) mode for the
duration of the FORWARD TO session. Any work that was pending prior to the
FORWARD TO statement is automatically committed.

Standards • SQL92 Entry-level feature.

• Sybase Supported by Open Client/Open Server.

Permissions None.

See also CREATE SERVER statement on page 494

FROM clause
Description Specifies the database tables or views involved in a SELECT statement.

Syntax ... FROM table-expression [, ...]

Parameters table-expression:
{ table-spec
| table-expression join-type table-spec [ON condition]
| (table-expression [, ...]) }

FROM clause

554 Sybase IQ

table-spec:
{ [userid.] table-name [[AS] correlation-name]
| select-statement [AS correlation-name (column-name [, ...])] }

join-type:
{ CROSS JOIN
| [NATURAL | KEY] JOIN
| [NATURAL | KEY] INNER JOIN
| [NATURAL | KEY] LEFT OUTER JOIN
| [NATURAL | KEY] RIGHT OUTER JOIN
| [NATURAL | KEY] FULL OUTER JOIN }

Examples • The following are valid FROM clauses:

...
FROM employee
...
...
FROM employee NATURAL JOIN department
...
...
FROM customer
KEY JOIN sales_order
KEY JOIN sales_order_items
KEY JOIN product
...

• The following query illustrates how to use derived tables in a query:

SELECT lname, fname, number_of_orders
FROM customer JOIN
 (SELECT cust_id, count(*)
 FROM sales_order
 GROUP BY cust_id)
 AS sales_order_counts (cust_id,
 number_of_orders)
ON (customer.id = sales_order_counts.cust_id)
WHERE number_of_orders > 3

Usage The SELECT statement requires a table list to specify which tables are used by
the statement.

Note Although this description refers to tables, it also applies to views unless
otherwise noted.

CHAPTER 6 SQL Statements

Reference Manual 555

The FROM table list creates a result set consisting of all the columns from all
the tables specified. Initially, all combinations of rows in the component tables
are in the result set, and the number of combinations is usually reduced by join
conditions and/or WHERE conditions.

The join-type keywords are described in Table 6-8.

Table 6-8: FROM clause join-type keywords

Do not mix comma-style joins and keyword-style joins in the FROM clause.
The same query can be written two ways, each using one of the join styles. The
ANSI syntax keyword style join is preferable.

The following query uses a comma-style join:

SELECT *
FROM product pr, sales_order so, sales_order_items si
WHERE pr.prod_id = so.prod_id

AND pr.prod_id = si.prod_id;

The same query can use the preferable keyword-style join:

SELECT *
FROM product pr INNER JOIN sales_order so

ON (pr.prod_id = so.prod_id)
INNER JOIN sales_order_items si

ON (pr.prod_id = si.prod_id);

join-type keyword Description

CROSS JOIN Returns the Cartesian product (cross product) of the
two source tables

NATURAL JOIN Compares for equality all corresponding columns with
the same names in two tables (a special case equijoin;
columns are of same length and data type)

KEY JOIN Restricts foreign-key values in the first table to be
equal to the primary-key values in the second table

INNER JOIN Discards all rows from the result table that do not have
corresponding rows in both tables

LEFT OUTER JOIN Preserves unmatched rows from the left table, but
discards unmatched rows from the right table

RIGHT OUTER JOIN Preserves unmatched rows from the right table, but
discards unmatched rows from the left table

FULL OUTER JOIN Retains unmatched rows from both the left and the
right tables

FROM clause

556 Sybase IQ

The ON clause filters the data of inner, left, right, and full joins. Cross joins do
not have an ON clause. In an inner join, the ON clause is equivalent to a WHERE
clause. In outer joins, however, the ON and WHERE clauses are different. The
ON clause in an outer join filters the rows of a cross product and then includes
in the result the unmatched rows extended with nulls. The WHERE clause then
eliminates rows from both the matched and unmatched rows produced by the
outer join. You must take care to ensure that unmatched rows you want are not
eliminated by the predicates in the WHERE clause.

You cannot use subqueries inside an outer join ON clause.

For information on writing Transact-SQL compatible joins, see Appendix A,
“Compatibility with Other Sybase Databases”.

Tables owned by a different user can be qualified by specifying the userid.
Tables owned by groups to which the current user belongs are found by default
without specifying the user ID.

The correlation name is used to give a temporary name to the table for this SQL
statement only. This is useful when referencing columns that must be qualified
by a table name but the table name is long and cumbersome to type. The
correlation name is also necessary to distinguish between table instances when
referencing the same table more than once in the same query. If no correlation
name is specified, then the table name is used as the correlation name for the
current statement.

If the same correlation name is used twice for the same table in a table
expression, that table is treated as if it were only listed once. For example, in:

SELECT *
FROM sales_order
KEY JOIN sales_order_items,
sales_order
KEY JOIN employee

The two instances of the sales_order table are treated as one instance that is
equivalent to:

SELECT *
FROM sales_order_items
KEY JOIN sales_order
KEY JOIN employee

By contrast, the following is treated as two instances of the Person table, with
different correlation names HUSBAND and WIFE.

SELECT *
FROM Person HUSBAND, Person WIFE

CHAPTER 6 SQL Statements

Reference Manual 557

You can supply a SELECT statement instead of one or more tables or views in
the FROM clause, letting you use groups on groups, or joins with groups,
without creating a view. This use of SELECT statements is called derived
tables.

Join columns require like data types for optimal performance.

Depending on the query, Sybase IQ allows between 16 and 64 tables in the
FROM clause with the optimizer turned on; however, performance might suffer
if you have more than 16 to 18 tables in the FROM clause in very complex
queries.

Note If you omit the FROM clause, or if all tables in the query are in the
SYSTEM dbspace, the query is processed by Adaptive Server Anywhere
instead of Sybase IQ and might behave differently, especially with respect to
syntactic and semantic restrictions and the effects of option settings. See the
Adaptive Server Anywhere documentation for rules that might apply to
processing.

If you have a query that does not require a FROM clause, you can force the
query to be processed by Sybase IQ by adding the clause “FROM iq_dummy,”
where iq_dummy is a one-row, one-column table that you create in your
database.

Side effects

None.

Standards • SQL92 Entry-level feature.

• Sybase The JOIN clause is not supported in some versions of Adaptive
Server Enterprise. Instead, you must use the WHERE clause to build joins.

Permissions Must be connected to the database.

See also DELETE statement on page 525

SELECT statement on page 632

“Search conditions” on page 189

Chapter 4, “Using OLAP” in the Sybase IQ Performance and Tuning Guide

GET DESCRIPTOR statement [ESQL]

558 Sybase IQ

GET DESCRIPTOR statement [ESQL]
Description Retrieves information about variables within a descriptor area, or retrieves

actual data from a variable in a descriptor area.

Syntax GET DESCRIPTOR descriptor-name
... { hostvar = COUNT } | VALUE n assignment [, ...] }

Parameters assignment:
hostvar = { TYPE | LENGTH | PRECISION | SCALE | DATA
| INDICATOR | NAME | NULLABLE | RETURNED_LENGTH }

Examples For an example, see ALLOCATE DESCRIPTOR statement [ESQL] on page
394.

Usage The value n specifies the variable in the descriptor area about which
information is retrieved. Type checking is performed when doing GET ... DATA
to ensure that the host variable and the descriptor variable have the same data
type.

If an error occurs, it is returned in the SQLCA.

Side effects

None.

Standards • SQL92 Entry-level feature.

• Sybase Supported by Open Client/Open Server.

Permissions None

See also DEALLOCATE DESCRIPTOR statement [ESQL] on page 514

SET DESCRIPTOR statement [ESQL] on page 646

GOTO statement [T-SQL]
Description Branches to a labeled statement.

Syntax label:
GOTO label

Examples The following Transact-SQL batch prints the message “yes” on the server
window four times:

declare @count smallint
select @count = 1
restart:

CHAPTER 6 SQL Statements

Reference Manual 559

print 'yes'
select @count = @count + 1
while @count <=4
 goto restart

Usage Any statement in a Transact-SQL procedure or batch can be labeled. The label
name is a valid identifier followed by a colon. In the GOTO statement, the colon
is not used.

Side effects

None.

Standards • SQL92 Persistent Stored Module feature.

• Sybase Adaptive Server Enterprise supports the GOTO statement.

Permissions None.

GRANT statement
Description Gives permissions to specific users and creates new user IDs.

Syntax Syntax 1

GRANT CONNECT TO userid [, ...] IDENTIFIED BY password [, ...]

Syntax 2

GRANT
{ DBA
| GROUP
| MEMBERSHIP IN GROUP userid [, ...]
| RESOURCE | ALL }
... TO userid [, ...]

Syntax 3

GRANT
{ ALL [PRIVILEGES]
| ALTER
| DELETE
| INSERT
| REFERENCES [(column-name [, ...])]
| SELECT [(column-name [, ...])]
| UPDATE [(column-name,...)]
... ON [owner.]table-name TO userid [, ...] [WITH GRANT OPTION]

Syntax 4

GRANT EXECUTE ON [owner.]procedure-name TO userid [, ...]

GRANT statement

560 Sybase IQ

Syntax 5

GRANT INTEGRATED LOGIN TO user_profile_name [, ...] AS USER

userid

Examples • Makes two new users for the database:

GRANT
CONNECT TO Laurel, Hardy
IDENTIFIED BY Stan, Ollie

• Grants permissions on the employee table to user Laurel:

GRANT
SELECT, INSERT, DELETE
ON employee
TO Laurel

• Allows the user Hardy to execute the Calculate_Report procedure:

GRANT
EXECUTE ON Calculate_Report
TO Hardy

Usage The GRANT statement is used to grant database permissions to individual user
IDs and groups. It is also used to create and delete users and groups.

Syntax 1 and 2 of the GRANT statement are used for granting special privileges
to users as follows:

CONNECT TO userid,... Creates a new user. GRANT CONNECT can also be
used by any user to change their own password.

To create a user with the empty string as the password, enter:

GRANT CONNECT TO userid IDENTIFIED BY ""

If you have DBA authority, you can change the password of any existing user
with the following command:

GRANT CONNECT TO userid IDENTIFIED BY password

You can also use the same command to add a new user. For this reason, if you
inadvertently enter the user ID of an existing user when you mean to add a new
user, you are actually changing the password of the existing user. You do not
receive a warning because this behavior is considered normal. This behavior
differs from pre-version 12 Sybase IQ.

CHAPTER 6 SQL Statements

Reference Manual 561

To avoid this situation, use the system procedures sp_addlogin and sp_adduser
to add users. These procedures give you an error if you try to add an existing
user ID, as in Adaptive Server Enterprise, and pre-version 12 Sybase IQ.

Note If Login Management is enabled for the database, you must use system
procedures, not GRANT and REVOKE, to add and remove user IDs.

To create a user with no password, enter:

GRANT CONNECT TO userid

The user ID is not case sensitive.

By default, you can add users with GRANT CONNECT only on a multiplex
write server. To enable GRANT CONNECT on query servers, you must set the
database option MPX_LOCAL_SPEC_PRIV to change the default. For details,
see “MPX_LOCAL_SPEC_PRIV option” on page 123.

A user with no password cannot connect to the database. This is useful when
you are creating groups and you do not want anyone to connect to the group
user ID.

The password must be a valid identifier, as described in “Identifiers” on page
177. Passwords have a maximum length of 255 bytes. If the database option
VERIFY_PASSWORD_FUNCTION is set to a value other than the empty string,
the GRANT CONNECT TO userid IDENTIFIED BY password statement calls the
function identified by the option value. The function returns NULL to indicate
that the password conforms to rules. If the VERIFY_PASSWORD_FUNCTION
option is set, you can specify only one usrid and password with the GRANT
CONNECT statement. For details, see “VERIFY_PASSWORD_FUNCTION
option” on page 170.

The following are invalid for database user IDs and passwords:

• Names that begin with white space or single or double quotes

• Names that end with white space

• Names that contain semicolons

DBA Database Administrator authority gives a user permission to do
anything. This is usually reserved for the person in the organization who is
looking after the database.

GROUP Allows users to have members. See Chapter 12, “Managing User
IDs and Permissions” in the Sybase IQ System Administration Guide for a
complete description.

GRANT statement

562 Sybase IQ

MEMBERSHIP IN GROUP userid,... Allows users to inherit table
permissions from a group and to reference tables created by the group without
qualifying the table name.

Syntax 3 of the GRANT statement is used to grant permission on individual
tables or views. You can list the table permissions together, or specify ALL to
grant all six permissions at once. The permissions have the following meaning:

RESOURCE Allows the user to create tables and views. In syntax 2, ALL is a
synonym for RESOURCE, which is compatible with Adaptive Server
Enterprise.

ALL In syntax 3, this grants all of the permissions outlined below.

ALTER Users can alter this table with the ALTER TABLE statement. This
permission is not allowed for views.

DELETE Users can delete rows from this table or view.

INSERT Users can insert rows into the named table or view.

REFERENCES [(column-name,...)] Users can create indexes on the named
tables, and foreign keys that reference the named tables. If column names are
specified, then users can reference only those columns. REFERENCES
permissions on columns cannot be granted for views, only for tables.

SELECT [(column-name,...)] Users can look at information in this view or
table. If column names are specified, then the users can look at only those
columns. SELECT permissions on columns cannot be granted for views, only
for tables.

UPDATE [(column-name,...)] Users can update rows in this view or table. If
column names are specified, users can update only those columns. UPDATE
permissions on columns cannot be granted for views, only for tables. To update
a table, users must have both SELECT and UPDATE permission on the table.

For example, to grant SELECT and UPDATE permissions on the employee
table to user Laurel, enter:

GRANT
SELECT, UPDATE (street)
ON employee
TO Laurel

If WITH GRANT OPTION is specified, then the named user ID is also given
permission to GRANT the same permissions to other user IDs.

Syntax 4 of the GRANT statement is used to grant permission to execute a
procedure.

CHAPTER 6 SQL Statements

Reference Manual 563

Syntax 5 of the GRANT statement creates an explicit integrated login mapping
between one or more Windows user profiles and an existing database user ID,
allowing users who successfully log in to their local machine to connect to a
database without having to provide a user ID or password.

Side effects

Automatic commit.

Standards • SQL92 Syntax 3 is an entry-level feature. Syntax 4 is a Persistent Stored
Module feature. Other syntaxes are vendor extensions.

• Sybase Syntax 2 and 3 are supported in Adaptive Server Enterprise. The
security model is different in Adaptive Server Enterprise and Sybase IQ,
so other syntaxes differ.

Permissions • For Syntax 1 or 2, one of the three following conditions must be met:

• You are changing your own password using GRANT CONNECT

• You are adding members to your own user ID

• You have DBA authority.

If you are changing another user’s password, the other user cannot be
connected to the database.

• For Syntax 3, one of the following conditions must be met:

• You created the table

• You have been granted permissions on the table with GRANT OPTION

• You have DBA authority

• For Syntax 4, one of the following conditions must be met:

• You created the procedure

• You have DBA authority

• For Syntax 5, you must have DBA authority.

See also REVOKE statement on page 628

HELP statement [DBISQL]

564 Sybase IQ

HELP statement [DBISQL]
Description Accesses help in the DBISQL environment.

Syntax HELP [topic]

Usage The HELP statement is used to enter the DBISQL interactive help facility. The
topic for help can be optionally specified. If topic is not specified, the help
system is entered at the index.

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase Not applicable.

Permissions None.

IF statement
Description Provides conditional execution of SQL statements.

Syntax IF search-condition THEN statement-list
... [ELSE IF search-condition THEN statement-list]...
... [ELSE statement-list]
... END IF

Examples The following procedure illustrates the use of the IF statement:

CREATE PROCEDURE TopCustomer (OUT TopCompany CHAR(35),
OUT TopValue INT)
BEGIN

DECLARE err_notfound EXCEPTION
FOR SQLSTATE '02000' ;
DECLARE curThisCust CURSOR FOR
SELECT company_name, CAST(

sum(sales_order_items.quantity *
product.unit_price) AS INTEGER) VALUE
FROM customer
LEFT OUTER JOIN sales_order
LEFT OUTER JOIN sales_order_items
LEFT OUTER JOIN product
GROUP BY company_name ;

DECLARE ThisValue INT ;

CHAPTER 6 SQL Statements

Reference Manual 565

DECLARE ThisCompany CHAR(35) ;
SET TopValue = 0 ;
OPEN curThisCust ;
CustomerLoop:
LOOP

FETCH NEXT curThisCust
INTO ThisCompany, ThisValue ;
IF SQLSTATE = err_notfound THEN

LEAVE CustomerLoop ;
END IF ;
IF ThisValue > TopValue THEN

SET TopValue = ThisValue ;
SET TopCompany = ThisCompany ;

END IF ;
END LOOP CustomerLoop ;
CLOSE curThisCust ;

END

Usage The IF statement lets you conditionally execute the first list of SQL statements
whose search-condition evaluates to TRUE. If no search-condition evaluates
to TRUE, and an ELSE clause exists, the statement-list in the ELSE clause is
executed. If no search-condition evaluates to TRUE, and there is no ELSE
clause, the expression returns a NULL value.

Execution resumes at the first statement after the END IF.

When comparing variables to the single value returned by a SELECT statement
inside an IF statement, you must first assign the result of the SELECT to another
variable.

IF statement is different from IF expression
Do not confuse the syntax of the IF statement with that of the IF expression.

For information on the IF expression, see “Expressions” on page 179.

Side effects

None.

Standards • SQL92 Persistent Stored Module feature.

• Sybase The Transact-SQL IF statement has a slightly different syntax.

Permissions None.

See also BEGIN... END statement on page 422

IF statement [T-SQL]

566 Sybase IQ

IF statement [T-SQL]
Description Provides conditional execution of a Transact-SQL statement, as an alternative

to the Sybase IQ IF statement.

Syntax IF expression
... statement
... [ELSE [IF expression] statement]...

Examples • The following example illustrates the use of the Transact-SQL IF
statement:

IF (SELECT max(id) FROM sysobjects) < 100
RETURN

ELSE
BEGIN

PRINT "These are the user-created objects"
SELECT name, type, id
FROM sysobjects
WHERE id < 100

END

• The following two statement blocks illustrate Transact-SQL and Sybase
IQ compatibility:

/* Transact-SQL IF statement */
IF @v1 = 0

PRINT '0'
ELSE IF @v1 = 1

PRINT '1'
ELSE

PRINT 'other'
/* IQ IF statement */
IF v1 = 0 THEN

PRINT '0'
ELSEIF v1 = 1 THEN

PRINT '1'
ELSE

PRINT 'other'
END IF

Usage The Transact-SQL IF conditional and the ELSE conditional each control the
performance of only a single SQL statement or compound statement (between
the keywords BEGIN and END).

In contrast to the Sybase IQ IF statement, the Transact-SQL IF statement has
no THEN. The Transact-SQL version also has no ELSE IF or END IF keywords.

CHAPTER 6 SQL Statements

Reference Manual 567

When comparing variables to the single value returned by a SELECT statement
inside an IF statement, you must first assign the result of the SELECT to another
variable.

Side effects

None.

Standards • SQL92 Transact-SQL extension.

• Sybase Adaptive Server Enterprise supports the Transact-SQL IF
statement.

Permissions None

INCLUDE statement [ESQL]
Description Includes a file into a source program to be scanned by the SQL source language

preprocessor.

Syntax INCLUDE filename

Parameters filename:
identifier

Usage The INCLUDE statement is very much like the C preprocessor #include
directive. However, the SQL preprocessor reads the given file, inserting its
contents into the output C file. Thus, if an include file contains information that
the SQL preprocessor requires, it should be included with the Embedded SQL
INCLUDE statement.

Two file names are specially recognized: SQLCA and SQLDA. Any C
program using Embedded SQL must contain the following statement before
any Embedded SQL statements:

EXEC SQL INCLUDE SQLCA;

This statement must appear at a position in the C program where static variable
declarations are allowed. Many Embedded SQL statements require variables
(invisible to the programmer) which are declared by the SQL preprocessor at
the position of the SQLCA include statement. The SQLDA file must be
included if any SQLDAs are used.

Side effects

None.

Standards • SQL92 Entry-level feature.

INSERT statement

568 Sybase IQ

• Sybase Supported by Open Client/Open Server.

Permissions None

INSERT statement
Description Inserts into a table either a single row (Syntax 1) or a selection of rows (Syntax

2) from elsewhere in the current database. Inserts a selection of rows from
another database (Syntax 3) or lets users specify the setting for options at the
remote server.

Syntax Syntax 1

INSERT [INTO] [owner.]table-name [(column-name [, ...])]
... VALUES (expression ...)

Syntax 2

INSERT [INTO] [owner.]table-name [(column-name [, ...])]
... insert-load-options
... select-statement

Syntax 3

INSERT [INTO] [owner.]table-name[(column-name [, ...])]
... insert-load-options
[LOCATION 'servername.dbname'
[location-options]]
... { select-statement }

Parameters insert-load-options:
[LIMIT number-of-rows]
[NOTIFY number-of-rows]
[SKIP number-of-rows]
[START ROW ID number]

location-options:
[ENCRYPTED PASSWORD]
[PACKETSIZE packet-size]
[QUOTED_IDENTIFIER { ON | OFF }]

Examples • Adds an Eastern Sales department to the database:

INSERT INTO department (dept_id, dept_name)

VALUES (230, 'Eastern Sales')

• Fills the table dept_head with the names of department heads and their
departments:

CHAPTER 6 SQL Statements

Reference Manual 569

INSERT INTO dept_head (name, dept)

NOTIFY 20

SELECT emp_fname || ' ' || emp_fname

AS name,

dept_name

FROM employee JOIN department

ON emp_id = dept_head_id

• Inserts data from the l_shipdate and l_orderkey columns of the lineitem
table from the Sybase IQ 11.5 database asiq11db.dba on the server detroit,
into the corresponding columns of the lineitem table in the current
database:

INSERT INTO lineitem

(l_shipdate, l_orderkey)

LOCATION 'detroit.asiqdb'

PACKETSIZE 512

' SELECT l_shipdate, l_orderkey

FROM lineitem '

Usage Syntax 1 allows the insertion of a single row with the specified expression
values. If the list of column names is not specified, the values are inserted into
the table columns in the order they were created (the same order as retrieved
with SELECT *). The row is inserted into the table at an arbitrary position. (In
relational databases, tables are not ordered.)

Syntax 2 allows the user to do mass insertion into a table with the results of a
fully general SELECT statement. Insertions are done in an arbitrary order
unless the SELECT statement contains an ORDER BY clause. The columns
from the select list are matched ordinally with the columns specified in the
column list, or sequentially in the order in which the columns were created.

Note The NUMBER(*) function is useful for generating primary keys with
Syntax 2 of the INSERT statement (see Chapter 5, “SQL Functions”).

Syntax 3 INSERT...LOCATION is a variation of Syntax 2 that lets you insert data
from an Adaptive Server Enterprise or Sybase IQ database. The
servername.dbname identifies the server and database for the table in the
FROM clause. The SELECT statement might be delimited by either curly braces
or straight single quotation marks. (Curly braces represent the start and end of
an escape sequence in the ODBC standard, and might generate errors in the
context of ODBC.) To use Syntax 3, the Adaptive Server Enterprise server to
which you are connecting must exist in the interfaces file on the local machine.

INSERT statement

570 Sybase IQ

The following Open Client restrictions apply to queries using Syntax 3:

• You can insert a maximum of 2147483647 rows.

• You cannot use unsigned integer data.

Sybase IQ connects to the server and database you specify and returns the
results from the queries in those tables to insert in the current database. If you
omit the server-name, Sybase IQ ignores any database-name you might
specify, since the only choice is the current database on the local server.

When Sybase IQ connects to the remote server, INSERT...LOCATION uses the
remote login for the user ID of the current connection, if a remote login has
been created with CREATE EXTERNLOGIN and the remote server has been
defined with a CREATE SERVER statement. If the remote server is not defined
or a remote login has not been created for the user ID of the current connection,
Sybase IQ connects using the user ID and password of the current connection.

For example, user russid connects to the Sybase IQ database and executes the
following statement:

INSERT local_SQL_Types LOCATION ‘ase1.ase1db’
{SELECT int_col FROM SQL_Types};

On server ase1, there exists user ID ase1user with password sybase. The
owner of the table SQL_Types is ase1user. The remote server is defined on the
IQ server as follows:

CREATE SERVER ase1 CLASS ‘ASEJDBC’
USING ‘system1:4100’;

The external login is defined on the IQ server as follows:

CREATE EXTERNLOGIN russid TO ase1 REMOTE LOGIN ase1user
IDENTIFIED BY sybase;

INSERT...LOCATION connects to the remote server ase1 using the user ID
ase1user and the password sybase for user russid.

The ENCRYPTED PASSWORD parameter lets you specify the use of Open
Client Library default password encryption when connecting to a remote
server. If ENCRYPTED PASSWORD is specified and the remote server does not
support Open Client Library default password encryption, an error is reported
indicating that an invalid user ID or password was used. When used as a remote
server, Sybase IQ does not support this password encryption.

CHAPTER 6 SQL Statements

Reference Manual 571

The PACKETSIZE parameter specifies the TDS packet size in bytes. The
default TDS packet size on most platforms is 512 bytes. If your application is
receiving large amounts of text or bulk data across a network, then a larger
packet size might significantly improve performance.

The value of packet-size must be a multiple of 512 either equal to the default
network packet size or between the default network packet size and the
maximum network packet size. The maximum network packet size and the
default network packet size are multiples of 512 in the range 512 – 524288
bytes. The maximum network packet size is always greater than or equal to the
default network packet size. See the Adaptive Server Enterprise System
Administration Guide, Volume 1 for more information on network packet size.

If INSERT...LOCATION PACKETSIZE packet-size is not specified or is specified
as zero, then the default packet size value for the platform is used.

Note If you specify an incorrect packet size (for example 933, which is not a
multiple of 512), the connection attempt fails with an Open Client ct_connect
“Connection failed” error. Any unsuccessful connection attempt returns a
generic “Connection failed” message. The Adaptive Server Enterprise error
log might contain more specific information about the cause of the connection
failure.

The QUOTED_IDENTIFIER parameter lets you specify the setting of the
QUOTED_IDENTIFIER option on the remote server. The default setting is
‘OFF’. You set QUOTED_IDENTIFIER to ‘ON’ only if any of the identifiers in
the SELECT statement are enclosed in double quotes, as in the following
example using ‘c1’:

INSERT INTO foo
LOCATION 'ase.database'
QUOTED_IDENTIFIER ON select "c1" from xxx;

While you are connected by INSERT...LOCATION, the IQ hostname and the
program_name Sybase IQ appear in sysprocesses in the Adaptive Server
Enterprise master database.

INSERT statement

572 Sybase IQ

Sybase IQ does not support the Adaptive Server Enterprise data type TEXT, but
you can execute INSERT...LOCATION (Syntax 3) from both an IQ CHAR or
VARCHAR column whose length is greater than 255 bytes, and from an ASE
database column of data type TEXT. ASE TEXT and IMAGE columns can be
inserted into columns of other Sybase IQ data types, if Sybase IQ supports the
internal conversion. All data inserted is silently right truncated at 32767 bytes.

Note If you use INSERT...LOCATION to insert data selected from a VARBINARY
column, set the LOAD_MEMORY_MB option on the local database to limit
memory used by the insert, and set ASE_BINARY_DISPLAY to OFF on the
remote database.

INSERT...LOCATION (Syntax 3) does not support the use of variables in the
SELECT statement.

Inserts can be done into views, provided the SELECT statement defining the
view has only one table in the FROM clause and does not contain a GROUP BY
clause, an aggregate function, or involve a UNION operation.

Character strings inserted into tables are always stored in the case they are
entered, regardless of whether the database is case sensitive or not. Thus, a
string “Value” inserted into a table is always held in the database with an
uppercase V and the remainder of the letters lowercase. SELECT statements
return the string as Value. If the database is not case-sensitive, however, all
comparisons make Value the same as value, VALUE, and so on. Further, if a
single-column primary key already contains an entry Value, an INSERT of
value is rejected, as it would make the primary key not unique.

Whenever you execute an INSERT ... LOCATION statement, Sybase IQ loads
the localization information needed to determine language, collation sequence,
character set, and date/time format. If your database uses a nondefault locale
for your platform, you must set an environment variable on your local client to
ensure that Sybase IQ loads the correct information.

If you set the LC_ALL environment variable, Sybase IQ uses its value as the
locale name. If LC_ALL is not set, Sybase IQ uses the value of the LANG
environment variable. If neither variable is set, Sybase IQ uses the default entry
in the locales file. For an example, see “Setting locales” in Chapter 11,
“International Languages and Character Sets” in the Sybase IQ System
Administration Guide.

The LIMIT option specifies the maximum number of rows to insert into the table
from a query. The default is 0 for no limit. The maximum is 2GB -1.

CHAPTER 6 SQL Statements

Reference Manual 573

The NOTIFY option specifies that you be notified with a message each time the
number of rows are successfully inserted into the table. The default is every
100,000 rows.

The SKIP option lets you define a number of rows to skip at the beginning of
the input tables for this insert. The default is 0.

The START ROW ID option specifies the record identification number of a row
in the IQ table where it should start inserting. This option is used for partial-
width inserts, which are inserts into a subset of the columns in the table. By
default, new rows are inserted wherever there is space in the table, and each
insert starts a new row. Partial-width inserts need to start at an existing row.
They also need to insert data from the source table into the destination table
positionally by column, so you must specify the destination columns in the
same order as their corresponding source columns. The default is 0. For more
information about partial-width inserts, see Chapter 7, “Moving Data In and
Out of Databases” in the Sybase IQ System Administration Guide.

Note Use the START ROW ID option for partial-width inserts only. If the
columns being loaded already contain data, the insert fails.

An INSERT on a multicolumn index must include all columns of the index.

Sybase IQ supports column DEFAULT values for INSERT...VALUES,
INSERT...SELECT, and INSERT...LOCATION. If a DEFAULT value is specified
for a column, this DEFAULT value is used as the value of the column in any
INSERT (or LOAD) statement that does not specify a value for the column.

For more information on the use of column DEFAULT values with inserts, see
“Using column defaults” in Chapter 9, “Ensuring Data Integrity” in the Sybase
IQ System Administration Guide.

Side effects

None.

Standards • SQL92 Entry-level feature.

• Sybase Supported by Adaptive Server Enterprise (excluding the insert-
load-options).

Permissions Must have INSERT permission on the table.

See also DELETE statement on page 525

LOAD TABLE statement on page 580

SYNCHRONIZE JOIN INDEX statement on page 657

INSTALL statement

574 Sybase IQ

“Using the INSERT statement” in Chapter 7, “Moving Data In and Out of
Databases” in the Sybase IQ System Administration Guide

INSTALL statement
Description Makes Java classes available for use within a database.

Syntax INSTALL JAVA [install-mode] [JAR jar-name] FROM source

Parameters install-mode:
{ NEW | UPDATE }

source:
{ FILE filename | URL url-value }

Examples • Installs the user-created Java class named “Demo” by providing the file
name and location of the class:

INSTALL JAVA NEW

FROM FILE 'D:\JavaClass\Demo.class'

After installation, the class is referenced using its name. Its original file
path location is no longer used. For example, the following statement uses
the class installed in the previous statement:

CREATE VARIABLE d Demo

If the Demo class was a member of the package sybase.work, the fully
qualified name of the class must be used, for example:

CREATE VARIABLE d sybase.work.Demo

• Installs all the classes contained in a zip file, and associates them within
the database with a JAR file name:

INSTALL JAVA

JAR 'Widgets'

FROM FILE 'C:\Jars\Widget.zip'

Again, the location of the zip file is not retained, and classes must be
referenced using the fully qualified class name (package name and class
name). The zip file must be an uncompressed JAR file.

Usage Install mode Specifying an install mode of NEW requires that the referenced
Java classes be new classes, rather than updates of currently installed classes.
An error occurs if a class with the same name exists in the database and the
NEW install mode is used.

CHAPTER 6 SQL Statements

Reference Manual 575

Specifying UPDATE specifies that the referenced Java classes may include
replacements for Java classes already installed in the given database.

Connection must be dropped for update to take effect Updating a Java class
installed in a database takes effect immediately. However, the connection used
to execute the INSTALL JAVA UPDATE statement has access only to the older
version of the Java class until the connection is dropped.

Note A client application executing this statement should drop the database
connection used to execute the statement and reconnect to get access to the
latest version.

This applies to the DBISQL utility also. If you update a Java class by executing
the INSTALL statement from DBISQL, the new version is not available until
you disconnect from the database engine or server and reconnect.

If install mode is omitted, the default is NEW.

JAR If this is specified, the file-name or text-pointer must designate a JAR
file or a column containing a JAR. JAR files typically have extensions of .jar
or .zip.

Installed JAR and zip files can be compressed or uncompressed. However,
JAR files produced by the Sun JDK jar utility are not supported. Files
produced by other zip utilities are supported.

If the JAR option is specified, then the JARis retained as a JAR after the classes
that it contains have been installed. That JAR is the associated JARof each of
those classes. The set of JARs installed in a database with the JAR option are
called the retained JARs of the database.

Retained JARs are referenced in INSTALL and REMOVE statements. Retained
JARs have no effect on other uses of Java-SQL classes. Retained JARs are used
by the SQL system for requests by other systems for the class associated with
given data. If a requested class has an associated JAR, the SQL system can
supply that JAR, rather than the individual class.

jar-name is a character string value of length up to 255 bytes. jar-name is used
to identify the retained JAR in subsequent INSTALL, UPDATE, and REMOVE
statements.

source Specifies the location of the Java classes to be installed.

The formats supported for file-name include fully qualified file names, such as
'c:\libs\jarname.jar' and '/usr/u/libs/jarname.jar', and relative file names,
which are relative to the current working directory of the database server.

IQ UTILITIES statement

576 Sybase IQ

The filename must identify either a class file, or a JAR file.

Class availability

The class definition for each class is loaded by each connection’s VM the first
time that class is used. When you INSTALL a class, the VM on your connection
is implicitly restarted. Therefore, you have immediate access to the new class,
whether the INSTALL has an install-mode of NEW or UPDATE.

For other connections, the new class is loaded the next time a VM accesses the
class for the first time. If the class is already loaded by a VM, that connection
does not see the new class until the VM is restarted for that connection (for
example, with a STOP JAVA and START JAVA).

Standards • SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

Permissions • Requires DBA permissions to execute the INSTALL statement.

• All installed classes can be referenced in any way by any user.

See also REMOVE statement on page 619

IQ UTILITIES statement
Description Collects statistics on the buffer caches for a Sybase IQ database.

Syntax IQ UTILITIES { MAIN | PRIVATE }
[INTO] table-name
{ START MONITOR ['monitor-options']
| STOP MONITOR }

Parameters monitor-options:
{ -summary |
{ -append | -truncate }
-bufalloc |
-cache |
-cache_by_type |
-contention |
-debug |
-file_suffix suffix|
-io |
-interval seconds |
-threads }...

CHAPTER 6 SQL Statements

Reference Manual 577

Examples Starts the buffer cache monitor and records activity for the IQ temp buffer
cache:

IQ UTILITIES PRIVATE INTO monitor START MONITOR '-cache
-interval 20'

Usage START MONITOR starts the IQ buffer cache monitor. For START and STOP
MONITOR, the table_name is a dummy table. You can specify any IQ base or
temporary table, although it is best to have a table that you use only for
monitoring. Results go to a text file, dbname.connection#-main-iqmon for
MAIN buffer cache results, or dbname.connection#-temp-iqmon for PRIVATE
(Temp) buffer cache results. Running the monitor again from the same
database and connection number overwrites previous results. To set the
directory location of the monitor output file, set the
MONITOR_OUTPUT_DIRECTORY option.

The monitor-options define the content and frequency of results. You can
specify more than one, and they must be enclosed with quotation marks.

• -summary displays summary information for both the main and temp
(private) buffer caches. This option is the default.

• -append | -truncate appends to the existing output file or truncates the
existing output file, respectively. Truncate is the default.

• -bufalloc displays information on the main or temp buffer allocator, which
reserves space in the buffer cache for objects like sorts, hashes, and
bitmaps.

• -cache displays main or temp buffer cache activity in detail.

• -cache_by_type produces the same results as -cache, but broken down by
IQ page type. This format is used mainly to supply information to Sybase
Technical Support.

• -contention displays many key buffer cache and memory manager locks.

• -debug displays all the information that is available to the performance
monitor, whether or not there is a standard display mode that covers the
same information. This option is used mainly to supply information to
Sybase Technical Support.

• -file_suffix suffix creates a monitor output file named
<dbname>.<connid>-<main_or_temp>-<suffix>. If you do not
specify a suffix, it defaults to iqmon.

• -io displays main or temp buffer cache I/O rates and data compression
ratios.

LEAVE statement

578 Sybase IQ

• -interval specifies the reporting interval in seconds. The default is every 60
seconds. The minimum is every 2 seconds.

• -threads displays information about processing threads.

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase Not supported in Adaptive Server Enterprise.

Permissions None

See also MONITOR_OUTPUT_DIRECTORY option on page 121

Chapter 6, “Monitoring and Tuning Performance” in the Sybase IQ
Performance and Tuning Guide, for examples of monitor results

Chapter 8, “Using Procedures and Batches” in Sybase IQ System
Administration Guide for advanced use of IQ UTILITIES to create procedures
that extend the functionality of Sybase IQ system stored procedures

LEAVE statement
Description Continues execution by leaving a compound statement or LOOP.

Syntax LEAVE statement-label

Examples • The following fragment shows how the LEAVE statement is used to leave
a loop:

SET i = 1;
lbl:
LOOP

INSERT
INTO Counters (number)
VALUES (i) ;
IF i >= 10 THEN

LEAVE lbl ;
END IF ;
SET i = i + 1

END LOOP lbl

• The following fragment uses LEAVE in a nested loop:

outer_loop:

CHAPTER 6 SQL Statements

Reference Manual 579

LOOP
SET i = 1;
inner_loop:
LOOP

...
SET i = i + 1;
IF i >= 10 THEN

LEAVE outer_loop
END IF

END LOOP inner_loop
END LOOP outer_loop

Usage LEAVE is a control statement that lets you leave a labeled compound statement
or a labeled loop. Execution resumes at the first statement after the compound
statement or loop.

The compound statement that is the body of a procedure has an implicit label
that is the same as the name of the procedure.

Side effects

None.

Standards • SQL92 Persistent Stored Module feature.

• Sybase Not supported in Adaptive Server Enterprise. The break
statement provides a similar feature for Transact-SQL compatible
procedures.

Permissions None

See also BEGIN... END statement on page 422

FOR statement on page 551

LOOP statement on page 598

LOAD TABLE statement

580 Sybase IQ

LOAD TABLE statement
Description Imports data into a database table from an external ASCII-format file.

Syntax LOAD [INTO] TABLE [owner].table-name
... (load-specification [, ...])
... FROM { 'filename-string' | filename-variable } [, ...]
... [CHECK CONSTRAINTS { ON | OFF }]
... [DEFAULTS { ON | OFF }]
... QUOTES OFF
... ESCAPES OFF
... [FORMAT { 'ascii' | 'binary' }]
... [DELIMITED BY 'string']
... [STRIP { ON | OFF }]
... [WITH CHECKPOINT { ON | OFF }]
... [{ BLOCK FACTOR number | BLOCK SIZE number }]
... [BYTE ORDER { NATIVE | HIGH | LOW }]
... [LIMIT number-of-rows]
... [NOTIFY number-of-rows]
... [ON FILE ERROR { ROLLBACK | FINISH | CONTINUE}]
... [PREVIEW { ON | OFF }]
... [ROW DELIMITED BY 'delimiter-string']
... [SKIP number-of-rows]
... [WORD SKIP number]
... [START ROW ID number]
... [UNLOAD FORMAT]
... [IGNORE CONSTRAINT constrainttype [, ...]]
... [MESSAGE LOG ‘string’ ROW LOG ‘string’ [ONLY LOG logwhat [, ...]]
... [LOG DELIMITED BY ‘string’]

Parameters load-specification:
{ column-name [column-spec]
| FILLER (filler-type) }

column-spec:
{ ASCII (input-width)
| BINARY [WITH NULL BYTE]
| PREFIX { 1 | 2 | 4 }
| 'delimiter-string'
| DATE (input-date-format)
| DATETIME (input-datetime-format) }
[NULL ({ BLANKS | ZEROS | 'literal', ... })]

filler-type:
{ input-width
| PREFIX { 1 | 2 | 4 }
| 'delimiter-string' }

CHAPTER 6 SQL Statements

Reference Manual 581

constrainttype:
{ CHECK integer | UNIQUE integer
| NULL integer
| FOREIGN KEY integer
| DATA VALUE integer
| ALL integer }

logwhat:
{ CHECK | ALL | NULL | UNIQUE | DATA VALUE | FOREIGN KEY | WORD }

Examples • Loads data from one file into the product table on a Windows system. A
tab is used as the column delimiter following the description and color
columns.

LOAD TABLE product
(id ASCII(6),
FILLER(1),
name ASCII(15),
FILLER(1),
description '\x09',
size ASCII(2),
FILLER(1),
color '\x09',
quantity PREFIX 2,
unit_price PREFIX 2,
FILLER(2))
FROM 'C:\\mydata\\source1.dmp'
QUOTES OFF
ESCAPES OFF
BYTE ORDER LOW
NOTIFY 1000

• Loads data from two files into the product_new table (which allows NULL
values) on a UNIX system. The tab character is the default column
delimiter, and the newline character is the row delimiter.

LOAD TABLE product_new
(id,
name,
description,
size,
color '\x09' NULL('null', 'none', 'na'),
quantity PREFIX 2,
unit_price PREFIX 2)
FROM '/s1/mydata/source2.dump', '/s1/mydata/
source3.dump'
QUOTES OFF

LOAD TABLE statement

582 Sybase IQ

ESCAPES OFF
BLOCKSIZE 100000
FORMAT ascii
DELIMITED BY '\x09'
ON FILE ERROR CONTINUE
ROW DELIMITED BY '\n'

• Ignores 10 word-length violations; on the 11th, diplays the new error and
rolls back the load:

load table PTAB1(
ck1 ',' null ('NULL') ,
ck3fk2c2 ',' null ('NULL') ,
ck4 ',' null ('NULL') ,
ck5 ',' null ('NULL') ,
ck6c1 ',' null ('NULL') ,
ck6c2 ',' null ('NULL') ,
rid ',' null ('NULL'))

FROM 'ri_index_selfRI.inp'
row delimited by '\n'
LIMIT 14 SKIP 10
IGNORE CONSTRAINT UNIQUE 2, FOREIGN KEY 8
word skip 10 quotes off escapes off strip
off

Usage The LOAD TABLE statement allows efficient mass insertion into a database
table from a file with ASCII or binary data.

The LOAD TABLE options also let you control load behavior when integrity
constraints are violated and to log information about the violations.

If WITH CHECKPOINT ON is not specified, the file used for loading must be
retained in case recovery is required. If WITH CHECKPOINT ON is specified, a
checkpoint is carried out after loading, and recovery is guaranteed even if the
data file is then removed from the system.

You can use LOAD TABLE on a temporary table, but the temporary table must
have been declared with ON COMMIT PRESERVE ROWS, or the next COMMIT
removes the rows you have loaded.

CHAPTER 6 SQL Statements

Reference Manual 583

You can also specify more than one file to load data. In the FROM clause, you
specify each filename-string separated by commas. However, Sybase IQ
cannot guarantee that all the data can be loaded because of memory constraints.
If memory allocation fails, the entire load transaction is rolled back. The files
are read one at a time, and they are processed in a left-to-right order as specified
in the FROM clause. Any SKIP or LIMIT value only applies in the beginning
of the load, not for each file.

Note When loading a multiplex database, use absolute (fully qualified) paths
in all file names. Do not use relative path names.

Sybase IQ supports loading from both ASCII and binary data, and it supports
both fixed- and variable-length formats. To handle all of these formats, you
must supply a load-specification to tell Sybase IQ what kind of data to expect
from each “column” or field in the source file. The column-spec lets you define
the following formats:

• ASCII with a fixed length of bytes. The input-width value is an integer
value indicating the fixed width in bytes of the input field in every record.

• Binary fields that use a number of PREFIX bytes (1, 2, or 4) to specify the
length of the binary input.

If the data is unloaded using the extraction facility with the
TEMP_EXTRACT_BINARY option set ON, you must use the BINARY WITH
NULL BYTE parameter for each column when you load the binary data.

• Variable-length characters delimited by a separator. You specify the
terminator as hexadecimal ASCII characters. The delimiter-string can be
any string of up to 4 characters, including any combination of printable
characters, and any 8-bit hexadecimal ASCII code that represents a
nonprinting character. For example, specify:

• '\x09' to represent a tab as the terminator.

• '\x00' for a null terminator (no visible terminator as in “C” strings).

LOAD TABLE statement

584 Sybase IQ

• '\x0a' for a newline character as the terminator. You can also use the
special character combination of '\n' for newline.

Note The delimiter string can be from 1 to 4 characters long, but you can
specify only a single character in the DELIMITED BY clause.

• DATE or DATETIME string as ASCII characters. You must define the
input-date-format or input-datetime-format of the string using one of the
corresponding formats for the date and datetime data types supported by
Sybase IQ. Use DATE for date values and DATETIME for datetime and
time values.

Table 6-9: Formatting dates and times

Option Meaning

yyyy or YYYY

yy or YY

Represents number of year. Default is current year.

mm or MM Represents number of month. Always use leading zero or blank for number of the month
where appropriate, for example, '05' for May. DATE value must include a month. For
example, if the DATE value you enter is 1998, you receive an error. If you enter '03', Sybase
IQ applies the default year and day and converts it to '1998-03-01'.

dd or DD

jjj or JJJ

Represents number of day. Default day is 01. Always use leading zeros for number of day
where appropriate, for example, '01' for first day. J or j indicates a Julian day (1 to 366) of
the year.

hh

HH

Represents hour. Hour is based on 24-hour clock. Always use leading zeros or blanks for
hour where appropriate, for example, '01' for 1 am. '00' is also valid value for hour of 12 a.m.

nn Represents minute. Always use leading zeros for minute where appropriate, for example,
'08' for 8 minutes.

ss[.ssssss] Represents seconds and fraction of a second.

aa Represents the a.m. or p.m. designation.

pp Represents the p.m designation only if needed. (This is an incompatibility with Sybase IQ
versions earlier than 12.0; previously, “pp” was synonymous with “aa”.)

hh Sybase IQ assumes zero for minutes and seconds. For example, if the DATETIME value you
enter is '03', Sybase IQ converts it to '03:00:00.0000'.

hh:nn or hh:mm Sybase IQ assumes zero for seconds. For example, if the time value you enter is '03:25',
Sybase IQ converts it to '03:25:00.0000'.

CHAPTER 6 SQL Statements

Reference Manual 585

Table 6-10: Sample DATE and DATETIME format options

Sybase IQ has built-in load optimizations for common date, time, and datetime
formats. If your data to be loaded matches one of these formats, you can
significantly decrease load time by using the appropriate format. For a list of
these formats, and details about optimizing performance when loading date and
datetime data, see Chapter 7, “Moving Data In and Out of Databases” in the
Sybase IQ System Administration Guide.

You can also specify the date/time field as an ASCII fixed-width field (as
described above) and use the FILLER(1) option to skip the column delimiter.
For more information about specifying date and time data, see Date and time
data types on page 234 or Chapter 7, “Moving Data In and Out of Databases”
in the Sybase IQ System Administration Guide.

The NULL portion of the column-spec indicates how to treat certain input
values as NULL values when loading into the table column. These characters
can include BLANKS, ZEROS, or any other list of literals you define. When
specifying a NULL value or reading a NULL value from the source file, the
destination column must be able to contain NULLs.

ZEROS are interpreted as follows: the cell is set to NULL if (and only if) the
input data (before conversion, if ASCII) is all binary zeros (and not character
zeros).

• If the input data is character zero, then:

a NULL (ZEROS) never causes the cell to be NULL.

b NULL ('0') causes the cell to be NULL.

• If the input data is binary zero (all bits clear), then:

a NULL (ZEROS) causes the cell to be NULL.

b NULL ('0') never causes the cell to be NULL.

Input data Format specification

12/31/98 DATE ('MM/DD/YY')

19981231 DATE ('YYYYMMDD')

123198140150 DATETIME ('MMDDYYhhnnss')

14:01:50 12-31-98 DATETIME ('hh:mm:ss MM-DD-YY')

18:27:53 DATETIME ('hh:mm:ss')

12/31/98 02:01:50AM DATETIME ('MM/DD/YY hh:mm:ssaa')

LOAD TABLE statement

586 Sybase IQ

For example, if your LOAD statement includes col1 date('yymmdd')
null(zeros) and the date is 000000, you receive an error indicating that
000000 cannot be converted to a DATE(4). To get load to insert a NULL value
in col1 when the data is 000000, write the NULL clause as null('000000'),
or modify the data to equal binary zeros and use NULL(ZEROS).

If the length of a VARCHAR cell is zero and the cell is not NULL, you get a
zero-length cell. For all other data types, if the length of the cell is zero, Sybase
IQ inserts a NULL. This is ANSI behavior. For non-ANSI treatment of zero-
length character data, set the Non_Ansi_Null_Varchar database option.

Another important part of the load-specification is the FILLER option. It
indicates you want to skip over a specified field in the source input file. For
example, there may be characters at the end of rows or even entire fields in the
input files that you do not want to add to the table. As with the column-spec
definition, FILLER lets you specify ASCII fixed length of bytes, variable
length characters delimited by a separator, and binary fields using PREFIX
bytes.

filename-string The filename-string is passed to the server as a string. The
string is therefore subject to the same formatting requirements as other SQL
strings. In particular:

• To indicate directory paths in Windows systems, the backslash character \
must be represented by two backslashes. Therefore, the statement to load
data from the file c:\temp\input.dat into the employee table is:

LOAD TABLE employee
FROM 'c:\\temp\\input.dat' ...

• The path name is relative to the database server, not to the client
application. If you are running the statement on a database server on some
other computer, the directory names refers to directories on the server
machine, not on the client machine.

The following describes each of the clauses of the statement:

WORD SKIP Allows the load to continue when it encounters data longer than
the limit specified when the word index was created.

If a row is not loaded because a word exceeds the maximum permitted size, a
warning is written to the .iqmsg file. WORD size violations can be optionally
logged to the MESSAGE LOG file and rejected rows logged to the ROW LOG
file specified in the LOAD TABLE statement.

• If the option is not specified, LOAD TABLE reports an error and rolls back
on the first occurrence of a word that is longer than the specified limit.

CHAPTER 6 SQL Statements

Reference Manual 587

• number specifies the number of times the “Words exceeding the maximum
permitted word length not supported” error is ignored.

• 0 (zero) means there is no limit.

QUOTES This parameter is optional and the default is ON. With QUOTES
turned on, LOAD TABLE expects input strings to be enclosed in quote
characters. The quote character is either an apostrophe (single quote) or a
quotation mark (double quote). The first such character encountered in a string
is treated as the quote character for the string. String data must be terminated
with a matching quote.

With QUOTES ON, column or row delimiter characters can be included in the
column value. Leading and ending quote characters are assumed not to be part
of the value and are excluded from the loaded data value.

To include a quote character in a value with QUOTES ON, use two quotes. For
example, the following line includes a value in the third column that is a single
quote character:

‘123 High Stree, Anytown’, ‘(715)398-2354’,’’’’

With STRIP turned on (the default), trailing blanks are stripped from values
before they are inserted. Trailing blanks are stripped only for non-quoted
strings. Quoted strings retain their trailing blanks. Leading blank or TAB
characters are trimmed only when the QUOTES setting is ON.

The data extraction facility provides options for handling quotes
(TEMP_EXTRACT_QUOTES, TEMP_EXTRACT_QUOTES_ALL, and
TEMP_EXTRACT_QUOTE). If you plan to load back the extracted file with
string fields which contain column or row delimiter under default ASCII
extraction, use the TEMP_EXTRACT_BINARY option for the extract and the
FORMAT ‘binary’ and QUOTES OFF options for LOAD TABLE.

Limits:

• The QUOTES ON option applies only to column-delimited ASCII fields.

• With QUOTES ON, the first character of a column delimiter or row
terminator cannot be a single or double quote mark.

• The QUOTES option does not apply to loading binary large object (BLOB)
or character large object (CLOB) data from the secondary file, regardless
of its setting, A leading or trailing quote is loaded as part of CLOB data.
Two consecutive quotes between enclosing quotes are loaded as two
consecutive quotes with the QUOTES ON option.

LOAD TABLE statement

588 Sybase IQ

• Adaptive Server Enterprise BCP does not support the QUOTES option. All
field data is copied in or out equivalent to the QUOTES OFF setting. As
QUOTES ON is the default setting for the Sybase IQ LOAD TABLE
statement, you must specify QUOTES OFF when importing ASE data from
BCP output to a Sybase IQ table.

Exceptions:

• If LOAD TABLE encounters any nonwhite characters after the ending quote
character for an enclosed field, the following error is reported and the load
operation is rolled back:

Non-SPACE text found after ending quote character for

an enclosed field.

SQLSTATE: QTA14 SQLCODE: -1005014L

• With QUOTES ON, if a single or double quote is specified as the first
character of the column delimiter, an error is reported and the load
operation fails:

Single or double quote mark cannot be the 1st character

of column delimiter or row terminator with QUOTES option

ON.

SQLSTATE: QCA90 SQLCODE: -1013090L

For an example of the QUOTES option, see “Bulk loading data using the
LOAD TABLE statement” in Chapter 7, “Moving Data In and Out of
Databases” in the Sybase IQ System Administration Guide.

CHECK CONSTRAINTS This option defaults to ON. When you specify
CHECK CONSTRAINTS ON, check constraints are evaluated and you are free
to ignore or log them.

Setting CHECK CONSTRAINTS OFF causes Sybase IQ to ignore all check
constraint violations. This can be useful, for example, during database
rebuilding. If a table has check constraints that call user-defined functions that
are not yet created, the rebuild fails unless this option is set to OFF.

This option is mutually exclusive to the following options. If any of these
options are specified in the same load, an error results:

• IGNORE CONSTRAINT ALL

• IGNORE CONSTRAINT CHECK

• LOG ALL

• LOG CHECK

CHAPTER 6 SQL Statements

Reference Manual 589

DEFAULTS If the DEFAULTS option is ON (the default) and the column has
a default value, that value is used. If the DEFAULTS option is OFF, any column
not present in the column list is assigned NULL.

The setting for the DEFAULTS option applies to all column DEFAULT values,
including AUTOINCREMENT.

For detailed information on the use of column DEFAULT values with loads
and inserts, see “Using column defaults” in Chapter 9, “Ensuring Data
Integrity” in the Sybase IQ System Administration Guide.

ESCAPES If you omit a column-spec definition for an input field and
ESCAPES is ON (the default), characters following the backslash character are
recognized and interpreted as special characters by the database server.
Newline characters can be included as the combination \n\, other characters can
be included in data as hexadecimal ASCII codes, such as \x09 for the tab
character. A sequence of two backslash characters (\\) is interpreted as a single
backslash. For Sybase IQ, you must set this option OFF.

FORMAT Sybase IQ supports ASCII and binary input fields. The format is
usually defined by the column-spec described above. If you omit that definition
for a column, by default Sybase IQ uses the format defined by this option. Input
lines are assumed to have ascii (the default) or binary fields, one row per line,
with values separated by the column delimiter character.

DELIMITED BY If you omit a column delimiter in the column-spec
definition, the default column delimiter character is a comma. You can specify
an alternative column delimiter by providing a single ASCII character or the
hexadecimal character representation. The DELIMITED BY clause is as follows:

... DELIMITED BY '\x09' ...

To use the newline character as a delimiter, you can specify either the special
combination '\n' or its ASCII value '\x0a'. Although you can specify up to four
characters in the column-spec delimiter-string, you can specify only a single
character in the DELIMITED BY clause

STRIP With STRIP turned on (the default), trailing blanks are stripped from
values before they are inserted. This is effective only for VARCHAR data; it
does not apply to ASCII fix-width inserts. To turn the STRIP option off, the
clause is as follows:

... STRIP OFF ...

LOAD TABLE statement

590 Sybase IQ

Trailing blanks are stripped only for nonquoted strings. Quoted strings retain
their trailing blanks. As an alternative, the FILLER option lets you be more
specific in the number of bytes to strip instead of all the trailing spaces. It is
more efficient for Sybase IQ to have this option off, and it adheres to the ANSI
standard when dealing with trailing blanks. (char data is always padded, so this
option only affects varchar data.)

WITH CHECKPOINT The default setting is OFF. If set to ON, a checkpoint
is issued after successfully completing and logging the statement.

If WITH CHECKPOINT ON is not specified, and recovery is subsequently
required, the data file used to load the table is needed for the recovery to
complete successfully. If WITH CHECKPOINT ON is specified, and recovery is
subsequently required, it begins after the checkpoint, and the data file need not
be present.

BLOCK FACTOR Specifies blocking factor, or number of records per block
used when a tape was created. This option is not valid for inserts from variable-
length input fields; use the BLOCKSIZE option instead. However, it does affect
all file inserts (including from disk) with fixed-length input fields, and it can
dramatically affect performance. You cannot specify this option along with the
BLOCK SIZE option. The default is 10,000.

BLOCK SIZE Specifies the default size in bytes in which input should be
read. This option only affects variable length input data read from files; it is not
valid for fixed length input fields. It is similar to BLOCK FACTOR, but there are
no restrictions on the relationship of record size to block size. You cannot
specify this option along with the BLOCK FACTOR option. The default is
500,000.

BYTE ORDER Specifies the byte order during reads. This option applies to
all binary input fields. If none are defined, this option is ignored. Sybase IQ
always reads binary data in the format native to the machine it is running on
(default is NATIVE). You can also specify:

• HIGH when multibyte quantities have the high order byte first (for big
endian platforms like Sun, IBM AIX, and HP).

• LOW when multibyte quantities have the low order byte first (for little
endian platforms like Windows).

LIMIT Specifies the maximum number of rows to insert into the table. The
default is 0 for no limit. The maximum is 2GB - 1.

CHAPTER 6 SQL Statements

Reference Manual 591

NOTIFY Specifies that you be notified with a message each time the
specified number of rows is successfully inserted into the table. The default is
every 100,000 rows. The value of this option overrides the value of the
NOTIFY_MODULUS database option.

ON FILE ERROR Specifies the action Sybase IQ takes when an input file
cannot be opened because it does not exist or you have incorrect permissions
to read the file. You can specify one of the following:

• ROLLBACK aborts the entire transaction (the default).

• FINISH finishes the insertions already completed and ends the load
operation.

• CONTINUE returns an error but only skips the file to continue the load
operation. You cannot use this option with partial-width inserts.

Only one ON FILE ERROR clause is permitted.

PREVIEW Displays the layout of input into the destination table including
starting position, name, and data type of each column. Sybase IQ displays this
information at the start of the load process. If you are writing to a log file, this
information is also included in the log. This option is especially useful with
partial-width inserts.

ROW DELIMITED BY Specifies a string up to 4 bytes in length that indicates
the end of an input record. You can use this option only if all fields within the
row are any of the following:

• Delimited with column terminators

• Data defined by the DATE or DATETIME column-spec options

• ASCII fixed length fields

You cannot use this option if any input fields contain binary data. With this
option, a row terminator causes any missing fields to be set to NULL. All rows
must have the same row delimiters, and it must be distinct from all column
delimiters. The row and field delimiter strings cannot be an initial subset of
each other. For example, you cannot specify “*” as a field delimiter and “*#”
as the row delimiter, but you could specify “#” as the field delimiter with that
row delimiter.

LOAD TABLE statement

592 Sybase IQ

If a row is missing its delimiters, Sybase IQ returns an error and rolls back the
entire load transaction. The only exception is the final record of a file where it
rolls back that row and returns a warning message. On Windows, a row
delimiter is usually indicated by the newline character followed by the carriage
return character. You might need to specify this as the delimiter-string (see
above for description) for either this option or FILLER.

SKIP Lets you define a number of rows to skip at the beginning of the input
tables for this load. The default is 0.

START ROW ID Specifies the record identification number of a row in the
Sybase IQ table where it should start inserting. This option is used for partial-
width inserts, which are inserts into a subset of the columns in the table. By
default, new rows are inserted wherever there is space in the table, and each
insert starts a new row. Partial-width inserts need to start at an existing row.
They also need to insert data from the source file into the destination table
positionally by column, so you must specify the destination columns in the
same order as their corresponding source columns. Define the format of each
input column with a column-spec. The default is 0. For more information about
partial-width inserts see Chapter 7, “Moving Data In and Out of Databases” in
the Sybase IQ System Administration Guide.

Use the START ROW ID option for partial-width inserts only. If the columns
being loaded already contain data, the insert fails.

UNLOAD FORMAT Specifies that the file has Sybase IQ internal unload
formats for each column created by an earlier version of Sybase IQ (before
Version 12.0). This load option has the following restrictions:

• You cannot specify any column-spec (such as ASCII or PREFIX) for a
column other than BINARY. This includes the NULL specifications.

• If you need to load null values for a column using the BINARY column-
spec, you must specify the WITH NULL BYTE keyword or Sybase IQ
returns an error.

• You cannot use the DELIMITED BY or ROW DELIMITED BY options with
UNLOAD FORMAT.

ON PARTIAL INPUT ROW Specifies the action to take when a partial input
row is encountered during a load. You can specify one of the following:

• CONTINUE issues a warning and continues the load operation. This is the
default.

• ROLLBACK aborts the entire load operation and reports the error.

CHAPTER 6 SQL Statements

Reference Manual 593

Partial input record skipped at EOF.

SQLSTATE: QDC32 SQLSTATE: -1000232L

IGNORE CONSTRAINT Specifies whether to ignore CHECK, UNIQUE,
NULL, DATA VALUE, and FOREIGN KEY integrity constraint violations
that occur during a load and the maximum number of violations to ignore
before initiating a rollback. Specifying each constrainttype has the following
result:

• CHECK limit If limit specifies zero, the number of UNIQUE constraint
violations to ignore is infinite. If CHECK is not specified, the first
occurrence of any CHECK constraint violation causes the LOAD statement
to roll back. If limit is nonzero, then the limit +1 occurrence of a CHECK
constraint violation causes the load to roll back.

• UNIQUE limit If limit specifies zero, then the number of UNIQUE
constraint violations to ignore is infinite. If limit is nonzero, then the limit
+1 occurrence of a UNIQUE constraint violation causes the load to roll
back.

• NULL limit If limit specifies zero, then the number of NULL constraint
violations to ignore is infinite. If limit is nonzero, then the limit +1
occurrence of a NULL constraint violation causes the load to roll back.

• FOREIGN KEY limit If limit specifies zero, the number of FOREIGN
KEY constraint violations to ignore is infinite. If limit is nonzero, then the
limit +1 occurrence of a FOREIGN KEY constraint violation causes the
load to roll back.

• DATA VALUE limit If the database option CONVERSION_ERROR =
ON, an error is reported and the statement rolls back. If limit specifies
zero, then the number of DATA VALUE constraint violations (data type
conversion errors) to ignore is infinite. If limit is nonzero, then the limit +1
occurrence of a DATA VALUE constraint violation causes the load to roll
back.

• ALL limit If the database option CONVERSION_ERROR = ON, an error
is reported and the statement rolls back. If limit specifies zero, then the
cumulative total of all integrity constraint violations to ignore is infinite.
If limit is nonzero, then load rolls back when the cumulative total of all
ignored UNIQUE, NULL, DATA VALUE, and FOREIGN KEY integrity
constraint violations exceeds the value of limit. For example, you specify
the following IGNORE CONSTRAINT option:

IGNORE CONSTRAINT NULL 50, UNIQUE 100, ALL 200

LOAD TABLE statement

594 Sybase IQ

The total number of integrity constraint violations cannot exceed 200,
whereas the total number of NULL and UNIQUE constraint violations
cannot exceed 50 and 100, respectively. Whenever any of these limits is
exceeded, the LOAD TABLE statement rolls back.

Note A single row can have more than one integrity constraint violation.
Every occurrence of an integrity constraint violation counts towards the
limit of that type of violation.

Sybase strongly recommends setting the IGNORE CONSTRAINT option
limit to a nonzero value if you are logging the ignored integrity constraint
violations. Logging an excessive number of violations affects the
performance of the load.

If CHECK, UNIQUE, NULL, or FOREIGN KEY is not specified in the
IGNORE CONSTRAINT clause, then the load rolls back on the first occurrence
of each of these types of integrity constraint violation.

If DATA VALUE is not specified in the IGNORE CONSTRAINT clause, then the
load rolls back on the first occurrence of this type of integrity constraint
violation, unless the database option CONVERSION_ERROR = OFF. If
CONVERSION_ERROR = OFF, a warning is reported for any DATA VALUE
constraint violation and the load continues.

When the load completes, an informational message regarding integrity
constraint violations is logged in the .iqmsg file. This message contains the
number of integrity constraint violations that occurred during the load and the
number of rows that were skipped.

MESSAGE LOG Specifies the names of files in which to log information
about integrity constraint violations and the types of violations to log.
Timestamps indicating the start and completion of the load are logged in both
the MESSAGE LOG and the ROW LOG files. Both MESSAGE LOG and ROW
LOG must be specified, or no information about integrity violations is logged.

• If the ONLY LOG clause is not specified, no information on integrity
constraint violations is logged. Only the timestamps indicating the start
and completion of the load are logged.

• Information is logged on all integrity constraint-type violations specified
in the ONLY LOG clause or for all word index-length violations if the
keyword WORD is specified.

• If constraint violations are being logged, every occurrence of an integrity
constraint violation generates exactly one row of information in the
MESSAGE LOG file.

CHAPTER 6 SQL Statements

Reference Manual 595

The number of rows (errors reported) in the MESSAGE LOG file can
exceed the IGNORE CONSTRAINT option limit, because the load is
performed by multiple threads running in parallel. More than one thread
might report that the number of constraint violations has exceeded the
specified limit.

• If constraint violations are being logged, exactly one row of information is
logged in the ROW LOG file for a given row, regardless of the number of
integrity constraint violations that occur on that row.

The number of distinct errors in the MESSAGE LOG file might not exactly
match the number of rows in the ROW LOG file. The difference in the
number of rows is due to the parallel processing of the load described
above for the MESSAGE LOG.

• The MESSAGE LOG and ROW LOG files cannot be raw partitions.

• If the MESSAGE LOG or ROW LOG file already exists, new information is
appended to the file.

• Specifying an invalid file name for the MESSAGE LOG or ROW LOG file
generates an error.

• Specifying the same file name for the MESSAGE LOG and ROW LOG files
generates an error.

Various combinations of the IGNORE CONSTRAINT and MESSAGE LOG
options result in different logging actions, as indicated in Table 6-11.

LOAD TABLE statement

596 Sybase IQ

Table 6-11: LOAD TABLE logging actions

Note Sybase strongly recommends setting the IGNORE CONSTRAINT option
limit to a nonzero value, if you are logging the ignored integrity constraint
violations. If a single row has more than one integrity constraint violation, a
row for each violation is written to the MESSAGE LOG file. Logging an
excessive number of violations affects the performance of the load.

LOG DELIMITED BY Specifies the separator between data values in the
ROW LOG file. The default separator is a comma.

For more details on the contents and format of the MESSAGE LOG and ROW
LOG files, see “Bulk loading data using the LOAD TABLE statement” in
Chapter 7, “Moving Data In and Out of Databases” in the Sybase IQ System
Administration Guide.

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase Not applicable.

Permissions The permissions required to execute a LOAD TABLE statement depend on the
database server -gl command line option, as follows:

• If the -gl option is set to ALL, you must be the owner of the table, have
DBA authority, or have ALTER permission.

• If the -gl option is set to DBA, you must have DBA authority.

• If the -gl option is set to NONE, LOAD TABLE is not permitted.

IGNORE
CONSTRAINT
specified?

MESSAGE
LOG
specified? Action

yes yes All ignored integrity constraint violations
are logged, including the user specified
limit, before the rollback.

no yes The first integrity constraint violation is
logged before the rollback.

yes no Nothing is logged.

no no Nothing is logged. The first integrity
constraint violation causes a rollback.

CHAPTER 6 SQL Statements

Reference Manual 597

For more information, see the -gl command line option in “Server command-
line switches” on page 8 in Chapter 1, “Running the Database Server” in the
Sybase IQ Utility Guide.

LOAD TABLE also requires an exclusive lock on the table.

See also INSERT statement on page 568

“LOAD_ZEROLENGTH_ASNULL option” on page 103

“NON_ANSI_NULL_VARCHAR option” on page 124

“Bulk loading data using the LOAD TABLE statement” in Chapter 7,
“Moving Data In and Out of Databases” in the Sybase IQ System
Administration Guide

“Monitoring disk space usage,” Chapter 1, “Troubleshooting Hints,” in the
Sybase IQ Troubleshooting and Recovery Guide

LOCK TABLE statement
Description Prevents other concurrent transactions from accessing or modifying a table.

Syntax LOCK TABLE table-name [WITH HOLD] IN { SHARE | EXCLUSIVE }
MODE

Examples Prevents other transactions from modifying the customer table for the duration
of the current transaction:

LOCK TABLE customer IN SHARE MODE

Usage table-name The table must be a base table, not a view. As temporary table
data is local to the current connection, locking global or local temporary tables
has no effect.

WITH HOLD If this clause is specified, the lock is held until the end of the
connection. If the clause is not specified, the lock is released when the current
transaction is committed or rolled back.

SHARE Prevents other transactions from modifying the table, but allows
them read access. In this mode, you can change data in the table as long as no
other transaction has locked the row being modified, either indirectly, or
explicitly by using LOCK TABLE.

LOOP statement

598 Sybase IQ

EXCLUSIVE Prevents other transactions from accessing the table. In this
mode, no other transaction can execute queries, updates of any kind, or any
other action against the table. If a table t is locked exclusively with LOCK
TABLE t IN EXCLUSIVE MODE, the default server behavior is to not acquire row
locks for t. This behavior can be disabled by setting the
SUBSUME_ROW_LOCKS option OFF.

The LOCK TABLE statement allows direct control over concurrency at a table
level, independent of the current isolation level.

Whereas the isolation level of a transaction generally governs the kinds of
locks that are set when the current transaction executes a request, the LOCK
TABLE statement allows more explicit control locking of the rows in a table.

The locks placed by LOCK TABLE in SHARE mode are phantom and anti-
phantom locks, which are displayed by the sa_locks procedure as PT and AT.

Standards • SQL92 Vendor extension.

• Sybase Supported in Adaptive Server Enterprise. The WITH HOLD
clause is not supported in Adaptive Server Enterprise. Adaptive Server
Enterprise provides a WAIT clause that is not supported in Adaptive Server
Anywhere.

Permissions To lock a table in SHARE mode, SELECT privileges are required.

To lock a table in EXCLUSIVE mode; you must be the table owner or have
DBA authority.

See also SELECT statement on page 632

LOOP statement
Description Repeats the execution of a statement list.

Syntax [statement-label:]
... [WHILE search-condition] LOOP
... statement-list
... END LOOP [statement-label]

Examples • A WHILE loop in a procedure:

...
SET i = 1 ;
WHILE i <= 10 LOOP

INSERT INTO Counters(number) VALUES (i) ;

CHAPTER 6 SQL Statements

Reference Manual 599

SET i = i + 1 ;
END LOOP ;
...

• A labeled loop in a procedure:

SET i = 1;
lbl:
LOOP

INSERT
INTO Counters(number)
VALUES (i) ;
IF i >= 10 THEN

LEAVE lbl ;
END IF ;
SET i = i + 1 ;

END LOOP lbl

Usage The WHILE and LOOP statements are control statements that let you repeatedly
execute a list of SQL statements while a search-condition evaluates to TRUE.
The LEAVE statement can be used to resume execution at the first statement
after the END LOOP.

If the ending statement-label is specified, it must match the beginning
statement-label.

Side effects

None.

Standards • SQL92 Persistent Stored Module feature.

• Sybase Not supported in Adaptive Server Enterprise. The WHILE
statement provides looping in Transact-SQL stored procedures.

Permissions None.

See also FOR statement on page 551

LEAVE statement on page 578

MESSAGE statement

600 Sybase IQ

MESSAGE statement
Description Displays a message.

Syntax MESSAGE expression, ...
[TYPE { INFO | ACTION | WARNING | STATUS }]
[TO {CONSOLE | CLIENT [FOR { CONNECTION conn_id | ALL }] | LOG }
[DEBUG ONLY]]

conn_id : integer

Parameters

TYPE The TYPE clause has an effect only if the message is sent to the client.
The client application must decide how to handle the message. Interactive SQL
displays messages in the following locations:

• INFO – The Message window (default).

• ACTION– A Message box with an OK button.

• WARNING – A Message box with an OK button.

• STATUS – The Messages pane.

TO Specifies the destination of a message:

• CONSOLE – Send messages to the database server window.
CONSOLE is the default.

• CLIENT – Send messages to the client application. Your application
must decide how to handle the message, and you can use the TYPE as
information on which to base that decision.

• 12.jar – Send messages to the server log file specified by the -o option.

FOR For messages TO CLIENT, this clause specifies which connections
receive notification about the message:

• CONNECTION conn_id – Specifies the recipient's connection ID for
the message.

• ALL – Specifies that all open connections receive the message.

CHAPTER 6 SQL Statements

Reference Manual 601

DEBUG ONLY Lets you control whether debugging messages added to
stored procedures are enabled or disabled by changing the setting of the
DEBUG_MESSAGES option. When DEBUG ONLY is specified, the MESSAGE
statement is executed only when the DEBUG_MESSAGES option is set to ON.

Note DEBUG ONLY messages are inexpensive when the DEBUG_MESSAGES
option is set to OFF, so these statements can usually be left in stored procedures
on a production system. However, they should be used sparingly in locations
where they would be executed frequently; otherwise, they might result in a
small performance penalty.

Examples • Displays a message on the server message window:

CREATE PROCEDURE message_test ()
BEGIN
MESSAGE 'The current date and time: ', Now();
END

• Displays the string The current date and time, and the current date
and time, on the database server message window:

CALL message_test()

• To register a callback in ODBC, first declare the message handler:

void SQL_CALLBACK my_msgproc(
void * sqlca,
unsigned char msg_type,
long code,
unsigned short len,
char* msg)

{ … }

Install the declared message handler by calling the SQLSetConnectAttr
function.

rc = SQLSetConnectAttr(
dbc,
ASA_REGISTER_MESSAGE_CALLBACK,
(SQLPOINTER) &my_msgproc, SQL_IS_POINTER);

Usage The MESSAGE statement displays a message, which can be any expression.
Clauses can specify where the message is displayed.

The procedure issuing a MESSAGE … TO CLIENT statement must be
associated with a connection.

For example, the message box is not displayed in the following example
because the event occurs outside of a connection.

MESSAGE statement

602 Sybase IQ

CREATE EVENT CheckIdleTime TYPE ServerIdle
WHERE event_condition('IdleTime') > 100
HANDLER
BEGIN

MESSAGE 'Idle engine' type warning to client;
END;

However, in the following example, the message is written to the server
console.

CREATE EVENT CheckIdleTime TYPE ServerIdle
WHERE event_condition('IdleTime') > 100
HANDLER
BEGIN

MESSAGE 'Idle engine' type warning to console;
END;

Valid expressions can include a quoted string or other constant, variable, or
function. However, queries are not permitted in the output of a MESSAGE
statement even though the definition of an expression includes queries.

The FOR clause can be used to notify another application of an event detected
on the server without the need for the application to explicitly check for the
event. When the FOR clause is used, recipients receive the message the next
time that they execute a SQL statement. If the recipient is currently executing
a SQL statement, the message is received when the statement completes. If the
statement being executed is a stored procedure call, the message is received
before the call is completed.

If an application requires notification within a short time after the message is
sent and when the connection is not executing SQL statements, you can use a
second connection. This connection can execute one or more WAITFOR
DELAY statements. These statements do not consume significant resources on
the server or network (as would happen with a polling approach), but permit
applications to receive notification of the message shortly after it is sent.

ESQL and ODBC clients receive messages via message callback functions. In
each case, these functions must be registered. To register ESQL message
handlers, use the db_register_callback function.

ODBC clients can register callback functions using the SQLSetConnectAttr
function.

Side effects

None.

Standards • SQL92 Vendor extension.

CHAPTER 6 SQL Statements

Reference Manual 603

• SQL99 Vendor extension.

• Sybase Not supported in Adaptive Server Enterprise. The
Transact-SQL PRINT statement provides a similar feature, and is available
in Adaptive Server Anywhere.

Permissions Must be connected to the database.

DBA authority is required to execute a MESSAGE statement containing a FOR
clause.

See also CREATE PROCEDURE statement on page 485

“DEBUG_MESSAGES option” on page 68

Adaptive Server Anywhere Programming Guide for information about using
callback functions

OPEN statement [ESQL] [SP]
Description Opens a previously declared cursor to access information from the database.

Syntax OPEN cursor-name
... [USING [DESCRIPTOR { sqlda-name | host-variable [, ...] }]]
... [WITH HOLD]

Parameters cursor-name:
identifier or host-variable

sqlda-name:
identifier

Examples • Examples showing the use of OPEN in Embedded SQL:

1. EXEC SQL OPEN employee_cursor;
2. EXEC SQL PREPARE emp_stat FROM
'SELECT empnum, empname FROM employee WHERE name like
?';
EXEC SQL DECLARE employee_cursor CURSOR FOR emp_stat;
EXEC SQL OPEN employee_cursor USING :pattern;

• An example from a procedure:

BEGIN
DECLARE cur_employee CURSOR FOR

SELECT emp_lname
FROM employee ;

DECLARE name CHAR(40) ;

OPEN statement [ESQL] [SP]

604 Sybase IQ

OPEN cur_employee;
LOOP
FETCH NEXT cur_employee into name ;

 ...
END LOOP
CLOSE cur_employee;
END

Usage By default, all cursors are automatically closed at the end of the current
transaction (COMMIT or ROLLBACK). The optional WITH HOLD clause keeps
the cursor open for subsequent transactions. The cursor remains open until the
end of the current connection or until an explicit CLOSE statement is executed.
Cursors are automatically closed when a connection is terminated.

The cursor is positioned before the first row . See Chapter 8, “Using
Procedures and Batches” of the Sybase IQ System Administration Guide.

Embedded SQL

The USING DESCRIPTOR sqlda-name, host-variable and BLOCK n formats are
for Embedded SQL only.

If the cursor name is specified by an identifier or string, then the corresponding
DECLARE CURSOR statement must appear prior to the OPEN in the C
program; if the cursor name is specified by a host variable, then the DECLARE
CURSOR statement must execute before the OPEN statement.

The optional USING clause specifies the host variables that are bound to the
placeholder bind variables in the SELECT statement for which the cursor has
been declared.

After successful execution of the OPEN statement, the sqlerrd[3] field of the
SQLCA (SQLIOESTIMATE) is filled in with an estimate of the number of
input/output operations required to fetch all rows of the query. Also, the
sqlerrd[2] field of the SQLCA (SQLCOUNT) is filled in with either the actual
number of rows in the cursor (a value greater than or equal to 0), or an estimate
thereof (a negative number whose absolute value is the estimate). The
sqlerrd[2] field is the actual number of rows, if the database server can
compute this value without counting the rows.

Side effects

None.

Standards • SQL92 Embedded SQL use is an entry-level feature. Use of procedures
is a Persistent Stored Module feature.

CHAPTER 6 SQL Statements

Reference Manual 605

• Sybase The simple OPEN cursor-name syntax is supported by Adaptive
Server Enterprise. None of the other clauses are supported in Adaptive
Server Enterprise stored procedures. Open Client/Open Server supports
the USING descriptor or host name variable syntax.

Permissions • Must have SELECT permission on all tables in a SELECT statement or
EXECUTE permission on the procedure in a CALL statement.

• When the cursor is on a CALL statement, OPEN causes the procedure to
execute until the first result set (SELECT statement with no INTO clause)
is encountered. If the procedure completes and no result set is found, the
SQLSTATE_PROCEDURE_COMPLETE warning is set.

See also CLOSE statement [ESQL] [SP] on page 434

DECLARE CURSOR statement [ESQL] [SP] on page 516

FETCH statement [ESQL] [SP] on page 547

PREPARE statement [ESQL] on page 611

RESUME statement on page 626

OUTPUT statement [DBISQL]
Description Writes the current query results to a file.

Syntax OUTPUT TO filename
[APPEND] [VERBOSE]
[FORMAT output-format]
[ESCAPE CHARACTER character]
[DELIMITED BY string]
[QUOTE string [ALL]]
[COLUMN WIDTHS (integer, …)]
[HEXADECIMAL { ON | OFF | ASIS }]
[ENCODING encoding]

Parameters output-format:
ASCII| DBASEII | DBASEIII | EXCEL | FIXED |
FOXPRO | HTML | LOTUS | SQL | XML

encoding:
string or identifier

Examples Example 1 Places the contents of the employee table in a file in ASCII format:

SELECT * FROM employee; OUTPUT TO employee.txt FORMAT
ASCII

OUTPUT statement [DBISQL]

606 Sybase IQ

Example 2 Places the contents of the employee table at the end of an existing
file, and includes any messages about the query in this file as well:

SELECT * FROM employee; OUTPUT TO employee.txt APPEND
VERBOSE

Example 3 Suppose you need to export a value that contains an embedded line
feed character. A line feed character has the numeric value 10, which you can
represent as the string '\x0a' in a SQL statement. You could execute the
following statement, with HEXADECIMAL ON:

SELECT 'line1\x0aline2'; OUTPUT TO file.txt HEXADECIMAL
ON

You get a file with one line in it, containing the following text:

line10x0aline2

If you execute the same statement with HEXADEMICAL OFF, you get the
following:

line1\x0aline2

Finally, if you set HEXADECIMAL to ASIS, you get a file with two lines:

line1 line2

Using ASIS generates two lines because the embedded line feed character has
been exported without being converted to a two-digit hex representation, and
without a prefix.

Usage The OUTPUT statement copies the information retrieved by the current query
to a file.

You can specify the output format with the optional FORMAT clause. If no
FORMAT clause is specified, the Interactive SQL OUTPUT_FORMAT option
setting is used.

The current query is the SELECT or LOAD TABLE statement that generated the
information that appears on the Results tab in the Results pane. The OUTPUT
statement reports an error if there is no current query.

Note OUTPUT is especially useful in making the results of a query or report
available to another application, but it is not recommended for bulk operations.
For high-volume data movement, use the ASCII and BINARY data extraction
functionality with the SELECT statement. The extraction functionality
provides much better performance for large-scale data movement, and creates
an output file you can use for loads.

CHAPTER 6 SQL Statements

Reference Manual 607

APPEND This optional keyword is used to append the results of the query to
the end of an existing output file without overwriting the previous contents of
the file. If the APPEND clause is not used, the OUTPUT statement overwrites
the contents of the output file by default. The APPEND keyword is valid if the
output format is ASCII, FIXED, or SQL.

VERBOSE When the optional VERBOSE keyword is included, error
messages about the query, the SQL statement used to select the data, and the
data itself are written to the output file. If VERBOSE is omitted (the default),
only the data is written to the file. The VERBOSE keyword is valid if the output
format is ASCII, FIXED, or SQL.

FORMAT Allowable output formats are:

• ASCII The output is an ASCII format file with one row per line in the
file. All values are separated by commas, and strings are enclosed in
apostrophes (single quotes). The delimiter and quote strings can be
changed using the DELIMITED BY and QUOTE clauses. If ALL is specified
in the QUOTE clause, all values (not just strings) are quoted.

Three other special sequences are also used. The two characters \n
represent a newline character, \\ represents a single \, and the sequence
\xDD represents the character with hexadecimal code DD. This is the
default output format.

If you are exporting Java methods that have string return values, you must
use the HEXADECIMAL OFF clause.

• DBASEII The output is a dBASE II format file with the column
definitions at the top of the file. Note that a maximum of 32 columns can
be output. Column names are truncated to 11 characters, and each row of
data in each column is truncated to 255 characters.

• DBASEIII The output is a dBASE III format file with the column
definitions at the top of the file. Note that a maximum of 128 columns can
be output. Column names are truncated to 11 characters, and each row of
data in each column is truncated to 255 characters.

• EXCEL The output is an Excel 2.1 worksheet. The first row of the
worksheet contains column labels (or names, if there are no labels
defined). Subsequent worksheet rows contain the actual table data.

• FIXED The output is fixed format with each column having a fixed
width. The width for each column can be specified using the COLUMN
WIDTHS clause. No column headings are output in this format.

OUTPUT statement [DBISQL]

608 Sybase IQ

If COLUMN WIDTHS is omitted, the width for each column is computed
from the data type for the column, and is large enough to hold any value
of that data type. The exception is that LONG VARCHAR and LONG
BINARY data defaults to 32KB.

• FOXPRO The output is a FoxPro format file (the FoxPro memo field is
different than the dBASE memo field) with the column definitions at the
top of the file. Note that a maximum of 128 columns can be output.
Column names are truncated to 11 characters. Column names are truncated
to 11 characters, and each row of data in each column is truncated to 255
characters.

• HTML The output is in the Hyper Text Markup Language format.

• LOTUS The output is a Lotus WKS format worksheet. Column names
are put as the first row in the worksheet. Note that there are certain
restrictions on the maximum size of Lotus WKS format worksheets that
other software (such as Lotus 1-2-3) can load. There is no limit to the size
of file Interactive SQL can produce.

• SQL The output is an Interactive SQL INPUT statement required to
recreate the information in the table.

Note Sybase IQ does not support the INPUT statement. You would need
to edit this statement to a valid LOAD TABLE (or INSERT) statement to use
it to load data back in.

• XML The output is an XML file encoded in UTF-8 and containing an
embedded DTD. Binary values are encoded in CDATA blocks with the
binary data rendered as 2-hex-digit strings. The LOAD TABLE statement
does not accept XML as a file format.

ESCAPE CHARACTER The default escape character for characters stored as
hexadecimal codes and symbols is a backslash (\), so \x0A is the linefeed
character, for example.

This default can be changed using the ESCAPE CHARACTER clause.
For example, to use the exclamation mark as the escape character, you would
enter:

... ESCAPE CHARACTER '!'

DELIMITED BY The DELIMITED BY clause is for the ASCII output format
only. The delimiter string is placed between columns (default comma).

CHAPTER 6 SQL Statements

Reference Manual 609

QUOTE The QUOTE clause is for the ASCII output format only. The quote
string is placed around string values. The default is a single quote character. If
ALL is specified in the QUOTE clause, the quote string is placed around all
values, not just around strings.

COLUMN WIDTHS The COLUMN WIDTHS clause is used to specify the
column widths for the FIXED format output.

HEXADECIMAL The HEXADECIMAL clause specifies how binary data is to
be unloaded for the ASCII format only. When set to ON, binary data is
unloaded in the format 0xabcd. When set to OFF, binary data is escaped when
unloaded (\xab\xcd). When set to ASIS, values are written as is, that is, without
any escaping—even if the value contains control characters. ASIS is useful for
text that contains formatting characters such as tabs or carriage returns.

ENCODING The encoding argument lets you specify the encoding that is
used to write the file. The ENCODING clause can be used only with the ASCII
format.

If encoding is not specified, Interactive SQL determines the code page that is
used to write the file as follows, where code page values occurring earlier in
the list take precedence over those occurring later:

• The code page specified with the DEFAULT_ISQL_ENCODING option (if
this option is set)

• The code page specified with the -codepage option when Interactive SQL
was started

• The default code page for the computer Interactive SQL is running on

Side effects

In Interactive SQL, the Results tab displays only the results of the current
query. All previous query results are replaced with the current query results.

Standards • SQL92 Vendor extension.

• SQL99 Vendor extension.

• Sybase Not applicable.

Permissions None

See also DEFAULT_ISQL_ENCODING option [DBISQL] on page 69

OUTPUT_FORMAT option [ISQL] on page 130

SELECT statement on page 632

PARAMETERS statement [DBISQL]

610 Sybase IQ

PARAMETERS statement [DBISQL]
Description Specifies parameters to a DBISQL command file.

Syntax PARAMETERS parameter1, parameter2, ...

Examples The following DBISQL command file takes two parameters:

PARAMETERS department_id, file ;
SELECT emp_lname
FROM employee
WHERE dept_id = {department_id}
>#{file}.dat;

Usage PARAMETERS specifies how many parameters there are to a command file and
also names those parameters so that they can be referenced later in the
command file.

Parameters are referenced by putting into the file where you want the named
parameter to be substituted.:

{parameter1}

There must be no spaces between the braces and the parameter name.

If a command file is invoked with fewer than the required number of
parameters, DBISQL prompts for values of the missing parameters.

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase Not applicable.

Permissions None

See also READ statement [DBISQL] on page 617

CHAPTER 6 SQL Statements

Reference Manual 611

PREPARE statement [ESQL]
Description Prepares a statement to be executed later or used for a cursor.

Syntax PREPARE statement-name
FROM statement
... [DESCRIBE describe-type INTO [[SQL] DESCRIPTOR] descriptor]
... [WITH EXECUTE]

Parameters statement-name:
identifier or host-variable

statement:
string, or host-variable

describe-type:
{ ALL | BIND VARIABLES | INPUT | OUTPUT | SELECT LIST }
... { LONG NAMES [[OWNER.]TABLE.]COLUMN] | WITH VARIABLE
RESULT }

Examples Prepares a simple query:

EXEC SQL PREPARE employee_statement FROM
'SELECT emp_lname FROM employee';

Usage The PREPARE statement prepares a SQL statement from the statement and
associates the prepared statement with statement-name. This statement name is
referenced to execute the statement, or to open a cursor if the statement is a
SELECT statement. Statement-name may be a host variable of type
a_sql_statement_number defined in the sqlca.h header file that is automatically
included. If an identifier is used for the statement-name, only one statement per
module may be prepared with this statement-name.

If a host variable is used for statement-name, it must have the type short int.
There is a typedef for this type in sqlca.h called a_sql_statement_number. This
type is recognized by the SQL preprocessor and can be used in a DECLARE
section. The host variable is filled in by the database during the PREPARE
statement and need not be initialized by the programmer.

If the DESCRIBE INTO DESCRIPTOR clause is used, the prepared statement is
described into the specified descriptor. The describe type may be any of the
describe types allowed in the DESCRIBE statement.

If the WITH EXECUTE clause is used, the statement is executed if and only if it
is not a CALL or SELECT statement, and it has no host variables. The statement
is immediately dropped after a successful execution. If PREPARE and
DESCRIBE (if any) are successful but the statement cannot be executed, a
warning SQLCODE 111, SQLSTATE 01W08 is set, and the statement is not
dropped.

PREPARE statement [ESQL]

612 Sybase IQ

The DESCRIBE INTO DESCRIPTOR and WITH EXECUTE clauses might
improve performance, as they decrease the required client/server
communication.

Describing variable result sets

The WITH VARIABLE RESULT clause is used to describe procedures that may
have more than one result set, with different numbers or types of columns.

If WITH VARIABLE RESULT is used, the database server sets the SQLCOUNT
value after the describe to one of the following values:

• 0 The result set may change: the procedure call should be described
again following each OPEN statement.

• 1 The result set is fixed. No redescribing is required.

Statements that can be prepared

The following is a list of statements that can be PREPARED:

• ALTER

• CALL

• COMMENT ON

• CREATE

• DELETE

• DROP

• GRANT

• INSERT

• REVOKE

• SELECT

• SET OPTION

CHAPTER 6 SQL Statements

Reference Manual 613

Compatibility issue

For compatibility reasons, preparing COMMIT, PREPARE TO COMMIT, and
ROLLBACK statements is still supported. However, we recommend that you do
all transaction management operations with static Embedded SQL because
certain application environments may require it. Also, other Embedded SQL
systems do not support dynamic transaction management operations.

Note Make sure that you DROP the statement after use. If you do not, then the
memory associated with the statement is not reclaimed.

Side effects

Any statement previously prepared with the same name is lost.

Standards • SQL92 Entry-level feature.

• Sybase Supported by Open Client/Open Server.

Permissions None.

See also DECLARE CURSOR statement [ESQL] [SP] on page 516

DESCRIBE statement [ESQL] on page 528

DROP STATEMENT statement [ESQL] on page 539

EXECUTE statement [ESQL] on page 541

OPEN statement [ESQL] [SP] on page 603

PRINT statement [T-SQL]
Description Displays a message on the message window of the database server.

Syntax PRINT format-string [, arg-list]

Examples Example 1 Displays a message on the server message window:

CREATE PROCEDURE print_test
AS
PRINT 'Procedure called successfully'

This statement returns the string “Procedure called successfully” to the client:

EXECUTE print_test

Example 2 Illustrates the use of placeholders in the PRINT statement:

PRINT statement [T-SQL]

614 Sybase IQ

DECLARE @var1 INT, @var2 INT
SELECT @var1 = 3, @var2 = 5
PRINT 'Variable 1 = %1!, Variable 2 = %2!', @var1, @var2

Example 3 Uses RAISERROR to disallow connections:

CREATE procedure DBA.login_check()
begin

// Allow a maximum of 3 concurrent connections
IF(db_property('ConnCount') > 3) then
raiserror 28000

'User %1! is not allowed to connect -- there are
already %2! users logged on',
current user,
cast(db_property('ConnCount') as int)-1;

ELSE
call sp_login_environment;

end if;
end
go
grant execute on DBA.login_check to PUBLIC
go
set option PUBLIC.Login_procedure='DBA.login_check'
go

For an alternate way to disallow connections, see “LOGIN_PROCEDURE
option” on page 106 or “sp_iqmodifylogin procedure” on page 809.

Usage The PRINT statement returns a message to the client window if you are
connected from an Open Client application or JDBC application. If you are
connected from an Embedded SQL or ODBC application, the message displays
on the database server window.

The format string can contain placeholders for the arguments in the optional
argument list. These placeholders are of the form %nn!, where nn is an integer
between 1 and 20.

Side effects

None.

Standards • SQL92 Transact-SQL extension.

• Sybase Supported by Adaptive Server Enterprise.

Permissions Must be connected to the database.

See also MESSAGE statement on page 600

CHAPTER 6 SQL Statements

Reference Manual 615

PUT statement [ESQL]
Description Inserts a row into the specified cursor.

Syntax PUT cursor-name [USING DESCRIPTOR sqlda-name | FROM hostvar-
list] [INTO { DESCRIPTOR into-sqlda-name | into-hostvar-list }] [
ARRAY :nnn]

cursor-name : identifier or hostvar

sqlda-name : identifier

hostvar-list : may contain indicator variables

Examples The following statement illustrates the use of PUT in Embedded SQL:

EXEC SQL PUT cur_employee FROM :emp_id, :emp_lname;

Usage Inserts a row into the named cursor. Values for the columns are taken from the
first SQLDA or the host variable list, in a one-to-one correspondence with the
columns in the INSERT statement (for an INSERT cursor) or the columns in the
select list (for a SELECT cursor).

The PUT statement can be used only on a cursor over an INSERT or SELECT
statement that references a single table in the FROM clause, or that references
an updatable view consisting of a single base table.

If the sqldata pointer in the SQLDA is the null pointer, no value is specified for
that column. If the column has a DEFAULT VALUE associated with it, that is
used; otherwise, a NULL value is used.

The second SQLDA or host variable list contains the results of the PUT
statement.

The optional ARRAY clause can be used to carry out wide puts, which insert
more than one row at a time and which might improve performance. The value
nnn is the number of rows to be inserted. The SQLDA must contain nnn *
(columns per row) variables. The first row is placed in SQLDA variables 0 to
(columns per row)-1, and so on.

Inserting into a cursor
For scroll (values-sensitive) cursors, the inserted row appears if the new row
matches the WHERE clause and the keyset cursor has not finished populating.
For dynamic cursors, if the inserted row matches the WHERE clause, the row
might appear. Insensitive cursors cannot be updated.

For information on putting LONG VARCHAR or LONG BINARY values into the
database, see .

RAISERROR statement [T-SQL]

616 Sybase IQ

Side Effects

When inserting rows into a value-sensitive (keyset-driven) cursor, the inserted
rows appear at the end of the result set, even when they do not match the
WHERE clause of the query or if an ORDER BY clause would normally have
placed them at another location in the result set. For more information, see the
Adaptive Server Anywhere Programming Guide.

Standards • SQL92 Entry-level feature.

• SQL99 Core feature.

• Sybase Supported by Open Client/Open Server.

Permissions Must have INSERT permission.

See also DELETE (positioned) statement [ESQL] [SP] on page 527

INSERT statement on page 568

UPDATE statement on page 661

UPDATE (positioned) statement [ESQL] [SP] on page 664

RAISERROR statement [T-SQL]
Description Signals an error and sends a message to the client.

Syntax RAISERROR error-number [format-string] [, arg-list]

Examples Raises error 99999, which is in the range for user-defined errors, and sends a
message to the client:

RAISERROR 99999 'Invalid entry for this
column: %1!', @val

There is no comma between the error-number and the format-string
parameters. The first item following a comma is interpreted as the first item in
the argument list.

Usage The RAISERROR statement allows user-defined errors to be signaled, and
sends a message on the client.

The error-number is a 5-digit integer greater than 17000. The error number is
stored in the global variable @@error.

CHAPTER 6 SQL Statements

Reference Manual 617

If format-string is not supplied or is empty, the error number is used to locate
an error message in the system tables. Adaptive Server Enterprise obtains
messages 17000-19999 from the SYSMESSAGES table. In Sybase IQ, this
table is an empty view, so errors in this range should provide a format string.
Messages for error numbers of 20000 or greater are obtained from the
SYS.SYSUSERMESSAGES table.

The format-string can be up to 255 bytes long. This is the same as in Adaptive
Server Enterprise.

The extended values supported by the SQL Server or Adaptive Server
Enterprise RAISERROR statement are not supported in Sybase IQ.

The format string can contain placeholders for the arguments in the optional
argument list. These placeholders are of the form %nn!, where nn is an integer
between 1 and 20.

Intermediate RAISERROR status and code information is lost after the
procedure terminates. If at return time an error occurs along with the
RAISERROR then the error information is returned and the RAISERROR
information is lost. The application can query intermediate RAISERROR
statuses by examining @@error global variable at different execution points.

Side effects

None.

Standards • SQL92 Transact-SQL extension.

• Sybase Supported by Adaptive Server Enterprise.

Permissions Must be connected to the database.

See also CONTINUE_AFTER_RAISERROR option [TSQL] on page 53

ON_TSQL_ERROR option [TSQL] on page 128

READ statement [DBISQL]
Description Reads DBISQL statements from a file.

Syntax READ filename [parameters]

Examples Examples of the READ statement:

READ status.rpt '160'
READ birthday.sql [>= '1988-1-1'] [<= '1988-1-30']

READ statement [DBISQL]

618 Sybase IQ

Usage The READ statement reads a sequence of DBISQL statements from the named
file. This file can contain any valid DBISQL statement, including other READ
statements, which can be nested to any depth. To find the command file,
DBISQL first searches the current directory, then the directories specified in
the environment variable SQLPATH, then the directories specified in the
environment variable PATH. If the named file has no file extension, DBISQL
also searches each directory for the same file name with the extension SQL.

Parameters can be listed after the name of the command file. These parameters
correspond to the parameters named on the PARAMETERS statement at the
beginning of the statement file (see PARAMETERS statement [DBISQL] on
page 610). DBISQL then substitutes the corresponding parameter wherever the
source file contains:

{ parameter-name }

where parameter-name is the name of the appropriate parameter.

The parameters passed to a command file can be identifiers, numbers, quoted
identifiers, or strings. When quotes are used around a parameter, the quotes are
put into the text during the substitution. Parameters that are not identifiers,
numbers, or strings (contain spaces or tabs) must be enclosed in square
brackets ([]). This allows for arbitrary textual substitution in the command file.

If not enough parameters are passed to the command file, DBISQL prompts for
values for the missing parameters.

Encoding

The READ statement also supports an ENCODING clause, which lets you
specify the encoding that is used to read the file. For more information, see the
READ statement in the Adaptive Server Anywhere SQL Reference.

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase Not applicable.

Permissions None.

See also DEFAULT_ISQL_ENCODING option [DBISQL] on page 69

PARAMETERS statement [DBISQL] on page 610

CHAPTER 6 SQL Statements

Reference Manual 619

RELEASE SAVEPOINT statement
Description Releases a savepoint within the current transaction.

Syntax RELEASE SAVEPOINT [savepoint-name]

Usage The savepoint-name is an identifier specified on a SAVEPOINT statement
within the current transaction. If savepoint-name is omitted, the most recent
savepoint is released.

For a description of savepoints, see Chapter 8, “Using Procedures and
Batches” in the Sybase IQ System Administration Guide. Releasing a savepoint
does not perform any type of COMMIT; it simply removes the savepoint from
the list of currently active savepoints.

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise. A similar feature
is available in an Adaptive Server Enterprise-compatible manner using
nested transactions.

Permissions There must have been a corresponding SAVEPOINT within the current
transaction.

See also ROLLBACK TO SAVEPOINT statement on page 631

SAVEPOINT statement on page 632

REMOVE statement
Description Removes a class, a package, or a JAR file from a database. Removed classes

are no longer available for use as a variable type.

Any class, package, or JAR to be removed must be already installed.

Syntax REMOVE JAVA classes_to_remove

Parameters classes_to_remove:
{ CLASS java_class_name [, java_class_name]...
| PACKAGE java_package_name [, java_package_name]...
| JAR jar_name [, jar_name]... [RETAIN CLASSES] }

jar_name:
character_string_expression

RESIGNAL statement

620 Sybase IQ

Examples The following statement removes a Java class named “Demo” from the current
database:

REMOVE JAVA CLASS Demo

Usage java_class_name The name of one or more Java classes to be removed.
Those classes must be installed classes in the current database.

java_package_name The name of one or more Java packages to be removed.
Those packages must be the name of packages in the current database.

jar_name A character string value of maximum length 255.

Each jar_name must be equal to the jar_name of a retained JAR in the current
database. Equality of jar_name is determined by the character string
comparison rules of the SQL system.

If JAR...RETAIN CLASSES is specified, the specified JARs are no longer
retained in the database, and the retained classes have no associated JAR. If
RETAIN CLASSES is specified, this is the only action of the REMOVE
statement.

Standards • SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise. A similar feature
is available in an Adaptive Server Enterprise-compatible manner using
nested transactions.

Permissions Must have DBA authority or must own the object.

RESIGNAL statement
Description Resignals an exception condition.

Syntax RESIGNAL [exception-name]

Examples The following fragment returns all exceptions except for “Column Not Found”
to the application.

...
DECLARE COLUMN_NOT_FOUND EXCEPTION

FOR SQLSTATE '52003';
...
EXCEPTION
WHEN COLUMN_NOT_FOUND THEN
SET message='Column not found' ;
WHEN OTHERS THEN

CHAPTER 6 SQL Statements

Reference Manual 621

RESIGNAL ;

Usage Within an exception handler, RESIGNAL lets you quit the compound statement
with the exception still active, or to quit reporting another named exception.
The exception is handled by another exception handler or returned to the
application. Any actions by the exception handler before the RESIGNAL are
undone.

Side effects

None.

Standards • SQL92 Persistent Stored Module feature.

• Sybase Not supported in Adaptive Server Enterprise. Error handling in
Transact-SQL procedures is carried out using the RAISERROR statement.

Permissions None

See also BEGIN... END statement on page 422

SIGNAL statement on page 652

RESTORE statement
Description Restores a Sybase IQ database backup from one or more archive devices.

Syntax RESTORE DATABASE 'db_file'
FROM 'archive_device' [FROM 'archive_device']...
...[KEY key_spec]
... [RENAME dbspace-name TO 'new-dbspace-path']...
... [CATALOG ONLY]

Parameters db_file:
relative or absolute path of the database to be restored. Can be the original
location, or a new location for the Catalog Store file.

key_spec:
quoted string including mixed cases, numbers, letters, and special
characters. It might be necessary to protect the key from interpretation or
alteration by the command shell.

RESTORE statement

622 Sybase IQ

Examples • The following UNIX example restores the asiqdemo database from tape
devices /dev/rmt/0 and /dev/rmt/2 on a Sun Solaris platform. On Solaris,
the letter n after the device name specifies “no rewind on close.” To
specify this feature with RESTORE, use the naming convention
appropriate for your UNIX platform. (Windows does not support this
feature.)

RESTORE DATABASE 'asiqdemo'
FROM '/dev/rmt/0n'
FROM '/dev/rmt/2n'

• The following example restores an encrypted database named marvin that
was encrypted with the key is!seCret.

RESTORE DATABASE 'marvin'
FROM 'marvin_bkup_file1'
FROM 'marvin_bkup_file2'
FROM 'marvin_bkup_file3'
KEY 'is!seCret'

Usage The RESTORE command requires exclusive access by the DBA to the
database. This exclusive access is achieved by setting the -gd switch to DBA,
which is the default when you start the server engine. Issue the RESTORE
command before you start the database (you must be connected to the utility_db
database). Once you finish specifying RESTORE commands for the type of
backup, that database is ready to be used. The database is left in the state that
existed at the end of the first implicit CHECKPOINT of the last backup you
restored. You can now specify a START DATABASE to allow other users to
access the restored database.

Note You can restore only databases created using Sybase IQ 12.4.3 and
higher. If the database was created using a 12.x version prior to 12.4.3, you
must upgrade it to 12.4.3 or greater before backup. For instructions, see the
Sybase IQ Installation and Configuration Guidefor the version to which you
are upgrading.

When restoring to a raw device, make sure the device is large enough to hold
the dbspace you are restoring. IQ RESTORE checks the raw device size and
returns an error, if the raw device is not large enough to restore the dbspace.
For more information, see “Restoring to a raw device” in Chapter 14, “Data
Backup, Recovery, and Archiving” in the Sybase IQ System Administration
Guide.

CHAPTER 6 SQL Statements

Reference Manual 623

BACKUP allows you to specify full or incremental backups. You can choose
two kinds of incremental backups. INCREMENTAL backs up only those blocks
that have changed and committed since the last backup of any type
(incremental or full). INCREMENTAL SINCE FULL backs up all the blocks that
have changed since the last full backup. If a RESTORE of a full backup is
followed by one or more incremental backups (of either type), no
modifications to the database are allowed between successive RESTORE
commands. This rule prevents a RESTORE from incremental backups on a
database in need of crash recovery, or one that has been modified. You can still
overwrite such a database with a RESTORE from a full backup.

Before starting a full restore, you must delete two files: the Catalog Store file
(default name dbname.db) and the transaction log file (default name
dbname.log).

If you restore an incremental backup, RESTORE ensures that backup media
sets are accessed in the proper order. This order restores the last full backup
tape set first, then the first incremental backup tape set, then the next most
recent set, and so forth, until the most recent incremental backup tape set. If the
DBA produced an INCREMENTAL SINCE FULL backup, only the full backup
tape set and the most recent INCREMENTAL SINCE FULL backup tape set is
required; however, if there is an INCREMENTAL made since the INCREMENTAL
SINCE FULL, it also must be applied.

Sybase IQ ensures that the restoration order is appropriate, or it displays an
error. Any other errors that occur during the restore results in the database
being marked corrupt and unusable. To clean up a corrupt database, do a
RESTORE from a full backup, followed by any additional incremental
backups. Since the corruption probably happened with one of those backups,
you might need to ignore a later backup set and use an earlier set.

FROM Specifies the name of the archive_device from which you are
restoring, delimited with single quotation marks. If you are using multiple
archive devices, specify them using separate FROM clauses. A comma-
separated list is not allowed. Archive devices must be distinct. The number of
FROM clauses determines the amount of parallelism Sybase IQ attempts with
regard to input devices.

The backup/restore API DLL implementation lets you specify arguments to
pass to the DLL when opening an archive device. For third-party
implementations, the archive_device string has the following format:

'DLLidentifier::vendor_specific_information'

A specific example is:

'spsc::workorder=12;volname=ASD002'

RESTORE statement

624 Sybase IQ

The archive_device string length can be up to 1023 bytes. The DLLidentifier
portion must be 1 to 30 bytes in length and can contain only alphanumeric and
underscore characters. The vendor_specific_information portion of the string
is passed to the third-party implementation without checking its contents.

Note Only certain third-party products are certified with Sybase IQ using this
syntax. See the Sybase IQ Release Bulletin for additional usage instructions or
restrictions. Before using any third-party product to back up your Sybase IQ
database, make sure it is certified. See the Sybase IQ Release Bulletin, or see
the Sybase Certification Reports for the Sybase IQ product in Technical
Documents at http://www.sybase.com/support/techdocs/.

For the Sybase implementation of the backup/restore API, you need not specify
information other than the tape device name or file name. However, if you use
disk devices, you must specify the same number of archive devices on the
RESTORE as given on the backup; otherwise, you may have a different number
of restoration devices than the number used to perform the backup. A specific
example of an archive device for the Sybase API DLL that specifies a
nonrewinding tape device for a UNIX system is:

'/dev/rmt/0n'

RENAME Lets you restore one or more Sybase IQ database files to a new
location. Specify each dbspace-name you are moving as it appears in the
SYSFILE table. Specify new-dbspace-path as the new raw partition, or the new
full or relative path name, for that dbspace.

If relative paths were used to create the database files, the files are restored by
default relative to the Catalog Store file (the SYSTEM dbspace), and a rename
clause is not required. If absolute paths were used to create the database files
and a rename clause is not specified for a file, it is restored to its original
location.

Relative path names in the RENAME clause work as they do when you create a
database or dbspace: the main IQ Store dbspace, Temporary Store dbspaces,
and Message Log are restored relative to the location of db_file (the Catalog
Store); user-created IQ Store dbspaces are restored relative to the directory that
holds the main IQ dbspace.

Do not use the RENAME clause to move the SYSTEM dbspace, which holds the
Catalog Store. To move the Catalog Store, and any files created relative to it
and not specified in a RENAME clause, specify a new location in the db_file
parameter.

http://www.sybase.com/support/techdocs

CHAPTER 6 SQL Statements

Reference Manual 625

CATALOG ONLY Restores only the backup header record from the archive
media.

Other RESTORE issues:

• RESTORE to disk does not support raw devices as archival devices.

• Sybase IQ does not rewind tapes before using them; on rewinding tape
devices, it does rewind tapes after using them. You must position each tape
to the start of the Sybase IQ data before starting the RESTORE.

• During BACKUP and RESTORE operations, if Sybase IQ cannot open the
archive device (for example, when it needs the media loaded) and the
ATTENDED option is ON, it waits for ten seconds for you to put the next
tape in the drive, and then tries again. It continues these attempts
indefinitely until either it is successful or the operation is terminated with
Ctrl+C.

• If you press Ctrl+C, RESTORE fails and returns the database to its state
before the restoration began.

• If disk striping is used, the striped disks are treated as a single device.

• The file_name column in the SYSFILE system table for the SYSTEM
dbspace is not updated during a restore. For the SYSTEM dbspace, the
file_name column always reflects the name when the database was created.
The filename of the SYSTEM dbspace is the name of the database file.

The maximum size for a complete RESTORE command, including all clauses,
is 32KB.

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase Not supported by Adaptive Server Enterprise.

Permissions Must have DBA authority.

See also BACKUP statement on page 416

RESUME statement

626 Sybase IQ

RESUME statement
Description Resumes a procedure after a query.

Syntax Syntax 1

RESUME cursor-name

Syntax 2

RESUME [ALL]

Parameters cursor-name:
identifier

cursor-name:
identifier or host-variable

Examples • Embedded SQL examples:

1. EXEC SQL RESUME cur_employee;
2. EXEC SQL RESUME :cursor_var;

• DBISQL examples:

CALL sample_proc() ;
RESUME ALL;

Usage The RESUME statement resumes execution of a procedure that returns result
sets. The procedure executes until the next result set (SELECT statement with
no INTO clause) is encountered. If the procedure completes and no result set is
found, the SQLSTATE_PROCEDURE_COMPLETE warning is set. This
warning is also set when you RESUME a cursor for a SELECT statement.

Note The RESUME statement is supported in dbisqlc, but is invalid in dbisql
(Interactive SQL Java) or when connected to the database using the iAnywhere
JDBC driver.

The DBISQL RESUME statement (Format 2) resumes the current procedure. If
ALL is not specified, executing RESUME displays the next result set or, if no
more result sets are returned, completes the procedure.

The DBISQL RESUME ALL statement cycles through all result sets in a
procedure, without displaying them, and completes the procedure. This is
useful mainly in testing procedures.

Side effects

None.

Standards • SQL92 Vendor extension.

CHAPTER 6 SQL Statements

Reference Manual 627

• Sybase Not supported by Adaptive Server Enterprise.

Permissions The cursor must have been previously opened.

See also DECLARE CURSOR statement [ESQL] [SP] on page 516

RETURN statement
Description Exits a function or procedure unconditionally, optionally providing a return

value. Statements following RETURN are not executed.

Syntax RETURN [(expression)]

Examples • Returns the product of three numbers:

CREATE FUNCTION product (a numeric,
b numeric ,
c numeric)

RETURNS numeric
BEGIN

RETURN (a * b * c) ;
END

• Calculates the product of three numbers:

SELECT product (2, 3, 4)

product (2,3,4)
24

• Uses the RETURN statement to avoid executing a complex query if it is
meaningless:

CREATE PROCEDURE customer_products
(in customer_id integer DEFAULT NULL)
RESULT (id integer, quantity_ordered integer)
BEGIN

IF customer_id NOT IN (SELECT id FROM customer)
OR customer_id IS NULL THEN

RETURN
ELSE

SELECT product.id,sum(
sales_order_items.quantity)

FROM product,
sales_order_items,
sales_order

WHERE sales_order.cust_id=customer_id

REVOKE statement

628 Sybase IQ

AND sales_order.id=sales_order_items.id
AND sales_order_items.prod_id=product.id
GROUP BY product.id

END IF
END

Usage If expression is supplied, the value of expression is returned as the value of the
function or procedure.

Within a function, the expression should be of the same data type as the
function’s RETURNS data type.

RETURN is used in procedures for Transact-SQL-compatibility, and is used to
return an integer error code.

Side effects

None.

Standards • SQL92 Persistent Stored Module feature.

• Sybase Transact-SQL procedures use the return statement to return an
integer error code.

Permissions None.

See also BEGIN... END statement on page 422

CREATE PROCEDURE statement on page 485

REVOKE statement
Description Removes permissions for specified users.

Syntax Syntax 1

REVOKE
{ CONNECT | DBA | INTEGRATED LOGIN | GROUP
| MEMBERSHIP IN GROUP userid [, ...] | RESOURCE }
... FROM userid [, ...]

Syntax 2

REVOKE
{ ALL [PRIVILEGES] | ALTER | DELETE | INSERT
| REFERENCE | SELECT [(column-name [, ...])] | UPDATE [(column-
name,...)] }
... ON [owner.]table-name FROM userid [, ...]

Syntax 3

CHAPTER 6 SQL Statements

Reference Manual 629

REVOKE EXECUTE ON [owner.]procedure-name FROM userid [, ...]

Examples • Prevents user “dave” from inserting into the employee table:

REVOKE INSERT ON employee FROM dave ;

• Revokes resource permission from user “Jim”:

REVOKE RESOURCE FROM Jim ;

• Prevents user “dave” from updating the employee table:

REVOKE UPDATE ON employee FROM dave ;

• Revokes integrated login mapping from the user profile name
“Administrator”:

REVOKE INTEGRATED LOGIN FROM Administrator ;

• Disallows the finance group from executing the procedure
sp_customer_list:

REVOKE EXECUTE ON sp_customer_list
FROM finance ;

• Drops user ID “FranW” from the database:

REVOKE CONNECT FROM FranW ;

Usage The REVOKE statement is used to remove permissions that were given using
the GRANT statement. Syntax 1 is used to revoke special user permissions and
Syntax 2 is used to revoke table permissions. Syntax 3 is used to revoke
permission to execute a procedure. REVOKE CONNECT is used to remove a
user ID from a database.

Note If Login Management is enabled for the database, you must use system
procedures, not GRANT and REVOKE, to add and remove user IDs.

REVOKE GROUP automatically revokes membership from all members of the
group.

ROLLBACK statement

630 Sybase IQ

By default, you can only remove users with REVOKE CONNECT on a multiplex
write server. To enable REVOKE CONNECT on query servers, you must set the
database option MPX_LOCAL_SPEC_PRIV to change the default. For details,
see “MPX_LOCAL_SPEC_PRIV option” on page 123.

Note You cannot revoke a user’s connect privileges if that user owns database
objects, such as tables. Attempting to do so with a REVOKE statement or
sp_dropuser procedure returns an error such as “Cannot drop a user that owns
tables in runtime system.”

Side effects

Automatic commit.

Standards • SQL92 Syntax 1 is a vendor extension. Syntax 2 is an entry-level
feature. Syntax 3 is a Persistent Stored Module feature.

• Sybase Syntax 2 and 3 are supported by Adaptive Server Enterprise.
Syntax 1 is not supported by Adaptive Server Enterprise. User
management and security models are different for Sybase IQ and Adaptive
Server Enterprise.

Permissions Must be the grantor of the permissions that are being revoked, or must have
DBA authority.

If revoking CONNECT permissions or revoking table permissions from another
user, the other user must not be connected to the database.

See also GRANT statement on page 559

ROLLBACK statement
Description Undoes any changes made since the last COMMIT or ROLLBACK.

Syntax ROLLBACK [WORK]

Usage ROLLBACK ends a logical unit of work (transaction) and undoes all changes
made to the database during this transaction. A transaction is the database work
done between COMMIT or ROLLBACK statements on one database connection.

Side effects

Closes all cursors not opened WITH HOLD.

Releases locks held by the transaction issuing the ROLLBACK.

CHAPTER 6 SQL Statements

Reference Manual 631

Standards • SQL92 Entry-level feature.

• Sybase Supported by Adaptive Server Enterprise.

Permissions Must be connected to the database.

See also COMMIT statement on page 436

ROLLBACK TO SAVEPOINT statement on page 631

ROLLBACK TO SAVEPOINT statement
Description Cancels any changes made since a SAVEPOINT.

Syntax ROLLBACK TO SAVEPOINT [savepoint-name]

Usage Changes made prior to the SAVEPOINT are not undone; they are still pending.
For a description of savepoints, see Chapter 8, “Using Procedures and
Batches” in the Sybase IQ System Administration Guide.

The savepoint-name is an identifier that was specified on a SAVEPOINT
statement within the current transaction. If savepoint-name is omitted, the most
recent savepoint is used. Any savepoints since the named savepoint are
automatically released.

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase Savepoints are not supported by Adaptive Server Enterprise. To
implement similar features in an Adaptive Server Enterprise-compatible
manner, you can use nested transactions.

Permissions There must have been a corresponding SAVEPOINT within the current
transaction.

See also RELEASE SAVEPOINT statement on page 619

ROLLBACK statement on page 630

SAVEPOINT statement on page 632

SAVEPOINT statement

632 Sybase IQ

SAVEPOINT statement
Description Establishes a savepoint within the current transaction.

Syntax SAVEPOINT [savepoint-name]

Usage The savepoint-name is an identifier that can be used in a RELEASE
SAVEPOINT or ROLLBACK TO SAVEPOINT statement. All savepoints are
automatically released when a transaction ends. See Chapter 8, “Using
Procedures and Batches” in the Sybase IQ System Administration Guide.

Savepoints that are established while a trigger is executing or while an atomic
compound statement is executing are automatically released when the atomic
operation ends.

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase Not supported in Adaptive Server Enterprise. To implement
similar features in an Adaptive Server Enterprise-compatible manner, use
nested transactions.

Permissions None

See also RELEASE SAVEPOINT statement on page 619

ROLLBACK TO SAVEPOINT statement on page 631

SELECT statement
Description Retrieves information from the database.

Syntax SELECT [ALL | DISTINCT] [FIRST | TOP number-of-rows] select-list
... [INTO { host-variable-list | variable-list | table-name }]
... [FROM table-list]
... [WHERE search-condition]
... [GROUP BY [expression [,...]

| ROLLUP (expression [,...])
| CUBE (expression [,...])]]

... [HAVING search-condition]

... [ORDER BY { expression | integer } [ASC | DESC] [, ...]]

CHAPTER 6 SQL Statements

Reference Manual 633

Parameters select-list:
{ column-name
| expression [[AS] alias-name]
| * }

Examples • Lists all the tables and views in the system catalog:

SELECT tname
FROM SYS.SYSCATALOG
WHERE tname LIKE 'SYS%' ;

• Lists all customers and the total value of their orders:

SELECT company_name,
CAST(sum(sales_order_items.quantity *
product.unit_price) AS INTEGER) VALUE

FROM customer
LEFT OUTER JOIN sales_order
LEFT OUTER JOIN sales_order_items
LEFT OUTER JOIN product

GROUP BY company_name
ORDER BY VALUE DESC

• Lists the number of employees:

SELECT count(*)
FROM Employee ;

• Shows an Embedded SQL SELECT statement:

SELECT count(*) INTO :size FROM employee

• Lists the total sales by year, model, and color:

SELECT year, model, color, sum(sales) FROM sales_tab
GROUP BY ROLLUP (year, model, color);

• Selects all items with a certain discount into a temporary table:

SELECT * INTO #TableTemp FROM lineitem WHERE l_discount
< 0.5

Usage You can use a SELECT statement in DBISQL to browse data in the database or
to export data from the database to an external file.

SELECT statement

634 Sybase IQ

You can also use a SELECT statement in procedures or in Embedded SQL. The
SELECT statement with an INTO clause is used for retrieving results from the
database when the SELECT statement returns only one row. (Tables created
with SELECT INTO do not inherit IDENTITY/AUTOINCREMENT tables.)
For multiple-row queries, you must use cursors.When you select more than one
column and do not use #table, SELECT INTO creates a permanent base table.
SELECT INTO #table always creates a temporary table regardless of the
number of columns. SELECT INTO table with a single column selects into a
host variable.

Tables with the same name but different owners require aliases. A query like
the following returns incorrect results:

SELECT * FROM user1.t1
WHERE NOT EXISTS
(SELECT *
FROM user2.t1
WHERE user2.t1.col1 = user1.t.col1);

For correct results, use an alias for each table, as follows:

SELECT * FROM user1.t1 U1
WHERE NOT EXISTS
(SELECT *
FROM user2.t1 U2
WHERE U2.col1 = U1.col1);

The INTO clause with a variable-list is used in procedures only.

A SELECT statement can also return a result set from a procedure. See
“Creating and selecting from temporary tables” in the Sybase IQ System
Administration Guide for a restriction that affects selecting from temporary
tables within stored procedures.

The various parts of the SELECT statement are described below:

ALL or DISTINCT If neither is specified, all rows that satisfy the clauses
of the SELECT statement are retrieved. If DISTINCT is specified, duplicate
output rows are eliminated. This is called the projection of the result of the
statement. In many cases, statements take significantly longer to execute when
DISTINCT is specified, so reserve the use of DISTINCT for cases where it is
necessary.

If DISTINCT is used, the statement cannot contain an aggregate function with a
DISTINCT parameter.

CHAPTER 6 SQL Statements

Reference Manual 635

FIRST or TOP number-of-rows Specifies the number of rows returned from
a query. FIRST returns the first row selected from the query. TOP returns the
specified number of rows from the query, where number-of-rows is in the range
1 – 32767, and can be an integer constant or integer variable.

FIRST and TOP are used primarily with the ORDER BY clause. If you use these
keywords without an ORDER BY clause, the result might vary from run to run
of the same query, as the optimizer might choose a different query plan.

FIRST and TOP are permitted only in the top-level SELECT of a query, so they
cannot be used in derived tables or view definitions. Using FIRST or TOP in a
view definition might result in the keyword being ignored when a query is run
on the view.

Using FIRST is the same as setting the ROW_COUNT database option to 1.
Using TOP is the same as setting the ROW_COUNT option to the same number
of rows, except that the maximum number of rows returned for TOP is 32767.
ROW_COUNT does not have an upper limit for the number of rows returned. If
both TOP and ROW_COUNT are set, then the value of TOP takes precedence.

If you need the query to return more than 32K rows, use ROW_COUNT. For
more information on the ROW_COUNT database option, see “ROW_COUNT
option” on page 144.

select-list The select-list is a list of expressions, separated by commas,
specifying what is retrieved from the database. If an asterisk (*) is specified, all
columns of all tables in the FROM clause (table-name all columns of the named
table) are selected. Aggregate functions and analytical functions are allowed in
the select-list (see Chapter 5, “SQL Functions”).

Note In Sybase IQ, scalar subqueries (nested selects) are allowed in the select
list of the top level SELECT, as in Adaptive Server Anywhere and Adaptive
Server Enterprise. Subqueries cannot be used inside a conditional value
expression (for example, in a CASE statement).

In Sybase IQ, subqueries can also be used in a WHERE or HAVING clause
predicate (one of the supported predicate types). However, inside the WHERE
or HAVING clause, subqueries cannot be used inside a value expression or
inside a CONTAINS or LIKE predicate. Subqueries are not allowed in the ON
clause of outer joins or in the GROUP BY clause.

For more details on the use of subqueries, see “Subqueries in expressions” on
page 181 and “Subqueries in search conditions” on page 191.

SELECT statement

636 Sybase IQ

alias-names can be used throughout the query to represent the aliased
expression. Alias names are also displayed by DBISQL at the top of each
column of output from the SELECT statement. If the optional alias-name is not
specified after an expression, DBISQL displays the expression. You cannot use
the same name or expression for a column alias as the column name; Sybase
IQ prevents this usage because it would be a recursive reference.

INTO host-variable-list This clause is used in Embedded SQL only. It
specifies where the results of the SELECT statement goes. There must be one
host-variable item for each item in the select-list. Select list items are put into
the host variables in order. An indicator host variable is also allowed with each
host-variable so the program can tell if the select list item was NULL.

INTO variable-list This clause is used in procedures only. It specifies where
the results of the SELECT statement go. There must be one variable for each
item in the select list. Select list items are put into the variables in order.

INTO table-name This clause is used to create a table and fill it with data.

If the table name starts with #, the table is created as a temporary table.
Otherwise, the table is created as a permanent base table. For permanent tables
to be created, the query must satisfy the following conditions:

• The select-list contains more than one item, and the INTO target is a single
table-name identifier, or

• The select-list contains a * and the INTO target is specified as owner.table.

To create a permanent table with one column, the table name must be specified
as owner.table. Omit the owner specification for a temporary table.

This statement causes a COMMIT before execution as a side effect of creating
the table. RESOURCE authority is required to execute this statement. No
permissions are granted on the new table: the statement is a short form for
CREATE TABLE followed by INSERT... SELECT.

Tables created using this statement do not have a primary key defined. You can
add a primary key using ALTER TABLE. A primary key should be added before
applying any UPDATEs or DELETEs to the table; otherwise, these operations
result in all column values being logged in the transaction log for the affected
rows.

 Use of this clause is restricted to valid Adaptive Server Anywhere queries.
Sybase IQ extensions are not supported.

CHAPTER 6 SQL Statements

Reference Manual 637

FROM table-list Rows are retrieved from the tables and views specified in
the table-list. Joins can be specified using join operators. For more
information, see FROM clause on page 553. A SELECT statement with no
FROM clause can be used to display the values of expressions not derived from
tables. For example:

SELECT @@version

displays the value of the global variable @@version. This is equivalent to:

SELECT @@version
FROM DUMMY

Note If you omit the FROM clause, or if all tables in the query are in the
SYSTEM dbspace, the query is processed by Adaptive Server Anywhere
instead of Sybase IQ and might behave differently, especially with respect to
syntactic and semantic restrictions and the effects of option settings. See the
Adaptive Server Anywhere documentation for rules that might apply to
processing.

If you have a query that does not require a FROM clause, you can force the
query to be processed by Sybase IQ by adding the clause “FROM iq_dummy,”
where iq_dummy is a one-row, one-column table that you create in your
database.

WHERE search-condition Specifies which rows are selected from the tables
named in the FROM clause. It is also used to do joins between multiple tables.
This is accomplished by putting a condition in the WHERE clause that relates
a column or group of columns from one table with a column or group of
columns from another table. Both tables must be listed in the FROM clause.

The use of the same CASE statement is not allowed in both the SELECT and the
WHERE clause of a grouped query. See “Search conditions” on page 189 for a
full description.

GROUP BY You can group by columns or alias names or functions. GROUP
BY expressions must also appear in the select list. The result of the query
contains one row for each distinct set of values in the named columns, aliases,
or functions. The resulting rows are often referred to as groups since there is
one row in the result for each group of rows from the table list. For the sake of
GROUP BY, all NULL values are treated as identical. Aggregate functions can
then be applied to these groups to get meaningful results.

SELECT statement

638 Sybase IQ

GROUP BY must contain more than a single constant. You do not need to add
constants to the GROUP BY clause to select the constants in grouped queries.
If the GROUP BY expression contains only a single constan, an error is returned
and the query is rejected.

When GROUP BY is used, the select list, HAVING clause, and ORDER BY clause
cannot reference any identifiers except those named in the GROUP BY clause.
The following exception applies: The select-list and HAVING clause may
contain aggregate functions.

ROLLUP operator The ROLLUP operator in the GROUP BY clause lets you
analyze subtotals using different levels of detail. It creates subtotals that roll up
from a detailed level to a grand total.

The ROLLUP operator requires an ordered list of grouping expressions to be
supplied as arguments. ROLLUP first calculates the standard aggregate values
specified in the GROUP BY. Then ROLLUP moves from right to left through the
list of grouping columns and creates progressively higher-level subtotals. A
grand total is created at the end. If n is the number of grouping columns,
ROLLUP creates n+1 levels of subtotals.

Restrictions on the ROLLUP operator are:

• The ROLLUP operator supports all of the aggregate functions available to
the GROUP BY clause, but ROLLUP does not currently support COUNT
DISTINCT and SUM DISTINCT.

• ROLLUP can be used only in the SELECT statement; you cannot use
ROLLUP in a SELECT subquery.

• A multiple grouping specification that combines ROLLUP, CUBE, and
GROUP BY columns in the same GROUP BY clause is not currently
supported.

• Constant expressions as GROUP BY keys are not supported.

GROUPING is used with the ROLLUP operator to distinguish between stored
NULL values and NULL values in query results created by ROLLUP.

ROLLUP syntax:

SELECT ... [GROUPING (column-name) ...] ...
GROUP BY [expression [,...]
| ROLLUP (expression [,...])]

See “Expressions” on page 179 in Chapter 3, “SQL Language Elements” for
the format of an operator expression.

GROUPING takes a column name as a parameter and returns a Boolean value
as listed in Table 6-12.

CHAPTER 6 SQL Statements

Reference Manual 639

Table 6-12: Values returned by GROUPING with the ROLLUP operator

For ROLLUP examples, see Chapter 4, “Using OLAP” in the Sybase IQ
Performance and Tuning Guide.

CUBE operator The CUBE operator in the GROUP BY clause analyzes data
by forming the data into groups in more than one dimension. CUBE requires an
ordered list of grouping expressions (dimensions) as arguments and enables the
SELECT statement to calculate subtotals for all possible combinations of the
group of dimensions.

Restrictions on the CUBE operator are:

• The CUBE operator supports all of the aggregate functions available to the
GROUP BY clause, but CUBE does not currently support COUNT
DISTINCT or SUM DISTINCT.

• CUBE does not currently support the inverse distribution analytical
functions, PERCENTILE_CONT and PERCENTILE_DISC.

• CUBE can be used only in the SELECT statement; you cannot use CUBE in
a SELECT subquery.

• A multiple GROUPING specification that combines ROLLUP, CUBE, and
GROUP BY columns in the same GROUP BY clause is not currently
supported.

• Constant expressions as GROUP BY keys are not supported.

GROUPING is used with the CUBE operator to distinguish between stored
NULL values and NULL values in query results created by CUBE.

CUBE syntax:

SELECT ... [GROUPING (column-name) ...] ...
GROUP BY [expression [,...]
| CUBE (expression [,...])]

GROUPING takes a column name as a parameter and returns a Boolean value
as listed in Table 6-13.

If the value of the result is GROUPING returns

NULL created by a ROLLUP operation 1 (TRUE)

NULL indicating the row is a subtotal 1 (TRUE)

not created by a ROLLUP operation 0 (FALSE)

a stored NULL 0 (FALSE)

SELECT statement

640 Sybase IQ

Table 6-13: Values returned by GROUPING with the CUBE operator

When generating a query plan, the IQ optimizer estimates the total number of
groups generated by the GROUP BY CUBE hash operation. The
MAX_CUBE_RESULTS database option sets an upper boundary for the number
of estimated rows the optimizer considers for a hash algorithm that can be run.
If the actual number of rows exceeds the MAX_CUBE_RESULT option value,
the optimizer stops processing the query and returns the error message
“Estimate number: nnn exceed the DEFAULT_MAX_CUBE_RESULT of
GROUP BY CUBE or ROLLUP”, where nnn is the number estimated by the
IQ optimizer. See “MAX_CUBE_RESULT option” in Chapter 2, “Database
Options” for information on setting the MAX_CUBE_RESULT option.

For CUBE examples, see Chapter 4, “Using OLAP” in the Sybase IQ
Performance and Tuning Guide.

HAVING search-condition Based on the group values and not on the
individual row values. The HAVING clause can be used only if either the
statement has a GROUP BY clause or if the select list consists solely of
aggregate functions. Any column names referenced in the HAVING clause must
either be in the GROUP BY clause or be used as a parameter to an aggregate
function in the HAVING clause.

ORDER BY Orders the results of a query. Each item in the ORDER BY list can
be labeled as ASC for ascending order or DESC for descending order.
Ascending is assumed if neither is specified. If the expression is an integer n,
then the query results are sorted by the nth item in the select list.

In Embedded SQL, the SELECT statement is used for retrieving results from
the database and placing the values into host variables with the INTO clause.
The SELECT statement must return only one row. For multiple row queries,
you must use cursors.

You cannot include a Java class in the SELECT list, but you can, for example,
create a function or variable that acts as a wrapper for the Java class and then
select it.

Side effects

None.

If the value of the result is GROUPING returns

NULL created by a CUBE operation 1 (TRUE)

NULL indicating the row is a subtotal 1 (TRUE)

not created by a CUBE operation 0 (FALSE)

a stored NULL 0 (FALSE)

CHAPTER 6 SQL Statements

Reference Manual 641

Standards • SQL92 Entry-level feature.

• Sybase Supported by Adaptive Server Enterprise, with some
differences in syntax.

Permissions Must have SELECT permission on the named tables and views.

See also CREATE VIEW statement on page 512

DECLARE CURSOR statement [ESQL] [SP] on page 516

“Expressions” on page 179

FETCH statement [ESQL] [SP] on page 547

FROM clause on page 553

OPEN statement [ESQL] [SP] on page 603

“Search conditions” on page 189

UNION operation on page 659

Chapter 4, “Using OLAP” in the Sybase IQ Performance and Tuning Guide

“Access fields and methods of the Java object” in the Adaptive Server
Anywhere Programming Guide chapter, “Introduction to Java in the Database”

SET statement
Description Assigns a value to a SQL variable.

Syntax SET identifier = expression

Examples • The following code fragment can be used to insert a large text value into
the database:

EXEC SQL BEGIN DECLARE SECTION;
char buffer[5001];
EXEC SQL END DECLARE SECTION;

EXEC SQL CREATE VARIABLE hold_text VARCHAR;
EXEC SQL SET hold_text = '';
for(;;) {

/* read some data into buffer ... */
size = fread(buffer, 1, 5000, fp);
if(size <= 0) break;

SET statement

642 Sybase IQ

/* buffer must be null-terminated */
buffer[size] = '\0';
/* add data to blob using concatenation */
EXEC SQL SET hold_text = hold_text || :buffer;

}
EXEC SQL INSERT INTO some_table VALUES (1, hold_text);
EXEC SQL DROP VARIABLE hold_text;

• The following code fragment can be used to insert a large binary value into
the database:

EXEC SQL BEGIN DECLARE SECTION;
DECL_BINARY(5000) buffer;
EXEC SQL END DECLARE SECTION;
EXEC SQL CREATE VARIABLE hold_blob LONG BINARY;
EXEC SQL SET hold_blob = '';
for(;;) {

/* read some data into buffer ... */
size = fread(&(buffer.array), 1, 5000, fp);
if(size <= 0) break;
buffer.len = size;

/* add data to blob using concatenation
Note that concatenation works for
binary data too! */

EXEC SQL SET hold_blob = hold_blob || :buffer;
}
EXEC SQL INSERT INTO some_table VALUES (1, hold_blob);
EXEC SQL DROP VARIABLE hold_blob;

Usage The SET statement assigns a new value to a variable that was previously
created using the CREATE VARIABLE statement.

You can use a variable in a SQL statement anywhere a column name is allowed.
If there is no column name that matches the identifier, the database server
checks to see if there is a variable that matches, and uses its value.

Variables are local to the current connection, and disappear when you
disconnect from the database or when you use DROP VARIABLE. They are not
affected by COMMIT or ROLLBACK statements.

Variables are necessary for creating large text or binary objects for INSERT or
UPDATE statements from Embedded SQL programs because Embedded SQL
host variables are limited to 32,767 bytes.

Side effects

None.

CHAPTER 6 SQL Statements

Reference Manual 643

Standards • SQL92 Persistent Stored Module feature.

• Sybase Not supported. In Adaptive Server Enterprise, variables are
assigned using the SELECT statement with no table, a Transact-SQL
syntax that is also supported by Sybase IQ. The SET statement is used to
set database options in Adaptive Server Enterprise.

Permissions None.

See also CREATE VARIABLE statement on page 511

DROP VARIABLE statement on page 540

“Expressions” on page 179

SET statement [T-SQL]
Description Sets database options in an Adaptive Server Enterprise-compatible manner.

Syntax SET option-name option-value

Usage Table 6-14 lists available options.

Table 6-14: Transact-SQL SET options

Database options in Sybase IQ are set using the SET OPTION statement.
However, Sybase IQ also provides support for the Adaptive Server Enterprise
SET statement for a set of options particularly useful for compatibility.

You can set the following options using the Transact-SQL SET statement in
Sybase IQ, as well as in Adaptive Server Enterprise:

• SET ANSINULL { ON | OFF } The default behavior for comparing
values to NULL in Sybase IQ and Adaptive Server Enterprise is different.
Setting ANSINULL to OFF provides Transact-SQL compatible
comparisons with NULL

Option name Option value

ANSINULL ON | OFF

ANSI_PERMISSIONS ON | OFF

CLOSE_ON_ENDTRANS ON | OFF

QUOTED_IDENTIFIER ON | OFF

ROWCOUNT integer

STRING_RTRUNCATION ON | OFF

TRANSACTION ISOLATION LEVEL 0 | 1 | 2 | 3

SET statement [T-SQL]

644 Sybase IQ

• SET ANSI_PERMISSIONS { ON | OFF } The default behavior in Sybase
IQ and Adaptive Server Enterprise regarding permissions required to carry
out a DELETE containing a column reference is different. Setting
ANSI_PERMISSIONS to OFF provides Transact-SQL-compatible
permissions on DELETE.

• SET CLOSE_ON_ENDTRANS { ON | OFF } The default behavior in
Sybase IQ and Adaptive Server Enterprise for closing cursors at the end of
a transaction is different. Setting CLOSE_ON_ENDTRANS to OFF
provides Transact-SQL-compatible behavior.

• SET QUOTED_IDENTIFIER { ON | OFF } Controls whether strings
enclosed in double quotes are interpreted as identifiers (ON) or as literal
strings (OFF).

• SET ROWCOUNT integer The Transact-SQL ROWCOUNT option
limits to the specified integer the number of rows fetched for any cursor.
This includes rows fetched by repositioning the cursor. Any fetches
beyond this maximum return a warning. The option setting is considered
when returning the estimate of the number of rows for a cursor on an
OPEN request.

Note The ROWCOUNT option has no effect on UPDATE and DELETE
operations in Sybase IQ. Also note that Sybase IQ does not support the
@@rowcount global variable.

In Sybase IQ, if ROWCOUNT is greater than the number of rows that DBISQL
can display, DBISQL may do some extra fetches to reposition the cursor. Thus,
the number of rows actually displayed may be less than the number requested.
Also, if any rows are refetched due to truncation warnings, the count might be
inaccurate.

A value of zero resets the option to get all rows.

• SET STRING_RTRUNCATION { ON | OFF } The default behavior in
Sybase IQ and Adaptive Server Enterprise when nonspace characters are
truncated on assigning SQL string data is different. Setting
STRING_RTRUNCATION to ON provides Transact-SQL-compatible string
comparisons, including hexadecimal string (binary data type)
comparisons.

CHAPTER 6 SQL Statements

Reference Manual 645

• SET TRANSACTION ISOLATION LEVEL { 0 | 1 | 2 | 3 } Sets the
locking isolation level for the current connection, as described in Chapter
10, “Transactions and Versioning” in the Sybase IQ System
Administration Guide. For Adaptive Server Enterprise, only 1 and 3 are
valid options. For Sybase IQ, only 3 is a valid option.

In addition, the following SET statement is allowed by Sybase IQ for
compatibility, but has no effect:

• SET PREFETCH {ON | OFF}

Side effects

None.

Standards • SQL92 Transact-SQL extension.

• Sybase Sybase IQ supports a subset of the Adaptive Server Enterprise
database options.

Permissions None

See also SET OPTION statement on page 647

SET CONNECTION statement [DBISQL] [ESQL]
Description Changes the active database connection.

Syntax SET CONNECTION [connection-name]

Parameters connection-name:
identifier, string or host-variable

Examples • In Embedded SQL:

EXEC SQL SET CONNECTION :conn_name;

• From DBISQL, sets the current connection to the connection named
“conn1”:

SET CONNECTION conn1 ;

SET DESCRIPTOR statement [ESQL]

646 Sybase IQ

Usage The current connection state is saved and is resumed when it again becomes the
active connection. If connection-name is omitted and there is a connection that
was not named, that connection becomes the active connection.

Note When cursors are opened in Embedded SQL, they are associated with the
current connection. When the connection is changed, the cursor names are not
accessible. The cursors remain active and in position and become accessible
when the associated connection becomes active again.

Side effects

None.

Standards • SQL92 DBISQL use is a vendor extension. Embedded SQL is a full-
level feature.

• Sybase Supported by Open Client/Open Server.

Permissions None.

See also CONNECT statement [ESQL] [DBISQL] on page 439

DISCONNECT statement [DBISQL] on page 532

SET DESCRIPTOR statement [ESQL]
Description Describes the variables in a SQL descriptor area, and places data into the

descriptor area.

Syntax SET DESCRIPTOR descriptor-name
... { COUNT = { integer | hostvar }
| VALUE n assignment [, ...] }

Parameters assignment:
{ { TYPE | SCALE | PRECISION | LENGTH | INDICATOR }
= { integer | hostvar }
| DATA = hostvar }

Examples For an example, see ALLOCATE DESCRIPTOR statement [ESQL] on page
394.

Usage SET...COUNT sets the number of described variables within the descriptor area.
The value for count cannot exceed the number of variables specified when the
descriptor area was allocated.

CHAPTER 6 SQL Statements

Reference Manual 647

The value n specifies the variable in the descriptor area upon which the
assignments are performed.

Type checking is performed when doing SET...DATA to ensure that the variable
in the descriptor area has the same type as the host variable.

If an error occurs, the code is returned in the SQLCA.

Side effects

None.

Standards • SQL92 Intermediate-level feature.

• Sybase Supported by Open Client/Open Server.

Permissions None

See also DEALLOCATE DESCRIPTOR statement [ESQL] on page 514

SET OPTION statement
Description Changes database options.

Syntax SET [EXISTING] [TEMPORARY] OPTION
... [userid. | PUBLIC.]option-name = [option-value]

Parameters userid:
identifier, string, or host-variable

option-name:
identifier, string, or host-variable

option-value:
host-variable (indicator allowed), string, identifier, or number

Examples • Sets the DATE_FORMAT option:

SET OPTION public.date_format = 'Mmm dd yyyy' ;

• Sets the WAIT_FOR_COMMIT option to on:

SET OPTION wait_for_commit = 'on' ;

• Embedded SQL examples:

1. EXEC SQL SET OPTION :user.:option_name = :value;
2. EXEC SQL SET TEMPORARY OPTION Date_format = 'mm/dd/
yyyy';

SET OPTION statement

648 Sybase IQ

Usage The SET OPTION statement is used to change options that affect the behavior
of the database and its compatibility with Transact-SQL. Setting the value of
an option can change the behavior for all users or an individual user, in either
a temporary or permanent scope.

The classes of options are:

• General database options

• Transact-SQL compatibility database options

Specifying either a user ID or the PUBLIC user ID determines whether the
option is set for an individual user, a user group represented by userid, or the
PUBLIC user ID (the user group to which all users are a member). If no user
group is specified, the option change is applied to the currently logged-on user
ID that issued the SET OPTION statement.

For example, the following statement applies an option change to the user
DBA, if DBA is the user issuing the SQL statement:

SET OPTION login_mode = mixed

However, the following statement applies the change to the PUBLIC user ID, a
user group to which all users belong:

SET OPTION Public.login_mode = standard

Only users with DBA privileges have the authority to set an option for the
PUBLIC user ID.

In Embedded SQL, only database options can be set temporarily.

Changing the value of an option for the PUBLIC user ID sets the value of the
option for any user that has not set its own value. Option values cannot be set
for an individual user ID unless there is already a PUBLIC user ID setting for
that option.

Users cannot set the options of another user, unless they have DBA authority.

Users can use the SET OPTION statement to change the values for their own
user IDs. Setting the value of an option for a user ID other then your own is
permitted only if you have DBA authority.

If you use the EXISTING keyword, option values cannot be set for an individual
user ID unless there is already a PUBLIC user ID setting for that option.

Adding the TEMPORARY keyword to the SET OPTION statement changes the
duration that the change takes effect. Without the TEMPORARY keyword, an
option change is permanent: it does not change until it is explicitly changed
using SET OPTION.

CHAPTER 6 SQL Statements

Reference Manual 649

When SET TEMPORARY OPTION is applied using an individual user ID, the
new option value is in effect as long as that user is logged in to the database.

When SET TEMPORARY OPTION is used with the PUBLIC user ID, the change
is in place for as long as the database is running. When the database is shut
down, TEMPORARY options for the PUBLIC user ID revert back to their
permanent value.

Temporarily setting an option for the PUBLIC user ID as opposed to setting the
value of the option permanently offers a security advantage. For example,
when the login_mode option is enabled, the database relies on the login
security of the system on which it is running. Enabling the option temporarily
means a database relying on the security of a Windows domain is not
compromised if the database is shut down and copied to a local machine. In that
case, the temporary enabling of login_mode reverts to its permanent value,
which might be Standard, a mode in which integrated logins are not permitted.

If option-value is omitted, the specified option setting is deleted from the
database. If it was a personal option setting, the value used reverts to the
PUBLIC setting. If a TEMPORARY option is deleted, the option setting reverts
to the permanent setting.

Note For all database options that accept integer values, Sybase IQ truncates
any decimal option-value setting to an integer value. For example, the value 3.8
is truncated to 3.

The maximum length of option-value when set to a string is 127 bytes.

 Warning! Changing option settings while fetching rows from a cursor is not
supported, as it can lead to ill-defined behavior. For example, changing the
DATE_FORMAT setting while fetching from a cursor returns different date
formats among the rows in the result set. Do not change option settings while
fetching rows.

Database options

For information about specific database options, see Chapter 2, “Database
Options.”

Side effects

If TEMPORARY is not specified, an automatic commit is performed.

Standards • SQL92 Vendor extension.

SET OPTION statement [DBISQL]

650 Sybase IQ

• Sybase Not supported by Adaptive Server Enterprise. Sybase IQ does
support some Adaptive Server Enterprise options using the SET statement.

Permissions None required to set your own options. Must have DBA authority to set
database options for another user or PUBLIC.

See also Chapter 2, “Database Options”

SET OPTION statement [DBISQL]
Description Changes DBISQL options.

Syntax Syntax 1

SET [TEMPORARY] OPTION
... [userid. | PUBLIC.]option-name = [option-value]

Syntax 2

SET PERMANENT

Syntax 3

SET

Parameters userid:
identifier, string or host-variable

option-name:
identifier, string, or host-variable

option-value:
host-variable (indicator allowed), string, identifier, or number

Usage SET PERMANENT (Syntax 2) stores all current DBISQL options in the
SYSOPTION system table. These settings are automatically established every
time DBISQL is started for the current user ID.

Syntax 3 is used to display all of the current option settings. If there are
temporary options set for DBISQL or the database server, these display;
otherwise, permanent option settings are displayed.

If you incorrectly type the name of an option when you are setting the option,
the incorrect name is saved in the SYSOPTION table. You can remove the
incorrectly typed name from the SYSOPTION table by setting the option
PUBLIC with an equality after the option name and no value:

SET OPTION PUBLIC.a_mistyped_name=;

CHAPTER 6 SQL Statements

Reference Manual 651

See also Chapter 2, “Database Options”

SET SQLCA statement [ESQL]
Description Tells the SQL preprocessor to use a SQLCA other than the default global sqlca.

Syntax SET SQLCA sqlca

Parameters sqlca:
identifier or string

Examples Shows the owing function that can be found in a Windows DLL. Each
application that uses the DLL has its own SQLCA.

an_sql_code FAR PASCAL ExecuteSQL(an_application *app,
char *com)
{

EXEC SQL BEGIN DECLARE SECTION;
char *sqlcommand;
EXEC SQL END DECLARE SECTION;
EXEC SQL SET SQLCA "&app->.sqlca";
sqlcommand = com;
EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL EXECUTE IMMEDIATE :sqlcommand;

return(SQLCODE);
}

Usage The SET SQLCA statement tells the SQL preprocessor to use a SQLCA other
than the default global sqlca. The sqlca must be an identifier or string that is a
C language reference to a SQLCA pointer.

The current SQLCA pointer is implicitly passed to the database interface
library on every Embedded SQL statement. All Embedded SQL statements that
follow this statement in the C source file use the new SQLCA. This statement
is necessary only when you are writing code that is reentrant. The sqlca should
reference a local variable. Any global or module static variable is subject to
being modified by another thread.

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase Not supported by Open Client/Open Server.

Permissions None.

SIGNAL statement

652 Sybase IQ

See also “The Embedded SQL Interface” in the Adaptive Server Anywhere
Programming Interfaces Guide

SIGNAL statement
Description Signals an exception condition.

Syntax SIGNAL exception-name

Usage SIGNAL lets you raise an exception. See Chapter 8, “Using Procedures and
Batches” in the Sybase IQ System Administration Guide for a description of
how exceptions are handled.

Side effects

None.

Standards • SQL92 Persistent Stored Module feature.

• Sybase SIGNAL is not supported by Adaptive Server Enterprise.

Permissions None.

See also BEGIN... END statement on page 422

RESIGNAL statement on page 620

START DATABASE statement [DBISQL]
Description Starts a database on the specified database server

Syntax START DATABASE database-file
... [AS database-name]
... [ON engine-name]
... [AUTOSTOP { YES | NO }]
... [KEY key]

Examples • On a UNIX system, starts the database file /s1/sybase/sample_2.db on the
current server:

START DATABASE '/s1/sybase/sample_2.db'

• On a Windows system, starts the database file c:\sybase\sample_2.db as
“sam2” on the server named “eng1”:

START DATABASE 'c:\sybase\sample_2.db'

CHAPTER 6 SQL Statements

Reference Manual 653

AS sam2
ON eng1

Usage The database server must be running. The full path must be specified for the
database file unless the file is located in the current directory.

The START DATABASE statement does not connect DBISQL to the specified
database: a CONNECT statement must be issued to make a connection.

If database-name is not specified, a default name is assigned to the database.
This default name is the root of the database file. For example, a database in
file c:\sybase\ASIQ-12_5\demo\asiqdemo.db is given the default name
asiqdemo.

If engine-name is not specified, the default database server is assumed. The
default database server is the first started server among those currently running.

The default setting for the AUTOSTOP clause is YES. With AUTOSTOP set to
YES, the database is unloaded when the last connection to it is dropped. If
AUTOSTOP is set to NO, the database is not unloaded.

If the database is strongly encrypted, enter the KEY value (password) using the
KEY clause.

Sybase recommends that you start only one database on a given Sybase IQ
database server.

Side effects

None

Standards • SQL92 Vendor extension.

• Sybase Not applicable.

Permissions Must have DBA authority.

START ENGINE statement [DBISQL]
Description Starts a database server.

Syntax START ENGINE AS engine-name [STARTLINE command-string]

Examples • Start a database server, named “eng1”, without starting any databases on
it:

START ENGINE AS eng1

• The following example shows the use of a STARTLINE clause.

START JAVA statement

654 Sybase IQ

START ENGINE AS eng1 STARTLINE 'start_asiq -c 8096'

Usage To specify a set of options for the server, use the STARTLINE keyword together
with a command string. Valid command strings are those that conform to the
database server command line description in Chapter 1, “Running the
Database Server” in the Sybase IQ Utility Guide.

Note Several server options are required for Sybase IQ to operate well. To
ensure that you are using the right set of options, Sybase recommends that you
start your server by using either Sybase Central or a configuration file with the
start_asiq command.

Side effects

None

Standards • SQL92 Vendor extension.

• Sybase Not applicable.

Permissions None.

See also STOP ENGINE statement [DBISQL] on page 656

Chapter 1, “Running the Database Server” in the Sybase IQ Utility Guide

START JAVA statement
Description Starts the Java VM.

Syntax START JAVA

Examples Start the Java VM.

START JAVA

Usage The main use of START JAVA is to load the VM at a convenient time so that
when the user starts to use Java functionality there is no initial pause while the
VM is loaded.

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase Not applicable.

CHAPTER 6 SQL Statements

Reference Manual 655

Permissions Must have DBA authority.

See also STOP JAVA statement on page 656

STOP DATABASE statement [DBISQL]
Description Stops a database on the specified database server.

Syntax STOP DATABASE database-name
... [ON engine-name]
... [UNCONDITIONALLY]

Examples Stop the database named “sample” on the default server:

STOP DATABASE sample

Usage If engine-name is not specified, all running engines are searched for a database
of the specified name.

The database-name is the name specified in the -n parameter when the
database is started, or in the DBN (DatabaseName) connection parameter. This
name is typically the file name of the database file that holds the Catalog Store,
without the .db extension, but can be any user-defined name

If UNCONDITIONALLY is supplied, the database is stopped even if there are
connections to the database. If UNCONDITIONALLY is not specified, the
database is not stopped if there are connections to it.

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase Not applicable.

Permissions Must have DBA authority.

See also DISCONNECT statement [DBISQL] on page 532

START DATABASE statement [DBISQL] on page 652

STOP ENGINE statement [DBISQL]

656 Sybase IQ

STOP ENGINE statement [DBISQL]
Description Stops a database server

Syntax STOP ENGINE engine-name [UNCONDITIONALLY]

Examples Stop the database server named “sample”:

STOP ENGINE sample

Usage If UNCONDITIONALLY is supplied, the database server is stopped even if there
are connections to the server. If UNCONDITIONALLY is not specified, the
database server is not stopped if there are connections to it.

Side effects

None

Standards • SQL92 Vendor extension.

• Sybase Not applicable.

Permissions None

See also START ENGINE statement [DBISQL] on page 653

STOP JAVA statement
Description Stops the Java VM.

Syntax STOP JAVA

Examples Stops the Java VM:

STOP JAVA

Usage The main use of STOP JAVA is to economize on the use of system resources.

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase Not applicable.

Permissions DBA authority

See also START JAVA statement on page 654

CHAPTER 6 SQL Statements

Reference Manual 657

SYNCHRONIZE JOIN INDEX statement
Description Synchronizes one or more join indexes after one of their base tables has been

updated.

Syntax SYNCHRONIZE JOIN INDEX [join-index-name [, join-index-name]...]

Examples Synchronizes the join indexes emp_dept_join1 and emp_dept_join2:

SYNCHRONIZE JOIN INDEX emp_dept_join1, emp_dept_join2

Usage When a base table that contributes to a join index is updated, Sybase IQ flags
the join index as unavailable. Queries that previously took advantage of the
join index perform an ad-hoc join instead, perhaps affecting their performance.
The SYNCHRONIZE JOIN INDEX command lets you bring the join index up-to-
date, making it available for queries to use.

Note A join index defines a one-to-many relationship (also known as primary
key to foreign key) between two table columns. If an insert into the “one” (or
primary key) column results in one or more duplicate values, the join index
becomes invalid and cannot be synchronized. You must delete the rows
containing the duplicate values before SYNCHRONIZE JOIN INDEX can make
it valid again.

Synchronizing join indexes can be time-consuming, depending on the size of
the base tables that make up the join. It is up to you to decide when to use this
command. You can schedule it as a batch job at night or on weekends when you
expect your system to have less work to do. You can perform it immediately
after Sybase IQ commits a series of inserts and deletes to make the join index
available as soon as possible. However, do not synchronize a join index after
each insert or delete as the time to update the join index depends on the order
of the updates to the tables.

SYNCHRONIZE JOIN INDEX lets you specify multiple join-index-names,
separated by commas. You must be the owner of each join index or the DBA.
If you do not specify a join-index-name, Sybase IQ synchronizes all the join
indexes you own (or all the join indexes in the database if you are the DBA),
which might adversely affect the performance of your system.

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase Not applicable.

Permissions Must be owner of the join indexes or be DBA.

TRIGGER EVENT statement

658 Sybase IQ

See also CREATE JOIN INDEX statement on page 481

TRIGGER EVENT statement
Description Triggers a named event. The event may be defined for event triggers or be a

scheduled event.

Syntax TRIGGER EVENT event-name [(parm = value, ...)]

Usage Actions are tied to particular trigger conditions or schedules by a CREATE
EVENT statement. You can use TRIGGER EVENT to force the event handler to
execute, even when the scheduled time or trigger condition has not occurred.
TRIGGER EVENT does not execute disabled event handlers.

parm = value When a triggering condition causes an event handler to
execute, the database server can provide context information to the event
handler using the event_parameter function. TRIGGER EVENT allows you to
explicitly supply these parameters, to simulate a context for the event handler.

When you trigger an event, specify the event name. You can list event names
by querying the system table SYSEVENT. For example:

SELECT event_id, event_name FROM SYS.SYSEVENT

Side effects

None.

Permissions Must have DBA authority.

See also ALTER EVENT statement on page 401

CREATE EVENT statement on page 458

Chapter 18, “Automating Tasks Using Schedules and Events” in the Sybase IQ
System Administration Guide

TRUNCATE TABLE statement
Description Deletes all rows from a table without deleting the table definition.

Syntax TRUNCATE TABLE [owner.]table-name

Examples Deletes all rows from the department table:

CHAPTER 6 SQL Statements

Reference Manual 659

TRUNCATE TABLE department

Usage TRUNCATE TABLE is equivalent to a DELETE statement without a WHERE
clause, except that each individual row deletion is not entered into the
transaction log. After a TRUNCATE TABLE statement, the table structure and all
of the indexes continue to exist until you issue a DROP TABLE statement. The
column definitions and constraints remain intact, and permissions remain in
effect.

The TRUNCATE TABLE statement is entered into the transaction log as a single
statement, like data definition statements. Each deleted row is not entered into
the transaction log.

Side effects

None.

Standards • SQL92 Transact-SQL extension.

• Sybase Supported by Adaptive Server Enterprise.

Permissions • Must be the table owner or have DBA authority.

• For both temporary and base tables, you can execute TRUNCATE TABLE
while other users have read access to the table. This behavior differs from
Adaptive Server Anywhere, which requires exclusive access to truncate a
base table. Sybase IQ table versioning ensures that TRUNCATE TABLE can
occur while other users have read access; however, the version of the table
these users see depends on when the read and write transactions commit.

See also DELETE statement on page 525

Chapter 10, “Transactions and Versioning” in Sybase IQ System
Administration Guide

UNION operation
Description Combines the results of two or more select statements.

Syntax select-without-order-by
... UNION [ALL] select-without-order-by
... [UNION [ALL] select-without-order-by]...
... [ORDER BY integer [ASC | DESC] [, ...]]

Examples Lists all distinct surnames of employees and customers:

SELECT emp_lname
FROM employee

UNION operation

660 Sybase IQ

UNION
SELECT lname
FROM customer

Usage The results of several SELECT statements can be combined into a larger result
using UNION. The component SELECT statements must each have the same
number of items in the select list, and cannot contain an ORDER BY clause.

The results of UNION ALL are the combined results of the component SELECT
statements. The results of UNION are the same as UNION ALL except that
duplicate rows are eliminated. Eliminating duplicates requires extra
processing, so UNION ALL should be used instead of UNION where possible.

If corresponding items in two select lists have different data types, Sybase IQ
chooses a data type for the corresponding column in the result, and
automatically converts the columns in each component SELECT statement
appropriately.

If ORDER BY is used, only integers are allowed in the order by list. These
integers specify the position of the columns to be sorted.

The column names displayed are the same column names that display for the
first SELECT statement.

Side effects

None.

Standards • SQL92 Entry-level feature.

• Sybase Supported by Adaptive Server Enterprise, which also supports a
COMPUTE clause.

Permissions Must have SELECT permission for each of the component SELECT
statements.

See also SELECT statement on page 632

CHAPTER 6 SQL Statements

Reference Manual 661

UPDATE statement
Description Modifies existing rows of a single table, or a view that contains only one table.

Syntax UPDATE table
... SET [column-name = expression, ...
... [FROM table-expression,]
... [WHERE search-condition]
... [ORDER BY expression [ASC | DESC] ,...]

FROM table-expression
table-expression:
table-spec | table-expression join-type table-spec [ON condition] | table-
expression, ...

Examples • Transfers employee Philip Chin (employee 129) from the sales department
to the marketing department:

UPDATE employee
SET dept_id = 400
WHERE emp_id = 129 ;

• The Marketing Department (400) increases bonuses from 4% to 6% of
each employee’s base salary:

UPDATE employee
SET bonus = base * 6/100
WHERE dept_id=400;

• Each employee gets a pay increase with the department bonus:

UPDATE employee
SET emp.salary = emp.salary + dept.bonus
FROM employee emp, department dept
WHERE emp.deptnum = dept.deptnum;

• Another way to give each employee a pay increase with the department
bonus:

UPDATE employee
SET emp.salary = emp.salary + dept.bonus
FROM employee emp JOIN department dept
ON emp.deptnum = dept.deptnum;

Usage The table on which you use UPDATE may be a base table or a temporary table.

Note The base table cannot be part of any join index.

UPDATE statement

662 Sybase IQ

Each named column is set to the value of the expression on the right-hand side
of the equal sign. Even column-name can be used in the expression—the old
value is used.

The FROM clause can contain multiple tables with join conditions and returns
all the columns from all the tables specified and filtered by the join condition
and/or WHERE condition.

Using the wrong join condition in a FROM clause causes unpredictable results.
If the FROM clause specifies a one-to-many join and the SET clause references
a cell from the “many” side of the join, the cell is updated from the first value
selected. In other words, if the join condition causes multiple rows of the table
to be updated per row ID, the first row returned becomes the update result. For
example:

UPDATE T1
SET T1.c2 = T2.c2
FROM T1 JOIN TO T2
ON T1.c1 = T2.c1

If table T2 has more than one row per T2.c1, results might be as follows:

T2.c1 T2.c2 T2.c3
1 4 3
1 8 1
1 6 4
1 5 2

With no ORDER BY clause, T1.c2 may be 4, 6, 8, or 9.

• With ORDER BY T2.c3, T1.c2 is updated to 8.

• With ORDER BY T2.c3 DESC, T1.c2 is updated to 6.

Sybase IQ rejects any UPDATE statement in which the table being updated is
on the null-supplying side of an outer join. In other words:

• In a left outer join, the table on the left side of the join cannot be missing
any rows on joined columns.

• In a right outer join, the table on the right side of the join cannot be missing
any rows on joined columns.

• In a full outer join, neither table can be missing any rows on joined
columns.

For example, in the following statement, table T1 is on the left side of a left
outer join, and thus cannot contain be missing any rows:

UPDATE T1

CHAPTER 6 SQL Statements

Reference Manual 663

SET T1.c2 = T2.c4
FROM T1 LEFT OUTER JOIN T2
ON T1.rowid = T2.rowid

Normally, the order in which rows are updated does not matter. However, in
conjunction with the NUMBER(*) function, an ordering can be useful to get
increasing numbers added to the rows in some specified order. If you are not
using the NUMBER(*) function, avoid using the ORDER BY clause, because the
UPDATE statement performs better without it.

In an UPDATE statement, if the NUMBER(*) function is used in the SET clause
and the FROM clause specifies a one-to-many join, NUMBER(*) generates
unique numbers that increase, but do not increment sequentially due to row
elimination. For more information about the NUMBER(*) function, see
“NUMBER function [Miscellaneous]” on page 335.

You can use the ORDER BY clause to control the result from an UPDATE when
the FROM clause contains multiple joined tables.

Sybase IQ ignores the ORDER BY clause in searched UPDATE and returns a
message that the syntax is not valid ANSI syntax.

If no WHERE clause is specified, every row is updated. If you specify a WHERE
clause, Sybase IQ updates only rows satisfying the search condition.

The left side of each SET clause must be a column in a base table.

Views can be updated provided the SELECT statement defining the view does
not contain a GROUP BY clause or an aggregate function, or involve a UNION
operation. The view should contain only one table.

Character strings inserted into tables are always stored in the case they are
entered, regardless of whether the database is case sensitive or not. Thus a
character data type column updated with a string Value is always held in the
database with an upper-case V and the remainder of the letters lowercase.
SELECT statements return the string as Value. If the database is not case
sensitive, however, all comparisons make Value the same as value, VALUE, and
so on. Further, if a single-column primary key already contains an entry Value,
an INSERT of value is rejected, as it would make the primary key not unique.

If the update violates any check constraints, the whole statement is rolled back.

Sybase IQ supports scalar subqueries within the SET clause, for example:

UPDATE r
SET r.o= (SELECT MAX(t.o) FROM t ... WHERE t.y = r.y),

r.s= (SELECT SUM(x.s) FROM x ... WHERE x.x = r.x)
WHERE r.a = 10

UPDATE (positioned) statement [ESQL] [SP]

664 Sybase IQ

Sybase IQ supports DEFAULT column values in UPDATE statements. If a
column has a DEFAULT value, this DEFAULT value is used as the value of the
column in any UPDATE statement that does not explicitly modify the value for
the column.

For detailed information on the use of column DEFAULT values, see “Using
column defaults” in Chapter 9, “Ensuring Data Integrity” in the Sybase IQ
System Administration Guide.

See the CREATE TABLE statement on page 499 for details about updating
IDENTITY/AUTOINCREMENT columns, which are another type of
DEFAULT column.

Side effects

None.

Standards • SQL92 Vendor extension.

• Sybase With the following exceptions, syntax of the IQ UPDATE
statement is generally compatible with the Adaptive Server Enterprise
UPDATE statement Syntax 1: Sybase IQ supports multiple tables with join
conditions in the FROM clause.

The Transact-SQL ROWCOUNT option has no effect on UPDATE
operations in Sybase IQ.

Updates of remote tables are limited to Sybase IQ syntax supported by
CIS, as described in Chapter 17, “Server Classes for Remote Data
Access” and Chapter 16, “Accessing Remote Data” in the Sybase IQ
System Administration Guide.

Permissions Must have UPDATE permission for the columns being modified.

UPDATE (positioned) statement [ESQL] [SP]
Description Modifies the data at the current location of a cursor.

Syntax UPDATE table-list
SET set-item, …
WHERE CURRENT OF cursor-name

Parameters cursor-name:
identifier | hostvar

CHAPTER 6 SQL Statements

Reference Manual 665

set-item:
column-name [.field-name…] = scalar-value)

SET
The columns that are referenced in set-item must be in the base table that is
updated. They cannot refer to aliases, nor to columns from other tables or
views. If the table you are updating is given a correlation name in the cursor
specification, you must use the correlation name in the SET clause.

The expression on the right side of the SET clause may reference columns,
constants, variables, and expressions from the SELECT clause of the query.
The set-item expression cannot contain functions or expressions.

Examples The following is an example of an UPDATE statement WHERE CURRENT OF
cursor:

UPDATE employee SET emp_lname = 'Jones'
WHERE CURRENT OF emp_cursor;

Usage This form of the UPDATE statement updates the current row of the specified
cursor. The current row is defined to be the last row successfully fetched from
the cursor, and the last operation on the cursor cannot have been a positioned
DELETE statement.

The requested columns are set to the specified values for the row at the current
row of the specified query. The columns must be in the select list of the
specified open cursor.

Changes effected by positioned UPDATE statements are visible in the cursor
result set, except where client-side caching prevents seeing these changes.
Rows that are updated so that they no longer meet the requirements of the
WHERE clause of the open cursor are still visible.

Sybase does not recommend the use of ORDER BY in the WHERE CURRENT
OF clause. The ORDER BY columns may be updated, but the result set does not
reorder. The results appear to fetch out of order and appear to be incorrect.

Since Sybase IQ does not support the CREATE VIEW... WITH CHECK OPTION,
positioned UPDATE does not support this option. The WITH CHECK OPTION
does not allow an update that creates a row that is not visible by the view.

A rowid column cannot be updated by a positioned UPDATE.

Sybase IQ supports repeatedly updating the same row in the result set.

Standards • SQL92 Entry-level feature. The range of cursors that can be updated may
contain vendor extensions if the ANSI_UPDATE_CONSTRAINTS
option is set to OFF.

WAITFOR statement

666 Sybase IQ

• SQL99 Core feature. The range of cursors that can be updated may
contain vendor extensions if the ANSI_UPDATE_CONSTRAINTS
option is set to OFF.

• Sybase Embedded SQL use is supported by Open Client/Open Server,
and procedure and trigger use is supported in Adaptive Server Anywhere.

Permissions Must have UPDATE permission on the columns being modified.

See also DECLARE CURSOR statement [ESQL] [SP] on page 516

DELETE statement on page 525

DELETE (positioned) statement [ESQL] [SP] on page 527

UPDATE statement on page 661

“sp_iqcursorinfo procedure” on page 759

WAITFOR statement
Description Delays processing for the current connection for a specified amount of time or

until a given time.

Syntax WAITFOR { DELAY time | TIME time }

time: string

Examples Example 1 The following example waits for three seconds:

WAITFOR DELAY '00:00:03'

Example 2 The following example waits for 0.5 seconds (500 milliseconds):

WAITFOR DELAY '00:00:00:500'

Example 3 The following example waits until 8 p.m.:

WAITFOR TIME '20:00'

Usage If DELAY is used, processing is suspended for the given interval. If TIME is
specified, processing is suspended until the server time reaches the time
specified.

If the current server time is greater than the time specified, processing is
suspended until that time on the following day.

WAITFOR provides an alternative to the following statement, and might be
useful for customers who choose not to enable Java in the database:

CHAPTER 6 SQL Statements

Reference Manual 667

call java.lang.Thread.sleep(
<time_to_wait_in_millisecs>)

In many cases, scheduled events are a better choice than using WAITFOR TIME,
because scheduled events execute on their own connection.

Side effects

The implementation of this statement uses a worker thread while it is waiting.
This uses up one of the threads specified by the -gn server command line
option.

Standards • SQL92 Vendor extension.

• SQL99 Vendor extension.

• Sybase This statement is also implemented by Adaptive Server
Enterprise.

Permissions None.

See also CREATE EVENT statement on page 458

WHENEVER statement [ESQL]
Description Specifies error handling in an Embedded SQL program.

Syntax WHENEVER
{ SQLERROR | SQLWARNING | NOTFOUND }
... {GOTO label | STOP | CONTINUE | C code; }

Parameters label:
identifier

Examples The following are examples of the WHENEVER statement:

EXEC SQL WHENEVER NOTFOUND GOTO done;
EXEC SQL WHENEVER SQLERROR

{
PrintError(&sqlca);
return(FALSE);

};

WHILE statement [T-SQL]

668 Sybase IQ

Usage The WHENEVER statement is used to trap errors, warnings, and exceptional
conditions encountered by the database when processing SQL statements. The
statement can be put anywhere in an Embedded SQL C program, and does not
generate any code. The preprocessor generates code following each successive
SQL statement. The error action remains in effect for all Embedded SQL
statements from the source line of the WHENEVER statement until the next
WHENEVER statement with the same error condition, or the end of the source
file.

Note The error conditions are in effect based on positioning in the C language
source file and not on when the statements are executed.

The default action is CONTINUE.

WHENEVER is provided for convenience in simple programs. Most of the time,
checking the sqlcode field of the SQLCA (SQLCODE) directly is the easiest
way to check error conditions. In this case, WHENEVER would not be used. If
fact, all the WHENEVER statement does is cause the preprocessor to generate
an if (SQLCODE) test after each statement.

Side effects

None.

Standards • SQL92 Entry-level feature.

• Sybase Supported by Open Client/Open Server.

Permissions None.

WHILE statement [T-SQL]
Description Provides repeated execution of a statement or compound statement.

Syntax WHILE expression
... statement

Examples Illustrates the use of WHILE:

WHILE (SELECT AVG(unit_price) FROM product) < $30
BEGIN

DELETE FROM product
WHERE unit_price = MAX(unit_price)
IF (SELECT MAX(unit_price) FROM product) < $50

BREAK

CHAPTER 6 SQL Statements

Reference Manual 669

END

The BREAK statement breaks the WHILE loop if the most expensive product has
a price less than $50. Otherwise the loop continues until the average price is
greater than $30.

Usage The WHILE conditional affects the performance of only a single SQL
statement, unless statements are grouped into a compound statement between
the keywords BEGIN and END.

The BREAK statement and CONTINUE statement can be used to control
execution of the statements in the compound statement. The BREAK statement
terminates the loop, and execution resumes after the END keyword, marking
the end of the loop. The CONTINUE statement causes the WHILE loop to restart,
skipping any statements after the CONTINUE.

Side effects

None.

Standards • SQL92 Transact-SQL extension.

• Sybase Supported by Adaptive Server Enterprise.

Permissions None

WHILE statement [T-SQL]

670 Sybase IQ

Reference Manual 671

C H A P T E R 7 Differences from Other SQL
Dialects

About this chapter Sybase IQ conforms to the ANSI SQL89 standard but has many additional
features defined in the IBM DB2 and SAA specification, as well as in the
ANSI SQL92 standard.

This chapter describes those features of Sybase IQ that are not commonly
found in other SQL implementations.

Contents Topic Page

Sybase IQ features 672

Sybase IQ features

672 Sybase IQ

Sybase IQ features
The following Sybase IQ features are not found in many other SQL
implementations.

Dates Sybase IQ has date, time, and timestamp types that include year, month and
day, hour, minutes, seconds and fraction of a second. For insertions or updates
to date fields, or comparisons with date fields, a free format date is supported.

In addition, the following operations are allowed on dates:

• date + integer Add the specified number of days to a date.

• date - integer Subtract the specified number of days from a date.

• date - date Compute the number of days between two dates.

• date + time Make a timestamp out of a date and time.

Also, many functions are provided for manipulating dates and times. See
Chapter 5, “SQL Functions” for a description of these.

Integrity Adaptive Server IQ supports both entity and referential integrity. This has been
implemented via the following two extensions to the CREATE TABLE and
ALTER TABLE commands.

PRIMARY KEY (column-name, ...)
[NOT NULL] FOREIGN KEY [role-name]

[(column-name, ...)]
REFERENCES table-name [(column-name, ...)]

[CHECK ON COMMIT]

The PRIMARY KEY clause declares the primary key for the relation. Adaptive
Server IQ will then enforce the uniqueness of the primary key, and ensure that
no column in the primary key contains the NULL value.

The FOREIGN KEY clause defines a relationship between this table and
another table. This relationship is represented by a column (or columns) in this
table which must contain values in the primary key of another table. The
system will then ensure referential integrity for these columns - whenever
these columns are modified or a row is inserted into this table, these columns
will be checked to ensure that either one or more is NULL or the values match
the corresponding columns for some row in the primary key of the other table.
For more information, see CREATE TABLE statement.

Joins Sybase IQ allows automatic joins between tables. In addition to the NATURAL
and OUTER join operators supported in other implementations, Sybase IQ
allows KEY joins between tables based on foreign-key relationships. This
reduces the complexity of the WHERE clause when performing joins.

CHAPTER 7 Differences from Other SQL Dialects

Reference Manual 673

Updates Adaptive Server IQ allows more than one table to be referenced by the
UPDATE command. Views defined on more than one table can also be
updated. Many SQL implementations will not allow updates on joined tables.

Altering tables The ALTER TABLE command has been extended. In addition to changes for
entity and referential integrity, the following types of alterations are allowed:

ADD column data-type
MODIFY column data-type
DELETE column
RENAME new-table-name
RENAME old-column TO new-column

The MODIFY can be used to change the maximum length of a character
column as well as converting from one data type to another. For more
information, see ALTER TABLE statement.

Subqueries not
always allowed

Unlike Adaptive Server Anywhere, Sybase IQ does not allow subqueries to
appear wherever expressions are allowed. Sybase IQ supports subqueries only
as allowed in the SQL-1989 grammar, plus in the SELECT list of the top level
query block or in the SET clause of an UPDATE statement. It does not support
Adaptive Server Anywhere's extensions.

Many SQL implementations only allow subqueries on the right side of a
comparison operator. For example, the following command is valid in
Adaptive Server IQ but not valid in most other SQL implementations.

SELECT emp_lname,
emp_birthdate,
(SELECT skill

FROM department
WHERE emp_id = employee.emp_ID
AND dept_id = 200)

FROM employee

Additional functions Sybase IQ supports several functions not in the ANSI SQL definition. See
Chapter 5, “SQL Functions” for a full list of available functions.

Cursors When using Embedded SQL, cursor positions can be moved arbitrarily on the
FETCH statement. Cursors can be moved forward or backward relative to the
current position or a given number of records from the beginning or end of the
cursor.

Sybase IQ features

674 Sybase IQ

Reference Manual 675

C H A P T E R 8 Physical Limitations

About this chapter This chapter describes the limitations on size and number of objects in
Sybase IQ databases. For limitations that apply to only one platform, see
the platform-specific documentation.

Contents Topic Page

Size and number limitations 676

Size and number limitations

676 Sybase IQ

Size and number limitations
Table 8-1 lists the limitations on size and number of objects in a Sybase IQ
database. In most cases, computer memory and disk drive are more limiting
factors.

Table 8-1: Sybase IQ database object size and number limitations

Item Limitation

Database size Maximum database size approximates the number of files
times the file size on a particular platform, depending on the
maximum disk configuration.

Refer to your operating system documentation for kernel
parameters that affect the maximum number of files.

Dbspace size Raw: No limit – as large as the device allows.

Operating system files: 4TB

Catalog file size Maximum is 1TB for all platforms except for Windows
systems with FAT 32-file systems, which have a 4GB limit.
Windows systems with NTFS support the 1TB maximum.

Number of columns per table Sybase IQ supports up to 45,000 columns in a table. There
might be performance penalties with more than 10,000
columns in a table.

Number of files per database Operating system limit that user can adjust; for example,
using NOFILE. Typically, 2047 files per database.

Number of rows per table Limited by table size, upper limit 248

Number of rows per LOAD TABLE or INSERT
statement

2GB - 1

Number of tables per database 4,293,918,719

Number of tables referenced per transaction No limit

Number of tables or views referenced per query 512

Number of tables or views in a single FROM clause 16 to 64, depending on the query, with join optimizer turned
on.

Number of UNION branches per query 128. If each branch has multiple tables in the FROM clause,
the limit on tables per query reduces the number of UNION
branches allowed.

Table size Limited by database size.

Row size Sybase recommends a limit of half the page size.

Field size 255 bytes for BINARY, 32,767 bytes for VARBINARY

32,767 for CHAR, VARCHAR

Up to 512 TB for 128 KB pages or 1 PB for 512 KB pages
for LONG BINARY, LONG VARCHAR

CHAPTER 8 Physical Limitations

Reference Manual 677

Sun Solaris OS error initializing raw device
Sun Solaris only: When creating a database or dbspace on a raw device in
version 12.6 and later releases, Sybase IQ performs a series of calculations to
determine the correct size of the raw partition. Each time Sybase IQ tries to
initialize the device using its calculation, an operating system error is reported
until an appropriate size is calculated. The database or dbspace is successfully
created and the errors can be ignored. These errors were not reported in Sybase
IQ version 12.5 and earlier releases when creating a database or dbspace on a
raw device.

Maximum length of SQL statement Defaults to Catalog page size (not IQ page size) of
connected database.This affects long commands such as
RESTORE statements with many renamed databases. To
run such commands, you may start the server with an
increased -gp setting, although the default of -gp 4096
should generally be used.

Maximum length of variable-length FILLER column 512 bytes

Number of indexes 32,767 per table

Maximum key size 255 bytes for single-column index
5300 bytes for multicolumn index

Number of tables per join index (number of tables
that can be joined in one query block)

32

Number of values in an IN list 250,000

Number of stored procedures per database 2^32 – 1 = 4 294 967 295

Number of events per database 2^31 – 1 = 2 147 483 647

IQ page size Must be between 64KB and 512KB.

Maximum number of users (connected and
concurrent)

1000 on 64-bit platforms: AIX, Sun Solaris, and HP

200 on 32-bit platforms: Linux and Windows.

Maximum size of temp extract file Set by TEMP_EXTRACT_SIZEn option. Platform limits
are:

AIX & HP-UX: 0 - 64GB

Sun Solaris: 0 - 512GB

Windows: 0 - 128GB

Linux: 0 - 512GB

Item Limitation

Size and number limitations

678 Sybase IQ

Reference Manual 679

C H A P T E R 9 System Tables

About this chapter The structure of every Sybase IQ database is described in a number of
system tables. The Entity-Relationship diagrams at the start of this chapter
show all the system tables and the foreign keys connecting the system
tables.

System tables are owned by the SYS user ID. The contents of these tables
can be changed only by the database system. Thus, you cannot use the
UPDATE, DELETE, and INSERT commands to modify the contents of
these tables. Further, you cannot change the structure of these tables using
the ALTER TABLE and DROP commands.

Contents Topic Page

System tables diagrams 685

System tables descriptions 685

DUMMY system table 685

System tables diagrams

680 Sybase IQ

System tables diagrams
The Sybase IQ system tables are shown in the following set of diagrams.
Foreign-key relations between tables are indicated by arrows; arrows lead from
the foreign table to the primary table.

CHAPTER 9 System Tables

Reference Manual 681

System tables diagrams

682 Sybase IQ

CHAPTER 9 System Tables

Reference Manual 683

System tables diagrams

684 Sybase IQ

CHAPTER 9 System Tables

Reference Manual 685

System tables descriptions
This section contains a description of each of the system tables. The system
tables are described via the CREATE TABLE commands used to create them.
They serve as good examples of how tables are created in SQL. Following the
CREATE TABLE command, each column is briefly described.

Several of the columns have only two possible values. Usually these values are
“Y” and “N” for “yes” and “no,” respectively. These columns are designated
by “(Y/N)”.

DUMMY system table
CREATE TABLE SYS.DUMMY (

dummy_col INT NOT NULL
)

The DUMMY table is provided as a table that always has exactly one row. This
can be useful for extracting information from the database, as in the following
example that gets the current user ID and the current date from the database.

SELECT USER, today(*) FROM SYS.DUMMY

dummy_col Not used. It is present because a table with no columns cannot
be created.

The use of the DUMMY system table is implied for all queries that do not have
a FROM clause; for example, SELECT NOW();.

These queries are run by Adaptive Server Anywhere (the catalog engine),
rather than by Sybase IQ. You can create a dummy table in the Sybase IQ
database, for example:

CREATE TABLE iq_dummy (dummy_col INT NOT NULL);

and use this table explicitly:

SELECT NOW() FROM iq_dummy;

For more information, see FROM clause in Chapter 6, “SQL Statements.”

IQ_MPX_INFO system table

686 Sybase IQ

IQ_MPX_INFO system table
CREATE TABLE "DBA".IQ_MPX_INFO (

 id numeric(8,0) IDENTITY NOT NULL,
 server_name varchar(30) NOT NULL,
 host_name varchar(40) NOT NULL,
 port_number numeric(8,0)NOT NULL,
 db_path varchar(1024) NOT NULL,
 role char(1) NOT NULL,
 node_status varchar(10) NOT NULL,
 remote_user varchar(40) NOT NULL,
 PRIMARY KEY (id),
 UNIQUE (server_name)
)IN SYSTEM;

Each row in this table contains information about a particular server in a
multiplex. The table contains only one row per server.

Sybase Central uses the information in this table to manage the multiplex. The
information is also used internally in the Sybase IQ procedures, triggers, and
events. SQL Remote automatically replicates changes in this table between
servers.

The information in this table changes only when:

• Query servers are added or removed from the multiplex

• A query server replaces the write server

• Query servers are excluded from or included in the multiplex environment

UPDATE permission is not granted to PUBLIC.

SQL Remote automatically replicates changes in this table between multiplex
servers.

id The sequence number of this server.

server_name The server name of this server.

host_name The host on which this server runs.

port_number The TCP port number on which to start this server.

db_path The full path to the Catalog Store (.db file) for this server. Each
server’s database files must be placed on a file system local to its node. Each
server may use a different name for its catalog database file (and database
name).

role Write server ('W') or query server ('R').

CHAPTER 9 System Tables

Reference Manual 687

node_status Server is Active or Inactive.

remote_user The remote user ID for SQL Remote replication at this server.

IQ_MPX_STATUS system table
CREATE TABLE "DBA".IQ_MPX_STATUS (

 server_name varchar(30) NOT NULL,
 oldest_version unsigned bigint NOT NULL,
 current_version varchar(10) NOT NULL,
 catalog_version unsigned bigint NOT NULL,
)

This table contains dynamic information to support management of old table
versions in a multiplex environment. The information in this table changes as
transactions begin or commit on servers of the multiplex.
Each server updates its own row in the table automatically on a transaction-
commit and begin-transaction. SQL Remote propagates changes between the
multiplex servers. UPDATE permission is not granted to PUBLIC.

server_name The server name of this server.

oldest_version The version number of the oldest active transaction on this
server.

current_version The current transaction number on this server.

catalog_version Each time the write server modifies the table schema, the
catalog version advances to the current version. Each time you synchronize
query servers, the catalog version at a query server advances to the write
server’s version, but remains static until the next synchronization.

By examining the catalog_version column, you can see whether query servers
are synchronized.

IQ_MPX_VERSIONLIST system table

688 Sybase IQ

IQ_MPX_VERSIONLIST system table
CREATE TABLE "DBA".IQ_MPX_VERSIONLIST (

 id integer PRIMARY KEY,
 active_versions long varchar

)IN SYSTEM;

This table contains one row for each query server in the multiplex (including
inactive ones).

id The identifier for the query server from server name of this server.

active_versions The set of active versions.

IQ_SYSTEM_LOGIN_INFO_TABLE system table
CREATE TABLE DBA.IQ_SYSTEM_LOGIN_INFO_TABLE (
user_admin_enabled CHAR(1) NOT NULL,
number_connects INT NOT NULL,
number_db_connects INT NOT NULL
password_days INT NOT NULL
password_warning_days INT NOT NULL) IN SYSTEM

IQ_SYSTEM_LOGIN_INFO_TABLE contains one row with the system default
values for Sybase IQ Login Management. When a new user is added with
sp_iqaddlogin, these default values are used for connection and password
control.

user_admin_enabled Indicates whether Sybase IQ Login Management is
enabled (Y) or disabled (N). Set by sp_iqmodifyadmin.

number_connects Maximum number of concurrent database connections
by a single user. Default is 0: Sybase IQ does not enforce a maximum number
of connections.

number_db_connects Number of connections allowed to the database.

password_days Number of days until a password expires. Default is 0: the
password does not expire.

password_warning_days Number of days before a password expires at
which Sybase IQ sends a warning to the user.

CHAPTER 9 System Tables

Reference Manual 689

IQ_USER_LOGIN_INFO_TABLE system table
CREATE TABLE DBA.IQ_USER_LOGIN_INFO_TABLE
userid VARCHAR(128) NOT NULL UNIQUE,
login_locked CHAR(1) NOT NULL,
number_connects INT NOT NULL,
password_created TIMESTAMP DEFAULT CURRENT TIMESTAMP
NOT NULL

password_days INT NOT NULL) IN SYSTEM

IQ_USER_LOGIN_INFO_TABLE contains Sybase IQ Login Management
values for each user.

userid The user ID.

login_locked Indicates whether the user is locked (Y) or allowed to connect
(N).

number_connects Maximum number of concurrent database connections.
Default is 0: Sybase IQ does not enforce a maximum number of connections.

password_days Number of days until a password expires. Default is 0: the
password does not expire.

password_warning_days Number of days before a password expires at
which Sybase IQ sends a warning to the user.

SYSARTICLE system table
CREATE TABLE SYS.SYSARTICLE (

publication_id UNSIGNED INT NOT NULL,
table_id UNSIGNED INT NOT NULL,
where_expr LONG VARCHAR,
subscribe_by_expr LONG VARCHAR,
query CHAR(1) NOT NULL,
PRIMARY KEY (publication_id, table_id),
FOREIGN KEY REFERENCES SYS.SYSPUBLICATION,
FOREIGN KEY REFERENCES SYS.SYSTABLE

)

Each row of SYSARTICLE describes an article in a SQL Remote publication.

publication_id The publication of which this article is a part.

table_id Each article consists of columns and rows from a single table. This
column contains the table ID for this table.

SYSARTICLECOL system table

690 Sybase IQ

where_expr For articles that contain a subset of rows defined by a WHERE
clause, this column contains the search condition.

subscribe_by_expr For articles that contain a subset of rows defined by a
SUBSCRIBE BY expression, this column contains the expression.

SYSARTICLECOL system table
CREATE TABLE SYS.SYSARTICLECOL (

publication_id UNSIGNED INT NOT NULL,
table_id UNSIGNED INT NOT NULL,
column_id UNSIGNED INT NOT NULL,
PRIMARY KEY (publication_id, table_id, column_id),
FOREIGN KEY REFERENCES SYS.SYSARTICLE,
FOREIGN KEY REFERENCES SYS.SYSCOLUMN

)

Each row identifies a column in an article, identifying the column, the table it
is in, and the publication it is part of.

publication_id A unique identifier for the publication of which the column
is a part.

table_id The table to which the column belongs.

column_id The column identifier, from the SYSCOLUMN system table.

SYSCAPABILITY system table
CREATE TABLE SYS.SYSCAPABILITY (

capid INT,
capvalue CHAR(128),
svrid INT,
PRIMARY KEY (svrid),
FOREIGN KEY REFERENCES SYS.SYSSERVERS,
FOREIGN KEY REFERENCES SYS.SYSCAPABILITYNAME

)

Each row identifies a capability of a remote server.

capid An integer that identifies the capability, as listed in
SYSCAPABILITYNAME.

CHAPTER 9 System Tables

Reference Manual 691

capvalue The value of the capability.

svrid The server to which the capability applies, as listed in SYSSERVERS.

SYSCAPABILITYNAME system table
CREATE TABLE SYS.SYSCAPABILITYNAME (

capid INT,
capname CHAR(128),
PRIMARY KEY (capid)

)

Each row identifies a capability.

capid An integer that identifies the capability.

capname The name of the capability.

SYSCHECK system table
CREATE TABLE SYS.SYSCHECK (

check_id unsigned int NOT NULL,
check_defn long varchar NOT NULL,
primary key(check_id)

)

Each row identifies a named check constraint in a table.

check_id An identifier for the constraint.

check_defn The CHECK expression.

SYSCOLLATION system table

692 Sybase IQ

SYSCOLLATION system table
CREATE TABLE SYS.SYSCOLLATION (

collation_id SMALLINT NOT NULL,
collation_label CHAR(10) NOT NULL,
collation_name CHAR(128) NOT NULL,
collation_order BINARY(1280) NOT NULL,
PRIMARY KEY (collation_id)

)

This table contains the collation sequences available to Sybase IQ. You cannot
modify the contents of this table.

collation_id A unique number identifying the collation sequence.

collation_label A string identifying each of the available collation
sequences. The collation sequence to be used is selected when the database is
created by specifying the collation label with the COLLATION option of the
CREATE DATABASE command.

collation_name The name of the collation sequence.

collation_order An array of bytes defining how each of the 256 character
codes are treated for comparison purposes. All string comparisons translate
each character according to the collation order table before comparing the
characters. For the different ASCII code pages, the only difference is how
accented characters are sorted. In general, an accented character is sorted as if
it were the same as the nonaccented character.

SYSCOLLATIONMAPPINGS system table
CREATE TABLE SYS.SYSCOLLATIONMAPPINGS (

collation_label CHAR(10) NOT NULL,
collation_name CHAR(128) NOT NULL,
cs_label CHAR(128),
so_case_label CHAR(128),
so_caseless_label CHAR(128),
jdk_label CHAR(128),
PRIMARY KEY (collation_label)

)

This table contains the collation mappings available in Sybase IQ. There is no
way to modify the contents of this table.

CHAPTER 9 System Tables

Reference Manual 693

collation_label A string identifying the collation sequence. The collation
sequence to be used is selected when the database is created by specifying the
collation label with the COLLATION option of the CREATE DATABASE
command.

collation_name The collation name used to describe the character set
encoding.

cs_label The GPG character set mapping label.

so_case_label The collation sort order for case-sensitive GPG character set
mapping.

so_caseless_label The collation sort order for case-insensitive GPG
character set mapping.

jdk_label The JDK character set label.

For newly-created databases, this table contains only one row with the database
collation mapping. For databases created with version 12.5 or earlier, this table
includes collation mappings for all built-in collations.

SYSCOLPERM system table
CREATE TABLE SYS.SYSCOLPERM (

table_id UNSIGNED INT NOT NULL,
grantee UNSIGNED INT NOT NULL,
grantor UNSIGNED INT NOT NULL,
column_id UNSIGNED INT NOT NULL,
privilege_type SMALLINT NOT NULL,
is_grantable CHAR(1) NOT NULL,
PRIMARY KEY (table_id, grantee,
grantor, column_id, privilege_type),
FOREIGN KEY grantee (grantee) REFERENCES
SYS.SYSUSERPERM (user_id),
FOREIGN KEY grantor (grantor) REFERENCES
SYS.SYSUSERPERM (user_id),
FOREIGN KEY REFERENCES SYS.SYSCOLUMN

)

The GRANT command can give UPDATE permission to individual columns in
a table. Each column with UPDATE permission is recorded in one row of
SYSCOLPERM.

table_id The table number for the table containing the column.

SYSCOLUMN system table

694 Sybase IQ

grantee The user number of the user ID given UPDATE permission on the
column. If the grantee is the user number for the special PUBLIC user ID, the
UPDATE permission is given to all user IDs.

grantor The user number of the user ID granting the permission.

column_id This column number, together with the table_id, identifies the
column for which UPDATE permission has been granted.

privilege_type The number in this column indicates the kind of column
permission (REFERENCES, SELECT or UPDATE).

is_grantable Indicates if the permission on the column was granted by the
grantor to the grantee WITH GRANT OPTION. (Y/N).

SYSCOLUMN system table
CREATE TABLE SYS.SYSCOLUMN (

table_id UNSIGNED INT NOT NULL,
column_id UNSIGNED INT NOT NULL,
pkey CHAR(1) NOT NULL,
domain_id SMALLINT NOT NULL,
nulls CHAR(1) NOT NULL,
width SMALLINT NOT NULL,
scale SMALLINT NOT NULL,
estimate INT NOT NULL,
max_identity BIGINT NOT NULL,
column_name CHAR(128) NOT NULL,
remarks LONG VARCHAR,
"default" LONG VARCHAR,
"check"LONG VARCHAR,
user_type SMALLINT,
format_str CHAR(128),
column_type CHAR(1) NOT NULL,
remote_name VARCHAR(128),
remote_type UNSIGNED INT,
PRIMARY KEY (table_id, column_id),
FOREIGN KEY REFERENCES SYS.SYSTABLE,
FOREIGN KEY REFERENCES SYS.SYSDOMAIN
FOREIGN KEY REFERENCES SYS.SYSUSERTYPE

)

Each column in every table or view is described by one row in SYSCOLUMN.

CHAPTER 9 System Tables

Reference Manual 695

table_id The table number uniquely identifies the table or view to which this
column belongs.

column_id Each table starts numbering columns at 1. The order of column
numbers determines the order that columns are displayed in the command
select * from table.

pkey Indicates whether this column is part of the primary key for the table
(Y/N).

domain_id Identifies the data type for the column by the data type number
listed in the SYSDOMAIN table.

nulls Indicates whether the NULL value is allowed in this column (Y/N).

width This column contains the length of string columns, the precision of
numeric columns, and the number of bytes of storage for all other data types.

scale The number of digits after the decimal point for numeric data type
columns, and zero for all other data types.

estimate A self-tuning parameter for the optimizer. Sybase IQ “learns” from
previous queries by adjusting guesses that are made by the optimizer.

max_identity The largest value of the column, if it is an
AUTOINCREMENT, IDENTITY, or GLOBAL AUTOINCREMENT
column. Sybase IQ does not support IDENTITY columns.

column_name The name of the column.

remarks A comment string.

“default” The default value for the column. This value is only used when an
INSERT statement does not specify a value for the column.

“check” Any CHECK condition defined on the column.

Note The “default” value and “check” condition features are not currently
supported by Sybase IQ.

user_type If the column is defined on a user-defined data type, the data type
is held here.

format_str Currently unused.

column_type The type of column.

remote_name The name of the remote column.

remote_type The type of the remote column. This value is defined by the
remote server or interface.

SYSCONSTRAINT system table

696 Sybase IQ

SYSCONSTRAINT system table
CREATE TABLE SYS.SYSCONSTRAINT (

constraint_id unsigned int NOT NULL,
table_id nsigned int NOT NULL,
column_id unsigned int NULL,
index_id unsigned int NULL,
fkey_id mallint NULL,
constraint_type char(1) NOT NULL,
constraint_name char(128) NOT NULL,

PRIMARY KEY(constraint_id),
UNIQUE(table_id, constraint_name)

)

Each row describes a named constraint.

constraint_id The unique constraint ID.

table_id The table ID of the table to which the constraint applies.

column_id The column ID of the column to which the constraint applies. The
column is NULL for any constraints that are not column constraints.

index_id The index ID for a unique constraint. The column is NULL for all
constraints that are not unique constraints.

fkey_id The foreign key ID for a foreign-key constraint. The column is
NULL for all constraints that are not foreign-key constraints.

constraint_type Set to one of the following values:

• C is the constraint is a column check constraint.

• T if the constraint is a table constraint.

• P if the constraint is a primary key.

• F if the constraint is a foreign key.

• U if the constraint is a unique constraint.

constraint_name The name of the constraint.

CHAPTER 9 System Tables

Reference Manual 697

SYSDOMAIN system table
CREATE TABLE SYS.SYSDOMAIN (

domain_id SMALLINT NOT NULL,
domain_name CHAR(128) NOT NULL,
type_id SMALLINT,
precision SMALLINT,
PRIMARY KEY (domain_id)

)

Each of the predefined data types (also called domains) in Sybase IQ is
assigned a unique number. The SYSDOMAIN table is provided for
informational purposes to show the association between these numbers and the
appropriate data type. This table is never changed by Sybase IQ.

domain_id The unique number assigned to each data type. You cannot
change these numbers.

domain_name A string containing the data type normally found in the
CREATE TABLE command, such as char or integer.

type_id The ODBC data type. This corresponds to “data_type” in the
Transact-SQL-compatible DBO.SYSTYPES table.

precision The number of significant digits that can be stored using this data
type. The column value is NULL for nonnumeric data types.

SYSEVENT system table
CREATE TABLE SYS.SYSEVENT (

event_id INT NOT NULL,
creator UNSIGNED INT NOT NULL,
event_name VARCHAR(128) NOT NULL UNIQUE,
enabled CHAR(1) NOT NULL,
location CHAR(1) NOT NULL,
event_type_id INT NULL,
action LONG VARCHAR NULL,
external_action LONG VARCHAR NULL,
condition LONG VARCHAR NULL,
remarks LONG VARCHAR NULL,
source LONG VARCHAR NULL,
PRIMARY KEY (event_id)

)

Each row in SYSEVENT describes an event created with CREATE EVENT.

SYSEVENTTYPE system table

698 Sybase IQ

event_id The unique number assigned to each event.

creator The user number of the owner of the event. The name of the user can
be found by looking in SYSUSERPERM.

event_name The name of the event.

enabled (Y/N) Indicates whether or not the event is allowed to fire.

location The location where the event is allowed to fire:

• C = consolidated

• R = remote

• A = all

event_type_id For system events, the event type as listed in
SYSEVENTTYPE.

action The event handler definition.

external_action Not used.

condition The WHERE condition used to control firing of the event handler.

remarks A comment string.

source This column contains the original source for the event handler if the
PRESERVE_SOURCE_FORMAT option is ON. It is used to maintain the
appearance of the original text. For more information, see
“PRESERVE_SOURCE_FORMAT option [database]” in the Sybase IQ
System Administration Guide.

SYSEVENTTYPE system table
CREATE TABLE SYS.SYSEVENTTYPE (

event_type_id INT NOT NULL,
name VARHCAR(128) NOT NULL UNIQUE,
description LONG VARCHAR NULL,
PRIMARY KEY (event_type_id)

)

Each row in the SYSEVENTTYPE table describes a system event type which
can be referenced by CREATE EVENT.

event_type_id The unique number assigned to each event type.

name The name of the system event type.

CHAPTER 9 System Tables

Reference Manual 699

description A description of the system event type.

SYSEXTERNLOGINS system table
CREATE TABLE SYS.SYSEXTERNLOGINS (

user_id UNSIGNED INT NOT NULL,
srvid INT NOT NULL,
remote_login VARCHAR(128),
remote_password VARBINARY(128),
PRIMARY KEY (user_id, srvid),

FOREIGN KEY REFERENCES SYS.SYSUSERPERM,
FOREIGN KEY REFERENCES SYS.SYSSERVERS
)

Each row describes an external login for remote data access.

user_id The user ID on the local database.

srvid The remote server, as listed in SYSSERVERS.

remote_login The login name for this user, for the remote server.

remote_password The password for this user, for the remote server.

SYSFILE system table
CREATE TABLE SYS.SYSFILE (

file_id SMALLINT NOT NULL,
file_name LONG VARCHAR NOT NULL,
dbspace_name CHAR(128) NOT NULL,
store_type CHAR(8) NOT NULL,
PRIMARY KEY (file_id)

)

Every database consists of one or more operating system files. Each file is
recorded in SYSFILE.

file_id Each file in a database is assigned a unique number. This file identifier
is the primary key for SYSFILE. All system tables are stored in file_id 0.

SYSFKCOL system table

700 Sybase IQ

file_name The database name is stored when a database is created. This
name is for informational purposes only. For the SYSTEM dbspace, the file
name always reflects the name when the data base was created. Changes to the
file name are not reflected here.

dbspace_name Every file has a dbspace name that is unique. It is used in the
CREATE TABLE command.

store_type Defines the file as belonging to either the Catalog Store (SA) or
the IQ STORE.

SYSFKCOL system table
CREATE TABLE SYS.SYSFKCOL (

foreign_table_id UNSIGNED INT NOT NULL,
foreign_key_id SMALLINT NOT NULL,
foreign_column_id UNSIGNED INT NOT NULL,
primary_column_id UNSIGNED INT NOT NULL,
PRIMARY KEY (foreign_table_id,
foreign_key_id, foreign_column_id),
FOREIGN KEY REFERENCES SYS.SYSFOREIGNKEY,
FOREIGN KEY (foreign_table_id,
foreign_column_id) REFERENCES
SYS.SYSCOLUMN (table_id, column_id)

)

Each row of SYSFKCOL describes the association between a foreign column in
the foreign table of a relationship and the primary column in the primary table.

foreign_table_id The table number of the foreign table.

foreign_key_id The key number of the FOREIGN KEY for the foreign table.
Together, foreign_table_id and foreign_key_id uniquely identify one row in
SYSFOREIGNKEY, and the table number for the primary table can be obtained
from that row.

foreign_column_id This column number, together with the
foreign_table_id, identify the foreign column description in SYSCOLUMN.

primary_column_id This column number, together with the
primary_table_id obtained from SYSFOREIGNKEY, identify the primary
column description in SYSCOLUMN.

CHAPTER 9 System Tables

Reference Manual 701

SYSFOREIGNKEY system table
CREATE TABLE SYS.SYSFOREIGNKEY (

foreign_table_id UNSIGNED INT NOT NULL,
foreign_key_id SMALLINT NOT NULL,
primary_table_id UNSIGNED INT NOT NULL,
root INT NOT NULL,
check_on_commit CHAR(1) NOT NULL,
nulls CHAR(1) NOT NULL,
role CHAR(128) NOT NULL,
remarks LONG VARCHAR,
primary_index_id UNSIGNED INT NOT NULL,
fk_not_enforced CHAR(1) NOT NULL
hash_limit SMALLINTO NOT NULL,
PRIMARY KEY (foreign_table_id, foreign_key_id),
UNIQUE (role, foreign_table_id),
FOREIGN KEY foreign_table (foreign_table_id)
REFERENCES SYS.SYSTABLE (table_id),
FOREIGN KEY primary_table (primary_table_id)
REFERENCES SYS.SYSTABLE (table_id)

)

A foreign key is a relationship between two tables—the foreign table and the
primary table. Every foreign key is defined by one row in SYSFOREIGNKEY
and one or more rows in SYSFKCOL. SYSFOREIGNKEY contains general
information about the foreign key, while SYSFKCOL identifies the columns in
the foreign key and associates each column in the foreign key with a column in
the primary key of the primary table.

foreign_table_id The table number of the foreign table.

foreign_key_id Each foreign key has a foreign key number that is unique
with respect to:

• The key number of all other foreign keys for the foreign table

• The key number of all foreign keys for the primary table

• The index number of all indexes for the foreign table

primary_table_id The table number of the primary table.

root Foreign keys are stored in the database as B-trees. The root identifies the
location of the root of the B-tree in the database file.

SYSGROUP system table

702 Sybase IQ

check_on_commit Indicates whether INSERT and UPDATE commands
should wait until the next COMMIT command to check if foreign keys are valid.
A foreign key is valid if, for each row in the foreign table, the values in the
columns of the foreign key either contain the NULL value or match the primary
key values in some row of the primary table. (Y/N).

nulls Indicates whether the columns in the foreign key are allowed to contain
the NULL value. This setting is independent of the nulls setting in the columns
contained in the foreign key. (Y/N).

role The name of the relationship between the foreign table and the primary
table. Unless otherwise specified, the role name is the same as the name of the
primary table. The foreign table cannot have two foreign keys with the same
role name.

remarks A comment string.

primary_index_id The index_id of the primary key, or root if the primary key
is part of a combined index.

fk_not_enforced Is N if one of the tables is remote. (Y/N).

hash_limit Contains information about physical index representation.

SYSGROUP system table
CREATE TABLE SYS.SYSGROUP (

group_id UNSIGNED INT NOT NULL,
group_member UNSIGNED INT NOT NULL,
PRIMARY KEY (group_id, group_member),
FOREIGN KEY group_id (group_id) REFERENCES
SYS.SYSUSERPERM (user_id),
FOREIGN KEY group_member (group_member)
REFERENCES SYS.SYSUSERPERM (user_id)

)

There is one row in SYSGROUP for every member of every group. This table
describes a many-to-many relationship between groups and members. A group
may have many members and a user may be a member of many groups.

group_id The user number of group.

group_member The user number of a member.

CHAPTER 9 System Tables

Reference Manual 703

SYSINDEX system table
CREATE TABLE SYS.SYSINDEX (

table_id UNSIGNED INT NOT NULL,
index_id UNSIGNED INT NOT NULL,
root INT NOT NULL,
file_id SMALLINT NOT NULL,
"unique" CHAR(1) NOT NULL,
creator UNSIGNED INT NOT NULL,
index_name CHAR(128) NOT NULL,
remarks LONG VARCHAR,
index_type CHAR(4) NOT NULL,
index_owner CHAR(4) NOT NULL,
hash_limit SMALLINT NOT NULL,
PRIMARY KEY (table_id, index_id),
UNIQUE (index_name, creator),
FOREIGN KEY REFERENCES SYS.SYSTABLE,
FOREIGN KEY REFERENCES SYS.SYSFILE,
FOREIGN KEY (creator) REFERENCES
SYS.SYSUSERPERM (user_id)

)

Each index in the database is described by one row in SYSINDEX.

table_id The table number uniquely identifies the table to which this index
applies.

index_id Each index for one particular table is assigned a unique index
number.

root Indexes are stored in the database as B-trees. The root identifies the
location of the root of the B-tree in the database file.

file_id The index is completely contained in the file with this file_id (see
“SYSFILE system table” on page 699).

“unique” Indicates whether the index is a unique index (“Y”), a nonunique
index (“N”), or a unique constraint (“U”). A unique index prevents two rows
in the indexed table from having the same values in the index columns.

creator The user number of the creator of the index.

index_name The name of the index. A user ID cannot have two indexes with
the same name.

remarks A comment string.

index_type The type of index: FP (known as the default index), HG, HNG,
LF, DATE, TIME, DTTM, CMP, WD, LD, or SA (for a non-IQ index created in the
Catalog Store).

SYSINFO system table

704 Sybase IQ

index_owner The name of the index owner: USER, IQ, SA, AUTO.

hash_limit For internal use.

SYSINFO system table
CREATE TABLE SYS.SYSINFO (

page_size INTEGER NOT NULL,
encryption CHAR(1) NOT NULL,
blank_padding CHAR(1) NOT NULL,
case_sensitivity CHAR(1) NOT NULL,
default_collation CHAR(10) NOT NULL,
database_version SMALLINT NOT NULL
classes_version CHAR(10)

)

This table indicates the database characteristics as defined when the database
was created using CREATE DATABASE. It always contains only one row.

page_size The Catalog page size specified to CREATE DATABASE. The
default value is 1024.

encryption Whether encryption was specified with CREATE DATABASE. (Y/
N).

blank_padding Whether the database was created to use blank padding for
string comparisons in the database. (Y/N).

case_sensitivity Whether case sensitivity was specified with CREATE
DATABASE. Case sensitivity affects value comparisons, but not table and
column name comparisons. For example, if case sensitivity is enabled, the
system catalog names such as SYSCATALOG must be specified in uppercase
since that is how the name was spelled when it was created. (Y/N)

default_collation A string corresponding to the collation_label in
SYSCOLLATE corresponding to the collation sequence specified with CREATE
DATABASE. The collation sequence is used for all string comparisons,
including searches for character strings as well as column and table name
comparison.

database_version A small integer value indicating the database format. As
newer versions of Sybase IQ become available, new features might require the
format of the database file to change. The version number allows Sybase IQ
software to determine if this database was created with a newer version of the
software and thus cannot be understood by the software in use.

CHAPTER 9 System Tables

Reference Manual 705

classes_version A small string describing the current version of the
SYS.JAVA.CLASSES library that is currently installed on your computer.

SYSIQCOLUMN system table
CREATE TABLE SYS.SYSIQCOLUMN (

table_id UNSIGNED INT NOT NULL,
column_id UNSIGNED INT NOT NULL,
link_table_id UNSIGNED INT NULL,
link_column_id UNSIGNED INT NULL,
max_length UNSIGNED INT NOT NULL,
approx_unique_count ROWID
cardinality ROWID NOT NULL,
has_data CHAR(1) NOT NULL,
has_original CHAR(1) NOT NULL,
original_not_null CHAR(1) NOT NULL,
original_unique CHAR(1) NOT NULL,
info_location HS_VDORECID NOT NULL,
info_recid_size UNSIGNED INT NOT NULL,
info_location_size UNSIGNED INT NOT NULL,
PRIMARY KEY (table_id, column_id)

)

Each column in every table is described by one row in SYSIQCOLUMN, which
corresponds to a same row in SYSCOLUMN based on the primary key.

table_id The table number uniquely identifies the table to which this column
belongs. It corresponds to the table_id column of SYSTABLE.

column_id Each table starts numbering columns at 1. The order of column
numbers determines the order that columns are displayed in the command
select * from table.

link_table_id For internal use.

link_column_id For internal use.

max_length Indicates the maximum length allowed by the column.

approx_unique_count Approximate number of unique values (cardinality)
of this column.

cardinality The actual number of unique values (cardinality) of this column.

has_data Indicates that the column contains data (T/F).

has_original Indicates the join index has the original data (T/F).

SYSIQFILE system table

706 Sybase IQ

original_not_null Indicates the join index column with the original data was
NOT NULL (T/F).

original_unique Indicates the join index column with the original data was
UNIQUE (T/F).

info_location Not used. Always zero.

info_recid_size Not used. Always zero.

info_location_size Not used. Always zero.

SYSIQFILE system table
CREATE TABLE SYS.SYSIQFILE (

file_id SMALLINT NOT NULL,
start_block rowid NOT NULL,
block_count rowid NOT NULL,
create_time TIMESTAMP NOT NULL,
segment_type CHAR(8) NOT NULL,
allocated CHAR(1) NOT NULL,
server_name CHAR(30) NOT NULL,
file_name CHAR(128) NOT NULL,
data_offset UNSIGNED INT NOT NULL,
PRIMARY KEY (file_id)
UNIQUE (server_name, file_name)

)

Every database consists of one or more operating system files. Each dbspace
and IQ Message file is recorded in SYSIQFILE (corresponding to a same entry
in SYSFILE).

For multiplex, each server has unique entries in SYSIQFILE for its dbspace
files. The rows in SYSIQFILE for a multiplex write server are maintained just
like those for a nonmultiplex server. You must update the SYSIQFILE table on
each server in a multiplex environment once it is modified (through CREATE
or DROP DBSPACE commands) on any server, so that the tables contain
identical information.

CHAPTER 9 System Tables

Reference Manual 707

The initial CREATE or DROP DBSPACE must occur on the server that writes to
the file (the specific server for IQ Temporary dbspaces, the write server for IQ
Main dbspaces). That entry must then also be added to SYSIQFILE on each of
the other servers. Sybase Central procedures that create and drop dbspaces,
including the procedure that adds a new query server to the multiplex, maintain
this agreement.

file_id Each file in a database is assigned a unique number. This file identifier
is the primary key for SYSIQFILE, and it is linked to a same value in SYSFILE.

start_block Number of the first block.

block_count Number of blocks for this file (dbspace).

create_time Date and time the file was created.

segment_type Defines the type of segment: Main, Temp, or Msg.

allocated Defines whether the segment is preallocated (T) or autoallocated
(F).

server_name For nonmultiplex databases and write servers, always blank.
For multiplex query servers, always contains the query server’s name.

file_name For nonmultiplex databases, always equal to SYS.SYSFILE
file_name entry. For multiplex, the IQ dbspace name used by the multiplex
server to open the IQ dbspace.

data_offset Used only for mixed-platform multiplex. Identifies the byte
location of where the Sybase IQ data starts, relative to the beginning of the raw
partition. Sybase IQ does not use the disk header block on a raw device.
Because the disk header block is used by entities such as volume managers,
Sybase IQ skips the first 65536 bytes of a raw device. Block numbers within
Sybase IQ always start at 1. The first block would start at offset 65536.

SYSIQINDEX system table

708 Sybase IQ

SYSIQINDEX system table
CREATE TABLE SYS.SYSIQINDEX (

table_id UNSIGNED INT NOT NULL,
index_id UNSIGNED INT NOT NULL,
max_key UNSIGNED INT NOT NULL,
identity_location BINARY(16) NOT NULL,
identity_size UNSIGNED INT NOT NULL,
identity_location_size UNSIGNED INT NOT NULL,
link_table_id UNSIGNED INT NOT NULL,
link_index_id UNSIGNED INT NOT NULL,
delimited by VARCHAR(1024),
limit UNSIGNED INT,
PRIMARY KEY (table_id, index_id)

)

Each index in the database is described by one row in SYSIQINDEX, which
corresponds to an index in SYSINDEX.

table_id The table number uniquely identifies the table to which this index
applies. It corresponds to the table_id column of SYSTABLE.

index_id Each index for one particular table is assigned a unique index
number.

max_key For internal use.

identity_location For internal use.

identity_size For internal use.

identity_location_size For internal use.

link_table_id For internal use.

link_index_id For internal use.

delimited_by (WD indexes only.) List of separators used to parse a column’s
string into the words to be stored in that column’s WD index.

limit (WD indexes only.) Maximum word length for WD index (between 1
and 255 bytes).

SYSIQINFO system table
CREATE TABLE SYS.SYSIQINFO (

last_full_backup TIMESTAMP,

CHAPTER 9 System Tables

Reference Manual 709

last_incr_backup TIMESTAMP,
create_time TIMESTAMP NOT NULL,
update_time TIMESTAMP NOT NULL,
file_format_version UNSIGNED INT NOT NULL,
cat_format_version UNSIGNED INT NOT NULL
sp_format_version UNSIGNED INT NOT NULL,
block_size UNSIGNED INT NOT NULL
chunk_size UNSIGNED INT NOT NULL,
file_format_date CHAR(10) NOT NULL
dbsig BINARY(136) NOT NULL

PRIMARY KEY (create_time),
)

This table indicates the database characteristics as defined when the Sybase IQ
database was created using CREATE DATABASE. It always contains only one
row.

last_full_backup Completion time of the most recent full backup.

last_incr_backup Completion time of the most recent incremental backup.

create_time Date and time created.

update_time Date and time of the last update.

file_format_version File format number of files for this database.

cat_format_version Catalog format number for this database.

sp_format_version Stored procedure format number for this database.

block_size Block size specified for the database.

chunk_size Number of blocks per chunk as determined by the block size and
page size specified for the database.

file_format_date Date when file format number was last changed.

dbsig Used internally by catalog.

SYSIQJOININDEX system table

710 Sybase IQ

SYSIQJOININDEX system table
CREATE TABLE SYS.SYSIQJOININDEX (

joinindex_id UNSIGNED INT NOT NULL,
jvt_id UNSIGNED INT NOT NULL,
joinindex_name CHAR(128) NOT NULL,
joinindex_type CHAR(12) NOT NULL,
creator UNSIGNED INT NOT NULL,
join_info_location BINARY(16) NOT NULL,
join_info_loc_size UNSIGNED INT NOT NULL,
join_info_size UNSIGNED INT NOT NULL,
block_map BINARY(32) NOT NULL,
block_map_size UNSIGNED INT NOT NULL,
vdo BINARY(256) NOT NULL,
vdo_size UNSIGNED INT NOT NULL,
commit_txn_id XACT_ID NOT NULL,
txn_id XACT_ID NOT NULL,
valid CHAR(1) NOT NULL,
remarks LONG VARCHAR,
PRIMARY KEY (joinindex_id),
UNIQUE (jvt_id, commit_txn_id, txn_id)

)

Each row of SYSIQJOININDEX describes one IQ join index in the database.

joinindex_id Each join index is assigned a unique number that is the primary
key for SYSIQJOININDEX.

jvt_id For internal use.

joinindex_name Defines the name of the join index.

joinindex_type For internal use.

creator The number of the user that created the join index. The name of the
user can be found by looking in SYSUSERPERM.

join_info_location For internal use.

join_info_loc_size For internal use.

join_info_size For internal use.

block_map For internal use.

block_map_size For internal use.

vdo For internal use.

vdo_size For internal use.

commit_txn_id For internal use.

CHAPTER 9 System Tables

Reference Manual 711

txn_id For internal use.

valid Indicates whether this join index needs to be synchronized. Y indicates
that it does not require synchronization, N indicates that it does require
synchronization.

remarks A comment string.

SYSIQJOINIXCOLUMN system table
CREATE TABLE SYS.SYSIQJOINIXCOLUMN (

joinindex_id UNSIGNED INT NOT NULL,
left_table_id UNSIGNED INT NOT NULL,
left_column_id UNSIGNED INT NOT NULL,
join_type CHAR(4) NOT NULL,
right_table_id UNSIGNED INT NOT NULL,
right_column_id UNSIGNED INT NOT NULL,
order_num UNSIGNED INT NOT NULL,
left_order_num UNSIGNED INT NOT NULL,
right_order_num UNSIGNED INT NOT NULL,
key_type CHAR(8) NOT NULL,
coalesce CHAR(1) NOT NULL,
PRIMARY KEY (joinindex_id, left_table_id,

left_column_id, right_table_id, right_column_id)
)

The rows of SYSIQJOINIXCOLUMN describe the columns that explicitly
participate in a join index.

joinindex_id Corresponds to a join index value in SYSIQJOININDEX.

left_table_id Corresponds to a table value in SYSTABLE that forms the left
side of the join operation.

left_column_id Corresponds to a column value in SYSCOLUMN that is part
of the left side of the join.

join_type Only value currently supported is “=”.

right_table_id Corresponds to a table value in SYSTABLE that forms the
right side of the join operation.

right_column_id Corresponds to a column value in SYSCOLUMN that is part
of the right side of the join.

order_num For internal use.

SYSIQJOINIXTABLE system table

712 Sybase IQ

left_order_num For internal use.

right_order_num For internal use.

key_type Defines the type of join on the keys. ‘NATURAL’ is a natural join,
‘KEY’ is a key join, ‘ON’ is a left outer/right outer/full join.

coalesce Not used.

SYSIQJOINIXTABLE system table
CREATE TABLE SYS.SYSIQJOINIXTABLE (

table_id UNSIGNED INT NOT NULL,
joinindex_id UNSIGNED INT NOT NULL,
active UNSIGNED INT NOT NULL,
PRIMARY KEY (table_id, joinindex_id)

)

The rows of SYSIQJOINIXTABLE describe the tables that explicitly participate
in a join index.

table_id Corresponds to a table value in SYSTABLE that is included in a join
operation.

joinindex_id Corresponds to a join index value in SYSIQJOININDEX.

active Defines the number of times the table is used in the join index.

SYSIQTABLE system table
CREATE TABLE SYS.SYSIQTABLE (

table_id UNSIGNED INT NOT NULL,
block_map BINARY(32) NOT NULL,
block_map_size UNSIGNED INT NOT NULL,
vdo BINARY(256) NOT NULL,
vdoid_size UNSIGNED INT NOT NULL,
info_location HS_VDORECID NOT NULL,
info_recid_size UNSIGNED INT NOT NULL,
info_location_size UNSIGNED INT NOT NULL,
commit_txn_id UNSIGNED INT NOT NULL,
txn_id UNSIGNED INT NOT NULL,
join_id UNSIGNED INT NOT NULL,

CHAPTER 9 System Tables

Reference Manual 713

create_time TIMESTAMP NOT NULL,
update_time TIMESTAMP NOT NULL,
PRIMARY KEY (table_id),
UNIQUE (commit_txn_id, txn_id)

)

Each row of SYSIQTABLE describes one table in the database, which
corresponds to a table entry in SYSTABLE.

table_id Each table is assigned a unique number (the table number) that is the
primary key for SYSIQTABLE.

block_map For internal use.

block_map_size For internal use.

vdo For internal use.

vdoid_size For internal use.

info_location Not used. Always zero.

info_recid_size Not used. Always zero.

info_location_size Not used. Always zero.

commit_txn_id For internal use.

txn_id For internal use.

join_id For internal use.

create_time Date and time the IQ table was created.

update_time Last date and time the IQ table was modified.

SYSIXCOL system table
CREATE TABLE SYS.SYSIXCOL (

table_id UNSIGNED INT NOT NULL,
index_id UNSIGNED INT NOT NULL,
sequence SMALLINT NOT NULL,
column_id UNSIGNED INT NOT NULL,
"order" CHAR(1) NOT NULL,
PRIMARY KEY (table_id, index_id, sequence),
FOREIGN KEY REFERENCES SYS.SYSINDEX,
FOREIGN KEY REFERENCES SYS.SYSCOLUMN

)

SYSJAR system table

714 Sybase IQ

Every index has one row in SYSIXCOL for each column in the index.

table_id Identifies the table to which the index applies.

index_id Identifies in which index this column is used. Together, table_id
and index_id identify one index described in SYSINDEX.

sequence Each column in an index is assigned a unique number starting at
0. The order of these numbers determines the relative significance of the
columns in the index. The most important column has sequence number 0.

column_id The column number identifies which column is indexed.
Together, table_id and column_id identify one column in SYSCOLUMN.

“order” Indicates whether this column in the index is kept in ascending or
descending order (“A” or “D”).

SYSJAR system table
CREATE TABLE SYS.SYSJAR(

jar_id INTEGER NOT NULL,
creator UNSIGNED INT NOT NULL,
jar_name LONG VARCHAR NOT NULL,
jar_file LONG VARCHAR,
create_time TIMESTAMP NOT NULL,
update_time TIMESTAMP NOT NULL,
remarks LONG VARCHAR,
PRIMARY KEY (jar_id)

)

jar_id A field containing the ID of the JAR file.

creator This user number identifies the creator of the JAR file. The name of
the user can be found by looking in SYSUSERPERM.

jar_name Name of the JAR file.

jar_file File name of the JAR file.

create_time Time the JAR file was created.

update_time Time the JAR file was last updated.

remarks A comment string.

CHAPTER 9 System Tables

Reference Manual 715

SYSJARCOMPONENT system table
CREATE TABLE SYS.SYSJARCOMPONENT(

component_id INT NOT NULL,
jar_id INT,
component_name LONG VARCHAR,
component_type CHAR(1),
create_time TIMESTAMP NOT NULL,
contents LONG BINARY,
remarks LONG VARCHAR,
PRIMARY KEY (component_id),
FOREIGN KEY REFERENCES SYS.SYSJAR

)

component_id Primary key containing the ID of the component.

jar_id Field containing the ID of the JAR file. This field also references the
SYSJAR system table.

component_name Name of the component.

component_type Type of the component.

create_time Field containing the creation time of the component.

contents Byte code of the JAR file.

remarks A comment string.

SYSJAVACLASS system table
CREATE TABLE SYS.SYSJAVACLASS(

class_id INT NOT NULL,
replaced_by INT,
creator UNSIGNED INT NOT NULL,
jar_id INT,
type_id UNSIGNED INT,
class_name LONG VARCHAR NOT NULL,
public CHAR(1) NOT NULL,
component_id INT,
create_time TIMESTAMP NOT NULL,
update_time TIMESTAMP NOT NULL,
class_descriptor LONG BINARY,
remarks LONG VARCHAR,
PRIMARY KEY (class_id),
FOREIGN KEY (replaced_by) REFERENCES

SYSLOGIN system table

716 Sybase IQ

o.SYSJAVACLASS (class_id),
FOREIGN KEY (creator) REFERENCES

SYS.SYSUSERPERM (user_id),
FOREIGN KEY REFERENCES SYS.SYSUSERTYPE
FOREIGN KEY REFERENCES SYS.SYSJARCOMPONENT

)

The SYSJAVACLASS system table contains all information related to Java
classes.

class_id ID of the Java class.

replaced_by References the primary key field class_id.

creator user_id of the creator of the class. This field references the user_id
field in the SYSUSERPERM system table to obtain the name of the user.

jar_id ID of the JAR file from which the class came.

type_id ID of the user type. The field references the SYSUSERTYPE system
table to obtain the ID of the user.

class_name Name of the Java class.

public Whether the class is public or private.

component_id References the SYSJARCOMPONENT system table and
contains the ID of the component.

create_time Creation time of the component.

update_time Last update time of the component.

class_descriptor Byte code of the JAR file.

remarks A comment string.

SYSLOGIN system table
CREATE TABLE SYS.SYSLOGIN (

integrated_login_id CHAR(128) NOT NULL,
login_uid UNSIGNED INT NOT NULL,
remarks LONG VARCHAR,
PRIMARY KEY (integrated_login_id)

)

CHAPTER 9 System Tables

Reference Manual 717

This table contains all the user profile names that can be used to connect to the
database using an integrated login. As a security measure, only users with DBA
authority can view the contents of this table.

integrated_login_id A string value containing the user profile name used to
map to a user ID in the database. When a user successfully logs on using this
user profile name, and the database is enabled to accept integrated logons, the
user can connect to the database without providing a user ID or password.

login_uid A foreign key to the system table SYSUSERPERM.

remarks A comment string.

SYSOPTION system table
CREATE TABLE SYS.SYSOPTION (

user_id UNSIGNED INT NOT NULL,
"option" CHAR(128) NOT NULL,
"setting" LONG VARCHAR NOT NULL,
PRIMARY KEY (user_id, "option"),
FOREIGN KEY REFERENCES SYS.SYSUSERPERM

)

Options settings are stored in the SYSOPTION table by the SET command.
Each user can have their own setting for each option. In addition, settings for
the PUBLIC user ID define the default settings to be used for user IDs that do
not have their own setting.

Note If you query the option column of this table in a case-sensitive database,
you must match case of the option. For example, the
MAIN_CACHE_MEMORY_MB option is stored in SYSOPTION as
Main_Cache_Memory_MB. You can run a select * from the SYSOPTION table
to see the exact case of the option.

user_id User number to whom this option setting applies.

“option” Name of the option.

“setting” Current setting for the named option.

SYSOPTIONDEFAULTS system table

718 Sybase IQ

If you incorrectly type the name of an option when you are setting it, the
incorrect name is saved in the SYSOPTION table. You can remove the
incorrectly typed name from the SYSOPTION table by setting the option
PUBLIC with an equality after the option name and no value:

SET OPTION PUBLIC.a_mistyped_name=;

SYSOPTIONDEFAULTS system table
create table DBA.SYSOPTIONDEFAULTS (

option_name varchar(128),
default_value varchar(40)

)

The SYSOPTIONDEFAULTS table stores the default option settings. These
values do not change. The sp_iqcheckoptions stored procedure compares the
default value in the SYSOPTIONDEFAULTS table to the current setting of the
option in the SYSOPTION table and displays the values that have changed for
the connected user.

Note If you query the option_name column of this table in a case-sensitive
database, you must match case of the option. For example, the
MAIN_CACHE_MEMORY_MB option is stored in SYSOPTIONDEFAULTS
as Main_Cache_Memory_MB. You can run a select * from the
SYSOPTIONDEFAULTS table to see the exact case of the option.

option_name Name of the option.

default_value Default value of the option.

SYSPROCEDURE system table
CREATE TABLE SYS.SYSPROCEDURE (

proc_id UNSIGNED INT NOT NULL,
creator UNSIGNED INT NOT NULL,
proc_name CHAR(128) NOT NULL,
proc_defn LONG VARCHAR,
remarks LONG VARCHAR,
replicate CHAR(1) NOT NULL,

CHAPTER 9 System Tables

Reference Manual 719

srvid INT NOT NULL,
source LONG VARCHAR,
avg_num_rows FLOAT,
avg_costs FLOAT,
stats LONG BINARY,
PRIMARY KEY (proc_id),
UNIQUE (proc_name, creator),
FOREIGN KEY (creator) REFERENCES

SYS.SYSUSERPERM (user_id)
)

Each procedure in the database is described by one row in SYSPROCEDURE.

proc_id Each procedure is assigned a unique number (the procedure number)
that is the primary key for SYSPROCEDURE.

creator This user number identifies the owner of the procedure. The name of
the user can be found by looking in SYSUSERPERM.

proc_name Name of the procedure. One creator cannot have two procedures
with the same name.

proc_defn Command used to create the procedure.

remarks A comment string.

replicate Holds a Y if the procedure is a primary data source in a Replication
Server installation, and an N if not.

srvid If a procedure on a remote database server, indicates the remote server.

source Contains the original source for the procedure if the
PRESERVE_SOURCE_FORMAT option is ON. It is used to maintain the
appearance of the original text. For more information, see
“PRESERVE_SOURCE_FORMAT option [database]” on page 137.

avg_num_rows Information collected for use in query optimization when
the procedure appears in the FROM clause.

avg_cost Information collected for use in query optimization when the
procedure appears in the FROM clause.

stats Information collected for use in query optimization when the procedure
appears in the FROM clause.

SYSPROCPARM system table

720 Sybase IQ

SYSPROCPARM system table
CREATE TABLE SYS.SYSPROCPARM (

proc_id UNSIGNED INT NOT NULL,
parm_id SMALLINT NOT NULL,
parm_type SMALLINT NOT NULL,
parm_mode_in CHAR(1) NOT NULL,
parm_mode_out CHAR(1) NOT NULL,
domain_id SMALLINT NOT NULL,
width SMALLINT NOT NULL,
scale SMALLINT NOT NULL,
parm_name CHAR(128) NOT NULL,
remarks LONG VARCHAR,
"default" LONG VARCHAR,
user_type INTEGER,
PRIMARY KEY (proc_id, parm_id),
FOREIGN KEY REFERENCES SYS.SYSPROCEDURE,
FOREIGN KEY REFERENCES SYS.SYSDOMAIN

)

Each parameter to a procedure in the database is described by one row in
SYSPROCPARM.

proc_id Procedure number that uniquely identifies the procedure to which
this parameter belongs.

parm_id Each procedure starts numbering parameters at 1. The order of
parameter numbers corresponds to the order in which they were defined.

parm_type The type of parameter is one of the following:

• Normal parameter (variable)

• Result variable – used with procedure that return result sets

• SQLSTATE error value

• SQLCODE error value

parm_mode_in (Y/N) Indicates whether this parameter supplies a value to
the procedure (IN or INOUT parameters).

parm_mode_out Indicates whether this parameter returns a value from the
procedure (OUT or INOUT parameters). (Y/N).

domain_id Identifies the data type for the parameter by the data type number
listed in the SYSDOMAIN table.

width Length of string parameters, precision of numeric parameters, and
number of bytes of storage for all other data types.

CHAPTER 9 System Tables

Reference Manual 721

scale Number of digits after the decimal point for numeric data type
parameters, and zero for all other data types.

parm_name Name of the parameter.

remarks A comment string.

default Default value for the parameter, held as a string.

user_type User type of the parameter.

SYSPROCPERM system table
CREATE TABLE SYS.SYSPROCPERM (

proc_id UNSIGNED INT NOT NULL,
grantee UNSIGNED INT NOT NULL,
PRIMARY KEY (proc_id, grantee)
FOREIGN KEY (grantee) REFERENCES
SYS.SYSUSERPERM (user_id),
FOREIGN KEY REFERENCES SYS.SYSPROCEDURE

)

Only users who have been granted permission can call a procedure. Each row
of the SYSPROCPERM table corresponds to one user granted permission to call
one procedure.

proc_id The procedure number uniquely identifies the procedure for which
permission has been granted.

grantee The user number of the user ID receiving the permission.

SYSPUBLICATION system table
CREATE TABLE SYS.SYSPUBLICATION (

publication_id UNSIGNED INT NOT NULL,
creator UNSIGNED INT NOT NULL,
publication_name CHAR(128) NOT NULL,
remarks LONG VARCHAR,
PRIMARY KEY (publication_id),
FOREIGN KEY (creator)
REFERENCES SYS.SYSUSERPERM (user_id)

)

SYSREMOTEOPTION system table

722 Sybase IQ

Each row describes a SQL Remote publication.

publication_id Unique identifying number for the publication.

creator Owner of the publication.

publication_name Name of the publication, which must be a valid identifier.

remarks Descriptive comments.

SYSREMOTEOPTION system table
CREATE table SYS.SYSREMOTEOPTION (

option_id UNSIGNED INT NOT NULL,
user_id UNSIGNED INT NOT NULL,
"setting" VARCHAR(255) NOT NULL,
PRIMARY KEY (option_id, user_id),
FOREIGN KEY REFERENCES SYS.SYSREMOTEOPTIONTYPE

)

Each row describes the values of a SQL Remote message link parameter.

option_id Identification number for the message link parameter.

user_id User ID for which the parameter is set.

“setting” Value of the message link parameter.

SYSREMOTEOPTIONTYPE system table
CREATE table SYS.SYSREMOTEOPTIONTYPE (

option_id UNSIGNED INT NOT NULL,
type_id SMALLINT NOT NULL,
"option" VARCHAR(128) NOT NULL,
PRIMARY KEY (option_id),
FOREIGN KEY REFERENCES SYS.SYSREMOTETYPE

)

Each row describes one of the SQL Remote message link parameters.

option_id Identification number for the message link parameter.

type_id Identification number for the message type that uses this parameter.

CHAPTER 9 System Tables

Reference Manual 723

“option” Name of the message link parameter.

SYSREMOTETYPE system table
CREATE TABLE SYS.SYSREMOTETYPE (

type_id SMALLINT NOT NULL,
type_name CHAR(128) NOT NULL,
publisher_address LONG VARCHAR NOT NULL,
remarks LONG VARCHAR,
PRIMARY KEY (type_id)

)

The SYSREMOTETYPE system table contains information about SQL Remote.

type_id Identifies which of the message systems supported by SQL Remote
is used to send messages to this user.

type_name Name of the message system supported by SQL Remote.

publisher_address Address of the remote database publisher.

remarks Descriptive comments.

SYSREMOTEUSER system table
CREATE TABLE SYS.SYSREMOTEUSER (

user_id UNSIGNED INT NOT NULL,
consolidate CHAR(1) NOT NULL,
type_id SMALLINT NOT NULL,
address LONG VARCHAR NOT NULL,
frequency CHAR(1) NOT NULL,
send_time TIME,
log_send NUMERIC(20,0) NOT NULL,
time_sent TIMESTAMP,
log_sent NUMERIC(20,0) NOT NULL,
confirm_sent NUMERIC(20,0) NOT NULL,
send_count INTEGER NOT NULL,
resend_count INTEGER NOT NULL,
time_received TIMESTAMP,
log_received NUMERIC(20,0) NOT NULL,
confirm_received NUMERIC(20,0),

SYSREMOTEUSER system table

724 Sybase IQ

receive_count INTEGER NOT NULL,
rereceive_count INTEGER NOT NULL,
PRIMARY KEY (user_id),
FOREIGN KEY REFERENCES SYS.SYSUSERPERM

)

Each row describes a user ID with REMOTE permissions (a subscriber),
together with the status of SQL Remote messages sent to and from that user.

user_id ID of the user with REMOTE permissions.

consolidate Contains either an N to indicate a user granted REMOTE
permissions, or a Y to indicate a user granted CONSOLIDATE permissions.

type_id Identifies which of the of the message systems supported by SQL
Remote is to be used to send messages to this user.

address The address to which SQL Remote messages are to be sent. The
address must be appropriate for the address_type.

frequency How frequently SQL Remote messages are to be sent.

send_time The next time messages are to be sent to this user.

log_send Messages are sent only to subscribers for whom log_send is
greater than log_sent.

time_sent Time the most recent message was sent to this subscriber.

log_sent Log offset for the most recently sent operation.

confirm_sent Log offset for the most recently confirmed operation from this
subscriber.

send_count Number of SQL Remote messages that have been sent.

resend_count Counter to ensure messages are applied only once at the
subscriber database.

time_received Time the most recent message was received from this
subscriber.

log_received Log offset in the subscriber’s database for the operation most
recently received at the current database.

confirm_received The log offset in the subscriber's database for the most
recent operation for which a confirmation message has been sent.

receive_count Number of messages received.

rereceive_count Counter to ensure messages are applied only once at the
current database.

CHAPTER 9 System Tables

Reference Manual 725

SYSSCHEDULE system table
CREATE TABLE SYS.SYSSCHEDULE (

event_id INT NOT NULL,
sched_name VARCHAR(128) NOT NULL,
recurring TINYINT NOT NULL,
start_time TIME NOT NULL,
stop_time TIME NULL,
start_date DATE NULL,
days_of_week TINYINT NULL,
days_of_month UNSIGNED INT NULL,
interval_units CHAR(10) NULL,
interval_amt INT NULL,
PRIMARY KEY (event_id, sched_name)

)

Each row in SYSSCHEDULE describes the times at which an event is to fire, as
specified by the SCHEDULE clause of CREATE EVENT.

event_id Unique number assigned to each event.

sched_name Name associated with a schedule.

recurring (0/1) Indicates whether the schedule is repeating.

start_time Schedule start time.

stop_time Schedule stop time, if BETWEEN was used.

start_date First date on which the event is scheduled to execute.

days_of_week Bit mask indicating the days of the week on which the event
is scheduled:

• x01 – Sunday.

• x02 – Monday.

• x04 – Tuesday.

• x08 – Wednesday.

• x10 – Thursday.

• x20 – Friday.

• x40 – Saturday.

days_of_month A bit mask indicating the days of the month on which the
event is scheduled:

• x01 – first day of the month.

SYSSERVERS system table

726 Sybase IQ

• x02 – second day of the month.

• x40000000 – 31st day of the month.

• x80000000 – last day of the month.

interval_units The interval unit specified by EVERY:

• HH – hours.

• NN – minutes.

• SS – seconds.

interval_amt The period specified by EVERY.

SYSSERVERS system table
CREATE TABLE SYS.SYSSERVERS (

srvid INT NOT NULL,
srvname VARCHAR(128) NOT NULL,
srvclass LONG VARCHAR NOT NULL,
srvinfo LONG VARCHAR,
srvreadonly CHAR(1) NOT NULL,
PRIMARY KEY (srvid)

)

Each row describes a remote server.

srvid Identifier for the remote server.

srvname Name of the remote server.

srvclass Server class, as specified in the CREATE SERVER statement.

srvinfo Server information.

srvreadonly Y if the server is read only, and N otherwise.

CHAPTER 9 System Tables

Reference Manual 727

SYSSQLSERVERTYPE system table
CREATE TABLE SYS.SYSSQLSERVERTYPE (

ss_user_type SMALLINT NOT NULL,
ss_domain_id SMALLINT NOT NULL,
ss_type_name VARCHAR(30) NOT NULL,
primary_sa_domain_id SMALLINT NOT NULL,
primary_sa_user_type SMALLINT NULL,
PRIMARY KEY (type_id)

)

This table contains information relating to compatibility with Adaptive Server
Enterprise.

ss_user_type Adaptive Server Enterprise user type.

ss_domain_id Adaptive Server Enterprise domain ID.

ss_type_name Adaptive Server Enterprise type name.

primary_sa_domain_id Primary domain ID.

primary_sa_user_type Primary user type.

SYSSUBSCRIPTION system table
CREATE TABLE SYS.SYSSUBSCRIPTION (

publication_id UNSIGNED INT NOT NULL,
user_id UNSIGNED INT NOT NULL,
subscribe_by CHAR(128) NOT NULL,
created NUMERIC(20,0) NOT NULL,
started NUMERIC(20,0),
PRIMARY KEY (publication_id, user_id,

subscribe_by),
FOREIGN KEY REFERENCES SYS.SYSPUBLICATION,
FOREIGN KEY REFERENCES SYS.SYSREMOTEUSER

);

Each row describes a subscription from one user ID (which must have
REMOTE permissions) to one publication.

publication_id Identifier for the publication to which the user ID is
subscribed.

user_id User ID that is subscribed to the publication.

SYSTABLE system table

728 Sybase IQ

subscribe_by For publications with a SUBSCRIBE BY expression, holds the
matching value for this subscription.

created Offset in the transaction log at which the subscription was created.

started Offset in the transaction log at which the subscription was started.

SYSTABLE system table
CREATE TABLE SYS.SYSTABLE (

table_id UNSIGNED INT NOT NULL,
file_id SMALLINT NOT NULL,
count UNSIGNED BIGINT NOT NULL,
first_page INT NOT NULL,
last_page INT NOT NULL,
primary_root INT NOT NULL,
creator UNSIGNED INT NOT NULL,
first_ext_page INT NOT NULL,
last_ext_page INT NOT NULL,
table_page_count INT NOT NULL,
ext_page_count INT NOT NULL,
table_name CHAR(128) NOT NULL,
table_type CHAR(10) NOT NULL,
view_def LONG VARCHAR,
remarks LONG VARCHAR,
replicate CHAR(1) NOT NULL,
"existing_obj" CHAR(1),
remote_location LONG VARCHAR,
remote_objtype CHAR(1),
srvid INTEGER,
server_type CHAR(4) NOT NULL,
primary_hash_limit SMALLINT NOT NULL,
PRIMARY KEY (table_id),
UNIQUE (table_name, creator),
FOREIGN KEY (creator) REFERENCES
SYS.SYSUSERPERM (user_id),
FOREIGN KEY REFERENCES SYS.SYSFILE

)

Each row of SYSTABLE describes one table or view in the database.

table_id Each table or view is assigned a unique number (the table number)
that is the primary key for SYSTABLE.

CHAPTER 9 System Tables

Reference Manual 729

file_id The file number indicates which database file contains the table. The
file_id is a FOREIGN KEY for SYSFILE.

count The count is always 0 for a view or an IQ table.

first_page Each Sybase IQ database is divided into a number of fixed size
pages. This value identifies the first page containing information for this table,
and is used internally to find the start of this table. The first_page is always 0
for a view.

last_page Last page containing information for this table. The last_page is
always 0 for a view.

primary_root Primary keys are stored in the database as B-trees. The
primary_root locates the root of the B-tree for the primary key for the table. It
is 0 for a view and for a table with no primary key.

creator This user number identifies the owner of the table or view. The name
of the user can be found by looking in SYSUSERPERM.

table_name Name of the table or view. One creator cannot have two tables
or views with the same name.

first_ext_page For internal use.

last_ext_page For internal use.

table_page_count For internal use.

ext_page_count For internal use.

table_type This column is BASE for base tables and VIEW for views. It is
GBL TEMP for global temporary tables and JVT for join indexes. No entry is
created for local temporary tables.

view_def For a view, this column contains the CREATE VIEW command used
to create the view. For a table, this column contains any CHECK constraints
for the table.

remarks A comment string.

replicate Holds a Y if the table is a primary data source in a Replication
Server installation, or an N if not.

“existing_obj” Indicates whether the table previously existed or not. (Y/N).

remote_location Indicates the storage location of the remote object.

remote_objtype Indicates the type of remote object: 'T' if table; 'V' if view;
'R' if RPC; 'B' if JavaBean.

srvid The unique ID for the server.

SYSTABLEPERM system table

730 Sybase IQ

server_type Indicates whether the table was created in the Catalog Store
(SA) or IQ Store.

primary_hash_limit For internal use.

SYSTABLEPERM system table
CREATE TABLE SYS.SYSTABLEPERM (

stable_id UNSIGNED INT NOT NULL,
grantee UNSIGNED INT NOT NULL,
grantor UNSIGNED INT NOT NULL,
ttable_id UNSIGNED INT NOT NULL,
selectauth CHAR(1) NOT NULL,
insertauth CHAR(1) NOT NULL,
deleteauth CHAR(1) NOT NULL,
updateauth CHAR(1) NOT NULL,
updatecols CHAR(1) NOT NULL,
alterauth CHAR(1) NOT NULL,
referenceauth CHAR(1) NOT NULL,
PRIMARY KEY (stable_id, grantee, grantor),
FOREIGN KEY (stable_id)
REFERENCES SYS.SYSTABLE (table_id),
FOREIGN KEY future (ttable_id)
REFERENCES SYS.SYSTABLE (table_id),
FOREIGN KEY grantee (grantee) REFERENCES
SYS.SYSUSERPERM (user_id),
FOREIGN KEY grantor (grantor)
REFERENCES SYS.SYSUSERPERM (user_id)

)

Permissions given by the GRANT command are stored in SYSTABLEPERM.
Each row in this table corresponds to one table, one user ID granting the
permission (grantor) and one user ID granted the permission (grantee).

There are several types of permission that can be granted. Each permission can
have one of the following three values.

• N – no, the grantee has not been granted this permission by the grantor.

• Y – yes, the grantee has been given this permission by the grantor.

CHAPTER 9 System Tables

Reference Manual 731

• G – the grantee has been given this permission. In addition, the grantee can
grant the same permission to another user.

Note The grantee might have been given permission for the same table by
another grantor. If so, this information is recorded in a different row of
SYSTABLEPERM.

stable_id Table number of the table or view to which the permissions apply.

grantor User number of the user ID granting the permission.

grantee Tser number of the user ID receiving the permission.

ttable_id In the current version of Sybase IQ, this table number is always the
same as stable_id.

selectauth Indicates whether SELECT permission has been granted.
(Y/N/G).

insertauth Indicates whether INSERT permission has been granted.
(Y/N/G) .

deleteauth Indicates whether DELETE permission has been granted.
(Y/N/G).

updateauth Indicates whether UPDATE permission has been granted for all
columns in the table. (Only UPDATE permission can be given on individual
columns. All other permissions are for all columns in a table.) (Y/N/G).

updatecols (Y/N) Indicates whether UPDATE permission has only been
granted for some of the columns in the table. If updatecols has the value Y,
there is one or more rows in SYSCOLPERM granting update permission for the
columns in this table.

alterauth (Y/N/G) Indicates whether ALTER permission has been granted.

referenceauth (Y/N/G) Indicates whether REFERENCE permission has
been granted.

SYSTYPEMAP system table

732 Sybase IQ

SYSTYPEMAP system table
CREATE TABLE SYS.SYSTYPEMAP (

ss_user_type SMALLINT NOT NULL,
sa_domain_id SMALLINT NOT NULL,
sa_user_type SMALLINT NULL,
nullable CHAR(1) NULL,
FOREIGN KEY REFERENCES SYS.SYSSQLSERVERTYPE

)

The SYSTYPEMAP system table contains the compatibility mapping values for
the SYSSQLSERVERTYPE system table.

ss_user_type Adaptive Server Enterprise user type.

sa_domain_id Domain ID.

sa_user_type User type.

nullable Whether or not the type can be NULL.

primary_sa_user_type Primary user type.

SYSUSERMESSAGES system table
CREATE TABLE SYS.SYSUSERMESSAGES (

error INT NOT NULL,
uid UNSIGNED INT NOT NULL,
description VARCHAR(255) NOT NULL,
langid SMALLINT NOT NULL,
UNIQUE (error, langid)

)

Each row holds a user-defined message for an error condition.

error Unique identifying number for the error condition.

uid User ID defining the message.

description Message corresponding to the error condition.

langid Reserved.

CHAPTER 9 System Tables

Reference Manual 733

SYSUSERPERM system table
CREATE TABLE SYS.SYSUSERPERM (

user_id UNSIGNED INT NOT NULL,
user_name CHAR(128) NOT NULL UNIQUE,
password BINARY(36),
resourceauth CHAR(1) NOT NULL,
dbaauth CHAR(1) NOT NULL,
scheduleauth CHAR(1) NOT NULL,
publishauth CHAR(1) NOT NULL,
remotedbaauth CHAR(1) NOT NULL,
user_group CHAR(1) NOT NULL,
remarks LONG VARCHAR,
PRIMARY KEY (user_id)

)

Note SYSUSERPERM contains passwords requires DBA permissions to
SELECT from the table.

Each row of SYSUSERPERM describes one user ID.

user_id Each new user ID is assigned a unique number (the user number) that
is the primary key for SYSUSERPERM.

user_name String containing the name for the user ID. Each userid must
have a unique name.

password Password for the user ID. The password contains the NULL value
for the special user IDs SYS and PUBLIC, preventing anyone from connecting
to these user IDs.

resourceauth Indicates whether the user has RESOURCE authority.
Resource authority is required to create tables. (Y/N).

dbaauth Indicates whether the user has database administrator (DBA)
authority. DBA authority is very powerful, and should be restricted to as few
user IDs as possible for security purposes. (Y/N).

scheduleauth Indicates whether the user has SCHEDULE authority. This is
currently not used by Sybase IQ. (Y/N).

publishauth Indicates whether the user has the SQL Remote publisher
authority. (Y/N).

remotedbaauth Indicates whether the user has the SQL Remote remote
DBA authority. (Y/N).

user_group Indicates whether the user is a group. (Y/N).

SYSUSERTYPE system table

734 Sybase IQ

remarks Comment string.

When a database is initialized, the following user IDs are created:

• SYS – Creator of all the system tables.

• PUBLIC – Special user ID used to record PUBLIC permissions.

• DBA – The database administrator user ID is the only usable user ID in an
initialized system. The initial password is SQL.

There is no way to connect to the SYS or PUBLIC user IDs.

SYSUSERTYPE system table
CREATE TABLE SYS.SYSUSERTYPE (

type_id SMALLINT NOT NULL,
creator UNSIGNED INT NOT NULL,
domain_id UNSIGNED INT NOT NULL,
nulls CHAR(1) NOT NULL,
width SMALLINT NOT NULL,
scale SMALLINT NOT NULL,
type_name CHAR(128) NOT NULL,
"default" LONG VARCHAR NULL,
"check" LONG VARCHAR NULL,
format_str CHAR(128),
super_type_id SMALLINT NULL,
UNIQUE (type_name),
PRIMARY KEY (type_id),
FOREIGN KEY (creator)
REFERENCES SYS.SYSUSERPERM (user_id),
FOREIGN KEY REFERENCES SYS.SYSDOMAIN,
FOREIGN KEY (super_type_id)
REFERENCES SYS.SYSUSERTYPE (type_id)

)

Each row holds a description of a user-defined data type.

type_id Unique identifying number for the user-defined data type.

creator Owner of the data type.

domain_id Identifies the data type for the column by the data type number
listed in the SYSDOMAIN table.

CHAPTER 9 System Tables

Reference Manual 735

nulls Y indicates that the user-defined data type does allow nulls. N indicates
that the data type does not allow nulls.

width Length of string columns, the precision of numeric columns, and the
number of bytes of storage for all other data types.

scale Number of digits after the decimal point for numeric data type
columns, and zero for all other data types.

type_name Name for the data type, which must be a valid identifier.

"default" Default value for the data type.

"check" CHECK condition for the data type.

Note The “default” value and “check” condition features are not currently
supported by Sybase IQ.

format_str Currently unused.

SYSWEBSERVICE system table
CREATE TABLE SYS.SYSWEBSERVICE (

service_id UNSIGNED INT NOT NULL,
service_name CHAR(128) NOT NULL,
service_type VARCHAR(40) NOT NULL,
auth_required CHAR(1) NOT NULL,
secure_required CHAR(1) NOT NULL,
url_path CHAR(1) NOT NULL,
user_id UNSIGNED INT,
parameter VARCHAR(250)
statement LONG VARCHAR,
remarks LONG VARCHAR,
super_type_id SMALLINT NULL,
UNIQUE (type_name),
PRIMARY KEY (service_id)

)
)

Each row holds a description of a web service.

service_id A unique identifying number for the web service.

service_name The name assigned to the web service.

SYSWEBSERVICE system table

736 Sybase IQ

service_type The type of the service, for example, RAW, HTTP, XML,
SOAP, or DISH.

auth_required (Y/N) Indicates whether all requests must contain a valid user
name and password.

secure_required (Y/N) Indicates whether insecure connections, such as
HTTP, are to be accepted, or only secure connections, such as HTTPS.

url_path Controls the interpretation of URLs.

user_id If authentication is enabled, identifies the user, or group of users, that
have permission to use the service. If authentication is disabled, specifies the
account to use when processing requests.

parameter A prefix that identifies the SOAP services to be included in a
DISH service.

statement A SQL statement that is always executed in response to a request.
If NULL, arbitrary statements contained in each request are executed instead.
Ignored for services of type DISH.

Reference Manual 737

C H A P T E R 1 0 System Procedures

About this chapter This chapter documents the system-supplied stored procedures in Sybase
IQ databases that you can use to retrieve system information.

Contents Topic Page

System procedure overview 738

System stored procedures 740

Catalog stored procedures 853

Multiplex system procedures 880

Adaptive Server Enterprise system and catalog procedures 884

System procedure overview

738 Sybase IQ

System procedure overview
Sybase IQ includes the following kinds of system procedures:

• System functions that are implemented as stored procedures.

• Catalog stored procedures, for displaying system information in tabular
form.

• Multiplex stored procedures, which include both of the above types of
procedures, for multiplex server operations.

• Transact-SQL system and catalog procedures. For a list of these system
procedures, see “Adaptive Server Enterprise system and catalog
procedures” on page 884.

This chapter describes system procedures.

System stored procedures related specifically to Large Object data, including
sp_iqsetcompression and sp_iqshowcompression, are described in Chapter 5,
“Stored Procedure Support” in Large Objects Management in Sybase IQ.

Syntax rules for stored procedures
Use of parentheses and quotes in stored procedure calls varies, depending on
whether you enter the procedure name directly, as you can in Interactive SQL,
or invoke it with a CALL statement. Some variations are permitted because the
product supports both Sybase IQ SQL and Transact-SQL syntax. If you need
Transact-SQL compatibility, be sure to use Transact-SQL syntax.

CHAPTER 10 System Procedures

Reference Manual 739

See Table 10-1 for an explanation of syntax variations.

Table 10-1: Stored procedure syntax variations

When you use Transact-SQL stored procedures, you must use the Transact-
SQL syntax.

Understanding statistics reported by stored procedures
Many stored procedures report information on the state of Sybase IQ at the
time the procedure executes. This means that you get a snapshot view. For
example, a report column that lists space in use by a connection shows only the
space in use at the instant the procedure executes, not the maximum space used
by that connection.

To monitor Sybase IQ usage over an extended period, use the Sybase IQ
monitor, which collects and reports statistics from the time you start the
monitor until you stop it, at an interval you specify.

Syntax Syntax type Explanation
procedure_name ('param') Sybase IQ Quotes are required if you enclose

parameters in parentheses.

procedure_name 'param' Sybase IQ Parentheses are optional if you
enclose parameters in quotes.

procedure_name param Transact-SQL If you omit quotes around parameters,
you must also omit parentheses.

procedure_name Sybase IQ or Transact-
SQL

Use this syntax if you run a procedure
with no parameters directly in
DBISQL, and the procedure has no
parameters.

call procedure_name
(param=’value’)

Sybase IQ Use this syntax to call a procedure
that passes a parameter value.

System stored procedures

740 Sybase IQ

System stored procedures
System stored procedures are owned by the user ID dbo. The system
procedures in this section carry out System Administrator tasks in the IQ Store.

Note By default, the maximum length of column values displayed by
DBISQLC is 30 characters. This might be inadequate for displaying output of
stored procedures such as sp_iqstatus. To avoid truncated output, increase the
length by using SET OPTION DBO.TRUNCATION_LENGTH = 80.
Alternatively, from the dbisql menu select Command > Options and enter a
higher value for Limit Display Columns and/or Limit Output Columns.

sa_verify_password procedure
Function Validates the password of the current user.

Syntax sa_verify_password (string)

Parameters • string This char(128) parameter specifies the password of the current
database user.

Remarks This procedure is used by sp_password. If the password matches, the procedure
simply returns. If it does not match, the error string returned by the procedure
is returned.

Permissions None

Side effects None

Example The following example creates a function that returns a message if the chosen
password can be guessed from knowing the user name:

CREATE FUNCTION
DBA.f_verify_pwd(user_name varchar(128), new_pwd
varchar(255))
RETURNS varchar(255)
BEGIN
-- enforcement
IF SIMILAR(new_pwd , user_name) > 50 THEN
RETURN('Password is too much like the user name');
END IF;
-- success
RETURN(null);
END;
ALTER FUNCTION DBA.f_verify_pwd SET HIDDEN;

CHAPTER 10 System Procedures

Reference Manual 741

GRANT EXECUTE ON DBA.f_verify_pwd TO PUBLIC;
SET OPTION public.verify_password_function =
'DBA.f_verify_pwd';

sp_iqaddlogin procedure
Function Adds a new Sybase IQ user account.

Syntax1 call sp_iqaddlogin (‘userid’, ‘password’, [number_of_connections] [,
password_expiration])

Syntax2 sp_iqaddlogin ‘userid’, ‘password’, [number_of_connections] [,
password_expiration]

Syntax3 sp_iqaddlogin userid, password, [number_of_connections] [,
password_expiration]

Permissions DBA authority required.

Usage userid The user’s login name. Login names must conform to the rules for
identifiers.

password The user’s password. Passwords must conform to Adaptive Server
Anywhere rules for passwords, that is, they must be valid identifiers.

number_of_connections Maximum number of concurrent database
connections for the user. Default is 0: Sybase IQ does not enforce a maximum
number of connections.

password_expiration Password expiration interval, in days. Must be a value
from 0 through 32767. Default is 0: the password does not expire.
You cannot set a password expiration for the user DBA.

A userid/password created using sp_iqaddlogin and set to expire in one day is
valid all day tomorrow and invalid on the following day. In other words, a login
created today and set to expire in n days are not usable once the date changes
to the (n+1)th day.

“sp_iqmodifyadmin procedure” on page 806

GRANT statement on page 559

Chapter 12, “Managing User IDs and Permissions,” in Sybase IQ System
Administration Guide

System stored procedures

742 Sybase IQ

Description Adds a new Sybase IQ user account, specifies the number of concurrent logins
the user might have and the password expiration interval, and adds the user to
the IQ_USER_LOGIN_INFO_TABLE system table. If the user already has a user
ID for the database but is not in IQ_USER_LOGIN_INFO_TABLE (for example,
if the user ID was added using the GRANT CONNECT statement or Sybase
Central), sp_iqaddlogin adds the user to the table.

By default, you can add users with sp_iqaddlogin only on a multiplex write
server. To enable sp_iqaddlogin on query servers, you must set the database
option MPX_LOCAL_SPEC_PRIV to change the default. For details, see
“MPX_LOCAL_SPEC_PRIV option” on page 123.

You must add users with sp_iqaddlogin to manage them with the Sybase IQ
Login Management facility.

Errors The following errors might occur. Causes are listed after each error.

Permission denied: you do not have permission to
execute the procedure sp_iqaddlogin.

Cause: A user without DBA role tried to execute sp_iqaddlogin.

RAISERROR executed: User <loginname> already exists.

Cause: The message appears if a user being created already exists for the
database.

RAISERROR executed: "NUMBER_OF_CONNECTIONS must be
greater than or equal to zero and less than of equal to
32767."

Cause: Number of connections value was something other than 0 through
32767.

RAISERROR executed: "PASSWORD_EXPIRATION must be
greater than or equal to zero and less than or equal to
32767."

Cause: Number of days for password expiration was something other than 0
through 32767.

Examples The following stored procedure calls add the user rose and allow that user 5
concurrent connections with a password irk324 that expires in 180 days.

call sp_iqaddlogin ('rose','irk324',5,180)

sp_iqaddlogin 'rose','irk324',5,180

CHAPTER 10 System Procedures

Reference Manual 743

sp_iqcheckdb procedure
Function Checks validity of the current database and optionally repairs indexes and

allocation problems.

This stored procedure reads all storage in the database. On successful
completion, the database free list (an internal allocation map) is updated to
reflect the true storage allocation for the database, if the -iqdroplks server switch
is used. sp_iqcheckdb then generates a report listing the actions it has
performed.

If an error is found, sp_iqcheckdb reports the name of the object and the type
of error. sp_iqcheckdb does not update the free list, if any errors are detected.

The sp_iqcheckdb stored procedure also allows you to check the consistency
of, and optionally repair, a specified table, index, index type, or the entire
database.

Note sp_iqcheckdb is the user interface to the IQ Database Consistency
Checker (DBCC) and is sometimes referred to as DBCC.

Syntax sp_iqcheckdb 'mode target [...] [resources resource-percent]'

This is the general syntax of sp_iqcheckdb. There are three modes for checking
database consistency, and one repair mode. The syntax for each mode is listed
separately below. If mode and target are not both specified in the parameter
string, Sybase IQ returns the error message “At least one mode and target must
be specified to DBCC.”

Parameters mode:
{ allocation | check | verify } | repair

target:
[main | local | indextype index-type […]] database | database resetclocks |
{ [indextype index-type] […] table table-name | index index-name […] }

Allocation mode sp_iqcheckdb 'allocation target [resources resource-percent]'

Check mode sp_iqcheckdb 'check target [resources resource-percent]'

Verify mode sp_iqcheckdb 'verify target [resources resource-percent]'

Repair mode sp_iqcheckdb 'repair target [resources resource-percent]'

Usage main All tables and indexes checked are from the IQ Store. In a multiplex,
they are from the shared IQ Store.

local All tables and indexes checked are from the local IQ Store on a
particular query server in a multiplex.

System stored procedures

744 Sybase IQ

index-type The index-type parameter is one of the following index types: FP,
CMP, LF, HG, HNG, WD, DATE, TIME, DTTM.

If the specified index-type does not exist in the target, an error message is
returned. If multiple index types are specified and the target contains only some
of these index types, the existing index types are processed by sp_iqcheckdb.

index-name The index-name parameter may contain owner and table
qualifiers: [[owner.]table-name.]index-name

If owner is not specified, current user and database owner (dbo) are substituted
in that order. If table is not specified, index-name must be unique.

table-name The table-name parameter may contain an owner qualifier:
[owner.]table-name

If owner is not specified, current user and database owner (dbo) are substituted
in that order. table-name cannot be a temporary or pre-join table.

Note If either the table name or the index name contains spaces, enclose the
table-name or index-name parameter in double quotes, as shown in this
example:

sp_iqcheckdb 'check index "dbo.ss tab.i2" resources 75'

resource-percent The input parameter resource-percent must be an integer
greater than 0. The resources percentage allows you to limit the CPU utilization
of the database consistency checker by controlling the number of threads with
respect to the number of CPUs. If resource-percent = 100, then 1 thread is
created per CPU. If resource-percent > 100, then there are more threads than
CPUs, which might increase performance for some machine configurations.
The minimum number of threads is 1. The default value of resource-percent is
100.

Note The sp_iqcheckdb parameter string must be enclosed in single quotes and
cannot be greater than 255 bytes in length.

Allocation problems can be repaired in check, verify, and allocation mode by
starting the database with the -iqdroplks server switch.

Description sp_iqcheckdb checks the allocation of every block in the database and saves the
information in the current session until the next sp_iqdbstatistics procedure is
issued. sp_iqdbstatistics displays the latest result from the most recent
execution of sp_iqcheckdb.

CHAPTER 10 System Procedures

Reference Manual 745

sp_iqcheckdb can perform several different functions, depending on the
parameters specified. The four modes for checking and repairing database
consistency are:

Allocation mode Checks allocation with blockmap information for the
entire database, a specific index, a specific index type, or a specific table;
repairs the free list if the -iqdroplks server switch is specified. Does not check
index consistency.

sp_iqcheckdb cannot check or repair all allocation problems, if you specify the
name of a single index, index type, or table in the input parameter string.

When to run in allocation mode:

• After forced recovery, run sp_iqcheckdb with the -iqdroplks server switch
to reset the allocation map (must use database as the target)

• To check for duplicate or unowned blocks (use database or specific tables
or indexes as the target)

• If you encounter page header errors

The DBCC option resetclocks is used only with allocation mode. The
resetclocks option is used in conjunction with forced recovery to convert a
multiplex query server to a write server. resetclocks corrects the values of
internal database versioning clocks, in the event that these clocks are behind.
Do not use the resetclocks option for any other purpose, unless you contact
Sybase IQ Technical Support.

The resetclocks option must be run in single-user mode and is allowed only
with the DBCC command “allocation database”. resetclocks does not require
the -iqdroplks server start-up switch. The syntax of the resetclocks command is:

sp_iqcheckdb 'allocation database resetclocks'

Check mode Checks allocation with index information; performs quick
index checks for the entire database, a specific index, a specific index type, or
a specific table. Detects all types of allocation problems and most types of
index inconsistencies.

Run in check mode if metadata, null count, or distinct count errors are returned
when running a query.

Verify mode Checks allocation with index information; performs detailed
index checks for the entire database, a specific index, a specific index type, or
a specific table. Detects all types of allocation problems and all types of index
inconsistencies.

System stored procedures

746 Sybase IQ

Run in verify mode if metadata, null count, or distinct count errors are returned
when running a query.

Repair mode Performs a detailed check and repair of all indexes, a specific
index, or a specific table. Does not check allocation.

Run in repair mode if index errors are reported in sp_iqcheckdb check or verify
mode.

Note sp_iqcheckdb does not check referential integrity or repair referential
integrity violations.

See Chapter 2, “System Recovery and Database Repair” in the Sybase IQ
Troubleshooting and Recovery Guide for details on using sp_iqcheckdb and
more information on checking database consistency.

Examples The following examples illustrate the use of the sp_iqcheckdb procedure.

In this example, sp_iqcheckdb checks the allocation for the entire database:

sp_iqcheckdb 'allocation database'

In the second example, sp_iqcheckdb performs a detailed check on indexes i1,
i2, and dbo.t1.i3. If you do not specify a new mode, sp_iqcheckdb applies the
same mode to the remaining targets, as shown in the following command:

sp_iqcheckdb 'verify index i1 index i2 index dbo.t1.i3'

You can combine all modes, except for repair mode, and run multiple checks
on a database in a single session. In the following example, sp_iqcheckdb
performs a quick check of table t2, a detailed check of index i1, and allocation
checking for the entire database using half of the CPUs:

sp_iqcheckdb 'check table t2 verify index i1
allocation database resources 50'

This example checks all indexes of the type FP in the database:

sp_iqcheckdb 'check indextype FP database'

The following example verifies the FP and HG indexes in the table t1 and the
LF indexes in the table t2:

sp_iqcheckdb 'verify indextype FP indextype HG table t1
indextype LF table t2'

CHAPTER 10 System Procedures

Reference Manual 747

DBCC performance The execution time of DBCC varies according to the size of the database for an
entire database check, the number of tables or indexes specified, and the size
of the machine. Checking only a subset of the database (that is, only specified
tables, indexes, or index types) requires less time than checking an entire
database.

Table 10-2 summarizes the actions and output of the four sp_iqcheckdb modes.

Table 10-2: Actions and output of sp_iqcheckdb modes

* The processing time of sp_iqcheckdb repair mode depends on the number of
errors repaired.

Output The output of sp_iqcheckdb contains summary results, errors, informational
statistics, and repair statistics, depending on the execution mode. The output
may contain as many as three results sets, if you specify multiple modes in a
single session. Error statistics are indicated by asterisks (*****) and are
displayed only if errors are detected.

Repair statistics are displayed only in repair mode and only if repairs are
actually made. Asterisks (*****) indicate repairs that were made, not errors. If
sp_iqcheckdb encounters errors and makes repairs, some of the statistics
reported by DBCC in repair mode might be inaccurate.

The output of sp_iqcheckdb is also copied to the Sybase IQ message file .iqmsg.
If the DBCC_LOG_PROGRESS option is ON, sp_iqcheckdb sends progress
messages to the IQ message file, allowing the user to follow the progress of the
DBCC operation as it executes.

Output example The following is an example of the output you see when you run sp_iqcheckdb
'allocation database' and there is leaked space. Leaked space is a block that is
allocated according to the database free list (an internal allocation map), but
DBCC finds that the block is not part of any database object. In this example,
DBCC reports 32 leaked blocks.

Mode Errors detected Output Speed

allocation Allocation errors Allocation statistics only 4TB per hour

check Allocation errors
most index errors

All available statistics 60GB per hour

verify Allocation errors
All index errors

All available statistics 15GB per hour

repair All index errors Repair statistics 15+GB per hour*

System stored procedures

748 Sybase IQ

Stat Value Flags

=====================================|===========================|=====

DBCC Allocation Mode Report

=====================================|===========================|=====

** DBCC Status |Errors Detected |*****

DBCC Work units Dispatched |163 |

DBCC Work units Completed |163 |

=====================================|===========================|=====

Allocation Summary | |

=====================================|===========================|=====

Blocks Total |8192 |

Blocks in Current Version |4954 |

Blocks in All Versions |4954 |

Blocks in Use |4986 |

% Blocks in Use |60 |

** Blocks Leaked |32 |*****

| |

=====================================|===========================|=====

Allocation Statistics | |

=====================================|===========================|=====

Blocks Created in Current TXN |382 |

Blocks To Drop in Current TXN |382 |

Marked Logical Blocks |8064 |

Marked Physical Blocks |4954 |

Marked Pages |504 |

Blocks in Freelist |126553 |

Imaginary Blocks |121567 |

Highest PBN in Use |5432 |

** 1st Unowned PBN |452 |*****

Total Free Blocks |3206 |

Usable Free Blocks |3125 |

% Free Space Fragmented |2 |

Max Blocks Per Page |16 |

1 Block Page Count |97 |

3 Block Page Count |153 |

4 Block Page Count |14 |

...

9 Block Hole Count |2 |

16 Block Hole Count |194 |

| |

Database Objects Checked |1 |

B-Array Count |1 |

Blockmap Identity Count |1 |

=====================================|===========================|=====

Connection Statistics | |

=====================================|===========================|=====

CHAPTER 10 System Procedures

Reference Manual 749

| |

| |

sp_iqcheckoptions procedure
Function For the connected user, sp_iqcheckoptions displays a list of the current value

and the default value of database and server start-up options that have been
changed from the default.

Syntax sp_iqcheckoptions

Usage Requires no parameters. Returns one row for each option that has been changed
from the default value. The output is sorted by option name, then by user name.

Permissions None. The DBA sees all options set on a permanent basis for all groups and
users and sees temporary options set for DBA. Users who are not DBAs see
their own temporary options. All users see nondefault server start-up options.

Description For the connected user, the sp_iqcheckoptions stored procedure displays a list
of the current value and the default value of database and server startup options
that have been changed from the default. sp_iqcheckoptions considers all
Sybase IQ and ASA database options. Sybase IQ modifies some ASA option
defaults, and these modified values become the new default values. Unless the
new Sybase IQ default value is changed again, sp_iqcheckoptions does not list
the option.

When sp_iqcheckoptions is run, the DBA sees all options set on a permanent
basis for all groups and users and sees temporary options set for DBA. Users
who are not DBAs see their own temporary options. All users see nondefault
server startup options.

System stored procedures

750 Sybase IQ

Table 10-3: sp_iqcheckoptions columns

Examples In these examples, the temporary option APPEND_LOAD is set to ON and the
group mygroup has the option MAX_WARNINGS set to 9. The user joel has a
temporary value of 55 set for MAX_WARNINGS.

In the first example, sp_iqcheckoptions is run by the DBA.

User_name Option_name Current_value Default_value Option_type

DBA Ansi_update_constr CURSORS Off Permanent

PUBLIC Ansi_update_constr Cursors Off Permanent

DBA Append_Load ON OFF Temporary

DBA Checkpoint_time 20 60 Temporary

DBA Connection_authent Company=MyComp; Temporary

Application=DBTools;Signa

DBA Login_procedure DBA.sp_iq_proce sp_login_envir Permanent

PUBLIC Login_procedure DBA.sp_iq_proce sp_login_envir Permanent

mygroup Max_Warnings 9 281474976710655 Permanent

DBA Min_NLPDJ_Table_Size 1000000 10000 Permanent

PUBLIC Min_NLPDJ_Table_Size 1000000 10000 Permanent

DBA Thread_count 25 0 Temporary

In the second example, sp_iqcheckoptions is run by the user joel.

User_name Option_name Current_value Default_value Option_type

joel Ansi_update_constr CURSORS Off Permanent

PUBLIC Ansi_update_constr Cursors Off Permanent

joel Checkpoint_time 20 60 Temporary

joel Connection_authent Company=MyComp; Temporary

Application=DBTools;Signa

joel Login_procedure DBA.sp_iq_proce sp_login_envir Permanent

PUBLIC Login_procedure DBA.sp_iq_proce sp_login_envir Permanent

joel Max_Warnings 55 281474976710655 Temporary

joel Min_NLPDJ_Table_Size 1000000 10000 Permanent

PUBLIC Min_NLPDJ_Table_Size 1000000 10000 Permanent

Column name Description

User_name The name of the user or group for whom the option has been
set. At database creation, all options are set for the public
group. Any option that has been set for a group or user
other than public is displayed.

Option_name The name of the option.
Current_value The current value of the option.
Default_value The default value of the option.
Option_type “Temporary” for a TEMPORARY option, else

“Permanent”.

CHAPTER 10 System Procedures

Reference Manual 751

joel Thread_count 25 0 Temporary

sp_iqcolumn procedure
Function Displays columns in a database and information about them.

Syntax1 sp_iqcolumn ([table_name],[table_owner])

Syntax2 sp_iqcolumn [table_name='tablename'],[table_owner='tableowner']

Usage Syntax1 If you specify table_owner without specifying table_name, you
must substitute NULL for table_name. For example, sp_iqcolumn
NULL,DBA.

Syntax2 The parameters can be specified in any order. Enclose 'tablename'
and 'tableowner' in single quotes.

Description Displays information about columns in a database. Specifying the table_name
parameter returns the columns only from tables with that name. Specifying the
table_owner parameter returns only tables owned by that user. Specifying both
parameters chooses the columns from a unique table, if that table exists.
Specifying no parameters returns all columns for all tables in a database. This
procedure does not return column information for system tables.

System stored procedures

752 Sybase IQ

Table 10-4: sp_iqcolumn columns

Examples The following variations in syntax both return all of the columns in the table
department:

sp_iqcolumn department

call sp_iqcolumn (table_name='department')

The following variations in syntax both return all of the columns in all of the
tables owned by table owner DBA. For brevity, some rows have been omitted
from the results shown:

Column name Description

table_name The name of the table

table_owner The owner of the table

column_name The name of the column

domain_name The data type

width The precision of numeric data types that have precision
and scale or the storage width of numeric data types
without scale; the width of character data types

scale The scale of numeric data types

nulls 'Y' if the column can contain NULLS, 'N' if the column
cannot contain NULLS

default 'Identity/Autoincrement' if the column is an identity/
autoincrement column, null if not.

cardinality The distinct count, if known, by indexes

est_cardinality The estimated number of distinct values, set to 255
automatically if the column was created with the
MINIMIZE_STORAGE option ON, or a user-supplied
value from the IQ UNIQUE constraint specified in
CREATE TABLE

location TEMP = IQ Temp Store, MAIN = IQ Store, LOCAL =
IQ Local Store, SYSTEM = Catalog Store

remarks User comments added with the COMMENT statement

check the check constraint expression

table_
name

table_
owner

column_
name

domain
_name width scale nulls default

cardi-
nality

est_
cardi-
nality location remarks check

department DBA dept_id unsigned
int

4 0 N N 5 5 (NULL) (NULL)

department DBA dept_
name

char 40 0 N N 0 5 (NULL) (NULL)

department DBA dept_head
_id

unsigned
int

4 0 Y N 5 5 (NULL) (NULL)

CHAPTER 10 System Procedures

Reference Manual 753

sp_iqcolumn table_owner='DBA'

sp_iqcolumn NULL,DBA

sp_iqconnection procedure
Function Shows information about connections and versions, including which users are

using temporary dbspace, which users are keeping versions alive, what the
connections are doing inside Sybase IQ, connection status, database version
status, and so on.

Syntax sp_iqconnection [connhandle]

Usage The input parameter connhandle is equal to the Number connection property
and is the ID number of the connection. The connection_property system
function returns the connection ID:

SELECT connection_property ('Number')

When called with an input parameter of a valid connhandle, sp_iqconnection
returns the one row for that connection only.

table_
name

table_
owner

column
_name

domain
_name width scale nulls default

cardi-
nality

est_
cardi-
nality location remarks check

contact DBA id unsigned
int

4 0 N (NULL) 60 60 (NULL) (NULL)

contact DBA last_
name

char 15 0 N (NULL) 0 60 (NULL) (NULL)

... (NULL)

contact DBA phone char 10 0 Y (NULL) 0 59 (NULL) (NULL)

contact DBA fax char 10 0 Y (NULL) 0 58 (NULL) (NULL)

customer DBA id unsigned
int

4 0 N (NULL) 126 126 (NULL) (NULL)

customer DBA fname char 15 0 N (NULL) 0 116 (NULL) (NULL)

...

customer DBA phone char 12 0 N (NULL) 0 117 (NULL) (NULL)

customer DBA company
_name

char 35 0 Y (NULL) 0 126 (NULL) (NULL)

department DBA dept_id unsigned
int

4 0 N (NULL) 5 5 (NULL) (NULL)

department DBA dept_
name

char 40 0 N (NULL) 0 5 (NULL) (NULL)

department DBA dept_
head_id

unsigned
int

4 0 Y (NULL) 5 5 (NULL) (NULL)

...

System stored procedures

754 Sybase IQ

Description sp_iqconnection returns a row for each active connection. The columns
ConnHandle, Name, Userid, LastReqTime, ReqType, CommLink, NodeAddr,
and LastIdle are the connection properties Number, Name, Userid,
LastReqTime, ReqType, CommLink, NodeAddr, and LastIdle respectively,
and return the same values as the system function sa_conn_info. The additional
columns return connection data from the Sybase IQ side of the Sybase IQ
engine. Rows are ordered by ConnCreateTime. In Java applications, specify
Sybase IQ-specific connection properties from TDS clients in the Remote
PWD field. For details, see “Using the RemotePWD parameter” in the Sybase
IQ System Administration Guide.

Table 10-5: sp_iqconnection columns

Column name Description

ConnHandle The ID number of the connection.

Name The name of the server.

Userid The user ID for the connection.

LastReqTime The time at which the last request for the specified connection started.

ReqType A string for the type of the last request.

IQCmdType The current command executing on the Sybase IQ side, if any. The command
type reflects commands defined at the implementation level of the engine.
These commands consists of transaction commands, DDL and DML
commands for data in the IQ store, internal IQ cursor commands, and special
control commands such as OPEN and CLOSE DB, BACKUP, RESTORE, and
others.

LastIQCmdTime The time the last IQ command started or completed on the IQ side of the
Sybase IQ engine on this connection.

IQCursors The number of cursors open in the IQ store on this connection.
LowestIQCursorState The IQ cursor state, if any. If multiple cursors exist on the connection, the

state displayed is the lowest cursor state of all the cursors; that is, the furthest
from completion. Cursor state reflects internal Sybase IQ implementation
detail and is subject to change in the future. For this version, cursor states are:
NONE, INITIALIZED, PARSED, DESCRIBED, COSTED, PREPARED,
EXECUTED, FETCHING, END_OF_DATA, CLOSED and COMPLETED.
As suggested by the names, cursor state changes at the end of the operation.
A state of PREPARED, for example, indicates that the cursor is executing.

IQthreads The number of Sybase IQ threads currently assigned to the connection. Some
threads may be assigned but idle. This column can help you determine which
connections are using the most resources.

TxnID The transaction IDof the current transaction on the connection. This is the
same as the transaction ID displayed in the .iqmsg file by the BeginTxn,
CmtTxn, and PostCmtTxn messages, as well as the Txn ID Seq logged when
the database is opened.

ConnCreateTime The time the connection was created.

CHAPTER 10 System Procedures

Reference Manual 755

Example The following is an example of sp_iqconnection output:

ConnHandle Name Userid LastReqTime ReqType IQCmdType
========== ======== ====== ========================= ==================== ====================
419740283 red2 DBA 2006-06-262006-06-26 15:54:54.605 STMT_EXECUTE_IMM INSERT
640038605 blue1 DBA 2006-06-26 13:32:42.505 CURSOR_PREFETCH NONE

2094200996 DBA 2006-06-26 13:30:27.486 STMT_EXECUTE_ANY_IMM NONE
954498130 fromSCJ DBA 2006-06-26 15:55:02.787752 STMT_DROP NONE
167015670 blue2 DBA 2006-06-26 13:45:50.232752 STMT_DROP NONE

1306718536 DBA 2006-06-26 15:08:36.716 STMT_EXECUTE_ANY_IMM NONE
1779741471 ntJava2 DBA 2006-06-26 15:54:58.558752 STMT_DROP NONE
710225777 nt1 DBA 2006-06-26 15:56:02.729 CURSOR_OPEN IQUTILITYOPENCURSOR

LastIQCmdTime IQCursors LowestIQCursorState IQthreads TxnID ConnCreateTime
======================= ========= =================== ========= ===== ========================
2006-06-26 15:54:54.630 1 EXECUTED 7 10701 2006-06-26 13:17:27.599
2006-06-26 13:32:42.295 1 FETCHING 2 10568 2006-06-26 13:21:19.953
2006-06-26 13:30:27.548 0 NONE 1 10604 2006-06-26 13:24:35.145
2006-06-26 15:55:02.590 0 NONE 1 10619 2006-06-26 13:31:26.001
2006-06-26 13:45:50.225 0 NONE 1 10678 2006-06-26 13:35:01.160
2006-06-26 15:09:30.320 0 NONE 1 16687 2006-06-26 13:37:50.814
2006-06-26 15:54:58.553 0 NONE 1 10676 2006-06-26 13:43:57.907
2006-06-26 15:56:02.755 0 NONE 1 10699 2006-06-26 14:05:15.748

TempTableSpaceKB The number of kilobytes of IQ Temporary Store space in use by this
connection for data stored in IQ temp tables.

TempWorkSpaceKB The number of kilobytes of IQ Temporary Store space in use by this
connection for working space such as sorts, hashes, and temporary bitmaps.
Space used by bitmaps or other objects that are part of indexes on Sybase IQ
temporary tables are reflected in TempTableSpaceKB.

IQConnID The ten-digit connection ID displayed as part of all messages in the .iqmsg
file. This is a monotonically increasing integer unique within a server
session.

satoiq_count An internal counter used to display the number of crossings from the ASA
side to the IQ side of the Sybase IQ engine. This might be occasionally useful
in determining connection activity. Result sets are returned in buffers of rows
and do not increment satoiq_count or iqtosa_count once per row.

iqtosa_count An internal counter used to display the number of crossings from the IQ side
to the ASA side of the Sybase IQ engine. This might be occasionally useful in
determining connection activity.

CommLink The communication link for the connection. This is one of the network protocols
supported by Sybase IQ, or is local for a same-machine connection.

NodeAddr The node for the client in a client/server connection.

LastIdle The number of ticks between requests.

Dbremote A bit data column that indicates the transaction is an internal transaction used
to replicate multiplex version information between a query server and the
write server within a multiplex database.

Column name Description

System stored procedures

756 Sybase IQ

TempTableSpaceKB TempWorkSpaceKB IQconnID satoiq_count iqtosa_count CommLink NodeAddr LastIdle
================ =============== ======== ============ ============ ======== ========== =======

68736 680 14 82 2031 TCPIP 157.133.82.17 9905
0 102592 17 76 360 local 606
0 0 18 397 688 TCPIP 157.133.83.151 8322
0 0 20 709 1541 TCPIP 157.133.83.151 5378
0 128 21 131 2082 local 5122
0 0 23 18313 821 TCPIP 157.133.83.151 10000
0 0 24 994 1667 TCPIP 157.133.83.151 1467
0 0 28 900 478 TCPIP 157.133.83.151 5473

sp_iqconstraint procedure
Function Lists referential integrity constraints defined using CREATE TABLE or ALTER

TABLE for the specified table or column.

Syntax sp_iqconstraint (table-name, column-name, table-owner)

Description If table name and column name are omitted, reports all referential integrity
constraints for all tables including temporary ones in the current connected
database. The information includes unique or primary key constraint,
referential constraint, and associated role name that are defined by the CREATE
TABLE and/or ALTER TABLE statements.

Example This is sample output that displays all primary key/foreign key pairs where
either the candidate key or foreign key contains column ck1 for owner bob in
all tables:

call_sp_iqconstraint('','ck1','bob')

PTAB1 bob ASIQ_IDX_T27_HG unique ck1,ck2 selftab bob CK6FK3 Y

ASIQ_IDX_T42_HG ck1,ck2

PTAB2 bob ASIQ_IDX_T27_HG unique ck1,ck2 selftab bob CK6FK4 Y
ASIQ_IDX_T206_I42_HG ck1,ck2

selftab bob ASIQ_IDX_T26_HG unique ck1,ck2 selftab bob CK3FK1 Y

ASIQ_IDX_T206_I42_HG ck1,ck2

The columns displayed are:

• Primary enforced table

• Owner

• Candidate key index

• Primary key or Unique

• Primary key columns

CHAPTER 10 System Procedures

Reference Manual 757

• Foreign table

• Owner

• Foreign key role name

• Enforced status (“Y” for enforced, “N” for unenforced)

• Foreign key index

• Foreign key columns

• Location (“TEMP,” “MAIN,” “LOCAL,” or “SYSTEM”)

sp_iqcontext procedure
Function Tracks and displays, by connection, information about statements currently

executing.

Syntax sp_iqcontext [connhandle]

Usage The input parameter connhandle is equal to the Number connection property
and is the ID number of the connection.

When called with an input parameter of a valid connhandle, sp_iqcontext
returns the information for that connection only.

Description sp_iqcontext lets the DBA determine what statements are running on the system
at any given moment, and to identify the user and connection that issued the
statement. With this information, you can use this utility to quickly:

• Match the statement text with the equivalent line in sp_iqconnection to get
resource usage and transactional information about each connection

• Match the statement text to the equivalent line in the SQL log created
when the -zr server option is set to ALL or SQL

• Use connection information to match the statement text in sp_iqcontext to
the equivalent line in the .iqmsg file, which includes the query plan when
it is possible for Sybase IQ to collect it

• Match statement text to an IQ stack trace (stktrc-yyyymmdd-hhnnss_#.iq),
if one is produced

• Collate this information with an operating system stack trace that might be
produced, such as pstack on Sun Solaris

The maximum size of statement text collected is the page size of the Catalog
Store.

System stored procedures

758 Sybase IQ

Table 10-6: sp_iqcontext columns

Column name Description

ConnOrCursor CONNECTION or CURSOR.

ConnHandle The ID number of the connection.

Name The name of the server.

Userid The user ID for the connection or cursor.

numIQCursors If column 1 is CONNECTION, the number of cursors
open on this connection.

If column 1 is CURSOR, a number assigned
sequentially to cursors associated with this connection.

IQthreads The number of IQ threads currently assigned to the
connection. Some threads may be assigned but idle.

TxnID The transaction ID of the current transaction.

ConnOrCurCreateTime The time this connection or cursor was created.

IQConnID The 10-digit connection ID displayed as part of all
messages in the .iqmsg file. This is a monotonically
increasing integer unique within a server session.

IQGovernPriority A value that indicates the order in which a user’s queries
are queued for execution. In the range of allowed values,
1 indicates high priority, 2 (the default) medium priority,
and 3 low priority. This value is set per user with the
database option IQGOVERN_PRIORITY. For details, see
Sybase IQ Reference Manual.

CmdLine First 4096 characters of the user command being
executed.

CHAPTER 10 System Procedures

Reference Manual 759

Example The following example shows an excerpt from output when sp_iqcontext is
issued with no parameter, producing results for all current connections.

CONNECTION 701773517 dba7 DBA 6 1 1324 2006-06-04 09:24:17.000 4 NO COMMAND

CURSOR 701773517 dba7 DBA 1 0 1324 2006-06-04 09:24:46.000 4 2 select * from foo1

CURSOR 701773517 dba7 DBA 2 0 1324 2006-06-04 09:24:47.000 4 2 select a from foo1

...

CURSOR 701773517 dba7 DBA 6 0 1324 2006-06-04 09:24:47.000 4 2 select e from foo1

CONNECTION 1271624950 dba7 DBA 0 12 1377 2006-06-04 09:24:12.000 3 2 sp_iqcheckdb

CONNECTION 1841476383 dba7 DBA 10 1 1337 2006-06-04 09:24:19.000 5 2 call sp_iqcontext()

CURSOR 1841476383 dba7 DBA 1 0 1337 2006-06-04 09:24:47.000 5 2 select * from foo

...

CURSOR 1841476383 dba7 DBA 10 0 1337 2006-06-04 09:24:48.000 5 2 select i from foo

The first line of output shows connection 701773517 (IQ Connection ID 4).
This connection is on server dba7, user DBA. It has six active cursors and one
IQ thread, and was created from transaction 1324. This connection was not
executing a command when sp_iqcontext was issued. The next six lines of
output list cursors in use by this connection (only three are shown here.)

Two connections are running stored procedures. Connection 1271624950 is
running sp_iqcheckdb directly from dbisql, has no active cursors but is using
12 IQ threads. Connection 1841476383 has called sp_iqcontext as a procedure,
is using only 1 IQ thread, and has 10 active cursors (only the first and last are
shown here.) Note that in both cases, the name of the stored procedure appears
but not the line of code executing within it.

The connection handle (701773517 for the first connection in this example)
identifies results in the -zr log. The IQ connection ID (4 for the first connection
in this example) identifies results in the .iqmsg file. On UNIX systems you can
use the grep command to locate all instances of the connection handle or
connection ID, making it easy to correlate information from all sources. The 2
before the user command fragment indicates that this is a medium priority
query.

sp_iqcursorinfo procedure
Function Displays detailed information about cursors currently open on the server.

Syntax sp_iqcursorinfo [cursor-name] [, conn-handle]

Permissions DBA permission required.

Usage cursor-name The name of the cursor. If only this parameter is specified,
sp_iqcursorinfo returns information about all cursors that have the specified
name in all connections.

System stored procedures

760 Sybase IQ

conn-handle An integer representing the connection ID. If only this
parameter is specified, sp_iqcursorinfo returns information about all cursors in
the specified connection.

The sp_iqcursorinfo procedure can be invoked without any parameters. If no
parameters are specified, sp_iqcursorinfo returns information about all cursors
currently open on the server. If both parameters are specified, sp_iqcursorinfo
reports information about all of the cursors that have the specified name and
are in the specified connection.

If you do not specify the first parameter, but specify the second parameter, you
must substitute NULL for the omitted parameter. For example,
sp_iqcursorinfo NULL, 1.

Table 10-7: sp_iqcursorinfo usage examples

See also In Chapter 6, “SQL Statements”: DECLARE CURSOR statement [ESQL]
[SP] on page 516 and DECLARE CURSOR statement [T-SQL] on page 522

In Chapter 6, “SQL Statements”: UPDATE (positioned) statement [ESQL]
[SP] on page 664 and DELETE (positioned) statement [ESQL] [SP] on page
527

In Chapter 2, “Database Options”: “FORCE_NO_SCROLL_CURSORS
option” on page 79 and “FORCE_UPDATABLE_CURSORS option” on page
80

“Using cursors in procedures” in Chapter 8, “Using Procedures and Batches”
in the Sybase IQ System Administration Guide

“Cursors in transactions” in Chapter 10, “Transactions and Versioning” in the
Sybase IQ System Administration Guide

Syntax Output

sp_iqcursorinfo Displays information about all cursors currently
open on the server

sp_iqcursorinfo ‘cursor1’ Displays information about the all cursors named
cursor1 in all connections

sp_iqcursorinfo NULL, 3 Displays information about all cursors in
connection 3

sp_iqcursorinfo ‘cursor2’, 4 Displays information about all the cursors named
cursor2 in connection 4

CHAPTER 10 System Procedures

Reference Manual 761

Description The sp_iqcursorinfo stored procedure displays detailed information about
cursors currently open on the server. The sp_iqcursorinfo procedure enables
database administrators to monitor cursor status using just one stored
procedure and view statistics such as how many rows have been updated,
deleted, and inserted.

If you specify one or more parameters, the result is filtered by the specified
parameters. For example, if cursor-name is specified, only information about
the specified cursor is displayed. If conn-handle is specified, sp_iqcursorinfo
returns information only about cursors in the specified connection. If no
parameters are specified, sp_iqcursorinfo displays information about all cursors
currently open on the server.

The sp_iqcursorinfo procedure returns information in the following columns:

Table 10-8: sp_iqcursorinfo columns

Column name Description

Name The name of the cursor

ConnHandle The ID number of the connection

IsUpd Y: the cursor is updatable; N otherwise

IsHold Y: the cursor is a hold cursor; N otherwise

IQConnID The ten digit connection ID displayed as part of all messages in
the .iqmsg file. This number is a monotonically increasing
integer unique within a server session.

UserID User ID (or user name) for the user who created and ran the
cursor

CreateTime The time of cursor creation

CurrentRow The current position of the cursor in the result set

NumFetch The number of times the cursor fetches a row. The same row can
be fetched more than once.

NumUpdate The number of times the cursor updates a row, if the cursor is
updatable. The same row can be updated more than once.

NumDelete The number of times the cursor deletes a row, if the cursor is
updatable.

NumInsert The number of times the cursor inserts a row, if the cursor is
updatable.

RWTabOwner The owner of the table that is opened in RW mode by the cursor.

RWTabName The name of the table that is opened in RW mode by the cursor.

CmdLine The first 4096 characters of the command the user executed

System stored procedures

762 Sybase IQ

Example Display information about all cursors currently open on the server:

sp_iqcursorinfo

Name ConnHandle IsUpd IsHold IQConnID UserID

crsr1 1 Y N 118 DBA
crsr2 3 N N 118 DBA

CreateTime CurrentRow NumFetch NumUpdate
--
2006-06-26 15:24:36.000 19 100000000 200000000
2006-06-26 15:38:38.000 20000 200000000

NumDelete NumInsert RWTabOwner RWTabName CmdLine
--
20000000 3000000000 DBA test1 call proc1()

call proc2()

sp_iqdatatype procedure
Function Displays information about system data types and user-defined data types.

Syntax sp_iqdatatype [type-name], [type-owner], [type-type]

Permissions None required.

Usage type-name The name of the data type.

type-owner The name of the creator of the data type.

type-type The type of data type. Allowed values are:

• SYSTEM: displays information about system defined data types (data
types owned by user SYS or dbo) only

• ALL: displays information about user and system data types

• Any other value: displays information about user data types

The sp_iqdatatype procedure can be invoked without any parameters. If no
parameters are specified, only information about user-defined data types (data
types not owned by dbo or SYS) is displayed by default.

If you do not specify either of the first two parameters, but specify the next
parameter in the sequence, you must substitute NULL for the omitted
parameters. For example, sp_iqdatatype NULL, NULL, SYSTEM and
sp_iqdatatype NULL, user1.

CHAPTER 10 System Procedures

Reference Manual 763

Table 10-9: sp_iqdatatype usage examples

See also “SYSUSERTYPE system table” on page 734

“SYSDOMAIN system table” on page 697

CREATE DOMAIN statement on page 456

Chapter 4, “SQL Data Types”

Description The sp_iqdatatype stored procedure displays information about system and
user-defined data types in a database. User-defined data types are also referred
to as domains. Predefined domain names are not included in the sp_iqdatatype
output.

If you specify one or more parameters, the sp_iqdatatype result is filtered by the
specified parameters. For example, if type-name is specified, only information
about the specified data type is displayed. If type-owner is specified,
sp_iqdatatype only returns information about data types owned by the specified
owner. If no parameters are specified, sp_iqdatatype displays information about
all the user-defined data types in the database.

Syntax Output

sp_iqdatatype Displays information about all user-defined data
types in the database

sp_iqdatatype address Displays information about the user-defined data
type named address

sp_iqdatatype
non_existing_type

No rows returned, as the data type
non_existing_type does not exist

sp_iqdatatype NULL, DBA Displays information about all user-defined data
types owned by DBA

sp_iqdatatype address, DBA Displays information about the data type address
owned by DBA

sp_iqdatatype rowid rowid is a system-defined data type. If there is no
user-defined data type also named rowid, no rows
are returned. (By default, only user-defined data
types are returned.)

sp_iqdatatype rowid, SYS No rows returned, as the data type rowid is not a
user-defined data type (by default, only user-
defined data types are returned)

sp_iqdatatype NULL, NULL,
SYSTEM

Displays information about all system defined data
types (owned by dbo or SYS)

sp_iqdatatype rowid, NULL,
SYSTEM

Displays information about the system data type
rowid

sp_iqdatatype rowid’, dbo,
ALL

No rows returned, as the data type rowid is owned
by SYS

System stored procedures

764 Sybase IQ

The sp_iqdatatype procedure returns information in the following columns:

Table 10-10: sp_iqdatatype columns

Example Display information about the user-defined data type address:

sp_iqdatatype address

type_name creator nulls width scale “default” “check”
address DBA Y 5 0 (NULL) (NULL)

sp_iqdbsize procedure
Function Displays the size of the current database.

Syntax sp_iqdbsize(

[main | local]

)

See also “Specifying page size” in “Overview of memory use” in Chapter 5,
“Managing System Resources” in the Sybase IQ Performance and Tuning
Guide

“Working with database objects” in Chapter 5, “Working with Database
Objects” in the Sybase IQ System Administration Guide

Description Returns the total size of the database. Also returns the number of pages
required to hold the database in memory and the number of IQ pages when the
database is compressed (on disk). If a multiplex database, the default is main,
the size of the shared IQ Store. The optional parameter local specifies only
information about the IQ Local Store owned by the query server.

Column name Description

type_name The name of the data type

creator The owner of the data type

nulls Y indicates the user-defined data type allows nulls; N indicates
the data type does not allow nulls.

width Displays the length of string columns, the precision of numeric
columns, and the number of bytes of storage for all other data
types

scale Displays the number of digits after the decimal point for numeric
data type columns and zero for all other data types

“default” The default value for the data type

“check” The CHECK condition for the data type

CHAPTER 10 System Procedures

Reference Manual 765

Table 10-11: sp_iqdbsize columns

Descriptions of sp_iqdbsize columns:

Database The path name of the current database file.

Physical Blocks An IQ database consists of one or more dbspaces. Each
dbspace has a fixed size, which is originally specified in units of megabytes.
This megabyte quantity is converted to blocks using the IQ page size and the
corresponding block size for that IQ page size. The Physical Blocks column
reflects the cumulative total of each Sybase IQ dbspace size, represented in
blocks.

For the correspondence between IQ page size and block size, see Chapter 5,
“Managing System Resources” in the Sybase IQ Performance and Tuning
Guide.

KBytes The total size of the database in kilobytes. This value is the total size
of the database in blocks (Physical Blocks in the previous sp_iqdbsize column)
multiplied by the block size. The block size depends on the IQ page size.

Pages The total number of IQ pages necessary to represent in memory all of
the data stored in tables and join indexes, as well as the metadata for these
objects. This value is always greater than or equal to the value of Compressed
Pages (the next sp_iqdbsize column).

Compressed Pages The total number of IQ pages necessary to store on disk
the data in tables and join indexes as well as the metadata for these objects. This
value is always less than or equal to the value of Pages (the previous
sp_iqdbsize column), because Sybase IQ compresses pages when the IQ page
is written from memory to disk. The sp_iqdbsize Compressed Pages column
represents the number of compressed pages.

Column name Description

Database The path name of the database file

Physical Blocks Total database size in blocks

KBytes Total database size in kilobytes

Pages Total number of IQ pages

Compressed Pages Total number of IQ pages that are compressed (on disk).
Subset of Pages.

NBlocks Total size in IQ blocks used to store the data in tables and
join indexes

Catalog Blocks Total size in IQ blocks used to store the metadata for
tables and join indexes. Subset of nBlocks.

System stored procedures

766 Sybase IQ

NBlocks The total size in blocks used to store the data in tables and join
indexes. This value is always less than or equal to the sp_iqdbsize Physical
Blocks value.

Catalog Blocks The total size in blocks used to store the metadata for tables
and join indexes.

Example This example displays size information for the database asiqdemo.

sp_iqdbsize

Database
PhysicalBlocks KBytes Pages CompressedPages NBlocks CatalogBlocks
============== ====== ===== =============== ======= =============
/system1/sybase/ASIQ-12_7/demo/asiqdemo.db

1280 522 688 257 1119 18

sp_iqdbspace procedure
Function Displays detailed information about each dbspace.

Syntax sp_iqdbspace [dbspace-name]

Permissions DBA authority required.

See also • “sp_iqdbspaceinfo procedure” on page 769, “sp_iqindexinfo procedure”
on page 790, and “sp_iqrelocate procedure” on page 822

• Chapter 5, “Working with Database Objects” in the Sybase IQ System
Administration Guide

Description The sp_iqdbspace stored procedure displays the usage, properties, and types of
data on each dbspace. You can use this information to determine whether data
must be relocated, and for data that has been relocated, whether the old
versions have been deallocated.

sp_iqdbspace output fields include the dbspace name, path, type, mode, percent
used, size, reserve, writes per stripe, block type, first block, and last block.

Name Name of the dbspace in the SYSFILE system table and as specified in
the CREATE DBSPACE statement. Dbspace names are case sensitive for
databases created with CASE RESPECT and case insensitive for databases
created with CASE IGNORE.

Path Location of the dbspace file or raw partition.

Segment Type Type of dbspace: MAIN, TEMPORARY, or LOCAL.

CHAPTER 10 System Procedures

Reference Manual 767

RWMode Mode of the dbspace: readwrite (RW), relocate (RR), or readonly
(RO).

Usage Percent of dbspace currently in use.

DBSSize Current size of the dbspace file or raw partition. For a raw partition,
this size value can be less than the physical size.

Reserve Reserved space that can be added to the dbspace.

StripeSize Amount of data written to the dbspace before moving to the next
dbspace, if disk striping is on.

BlkTypes Space used by both user data and internal system structures. See
Table 10-12 for identifier values.

FirstBlk First IQ block number assigned to the dbspace.

LastBlk Last IQ block number assigned to the dbspace.

Table 10-12 lists the values of the block type identifiers.

Table 10-12: sp_iqdbspace block types

Identifier Block Type

A Active Version

B Backup Structures

C Checkpoint Log

D Database Identity

F Freelist

H Header Blocks of the free list

I Index advice storage

M Multiplex CM

O Old Version

R Readonly Freelist

X Drop at checkpoint

System stored procedures

768 Sybase IQ

Examples The following output displays information about dbspaces.

sp_iqdbspace;

The following output displays information about dbspaces with three different
readwrite modes (the RWMode column):

sp_iqdbspace;

Name Path
Segment
Type

RW
Mode Usage

DBS
Size Reserve

Stripe
Size

Blk
Types

First
Blk

Last
Blk

IQ__
SYSTEM_
MAIN

D:\IQ\
dbspacedb.iq

MAIN RW 24 10M 100M 8K 1H,64F,
32D,62
A,20X,
128M

1 1280

dbspacedb2 D:\IQ\
dbspacedb.iq2

MAIN RW 9 10M 20M 8K 1H,32F,
56A,
19X

1045440 1046719

dbspacedb3 D:\IQ\
dbspacedb.iq3

MAIN RW 12 10M 40M 8K 1H,32F,
59A,
49X

2090880 2092159

IQ_
SYSTEM_
TEMP

dbspacedb.
iqtmp

TEMPO
RARY

RW 8 10M 10M 8K 1H,64F,
12A,
20X

1 1280

Name Path
Segment
Type

RW
Mode Usage

DBS
Size Reserve

Stripe
Size

Blk
Types

First
Blk

Last
Blk

IQ__
SYSTEM_
MAIN

D:\IQ\
dbspacedb.iq

MAIN RR 4 15M 95M 8K 1H,64F,
62A

1 1920

dbspacedb2 D:\IQ\
dbspacedb.iq2

MAIN RO 5 10M 20M 8K 1H,32F,
56A

1045440 1046719

dbspacedb3 D:\IQ\
dbspacedb.iq3

MAIN RW 25 10M 40M 8K 1H,64F
33R,32D
,59A,
128M

2090880 2092159

IQ_
SYSTEM_
TEMP

dbspacedb.
iqtmp

TEMPO
RARY

RW 8 10M 10M 8K 1H,64F,
32A

1 1280

CHAPTER 10 System Procedures

Reference Manual 769

sp_iqdbspaceinfo procedure
Function Displays the number of blocks used per index per main or local dbspace for one

or all dbspaces.

Syntax sp_iqdbspaceinfo [‘dbspace-name-pattern’] [,’local’]

Permissions DBA authority required.

See also • “sp_iqdbspace procedure” on page 766, “sp_iqindexinfo procedure” on
page 790, “sp_iqspaceinfo procedure” on page 829, and “sp_iqrelocate
procedure” on page 822

• Chapter 5, “Working with Database Objects” in the Sybase IQ System
Administration Guide

Usage dbspace-name-pattern If specified, sp_iqdbspaceinfo displays output only
for dbspaces that match LIKE pattern. sp_iqdbspaceinfo displays all dbspace
names, if dbspace-name-pattern is not specified.

local The local keyword is specified to enable the display of objects in the
multiplex local IQ store. By default on a query server, sp_iqdbspaceinfo
displays information about the shared main IQ store on a query server.

Description The sp_iqdbspaceinfo stored procedure shows the DBA which objects reside on
each dbspace. The DBA can use this information to determine which objects
must be relocated before a dbspace can be dropped.

The results of sp_iqdbspaceinfo are displayed from the point of view of the
version seen by the transaction running the command. Blocks used by other
versions are not shown.

Table 10-13: sp_iqdbspaceinfo columns

Example The following output displays information about all main dbspaces.

sp_iqdbspaceinfo;

Column name Description

dbspace_name Name of the dbspace

Object Table, index, or join index name

MinBlk First block used by this object on this dbspace

MaxBlk Last block used by this object on this dbspace; useful for
determining which objects must be relocated before the dbspace
is resized to a smaller size

ObjSize Size of data for this object on this dbspace

DBSpSz Size of the dbspace

System stored procedures

770 Sybase IQ

The following output displays information about a specific dbspace in the
database:

sp_iqdbspaceinfo IQ_SYSTEM_MAIN;

sp_iqdbstatistics procedure
Function Reports results of the most recent sp_iqcheckdb.

Syntax sp_iqdbstatistics

See also For more information on the use of sp_iqcheckdb and the interpretation of the
sp_iqcheckdb output, see Chapter 2, “System Recovery and Database Repair”
in the Sybase IQ Troubleshooting and Recovery Guide.

Description Displays the database statistics collected by the most recent execution of
sp_iqcheckdb.

Example The following example shows the output from sp_iqdbstatistics. For this
example, the most recent execution of sp_iqcheckdb was the command
sp_iqcheckdb 'allocation database’.

dbspace_name Object MinBlk MaxBlk ObjSize DBSpSz

dbspacedb2 t2 1045495 1045495 8K 10M

dbspacedb2 t2.DBA.t2c1hng 1045537 1045553 136K 10M

dbspacedb3 t1 2090913 2091321 200K 10M

dbspacedb3 t1.DBA.ASIQ_IDX_T429_C1_FP 2090914 2091316 288K 10M

dbspacedb3 t1.DBA.t1c1hg 2090931 2091280 304K 10M

dbspacedb3 t2 2090930 2091261 192K 10M

dbspacedb3 t2.DBA.ASIQ_IDX_T430_C1_FP 2091027 2091277 288K 10M

dbspace_name Object MinBlk MaxBlk ObjSize DBSpSz

IQ_SYSTEM_MAIN t1 82 125 40K 10M

IQ_SYSTEM_MAIN t1.DBA.ASIQ_IDX_T429_C1_FP 109 322 136K 10M

IQ_SYSTEM_MAIN t1.DBA.t1c1hg 127 305 152K 10M

IQ_SYSTEM_MAIN t2 84 107 32K 10M

IQ_SYSTEM_MAIN t2.DBA.ASIQ_IDX_T430_C1_FP 126 321 136K 10M

CHAPTER 10 System Procedures

Reference Manual 771

 DB Statistics Value Flags
=====================================|===========================|=====
DBCC Allocation Mode Report | |
=====================================|===========================|=====
** DBCC Status |Errors Detected |*****

DBCC Work units Dispatched |163 |
DBCC Work units Completed |163 |

=====================================|===========================|=====
Allocation Summary | |
=====================================|===========================|=====

Blocks Total |8192 |
Blocks in Current Version |4954 |
Blocks in All Versions |4954 |
Blocks in Use |4986 |
% Blocks in Use |60 |

** Blocks Leaked |32 |*****
| |

=====================================|===========================|=====
Allocation Statistics | |
=====================================|===========================|=====

Blocks Created in Current TXN |382 |
Blocks To Drop in Current TXN |382 |
Marked Logical Blocks |8064 |
Marked Physical Blocks |4954 |
Marked Pages |504 |
Blocks in Freelist |126553 |
Imaginary Blocks |121567 |
Highest PBN in Use |5432 |

** 1st Unowned PBN |452 |*****
Total Free Blocks |3206 |
Usable Free Blocks |3125 |
% Free Space Fragmented |2 |
Max Blocks Per Page |16 |
1 Block Page Count |97 |
3 Block Page Count |153 |
4 Block Page Count |14 |
...
9 Block Hole Count |2 |
16 Block Hole Count |194 |

| |
Database Objects Checked |1 |
B-Array Count |1 |
Blockmap Identity Count |1 |

=====================================|===========================|=====
Connection Statistics | |
=====================================|===========================|=====

System stored procedures

772 Sybase IQ

sp_iqdroplogin procedure
Function Drops a Sybase IQ user account.

Syntax1 call sp_iqdroplogin (‘userid’)

Syntax2 sp_iqdroplogin ‘userid’

Syntax3 sp_iqdroplogin userid

Syntax4 sp_iqdroplogin (‘userid’)

Permissions DBA authority required.

Usage userid User ID of the user to drop.

See also “sp_iqaddlogin procedure” on page 741

REVOKE statement on page 628

Chapter 12, “Managing User IDs and Permissions” in Sybase IQ System
Administration Guide

Description sp_iqdroplogin drops the specified user, and removes the user from the
IQ_USER_LOGIN_INFO_TABLE.

By default, you can only drop users with sp_iqdroplogin on a multiplex write
server. To enable sp_iqdroplogin on query servers, you must set the database
option MPX_LOCAL_SPEC_PRIV to change the default. For details, see
“MPX_LOCAL_SPEC_PRIV option” on page 123.

Errors The following errors may occur. Causes are listed after each error.

Permission denied: You do not have permission to execute
the procedure sp_iqdroplogin.

Cause: A user without DBA role tried to execute sp_iqdroplogin.

RAISERROR executed: User <loginname> does not exist.

Cause: The message appears if the user tries to drop a nonexistent login.

Examples The following stored procedure calls remove the user rose.

sp_iqdroplogin 'rose'

sp_iqdroplogin rose

call sp_iqdroplogin ('rose')

CHAPTER 10 System Procedures

Reference Manual 773

sp_iqestjoin procedure
Function Estimates the space needed to create join indexes for the tables you specify.

Syntax sp_iqestjoin (table1_name, table1_row_#, table2_name,
table2_row_#, relation, iq_page_size)

Description Returns the amount of space a join index uses based on the tables being joined.
This procedure assumes that the database was created with the default block
size for the specified IQ page size (or else the estimate is incorrect). Table 10-
14 lists the sp_iqestjoin parameters.

Table 10-14: sp_iqestjoin parameters

Example call sp_iqestjoin (‘customer’, 1500000, ‘orders’,
15000000, ‘one>>many’, 65536)

Name Datatype Description

table1_name char(256) Name of the first table in the join.

table1_row_# int Number of rows in the first table that
participates in the join.

table2_name char(256) Name of the second table in the join.

table2_row_# int Number of rows in the second table that
participates in the join.

relation char(9) Type of join, which can be “one>>many” or
“one>>one” (do not leave any spaces between
the words and the operator). The default is
“one>>many”.

iq_page_size smallint The page size defined for the IQ segment of the
database (must be a power of 2 between 1024
and 524288; the default is 131072).

Cases Indexsize Create time Msg

Table1:customer

Rows: 1500000

Columns:

8

Width:

223

Table2: orders

Rows: 15000000

Columns:

9

Width:

134

System stored procedures

774 Sybase IQ

sp_iqestdbspaces procedure
Function Estimates the number and size of dbspaces needed for a given total index size.

Syntax sp_iqestdbspaces (db_size_in_bytes, iq_page_size,
min_#_of_bytes, max_#_of_bytes)

Description Displays information about the number and size of dbspace segments based on
the size of the database, the IQ page size, and the range of bytes per dbspace
segment. This procedure assumes that the database was created with the default
block size for the specified IQ page size (or else the estimate is incorrect).
Table 10-15 lists the sp_iqestdbspaces parameters.

Table 10-15: sp_iqestdbspaces parameters

Usage sp_iqestdbspaces displays four types of recommendations, depending on how
much of the data is unique:

min If there is little variation in data, you can choose to create only the
dbspace segments of the sizes recommended as min. These recommendations
reflect the best possible compression on data with the least possible variation.

avg If your data has an average amount of variation, create the dbspace
segments recommended as min, plus additional segments of the sizes
recommended as avg.

IQpagesize:

65536

Min Case 48001024 3h0m/CPU

Max Case 95449088 9h6m/CPU

Avg Case 70496256 5h53m/CPU

Cases Indexsize Create time Msg

Name Datatype Description

db_size_in_bytes decimal(16) Size of the database in bytes.

iq_page_size smallint The page size defined for the IQ segment of
the database (must be a power of 2 between
65536 and 524288; the default is 131072).

min_#_of_bytes int The minimum number of bytes per dbspace
segment. The default is 20,000,000
(20MB).

max_#_of_bytes int The maximum number of bytes per dbspace
segment. The default is 2,146,304,000
(2.146GB).

CHAPTER 10 System Procedures

Reference Manual 775

max If your data has a high degree of variation (many unique values), create
the dbspace segments recommended as min, avg, and max.

spare If you are uncertain about the number of unique values in your data,
create the dbspace segments recommended as min, avg, max, and spare. You
can always delete unused segments after loading your data, but creating too
few can cost you some time.

❖ Using sp_iqestdbspaces with other system stored procedures

1 Run sp_iqestjoin for all the table pairs you expect to join frequently.

2 Select one of the suggested index sizes for each pair of tables.

3 Total the index sizes you selected for all tables.

4 Run sp_iqestspace for all tables.

5 Total all of the RAW DATA index sizes returned by sp_iqestspace.

6 Add the total from step 3 to the total from step 5 to determine total index
size.

7 Use the total index size calculated in step 6 as the db_size_in_bytes
parameter in sp_iqestdbspaces.

Results of sp_iqestdbspaces are only estimates, based on the average size of an
index. The actual size depends on the data stored in the tables, particularly on
how much variation there is in the data.

Sybase strongly recommends that you create the spare dbspace segments,
because you can delete them later if they are unused.

Example sp_iqestdbspaces 12000000000, 65536, 500000000,
2146304000

dbspaces Type Size Msg

1 min 2146304000

2 min 2146304000

3 min 507392000

4 avg 2146304000

5 max 2053697536

6 spare 1200001024

System stored procedures

776 Sybase IQ

This example estimates the size and number of dbspace segments needed for a
12GB database. Sybase IQ recommends that you create a minimum of 3
segments (listed as min) for the best compression, if you expect little
uniqueness in the data. If the data has an average amount of variation, 1 more
segment (listed as avg) should be created. Data with a lot of variation (many
unique values, requiring extensive indexing), may require 1 more segment
(listed as max). You can ensure that your initial load succeeds by creating a
spare segment of 1200001024 bytes. Once you have loaded the database, you
can delete any unused dbspace segments.

sp_iqestspace procedure
Function Estimates the amount of space needed to create an index based on the number

of rows in the table.

Syntax sp_iqestspace (table_name, #_of_rows, iq_page_size)

Description Displays the amount of space that a database requires based on the number of
rows in the underlying database tables and on the database IQ page size. This
procedure assumes that the database was created with the default block size for
the specified IQ page size (or else the estimate is incorrect). Table 10-16 lists
the sp_iqestspace parameters.

Table 10-16: sp_iqestspace parameters

sp_iqevent procedure
Function Displays information about system and user-defined events.

Syntax sp_iqevent [event-name], [event-owner], [event-type]

Permissions None required.

Usage event-name The name of the event.

event-owner The owner of the event.

event-type The type of event. Allowed values are:

Name Datatype Description

table_name char(256) Name of the table

#_of_rows int Number of rows in the table

iq_page_size smallint The page size defined for the IQ segment of
the database (must be a power of 2 between
65536 and 524288; the default is 131072)

CHAPTER 10 System Procedures

Reference Manual 777

• SYSTEM: displays information about system events (events owned by user
SYS or dbo) only

• ALL: displays information about user and system events

• Any other value: displays information about user events

The sp_iqevent procedure can be invoked without any parameters. If no
parameters are specified, only information about user events (events not owned
by dbo or SYS) is displayed by default.

If you do not specify either of the first two parameters, but specify the next
parameter in the sequence, you must substitute NULL for the omitted
parameters. For example, sp_iqevent NULL, NULL, SYSTEM and
sp_iqevent NULL, user1.

Table 10-17: sp_iqevent usage examples

See also “SYSEVENT system table” on page 697

“SYSEVENTTYPE system table” on page 698

CREATE EVENT statement on page 458

Syntax Output

sp_iqevent Displays information about all user events in the
database

sp_iqevent e1 Displays information about the event e1

sp_iqevent
non_existing_event

No rows returned, as the event non_existing_event
does not exist

sp_iqevent NULL, DBA Displays information about all events owned by
DBA

sp_iqevent e1, DBA Displays information about the event e1 owned by
DBA

sp_iqevent ev_iqbegintxn ev_iqbegintxn is a system-defined event. If there is
no user-defined event also named ev_iqbegintxn,
no rows are returned. (By default only user-
defined events are returned.)

sp_iqevent ev_iqbegintxn, dbo No rows returned, as the event ev_iqbegintxn is not
a user event (by default only user events returned)

sp_iqevent NULL, NULL,
SYSTEM

Displays information about all system events
(owned by dbo or SYS)

sp_iqevent ev_iqbegintxn,
NULL, SYSTEM

Displays information about the system event
ev_iqbegintxn

sp_iqevent ev_iqbegintxn,
dbo, ALL

Displays information about the system event
ev_iqbegintxn owned by dbo

System stored procedures

778 Sybase IQ

Chapter 18, “Automating Tasks Using Schedules and Events” in the Sybase IQ
System Administration Guide

Description The sp_iqevent stored event displays information about events in a database. If
you specify one or more parameters, the result is filtered by the specified
parameters. For example, if event-name is specified, only information about
the specified event is displayed. If event-owner is specified, sp_iqevent only
returns information about events owned by the specified owner. If no
parameters are specified, sp_iqevent displays information about all the user
events in the database.

The sp_iqevent procedure returns information in the following columns:

Table 10-18: sp_iqevent columns

Examples Display information about the user-defined event e1:

sp_iqevent e1

event_name event_owner event_type enabled action
e1 DBA (NULL) Y (NULL)

condition location remarks
(NULL) A (NULL)

Display information about all system events:

sp_iqevent NULL, NULL, SYSTEM

event_name event_owner event_type enabled action
ev_iqbegintxn dbo IQTLVAvailable Y begin call

dbo.sp_iqlog...

Column name Description

event_name The name of the event

event_owner The owner of the event

event_type For system events, the event type as listed in the
SYSEVENTTYPE system table

enabled Indicates whether or not the event is allowed to fire (Y/N)

action The event handler definition

condition The WHERE condition used to control firing of the event handler

location The location where the event is allowed to fire:

• C = consolidated

• R = remote

• A = all

remarks A comment string

CHAPTER 10 System Procedures

Reference Manual 779

ev_iqmpxcompact dbo (NULL) N begin Declare
_Catalog...

condition location remarks
(NULL) A (NULL)
(NULL) A (NULL)

sp_iqhelp procedure
Function Displays information about system and user-defined objects and data types.

Syntax sp_iqhelp [obj-name], [obj-owner], [obj-category], [obj-type]

Permissions None required.

Usage obj-name The name of the object.

obj-owner The owner of the object.

obj-category An optional parameter that specifies the category of the object.

Table 10-19: sp_iqhelp obj-category parameter values

Columns, constraints, and indexes are associated with tables and cannot be
queried directly. When a table is queried, the information about columns,
indexes, and constraints associated with that table is displayed.

If the specified object category is not one of the allowed values, an “Invalid
object category” error is returned.

obj-type The type of object. Allowed values are:

• SYSTEM: displays information about system objects (objects owned by
user SYS or dbo) only

• ALL: displays information about all objects

By default, only information about non-system objects is displayed. If the
specified object type is not SYSTEM or ALL, an “Invalid object type”
error is returned.

object-type parameter Specifies

“table” The object is a base table

“view” The object is an view

“procedure” The object is a stored procedure or function

“event” The object is an event

“datatype” The object is a system or user-defined data type

System stored procedures

780 Sybase IQ

The sp_iqhelp procedure can be invoked without any parameters. If no
parameters are specified, sp_iqhelp displays information about all independent
objects in the database, that is, base tables, views, stored procedures, functions,
events, and data types.

If you do not specify any of the first three parameters, but specify the next
parameter in the sequence, you must substitute NULL for the omitted
parameters. For example, sp_iqhelp NULL, NULL, NULL, SYSTEM and
sp_iqhelp NULL, user1, “table”.

Enclose the obj-category parameter in single or double quotes., except when
NULL.

If sp_iqhelp does not find an object in the database that satisfies the specified
description, the error “Object not found” is returned.

CHAPTER 10 System Procedures

Reference Manual 781

Table 10-20: sp_iqhelp usage examples

See also In Chapter 9, “System Tables”: “SYSPROCEDURE system table” on page
718, “SYSTABLE system table” on page 728, “SYSEVENT system table” on
page 697, “SYSUSERTYPE system table” on page 734, “SYSCOLUMN
system table” on page 694, “SYSCONSTRAINT system table” on page 696,
“SYSINDEX system table” on page 703, “SYSPROCPARM system table” on
page 720, “SYSDOMAIN system table” on page 697

Description The sp_iqhelp stored procedure displays information about system and user-
defined objects and data types in an IQ database. Objects supported by
sp_iqhelp are tables, views, columns, indexes, join indexes, constraints, stored
procedures, functions, events, and data types.

Syntax Output

sp_iqhelp Displays summary information about all user-
defined tables, views, procedures, events, and data
types in the database

sp_iqhelp t1, u1, “table” Displays information about table t1 owned by user
u1 and the columns, indexes, and constraints
associated with t1

sp_iqhelp NULL, u1, “view” Displays information about view v1 owned by user
u1 and the columns associated with v1

sp_iqhelp sp2 Displays information about the procedure sp2 and
the parameters of sp2

sp_iqhelp e1 Displays information about the event e1

sp_iqhelp dt1 Displays information about the data type dt1

sp_iqhelp NULL, NULL,
NULL, SYSTEM

Displays summary information about all system
objects (owned by dbo or SYS)

sp_iqhelp non_existing_obj Error “Object ‘non_existing_obj’ not
found” returned, as the object non_existing_obj
does not exist

sp_iqhelp NULL,
non_existing_user

Error “User ‘non_existing_user’ not
found” returned, as the user non_existing_user
does not exist

sp_iqhelp t1, NULL, “apple” Error “Invalid object category
‘apple’” returned, as “apple” is not an allowed
value for obj-category

sp_iqhelp t1, NULL, NULL,
“USER”

Error “Invalid object type ‘USER’”
returned, as “USER” is not an allowed value for
obj-type

System stored procedures

782 Sybase IQ

If you specify one or more parameters, the result is filtered by the specified
parameters. For example, if obj-name is specified, only information about the
specified object is displayed. If obj-owner is specified, sp_iqhelp returns
information only about objects owned by the specified owner. If no parameters
are specified, sp_iqhelp displays summary information about all user-defined
tables, views, procedures, events, and data types in the database.

The sp_iqhelp procedure returns either summary or detailed information,
depending on whether the specified parameters match multiple objects or a
single object. The output columns of sp_iqhelp are similar to the columns
displayed by the stored procedures sp_iqtable, sp_iqindex, sp_iqview, and
sp_iqconstraint.

When multiple objects match the specified sp_iqhelp parameters, sp_iqhelp
displays summary information about those objects.

Table 10-21: sp_iqhelp summary information

When a single object matches the specified sp_iqhelp parameters, sp_iqhelp
displays detailed information about the object.

Object type Columns displayed

base table table_name, table_owner, server_type, location,
table_constraints, remarks

view view_name, view_creator, view_def, server_type, location,
remarks

stored procedure proc_name, proc_creator, proc_defn, replicate, srvid,
remarks

function proc_name, proc_creator, proc_defn, replicate, remarks

event event_name, event_creator, enabled, location, event_type,
action, external_action, condition, remarks

system and user-
defined data types

type_name, creator, nulls, width, scale, default, check

CHAPTER 10 System Procedures

Reference Manual 783

Table 10-22: sp_iqhelp detailed information

Object type Description Columns

 table Displays information about the specified
base table, its columns, indexes,
constraints, and join indexes (if the table
participates in any join indexes)

• table columns: table_name, table_owner,
server_type, location, table_constraints, remarks

• column columns: column_name, domain_name,
width, scale, nulls, default, check, pkey,
user_type, cardinality, est_cardinality, remarks

• index columns: index_name, column_name,
index_type, unique_index, location, remarks

• constraint columns: constraint_name (role),
column_name, index_name, constraint_type,
foreigntable_name, foreigntable_owner,
foreigncolumn_name, foreignindex_name,
location

• join index columns: joinindex_name, creator,
left_table_name, left_table_owner,
left_column_name, join_type, right_table_name,
right_table_owner, right_column_name,
key_type, valid, remarks

view Displays information about the specified
view and its columns

• view columns: view_name, view_creator,
view_def, server_type, location, remarks

• column columns: column_name, domain_name,
width, scale, nulls, default, check, pkey,
user_type, cardinality, est_cardinality, remarks

stored procedure Displays information about the specified
procedure and its parameters

• procedure columns: proc_name, proc_creator,
proc_defn, replicate, srvid, remarks

• parameter columns: parameter_name, type,
width, scale, default, mode

function Displays information about the specified
function and its parameters

• function columns: proc_name, proc_creator,
proc_defn, replicate, srvid, remarks

• parameter columns: parameter_name, type,
width, scale, default, mode

event Displays information about the specified
event

• event columns: event_name, event_creator,
enabled, location, event_type, action,
external_action, condition, remarks

data type Displays information about the specified
data type

• data type columns: type_name, creator, nulls,
width, scale, default, check

System stored procedures

784 Sybase IQ

Note For descriptions of the individual output columns listed in Table 10-22,
refer to the descriptions of the following stored procedures:

• table: “sp_iqtable procedure” on page 839

• column: “sp_iqcolumn procedure” on page 751

• index: “sp_iqindex and sp_iqindex_alt procedures” on page 786

• constraint: “sp_iqconstraint procedure” on page 756

• join index: “sp_iqjoinindex procedure” on page 795

• view: “sp_iqview procedure” on page 848 and the Adaptive Server
Enterprise catalog procedure sp_columns (for view columns)

• stored procedure and function: “sp_iqprocedure procedure” on page 813
and “sp_iqprocparm procedure” on page 816 (for procedure parameters)

• event: “sp_iqevent procedure” on page 776

• data type: “sp_iqdatatype procedure” on page 762

Adaptive Server Enterprise compatibility The Sybase IQ sp_iqhelp stored
procedure is similar to the Adaptive Server Enterprise sp_help procedure,
which displays information about any database object listed in the
SYSOBJECTS system table and about system and user-defined data types.

Sybase IQ has some architectural differences from ASE in terms of types of
objects supported and the namespace of objects. In ASE, all objects (tables,
views, stored procedures, logs, rules, defaults, triggers, check constraints,
referential constraints, and temporary objects) are stored in the SYSOBJECTS
system table and are in the same namespace. The objects supported by IQ
(tables, views, stored procedures, events, primary keys, and unique, check, and
referential constraints) are stored in different system tables and are in different
namespaces. For example, in Sybase IQ a table can have the same name as an
event or a stored procedure.

Because of the architectural differences between Sybase IQ and ASE, the types
of objects supported by and the syntax of Sybase IQ sp_iqhelp are different
from the supported objects and syntax of ASE sp_help; however, the type of
information about database objects that is displayed by both stored procedures
is similar.

CHAPTER 10 System Procedures

Reference Manual 785

Examples Display detailed information about the table sale:

sp_iqhelp sale

 Table_name Table_owner Server_type Location Remarks table_constraints
========== =========== ========== ======= == ===== =============

 sale DBA IQ Main (NULL) (NULL)

column_name domain_name width scale nulls default cardinality
========== =========== ===== ===== ===== ======= ===========
prod_id integer 4 0 Y (NULL) 0
month_num integer 4 0 Y (NULL) 0
rep_id integer 4 0 Y (NULL) 0
sales integer 4 0 Y (NULL) 0

est_cardinality remarks check
============== ======= =====
0 (NULL) (NULL)
0 (NULL) (NULL)
0 (NULL) (NULL)
0 (NULL) (NULL)

index_name column_name index_type unique_index location
========== =========== =========== =========== ========
ASIQ_IDX_T463_C2_FP month_num FP N Main
ASIQ_IDX_T463_C1_FP prod_id FP N Main
ASIQ_IDX_T463_C3_FP rep_id FP N Main
ASIQ_IDX_T463_C4_FP sales FP N Main

remarks
=======
(NULL)
(NULL)
(NULL)
(NULL)

Display detailed information about the procedure sp_customer_list:

sp_iqhelp sp_customer_list
proc_name proc_owner proc_defn
========== =========== =========
sp_customer_list DBA create procedure DBA.sp_customer_list()

result(id integer company_name char(35))
begin

System stored procedures

786 Sybase IQ

select id company_name from customer
end

replicate srvid remarks
========= ===== =======
N (NULL) (NULL)

parm_name parm_type parm_mode domain_name width scale
========= ========= ========= =========== ===== =====
id result out integer 4 0
company_name result out char 35 0

default remarks
======= ========
(NULL) (NULL)

sp_iqindex and sp_iqindex_alt procedures
Function Lists indexes and information about them.

Syntax 1 sp_iqindex ([table_name],[column_name],[table_owner])

Syntax 2 sp_iqindex [table_name='tablename'],
[column_name='columnname'],[table_owner='tableowner']

Syntax 3 sp_iqindex_alt ([table_name],[column_name],[table_owner])

Syntax 4 sp_iqindex_alt [table_name='tablename'],
[column_name='columnname'],[table_owner='tableowner']

Usage Syntax1 If you do not specify either of the first two parameters, but specify
the next parameter in the sequence, you must substitute NULL for the omitted
parameters. For example, sp_iqindex NULL,NULL,DBA and sp_iqindex
department,NULL,DBA.

Syntax2 The parameters can be specified in any order. Enclose them in single
quotes.

Syntax 3 and 4 Produces slightly different output when a multicolumn index
is present. Allows the same options as Syntax 1 and 2.

Description Displays information about indexes in the database. Specifying one of the
parameters returns the indexes from only that table, column, or tables owned
by the specified user. Specifying more than one parameter filters the results by
all of the parameters specified. Specifying no parameters returns all indexes for
all tables in the database.

CHAPTER 10 System Procedures

Reference Manual 787

Table 10-23: sp_iqindex and sp_iqindex_alt columns

The sp_iqindex format always produces one line per index. The sp_iqindex_alt
format produces one line per index per column if there is a multicolumn index.

Examples The following variations in syntax both return all indexes on columns with the
name dept_id:

call sp_iqindex (NULL,'dept_id')
sp_iqindex column_name='dept_id'

The following variations in syntax both return all indexes in the table
department that is owned by table owner DBA:

sp_iqindex department,NULL,DBA
sp_iqindex table_name='department',table_owner='DBA'

Column name Description

table_name The name of the table

table_owner The owner of the table

column_name The name of the column; multiple names can appear in
a multicolumn index

index_type The abbreviated index type (for example, HG, LF)

index_name The name of the index

unique_index 'U' indicates the index is a unique index; otherwise, 'N'

location TEMP = IQ Temp Store, MAIN = IQ Store, LOCAL =
IQ Local Store, SYSTEM = Catalog Store

remarks User comments added with the COMMENT statement

table_
name

table_
owner

column_
name

index_
type index_name

unique_
index location remarks

department DBA dept_id FP ASIQ_IDX_T201_C1_FP N Main (NULL)

department DBA dept_id HG ASIQ_IDX_T201_C1_HG U Main (NULL)

employee DBA dept_id FP ASIQ_IDX_T202_C5_FP N Main (NULL)

table_
name

table_
owner

column_
name

index_
type index_name

unique_
index location remarks

department DBA dept_head_id FP ASIQ_IDX_T201_C3_FP N Main (NULL)

department DBA dept_id FP ASIQ_IDX_T201_C1_FP N Main (NULL)

department DBA dept_id HG ASIQ_IDX_T201_C1_HG U Main (NULL)

department DBA dept_name FP ASIQ_IDX_T201_C2_FP N Main (NULL)

System stored procedures

788 Sybase IQ

The following variations in syntax for sp_iqindex_alt both return indexes on the
table employee that contain the column city. The index emp_loc is a
multicolumn index on the columns city and state. sp_iqindex_alt displays one
row per column for a multicolumn index.

sp_iqindex_alt employee,city
sp_iqindex_alt table_name='employee',

column_name='city'

Notice that the output from the sp_iqindex procedure for the same table and
column is slightly different:

sp_iqindex employee,city
sp_iqindex table_name='employee',column_name='city'

sp_iqindexadvice procedure
Function Displays stored index advice messages. Optionally clears advice storage.

Syntax sp_iqindexadvice ([resetflag])

Permissions This procedure is owned by dbo. Users without DBA authority must be granted
execute permission for the stored procedure in order to run it.

Usage resetflag Lets the caller clear the index advice storage. If resetflag is
nonzero, all advice is removed after the last row has been retrieved.

See also “INDEX_ADVISOR option” on page 85

Description Allows users to query aggregated index advisor messages using SQL.
Information can be used to help decide which indexes or schema changes will
affect the most queries.

INDEX_ADVISOR columns are described as follows:

table_
name

table_
owner

column_
name

index_
type index_name

unique_
index remarks

employee DBA city FP ASIQ_IDX_T452_C7_FP N (NULL)

employee DBA city HG emp_loc N (NULL)

employee DBA state HG emp_loc N (NULL)

table_
name

table_
owner

column_
name

index_
type index_name

unique_
index location remarks

employee DBA city FP ASIQ_IDX_T452_C7_FP N Main (NULL)

employee DBA city,state HG emp_loc N Main (NULL)

CHAPTER 10 System Procedures

Reference Manual 789

• Advice – Unique advice message

• NInst – Number of instances of message

• LastDT – Last Date/Time advice was generated

Examples Table 10-24 illustrates sample output from the sp_iqindexadvice procedure.

Table 10-24: Sample sp_iqindexadvice output

sp_iqindexfragmentation procedure
Function Reports information about the amount of empty space within the btrees,

garrays,and bitmaps in Sybase IQ indexes.

Syntax dbo.sp_iqindexfragmentation (‘target ‘)

target: table table-name (index index-name (...))

Permissions This procedure is owned by dbo. Users without DBA authority need to be
granted execute permission in order to run it.

Usage table-name Target table table-name reports on all nondefault indexes in the
named table.

index-name Target index index-name reports on the named index within the
specified table. You may specify multiple indexes within the table, but must
repeat the index keyword with each index specified.

Example The following procedure reports the internal index fragmentation for
nonunique HG index cidhg in table customers:

dbo.sp_iqindexfragmentation (‘index customers.cidhg ‘)

Advice NInst LastDT

Add a CMP index on DBA.tb (c2, c3)
Predicate: (tb.c2 = tb.c3)

2073 2006-04-07 16:37:31.000

Convert HG index on DBA.tb.c4 to a
unique HG

812 2006-04-06 10:01:15.000

Join Key Columns DBA.ta.c1 and
DBA.tb.c1 have mismatched data types

911 2006-02-25 20:59:01.000

Index Index type Btree node pages Fill factor percent

dba.customers.cidhg HG 3 75

SQLCODE 0

Fill Percent btree pages garray pages bitmap pages

0 - 10% 0 0 0

System stored procedures

790 Sybase IQ

According to this output, of the 182 btree pages in nonunique HG index cidhg,
2 are between 61% and 70% full, 138 are 71% to 80% full, 24 are 81% - 90%
full, and 18 are 91% - 100% full. Usage for garray and bitmap pages is reported
in the same manner. All percentages are truncated to the nearest percentage
point. HG indexes also display the value of option
GARRAY_FILL_FACTOR_PERCENT. Those index types that use a btree also
display the number of node (nonleaf) pages. These are HG, LF, WD, DATE, and
DTTM.

If an error occurred during execution of the stored procedure for this index, the
SQLCODE would be nonzero.

sp_iqindexinfo procedure
Function Displays the number of blocks used per index per main or local dbspace for a

given object.

Syntax sp_iqindexinfo ‘{ database | local
| [table table-name | index index-name] [...] }
[resources resource-percent]’

Permissions DBA authority required.

See also • “sp_iqdbspace procedure” on page 766, “sp_iqdbspaceinfo procedure”
on page 769, “sp_iqspaceinfo procedure” on page 829, and “sp_iqrelocate
procedure” on page 822

• Chapter 5, “Working with Database Objects” in the Sybase IQ System
Administration Guide

11 - 20% 0 0 0

21 - 30% 0 0 0

31-40% 0 0 22

41 - 50% 0 0 0

51 - 60% 0 0 10

61 - 70% 2 0 120

71 - 80 5 138 3 64

81 - 90% 24 122 14

91 - 100% 18 1 0

Index Index type Btree node pages Fill factor percent

CHAPTER 10 System Procedures

Reference Manual 791

Usage You can request index information for the entire database or you can specify
any number of table or index parameters. If a table name is specified,
sp_iqindexinfo returns information on all indexes in the table. If an index name
is specified, only the information on that index is returned.

You cannot specify a join index by name. Use the database or local keyword to
display join indexes.

If the specified table-name or index-name is ambiguous or the object cannot be
found, an error is returned.

The LOCAL keyword is specified as a target to enable the display of objects in
the IQ Local Store. By default in a multiplex database, sp_iqindexinfo displays
information about the shared IQ Store on a query server. If individual tables or
indexes are specified, then the store to display is selected automatically. You
cannot specify targets from both the shared IQ Store and IQ Local Stores.

resource-percent must be an integer greater than 0. The resources percentage
allows you to limit the CPU utilization of the sp_iqindexinfo procedure by
specifying the percent of total CPUs to use.

Description The sp_iqindexinfo stored procedure shows the DBA on which dbspaces a given
object resides. The DBA can use this information to determine which dbspaces
must be given relocate mode to relocate the object.

The results of sp_iqindexinfo are displayed from the point of view of the version
seen by the transaction running the command. Blocks used by other versions
are not shown.

Table 10-25: sp_iqindexinfo columns

Column name Description

Object Table, index, or join index name

dbspace_name Name of the dbspace

ObjSize Size of data for this object on this dbspace

DBSpPct Percent of dbspace used by this object

MinBlk First block used by this object on this dbspace

MaxBlk Last block used by this object on this dbspace; useful for
determining which objects must be relocated before the dbspace
is resized to a smaller size

System stored procedures

792 Sybase IQ

Examples The following command displays index information about the table t2:

sp_iqindexinfo 'table t2';

Because you cannot specify targets from both the shared IQ Store and IQ Local
Stores, the following command returns an error, if local_tab1 is a local table and
main_tab1 is a shared IQ table:

sp_iqindexinfo 'table local_tab1 table main_tab1'

sp_iqindexmetadata procedure
Function Displays the index metadata for the given index. You can optionally restrict the

output to only those indexes on a specified table, and to only those indexes
belonging to a specified owner.

Syntax dbo.sp_iqindexmetadata {'index-name'
[, 'table-name' [, 'owner-name']] }

Permissions DBA authority or EXECUTE permission required.

See also • “sp_iqindex and sp_iqindex_alt procedures” on page 786,
“sp_iqindexfragmentation procedure” on page 789, “sp_iqindexinfo
procedure” on page 790, and “sp_iqindexsize procedure” on page 793

• Chapter 5, “Working with Database Objects” in the Sybase IQ System
Administration Guide

Usage Specifying a table name limits output to those indexes belonging to that table.
Specifying an owner name limits output to indexes owned by that owner.
Omitted parameters default to NULL. You can specify only one index per
procedure.

Description The first row of output is the owner name, table name, and index name for the
index.

Object dbspace_name ObjSize DBSpPct MinBlk MaxBlk

t2 IQ_SYSTEM_MAIN 32K 1 84 107

t2 dbspacedb2 160K 2 1045495 1045556

t2 dbspacedb3 8K 1 2090930 2090930

t2.DBA.ASIQ_IDX_T430_C1_FP IQ_SYSTEM_MAIN 136K 2 126 321

t2.DBA.ASIQ_IDX_T430_C1_FP dbspacedb3 152K 2 2091032 2091053

t2.DBA.t2c1hng dbspacedb2 136K 2 1045537 1045553

CHAPTER 10 System Procedures

Reference Manual 793

Subsequent rows of output are specific to the type of index specified.

Table 10-26: sp_iqindexmetadata output rows

Examples The following command displays index information about the HG index
hg_index_col54:

sp_iqindexmetadata 'hg_index_col54' , 'metal' , 'DBA';

sp_iqindexsize procedure
Function Gives the size of the specified index.

Syntax sp_iqindexsize [[owner.] table.] index_name

Index type Metadata returned

CMP, DATE,
DTTM, TIME

Type, Version

FP Type, Version, LookupPages, Style, LookupEntries,
1stLookupPage, LargeLOBs, SmallLOBs, IQ Unique, LOB
Compression (only if column datatype is long varchar or long
binary)

HG Type, Version, Distinct Keys

HNG Type, Version, BitsPerBlockmap, NumberOfBits

LD Type, Version<ld>, Version, Distinct Keys

LF Type, Version, IndexStatus, NumberOfBlockmaps,
BitsPerBlockmap, Distinct Keys

WD Type, Version, KeySize, Delimiters, DelimiterCount,
MaxKeyWordLength, PermitEmptyWord

'DBA', 'metal' 'hg_index_col54'

'Type', 'HG', ''

'Version', '2', ''

'Distinct Keys', '0', ''

System stored procedures

794 Sybase IQ

Description Table 10-27: sp_iqindexsize columns

Returns the total size of the index in bytes and kilobytes, and an Info column
that describes the component of the IQ index for which the KBytes, Pages, and
Compressed Pages are reported. The components described vary by index type.
For example, the default (FP) index includes BARRAY (barray) and Bitmap
(bm) components. The Low_Fast (LF) index includes Btree (bt) and Bitmap
(bm) components.

Also returns the number of pages required to hold the object in memory and the
number of IQ pages when the index is compressed (on disk).

You must specify the index_name parameter with this procedure. To restrict
results to this index name in a single table, include owner.table. when
specifying the index.

Example sp_iqindexsize ASIQ_IDX_T452_C19_FP

Column name Description

Username Index owner.

Indexname Index for which results are returned, including the table
name.

Type Index type.

Info Component of the IQ index for which the KBytes,
Pages, and Compressed Pages are being reported. The
components vary by index type. For example, the default
(FP) index includes BARRAY (barray) and Bitmap (bm)
components. The Low_Fast (LF) index includes Btree
(bt) and Bitmap (bm) components.

KBytes Physical object size in KB.

Pages Number of IQ pages needed to hold the object in
memory.

Compressed Pages Number of IQ pages when the object is compressed (on
disk).

Username Indexname Type Info KBytes Pages
Compressed
Pages

DBA employee.ASIQ_IDX_T452_C19_FP FP Total 288 4 2

DBA employee.ASIQ_IDX_T452_C19_FP FP vdo 0 0 0

DBA employee.ASIQ_IDX_T452_C19_FP FP bt 0 0 0

DBA employee.ASIQ_IDX_T452_C19_FP FP garray 0 0 0

DBA employee.ASIQ_IDX_T452_C19_FP FP bm 136 2 1

DBA employee.ASIQ_IDX_T452_C19_FP FP barray 152 2 1

DBA employee.ASIQ_IDX_T452_C19_FP FP dpstore 0 0 0

CHAPTER 10 System Procedures

Reference Manual 795

sp_iqjoinindex procedure
Function Displays information about join indexes.

Syntax sp_iqjoinindex [left-table-name], [left-column-name], [left-table-
owner], [right-table-name], [right-column-name], [right-table-owner]

Permissions None required.

Usage left-table-name The name of the table that forms the left side of the join
operation.

left-column-name The name of the column that is part of the left side of the
join.

left-table-owner The owner of the table that forms the left side of the join
operation.

right-table-name The name of the table that forms the right side of the join
operation.

right-column-name The name of the column that is part of the right side of
the join.

right-table-owner The owner of the table that forms the right side of the join
operation.

The sp_iqjoinindex procedure can be invoked without any parameters. If no
parameters are specified, sp_iqjoinindex displays information about all join
indexes on IQ base tables. Note that join index tables are always IQ base tables.
Join index tables cannot be temporary tables, remote tables, or proxy tables.

If you do not specify any of the first five parameters, but specify the next
parameter in the sequence, you must substitute NULL for the omitted
parameters. For example, sp_iqjoinindex NULL, NULL, NULL, t2, n2,
DB’ and sp_iqjoinindex t1, NULL, NULL, t2.

DBA employee.ASIQ_IDX_T452_C19_FP FP largelob 0 0 0

Username Indexname Type Info KBytes Pages
Compressed
Pages

System stored procedures

796 Sybase IQ

Table 10-28: sp_iqjoinindex usage examples

See also In Chapter 9, “System Tables”: “SYSIQJOININDEX system table” on page
710, “SYSIQJOINIXTABLE system table” on page 712,
“SYSIQJOINIXCOLUMN system table” on page 711

CREATE JOIN INDEX statement on page 481

Chapter 6, “Using Sybase IQ Indexes” in the Sybase IQ System Administration
Guide

Description The sp_iqjoinindex stored procedure displays information about join indexes in
a database. If you specify one or more parameters, the result is filtered by the
specified parameters. For example, if left-table-name is specified,
sp_iqjoinindex displays all the join indexes in which that table forms the left
side of the join. If left-table-owner is specified, sp_iqjoinindex only returns join
indexes in which the left table is owned by the specified owner. If no
parameters are specified, sp_iqjoinindex displays information about all join
indexes in the database.

The sp_iqjoinindex procedure returns information in the following columns:

Syntax Output

sp_iqjoinindex Displays information about all the join indexes

sp_iqjoinindex t1, NULL,
DBA

Displays information about all join indexes in
which t1 owned by DBA forms the left side of the
operation

sp_iqjoinindex t2, n1, DBA Displays join index information with column n1 of
table t2 owned by DBA as left side of the join

sp_iqjoinindex NULL, NULL,
DBA, NULL, NULL, DBA

Displays information about all join indexes in
which the left and right side tables are owned by
DBA

sp_iqjoinindex NULL, NULL,
NULL, t2, NULL, NULL

Displays information about all join indexes in
which the table t2 is on the right side of the join
operation

sp_iqjoinindex t1, n1, DBA,
t2, n1, DBA

Displays information about join indexes in which
the left side is column n1 of table t1 owned by DBA
and the right side is column n1 of table t2 owned
by DBA

sp_iqjoinindex
non_existing_table

No rows returned, as the table non_existing_table
does not exist

sp_iqjoinindex NULL, NULL,
non_existing_user

No rows returned, as the user non_existing_user
does not exist

CHAPTER 10 System Procedures

Reference Manual 797

Table 10-29: sp_iqjoinindex columns

Examples Displays information about the join index in which table t1 forms the left side
of the join operation:

sp_iqjoinindex t1

joinnidex_name creator left_table_name left_table_owner left_column_name

join_type right_table_name right_table_owner right_column_name key_type

valid remarks

t1_t2_t3_join DBA t1 DBA n1

= t2 DBA n1 NATURAL

Y (NULL)

Column name Description

joinindex_name The name of the join index

creator The owner of the join index

left_table_name The name of the table that forms the left side of the join
operation

left_table_owner The name of the owner of the table that forms the left side of
the join operation

left_column_name The name of the column that is part of the left side of the join

join_type The only currently supported value is “=”

right_table_name The name of the table that forms the right side of the join
operation

right_table_owner The name of the owner of the table that forms the right side
of the join operation

right_column_name The name of the column that is part of the right side of the join

key_type Defines the type of join on the keys:

• NATURAL: a natural join

• KEY: a key join

• ON: a left outer/right outer/full join

valid Indicates whether this join index needs to be synchronized.
‘Y’ means that it does not require synchronization; ‘N’ means
that it does require synchronization.

remarks A comment string

System stored procedures

798 Sybase IQ

Displays information about the join index in which table t2 forms the left side
of the join operation:

sp_iqjoinindex t2

joinnidex_name creator left_table_name left_table_owner left_column_name

join_type right_table_name right_table_owner right_column_name key_type

valid remarks

t1_t2_t3_join DBA t2 DBA n1

= t3 DBA n1 NATURAL

Y (NULL)

t1_t2_t3_join DBA t2 DBA name

= t3 DBA name NATURAL

Y (NULL)

Displays information about join indexes in which the left side is column name
of table t2 owned by DBA and the right side is column name of table t3 owned
by DBA:

sp_iqjoinindex t2, name, DBA, t3, name, DBA

joinindex_name creator left_table_name left_table_owner left_column_name

join_type right_table_name right_table_owner right_column_name key_type

valid remarks

t1_t2_t3_join DBA t2 DBA name

= t3 DBA name NATURAL

Y (NULL)

sp_iqjoinindexsize procedure
Function Gives the size of the specified join index.

Syntax sp_iqjoinindexsize (join_index_name)

Description Returns the total size of the index in bytes, KBytes,and NBlocks (IQ blocks).
Also returns the number of pages required to hold the join index in memory and
the number of IQ pages when the join index is compressed (on disk). You must
specify the join_index_name parameter with this procedure.

CHAPTER 10 System Procedures

Reference Manual 799

Table 10-30: sp_iqjoinindexsize columns

Example sp_iqjoinindexsize ('t1t2')

sp_iqlistexpiredpasswords procedure
Function Lists users with expired passwords.

Syntax sp_iqlistexpiredpasswords ['userid']

Usage userid Returns a row if the specified user’s password has expired, or no
results if the password has not expired.

By default, this procedure returns a list of users whose passwords have expired.

Permissions DBA authority required.

See also “sp_iqmodifyadmin procedure” on page 806

“sp_iqmodifylogin procedure” on page 809

Errors The following error may occur. Cause is listed after the error.

Permission denied: You do not have permission to execute
the procedure "sp_iqlistexpiredpasswords".

Cause: A user without DBA role tried to execute sp_iqlistexpiredpasswords.

Example call sp_iqlistexpiredpasswords

Column name Description

Username Owner of the join index

JoinIndexName Join index for which results are returned

Number of Tables Number of tables in the join index

KBytes Physical object size in KB

Pages Number of IQ pages needed to hold the object in
memory

Compressed Pages Number of IQ pages when the object is compressed (on
disk)

NBlocks Number of IQ blocks

Username JoinIndexName
Number of
Tables KBytes Pages

Compressed
Pages NBlocks

DBA t1t2 2 13 15 4 26

Expired_Users

jack

jill

System stored procedures

800 Sybase IQ

sp_iqlistlockedusers procedure
Function Lists user IDs that are locked out of the database.

Syntax sp_iqlistlockedusers ['userid'] ['server-name | all servers']

Permissions DBA authority required.

Usage userid If specified, lists the lock status for only the specified user.

If not specified, or null, lists the lock status for all users.

server-name | all servers If specified, lists user IDs locked out of the named
server, or, if all servers is specified, user IDs locked on a server-by-server basis.
The server name argument is valid only in multiplex environments, and the
specified server name must be a valid server name in the IQ_MPX_INFO system
table.

If not specified, lists user IDs that are locked by default on a global basis. In a
multiplex environment, the global default lock status may be overidden on a
server-by-server basis, so user IDs listed without using the server name
argument may not be locked out of all servers. In a multiplex environment,
Sybase recommends that you specify all servers in order to list which users are
effectively locked out of each server.

To display per-server user settings in Sybase Central, right-click the name of a
multiplex server and choose Properties from the drop-down. Then choose the
Login Management tab. (The tab displays only if Login Management is
enabled for the server.)

See also “sp_iqlocklogin procedure” on page 802

Errors The following error may occur. Cause is listed after the error.

Permission denied: You do not have permission to execute
the procedure "sp_iqlistlockedusers".

Cause: A user without DBA role tried to execute sp_iqlistlockedusers.

Examples The following lists all users locked by default. (This lock may be overridden
on a server-by-server basis.)

call sp_iqlistlockedusers

The following lists all users effectively locked out of all servers, on a server-
by-server basis:

Locked_Users Server

Rose query1

Rose query2

CHAPTER 10 System Procedures

Reference Manual 801

sp_iqlistlockedusers null, 'all servers'

The following lists all users effectively locked out of server Littleton:

sp_iqlistlockedusers null, 'Littleton'

The following lists all servers, by server, from which user joe is locked:

sp_iqlistlockedusers 'joe', 'all servers'

sp_iqlistpasswordexpirations procedure
Function Lists users, their password creation dates, and how many days the password is

valid from the creation date.

Syntax sp_iqlistpasswordexpirations ['userid']

Usage userid Lists password creation time and days until password expiration for
the specified user.

By default, this procedure returns a list of password creation time and days
until password expiration for each user.

Permissions DBA authority required.

See also “sp_iqaddlogin procedure” on page 741

“sp_iqmodifylogin procedure” on page 809

Errors The following error may occur. Cause is listed after the error.

Permission denied: You do not have permission to execute
the procedure "sp_iqlistpasswordexpirations".

Cause: A user without DBA role tried to execute sp_iqlistpasswordexpirations.

Example sp_iqlistpasswordexpirations

UserName Password_Created Days_til_Expiration
------- ---------------- -------------------
DBA 2006-01-02 10:13:53.625 Expired
rose 2006-01-05 14:36:38.099 180
jack 2006-01-07 14:44:34.645 0

Password_Expiration_Interval

90
365
0

System stored procedures

802 Sybase IQ

A value of 0 for Days_till_Expiration indicates that the password does not
expire.

sp_iqlocklogin procedure
Function Locks an IQ user account so that the user cannot log in.

Syntax1 call sp_iqlocklogin (‘userid’[, 'server-name' | 'all servers'] ‘[lock |
unlock]’)

Syntax2 sp_iqlocklogin 'userid’[, 'server-name' | 'all servers'] ‘[lock | unlock]’

Syntax3 sp_iqlocklogin userid [, 'server-name' | 'all servers'] ‘[lock | unlock]’

Permissions DBA authority required.

Usage userid Name of the account to be locked or unlocked.

server-name If specified, restricts the setting to named server. The server
name argument is only valid in multiplex environments, and the specified
server name must be a valid server name in the IQ_MPX_INFO system table. If
all servers is specified, removes all server level settings and specifies global
default setting for all servers in the multiplex.

If not specified, locks the user by default on a global basis. In a multiplex
environment, the global default lock status may be overridden on a server by
server basis, so user IDs locked by default globally may not be locked out of
specific servers.

all servers Removes all server level settings and specifies global setting for
all servers in multiplex.

See also “sp_iqmodifyadmin procedure” on page 806

Description When Sybase IQ Login Management is enabled, the DBA can use
sp_iqlocklogin to prevent or enable a specified user’s ability to log in to the
database.

You cannot lock yourself or the DBA account out of the database. Connected
users can be locked, but they remain connected. A locked account can be
specified as a database owner, and can own objects in any database.

Errors The following errors may occur. Causes are listed after each error.

Permission denied: You do not have permission to execute
the procedure sp_iqlocklogin.

Cause: A user without DBA role tried to execute sp_iqlocklogin.

RAISERROR executed: You cannot lock yourself out.

CHAPTER 10 System Procedures

Reference Manual 803

Cause: User tries to lock him or herself out.

RAISERROR executed: "The user DBA cannot be locked."

Cause: User tried to lock the DBA user.

RAISERROR executed: "Invalid option <what the user
entered> was specified.” "

Cause: User typed in invalid input.

RAISERROR executed: Server name <server name> not found.

Cause: server name value specified did not match a valid server name in
IQ_MPX_INFO.

RAISERROR executed: Server name parameter not allowed
with this option in non-multiplex mode

Cause: procedure was called with server name argument in a non-multiplex
environment.

Examples The following examples lock out the user rose.

sp_iqlocklogin 'rose', 'lock'
call sp_iqlocklogin ('rose', 'lock')

The following example unlocks the account of the user rose.

sp_iqlocklogin rose, 'unlock'

The following locks the login for user fred on all servers in the multiplex and
removes server level settings for user fred:

sp_iqlocklogin('fred', 'lock', 'all servers')

The following locks the login for user fred by default globally. Note that in a
multiplex, server-level settings can override this global default.

sp_iqlocklogin('fred')

The following locks the login for user mary on server query2:

sp_iqlocklogin('mary', 'lock', 'query2')

System stored procedures

804 Sybase IQ

sp_iqlocks procedure
Function Shows information about locks in the database, for both the IQ Store and the

Catalog Store.

Syntax sp_iqlocks ([connection,] [[owner.]table_name] max_locks,]
[sort_order])

Usage Table 10-31 lists the optional sp_iqlocks parameters you can specify to restrict
results.

Table 10-31: Optional sp_iqlocks parameters

Description Displays information about current locks in the database. Depending on the
options you specify, you can restrict results to show locks for a single
connection, a single table, or a specified number of locks.

sp_iqlocks displays the following information, sorted as specified in the
sort_order parameter:

Name Data type Description

connection integer Connection ID. With this option, the procedure
returns information about locks for the specified
connection only. Default is zero, which returns
information about all connections.

owner.table_
name

char (128) Table name. With this option, the procedure returns
information about locks for the specified table only.
Default is NULL, which returns information about
all tables in the database. If you do not specify
owner, it is assumed that the caller of the procedure
owns the table.

max_locks integer Maximum number of locks for which to return
information. Default is 0, which returns all lock
information.

sort_order char(1) Order in which to return information:

• C sorts by connection (default)

• T sorts by table_name

CHAPTER 10 System Procedures

Reference Manual 805

Table 10-32: sp_iqlocks columns

If sp_iqlocks cannot find the connection ID or user name of the user who has a
lock on a table, it displays a 0 (zero) for the connection ID and User
unavailable for the user name.

Note Exclusive, phantom, or antiphantom locks can be placed on Adaptive
Server Anywhere tables, but not on Sybase IQ tables. Unless you have
explicitly taken out locks on a table in the Catalog Store, you will never see
these types of locks (or their qualifiers T, *, and nnn) in a Sybase IQ database.
For information on how locking works in Adaptive Server Anywhere tables,
see the Adaptive Server Anywhere SQL User’s Guide.

Examples The first example shows the sp_iqlocks procedure call and its output in a
Sybase IQ database. The procedure is called with all default options, so that the
output shows all locks, sorted by connection.

Column Description

connection Connection ID that has the lock.

user_id User associated with this connection ID.

table_name Table on which the lock is held.

lock _type String of characters indicating the type of lock:

S – shared.
E – exclusive.
P – phantom.
A – antiphantom.
W – write

.

All locks listed have exactly one of S, E, or W, and may
also have P, A, or both. Phantom and antiphantom locks
also have a qualifier of T or *:

T – the lock is with respect to a sequential scan
* – the lock is with respect to all scans
nnn – Index number; the lock is with respect to a
particular index.

lock name Value identifying the lock.

System stored procedures

806 Sybase IQ

call sp_iqlocks()

connection user_id table_name lock_type lock_name

70187172 'mary' 'DBA.t2' 'S' (NULL)
604945019 'russ' 'russ.t3' 'S' (NULL)
604945019 'russ' 'russ.t3' 'W' (NULL)
1550990889 'DBA' 'dbo.spt_mda' 'S' (NULL)
1744647885 'DBA' 'russ.t1' 'S' (NULL)
1744647885 'DBA' 'russ.t1' 'W' (NULL)
1744647885 'DBA' 'russ.t3' 'S' (NULL)
2120842322 'shemp' 'shemp.t1' 'S' (NULL)
2120842322 'shemp' 'shemp.t1' 'W' (NULL)

The next example shows sp_iqlocks with sorting by table name.

call sp_iqlocks(0,null,0,'t')

connection user_id table_name lock_type lock_name

70187172 'mary' 'DBA.t2' 'S' (NULL)
1550990889 'DBA' 'dbo.spt_mda' 'S' (NULL)
1744647885 'DBA' 'russ.t1' 'S' (NULL)
1744647885 'DBA' 'russ.t1' 'W' (NULL)
604945019 'russ' 'russ.t3' 'S' (NULL)
604945019 'russ' 'russ.t3' 'W' (NULL)
1744647885 'DBA' 'russ.t3' 'S' (NULL)
2120842322 'shemp' 'shemp.t1' 'S' (NULL)
2120842322 'shemp' 'shemp.t1' 'W' (NULL)

sp_iqmodifyadmin procedure
Function Enables Sybase IQ Login Management for servers and modifies Sybase IQ

user account information in the IQ_SYSTEM_LOGIN_INFO_TABLE system
table.

Syntax1 call sp_iqmodifyadmin (‘{enable | disable}’,)

Syntax2 call sp_iqmodifyadmin ('option ', value [, 'server-name'])

Syntax3 sp_iqmodifyadmin ‘{enable | disable}'

Syntax4 sp_iqmodifyadmin ‘option ' , [value] [, 'server-name']

Permissions DBA authority required.

Usage enable | disable Enables or disables Sybase IQ Login Management. Cannot
be specified with the server-name argument.

CHAPTER 10 System Procedures

Reference Manual 807

option Name of the option to change:

• user_connections Sets the maximum number of connections per user for
new users. 0 means no limit is enforced. Cannot be specified with the
server-name argument.

• db_connections Sets the maximum number of connections to the
database allowed on a server. Can be specified with the server-name
argument. This serves as the default value for new users, but does not
affect existing users’ settings. 0 means no limit is enforced.

• password_expiration Sets the default number of days a password is valid. 0
means the password does not expire. Can only be set globally, not per
server. Cannot be specified with the server-name argument.

• password_warning Sets the number of days before a password expires that
a warning is sent to the user console. Can only be set globally, not per
server. Cannot be specified with the server-name argument.

value Value to which the named option is set. Values can be integers from 0
through 32767.

server-name Optional parameter allowed only when specifying
db_connections. Values are the server name or all servers keyword. The latter
removes server level settings and specifies the global default setting.

See also “sp_iqaddlogin procedure” on page 741

“sp_iqmodifylogin procedure” on page 809

“LOGIN_PROCEDURE option” on page 106

Description Note Enabling login management through sp_iqmodifylogin automatically adds
existing users to the Sybase IQ Login Management tables. New users added
with the GRANT CONNECT command after a database upgrade are not
automatically added to the Sybase IQ Login Management tables.

Users added to the database with GRANT CONNECT after IQ Login
Management has been enabled or a database upgrade has been done will not be
managed by IQ Login Management until IQ Login Management is enabled
again.

To identify such users, compare the output of SELECT * FROM
SYSUSERPERM and sp_iqlistpasswordexpirations. Users who appear in the
SYSUSERPERM table but not in the output of sp_iqlistpasswordexpirations are
not managed by IQ Login Management. To manage these users with IQ Login
Management, simply enable IQ Login Management again, as follows:

System stored procedures

808 Sybase IQ

call sp_iqmodifyadmin('enable');

Errors The following errors may occur. Causes are listed after each error.

Permission denied: You do not have permission to execute
the procedure sp_iqmodifyadmin.

Cause: A user without DBA role tried to execute sp_iqmodifyadmin.

RAISERROR executed: "The number of connections allowed
must specified and be greater than or equal to zero and
less than or equal to 32767."

Cause: A value other than 0 through 32767 was entered for user_connections.

RAISERROR executed: "The number of connections allowed
must specified and be greater than or equal to zero and
less than or equal to 32767."

Cause: A value other than 0 through 32767 was entered for db_connections.

RAISERROR executed: "The number of days the password is
valid must specified and be greater than or equal to
zero and less than or equal to 32767."

Cause: A value other than 0 through 32767 was entered for
password_expiration.

RAISERROR executed: "The number of days to warn before
a password expires must specified and be greater than
or equal to zero and less than or equal to 32767."

Cause: A value other than 0 through 32767 was entered for password_warning.

RAISERROR executed: "Invalid input was supplied to
sp_iqmodifyadmin. Valid options are: enable, disable,
user_connections, db_connections, password_warning,
password_expiration."

Cause: Invalid data was entered somewhere in the command.

RAISERROR executed: "Server name <server name> not
found."

Cause: server name value specified did not match a valid server name in
IQ_MPX_INFO.

RAISERROR executed: "Server name parameter not allowed
with this option."

Cause: server name value was specified for an option other than
'db_connections'

CHAPTER 10 System Procedures

Reference Manual 809

RAISERROR executed: "Server name parameter not allowed
with this option in non-multiplex mode."

Cause: procedure was called with server name argument in a nonmultiplex
environment

Examples The following procedure calls set the maximum number of connections to the
database at 200. They do not enable or disable Sybase IQ Login Management.

call sp_iqmodifyadmin ('db_connections', 200)

sp_iqmodifyadmin 'db_connections', 200

If Sybase IQ Login Management is not enabled, this change is not enforced.

The following statement changes the per-server connection limit to 20 on
server master:

sp_iqmodifyadmin('user_connections', 20, 'master'

sp_iqmodifylogin procedure
Function Modifies the maximum number of connections or the password expiration

interval for a given user.

Syntax1 call sp_iqmodifylogin (‘{userid | all overides}’, ‘option’, value['server-
name'])

Syntax2 sp_iqmodifylogin ‘{userid | all overides}’, ‘option’, value [,'server-
name'])

Permissions DBA authority required.

Usage userid Variable that holds the name of the account to modify.

all users If all users keyword is specified, the option and its value apply to
all users except for the user DBA, which cannot be set to expire.

option Name of the option to change:

• password_expiration Password expiration interval in days, from 0
through 32767. 0 means the password does not expire. You cannot set this
option on a per-server basis.

• number_of_connections Maximum number of concurrent database
connections permitted for a given user. 0 means unlimited connections.

value Value to which the named option is set. Values can be from 0 through
32767.

See also “sp_iqmodifyadmin procedure” on page 806

System stored procedures

810 Sybase IQ

Description sp_iqmodifylogin lets the DBA limit connections or set password expiration for
a specified existing user, or for all other users. Changes take effect when
Sybase IQ Login Management is enabled with sp_iqmodifyadmin, or
immediately if Sybase IQ Login Management is already enabled.

Errors The following errors may occur. Causes are listed after each error.

Permission denied: You do not have permission to change
this password.

Cause: A user without DBA role tried to change another user’s password.

RAISERROR executed: "Userid <loginname> not found."

Cause: The user tried to change the password of a user that does not exist.

RAISERROR executed: "Server name <server name> not
found."

Cause: The server name specified did not match a valid server name in
IQ_MPX_INFO.

RAISERROR executed: "Server name parameter not allowed
with this option in non-multiplex mode."

Cause: The procedure was called with the server name argument in a
nonmultiplex environment.

RAISERROR executed: "Userid <loginname> not found."

Cause: The user tried to change the password of a user that does not exist.

Examples The following stored procedure calls set password to expire in 365 days for all
users except DBA.

sp_iqmodifylogin 'all overrides',
'password_expiration', 365

call sp_iqmodifylogin ('all overrides',
'password_expiration', 365)

sp_iqpassword procedure
Function Adds or changes a password for a Sybase IQ user account.

Syntax1 call sp_iqpassword (‘caller_password’, ‘new_password’ [, ‘userid’])

Syntax2 sp_iqpassword ‘caller_password’, ‘new_password’ [, ‘userid’]

Permissions None to set your own password; DBA authority required to set other users’
passwords.

CHAPTER 10 System Procedures

Reference Manual 811

Usage caller_password Your password. When you are changing your own
password, this is your old password. When the DBA is changing another user’s
password, caller_password is the DBA’s password.

new_password New password for the user, or for loginname.

userid Login name of the user whose password is being changed by the
DBA. Do not specify userid when changing your own password.

Description Any user can change his or her own password using sp_iqpassword. The DBA
can change the password of any existing user. Changes take effect when Sybase
IQ Login Management is enabled with sp_iqmodifyadmin, or immediately if IQ
Login Management is already enabled.

Errors The following errors may occur. Causes are listed after each error.

RAISERROR executed: 'You do not have permission to
change this password.'

Cause: A user without DB authority tried to change another user’s password.

RAISERROR executed: 'Userid <userid> not found.'

Cause: An invalid userid was specified.

RAISERROR executed: 'Missing procedure definition for
sp_iqrpcpassword. DBA must run sp_iqmpxdroppublication
followed by sp_iqmpxcreatepublication.'

Cause: Database was upgraded but post-upgrade multiplex configuration steps
were not performed.

RAISERROR executed: 'Password change on query server not
allowed. User DBA does not have remote login permission
on write server.'

Cause: Database was upgraded but post-upgrade multiplex configuration steps
were not performed.

Examples The following procedure calls by a DBA set the password of the user “Jack” to
jacknew.

sp_iqpassword 'SQL', 'jacknew', 'jack'

call sp_iqpassword ('SQL', 'jacknew', 'jack')

System stored procedures

812 Sybase IQ

sp_iqpkeys procedure
Function Displays information about primary keys and primary key constraints by table,

column, table owner, or for all Sybase IQ tables in the database.

Syntax sp_iqpkeys { [table-name], [column-name], [table-owner] }

Permissions None required.

Usage table-name The name of a base or global temporary table. If specified, the
procedure returns information about primary keys defined on the specified
table only.

column-name The name of a column. If specified, the procedure returns
information about primary keys on the specified column only.

table-owner The owner of a table or table. If specified, the procedure returns
information about primary keys on tables owned by the specified owner only.

One or more of the parameters can be specified. If you do not specify either of
the first two parameters, but specify the next parameter in the sequence, you
must substitute NULL for the omitted parameters. If none of the parameters are
specified, a description of all primary keys on all tables in the database is
displayed. If any of the specified parameters is invalid, no rows are displayed
in the output.

Table 10-33: sp_iqpkeys usage examples

See also “sp_iqindex and sp_iqindex_alt procedures” on page 786

“sp_iqcolumn procedure” on page 751

Description The sp_iqpkeys stored procedure displays the following information about
primary keys on base and global temporary tables in a database:

Syntax Output

sp_iqpkeys sales Displays information about primary keys
defined on table sales

sp_iqpkeys sales, NULL, DBA Displays information about primary keys
defined on table sales owned by DBA

sp_iqpkeys sales, store_id, DBA Displays information about primary key
defined on column store_id of table sales
owned by DBA

sp_iqpkeys NULL, NULL, DBA Displays information about primary keys
defined on all tables owned by DBA

CHAPTER 10 System Procedures

Reference Manual 813

Table 10-34: sp_iqpkeys columns

Note The sp_iqpkeys stored procedure exists only in databases created with
Sybase IQ version 12.6 or later.

Examples Display the primary keys defined on columns of table sales1:

sp_iqpkeys sales1

table_name table_owner column_name column_id constraint_name constraint_id

sales1 DBA store_id 1 MA114 114

Display the primary keys defined on columns of table sales2:

sp_iqpkeys sales2

table_name table_owner column_name column_id constraint_name constraint_id

sales2 DBA store_id, 1,2 MA115 115

order_num

Display the primary keys defined on the column store_id of table sales2:

sp_iqpkeys sales2, store_id

table_name table_owner column_name column_id constraint_name constraint_id

sales2 DBA store_id 1 MA115 115

sp_iqprocedure procedure
Function Displays information about system and user-defined procedures.

Syntax sp_iqprocedure [proc-name], [proc-owner], [proc-type]

Permissions None required.

Usage proc-name The name of the procedure.

proc-owner The owner of the procedure.

Column name Description

table_name The name of the table

table_owner The owner of the table

column_name The name of the column(s) on which the primary key is defined

column_id The column ID

constraint_name The name of the primary key constraint

constraint_id The primary key constraint ID

System stored procedures

814 Sybase IQ

proc-type The type of procedure. Allowed values are:

• SYSTEM: displays information about system procedures (procedures
owned by user SYS or dbo) only

• ALL: displays information about user and system procedures

• Any other value: displays information about user procedures

The sp_iqprocedure procedure can be invoked without any parameters. If no
parameters are specified, only information about user-defined procedures
(procedures not owned by dbo or SYS) is displayed by default.

If you do not specify either of the first two parameters, but specify the next
parameter in the sequence, you must substitute NULL for the omitted
parameters. For example, sp_iqprocedure NULL, NULL, SYSTEM and
sp_iqprocedure NULL, user1.

Table 10-35: sp_iqprocedure usage examples

See also “SYSPROCEDURE system table” on page 718

CREATE PROCEDURE statement on page 485

Syntax Output

sp_iqprocedure Displays information about all procedures in the
database not owned by dbo or SYS

sp_iqprocedure sp_test Displays information about the procedure sp_test

sp_iqprocedure
non_existing_proc

No rows returned, as the procedure
non_existing_proc does not exist

sp_iqprocedure NULL, DBA Displays information about all procedures owned
by DBA

sp_iqprocedure sp_test, DBA Displays information about the procedure sp_test
owned by DBA

sp_iqprocedure sp_iqtable The procedure sp_iqtable is not a system
procedure. If there is no user-defined procedure
also named sp_iqtable, no rows are returned. (By
default only user-defined procedures are returned.)

sp_iqprocedure sp_iqtable,
dbo

No rows returned, as the procedure sp_iqtable is
not a user procedure (by default only user
procedures returned)

sp_iqprocedure NULL,
NULL, SYSTEM

Displays information about all system procedures
(owned by dbo or SYS)

sp_iqprocedure sp_iqtable,
NULL, ‘YSTEM

Displays information about the system procedure
sp_iqtable

sp_iqprocedure sp_iqtable,
dbo, ALL

Displays information about the system procedure
sp_iqtable owned by dbo

CHAPTER 10 System Procedures

Reference Manual 815

Description The sp_iqprocedure stored procedure displays information about procedures in
a database. If you specify one or more parameters, the result is filtered by the
specified parameters. For example, if proc-name is specified, only information
about the specified procedure is displayed. If proc-owner is specified,
sp_iqprocedure returns only information about procedures owned by the
specified owner. If no parameters are specified, sp_iqprocedure displays
information about all the user-defined procedures in the database.

The sp_iqprocedure procedure returns information in the following columns:

Table 10-36: sp_iqprocedure columns

Examples Displays information about the user-defined procedure sp_test:

sp_iqprocedure sp_test

proc_name proc_owner proc_defn replicate srvid remarks

sp_test DBA create procedure N (NULL) (NULL)

DBA.sp_test(in n1

integer)

begin message‘sp_test’end

Displays information about all procedures owned by user DBA:

sp_iqprocedure NULL, DBA

proc_name proc_owner proc_defn replicate srvid remarks

sp_test DBA create procedure N (NULL) (NULL)

DBA.sp_test(in n1

integer)

begin message‘sp_test’end

sp_dept DBA create procedure N (NULL) (NULL)

DBA.sp_dept() begin end

Column name Description

proc_name The name of the procedure

proc_owner The owner of the procedure

proc_defn The command used to create the procedure. For hidden
procedures, the keyword ‘HIDDEN’ is displayed.

replicate Displays Y if the procedure is a primary data source in a
Replication Server installation; N if not.

srvid Indicates the remote server, if the procedure is on a remote
database server

remarks A comment string

System stored procedures

816 Sybase IQ

sp_iqprocparm procedure
Function Displays information about stored procedure parameters, including result set

variables and SQLSTATE/SQLCODE error values.

Syntax sp_iqprocparm [proc-name], [proc-owner], [proc-type]

Permissions None required.

Usage proc-name The name of the procedure.

proc-owner The owner of the procedure.

proc-type The type of procedure. Allowed values are:

• SYSTEM: displays information about system procedures (procedures
owned by user SYS or dbo) only

• ALL: displays information about user and system procedures

• Any other value: displays information about user procedures

The sp_iqprocparm procedure can be invoked without any parameters. If no
parameters are specified, input/output and result parameters of all the user-
defined procedures (procedures not owned by dbo or SYS) are displayed by
default.

If you do not specify either of the first two parameters, but specify the next
parameter in the sequence, you must substitute NULL for the omitted
parameters. For example, sp_iqprocparm NULL, NULL, SYSTEM and
sp_iqprocparm NULL, user1.

CHAPTER 10 System Procedures

Reference Manual 817

Table 10-37: sp_iqprocparm usage examples

See also “SYSPROCEDURE system table” on page 718

“SYSPROCPARM system table” on page 720

CREATE PROCEDURE statement on page 485

Description The sp_iqprocparm stored procedure displays information about stored
procedure parameters, including result set variables and SQLSTATE/
SQLCODE error values. If you specify one or more parameters, the result is
filtered by the specified parameters. For example, if proc-name is specified,
only information about parameters to the specified procedure is displayed. If
proc-owner is specified, sp_iqprocparm only returns information about
parameters to procedures owned by the specified owner. If no parameters are
specified, sp_iqprocparm displays information about parameters to all the user-
defined procedures in the database.

The sp_iqprocparm procedure returns information in the following columns:

Syntax Output

sp_iqprocparm Displays parameters for all procedures in the
database not owned by dbo or SYS

sp_iqprocparm sp_test Displays information about the procedure sp_test

sp_iqprocparm
non_existing_proc

No rows returned, as the procedure
non_existing_proc does not exist

sp_iqprocparm NULL, DBA Displays parameters for all procedures owned by
DBA

sp_iqprocparm sp_test, DBA Displays parameters for the procedure sp_test
owned by DBA

sp_iqprocparm sp_iqtable sp_iqtable is a system procedure. If there is no
user-defined procedure also named sp_iqtable, no
rows are returned. (By default, only user-defined
procedures are returned.)

sp_iqprocparm sp_iqtable, dbo No rows returned, as the procedure sp_iqtable is
not a user procedure. (By default, only user
procedures are returned.)

sp_iqprocparm NULL, NULL,
SYSTEM

Displays parameters for all system procedures
(owned by dbo or SYS)

sp_iqprocparm sp_iqtable,
NULL, SYSTEM

Displays parameters of the system procedure
sp_iqtable

sp_iqprocparm sp_iqtable,
dbo, ALL

Displays parameters of the system procedure
sp_iqtable owned by dbo

System stored procedures

818 Sybase IQ

Table 10-38: sp_iqprocparm columns

Examples Display information about the parameters of the user-defined procedure
sp_test:

sp_iqprocparm sp_test

proc_name proc_owner parm_name parm_type parm_mode domain_name width scale

default remarks

sp_test DBA n1 normal in integer 4 0

(NULL) (NULL)

Column name Description

proc_name The name of the procedure

proc_owner The owner of the procedure

parm_name The name of the parameter

parm_type The type of parameter is one of the following values:

• normal parameter (variable)

• result variable: used with procedures that return result sets

• SQLSTATE error value

• SQLCODE error value

parm_mode The mode of the parameter: whether a parameter supplies a
value to the procedure, returns a value, does both, or does
neither. Parameter mode is one of the following:

• in: parameter supplies a value to the procedure

• out: parameter returns a value

• inout: parameter supplies as well as returns a value

• NULL: parameter neither supplies nor returns a value

domain_name The name of the data type of the parameter as listed in the
SYSDOMAIN system table

width The length of string parameters, the precision of numeric
parameters, and the number of bytes of storage for all other data
types

scale The number of digits after the decimal point for numeric data
type parameters and zero for all other data types

default The default value of the parameter, held as a string

remarks A comment string

CHAPTER 10 System Procedures

Reference Manual 819

Display information about the parameters of the system procedure
sp_iqshowcompression:

sp_iqprocparm sp_iqshowcompression, dbo, system

proc_name proc_owner parm_name parm_type parm_mode

domain_name width scale default remarks

sp_iqshowcompression dbo @owner_name normal in

char 128 0 (NULL) (NULL)

sp_iqshowcompression dbo @table_name normal in

char 128 0 (NULL) (NULL)

sp_iqshowcompression dbo @column_name normal in

char 128 0 (NULL) (NULL)

sp_iqshowcompression dbo Column result out

char 128 0 (NULL) (NULL)

sp_iqshowcompression dbo Compression result out

char 3 0 (NULL) (NULL)

sp_iq_process_login procedure
Function Checks that a user is permitted to connect.

Syntax sp_iq_process_login

Permissions None.

See also “LOGIN_PROCEDURE option” on page 106

Description When a user logs in, Sybase IQ calls the stored procedure specified by the
database option LOGIN_PROCEDURE. The default setting of the
LOGIN_PROCEDURE option is DBA.sp_iq_process_login.

When Sybase IQ Login Management is enabled, sp_iq_process_login checks
that the user is not locked out, that the maximum number of connections for the
user and database is not exceeded, and that the user’s password has not expired,
and then either allows user login to proceed or sends an error message. When
Sybase IQ Login Management is disabled, user login proceeds without any
checking.

When user login is allowed to proceed, sp_iq_process_login calls the
sp_login_environment system procedure for additional processing.

This procedure is called automatically. You do not need to call it directly,
unless you are creating your own login procedures. If you set
LOGIN_PROCEDURE to call a different procedure, no login checking occurs.

System stored procedures

820 Sybase IQ

sp_iqrebuildindex procedure
Function Rebuilds one or more indexes on a table with the original IQ UNIQUE value

specified in the CREATE TABLE statement, or a new IQ UNIQUE value to
change storage required and/or query performance. To rebuild an index other
than the default index, specify the index name.

Syntax sp_iqrebuildindex (table_name, index_clause)

Permissions You must have INSERT permission on a table to rebuild an index on that table.

Usage table_name Partial or fully qualified table name on which the index rebuild
process takes place. If the user both owns the table and executes the procedure,
a partially qualified name may be used; otherwise, the table name must be fully
qualified.

index_clause One or more of the following strings, separated by spaces:

column column_name [count]

index index_name

Each column_name or index_name must refer to a column or index on the
specified table. If you specify a column_name or index_name multiple times,
the procedure returns an error and no index is rebuilt.

The count is a nonnegative number that represents the IQ UNIQUE value. In a
CREATE TABLE statement, IQ UNIQUE (count) approximates how many
distinct values can be in a given column. The number of distinct values affects
query speed and storage requirements. For details, see “Optimizing storage
and query performance,” in Chapter 5, “Working with Database Objects” in
the Sybase IQ System Administration Guide.

You must specify the keywords column and index. These keywords are not case
sensitive.

Description If you specify a column name, the procedure rebuilds the default index for that
column, and no index name is needed. Specifying the name of the default index
assigned by Sybase IQ in addition to the column name in this situation returns
an error. If you omit count after the column_name, value 0 (zero) is used as the
default.

If the default index is a one-byte index, sp_iqrebuildindex always rebuilds it as
a one-byte index no matter what IQ UNIQUE value the user specified.

For one-byte default indexes, if the specified value in column_name (count) is
0 or greater than 256, the column’s cardinality value is used to update the
approx_unique_count column in SYS.SYSIQCOLUMN.

CHAPTER 10 System Procedures

Reference Manual 821

If the column has the data type VARCHAR or VARBINARY greater than 255
bytes, sp_iqrebuildindex will not rebuild a default index.

If the default index is a two-byte index, and the specified count is 0 or greater
than 65536, the column’s cardinality value determines whether to rebuild the
default into a one-byte or two-byte index, and that value is used to update the
approx_unique_count column in SYS.SYSIQCOLUMN.

If you specify a nonzero IQ UNIQUE value, the default index is rebuilt as a one-
byte, two-byte, or flat default index, with exceptions described above.

If you specify an IQ UNIQUE value of zero or no IQ UNIQUE value, the
MINIMIZE_STORAGE option controls how the index is rebuilt:

• If MINIMIZE_STORAGE option is set ON, the index is rebuilt as a one-byte
default index first, and converted to two-byte or flat if necessary.

• If MINIMIZE_STORAGE is set OFF, the index is rebuilt using the default
for the data type. For more information, see “Sybase IQ index types” in
Sybase IQ System Administration Guide.

See also “sp_iqindexfragmentation procedure” on page 789,“sp_iqrowdensity
procedure” on page 826, and “SYSIQCOLUMN system table” on page 705

Examples The following procedure rebuilds the default index on column emp_lname:

sp_iqrebuildindex ‘employee‘, ‘column emp_lname‘

or

call sp_iqrebuildindex (‘employee‘, ‘column emp_lname‘)

The following SQL statement creates a flat default index on column c1:

CREATE TABLE mytable (c1 int IQ UNIQUE 1000000000)

This procedure converts the default one-byte index to a two-byte index:

sp_iqrebuildindex ‘mytable‘, ‘column c1 1024‘

or

call sp_iqrebuildindex (‘mytable‘, ‘column c1 1024‘)

System stored procedures

822 Sybase IQ

sp_iqrelocate procedure
Function Relocates specified tables and indexes on main dbspaces with relocate mode to

main dbspaces with readwrite mode.

Syntax sp_iqrelocate ‘target [maxsize nMB] [resources resource-percent]’

Parameters target:
{database | {table table-name | index index-name} […]}

Permissions DBA authority required.

See also • “sp_iqdbspace procedure” on page 766, “sp_iqdbspaceinfo procedure”
on page 769, and “sp_iqindexinfo procedure” on page 790

• Chapter 5, “Working with Database Objects” in the Sybase IQ System
Administration Guide

Usage nMB Specifies the maximum number of megabytes of data to relocate.

resource-percent Must be an integer greater than 0. The resources
percentage allows you to limit the CPU utilization of the sp_iqrelocate
procedure by specifying the percent of total CPUs to use.

Description This procedure relocates specified tables and indexes on main dbspaces with
relocate mode to main dbspaces with readwrite mode. If the database keyword
is specified, then all objects found in relocate dbspaces are relocated. If one or
more tables or indexes are specified, only the specified tables and indexes are
relocated. Data that belongs to the specified tables or indexes that does not
reside on relocate dbspaces is not relocated.

sp_iqrelocate can also be used to relocate tables and indexes on local dbspaces.

An object is relocated by creating a new version, the same as for DML
operations. This new version must be committed before old versions are
relocated and the dbspace is dropped. sp_iqrelocate does not automatically
commit. You must commit the changes before they are persistent.

You can use the optional maxsize keyword to limit the amount of data relocated
by the sp_iqrelocate procedure.

sp_iqrelocate returns a result set that indicates the numbers of blocks that were
relocated for each object specified. The status column for each object is as
follows:

• relocated All blocks in relocate dbspaces were relocated.

• partial The number of blocks in relocate dbspaces exceeds the maxsize
parameter.

• no relocs The object has no blocks in relocate dbspaces.

CHAPTER 10 System Procedures

Reference Manual 823

Examples The following command relocates the index t1c1hg on table t1 and relocates the
entire table t2:

sp_iqrelocate 'index t1c1hg table t2';

All data on dbspaces with the readwrite mode of relocate can be relocated using
a single sp_iqrelocate command. The following command relocates all data on
relocate dbspaces in the database:

sp_iqrelocate 'database';

Note that the four objects with relocation status of no relocs were relocated by
the previous sp_iqrelocate command.

sp_iqrename procedure
Function Renames user-created tables, columns, indexes, constraints (unique, primary

key, foreign key, and check), stored procedures, and functions.

Syntax sp_iqrename object-name, new-name [, object-type”]

Permissions Must be the owner of the table or have DBA authority or alter permission on
the object. Requires exclusive access to the object.

Usage object-name The original name of the user-created object.

ObjectName NRelocated RelocStatus

t1.DBA.t1c1hg 19 relocated

t2 4 relocated

t2.DBA.ASIQ_IDX_T430_C1_FP 17 relocated

t2.DBA.t2c1hng 0 no relocs

ObjectName NRelocated RelocStatus

t1 5 relocated

t1.DBA.ASIQ_IDX_T429_C1_FP 17 relocated

t1.DBA.t1c1hg 0 no relocs

t2 0 no relocs

t2.DBA.ASIQ_IDX_T430_C1_FP 0 no relocs

t2.DBA.t2c1hng 0 no relocs

System stored procedures

824 Sybase IQ

Optionally, owner-name can be specified as part of object-name as owner-
name.object-name, where owner-name is the name of the owner of the object
being renamed. If owner-name is not specified, the user calling sp_iqrename is
assumed to be the owner of the object. Note that the object is successfully
renamed only if the user calling sp_iqrename has the required permissions to
rename the object.

If the object to be renamed is a column, index, or constraint, you must specify
the name of the table with which the object is associated. For a column, index,
or constraint, object-name can be of the form table-name.object-name or
owner-name.table-name.object-name.

new-name The new name of the object. The name must conform to the rules
for identifiers and must be unique for the type of object being renamed.

object-type An optional parameter that specifies the type of the user-created
object being renamed, that is, the type of the object object-name. The object-
type parameter can be specified in either upper or lowercase.

Table 10-39: sp_iqrename object-type parameter values

 Warning! You must change appropriately the definition of any dependent
object (procedures, functions, and views) on an object being renamed by
sp_iqrename. The sp_iqrename procedure does not automatically update the
definitions of dependent objects. You must change these definitions manually.

See also • ALTER TABLE statement RENAME clause in Chapter 6, “SQL
Statements”

• ALTER INDEX statement RENAME clause in Chapter 6, “SQL
Statements”

Description The sp_iqrename stored procedure renames user-created tables, views,
columns, indexes, constraints (unique, primary key, foreign key, and check),
stored procedures, and functions.

object-type parameter Specifies

column The object being renamed is a column

index The object being renamed is an index

constraint The object being renamed is a unique, primary key,
check, or referential (foreign key) constraint

procedure The object being renamed is a procedure or function

 object-type not specified The object being renamed is a table or view

CHAPTER 10 System Procedures

Reference Manual 825

If you attempt to rename an object with a name that is not unique for that type
of object, sp_iqrename returns the message “Item already exists.”

sp_iqrename does not support renaming an event or a data type. The message
“Feature not supported.” is returned by sp_iqrename, if you specify event or
datatype as the object-type parameter.

Examples Renames the table titles owned by user shweta to books:

sp_iqrename shweta.titles, books

Renames the column id of the table books to isbn:

sp_iqrename shweta.books.id, isbn, column

Renames the index idindex on the table books to isbnindex:

sp_iqrename books.idindex, isbnindex, index

Renames the primary key constraint prim_id on the table books to prim_isbn:

sp_iqrename books.prim_id, prim_isbn, constraint

Renames the procedure getnamep to gettitlep:

sp_iqrename getnamep, gettitlep, procedure

sp_iq_reset_identity procedure
Function Sets the seed of the Identity/Autoincrement column associated with the

specified table to the specified value.

Syntax sp_iq_reset_identity (table_name, table_owner, value)

Usage Syntax You must specify table_name, table owner, and value.

Permissions None required.

See also “sp_iqcolumn procedure” on page 751

Description The Identity/Autoincrement column stores a number that is automatically
generated. The values generated are unique identifiers for incoming data. The
values are sequential, are generated automatically, and are never reused, even
when rows are deleted from the table. The seed value specified replaces the
default seed value and persists across database shutdowns and failures.

Example The following example creates an Identity column with a starting seed of 50.:

CREATE TABLE mytable(c1 INT identity)
call sp_iq_reset_identity('mytable', 'dba', 50)

System stored procedures

826 Sybase IQ

sp_iqrowdensity procedure
Function Reports information about the internal row fragmentation for a table at the FP

index level.

Syntax dbo.sp_iqrowdensity (‘target ‘)

target:(table table-name | (column column-name (...))

Permissions This procedure is owned by dbo. Users without DBA authority must be granted
execute permission for the stored procedure in order to run it.

Usage table-name Target table table-name reports on all columns in the named
table.

column-name Target column column-name reports on the named column in
the target table. You may specify multiple target columns, but must repeat the
keyword each time.

You must specify the keywords table and column. These keywords are not case
sensitive.

Description This procedure measures row fragmentation at the default index level. Density
is the ratio of the minimum number of pages required by an index for existing
table rows to the number of pages actually used by the index. This procedure
returns density as a number such that 0 < density < 1. For example, if an index
that requires 8 pages minimum storage occupies 10 pages, its density is .8.

The density reported does not indicate the number of disk pages that could be
reclaimed by recreating or reorganizing the default index.

This procedure displays information about the row density of a column, but
does not recommend further action. You must determine whether or not to
recreate, reorganize, or rebuild an index.

Example The following procedure reports the row density on column order_id in table
orders:

dbo.sp_iqrowdensity (‘column orders.order_id ‘)

Table Column Index Type Density

orders order_id Flat FP .88

CHAPTER 10 System Procedures

Reference Manual 827

sp_iqshowpsexe procedure
Function Displays information about the settings of database options that control the

priority of tasks and resource usage for connections.

Syntax sp_iqshowpsexe [connection-id]

Permissions None required.

Usage connection-id An integer representing the connection ID.

If connection-id is specified, sp_iqshowpsexe returns information only about
the specified connection. If connection-id is not specified, sp_iqshowpsexe
returns information about all connections.

If the specified connection-id does not exist, sp_iqshowpsexe returns no rows.

See also In Chapter 10, “System Procedures”: “sp_iqconnection procedure” on page
753, “sp_iqcontext procedure” on page 757, and “sa_conn_info system
procedure” on page 855

“CONNECTION_PROPERTY function [System]” on page 283

In Chapter 2, “Database Options”: “IQGOVERN_MAX_PRIORITY option”
on page 91, “IQGOVERN_PRIORITY option” on page 91,
“IQGOVERN_PRIORITY_TIME option” on page 91,
“MAX_QUERY_TIME option” on page 116,
“QUERY_ROWS_RETURNED_LIMIT option” on page 141,
“QUERY_TEMP_SPACE_LIMIT option” on page 142,
“MAX_CURSOR_COUNT option” on page 113, and
“MAX_STATEMENT_COUNT option” on page 116

“AppInfo connection parameter [App]” in Chapter 4, “Connection and
Communication Parameters” in the Sybase IQ System Administration Guide

Description The sp_iqshowpsexe stored procedure displays information about the settings
of database options that control the priority of tasks and resource usage for
connections, which is useful to database administrators for performance
tuning.

System stored procedures

828 Sybase IQ

Table 10-40: sp_iqshowpsexe columns

Note The AppInfo property may not be available from Open Client or jConnect
applications such as the Java version of Interactive SQL (dbisql) or Sybase
Central. If the AppInfo property is not available, the application column is blank.

Column name Description

connection_id The connection ID

application Information about the client application that opened the
connection. Includes the AppInfo connection property
information:
HOST: the host name of the client machine
EXE: the name of the client executable (Windows only)
APPINFO: the APPINFO in the client connection string,
if specified

userid Login name of the user that opened the connection

iqgovern_priority Value of the database option IQGOVERN_PRIORITY that
assigns a priority to each query waiting in the -iqgovern
queue. By default, this option has a value of 2
(MEDIUM). The values 1, 2, and 3 are shown as HIGH,
MEDIUM, and LOW, respectively.

max_query_time Value of the database option MAX_QUERY_TIME that
sets a limit, so that the optimizer can disallow very long
queries. By default, this option is disabled and has a
value of 0.

query_row_limit Value if the database option
QUERY_ROWS_RETURNED_LIMIT that sets the row
threshold for rejecting queries based on the estimated
size of the result set. The default is 0, which means there
is no limit.

query_temp_space_limit Value of the database option
QUERY_TEMP_SPACE_LIMIT (in MB) that constrains
the use of temporary IQ dbspace by user queries. The
default value is 2000MB.

max_cursors Value of the database option MAX_CURSOR_COUNT
that specifies a resource governor to limit the maximum
number of cursors a connection can use at once. The
default value is 50. A value of 0 implies no limit.

max_statements Value of the database option
MAX_STATEMENT_COUNT that specifies a resource
governor to limit the maximum number of prepared
statements that a connection can use at once. The default
value is 100. A value of 0 implies no limit.

CHAPTER 10 System Procedures

Reference Manual 829

Example Display information about the settings of database options that control the
priority of tasks and resource usage for connection ID 2:

sp_iqshowpsexe 2

connectionid application
2 HOST=GOODGUY-XP;EXE=C:\\Program Files\\Sybase\\

ASIQ-12_7\\win32\\dbisqlg.exe;

userid iqgovern_priority max_query_time query_row_limit
DBA MEDIUM 0 0

query_temp_space_limit max_statements max_cursors
2000 50 100

sp_iqspaceinfo procedure
Function Displays the number of blocks used by each object in the current database and

the name of the dbspace in which the object is located.

Syntax sp_iqspaceinfo [‘main | local
| [table table-name | index index-name] [...] ‘]

Permissions DBA authority required.

See also • “sp_iqindexinfo procedure” on page 790, “sp_iqdbspace procedure” on
page 766, and “sp_iqdbspaceinfo procedure” on page 769

• Chapter 5, “Working with Database Objects” in the Sybase IQ System
Administration Guide

Description For the current database, displays the object name, number of blocks used by
each object, and the name of the dbspace. sp_iqspaceinfo requires no
parameters. If the database is a multiplex database, the default is main, the size
of the shared IQ main store. The optional parameter local specifies only
information about the local IQ store owned by the query server.

The information returned by sp_iqspaceinfo is helpful in managing dbspaces.

Example The following output is from the sp_iqspaceinfo stored procedure run on the
asiqdemo database. Lines of output for some tables and indexes have been
removed in this example.

System stored procedures

830 Sybase IQ

Name NBlocks dbspace_name
contact 19 IQ_SYSTEM_MAIN
sales_order_items.DBA.ASIQ_IDX_T205_C5_FP 56 IQ_SYSTEM_MAIN
contact.DBA.ASIQ_IDX_T206_C10_FP 55 IQ_SYSTEM_MAIN
contact.DBA.ASIQ_IDX_T206_C1_FP 61 IQ_SYSTEM_MAIN
...
contact.DBA.ASIQ_IDX_T206_C9_FP 55 IQ_SYSTEM_MAIN
contact.DBA.ASIQ_IDX_T206_I11_HG 19 IQ_SYSTEM_MAIN
customer 20 IQ_SYSTEM_MAIN
customer.DBA.ASIQ_IDX_T207_C1_FP 61 IQ_SYSTEM_MAIN
customer.DBA.ASIQ_IDX_T207_C2_FP 55 IQ_SYSTEM_MAIN
...
customer.DBA.ASIQ_IDX_T207_I10_HG 19 IQ_SYSTEM_MAIN
...

sp_iqspaceused procedure
Function Shows information about space available and space used in the IQ Store and

IQ Temporary Store.

Syntax sp_iqspaceused(out mainKB unsigned bigint,
 out mainKBUsed unsigned bigint,
 out tempKB unsigned bigint,
 out tempKBUsed unsigned bigint)

Usage sp_iqspaceused returns four values as unsigned bigint out parameters. This
system stored procedure can be called by user-defined stored procedures to
determine the amount of Main and Temporary IQ Store space in use. In a
multiplex, this procedure applies to the server on which it runs. If a query
server has no IQ Local Store, it returns 0 in the first two out parameters.

Description sp_iqspaceused returns a subset of the information provided by sp_iqstatus, but
allows the user to return the information in SQL variables to be used in
calculations.

CHAPTER 10 System Procedures

Reference Manual 831

Table 10-41: sp_iqspaceused columns

Example sp_iqspaceused requires four output parameters. The following example
shows the creation of a user-defined stored procedure myspace that declares the
four output parameters and then calls sp_iqspaceused:

create procedure dbo.myspace()
begin
 declare mt unsigned bigint;
 declare mu unsigned bigint;
 declare tt unsigned bigint;
 declare tu unsigned bigint;
 call sp_iqspaceused(mt,mu,tt,tu);
 select cast(mt/1024 as unsigned bigint) as mainMB,
 cast(mu/1024 as unsigned bigint) as mainusedMB,
 mu*100/mt as mainPerCent,
 cast(tt/1024 as unsigned bigint) as tempMB,
 cast(tu/1024 as unsigned bigint) as tempusedMB,
 tu*100/tt as tempPerCent;
end

To display the output of sp_iqspaceused, run the procedure myspace:

myspace

sp_iqstatus procedure
Function Displays a variety of Sybase IQ status information about the current database.

Syntax sp_iqstatus

Description Shows status information about the current database, including the database
name, creation date, page size, number of dbspace segments, block usage,
buffer usage, I/O, backup information, and so on. On a query server in a
multiplex, this procedure lists information about the IQ Local Store as well as
the shared IQ Store and IQ Temporary Store.

Column name Description

mainKB The total Main IQ Store space in kilobytes.
mainKBUsed The number of kilobytes of Main IQ Store space

used by the database.
tempKB The total Temporary IQ Store space in kilobytes.
tempKBUsed The number of kilobytes of Temporary IQ Store

space in use by the database.

System stored procedures

832 Sybase IQ

If sp_iqstatus shows a high percentage of main blocks in use on a multiplex
server, run sp_iqversionuse to find out which versions are being used and the
amount of space that can be recovered by releasing versions. See
“sp_iqversionuse procedure” on page 846.

The system stored procedure sp_iqspaceused returns a subset of the same
information as that provided by sp_iqstatus, but allows the user to return the
information in SQL variables to be used in calculations. See “sp_iqspaceused
procedure” on page 830.

Example The following output is from the sp_iqstatus stored procedure:

Adaptive Server IQ (TM) Copyright (c) 1992-2006 by Sybase, Inc.
All rights reserved.

Version: 12.7.0/040810/P/GA/MS/
Windows 2000/32bit/2006-06-10

09:54:19
Time Now: 2006-06-11 18:53:34.274
Build Time: 2006-06-10 09:54:19
File Format: 23 on 03/18/1999
Server mode: IQ Server
Catalog Format: 2
Stored Procedure Revision: 1
Page Size: 131072/8192blksz/16bpp
Number of DB Spaces: 1
Number of Temp Spaces: 1
DB Blocks: 1-5632 IQ_SYSTEM_MAIN
Temp Blocks: 1-2816 IQ_SYSTEM_TEMP
Create Time: 2006-06-03 14:14:06.124
Update Time: 2006-06-03 14:14:26.687
Main IQ Buffers: 127, 16Mb
Temporary IQ Buffers: 95, 12Mb
Main IQ Blocks Used: 4541 of 5632, 80%=35Mb, Max Block#:
5120
Temporary IQ Blocks Used: 65 of 2816, 2%=0Mb, Max Block#: 0
Main Reserved Blocks Available: 512 of 512, 100%=4Mb
Temporary Reserved Blocks Available: 256 of 256, 100%=2Mb
IQ Dynamic Memory: Current: 41mb, Max: 41mb
Main IQ Buffers: Used: 4, Locked: 0
Temporary IQ Buffers: Used: 4, Locked: 0
Main IQ I/O: I: L168/P2 O: C2/D16/P15 D:0 C:100.0
Temporary IQ I/O: I: L862/P0 O: C136/D150/P17 D:132
C:100.0
Other Versions: 0 = 0Mb
Active Txn Versions: 0 = C:0Mb/D:0Mb

CHAPTER 10 System Procedures

Reference Manual 833

The following is a key to understanding the Main IQ I/O and Temporary
IQ I/O output codes:

• I: Input

• L: Logical pages read (“Finds”)

• P: Physical pages read

• O: Output

• C Pages Created

• D Pages Dirtied

• P: Physically Written

• D: Pages Destroyed

• C: Compression Ratio

sp_iqsysmon procedure
Function Monitors multiple components of Sybase IQ, including the management of

buffer cache, memory, threads, locks, I/O functions, and CPU utilization.

Batch mode syntax sp_iqsysmon start_monitor
sp_iqsysmon stop_monitor [, “section(s)”]
or
sp_iqsysmon “time-period” [, “section(s)”]

File mode syntax sp_iqsysmon start_monitor, ‘filemode’ [, ”monitor-options”]
sp_iqsysmon stop_monitor

Permissions None required.

Batch mode usage start_monitor Starts monitoring.

stop_monitor Stops monitoring and displays the report.

time-period The time period for monitoring. Must be in the form
HH:MM:SS.

section(s) The abbreviation for one or more sections to be displayed by
sp_iqsysmon. When more than one section is specified, the section
abbreviations must be separated by spaces and the list must be enclosed in
single or double quotes. The default is to display all sections.

System stored procedures

834 Sybase IQ

For the sections related to IQ Store, you can specify Main or Temporary Store
by prefixing the section abbreviation with “m” or “t”, respectively. See Table
10-42. Without the prefix, both stores are monitored. For example, if you
specify “mbufman”, only the Main IQ Store buffer manager is monitored. If
you specify “mbufman tbufnam” or “bufman”, both the Main and Temporary
Store buffer managers are monitored.

Table 10-42: sp_iqsysmon report section abbreviations

Note The Sybase IQ components Disk I/O and lock manager are not currently
supported by sp_iqsysmon.

File mode usage start_monitor Starts monitoring.

stop_monitor Stops monitoring and writes the remaining output to the log
file.

filemode Specifies that sp_iqsysmon is running in file mode. In file mode, a
sample of statistics is displayed for every interval in the monitoring period. By
default, the output is written to a log file named dbname.connid-iqmon. Use the
file_suffix option to change the suffix of the output file. See the monitor_options
parameter for a description of the file_suffix option.

monitor_options The monitor _options string can include one or more of the
following options:

Report section or IQ component Abbreviation

Buffer manager (m/t)bufnam

Buffer pool (m/t)bufpool

Prefetch management (m/t)prefetch

Free list management (m/t)freelist

Buffer allocation (m/t)bufalloc

Memory management memory

Thread management threads

CPU utilization cpu

Transaction management txn

Server context statistics server

Catalog statistics catalog

CHAPTER 10 System Procedures

Reference Manual 835

• -interval seconds
Specifies the reporting interval in seconds. A sample of monitor statistics
is output to the log file after every interval. The default is every 60
seconds, if the -interval option is not specified. The minimum reporting
interval is 2 seconds. If the interval specified for this option is invalid or
less than 2 seconds, the interval is set to 2 seconds.

The first display shows the counters from the start of the server.
Subsequent displays show the difference from the previous display. You
can usually obtain useful results by running the monitor at the default
interval of 60 seconds during a query with performance problems or
during a time of day with performance problems. A very short interval
may not provide meaningful results. The interval should be proportional
to the job time; 60 seconds is usually more than enough time.

• -file_suffix suffix
Creates a monitor output file named dbname.connid-suffix. If you do not
specify the -file_suffix option, the suffix defaults to iqmon. If you specify
the -file_suffix option and do not provide a suffix or provide a blank string
as a suffix, no suffix is used.

• -append or -truncate
Directs sp_iqsysmon to append to the existing output file or truncate the
existing output file, respectively. Truncate is the default. If both options
are specified, the option specified later in the string is effective.

• -section section(s)
Specifies the abbreviation of one or more sections to write to the monitor
log file. The default is to write all sections. The abbreviations specified in
the sections list in file mode are the same abbreviations used in batch
mode. See Table 10-42 for a list of abbreviations. When more than one
section is specified, spaces must separate the section abbreviations.

If the -section option is specified with no sections, none of the sections are
monitored. An invalid section abbreviation is ignored and a warning is
displayed in the IQ message file.

System stored procedures

836 Sybase IQ

Usage syntax
examples

Table 10-43: sp_iqsysmon usage examples

See also IQ UTILITIES statement on page 576

Chapter 6, “Monitoring and Tuning Performance” in the Sybase IQ
Performance and Tuning Guide

Description The sp_iqsysmon stored procedure monitors multiple components of Sybase
IQ, including the management of buffer cache, memory, threads, locks, I/O
functions, and CPU utilization.

The sp_iqsysmon procedure supports two modes of monitoring:

• Batch mode

In batch mode, sp_iqsysmon collects the monitor statistics for the period
between starting and stopping the monitor or for the time period specified
in the time-period parameter. At the end of the monitoring period,
sp_iqsysmon displays a list of consolidated statistics.

sp_iqsysmon in batch mode is similar to the Adaptive Server Enterprise
procedure sp_sysmon.

• File mode

In file mode, sp_iqsysmon writes the sample statistics in a log file for every
interval period between starting and stopping the monitor.

Note that the first display in file mode shows the counters from the start of
the server. Subsequent displays show the difference from the previous
display.

Syntax Result

sp_iqsysmon start_monitor

sp_iqsysmon stop_monitor

Starts the monitor in batch mode and
displays all sections for Main and
Temporary Store

sp_iqsysmon start_monitor

sp_iqsysmon stop_monitor
“mbufman mbufpool”

Starts the monitor in batch mode and
displays the Buffer Manager and Buffer
Pool statistics for Main Store

sp_iqsysmon “00:00:10”, “mbufpool
memory”

Runs the monitor in batch mode for 10
seconds and displays the consolidated
statistics at the end of the time period

sp_iqsysmon start_monitor,
‘filemode’, “-interval 5 -sections
mbufpool memory”

sp_iqsysmon stop_monitor

Starts the monitor in file mode and writes to
the log file every 5 seconds the statistics for
Main Buffer Pool and Memory Manager

CHAPTER 10 System Procedures

Reference Manual 837

sp_iqsysmon in file mode is similar to the IQ UTILITIES command START
MONITOR and STOP MONITOR interface.

Batch mode examples Prints monitor information after 10 minutes:

sp_iqsysmon “00:10:00”

Prints only the Memory Manager section of the sp_iqsysmon report after 5
minutes:

sp_iqsysmon “00:05:00”, memory

Starts the monitor, executes two procedures and a query, stops the monitor, then
prints only the Buffer Manager section of the report:

sp_iqsysmon start_monitor
go
execute proc1
go
execute proc2
go
select sum(total_sales) from titles
go
sp_iqsysmon stop_monitor, bufman
go

Prints only the Main Buffer Manager and Main Buffer Pool sections of the
report after 20 minutes:

sp_iqsysmon “00:02:00”, “mbufman mbufpool”

File mode examples Truncates and writes information to the log file every 2 seconds between
starting the monitor and stopping the monitor:

sp_iqsysmon start_monitor, ‘filemode’, ‘-interval 2’
.
.
.
sp_iqsysmon stop_monitor

Appends output for only the Main Buffer Manager and Memory Manager
sections to an ASCII file with the name dbname.connid-testmon. For the
database asiqdemo, writes results in the file asiqdemo.2-testmon:

sp_iqsysmon start_monitor, ‘filemode’,
“-file_suffix testmon -append -section mbufman memory”
.
.
.
sp_iqsysmon stop_monitor

System stored procedures

838 Sybase IQ

Example Run the monitor in batch mode for 10 seconds and display the consolidated
statistics at the end of the time period

sp_iqsysmon “00:00:10”, “mbufpool memory”

==============================
Buffer Pool (Main)
==============================
STATS-NAME TOTAL NONE BTREEV BTREEF BV VDO DBEXT DBID SORT
MovedToMRU 0 0 0 0 0 0 0 0 0
MovedToWash 0 0 0 0 0 0 0 0 0
RemovedFromLRU 0 0 0 0 0 0 0 0 0
RemovedFromWash 0 0 0 0 0 0 0 0 0
RemovedInScanMode 0 0 0 0 0 0 0 0 0

STORE GARRAY BARRAY BLKMAP HASH CKPT BM TEST CMID RIDCA LOB
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

STATS-NAME VALUE
Pages 127 (100.0 %)
InUse 4 (3.1 %)
Dirty 1 (0.8 %)
Pinned 0 (0.0 %)
Flushes 0
FlushedBufferCount 0
GetPageFrame 0
GetPageFrameFailure 0
GotEmptyFrame 0
Washed 0
TimesSweepersWoken 0

washTeamSize 0
WashMaxSize 26 (20.5 %)
washNBuffers 4 (3.1 %)
washNDirtyBuffers 1 (0.8 %)

washSignalThreshold 3 (2.4 %)
washNActiveSweepers 0
washIntensity 1

==============================
Memory Manager
==============================
STATS-NAME VALUE

CHAPTER 10 System Procedures

Reference Manual 839

MemAllocated 43616536 (42594 KB)
MemAllocatedMax 43735080 (42710 KB)
MemAllocatedEver 0 (0 KB)
MemNAllocated 67079
MemNAllocatedEver 0
MemNTimesLocked 0
MemNTimesWaited 0 (0.0 %)

sp_iqtable procedure
Function Displays information about tables in the database.

Syntax1 sp_iqtable ([table_name],[table_owner],[table_type])

Syntax2 sp_iqtable [table_name='tablename'],
[table_owner='tableowner'],[table_type='tabletype']

Usage Syntax1 If you do not specify either of the first two parameters, but specify
the next parameter in the sequence, you must substitute NULL for the omitted
parameters. For example, sp_iqtable NULL,NULL,TEMP and sp_iqtable
NULL,dbo,SYSTEM.

Note The table_type values ALL and VIEW must be enclosed in single quotes
in Syntax1.

Syntax2 The parameters can be specified in any order. Enclose them in single
quotes.

Table 10-44 lists the allowed values for the table_type parameter:

Table 10-44: sp_iqtable table_type values

Description Specifying one parameter returns only the tables that match that parameter.
Specifying more than one parameter filters the results by all of the parameters
specified. Specifying no parameters returns all Sybase IQ tables in the
database. There is no method for returning the names of local temporary tables.

table_type value Information displayed

SYSTEM System tables

TEMP Global temporary tables

VIEW Views

ALL IQ tables, system tables, and views

any other value IQ tables

System stored procedures

840 Sybase IQ

Table 10-45: sp_iqtable columns

Examples The following variations in syntax both return information about the table
department:

call sp_iqtable ('department')
sp_iqtable table_name='department'

The following variations in syntax both return all tables that are owned by table
owner DBA:

sp_iqtable NULL,DBA
sp_iqtable table_owner='DBA'

Column name Description

table_name The name of the table.

table_type SYSTEM, BASE – a base table

VIEW – a view

TEMP, JVT – all join virtual tables of both IQ Store and
IQ Local Stores, ALL

GBL – a global temporary table

JVT_MAIN – join virtual table of the IQ Store

JVT_LOCAL – join virtual table of an IQ Local Store.

table_owner The owner of the table

server_type IQ – an object created in the IQ Store

SA – an object created in the SA Store

All views are created in the SA store.

location TEMP – IQ Temp Store

MAIN – IQ Store

LOCAL – IQ Local Store

SYSTEM – Catalog Store

remarks User comments added with the COMMENT statement.

table_name table_type table_owner server_type location remarks

department BASE DBA IQ MAIN (NULL)

table_name table_type table_owner server_type location remarks

contact BASE DBA IQ MAIN (NULL)

customer BASE DBA IQ MAIN (NULL)

department BASE DBA IQ MAIN (NULL)

employee BASE DBA IQ MAIN (NULL)

fin_code BASE DBA IQ MAIN (NULL)

CHAPTER 10 System Procedures

Reference Manual 841

sp_iqtablesize procedure
Function Returns the size of the specified table.

Syntax sp_iqtablesize (table_owner.table_name)

Description Returns the total size of the table in KBytes and NBlocks (IQ blocks). Also
returns the number of pages required to hold the table in memory, and the
number of IQ pages that are compressed when the table is compressed (on
disk). You must specify the table_name parameter with this procedure. If you
are the owner of table_name, then you do not have to specify the table_owner
parameter.

Table 10-46: sp_iqtablesize columns

Pages is the total number of IQ pages for the table. The unit of measurement
for pages is IQ page size. All in-memory buffers (buffers in the IQ buffer
cache) are the same size.

IQ pages on disk are compressed. Each IQ page on disk uses 1 to 16 blocks. If
the IQ page size is 128KB, then the IQ block size is 8KB. In this case, an
individual on-disk page could be 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96,
104, 112, 120, or 128 KB.

fin_data BASE DBA IQ MAIN (NULL)

product BASE DBA IQ MAIN (NULL)

sales_order BASE DBA IQ MAIN (NULL)

sales_order_items BASE DBA IQ MAIN (NULL)

table_name table_type table_owner server_type location remarks

Column name Description

Ownername Name of owner

Tablename Name of table

Columns Number of columns in the table

KBytes Physical table size in KB

Pages Number of IQ pages needed to hold the table in memory

CompressedPages Number of IQ pages that are compressed, when the table
is compressed (on disk)

NBlocks Number of IQ blocks

System stored procedures

842 Sybase IQ

If you divide the KBytes value by page size, you see the average on-disk page
size.

Note Sybase IQ always reads and writes an entire page, not blocks. For
example, if an individual page compresses to 88K, then IQ reads and writes the
88K in one I/O. The average page is compressed by a factor of 2 to 3.

NBlocks is Kbytes divided by IQ block size.

CompressedPages is the number of pages that are compressed. For example, if
Pages is 1000 and CompressedPages is 992, this means that 992 of the 1000
pages are compressed. CompressedPages divided by Pages is usually near
100%, because most pages compress. An empty page is not compressed, since
Sybase IQ does not write empty pages. IQ pages compress well, regardless of
the fullness of the page.

Example call sp_iqtablesize ('dba.tab1')

sp_iqtransaction procedure
Function Shows information about transactions and versions.

Syntax sp_iqtransaction

Description sp_iqtransaction returns a row for each transaction control block in the Sybase
IQ transaction manager. The columns Name, Userid, and ConnHandle are the
connection properties Name, Userid, and Number, respectively. Rows are
ordered by TxnID.

The sp_iqtransaction output does not contain rows for connections that do not
have a transaction started. To see all connections, use sp_iqconnection.

Note Although you can use sp_iqtransaction to identify users who are blocking
other users from writing to a table, sp_iqlocks is a better choice for this purpose.

Table 10-47: sp_iqtransaction columns

Ownername Tablename Columns KBytes Pages CompressedPages NBlocks

DBA tab1 16 5838548 124260 91344 1459637

Column name Description

Name The name of the server.

Userid The user ID for the connection.

CHAPTER 10 System Procedures

Reference Manual 843

TxnID The transaction ID of this transaction control block. The transaction ID
is assigned during begin transaction. This is the same as the transaction
ID displayed in the .iqmsg file by the BeginTxn, CmtTxn and
PostCmtTxn messages as well as the Txn ID Seq logged when the
database is opened.

CmtID The ID assigned by the transaction manager when the transaction
commits. It is zero for active transactions.

VersionID In nonmultiplex databases and multiplex write servers, the VersionID is
the same as the TxnID. In multiplex query servers, the VersionID is the
TxnID of the transaction that created the database version on the
multiplex write server. It is used internally by the Sybase IQ in-memory
catalog and the IQ transaction manager to uniquely identify a database
version to all nodes within a multiplex database.

State The state of the transaction control block. This variable reflects internal
Sybase IQ implementation detail and is subject to change in the future. At
the time of this writing, transaction states are NONE, ACTIVE,
ROLLING_BACK, ROLLED_BACK, COMMITTING,
COMMITTED, and APPLIED.

ConnHandle The ID number of the connection.

IQConnID The ten-digit connection ID displayed as part of all messages in the .iqmsg
file. This is a monotonically increasing integer unique within a server
session.

MainTableKBCreated The number of kilobytes of IQ Store space created by this transaction.
MainTableKBDropped The number of kilobytes of IQ Store space dropped by this transaction,

but which persist on disk in the Store because the space is visible in other
database versions or other savepoints of this transaction.

TempTableKBCreated The number of kilobytes of IQ Temporary Store space created by this
transaction for storage of IQ temporary table data.

TempTableKBDropped The number of kilobytes of IQ temporary table space dropped by this
transaction, but which persist on disk in the IQ Temporary Store because
the space is visible to IQ cursors or is owned by other savepoints of this
transaction.

TempWorkSpaceKB For ACTIVE transactions, this is a snapshot of the work space in use at
this instant by this transaction, such as sorts, hashes, and temporary
bitmaps. The number varies depending on when you run sp_iqtransaction.
For example, the query engine might create 60MB in the temporary
cache but release most of it quickly, even though query processing
continues. If you run sp_iqtransaction after the query finishes, this column
shows a much smaller number. When the transaction is no longer active,
this column is zero.

For ACTIVE transactions, this column is the same as the TempWorkSpaceKB
column of sp_iqconnection.

Column name Description

System stored procedures

844 Sybase IQ

TxnCreateTime The time the transaction began. All Sybase IQ transactions begin
implicitly as soon as an active connection is established or when the
previous transaction commits or rolls back.

Dbremote A bit data column that indicates the transaction is an internal transaction
used to replicate multiplex version information between a query server
and the write server within a multiplex database.

CursorCount The number of open Sybase IQ cursors that reference this transaction
control block. If the transaction is ACTIVE, it indicates the number of
open cursors created within the transaction. If the transaction is
COMMITTED, it indicates the number of HOLD cursors that reference
a database version owned by this transaction control block.

SpCount The number of savepoint structures that exist within the transaction
control block. Savepoints may be created and released implicitly.
Therefore, this number does not indicate the number of user-created
savepoints within the transaction.

SpNumber The active savepoint number of the transaction. This is an
implementation detail and might not reflect a user-created savepoint.

Column name Description

CHAPTER 10 System Procedures

Reference Manual 845

Example Here is an example of sp_iqtransaction output:

Name Userid TxnID CmtID VersionID State ConnHandle IQConnID
======= ===== ====== ====== ========= ========== =========== ========
red2 DBA 10058 10700 10058 COMMITTED 419740283 14
blue1 DBA 10568 0 10568 ACTIVE 640038605 17

DBA 10604 0 10604 ACTIVE 2094200996 18
fromSCJ DBA 10619 0 10619 ACTIVE 954498130 20
blue2 DBA 10634 10677 10634 COMMITTED 167015670 21
ntJava2 DBA 10676 0 10676 ACTIVE 1779741471 24
blue2 DBA 10678 0 10678 ACTIVE 167015670 21
nt1 DBA 10699 0 10699 ACTIVE 710225777 28
red2 DBA 10701 0 10701 ACTIVE 419740283 14

DBA 16687 0 16687 ACTIVE 1306718536 23

MainTableKBCreated MainTableKBDropped TempTableKBCreated TempTableKBDropped
================== ================== ================== ==================

0 0 65824 0
0 0 0 0
0 0 0 0
0 0 0 0

3960 152 0 0
0 0 0 0

2440 1992 0 0
0 0 0 0
0 0 2912 22096
0 0 0 0

TempWorkSpaceKB TxnCreateTime Dbremote CursorCount SpCount SpNumber
============== ================== ======= ========== ====== ======

0 2006-06-26 13:17:27.612 0 1 3 2
102592 2006-06-26 13:27:28.491 0 1 1 0

0 2006-06-26 13:30:27.548 0 0 1 0
0 2006-06-26 13:31:27.151 0 0 24 262
0 2006-06-26 13:35:02.128 0 0 0 0
0 2006-06-26 13:43:58.805 0 0 39 408

128 2006-06-26 13:45:28.379 0 0 1 0
0 2006-06-26 14:05:15.759 0 0 42 413

680 2006-06-26 14:57:51.104 0 1 2 20
0 2006-06-26 15:09:30.319 0 0 1 0

System stored procedures

846 Sybase IQ

sp_iqversionuse procedure
Function Displays version usage for the IQ Main store.

Syntax call dbo.sp_iqversionuse ()

Description The sp_iqversionuse system stored procedure helps troubleshoot situations
where the databases uses excessive storage space due to multiple table
versions.

If out-of-space conditions occur or sp_iqstatus shows a high percentage of
main blocks in use on a multiplex server, run sp_iqversionuse to find out which
versions are being used and the amount of space that can be recovered by
releasing versions.

The procedure produces a row for each user of a version. Run sp_iqversionuse
first on the write server to determine which versions should be released and the
amount of space in KB to be released when the version is no longer in use.
Connection IDs are displayed in the IQConn column for users connected to the
write server. Version usage due to query servers is displayed as the query server
name with connection ID 0.

Run sp_iqversionuse on multiplex query servers to determine individual
connections to query servers. Users from other servers are not displayed on a
query server.

The amount of space is expressed as a range because the actual amount
typically depends on which other versions are released. The actual amount of
space released can be anywhere between the values of MinKBRelease and
MaxKBRelease. The oldest version always has MinKBRelease equal to
MaxKBRelease.

WasReported indicates whether version usage information has been sent from
the query server to the write server. WasReported is 0 initially on a write server
for new versions. WasReported changes to 1 once SQL Remote replicates
version usage information back to the write server. If WasReported is 0 for an
extended period, SQL Remote might be stopped.

CHAPTER 10 System Procedures

Reference Manual 847

Table 10-48: sp_iqversionuse columns

Example In this example, the oldest version 42648 is in use by connection 108 on the
write server (mpxw). Committing or rolling back the transaction on connection
108 releases 7.9MB of space. Version 42686 is in use by query server (mpxq)
according to output from the write server. Using the query server output, the
actual connection is connection 31. The actual amount of space returned from
releasing version 42686 depends on whether 42648 is released first.

WasReported is 0 for versions 42715 and 42728 on the write server because
these are new versions that have not yet been replicated by SQL Remote. Since
version 42728 does not appear on the query server output, it has not yet been
used by the query server.

The following output is returned when sp_iqversionuse executes on the write
server mpxw:

call dbo.sp_iqversionuse

The following output is returned when sp_iqversionuse executes on the query
server (mpxq):

call dbo.sp_iqversionuse

Column name Description

VersionID The version identifier

Server The server to which users of this version are connected

IQConnID The connection ID using this version

WasReported Indicates whether the server has received usage
information for this version

MinKBRelease The minimum amount of space returned once this
version is no longer in use

MaxKBRelease The maximum amount of space returned once this
version is no longer in use

VersionID Server IQConn WasReported MinKBRelease MaxKBRelease

42648 'mpxw' 108 1 7920 7920

42686 'mpxq' 0 1 7920 304

42702 'mpxq' 0 1 0 688

42715 ‘mpxq' 0 0 0 688

42728 'mpxq' 0 0 0 688

VersionID Server IQConn WasReported MinKBRelease MaxKBRelease

42686 'mpxq' 31 1 0 0

42715 'mpxq' 00 1 0 0

System stored procedures

848 Sybase IQ

sp_iqview procedure
Function Displays information about views in a database.

Syntax1 sp_iqview ([view_name],[view_owner],[view_type])

Syntax2 sp_iqview [view_name='viewname'],
[view_owner='viewowner'],[view_type='viewtype']

Usage Syntax1 sp_iqview NULL,NULL,SYSTEMIf you do not specify either of the
first two parameters, but specify the next parameter in the sequence, you must
substitute NULL for the omitted parameters. For example: sp_iqview
NULL,NULL,SYSTEM and sp_iqview deptview,NULL,'ALL'.

Note The view_type value ALL must be enclosed in single quotes in Syntax1.

Syntax2 The parameters can be specified in any order. Enclose them in single
quotes.

Table 10-49 lists the allowed values for the view_type parameter.

Table 10-49: sp_iqview view_type values

Description Specifying one of the parameters returns only the views with the specified view
name or views that are owned by the specified user. Specifying more than one
parameter filters the results by all of the parameters specified. Specifying no
parameters returns all user views in a database.

Table 10-50: sp_iqview columns

Examples The following variations in syntax both return information about the view
deptview:

call sp_iqview('deptview')
sp_iqview view_name='deptview'

view_type value Information displayed

SYSTEM System views

ALL User and system views

any other value User views

Column name Description

view_name The name of the view

view_owner The owner of the view

view_def The view definition as specified in the CREATE VIEW
statement

remarks User comments added with the COMMENT statement

CHAPTER 10 System Procedures

Reference Manual 849

The following variations in syntax both return all views that are owned by view
owner DBA:

sp_iqview NULL,DBA
sp_iqview view_owner='DBA'

sp_iqwho procedure
Function Displays information about all current users and connections, or about a

particular user or connection.

Syntax sp_iqwho [{ connhandle | user-name } [, arg-type]]

Permissions None required.

Description The sp_iqwho stored procedure displays information about all current users and
connections, or about a particular user or connection.

view_name view_owner view_def remarks

deptview DBA create view DBA.deptview(vdep (NULL)

view_name view_owner view_def remarks

deptview DBA create view DBA.deptview(vdep (NULL)

empview DBA create view DBA.empview(vemp (NULL)

System stored procedures

850 Sybase IQ

Table 10-51: sp_iqwho columns

Adaptive Server Enterprise compatibility The Sybase IQ sp_iqwho stored
procedure incorporates the Sybase IQ equivalents of columns displayed by the
Adaptive Server Enterprise sp_who procedure. Some Adaptive Server
Enterprise columns are omitted, as they are not applicable to Sybase IQ. Table
10-52 maps the Adaptive Server Enterprise sp_who columns to the columns
displayed by sp_iqwho.

Column name Description

ConnHandle The SA connection handle

IQConnID The Sybase IQ specific connection ID

Userid The name of the user that opened the connection
“ConnHandle”

BlockedOn The connection on which a particular connection is blocked; 0
if not blocked on any connection

BlockUserid The owner of the blocking connection; NULL if there is no
blocking connection

ReqType The type of the request made through the connection;
DO_NOTHING if no command is issued

IQCmdType The type of Sybase IQ command issued from the connection;
NONE if no command is issued

IQIdle The time in seconds since the last Sybase IQ command was
issued through the connection; in case of no last Sybase IQ
command, the time since ‘01-01-2000’ is displayed

SAIdle The time in seconds since the last SA request was issued
through the connection; in case of no last SA command, the
time since ‘01-01-2000’ is displayed

IQCursors The number of active cursors in the connection; 0 if no cursors

IQThreads The number of threads with the connection. At least one thread
is started as soon as the connection is opened, so the minimum
value for IQThreads is 1.

TmpTblSpaceKB The size of temporary table space in kilobytes; 0 if no
temporary table space is used

TmpWrkSpaceKB The size of temporary workspace in kilobytes; 0 if no
temporary workspace is used

CHAPTER 10 System Procedures

Reference Manual 851

Table 10-52: Mapping of sp_who and sp_iqwho columns

Usage connhandle An integer representing the connection ID. If this parameter is
specified, sp_iqwho returns information only about the specified connection. If
the specified connection is not open, no rows are displayed in the output.

user-name A char(255) parameter representing a user login name. If this
parameter is specified, sp_iqwho returns information only about the specified
user. If the specified user has not opened any connections, no rows are
displayed in the output. If the specified user name does not exist in the
database, sp_iqwho returns the error message ”User user-name does not
exist”

arg-type The arg-type parameter is optional and can be specified only when
the first parameter has been specified. The only value for arg-type is “user”. If
the arg-type value is specified as “user”, sp_iqwho interprets the first parameter
as a user name, even if the first parameter is numeric. If any value other than
“user” is specified for arg-type, sp_iqwho returns the error

“Invalid parameter.”

Enclose the arg-type value in double quotes.

If no parameters are specified, sp_iqwho displays information about all
currently active connections and users.

sp_who column sp_iqwho column

fid Family to which a lock belongs; omitted, as not applicable to
Sybase IQ

spid ConnHandle, IQConnID

status IQIdle, SAIdle

loginame Userid

origname User alias; omitted, as not applicable to Sybase IQ

hostname Name of the host on which the server is running; can be
confusing in a multiplex environment, so currently is not
supported

blk_spid BlockedOn

dbname Omitted, as there is one server and one database for Sybase IQ
and they are the same for every connection

cmd ReqType, IQCmdType

block_xloid BlockUserid

System stored procedures

852 Sybase IQ

Either a connection handle or a user name can be specified as the first sp_iqwho
parameter. The parameters connhandle and user-name are exclusive and
optional. Only one of these parameters can be specified at a time. By default,
if the first parameter is numeric, the parameter is assumed to be a connection
handle. If the first parameter is not numeric, it is assumed to be a user name.

Sybase IQ allows numeric user names. The arg-type parameter directs
sp_iqwho to interpret a numeric value in the first parameter as a user name. For
example:

sp_iqwho 1, “user”

When the arg-type “user” is specified, sp_iqwho interprets the first parameter
1as a user name, not as a connection ID. If a user named 1 exists in the
database, sp_iqwho displays information about connections opened by user 1.

Table 10-53: sp_iqwho usage examples

See also “sp_iqconnection procedure” on page 753

“sa_conn_info system procedure” on page 855

Example Display all active connections:

ConnHandle IQConnID Userid ReqType IQCmdType BlockedOn BlockUserid IQCursors

IQThreads IQIdle SAIdle TmpTblSpaceKB TmpWrkSpaceKB

12 118 DBA CURSOR_OPEN IQUTILITYOPENCURSOR 0 (NULL) 0

1 1 0 0 0

13 119 shweta DO_NOTHING NONE 0 (NULL) 0

1 16238757 470 0 0

Syntax Output

sp_iqwho Displays all active connections

sp_iqwho 3 Displays information about connection 3

sp_iqwho “DBA” Displays connections opened by user DBA

sp_iqwho 3, “user” Interprets 3 as a user name and displays connections
opened by user 3. If user 3 does not exist, returns the
error “User 3 does not exist”

sp_iqwho non-existing-user Returns error “User non-existing-user
does not exist”

sp_iqwho 3, “xyz” Returns the error “Invalid parameter: xyz”

CHAPTER 10 System Procedures

Reference Manual 853

Catalog stored procedures
The following Catalog Store stored procedures return result sets displaying
database server, database, and connection properties in tabular form. These
procedures are owned by the dbo user ID. The PUBLIC group has EXECUTE
permission on them.

sa_audit_string system procedure
Function Adds a string to the transaction log.

Syntax sa_audit_string (string)

Permissions DBA authority required.

Description If auditing is turned on, this system procedure adds a comment into the audit
log. The string can be a maximum of 200 bytes long.

Example • The following call adds a comment into the audit log:

CALL sa_audit_string('Auditing test')

sa_checkpoint_execute system procedure
Function Allows the execution of shell commands during a checkpoint.

Syntax sa_checkpoint_execute 'shell_commands'

Parameters shell_commands One or more user commands to be executed in a system
shell. The shell commands are specific to the system shell. Commands are
separated by a semicolon (;).

Permissions None.

Description sa_checkpoint_execute allows users to execute shell commands to copy a
running database from the middle of a checkpoint operation, when the server
is quiescent. The copied database can be started and goes through normal
recovery, similar to recovery following a system failure.

sa_checkpoint_execute initiates a checkpoint and then executes a system shell
from the middle of the checkpoint, passing the user commands to the shell. The
server then waits for the shell to complete, creating an arbitrary size time
window in which to copy database files. Most database activity stops while the
checkpoint is executing, so the duration of the shell commands should be
limited to acceptable user response time.

Catalog stored procedures

854 Sybase IQ

If the shell commands return a non-zero status, sa_checkpoint_execute returns
an error.

Do not use the sa_checkpoint_execute with interactive commands, as the server
must wait until the interactive command is killed. Supply override flags to
disable prompting for any shell commands that might become interactive; in
other words, the COPY, MOVE, and DELETE commands might prompt for
confirmation.

The intended use of sa_checkpoint_execute is in conjunction with disk
mirroring to split mirrored devices.

Example The following statement issues a checkpoint, copies all the asiqdemo database
files to a backup directory, then completes the checkpoint.

sa_checkpoint_execute 'cp asiqdemo.* /backup'

sa_conn_activity system procedure
Function Returns the most recently prepared SQL statement for each connection to

databases on the server.

Syntax sa_conn_activity

Permissions None

Side effects None

Description The sa_conn_activity procedure returns a result set consisting of the most
recently prepared SQL statement for each connection if the server has been told
to collect the information. To obtain the result set, specify the -zl option when
starting the database server or execute the following:

CALL sa_server_option('Remember_last_statement','ON')

This procedure is useful when the database server is busy and you want to
obtain information about what SQL statement is prepared for each connection.
This feature can be used as an alternative to request-level logging.

For information on the LastStatement property from which these values are
derived, see the Adaptive Server Anywhere Database Administration Guide.

For information about the -zl command line option, see Chapter 1, “Running
the Database Server” in Sybase IQ Utility Guide.

For information about the remember_last_statement setting, see
“sa_server_option system procedure” on page 865.

CHAPTER 10 System Procedures

Reference Manual 855

sa_conn_info system procedure
Function Reports connection property information.

Syntax sa_conn_info ([connection-id])

Permissions None.

Description Returns a result set consisting of the following connection properties for the
supplied connection. If no connection-id is supplied, information for all current
connections to databases on the server is returned.

• Number

• Name

• Userid

• DBNumber

• LastReqTime

• ProcessTime

• Port

• ReqType

• CommLink

• NodeAddr

• LastIdle

• CurrTaskSwitch

• BlockedOn

• UncommitOp

In a deadlock situation, the BlockedOn value returned by this procedure allows
you to check which users are blocked, and who they are blocked on.

Example sa_conn_info

569851433,'','DBA',0,'','0.0',1,
'CURSOR_OPEN','local','',6821,0,0,1008

Catalog stored procedures

856 Sybase IQ

sa_conn_properties system procedure
Function Reports connection property information.

Syntax sa_conn_properties ([connection-id])

Description Returns the connection ID as Number, and the PropNum, PropName,
PropDescription, and Value for each available connection property. Omitting
the connection-id produces results for all connections.

For a listing of available connection properties, see the section “Database
properties” in the chapter “Database Performance and Connection Properties”
in the Adaptive Server Anywhere Database Administration Guide.

Example sa_conn_properties

569851433,29,'CacheHits','Cache hits','0'

569851433,30,'CacheRead','Cache reads','0'

569851433,31,'DiskRead','Disk reads','57'

569851433,32,'DiskSyncRead','Disk synchronous reads','0'

569851433,33,'DiskWaitRead','Disk wait for reads','0'

569851433,34,'DiskWaitWrite','Disk wait for writes','0'

569851433,35,'CacheReadTable','Cache table reads','0'

569851433,36,'CacheReadIndLeaf','Cache index leaf reads','0'

569851433,37,'CacheReadIndInt','Cache index interior reads','0'

569851433,38,'DiskReadTable','Disk table reads','0'

569851433,39,'DiskReadIndLeaf','Disk index leaf reads','0'

569851433,40,'DiskReadIndInt','Disk index interior reads','0'

569851433,41,'CacheWrite','Cache writes','0'

569851433,42,'DiskWrite','Disk writes','4'

Note CacheHits is always reported as 0 by sa_conn_properties, as this
information is not stored by user connection. To get cache hit statistics for the
entire cache, use sa_eng_properties, and see the output lines for CacheHitsEng,
CacheReadEng, and DiskReadEng. If you run the same query on the Catalog
Store repeatedly, the first time you should see reads increase but no cache hits;
as you repeat the query, cache hits increase in step with cache reads.

sa_conn_properties_by_conn system procedure
Function Reports connection property information.

Syntax sa_conn_properties_by_conn ([property-name])

Permissions None.

CHAPTER 10 System Procedures

Reference Manual 857

See also “sa_conn_properties system procedure” on page 856

Description This is a variant on the sa_conn_properties system procedure. It returns results
only for connection properties that match the property-name string. You can
use wildcards in property-name, as the comparison uses a LIKE operator. The
result set is sorted by connection number and property name.

For a listing of available connection properties, see the section “Database
properties” in the chapter “Database Performance and Connection Properties”
in the Adaptive Server Anywhere Database Administration Guide.

Examples • The following statement returns CacheHits settings:

sa_conn_properties_by_conn CacheHits

569851433,29,'CacheHits','Cache hits','0'

• The following statement returns the AnsiNull option setting for the current
connection:

call sa_conn_properties_by_conn('ansinull')

569851433,202,'Ansinull','Ansinull','ON'

• The following statement returns the ANSI-related option settings for the
current connection:

call sa_conn_properties_by_conn('ansi%')

'569851433,198,'Ansi_blanks',
'Ansi_blanks','OFF'
569851433,225,
'Ansi_close_cursors_on_rollback',
'Ansi_close_cursors_on_rollback','ON'
569851433,199,'Ansi_integer_overflow',
'Ansi_integer_overflow','OFF'
569851433,203,'Ansi_permissions',
'Ansi_permissions','ON'
569851433,202,'Ansinull','Ansinull','ON'

sa_conn_properties_by_name system procedure
Function Reports connection property information.

Syntax sa_conn_properties_by_name ([connection-id])

Permissions None.

See also “sa_conn_properties system procedure” on page 856

Catalog stored procedures

858 Sybase IQ

Description This is a variant on the sa_conn_properties system procedure. It returns the
same result columns. The information is sorted by property name and
connection number.

For a listing of available connection properties, see the section “Database
properties” in the chapter “Database Performance and Connection Properties”
in the Adaptive Server Anywhere Database Administration Guide.

Example sa_conn_properties_by_name

For an example of the results returned by sa_conn_properties_by_name, see
“sa_conn_properties system procedure” on page 856.

sa_db_info system procedure
Function Reports database property information.

Syntax sa_db_info ([database-id])

Permissions None.

See also “sa_db_properties system procedure” on page 859

Description Returns a single row containing the Number, Alias, File, ConnCount,
PageSize, and LogName for the specified database.

Example • The following statement returns a single row describing the current
database. Table 10-54 lists sample values.

sa_db_info

0,'asiqdemo','
/sys1/users/janed/sybase/ASIQ-12_7/demo/
asiqdemo.db',
1,4096,'/sys1/users/janed/sybase/ASIQ-12_7/demo/
asiqdemo.log'

Table 10-54: sa_db_info sample values

Property Value

Number 0

Alias asiqdemo

File c:\ASIQ-12_7\demo\asiqdemo.db

ConnCount 1

PageSize 4096

LogName c:\ASIQ-12_7\demo\asiqdemo.log

CHAPTER 10 System Procedures

Reference Manual 859

sa_db_properties system procedure
Function Reports database property information.

Syntax sa_db_properties ([database-id])

Permissions None.

See also “sa_db_info system procedure” on page 858

Description Returns the database ID number and the Number, PropNum, PropName,
PropDescription, and Value, for each property returned by the sa_db_info
system procedure.

Example sa_db_properties

0,125,'Name','Database name','asiqdemo'

0,126,'Alias','Mounted database name','asiqdemo'

0,127,'File','Database file',

'/sys1/users/janed/sybase/ASIQ-12_7/demo/asiqdemo.db'

0,128,'PageSize','Database page size','4096'

0,129,'LogName','Database log file name',

'/sys1/users/janed/sybase/ASIQ-12_7/demo/

asiqdemo.log'0,131,'ConnCount','Number of connections','1'

0,146,'FileVersion',

'Database file version number','1005'

0,147,'CheckpointUrgency',

'Database checkpoint urgency','30'

0,148,'RecoveryUrgency',

'Database recovery urgency','0'

0,151,'IQStore','IQ store is on/off','ON'

0,163,'CharSet','Character Set','iso_1'

0,164,'MultiByteCharSet',

'Multi Byte Character Set (on/off)','OFF'

0,165,'Language','Language','unknown'

sa_enable_auditing_type system procedure
Function Enables auditing and specifies which events to audit.

Syntax sa_enable_auditing_type(['string])

Parameters string is a comma-delimited string containing one or more of:

Permissions DBA authority required.

See also “AUDITING option [database]” on page 45

Catalog stored procedures

860 Sybase IQ

Description sa_enable_auditing_type works in conjunction with the PUBLIC.AUDITING
option to enable auditing of specific types of information.

If you set the PUBLIC.AUDITING option to ON, and do not specify which type
of information to audit, the default setting (all) takes effect. In this case, all
types of auditing information are recorded.

If you set the PUBLIC.AUDITING option to ON, and disable all types of auditing
using sa_disable_auditing_type, no auditing information is recorded. To re-
establish auditing, you must use sa_enable_auditing_type to specify which type
of information you want to audit.

If you set the PUBLIC.AUDITING option to OFF, then no auditing information
is recorded, regardless of the sa_enable_auditing_type setting.

Example • To enable only option auditing:

sa_disable_auditing_type('all')

sa_enable_auditing_type('options')

sa_eng_properties system procedure
Function Reports database server property information.

Syntax sa_eng_properties

Permissions None.

Description Returns the PropNum, PropName, PropDescription, and Value for each
available server property.

For a listing of available engine properties, see the section “Database
properties” in the chapter “Database Performance and Connection Properties”
in the Adaptive Server Anywhere Database Administration Guide.

Examples • The following statement returns a set of available server properties:

call sa_eng_properties()

• The following statement returns a set of available server properties:

PropNum PropName ...

0 IdleCheck ...

1 IdleWrite ...

2 IdleChkPt ...

...

CHAPTER 10 System Procedures

Reference Manual 861

sa_eng_properties

0,'IdleCheck','Idle I/O checked','0'

1,'IdleWrite','Idle I/O writes','0'

2,'IdleChkpt','Idle I/O checkpoints','0'

3,'IdleChkTime','Idle I/O checkpoint time','0'

4,'Chkpt','Checkpoints','5'

5,'ChkptPage','Checkpoint log pages','19'

6,'ChkptFlush','Checkpoint flushed pages','24'

7,'ExtendDB','Extend database file writes','0'

8,'ExtendTempWrite','Extend temporary file writes','198'

9,'FreeWritePush','Free list write to pushable list','0'

10,'FreeWriteCurr','Free list write to current list','0'

11,'CommitFile','Commit writes to disk','59'

12,'PendingReq','Pending requests detected','0'

13,'CurrRead','Active disk read requests','0'

14,'MaxRead','Maximum active disk read requests','3'

15,'CurrWrite','Active disk write requests','0'

16,'MaxWrite','Maximum active disk write requests','4'

17,'CurrIO','Active disk read/write requests','0'

18,'MaxIO','Maximum active disk read/write requests','4'

19,'JavaNSSize','Java VM Namespace size','0'

20,'IOToRecover','','0'

sa_table_page_usage system procedure
Function Reports information about the usage of database tables.

Syntax sa_table_page_usage

Description The results include the same information provided by the Information
utility.

 For information on the Information utility, see The Information utility.

sa_disable_auditing_type system procedure
Function Disables auditing of specific events.

Syntax sa_disable_auditing_type(['string])

Parameters string is a comma-delimited string containing one or more of:

all enables all types of auditing.

connect enables auditing of both successful and failed connection attempts.

Catalog stored procedures

862 Sybase IQ

connectFailed enables auditing of failed connection attempts.

DDL enables auditing of DDL statements.

options enables auditing of public options.

permission enables auditing of permission checks, user checks, and setuser
statements.

permissionDenied enables auditing of failed permission and user checks.

triggers enables auditing after a trigger event.

Permissions DBA authority required.

Description You can use the sa_disable_auditing_type system procedure to disable auditing
of one or more categories of information.

Setting this option to all disables all auditing. You can also disable auditing by
setting the public.auditing option to OFF.

sa_flush_cache system procedure
Function Empties all pages in the database server cache.

Syntax sa_flush_cache ()

Permissions DBA authority required.

Description Database administrators can use this procedure to empty the contents of the
database server cache. This procedure affects the Catalog Store. It is of use in
performance measurement to ensure repeatable results.

sa_make_object system procedure
Function Used in a SQL script, ensures that a skeletal instance of an object exists before

executing an ALTER statement that provides the actual definition.

Syntax sa_make_object (objtype, objname [, owner [, tabname])

object-type: ‘procedure’ | ‘function’ | ‘view’ | ‘trigger’

Permissions Resource authority required to create or modify database objects.

See also “sa_db_info system procedure” on page 858

CHAPTER 10 System Procedures

Reference Manual 863

Description This procedure is particularly useful in scripts or command files that are run
repeatedly to create or modify a database schema. A common problem in such
scripts is that the first time they are run, a CREATE statement must be executed,
but subsequent times an ALTER statement must be executed. This procedure
avoids the necessity of querying the system tables to find out whether the
object exists.

To use the procedure, follow it by an ALTER statement that contains the entire
object definition.

You can also use the sa_make_object system procedure to add a skeleton Web
service.

CALL sa_make_object('service','my_web_service')

Table 10-55 lists the meaning of the sa_make_object parameters.

Table 10-55: sa_make_object options

Examples • The following statements ensure that a skeleton procedure definition is
created, define the procedure, and grant permissions on it. A command file
containing these instructions can be run repeatedly against a database
without error.

CALL sa_make_object('procedure','myproc'); ALTER
PROCEDURE myproc(in p1 int, in p2 char(30)) BEGIN
// ... END; GRANT EXECUTE ON myproc TO public;

• The following example uses the sa_make_object system procedure to add
a skeleton Web service.

CALL sa_make_object('service','my_web_service')

Option name Values

objtype The type of object being created. The parameter
must be one of 'procedure', 'function', 'view', 'service',
or 'trigger'.

objname The name of the object to be created.
owner The owner of the object to be created. The default

value is CURRENT USER.
tabname Required only if objtype is 'trigger', in which case it

specifies the name of the table on which the trigger
is to be created.

Catalog stored procedures

864 Sybase IQ

sa_rowgenerator system procedure
Function Returns a result set with rows between a specified start and end value.

Syntax sa_rowgenerator ([rstart [, rend [, rstep]]])

Parameters • rstart This optional integer parameter specifies the starting value. The
default value is 0.

• rend This optional integer parameter specifies the ending value. The
default value is 100.

• rstep This optional integer parameter specifies the increment by which
the sequence values are increased. The default value is 1.

Result sets

Remarks The sa_rowgenerator procedure can be used in the FROM clause of a query to
generate a sequence of numbers. This procedure is an alternative to using the
RowGenerator system table. You can use sa_rowgenerator for such tasks as:

• Generating test data for a known number of rows in a result set.

• Generating a result set with rows for values in every range. For example,
you can generate a row for every day of the month, or you can generate
ranges of zip codes.

• Generating a query that has a specified number of rows in the result set.
This may be useful for testing the performance of queries.

You can emulate the behavior of the RowGenerator table with the following
statement:

SELECT row_num FROM sa_rowgenerator(1255)

Permissions None

Side effects None

Example The following query returns a result set containing one row for each day of the
current month:

SELECT dateadd(day,row_num-1,
ymd(datepart(year,CURRENT DATE),
datepart(month,CURRENT DATE), 1)) AS
day_of_month FROM sa_RowGenerator(1,31,1) WHERE
datepart(month,day_of_month) =
datepart(month,CURRENT DATE) ORDER BY row_num

Column name Data type Description

row_num integer Sequence
number.

CHAPTER 10 System Procedures

Reference Manual 865

The following query shows how many employees live in zip code ranges (0-
9999), (10000-19999), ..., (90000-99999). Some of these ranges have no
employees, which causes the warning Null value eliminated in
aggregate function (-109). The sa_rowgenerator procedure can be used
to generate these ranges, even though no employees have a zip code in the
range.

SELECT row_num AS r1, row_num+9999 AS r2,
count(zip_code) AS zips_in_range FROM
sa_rowgenerator(0,99999,10000) D LEFT JOIN employee ON
zip_code BETWEEN r1 AND r2 GROUP BY r1, r2 ORDER BY 1

The following example generates 10 rows of data and inserts them into the emp
table:

INSERT INTO emp(id, salary, name) SELECT row_num,
CAST(rand() * 1000 AS INTEGER), 'Mary' FROM
sa_rowgenerator(1, 10)

sa_server_option system procedure
Function Overrides a database server command line option while the database server is

running.

Syntax sa_server_option (option_name, option_value)

Permissions DBA authority required.

See also “sa_get_request_profile system procedure,” “sa_get_request_times system
procedure,” and “sa_statement_text system procedure” in Adaptive Server
Anywhere SQL Reference.

Description Database administrators can use this procedure to override some database
server options without restarting the database server.

The following options can be reset:

Option name Values Default

Disable_connections ON or OFF OFF

Liveness_timeout Integer, in seconds 120

Procedure_profiling ON, OFF, RESET,
CLEAR

OFF

Profile_filter_conn connection-id

Profile_filter_user user-id

Quitting_time Valid date and time

Catalog stored procedures

866 Sybase IQ

disable_connections When set to ON, no other connections are allowed to
any databases on the database server.

liveness_timeout A liveness packet is sent periodically across a client/
server TCP/IP or SPX network to confirm that a connection is intact. If the
network server runs for a liveness_timeout period without detecting a liveness
packet, the communication is severed.

For more information, see -tl command line option in “Server command-line
switches” on page 8 in Chapter 1, “Running the Database Server” in the Sybase IQ
Utility Guide.

procedure_profiling Controls procedure profiling for stored procedures,
functions, events, and triggers. Procedure profiling shows you how long it
takes your stored procedures, functions, events, and triggers to execute, as well
as how long each line takes to execute. You can also set procedure profiling
options on the Database property sheet in Sybase Central. Collected
information appears on the Profile tab in the right pane of Sybase Central.

• ON enables procedure profiling for the database you are currently
connected to.

• OFF disables procedure profiling and leaves the profiling data available
for viewing.

• RESET returns the profiling counters to zero, without changing the ON
or OFF setting.

• CLEAR returns the profiling counters to zero and disables procedure
profiling.

Once profiling is enabled, you can use the sa_procedure_profile_summary and
sa_procedure_profile stored procedures to retrieve profiling information from
the database. For more information about these procedures, see the Adaptive
Server Anywhere SQL Reference.

Remember_last_statement ON or OFF OFF

Request_level_log_file Filename

Request_level_log_size File-size, in bytes,

Request_level_logging ALL, SQL, NONE,
SQL+hostvars

NONE

Requests_for_connection connection-id, -1

Requests_for_database database-id, -1

Option name Values Default

CHAPTER 10 System Procedures

Reference Manual 867

For more information about viewing procedure profiling information in Sybase
Central, see “Profiling database procedures” in the Sybase IQ Performance
and Tuning Guide.

profile_filter_conn Instructs the database server to capture profiling
information for a specific connection ID.

profile_filter_user Instructs the database server to capture profiling
information for a specific user ID.

quitting_time Instructs the database server to shut down at the specified
time.

For more information, see the -tq server option in Chapter 1, “Running the
Database Server” in the Sybase IQ Utility Guide.

remember_last_statement Instructs the database server to capture the most
recently prepared SQL statement for each connection to databases on the
server. For stored procedure calls, only the outermost procedure call appears,
not the statements within the procedure.

You can obtain the current value of the remember_last_statement setting using
the RememberLastStatement property function as follows:

SELECT property('RememberLastStatement')

For more information, see -zl server option in Chapter 1, “Running the
Database Server” in the Sybase IQ Utility Guide.

When remember_last_statement is turned on, the following statement returns
the most recently prepared statement for the specified connection.

SELECT connection_property('LastStatement', conn_id)

The stored procedure sa_conn_activity returns this same information for all
connections.

request_level_log_file The name of the file used to record logging
information. A name of NULL stops logging to file. Any backslash characters
in the file name must be doubled, as this is a SQL string.

request_level_log_size The maximum size of the file used to record logging
information, in bytes.

When the request-level log file reaches the size specified by either the
sa_server_option system procedure or the -zs server option, the file is renamed
with the extension .old appended (replacing an existing file with the same name
if one exists). The request-level log file is then restarted.

Catalog stored procedures

868 Sybase IQ

request_level_logging Can be ALL, SQL, NONE, or SQL+hostvars. ON and
ALL are equivalent. OFF and NONE are equivalent. This call turns on logging
of individual SQL statements sent to the database server, for use in
troubleshooting, in conjunction with the database server -zr and -zo options.
The settings request_level_debugging and request_level_logging are equivalent.

When you set request_level_logging to OFF, the request-level log file is
closed.

If you select SQL, only the following types of request are recorded:

• START DATABASE

• STOP ENGINE

• STOP DATABASE

• Statement preparation

• Statement execution

• EXECUTE IMMEDIATE statements

• Option settings

• COMMIT statements

• ROLLBACK statements

• PREPARE TO COMMIT operations

• Connections

• Disconnections

• Beginnings of transactions

• DROP STATEMENT statement

• Cursor explanations

• Cursor closings

• Cursor resume

• Errors

Setting request_level_logging to SQL+hostvars outputs both SQL (as though
you specified request_level_logging=SQL) and host variable values to
the log.

You can find the current value of the request_level_logging setting using
property('RequestLogging').

CHAPTER 10 System Procedures

Reference Manual 869

For more information, see the -z, -zr, -zs, -zo, and -o command line options in
Chapter 1, “Running the Database Server” in the Sybase IQ Utility Guide. See
“-zr level” on page 29 in the Sybase IQ Utility Guide for a list of requests that
are logged by SQL request-level logging.

requests_for_connection Filter the request-level logging information so
that only information for a particular connection is logged. This can help
reduce the size of the request-level log file when monitoring a server with
many active connections or multiple databases. You can obtain the connection
ID by executing the following:

CALL sa_conn_info()

To specify a specific connection to be logged once you have obtained the
connection ID, execute the following:

CALL sa_server_option('requests_for_connection',
connection-id)

Filtering remains in effect until it is explicitly reset, or until the database server
is shut down. To reset filtering, use the following statement:

CALL sa_server_option('requests_for_connection', -1)

requests_for_database Filter the request-level logging information so that
only information for a particular database is logged. This can help reduce the
size of the request-level log file when monitoring a server with many active
connections or multiple databases. You can obtain the database ID by
executing the following statement when you are connected to the desired
database:

SELECT connection_property('DBNumber')

To specify that only information for a particular database is to be logged,
execute the following:

CALL sa_server_option('requests_for_database',
database-id)

Filtering remains in effect until it is explicitly reset, or until the database server
is shut down. To reset filtering, use the following statement:

CALL sa_server_option('requests_for_database', -1)

Example The following statement disallows new connections to the database server.

call sa_server_option('disable_connections', 'ON')

Catalog stored procedures

870 Sybase IQ

sa_set_http_header system procedure
Function Permits a Web service to set an HTTP header in the result.

Syntax sa_set_http_header (field-name, value)

Permissions None.

See also “sa_set_http_option system procedure” on page 870

Description call dbo.sa_set_http_header('Content-Type', 'text/
html')

Setting the special header field @HttpStatus sets the status code returned with
the request. For example, the following command sets the status code to 404
Not Found.

dbo.sa_set_http_header('@HttpStatus', '404')

The body of the error message is inserted automatically. Only valid HTTP error
codes can be used. Setting the status to an invalid code causes an SQL error.

sa_set_http_option system procedure
Function Permits a Web service to set an HTTP option in the result.

Syntax sa_set_http_option (option-name, value)

Permissions None.

See also “sa_set_http_header system procedure” on page 870

Description Use this procedure within statements or procedures that handle Web services
to set options within an HTTP result set.

Currently only one option is supported:

• CharsetConversion Controls whether the result set is to be
automatically converted from the character set of the database to the
character set of the client. The only permitted values are ON and OFF. The
default value is ON.

sa_validate system procedure
Function Validates all tables in the Catalog Store.

Syntax sa_validate [tbl_name,] [owner_name,] [check_type]

Permissions DBA authority required.

CHAPTER 10 System Procedures

Reference Manual 871

Description This procedure validates each SQL Anywhere table or index in the Catalog
Store.

For more information, see “Validation utility (dbvalid)” in Chapter 3,
“Database Administration Utilities” in the Sybase IQ Utility Guide.

Table 10-56 lists the meaning of the sa_validate parameters.

Table 10-56: sa_validate options

Values for the tbl_name, owner_name, and check_type parameters are strings
and must be enclosed in quotes.

The procedure returns a single column, named Messages. If all tables are valid,
the column contains:

No errors detected

 Warning! Validate a table or the entire Catalog Store while no connections are
making changes to the database; otherwise, spurious errors might be reported,
indicating some form of database corruption even though no corruption
actually exists.

Example The following statement validates all of the Catalog Store tables with an index
check owned by the DBA:

CALL sa_validate (owner_name='DBA', check_type =
'index')

sa_verify_password system procedure
Function Validates the password of the current user.

Syntax sa_verify_password (string)

Parameters • string This char(128) parameter specifies the password of the current
database user.

Option name Values

tbl_name Validate only the specified table. When NULL (the
default), validate all tables.

owner_name Validate only the tables owned by the specified user.
When NULL (the default), validate tables for all users.

check_type When NULL (the default), each table is checked without
additional checks. The check_type value can be one of
the following: data, express, full, index, or checksum.

Catalog stored procedures

872 Sybase IQ

Remarks This procedure is used by sp_password. If the password matches, the procedure
simply returns. If it does not match, the error string returned by the procedure
is returned.

Permissions None

Side effects None

sp_login_environment system procedure
Function Sets connection options when users log in.

Permissions None.

Syntax sp_login_environment

See also “LOGIN_PROCEDURE option” on page 106

Description At start-up, sp_login_environment is called by DBA.sp_iq_process_login, the
default procedure called by the LOGIN_PROCEDURE database option.

Sybase recommends that you not edit this procedure. Instead, to change the
login environment, set the LOGIN_PROCEDURE option to point to a different
procedure.

For more information about setting the LOGIN_PROCEDURE option to the
name of a new procedure, see Chapter 15, “Sybase IQ as a Data Server” in the
Sybase IQ System Administration Guide.

Here is the text of sp_login_environment:

CREATE PROCEDURE dbo.sp_login_environment()
BEGIN
 IF connection_property('CommProtocol')='TDS' THEN
 CALL dbo.sp_tsql_environment()
 END IF
END

sp_remote_columns system procedure
Function Produces a list of the columns on a remote table, and a description of those

columns. For each column, the procedure returns its database, owner, table,
column, domain ID, width, scale, and nullability.

CHAPTER 10 System Procedures

Reference Manual 873

The server must be defined with the CREATE SERVER statement to use this
system procedure.

Note You cannot capture output from this procedure in a file. If you use the
redirection operator, you receive the message “Cursor is restricted to Fetch
Next operations.”

Syntax sp_remote_columns servername [, tablename] [, owner] [, database]

Permissions None.

See also Chapter 17, “Server Classes for Remote Data Access” and Chapter 16,
“Accessing Remote Data” in the Sybase IQ System Administration Guide

CREATE SERVER statement on page 494

Description If you are entering a CREATE EXISTING statement and you are specifying a
column list, it might be helpful to get a list of the columns that are available on
a remote table. sp_remote_columns produces a list of the columns on a remote
table and a description of those data types.

Standards and
compatibility

• Sybase Supported by Open Client/Open Server.

Example Gets a list of the columns in the sysobjects table in the production database in
an ASE server named asetest:

sp_remote_columns asetest, sysobjects,
null, production

sp_remote_exported_keys system procedure
Function Provides information about tables with foreign keys on a specified primary key

table.

The server must be defined with the CREATE SERVER statement to use this
system procedure.

Syntax sp_remote_exported_keys @server_name , @sp_name
[, @sp_owner] [, @sp_qualifier]

Permissions None.

See also Chapter 16, “Accessing Remote Data” and Chapter 17, “Server Classes for
Remote Data Access” in the Sybase IQ System Administration Guide

CREATE SERVER statement on page 494

Catalog stored procedures

874 Sybase IQ

Description The sp_remote_exported_keys result set includes the database, owner, table,
column, and name for both the primary and the foreign key, as well as the
foreign-key sequence for the foreign-key column. The result set might vary
because of the underlying ODBC and JDBC calls, but information about the
table and column for a foreign key is always returned.

To use sp_remote_exported_keys, your database must be created or upgraded
using version 12.4.3 or higher of Sybase IQ.

Parameters Table 10-57 lists the sp_remote_exported_keys parameters.

Table 10-57: sp_remote_exported_keys parameters

Example To get information about the remote tables with foreign keys on the sysobjects
table, in the production database, in a server named asetest:

call sp_remote_exported_keys
(@server_name='asetest', @sp_name='sysobjects',
@sp_qualifier='production')

sp_remote_imported_keys system procedure
Function Provides information about remote tables with primary keys that correspond to

a specified foreign key.

The server must be defined with the CREATE SERVER statement to use this
system procedure.

Syntax sp_remote_imported_keys @server_name , @sp_name [,
@sp_owner] [, @sp_qualifier]

Permissions None.

See also Chapter 16, “Accessing Remote Data” and Chapter 17, “Server Classes for
Remote Data Access” in the Sybase IQ System Administration Guide.

CREATE SERVER statement on page 494

Name Data type Description

@server_name varchar Server on which the primary-key table
is located. Required.

@sp_name varchar(30) Table containing the primary key.
Required.

@sp_owner varchar Owner of primary-key table. Optional.

@sp_qualifier varchar Database containing the primary-key
table. Optional.

CHAPTER 10 System Procedures

Reference Manual 875

Description Foreign keys reference a row in a separate table that contains the corresponding
primary key. This procedure allows you to obtain a list of the remote tables
with primary keys that correspond to a particular foreign key table. The
sp_remote_imported_keys result set includes the database, owner, table,
column, and name for both the primary and the foreign key, as well as the
foreign key sequence for the foreign key column. The result set might vary
because of the underlying ODBC and JDBC calls, but information about the
table and column for a primary key is always returned.

To use sp_remote_exported_keys, your database must be created or upgraded
using version 12.4.3 or higher of Sybase IQ.

Parameters Table 10-58 lists the sp_remote_imported_keys parameters.

Table 10-58: sp_remote_imported_keys parameters

Example Gets information about the tables with primary keys that correspond to a
foreign key on the sysobjects table, owned by “fred”, in the asetest server:

call sp_remote_imported_keys
(@server_name='asetest', @sp_name='sysobjects',
@sp_qualifier='production')

sp_remote_primary_keys system procedure
Function Provides primary key information about remote tables using remote data

access.

Syntax sp_remote_primary_keys @server_name [, @table_name]
[, @table_owner] [, @table_qualifier]

Accepts these parameters:

@server_name Selects the server on which the remote table is located.

@table_name Selects the remote table.

@table_owner Selects the owner of the remote table.

Name Data type Description

@server_name varchar Server on which the foreign-key table
is located. Required.

@sp_name varchar(30) Table containing the foreign key.
Required.

@sp_owner varchar Owner of foreign-key table. Optional.

@sp_qualifier varchar Database containing the foreign-key
table. Optional.

Catalog stored procedures

876 Sybase IQ

@table_qualifier Selects the database.

Permissions None

Side effects None

Description Because of differences in the underlying ODBC/JDBC calls, the information
returned differs slightly in terms of the catalog/database value, depending upon
the remote data access class that is specified for the server. However, the
important information (for example, column name) is as expected.

Standards and
compatibility

Sybase Supported by Open Client/Open Server.

sp_remote_tables system procedure
Function Returns a list of the tables on a server.

Syntax sp_remote_tables servername [, tablename] [, owner]
[, table_qualifier] [, with_table_type]

The server must be defined with the CREATE SERVER statement to use this
system procedure.

Permissions None.

See also CREATE SERVER statement on page 494

Chapter 16, “Accessing Remote Data” and Chapter 17, “Server Classes for
Remote Data Access” in the Sybase IQ System Administration Guide

Description It might be helpful when configuring your database server to get a list of the
remote tables available on a particular server. sp_remote_tables returns a list of
the tables on a server.

The procedure accepts five parameters:

server_name Selects the server the remote table is located on.

table_name Selects the remote table.

table_owner Selects the owner of the remote table.

table_qualifier Selects the database.

with_table_type Selects the type of remote table. This parameter is a bit type
and accepts two values, 0 (the default) and 1. You must enter the value 1 if you
want the result set to include a column that lists table types.

CHAPTER 10 System Procedures

Reference Manual 877

The with_table_type parameter is available only for databases created in
Adaptive Server Anywhere 7.0.2 and higher. If you use this parameter with an
older database, the following error message is returned:

Wrong number of parameters to function 'sp_remote_tables'

If a table, owner, or database name is given, the list of tables is limited to only
those that match the parameters.

Note You cannot capture output from this procedure in a file. If you use the
redirection operator, you receive the message “Cursor is restricted to Fetch
Next operations.”

Standards and
compatibility

• Sybase Supported by Open Client/Open Server.

Examples • Lists all the Microsoft Excel worksheets available from an ODBC data
source named “exce”:

sp_remote_tables excel

• Lists all the tables in the production database in an Adaptive Server
Enterprise server named asetest, owned by user fred:

sp_remote_tables asetest, null, fred, production

sp_servercaps system procedure
Function Displays information about a remote server’s capabilities.

The server must be defined with the CREATE SERVER statement to use this
system procedure.

Syntax sp_servercaps servername

Permissions None.

See also CREATE SERVER statement on page 494

Chapter 16, “Accessing Remote Data” and Chapter 17, “Server Classes for
Remote Data Access” in the Sybase IQ System Administration Guide

Catalog stored procedures

878 Sybase IQ

Description Sybase IQ uses capability information to determine how much of a SQL
statement can be forwarded to a remote server. The system tables that contain
server capabilities are not populated until after Sybase IQ connects to the
remote server. This information comes from syscapability and
syscapabilityname system tables. The servername specified must be the same
server name used in the CREATE SERVER statement.

Standards and
compatibility

• Sybase Supported by Open Client/Open Server.

Example Displays information about the remote server testiq (output has been
truncated):

sp_servercaps testiq

1,’Alter table with add’,’T’
2,’Alter table with drop’,’T’
3,’Owner supported’,’T’
4,’Primary key requires index’,’F’
5,’Create table constraints’,’T’
6,’Truncate table’,’T’
7,’Create index’,’T’ 7,’Create index’,’T’
8,’Create unique index’,’T’
9,’Syscapability system table initialized’,’T’
10,’Subquery’,’T’
11,’Subquery in group by’,’T’
12,’Subquery in comparison’,’T’
13,’Subquery in exist’,’T’
14,’Subquery in IN’,’T’
15,’Subquery correlated’,’T’
16,’Subquery in select list’,’T’
17,’Subquery in update’,’T’
20,’Order by’,’T’
21,’Order by expressions’,’T’
22,’Order by column not in select list’,’T’
23,’Order by allowed in update’,’T’
25,’Joins’,’T’
26,’Outer joins’,’T’
27,’Full outer joins’,’T’
28,’Multiple outer joins’,’T’
29,’Logical operators in outer join’,’T’
30,’Outer joins mixed with normal joins’,’T’
31,’ANSI join syntax’,’T’
32,’TSQL join syntax’,’F’
33,’ODBC outer join syntax’,’F’
34,’Unrestricted ANSI ON’,’T’
40,’Group by’,’T’
41,’Group by ALL’,’T’

CHAPTER 10 System Procedures

Reference Manual 879

45,’Aggregates’,’T’
46,’Aggregates with column name’,’T’
50,’And’,’T’
51,’Or’,’T’
52,’Like’,’T’
53,’Like - TSQL’,’T’
54,’Distinct’,’T’
55,’In’,’T’

sp_tsql_environment system procedure
Function To set connection options when users connect from jConnect or Open Client

applications.

Syntax sp_tsql_environment

Permissions None.

See also “sp_login_environment system procedure” on page 872

“LOGIN_PROCEDURE option” on page 106

Description At startup, sp_login_environment is called by DBA.sp_iq_process_login, the
default procedure called by the LOGIN_PROCEDURE database option. If the
connection uses the TDS communication protocol (that is, if it is an Open
Client or jConnect connection), sp_login_environment calls
sp_tsql_environment.

This procedure sets database options so that they are compatible with default
Sybase Adaptive Server Enterprise behavior.

To change the default behavior, create new procedures and alter your
LOGIN_PROCEDURE option to point to these new procedures.

For more information about setting LOGIN_PROCEDURE to the name of a new
procedure, see Chapter 15, “Sybase IQ as a Data Server” in the Sybase IQ
System Administration Guide.

Here is the text of sp_tsql_environment:

create procedure dbo.sp_tsql_environment()
begin
 if db_property('IQStore')='OFF' then
 -- ASA datastore
 set temporary option AUTOMATIC_TIMESTAMP='ON'
 end if;
 set temporary option ANSINULL='OFF';
 set temporary option TSQL_VARIABLES='ON';

Multiplex system procedures

880 Sybase IQ

 set temporary option ANSI_BLANKS='ON';
 set temporary option TSQL_HEX_CONSTANT='ON';
 set temporary option CHAINED='OFF';
 set temporary option QUOTED_IDENTIFIER='OFF';
 set temporary option ALLOW_NULLS_BY_DEFAULT='OFF';
 set temporary option CONTINUE_AFTER_RAISERROR='ON';
 set temporary option FLOAT_AS_DOUBLE='ON';
 set temporary option ISOLATION_LEVEL='1';
 set temporary option DATE_FORMAT='YYYY-MM-DD';
 set temporary option TIMESTAMP_FORMAT='YYYY-MM-DD
HH:NN:SS.SSS';
 set temporary option TIME_FORMAT='HH:NN:SS.SSS';
 set temporary option DATE_ORDER='MDY';
 set temporary option ESCAPE_CHARACTER='OFF'
end

Multiplex system procedures
The procedures in this section affect multiplex databases and servers. These
procedures are intended to be called by a program. Do not run them by
specifying the procedure name in an ISQL window. Generally, these
procedures are intended for use:

• Within the server

• From Sybase Central

• From administration scripts

Most of these procedures require DBA privileges.

sp_iqmpxcountdbremote procedure
Function Returns a count of dbremote connections for a multiplex database. This is a

function implemented as a stored procedure.

Syntax dbo.sp_iqmpxcountdbremote ()

Examples When dbremote is running, the result is 5 connections. The following ISQL
statement returns results as a table:

select dbo.sp_iqmpxcountdbremote()

CHAPTER 10 System Procedures

Reference Manual 881

You can also display the output as a table using the following SQL:

begin
declare dbremotes int;
set dbremotes = dbo.sp_iqmpxcountdbremote();
select dbremotes;

end

sp_iqmpxgetconnversion procedure
Function Displays the version number for a specified connection.

Syntax call sp_iqmpxgetconnversion ()

Usage On a multiplex query server, returns in an UNSIGNED BIGINT the version
number that the current connection uses for the current transaction. On a write
server, always returns 0.

The version number is a database-wide monotonically-increasing integer that
increases any time the write server commits new data in the IQ Main store.

Description This procedure lets you determine versions across connections on one or more
multiplex query servers in a multiplex environment.

For instance, assume that two different connections are made to query servers
at nearly the same time, and you need to coordinate by SELECT statements
between the two connections so that they are using the same version of the data.
If any transaction committed between the moment of the first and the second
connections, they see two different versions.

This procedure lets you determine whether both connections are using the same
version of the data.

You cannot determine whether write server connections see the same version
of the data.

sp_iqmpxreplacewriteserver procedure
Function Converts the query server on which it runs into the new write server for the

multiplex. Must be called on the query server. Other steps are needed to

dbo.sp_iqmpxcountdbremote(*)

5

Multiplex system procedures

882 Sybase IQ

move to a new write server. For details, see Chapter 5, “Working with
Database Objects” in the Sybase IQ System Administration Guide.

Syntax call sp_iqmpxreplacewriteserver(‘servername’)

Description Drops and recreates main IQ Store definitions for the new write server to match
those of the query server. Drops any IQ Temporary Store definitions for the
former write server. Adjusts SYSIQFILE, IQ_MPX_STATUS,
IQ_MPX_INFO, and SQL Remote configuration.

Table 10-59: sp_iqmpxreplacewriteserver columns

Usage Must run on query server.

Permissions Must have DBA authority.

sp_iqmpxvalidate procedure
Function Checks multiplex configuration for inconsistencies.

Syntax call dbo.sp_iqmpxvalidate(‘ show_msgs’)

Description Multiple checks on tables SYS.SYSIQFILE and DBA.IQ_MPX_INFO, and SQL
Remote configuration. May run on any server. Returns a result to the caller:
severity. Values are:

If called interactively, the stored procedure also returns a table of the errors
found, if any, unless the calling parameter is not 'Y'.

Each error indicates its severity. If there are no errors, the procedure returns
“No errors detected”.

Column name Data type Description

servername varchar(30) Name for the new write server. Must
differ from each server name currently
in the multiplex.

Value Description

0 No configuration errors

1 Dynamic state is not as expected; for example, dbremote
process not running

2 Nonfatal configuration error; for example, multiplex
operation impaired

3 Fatal configuration problem; for example, one or more
servers might not start

CHAPTER 10 System Procedures

Reference Manual 883

sp_iqmpxversioninfo procedure
Function Shows the current version information for this server. Information includes

server type (write server, query server, single-node mode) and
synchronization status.

Syntax sp_iqmpxversioninfo()

Description Table 10-60: sp_iqmpxversioninfo columns returned

sp_mpxcfg_<servername> procedure
Function Sets up query server named servername for SQL Remote replication.

Syntax call “DBA”.sp_mpxcfg_<servername>(‘ ‘)

Description Sybase IQ calls this procedure when synchronizing query servers. This
procedure in turn runs specified procedure or procedures on the named query
server. When finished, this procedure returns the following message in the
server log: Query server auto-configuration complete. If the query
server is already configured or if you run sp_mpxcfg_servername on a write
server, the procedure does nothing.

Permissions Must have DBA authority.

Column Data type Description

CatalogID unsigned bigint Catalog version on this server

VersionID unsigned bigint Latest version available on this server

OAVID unsigned bigint Oldest active version on this server

ServerType char(1) Type of server: ‘S,’ ‘W,’ or ‘Q’

CatalogSync char(1) In catalog synchronization? ‘T’ or ‘F’

WCatalogID unsigned bigint Catalog version on the write server

WVersionID unsigned bigint Latest version available on the write server

Adaptive Server Enterprise system and catalog procedures

884 Sybase IQ

Adaptive Server Enterprise system and catalog
procedures

Adaptive Server Enterprise provides system and catalog procedures to carry
out many administrative functions and to obtain system information. Sybase
IQ has implemented support for some of these procedures.

System procedures are built-in stored procedures used for getting reports from
and updating system tables. Catalog stored procedures retrieve information
from the system tables in tabular form.

Note While these procedures perform the same functions as they do in
Adaptive Server Enterprise and pre-version 12 Sybase IQ, they are not
identical. If you have preexisting scripts that use these procedures, you might
want to examine the procedures. To see the text of a stored procedure, run:

sp_helptext 'owner.procedure_name'

For all system stored procedures delivered by Sybase, the owner is dbo. To see
the text of a stored procedure of the same name owned by a different user, you
must specify that user, for example:

sp_helptext 'myname.myprocedure'

You might need to reset the width of your DBISQL output to see the full text,
by selecting Command→Options and entering a new Limit Display Columns
value.

Adaptive Server Enterprise system procedures
Table 10-61 describes the Adaptive Server Enterprise system procedures
provided in Sybase IQ.

CHAPTER 10 System Procedures

Reference Manual 885

Table 10-61: ASE system procedures provided in Sybase IQ

Note Procedures like sp_dropuser provide minimal compatibility with
Adaptive Server Enterprise stored procedures. If you are accustomed to
Adaptive Server Enterprise (or Sybase IQ 11.x) stored procedures, compare
their text with Sybase IQ 12 procedures before using the procedure in dbisql.
To compare, use the command:

sp_helptext 'owner.procedure_name'

For system stored procedures delivered by Sybase, the owner is always dbo. To
see the text of a stored procedure of the same name owned by a different user,
you must specify that user, for example:

System procedure Description

sp_addgroup group-name Adds a group to a database

sp_addlogin userid,
password[, defdb [,
deflanguage [, fullname]]]

Adds a new user account to a database

sp_addmessage message-
num, message_text [,
language]

Adds user-defined messages to
SYSUSERMESSAGES for use by stored procedure
PRINT and RAISERROR calls

sp_addtype typename, data-
type, [, "identity" | nulltype]

Creates a user-defined data type. Sybase IQ does
not support IDENTITY columns.

sp_adduser userid [,
name_in_db [, grpname]]

Adds a new user to a database

sp_changegroup new-group-
name, userid

Changes a user's group or adds a user to a group

sp_dboption [dbname,
optname, {true | false}]

Displays or changes database options

sp_dropgroup group-name Drops a group from a database

sp_droplogin userid Drops a user from a database

sp_dropmessage message-
number [, language]

Drops user-defined messages

sp_droptype typename Drops a user-defined data type

sp_dropuser userid Drops a user from a database

sp_getmessage message-num,
@msg-var output [, language]

Retrieves stored message strings from
SYSMESSAGES and SYSUSERMESSAGES for
PRINT and RAISERROR statements.

sp_helptext 'owner.object-
name'

Displays the text of a system procedure or view

sp_password caller_passwd,
new_passwd [, userid]

Adds or changes a password for a user ID

Adaptive Server Enterprise system and catalog procedures

886 Sybase IQ

sp_helptext 'myname.myprocedure'

Adaptive Server Enterprise catalog procedures
Sybase IQ implements most of the Adaptive Server Enterprise catalog
procedures with the exception of the sp_column_privileges procedure. The
implemented catalog procedures are described in Table 10-62. Sybase IQ also
has similar customized stored procedures for some of these ASE catalog
procedures.

Table 10-62: ASE catalog procedures implemented in Sybase IQ

The following Adaptive Server Enterprise catalog procedures are not
supported:

• sp_column_privileges

• sp_databases

• sp_datatype_info

• sp_server_info

ASE catalog procedure Description IQ procedure

sp_columns table-name [, table-owner] [, table-
qualifier] [, column-name]

Returns the data types of the specified
column

sp_fkeys pktable_name [, pktable-owner][,
pktable-qualifier] [, fktable-name] [,
fktable_owner] [, fktable-qualifier]

Returns foreign-key information about the
specified table

sp_pkeys table-name [, table_owner] [,
table_qualifier]

Returns primary-key information for a
single table

sp_iqpkeys

sp_special_columns table_name [, table-owner]
[, table-qualifier] [, col-type]

Returns the optimal set of columns that
uniquely identify a row in a table

sp_sproc_columns proc-name [, proc_owner] [,
proc-qualifier] [, column-name]

Returns information about the input and
return parameters of a stored procedure

sp_iqprocparm

sp_stored_procedures [sp-name] [, sp-owner]
[, sp-qualifier]

Returns information about one or more
stored procedures

sp_iqprocedure

sp_tables table-name [, table-owner] [, table-
qualifier] [, table-type]

Returns a list of objects that can appear in a
FROM clause

Reference Manual 887

C H A P T E R 1 1 System Views

About this chapter This chapter lists predefined views for the Sybase IQ system tables.

The system tables use numbers to identify tables, user IDs, and so forth.
Although this is efficient for internal use, it makes these tables difficult for
people to interpret. A number of predefined system views are provided
that present the information in the system tables in a more readable
format.

The definitions for the system views are included with their descriptions.
Some of these definitions are complicated, but you do not need to
understand them to use the views. They serve as good examples of what
can be accomplished using the SELECT command and views.

Contents Topic Page

SYSARTICLECOLS system view 889

SYSARTICLES system view 889

SYSCAPABILITIES system view 889

SYSCATALOG system view 890

SYSCOLAUTH system view 890

SYSCOLUMNS system view 891

SYSFOREIGNKEYS system view 891

SYSGROUPS system view 892

SYSINDEXES system view 893

SYSOPTIONS system view 893

SYSPROCAUTH system view 894

SYSPROCPARMS system view 894

SYSPUBLICATIONS system view 895

SYSREMOTEOPTIONS system view 895

SYSREMOTETYPES system view 895

SYSREMOTEUSERS system view 896

SYSSUBSCRIPTIONS system view 897

SYSTABAUTH system view 897

SYSUSERAUTH system view 898

SYSUSERLIST system view 898

888 Sybase IQ

SYSUSEROPTIONS system view 898

SYSUSERPERMS system view 899

SYSVIEWS system view 899

Transact-SQL compatibility view 900

Topic Page

CHAPTER 11 System Views

Reference Manual 889

SYSARTICLECOLS system view
CREATE VIEW SYS.SYSARTICLECOLS
AS SELECT (select publication_name FROM

SYS.SYSPUBLICATION AS p
WHERE p.publication_id=ac.publication_id) AS
publication_name,

(select table_name FROM SYS.SYSTABLE AS t
WHERE t.table_id=ac.table_id) AS table_name,
select column_name FROM SYS.SYSCOLUMN AS c
WHERE c.table_id=ac.table_id

AND c.column_id=ac.column_id) AS column_name
FROM SYS.SYSARTICLECOL AS ac

Presents a readable version of the table SYSARTICLECOLS.

SYSARTICLES system view
CREATE VIEW SYS.SYSARTICLES
 AS SELECT(select publication_name FROM

SYS.SYSPUBLICATION AS p
WHERE p.publication_id=a.publication_id) AS

publication_name,
(select table_name FROM SYS.SYSTABLE AS t
WHERE t.table_id=a.table_id) AS table_name,

where_expr,subscribe_by_expr
FROM SYS.SYSARTICLE AS a

Presents a readable version of the table SYSARTICLES.

SYSCAPABILITIES system view
CREATE VIEW SYS.SYSCAPABILITIES
AS
SELECT t1.capid,srvid,capname,capvalue
FROM

SYS.SYSCAPABILITY as t1
JOIN SYS.SYSCAPABILITYNAME as t2
ON t1.capid = t2.capid

SYSCATALOG system view

890 Sybase IQ

Presents the data from the system tables SYSCAPABILITY and
SYSCAPABILITYNAME in a readable format.

SYSCATALOG system view
CREATE VIEW SYS.SYSCATALOG (creator,

tname, dbspacename, tabletype, ncols,
primary_key, "check", remarks)

AS
SELECT (SELECT user_name FROM SYS.SYSUSERPERM

WHERE user_id = SYSTABLE.creator),
table_name,
(SELECT dbspace_name from SYS.SYSFILE

WHERE file_id = SYSTABLE.file_id),
IF table_type='BASE' THEN 'TABLE'

ELSE table_type ENDIF,
(SELECT count(*) FROM SYS.SYSCOLUMN

WHERE table_id = SYSTABLE.table_id),
IF primary_root = 0 THEN 'N' ELSE 'Y' ENDIF,
IF table_type <> VIEW' THEN view_def ENDIF,
remarks

FROM SYS.SYSTABLE

Lists all the tables and views from SYSTABLE in a readable format.

SYSCOLAUTH system view
CREATE VIEW SYS.SYSCOLAUTH (grantor, grantee,

creator, tname, colname)
AS
SELECT (SELECT user_name FROM SYS.SYSUSERPERM

WHERE user_id = SYSCOLPERM.grantor),
(SELECT user_name FROM SYS.SYSUSERPERM

WHERE user_id = SYSCOLPERM.grantee),
(SELECT user_name

FROM SYS.SYSUSERPERM == SYS.SYSTABLE
WHERE table_id = SYSCOLPERM.table_id),

(SELECT table_name FROM SYS.SYSTABLE
WHERE table_id = SYSCOLPERM.table_id),

(SELECT column_name FROM SYS.SYSCOLUMN

CHAPTER 11 System Views

Reference Manual 891

WHERE table_id = SYSCOLPERM.table_id
AND column_id = SYSCOLPERM.column_id)

FROM SYS.SYSCOLPERM

Presents column update permission information in SYSCOLPERM in a
readable format.

SYSCOLUMNS system view
CREATE VIEW SYS.SYSCOLUMNS (creator, cname, tname,
coltype, nulls, length, syslength,
in_primary_key, "colno", default_value, remarks)
AS
SELECT (SELECT user_name FROM SYS.SYSUSERPERM

WHERE user_id = SYSTABLE.creator),
column_name, table_name,
(SELECT domain_name FROM SYS.SYSDOMAIN

WHERE domain_id = SYSCOLUMN.domain_id),
nulls, width, scale, pkey, column_id,
"default", SYSCOLUMN.remarks

FROM SYS.SYSCOLUMN == SYS.SYSTABLE

Presents a readable version of the table SYSCOLUMN.

Note The “S” at the end of the view name distinguishes it from the
SYSCOLUMN table.

SYSFOREIGNKEYS system view
CREATE VIEW SYS.SYSFOREIGNKEYS (foreign_creator,

foreign_tname, primary_creator,
primary_tname, role, columns)

AS
SELECT (SELECT user_name FROM

SYS.SYSUSERPERM == SYS.SYSTABLE
WHERE table_id = foreign_table_id),

(SELECT table_name FROM SYS.SYSTABLE
WHERE table_id = foreign_table_id),

SYSGROUPS system view

892 Sybase IQ

(SELECT user_name
FROM SYS.SYSUSERPERM == SYS.SYSTABLE
WHERE table_id = primary_table_id),

(SELECT table_name FROM SYS.SYSTABLE
WHERE table_id = primary_table_id), role,

(SELECT list(string(FK.column_name,
' IS ', PK.column_name))
FROM SYS.SYSFKCOL KEY JOIN
SYS.SYSCOLUMN FK, SYS.SYSCOLUMN PK
WHERE foreign_table_id =
SYSFOREIGNKEY.foreign_table_id
AND foreign_key_id =

 SYSFOREIGNKEY.foreign_key_id
AND PK.table_id =

SYSFOREIGNKEY.primary_table_id
AND PK.column_id =

SYSFKCOL.primary_column_id)
FROM SYS.SYSFOREIGNKEY

Presents foreign-key information from SYSFOREIGNKEY and SYSFKCOL in a
readable format.

SYSGROUPS system view
CREATE VIEW SYS.SYSGROUPS (group_name, member_name)
AS
SELECT g.user_name, u.user_name
FROMSYS.SYSGROUP,

SYS.SYSUSERPERM g,
SYS.SYSUSERPERM u

WHERE group_id = g.user_id
AND group_member = u.user_id

Presents group information from SYSGROUP in a readable format.

CHAPTER 11 System Views

Reference Manual 893

SYSINDEXES system view
CREATE VIEW SYS.SYSINDEXES (icreator, iname, fname,
creator,
tname, indextype, colnames, interval, level)
AS
SELECT (SELECT user_name FROM SYS.SYSUSERPERM
WHERE user_id = SYSINDEX.creator),
index_name,
(SELECT file_name FROM SYS.SYSFILE
WHERE file_id = SYSINDEX.file_id),
(SELECT user_name FROM SYS.SYSUSERPERM
WHERE user_id = SYSINDEX.creator),
table_name,
IF "unique" = 'Y' THEN 'Unique'
ELSE 'Non-unique' ENDIF,
(SELECT list(string(column_name,
IF "order" = 'A' THEN ' ASC' i
ELSE ' DESC' ENDIF))
FROM SYS.SYSIXCOL == SYS.SYSCOLUMN
WHERE index_id = SYSINDEX.index_id), 0, 0
FROM SYS.SYSTABLE KEY JOIN SYS.SYSINDEX

Presents index information from SYSINDEX and SYSIXCOL in a readable
format.

SYSOPTIONS system view
CREATE VIEW SYS.SYSOPTIONS (user_name, "option",
"setting")
AS
SELECT (SELECT user_name FROM SYS.SYSUSERPERM

WHERE user_id = SYSOPTION.user_id),
"option", "setting"

FROM SYS.SYSOPTION

Displays option settings contained in the table SYSOPTION in a readable
format.

SYSPROCAUTH system view

894 Sybase IQ

SYSPROCAUTH system view
CREATE VIEW SYS.SYSPROCAUTH(grantee,

creator,procname)
AS
SELECT(select user_name FROM SYS.SYSUSERPERM

WHERE SYSPROCPERM.grantee=SYSUSERPERM.user_id),
 (select user_name FROM SYS.SYSUSERPERM

WHERE SYSPROCEDURE.creator=SYSUSERPERM.user_id),
proc_name

FROM
SYS.SYSPROCEDURE JOIN SYS.SYSPROCPERM

Presents the procedure authorities from SYSUSERPERM in a readable format.

SYSPROCPARMS system view
CREATE VIEW SYS.SYSPROCPARMS (creator, parmname,
procname,
parmtype, parmmode, parmdomain, length, remarks)
AS
SELECT (SELECT user_name FROM SYS.SYSUSERPERM

WHERE user_id = SYSPROCEDURE.creator),
parm_name, proc_name, parm_type,
IF parm_mode_in = 'Y' AND

parm_mode_out = 'N' THEN 'IN'
ELSE IF parm_mode_in = 'N'

AND parm_mode_out = 'Y' THEN 'OUT'
ELSE 'INOUT' ENDIF ENDIF,
(SELECT domain_name FROM SYS.SYSDOMAIN

WHERE domain_id = SYSPROCPARM.domain_id),
width, SYSPROCPARM.remarks

FROM SYS.SYSPROCPARM == SYS.SYSPROCEDURE

Lists all the procedure parameters from SYSPROCPARM in a readable format.

CHAPTER 11 System Views

Reference Manual 895

SYSPUBLICATIONS system view
CREATE VIEW SYS.SYSPUBLICATIONS
AS
SELECT(select user_name FROM SYS.SYSUSERPERM AS u

WHERE u.user_id=p.creator) AS creator,
publication_name,remarks

FROM SYS.SYSPUBLICATION AS p

Presents the user name from the SYSUSERPERM table for all creators, and
displays the publication name and remarks from the SYSPUBLICATION table
in a readable format.

SYSREMOTEOPTIONS system view
CREATE VIEW SYS.SYSREMOTEOPTIONS
AS
SELECT type_name,
 user_name,
 "option",
 setting
FROM SYS.SYSREMOTETYPE AS srt,
 SYS.SYSREMOTEOPTIONTYPE AS srot,
 SYS.SYSREMOTEOPTION AS sro,
 SYS.SYSUSERPERM AS sup
WHERE srt.type_id = srot.type_id
AND srot.option_id = sro.option_id
AND sro.user_id = sup.user_id

Presents the data from the system tables SYSREMOTEOPTION and
SYSREMOTEOPTIONTYPE in a readable format.

SYSREMOTETYPES system view
CREATE VIEW SYS.SYSREMOTETYPES
AS SELECT type_id,type_name,publisher_address,remarks
FROM SYS.SYSREMOTETYPE

Presents the SQL Remote information from the SYSREMOTETYPE system
table in a readable format.

SYSREMOTEUSERS system view

896 Sybase IQ

SYSREMOTEUSERS system view
CREATE VIEW SYS.SYSREMOTEUSERS
AS SELECT(SELECT user_name FROM SYS.SYSUSERPERM AS u
 WHERE u.user_id=r.user_id) AS user_name,
 "consolidate",
 (SELECT type_name FROM SYS.SYSREMOTETYPE AS t
 WHERE t.type_id=r.type_id) AS type_name,
 "address",frequency,send_time,
 (IF frequency='A' THEN
 NULL
 ELSE
 IF frequency='P' THEN
 IF time_sent IS NULL THEN
 current timestamp
 ELSE
 (SELECT min(minutes(time_sent,
 60*hour(a.send_time)
 +minute(seconds(a.send_time,59))))
 FROM SYS.SYSREMOTEUSER AS a
 WHERE a.frequency='P'
 AND a.send_time=r.send_time)
 ENDIF
 ELSE
 IF current date+send_time
 >COALESCE(time_sent,current timestamp) THEN
 current date+send_time
 ELSE
 current date+send_time+1
 ENDIF
 ENDIF
 ENDIF) AS next_send,

log_send,time_sent,log_sent,
confirm_sent,send_count,resend_count,
time_received,log_received,confirm_received,
receive_count,rereceive_count

FROM SYS.SYSREMOTEUSER AS r

Lists the information in SYSREMOTEUSER in a readable format.

CHAPTER 11 System Views

Reference Manual 897

SYSSUBSCRIPTIONS system view
CREATE VIEW SYS.SYSSUBSCRIPTIONS
AS
SELECT(select publication_name

FROM SYS.SYSPUBLICATION AS p
WHERE p.publication_id=s.publication_id) AS
publication_name,
(select user_name FROM SYS.SYSUSERPERM AS u
WHERE u.user_id=s.user_id) AS user_name,
subscribe_by,created,started

FROM SYS.SYSSUBSCRIPTION AS s

Presents subscription information, such as the publication name, creation time,
and start time from the SYSPUBLICATION table in a readable format.

SYSTABAUTH system view
CREATE VIEW SYS.SYSTABAUTH (grantor, grantee,

screator, stname, tcreator, ttname,
selectauth, insertauth, deleteauth,
updateauth, updatecols, alterauth, referenceauth)

AS
SELECT (SELECT user_name FROM SYS.SYSUSERPERM

WHERE user_id = SYSTABLEPERM.grantor),
(SELECT user_name FROM SYS.SYSUSERPERM

WHERE user_id = SYSTABLEPERM.grantee),
(SELECT user_name

FROM SYS.SYSUSERPERM == SYS.SYSTABLE
WHERE table_id = SYSTABLEPERM.stable_id),

(SELECT table_name FROM SYS.SYSTABLE
WHERE table_id = SYSTABLEPERM.stable_id),

(SELECT user_name FROM
SYS.SYSUSERPERM == SYS.SYSTABLE
WHERE table_id = SYSTABLEPERM.ttable_id),

(SELECT table_name FROM SYS.SYSTABLE
WHERE table_id = SYSTABLEPERM.ttable_id),

selectauth, insertauth, deleteauth,
updateauth, updatecols,
alterauth, referenceauthauth

FROM SYS.SYSTABLEPERM

SYSUSERAUTH system view

898 Sybase IQ

Presents table permission information in SYSTABLEPERM in a readable
format.

SYSUSERAUTH system view
CREATE VIEW SYS.SYSUSERAUTH (name, password,
resourceauth, dbaauth,
scheduleauth, user_group)
AS
SELECT user_name, password, resourceauth,

dbaauth, scheduleauth, user_group
FROM SYS.SYSUSERPERM

Displays all the information in the table SYSUSERPERM except for user
numbers. Since this view shows passwords, this system view does not have
PUBLIC select permission. (All other system views have PUBLIC select
permission.)

SYSUSERLIST system view
CREATE VIEW SYS.SYSUSERLIST (name, resourceauth,

dbaauth, scheduleauth, user_group)
AS
SELECT user_name, resourceauth,

dbaauth, scheduleauth, user_group
FROM SYS.SYSUSERPERM

Presents all information in SYSUSERAUTH except passwords.

SYSUSEROPTIONS system view
CREATE VIEW SYS.SYSUSEROPTIONS ("user_name",

"option", "setting")
AS
SELECT u.name, "option",

isnull((SELECT "setting"

CHAPTER 11 System Views

Reference Manual 899

FROM sys.sysoptions s
WHERE s.user_name = u.name
AND s."option" = o."option"),
"setting")

FROM SYS.SYSOPTIONS o, SYS.SYSUSERAUTH u
WHERE o.user_name = 'PUBLIC'

Displays effective permanent option settings for each user. If a user has no
setting for an option, this view displays the public setting for the option.

SYSUSERPERMS system view
CREATE VIEW SYS.SYSUSERPERMS
AS
SELECT user_id, user_name, resourceauth, dbaauth,

scheduleauth, user_group, remarks
FROM SYS.SYSUSERPERM

Contains exactly the same information as the table SYS.SYSUSERPERM
except for the password. All users have read access to this view, but only the
DBA has access to the underlying table (SYS.SYSUSERPERM).

SYSVIEWS system view
CREATE VIEW SYS.SYSVIEWS (vcreator, viewname, viewtext
)
AS
SELECT user_name, table_name, view_def
FROM SYS.SYSTABLE KEY JOIN SYS.SYSUSERPERM
WHERE table_type = 'VIEW'

Lists views along with their definitions.

Transact-SQL compatibility view

900 Sybase IQ

Transact-SQL compatibility view
Adaptive Server Enterprise and Sybase IQ have different system catalogs,
reflecting the different uses for the two products.

In Adaptive Server Enterprise, there is a single master database containing a set
of system tables holding information that applies to all databases on the server.
Many databases may exist within the master database, and each has additional
system tables associated with it.

In Sybase IQ, each database exists independently, and contains its own system
tables. There is no master database that contains system information on a
collection of databases. Each server may run several databases at a time,
dynamically loading and unloading each database as needed.

The Adaptive Server Enterprise and Sybase IQ system catalogs are different.
The Adaptive Server Enterprise system tables and views are owned by the
special user dbo, and exist partly in the master database, partly in the
sybsecurity database, and partly in each individual database; the Sybase IQ
system tables and views are owned by the special user SYS and exist separately
in each database.

To assist in preparing compatible applications, Sybase IQ provides a set of
views owned by the special user dbo, which correspond to the Adaptive Server
Enterprise system tables and views. Where architectural differences make the
contents of a particular Adaptive Server Enterprise table or view meaningless
in a Sybase IQ context, the view is empty, containing only the column names
and data types.

Table 11-1, Table 11-2, and Table 11-3 list the Adaptive Server Enterprise
system tables and their implementation in the Sybase IQ system catalog. The
owner of all tables is dbo in each DBMS.

CHAPTER 11 System Views

Reference Manual 901

Tables in each
Adaptive Server
Enterprise database

Table 11-1: Tables in each ASE database

Table name Description Data?

sysalternates One row for each user mapped to a database
user

No

syscolumns One row for each column in a table or view,
and for each parameter in a procedure

Yes

syscomments One or more rows for each view, rule, default,
and procedure, giving SQL definition
statement

Yes

sysconstraints One row for each referential and check
constraint associated with a table or column

No

sysdepends One row for each procedure, view, or table
that is referenced by a procedure, view

No

sysindexes One row for each clustered or nonclustered
index, and one row for each table with no
indexes, and an additional row for each table
containing text or image data

Yes

syskeys One row for each primary, foreign, or
common key; set by user (not maintained by
Adaptive Server Enterprise)

No

syslogs Transaction log No

sysobjects One row for each table, view, procedure, rule,
default, log, and (in tempdb only) temporary
object

Contains
compatible
data only

sysprocedures One row for each view, rule, default, and
procedure, giving internal definition

No

sysprotects User permissions information No

sysreferences One row for each referential integrity
constraint declared on a table or column

No

sysroles Maps server-wide roles to local database
groups

No

syssegments One row for each segment (named collection
of disk pieces)

No

systhresholds One row for each threshold defined for the
database

No

systypes One row for each system-supplied and user-
defined data type

Yes

sysusermessages One row for each user-defined message Yes (this is
an IQ
system
table)

sysusers One row for each user allowed in the database Yes

Transact-SQL compatibility view

902 Sybase IQ

Tables in the Adaptive
Server Enterprise
master database

Table 11-2: ASE master database tables

Tables in the Adaptive
Server Enterprise
sybsecurity database

Table 11-3: ASE sybsecurity database tables

Table name Description Data?

syscharsets One row for each character set or sort order No

sysconfigures One row for each configuration parameter
that can be set by a user

No

syscurconfigs Information about configuration parameters
currently being used by the server

No

sysdatabases One row for each database on the server No

sysdevices One row for each tape dump device, disk
dump device, disk for databases, and disk
partition for databases

No

sysengines One row for each server currently online No

syslanguages One row for each language (except U.S.
English) known to the server

No

syslocks Information about active locks No

sysloginroles One row for each server login that possesses
a system-defined role

No

syslogins One row for each valid user account Yes

sysmessages One row for each system error or warning No

sysprocesses Information about server processes No

sysremotelogins One row for each remote user No

syssrvroles One row for each server-wide role No

sysservers One row for each remote server No

sysusages One row for each disk piece allocated to a
database

No

Table name Description Data?

sysaudits One row for each audit record No

sysauditoptions One row for each global audit option No

Reference Manual 903

A P P E N D I X A Compatibility with Other
Sybase Databases

About this appendix This appendix is provided to simplify migration to Sybase IQ from other
Sybase databases, and to serve as a guide for creating Sybase IQ
applications that are compatible with Adaptive Server Enterprise or
Adaptive Server Anywhere. Beginning with an overview of Transact-
SQL, it compares these databases in several areas that you need to be
aware of when moving to Sybase IQ:

• Architecture

• Data types

• Data definition language

• Data manipulation language

• Stored procedure language

Compatibility features are addressed in each new version of Sybase IQ.
This appendix compares Sybase IQ 12.7 with Adaptive Server Enterprise
12.5.2 and Adaptive Server Anywhere 9.0.1.

Topics

Compatibility information
elsewhere in this book

Compatibility information is also provided in the following chapters:

Topic Page

An overview of Transact-SQL support 905

Adaptive Server architectures 906

Data types 910

Data definition language 915

Data manipulation language 926

Transact-SQL procedure language overview 936

Automatic translation of stored procedures 939

Returning result sets from Transact-SQL procedures 940

Variables in Transact-SQL procedures 941

Error handling in Transact-SQL procedures 942

Adaptive Server Anywhere and Sybase IQ 944

904 Sybase IQ

• In Chapter 2, “Database Options,”see “Transact-SQL compatibility
options” on page 35.

• In Chapter 4, “SQL Data Types,” see compatibility information for
each data type; also see Data type conversions on page 241.

• In Chapter 6, “SQL Statements,” see the compatibility information in
each command.

A note on Adaptive Server
Anywhere

Sybase IQ is an extension of Adaptive Server Anywhere. In most cases,
SQL syntax, functions, options, utilities, procedures, and other features are
common to both products. There are, however, important differences. Do
not assume that features described in Adaptive Server Anywhere
documentation are supported for Sybase IQ.

The Sybase IQ documentation set calls out differences in many cases, but
not all. Sybase IQ documentation always supersedes the Adaptive Server
Anywhere documentation. Except for topics where the Sybase IQ
documentation refers you to Adaptive Server Anywhere documentation,
always refer to the documentation listed as “Documentation for Sybase
IQ” in “About This Book,” immediately after the Table of Contents of
each Sybase IQ book.

APPENDIX A Compatibility with Other Sybase Databases

Reference Manual 905

An overview of Transact-SQL support
Sybase IQ, like Adaptive Server Anywhere, supports a large subset of
Transact-SQL, which is the dialect of SQL supported by Sybase
Adaptive Server Enterprise.

The goal of Transact-SQL support in Sybase IQ is to provide application
portability. Many applications, stored procedures, and batch files can be
written for use with both Adaptive Server Enterprise and Sybase IQ
databases.

The aim is to write applications to work with both Adaptive Server
Enterprise and Sybase IQ. Existing Adaptive Server Enterprise
applications generally require some changes to run on an Adaptive Server
Anywhere or Sybase IQ databases.

Transact-SQL support in Sybase IQ takes the following form:

• Most SQL statements are compatible between Sybase IQ and
Adaptive Server Enterprise.

• For some statements, particularly in the procedure language used in
procedures and batches, a separate Transact-SQL statement is
supported together with the syntax supported in earlier versions of
Sybase IQ. For these statements, Adaptive Server Anywhere and
Sybase IQ support two dialects of SQL. In this appendix, we name
those dialects Transact-SQL and Watcom-SQL.

• A procedure or batch is executed in either the Transact-SQL or
Watcom-SQL dialect. You must use control statements from one
dialect only throughout the batch or procedure. For example, each
dialect has different flow control statements.

Similarities and differences Sybase IQ supports a high percentage of Transact-SQL language
elements, functions, and statements for working with existing data.

Further, Sybase IQ supports a very high percentage of the Transact-SQL
stored procedure language (CREATE PROCEDURE syntax, control
statements, and so on), and many, but not all, aspects of Transact-SQL data
definition language statements.

Adaptive Server architectures

906 Sybase IQ

There are design differences in the architectural and configuration
facilities supported by each product. Device management, user
management, and maintenance tasks such as backups tend to be system-
specific. Even here, however, Sybase IQ provides Transact-SQL system
tables as views, where the tables that are not meaningful in Sybase IQ have
no rows. Also, Sybase IQ provides a set of system procedures for some of
the more common administrative tasks.

Adaptive Server architectures
Adaptive Server Enterprise, Adaptive Server Anywhere, and Sybase IQ
are complementary products, with architectures designed to suit their
distinct purposes. Sybase IQ is a high-performance decision support server
designed specifically for data warehousing and analytic processing.
Adaptive Server Anywhere works well as a workgroup or departmental
server requiring little administration, and as a personal database. Adaptive
Server Enterprise works well as an enterprise-level server for large
databases, with a focus on transaction processing.

This section describes architectural differences among the three products.
It also describes the Adaptive Server Enterprise-like tools that Sybase IQ
and Adaptive Server Anywhere include for compatible database
management.

Servers and databases
The relationship between servers and databases is different in Adaptive
Server Enterprise from Sybase IQ and Adaptive Server Anywhere.

In Adaptive Server Enterprise, each database exists inside a server, and
each server can contain several databases. Users can have login rights to
the server, and can connect to the server. They can then connect to any of
the databases on that server, provided that they have permissions. System-
wide system tables, held in a master database, contain information
common to all databases on the server.

APPENDIX A Compatibility with Other Sybase Databases

Reference Manual 907

In Sybase IQ, there is no level corresponding to the Adaptive Server
Enterprise master database. Instead, each database is an independent
entity, containing all of its system tables. Users can have connection rights
to a database, not to the server. When a user connects, they connect to an
individual database. There is no system-wide set of system tables
maintained at a master database level. Each Sybase IQ database server can
dynamically start and stop a database, to which users can maintain
independent connections. Sybase strongly recommends that you run only
one Sybase IQ database per server.

Adaptive Server Anywhere and Sybase IQ provide tools in their Transact-
SQL support and Open Server support to allow some tasks to be carried
out in a manner similar to Adaptive Server Enterprise. There are
differences, however, in exactly how these tools are implemented.

For information about Open Server support, see the Sybase IQ System
Administration Guide. Chapter 15, “Sybase IQ as a Data Server” in that
book includes details on how to use isql to connect to a specific database
on a server with multiple databases.

Space allocation and device management
All three products use different models for managing devices and
allocating disk space initially and later, reflecting the different uses for the
products. For example:

• In Adaptive Server Enterprise, you allocate space in database devices
initially using DISK INIT and then create a database on one or more
database devices. You can add more space using ALTER DATABASE
or automatically, using thresholds.

• In Sybase IQ, you allocate space initially by listing raw devices in the
CREATE DATABASE statement. You can add more space manually
using CREATE DBSPACE. Although you cannot add space
automatically, you can create events to warn the DBA before space is
actually needed. Sybase IQ can also use file system space. Sybase IQ
does not support Transact-SQL DISK statements, such as DISK INIT,
DISK MIRROR, DISK REFIT, DISK REINIT, DISK REMIRROR, and
DISK UNMIRROR.

Adaptive Server architectures

908 Sybase IQ

• Adaptive Server Anywhere is similar to Sybase IQ, except that the
initial CREATE DATABASE statement takes a single file system file
instead of a list of raw devices. Adaptive Server Anywhere also lets
you initialize its databases using a command utility dbinit, which
Sybase IQ does not support.

For information on disk management, see the Sybase IQ System
Administration Guide.

System tables, Catalog Store, and IQ Store
An IQ database is a joint data store consisting of three parts:

• The Catalog Store includes system tables and stored procedures, and
resides in a set of tables that are compatible with Adaptive Server
Anywhere.

• The permanent IQ Store is the set of Sybase IQ tables. Table data is
stored in indexes.

• The Temporary Store consists of a set of temporary tables which the
database server uses for sorting and other temporary processing.

Catalog distinctions and compatibility features include these:

• Adaptive Server Anywhere and Sybase IQ use a different schema
from Adaptive Server Enterprise for the catalog (tables, columns, and
so on).

• Adaptive Server Anywhere and Sybase IQ provide compatibility
views that mimic relevant parts of the Adaptive Server Enterprise
system tables, although there are performance implications when
using them. For a list and individual descriptions, see Chapter 9,
“System Tables” and Chapter 11, “System Views.”

• In Adaptive Server Enterprise, the database owner (user ID dbo) owns
the catalog objects.

APPENDIX A Compatibility with Other Sybase Databases

Reference Manual 909

• In Adaptive Server Anywhere and Sybase IQ, the system owner (user
ID SYS) owns the catalog objects.

Note A dbo user ID owns the Adaptive Server Enterprise-compatible
system views provided by Sybase IQ. The dba user ID owns a small
number of Sybase IQ system tables, used for Sybase IQ user and
multiplex administration.

Administrative roles
Adaptive Server Enterprise has a more elaborate set of administrative roles
than either Adaptive Server Anywhere or Sybase IQ. In Adaptive Server
Enterprise, there is a set of distinct roles, although more than one login
account on an Adaptive Server Enterprise can be granted any role, and one
account can possess more than one role.

In Adaptive Server Enterprise, distinct roles include:

• System Administrator Responsible for general administrative
tasks unrelated to specific applications; can access any database
object.

• System Security Officer Responsible for security-sensitive tasks
in Adaptive Server Enterprise, but has no special permissions on
database objects.

• Database Owner Has full permissions on objects inside the
database he or she owns, can add users to a database and grant other
users the permission to create objects and execute commands within
the database.

• Data definition statements Permissions can be granted to users for
specific data definition statements, such as CREATE TABLE or
CREATE VIEW, enabling the user to create database objects.

• Object owner Each database object has an owner who may grant
permissions to other users to access the object. The owner of an object
automatically has all permissions on the object.

In Adaptive Server Anywhere and Sybase IQ, the following database-wide
permissions have administrative roles:

Data types

910 Sybase IQ

• Database Administrator (DBA authority) Has, like the Adaptive
Server Enterprise Database Owner, full permissions on all objects
inside the database (other than objects owned by SYS) and can grant
other users the permission to create objects and execute commands
within the database. The default database administrator is user ID
DBA.

• RESOURCE permission Allows a user to create any kind of object
within a database. This is in place of the Adaptive Server Enterprise
scheme of granting permissions on individual CREATE statements.

• Object owner Sybase IQ has object owners in the same way
Adaptive Server Enterprise does. The owner of an object
automatically has all permissions on the object, including the right to
grant permissions.

For seamless access to data held in both Adaptive Server Enterprise and
Sybase IQ, you should create user IDs with appropriate permissions in the
database (RESOURCE in Sybase IQ, or permission on individual CREATE
statements in Adaptive Server Enterprise) and create objects from that user
ID. If you use the same user ID in each environment, object names and
qualifiers can be identical in the two databases, providing compatible
access.

Data types
This section discusses compatibility information for data types. For details
of Sybase IQ data types, see Chapter 4, “SQL Data Types.”

Note Data types that are not included in this section are currently
supported by all three products.

Bit data type
All three products support the BIT data type, with these differences:

• Adaptive Server Anywhere permits only 0 or 1.

• Adaptive Server Enterprise and Sybase IQ implicitly convert integral
data types to BIT. Nonzero values are stored as 1 (TRUE).

APPENDIX A Compatibility with Other Sybase Databases

Reference Manual 911

Character data types
All three products permit CHAR and VARCHAR data, but each product
treats these types differently.

• Adaptive Server Anywhere treats all strings as VARCHAR, even in a
blank-padded database.

• Adaptive Server Enterprise and Sybase IQ differentiate between
CHAR (fixed-length) and VARCHAR (variable-length) data.

Adaptive Server Enterprise trims trailing blank spaces from
VARCHAR values, but Sybase IQ does not.

When inserting into CHAR or VARCHAR:

• Adaptive Server Anywhere permits inserting integral data types into
CHAR or VARCHAR (implicit conversion).

• Adaptive Server Enterprise and Sybase IQ require explicit
conversion.

The maximum size of a column is determined as follows:

• Adaptive Server Enterprise CHAR and VARCHAR depend on the
logical page size, which can be 2K, 4K, 8K, and 16K. For example:

• 2K page size allows a column as large as a single row, about 1962
bytes.

• 4K page size allows a column as large as about 4010 bytes.

• Adaptive Server Anywhere supports up to 32K-1 with CHAR and
VARCHAR, and up to 2GB with LONG VARCHAR.

• Adaptive Server Anywhere supports the name LONG VARCHAR and
its synonym TEXT, while Adaptive Server Enterprise only supports
the name TEXT, not the name LONG VARCHAR.

• Sybase IQ supports CHAR and VARCHAR up to 32K-1 bytes.

Sybase IQ also supports up to 512TB (with an IQ page size of 128KB)
and 2PB (with an IQ page size of 512KB) with LONG VARCHAR. For
information on the LONG VARCHAR data type in Sybase IQ, see
Large Objects Management in Sybase IQ.

• Adaptive Server Enterprise supports NCHAR, NVARCHAR, UNICHAR,
UNIVARCHAR data types. N is for multibyte character sets; UNI is for
single-byte character sets.

Data types

912 Sybase IQ

• Adaptive Server Anywhere and Sybase IQ support Unicode in the
CHAR and VARCHAR data types rather than as a separate data type.

• For compatibility between Sybase IQ and Adaptive Server Enterprise,
always specify a length for character data types.

Binary data types
Table A-1 summarizes binary data type support.

Table A-1: Binary data type supported sizes

*For information on the LONG BINARY data type in Sybase IQ, see Large
Objects Management in Sybase IQ. This feature requires a separate
license.

Adaptive Server Enterprise and Adaptive Server Anywhere display binary
data differently when projected:

• Sybase IQ supports both Adaptive Server Enterprise and Adaptive
Server Anywhere display formats.

• If ‘123’ is entered in a BINARY field the Adaptive Server Anywhere
display format is by bytes, as ‘123’; the Adaptive Server Enterprise
display format is by nibbles, as ‘0x616263’.

Date, time, datetime, and timestamp data types
Although all three products support some form of date and time data, there
are some differences.

• Adaptive Server Anywhere and Sybase IQ support the 4-byte date and
time data types.

Data type

Adaptive
Server
Enterprise

Adaptive
Server
Anywhere Sybase IQ

BINARY < page size 32KB - 1 255

VARBINARY < page size 32KB - 1 32KB - 1

LONG
BINARY*

not supported 2GB - 1 512TB (IQ page size 128KB)
2PB (IQ page size 512KB)

IMAGE 2GB 2GB - 1 use LONG BINARY*

APPENDIX A Compatibility with Other Sybase Databases

Reference Manual 913

• Adaptive Server Enterprise supports an 8-byte datetime type, and
timestamp as a user-defined data type (domain) implemented as
binary (8).

• Adaptive Server Anywhere and Sybase IQ support an 8-byte
timestamp type, and an 8-byte datetime domain implemented as
timestamp. The millisecond precision of the Anywhere/Sybase IQ
datetime data type differs from that of Adaptive Server Enterprise.

• With the option AUTOMATIC_TIMESTAMP set on, Adaptive Server
Anywhere has the same behavior as Adaptive Server Enterprise in
giving columns whose data type is timestamp an automatic default of
timestamp if no other default is provided.

Display formats for dates have different defaults:

• Adaptive Server Enterprise defaults to displaying dates in the format
“MMM-DD-YYYY” but can be changed by setting an option.

• Adaptive Server Anywhere and Sybase IQ default to the ISO
“YYYY-MM-DD” format but can be changed by setting an option.

Time conversions are as follows:

• Adaptive Server Enterprise varies the way it converts time stored in a
string to an internal time, depending on whether the fraction part of
the second was delimited by a colon or a period.

• Adaptive Server Anywhere and Sybase IQ convert times in the same
way, regardless of the delimiter.

When you insert a time into a DATETIME column:

• Adaptive Server Enterprise and Sybase IQ default to supplying 1st
January 1900.

• Adaptive Server Anywhere defaults to supplying the current date.

TIME and DATETIME values retrieved from an Adaptive Server Enterprise
database change when inserted into a Sybase IQ table with a DATETIME
column using INSERT ... LOCATION. The INSERT ... LOCATION statement
uses Open Client, which has a DATETIME precision of 1/300 of a second.

For example, assume that the following value is stored in a table column
in an Adaptive Server Enterprise database:

2004-11-08 10:37:22.823

When you retrieve and store it in a Sybase IQ table using
INSERT...LOCATION, the value becomes:

Data types

914 Sybase IQ

2004-11-08 10:37:22.823333

Compatibility of datetime
and time values from ASE

A DATETIME or TIME value retrieved from an Adaptive Server Enterprise
database using INSERT...LOCATION can have a different value due to the
datetime precision of Open Client.

For example, the DATETIME value in the Adaptive Server Enterprise
database is ‘2004-11-08 10:37:22.823’ as retrieved using
INSERT...LOCATION is ‘2004-11-08 10:37:22.823333’.

Numeric data types
Adaptive Server Enterprise, Adaptive Server Anywhere, and Sybase IQ
have different default precision and scale:

• In Adaptive Server Enterprise, the default is precision 18 scale 0.

• In Adaptive Server Anywhere, the default is precision 30 scale 6.

• In Sybase IQ, the default is precision 126 scale 38. Because these
defaults are too large for TDS and for some client tools, you should
always specify a precision and scale for Sybase IQ exact numeric
types.

Approximate numeric data types
Adaptive Server Enterprise differs from Adaptive Server Anywhere and
Sybase IQ in how the FLOAT(p) data type is interpreted: that is, when to
create a 4-byte data type, and when to create an 8-byte data type.

Adaptive Server Anywhere and Sybase IQ offer the FLOAT_AS_DOUBLE
option to control data width.

Text data type
Support for TEXT data is currently implemented as follows:

• Adaptive Server Enterprise and Adaptive Server Anywhere support
up to 2 GB with LONG VARBINARY and TEXT.

APPENDIX A Compatibility with Other Sybase Databases

Reference Manual 915

• Sybase IQ supports up to 32KB - 1 with VARCHAR. Sybase IQ also
supports up to 512TB (with an IQ page size of 128KB) and 2PB (with an
IQ page size of 512KB) with LONG VARCHAR. For information on the
LONG VARCHAR data type in Sybase IQ, see Large Objects
Management in Sybase IQ.

Image data type
Support for IMAGE data is currently implemented as follows:

• Adaptive Server Enterprise and Adaptive Server Anywhere support
up to 2GB with IMAGE.

• Sybase IQ supports up to 512TB (with an IQ page size of 128KB) and 2PB
(with an IQ page size of 512KB) with LONG BINARY. For information on
the LONG BINARY data type in Sybase IQ, see Large Objects
Management in Sybase IQ.

Java data types
Adaptive Server Enterprise allows Java data types in the database.
Adaptive Server Anywhere and Sybase IQ do not.

Data definition language
This section discusses compatibility information for creating database
objects. See also “System tables, Catalog Store, and IQ Store” on page
908 and “Space allocation and device management” on page 907 for
related information.

Creating a Transact-SQL-compatible database
This section describes choices you must make when creating or rebuilding
a database.

Data definition language

916 Sybase IQ

Here are the basic steps you need to take to create a Transact-SQL-
compatible database. The remainder of the section describes which
options you need to set.

❖ Creating a Transact-SQL compatible database from Sybase Central

1 One page of the Create Database wizard is named Default Database
Attributes.

2 To emulate Adaptive Server Enterprise, choose “Emulate Adaptive
Server Enterprise” which automatically selects Case sensitivity for
string comparisons and Case sensitivity for passwords.

❖ Creating a Transact-SQL compatible database using the CREATE
DATABASE statement

• Type the following statement, for example, in Interactive SQL:

CREATE DATABASE 'db-name.db'

CASE RESPECT BLANK PADDING ON

Case sensitivity
Case sensitivity in databases refers to:

• Data The case sensitivity of the data is reflected in indexes, in the
results of queries, and so on.

• Identifiers Identifiers include table names, column names, user IDs,
and so on.

• Passwords Case sensitivity of passwords is treated differently from
other identifiers.

Case sensitivity of data You decide the case-sensitivity of Sybase IQ data in comparisons when
you create the database. By default, Sybase IQ databases are case-sensitive
in comparisons, although data is always held in the case in which you enter
it.

Adaptive Server Enterprise’s sensitivity to case depends on the sort order
installed on the Adaptive Server Enterprise system. You can change case
sensitivity for single-byte character sets by reconfiguring the Adaptive
Server Enterprise sort order.

Case sensitivity of
identifiers

Sybase IQ does not support case-sensitive identifiers. In Adaptive Server
Enterprise, the case sensitivity of identifiers follows the case sensitivity of
the data.

APPENDIX A Compatibility with Other Sybase Databases

Reference Manual 917

In Adaptive Server Enterprise, user-defined data type names are case
sensitive. In Sybase IQ, they are case insensitive.

User IDs and passwords In Sybase IQ, passwords follow the case sensitivity of the data by default;
however, you can also specify password case sensitivity independently of
data case sensitivity. The default password for case-sensitive databases is
uppercase SQL. The default user ID is DBA, but it is not case sensitive.

In Adaptive Server Enterprise, the case sensitivity of user IDs and
passwords follows the case sensitivity of the server.

Ensuring compatible object names
Each database object must have a unique name within a certain name
space. Outside this name space, duplicate names are allowed. Some
database objects occupy different name spaces in Adaptive Server
Enterprise as compared to Adaptive Server Anywhere and Sybase IQ.

Table name uniqueness Table name uniqueness requirements apply within a database:

• For Sybase IQ and Adaptive Server Anywhere, table names must be
unique within a database for a given owner. For example, both user1
and user2 can create a table called employee; uniqueness is provided
by the fully qualified names, user1.employee and user2.employee.

• For Adaptive Server Enterprise, table names must be unique within
the database and to the owner.

Index name uniqueness Index name uniqueness requirements apply within a table. In all three
products, indexes are owned by the owner of the table on which they are
created. Index names must be unique on a given table, but any two tables
can have an index of the same name, even for the same owner. For
example, in all three products, tables t1 and t2 can have indexes of the
same name, whether they are owned by the same or different users.

Renaming indexes and
foreign keys

Sybase IQ allows you to rename explicitly created indexes, foreign key
role names of indexes, and foreign keys, using the ALTER INDEX
statement. Adaptive Server Anywhere allows you to rename indexes,
foreign key role names, and foreign keys, using the ALTER INDEX
statement. Adaptive Server Enterprise does not allow you to rename these
objects.

Data definition language

918 Sybase IQ

CREATE TABLE statement
When creating tables for compatibility, be aware of the following items.

NULL in columns For compatible treatment of NULL:

• Adaptive Server Anywhere and Sybase IQ assume that columns can
be null unless NOT NULL is stated in the column definition. You can
change this behavior by setting the database option
ALLOW_NULLS_BY_DEFAULT to the Transact-SQL compatible
setting of OFF.

• Adaptive Server Anywhere assumes that BIT columns only cannot be
NULL.

• Adaptive Server Enterprise assumes that columns cannot be null
unless NULL is stated.

Check constraints Sybase IQ enforces check constraints on base, global temporary, and local
temporary tables, and on user-defined data types. Users can log check
integrity constraint violations and specify the number of violations that
can occur before a LOAD statement rolls back.

Sybase IQ does not allow the creation of a check constraint that it cannot
evaluate, such as those composed of user-defined functions, proxy tables,
or non-Sybase IQ tables. Constraints that cannot be evaluated are detected
the first time the table on which the check constraint is defined is used in
a LOAD, INSERT, or UPDATE statement. Sybase IQ does not allow check
constraints containing:

• Subqueries

• Expressions specifying a host language parameter, a SQL parameter,
or a column as the target for a data value

• Set functions

• Invocations of nondeterministic functions or functions that modify
data

If you have databases created with a previous version of Sybase IQ, run
the stored procedure sp_iqprintconstraints to list all Sybase IQ tables and
columns in a format that allows you to recreate them after deletion. If you
want to drop all constraints on Sybase IQ tables in the database, you can
then run the sp_iqdropconstraints procedure.

Adaptive Server Enterprise and Adaptive Server Anywhere enforce
CHECK constraints. Adaptive Server Anywhere allows subqueries in
check constraints.

APPENDIX A Compatibility with Other Sybase Databases

Reference Manual 919

Sybase IQ supports user-defined data types that allow constraints to be
encapsulated in the data type definition.

Referential integrity
constraints

Sybase IQ enforces referential integrity as described in Chapter 9,
“Ensuring Data Integrity” in the Sybase IQ System Administration Guide.

Actions for enforcing integrity are supported as follows:

• Adaptive Server Anywhere supports all ANSI actions: SET NULL,
CASCADE, DEFAULT, RESTRICT

• Adaptive Server Enterprise supports two of these actions: SET
NULL, DEFAULT.

Note You can achieve CASCADE in Adaptive Server Enterprise by
using triggers instead of referential integrity.

• Sybase IQ supports the RESTRICT action only.

• Sybase IQ does not support NOT NULL FOREIGN KEY.

• Sybase IQ has the restriction that a column cannot be both a candidate
key and a foreign key at the same time.

Default values in a column Default value support differs as follows:

• Adaptive Server Enterprise and Adaptive Server Anywhere support
specifying a default value for a column.

• Only Adaptive Server Anywhere supports DEFAULT UTC
TIMESTAMP.

• Sybase IQ supports specifying a default value for a column, except for
the special values DEFAULT UTC TIMESTAMP and DEFAULT
CURRENT UTC TIMESTAMP. Sybase IQ also ignores settings for
the DEFAULT_TIMESTAMP_INCREMENT database option.

Identity columns Identity column support differs as follows:

Data definition language

920 Sybase IQ

• Sybase IQ supports IDENTITY or DEFAULT AUTOINCREMENT as a
default value. Sybase IQ supports identity columns of any numeric
type with any precision and scale 0, and the column can be NULL.
Sybase IQ identity columns must be positive and are limited by the
range of the data type. Sybase IQ supports a single identity column
per table, and requires database option IDENTITY_INSERT set to a
table name for explicit inserts and updates. To drop a table with an
IDENTITY column, you cannot have IDENTITY_INSERT set to that
table. The table can contain data when adding an identity column.
Tables derived using SELECT INTO do not have Identity/
Autoincrement columns. Sybase IQ views cannot contain IDENTITY/
DEFAULT AUTOINCREMENT columns.

• Adaptive Server Anywhere supports AUTOINCREMENT default
value. Adaptive Server Anywhere supports identity columns of any
numeric type with any allowable scale and precision. The identity
column value can be positive, negative, or zero, limited by the range
of the data type. Adaptive Server Anywhere supports any number of
identity columns per table, and does not require identity_insert for
explicit inserts, drops, and updates. The table must be empty when
adding identity columns. ASA identity columns can be altered to be
nonidentity columns and vice versa. You can add or drop
AUTOINCREMENT columns from ASA views.

• Adaptive Server Enterprise supports a single identity column per
table. ASE identity columns are restricted to only numeric data type
scale 0, maximum precision 38. They must be positive, are limited by
the range of the data type, and cannot be null. Adaptive Server
Enterprise requires identity_insert for explicit inserts and drops, but
not for updates to the identity column. The table can contain data
when you add an identity column. ASE users cannot explicitly set the
next value chosen for an identity column. ASE views cannot contain
IDENTITY/AUTOINCREMENT columns. When using SELECT INTO
under certain conditions, ASE allows Identity/Autoincrement
columns in the result table if they were in the table being selected
from.

Computed columns Computed column support differs as follows:

• Adaptive Server Anywhere supports computed columns that can be
indexed.

• Adaptive Server Enterprise and Sybase IQ do not.

APPENDIX A Compatibility with Other Sybase Databases

Reference Manual 921

Temporary tables You can create a temporary table by placing a pound sign (#) without an
owner specification in front of the table name in a CREATE TABLE
statement. These temporary tables are Sybase IQ-declared temporary
tables and are available only in the current connection. For information
about declared temporary tables in Sybase IQ, see the DECLARE LOCAL
TEMPORARY TABLE statement on page 523.

For information about creating tables, see the CREATE TABLE statement
on page 499.

Locating tables Physical placement of a table is carried out differently in Adaptive Server
Enterprise and Sybase IQ. Sybase IQ supports the ON segment-name
clause, but segment-name refers to a Sybase IQ dbspace.

CREATE DEFAULT, CREATE RULE, and CREATE DOMAIN
statements

Sybase IQ provides an alternative means of incorporating rules:

• Adaptive Server Enterprise supports the Create Default and Create
Rule statements to create named defaults.

• Adaptive Server Anywhere and Sybase IQ support the CREATE
DOMAIN statement to achieve the same objective.

CREATE TRIGGER statement
Support for triggers differs as follows:

• Adaptive Server Anywhere supports both row-level and statement-
level triggers.

• Adaptive Server Enterprise supports only statement-level triggers.

Data definition language

922 Sybase IQ

• Sybase IQ does not support triggers.

Note A trigger is effectively a stored procedure that is run automatically
either immediately before or immediately after an INSERT, UPDATE, or
DELETE as part of the same transaction, that can be used to cause a
dependent change (for example, to automatically update the name of an
employee’s manager when the employee is moved to a different
department). It can also be used to write an audit trail to identify which
modifications made which changes to the database, and at what time.

CREATE INDEX statement
CREATE INDEX syntax differs slightly among the three products:

• Adaptive Server Enterprise and Adaptive Server Anywhere support
clustered or nonclustered indexes, using the following syntax:

CREATE [UNIQUE] [CLUSTERED] INDEX name
ON table (column,...)
ON dbspace

Adaptive Server Enterprise also allows the NONCLUSTERED
keyword, but for both products the default is NONCLUSTERED.

• Adaptive Server Enterprise CREATE INDEX statements work in
Adaptive Server Anywhere because ASA allows, but ignores, the
keywords FILLFACTOR, IGNORE_DUP_KEY, SORTED_DATA,
IGNORE_DUP_ROW, and ALLOW_DUP_ROW.

• Adaptive Server Anywhere CREATE INDEX syntax supports the
VIRTUAL keyword for use by its Index Consultant, but not for actual
execution of queries.

• Sybase IQ supports seven specialized index types: LF, HG, HNG,
DATE, TIME, DTTM, and WD. Sybase IQ also supports a CMP index on
the relationship between two columns of identical data type,
precision, and scale. Sybase IQ defaults to creating an HG index
unless the index type is specified in the CREATE INDEX statement:

CREATE [UNIQUE] [type] INDEX name

APPENDIX A Compatibility with Other Sybase Databases

Reference Manual 923

ON table (column,...)

Note Sybase IQ also supports CREATE JOIN INDEX, which lets you create
a prejoined index on a certain set of columns that are joined consistently
and frequently in queries.

See Chapter 6, “Using Sybase IQ Indexes” in the Sybase IQ System
Administration Guide for more information on Sybase IQ indexes.

Users, groups, and permissions
There are some differences between the Adaptive Server Enterprise and
Adaptive Server Anywhere and Sybase IQ models of users and groups.

How users connect In Adaptive Server Enterprise, users connect to a server, and each user
requires a login ID and password to the server as well as a user ID for each
database they want to access on that server.

In Adaptive Server Anywhere and Sybase IQ, users connect directly to a
database and do not require a server login ID. Instead, each user receives
a user ID and password on a database so they can use that database.

User groups All three products support user groups, so you can grant permissions to
many users at one time. However, there are differences in the specifics of
groups:

• Adaptive Server Enterprise allows each user to be a member of only
one group.

• Adaptive Server Anywhere and Sybase IQ allow users to be members
of multiple groups, and group hierarchies are allowed.

All three products have a public group, for defining default permissions.
Every user automatically becomes a member of the public group.

Database object
permissions

GRANT and REVOKE statements for granting permissions on individual
database objects are very similar in all three products.

• All three products allow SELECT, INSERT, DELETE, UPDATE, and
REFERENCES permissions on database tables and views, and
UPDATE permissions on selected columns of database tables.

For example, the following statement is valid in all three products:

GRANT INSERT, DELETE
ON TITLES

Data definition language

924 Sybase IQ

TO MARY, SALES

This statement grants permission to use the INSERT and DELETE
statements on the TITLES table to user MARY and to the SALES group.

• All three products allow EXECUTE permissions to be granted on
stored procedures.

• Adaptive Server Enterprise also supports GRANT and REVOKE on
additional items:

• Objects: columns within tables, columns within views, and
stored procedures

• User abilities: CREATE DATABASE, CREATE DEFAULT, CREATE
PROCEDURE, CREATE RULE, CREATE TABLE, CREATE VIEW

• Adaptive Server Anywhere and Sybase IQ require a user to have
RESOURCE authority to create database objects. (A closely
corresponding Adaptive Server Enterprise permission is GRANT
ALL, used by a Database Owner.)

• All three products support the WITH GRANT OPTION clause, allowing
the recipient of permissions to grant them in turn, although Sybase IQ
does not permit WITH GRANT OPTION to be used on a GRANT
EXECUTE statement.

Database-wide
permissions

Adaptive Server Enterprise uses a different model for database-wide user
permissions.

• Adaptive Server Anywhere and Sybase IQ employ DBA permissions
to allow a user full authority within a database.

• The System Administrator in Adaptive Server Enterprise enjoys this
permission for all databases on a server. However, DBA authority on
a Sybase IQ database is different from the permissions of an Adaptive
Server Enterprise Database Owner, who must use the Adaptive Server
Enterprise SETUSER statement to gain permissions on objects owned
by other users.

Adding users Adaptive Server Enterprise requires a two-step process to add a user:
sp_addlogin followed by sp_add_user.

Adaptive Server Anywhere and Sybase IQ add users in a single step.

Sybase IQ Login Management stored procedures, although not required to
add or drop users, allow DBAs to add or drop Sybase IQ user accounts.
When Sybase IQ User Administration is enabled, these accounts let DBAs
control user connections and password expirations.

APPENDIX A Compatibility with Other Sybase Databases

Reference Manual 925

For details on Sybase IQ User Administration, see Chapter 12, “Managing
User IDs and Permissions” and Chapter 15, “Sybase IQ as a Data Server”
in the Sybase IQ System Administration Guide.

Although Adaptive Server Anywhere and Sybase IQ allow Adaptive
Server Enterprise system procedures for managing users and groups, the
exact syntax and function of these procedures differs in some cases. For
more information, see Chapter 10, “System Procedures,” including
“Adaptive Server Enterprise system procedures” on page 884.

Load formats
Load format support in the three products is as follows:

• Sybase IQ handles ASCII and BINARY load formats.

• Adaptive Server Anywhere, in addition to ASCII and BINARY, also
lets you import dBase, Excel, FoxPro, and Lotus file formats.

• Adaptive Server Enterprise handles ASCII and BINARY load formats
through BCP.

Note The syntax of the Sybase IQ and Adaptive Server Anywhere LOAD
statement is based on BCP and designed to offer exactly the same
functionality.

BCP support in loading
• Adaptive Server Enterprise and Adaptive Server Anywhere support

BCP in.

• Sybase IQ supports BCP through, iq_bcp, an o

pen-client-based utility that copies a database table to or from an
operating system file in a user-specified format.

Data manipulation language

926 Sybase IQ

You can perform a BCP into an Adaptive Server Anywhere table and
then transfer the contents to Sybase IQ; however, the transfer of rows
from Adaptive Server Anywhere to Sybase IQ is executed one row at
a time. Sybase IQ does not support BLKLIB, so BCP, which uses Open
Client’s Bulk-Library, does not work in load mode. Both Sybase IQ
and Adaptive Server Enterprise BCP format supports a blank when
one digit is in the date.

Setting options for Transact-SQL compatibility
Set Sybase IQ database options using the SET OPTION statement. See
“Transact-SQL compatibility options” on page 35 for a list of option
settings required for Transact-SQL-compatible behavior.

Data manipulation language
This section provides some general guidelines for writing portable queries,
then discusses specific query requirements.

General guidelines for writing portable SQL
When writing SQL for use on more than one database management
system, make your SQL statements as explicit as possible. Even if more
than one server supports a given SQL statement, it might be a mistake to
assume that default behavior is the same on each system. General
guidelines applicable to writing compatible SQL include:

• Spell out all of the available options, rather than using default
behavior.

• Use parentheses to make the order of execution within statements
explicit, rather than assuming identical default order of precedence
for operators.

• Use the Transact-SQL convention of an @ sign preceding variable
names for Adaptive Server Enterprise portability.

APPENDIX A Compatibility with Other Sybase Databases

Reference Manual 927

• Declare variables and cursors in procedures and batches immediately
following a BEGIN statement. Sybase IQ requires this, although
Adaptive Server Enterprise allows declarations to be made anywhere
in a procedure or batch.

• Do not use reserved words from either Adaptive Server Enterprise or
Sybase IQ as identifiers in your databases.

• Set the Sybase IQ database option PERCENT_AS_COMMENT OFF
and use -- (double dash) as a comment delimiter for SQL92
compatibility. The percent character is the default comment delimiter
in Sybase IQ. Adaptive Server Enterprise treats the % as a modulo
operator and does not support the Sybase IQ mod function.

Writing compatible queries
There are two criteria for writing a query that runs on both Sybase IQ and
Adaptive Server Enterprise databases:

• The data types, expressions, and search conditions in the query must
be compatible.

• The syntax of the SELECT statement itself must be compatible.

Sybase IQ supports the following subset of the Transact-SQL SELECT
statement.

Syntax SELECT [ALL | DISTINCT] select-list
...[INTO #temporary-table-name]
...[FROM table-spec,
... table-spec, ...]
...[WHERE search-condition]
...[GROUP BY column-name, ...]
...[HAVING search-condition]
...| [ORDER BY expression [ASC | DESC], ...]|
 | [ORDER BY integer [ASC | DESC], ...]|

Parameters select-list:
{ table-name.* }...
{ * }...
{ expression }...
{ alias-name = expression }...
{ expression as identifier }...
{ expression as T_string }...

table-spec:
[owner.]table-name

Data manipulation language

928 Sybase IQ

... [[AS] correlation-name]
 ...

alias-name:
identifier | 'string' | “string"

For a full description of the SELECT statement, see SELECT statement on
page 632.

The sections that follow provide details on several items to be aware of
when writing compatible queries.

Subqueries
Sybase IQ currently provides support for subqueries that is somewhat
different from that provided by Adaptive Server Enterprise and Adaptive
Server Anywhere. Adaptive Server Enterprise and Adaptive Server
Anywhere support subqueries in the ON clause; Sybase IQ does not
currently support this.

UNION in subqueries is supported as follows:

• Adaptive Server Anywhere supports UNION in both correlated and
uncorrelated subqueries.

• Sybase IQ supports UNION only in uncorrelated subqueries.

• Adaptive Server Enterprise does not support UNION in any
subqueries.

Adaptive Server Anywhere supports subqueries in many additional places
that a scalar value might appear in the grammar. Adaptive Server
Enterprise and Sybase IQ follow the ANSI standard as to where
subqueries can be specified.

GROUP BY clause
GROUP BY ALL support is as follows:

• Adaptive Server Enterprise supports GROUP BY ALL, which returns
all possible groups including those eliminated by the WHERE clause
and HAVING clause. These have the NULL value for all aggregates.

• Adaptive Server Anywhere does not support the GROUP BY ALL
Transact-SQL extension.

APPENDIX A Compatibility with Other Sybase Databases

Reference Manual 929

• Sybase IQ supports the GROUP BY ALL Transact-SQL extension on a
single table only, not in a view.

ROLLUP and CUBE in the GROUP BY clause are supported as follows:

• Sybase IQ and Adaptive Server Anywhere support ROLLUP and
CUBE in the GROUP BY clause.

• Adaptive Server Enterprise does not currently support ROLLUP and
CUBE.

Adaptive Server Enterprise supports projecting nongrouped columns in
the SELECT clause. This is known as extended group by semantics and
returns a set of values. Sybase IQ supports extended group by semantics
with some exceptions. For details, see “GROUP BY” on page 637.
Adaptive Server Anywhere does not support extended group by semantics.
Only Adaptive Server Anywhere supports the List() aggregate to return a
list of values.

For information about using GROUP BY with OLAP functions, see
Chapter 4, “Using OLAP” in the Sybase IQ Performance and Tuning
Guide

COMPUTE clause
COMPUTE clause support is as follows:

• Adaptive Server Enterprise supports the Transact-SQL COMPUTE
clause.

• Adaptive Server Anywhere and Sybase IQ do not support the
Transact-SQL COMPUTE clause since it is not in the ANSI standard
and this functionality is provided by most third-party front-end tools.

WHERE clause
The WHERE clause differs in support for the Contains() predicate, and
treatment of trailing white space in the Like() predicate.

• Sybase IQ supports the Contains() predicate for word searches in
character data (similar to Contains in MS SQL Server and Verity).
Sybase IQ uses WORD indexes to optimize these if possible.

Data manipulation language

930 Sybase IQ

• Adaptive Server Anywhere and Adaptive Server Enterprise do not
support Contains().

Joins
This section discusses support for Transact-SQL outer joins and ANSI
joins.

Transact-SQL outer joins

Supported syntax for outer joins can be summarized as follows:

• Adaptive Server Enterprise fully supports *= and =* Transact-SQL
syntax for outer joins.

• Adaptive Server Anywhere and Sybase IQ support Transact-SQL
outer joins but reject some complex Transact-SQL outer joins that are
potentially ambiguous.

• Sybase IQ does not support chained (nested) Transact-SQL outer
joins. Use ANSI syntax for this type of multiple outer join.

Note T-SQL outer join syntax is deprecated in Adaptive Server Anywhere
and Sybase IQ.

ANSI joins

Support for ANSI join syntax can be summarized as follows:

• Sybase IQ does not currently support subqueries in the ON clause.

• Adaptive Server Enterprise and Adaptive Server Anywhere support
subqueries in the ON clause.

Full outer join support is as follows:

• Adaptive Server Anywhere and Sybase IQ support FULL OUTER
JOIN.

• Adaptive Server Enterprise does not support FULL OUTER JOIN.

APPENDIX A Compatibility with Other Sybase Databases

Reference Manual 931

More information on outer joins

For detailed information on Transact-SQL outer joins, including ANSI
syntax alternatives, refer to the white paper “Semantics and Compatibility
of Transact-SQL Outer Joins,” which is available on the Sybase online
support Web site MySybase at http://www.sybase.com/support/. Although
written for Adaptive Server Anywhere, the information in this document
also applies to Sybase IQ.

Null comparisons
Adaptive Server Enterprise has Transact-SQL extensions that permit
predicates to compare the null value. For example, {col} = Null means
{col} Is Null.

Adaptive Server Anywhere and Sybase IQ use ANSI semantics for Null
comparisons unless the ANSINULL option is set to OFF, in which case such
comparisons are Adaptive Server Enterprise-compatible.

Note Adaptive Server Anywhere 8.0 adds support for the
TDS_EMPTY_STRING_AS_NULL to offer Adaptive Server Enterprise
compatibility in mapping empty strings to the null value.

Zero-length strings
Zero-length strings are treated as follows:

• Adaptive Server Enterprise treats zero-length strings as the null value.

Adaptive Server Enterprise users store a single space for blank
strings.

• Adaptive Server Anywhere and Sybase IQ follow ANSI semantics for
zero-length strings, that is, a zero-length string is a real value; it is not
null.

http://www.sybase.com/support

Data manipulation language

932 Sybase IQ

HOLDLOCK, SHARED, and FOR BROWSE
Support for this syntax is as follows:

• Adaptive Server Enterprise supports HOLDLOCK, SHARED, FOR
BROWSE syntax.

• Adaptive Server Anywhere supports HOLDLOCK but does not
support SHARED or FOR BROWSE.

• Sybase IQ does not support these keywords.

SQL functions
Sybase IQ supports most of the same functions as Adaptive Server
Anywhere and Adaptive Server Enterprise, with these differences:

• Adaptive Server Enterprise supports the USING CHARACTERS |
USING BYTES syntax in PatIndex(); Adaptive Server Anywhere and
Sybase IQ do not.

• Adaptive Server Enterprise supports the Reverse() function; Adaptive
Server Anywhere and Sybase IQ do not.

• Adaptive Server Enterprise supports Len() as alternative syntax for
Length(); Adaptive Server Anywhere does not support this alternative.

• Adaptive Server Enterprise supports the Square() and Str_Replace()
Microsoft compatibility functions; Adaptive Server Anywhere does
not.

• Sybase IQ supports Str_Replace().

• Adaptive Server Enterprise and Adaptive Server Anywhere support
TSEQUAL() to compare two timestamps for modification time;
Sybase IQ does not support TSEQUAL(). (TSEQUAL is not relevant in
the Sybase IQ table-level versioning model.)

• Sybase IQ supports ROWID(); Adaptive Server Enterprise and
Adaptive Server Anywhere do not.

APPENDIX A Compatibility with Other Sybase Databases

Reference Manual 933

• Adaptive Server Anywhere and Sybase IQ support Cast() in addition
to Adaptive Server Enterprise’s Convert() for data type conversions.

Note Cast() is the ANSI-compliant name.

• Adaptive Server Anywhere and Sybase IQ support Lcase() and
Ucase() as synonyms of Lower() and Upper(); Adaptive Server
Enterprise does not.

• Adaptive Server Anywhere and Sybase IQ support the Locate() string
function; Adaptive Server Enterprise does not.

• Adaptive Server Anywhere supports the IsDate() and IsNumeric()
function to test the ability to convert a string to the respective data
type; Adaptive Server Enterprise does not. Sybase IQ supports
IsDate(). You can use IsNumeric in Sybase IQ, but CIS functional
compensation performance considerations apply.

• Adaptive Server Anywhere supports the NEWID, STRTOUID, and
UUIDTOSTR functions; Adaptive Server Enterprise does not. You use
these functions in Sybase IQ, but CIS functional compensation
performance considerations apply.

Note Some SQL functions, including SOUNDEX and DIFFERENCE string
functions, and some date functions operate differently in Sybase IQ and
Adaptive Server Anywhere. The Sybase IQ database option
ASE_FUNCTION_BEHAVIOR specifies that output of some of the Sybase
IQ data type conversion functions, including HEXTOINT and INTTOHEX,
is consistent with the output of Adaptive Server Enterprise functions.

OLAP functions
Sybase IQ currently supports these OLAP functions: Dense_Rank(),
Grouping(), Ntile(), Percent_Rank(), Percentile_Cont(), Percentile_Disc(),
Rank(), StdDev(), Stddev_Pop, Stddev_Samp, Var_Pop, Var_Samp, and
Variance().

Adaptive Server Anywhere supports all of the Sybase IQ OLAP functions,
plus Corr(), Covar_Pop(), Covar_Samp(), Cume_Dist , Regr_Avgx(),
Regr_Avgy(), Regr_Intercept(), Regr_Slope(), Regr_Sxx(), Regr_Sxy(), and
Regr_Syy().

Data manipulation language

934 Sybase IQ

Currently, Adaptive Server Enterprise does not support OLAP functions.

CIS functional compensation does not support OLAP functions.

Note Support for OLAP functions is a rapidly evolving area of Sybase
product development. For more information, see Chapter 5, “SQL
Functions.” Also see Chapter 4, “Using OLAP” in the Sybase IQ
Performance and Tuning Guide.

System functions
Adaptive Server Anywhere and Sybase IQ do not support the following
Adaptive Server Enterprise system functions as they are specific to
Adaptive Server Enterprise administration:

• curunreservedpgs() – number of pages free on a dbspace.

• data_pgs() – number of pages used by a table or index.

• host_id() – UNIX pid of the server process.

• hos_name() – name of the machine on which the server is running.

• lct_admin() – manages the “last chance threshold” for Transaction
manager.

• reserved_pgs() – number of pages allocated to a table or index.

• rowcnt() – number of rows in the specified table.

• valid_name() – whether a name would be a valid name if used, for
example, for a table.

• valid_user() – returns TRUE if that user has connect permissions.

• ptn_data_pgs() – number of data pages in a partition.

• index_colorder() – returns the column order in an index.

User-defined functions
User-defined function (UDF) support varies as follows:

• Adaptive Server Anywhere support UDFs in SQL, Java, and C

• Adaptive Server Enterprise supports UDFs written only in Java

APPENDIX A Compatibility with Other Sybase Databases

Reference Manual 935

• Sybase IQ offers support for UDFs via CIS query decomposition, but
there are performance implications

Arithmetic expressions on dates
Adaptive Server Anywhere and Sybase IQ interpret arithmetic
expressions on dates as shorthand notation for various date functions.
Adaptive Server Enterprise does not.

• Date +/- integer is equivalent to Dateadd().

• Date – date is equivalent to Datediff().

• Date + time creates a timestamp from the two.

SELECT INTO
There are differences in the types of tables permitted in a statement like
the following:

select into table1 from table2

• Adaptive Server Enterprise permits table1 to be permanent,
temporary or a proxy table. Adaptive Server Enterprise also supports
SELECT INTO EXISTING TABLE.

• Adaptive Server Anywhere and Sybase IQ permit table1 to be a
permanent or a temporary table. A permanent table is created only
when you select into table and specify more than one column.
SELECT INTO #table, without an owner specification, always creates
a temporary table, regardless of the number of columns specified.
SELECT INTO table with just one column selects into a host variable.

Updatable views
Adaptive Server Enterprise and Adaptive Server Anywhere are more
liberal than ANSI permits on which view definitions are updatable when
the WITH CHECK option is not requested.

Adaptive Server Anywhere offers the ANSI_UPDATE_CONSTRAINTS
option to control whether updates are restricted to those supported by
SQL92, or a more liberal set of rules.

Transact-SQL procedure language overview

936 Sybase IQ

Sybase IQ permits UPDATE only on single-table views that can be
flattened. Sybase IQ does not support WITH CHECK.

FROM clause in UPDATE and DELETE
All three products support the FROM clause with multiple tables in
UPDATE and DELETE.

Transact-SQL procedure language overview
The stored procedure language is the part of SQL used in stored
procedures and batches.

Adaptive Server Anywhere and Sybase IQ support a large part of the
Transact-SQL stored procedure language in addition to the Watcom-SQL
dialect based on SQL92.

Transact-SQL stored procedure overview
Based on the ISO/ANSI draft standard, the Adaptive Server Anywhere
and Sybase IQ stored procedure language differs from the Transact-SQL
dialect in many ways. Many of the concepts and features are similar, but
the syntax is different. Adaptive Server Anywhere and Sybase IQ support
for Transact-SQL takes advantage of the similar concepts by providing
automatic translation between dialects. However, you must write a
procedure exclusively in one of the two dialects, not in a mixture of the
two.

There are a variety of aspects to Adaptive Server Anywhere and Sybase
IQ support for Transact-SQL stored procedures, including:

• Passing parameters

• Returning result sets

• Returning status information

• Providing default values for parameters

• Control statements

APPENDIX A Compatibility with Other Sybase Databases

Reference Manual 937

• Error handling

Transact-SQL batch overview
In Transact-SQL, a batch is a set of SQL statements submitted together and
executed as a group, one after the other. Batches can be stored in command
files. The ISQL utility in Adaptive Server Anywhere and Sybase IQ and
the isql utility in Adaptive Server Enterprise provide similar capabilities
for executing batches interactively.

The control statements used in procedures can also be used in batches.
Adaptive Server Anywhere and Sybase IQ support the use of control
statements in batches and the Transact-SQL-like use of nondelimited
groups of statements terminated with a GO statement to signify the end of
a batch.

For batches stored in command files, Adaptive Server Anywhere and
Sybase IQ support the use of parameters in command files. Adaptive
Server Enterprise does not support parameters.

For information on parameters, see PARAMETERS statement [DBISQL]
on page 610.

SQL statements in procedures and batches
Some SQL statements supported by Sybase IQ are part of one dialect, but
not the other. You cannot mix the two dialects within a procedure or batch.
This means that:

• You can include Transact-SQL-only statements with statements that
are part of both dialects in a batch or procedure.

• You can include statements not supported by Adaptive Server
Enterprise with statements that are supported by both servers in a
batch or procedure.

• You cannot include Transact-SQL–only statements with Sybase IQ–
only statements in a batch or procedure.

SQL statements not separated by semicolons are part of a Transact-SQL
procedure or batch. See Chapter 6, “SQL Statements” for details of
individual statements.

Transact-SQL procedure language overview

938 Sybase IQ

Expression subqueries in IF statements

Adaptive Server Enterprise and Adaptive Server Anywhere support
comparisons between a variable and a scalar value returned by an
expression subquery. For example:

create procedure testIf ()
begin
declare var4 int;

set var4 = 10;
if var4 = (select MIN (a_i1) from a) then set

 var4 = 100;
end if;
end;

CASE statementS

Permitted usage of the CASE statement differs in Sybase IQ and Adaptive
Server Anywhere.

The CASE statement is not supported in Adaptive Server Enterprise,
which supports case expressions only.

For a detailed comparison of case expression support in Sybase IQ and
Adaptive Server Enterprise, see “Expressions” on page 179.

Row-level cursor operations

All three products support the use of cursors with UPDATE and DELETE as
follows:

UPDATE WHERE CURRENT OF {cursor}

DELETE WHERE CURRENT OF {cursor}

In Sybase IQ, updatable cursors are asensitive only, for one table only, and
chained only. Updatable hold cursors are not permitted. Updatable cursors
in Sybase IQ get a table lock.

Print command

The effect of the PRINT command depends on the client:

• Adaptive Server Enterprise PRINT always sends a message to the
client.

APPENDIX A Compatibility with Other Sybase Databases

Reference Manual 939

• In Adaptive Server Anywhere and Sybase IQ, PRINT sends a message
to the client for Open Client and JDBC connections.

• Adaptive Server Enterprise stored procedures that rely on PRINT
work in Sybase IQ using DBISQL.

Note Sybase IQ users might prefer dbisql with JDBC, rather than the
iAdaptive Server Anywhere JDBC driver (formerly called the JDBC-
ODBC bridge).

Automatic translation of stored procedures
In addition to supporting Transact-SQL alternative syntax, Adaptive
Server Anywhere and Sybase IQ provide aids for translating statements
between the Watcom-SQL and Transact-SQL dialects. Functions
returning information about SQL statements and enabling automatic
translation of SQL statements include:

• SQLDialect(statement) Returns Watcom-SQL or Transact-SQL.

• WatcomSQL(statement) Returns the Watcom-SQL syntax for the
statement.

• TransactSQL(statement) Returns the Transact-SQL syntax for the
statement.

These are functions and thus can be accessed using a SELECT statement
from ISQL. For example, the following statement returns the value
Watcom-SQL:

SELECT SqlDialect('select * from employee')

Using Sybase Central to translate stored procedures
Sybase Central has facilities for creating, viewing, and altering
procedures.

❖ Translating a stored procedure using Sybase Central

1 Connect to a database using Sybase Central, either as owner of the
procedure you want to change, or as a DBA user.

Returning result sets from Transact-SQL procedures

940 Sybase IQ

2 Double-click the Procedures folder to see a list of the stored
procedures in the database.

3 Right-click the procedure you want to translate, and choose the target
dialect from the submenu: either Watcom-SQL or Transact-SQL.

The procedure appears in the selected dialect. If the selected dialect is
not the one in which the procedure is stored, the server translates it to
that dialect. Any untranslated lines appear as comments.

4 Rewrite any untranslated lines as needed, and click Execute Script to
save the translated version to the database. You can also export the
text to a file for editing outside Sybase Central.

Returning result sets from Transact-SQL procedures
Adaptive Server Anywhere and Sybase IQ use a RESULT clause to specify
returned result sets. In Transact-SQL procedures, column names or alias
names of the first query are returned to the calling environment.

Example of Transact-SQL
procedure

The following Transact-SQL procedure illustrates how Transact-SQL
stored procedures return result sets:

CREATE PROCEDURE showdept (@deptname varchar(30))
AS

SELECT employee.emp_lname, employee.emp_fname
FROM department, employee
WHERE department.dept_name = @deptname
AND department.dept_id = employee.dept_id

Example of Watcom-SQL
procedure

The following is the corresponding Adaptive Server Anywhere or Sybase
IQ procedure:

CREATE PROCEDURE showdept(in deptname varchar(30))
RESULT (lastname char(20), firstname char(20))
BEGIN

SELECT employee.emp_lname, employee.emp_fname
FROM department, employee
WHERE department.dept_name = deptname
AND department.dept_id = employee.dept_id

END

Multiple result sets There are minor differences in the way the three Sybase client tools
present multiple results to the client:

APPENDIX A Compatibility with Other Sybase Databases

Reference Manual 941

• ISQL displays all results in a single stream.

• DBISQL presents each result set on a separate tab. You must enable
this functionality in the Option menu. Make it a permanent change,
then restart or reconnect to DBISQL.

• DBISQLC provides the RESUME command to display each
successive result set.

For more information about procedures and results, see Chapter 8, “Using
Procedures and Batches” in the Sybase IQ System Administration Guide.

Variables in Transact-SQL procedures
Adaptive Server Anywhere and Sybase IQ use the SET statement to assign
values to variables in a procedure. In Transact-SQL, values are assigned
using the SELECT statement with an empty table list. The following
simple procedure illustrates how the Transact-SQL syntax works:

CREATE PROCEDURE multiply
@mult1 int,
@mult2 int,
@result int output

AS
SELECT @result = @mult1 * @mult2

This procedure can be called as follows:

CREATE VARIABLE @product int
go
EXECUTE multiply 5, 6, @product OUTPUT
go

The variable @product has a value of 30 after the procedure executes.

Order and persistence of
variables

There are some differences in order and persistence of variable
declarations:

• In Adaptive Server Enterprise, you can declare variables anywhere in
the body of a stored procedure. Variables persist for the duration of the
procedure.

Error handling in Transact-SQL procedures

942 Sybase IQ

• In Adaptive Server Anywhere and Sybase IQ, you must declare
variables at the beginning of a compound statement (that is,
immediately after BEGIN in a BEGIN...END pair). Variables persist
only for the duration of the compound statement.

For more information on using the SELECT statement to assign variables,
see “Writing compatible queries” on page 927. For more information on
using the SET statement to assign variables, see SET statement on page
641.

Error handling in Transact-SQL procedures
Default procedure error handling is different in the Watcom-SQL and
Transact-SQL dialects. By default, Watcom-SQL dialect procedures exit
when they encounter an error, returning SQLSTATE and SQLCODE
values to the calling environment.

You can build explicit error handling into Watcom-SQL stored procedures
using the EXCEPTION statement, or you can instruct the procedure to
continue execution at the next statement when it encounters an error, using
the ON EXCEPTION RESUME statement.

When a Transact-SQL dialect procedure encounters an error, execution
continues at the following statement. The global variable @@error holds
the error status of the most recently executed statement. You can check this
variable following a statement to force return from a procedure. For
example, the following statement causes an exit if an error occurs:

IF @@error != 0 RETURN

When the procedure completes execution, a return value indicates the
success or failure of the procedure. This return status is an integer, and can
be accessed as follows:

DECLARE @status INT
EXECUTE @status = proc_sample
IF @status = 0

PRINT 'procedure succeeded'
ELSE

PRINT 'procedure failed'

Table A-2 describes the built-in procedure return values and their
meanings:

APPENDIX A Compatibility with Other Sybase Databases

Reference Manual 943

Table A-2: Built-in procedure return values

The RETURN statement can be used to return other integers, with their
own user-defined meanings.

Using the RAISERROR statement in procedures
The RAISERROR statement is a Transact-SQL statement for generating
user-defined errors. It has a similar function to the SIGNAL statement.

For a description of the RAISERROR statement, see RAISERROR
statement [T-SQL] on page 616.

By itself, RAISERROR does not cause an exit from the procedure, but it
can be combined with a RETURN statement or a test of the @@error global
variable to control execution following a user-defined error.

If you set the ON_TSQL_ERROR database option to CONTINUE,
RAISERROR no longer signals an execution-ending error. Instead, the
procedure completes and stores the RAISERROR status code and message,
and returns the most recent RAISERROR. If the procedure causing the
RAISERROR was called from another procedure, RAISERROR returns
after the outermost calling procedure terminates.

Value Meaning

0 Procedure executed without error

-1 Missing object

-2 Data type error

-3 Process was chosen as deadlock victim

-4 Permission error

-5 Syntax error

-6 Miscellaneous user error

-7 Resource error, such as out of space

-8 Nonfatal internal problem

-9 System limit was reached

-10 Fatal internal inconsistency

-11 Fatal internal inconsistency

-12 Table or index is corrupt

-13 Database is corrupt

-14 Hardware error

Adaptive Server Anywhere and Sybase IQ

944 Sybase IQ

You lose intermediate RAISERROR statuses and codes when the procedure
terminates. If, at return time, an error occurs along with RAISERROR, the
error information is returned and you lose the RAISERROR information.
The application can query intermediate RAISERROR statuses by
examining @@error global variable at different execution points.

Transact-SQL-like error handling in the Watcom-SQL dialect
You can make a Watcom-SQL dialect procedure handle errors in a
Transact-SQL-like manner by supplying the ON EXCEPTION RESUME
clause to the CREATE PROCEDURE statement:

CREATE PROCEDURE sample_proc()
ON EXCEPTION RESUME
BEGIN

...
END

The presence of an ON EXCEPTION RESUME clause prevents explicit
exception handling code from being executed, so avoid using these two
clauses together.

Adaptive Server Anywhere and Sybase IQ
The preceding sections, while focused on compatibility with Transact-
SQL, also clarify many of the distinctions between Sybase IQ and
Adaptive Server Anywhere.

This section points out other differences between Sybase IQ and Adaptive
Server Anywhere.

For additional information, always refer to the Sybase IQ documentation
set when using the product. Refer to the Adaptive Server Anywhere
documentation set when using Adaptive Server Anywhere, or when the
Sybase IQ documentation refers to Adaptive Server AnywhereAdaptive
Server AnywhereAdaptive Server Anywhere documentation for specific
functionality only.

APPENDIX A Compatibility with Other Sybase Databases

Reference Manual 945

Server and database start-up and administration
Note the following differences in starting and managing databases and
servers:

• Sybase IQ uses the server start-up command start_asiq, instead of the
Adaptive Server Anywhere network server start-up command.

• Sybase IQ does not support personal servers.

• Sybase IQ supports many Adaptive Server Anywhere server
command line options but not all. Other server options are supported
for Sybase IQ but not for Adaptive Server Anywhere.

• Sybase IQ provides the stop_asiq utility to shut down servers.

• Clauses permitted in the BACKUP and RESTORE statements differ in
Sybase IQ and Adaptive Server Anywhere.

• SQL Remote is supported in Sybase IQ for multiplex operations only.

Sybase IQ supports many Adaptive Server Anywhere database
administration utilities, but not all.

• The following Adaptive Server Anywhere utilities are not supported
by Sybase IQ: backup, compression, console, initialization, license, log
transfer, log translation, rebuild, spawn, some transaction log options
(-g, -il, -ir, -n, -x, -z), uncompression, unload, upgrade, and write file.

• Sybase IQ supports the Adaptive Server Anywhere validation utility
on the Catalog Store only. To validate the IQ Store, use sp_iqcheckdb.

Database options
Some Adaptive Server Anywhere database options are not supported by
Sybase IQ, including: DEFAULT_TIMESTAMP_INCREMENT and
JAVA_INPUT_OUTPUT.

Some database options apply only to the Catalog Store, including:
FOR_XML_NULL_TREATMENT, ISOLATION_LEVEL, PREFETCH,
PRECISION, SCALE, and TRUNCATE_WITH_AUTO_COMMIT.

Options with differences in behavior, default, or allowed values include
DELAYED_COMMITS, JAVA_HEAP_SIZE, TIME_FORMAT,
TIMESTAMP_FORMAT.

Sybase IQ also includes many options that Adaptive Server Anywhere
does not support. For details, see Chapter 2, “Database Options.”

Adaptive Server Anywhere and Sybase IQ

946 Sybase IQ

Data definition language (DDL)
In addition to the DDL differences discussed previously, note these:

• In a DELETE/DROP or PRIMARY KEY clause of an ALTER TABLE
statement, Sybase IQ takes the RESTRICT action (reports an error if
there are associated foreign keys). Adaptive Server Anywhere always
takes the CASCADE action.

• Similarly, DROP TABLE statement reports an error in Sybase IQ if
there are associated foreign-key constraints.

• Sybase IQ does not support these DDL statements: CREATE
COMPRESSED DATABASE, CREATE TRIGGER, SETUSER.

• Sybase IQ supports referential integrity at the statement level, rather
than the transaction-level integrity that Adaptive Server Anywhere
supports with the CHECK ON COMMIT clause of CREATE TABLE
statement.

• A Sybase IQ table cannot have a foreign key that references an
Adaptive Server Anywhere (or Catalog) table, and an Adaptive
Server Anywhere table cannot have a foreign key that references a
Sybase IQ table.

• In CREATE DATABASE, the defaults for case sensitivity and collation
differ. The defaults for Sybase IQ are CASE RESPECT and the
ISO_BINENG collation; for Adaptive Server Anywhere, the defaults
are CASE IGNORE, and collation inferred from the language and
character set of the operating system.

APPENDIX A Compatibility with Other Sybase Databases

Reference Manual 947

Data manipulation language (DML)
• Sybase IQ does not support these DML and procedural statements:

EXPLAIN, GET DATA, INPUT, PREPARE TO COMMIT, PUT,
READTEXT, ROLLBACK TRIGGER, SYSTEM, UNLOAD TABLE,
VALIDATE TABLE.

Note A set of extraction options perform a role similar to UNLOAD
TABLE; for details, see the section “Data extraction options” in
Chapter 7, “Moving Data In and Out of Databases” in the Sybase IQ
System Administration Guide.

• Sybase IQ supports the INSERT...LOCATION syntax; Adaptive Server
Anywhere does not.

• LOAD TABLE options differ in Sybase IQ and Adaptive Server
Anywhere.

• OPEN statement in Sybase IQ does not support BLOCK and
ISOLATION LEVEL clauses.

• Sybase IQ does not support triggers.

• Use of transactions, isolation levels, checkpoints, and automatically
generated COMMITs, as well as cursor support, is different in Sybase
IQ and Adaptive Server Anywhere. For details, see Chapter 10,
“Transactions and Versioning” in the Sybase IQ System
Administration Guide.

• When you SELECT from a stored procedure in Sybase IQ, CIS
functional compensation performance considerations apply. For more
information, see “Conditions that cause processing by Adaptive
Server Anywhere” in Sybase IQ Performance and Tuning Guide.

Adaptive Server Anywhere and Sybase IQ

948 Sybase IQ

Reference Manual 949

A
ABS function 272
absolute value 272
ACOS function 273
Adaptive Server Anywhere

referential integrity constraints 919
Adaptive Server Enterprise

compatibility 903
administrator role

Adaptive Server Enterprise 909
advice

clearing 788
displaying 788
storing 788

AES encryption algorithm
CREATE DATABASE statement 448

aggregate functions 250
AVG 275
COUNT 287
MAX 324
MIN 325
STDDEV 365
STDDEV_POP 367
STDDEV_SAMP 368
SUM 374
VAR_POP 381
VAR_SAMP 382
VARIANCE 383

AGGREGATION_PREFERENCE option 39
aliases

for columns 636
in SELECT statement 634, 636
in the DELETE statement 525

ALL
conditions 192
keyword in SELECT statement 634

ALLOCATE DESCRIPTOR statement
syntax 394

ALLOW_NULLS_BY_DEFAULT option 40

alphabetic characters
defined 177

ALTER DATABASE statement
syntax 396

ALTER DBSPACE statement
syntax 398

ALTER DOMAIN statement
syntax 400

ALTER EVENT statement
syntax 401

ALTER INDEX statement
errors 404
syntax 403

ALTER PROCEDURE statement
syntax 404

ALTER SERVER statement
syntax 405

ALTER SERVICE statement
syntax 407

ALTER TABLE statement
syntax 409

ALTER VIEW statement
RECOMPILE 412, 416
syntax 416

analytic functions
DENSE_RANK 298
NTILE 333
PERCENT_RANK 339
PERCENTILE_CONT 340
PERCENTILE_DISC 343
RANK 349

analytical functions 252
AND conditions 197
ANSI_CLOSE_CURSORS_AT_ ROLLBACK option

40
ANSI_PERMISSIONS option 41
ANSINULL option 41
ANY

conditions 192
Anywhere

Index

Index

950 Sybase IQ

Adaptive Server Anywhere 904
apostrophe

in strings 178
approximate numeric data types

compatibility 914
arc-cosine 273
architectures

Adaptive Server 906
arc-sine 274
arc-tangent 274
arc-tangent ratio 275
ARGN function 273
argument selection 273
arithmetic expressions 181

on dates 935
articles

system table for 689
ASCHARSET environment variable

specifying character sets 8
ASCII

file format 130
ASCII function 274
ASCII value 274, 280
ASDIR environment variable 8
ASE_BINARY_DISPLAY

database option 44
ASE_FUNCTION_BEHAVIOR

database option 44
with HEXTOINT 44
with INTTOHEX 44

ASIN function 274
ASIQPORT environment variable 9
ASIQTIMEOUT environment variable

specifying IQ Agent wait time 9
ASLANG environment variable

specifying languages 10
ASLOGDIR environment variable 10
ASTMP environment variable 11
AT clause

CREATE EXISTING TABLE 466
ATAN function 274
ATAN2 function 275
auditing

adding comments 853
AUDITING option 45
audits

disabling 861
enabling 859

AUTO_COMMIT option 46
AUTO_REFETCH option 46
autoincrement

primary key values 542
AUTOINCREMENT column default 504
automatic joins

and foreign keys 672
AUTOMATIC_TIMESTAMP option 47
average 275
AVG function 275

B
backslashes

not allowed in SQL identifiers 177
backup history file

location 10
BACKUP statement

syntax 416
backups

during checkpoint 853
during low activity 853
in system tables 709

batches
Transact-SQL overview 937
writing 937

BCP in
Adaptive Server Enterprise support 925

BEGIN DECLARE SECTION statement
syntax 514

BEGIN PARALLEL IQ statement 425
BEGIN TRANSACTION statement 426
BEGIN... END statement

syntax 422
BELL option 47
BETWEEN conditions 193
BIGINTTOHEX function 276
binary data

compatibility 912
controlling implicit conversion 54

BINARY data type 229
bind variables

DESCRIBE statement 528

Index

Reference Manual 951

EXECUTE statement 541
OPEN statement 604

BIT data type
Transact-SQL 234

bit data type
compatibility 910

bit length 277
BIT_LENGTH function 277
bitwise operators 182
block fetches

FETCH statement 549
block size

in system tables 709
BLOCKING option 48, 49
brackets

database objects 177
SQL identifiers 177

BREAK statement
Transact-SQL 668

BT_PREFETCH_MAX_MISS option 48
B-tree 701, 729
B-tree pages 48
buffer cache

monitoring with sp_iqsysmon 833
partitioning 49
TEMP_CACHE_MEMORY_MB option 151

buffer cache size
MAIN_CACHE_MEMORY_MB option 108

bulk load 580
BYE statement

syntax 546
byte length 338
BYTE_LENGTH function 277

C
cache

flushing 862
cache. see also buffer cache
CACHE_PARTITIONS option 49
CALL statement

syntax 429
Transact-SQL 543

CASE expression 185
NULLIF function 335

case sensitivity 447
and pattern matching 194
comparison conditions 190
databases 916
identifiers 916
in the catalog 704
passwords 917
Transact-SQL compatibility 916
user IDs 917
user-defined data types 916

CASE statement
syntax 431

case-sensitivity
data 916

CAST function 241, 278
catalog

Adaptive Server Enterprise compatibility 908
system tables 679
system tables list 685

Catalog format number 709
Catalog Store 250, 557, 637

monitoring with sp_iqsysmon 833
validating 870

catalog store
IQ 908

Catalog temporary files
preventing connections from exceeding quota 164

CEIL function 279
CEILING function 279
CHAINED option 51
chained outer joins 930
chained transaction mode 428

and AUTO_COMMIT 46
CHAR data type

about 222
CHAR function 280
CHAR_LENGTH function 280
character data

compatibility 911
CHARACTER data type

about 222
character sets

errors on conversions 126
specifying 8

CHARACTER VARYING data type
about 222

Index

952 Sybase IQ

CHARINDEX function 281
CHECK conditions

about 505, 509
Transact-SQL 918

check constraints 918
enforced 918
Transact-SQL compatibility 918

CHECK ON COMMIT clause
referential integrity 508

CHECKPOINT statement
backup during checkpoint 853
syntax 433

CHECKPOINT_TIME option 51
CIS

remote data access 51
supported time zone variables 14

CIS_ROWSET_SIZE option
about 51

classes
installing 574
removing 619

clauses
ON EXCEPTION RESUME 944

CLEAR statement
syntax 433

CLOSE statement
syntax 434

CLOSE_ON_ENDTRANS option 52
COALESCE function 282
code pages

and data storage 223
CREATE DATABASE statement 448
DEFAULT_ISQL_ENCODING option 69

COL_LENGTH function 282
COL_NAME function 282
collation sequences

CREATE DATABASE statement 448
column default

not supported 919
column length 282
column name 282
columns

aliases 636
altering 409
and user-defined data types 240
constraints 506

in the system tables 705
naming 180, 391
permissions on 693
renaming 415
SYSCOLUMNS system view 891

comma delimited files 130
command files

parameters 610
COMMAND_DELIMITER option 52
command-line options

overriding 865
COMMENT statement

syntax 435
comments

comment indicators 217
COMMIT statement

syntax 436
COMMIT TRANSACTION statement

Transact-SQL 436
COMMIT_ON_EXIT option 52
compared to Adaptive Server Anywhere 924
comparing dates and times 237
comparisons

about 189
compatibility

Adaptive Server Enterprise 903
referential integrity constraints 919

compatibility options
ASE_FUNCTION_BEHAVIOR 44
CONTINUE_AFTER_RAISERROR 53
CONVERSION_ERROR 53
ON_TSQL_ERROR 128

compound statements
about 422

COMPUTE clause
Transact-SQL 929

computed columns
not supported 920

concatenating strings 182
concurrency

locking tables 597
condition hint strings 200
CONFIGURE statement

syntax 438
CONNECT statement

syntax 439

Index

Reference Manual 953

connection information
sp_iqcontext 757

connection processing 819
connection property value 283
CONNECTION_PROPERTY function 283
connection_property function

about 25
connection-level variables

about 211
connections

DBISQL 532
dbremote 880
DEDICATED_TASK option 68
determining ID number 330
displaying information about 849
limiting 806
logging 105
properties 269

console
displaying messages on 600

constants
in expressions 180
Transact-SQL 186

CONTAINS conditions 196
CONTINUE statement

Transact-SQL 668
CONTINUE_AFTER_RAISE_ERROR option 53
control statements

CALL statement 429
CASE statement 431
IF statement 564
LEAVE statement 578
LOOP statement 598
Transact-SQL GOTO statement 558
Transact-SQL IF statement 566
Transact-SQL WHILE statement 668

conventions
documentation xxix
syntax xxix
typographic xxix

CONVERSION_ERROR option 53
CONVERSION_MODE option 54
CONVERT FUNCTION 241
CONVERT function 284

date to integer conversion 286
date to string conversion 286

integer to date conversion 286
string to date conversion 286

CONVERT_VARCHAR_TO_1242 option 60, 61
converting ambiguous strings 246
COOPERATIVE_COMMIT_TIMEOUT option 61
COOPERATIVE_COMMITS option 61
correlation names

in the DELETE statement 525
COS function 287
cosine 287
COT function 287
cotangent 287
COUNT function 287
CREATE DATABASE statement

SUN OS error 677
syntax 442

CREATE DBSPACE statement
Sun OS error 677
syntax 453

CREATE DEFAULT statement
unsupported 921

CREATE DOMAIN statement
syntax 456
Transact-SQL compatibility 921
using 239

CREATE EVENT statement
syntax 458

CREATE EXISTING TABLE statement
proxy tables 465, 873

CREATE EXTERNLOGIN statement
syntax 467

CREATE FUNCTION statement
syntax 468

CREATE INDEX statement 425
IQ 922
syntax 473
table use 477
Transact-SQL 922

CREATE JOIN INDEX statement
syntax 481

CREATE MESSAGE statement
Transact-SQL 484

CREATE PROCEDURE statement
syntax 485
Transact-SQL 491

CREATE RULE statement

Index

954 Sybase IQ

unsupported 921
CREATE SCHEMA statement

syntax 493
CREATE SERVER statement

syntax 494
CREATE SERVICE statement

syntax 496
CREATE TABLE statement

syntax 499
Transact-SQL 918

CREATE TRIGGER
not supported 921

CREATE VARIABLE statement
syntax 511

CREATE VIEW statement
syntax 512

creating
data types 239, 456
proxy tables 465
stored procedures 485

creating as a group 425
creator 392
CUBE operation

GROUPING function 304
CUBE operator 639

SELECT statement 639
CURRENT DATABASE

special value 205
CURRENT DATE

default 205
special value 205

CURRENT PUBLISHER
default 205
special value 205

CURRENT TIME
default 205
special value 205

CURRENT TIMESTAMP
default 206
special value 206

CURRENT USER
default 206
special value 206

current user
environment settings 20

CURSOR_WINDOW_ROWS option 62

cursors
closing 434
database options 26
declaring 516, 522
deleting rows from 527
DESCRIBE 528
displaying information about 759
fetching 547
FOR READ ONLY clause 517
FOR UPDATE clause 517
INSENSITIVE 516
inserting rows using 615
looping over 551
OPEN statement 603
row-level in IQ 938
sensitivity 519
Transact-SQL 938
updatable 519
WITH HOLD clause 604

D
data

case sensitivity 916
exporting from tables into files 605

data type compatibility
approximate numeric data 914
binary data 912
bit data 910
character data 911
date and time data 912
datetime and time data 914
image data 915
Java data 915
numeric data 914
text data 914

data type conversion
about 241
BIT to BINARY 242
BIT to VARBINARY 242
CONVERSION_MODE option 54
errors 53
functions 261

data type conversion functions 261
BIGINTTOHEX 276

Index

Reference Manual 955

CAST 278
CONVERT 284
HEXTOBIGINT 305
HEXTOINT 306
INTTOHEX 314

data types
about 221
Adaptive Server Anywhere 910
Adaptive Server Enterprise 910
altering user-defined 400
and compatibility 242
and roundoff errors 227
binary 229
character 222
creating 456
date and time 234
displaying information about 762, 779
dropping user-defined 533
in the system tables 697, 734
IQ 910
numeric 224
performance for joins 557
UNIQUEIDENTIFIERSTR 222
user-defined 239, 734

database
altering 396
upgrading 396

database administrator
roles 909

database files
altering 398
creating 453

database object
determining ID 337
determining name 337

database objects
identifying 177

database options
cursors 26
DATE_ORDER 238
DEBUG_MESSAGES option 68
DEDICATED_TASK 68
duration 26
initial settings 29
maximum string length 25, 649
ODBC_DISTINGUISH_CHAR_AND_VARCHA

R 126
ON_CHARSET_CONVERSION_FAILURE 126
PRESERVE_SOURCE_FORMAT 137
QUOTED_IDENTIFIER 187
RETURN_DATE_TIME_AS_STRING 143
SUPPRESS_TDS_DEBUGGING 149
TDS_EMPTY_STRING_IS_NULL 150

database server
command-line options 865

database servers
starting 653
stopping 656

databases
block size in system tables 709
case sensitivity 916
creating 442
creation time 709
deleting files 536
determining ID number 296, 331
determining name 296
dropping 537
file format 709
files 699, 706
loading data into 580
maximum size 676
number of files 676
number of tables 676
properties 270
property value 297
sample xxx
starting 652
stopping 655
system procedures 737
system tables 679
validating Catalog Store 870

DATALENGTH function 288
date and time data types

compatibility 912
date and time functions 256

consistent results 259
DATE 289
DATEADD 289
DATEDIFF 290
DATEFORMAT 292
DATENAME 293
DATEPART 293

Index

956 Sybase IQ

DATETIME 294
DAY 294
DAYNAME 295
DAYS 295
DOW 300
GETDATE 304
getting consistent results 258
HOUR 307
HOURS 308
IQ features 672
MINUTE 325
MINUTES 326
MONTH 327
MONTHNAME 327
MONTHS 328
NOW 333
QUARTER 348
SECOND 358
SECONDS 359
TODAY 376
WEEKS 385
YEAR 388
YEARS 388
YMD 390

DATE data type 234
DATE function 289
date to string conversions 247
DATE_FIRST_DAY_OF_WEEK option 63
DATE_FORMAT option 63
DATE_ORDER option 65, 238
DATEADD function 289
DATEDIFF function 290
DATEFORMAT function 292
DATENAME function 293
DATEPART function 293
dates

arithmetic expressions 935
consistency in queries 259
determining current 333, 376
functions 259
interpreting strings as dates 238
queries 236
year 2000 244

datetime and time data types
compatibility 914

DATETIME function 294

DAY function 294
day of the week (DOW) 300
DAYNAME function 295
DAYS function 295
DB_ID function 296
DB_NAME function 296
DB_PROPERTY function 297
DBA authority

in the system tables 733
dBASE II file format 130
dBASE III file format 130
DBCC

database verification 743
output 747
performance 747
time to run 747

DBCC_LOG_PROGRESS
database option 66

DBCC_LOG_PROGRESS option 747
DBCC_PINNABLE_CACHE_PERCENT

database option 66, 67
dbinit

not supported 907
DBISQL

connecting to a database 440
options 650

dbo user ID
views owned by 533

dbremote
connections 880

DBSPACE
in system tables 700, 707

dbspace
relocating objects 823

dbspaces
altering 398
creating 453
dropping 533
managing 907
maximum size 676

DEALLOCATE DESCRIPTOR
syntax 514

DEBUG_MESSAGES option
description 68

debugging
controlling MESSAGE statement behavior 600

Index

Reference Manual 957

DEBUG_MESSAGES option 68
DECIMAL data type 224
declaration section 514
DECLARE CURSOR statement

syntax 516
Transact-SQL syntax 522

DECLARE LOCAL TEMPORARY TABLE statement
syntax 523

DECLARE statement
syntax 422, 515

DECLARE TEMPORARY TABLE statement
syntax 523

DEDICATED_TASK option
description 68

default values
CURRENT DATABASE 205
CURRENT PUBLISHER 205
CURRENT USER 206
LAST USER 206
not supported 919
TIMESTAMP 208
USER 208

DEFAULT_HAVING_SELECTIVITY option 69
DEFAULT_ISQL_ENCODING option

description 69
DEFAULT_LIKE_MATCH_SELECTIVITY option

70
DEFAULT_LIKE_RANGE_SELECTIVITY option

71
defaults

CURRENT DATE 205
CURRENT PUBLISHER 205
CURRENT TIME 205
CURRENT TIMESTAMP 206
CURRENT USER 206
Transact-SQL 921

defining a window 253
DEGREES function 298
DELAYED_COMMIT_TIMEOUT option 72
DELAYED_COMMITS option 72
DELETE (positioned) statement

SQL syntax 527
DELETE statement

syntax 525
deleting

rows from cursors 527

deleting all rows from a table 658
delimiters

example 476
delimiting SQL strings 177
DENSE_RANK function 298
DESCRIBE statement

long column names 530
syntax 528

descriptor
allocating memory 394
deallocating 514
DESCRIBE statement 528
EXECUTE statement 541
FETCH statement 547
getting 558
PREPARE statement 611

descriptor areas
UPDATE (positioned) statement 664

descriptors
setting 646

devices
managing 907

DIFFERENCE function 299
directory structure 2
DISCONNECT statement

syntax 532
DISK statements

unsupported 907
DISK_STRIPING option 72
DISK_STRIPING_PACKED option 73
displaying

messages 600
DISTINCT keyword 634
distribution functions 252
DIVIDE_BY_ZERO_ERROR option 74
documentation

accessibility features xxx
Adaptive Server Anywhere xxvi
conventions xxix
on CD xxvii
online xxvii
Sybase IQ xxv

domains 456
about 239
altering 400

DOUBLE data type 227

Index

958 Sybase IQ

double quotes
database objects 177
not allowed in SQL identifiers 177

DOW function 300
DROP CONNECTION statement

syntax 536
DROP DATABASE statement

syntax 536
DROP DATATYPE statement

syntax 533
DROP DBSPACE statement

syntax 533
DROP DOMAIN statement

query servers 535
syntax 533

DROP EVENT
syntax 533

DROP EXTERNLOGIN statement
syntax 538

DROP FUNCTION statement
syntax 533

DROP INDEX statement
syntax 533

DROP MESSAGE
syntax 533

DROP PROCEDURE statement
syntax 533

DROP SERVER statement
syntax 538

DROP SERVICE statement
syntax 539

DROP statement
syntax 533

DROP STATEMENT statement
syntax 539

DROP TABLE
IDENTITY_INSERT option 534

DROP TABLE statement
syntax 533

DROP VARIABLE statement
syntax 540

DROP VIEW statement
restriction 533
syntax 533

dropping
users 628, 629

views 533
dummy IQ table 250, 557, 685

getting consistent results 258
DUMMY table 685
DYNAMIC SCROLL cursors 516

E
EARLY_PREDICATE_EXECUTION option 74
ECHO option 75
ELSE

IF expression 184
embedded SQL

DELETE (positioned) statement syntax 527
PUT statement syntax 615

ENABLE_THREAD_ALLOWANCE option 75
ENABLED_ORDERED_PUSHDOWN_INSERTION

option 76
encryption algorithms

CREATE DATABASE statement 448
END DECLARE STATEMENT

syntax 514
END keyword 422
END PARALLEL IQ statement 425
ENDIF

IF expression 184
Enterprise

Adaptive Server Enterprise 904
environment variables

about 6
ASCHARSET 8
ASDIR 8
ASIQPORT 9
ASIQTIMEOUT 9
ASLANG 10
ASLOGDIR 10
ASTMP 11
LIBRARY PATH 12
PATH 12
SQLCONNECT 12
SYBASE 13
SYBASE_JRE 13
SYBASE_OCS 14
TZ 14

error handling

Index

Reference Manual 959

Transact-SQL procedures 128
errors

during character conversions 126
initializing raw device on Sun OS 677
RAISERROR statement 616
SIGNAL statement 652
Transact-SQL 942, 944
Transact-SQL procedures 128
user-defined messages 732

escape character
OUTPUT SQL statement 605

estimates
optimizer 199

event handler
altering 401
creating 458
triggering 658

EVENT_CONDITION function 300
EVENT_CONDITION_NAME function 302
EVENT_PARAMETER function 302
events

altering 401
creating 458
displaying information about 776, 779
dropping 533
EVENT_CONDITION function 300
EVENT_CONDITION_NAME function 302
EVENT_PARAMETER function 302
in the system tables 697
schedule in the system tables 725
triggering 658
types in the system tables 698

Excel file format 130
EXCEPTION statement

syntax 422
EXECUTE IMMEDIATE statement

syntax 544
EXECUTE statement

syntax 541
Transact-SQL 543

execution phase hints 202
EXISTS conditions 197
EXIT statement

syntax 546
EXP function 303
explicit selectivity 199

exponential function 303
exporting data

from tables into files 605
output format 130
SELECT statement 632

expression
converting to timestamp 294
length in bytes 288

expression subqueries
in IF statements 938

expressions 179
CASE 185
Transact-SQL 186

EXTENDED_JOIN_SYNTAX option 76
extract file

maximum size 677

F
Feb 29 246
Federal Rehabilitation Act

section 508 xxx
FETCH statement

syntax 547
fields

maximum size 676
file format 709
files

dbspaces 398, 453
exporting data from tables into 605
location 3

FILLER column
maximum length 677

FIRST
to return one row 635

FIXED file format 130
FLATTEN_SUBQUERIES option 77
FLOAT data type 227
FLOAT_AS_DOUBLE option 77
FLOOR function 303
FOR BROWSE syntax

Transact-SQL 932
FOR statement

syntax 551
FORCE_NO_SCROLL_CURSORS option 79

Index

960 Sybase IQ

FORCE_UPDATABLE_CURSORS option 80
foreign keys

in the system tables 700, 701
integrity constraints 507
system views 891
unnamed 507

foreign table
in the system tables 701

FORWARD TO statement
syntax 552

FoxPro file format 130
FP_PREDICATE_WORKUNIT_PAGES option 80
FPL_EXPRESSION_MEMORY_KB option 80
FROM clause 250, 262, 557, 637

SELECT statement 636
syntax 553
UPDATE and DELETE 936

functions 249
ABS function 272
ACOS function 273
aggregate 250
alphabetical list 272
analytical 252
ARGN function 273
ASCII function 274
ASIN function 274
ATAN function 274
ATAN2 function 275
AVG function 275
BIGINTTOHEX function 276
BIT_LENGTH function 277
BYTE_LENGTH function 277
CAST function 278
CEIL function 279
CEILING function 279
CHAR function 280
CHAR_LENGTH function 280
CHARINDEX function 281
COALESCE function 282
COL_LENGTH function 282
COL_NAME function 282
CONNECTION_PROPERTY function 283
consistent results 262
CONVERT function 284
COS function 287
COT function 287

COUNT function 287
creating 468
data type conversion 261
DATALENGTH function 288
date and time 256
DATE function 289
DATEADD function 289
DATEDIFF function 290
DATEFORMAT function 292
DATENAME function 293
DATEPART function 293
DATETIME function 294
DAY function 294
DAYNAME function 295
DAYS function 295
DB_ID function 296
DB_NAME function 296
DB_PROPERTY function 297
DEGREES function 298
DENSE_RANK function 298
DIFFERENCE function 299
distribution 252
DOW function 300
dropping 533
EVENT_CONDITION function 300
EVENT_CONDITION_NAME function 302
EVENT_PARAMETER function 302
EXP function 303
FLOOR function 303
GETDATE function 304
GROUP_MEMBER function SQL syntax 305
GROUPING function SQL syntax 304
HEXTOBIGINT function 305
HEXTOINT function 306
HOUR function 307
HOURS function 308
HTML_DECODE function 309
HTML_ENCODE function 309
HTTP 261
HTTP_DECODE function 310
HTTP_ENCODE function 310
HTTP_HEADER function 311
HTTP_VARIABLE function 311
IFNULL function 312
INDEX_COL function 313
INSERTSTR function 313

Index

Reference Manual 961

INTTOHEX function 314
IQ extensions 673
ISDATE function SQL syntax 316
ISNULL function 316
ISNUMERIC function SQL syntax 317
LCASE function 318
LEFT function 318
LEN function SQL syntax 319
LENGTH function 320
LOCATE function 321
LOG function 322
LOG10 function 323
LOWER function 323
LTRIM function 324
MAX function 324
MIN function 325
MINUTE function 325
MINUTES function 326
miscellaneous 271
MOD function 327
MONTH function 327
MONTHNAME function 327
MONTHS function 328
NEWID function SQL syntax 329
NEXT_CONNECTION function 330
NEXT_DATABASE function 331
NEXT_HTTP_HEADER function 331
NEXT_HTTP_VARIABLE function 332
NOW function 333
NTILE function 333
NULLIF function 335
NUMBER function 335
numeric 252, 262
OBJECT_ID function 337
OBJECT_NAME function 337
OCTET_LENGTH function 338
PATINDEX function 338
PERCENT_RANK function 339
PERCENTILE_CONT function 340
PERCENTILE_DISC function 343
PI function 345
POWER function 345
PROPERTY function 345
PROPERTY_DESCRIPTION function 346
PROPERTY_NAME function 347
PROPERTY_NUMBER function 347

QUARTER function 348
RADIANS function 348
RAND function 349
RANK function 349
ranking 252
REMAINDER function 351
REPEAT function 351
REPLACE function 352
REPLICATE function 353
REVERSE function SQL syntax 354
RIGHT function 355
ROUND function 355
ROWID function 356
RTRIM function 358
SECOND function 358
SECONDS function 359
SIGN function 360
SIMILAR function 360
SIN function 361
SORTKEY function 361
SOUNDEX function 364
SPACE function 364
SQRT function 365
SQUARE function 365
statistical 252
STDDEV function 365
STDDEV_POP function 367
STDDEV_SAMP function 368
STR function 369
STR_REPLACE function SQL syntax 370
string 264
STRING function 371
STRTOUUID function SQL syntax 372
STUFF function 373
SUBSTR function 373
SUBSTRING function 373
SUM function 374
SUSER_ID function 375
SUSER_NAME function 375
TAN function 376
today 685
TODAY function 376
Transact-SQL 932
TRIM function 376
TRUNCATE function 377
TRUNCNUM function 378

Index

962 Sybase IQ

UCASE function 378
UPPER function 379
USER_ID function 379
USER_NAME function 380
user-defined 270, 627
UUIDTOSTR function SQL syntax 381
valid Adaptive Server Enterprise functions 267
VAR_POP function 381
VAR_SAMP function 382
VARIANCE function 383
WEEKS function 385
WIDTH_BUCKET function 386
windowing aggregate 252
YEAR function 388
YEARS function 388
YMD function 390

functions, aggregate
GROUPING 304

functions, data type conversion
ISDATE 316

functions, miscellaneous
ISNUMERIC 317
NEWID 329

functions, string 319, 354, 370
STRTOUUID 372
UUIDTOSTR 381

functions, system
GROUP_MEMBER 305

G
GARRAY_FILL_FACTOR_PERCENT option 81
GARRAY_PREFETCH_SIZE option 81, 82
GET DESCRIPTOR statement

syntax 558
GETDATE function 304
global variables

about 209, 211
compatibility 214
list of 212

globally unique identifiers
SQL syntax for NEWID function 329

GOTO statement
Transact-SQL 558

GRANT statement

syntax 559
GROUP BY

compatibility 928
GROUP BY clause

SELECT statement 637
group memberships

multiplex 123
GROUP_MEMBER function

SQL syntax 305
grouping 425
GROUPING function 304
groups

Adaptive Server Enterprise 923
GUIDs

SQL syntax for NEWID function 329
SQL syntax for STRTOUUID function 372
SQL syntax for UUIDTOSTR function 381

H
HASH_THRASHING_PERCENT option 82
heading name 636
HEADINGS option 83
HELP statement

syntax 564
HEXTOBIGINT function 305
HEXTOINT function 306

ASE_FUNCTION_BEHAVIOR option 307
HG index

multicolumn with NULL 478
NULL values 478

HG indexes
improving query performance 48

HG_DELETE_METHOD option 83
HG_SEARCH_RANGE option 84
hints

execution phase 202, 204
index preference 201
selectivity 201

HOLDLOCK syntax
Transact-SQL 932

host variables
declaring 514
syntax 391

HOUR function 307

Index

Reference Manual 963

HOURS function 308
HTML file format 130
HTML_DECODE function 309
HTML_ENCODE function 309
HTTP

setting headers 870
setting options 870

HTTP functions 261
HTML_DECODE 309
HTML_ENCODE 309
HTTP_DECODE 310
HTTP_ENCODE 310
HTTP_HEADER 311
HTTP_VARIABLE 311
NEXT_HTTP_HEADER 331
NEXT_HTTP_VARIABLE 332

HTTP_DECODE function 310
HTTP_ENCODE function 310
HTTP_HEADER function 311
HTTP_VARIABLE function 311

I
identifiers

about 177
case sensitivity 916
maximum length in ASA 177
SQL syntax 177
uniqueness 917

IDENTITY column
and DROP TABLE 534

identity columns
compatibility 919
supported as default value 919

IDENTITY_ENFORCE_UNIQUENESS 84
IDENTITY_ENFORCE_UNIQUENESS option 84
IDENTITY_INSERT option

dropping tables 534
IF expression 184
IF statement

syntax 564
Transact-SQL 566

IFNULL function 312
image data type

compatibility 915

IN conditions 196
number of values 677

IN_SUBQUERY_PREFERENCE option 90
INCLUDE statement

syntax 567
INDENTITY_INSERT option 85
index preference hints 201
INDEX_ADVISOR option 85
INDEX_ADVISOR_MAX_ROWS option 87
INDEX_COL function 313
INDEX_PREFERENCE option 88
indexes 425

Adaptive Server Anywhere 922
Adaptive Server Enterprise 922
creating 473
dropping 533
in system tables 708
in the system tables 703, 713
IQ 922
multicolumn 478
multicolumn HG and NULL 478
naming 477
number per table 677
owner 477
system views 893
table use 477
Transact-SQL 917
unique 475

indicator variables 391
INFER_SUBQUERY_PREDICATES option 89
INSERT

syntax 568
wide 541

inserting
rows using cursors 615

inserts
Adaptive Server Anywhere 947

INSERTSTR function 313
INSTALL statement

syntax 574
installation directory

about 2
INTEGER data type 225
Interactive SQL

list of options 130, 131, 132
OUTPUT statement syntax 605

Index

964 Sybase IQ

specifying code page for reading and writing to files
69

Interactive SQL options
DEFAULT_ISQL_ENCODING 69
ISQL_COMMAND_TIMING 93
ISQL_ESCAPE_CHARACTER 94
ISQL_FIELD_SEPARATOR 95
ISQL_QUOTE 96
OUTPUT_FORMAT 130
OUTPUT_LENGTH 131
OUTPUT_NULLS 132

INTO clause
SELECT statement 636

INTTOHEX function 314
ASE_FUNCTION_BEHAVIOR option 315

IQ Agent
port 9
wait time 9

IQ message log
maximum size 92

IQ Store 908
reserving space 110
reserving temporary space 163

IQ UNIQUE
alternative method 117

IQ UNIQUE column constraint 506
IQ UTILITIES statement

syntax 576
iq_dummy table 250, 557, 685
IQGOVERN_PRIORITY option 91
IQGOVERN_PRIORITY_TIME option 91
IQMSG_LENGTH_MB database option 92
IS NULL conditions 197
ISDATE function

SQL syntax 316
ISNULL function 316
ISNUMERIC function

SQL syntax 317
ISOLATION_LEVEL option 93
ISQL_COMMAND_TIMING option

description 93
ISQL_ESCAPE_CHARACTER option

description 94
ISQL_FIELD_SEPARATOR option

description 95
ISQL_LOG option 95

ISQL_QUOTE option
description 96

J
jar files

installing 574
removing 619

Java
installing classes 574
method signatures 490
removing classes 619
user-defined functions 271

Java data types
compatibility 915

Java Runtime Environment
setting 13

Java VM
starting 654
stopping 656

JAVA_HEAP_SIZE option 96
JAVA_NAMESPACE_SIZE option 97
join columns

and data types 557
join index number 711
join index table number 712
join indexes

columns 711
creating 481
displaying information about 795
in system tables 710, 711, 712
number of tables

queries
number of tables per block

677
synchronizing 657

join operators
ANSI 930
Transact-SQL 930

JOIN_EXPANSION_FACTOR option 97
JOIN_OPTIMIZATION option 98
JOIN_PREFERENCE option 99
JOIN_SIMPLIFICATION_THRESHOLD option 100
joins

Index

Reference Manual 965

automatic 672
deletes 525
FROM clause syntax 553
optimizing 97, 98, 100
optimizing join order 114
outer operators 183
SELECT statement 636
Transact-SQL 930

K
keys

displaying information about 812
maximum size 677

keywords
listing 174
SQL 174

L
labels

for statements 392, 558
languages

specifying 10
LAST USER

special value 206
LCASE function 318
leap years 246
LEAVE statement

syntax 578
LEFT function 318
LEN function

SQL syntax 319
LENGTH function 320
LF_BITMAP_CACHE_KB option 101
LIBRARY PATH environment variables 12
LIKE conditions 193
literal strings 178, 180
liveness timeout

database server 865
load formats

Transact-SQL and Adaptive Server Anywhere
925

LOAD TABLE statement

ON PARTIAL INPUT ROW option 592
QUOTES option 587
syntax 580
WORD SKIP option 586

LOAD_MEMORY_MB option 102
LOAD_ZEROLENGTH_ASNULL option 103
loads

scalability 49
local machine

environment settings 20
local variables

about 209
LOCAL_KB_PER_STRIPE option 103
LOCATE function 321
LOCK TABLE

syntax 597
locking

tables 597
locking users 802

sp_iqlistlockedusers 800
locks

displaying 804
releasing with ROLLBACK 630

LOG function 322
LOG_CONNECT database option 105
LOG10 function 323
logarithm (base 10) 323
logarithm of a number 322
Login Management

IQ_USER_LOGIN_INFO_TABLE 689
LOGIN_PROCEDURE option 106
system tables 689
table of users 689

Login Management facility 106
login processing 819
LOGIN_MODE option 105
LOGIN_PROCEDURE option 106
logins

external 467
logins. see connections
LOOP statement

syntax 598
Lotus file format 130
LOWER function 323
LTRIM function 324

Index

966 Sybase IQ

M
MAIN_CACHE_MEMORY_MB option 108
MAIN_KB_PER_STRIPE option 109
MAIN_RESERVED_DBSPACE_MB option 104, 110
master database

unsupported 906
mathematical expressions 181
MAX function 324
MAX_CARTESIAN_RESULT option 110, 111, 112
MAX_CURSOR_COUNT option 113
MAX_HASH_ROWS option 113
MAX_IQ_GOVERN_PRIORITY option 91
MAX_IQ_THREADS_PER_CONNECTION option 114
MAX_IQ_THREADS_PER_TEAM option 114
MAX_JOIN_ENUMERATION option 114
MAX_QUERY_PARALLELISM option 115
MAX_STATEMENT_COUNT option 116
MAX_WARNINGS option 117
MDSR encryption algorithm

CREATE DATABASE statement 448
memory

monitoring with sp_iqsysmon 833
prefetching 48

Message log wrapping
IQMSG_LENGTH_MB database option 92

MESSAGE statement
setting DEBUG_MESSAGES option 68
SQL syntax 600

messages
creating 484
displaying 600
dropping 533

method signatures
Java 490

MIN function 325
MIN_NLPDJ_FILTERED_PPM option 118
MIN_NLPDJ_TABLE_SIZE option 118
MIN_PASSWORD_LENGTH option 119
MIN_SMPDJ_OR_HPDJ_FILTERED_PPM option 119
MIN_SMPDJ_OR_HPDJ_FILTERED_SIZE option 120
MIN_SMPDJ_OR_HPDJ_INDIRECT_SIZE option 120
MIN_SMPDJ_OR_HPDJ_TABLE_SIZE option 121
MINIMIZE_STORAGE option 117
MINUTE function 325
MINUTES function 326
miscellaneous functions 271

ARGN 273
COALESCE 282
IFNULL 312
ISNULL 316
NULLIF 335
NUMBER 335
ROWID 356

MOD function 327
MONEY data type 228
monitor

in IQ UTILITIES statement 576
setting output file location 121
sp_iqsysmon procedure 833
starting and stopping 576

MONITOR_OUTPUT_DIRECTORY option 121
MONTH function 327
MONTHNAME function 327
MONTHS function 328
MPX_GLOBAL_TABLE_PRIV option 122
MPX_LOCAL_SPEC_PRIV option 123
multicolumn indexes 475, 478

deleting 414
multiplex

check configuration 882
displaying version for connection 881
dropping databases 537
dropping domains 535
IQ_MPX_INFO system table 686
IQ_MPX_STATUS system table 687, 688
replacing write server 881
showing version information 883
synchronizing query servers 9, 535, 687

multiplex databases
adding dbspaces 454
creating 446

multirow fetches
FETCH statement 549

multirow inserts 541

N
name spaces

indexes 917
NEAREST_CENTURY option 123
nested outer joins 930

Index

Reference Manual 967

NEWID function
SQL syntax 329

newline
WD index delimiter 476

NEXT_CONNECTION function 330
NEXT_DATABASE function 331
NEXT_HTTP_HEADER function 331
NEXT_HTTP_VARIABLE function 332
NO RESULT SET clause 488
NO SCROLL cursors 516
NOEXEC option 124
NON_KEYWORDS database option 125
NOT conditions 198
NOTIFY_MODULUS option 125
NOW function 333
NTILE function 333
NULL

defining for output 132
on multicolumn HG index 478
Transact-SQL compatibility 918

null comparisons
Transact-SQL 931

NULL value
about 218
in multicolumn HG index 478

NULLIF function 186, 335
NULLS option 126
NUMBER function 335
number of rows 710, 729
numbers 180
NUMERIC 226
NUMERIC data type 226
numeric data types

compatibility 914
numeric functions 252, 262

ABS 272
ACOS 273
ASIN 274
ATAN 274
ATAN2 275
CEIL 279
CEILING 279
consistent results 262
COS 287
COT 287
DEGREES 298

EXP 303
FLOOR 303
LOG 322
LOG10 323
MOD 327
PI 345
POWER 345
RADIANS 348
RAND 349
REMAINDER 351
ROUND 355
SIGN 360
SIN 361
SQRT 365
SQUARE 365
TAN 376
TRUNCATE 377
TRUNCNUM 378

numerical functions
WIDTH_BUCKET 386

O
object

defining 862
determining ID 337
determining name 337
displaying information about 779
renaming 823

OBJECT_ID function 337
OBJECT_NAME function 337
OCTET_LENGTH function 338
ODBC

ODBC_DISTINGUISH_CHAR_AND_VARCHAR
option 126

static cursors 516
ODBC_DISTINGUISH_CHAR_AND_VARCHAR

option
description 126

OLAP
DENSE_RANK function 298
distribution functions 252
GROUPING function 304
NTILE function 333
numeric functions 252

Index

968 Sybase IQ

PERCENT_RANK function 339
PERCENTILE_CONT function 340
PERCENTILE_DISC function 343
RANK function 349
ranking functions 252
statistical functions 252
STDDEV function 365
VARIANCE function 383
window function type 253
window functions 253
window name 253
window specification 253
windows aggregate functions 252

OLAP functions
compatibility 933

OLAP OVER clause 253
ON EXCEPTION RESUME clause

about 488
stored procedures 128
Transact-SQL 944

ON_CHARSET_CONVERSION_FAILURE option
description 126

ON_ERROR option 127
ON_TSQL_ERROR

database option 128
ON_TSQL_ERROR option

ON EXCEPTION RESUME 488
Open Client setting 14
OPEN statement

syntax 603
operators

comparison operators 190
precedence of 184

optimization
defining existing tables and 465
MAX_HASH_ROWS option 113
MAX_JOIN_ENUMERATION option 114

optimizer
estimates 199
user-defined selectivity 199

option value
truncation 24, 649

options
Adaptive Server Anywhere 945
AGGREGATION_PREFERENCE 39
ASE_FUNCTION_BEHAVIOR 44

CIS_ROWSET_SIZE 51
compatibility 35
CONTINUE_AFTER_RAISERROR 53
CONVERSION_ERROR 53
cursors 26
DBCC_LOG_PROGRESS 747
DEBUG_MESSAGES option 68
DEDICATED_TASK 68
DEFAULT_ISQL_ENCODING 69
duration 26
EXTENDED_JOIN_SYNTAX 76
finding values 25
FLATTEN_SUBQUERIES 77
general database 30
in the system tables 717, 718
initial settings 29
introduction 24
ISQL_COMMAND_TIMING 93
ISQL_ESCAPE_CHARACTER 94
ISQL_FIELD_SEPARATOR 95
ISQL_QUOTE 96
list of 39
MIN_NLPDJ_FILTERED_PPM 118
ODBC_DISTINGUISH_CHAR_AND_VARCHAR

126
ON_CHARSET_CONVERSION_FAILURE 126
ON_TSQL_ERROR 128
OUTPUT_FORMAT 130
OUTPUT_LENGTH 131
OUTPUT_NULLS 132
precedence 26
PRESERVE_SOURCE_FORMAT 137
QUOTED_IDENTIFIER 187
RETURN_DATE_TIME_AS_STRING 143
scope 26
setting 24, 647
setting DBISQL options 438
setting temporary 37, 650
sp_iqcheckoptions 25
SUPPRESS_TDS_DEBUGGING 149
SYSOPTIONDEFAULTS system table 25
system views 893, 898
TDS_EMPTY_STRING_IS_NULL 150
Transact-SQL 643
TRUNCATE_WITH_AUTO_COMMIT 168
unexpected behavior 250, 557, 637

Index

Reference Manual 969

OR keyword 197
ORDER BY clause 640
OS_FILE_CACHE_BUFFERING option 128
OUT_OF_DISK_MESSAGE_REPEAT option 129
OUT_OF_DISK_WAIT_TIME option 130
outer joins

and subqueries 181
chained 930
nested 930
operators 183
Transact-SQL 930

out-of-space conditions
preventing 110

OUTPUT statement
SQL syntax 605

OUTPUT_FORMAT option
description 130

OUTPUT_LENGTH option
description 131

OUTPUT_NULLS option
description 132

OVER clause 253
owner 392

P
packages

installing 574
removing 619

pages
size 677

PARALLEL_GBH_ENABLED option 132
PARALLEL_GBH_MIN_ROWS_PER_UNIT option

133
PARALLEL_GBH_UNITS option 133
PARAMETERS statement

syntax 610
partition limit 49
passwords

adding or modifying 810
case sensitivity 917
changing 560
encryption 570
in the system tables 733
minimum length 119

sa_verify_password system procedure 740, 871
setting expirations 806
sp_iqlistexpiredpasswords 799
sp_iqlistpasswordexpirations 801

PATH environment variable 12
PATINDEX function 338
pattern matching

about 193
and collations 194
limits 194

PERCENT_AS_COMMENT option 134
PERCENT_RANK function 339
percentile

computing with NTILE function 333
PERCENTILE_CONT function 340
PERCENTILE_DISC function 343
performance

getting more memory 48
impact of FROM clause 557
monitoring 833
sp_iqshowpsexe connection information 827
sp_iqsysmon procedure 833
TRUNCATE TABLE statement 168

permissions
Adaptive Server Enterprise 923
CONNECT authority 560
DBA authority 561
EXECUTE 562
GRANT statement 559
GROUP authority 561
in the system tables 693, 730
MEMBERSHIP 561
multiplex 122
RESOURCE authority 562
revoking 628
SYSCOLAUTH system view 890
system views 897

PI function 345
population variance function 381
portable SQL 926
positioned DELETE statement

SQL syntax 527
POWER function 345
precedence of operators 184
PRECISION option 135
predicates

Index

970 Sybase IQ

about 189
PREFETCH option 135
PREFETCH_BUFFER_LIMIT option 136
PREFETCH_BUFFER_PERCENT option 136
PREFETCH_GARRAY_PERCENT option 136
PREFETCH_SORT_PERCENT option 137
prefetching

BT_PREFETCH_MAX_MISS 48
monitoring with sp_iqsysmon 833

prefix matching
about 193

PREPARE statement
syntax 611

prepared statements
dropping 539
EXECUTE statement 541
in the system tables 729

PRESERVE_SOURCE_FORMAT option
description 137

primary keys
displaying information about 812
generating unique values 329
generating unique values using UUIDs 329
in the system tables 695, 701, 729
integrity constraints 506
UUIDs and GUIDs 329

primary table
in the system tables 701

PRINT command
Transact-SQL 938

PRINT statement
Transact-SQL syntax 613

procedure language
overview 936

procedures 612
creating 485
displaying information about 779, 813
displaying parameter information 816
dropping 533
dynamic SQL statements 544
error handling 942, 944
executing 543
proxy 489
RAISERROR statement 616
replicating 404
result sets 488

return values 942
returning values from 627
Transact-SQL 939
Transact-SQL CREATE PROCEDURE statement

491
Transact-SQL overview 936
translation 939
variable result sets 487, 531

processing queries without 250, 557, 637
projections

SELECT statement 634
properties

connection 269
databases 270
description of ID 346
determining name 347
determining number 347
server 269
server level 345

PROPERTY function 345
PROPERTY_DESCRIPTION function 346
PROPERTY_NAME function 347
PROPERTY_NUMBER function 347
PUBLIC group

in the system tables 734
publisher

SQL Remote 205
PURGE clause

FETCH statement 549
PUT statement

SQL syntax 615
putting

rows into cursors 615

Q
QUARTER function 348
queries

for updatable cursors 520
improving performance 48
number of tables 676
processing by Adaptive Server Anywhere 250,

557, 637
SELECT statement 632
Transact-SQL 927

Index

Reference Manual 971

query servers
DROP DOMAIN 535
dropping 537
permissions 122
synchronizing 9, 687
users 123

QUERY_DETAIL option 116, 138
QUERY_PLAN option 138, 139
QUERY_PLAN_AFTER_RUN option 139
QUERY_PLAN_AS_HTML option 140
QUERY_PLAN_AS_HTML_DIRECTORY option

140
QUERY_ROWS_RETURNED_LIMIT option 141
QUERY_TEMP_SPACE_LIMIT option 142
QUERY_TIMING option 142
querying tables 250, 557, 637
QUIT statement

syntax 546
quitting time

database server 865
quotation marks

database objects 177
SQL identifiers 177

QUOTED_IDENTIFIER option 143, 187
quotes

in Interactive SQL 96
strings 178

R
RADIANS function 348
RAISERROR statement

CONTINUE_AFTER_RAISERROR option 53
ON EXCEPTION RESUME 944
syntax 616
Transact-SQL 943

RAND function 349
RANK function 349
ranking functions 252
raw devices

naming on Windows 453
read only

locking tables 597
READ statement

syntax 617

REAL data type 227
RECOVERY_TIME option 143
REFERENCES clause 412
referential integrity constraints

CASCADE not supported 919
compatibility 919

registry entries
about 20

relationships
in the system tables 701

RELEASE SAVEPOINT statement
syntax 619

REMAINDER function 351
remote data access 404, 406, 495, 664

CIS_ROWSET_SIZE 51
SYSEXTERNLOGINS system table 699
SYSPROCEDURE system table 719

remote servers
capabilities 877

remote tables
columns 872, 873, 874
listing 876

remoteoptiontype table
about 722

REMOVE statement
syntax 619

rename objects
sp_iqrename procedure 823

REPEAT function 351
REPLACE function 352

in SELECT INTO statement 314, 318, 319, 323,
324, 351, 353, 354, 355, 358, 376, 379

REPLICATE function 353
replication

of procedures 404
request_level_debugging

about 865
request_level_logging

about 865
request-level logging

enabling from Interactive SQL 868
reserved words 174

listing 174
resetclocks

sp_iqcheckdb option 745
RESIGNAL statement

Index

972 Sybase IQ

syntax 620
resource authority

in the system tables 733
RESTORE statement

syntax 621
RESTRICT action 508
result sets

shape of 531
Transact-SQL 940
variable 487, 531, 612

RESUME statement
syntax 626

RETURN statement
syntax 627

return values
procedures 942

RETURN_DATE_TIME_AS_STRING option
description 143

REVERSE function
SQL syntax 354

REVOKE statement
syntax 628

RIGHT function 355
Rigndael encryption algorithm

CREATE DATABASE statement 448
roles

Adaptive Server Enterprise 909
ROLLBACK statement

syntax 630
ROLLBACK TO SAVEPOINT statement

syntax 631
ROLLUP operation

GROUPING function 304
ROLLUP operator 638

SELECT statement 638
ROUND function 355
ROW_COUNT option 144
ROWID function 356
rows

counting 287
deleting from cursors 527
inserting using cursors 615
maximum size 676

RTRIM function 358
rules

Transact-SQL 921

S
sa 870
sa_audit_string system procedure 853
sa_checkpoint_execute system procedure 853
sa_conn_activity system procedure

syntax 854
sa_conn_info system procedure 855
sa_conn_properties

using 25
sa_conn_properties system procedure 856
sa_conn_properties_by_conn system procedure 856
sa_conn_properties_by_name system procedure 857
sa_db_info system procedure 858
sa_db_properties system procedure 859
sa_disable_auditing_type system procedure 861
sa_enable_auditing_type system procedure 859
sa_eng_properties system procedure 860
sa_flush_cache system procedure 862
sa_make_object system procedure 862
sa_rowgenerator system procedure

syntax 864
sa_server_option system procedure 865
sa_set_http_header system procedure 870
sa_set_http_option system procedure 870
sa_table_page_usage system procedure 861
sa_validate system procedure

syntax 870
sample database xxx
sample variance function 382
SAVEPOINT statement

syntax 632
savepoints

name 392
RELEASE SAVEPOINT statement 619
ROLLBACK TO SAVEPOINT statement 631

SCALE option 145
scheduled events

WAITFOR statement 666
scheduling

WAITFOR 666
schema

creating 493
SCROLL cursors 516
search conditions

about 189
ALL or ANY conditions 192

Index

Reference Manual 973

BETWEEN conditions 193
comparison conditions 190
CONTAINS conditions 196
EXISTS conditions 197
IN conditions 196
IS NULL conditions 197
LEADING SUBSTRING SEARCH conditions

193
LIKE conditions 193
NOT conditions 198
subqueries 191
three-valued logic 198
truth value conditions 198

SECOND function 358
SECONDS function 359
section 508

compliance xxx
security

auditing 45
minimum password length 119

SELECT * 412, 416
SELECT INTO

returning results in a base table 634
returning results in a host variable 634
returning results in a temporary table 634
Transact-SQL 935
using REPLACE function 314, 318, 319, 323,

324, 351, 353, 354, 355, 358, 376, 379
select list

DESCRIBE statement 528
SELECT statement 635

SELECT statement
examples 887
FIRST 635
FROM clause syntax 553
syntax 632
TOP 635
Transact-SQL 927

selectivity
user-supplied conditions 199

selectivity hints 201
selectivity, explicit 199
separators

in WD index 476
server

properties 269

server administration
Adaptive Server Anywhere and IQ 945

servers
altering web services 407
creating 494

services
adding 496
registry entries 21

SET CONNECTION statement
syntax 645

SET DESCRIPTOR statement
syntax 646

SET OPTION statement
DBISQL syntax 37
syntax 647, 650
Transact-SQL 926
using 24

SET SQLCA statement
syntax 651

SET statement
syntax 641
Transact-SQL 643

SET TEMPORARY OPTION statement
DBISQL syntax 37
syntax 647, 650

SHARED syntax
Transact-SQL 932

SIGN function 360
SIGNAL statement

syntax 652
Transact-SQL 943

signatures
Java methods 490

SIMILAR function 360
SIN function 361
SMALLDATETIME data type 234
SMALLINT data type 225
SMALLMONEY data type 228
SOME conditions 192
sorting

in the system tables 692
SORTKEY function 361
SOUNDEX function 364
sp_addmessage 484
sp_dropuser procedure 629
sp_iq_process_login system procedure 819

Index

974 Sybase IQ

sp_iq_reset_identity system procedure 825
sp_iqaddlogin system procedure 741
sp_iqcheckdb

allocation mode 745
check mode 745
DBCC_LOG_PROGRESS option 747
output 747
performance 747
repair mode 746
resetclocks option 745
sample output 747
syntax 743
time to run 747
verify mode 745

sp_iqcheckdb system procedure 743
sp_iqcheckoptions system procedure 25, 749
sp_iqcolumn system procedure 751
sp_iqconnection system procedure 753
sp_iqcontext system procedure 757
sp_iqcursorinfo system procedure 759
sp_iqdatatype system procedure 762
sp_iqdbsize system procedure 764
sp_iqdbspace system procedure 766
sp_iqdbspaceinfo

dbspace usage information 770
sp_iqdbspaceinfo system procedure 769
sp_iqdbstatistics system procedure 770
sp_iqdroplogin system procedure 772
sp_iqestdbspaces system procedure 774
sp_iqestjoin system procedure 773
sp_iqestspace system procedure 776
sp_iqevent system procedure 776
sp_iqhelp system procedure 779
sp_iqindex system procedure 786
sp_iqindex_alt system procedure 786
sp_iqindexadvice system procedure 788
sp_iqindexfragmentation system procedure 789
sp_iqindexinfo

displaying index information 792, 793
sp_iqindexinfo system procedure 790
sp_iqindexmetadata system procedure 792
sp_iqindexsize system procedure 793
sp_iqjoinindex system procedure 795
sp_iqjoinindexsize system procedure 798
sp_iqlistexpiredpasswords system procedure 799
sp_iqlistlockedusers system procedure 800

sp_iqlistpasswordexpirations system procedure 801
sp_iqlocklogin system procedure 802
sp_iqlocks system procedure 804
sp_iqmodifyadmin system procedure 806
sp_iqmodifylogin system procedure 809
sp_iqmpx_new_cons system procedure 881
sp_iqmpxcountdbremote function 880
sp_iqmpxcountdbremote system procedure 880
sp_iqmpxgetconnversion system procedure 881
sp_iqmpxvalidate system procedure 882
sp_iqmpxversionfetch system procedure 883
sp_iqmpxversioninfo system procedure 883
sp_iqpassword system procedure 810
sp_iqpkeys system procedure 812
sp_iqprocedure system procedure 813
sp_iqprocparm system procedure 816
sp_iqrebuildindex system procedure 820, 826
sp_iqrelocate system procedure 822

relocating objects 823
sp_iqrename system procedure 823
sp_iqsetcompression system procedure 738
sp_iqshowcompression system procedure 738
sp_iqshowpsexe system procedure 827
sp_iqspaceinfo system procedure 829

sample output 829
sp_iqspaceused system procedure 830
sp_iqstatus system procedure 831

sample output 832
sp_iqsysmon system procedure 833
sp_iqtable system procedure 839
sp_iqtablesize system procedure 841
sp_iqtransaction system procedure 842
sp_iqversionuse system procedure 846
sp_iqview system procedure 848
sp_iqwho system procedure 849
sp_login_environment system procedure 872
sp_remote_columns system procedure 872
sp_remote_exported_keys system procedure 873, 874
sp_remote_primary_keys system procedure

syntax 875
sp_remote_tables system procedure 876
sp_servercaps system procedure 877
sp_tsql_environment system procedure 879
SPACE function 364
special characters

in strings 178

Index

Reference Manual 975

special values
CURRENT DATABASE 205
CURRENT DATE 205
CURRENT PUBLISHER 205
CURRENT TIME 205
CURRENT TIMESTAMP 206
CURRENT USER 206
LAST USER 206
SQLCODE 207
SQLSTATE 207
TIMESTAMP 208
USER 208

SQL
common syntax elements 391
IQ dialect differences 671
statement indicators 393
syntax conventions 392
user-defined functions 270

SQL descriptor area
inserting rows using cursors 615

SQL file format 130
SQL functions

compatibility 932
GROUP_MEMBER function syntax 305
GROUPING function syntax 304
ISDATE function syntax 316
ISNUMERIC function syntax 317
LEN function syntax 319
NEWID function syntax 329
REVERSE function syntax 354
STR_REPLACE function syntax 370
STRTOUUID function syntax 372
UUIDTOSTR function syntax 381

SQL Remote
articles 689
connections 880
system tables 689

SQL Remote system tables
remoteoptiontype 722

SQL statements
DELETE (positioned) syntax 527
maximum length 677
MESSAGE syntax 600
OUTPUT syntax 605
PUT syntax 615
UPDATE (positioned) syntax 664

WAITFOR syntax 666
SQL syntax

CURRENT DATABASE special value 205
CURRENT PUBLISHER special value 205
CURRENT USER special value 206
identifiers 177
LAST USER special value 206
TIMESTAMP special value 208
USER special value 208

SQL variables
creating 511
dropping 540
SET VARIABLE statement 641

SQL_FLAGGER_ERROR_LEVEL option 147
SQL_FLAGGER_WARNING_LEVEL option 147
SQL92 conformance 671
SQLCA

INCLUDE statement 567
SET SQLCA statement 651

SQLCODE
special value 207

SQLCONNECT environment variable 12
SQLDA

allocating memory 394
deallocating 514
DESCRIBE statement 528
Execute statement 541
INCLUDE statement 567
inserting rows using cursors 615
setting 646
UPDATE (positioned) statement 664

SQLSTATE
special value 207

SQRT function 365
square brackets

database objects 177
SQL identifiers 177

SQUARE function 365
square root function 365
standard deviation function 365
standard deviation of a population function 367
standard deviation of a sample function 368
standards

section 508 compliance xxx
standards and compatibility

section 508 compliance xxx

Index

976 Sybase IQ

START DATABASE statement
syntax 652

START ENGINE statement
syntax 653

START JAVA statement
syntax 654

starting
database servers 653
databases 652
Java VM 654

statement indicators 393
statement labels 392, 558
statements

CREATE DEFAULT 921
CREATE DOMAIN 921
CREATE RULE 921
CREATE TABLE 918
DELETE (positioned) syntax 527
DISK INIT 907
DISK MIRROR 907
DISK REFIT 907
DISK REINIT 907
DISK REMIRROR 907
DISK UNMIRROR 907
MESSAGE syntax 600
OUTPUT syntax 605
PUT syntax 615
RAISERROR 943, 944
SELECT 927
SIGNAL 943
UPDATE (positioned) syntax 664
WAITFOR syntax 666

static cursors
declaring 516

statistical functions 252
STATISTICS option 148
STDDEV 368
STDDEV function 365
STDDEV_POP function 367
STOP DATABASE statement

syntax 655
STOP ENGINE statement

syntax 656
STOP JAVA statement

syntax 656
stopping

Java VM 656
stopping databases 655
storage space

minimizing 117
stored procedure language

overview 936
stored procedures

creating 485
format number 709
proxy 489
sa_rowgenerator 864
sa_verify_password 740, 871

STR function 369
STR_REPLACE function

SQL syntax 370
STRING function 371
string functions 264

ASCII 274
BIT_LENGTH 277
BYTE_LENGTH 277
CHAR 280
CHAR_LENGTH 280
CHARINDEX 281
DIFFERENCE 299
INSERTSTR 313
LCASE 318
LEFT 318
LENGTH 320
LOCATE 321
LOWER 323
LTRIM 324
OCTET_LENGTH 338
PATINDEX 338
REPEAT 351
REPLACE 352
REPLICATE 353
RIGHT 355
RTRIM 358
SIMILAR 360
SORTKEY 361
SOUNDEX 364
SPACE 364
STR 369
STRING 371
STUFF 373
SUBSTR 373

Index

Reference Manual 977

SUBSTRING 373
TRIM 376
UCASE 378
UPPER 379

string insert 313
string length 277, 280
string position 281
STRING_RTRUNCATION option 148
strings

about 178
concatenating 182, 353, 371
concatenation operators 182
constants 178, 180
converting to lowercase 318, 323
converting to upper case 379
converting to uppercase 378
delimiter 187
determining length 320
determining similarity 360
length for database options 25, 649
literal strings 178
removing blanks 376
removing leading blanks 324
removing trailing blanks 358
replacing substrings 352
returning a substring 373
SOUNDEX function 364
special characters 178
Transact-SQL 187
use of quotes 96

strong encryption
CREATE DATABASE statement 448

STRTOUUID function
SQL syntax 372

STUFF function 373
subqueries

Adaptive Server Anywhere 928
Adaptive Server Enterprise 928
in expressions 181
in search conditions 191
IQ 928
IQ implementation 673

SUBQUERY_PLACEMENT_PREFERENCE
database option 148

SUBSTR function 373
SUBSTRING function 373

SUM function 374
SUPPRESS_TDS_DEBUGGING option

description 149
SUSER_ID function 375
SUSER_NAME function 375
SWEEPER_THREADS_PERCENT database option

150
Sybase Central

translating procedures 939
SYBASE environment variable 13
Sybase IQ User Administration 924

compared to Adaptive Server Enterprise 924
defaults 688
IQ_SYSTEM_LOGIN_INFO_TABLE 688
sp_iq_process_login 819
sp_iqaddlogin 741
sp_iqdroplogin 772
sp_iqlistexpiredpasswords 799
sp_iqlistlockedusers 800
sp_iqlistpasswordexpirations 801
sp_iqlocklogin 802
sp_iqmodifyadmin 806
sp_iqmodifylogin 809
sp_iqpassword 810
sp_login_environment 872

Sybase IQ User administration
system tables 688

SYBASE_JRE environment variable 13
SYBASE_OCS environment variable 14
SYNCHRONIZE JOIN INDEX statement

syntax 657
syntax

common elements 391
CURRENT DATABASE special value 205
CURRENT PUBLISHER special value 205
CURRENT USER special value 206
LAST USER special value 206
SQL identifiers 177
TIMESTAMP special value 208
USER special value 208

syntax conventions 392
syntax errors

joins 76
SYS group

in the system tables 734
sysservers system table

Index

978 Sybase IQ

remote servers for Component Integration Services
494

system administrator
Adaptive Server Enterprise 909

system catalog 890
Adaptive Server Enterprise compatibility 908
Transact-SQL 900

SYSTEM dbspace 250, 557, 637
system functions 266

COL_LENGTH 282
COL_NAME 282
CONNECTION_PROPERTY 283
DATALENGTH 288
DB_ID 296
DB_NAME 296
DB_PROPERTY 297
EVENT_CONDITION 300
EVENT_CONDITION_NAME 302
EVENT_PARAMETER 302
INDEX_COL 313
NEXT_CONNECTION 330
NEXT_DATABASE 331
OBJECT_ID 337
OBJECT_NAME 337
PROPERTY 345
PROPERTY_DESCRIPTION 346
PROPERTY_NAME 347
PROPERTY_NUMBER 347
SUSER_ID 375
SUSER_NAME 375
Transact-SQL 934
USER_ID 379
USER_NAME 380

system procedures
about 737
displaying information about 779
sa_audit_string 853
sa_checkpoint_execute 853
sa_conn_activity 854
sa_conn_info 855
sa_conn_properties 856
sa_conn_properties_by_conn 856
sa_conn_properties_by_name 857
sa_db_info 858
sa_db_properties 859
sa_disable_auditing_type 861

sa_enable_auditing_type 859
sa_eng_properties 860
sa_flush_cache 862
sa_make_object 862
sa_rowgenerator 864
sa_server_option 865
sa_set_http_header 870
sa_set_http_option 870
sa_table_page_usage 861
sa_validate 870
sa_verify_password 740, 871
sp_iq_process_login 819
sp_iqaddlogin 741
sp_iqcheckdb 743
sp_iqcheckoptions 749
sp_iqcolumn 751
sp_iqconnection 753
sp_iqcontext 757
sp_iqcursorinfo 759
sp_iqdatatype 762
sp_iqdbsize 764
sp_iqdbstatistics 770
sp_iqdroplogin 772
sp_iqestdbspaces 774
sp_iqestjoin 773
sp_iqestspace 776
sp_iqevent 776
sp_iqhelp 779
sp_iqindex 786
sp_iqindex_alt 786
sp_iqindexadvice 788
sp_iqindexsize 793
sp_iqjoinindex 795
sp_iqjoinindexsize 798
sp_iqlistexpiredpasswords 799
sp_iqlistlockedusers 800
sp_iqlistpasswordexpirations 801
sp_iqlocklogin 802
sp_iqmodifyadmin 806
sp_iqmodifylogin 809
sp_iqmpxcountdbremote 880
sp_iqpassword 810
sp_iqpkeys 812
sp_iqprocedure 813
sp_iqprocparm 816
sp_iqrename 823

Index

Reference Manual 979

sp_iqsetcompression 738
sp_iqshowcompression 738
sp_iqshowpsexe 827
sp_iqspaceinfo 829
sp_iqspaceused 830
sp_iqstatus 831
sp_iqsysmon 833
sp_iqtable 839
sp_iqtablesize 841
sp_iqtransaction 842
sp_iqversionuse 846
sp_iqview 848
sp_iqwho 849
sp_login_environment 872
sp_remote_columns 872
sp_remote_exported_keys 873, 874
sp_remote_primary_keys 875
sp_remote_tables 876
sp_servercaps 877
sp_tsql_environment 879

system security officer
Adaptive Server Enterprise 909

system tables
about 679
Adaptive Server Enterprise compatibility 908
descriptions 685
displaying information about 779
DUMMY 685
IQ_MPX_INFO 686
IQ_MPX_STATUS 687, 688
IQ_SYSTEM_LOGIN_INFO_TABLE 688
IQ_USER_LOGIN_INFO_TABLE 689
PRESERVE_SOURCE_FORMAT 137
source column 137
SYSARTICLE 689
SYSARTICLECOL 690
SYSCAPABILITY 690
SYSCAPABILITYNAME 691
SYSCHECK 691
SYSCOLLATION 692
SYSCOLLATIONMAPPINGS 692
SYSCOLPERM 693
SYSCOLUMN 694
SYSCONSTRAINT 696
SYSDOMAIN 697
SYSEVENT 697

SYSEVENTTYPE 698
SYSEXTERNLOGINS 699
SYSFILE 625, 699
SYSFKCOL 700
SYSFOREIGNKEY 701
SYSGROUP 702
SYSINDEX 703
SYSINFO 704
SYSIQCOLUMN 705
SYSIQFILE 706
SYSIQINDEX 708
SYSIQINFO 708
SYSIQJINDEX 710
SYSIQJOINIXCOLUMN 711
SYSIQJOINIXTABLE 712
SYSIQTABLE 712
SYSIXCOL 713
SYSJAR 714
SYSJARCOMPONENT 715
SYSJAVACLASS 715
SYSLOGIN 716
SYSOPTION 717
SYSOPTIONDEFAULTS 718
SYSPROCEDURE 718
SYSPROCPARM 720
SYSPROCPERM 721
SYSPUBLICATION 721
SYSREMOTEOPTION 722
SYSREMOTEOPTIONTYPE 722
SYSREMOTETYPE 723
SYSREMOTEUSER 723
SYSSCHEDULE 725
SYSSERVERS 726
SYSSQLSERVERTYPE 727
SYSSUBSCRIPTION 727
SYSTABLE 728
SYSTABLEPERM 730
SYSTYPEMAP 732
SYSUSERMESSAGES 732
SYSUSERPERM 733
SYSUSERTYPE 734
SYSWEBSERVICE 735
Transact-SQL 900

system variables 211
system views

SYSARTICLECOLS 889

Index

980 Sybase IQ

SYSARTICLES 889
SYSCAPABILITIES 889
SYSCATALOG 890
SYSCOLAUTH 890
SYSCOLUMNS 891
SYSFOREIGNKEYS 891
SYSGROUPS 892
SYSINDEXES 893
SYSOPTIONS 893
SYSPROCAUTH 894
SYSPROCPARMS 894
SYSPUBLICATIONS 895
SYSREMOTEOPTIONS 895
SYSREMOTETYPES 895
SYSREMOTEUSERS 896
SYSSUBSCRIPTIONS 897
SYSTABAUTH 897
SYSUSERAUTH 898
SYSUSERLIST 898
SYSUSEROPTIONS 898
SYSUSERPERMS 899
SYSVIEWS 899

SYSWEBSERVICE system table
adding servers 407

T
tab

WD index delimiter 476
table constraints 503
table number 712, 713, 728
tables

altering 409
altering definition 412
creating 499
creating proxy 465
displaying information about 779
dropping 533
exporting data into files from 605
GLOBAL TEMPORARY 499
iq_dummy 250, 557, 685
loading 580
locking 597
maximum size 676
number of columns 676

number of rows 676
number per join index 677
per FROM clause 676
per query 676
renaming 414
temporary 510, 523
Transact-SQL 918
truncating 658

TAN function 376
tangent 376
TDS_EMPTY_STRING_IS_NULL option

description 150
temp extract file

maximum size 677
TEMP_CACHE_MEMORY_MB option 151
TEMP_EXTRACT_APPEND option 152
TEMP_EXTRACT_BINARY option 153
TEMP_EXTRACT_COLUMN_DELIMITER option

154
TEMP_EXTRACT_DIRECTORY option 155
TEMP_EXTRACT_NAME1 option 155
TEMP_EXTRACT_NAME2 option 155
TEMP_EXTRACT_NAME3 option 155
TEMP_EXTRACT_NAME4 option 155
TEMP_EXTRACT_NAME5 option 155
TEMP_EXTRACT_NAME6 option 155
TEMP_EXTRACT_NAME7 option 155
TEMP_EXTRACT_NAME8 option 155
TEMP_EXTRACT_NAMEn options 155
TEMP_EXTRACT_NULL_AS_EMPTY option 157
TEMP_EXTRACT_NULL_AS_ZERO option 158
TEMP_EXTRACT_QUOTE option 159
TEMP_EXTRACT_QUOTES option 159
TEMP_EXTRACT_QUOTES_ALL option 160
TEMP_EXTRACT_ROW_DELIMITER option 161
TEMP_EXTRACT_SIZE1 option 161
TEMP_EXTRACT_SIZE2 option 161
TEMP_EXTRACT_SIZE3 option 161
TEMP_EXTRACT_SIZE4 option 161
TEMP_EXTRACT_SIZE5 option 161
TEMP_EXTRACT_SIZE6 option 161
TEMP_EXTRACT_SIZE7 option 161
TEMP_EXTRACT_SIZE8 option 161
TEMP_EXTRACT_SIZEn options 161
TEMP_EXTRACT_SWAP option 163
TEMP_KB_PER_STRIPE option 152

Index

Reference Manual 981

TEMP_RESERVED_DBSPACE_MB
database option 163

TEMP_SPACE_LIMIT_CHECK
database option 164

temporary files (Catalog)
TEMP_SPACE_LIMIT_CHECK 164

temporary options 24
temporary space

reserved for IQ store 163
temporary tables 510

creating 499
declaring 523
populating 633, 636
Transact-SQL 921

text data type
compatibility 914

THEN
IF expression 184

three valued logic
NULL value 218

three-valued logic
about 198

TIME data type 234
TIME_FORMAT option 165
times

queries 236
TIMESTAMP

special value 208
timestamp

converting an expression 294
TIMESTAMP data type 235
timestamp data type

compatibility 912, 914
TIMESTAMP_FORMAT option 166
timezone

specifying 14
TINYINT data type 225
TODAY function 376, 685
TOP

specify number of rows 635
transaction log

adding string 853
TRUNCATE TABLE statement 659

transaction management 436
BEGIN TRANSACTION statement 426
in Transact-SQL 436

monitoring with sp_iqsysmon 833
transaction modes

chained and unchained 428
transactions

committing 436
number of tables 676
ROLLBACK statement 630
ROLLBACK TO SAVEPOINT statement 631
SAVEPOINT statement 632

Transact-SQL
about 903
batches 937
bitwise operators 182
COMMIT TRANSACTION 436
comparison conditions 191
compatibility options 35
constants 186
CREATE MESSAGE 484
CREATE PROCEDURE statement 491
CREATE SCHEMA statement 493
creating compatible databases 915
error handling in 616
executing stored procedures 543
expressions 186
joins 930
local variables 210
outer join operators 183
overview 905
procedure language overview 936
procedures 491, 936
referential integrity constraints 919
result sets 940
SET statement 643
strings 187
system catalog 900
user-defined data types 241
variables 941
writing portable SQL 926

Transact-SQL compatibility
databases 916

TRIGGER EVENT
syntax 658

triggers
not supported 921

TRIM function 376
TRIM_PARTIAL_MBC option 168

Index

982 Sybase IQ

troubleshooting
logging operations 868
request_level_logging 865

TRUNCATE function 377
TRUNCATE TABLE statement

autocommit behavior 168
syntax 658

TRUNCATE_WITH_AUTO_COMMIT option
about 168

TRUNCATION_LENGTH option 169
TRUNCNUM function 378
TSQL_HEX_CONSTANT option 169
TSQL_VARIABLES option 169
type conversions 241
types

about data types 221
TZ environment variable

specifying timezone 14

U
UCASE function 378
unchained transaction mode 428
UNION

in subqueries 928
UNION operation 659
unique

constraint 503, 505
unique indexes 475
UNIQUEIDENTIFIER data type 232
UNIQUEIDENTIFIERSTR data type

about 222
universally unique identifiers

SQL syntax for NEWID function 329
updatable cursors 519
UPDATE (positioned) statement

SQL syntax 664
update column permission 693
upgrading databases 396
UPPER function 379
usefulness hints 204
USER

special constant 685
special value 208

user

number 733
user administration

enabling 806
user administration. see Sybase IQ User Administration
user IDs

Adaptive Server Enterprise 923
case sensitivity 917
changing passwords 560
determining from user name 375, 379
in the system tables 710, 729
revoking 628
system views 898

user name
determining from user ID 375, 380

USER_ID function 379
USER_NAME function 380
USER_RESOURCE_RESERVATION option 170
user-defined data types

about 239
altering 400
case-sensitivity 916
CREATE DOMAIN statement 456
dropping 533, 535
Transact-SQL 241

user-defined functions 270
compatibility 934
RETURN statement 627

users
adding 741
displaying information about 849
dropping 628, 772
locking 802
maximum number 677
modifying 809
multiplex 123

user-supplied condition hint strings 200
user-supplied condition selectivity 199
user-supplied conditions

for queries 199
utilities

Adaptive Server Anywhere 945
Utilities statement 576
UUIDs

SQL syntax for NEWID function 329
SQL syntax for STRTOUUID function 372
SQL syntax for UUIDTOSTR function 381

Index

Reference Manual 983

UUIDTOSTR function
SQL syntax 381

V
validating

Catalog Store 870
VAR_POP function 381
VAR_SAMP function 382
VARBINARY data type 229
VARCHAR data type

about 222
converting to compressed format 60, 61

variable result sets
from procedures 487, 531, 612

variables
about 209
connection-level 211
creating 511
declaring 515
dropping 540
global 209, 211
local 209
select into 636
SET VARIABLE statement 641
Transact-SQL 941

VARIANCE function 383
VERIFY_PASSWORD_FUNCTION option 170
verifying

passwords 740, 871
views

about 512
altered tables in 412, 416
altering 416
creating 512
deleting 533
displaying information about 779
dropping 533
indexes 477
system views 899
updatable 935

W
WAIT_FOR_COMMIT option 172
WAITFOR statement

SQL syntax 666
WASH_AREA_BUFFERS_PERCENT database option

171
WD index

CHAR columns 477
delimiters 475

web services
system table 735

WEEKS function 385
WHENEVER statement

syntax 667
WHERE clause

SELECT statement 637
Transact-SQL 929

WHILE statement
syntax 598
Transact-SQL 668

wide inserts 541
WIDTH_BUCKET function 386
window functions

window function type 252
window name or specification 252
window partition 252, 253

window functions, defining 253
window name 253
window specification 253
window type 253
windows aggregate functions 252
WITH HOLD clause

OPEN statement 603
WITHIN GROUP clause 254
WORD SKIP option 586
Wrapping

IQ message log 92

X
XML file format 130

Index

984 Sybase IQ

Y
YEAR function 388
YEARS function 388
YMD function 390

Z
zero-length strings

Transact-SQL 931

	Reference Manual
	About This Book
	CHAPTER 1 File Locations and Installation Settings
	Installation directory structure
	How Sybase IQ locates files
	Simple file searching
	Extensive file searching

	Environment variables
	Setting environment variables
	ASCHARSET environment variable
	ASDIR environment variable
	ASIQPORT environment variable
	ASIQTIMEOUT environment variable
	ASLANG environment variable
	ASLOGDIR environment variable
	ASTMP environment variable
	LIBRARY PATH environment variable
	PATH environment variable
	SQLCONNECT environment variable
	SYBASE environment variable
	SYBASE_JRE environment variable
	SYBASE_OCS environment variable
	TZ environment variable

	Registry entries
	Current user and local machine settings
	Registry structure
	Registry settings on installation

	CHAPTER 2 Database Options
	Introduction to database options
	Setting options
	Finding option settings
	Scope and duration of database options
	Setting public options
	Deleting option settings
	Option classification
	Initial option settings

	General database options
	Transact-SQL compatibility options
	DBISQL options
	Alphabetical list of options
	AGGREGATION_PREFERENCE option
	ALLOW_NULLS_BY_DEFAULT option [TSQL]
	ANSI_CLOSE_CURSORS_ON_ROLLBACK option [TSQL]
	ANSI_PERMISSIONS option [TSQL]
	ANSINULL option [TSQL]
	ANSI_UPDATE_CONSTRAINTS option
	APPEND_LOAD option
	ASE_BINARY_DISPLAY option
	ASE_FUNCTION_BEHAVIOR option
	AUDITING option [database]
	AUTO_COMMIT option [DBISQL]
	AUTO_REFETCH option [DBISQL]
	AUTOMATIC_TIMESTAMP option [TSQL]
	BELL option [DBISQL]
	BIT_VECTOR_PINNABLE_CACHE_PERCENT option
	BLOCKING option
	BT_PREFETCH_MAX_MISS option
	BT_PREFETCH_SIZE option
	CACHE_PARTITIONS option
	CHAINED option [TSQL]
	CHECKPOINT_TIME option
	CIS_ROWSET_SIZE option
	CLOSE_ON_ENDTRANS option [TSQL]
	COMMAND_DELIMITER option [DBISQL]
	COMMIT_ON_EXIT option [DBISQL]
	CONTINUE_AFTER_RAISERROR option [TSQL]
	CONVERSION_ERROR option [TSQL]
	CONVERSION_MODE option
	CONVERT_HG_TO_1242 option
	CONVERT_VARCHAR_TO_1242 option
	COOPERATIVE_COMMIT_TIMEOUT option
	COOPERATIVE_COMMITS option
	CURSOR_WINDOW_ROWS option
	DATE_FIRST_DAY_OF_WEEK option
	DATE_FORMAT option
	DATE_ORDER option
	DBCC_LOG_PROGRESS option
	DBCC_PINNABLE_CACHE_PERCENT option
	DDL_OPTIONS2 option
	DEBUG_MESSAGES option
	DEDICATED_TASK option
	DEFAULT_HAVING_SELECTIVITY option
	DEFAULT_ISQL_ENCODING option [DBISQL]
	DEFAULT_LIKE_MATCH_SELECTIVITY option
	DEFAULT_LIKE_RANGE_SELECTIVITY option
	DELAYED_COMMIT_TIMEOUT option
	DELAYED_COMMITS option
	DISABLE_RI_CHECK option
	DISK_STRIPING option
	DISK_STRIPING_PACKED option
	DIVIDE_BY_ZERO_ERROR option [TSQL]
	EARLY_PREDICATE_EXECUTION option
	ECHO option [DBISQL]
	ENABLE_THREAD_ALLOWANCE option
	ENABLED_ORDERED_PUSHDOWN_INSERTION option
	EXTENDED_JOIN_SYNTAX option
	FLATTEN_SUBQUERIES option
	FLOAT_AS_DOUBLE option [TSQL]
	FORCE_DROP option
	FORCE_NO_SCROLL_CURSORS option
	FORCE_UPDATABLE_CURSORS option
	FPL_EXPRESSION_MEMORY_KB option
	FP_PREDICATE_WORKUNIT_PAGES option
	GARRAY_FILL_FACTOR_PERCENT option
	GARRAY_INSERT_PREFETCH_SIZE option
	GARRAY_RO_PREFETCH_SIZE option
	HASH_PINNABLE_CACHE_PERCENT option
	HASH_THRASHING_PERCENT option
	HEADINGS option [DBISQL]
	HG_DELETE_METHOD option
	HG_SEARCH_RANGE option
	IDENTITY_ENFORCE_UNIQUENESS option
	IDENTITY_INSERT option
	INDEX_ADVISOR option
	INDEX_ADVISOR_MAX_ROWS option
	INDEX_PREFERENCE option
	INFER_SUBQUERY_PREDICATES option
	IN_SUBQUERY_PREFERENCE option
	IQGOVERN_MAX_PRIORITY option
	IQGOVERN_PRIORITY option
	IQGOVERN_PRIORITY_TIME option
	IQMSG_LENGTH_MB option
	ISOLATION_LEVEL option
	ISQL_COMMAND_TIMING option [DBISQL]
	ISQL_ESCAPE_CHARACTER option [DBISQL]
	ISQL_FIELD_SEPARATOR option [DBISQL]
	ISQL_LOG option [DBISQL]
	ISQL_QUOTE option [Interactive SQL]
	JAVA_HEAP_SIZE option
	JAVA_NAMESPACE_SIZE option
	JOIN_EXPANSION_FACTOR option
	JOIN_OPTIMIZATION option
	JOIN_PREFERENCE option
	JOIN_SIMPLIFICATION_THRESHOLD option
	LARGE_DOUBLES_ACCUMULATOR option
	LF_BITMAP_CACHE_KB option
	LOAD_MEMORY_MB option
	LOAD_ZEROLENGTH_ASNULL option
	LOCAL_KB_PER_STRIPE option
	LOCAL_RESERVED_DBSPACE_MB option
	LOG_CONNECT option
	LOG_CURSOR_OPERATIONS option
	LOGIN_MODE option
	LOGIN_PROCEDURE option
	MAIN_CACHE_MEMORY_MB option
	MAIN_KB_PER_STRIPE option
	MAIN_RESERVED_DBSPACE_MB option
	MAX_CARTESIAN_RESULT option
	MAX_CLIENT_NUMERIC_PRECISION option
	MAX_CLIENT_NUMERIC_SCALE option
	MAX_CUBE_RESULT option
	MAX_CURSOR_COUNT option
	MAX_HASH_ROWS option
	MAX_IQ_THREADS_PER_CONNECTION option
	MAX_IQ_THREADS_PER_TEAM option
	MAX_JOIN_ENUMERATION option
	MAX_QUERY_PARALLELISM option
	MAX_QUERY_TIME option
	MAX_STATEMENT_COUNT option
	MAX_WARNINGS option
	MINIMIZE_STORAGE option
	MIN_NLPDJ_FILTERED_PPM option
	MIN_NLPDJ_TABLE_SIZE option
	MIN_PASSWORD_LENGTH option
	MIN_SMPDJ_OR_HPDJ_FILTERED_PPM option
	MIN_SMPDJ_OR_HPDJ_FILTERED_SIZE option
	MIN_SMPDJ_OR_HPDJ_INDIRECT_SIZE option
	MIN_SMPDJ_OR_HPDJ_TABLE_SIZE option
	MONITOR_OUTPUT_DIRECTORY option
	MPX_GLOBAL_TABLE_PRIV option
	MPX_LOCAL_SPEC_PRIV option
	NEAREST_CENTURY option [TSQL]
	NOEXEC option
	NON_ANSI_NULL_VARCHAR option
	NON_KEYWORDS option [TSQL]
	NOTIFY_MODULUS option
	NULLS option [DBISQL]
	ODBC_DISTINGUISH_CHAR_AND_VARCHAR option
	ON_CHARSET_CONVERSION_FAILURE option
	ON_ERROR option [DBISQL]
	ON_TSQL_ERROR option [TSQL]
	OS_FILE_CACHE_BUFFERING option
	OUT_OF_DISK_MESSAGE_REPEAT option
	OUT_OF_DISK_WAIT_TIME option
	OUTPUT_FORMAT option [ISQL]
	OUTPUT_LENGTH option [ISQL]
	OUTPUT_NULLS option [ISQL]
	PARALLEL_GBH_ENABLED option
	PARALLEL_GBH_MIN_ROWS_PER_UNIT option
	PARALLEL_GBH_UNITS option
	PERCENT_AS_COMMENT option [TSQL]
	PRECISION option
	PREFETCH option
	PREFETCH_BUFFER_LIMIT option
	PREFETCH_BUFFER_PERCENT option
	PREFETCH_GARRAY_PERCENT option
	PREFETCH_SORT_PERCENT option
	PRESERVE_SOURCE_FORMAT option [database]
	QUERY_DETAIL option
	QUERY_NAME option
	QUERY_PLAN option
	QUERY_PLAN_AFTER_RUN option
	QUERY_PLAN_AS_HTML option
	QUERY_PLAN_AS_HTML_DIRECTORY option
	QUERY_ROWS_RETURNED_LIMIT option
	QUERY_TEMP_SPACE_LIMIT option
	QUERY_TIMING option
	QUOTED_IDENTIFIER option [TSQL]
	RECOVERY_TIME option
	RETURN_DATE_TIME_AS_STRING option
	ROW_COUNT option
	SCALE option
	SIGNIFICANTDIGITSFORDOUBLEEQUALITY option
	SORT_PHASE1_HELPERS option
	SORT_PINNABLE_CACHE_PERCENT option
	SQL_FLAGGER_ERROR_LEVEL option [TSQL]
	SQL_FLAGGER_WARNING_LEVEL option [TSQL]
	STATISTICS option [DBISQL]
	STRING_RTRUNCATION option [TSQL]
	SUBQUERY_PLACEMENT_PREFERENCE option
	SUPPRESS_TDS_DEBUGGING option
	SWEEPER_THREADS_PERCENT option
	TDS_EMPTY_STRING_IS_NULL option [database]
	TEMP_CACHE_MEMORY_MB option
	TEMP_KB_PER_STRIPE option
	TEMP_EXTRACT_APPEND option
	TEMP_EXTRACT_BINARY option
	TEMP_EXTRACT_COLUMN_DELIMITER option
	TEMP_EXTRACT_DIRECTORY option
	TEMP_EXTRACT_NAMEn options
	TEMP_EXTRACT_NULL_AS_EMPTY option
	TEMP_EXTRACT_NULL_AS_ZERO option
	TEMP_EXTRACT_QUOTE option
	TEMP_EXTRACT_QUOTES option
	TEMP_EXTRACT_QUOTES_ALL option
	TEMP_EXTRACT_ROW_DELIMITER option
	TEMP_EXTRACT_SIZEn options
	TEMP_EXTRACT_SWAP option
	TEMP_RESERVED_DBSPACE_MB option
	TEMP_SPACE_LIMIT_CHECK option
	TIME_FORMAT option
	TIMESTAMP_FORMAT option
	TRIM_PARTIAL_MBC option
	TRUNCATE_WITH_AUTO_COMMIT option
	TRUNCATION_LENGTH option [DBISQL]
	TSQL_HEX_CONSTANT option [TSQL]
	TSQL_VARIABLES option [TSQL]
	USER_RESOURCE_RESERVATION option
	VERIFY_PASSWORD_FUNCTION option
	WASH_AREA_BUFFERS_PERCENT option
	WAIT_FOR_COMMIT option

	CHAPTER 3 SQL Language Elements
	Keywords
	Reserved words

	Identifiers
	Strings
	Expressions
	Constants in expressions
	Column names in expressions
	Subqueries in expressions
	SQL operators
	Arithmetic operators
	String operators
	Bitwise operators
	Join operators
	Operator precedence

	IF expressions
	CASE expressions
	Compatibility of expressions
	The quoted_identifier option

	Search conditions
	Comparison conditions
	Subqueries in search conditions
	ALL or ANY conditions
	BETWEEN conditions
	LIKE conditions
	IN conditions
	CONTAINS conditions
	EXISTS conditions
	IS NULL conditions
	Conditions with logical operators
	NOT conditions
	Truth value conditions
	Three-valued logic
	User-supplied condition hints
	User-supplied condition selectivity
	User-supplied condition hint strings
	Guidelines for usage of user-supplied condition hints

	Special values
	CURRENT DATABASE special value
	CURRENT DATE special value
	CURRENT PUBLISHER special value
	CURRENT TIME special value
	CURRENT TIMESTAMP special value
	CURRENT USER special value
	LAST USER special value
	SQLCODE special value
	SQLSTATE special value
	TIMESTAMP special value
	USER special value

	Variables
	Local variables
	Connection-level variables
	Global variables

	Comments
	NULL value

	CHAPTER 4 SQL Data Types
	Character data types
	Numeric data types
	Binary data types
	Bit data type
	Date and time data types
	Sending dates and times to the database
	Retrieving dates and times from the database
	Comparing dates and times
	Using unambiguous dates and times
	Domains
	Data type conversions
	Year 2000 compliance

	CHAPTER 5 SQL Functions
	Overview
	Aggregate functions
	Analytical functions
	Date and time functions
	Date parts

	Data type conversion functions
	HTTP functions
	Numeric functions
	String functions
	System functions
	Connection properties
	Properties available for the server
	Properties available for each database

	SQL and Java user-defined functions
	Miscellaneous functions
	Alphabetical list of functions
	ABS function [Numeric]
	ACOS function [Numeric]
	ARGN function [Miscellaneous]
	ASCII function [String]
	ASIN function [Numeric]
	ATAN function [Numeric]
	ATAN2 function [Numeric]
	AVG function [Aggregate]
	BIGINTTOHEX function [Data type conversion]
	BIT_LENGTH function [String]
	BYTE_LENGTH function [String]
	CAST function [Data type conversion]
	CEIL function [Numeric]
	CEILING function [Numeric]
	CHAR function [String]
	CHAR_LENGTH function [String]
	CHARINDEX function [String]
	COALESCE function [Miscellaneous]
	COL_LENGTH function [System]
	COL_NAME function [System]
	CONNECTION_PROPERTY function [System]
	CONVERT function [Data type conversion]
	COS function [Numeric]
	COT function [Numeric]
	COUNT function [Aggregate]
	DATALENGTH function [System]
	DATE function [Date and time]
	DATEADD function [Date and time]
	DATEDIFF function [Date and time]
	DATEFORMAT function [Date and time]
	DATENAME function [Date and time]
	DATEPART function [Date and time]
	DATETIME function [Date and time]
	DAY function [Date and time]
	DAYNAME function [Date and time]
	DAYS function [Date and time]
	DB_ID function [System]
	DB_NAME function [System]
	DB_PROPERTY function [System]
	DEGREES function [Numeric]
	DENSE_RANK function [Analytical]
	DIFFERENCE function [String]
	DOW function [Date and time]
	EVENT_CONDITION function [System]
	EVENT_CONDITION_NAME function [System]
	EVENT_PARAMETER function [System]
	EXP function [Numeric]
	FLOOR function [Numeric]
	GETDATE function [Date and time]
	GROUPING function [Aggregate]
	GROUP_MEMBER function [System]
	HEXTOBIGINT function [Data type conversion]
	HEXTOINT function [Data type conversion]
	HOUR function [Date and time]
	HOURS function [Date and time]
	HTML_DECODE function [HTTP]
	HTML_ENCODE function [HTTP]
	HTTP_DECODE function [HTTP]
	HTTP_ENCODE function [HTTP]
	HTTP_HEADER function [HTTP]
	HTTP_VARIABLE function [HTTP]
	IFNULL function [Miscellaneous]
	INDEX_COL function [System]
	INSERTSTR function [String]
	INTTOHEX function [Data type conversion]
	ISDATE function [Date and time]
	ISNULL function [Miscellaneous]
	ISNUMERIC function [Miscellaneous]
	LCASE function [String]
	LEFT function [String]
	LEN function [String]
	LENGTH function [String]
	LN function [Numeric]
	LOCATE function [String]
	LOG function [Numeric]
	LOG10 function [Numeric]
	LOWER function [String]
	LTRIM function [String]
	MAX function [Aggregate]
	MIN function [Aggregate]
	MINUTE function [Date and time]
	MINUTES function [Date and time]
	MOD function [Numeric]
	MONTH function [Date and time]
	MONTHNAME function [Date and time]
	MONTHS function [Date and time]
	NEWID function [Miscellaneous]
	NEXT_CONNECTION function [System]
	NEXT_DATABASE function [System]
	NEXT_HTTP_HEADER function [HTTP]
	NEXT_HTTP_VARIABLE function [HTTP]
	NOW function [Date and time]
	NTILE function [Analytical]
	NULLIF function [Miscellaneous]
	NUMBER function [Miscellaneous]
	OBJECT_ID function [System]
	OBJECT_NAME function [System]
	OCTET_LENGTH function [String]
	PATINDEX function [String]
	PERCENT_RANK function [Analytical]
	PERCENTILE_CONT function [Analytical]
	PERCENTILE_DISC function [Analytical]
	PI function [Numeric]
	POWER function [Numeric]
	PROPERTY function [System]
	PROPERTY_DESCRIPTION function [System]
	PROPERTY_NAME function [System]
	PROPERTY_NUMBER function [System]
	QUARTER function [Date and time]
	RADIANS function [Numeric]
	RAND function [Numeric]
	RANK function [Analytical]
	REMAINDER function [Numeric]
	REPEAT function [String]
	REPLACE function [String]
	REPLICATE function [String]
	REVERSE function [String]
	RIGHT function [String]
	ROUND function [Numeric]
	ROWID function [Miscellaneous]
	RTRIM function [String]
	SECOND function [Date and time]
	SECONDS function [Date and time]
	SIGN function [Numeric]
	SIMILAR function [String]
	SIN function [Numeric]
	SORTKEY function [String]
	SOUNDEX function [String]
	SPACE function [String]
	SQRT function [Numeric]
	SQUARE function [Numeric]
	STDDEV function [Aggregate]
	STDDEV_POP function [Aggregate]
	STDDEV_SAMP function [Aggregate]
	STR function [String]
	STR_REPLACE function [String]
	STRING function [String]
	STRTOUUID function [String]
	STUFF function [String]
	SUBSTRING function [String]
	SUM function [Aggregate]
	SUSER_ID function [System]
	SUSER_NAME function [System]
	TAN function [Numeric]
	TODAY function [Date and time]
	TRIM function [String]
	TRUNCATE function [Numeric]
	TRUNCNUM function [Numeric]
	UCASE function [String]
	UPPER function [String]
	USER_ID function [System]
	USER_NAME function [System]
	UUIDTOSTR function [String]
	VAR_POP function [Aggregate]
	VAR_SAMP function [Aggregate]
	VARIANCE function [Aggregate]
	WEEKS function [Date and time]
	WIDTH_BUCKET function [Numerical]
	YEAR function [Date and time]
	YEARS function [Date and time]
	YMD function [Date and time]

	CHAPTER 6 SQL Statements
	Using the SQL statement reference
	Common elements in SQL syntax
	Syntax conventions
	Statement applicability indicators

	ALLOCATE DESCRIPTOR statement [ESQL]
	ALTER DATABASE statement
	ALTER DBSPACE statement
	ALTER DOMAIN statement
	ALTER EVENT statement
	ALTER INDEX statement
	ALTER PROCEDURE statement
	ALTER SERVER statement
	ALTER SERVICE statement
	ALTER TABLE statement
	ALTER VIEW statement
	BACKUP statement
	BEGIN... END statement
	BEGIN PARALLEL IQ ... END PARALLEL IQ statement
	BEGIN TRANSACTION statement
	CALL statement
	CASE statement
	CHECKPOINT statement
	CLEAR statement [DBISQL]
	CLOSE statement [ESQL] [SP]
	COMMENT statement
	COMMIT statement
	CONFIGURE statement [DBISQL]
	CONNECT statement [ESQL] [DBISQL]
	CREATE DATABASE statement
	CREATE DBSPACE statement
	CREATE DOMAIN statement
	CREATE EVENT statement
	CREATE EXISTING TABLE statement
	CREATE EXTERNLOGIN statement
	CREATE FUNCTION statement
	CREATE INDEX statement
	CREATE JOIN INDEX statement
	CREATE MESSAGE statement [T-SQL]
	CREATE PROCEDURE statement
	CREATE PROCEDURE statement [T-SQL]
	CREATE SCHEMA statement
	CREATE SERVER statement
	CREATE SERVICE statement
	CREATE TABLE statement
	CREATE VARIABLE statement
	CREATE VIEW statement
	DEALLOCATE DESCRIPTOR statement [ESQL]
	Declaration section [ESQL]
	DECLARE statement
	DECLARE CURSOR statement [ESQL] [SP]
	DECLARE CURSOR statement [T-SQL]
	DECLARE LOCAL TEMPORARY TABLE statement
	DELETE statement
	DELETE (positioned) statement [ESQL] [SP]
	DESCRIBE statement [ESQL]
	DISCONNECT statement [DBISQL]
	DROP statement
	DROP CONNECTION statement
	DROP DATABASE statement
	DROP EXTERNLOGIN statement
	DROP SERVER statement
	DROP SERVICE statement
	DROP STATEMENT statement [ESQL]
	DROP VARIABLE statement
	EXECUTE statement [ESQL]
	EXECUTE statement [T-SQL]
	EXECUTE IMMEDIATE statement [ESQL] [SP]
	EXIT statement [DBISQL]
	FETCH statement [ESQL] [SP]
	FOR statement
	FORWARD TO statement
	FROM clause
	GET DESCRIPTOR statement [ESQL]
	GOTO statement [T-SQL]
	GRANT statement
	HELP statement [DBISQL]
	IF statement
	IF statement [T-SQL]
	INCLUDE statement [ESQL]
	INSERT statement
	INSTALL statement
	IQ UTILITIES statement
	LEAVE statement
	LOAD TABLE statement
	LOCK TABLE statement
	LOOP statement
	MESSAGE statement
	OPEN statement [ESQL] [SP]
	OUTPUT statement [DBISQL]
	PARAMETERS statement [DBISQL]
	PREPARE statement [ESQL]
	PRINT statement [T-SQL]
	PUT statement [ESQL]
	RAISERROR statement [T-SQL]
	READ statement [DBISQL]
	RELEASE SAVEPOINT statement
	REMOVE statement
	RESIGNAL statement
	RESTORE statement
	RESUME statement
	RETURN statement
	REVOKE statement
	ROLLBACK statement
	ROLLBACK TO SAVEPOINT statement
	SAVEPOINT statement
	SELECT statement
	SET statement
	SET statement [T-SQL]
	SET CONNECTION statement [DBISQL] [ESQL]
	SET DESCRIPTOR statement [ESQL]
	SET OPTION statement
	SET OPTION statement [DBISQL]
	SET SQLCA statement [ESQL]
	SIGNAL statement
	START DATABASE statement [DBISQL]
	START ENGINE statement [DBISQL]
	START JAVA statement
	STOP DATABASE statement [DBISQL]
	STOP ENGINE statement [DBISQL]
	STOP JAVA statement
	SYNCHRONIZE JOIN INDEX statement
	TRIGGER EVENT statement
	TRUNCATE TABLE statement
	UNION operation
	UPDATE statement
	UPDATE (positioned) statement [ESQL] [SP]
	WAITFOR statement
	WHENEVER statement [ESQL]
	WHILE statement [T-SQL]

	CHAPTER 7 Differences from Other SQL Dialects
	Sybase IQ features

	CHAPTER 8 Physical Limitations
	Size and number limitations

	CHAPTER 9 System Tables
	System tables diagrams
	System tables descriptions
	DUMMY system table
	IQ_MPX_INFO system table
	IQ_MPX_STATUS system table
	IQ_MPX_VERSIONLIST system table
	IQ_SYSTEM_LOGIN_INFO_TABLE system table
	IQ_USER_LOGIN_INFO_TABLE system table
	SYSARTICLE system table
	SYSARTICLECOL system table
	SYSCAPABILITY system table
	SYSCAPABILITYNAME system table
	SYSCHECK system table
	SYSCOLLATION system table
	SYSCOLLATIONMAPPINGS system table
	SYSCOLPERM system table
	SYSCOLUMN system table
	SYSCONSTRAINT system table
	SYSDOMAIN system table
	SYSEVENT system table
	SYSEVENTTYPE system table
	SYSEXTERNLOGINS system table
	SYSFILE system table
	SYSFKCOL system table
	SYSFOREIGNKEY system table
	SYSGROUP system table
	SYSINDEX system table
	SYSINFO system table
	SYSIQCOLUMN system table
	SYSIQFILE system table
	SYSIQINDEX system table
	SYSIQINFO system table
	SYSIQJOININDEX system table
	SYSIQJOINIXCOLUMN system table
	SYSIQJOINIXTABLE system table
	SYSIQTABLE system table
	SYSIXCOL system table
	SYSJAR system table
	SYSJARCOMPONENT system table
	SYSJAVACLASS system table
	SYSLOGIN system table
	SYSOPTION system table
	SYSOPTIONDEFAULTS system table
	SYSPROCEDURE system table
	SYSPROCPARM system table
	SYSPROCPERM system table
	SYSPUBLICATION system table
	SYSREMOTEOPTION system table
	SYSREMOTEOPTIONTYPE system table
	SYSREMOTETYPE system table
	SYSREMOTEUSER system table
	SYSSCHEDULE system table
	SYSSERVERS system table
	SYSSQLSERVERTYPE system table
	SYSSUBSCRIPTION system table
	SYSTABLE system table
	SYSTABLEPERM system table
	SYSTYPEMAP system table
	SYSUSERMESSAGES system table
	SYSUSERPERM system table
	SYSUSERTYPE system table
	SYSWEBSERVICE system table

	CHAPTER 10 System Procedures
	System procedure overview
	Syntax rules for stored procedures
	Understanding statistics reported by stored procedures

	System stored procedures
	sa_verify_password procedure
	sp_iqaddlogin procedure
	sp_iqcheckdb procedure
	sp_iqcheckoptions procedure
	sp_iqcolumn procedure
	sp_iqconnection procedure
	sp_iqconstraint procedure
	sp_iqcontext procedure
	sp_iqcursorinfo procedure
	sp_iqdatatype procedure
	sp_iqdbsize procedure
	sp_iqdbspace procedure
	sp_iqdbspaceinfo procedure
	sp_iqdbstatistics procedure
	sp_iqdroplogin procedure
	sp_iqestjoin procedure
	sp_iqestdbspaces procedure
	sp_iqestspace procedure
	sp_iqevent procedure
	sp_iqhelp procedure
	sp_iqindex and sp_iqindex_alt procedures
	sp_iqindexadvice procedure
	sp_iqindexfragmentation procedure
	sp_iqindexinfo procedure
	sp_iqindexmetadata procedure
	sp_iqindexsize procedure
	sp_iqjoinindex procedure
	sp_iqjoinindexsize procedure
	sp_iqlistexpiredpasswords procedure
	sp_iqlistlockedusers procedure
	sp_iqlistpasswordexpirations procedure
	sp_iqlocklogin procedure
	sp_iqlocks procedure
	sp_iqmodifyadmin procedure
	sp_iqmodifylogin procedure
	sp_iqpassword procedure
	sp_iqpkeys procedure
	sp_iqprocedure procedure
	sp_iqprocparm procedure
	sp_iq_process_login procedure
	sp_iqrebuildindex procedure
	sp_iqrelocate procedure
	sp_iqrename procedure
	sp_iq_reset_identity procedure
	sp_iqrowdensity procedure
	sp_iqshowpsexe procedure
	sp_iqspaceinfo procedure
	sp_iqspaceused procedure
	sp_iqstatus procedure
	sp_iqsysmon procedure
	sp_iqtable procedure
	sp_iqtablesize procedure
	sp_iqtransaction procedure
	sp_iqversionuse procedure
	sp_iqview procedure
	sp_iqwho procedure

	Catalog stored procedures
	sa_audit_string system procedure
	sa_checkpoint_execute system procedure
	sa_conn_activity system procedure
	sa_conn_info system procedure
	sa_conn_properties system procedure
	sa_conn_properties_by_conn system procedure
	sa_conn_properties_by_name system procedure
	sa_db_info system procedure
	sa_db_properties system procedure
	sa_enable_auditing_type system procedure
	sa_eng_properties system procedure
	sa_table_page_usage system procedure
	sa_disable_auditing_type system procedure
	sa_flush_cache system procedure
	sa_make_object system procedure
	sa_rowgenerator system procedure
	sa_server_option system procedure
	sa_set_http_header system procedure
	sa_set_http_option system procedure
	sa_validate system procedure
	sa_verify_password system procedure
	sp_login_environment system procedure
	sp_remote_columns system procedure
	sp_remote_exported_keys system procedure
	sp_remote_imported_keys system procedure
	sp_remote_primary_keys system procedure
	sp_remote_tables system procedure
	sp_servercaps system procedure
	sp_tsql_environment system procedure

	Multiplex system procedures
	sp_iqmpxcountdbremote procedure
	sp_iqmpxgetconnversion procedure
	sp_iqmpxreplacewriteserver procedure
	sp_iqmpxvalidate procedure
	sp_iqmpxversioninfo procedure
	sp_mpxcfg_<servername> procedure

	Adaptive Server Enterprise system and catalog procedures
	Adaptive Server Enterprise system procedures
	Adaptive Server Enterprise catalog procedures

	CHAPTER 11 System Views
	SYSARTICLECOLS system view
	SYSARTICLES system view
	SYSCAPABILITIES system view
	SYSCATALOG system view
	SYSCOLAUTH system view
	SYSCOLUMNS system view
	SYSFOREIGNKEYS system view
	SYSGROUPS system view
	SYSINDEXES system view
	SYSOPTIONS system view
	SYSPROCAUTH system view
	SYSPROCPARMS system view
	SYSPUBLICATIONS system view
	SYSREMOTEOPTIONS system view
	SYSREMOTETYPES system view
	SYSREMOTEUSERS system view
	SYSSUBSCRIPTIONS system view
	SYSTABAUTH system view
	SYSUSERAUTH system view
	SYSUSERLIST system view
	SYSUSEROPTIONS system view
	SYSUSERPERMS system view
	SYSVIEWS system view
	Transact-SQL compatibility view

	APPENDIX A Compatibility with Other Sybase Databases
	An overview of Transact-SQL support
	Adaptive Server architectures
	Servers and databases
	Space allocation and device management
	System tables, Catalog Store, and IQ Store
	Administrative roles

	Data types
	Bit data type
	Character data types
	Binary data types
	Date, time, datetime, and timestamp data types
	Numeric data types
	Approximate numeric data types
	Text data type
	Image data type
	Java data types

	Data definition language
	Creating a Transact-SQL-compatible database
	Case sensitivity
	Ensuring compatible object names
	CREATE TABLE statement
	CREATE DEFAULT, CREATE RULE, and CREATE DOMAIN statements
	CREATE TRIGGER statement
	CREATE INDEX statement
	Users, groups, and permissions
	Load formats
	BCP support in loading
	Setting options for Transact-SQL compatibility

	Data manipulation language
	General guidelines for writing portable SQL
	Writing compatible queries
	Subqueries
	GROUP BY clause
	COMPUTE clause
	WHERE clause
	Joins
	Transact-SQL outer joins
	ANSI joins
	More information on outer joins

	Null comparisons
	Zero-length strings
	HOLDLOCK, SHARED, and FOR BROWSE
	SQL functions
	OLAP functions
	System functions
	User-defined functions
	Arithmetic expressions on dates
	SELECT INTO
	Updatable views
	FROM clause in UPDATE and DELETE

	Transact-SQL procedure language overview
	Transact-SQL stored procedure overview
	Transact-SQL batch overview
	SQL statements in procedures and batches
	Expression subqueries in IF statements
	CASE statementS
	Row-level cursor operations
	Print command

	Automatic translation of stored procedures
	Using Sybase Central to translate stored procedures

	Returning result sets from Transact-SQL procedures
	Variables in Transact-SQL procedures
	Error handling in Transact-SQL procedures
	Using the RAISERROR statement in procedures
	Transact-SQL-like error handling in the Watcom-SQL dialect

	Adaptive Server Anywhere and Sybase IQ
	Server and database start-up and administration
	Database options
	Data definition language (DDL)
	Data manipulation language (DML)

	Index

