

Coral8 Integration Guide

DOCUMENT ID: DC01030-01-0200-02

LAST REVISED: May 2009

Copyright © 2009 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions

or technical notes.

Information in this document is subject to change without notice. The software described herein is furnished under a

license agreement, and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225,

fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax

number. All other international customers should contact their Sybase subsidiary or local distributor. Upgrades are

provided only at regularly scheduled software release dates. No part of this publication may be reproduced,

transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise,

without the prior written permission of Sybase, Inc. Sybase trademarks can be viewed at the Sybase trademarks page

at http://www.sybase.com/detail?id=1011207. Sybase and the marks listed are trademarks of Sybase, Inc. ®

indicates registration in the United States of America.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and

other countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective companies with which they

are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of

DFARS 52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

iii

Table of Contents

Who This Integration Guide Is For ... 1

How to Use This Guide ... 1

Integrating Coral8 with External Systems .. 3

Coral8 Integration and Enterprise Software Architecture ... 4

Software Development Aspects of Coral8 Integration ... 4

Other Interfaces to Coral8 ... 5

Other Documents that You May Find Helpful .. 5

Data Streams and Messages .. 7

Definitions ... 7

Field .. 7

Message / Row .. 7

Row Timestamp .. 7

Schema .. 8

Tuple Descriptor ... 8

Data Stream... 8

Stream URI ... 8

Publishing and Subscribing... 9

Windows ... 10

User-Defined Functions .. 10

Windows and Expiring Messages ... 10

Bundles ... 12

SDK .. 13

Adapters .. 15

Streams and Adapters .. 15

In-process vs. Out-of-process Adapters .. 16

Coral8 Adapters vs. User-written Adapters .. 17

Creating Your Own Stream Adapter: Overview ... 17

Key Tasks: Conversion and Communication ... 18

Conversion .. 18

Communication ... 18

Out-of-process Adapter ... 18

Coral8 Integration Guide

iv

In-process Adapter .. 20

Input Adapter Algorithm (Out-of-process) ... 20

Input Adapter Algorithm (In-process) .. 21

Output Adapter Algorithm (Out-of-process) .. 21

Output Adapter Algorithm (In-process) .. 21

Adapter APIs... 21

Starting and Stopping Adapters .. 21

Engine Control: Overview .. 23

Definitions ... 23

Query / Statement ... 23

Project / Query Module ... 23

Workspace .. 24

Introduction ... 24

A Note About ADL Files .. 25

Commands .. 25

Creating Streams and CCL Statements from Inside a Program .. 26

Motivation: When to Dynamically Create Queries and Streams .. 26

Background ... 27

Dynamically Registering Queries and Streams .. 28

Client-side vs. Server-side Compilation ... 32

Guidelines ... 33

Binding a Registered Query's Stream to an Existing Stream .. 34

Registering Streams When Registering A Query ... 34

Stopping A Query ... 35

Troubleshooting .. 35

Monitoring Servers and Projects ... 36

Status Information ... 36

Status Streams ... 37

Status APIs .. 38

User Authentication from Inside SDKs .. 40

User-Defined Functions and Plugins .. 43

User-Defined Functions .. 43

Requirements .. 44

Table of Contents

v

User-Defined Aggregate Functions .. 45

XML Signatures .. 46

Coral8 SDKs that Support UDFs .. 48

Plug-Ins ... 49

Coral8 SDKs that Support Plugins ... 50

Remote Procedure Calls, Database Queries, and Public Windows .. 51

Remote Procedures ... 51

Overview: Calling a Remote Procedure from a CCL Statement .. 51

How to Choose Whether to Use an RPC or a UDF .. 51

What Is an RPC? ... 52

The Components ... 52

The CCL Statement ... 54

The coral8-services.xml File ... 55

The Coral8 Server ... 55

The RPC Plugin .. 55

The RPC .. 56

Additional Information about Remote Procedure Calls .. 56

Generic HTTP and SOAP Plugins .. 56

RPC Plugin for CSV Files .. 57

Configuring the Plugin .. 58

Using the Plugin .. 58

Examples ... 58

Writing Your Own Coral8 RPC Plugin .. 59

Compiling a Coral8 RPC Plugin ... 60

Remote Database Queries ... 60

Overview: Querying a Remote Database or Public Window from a CCL Statement 60

What Is a Remote Database Query? ... 61

The Components ... 61

The CCL Statement ... 62

The coral8-services.xml File ... 63

Coral8 Server .. 63

The Driver ... 63

The Remote Database Server .. 63

Coral8 Integration Guide

vi

Additional Information ... 64

Reading and Writing BLOBs on External Database Servers .. 64

Background ... 64

Reading From and Writing to External Database Servers that Do Not Support BLOBs 65

Reading From and Writing to Database Servers that Support BLOBs ... 66

Remote Requests, Synchronization, and Performance.. 68

Caching ... 68

Internal Parallelization .. 69

Public Windows .. 69

Engine Control: Command-line Tools .. 71

Start the Server .. 72

Start the Server on UNIX-like Operating Systems ... 72

Start the Server on Microsoft Windows .. 73

Access a Running Coral8 Server... 73

Create a Project and its Associated Schema Files ... 74

Coral8 Project Files .. 74

Coral8 Schema Files ... 74

Create a Workspace on the Server .. 74

Compile a Project or a Schema File .. 75

Compiling Directly via the CCL Compiler ... 75

A Note About ADL Files .. 83

Execute the Project.. 84

Registering a Project via the c8_client Program ... 84

Compiling and Running a Project ... 85

Get Status of an Executing Project ... 86

Publishing Data to a Server ... 86

Stop Execution of a CCL Project .. 90

Clean Up a Workspace's Resources .. 90

Stop the Coral8 Server .. 91

Stop the Server on UNIX-like Operating Systems ... 91

Stop the Server on Microsoft Windows .. 91

Implementing Guaranteed Processing .. 93

Overview ... 93

Table of Contents

vii

Application Components .. 93

Guaranteed Processing Implementation ... 94

Coral8 Engine ... 94

Adapters .. 95

Source and Destination ... 95

Coral8 Engine Settings .. 95

Settings for Projects, Modules, and Streams... 95

Persistence .. 96

Start with Clean Slate ... 96

Writing an Adapter for Guaranteed Processing .. 96

Guaranteed Delivery Mechanisms .. 96

Guaranteed Delivery with the Coral8 C/C++ SDK .. 98

Publishing for an In-Process Adapter ... 98

Publishing for an Out-of-Process Adapter .. 98

Subscribing for an In-Process Adapter ... 99

Subscribing for an Out-of-Process Adapter .. 99

Guaranteed Delivery with the Coral8 .NET SDK ... 100

Publishing ... 100

Subscribing ... 102

Variations of Guaranteed Processing .. 103

Coral8 C/C++ SDK ... 105

Overview ... 105

Compiling for 64-bit Microsoft Windows .. 106

In-process vs. Out-of-process Activities ... 106

Data Types and Subroutines for UDFs and In-process Adapters .. 107

Error Handling Functions ... 108

Memory Management API ... 113

Notes about Allocating and Deallocating Memory in In-process Code.. 114

C/C++ Data Conversion Functions ... 115

Conversion API ... 115

Datatype ToString() .. 115

StringToDatatype() ... 119

Miscellaneous ... 120

Coral8 Integration Guide

viii

Generic Functions Available in Out-of-process and In-process Tasks ... 121

APIs Used for Out-of-process Adapters and Control Programs ... 122

c8client.h ... 122

APIs Used for In-process and Out-of-process Adapters ... 123

API Interface ... 123

Schema API .. 123

Message API ... 127

Creating an Out-of-process Adapter in C/C++ ... 149

API Interface ... 150

Creating a Sample Input Adapter .. 159

Sample Input Adapter ... 159

Acquiring the Address (URI) of a Stream .. 159

Compiling and Linking the Example .. 160

Compiling and Linking on Microsoft Windows ... 160

Compiling Using Visual Studio .. 160

Compiling Using the Command Line ... 163

Compiling and Linking on UNIX-like Operating Systems ... 165

Executing the Out-of-process Input Adapter .. 167

Creating an In-process Adapter in C/C++ ... 167

The Components of an In-process Adapter... 168

Algorithm Overview ... 168

Session State Information and Persistent State Information ... 169

API Interface ... 170

Memory Management API ... 170

In-process Adapter API ... 170

Server API ... 185

Session States vs. Persistent States ... 186

Suggested Session and Persistent State Initialization ... 187

Signatures of User Functions .. 188

In-process Input Adapters ... 190

In-process Output Adapters .. 193

In-process Adapter .. 194

Initialization .. 194

Table of Contents

ix

Execution .. 195

Shutdown .. 197

Useful Utility Functions .. 198

Printing the Schema .. 198

Printing a Parameter .. 199

Requirements for the C/C++ File .. 200

Step-by-Step Instructions for Creating an In-process Adapter ... 201

Compiling an In-process Adapter ... 202

Practical Tips for Using the In-process Adapter SDK .. 206

Testing and Debugging ... 206

Performance Optimizations .. 207

Multi-Stream In-Process Adapters .. 208

Troubleshooting .. 209

Setting Up Dynamic Queries and Streams with the C/C++ SDK ... 210

The API ... 210

Example .. 215

Creating Streams Dynamically ... 225

Troubleshooting .. 225

Control: Compile/Start/Stop/Status ... 225

Compiling a CCL Project ... 225

The Compiler API ... 226

Sample C Program to Compile a Project .. 233

Additional Sources of Information ... 234

Start/Stop a Project ... 235

Monitoring Servers and Queries ... 236

Status API ... 237

Tracer Message API .. 252

User-Defined Functions .. 253

UDFs: Requirements and Example ... 254

UDFs: Packing and Unpacking Parameter Values ... 254

Example UDF ... 256

User-Defined Aggregate Functions .. 259

UDFs: XML Signatures .. 261

Coral8 Integration Guide

x

UDFs: Interface Code ... 265

Metadata .. 265

Accessing Parameter Values ... 269

Functions Primarily for Aggregator UDFs ... 276

Memory Management API ... 277

Compiling a UDF and Putting It in the Correct Directory .. 278

Coral8 Access Function Header and Source Files .. 278

Compiling a UDF .. 278

UDFs: Summary ... 283

Querying a Public Window ... 284

RPC Plugins .. 286

RPC Plugin API .. 287

Functions for Accessing Configuration Information .. 287

API Function for Publishing Messages ... 288

API Functions for Managing Session State .. 288

API Functions for Reading Runtime Status .. 289

Compiling an RPC Plugin and Putting It in the Correct Directory ... 289

Coral8 Source files .. 290

Compiling an RPC Plugin ... 290

User Authentication .. 294

User Credentials API .. 294

Creating Your Own Authentication Plugin ... 296

Plugin Configuration ... 299

Library-Wide Initialization and Shutdown ... 300

Coral8 Java SDK... 303

Locating Files .. 303

Setting Up Your Environment .. 303

Using the Examples .. 303

Examining Example 1: Subscribing to a Stream ... 304

Creating an Engine Client ... 304

Creating a URI .. 305

Subscribing to a Stream .. 305

Reading Data from a Stream ... 305

Table of Contents

xi

Disconnecting from a Stream.. 305

Compiling and Running .. 305

Other Examples ... 306

Publishing to a Stream .. 306

Controlling the Engine .. 307

Registering a Query .. 307

Compiling and Starting a Project .. 308

Exploring Value Types ... 308

Examining Schemas .. 308

Working with Tuples .. 309

Retrieving Server Status ... 309

Publishing Asynchronously .. 310

Subscribing Asynchronously .. 310

Working with Bundles .. 310

Guaranteeing Message Delivery ... 311

Registering a Query with Parameters ... 311

Working with URIs ... 311

Querying a Public Window ... 312

Working with Parallel Queries.. 312

Coral8 .NET SDK ... 313

Locating Files .. 313

Using the Examples .. 313

Examining Example 1 ... 314

Creating an Engine Client ... 314

Creating a URI .. 314

Subscribing to a Stream .. 315

Reading Data from a Stream ... 315

Disconnecting from a Stream.. 315

Compiling and Running .. 315

Other Examples ... 316

Publishing to a Stream .. 316

Controlling the Engine .. 316

Registering a Query .. 317

Coral8 Integration Guide

xii

Compiling and Starting a Project .. 317

Exploring Value Types ... 318

Examining Schemas .. 318

Working with Tuples .. 318

Retrieving Server Status ... 319

Working with Bundles .. 319

Guaranteeing Message Delivery ... 320

Registering a Query with Parameters ... 320

Working with URIs ... 320

Querying a Public Window ... 321

Working with Parallel Queries.. 321

Coral8 Perl SDK ... 323

Prerequisites .. 323

API Interface ... 323

Perl API ... 324

C8::Tuple .. 324

C8::Publisher .. 325

C8::Subscriber .. 326

Perl Input Adapter (Sending Data to a Coral8 Stream) ... 326

Perl Output Adapter (Receiving Data from a Coral8 Stream) .. 328

Installation and Configuration .. 329

Running the Installation Script ... 329

Specifying the Path to the Library Files ... 329

Running the Example .. 330

Troubleshooting .. 331

Coral8 Python SDK .. 333

API Interface ... 333

Python API .. 333

Tuple ... 334

Publisher ... 335

Subscriber ... 335

Python Input Adapter (Sending Data to a Coral8 Stream) .. 336

Python Output Adapter (Receiving Data from a Coral8 Stream) ... 337

Table of Contents

xiii

Configuring Your Environment .. 338

Adapter Definition Language ... 339

Adapter Definition Language (ADL) .. 343

Warnings and Tips .. 343

Configuring Your System to Find ADL Files ... 344

Importing New Adapters .. 345

Server Plugins ... 347

Message-Driven Plugins ... 347

Events ... 347

Container Events ... 347

Manager Events .. 349

The Coral8 Generic Plugin ... 350

How to Implement Manager HA with the Coral8 Generic Plugin.. 352

Non-Message-Driven Plugins ... 352

The User Authentication Plugins .. 352

User Authentication htpasswd Plugin ... 354

User Authentication LDAP plugin .. 356

User Authentication via Pluggable Authentication Module (PAM) ... 357

Datatype Mappings ... 365

Troubleshooting .. 369

General Tips .. 369

Errors When Compiling C-language Adapters, UDFs and RPC Plugins ... 369

Error Messages When Compiling Java-Language Adapters ... 370

Errors When Starting the Server ... 370

Error Messages Displayed During Execution ... 371

HTTP and SOAP Plugin Configuration .. 379

Stream URIs .. 383

What Is a URI and What Is It Used For? .. 383

Types of URIs ... 383

Logical vs. Physical Stream URIs .. 384

Absolute vs. Relative Stream URIs .. 384

URIs and Distributed Queries ... 384

URIs and High Availability .. 385

Coral8 Integration Guide

xiv

How to Find the URI of a Stream ... 385

Summary ... 386

Connecting to Streams over a Network .. 387

Data Stream URI ... 387

Subscribing to a Data Stream .. 387

Publishing to a Data Stream .. 389

Data Stream Formats ... 390

Binary Data Stream Format .. 390

CSV Data Stream Format ... 390

XML Data Stream Format .. 393

Coral8 Adapters .. 395

Configuring Coral8 Adapters .. 395

Reading and Writing BLOB Data ... 397

Setting Up the Environment for Java Adapters ... 397

Setting Up the Environment for the JMS Adapters .. 397

Prerequisites .. 398

Configuring and Setting Up Your JMS Server ... 398

Create a New JMS Server and Deploy It. ... 398

Configuring and Setting Up Coral8 .. 399

Coral8 Studio .. 399

Coral8 JAR files .. 399

Testing the Coral8 JMS Adapter ... 399

Shutdown Sequence .. 401

Reading, Writing, and Converting Timestamps .. 402

Adapters Supplied by Coral8 .. 403

Atom Feed Reader Input Adapter ... 407

Binary: Read From Binary File Adapter ... 409

Binary: Write To Binary File Adapter. ... 409

Comma-Separated Values (CSV): Read From CSV File Adapter.. 409

NULL Values .. 418

Title Rows and the Hidden Row Timestamp Column .. 419

Timestamp Base .. 420

Loop Count ... 421

Table of Contents

xv

Line Continuation Character ... 422

Cautions on Using Quote Characters, Line Continuation Characters, and Field Separator

Characters ... 422

Format Of INTERVAL Values In The CSV File ... 423

Comma-Separated Values (CSV): Write To CSV File Adapter. .. 423

Comma-Separated Values (CSV): Read From CSV Socket Adapter. .. 428

Comma-Separated Values (CSV): Write To CSV Socket Adapter. ... 436

Database: Poll From DB Input Adapter .. 437

Retrieving a Subset of Records ... 441

Database: Read From DB Input Adapter .. 444

Database: Write to DB Output Adapter .. 449

Email: Send Email Out Adapter (SMTP) ... 452

Email: Java Email Output Adapter ... 453

Excel RTD Output Adapter .. 455

RTD Refresh Interval .. 455

Ganglia Input Adapter .. 456

JDBC Input Adapter ... 457

Tuple Descriptor File .. 459

JDBC Output Adapter ... 459

Connectivity Instructions for UNIX-like Operating Systems ... 462

JMS Input Adapter .. 462

JMS Output Adapter ... 464

JMS Adapter ... 466

Log File Reader Adapter ... 469

Installation... 469

Random Tuples Generator Adapter .. 470

Regular Expressions: Read From File Using a Regular Expression Adapter. 471

Regular Expressions: Read From Socket Using a Regular Expression Adapter. 476

RSS Feed Reader Adapter. ... 477

SNMP Get OIDs Adapter ... 479

Coral8 Datatypes vs. SNMP Datatypes .. 481

SNMP Set Adapter .. 482

SNMP Send V1 Traps Adapter ... 483

Coral8 Integration Guide

xvi

SNMP Send V2c Notifications ... 485

Sybase RAP Output Adapter .. 486

Windows Event Logger Adapter .. 486

Schema .. 486

XML: Read From XML File .. 487

XML: Read from XML Socket ... 491

XML: Write To XML File Adapter. ... 492

XML: Write to XML Socket... 495

XML: Write XML Over HTTP Adapter. .. 495

SNMP Adapter Information .. 497

Motivation ... 497

Configuring Your Environment for SNMP Adapters ... 497

Configuring the coral8-server.conf File for SNMP .. 498

Coral8 Drivers ... 501

Configuring Coral8 Drivers .. 501

Status Information ... 503

Status Information about a CCL Application .. 503

Status Information about CCL Compiler Settings .. 507

Status Information for a CCL Query ... 507

Status Information about CCL Stream Pairs ... 508

Status Information about a Workspace ... 509

Status Information about a Container ... 510

Status Information about a Manager ... 512

Daylight Saving Time and the Coral8 Time Zone Database .. 515

Background ... 515

Default Time Zones .. 516

Daylight Savings Time ... 516

Transitioning from Standard Time to Daylight Savings Time and Vice-Versa............................. 517

Duplicate Time Zone Abbreviations ... 517

Coral8 Time Zone Database ... 518

Lengths of Time .. 518

Date Rules ... 518

Field Descriptions ... 520

Table of Contents

xvii

Optional Fields - Daylight Savings ... 521

CCL Abbreviations ... 521

Index ... 523

1

Preface

This document covers a wide variety of topics that are related to "interfacing Coral8 with the

outside world". Topics include

 Data input and output

 Server Control, for example starting and stopping execution of a project (previously

called a query module), or getting the status of an executing project.

 Extending the Coral8 Server, e.g. with User-Defined Functions, which are functions that

you write and then can call from CCL statements.

 Embedding the server as a library inside another process.

Who This Integration Guide Is For

This guide is intended for new and experienced users of Coral8, as well as for software architects

who plan to use Coral8 as part of a larger system and need an overview of how Coral8 interfaces

with the outside world.

This guide assumes that you have already read the Programmer's Guide and have general

familiarity with the Coral8 Engine.

Portions of this guide assume that you have some familiarity with networking and operating

system concepts such as sockets and URLs.

How to Use This Guide

This manual is not intended to be read linearly.

The first several chapters of this guide provide conceptual overviews of topics such as adapters,

RPC (Remote Procedure Calls), and user-defined functions (UDFs) written in C/C++. The next

several chapters explain how to write software to do these tasks (e.g. write an adapter) using the

SDKs (Software Development Kits) that Coral8 provides. We recommend that you read the

relevant conceptual chapter and then the SDK chapter for the programming language that you

plan to use. For example, if you want to write an adapter in Java, then read the chapter that

describes the concepts behind adapters and then read the general portions of the Java SDK

chapter and the adapter-specific portions of that Java SDK chapter.

If you would like to view sample code, you will find many samples in the "sdk" directory under

the "coral8/server" directory. On Microsoft Windows systems, this directory is typically:

C:\Program Files\Coral8\Server\sdk

On UNIX-like operating systems, this directory is typically

Coral8 Integration Guide

2

/home/<userID>/coral8/server/sdk

Under this directory, you will find a subdirectory for each of the languages for which Coral8

supplies an SDK (including C/C++, Java, .NET, Python, and Perl).

3

Integrating Coral8 with External Systems

This document covers a wide variety of topics that are related to interfacing Coral8 with external

systems.

Topics in this manual include:

 Data input and output

 Coral8 adapters: adapters are software that convert data from external formats to

the Coral8 Server's native format and vice versa. Coral8 provides a set of adapters

that convert between the server's format and several common data formats. Coral8

also provides a set of SDKs to help you build a custom adapter if your data format

does not match any of the included adapters or native stream formats.

 Server Control

 Starting and stopping execution of a project (query module), getting the status of

an executing project, etc.

 Using command-line tools (such as the Coral8 CCL compiler) from outside

Coral8 Studio.

 Extending the Coral8 Server

 User-Defined Functions, which are functions that you write and then call from

CCL statements.

 Plugins, which allow you to call external programs in response to server status

events (e.g. such as a server process shutting down)

 Remote Procedure Calls (RPCs)

 Accessing Coral8 streams directly over the network

 Embedding the server as a library inside another process

The table below shows some of the capabilities of each of the Coral8 SDKs. Some terms used in

this table are defined later in the manual; you may wish to re-read this table after you have read

about those terms.

SDK

In

Process

Adapters

Out of

Process

Adapters

Dynamic

Queries

User

Defined

Functions

CSV

Message

format

XML

Message

Format

Binary

Message

Format

Operations

on

Message

"Bundles"

C/C++ + + + + + + + +

Java + + + + +

.NET + + +

Coral8 Integration Guide

4

Perl + +

Python + +

Coral8 uses the term "Coral8 Engine" to refer to the entire product, and uses the term "Coral8

Server" to refer to the program that processes queries and generates output. The term "Coral8

Engine" thus includes:

 Coral8 Server

 Coral8 Studio, which is a GUI tool that helps you create and edit queries, streams, etc.

 Coral8 SDKs, which help you create adapters, user-defined functions, and separate

applications that act as "clients" of Coral8 Server

 Coral8 command-line utilities, which do tasks such as compiling queries that are written

in the CCL query language

It's common to use Studio primarily when developing CCL applications, and use the command-

line utilities primarily in production. Of course, you may use either Studio or the command-line

utilities in either situation.

Coral8 Integration and Enterprise Software
Architecture

Coral8 Engine can be used as a largely stand-alone product or as part of a larger system. Coral8

Engine allows you to do the following to integrate the Engine into a larger system:

 Get data into and out of the Coral8 Server.

 Exert control over the server (start a query, stop a query, get status of a query, get status

of a server) from outside the server.

 Extend the server, e.g. by adding new functions that can be called from CCL queries.

 Get data from, or send data to, a database server.

 Embed Coral8 Server as a library inside another process.

This document provides information on each of these topics.

The first few chapters of this document focus on concepts. These will tell you how Coral8

Engine can connect to the outside world (e.g. get data in and out) and how it can be integrated

into a larger system. These are the chapters of most interest to architects.

Software Development Aspects of Coral8 Integration

Developers will usually be most interested in the implementation details, such as the following:

 which languages (e.g. C, Java, .NET, Perl) Coral8 provides SDKs for;

Integrating Coral8 with External Systems

5

 which functionality is in each SDK, e.g.

 input/output,

 control,

 embedability,

 User-Defined Functions

This document provides information on each of these topics.

The first few chapters of this document focus on concepts. These will tell you what a Coral8

Engine is capable of doing. The remaining chapters focus on the "how", e.g. how to write

programs that will send data to the server or receive data from the server.

If you know that you will focus on a specific task (e.g. getting data in and out of the server), then

you may skip the detailed "how to" sections for other topics.

Other Interfaces to Coral8

Coral8 Server also supports other useful interfaces. For example, it provides a status stream that

allows you to monitor servers and queries. It also provides an ability to control the Coral8 Server

with an API based on SOAP (Simple Object Access Protocol).

Other Documents that You May Find Helpful

If you are interested in running multiple copies of the server, either to enhance reliability by

having backup servers ("High Availability") or to enhance performance by doing more parallel

processing ("parallel queries"), see the Administration Guide.

If you want to know how to read data from (or write data to) database servers and use that data in

Coral8 Server (without writing your own adapter), see the discussion of database subqueries and

the Database Statement in the Coral8 CCL Reference.

7

Data Streams and Messages

This chapter explains streams, messages, and other key concepts.

To create adapters (which send data to, or read data from, the server), you need a good

understanding of data streams and messages. We'll start by defining key terms that we use. If you

have already read the Programmer's Guide, some of these terms will be familiar to you. We list

them here so that we can "build up" from simple concepts to more complex concepts.

Definitions

Field

A field holds a single piece of data, such as a salary, or a person's last name, or a timestamp (e.g.

2006-07-01 15:00:00.000000). For some data types, such as XML, the content may be more

"complex", but to Coral8 Server it's still a single piece of data.

Because database tables and Coral8 windows can be thought of as arranging data in rows and

columns, we often casually use the terms "column" and "field" interchangeably.

Note that a field may contain a NULL value to indicate that the value is unknown.

Message / Row

A message, also called a "row" or a "tuple" or an "event", is very similar to a row of data in a

database table. A row is a group of fields that all have data about the same "thing". For example,

a row may describe a single stock trade, and may contain the price at which the stock was sold,

the number of shares sold, and the stock name or stock symbol. If there are multiple stock trades,

each will be described in a separate row.

Most messages match the description given above. However, there are also "control" messages

(as opposed to "data" messages). Control messages are described later.

Messages "travel" in a stream (defined below).

Row Timestamp

In a Coral8 Engine, each row contains a "row timestamp" that is used to help ensure that rows

are processed in order. If the row contains information about a particular event (such as a stock

trade), the row timestamp is typically the date and time that the event occurred (such as the time

that a stock trade was completed). Row timestamps are stored using the Coral8 TIMESTAMP

data type, which means that the time information is stored with a precision of 1 microsecond.

Coral8 Integration Guide

8

Row timestamps are not necessarily unique. Two rows (in the same stream or in different

streams) may have the same row timestamp.

Schema

Every row in a stream has the same structure, or "schema". The schema comprises the column

names, the column data types, and the order in which the columns appear.

For example, in a StockTrades stream, the first column might be a STRING that contains a stock

symbol; the second column might be a FLOAT that contains the price per share; and the third

column might be an INTEGER that contains the number of shares bought or sold.

Multiple streams may use the same schema. One stream may not use multiple schemas.

The schema defined by the user does not explicitly include the row timestamp, but all rows will

have a row timestamp as a "hidden" field.

Tuple Descriptor

A "Tuple Descriptor" stores information about the schema of a stream, and thus about the

schema of the rows in the stream. Adapters written using certain Coral8 SDKs use a Tuple

Descriptor to help the adapter work properly with the stream.

A Tuple Descriptor is created by compiling a file that contains the schema definition.

Tuple Descriptors are documented in more detail later in the manual, when we document how to

publish and subscribe to streams.

Data Stream

A data stream (usually called just "stream") "carries" rows from one place to another, e.g. from

one query to a subsequent query, or from an adapter to the server.

A stream is associated with a particular schema, and every row in the stream must match that

schema.

Stream URI

Each stream has a unique URI (Uniform Resource Identifier), which serves as "address" to

enable software to connect to that stream. For example, when an adapter connects to a stream,

the adapter needs to know the stream's URI.

Some sample URIs are below:

 ccl://localhost:6789/Stream/Default/Stocks/InStream1

 ccl://server1.admin.coral8.com:6790/Stream/Default/RFIDTracers/InStream

1

Data Streams and Messages

9

A stream URI may be either a "physical" URI or a "logical" URI.

 A "physical" URI begins with "http://" and refers to the name or IP address of a particular

machine.

 A "logical" URI begins with "ccl://" and must be translated into a physical (HTTP) URI

before a connection can be made.

Most of the time, users will use CCL URIs.

To see the URI of a stream, go into Coral8 Studio, click on the stream, and then select the

"Properties" tab for the stream. The tab will specify the "Stream URI" (the logical URI) and the

"Http URI" (the physical URI).

See Stream URIs for a more detailed discussion of CCL vs. HTTP URIs.

Publishing and Subscribing

Messages are written to a stream and then read from that stream.

When a message is written to a stream, we call that "publishing". The publisher may be a CCL

query, which writes the output of the query, or an adapter, which gets data from an external data

source and then writes that data to the stream.

When a query or adapter connects to a stream to read the messages sent on that stream, we call

that "subscribing".

Each stream may have zero or more subscribers. Each subscriber to a stream receives a copy of

all messages sent to that stream from the time that the subscriber subscribes to the stream until

the time that the subscriber unsubscribes. (Unless the Guaranteed Delivery feature is used,

messages published before the subscriber subscribed are not sent to the subscriber.)

Each stream may have zero or more publishers. If there are multiple publishers, and if the

publishers specify the row timestamps in the rows, then the rows need to be synchronized, i.e.

arrive at the stream's destination in the proper order. There are at least two ways to do this. If the

publishers synchronize with each other, then they can simply insert the rows in the proper order.

If the publishers do not synchronize with each other, then set the appropriate stream properties

("Maximum Delay", "Messages can come out of order", and "Maximum out of order delay") to

tell the Coral8 Server to sort the incoming messages and process them in order.

Note that synchronization applies both within a stream (if there are multiple publishers to that

stream) and across multiple streams.

For more information about stream synchronization and out-of-order messages, see the CCL

Programmer's Guide.

The most common way to publish to, or subscribe to, a stream is to create an adapter using one

of the Coral8 SDKs.

Coral8 Integration Guide

10

It is possible to use the URI to publish directly to, or subscribe directly to, a stream over the

network without using an adapter. See Connecting to Streams over a Network.

Note that you can only read and write to a stream while the project (query module) that contains

it is running.

Windows

If you have already read the Programmer's Guide, then you know that a window is a stored group

of rows that has a retention policy -- such as "KEEP 10 MINUTES" or "KEEP 50 ROWS".

A query may operate on one or more windows, as well as on a stream. This allows you to relate a

new row to rows that arrived earlier. It also allows you to perform aggregate functions (e.g.

SUM(), AVG(), etc.) on all the data accumulated in a window.

Below is an example of a query on a window.

-- Create the window.

CREATE WINDOW StockTradeHistory

SCHEMA ...

KEEP 8 HOURS;

...

-- Query: Process data from "history" window and generate output.

INSERT INTO OutputStream...

SELECT StockSymbol, AVG(Price)

FROM StockTradeHistory;

Unless the window accumulates messages indefinitely (i.e. is defined with a KEEP ALL clause),

rows from the window will eventually expire and be deleted from the window.

User-Defined Functions

The CCL language contains many built in functions, such as SQRT(), AVG(), etc. You can write

your own functions and call them from CCL; we call these functions User-Defined Functions

(UDFs). As with built-in functions, you can pass in values from the current row, and you get

back a return value from the function.

You may write UDFs in either C/C++ or by using CCL's CREATE FUNCTION statement. Here

in the Integration Guide, we describe only C/C++ UDFs. For information about the CCL

CREATE FUNCTION statement, see the Reference Guide.

C/C++ UDFs are described in more detail later in this manual; see Coral8 C/C++ SDK.

Windows and Expiring Messages

Advanced Topic: Expiring Messages

Data Streams and Messages

11

When rows are deleted from a window, some queries may need to be re-evaluated. For example,

if you have a query that calculates the sum of the prices in a window, then when a row expires,

the price in that row should be subtracted from the sum of the prices in the window. Thus if you

have a query on a window, each row that arrives in that window may generate two output

messages -- one when the row arrives, and one when the row expires.

Let's look at an example. First, let's create two windows and a set of queries in which the output

of one window is fed to another window.

CREATE WINDOW StockTradeHistory

SCHEMA ...

KEEP 8 HOURS;

-- Query #1: Insert source data into "history" window.

INSERT INTO StockTradeHistory

SELECT *

FROM NYSEStockTrades;

-- Query #2: Process data from "history" window and

-- generate output.

INSERT INTO OutputStream...

SELECT StockSymbol, AVG(Price)

FROM StockTradeHistory

KEEP LAST PER StockSymbol GROUP BY StockSymbol;

As you can see, the output of the last query depends upon the contents of the StockTradesHistory

window. When a new row arrives in the NYSEStockTrades stream and is put into the

StockTradeHistory window, we should calculate a new average price, and when a stock trade's

information expires from the StockTradeHistory window, the window should (and will) calculate

a new average price (based on the remaining rows in the window).

If this window directly feeds another window, then when a row from this window expires, the

window sends a "delete" message to the second (downstream) window, telling that window to

delete its copy of the row.

When one window sends another window a "delete this row" notice, we refer to the notice as a

"negative tuple" (because it cancels out the original "positive tuple").

When a User-Defined Function is called from a CCL statement, the function may be passed

either a positive tuple or a negative tuple. If you write your own output adapter to read rows from

("subscribe to") a stream, your adapter may receive negative tuples and will need to handle them

properly. In many cases, all you need to do is determine that the tuple is a negative tuple and

then discard it, but in some cases your adapter (like a query) may want to pass on or act upon

that negative tuple. To learn how your adapter can recognize that a tuple is negative, see User-

Defined Aggregate Functions in the C/C++ SDK chapter.

Coral8 Integration Guide

12

Bundles

Advanced Topic

So far, we have described Coral8 streams as carrying one row at a time. However, there are

exceptions to this. In some cases, a particular "event" (arrival of a row) may cause multiple

output rows, and those rows may be grouped into a "bundle". A bundle is a set of 2 or more data

messages that are conceptually part of the same operation (e.g. the output of a join, OUTPUT

EVERY, etc.) and are thus grouped together. Your output adapter may see bundles and has the

opportunity to process bundles differently from individual messages.

(Note that bundles apply only to adapters, not UDFs.)

Here are two situations in which bundles may occur.

 Suppose that you have a query that joins a stream to a window. In some cases, a row that

arrives in the stream may match multiple rows in the window, and for each of those

matches the join query will produce an output row. In that case, all the output rows for a

given input row will not only have the same row timestamp, but also will be considered

part of a "bundle", since they were all generated by the same event (the same arriving

message/row).

 As a second example, consider what happens when you use the XML "shred" command.

A single XML value may contain multiple elements, and some operations on that XML

value may generate multiple rows (one per element). In this situation, all the rows

generated from that one XML input value will be "bundled" together.

Note that bundling is not the same as aggregating. An aggregate function, such as AVG() or

SUM(), produces a single output from multiple input rows. For example, if I have 100 stock

transactions and I calculate the average price, I get only 1 output (the average price). (If I do the

calculation again later, I'll get another output, of course, but for any single arriving row, I do the

calculation once on the entire window, with all its rows, and generate a single output.) If I

perform an operation that creates a bundle, that bundle may have multiple rows, not just 1 row,

even though the entire bundle was created based on a single event or arriving row. Each of the

rows in a bundle is a discrete row, and any query downstream will see (and process) each of

those rows.

Note that although all messages in a bundle have the same row timestamp, not all messages with

the same row timestamp are necessarily in the same bundle.

Note also that a bundle may contain any type of message (e.g. negative tuples as well as positive

tuples) EXCEPT other bundles. In other words, there is no such thing as a nested bundle.

In some situations, your output adapter may need to recognize that messages have arrived as a

bundle and may need to extract individual messages and possibly process the bundled messages

in a special way.

Data Streams and Messages

13

The details of extracting messages from a bundle are specific to each SDK (e.g. the Coral8 Java

SDK vs. the Coral8 C/C++ SDK) and are discussed in more detail later.

SDK

A Software Development Kit (SDK) is a set of software (library files, sample source code, etc.)

that helps you write other software, such as input and output adapters, and User-Defined

Functions.

Coral8 supplies SDKs for various programming languages, including C/C++, Java, .NET. This

document contains a chapter about each of these SDKs.

15

Adapters

This chapter provides an overview of adapters.

Streams and Adapters

An input adapter reads data from an external data source, and puts the data into a Coral8 stream.

The input may be read from a file, a socket, a database server, an RSS feed, etc.

The data is then used in queries and the output of those queries is written to an output stream.

An output adapter reads data from the Coral8 output stream, converts the data to an appropriate

external data format, and writes the data to the data destination. The output may be written to a

file, a socket, a database server, an email program, etc.

The basic flow of data in a Coral8 Engine is thus:

Coral8 provides adapters that will read data from an external data source and write it to a Coral8

stream (or read from a Coral8 stream and write to an external data destination). For example, the

ReadFromCSVFile adapter (supplied by Coral8) reads data from a file of Comma-Separated

Values (CSV) and publishes the data to a stream. The Coral8 Server does not directly read data

from the input file; the server reads only from data streams. The adapters supplied by Coral8 are

described in Coral8 Adapters.

Some input and output adapters supplied by Coral8 can be used from inside Coral8 Studio. To

use these, you typically do the following:

1. Right-click on the stream to which you wish to attach an adapter;

2. Choose "Attach Input Adapter" or "Attach Output Adapter";

3. Select the appropriate adapter type (such as "Read from CSV file");

4. Fill in the appropriate parameters for that adapter. For example, if you attach the adapter

that reads from a Comma-Separated Values (CSV) file, you will specify the name of the

file to read from.

Coral8 Integration Guide

16

If none of the adapters supplied by Coral8 will fit your needs, you may write your own adapter.

Your adapter, like a Coral8-supplied adapter, will read (or write) data in a format appropriate for

your application, and publish the data to (or read the data from) the Coral8 Server.

Coral8 provides SDKs (Software Development Kits) that allow you to write input and output

adapters in the following languages:

 C/C++

 Java

 .NET (supported on Microsoft Windows only)

 Python

 Perl

In-process vs. Out-of-process Adapters

An adapter can run as either a separate process or as part of the Coral8 Server. An adapter that

runs as a separate process is called an Out-of-process adapter. An adapter that runs as part of the

server is called an In-process adapter.

(Out-of-process adapters were previously called "Unmanaged adapters", and In-process adapters

were previously called "Managed adapters"; you may still see those terms used occasionally.)

In-process adapters generally run faster because the server can get data from (or to) the adapter

with less overhead. In-process adapters are started by the server when the server starts the

corresponding project (query module). The adapter is recognized by Coral8 Studio, and from

inside Studio you may attach the adapter to a stream by selecting the adapter from a drop-down

list of adapters. A disadvantage of in-process adapters is that if the adapter crashes, it will

probably bring down Coral8 Server.

Out-of-process adapters deliver rows more slowly than in-process adapters do, are not

recognized by Studio, and must be started manually (rather than by the server), but are safer

because an error that causes the adapter to crash will not take down Coral8 Server with it. Out-

of-process adapters can run on a different computer from the computer that the server runs on.

Currently, in-process adapters can be written only in C/C++. You can write out-of-process

adapters in other languages, as well as C/C++.

 In-Process Adapter

Out-of-

Process

Adapter

Speed of row delivery
Generally faster because the

server can get data to and from

Generally

slower.

Adapters

17

the adapter with less overhead.

Started by Server User

Recognized by Coral8

Studio
Yes No

Can a crash in the

adapter cause Coral8

Server to crash

Yes No

Can run on a different

computer than Coral8

Server

No Yes

Languages C/C++

C/C++

Java

.NET

Python

Perl

Coral8 Adapters vs. User-written Adapters

Coral8 supplies several input and output adapters. (See Coral8 Adapters for a list.)

If these do not meet your needs, you may write your own adapters. Coral8 provides several

SDKs to allow you to write an adapter. These SDKs include:

 C/C++

 Java

 .NET

 Perl

 Python

All of these SDKs allow you to write out-of-process adapters. Currently, in-process adapters can

only be written in C/C++.

Creating Your Own Stream Adapter: Overview

This section provides an overview of how to write your own stream adapter. You may need to

write your own adapter if you have a data source that is not supported by the adapters provided

by Coral8.

Coral8 Integration Guide

18

Key Tasks: Conversion and Communication

Adapters perform two key tasks: conversion and communication.

An input adapter reads data from a source that is external to the Coral8 Engine (e.g. from a data

feed, from a message bus, from a file, from a database server, or from a sensor), converts that

data into a representation appropriate for a particular SDK being used, and publishes the data to a

stream by using appropriate SDK function calls. The stream, in turn, sends the data to the engine.

Similarly, for output, the engine sends data to a stream; the stream sends the data to an output

adapter; and the output adapter converts the data to the desired external format and writes it to a

data destination, such as a file.

The basic flow of data in a Coral8 Engine is thus:

input adapter -> stream -> engine -> stream -> output adapter

Adapters may do such things as: converting data from sensors or embedded systems, converting

data read from or written to database servers, reading log files, etc.

Conversion

Your adapter must convert between the data format(s) appropriate for your application and the

representation of rows as defined by the SDK you are using.

You should be familiar with your application's data formats, and you should be able to extract

the data into rows and fields.

If your adapter is an input adapter, then once you receive a row of data, you call SDK functions

to construct a new row, set its timestamp, set its fields, and publish it to the stream.

If your adapter is an output adapter, then once you receive a row of data, you call SDK functions

to read fields from that row and send the information to your data destination.

Communication

Your adapter will communicate by sending data to (or reading data from) a stream.

Out-of-process Adapter

If your adapter is an out-of-process adapter, then the adapter must do the following to send data

to (or receive data from) the server:

1. Acquire an "address" (URI) that will uniquely identify a specific stream and tell the

communication layer (provided by Coral8) how to find that stream. The address may be

hard-coded in your program or passed as a parameter.

2. Open a connection to the stream. The SDKs provide methods to do this.

Adapters

19

3. Write (or read) the desired data. Typically the write (or read) operation is in a loop; the

adapter will keep multiple rows of data. The SDKs provide methods to send and receive

rows.

4. Close the connection.

Out of process adapters communicate with the Coral8 Server through the network layer.

Note: If the project (query module) is not running, then the stream won't exist, and the out-of-

process adapter won't be able to connect to it.

Subscribing with Filters (Predicates)

If you are subscribing to a stream or master window that has been defined with the

FILTERCOLUMNS property, you can append a query to the end of the URI to specify values

for those columns in the subscription. With this kind of subscription, you only receive rows that

have values in the filter columns that match the values you specify in the query. The format is

stream_uri?X-C8-Filter=value1, value2, ..., valueN. The values you specify here are for the

columns listed in the FILTERCOLUMNS property of the stream or window definition, and must

be in the correct order.

For more information about the FILTERCOLUMNS property, see "Create Stream Statement"

and "Create Window Statement" in the Coral8 CCL Reference. See the specific SDK references

elsewhere in this guide for information about the functions and methods available. Some of the

SDKs have convenience functions to append the query string to a URI, while others simply

accept a URI with the appended query as the parameter to the function that establishes the

subscription.

If you are subscribing to a master window and want to mirror the contents of that window, you'll

need to watch for negative messages (tuples) and remove the existing positive message with an

ID that matches that of the incoming negative message.

Subscribing with Filter Expressions (Arbitrary Predicates)

You can subscribe to any stream or master window and filter the results, even if the stream or

window has not been defined with the FILTERCOLUMNS property. With this kind of

subscription, you only receive rows for which the expression you specify in the query evaluates

to True. The format is stream_uri?X-C8-FilterExpr=expression, where expression is a standard

CCL Boolean scalar expression, such as the following:

ccl://localhost:6789/Stream/..../Foo?X-C8-

FilterExpr=Symbol%3dIBM+AND+Price>10

Note that the expression is URL-encoded ("%3d" is a URL-encoded equal sign, for example),

which may be handled for you, depending on the SDK call you use.

Also note that you cannot include any of the following in the expression:

Coral8 Integration Guide

20

 Aggregator functions, such as SUM() or COUNT()

 Stateful operators like PREV()

 FIRST / LAST / INDEX operators

 CCL variable references

 GETTIMESTAMP()

 GET__COLUMNBYNAME()

 XMLPATTERNMATCH()

 Functions used within XMLTABLE()

However, you can include user-defined scalar functions and the zero-argument variant of

GETTIMESTAMP().

You can also combine filters and filter expressions when subscribing to a stream or master

window defined with the FILTERCOLUMNS property, as in the following:

ccl://localhost:6789/Stream/..../Foo?X-C8-Filter=NYSE,IBM&X-C8-

FilterExpr=Price>10

See the specific SDK references elsewhere in this guide for information about the functions and

methods available. Some of the SDKs have convenience functions to append the query string to a

URI, while others simply accept a URI with the appended query as the parameter to the function

that establishes the subscription.

In-process Adapter

If your adapter is an in-process adapter, it will communicate with the server via function calls.

Input Adapter Algorithm (Out-of-process)

This shows the algorithm of a typical out-of-process input adapter.

1. Get the URI of the stream to write to.

2. Connect to that stream.

3. Connect to the input data source (this is specific to the application).

4. Read a row of data from the data source.

5. Instantiate a "row" (tuple/message) and fill its fields with the values received.

6. Send the row.

7. Disconnect.

Naturally, steps 4-6 are typically done in a loop that is executed once for each incoming row of

data.

Note that if the project (query module) is not running, then the stream won't exist, and the out-of-

process adapter won't be able to connect to it.

Adapters

21

Input Adapter Algorithm (In-process)

Currently, in-process adapters can only be written in C/C++. An overview of writing an in-

process adapter in C is in Algorithm Overview.

Output Adapter Algorithm (Out-of-process)

This shows the algorithm of a typical out-of-process output adapter.

1. Get the URI of the stream to read from.

2. Connect to that stream.

3. Connect to the output data destination (this is specific to the application).

4. Wait for messages (rows) from the input stream.

5. When you receive a message, read the data and write whatever is appropriate to the

output destination.

6. Disconnect.

Output Adapter Algorithm (In-process)

Currently, in-process adapters can only be written in C/C++. An overview of writing an in-

process adapter in C is in Algorithm Overview.

Adapter APIs

Coral8 provides APIs (Application Programmer Interfaces) that allow you to implement in-

process and out-of-process adapters. APIs are available for:

1. In-process adapters in C/C++

2. Out-of-process adapters in C/C++

3. Out-of-process adapters in Java

4. Out-of-process adapters in .NET

5. Out-of-process adapters in Perl

6. Out-of-process adapters in Python

Additional APIs for other programming languages may be added in the future.

Subsequent chapters describe example adapters and instructions for compiling and using them.

Starting and Stopping Adapters

In-process adapters are started automatically by the server.

Coral8 Integration Guide

22

Out-of-process adapters must be started by the user.

The order in which adapters are started is important. Since adapters connect to streams, the

adapters must be started after the streams already exist (i.e after the project (query module) has

started), or the adapters must be able to handle the error that they get when the stream doesn't

exist and must then wait and re-try to connect to the stream. In addition, if the input adapter starts

inserting data before the output adapter is ready, some of the data may "disappear" (never show

up in the output). Thus we recommend that you start projects and adapters in the following order:

1. project (query module)

2. output adapter

3. input adapter

If you have written your output adapter to re-try to connect to the stream, then you can start the

project and the output adapter in either order.

If you are using Guaranteed Delivery, you can start the queries and adapters in any order.

However, to minimize the chance of overloading any buffers, it is best to use the order shown

above.

23

Engine Control: Overview

This chapter gives an overview of various "control" tasks, including:

 Create a Workspace in which you can load a query module.

 Delete a workspace

 Start the execution of a CCL program

 Dynamically add ("register") queries and streams

 Stop the execution of a CCL program

 Monitor servers and queries

These can be done via Studio, via command-line tools, and via an API in certain Coral8 SDKs.

Before we explain how to do these tasks, we will define some terms and explain some concepts.

Definitions

This section contains definitions of key terms, including:

 Query / Statement

 Project / Query Module

 Workspace

Query / Statement

Coral8 queries are written in CCL, the Continuous Computation Language, which is based on the

SQL language used in many database servers. This manual generally uses the terms "query" and

"statement" synonymously.

Project / Query Module

CCL statements are stored in files with the extension ".ccl". A .ccl file may contain zero or more

CCL statements, along with comments. Each .ccl file is called a "query module".

When a query module is compiled and executed, all of the statements in the query module are

compiled together and stored in the same file (which has the extension ".ccx"). The server

executes the .ccx file as a whole, and thus all the statements in the query module are executed

together.

Query modules may be re-used simply by loading them multiple times. For example, if you have

query modules A, B, and C, you may load a copy of C into both A and B. (If you load more than

one copy of module C into module A, you will need to use a different name for module C each

Coral8 Integration Guide

24

time that you load it into A. If you are using Studio, Studio will automatically append a unique

suffix (e.g. "_1", "_2", etc.) each time that you load an additional copy of A into B.)

Note that since there is still only one underlying module, even if you load multiple

copies of it, changes to one instance of the module will also affect the other instances.

A query module that is not nested inside any other query module is called a project.

A module nested inside another module is called a sub-module.

If a project contains other modules, then when the project is compiled, all of the modules within

it are compiled at the same time and their compiled code is stored in the same .ccx file as the

project's code.

A project is sometimes called a program or application (the terms are synonymous).

Workspace

Before a program can be run, it must be loaded into a workspace. Workspaces allow you to

create groups in which all query modules are related in some way. The grouping is up to you. For

example, you might create the groups based on projects, or based on individual developers, or

based on some other criteria that you choose.

If more than one person loads the same query module into Studio, then makes changes

and saves it, the last person to save will overwrite any changes that other people made.

Using separate workspaces does NOT prevent this problem. Workspaces provide

separation within the server, but not within the file system. Use a source code control

system to avoid conflicting changes to a query module.

Introduction

New users typically use Coral8 Studio to do tasks such as create a project, compile it, load it,

start running it, stop running it, etc. These tasks can also be done by command-line utilities.

Many of these tasks can also be done from inside a program by calling API functions provided

by some of the Coral8 SDKs.

The following environments provide some or all of the interface functionality needed to deploy

applications on Coral8 without using Coral8 Studio:

 Command-line tools (c8_server, c8_compiler and c8_client)

 Java SDK

 Microsoft .NET SDK

 C/C++ SDK

 Perl SDK

Engine Control: Overview

25

 Python SDK

A Note About ADL Files

Before compiling, the compiler reads .adl (Adapter Definition Language) files, which may be

provided by Coral8 or may be created by customers who write their own input and output

adapters. If the .adl files are not in the directory ../plugins (or in any of the other locations that

the compiler expects -- see Adapter Definition Language for details), then the compiler may give

an error message that includes "Cannot locate Plugins folder". To prevent this problem, either

run the compiler from the "server/bin" directory or configure your system so that the compiler

can find the plugins directory.

Commands

Most developers who build Coral8 applications will use the Coral8 Studio to create and execute

query modules on Coral8 Server. Coral8 Studio provides an easy-to-use graphical user interface

for editing, debugging and testing queries. Coral8 Studio automatically handles most of the

details of interfacing the various components of the Coral8 Engine for the developer.

However, some developers may need to create and deploy their Coral8 applications from either

another development environment (such as a scripting or programming language) or directly

from the command line. Although these approaches require more detailed knowledge of the

interfaces between the Coral8 components, the flexibility that is provided may offset this modest

disadvantage.

In order to deploy a Coral8 application, you must be able to do the following things:

 Start Coral8 Server

 Access a running Coral8 Server

 Create a workspace on the Server

 Create a query module and its associated schema files

 Compile the query module using the Coral8 Compiler

 Execute the query module on the Server

 Stop the query module on the Server

 Stop the Server and clean up its resources

These tasks are executed using programs described later in this manual. Some Coral8 SDKs

include function or methods to do some of these operations, such as compiling and executing a

query module.

Coral8 Integration Guide

26

Creating Streams and CCL Statements from Inside a
Program

This section explains how to create streams and CCL statements from inside a program. For

example, you might want to write a Java program that can dynamically create streams and

queries on those streams.

Motivation: When to Dynamically Create Queries and Streams

The ability to dynamically run and stop CCL statements and streams is useful if you have a

system that is changing. For example, consider an application that monitors the security of a

building. The input events come from door sensors, key-card readers, smoke detectors, etc. The

output events include alerts to the security personnel, the fire department, etc. You need different

queries on work days than on non-work days (e.g. holidays and weekends). Some queries need to

be run continuously all day every day, while others should be activated and deactivated by

software (automatically or via user intervention) based on the time of day and the day of the

week.

Our building security application might contain the following:

 Smoke detector alerts. We monitor the smoke detectors and we send an alarm to the fire

department if smoke is detected. The query(s) and streams related to smoke detectors are

not dynamic; they are never "turned off".

 Side-door alerts. During all hours, we send an alert to the on-site security guards if any

"side doors" (any doors other than the main entrances) are opened AND a valid electronic

badge was not used to open the door. (We require that people use their badge to exit, as

well as to enter, outside normal working hours.)

 Front-door alerts. During non-working hours, we send an alert to the on-site security

guards if a front door is opened AND a valid electronic badge was not used to open the

door. During working hours, we do not send alerts when the front door is opened.

We can model our system as shown below. There are 3 input sources, 3 queries, and 2

destinations for alerts:

Engine Control: Overview

27

We would like the Smoke Alarm input stream, the Fire Department output stream, and query Q1

to be running all the time. We will use Coral8 Studio to create a project that contains these, and

then we will start that project running and leave it running indefinitely.

We would also like the Side Door input stream, the Guard output stream, and query Q2 to be

running all the time. Therefore, these will be left running indefinitely.

We would like the Front Door input stream and the query Q3 to be running only outside of

normal working hours. We will use a separate program to register them (create and run them) at

appropriate times. We will stop running them during periods when they are not needed.

Background

As you know, you can use Studio to create a project (query module) that contains CCL

statements and streams.

A CCL statement in one project (e.g. project "P1") may operate on data produced in another

project (e.g. "P0") and send data to yet another project (e.g. "P2"). When you use Studio to set up

data transfers between projects, you "bind" a stream in one project to a stream in the other

project. Binding one stream to another means connecting the two streams. If the streams are in

the same project, binding merely means providing another alias for one stream. For example, if

project P1 wants to read from stream S0 in project P0, then you'll create a stream S1 in project

P1 and bind stream S1 to stream S0.

Coral8 Integration Guide

28

After you've bound the streams, any CCL statement in project P1 that wants to read stream S0's

data can simply read from stream S1 to get the data.

The same types of operations (creating CCL statements, creating streams, binding streams, and

then running those statements and streams) may be done not only from inside Coral8 Studio, but

also from inside a program that you write. We call this "registering a query", and conceptually it

is not much different from creating a project in Coral8 Studio. In the rest of this section, we will

give a conceptual overview of how to register a query. The specific details, including the

functions or methods that you call to register a query in a particular SDK, will be explained in

the chapters that document the APIs. Currently, query registration is supported in the following

SDKs:

 Coral8 C/C++ SDK

 Coral8 Java SDK

 Coral8 .NET SDK

We will refer to the function or method that registers a query as the "registerQuery() method",

although the exact name may vary, depending upon which SDK you are using.

Dynamically Registering Queries and Streams

Registering a query includes:

 creating the streams specified in the registered query;

 creating the statements specified in the registered query;

 compiling the CCL statements (note that, when we refer to "registering a query", the

word "query" refers to zero or more CCL statements, not necessarily exactly 1

statement);

 loading the query into the server (the query name and the workspace that the query goes

into are specified as part of the registerQuery() call);

 connecting ("binding") the stream names in the CCL statements to the existing streams

(i.e. to the URIs of those streams), or creating new streams;

 starting execution of the query;

Engine Control: Overview

29

The query name must be unique within the specified workspace. The registered query is uniquely

identified by the workspace name and query name, both of which are passed as part of the

registerQuery() call.

A registered query may be stopped later.

Note that there is no separate "start" method/function call. The query is started at the time that it

is registered. After you stop it, there is no start/restart call; the only way to restart it is to re-

register it. (If you stop the query before you re-register it, you do not have to worry about having

duplicate names.)

A registered query may contain 0, 1, or more CCL statements, and may contain 1 or more

streams. Typically, your registered query will contain at least 1 CCL statement and at least 2

streams (at least one for input from another project and at least one for output to another project).

The streams for input and output to another project will be bound to streams in the other

project(s). Your registered query may also contain streams that are not bound. For example, you

may have additional streams that are local streams, used only to convey data from one CCL

statement in the registered query to another statement in the same registered query. The diagram

below shows proper usage of the register query capability in a simple case:

This example illustrates most of the key features and configuration elements of dynamic query

registration. As you can see, we have created a project P1 that contains two streams. In this

particular example, one of these streams is fed from an out-of-process input adapter, and the

other stream writes to an out-of-process output adapter. When the query is registered, its CCL

statement uses two streams that are bound to the streams in project P1.

Note that project P1 contains only streams (no CCL statements).

It is important to understand that OutStream B is actually declared as an input stream when it is

created. (This is explained in more detail later.)

Coral8 Integration Guide

30

Below is a more complex example, which shows multiple CCL statements in the registered

query. Each of these statements is part of a chain with a unique combination of streams and

statements, yet the diagram shows that in each case the registered query is structured the same

way -- with a CCL statement(s) and input and output streams. In 3 of these examples, the input

and output streams of the registered query get their data from streams in another project, while in

1 of these examples the input and output streams get their data directly from out-of-process

adapters. The registered query and project P1 fit together like jigsaw puzzle pieces -- the

registered query "plugs in" and uses the streams that were created in Project P1.

A dynamically registered query may contain 0, 1, or more CCL statements. In this example, the

dynamically registered query contains multiple CCL statements (CCL1, CCL2, and CCL3). Each

Engine Control: Overview

31

CCL statement in the registered query uses streams that are bound to a stream in the project P1.

(Note that project P1 contains ONLY streams; it has no CCL statements of its own.)

The streams in project P1 may get their data from (and write their data to) different sources:

 from in-process adapters that are attached directly to the streams;

 from out-of-process adapters;

 from streams/queries in other projects (such as project P0).

Note that not all streams in a registered query need to be bound to streams in a project. The

registered query may contain local streams, and may also contain input/output streams that are

not bound. Those unbound input/output streams may be written to and read from by out-of-

process adapters, and of course may be referenced by CCL statements in the registered query.

To use dynamically registered queries, do the following:

1. Create a project that contains only streams (no queries). Your dynamic query will bind to

these streams and read and write to them. This project corresponds to project P1 in the

diagram above. When you create the streams in this project, make sure to create all of

them as "input" streams. (We'll explain this in more detail later.)

2. If some of these streams need to have input and output adapters attached to them, then

attach those adapters.

3. If some of those streams will get their data from (or write their data to) another project(s)

(e.g. P0 in the diagram), then create those other project(s).

4. Start execution of all of the projects, including P1 of course. You must start executing the

project(s) BEFORE you register the query(s). (When you register a query and bind its

streams to the pre-existing streams, the pre-existing streams must already be running so

that the binding operation can look up their schema information and apply that schema

information to the streams that will be bound in the registered query.)

5. If some of the streams in project P1 (or other projects, e.g. P0) will read from or write to

out-of-process adapters, then start those adapters. (We suggest starting the output

adapters first, then the input adapters, so that no data is processed before the output

adapters are ready for it.)

6. Run the program that dynamically registers the queries and binds to the streams in project

P1.

Why do we create all the streams in project P1 as input streams? In diagram2, it's easy to see

why streams InStream1 and Instream2 are input streams -- they are fed by input adapters (in-

process or out-of-process). InStream3 is an input stream from the perspective of Project P1 -- it

receives input from another project (P0). It's not as obvious why streams OutStream1,

OutStream2, and OutStream3 are created as input streams rather than output streams. The reason

is that they, just like InStream1, receive data from outside the project that they are in. For

example, output stream 2 gets input from the stream OutStream D (attached to CCL2), which is

Coral8 Integration Guide

32

not a part of project P1. Thus, although OutStream2 is attached to an output adapter and writes to

that adapter, OutStream2 must be categorized as an input stream. OutStream2 is BOTH an input

stream and an output stream as far as project P1 is concerned. All streams that receive input from

outside their own project MUST be created as input streams, even if they do output as well as

input.

Please follow the guidelines listed below. Note that currently the product does not enforce all of

the required restrictions by giving error or warning messages.

Client-side vs. Server-side Compilation

Compilation of a CCL project may be done on either the server machine or the client machine.

Each method has advantages and disadvantages. Most of the differences are related to either

resource consumption or security.

In general, client-side compilation is preferred if the server is heavily loaded and if registering a

query is done frequently (which adds to the server's workload). In general, server-side

compilation is preferred if the client nodes are intended to be "lightweight", using minimal disk,

memory, or CPU resources.

Server-side compilation has some security restrictions that client-side compilation does not.

Specifically, server-side compilation is not allowed to access the hard disk drive of the server

machine; the query that you want to compile must be self-contained. Thus, for example, a query

you compile on the server cannot do the following:

 reference a schema that is stored in a file. (The query must define all the schemas that it

needs by using CREATE SCHEMA statements.)

 refer to a separate CCL module file.

 use an adapter that was specified through Studio's GUI. (You may attach an adapter only

by using the ATTACH ADAPTER statement.)

The table below summarizes most of the advantages of each approach:

Client-Side Compilation Server-Side Compilation

Reduces the workload on

the server, which may be

important if the server is

heavily loaded and/or

query registration is

frequent.

Reduces the workload on the client,

which may be important if the client is

has minimal resources (e.g. CPU,

memory).

Allows light-weight clients that do not

need to have the Coral8 Engine

(compiler) installed. This saves disk

Engine Control: Overview

33

space and administrative work on the

client, and also prevents client machines

from having different versions of the

Coral8 Engine than the server has.

Allows more than one

user to compile a project

at a time.

Allows the client to

access schemas that are

defined in separate files.

Allows the client to

access modules that are

defined in separate files.

Allows the client to use

adapters that were

attached via any means

other than an ATTACH

ADAPTER statement.

The specific function/method calls that allow server-side compilation or client-side compilation

are documented in the chapters that describe each Coral8 SDK.

Guidelines

Below are some rules and guidelines for using the Register Query feature

Required

 The dynamic query must be registered AFTER you start running the project that contains

the streams that the dynamic queries will bind to.

 In the project that contains the streams that the dynamically registered query will bind to,

all streams that will be bound to by the dynamically-registered queries must be created as

"input", even if the dynamic query will write to them rather than read from them.

 In the project that contains the streams that the dynamically registered query will bind to,

there should be only streams, no CCL statements.

 When you register a dynamic query, you must specify a name for each query (i.e. each

set of CCL statements), and the name must be unique among the dynamically loaded

queries in this workspace. (Without this name, you would not be able to specify which

query to stop later.)

Coral8 Integration Guide

34

 The CCL implicit schema feature must be used for all local streams (if any streams are

local).

 The workspace that will "hold" the registered query must already exist before you register

the query.

Recommended

 All of the streams that a particular dynamic query binds to should be in the same project

(P1 in the example above).

 The following rule applies only if ALL the streams in the registered query are bound

streams:

Before you start running any dynamic queries, you must have at least one input stream

and at least one output stream. (This is not required as a condition of registering the

query; however, if you do not have at least one input stream and at least one output

stream in the query, then the query will not be able to do anything useful.)

Binding a Registered Query's Stream to an Existing Stream

Any CCL statement may be in the registered query. The key step is to connect the input and

output streams of the registered query to the streams in the already-existing project. In Coral8

Studio this can be accomplished with the binding mechanism. Note that binding streams in a

query is optional.

The Coral8 SDKs provide an easy way to compile and register a query in one step -- the

registerQuery() method. When you register the query, you will provide information that binds

(associates) the stream name (the name used in the CCL statement) with the URI of the

corresponding stream. Naturally, you must know the URI of the stream that you want to bind to.

The details are explained later in the chapters for each SDK that supports dynamic registration of

queries.

Registering Streams When Registering A Query

You must create input and output streams when you register your query. You may either bind

those streams to existing streams in an existing project, or you may leave them unbound and

instead use an out-of-process adapter to write data to or read data from those streams. You must

specify the schema for these streams. The individual SDK chapters explain how to specify the

schema of a stream when you call registerQuery().

In addition to creating input and output streams, your registered query may also create local

streams. If you use local streams, do not specify a schema for them; instead, their schemas will

be deduced from the results of the CCL statements in the registered query, so you must write the

CCL statements that reference those streams in a way that makes implicit schema determination

possible.

Engine Control: Overview

35

Streams in registered queries are populated in one of the following ways:

1. Local streams are populated via the CCL statements in the dynamic query;

2. Input and output streams may be populated either:

A. via the streams to which they are bound, or

B. via an out-of-process adapter, which will write to the stream's URI.

To ensure that your out-of-process adapter can "find" the stream that you created, both the

adapter and the registerQuery() code should follow the same rules for naming the stream. The

stream name should look like the following:

ccl://server:port/Stream/Workspace/QueryName/StreamName

where

 Workspace is the name of the workspace that you specify when you call the

registerQuery() function/method.

 QueryName is the name of the query that you specify when you call registerQuery(). This

name must be unique within the workspace.

 StreamName is the name of this specific stream. This stream name must be unique within

the query.

Stopping A Query

Each Coral8 SDK that supports query registration also contains a "stopQuery()" function or

method. (The exact name of the function or method depends upon the SDK.) To stop the

registered query, call the stopQuery() function and pass it the name of the query, which you

specified when you registered the query. This will stop the query and remove it from the server.

(The c8_client "stop" command will do the same.)

Troubleshooting

This section provides some troubleshooting tips that are specific to the Coral8 Perl SDK.

Additional troubleshooting tips are in Troubleshooting.

You get an error similar to the following:

Can't locate C8/Publisher.pm in @INC (@INC contains:

/usr/lib/perl5/5.8/cygwin /usr/lib/perl5/5.8

/usr/lib/perl5/site_perl/5.8/cygwin /usr/lib/perl5/site_perl/5.8

/usr/lib/perl5/site_perl/5.8/cygwin /usr/lib/perl5/site_perl/5.8

/usr/lib/per l5/vendor_perl/5.8/cygwin /usr/lib/perl5/vendor_perl/5.8

/usr/lib/perl5/vendor_perl/5.8/cygwin /usr/lib/perl5/vendor_perl/5.8 .) at

examples/c8_publish.pl line 10. . . .

Coral8 Integration Guide

36

The most likely cause is that you have not set your perl "include" path to include the Coral8

directory that includes the Coral8 perl modules. To configure your environment properly, see

Prerequisites.

You get an error similar to the following:

Can't locate URI/URL.pm in . . .

The most likely cause is that you have not set your path to include the appropriate CPAN

(Comprehensive Perl Archive Network modules). For a list of these modules, see Specifying the

Path to the Library Files. If you have not already acquired these modules, you may need to

acquire them. If you have acquired them, you need to set your perl "include" path to include

these modules.

Monitoring Servers and Projects

This section describes how you can monitor servers and projects (query modules) that are

running on those servers.

Status Information

The Coral8 Server provides extensive status information to help you monitor servers and

projects. This includes information such as CPU utilization by a particular server, the number of

messages received (processed) by a particular CCL query, etc.

Coral8 provides status information about the following types of entities:

 Manager

 Container

 Workspace

 Program (also called "project")

 Query

Other types of status messages also exist, but we will focus on these since they are of the most

use to typical customers.

All status information is collected and made available by the manager; you will not be getting

status information directly from individual containers. This means that if the manager is down

(or, in a High Availability system, if all the managers are down), you will not be able to read

status information.

Status information can be retrieved different ways:

 Status streams. These are just like other streams in Coral8, but these carry status

information that you can monitor and react to.

Engine Control: Overview

37

 Through the function/method calls provided in particular Coral8 SDKs, such as the

C/C++ SDK and Java SDK.

 Server plugins

Each of these is described in more detail below.

Status Streams

Each manager provides one status stream, which may contain messages about each of the

different types of entities (Manager, Container, workspace, project, etc.) for which Coral8

provides status info. Some types of status information, such as the number of messages a

particular project has sent, are published at regular intervals. (In most cases, the default rate is

once per second, but you can configure the rate.) Other information is published only when

something changes state. For example, a message about a container being added is sent only

when a container is actually added. As in any stream, all messages in the status stream have the

same schema. The schema includes the following fields:

SourceTimestamp

The SourceTimestamp indicates when the event occured. For example, in

a Status message, SourceTimestamp will be the time when the last Status

change took place.

Therefore, the SourceTimestamp in a status message will frequently be

lower than (earlier than) the row timestamp in the same message. (For

information about the row timestamp, see the Coral8 Programmer's

Guide.) The row timestamp in the message is simply when the message

was sent, not when the event described in the message actually occurred.

For data sources that send the message as soon as the event occurs, or for

messages containing info that changes frequently (such as the Message

Count messages), the SourceTimestamp and row timestamp are usually

very close.

ObjectID

The object identifier. For example, if we are requesting information about

a project, the object ID will uniquely identify which project we want

information about. The objectID is often in the form of a "path", i.e. a

string that contains a series of names separated by slashes. For example,

the objectID of a query is in the following form:
<WorkspaceName>/<FullCclPath>/<StatementNumber>

ObjectID2

The object identifier of the second object (if applicable). For example, if

we are requesting information about latency between 2 streams, then the

first and second ObjectIDs are the URIs of the two streams, each of which

will (like any stream URI) be in a form similar to the following:
ccl://proton:6789/Stream/Default/RFID_AdapterReadPallet/Out

MessageGroup The combination of MessageGroup and MessageName specify the "topic"

Coral8 Integration Guide

38

and

MessageName

of the message. For example, if the object ID is the ID of a container, then

the combination of MessageGroup "ContainerInfo" and MessageName

"HeartbeatPeriod" indicate that the message is about the frequency with

which the container sends heartbeats to the manager. For more detail

about the MessageGroups and MessageNames, see Status Information.

Value

This is the specific value of the message, which is always in the form of a

string. For example, if the MessageName is "HeartbeatPeriod", then the

value might be "5" to indicate 5 seconds.

As you can see, with only 6 fields (plus the row timestamp), the structure of status messages is

simple. However, since there are dozens of different types of messages (i.e. dozens of different

message names), the code that you write to receive and use status messages must "interpret" the

messages appropriately. For example, if you want to perform mathematical operations on the

number of messages received so far by a particular query, you will need to convert the message

value string to a numeric value. For information about currently supported MessageNames that

you may see in status messages, see Status Information.

To view a status stream, do the following:

1. Start Studio.

2. Click on the "Debug" menu.

3. Select the "View stream..." option.

4. When the dialog box is displayed, enter one of the following URIs:

ccl://managerhost:port/Status/Workspace/WorkspaceName

ccl://managerhost:port/Status/Service/Manager

For example, to view the status stream for the workspace named "Default" when the

manager is running on the machine named "penguin1", use the URI.

ccl://penguin1:6789/Status/Workspace/Default

Status APIs

Many of the Coral8 SDKs, including C/C++, Java, and .NET, allow you to get status information

by calling particular functions/methods.

To get information about a particular "object" (e.g. a container or a query), you must specify two

pieces of information:

 the unique ID of the object,

 an indicator of which information you want about that object.

To specify the ID of the object, you use the objectID. The objectID was described briefly above.

Below we show how to compose the object ID for each type of object:

Engine Control: Overview

39

Object Type Object ID ("Path")

Manager Manager URI

Container Container URI

Workspace Workspace name

Project

The ObjectID is the full path to the given project in the form:

<WorkspaceName>/<ProjectName> Where ProjectName is

the project's load name, i.e. the name that is displayed in

Coral8 Studio's Explorer View when you load the project (this

is usually, but not always, the same as the name of the project

file (without the ".ccp" extension).

Query

The ObjectID is the full path to the given Query in the form:

<WorkspaceName>/<FullCclPath>/<StatementNumber>

Where <FullCclPath> is the "path" of the loaded module as

you see it in Studio's Explorer View (e.g.

Project1/SubModule1/SubModule2) and

<StatementNumber> is the sequential number of the CCL

statement in the module.

To specify which information you want, you specify both the Message Group and the Message

Name. A complete list of Message Groups and Message Names is in Status Information.

In general, the Message Name indicates the specific information that you want, e.g. the

percentage of CPU time utilized by the object (such as a container). Because some types of

objects have similar information (e.g. both modules and individual queries have status

information about the number of "InputMessages"), you must specify a MessageGroup which

combines with the Message Name to uniquely indicate which information you want. Thus, to get

a specific value (e.g. the number of input messages received by a particular query), you must

specify all three of the pieces of information necessary to uniquely identify the message; the

ObjectID, MessageGroup, and MessageName.

First you'll get a status "object" that contains information about a Manager, a Workspace, or a

Project (a "top module"). Once you have that object, you will call a function that queries that

object for more specific information, such as the number of rows received by a particular query

within the project. Note that a single status object may contain many status messages. For

example, if status objects for top query modules ("projects") have 10 different types of messages

(MessageNames), then when you retrieve a status object for a particular query you will be able to

extract 10 different messages from it. In pseudo-code, this would look similar to the following:

char messageGroup[] = "CclQueryInfo";

char messageName[] = "InputMessages";

// objectID = workspace name + full CCL Path + query number.

char objectID[] = "AccountingWorkspace/fullCCLPath/2";

Coral8 Integration Guide

40

C8Message *statusMsg;

char *bufferPtr = NULL;

// Get the status object for a project ("top module").

statusObject = C8StatusObjectForTopModule(managerUri,

 workspaceName, moduleName);

numMsgs = C8StatusObjectGetMessagesNumber(statusObject);

for (i = 0; i < numMsgs; i++) {

 statusMsg = GetStatusObjectMessageAtPos(i, messageGroup,

 objectID, messageName);

 C8MessageColumnGetAsStringByName(statusMsg, "Value",

 &bufferPtr);

 msgsRcvd = stringToInteger(&bufferPtr);

 }

More specific information about the function/method calls is provided in the chapter for each

SDK that supports status information.

User Authentication from Inside SDKs

NOTE: This section applies only to the Enterprise Edition of Coral8 Engine. If you are using the

Professional Edition, you may skip this section.

The Enterprise Edition of Coral8 supports a user authentication feature. This allows an

administrator to limit access to the Coral8 Server, or to certain objects within the server (such as

streams, workspaces, etc.). If user authentication is enabled, then "client" applications, such as

out-of-process adapters and programs that register queries, must authenticate themselves with the

server by passing a user name and password when calling certain API functions.

The following operations require authentication:

 Connecting to a stream (as a subscribing or publisher)

 Getting a stream schema

 Resolving a URI

 Starting or stopping a Coral8 project

 Getting the status of a server

 Getting the status of a workspace

 Getting the status of a project (also called an "application")

The Coral8 C/C++, Java, and .NET SDKs support user authentication.

In general, you will follow these steps:

1. Get an empty C8UserCredentials object.

2. Fill in the C8UserCredentials object with the user name and password.

Engine Control: Overview

41

3. Do the desired operations (e.g. connect to a stream)

4. Destroy the credentials

(This assumes that you have already configured the server to turn on the user authentication

feature.)

Note that, depending upon which user authentication rules have been set up, a single program

might need to perform authentication for some operations and not for others. For example, if any

user is allowed to subscribe to a stream, but only certain users are allowed to start and stop the

project that contains that stream, then a client program that starts and stops the project and also

subscribes to the stream will follow the user authentication rules for starting the stream but not

for subscribing to it.

For more information about user authentication, including how to turn the feature on and how to

configure it, see the Coral8 Administrator's Guide.

If you will be creating your own plugin to do custom authentication, see How to Implement

Manager HA with the Coral8 Generic Plugin.

43

User-Defined Functions and Plugins

One of the most powerful features of the Coral8 Engine is the ability to extend the server by

writing User-Defined Functions (UDFs) and server plugins.

This chapter provides a conceptual overview of UDFs. A detailed explanation of how to write

and use UDFs in the C/C++ language is in User-Defined Functions.

In this manual, when we refer to User-Defined Functions, we are referring to C/C++

UDFs (unless stated otherwise). Starting with version 5.1.0 of the Coral8 Server, you

may also write user-defined functions by using CCL's CREATE FUNCTION statement.

See the CCL Reference Guide for information about CCL's CREATE FUNCTION

statement.

This chapter also provides a conceptual overview of plugins. A detailed explanation of how to

write a plugin is in Server Plugins.

User-Defined Functions

You create a User-Defined Function (UDF) by writing your own code (in the C/C++

programming language), dynamically linking that code into the server, and then calling that code

from within a CCL statement.

For example, suppose that you want to calculate the monthly mortgage payment on a loan. You

could write a UDF named "MonthlyMortgagePayment()" and call it as shown below:

INSERT INTO ...

SELECT MonthlyMortgagePayment(loanAmt, interestRate, NumOfMonths)

...

When the user-defined function is called from a CCL query, the Coral8 Server will call the

function with the appropriate data. In the example above, the user's function will be passed the

values that are in the loanAmt, interestRate, and numOfMonths columns of the current row.

The parameter(s) passed to the function must be in the form of a proper CCL expression, which

may be a column name, a literal, or a more complex expression. For example:

INSERT INTO OutputStream

SELECT *

FROM InputStream

WHERE f1(InputStream.MyIntCol, InputStream.col2 / 100,

'A Literal', f2(f3(x))) > 1000;

A UDF may appear in most parts of a CCL statement where a general expression may appear.

A UDF may appear more than once in the same statement. For example:

Coral8 Integration Guide

44

INSERT INTO stream_Out

SELECT MY_UDF(my_col) AS f_Current,

 MY_UDF(my_col) - PREV(my_col) AS f_Delta

FROM stream_In;

For each row, if the same UDF is called with the same parameter value(s), the server may

execute the function once for each time the function is called from within the statement, or the

server may call the function fewer times and "cache" the result for use some of the times that the

function would have been called.

 For aggregate functions, the server will call the function once for each time that the

function exists in the statement.

 For non-aggregate functions, the number of times that the function is called (with the

same parameter value) is determined internally by the server and is not predictable or

controllable by the user.

If you are writing your own UDF, in almost all cases the function should be idempotent -- in

other words, it should return the same value regardless of how many times it is called within the

same statement. Only in very rare cases, such as the built-in NEXTVAL() function, should a

function deliberately return a different value for each call with the same value inside the same

statement.

A User-Defined Function can contain almost any code that you can write in any of the languages

for which Coral8 provides an SDK that supports UDFs.

UDFs allow users to provide for their own specialized needs. The range of capability that you

may add is almost unlimited. The UDF may even go "outside" the environment of the Coral8

Server in which it is running. For example, you might write a function that would query a high-

precision pi() value from a university mainframe using SOAP (Simple Object Access Protocol).

UDFs may be scalar functions or aggregate functions. Scalar functions return a value based on a

single set of inputs (e.g. one or more values from a single row, possibly with other expressions

that are independent of any row). The built-in SQRT() function is a typical scalar function.

Aggregate functions return a value based on 0 or more rows. The built-in SUM() and AVG()

functions are typical aggregate functions.

Requirements

Since the server must be able to find the library that contains your User-Defined Function, load

the library into memory, call your UDF, and pass appropriate parameters to the UDF, each UDF

must meet several requirements:

 Before the server can call a function, the server must be told the name of the library, the

names of the User-Defined Function(s) in that library, and the data types of the

parameters passed to each function. This information must be stored in an XML file that

User-Defined Functions and Plugins

45

the server reads when it starts up. (The format of this file is described in UDFs: XML

Signatures.)

 The UDF must declare appropriate C-language data types that match the CCL data types

of the parameters. For example, if the server calls the UDF with a value of type

TIMESTAMP, the corresponding C-language variable must be of type C8Timestamp.

 The UDF must be written in C or C++. The function names that are externally visible

must use C naming conventions. (C++ name mangling will prevent the code from being

accessible.)

 The UDF implementation must be compiled into a shared library (also called a Dynamic

Link Library) for the specific platform. That library may contain one or more user-

defined functions.

Some of these requirements may be modified in future versions of the product as more Coral8

SDKs are enhanced to support UDFs.

To write a UDF, you must create the following files:

 A C-language file that contains your User-Defined Function and code to "pack" and

"unpack" values that are stored in a "context" parameter. (This is described in more detail

later.)

 An XML file with the library name, function name, and parameter types.

Each of these files is described later in this document.

User-Defined Aggregate Functions

Users may write aggregate functions.

For a user to write an aggregate function, the user must have a place to store her data in between

invocations. For example, if you write your own "SUM()" function, you must store the subtotal

from the previous calls to the function and then add the new value from the current call to the

function.

Since an aggregate function may be called by many queries at overlapping times, you cannot use

local storage space to store values such as subtotals. If you were to store the subtotal in a static

variable declared in the routine, then each different call from different queries would update the

same variable, and the result would be meaningless. A similar problem occurs if you try to use

global variables. Non-static local variables (i.e. stack-based variables) can't be used because, of

course, the value may be written over in between calls to the function.

Thus the user's aggregate function must work with the server to store data in a place that will

persist after the UDF returns from its call. Coral8 provides a pair of functions that allow you to

store and retrieve data. These functions are documented in the relevant SDK chapters.

Coral8 Integration Guide

46

The bytes stored and retrieved are specific to a particular occurrence of a particular function in a

particular CCL statement. If your query module has the following statements:

...

SELECT aggregate_foo(col1)

FROM InStream1

...

SELECT aggregate_foo(col2)

FROM InStream2

then each "aggregate_foo" will have a unique internal identifier that the server uses as part of the

"context" variable passed to your function. The context variable then allows the server to know

which aggregate_foo's bytes to return. This is explained in more detail in the relevant SDK

chapters.

There is a second hurdle that an aggregate function must overcome. An aggregate function

operates on a "window" (e.g. the window created by a "KEEP 3 ROWS" or "KEEP 10

MINUTES" clause). Such a window has rows entering and leaving. If the window is defined by

a KEEP 3 ROWS clause, for example, then each time that a new row is received, the new row

will displace the oldest row from the window. If you are writing a SUM() function, for example,

and you only want the sum of the 3 most recent records, then each time that a new record arrives,

you must not only increase the sum based on the value from the most recent record, but you must

also decrease the sum based on the value from the record that was displaced from the window.

To ensure that your aggregate UDF takes into account the displaced record as well as the new

record, your aggregate UDF will usually be called twice each time that a new record arrives.

Your aggregate UDF will be called once with the value of the new record and once with the

value of the displaced record. Inside your aggregate UDF, you will distinguish between the new

and displaced values by calling a function named C8IsPositiveMessage() or

C8IsNegativeMessage(). When the function was called with the newly-added value, then

C8PositiveMessage() will return C8_TRUE, and of course C8NegativeMessage() will return

C8_FALSE. When the function was called with the displaced value, then C8PositiveMessage()

will return C8_FALSE and C8NegativeMessage() will return C8_TRUE.

XML Signatures

Coral8 software requires the description of the User-Defined Function to be in an XML file that

is put in the "plugins" directory of both the server and Studio. The file name should have the

extension ".udf" so that the server and Studio will find the file. For each UDF, the file lists:

 the name of the function

 the name of the library file that contains the function

 the data types of each of the parameters to the function

 the data type of the return value of the function

User-Defined Functions and Plugins

47

The "Functions" element of the XML file may describe an arbitrary number of functions. This

convenience allows grouping of related functions and/or library modules. As expected, there may

be an arbitrary number of function modules in a library. In the XML file, each function should be

described inside its own "<Function> ... </Function>" element. For example:

<Functions>

<Function Name="MyFunc"

 InitFunctionName="MyInit"

 ShutdownFunctionName="MyShutdown"

 Library="c8_udf_lib"

 CclName="MyFunc"

 IsAggregator="false">

 ...

 <Input>

 <Parameter Name="var1" Type="C8Float"/>

 ...

 </Input>

 <Output>

 <Parameter Type="C8Long"/>

 </Output>

</Function>

<Function Name="bar" ...>

...

</Function>

</Functions>

The initial function element is always named "Function" and has six attributes:

 The Name attribute provides the name of the function that will be called from the user-

designated "Library". This name is case-sensitive.

 The optional InitFunctionName attribute identifies a function that will be called on

initialization.

 The optional ShutdownFunctionName attribute identifies a function that will be called on

shutdown.

 The Library attribute is the name of the .dll containing the user function. For UNIX-like

operating systems, this will be a .so library. Note that on UNIX-like operating systems,

you should not preface the library name with "lib". Note that the extension .dll or .so is

NOT included as part of the library name in the xml file. (You may use the same XML

file for both UNIX-like operating systems and Microsoft Windows environments without

changing the library name.)

 The CclName is the name that will be used in CCL queries (e.g. "select FOO() ... from

..."). The CclName is case insensitive. The CCL name is usually the same as the function

name, but this is not required.

Coral8 Integration Guide

48

 The IsAggregator attribute should be true for aggregate functions and false for other

functions.

The "Input" element inside each "Function" element must contain a list of all input parameters.

Only one "Input" element is permitted per function.

Each "Parameter" element inside the "Input" element includes two attributes: the parameter

"Name" and "Type". The "Name" is arbitrary, but for clarity it should reflect the parameter

usage. The "Name" attribute is used for error reporting if there is a type mismatch for any

parameters at runtime. These names are passed to the user for similar uses.

The "Type" parameter specifies the data type of the input parameter. If you are writing your UDF

in C/C++, the types available map directly into C base types via these typedefs:

typedef int C8Bool; /* CCL "BOOLEAN" type */

typedef int32 C8Int; /* CCL "INTEGER" type */

typedef double C8Float; /* CCL "FLOAT" type. Note that

 * CCL FLOAT is NOT C "float";

 * it's C "double".

 */

typedef char* C8CharPtr; /* CCL "STRING" type */

typedef char C8Char;

typedef int64 C8Long; /* CCL "LONG" type */

typedef int64 C8Timestamp; /* CCL "TIMESTAMP" type */

typedef int64 C8Interval; /* CCL "INTERVAL type */

typedef void *C8BlobPtr; /* CCL "BLOB" type */

typedef void C8Blob; /* CCL "BLOB" type */

For example, if the first input parameter has a CCL data type of FLOAT, then you would specify

C8Float in the .udf file. Only the above typedef names are supported in the "Type" attribute.

Throughout the C code for your UDF, you should use the typedef'd names (e.g. "C8Float") rather

than the underlying C types (e.g. "double"). The Coral8 software uses strong type checking to

help ensure correctness of data at runtime.

The "output" element of the sample XML file contains only a single "Parameter" field and

describes the function output in the same manner as input parameters. The "Name" attribute is

optional. It is not currently possible to return more than a single value from a user defined

function.

Coral8 SDKs that Support UDFs

Currently, the Coral8 SDKs that support UDFs are:

 C/C++ Coral8 C/C++ SDK

For much more detail, see User-Defined Functions.

User-Defined Functions and Plugins

49

Plug-Ins

Like User-Defined Functions (UDFs), plugins are executable code (typically written by users or

third parties) that expand the functionality of the server (like the user authentication plugin (see

The User Authentication Plugins)) or implement customization of existing functionality (like the

server status plugin, which can be used to help implement High Availability (see How to

Implement Manager HA with the Coral8 Generic Plugin)).

Unlike UDFs, plugins are called by the server, rather than called from the user's CCL statements.

Every plugin must have at least three functions:

 an "initialize" function

 an "execute" function

 a "shutdown" function

The initialize function does any initial setup that is required. This may involve allocating

memory, looking up information outside the server, etc. If no setup is required, then you still

must have an initialize function; however, you may leave it empty.

The execute function is called each time that there is a reason for the plugin to do something. For

example, in a user authentication plugin, the plugin would be called each time that the server

needs to verify that a user's ID and password are valid. In a Manager HA (High Availability)

plugin, the execute function might be called each time that a manager fails and needs to be

replaced with a standby manager.

The shutdown function allows the plugin to do any cleanup necessary, such as deallocating

memory. If no cleanup code is required, then you still must have a shutdown function, even if it

is empty.

Naturally, to call these functions, the server must know the names of the functions and the name

of the linkable library file (typically a .dll or .so file) that contains the functions. The name of

this file, as well as the names of the initialize(), execute(), and shutdown() functions, must be

specified in the server configuration file (coral8-server.conf). An example of part of a

configuration file is shown below.

<section name="ManagerFailoverDDNSPlugin">

<preference name="LibraryName"

 value="c8_server_plugins_lib"/>

<preference name="InitializeFunction"

 value="c8_command_line_plugin_initialize"/>

<preference name="ExecuteFunction"

 value="c8_command_line_plugin_execute"/>

<preference name="ShutdownFunction"

 value="c8_command_line_plugin_shutdown"/>

Coral8 Integration Guide

50

...

</section>

The plugin may be very small (just big enough to run an external program and pass it appropriate

parameters), or the plugin may be large if that is necessary to handle the work required.

For some plugins, the timing of the call to the plugin's execute() function may be determined by

an event in a stream. For example, when an HA (High Availability) manager dies, an event is

published to a status stream. The server monitors this stream and calls an HA-related plugin

when the stream contains a message indicating that the HA manager died. For other plugins,

such as the user authentication plugin, the activity (such as a user trying to access a restricted

resource) may not show up as an event in a stream.

If the plugin is invoked based upon the arrival of a message in a status stream, then you will also

need to specify which message should cause the server to invoke the plugin. An example of a

coral8-server.conf file section specifying the message is below:

<section name="ManagerFailoverDDNSPlugin">

...

<preference name="MessageGroup"

 value="ManagerInfo"/>

<preference name="MessageName"

 value="ManagerHAPromotedToPrimary"/>

...

</section>

For a more complete example and lists of valid MessageGroups and MessageNames, see

Message-Driven Plugins shows

Coral8 SDKs that Support Plugins

Currently, the Coral8 SDKs that support plugins are:

 C/C++ Coral8 C/C++ SDK

For much more detail, see User-Defined Functions.

Other SDKs may support plugins in the future.

51

Remote Procedure Calls, Database
Queries, and Public Windows

As you know, Coral8 Server can get data from input adapters. Coral8 Server can also get data

from, or invoke processing on, remote servers, where the remote servers may be database servers

(e.g. MySQL, SQLServer, etc.) or Remote Procedure Call (RPC) servers.

Queries can also go in the opposite direction -- you can write a program that will read data from

a public window (a window that exists inside Coral8 Server but can be accessed from outside

Coral8 Server as though the window were a database table).

This chapter provides an overview of how to integrate your Coral8 Server with remote servers.

Please note that this chapter does not completely document this topic. You should also read:

 Coral8 Administrator's Guide - This explains how to configure your coral8-services.xml

file to tell your Coral8 Server how to connect to the remote servers.

 Coral8 Reference Guide - This documents the CCL language statements (including the

database statement ("EXECUTE STATEMENT DATABASE") and EXECUTE

REMOTE PROCEDURE) and clauses (e.g. database subquery) that are capable of

accessing remote servers. The CCL Reference also documents the CREATE PUBLIC

WINDOW statement, which is used to create a public window that can be accessed

externally, and Coral8's SQL, which can be used to query a public window.

Remote Procedures

This section documents how to call a remote procedure from a CCL statement.

Overview: Calling a Remote Procedure from a CCL Statement

Coral8's Remote Procedure Call (RPC) feature allows CCL statements to execute a function or

procedure that is running outside the Coral8 Server process, either on the same computer as

Coral8 Server, or on a different computer. (Note: We use the term "RPC" refer to both

"procedures" (which do not return a value) and "functions" (which return 1 or more values).)

How to Choose Whether to Use an RPC or a UDF

Reasons for using an RPC:

 The RPC code exists in a form that cannot be made into a .so or .dll file that Coral8

Server file can use. Reasons for this might include:

Coral8 Integration Guide

52

 The code is supplied by a 3rd party and is supplied only as an executable library,

not source code.

 The code is not written in a language that Coral8 SDKs support for UDFs.

 You want the RPC to be in a separate process so that if the RPC crashes it won't bring

down Coral8 Server.

 The RPC is resource intensive and you want to run it on a separate machine from Coral8

Server so that you spread the workload.

Reasons for using a UDF:

 UDF calls are usually much faster than RPC calls. (This is true for both CCL UDFs and

C/C++ UDFs.)

 If the UDF can be written in CCL, it is often much easier to write the UDF in CCL than

to write an RPC and configure the server to call that RPC.

What Is an RPC?

Remote Procedure Calls (RPCs) are somewhat like User-Defined Functions (UDFs). Both UDFs

and RPCs allow you to extend Coral8 Server by writing custom code. The difference between an

RPC and a UDF is that a UDF runs as part of the server process. An RPC, on the other hand,

runs as part of a separate process.

In many cases, you could accomplish the same goal with either a UDF or an RPC. The most

common reasons for choosing one over the other are listed below:

The Components

From the perspective of the CCL statement, an RPC is a simple operation. However, "underneath

the covers", each RPC call involves multiple steps. The diagram below shows the components

involved and how they are related.

Remote Procedure Calls, Database Queries, and Public Windows

53

Coral8 RPC functionality requires the following software components:

 A Coral8 project (query module) that includes a CCL Remote Procedure Statement or

remote subquery that calls the remote procedure. For more information about this CCL

statement and subquery please refer to the Coral8 CCL Reference.

 A Coral8 Server

 A section of the coral8-services.xml file that describes the RPC plugin and allows the

Coral8 Server to call it. (RPC Plugins are explained later.) Each RPC plugin must be

described in a separate section of the coral8-services.xml file.

For each remotely callable procedure, Coral8 Server must know the name of the library

file that contains the corresponding RPC plugin.

 An RPC plugin that interfaces between Coral8 Server and the RPC server. When the

server wants to call a remote procedure (or function), the server calls a function inside

this RPC plugin, and the RPC plugin then calls the remote procedure and returns any

values to Coral8 Server.

The RPC plugin must know how to call the remote procedure. For example, the RPC

plugin may know the HTTP URI of the remote procedure and know how to execute an

HTTP POST operation to invoke that remote procedure. Coral8 Server itself does not

need to know how to communicate with every remote procedure that might be written;

the plugin handles the communications.

Coral8 Integration Guide

54

The RPC plugin must be compiled as a dynamically linkable library (.dll file) or shared

object library (.so file) so that Coral8 Server can call it.

 An external executable program that includes a procedure or function that can be called

remotely. The program must be capable of receiving and responding to requests from

external applications. This manual refers to such programs as RPC servers. The RPC

server may run on the same computer as the Coral8 Server or on a different computer.

These components work together as follows:

1. The CCL Remote Procedure Statement or remote subquery invokes the RPC plugin by

specifying the plugin's unique service name (as identified in the coral8-services.xml file)

and may also pass values to the plugin, which are then passed on to the RPC server.

2. The Coral8 Server uses the service name and the information defined for the service in

the coral8-services.xml file to determine which RPC plugin to use and which function(s)

in that plugin to call. The Coral8 Server may also read some plugin configuration

parameters (also defined in the coral8-services.xml file service entry) and make these

available to the plugin, which can read them by calling appropriate function(s) in the API.

3. The RPC plugin communicates with the RPC server and invokes the remotely-callable

procedure. When appropriate, the plugin passes remote procedure parameter values from

the CCL query to that RPC and/or receives values back from the RPC and makes them

available to the CCL query.

More details about the individual components are below.

The CCL Statement

The CCL statement may be either an EXECUTE REMOTE PROCEDURE statement or may be

a subquery that makes a remote query call. Below we show a pseudocode example of each:

EXECUTE REMOTE PROCEDURE 'MyRPC1'

SELECT ...

FROM StreamIn1;

INSERT INTO StreamOut1 (StringCol1)

SELECT RFCOutputAlias.StringCol1

FROM

 (REMOTE QUERY "MyRFC1" SCHEMA StringOnlySchema

 (

 StreamIn1.StringCol1 AS Name

)

) AS RFCOutputAlias,

 StreamIn1 KEEP 5 ROWS;

The RPC is called each time that a new row arrives in any of the streams involved in the CCL

statement.

Remote Procedure Calls, Database Queries, and Public Windows

55

Note that, as with database subqueries, Coral8 Server has no knowledge of when information on

the remote system has changed. The RPC cannot notify Coral8 Server that data has changed; the

server will not see updated information until a row arrives in one of the query's streams and the

server then calls the RPC.

For more information about the syntax of these CCL statements and clauses, see the Coral8

Reference Guide.

The coral8-services.xml File

The coral8-services.xml file must contain a section for every remote service, before the service

can be used in a CCL query. Each service has a service name (used in the CCL statement) and

information about the RPC to be called.

Your specific service entry will depend on the RPC plugin and remote procedure you are using.

See the Coral8 Administrator's Guide or HTTP and SOAP Plugin Preferences for more details.

The Coral8 Server

Coral8 Server executes the CCL statement that contains the RPC and then invokes the

appropriate function(s) in the plugin to send data to, and receive data from, the remote procedure.

To avoid the overhead of an RPC call, the server may "cache" information retrieved by the

plugin and read data from that cache rather than re-executing the remote procedure call. For

information about setting cache expiration times, see the Coral8 Administrator's Guide.

The RPC Plugin

RPC plugins are compiled .dll files (on Microsoft Windows) or .so files (on UNIX-like operating

systems). These libraries can be called by the Coral8 Server, and are able to communicate with

RPC servers. The RPC plugin calls the remote procedure, typically using Simple Object Access

Protocol (SOAP), HTTP, or another protocol appropriate for the specific remotely-callable

procedure.

The plugin receives information (such as the body of an email message, a stock symbol, or an

employee ID number) from the CCL statement and passes the information to the remote

procedure. The plugin also receives information from the remote procedure (when appropriate)

and makes it available to the CCL statement.

The RPC plugin you are using must be designed and configured to work with the specific remote

procedure that you are using. The plugin must be able to contact the RPC server (for example,

via an HTTP URL), must invoke the name of the desired remote procedure on that RPC server,

and so on. In some cases, the appropriate plugin may be obtainable from a third-party vendor.

You can also write your own RPC plugin.

Coral8 Integration Guide

56

Coral8 provides two generic plugins that allow you to make remote procedure calls to RPC

servers that handle SOAP (Simple Object Access Protocol) and HTTP protocols. Each of these

plugins may be used as-is or customized for your needs. The generic SOAP plugin includes an

example SOAP RPC plugin and corresponding service entry in the coral8-services.xml file.

Note: Do not confuse the RPC plugins discussed in this chapter with Coral8 Server plugins

discussed in HTTP and SOAP Plugin Preferences. Although there are some similarities, they are

not the same.

The RPC

The remotely-callable procedure runs as an independent process, not as part of Coral8 Server.

The RPC server may run on the same computer as the Coral8 Server, or on a different computer.

The RPC server may "serve" many different "clients"; Coral8 Server, RPC plugin, and CCL

query may be only one of many clients for the RPC server. Furthermore, the "client" (Coral8

Server, plugin(s), and CCL query(s)) may be clients of many different RPC servers. One RPC

server might check email for viruses, while another looks up historical stock information, and yet

another looks up customer information.

The RPC server may be written by the customer or by a 3rd party.

The RPC may be written in any language for which you can find or write software that allows

the RPC to respond to remote procedure call requests. You are not limited to the languages for

which Coral8 provides SDKs.

Additional Information about Remote Procedure Calls

Coral8 Server calls a remote procedure only when:

 a new row arrives in one of the input streams referenced by the CCL statement that

contains the remote procedure call AND

 the information in the cache has expired. (You may set a coral8-services.xml file

parameter to determine how long the server will cache responses from the remote

procedure calls.)

Note that RPC calls are not "blocking calls" within Coral8 Server. See Remote Requests,

Synchronization, and Performance for more details.

Generic HTTP and SOAP Plugins

The Coral8 product includes two example RPC plugins:

 The HTTP plugin may be used to send HTTP POST requests. The source code for this

plugin is in the file c8_rpc_http.cpp.

Remote Procedure Calls, Database Queries, and Public Windows

57

 The SOAP plugin may be used to send SOAP requests. The source code for this plugin is

in the file c8_rpc_soap.cpp.

If you have remote procedures that can be called via the HTTP or SOAP protocols, then you may

use these RPC plugins instead of writing your own plugin. (Note that when you specify the name

of the compiled library file in the coral8-services.xml file, you should specify only the "base

name" c8_rpc_http_soap_lib. The server will automatically append the appropriate filename

extension (.dll or .so) for the operating system; on UNIX-like operating systems, the initial "lib"

of "libc8_rpc_http_soap_lib.so" will also be prepended, if necessary.)

The Coral8 HTTP plugin allows you to pass 0 or more parameters and get back 0 or 1

parameters.

The Coral8 SOAP plugin allows you to pass 0 or more parameters and get back 0 or more

parameters.

If you need to retrieve more than 1 parameter, you should use the SOAP plugin or a custom

plugin.

Source code for both libraries is in the server\sdk\c\examples subdirectory of your Coral8

installation directory. Typically, this is either:

C:\Program Files\Coral8\Server\sdk\c\examples

/home/<userID>/coral8/server/sdk/c/examples

The HTTP plugin supports HTTP 1.0. The plugin expects exactly one column of type STRING

from the CCL statement and produces exactly one STRING result in the HTTP response body.

The HTTP plugin recognizes HTTP errors and returns nothing to the CCL statement if it

encounters such an error.

The SOAP RPC protocol supports a subset of SOAP 1.2 (http://www.w3.org/TR/soap12-part1/

and http://www.w3.org/TR/soap12-part2). The SOAP RPC plugin expects any number of input

columns from the CCL statement and can produce any number of output columns. For

information about the conversion of CCL datatypes into XSI types and vice versa, please see

Appendix I of the Coral8 CCL Reference.

The SOAP plugin recognizes SOAP errors and returns nothing to the CCL statement if it

encounters such an error.

The parameters expected by the HTTP and SOAP plugins are detailed in HTTP and SOAP

Plugin Preferences.

Since Coral8 provides these two plugins in source code form, you will need to compile them

before using them, and you will need to put the compiled code into the server's "bin" directory.

RPC Plugin for CSV Files

Coral8 provides an RPC plugin that reads the contents of a file in CSV format.

Coral8 Integration Guide

58

Configuring the Plugin

To configure the RPC plugin, modify the related section of the file coral8-services.xml, located

in the conf subdirectory of your Coral8 Server installation directory. The file itself contains

comments and an example configuration, and the Coral8 Administrator's Guide provides

instructions for enabling remote procedure calls.

Besides the parameters common to all RPC plugins, this plugin uses two additional parameters:

 BaseFolder: When you call this plugin and specify a file, the file must be located

somewhere beneath the base folder specified here. If you don't specify a value for this

parameter, Coral8 Engine uses the value of the ReadWriteBaseFolder preference

specified in coral8-server.conf instead. Optional.

 Format: The format of the file, in the form "TitleRow= true | false,

TimestampColumn= true | false." The defaults are true and false, respectively. Optional.

Using the Plugin

When you use the plugin in a query, you provide two parameters:

 Filename: the path and name of the file to read. Use $BaseFolder to insert the path of

the base folder or $ProjectFolder to insert the path of the folder containing your project.

By default, paths are relative to the base folder. Required.

 Format: The format of the file, in the form "TitleRow= true | false,

TimestampColumn= true | false." The defaults are true and false, respectively. Optional.

Be aware of the following behaviors when calling this plugin:

 The plugin reads the entire CSV file for every row that triggers the query calling the

RPC.

 The resulting rows have timestamps matching the timestamp of the row that triggers the

query calling the RPC. Any timestamps in the CSV file itself are ignored.

Examples

This first example shows how to read the file myconfig.csv (located in the same folder as the

project file) at startup and populate a window with the contents:

CREATE LOCAL STREAM StartupTrigger SCHEMA (X INTEGER);

INSERT INTO StartupTrigger

VALUES (1)

OUTPUT AT STARTUP;

INSERT INTO MyConfigWindow

SELECT CsvFile.*

FROM

 StartupTrigger,

Remote Procedure Calls, Database Queries, and Public Windows

59

 (REMOTE QUERY "ReadCsvFile" SCHEMA (Name STRING, Value STRING)

 (

 "$ProjectFolder/data/myconfig.csv" as Filename,

 "TitleRow=false,TimestampColumn=false" as Format

)

) AS CsvFile;

This example shows how to read a file identified by the value of a column in an input stream:

INSERT INTO MyConfigWindow

SELECT CsvFile.*

FROM

 (SELECT * FROM ControlStream WHERE Command = "RefreshConfig") as

CS ,

 (REMOTE QUERY "ReadCsvFile" SCHEMA (Name STRING, Value STRING)

 (

 CS.Param as Filename,

 "TitleRow=false,TimestampColumn=false" as Format

)

) AS CsvFile;

Writing Your Own Coral8 RPC Plugin

You may write your own plugin to communicate with remotely-callable procedures. You may

need to do this if you want to call a remote procedure that does not use SOAP or HTTP

protocols.

Writing your own Coral8 RPC Plugin is non-trivial, and is not fully documented in this manual.

A general overview is below. You may also get some information by looking at the SOAP and

HTTP Plugins that Coral8 provides. On Microsoft Windows, these are typically located in:

 C:\Program Files\Coral8\Server\sdk\c\examples\c8_rpc_http.cpp

 C:\Program Files\Coral8\Server\sdk\c\examples\c8_rpc_soap.cpp

On UNIX-like operating systems, these are typically located in:

 /home/<userid>/coral8/server/sdk/c/examples/c8_rpc_http.cpp

 /home/<userid>/coral8/server/sdk/c/examples/c8_rpc_soap.cpp

Every RPC plugin .dll or .so library file must contain at least three functions:

 An initialize function This function is called exactly once before any calls to the execute

function. The initialize function may connect to the RPC server, allocate resources (such

as memory), or take other appropriate initialization actions. If no initialization is required,

the initialize function may simply return immediately to the caller.

 An execute function The execute function is called once for each row processed by the

CCL statement. For example, in an application examining email messages for viruses, the

Coral8 Integration Guide

60

execute function might be called once for each email message received by the data stream

and passed on to the RPC server.

 A shutdown function The shutdown function is called exactly once when the RPC server

shuts down. Typically, a shutdown function closes connections and releases resources. If

no particular shutdown work is required, the shutdown function may simply return

immediately to the caller.

The .dll or .so file that contains these three functions may contain other functions, as well. These

often include additional functions called by the execute function.

For simplicity, it is recommended that a separate .dll or .so file be used for each remote service,

but this is not required. A single file may contain multiple sets of initialize, execute and

shutdown functions, each of which is used for a separate service. Multiple services that share the

same .dll or .so file may each use different initialize, execute and shutdown functions, or may

share one or more of these functions.

If you are going to write your own plugin, you will need to use a Coral8 SDK. The Coral8 SDKs

that support RPC Plugins are:

 C/C++ Coral8 C/C++ SDK

For more detail, see RPC Plugins.

Compiling a Coral8 RPC Plugin

The process for compiling a Coral8 RPC Plugin is much the same whether you've written your

own or are using one of Coral8's.

For more information, see RPC Plugins.

Remote Database Queries

This section documents remote database queries.

Overview: Querying a Remote Database or Public Window from a CCL
Statement

We use the term "remote database server" to refer to a database server that runs outside the

Coral8 Server process, whether on the same computer as Coral8 Server or on a different

computer. Coral8's remote database query feature allows CCL statements to execute a query on a

remote database server. The query may be a SELECT statement that returns data, or may be

some other type of query/statement, such as an INSERT, UPDATE, or DELETE.

A query module may also use a remote database query to query a public window in another

module. For more detail, see Public Windows.

Remote Procedure Calls, Database Queries, and Public Windows

61

The CCL statement may use parameters to pass information from CCL statements to SQL

statements. For example, if the current row in the query on Coral8 Server has "DEPT =

'Accounting'", then the SQL query that you pass to the remote database server may have a

WHERE clause similar to "... WHERE DEPT = ?DeptName". The "?DeptName" tells Coral8

Server that the SQL query text should be updated to look like "... WHERE DEPT =

'Accounting'". For more detail see the Coral8 CCL Reference Guide.

What Is a Remote Database Query?

We use the term "remote database query" to refer to either of the following:

 a database subquery, i.e. a subquery that selects data from a remote database server

 a Database Statement (EXECUTE STATEMENT DATABASE ...)

The Components

From the perspective of the CCL statement, a remote database query is a simple operation.

However, "underneath the covers", each query involves multiple steps. The diagram below

shows the components involved and how they are related.

Coral8 remote database query functionality requires the following software components:

 A Coral8 project (query module) that includes a CCL Statement that queries the remote

database server. The CCL statement may be either a Database Statement or a database

Coral8 Integration Guide

62

subquery. For more information about these CCL statements and clauses, please refer to

the Coral8 CCL Reference.

 A Coral8 Server

 A section of the coral8-services.xml file that describes the remote database server as a

"service" and allows the Coral8 Server to call it. Each remote database server must be

described in a separate section of the coral8-services.xml file.

 A database driver (such as an ODBC driver or some other appropriate driver) that

interfaces between Coral8 Server and the remote database server.

 The remote database server.

These components work together as follows:

1. The CCL Statement invokes the driver by specifying the service name (as identified in

the coral8-services.xml file) and passing the SQL statement.

2. The Coral8 Server uses the service name and the information defined for the service in

the coral8-services.xml file to determine which driver to use.

3. The driver communicates with the remote database server and passes the SQL statement.

When appropriate, the driver receives values back from the remote database server and

makes them available to Coral8 Server, which then makes the values available to the

CCL query.

More details about the individual components are below.

The CCL Statement

The CCL statement may be either a DATABASE statement or may be a subquery that makes a

remote query call. Below we show a pseudocode example:

-- Create the table.

EXECUTE STATEMENT DATABASE "LocalOracleDB4"

[[CREATE TABLE Data1 (

Integer_col INTEGER,

Long_col NUMBER(21)

)]]

SELECT SetupStream.command AS command

FROM SetupStream

WHERE command = "CREATE TABLE"

;

If there is no filter (such as a WHERE clause), the CREATE TABLE statement is called each

time that a new row arrives in any of the streams involved in the CCL statement.

Note that, as with database subqueries, Coral8 Server has no knowledge of when information on

the remote system has changed. The remote database server cannot notify Coral8 Server that data

Remote Procedure Calls, Database Queries, and Public Windows

63

has changed; the server will not see updated information until a row arrives in one of the query's

streams and the server then executes a statement on the remote database server. There are

indirect ways that the remote database server can notify Coral8 Server of data changes. For

example, the remote database server could use a trigger to call a piece of code that would act as

an input adapter to a Coral8 Server.

For more information about the syntax of these CCL statements and clauses, see the Coral8

Reference Guide.

The coral8-services.xml File

The coral8-services.xml file must contain a section for every remote service, before the service

can be used in a CCL query. Each service has a service name (used in the CCL statement) and

information about the RPC to be called.

Your specific service entry will depend on the remote database server you are using. See the

Coral8 Administrator's Guide for more details.

Coral8 Server

Coral8 Server executes the CCL statement that contains the RPC and then invokes the

appropriate function(s) in the plugin to send data to, and receive data from, the remote procedure.

To avoid the overhead of an RPC call, the server may "cache" information retrieved by the

plugin and read data from that cache rather than re-executing the remote procedure call. For

information about setting cache expiration times, see the Coral8 Administrator's Guide.

The Driver

The driver that you use will be based upon the database server that you want to access. The

driver must be designed and configured to work with the specific remote database server (e.g.

MySQL, etc.) that you want to use. The driver must be able to contact the database server, pass

queries to it, etc.

The Remote Database Server

The remote database server runs as an independent process, not as part of Coral8 Server.

The database server may run on the same computer as the Coral8 Server, or on a different

computer.

The database server may "serve" many different "clients" -- Coral8 Server, and CCL query may

be only one of many clients for the remote database server. Furthermore, the "client" (Coral8

Server, plugin(s), and CCL query(s)) may be a client of many different database servers. For

example, one database server might look up historical stock information, while another might

look up current customer information.

Coral8 Integration Guide

64

Additional Information

Coral8 Server only calls a remote database server when a new row arrives in one of the input

streams referenced by the CCL statement that contains the remote database query AND the

information in the cache has expired. (You may set a coral8-services.xml file parameter to

determine how long the server will cache responses.)

Database subqueries are not "blocking calls" within Coral8 Server. See Remote Requests,

Synchronization, and Performance for more details.

The Coral8 Reference Guide has information about the syntax of database subqueries and the

EXECUTE STATEMENT DATABASE CCL statement.

Information about the coral8-services.xml file is in the Coral8 Administrator's Guide.

Reading and Writing BLOBs on External Database Servers

This section covers the following situations:

 You want to read data from or write data to an external database server that supports the

BLOB data type.

 You have BLOB data on Coral8 Server and want to write it to or read it from an external

database server that does not support the BLOB data type, but does support a

character/varchar/string data type.

Background

Many database servers support character data but not BLOB data. BLOB data can be stored on

such servers by converting it to a character string format before sending it. Naturally, when

reading data back from such servers, the data must be converted from the character string format

back to the original Coral8 BLOB format.

Coral8 Server uses "base64" encoding and decoding to convert a BLOB to a character string and

vice versa.

Remote Procedure Calls, Database Queries, and Public Windows

65

In base64 encoding, every 3 bytes of BLOB data is converted to 4 bytes of character string data.

This means that the output requires 4/3 as many bytes as the input. If the external database

server's character data type has a limit of N bytes per character string, then only 3/4 * N bytes of

BLOB data can be stored. For example, if the external database server has a limit of 2000 bytes

per character string, then the longest BLOB it can store will be 1500 bytes, which will of course

have expanded to 2000 bytes after base64 encoding. (Note: The exact limit may be slightly less

than 3/4 * N due to various factors, such as the input not being an exact multiple of 3 bytes.)

Keep in mind also that the DBDriverCharBufferSize limits the maximum size of data that you

can write to or read from remote database servers.

Reading From and Writing to External Database Servers that Do Not Support
BLOBs

Coral8 Server takes care of doing the base64 encoding and decoding for you if BLOB data is to

be stored as character data. You do not need to do anything except keep your data within the

maximum amount that can be exchanged with the remote database server. The limiting factor

may be the amount that the external server's character data type (e.g. VARCHAR) can hold, or

may be limited by DBDriverCharBufferSize. (Remember that the longest BLOB you can store

on such a server is approximately 3/4 the length of the longest character string that the external

server can store or that Coral8 Server can exchange with the remote database server.)

Coral8 Integration Guide

66

Reading From and Writing to Database Servers that Support BLOBs

Since Coral8 Server sends and receives the data in base64 format, if you want the data to be

stored in its original form on the external server, then you'll need to explicitly decode the data on

the external server before storing the data on the external server, and you'll need to explicitly

encode the data on the external server after reading the data from the external server.

If the external database server does support BLOB data, you might think that reading and writing

BLOB data between the external server and Coral8 Server would be easy and you would not

need to take into account that the data takes 4/3 as much space when converted to base64 format.

Unfortunately, however, the current implementation of the Coral8 Server does not provide

transparent reading and writing of BLOB information on external database servers. When

writing to an external database server, Coral8 Server automatically encodes the BLOB data in

base64 format EVEN IF THE EXTERNAL SERVER SUPPORTS THE BLOB DATA TYPE.

Similarly, when reading data from an external database server, Coral8 Server automatically

decodes data EVEN IF THE EXTERNAL SERVER SUPPORTS THE BLOB DATA TYPE. If

all you want to do is store the data on the external server and then read it back to Coral8 Server,

this is not a problem (although it is somewhat inefficient). However, if you want to process the

data on the external server, then you need to store the data as a proper BLOB on the external

server. For example, if you have an image that you want to process on the external server, then

you need to store that image in its original (BLOB) form so that the image-processing software

can interpret it correctly. If you left the data in base64 format, the image-processing software on

the external server probably wouldn't know how to interpret and process the data.

Remote Procedure Calls, Database Queries, and Public Windows

67

For example, if you write a database subquery to read data from a BLOB column on an external

database server, your query will look something like the following:

INSERT INTO FromDB2

SELECT test.id, test.image

FROM

(DATABASE "external1" SCHEMA (id string, image blob)

[[select id, base64_encode(photo_blob) from

testblob T where T.id = '650']])

AS test,

instream;

Note specifically that the external database server is told to encode the value in the photo_blob

column as a base64 value; this is because Coral8 Server expects to receive the data in a base64-

encoded form. (For this statement to execute properly, the external database server must have a

function called base64_encode(), of course. If the database server does not provide such a

function, you may need to write one yourself.)

Similarly, to write data to a BLOB column on an external database server, we must tell the

external database server to decode the data from base64 into the external server's native BLOB

format, since Coral8 Server will have encoded the data in base64.

EXECUTE STATEMENT DATABASE "external1"

[[

insert into testblob2 values(?id,

base64_decode((?image)))

]]

SELECT

 F.id as id,

 F.image as image

FROM

FromDB2 as F

;

Encoding and decoding the data does, of course, consume some resources. It also means that if

the input or output parameter of the encoding/decoding subroutine has a maximum size limit

(typically 2GB), then you'll still be limited to 3/4 of that size. Note that if you only want to read

and write the data on the external database server to store it, and you will never process it as a

BLOB on the external database server, then you can simply store it as character data and avoid

the extra processing of encoding/decoding required if you store it as BLOB data on the external

server.

When reading BLOBs from external databases, the maximum size of the BLOB being read in by

Coral8 is limited by the limits of the database driver (e.g. an ODBC driver). When writing

BLOBs to external databases, the size of the BLOB being written to the database is limited by

Coral8's DBDriverCharBufferSize setting (in the file named coral8-services.xml) which by

Coral8 Integration Guide

68

default is only 4k. See the Coral8 Administrator's Guide for information about this configuration

setting.

When reading BLOB data from an external database, you must transform the BLOB to a base64

encoded string before Coral8 gets the data. Similarly, when writing BLOB data to an external

database server, you must transform the data from base64 format (which is what Coral8 sends) to

BLOB format, if you want the external database server to store the data in BLOB format.

Different database servers will have different packages or functions that you must use to create a

base64 encoded string.

When reading BLOBs from external databases the maximum size of the BLOB being read in by

Coral8 is limited by the limits of the database driver (e.g. an ODBC driver). When writing

BLOBs to external databases, the size of the BLOB being written to the database is limited by

Coral8's DBDriverCharBufferSize setting (in the file named coral8-services.xml) which by

default is only 4k. See the Coral8 Administrator's Guide for information about this configuration

setting.

Remote Requests, Synchronization, and Performance

The semantics of the CCL language require that rows be kept in chronological order and

processed in chronological order. A call to a remote server (either an RPC server or a database

server) may take a significant amount of time to execute, depending upon factors such as

network bandwidth and latency, the load on the remote service, etc. The delay in getting data

back from the remote call may delay the output of rows from the queries.

Coral8 Server uses multiple techniques to minimize the delay. The techniques include:

 caching data from the remote service

 internal parallelization

Although a complete explanation of these features is beyond the scope of this document, we

provide some basic information below. Some additional information is in the Administrator's

Guide and some of the Coral8 Technical Notes.

Caching

To reduce the delay, the server may be configured to cache data that has been retrieved from a

remote server and use the cached values rather than re-issue the query. To ensure that the cache

is refreshed, customers may set a maximum limit on the length of time that data may stay in the

cache. The user may also set other caching-related parameters.

See the Coral8 Administrator's Guide for more information about caching.

Remote Procedure Calls, Database Queries, and Public Windows

69

Internal Parallelization

As noted above, although CCL semantics specify that rows be kept in order and processed based

on their row timestamps, that does not mean that Coral8 Server cannot use concurrency. With

concurrency enabled, a remote database query can cause the server to issue multiple, concurrent

database requests on different connections.

These remote queries may not return their results in the same chronological order as the requests

were issued. For example, suppose that remote database request "alpha" is issued at 10:00:00,

while request "beta" is issued at 10:00:01. Coral8 Server might receive the results of the "beta"

query before receiving the results of the "alpha" query if the remote server fulfills the "alpha"

request in 3 seconds and the "beta" request in 1 second, or if Coral8 Server's cache already

contains the results of a previous request for beta data. In this case, Coral8 Server simply stores

the "beta" remote query results until it has received the "alpha" remote query results and

processed the rows that needed that data. The server then moves on to process the later rows

(those that issued the "beta" request).

Coral8 Server ensures that an input row is processed in order irrespective of whether its requests

took a longer or shorter time than other requests issued around the same time. Later input rows

have to wait for earlier input rows to be processed. Rows are never processed out of order. The

output will be the same regardless of when remotely-requested data arrives. When rows first

arrive at the server, they may be re-ordered if the input stream has the MaxDelay or OutOfOrder

properties set to allow re-ordering. However, once the data is "inside" the server, the server will

not re-order the rows.

Public Windows

Coral8 Server's public window feature allows the rows in a window to be queried by any of the

following:

 a separate project running on a Coral8 Server, which can query the public window using

a database subquery or the CCL database statement (see "Database Statement" and

"Database Subquery" in the Coral8 CCL Reference for more information)

 an application written using one of the Coral8 SDKs

 through the Coral8-provided ODBC driver for public windows

For more information about public windows, see "Public Windows" in the Coral8 CCL

Reference.

Coral8 Project

If you will access the public window from another Coral8 project, then you must configure the

Coral8 Server doing the query so that this Coral8 Server can access the public window as though

Coral8 Integration Guide

70

it were a table in a remote database -- even if the project with the query and the project with the

public window are on the same Coral8 Server. Specifically, you must create a database service

entry in the coral8-services.xml file; this will make the public windows in the project look like a

"service" that the Database Statement or a database subquery can access. For information about

the coral8-services.xml file and its PublicWindow entries, see the Coral8 Administrator's

Guide.

The following Coral8 SDKs allow you to write a program to read from a public window:

 Coral8 C/C++ SDK. See Querying a Public Window.

 Coral8 Java SDK See Querying a Public Window.

 Coral8 .NET SDK See Querying a Public Window.

Coral8 SDK

To query a public window using an SDK, you call an SDK function and supply a query written

using Coral8 SQL syntax. (See "Coral8 SQL" in the Coral8 CCL Reference for information

about the syntax.) The SQL statement must be a SELECT statement, and you must submit only 1

statement per query. The function will return a result set containing zero or more rows. You may

then access each individual row in the result set.

You may want to test the Coral8 SQL query from inside Coral8 Studio before

using it in an SDK call. Use the Query Public Windows in Module command on the

Debug menu.

Coral8 Public Windows ODBC Driver

Coral8 Server includes an ODBC driver for use with public windows. When you set up a new

User DSN for the Coral8 Public Windows ODBC driver, you provide the ccl URI of the project

containing the public window. The URI is in the form

ccl://host:port/Project/workspace/project_name, where workspace is the name of the

Workspace in which the project runs, and project_name is the name of the project:

ccl://mymachine:6789/Project/Default/Filter

When you execute a query against the public window, you provide the name of the window.

The Coral8 Public Windows ODBC driver provides the core level of ODBC compliance, as

defined by Microsoft (http://msdn.microsoft.com/en-us/library/ms714086(VS.85).aspx).

As you design a system that uses public windows, remember the following: Storing

and updating public windows requires Coral8 Server to consume both memory and

CPU cycles, of course, so you may see a reduction in performance of other queries

when you add public windows or add queries of public windows.

http://msdn.microsoft.com/en-us/library/ms714086(VS.85).aspx

71

Engine Control: Command-line Tools

This chapter describes how to do the following tasks with command-line tools.

In order to deploy a Coral8 application, you must be able to do the following things:

 Start Coral8 Server

 Access a running Coral8 Server

 Create a query module and its associated schema files

 Compile the query module using the Coral8 Compiler

 Create a workspace on the Server

 Execute the query module on the Server

 Stop the query module on the Server

 Stop the Server and clean up its resources

These tasks are executed by one of the following programs:

 The server (c8_server.exe on Microsoft Windows, or c8_server on UNIX-like operating

systems)

 The compiler (c8_compiler.exe on Microsoft Windows, or c8_compiler on UNIX-like

operating systems)

 The c8_client utility program (c8_client.exe on Microsoft Windows, or c8_client on

UNIX-like operating systems). You execute this program with command-line parameters

that specify the task to be performed (e.g. start executing a query module). The c8_client

program translates the command-line parameter(s) into one or more SOAP calls and

sends them to the server.

To get the most up-to-date information about the c8_client program, execute

c8_client

to get a usage message that lists the command-line options.

Note that if you are using the Enterprise Edition of Coral8 Engine and you have enabled the User

Authentication feature, you will probably need to supply a username and password in order to

perform certain operations using c8_client. Use the command line option "--

username=<username>" to specify the user name (replace "<username>" with the name of a user

who has appropriate permissions). Use the command line option "--password=<password>" to

specify the password for that user. If you specify only the "--username" option without the "--

password" option, then c8_client will prompt you for a password.

Coral8 Integration Guide

72

Start the Server

The normal method for starting Coral8 Server is documented in the Coral8 Administration

Guide. It may be started the same way regardless of whether Coral8 applications will be

deployed from the Studio or from one of the SOAP interfaces. The Server may be started from

the command line in both Microsoft Windows and UNIX-like environments. The command to

invoke the Server from the command line is:

c8_server [options]

The following parameters and options can be used with the server.

--help Prints a list of command line parameters

--version Prints the current version number

--service=install
Microsoft Windows Only: This option installs Coral8

Server as a Microsoft Windows service.

--service=uninstall
Microsoft Windows Only: This option uninstalls

Coral8 Server as a Microsoft Windows service.

--service=start
Microsoft Windows Only: This option starts the

server when it is installed as a service.

--service=stop

Microsoft Windows Only: This option stops the

server when it is installed as a service and if it is

running.

--config=filename
Sets the server configuration file to the specified file

name.

--clean-state

Starts the server in a "clean state". All modules that

were running or loaded the last time that the server

was shut down will be cleared. If any modules were

using the "persistence" feature, all persisted data will

be cleared.

Start the Server on UNIX-like Operating Systems

On UNIX-like operating systems, the server is started with the command

coral8-server.rc start

The file coral8-server.rc is a shell script that sets the environment appropriately and then starts

the server.

If you try to start the server directly (e.g. with the c8_server command) and have not configured

the environment properly, you will get an error message such as "error while loading shared

Engine Control: Command-line Tools

73

libraries". This is an indication that the environment (e.g. the LD_LIBRARY_PATH

environment variable) is not set properly.

Start the Server on Microsoft Windows

On Microsoft Windows, the server is started with a command similar to:

C:\Program Files\Coral8\Server\bin\c8_server.exe -c=C:\Program

Files\Coral8\Server\conf\coral8-server.conf

(This command should all be on one line, of course, even if it's not shown on one line in this

manual.)

The "-c=C:\Program Files\Coral8\Server\conf\coral8-server.conf" indicates which server

configuration file the server should use.

If you try to start the server directly with only the command "c8_server.exe" (i.e. without any of

the other command-line parameters), you will probably see a message that includes:

license file was not found

If you do not specify the configuration file, then the server will not know where to look for the

license file.

Access a Running Coral8 Server

It is important to know the URI of your Coral8 Server. The URI is the only means of identifying

which server a SOAP request should go to. Every command or API call that issues one or more

SOAP requests to a server needs to know the URI of the Server. Some of the API environments

may hide this detail by taking the URI and creating a connection object so that subsequent

requests do not need to provide it every time. Others may require that the URI be specified for

every request.

Remember that the form of a server URI is:

http://<hostname>:<port>

e.g.

http://omega:6789

If your server contains separate manager(s) and container(s), use the URI of the manager. Coral8

Container Servers are used to run queries, in-process adapters, and user-defined functions. Coral

Manager Servers "manage" containers by assigning tasks to them and by monitoring their status.

If you are using a secure server (i.e. if you have enabled SSL), use the prefix "https" rather than

"http".

Note that a URI for a server (or a stream or any other object accessible with a URI) is useful only

when the Coral8 Server (or stream or ...) is already running.

Coral8 Integration Guide

74

Create a Project and its Associated Schema Files

This section describes how to create a project (query module) and its associated schema files by

using command-line tools.

Coral8 Project Files

Coral8 projects are stored in pairs of files; by convention, these files have extensions of ".ccp"

and ".ccl". These files contain not only CCL statements, but also an XML tag structure. Coral8

Studio's query editor hides the XML tag structure that wraps the query text with its supporting

information (schemas, streams, adapters, parameters and submodule references).

If you choose to build your own query modules, you will need to know the XML tag structure. A

query module file may be created and edited using any text editor or XML editor of the

developer's choice. However, the developer must create the proper XML tags and content. An

XML editor may assist in making sure that all tags are correctly structured, but using the tags in

the right order and providing the proper content for each tag is not a trivial exercise. Failure to

create a properly structured query module file will almost always result in compile or run-time

errors that will need to be corrected. In the vast majority of cases, you should use Studio or

RegisterQuery() to create your projects or register your queries.

The XML tag structure used in these files is not fully documented, and there are no

plans to document it. Furthermore, the internal structure of .ccp and .ccl files is likely to

change over the next few releases (starting no later than version 5.1.0). Although you

may create your own .ccp and .ccl files directly (rather than through Studio or

RegisterQuery()) if you wish, we do not recommend this.

Coral8 Schema Files

Coral8 schema files are stored in files with a conventional file extension of ".ccs". As with

query module files, these files use an XML tag structure which is hidden by Coral8 Studio's

query editor.

Create a Workspace on the Server

In order to deploy a Coral8 query module, the server must have a workspace that the query

module can be run inside. Workspaces are logical divisions within the Server that are used to

isolate groups of query modules.

To create a workspace, execute the command

c8_client --cmd=manager-create-workspace

 --server-uri=<server-uri>

Engine Control: Command-line Tools

75

 --workspace-name=<workspace-name>

 --workspace-description=<workspace-description>

The c8_client command that performs the Create Workspace operation is called manager-create-

workspace. The parameters included with this command are:

Parameter Name Description

server-uri The URI of the Server

workspace-name
The name of the

workspace

workspace-

description

The workspace description

is a string that is purely a

comment. This parameter

is optional.

The workspace name must conform to Coral8 naming rules.

If a workspace with the same name has already been created on the Server, then an error will be

returned.

Compile a Project or a Schema File

Before a project can be deployed to a Server, it must be translated from its "source" form

(.ccp/.ccl files and .ccs files) to an internal "object code" form by the Coral8 Compiler. There are

two ways that you can compile a project via the command line:

 by directly invoking the compiler

 by invoking the compiler through the c8_client program's "register query" command,

which will compile the program and start to execute it

In each case, the compiled file has the extension .ccx. The next section describes how to compile

the project via the CCL compiler. Registering (compiling and executing) the project is discussed

in a later section.

Compiling Directly via the CCL Compiler

The CCL compiler is a separate program, which can be invoked by the user. The name of the

program is c8_compiler (or c8_compiler.exe on Microsoft Windows) and it is stored in the

directory coral8/server/bin. Before invoking the compiler, make sure that your PATH

environment variable includes this directory.

On UNIX-like operating systems, you can set the path with a command similar to:

PATH=$PATH:/home/<user>/coral8/server/bin

Coral8 Integration Guide

76

where "/home/<user>" is replaced by the name of the directory under which the product was

installed.

On Microsoft Windows, you can set the path with a command similar to:

PATH=%PATH%;C:\Program Files\Coral8\Server\bin

To compile a CCL program, the compiler must be on the same computer as the CCL source code

and the output directory in which you want the resulting .ccx file stored. Note that this does not

have to be the same computer as the server is running on.

The general form of the command is

c8_compiler InputFile OutputFile

for example

c8_compiler /home/jsmith/foo.ccp /home/jsmith/foo.ccx

Once you have compiled the file, you can start to run it.

The most common case is that you will compile a .ccp file (a project), which may refer to other

query modules and to schema files (.ccs files). In some cases, however, you may compile just a

single schema file (.ccs). Schema files, as well as project files, must be compiled before they can

be used. For example, if you are writing your own adapter, and that adapter needs to read schema

information from a file with the C8SchemaReadFromFile(filename) function, you'll specify the

name of the .ccx file that you created by compiling the schema file.

The Coral8 compiler recognizes several command-line parameters. If you execute the

c8_compiler command with the command line parameter -h or --help, or without any parameters,

the compiler will return a usage message listing the valid parameters.

The output of the compiler (assuming that there are no errors) is stored in another XML file; by

convention, this file has an extension of .ccx. There is only one .ccx file created for each

compilation, regardless of how many schema files and submodules are included.

The Coral8 CCL Compiler is a stand-alone program that is invoked from the command line:

c8_compiler options InputFile OutputFile

Where InputFile is the full path and name of a project file, schema file, or plain-text CCL file,

and OutputFile is the full path and name of the compiled file you want created.

The following table lists valid parameters for options:

--binding=name=value

Sets the specified module parameter, including

stream bindings, to the specified value (more

information is provided later in this page).

Applies to the module identified with --module,

when InputFile is a plain-text CCL file. You can

repeat this option as needed to specify the value

for multiple module parameters.

Engine Control: Command-line Tools

77

--debug Compiles the debug version of the program.

 --guaranteed-delivery=true | false

Enables or disables guaranteed delivery for the

project. Defaults to false. Guaranteed delivery

guarantees that every Coral8 row is received by

its destination at least once, as long as the

software components are running.

--guaranteed-delivery:maximum-

age=age

Sets the maximum age, in microseconds, for

messages in the guaranteed delivery queue.

Messages that exceed this age are removed from

the queue without being delivered. Specifying

zero for this value sets no limit on the age of

messages in the queue (note that this can

potentially exhaust available memory). Defaults

to 10 minutes. Only valid if guaranteed delivery

is enabled.

--guaranteed-delivery:maximum-

queue-size=number

Sets the maximum number of messages allowed

in the guaranteed delivery queue. Messages that

exceed this number are removed from the queue

without being delivered. Defaults to zero, which

sets no limit on the size of the queue (note that

this can potentially exhaust available memory).

Only valid if guaranteed delivery is enabled.

--help Prints a help message.

--import:search-folder=dir

Specifies a directory the compiler should look in

for files imported by the project. You can repeat

this option as needed to specify additional

directories. See "Importing" later in this page for

more information.

--instances=N
The number of instances of this program to be

spawned on the server.

--max-errror-count=n
Sets the maximum number of errors allowed to

n. The compiler will exit if it reaches this limit.

--module=name

Loads the specified module (the main module)

from InputFile, which must be a plain-text CCL

file. Required when InputFile is a plain-text

CCL file.

--name=progname Sets the output program's name to progname.

Coral8 Integration Guide

78

This name must be unique within a workspace.

In most cases, the program name is the same as

the name of the source file (minus the .ccp

extension). However, if you want to load the

same query module more than once within the

same workspace, then each instance of the query

module must have a unique name.

--no-repository
Use the system root folder as the repository

folder.

--optimize:shortcut_and_or=true | false

If this flag is set to true, the compiler will use

"shortcut" evaluation of expressions that contain

AND and OR operators (more information is

provided later in this page). If this flag is set to

false, the compiler will not use shortcut

evaluation. The default is true.

--

optimize:remove_internal_streams=true

| false

If set to true, the compiler removes internal

streams (data streams used strictly within a

project or query module). Setting this to true

means that you won't be able to view the

internal streams with Coral8 Studio. The default

value is false.

--optimize:filter_asap=true | false

If this flag is set to true, the compiler will

evaluate WHERE and HAVING conditions as

early as possible. (This usually maximizes

performance.) The default value is true.

--optimize:fold_primitives=true | false

If this flag is set to true, the compiler eliminates

redundant primitives (more information is

provided later in this page). If this flag is set to

false, elimination of primitives is not done. The

default is true. This flag is rarely used.

--persistence=true | false

Enables or disables persistence for the project.

When enabled, Coral8 Server saves to disk state

information about the module, including

messages. Allows the project to recover after a

system failure. Defaults to false. Note that

enabling persistence can have a significant

negative impact on performance.

 --persistence:commit-interval=value Sets how frequently, in microseconds, Coral8

Engine Control: Command-line Tools

79

Server should save project state information to

disk. Defaults to one second. Only valid if

persistence is enabled.

--playback_rate=N

Sets the accelerated playback multiplier to N.

Use when input streams are set to use message

timestamp and you wish to process the data

faster than would otherwise happen based on the

message timestamps. Useful for testing or for

processing historical data.

--repository=pathname

Sets the repository root folder to pathname. The

compiler uses the repository path name as the

root for relative paths, such as to find project

and module files. Note that if you omit this

parameter, the compiled project references the

absolute path to the source files. If you want to

connect to the running project using Coral8

Studio on a computer other than the one on

which you compile the project, the absolute path

can cause an error when Coral8 Studio attempts

to locate the source files, unless the directory

structure is duplicated on both computers.

--repository-only

Prevents the compiler from accessing files

outside the directory specified with the --

repository parameter. Note that the compiler

compares paths for imported files against the

path to the specified repository without

accessing the file system. Attempts to import

files outside the repository generate an error

message.

--restart-on-failure=true | false

If true, Coral8 Server automatically restarts the

project (but not any attached adapters) after any

fatal error. Defaults to false.

--synchronization=inorder |outoforder |

useservertimestamp

Specifies the type of synchronization to use for

the project: use the timestamp contained in each

message, which must arrive in order (inorder),

use the timestamp contained in each message,

which can arrive out of order (outoforder), or

use the timestamp of Coral8 Server when each

message arrives (useservertimestamp). Defaults

Coral8 Integration Guide

80

to inorder.

--synchronization:maximum-

delay=value

Sets the maximum time, in microseconds, that

Coral8 Server should wait after each arriving

row before sequencing incoming rows from

multiple sources. Defaults to one second.

--synchronization:out-of-order-

delay=value

Sets the maximum time, in microseconds, that

Coral8 Server should wait after each arriving

row before sequencing incoming rows arriving

out of order. Defaults to one second. Only valid

if synchronization is set to outoforder.

--version Prints version information.

--warn:indexes=true | false

If this flag is set to true, then the compiler warns

when indexes are not used. If the flag is set to

false, the compiler does not issue a warning

when indexes are not used. The default is false.

(Indexes are used to speed up access within

large windows.)

--warn:deprecation=true | false

If this flag is set to true, then the compiler issues

warnings if deprecated parts of the language are

used. If this flag is set to false, no such warnings

are issued. The default is true.

--warn:implicit_conversions=true |

false

If this flag is set to true, then the compiler issues

warnings if implicit data type conversions are

used. If this flag is set to false, no such warnings

are issued. The default is true.

--warn:source_without_input=true |

false

If true, issues a warning for any named windows

or input streams that receive no input from

within the window and act as input for other

streams or windows. If you specify --debug

=true, then all named windows act as input to a

debug stream for viewing within Coral8 Studio.

Defaults to true.

--warn:ignore-all=true | false

Some operations, such as RegisterQuery, will

fail if compilation of the query results in any

warnings, even if there are no errors. To force

registerQuery to run the query even if there are

compiler warnings, set this option to true.

Engine Control: Command-line Tools

81

--warn:supress-all=true | false If true, issue no warnings. Defaults to false.

--workspace=name
Sets the output program's workspace name to

name.

The Coral8 CCL compiler may only be invoked as a stand-alone process.

OutputFile

When the compiler compiles a CCL file, it stores the result in a .ccx file. This command-line

option allows you to specify the path and name of the file that you would like the output written

to. Remember that when you want to run the program, you will need to specify the location of

this .ccx file.

Binding

The --binding (-b) option allows you to specify values for both parameters and stream bindings.

Consider the following CCL code:

create parameter integer Addend;

create input stream StreamIn schema (Value integer);

create output stream StreamOut schema (Value integer);

insert into StreamOut select Value + $Addend from StreamIn;

The following command sets the value of the parameter Addend to 42, binds StreamIn to the

stream named Sink in the project SrcProj, and binds StreamOut to the stream named Source in

the project OtherProj:

c8_compiler \

 -b=Addend=42 \

 -b=StreamIn=ccl://localhost:6789/Stream/SrcProj/Sink \

 -b=StreamOut=ccl://localhost:6789/Stream/OtherProj/Source \

 file.ccl

Importing

If your project imports other files, the compiler searches for those files using two search lists: the

command-line search list, composed of all the directories specified with the --import:search-

folder option, and the project-file search list, as specified in Coral8 Studio's compiler options

setting and stored in the project file.

The compiler resolves the path to any file that you import with a relative name by searching the

following directories, in order, until it locates the file:

1. the directory containing the file that initiated the lookup

Coral8 Integration Guide

82

2. each directory in the command-line search list relative to the compiler's working

directory

3. each item in the project-file search list relative to the project directory (the directory

containing the .ccp file or top-level .ccl file)

4. the project directory itself

5. each item in the project-file search list relative to the repository folder (as specified with

the --repository option)

6. the repository folder itself

For example, a project includes the following statements:

import 'x1.ccl';

import 'x2.ccl';

import 'x3.ccl';

import 'x4.ccl';

import 'x5.ccl';

import 'x6.ccl';

Use the following commands to compile the project:

cd $ROOT/cwd

c8_compiler -r=$ROOT/repo -I=cmd-lib $ROOT/repo/proj/proj.ccp

Assuming that the project-file search list as set in Coral8 Studio for this project includes proj-

lib, and given the following list of files, the compiler will use the ones highlighted in bold:

$ROOT/repo/proj/modules/x1.ccl

$ROOT/cwd/cmd-lib/x1.ccl

$ROOT/cwd/cmd-lib/x2.ccl

$ROOT/repo/proj/proj-lib/x1.ccl

$ROOT/repo/proj/proj-lib/x2.ccl

$ROOT/repo/proj/proj-lib/x3.ccl

$ROOT/repo/proj/x1.ccl

$ROOT/repo/proj/x2.ccl

$ROOT/repo/proj/x3.ccl

$ROOT/repo/proj/x4.ccl

$ROOT/repo/proj-lib/x1.ccl

$ROOT/repo/proj-lib/x2.ccl

$ROOT/repo/proj-lib/x3.ccl

$ROOT/repo/proj-lib/x4.ccl

$ROOT/repo/proj-lib/x5.ccl

$ROOT/repo/x1.ccl

$ROOT/repo/x2.ccl

$ROOT/repo/x3.ccl

$ROOT/repo/x4.ccl

Engine Control: Command-line Tools

83

$ROOT/repo/x5.ccl

$ROOT/repo/x6.ccl

Primitive Folding

Primitives are instructions that are generated by the compiler and executed by the engine. In

some cases, compiling source code (CCL statements) may generate some redundant primitives.

Primitive folding will merge redundant primitives, decreasing code size and increasing

performance.

Shortcutting

Shortcutting AND and OR operators means that the server stops evaluating an expression as

soon as the server can determine the result of the expression. For example, if an expression is

"boolCol1 AND boolCol2", and if boolCol1 = false, then it is impossible for "boolCol1 AND

boolCol2" to be true, so the server can return FALSE without evaluating the rest of the

expression.

In most cases, shortcutting expression evaluation increases performance without changing

results. However, there may be cases where you would like the entire expression evaluated even

if the result can be determined earlier. For example, suppose that you have a WHERE clause that

looks like the following:

WHERE boolCol1 AND MyBooleanUDF1(col3)

If you want MyUDF1() to be called for every row (perhaps because the UDF sends information

elsewhere or saves information that you'll need later), regardless of the result of the expression,

then you should not turn on shortcut evaluation.

Note that in some cases you can re-write expressions to allow shortcut expression evaluation

without failing to call every function that should be called. For example, in the simple case

shown above, you can simply reverse the order of the operands and then enable shortcut

evaluation.

WHERE MyBooleanUDF1(col3) AND boolCol1

A Note About ADL Files

Before compiling, the compiler reads .adl (Adapter Definition Language) files, which may be

provided by Coral8 or may be created by customers who write their own input and output

adapters. If the .adl files are not in the directory ../plugins (or in any of the other locations that

the compiler expects -- see Adapter Definition Language for details), then the compiler may give

an error message that includes "Cannot locate Plugins folder". To prevent this problem, either

run the compiler from the "server/bin" directory or configure your system so that the compiler

can find the plugins directory.

Coral8 Integration Guide

84

Execute the Project

Once the .ccx version of the query module has been compiled, it can be sent to the server and

started using the command:

c8_client --cmd=start --server-uri=<server-uri>

 --workspace-name=<workspace-name> --program-file=<program-file>

The parameters available with this command are:

Parameter Description

server-uri The URI of the Server.

workspace-name
The name of the workspace in which

the query module should be run.

program-file

The full path and file name of the

compiled query module, i.e. the .ccx

file.

This command loads the query module on the server and starts it at the same time. There are

additional SOAP commands that provide a way to load and start the query module with separate

requests, if this is desired.

Registering a Project via the c8_client Program

You may "register" (compile and run) a project (query module) by giving the c8_client utility the

register-ccl-query command. The compilation is done on the server (not on the client).

c8_client.exe [--config=<config_file>] --cmd=register-ccl-query

--compiler-server-uri=<compiler-server-uri>

--manager-server-uri=<manager-server-uri>

--ccl-query=<path_to_ccl_query_file>

[--compiler-flags=<compiler_flags>]

--workspace-name=<workspace-name> --load=<load_name>

Parameter Description

config_file

This is the path to the Coral8 Server's configuration file (which is

usually named coral8-server.conf and is usually found under the

server/conf directory).

compiler-server-uri

The URL of the manager of the server that you would like to compile

this project. Note that this may be a "remote" server; it does not have to

be a server on the same computer as the c8_client command is running

on. The format of this parameter should be similar to:

"http://host:port/Compiler", e.g. "http:MyComputer:6789/Compiler".

Engine Control: Command-line Tools

85

manager-server-uri

The URL of the manager server on which you would like to run this

project. Note that this may be a "remote" server; it does not have to be a

server on the same computer as the c8_client command is running on.

The format of this parameter should be similar to:

"http://host:port/manager", e.g. "http:MyComputer:6789/manager".

path_to_ccl_query_file

The full path and file name of the file that contains the CCL statements.

Note that this file should contain only CCL statements and nothing else.

(Versions of Coral8 Studio up through and including at least version

5.2 create .ccp and .ccl files that include not only CCL statements, but

also XML tags. Such files are not suitable for use as the CCL query file

with this c8_client command. Note that this may change in future

versions.)

compiler_flags
You can specify the same flags as you would specify on the command

line of the compiler. See Compiling Directly via the CCL Compiler.

workspace-name The name of the workspace in which the query module should be run.

load_name

The name of the project. This name will appear in Studio's Explorer

View. This is also the name that you would use if you want to stop the

project from running after you have started it.

Compiling and Running a Project

You can compile a project (query module) locally and then run it by giving the c8_client utility

the compile-and-run command. The compilation is done on the local client (not on the server).

c8_client.exe [--config=<config_file>] --cmd=compile-and-run

--server-uri=<server_uri>

--workspace-name=<workspace_name>

--program-name=<program_name>

--ccl-query=<path_to_ccl_query_file>

[--compiler-flags=<compiler_flags>]

Parameter Description

config_file

This is the path to the Coral8 Server's configuration file (which is

usually named coral8-server.conf and is usually found under the

server/conf directory).

server_uri

The URL of the server on which you would like to run this project.

Note that this may be a "remote" server; it does not have to be a server

on the same computer as the c8_client command is running on. The

format of this parameter should be similar to:

"http://host:port/manager", e.g. "http:MyComputer:6789/manager".

Coral8 Integration Guide

86

path_to_ccl_query_file
The full path and file name of the file that contains the CCL statements

(,ccl file) or project information (.ccp file).

compiler_flags

You can specify the same flags as you would specify on the command

line of the compiler. See Compiling Directly via the CCL Compiler,

with the exception of the workspace and program names.

workspace_name The name of the workspace in which the query module should be run.

program_name

The name of the project. This name will appear in Studio's Explorer

View. This is also the name that you would use if you want to stop the

project after you have started it.

Get Status of an Executing Project

After a project has been started on a Server, it is usually necessary to monitor the status of the

project. There are two ways to accomplish this:

 Poll the Server for status using the appropriate c8_client command

 Subscribe to the Server's StatusStream for the project.

To poll the server for status, use the command

c8_client --cmd=status

 --server-uri=<server-uri>

 --workspace-name=<workspace-name>

 --application-name=<application-name>

(This command should be on a single line. We have split it across multiple lines for readability.)

Publishing Data to a Server

In the overwhelming majority of cases, when you want to publish data to a stream in a server,

you will use an adapter. You may, however, use the c8_client program to publish data to a

stream. To do this, you use the "publish" command and specify several command-line

parameters. We'll start with an example command and then explain each part of the command.

The example is split across multiple lines for clarity, but when you use the command it must all

be on one line.

cat data.csv | ./c8_client --cmd=publish

--format=csv

--timestamp-mode=set-current

--format-options='FieldDelimeterChars=^,TimestampColumn=false'

--uri=ccl://hypatia:6901/Stream/Default/SimpleTest/instream

Note that options are prefixed with two dashes, not one.

In this example,

 The data format is "csv" (Comma-Separated Values).

Engine Control: Command-line Tools

87

 The Row Timestamp will be based on the time that the row arrives, not based on a Row

Timestamp inside the row.

 The field delimiter character (in other words, the character that separates fields within a

row) is the caret character ("^"), rather than the comma (",").

 The row does not contain a Row Timestamp column

 The c8_client program will write the data to the stream that has the stream URI

"ccl://hypatia:6901/Stream/Default/SimpleTest/instream".

The following table documents several of the command-line parameters, including the ones used

in the example above. For a complete list of parameters that apply to the version of Coral8

Server that you are using, please execute the command:

c8_client --cmd=publish --help

Note that the command-line options are case-sensitive.

Parameter Description

format

Must be one of the three Coral8 data stream formats: CSV

(Comma-Separated Values), XML, binary. Note that the binary

format is not documented, and we recommend that you use the

CSV format.

username The user name. You need this if user authentication is enabled.

password

The password of the user that you specified. Note that the

password should only be specified if a username has been

specified.

uri

The URI of the stream to which you want to publish. For

instructions on obtaining the URI of a stream, see How to Find

the URI of a Stream.

timestamp-mode

The value may be set to "as-is" or "set-current". If the value is

"as-is", then the server will use the row timestamp in the data. If

the value is "set-current", then the server will replace the row

timestamp with the current timestamp (as of the time that the

row is received by the server).

csv-title-row

If the value is set to "true", the server will treat the first row as a

title row. If the value is set to false, the server will treat the first

row as a row of data.

csv-timestamp-column

If this is set to "true", then the first row of data will be treated as

the Row Timestamp. If this is set to false, then the data will be

treated as though it had no Row Timestamp.

csv-timestamp-column- If this is set, then the server will assume that the format of all

Coral8 Integration Guide

88

format timestamp columns, including the Row Timestamp (if a Row

Timestamp is present) matches this format. If this is not set,

then the server will assume that all timestamp values, including

the Row Timestamp (if present) are in the default format

(microseconds since midnight January 1, 1970 GMT/UTC).

Valid timestamp formats (such as "YYYY-MM-DD

HH24:MI:SS.FF") are documented in the CCL Reference.

format-options
For a list of format options, see the table that describes Format

Options for Publishing with c8_client,

The following table shows some of the options that you may use with the "format-options"

command-line parameter.

When you use the "--format-options" command-line parameter, separate the options with

commas and put quotation marks around the entire group of format options. On unix-like

operating systems, the quotation marks may be single quotes or double quotes. On MS-

Windows, the quotation marks should be double quotes.

For example:

cat data.csv | ./c8_client --cmd=publish

...

--format-options="FieldDelimeterChars=|,TimestampColumn=false"

In this example, we specify that the field delimiter character should be a vertical bar ("|") instead

of a comma. We also specify that there is no Row Timestamp column.

Note that some format-options overlap some of the command-line parameters in the preceding

table. For example, you may specify that the input has a title row by using either the format-

option "HaveTitleRow=true" or by using the command-line parameter "--csv-title-

row=true". If there is more than one way to specify a particular behavior, use only one of those

ways. If you specify conflicting behaviors with different options, the behavior of the product is

undefined.

Note that the format options are case-sensitive.

Parameter Description

TitleRow
Set this to "true" if the input contains a title row; set it to false

otherwise.

HaveTitleRow

Set this to "true" if the input contains a title row; set it to false

otherwise. This option is for backwards compatibility only; use

"TitleRow" instead.

TimestampColumn
Set this to "true" if the first column of input is a Row

Timestamp; set it to false otherwise.

Engine Control: Command-line Tools

89

HaveTimestampColumn

Set this to "true" if the first column of input is a Row

Timestamp; set it to false otherwise. This option is for

backwards compatibility only; use "TimestampColumn"

instead.

TimestampColumnFormat

This is the format in which timestamp values (including the

Row Timestamp, if any) are stored, for example "YYYY-MM-

DD HH24:MI:SS.FF". For a complete description of

timestamp formats, see the CCL Reference.

NullColumnValue

This is an explicit string that represents a NULL value. For

example, you may use the string "NULL" to represent NULL.

An empty field (two field separators with nothing, except

possibly whitespace, between them) will also be treated as

NULL.

LineDelimiterChars

A character that terminates a line of CSV input (in other

words, that terminates a row). The default character is a

newline character.

LineContinuationChars

The character used to permit a line of CSV data to be

continued to the next line. If this character is used, it must be

the last character (except whitespace) on the line.

FieldDelimiterChars
The character used to separate columns of CSV data. The

default value is a comma.

QuoteChars

The character(s) which may be used to quote CSV strings. By

default, either a single quote character (') or a double quote

character (") may be used. Note that the entire string of format

options must be enclosed in quotes, so you may need to use the

escape character (backslash) to specify a quotation mark

within the quoted string. For example, the following specifies

that the single quote mark, double quote mark and the

backquote character should all be treated as delimiters for

STRING fields: --format-options="QuoteChars`\"'",

EscapeChars

The escape character is a character used to indicate that the

immediately following character should be interpreted

specially.

WhitespaceChars

This allows you to specify a different set of whitespace

characters than the default. For example, if you want the tab

character (ctrl-I) to be used as a field delimiter, then you would

not want it to continue to be treated as a whitespace character,

so you might create a set of whitespace characters that exclude

Coral8 Integration Guide

90

the tab character.

TrimWhitespaces

If this is "true", then whitespace characters outside of quotes

will be trimmed from STRING fields. If this is "false", then

whitespace characters will be preserved. Whitespace characters

inside quotation marks are always preserved.

Stop Execution of a CCL Project

After a CCL project (query module) has been successfully started on the Server, it will continue

to execute until it is stopped by a client request. The c8_client command to stop a running project

is "stop".

c8_client [--config=<config file>] --cmd=stop

 --server-uri=<server-uri>

 --workspace-name=<workspace-name>

 --application-name=<application-name>

(This command should be on a single line. We have split it across multiple lines for readability.)

This stops the CCL application <application-name> in Coral8 Server at <server-uri>. The

parameters of this command are described in the following table:

Parameter Description

server-uri The URI of the server.

workspace-name The name of the workspace

application-name

The name of the project (query module). This

is equivalent to the values specified with the -

-name or --program-name or --load option

when the module was compiled.

Clean Up a Workspace's Resources

Once a workspace is no longer being used, it should be destroyed using the manager-destroy-

workspace c8_client command. This command takes the same parameters as the manager-create-

workspace takes.

c8_client [--config=<config file>] --cmd=manager-destroy-workspace

 --server-uri=<server-uri>

 --workspace-name=<workspace-name>

 [--unload-programs-flag=<unload-programs-flag>]

(This command should be on a single line. We have split it across multiple lines for readability.)

Parameter Description

Engine Control: Command-line Tools

91

server-uri The URI of the server.

workspace-

name
The name of the workspace

unload-

programs-flag

Indicates whether to unload the

program from the workspace.

Stop the Coral8 Server

This section describes how to stop Coral8 Server.

Stop the Server on UNIX-like Operating Systems

On UNIX-like operating systems, the server is stopped with the command

coral8-server.rc stop

The script coral8-server.rc sets the environment appropriately and then starts or stops the

server, depending upon the command-line parameter ("start" or "stop").

Stop the Server on Microsoft Windows

If the server is running as a Microsoft Windows service, you may use the usual Microsoft

Windows mechanisms for stopping a service.

If the server is not running as a service, then you stop the server by pressing ctrl-C in the

command window in which the server is running. There is no API or other programmatic

mechanism for stopping the server on Microsoft Windows.

93

Implementing Guaranteed Processing

Overview

Normally when you run a Coral8 project or application, Coral8 Engine performs best-effort

message processing and delivery. In other words, a failure in the system, such as a server crash

or lost network connection, may cause messages to be dropped or duplicated. This best-effort

processing is fine for many applications, but in some situations, you may need to ensure that

every message from your originating data source reaches the final destination exactly once, with

no messages dropped or duplicated. A guaranteed processing system ensures that messages are

processed exactly once, completely, in order, and with resiliency to failure. In other words,

guaranteed processing produces exactly the same results (other than timing) with failures as

processing would have produced without failures.

Application Components

When you implement a guaranteed processing application, you must address every component of

the application, not just the Coral8 Engine components. The following diagram illustrates the

components of an end-to-end application incorporating Coral8 Engine:

Messages travel through the application as follows:

 From the external data source to an input adapter. The adapter may poll the external

source or register for notifications or use some other mechanism to receive data.

 The input adapter publishes messages to one or more data streams.

 The stream(s) feed projects and query module(s).

 The query module(s) publish to one or more streams.

 The stream(s) feed an output adapter.

 The output adapter subscribes to the stream(s), processes the messages, converts the data

to a format suitable for the final destination, and then transmits the data.

 The destination performs whatever actions with the data that it is designed to do.

Coral8 Integration Guide

94

In order for an application to achieve guaranteed processing, every component of the system—

every link in the chain—must handle the logic and communication with its neighbor components

that ensure exactly-once delivery. If just one of the components uses some other methodology,

then the system as a whole will not perform guaranteed processing. For example, if the data

source provides events on a best-effort basis, the entire system can only be categorized as best-

effort. Similarly, if the output adapter uses at-least-once processing (messages are never dropped

but may be duplicated), then the application as a whole must be considered an at-least-once

processor.

Guaranteed Processing Implementation

The following diagram organizes the components of an application into three groups, each with

different requirements for guaranteed processing:

Coral8 Engine

The components labeled with A in the diagram—the streams, projects, and query modules—are

part of Coral8 Engine and can implement exactly-once processing with the help of the Coral8

Guaranteed Delivery feature. Guaranteed Delivery is a communications protocol that provides

acknowledgements from the recipient to the sender assuring that messages were delivered.

In order to recover after a failure, an application component must be able to re-create its state

before the failure and, possibly, retrieve or reproduce some messages. This usually requires

persistence. In addition, to be able to recover from a Coral8 Server failure quickly, you should

consider implementing High Availability.

Note that Guaranteed Delivery can have a dramatic negative impact on performance. Also note

that no system is absolutely guaranteed: some types of catastrophic failure can make it

impossible (or at least prohibitively expensive) to recover automatically.

See Coral8 Engine Settings for more information about how to configure these components for

Guaranteed Delivery.

Implementing Guaranteed Processing

95

Adapters

The components labeled with B in the diagram are the input and output adapters. Depending on

your application requirements, you may be able to use adapters provided by Coral8 or one of

Coral8's partners that support guaranteed processing. Enabling guaranteed processing in an

adapter implies both the use of the Guaranteed Delivery protocol and the use of algorithms that

support guaranteed processing. For example, an adapter might use transactions when you

configure it for guaranteed processing, but not use them otherwise. How you enable or configure

guaranteed processing is specific to the adapter. If you are using an adapter provided by Coral8,

see Coral8 Adapters for more information. If you are writing your own adapter, see Writing an

Adapter for Guaranteed Processing for additional information about implementing Guaranteed

Delivery.

Source and Destination

The components labeled with C in the diagram are the data source and destination. Because these

are external to Coral8 Engine, it's your responsibility to configure them as needed to enable

guaranteed processing. You'll need to configure your data source to provide exactly-once

processing, which is specific to your data source and also dependent on your choice of input

adapter. You'll also need to configure the destination to provide exactly-once processing. Again,

details are specific to your choice of adapter and destination software. See the documentation of

the particular software for information about such configuration.

Coral8 Engine Settings

You can use Coral8 Studio or the Coral8 Eclipse plugin to enable Guaranteed Delivery on your

projects, modules, and streams. You can also specify Guaranteed Delivery settings with dynamic

queries if you are using a Coral8 SDK to build a custom application.

Settings for Projects, Modules, and Streams

You enable and configure Guaranteed Delivery for a project, submodule, or stream in the

Properties view of Coral8 Studio. You can also use properties of the CREATE MODULE and

CREATE STREAM statements to enable Guaranteed Delivery on a module (in the Coral8

Eclipse plugin only) or stream. For more information about the Properties pane, see the "Editing

Query Module Properties" section of the Coral8 Studio Guide. For more information about the

CREATE MODULE statement, see the documentation provided with the Coral8 Eclipse plugin.

For more information about the CREATE STREAM statement, see the section of the same name

in the Coral8 CCL Reference.

Coral8 query execution is repeatable: providing the same inputs to multiple executions of the

same query will produce the same result. This characteristic allows Coral8 Engine to recover

Coral8 Integration Guide

96

from a failure, since it can, in essence, pick up where it left off. Note that there are a few fairly

obvious CCL exceptions to repeatability, such as the RANDOM() and NOW() functions, which

are designed to return a different result each time you call them.

Persistence

The Guaranteed Delivery protocol by itself doesn’t ensure exactly-once processing: Coral8

Engine must save state and message information in order to recover from a failure. In order to

provide guaranteed processing, you should enable persistence for your application components.

You enable persistence at the project and module level using the same mechanisms described in

Settings for Projects, Modules, and Streams. Streams inherit their persistence settings from the

parent project or module.

You usually enable persistence on projects and modules whenever you enable Guaranteed

Delivery. However, if the project or submodule does not need to keep non-recoverable state

information, then you don’t need to enable persistence. For example, you do not need to enable

persistence for a module that only enhances a row with data retrieved from an external database,

since the database itself is already persistent.

For more information about persistence, see the State Persistence technical article.

Start with Clean Slate

When you use Coral8 Studio to start a project with persistence enabled, you’re essentially

restarting the project from the saved state. If you want to start fresh, you instead need to click

Start with Clean Slate from the Coral8 Studio Debug menu. Making any change to the project

also clears the saved state, so starting the project after a change is similar to starting with a clean

slate.

Writing an Adapter for Guaranteed Processing

If you want to write your own adapter for a guaranteed processing system, you’ll need to

incorporate the Coral8 Guaranteed Delivery protocol and also handle guaranteed processing

communication with your data source or destination.

Guaranteed Delivery Mechanisms

When you write an adapter that incorporates the Coral8 Guaranteed Delivery protocol, you

establish a session with Coral8 Engine and send or receive messages in batches. The receiver

(subscriber) acknowledges receipt of each batch as the receiver processes it, notifying the sender

(publisher) that it is safe to send the next batch of messages.

If you are writing an input adapter, you need to implement the following functionality:

Implementing Guaranteed Processing

97

 Establish a connection to Coral8 Engine with a unique session ID, chosen by you.

 Send messages in a batch, each with a batch ID (again chosen by you) unique to the

session, and wait for acknowledgment of that batch from the subscriber.

 Detect a return after a failure (a lost connection, for example) and re-establish the

connection to Coral8 Engine with the same session ID. Ask the subscriber for the ID of

the last batch it received and begin sending messages again with the next batch.

For an output adapter, you need to implement this functionality:

 Establish a connection to Coral8 Engine with a unique session ID, chosen by you.

 Subscribe for messages and process each batch, tracking the ID of the last batch you

processed.

 Detect a return after a failure (a lost connection, for example) and re-establish the

connection to Coral8 Engine with the same session ID. Notify Coral8 Engine of the ID of

the last batch of messages you processed before the failure, and then begin processing

messages again.

Exactly how you accomplish these tasks is specific to the SDK you use, described in Coral8

C/C++ SDK, Coral8 Java SDK, and Coral8 .NET SDK.

Note that you must also save some information in persistent storage so that you can recover it

after a failure. Specifically, an input adapter must be able to retrieve or reproduce the session ID,

the ID of the last batch published, and the messages contained in that batch. Depending on your

data source, you may be able to reproduce the messages after a failure without having to save

them to disk yourself. Similarly, an output adapter must be able to retrieve or reproduce the

session ID and the ID of the last batch of messages it processed.

In addition to these Coral8 Guaranteed Delivery functions, you must include code in your

adapter to handle a variety of situations that may not be directly related to the Guaranteed

Delivery protocol:

 You must be able to differentiate between a normal start of your adapter and a start after

a failure, so that you will know when to retrieve from storage or re-create the session ID,

batch ID, and (for an input adapter) messages.

 You must be able to handle any special requirements for re-establishing a connection

with your data source or destination when you adapter restarts after a failure, including

eliminating any duplicate messages.

 You must be able to detect and deal with a lost connection to your data source or

destination, and to Coral8 Engine, and also detect and deal with the return of that

connection.

 You must take care of any special requirements when your data source or destination

restarts after a failure.

Coral8 Integration Guide

98

 You should consider whether your adapter needs to operate in both guaranteed and non-

guaranteed modes and, if so, how you will implement both code paths.

Guaranteed Delivery with the Coral8 C/C++ SDK

Both Coral8 Server and Coral8 Studio ship with the Coral8 C/C++ SDK. All the C/C++ SDK

files are in the directory sdk/c under the Coral8 Server or Coral8 Studio installation directory.

Note that the discussion in the following pages is limited to functions specific to Guaranteed

Delivery. It does not cover general adapter implementation functions. See Adapters and Coral8

C/C++ SDK for more general information about writing adapters.

Publishing for an In-Process Adapter

The following table lists the functionality required to implement Guaranteed Delivery in an input

adapter and the corresponding Coral8 C/C++ in-process API functions you use for each:

Establish a session C8AdapterConnect

Create and publish batches of messages C8AdapterSendMessageListAsBatch

Re-establish a session after a failure

Coral8 Engine calls the developer-

defined reconnect function as specified

in the ADL file.

Request the ID of the last batch processed

by Coral8 Engine
C8AdapterGetLastBatchId

See In-process Adapter API and Signatures of User Functions for specific syntax and usage

information.

Publishing for an Out-of-Process Adapter

The following table lists the functionality required to implement Guaranteed Delivery in an input

adapter and the corresponding Coral8 C/C++ out-of-process API functions you use for each:

Establish a session C8PublisherCreateGD

Create and publish batches of messages C8PublisherSendMessageBatch

Re-establish a session after a failure
C8PublisherCreateGD (only required

after an adapter restart)

Request the ID of the last batch processed

by Coral8 Engine
C8PublisherGetLastBatchId

If you are converting an existing out-of-process adapter to Guaranteed Delivery, you may find it

easier to use these functions for publishing messages instead:

Implementing Guaranteed Processing

99

Create and publish batches of messages

C8PublisherSendMessage or

C8PublisherSendMessages, followed

by

C8PublisherCommit

See API Interface for specific syntax and usage information.

Coral8 provides an example input adapter that implements Guaranteed Delivery, called

example_gd_input_adapter.c. You can find it under your Coral8 Server or Coral8 Studio

installation directory, in the sdk/c/examples directory.

Subscribing for an In-Process Adapter

The following table lists the functionality required to implement Guaranteed Delivery in an

output adapter and the corresponding Coral8 C/C++ in-process API functions you use for each:

Establish a session C8AdapterConnect

Receive and process batches of messages
C8AdapterGetNextMessagesBatch

C8MessageBatchPopMessage

Re-establish a session after a failure

Coral8 Engine calls the developer-

defined reconnect function as specified

in the ADL file.

Specify the ID of the last batch processed C8AdapterSetLastBatchId

See In-process Adapter API, Signatures of User Functions, and Message API for specific syntax

and usage information.

Subscribing for an Out-of-Process Adapter

The following table lists the functionality required to implement Guaranteed Delivery in an

output adapter and the corresponding Coral8 C/C++ in-process API functions you use for each:

Establish a session C8SubscriberCreateGD

Receive and process batches of messages C8SubscriberGetNextBatch

Re-establish a session after a failure
C8SubscriberCreateGD (only required

after an adapter restart)

Specify the ID of the last batch processed
Passed as an argument to

C8SubscriberCreateGD

If you are converting an existing out-of-process adapter to Guaranteed Delivery, you may find it

easier to use these functions for subscribing to messages instead:

Coral8 Integration Guide

100

Create and publish batches of messages
C8SubscriberGetNextMessage with

C8SubscriberGetLastBatchId

Note that if you use these functions, you must keep track of the batch ID so that you can save it

to persistent storage at the appropriate time. The function C8SubscriberGetLastBatchId returns

the ID of the last complete batch of messages that you have processed with

C8SubscriberGetNextMessage. As soon as the ID changes, you should save it to persistent

storage so that you can correctly identify the last batch processed after a failure.

See API Interface for specific syntax and usage information.

Coral8 provides an example output adapter that implements Guaranteed Delivery, called

example_gd_output_adapter.c. You can find it under your Coral8 Server or Coral8 Studio

installation directory, in the sdk/c/examples directory.

Guaranteed Delivery with the Coral8 .NET SDK

Both Coral8 Server and Coral8 Studio ship with the Coral8 .NET SDK. All the .NET SDK files

are in the directory sdk/net3 under the Coral8 Server or Coral8 Studio installation directory. The

SDK reference documentation is in the directory sdk/net5/doc. Open the file

Documentation.chm to get started.

Coral8 ships several examples with the .NET SDK, which are under sdk/net3/examples. The

examples are thoroughly commented to help you understand the purpose of each line of code.

For more information about examining, compiling, and running the Coral8 .NET examples, see

Coral8 .NET SDK.

The file named Example_13_WorkingWithGuaranteedDelivery.cs contains an example

illustrating how to use the Guaranteed Delivery protocol with the Coral8 .NET SDK.

Note that the discussion in the following sections is limited to methods specific to Guaranteed

Delivery. It does not cover general adapter implementation methods. See Adapters and Coral8

.NET SDK for more general information about writing adapters.

Publishing

The following table lists the functionality required to implement Guaranteed Delivery in an input

adapter and the corresponding Coral8 NET SDK methods you use for each:

Establish a session CreatePublisherWithGuaranteedDelivery

Create and publish batches of messages
NewBatchOfMessages

publish

Re-establish a session after a failure CreatePublisherWithGuaranteedDelivery

Request the ID of the last batch GetLastBatchId

Implementing Guaranteed Processing

101

processed by Coral8 Engine

See the SDK reference documentation in the directory sdk/net3/doc under your installation

directory for specific syntax and usage information.

You can see these methods being used in the file

Example_13_WorkingWithGuaranteedDelivery.cs:

Establish a Session

The following two lines of the example creates a publisher object with Guaranteed Delivery

enabled and establishes the connection:

publisher =

engineClient.CreatePublisherWithGuaranteedDelivery(inStream,

publisherSessionID);

publisher.Connect();

The first parameter of the CreatePublisherWithGuaranteedDelivery method specifies the

stream the publisher will write messages to, and the second parameter is the session ID.

Create and Publish a Batch

Here the example creates a batch of messages to be published:

IBatchOfMessages batch1 = mf.NewBatchOfMessages(msgList1, batchID1);

The first parameter to this method is the list of messages and the second is the batch ID.

Here the example publishes the batch of messages:

publisher.Publish(batch1);

Re-Establish a Session

After a (simulated) failure, the example re-establishes the session using exactly the same

methods as for the initial connection:

publisher =

engineClient.CreatePublisherWithGuaranteedDelivery(inStream,

publisherSessionID);

publisher.Connect();

The session ID used here is the same as the ID used the first time, identifying this as a reconnect.

Request Last Batch ID

After reconnecting, the example requests the ID of the last batch of messages Coral8 Engine

processed:

lastBatchID = publisher.LastBatchId;

Now the publisher knows where to restart processing (which batch of messages it needs to send).

Coral8 Integration Guide

102

Subscribing

The following table lists the functionality required to implement Guaranteed Delivery in an

output adapter and the corresponding Coral8 .NET SDK methods you use for each:

Establish a session SubscribeToStreamWithGuaranteedDelivery

Receive and process batches of

messages
GetNextBatchOfMessages

Re-establish a session after a failure ResumeSubscriptionWithGuaranteedDelivery

Specify the ID of the last batch

processed
ResumeSubscriptionWithGuaranteedDelivery

See the SDK reference documentation in the directory sdk/net3/doc under your installation

directory for specific syntax and usage information.

You can see these methods being used in the file

Example_13_WorkingWithGuaranteedDelivery.cs:

Establish a Session

The following line of the example not only creates a subscription object with Guaranteed

Delivery enabled but establishes the session connection:

subscription1 =

engineClient.SubscribeToStreamWithGuaranteedDelivery(

 outStream, subscriberSessionID_1);

The first parameter is the stream the subscriber will read messages from, and the second

parameter is the unique session ID.

Receive a Batch of Messages

Here the example reads a batch of messages from the data stream:

IBatchOfMessages receivedBatch1 =

subscription1.GetNextBatchOfMessages(10000);

The parameter is a timeout, in milliseconds.

Re-Establish a Session and Specify Last Batch ID

After a (simulated) failure, the subscriber re-establishes the connection with Coral8 Engine:

subscription1 =

engineClient.ResumeSubscriptionWithGuaranteedDelivery(

 outStream, subscriberSessionID_1, receivedBatch1.BatchId);

The subscriber uses a different method for reconnecting that passes the batch ID of the last batch

the subscriber processed, telling Coral8 Engine which batch to send next.

Implementing Guaranteed Processing

103

Variations of Guaranteed Processing

A guaranteed processing application incorporates both Guaranteed Delivery and persistence.

Depending on your application needs, you might want to enable just one of those features in

Coral8 Engine.

Guaranteed Delivery without Persistence: If you enable Guaranteed Delivery for the Coral8

Engine components of your application without enabling persistence, the application will

perform exactly-once processing as long as the software components are running. This scenario

recovers from failures such as a lost network connection, but not from failures that involve

restarting any of the software components. Because the overhead of enabling persistence can

have a significant negative impact on performance, you may decide that this option is acceptable

for your needs. This variation is called semi-reliable delivery.

Persistence without Guaranteed Delivery: If you enable persistence for the Coral8 Engine

components of your application without enabling Guaranteed Delivery, the application will still

perform best-effort processing, but if Coral8 Server restarts, it will continue processing from the

saved state rather than starting fresh. This reduces, but does not eliminate, the possibility of

discarded messages.

105

Coral8 C/C++ SDK

This chapter explains how to do the following in C/C++:

 Create an out-of-process adapter

 Create an in-process adapter

 Register a query

 Compile a CCL project

 Create a User-Defined Function

 Control the server - e.g. start or stop a query module, or get status information about a

server or a query module.

 Embed a Coral8 Server inside another process

Overview

The Coral8 SDK (Software Development Kit) in the C/C++ programming language includes the

following:

 libraries of functions that you can call

 header (.h) files that your source code can #include

 Source code for some of the adapters that Coral8 supplies

 Sample source code for other purposes, including:

 an out-of-process input adapter (example_input_adapter.c) and output adapter

(example_output_adapter.c)

 registering a query (example_register_query.c)

 a user-defined function (weightedAverage3)

 a user-defined aggregate function (runningAverage)

You will need to supply a C/C++ compiler.

The only C compiler that Coral8 supports on Microsoft Windows is the Microsoft

Visual Studio .NET 2005 C/C++ compiler with Visual Studio Service Pack 1.

If you have a .dll file that was generated with a previous version of Microsoft Visual

Studio, that .dll file will not work reliably with version 5.1 and later of Coral8 Server.

You should re-compile the code. This applies to all .dll files that are intended to be

linked in with Coral8 Server, including:

Coral8 Integration Guide

106

 in-process adapters

 UDFs (User-Defined Functions). Note that, throughout this chapter, when we

refer to UDFs, we are referring to UDFs written in C/C++, not CCL UDFs,

unless explicitly stated otherwise.

 RPC (Remote Procedure Call) plugins

 user-defined plugins

Compiling for 64-bit Microsoft Windows

When compiling for 64-bit Microsoft Windows, do the following:

 tell the compiler to use the AMD64 code generation tools by running the "vcvarsall.bat"

script as shown below (the following should all be on one line, even if it is not displayed

as one line in this documentation format):

"C:\Program Files (x86)\Microsoft Visual Studio 8\VC\vcvarsall.bat" amd64

 If you have a Visual Studio project, make sure the build platform listed in the

Configuration Manager is "x64". To do this, follow the instructions below:

1. Click on "Project" -> Properties

2. Click on the "Configuration Manager" button near the top of the property page.

3. In the drop-down list named "Active solution configuration", select the "Debug"

option.

4. In the "Active solution platform" drop-down list, select "x64".

If you don't see "x64" in the list, then choose "<New...>"

In the "New Solution Platform" dialog box, in the drop-down list named "Type or

select the new platform", choose "x64", and in the "Copy settings from" drop-

down list, select "Win32".

Note: we have only validated compiling using Visual Studio .NET 2005 (Service Pack 1) on

Windows Server 2003 64-bit edition - we have not tried cross compiling from 32 bit platforms.

In-process vs. Out-of-process Activities

In chapter 3, we explained the difference between an in-process adapter and an out-of-process

adapter. The concepts of "in-process" and "out-of-process" apply to more than just adapters.

Compiling, registering a query, and server control (e.g. stopping execution of a project) are all

out-of-process activities. All of these out-of-process activities use the Coral8 client SDK.

Coral8 C/C++ SDK

107

Before you can call any of the client SDK functions, you need to call the client

initialization function. (The exact name depends upon which SDK you are using.)

The remaining SDK functionality, such as creating user-defined functions, as well as in-process

adapters, uses Coral8 Server SDK.

Data Types and Subroutines for UDFs and In-process
Adapters

Coral8 provides some functions that can be called from either User-Defined Functions or In-

process Adapters. These functions are described in this section. We suggest that you skim this

section the first time you read it. Later, after you have learned more about how to do a particular

task (create a UDF or adapter), return to this section and read it in more detail.

Datatype is one of the internal forms of data used by the Coral8 engine. The data types are:

C8Int - A signed 32 bit integer.

C8UInt - An unsigned 32-bit integer.

C8Long - A signed 64 bit integer.

C8ULong - An unsigned 64-bit integer.

C8Bool - A true/false switch. Because of C requirements, this has been #defined as C8_TRUE

and C8_FALSE.

C8Timestamp - Time expressed in microseconds since midnight January 1, 1970 UTC (GMT).

C8Interval - An interval expressed in microseconds.

C8Float - Double-precision floating point numbers (64 bits).

C8CharPtr - A basic character pointer, corresponding to the STRING data type in CCL.

C8Char * - Another form of a basic character pointer, corresponding to the STRING data type

in CCL.

C8Blob - A BLOB (Binary Large OBject).

C8BlobPtr - A pointer to a BLOB.

The C SDK treats XML data as a string and thus uses C8CharPtr rather than defining an XML

datatype such as "C8XML ".

Note that BLOB data may be stored in one of 3 formats:

 raw - a "raw" BLOB is stored in its original format, i.e. as a byte-for-byte copy of its

value. This is the most compact form, and is the form in which Coral8 Server internally

stores and processes BLOBs.

Coral8 Integration Guide

108

 hex string - a "hex string" BLOB is stored as a sequence of hexadecimal digits followed

by a byte with the value 0 to terminate the string. This format allows the BLOB to be

transmitted and processed as a string of printable characters. This format can also be

transmitted or received in situations where you must not send data that includes control

characters. Because each byte of the original data requires 2 bytes of hex digits, and

because the string has a single byte as a terminator, the length of the hex BLOB is 2N + 1

bytes, where N is the length of the original BLOB. Although this format is the least

compact format, utilities for converting data from raw to hex string format and vice-versa

are widely available, and therefore this format is among the most portable formats.

 base64 string - base64 string encoding is another way of encoding a BLOB as a string.

For every 3 bytes of the original BLOB, the base64 string uses 4 bytes. This format may

be used when exchanging BLOB information with database servers that expect BLOBs to

be sent or retrieved in base64 string format. For more information about base64 string

encoding, see Background.

Each Coral8 C/C++ SDK function that uses hex string format (either for input parameters or

return values) will contain "HexString" somewhere in the name, e.g.

C8ConvertHexStringToBlob(). If the function uses base64 string format, then the function will

contain "Base64String" somewhere in the name. If the function returns or accepts BLOBs and

does not have "HexString" or "Base64String" in the name, then the function handles BLOBs in

raw format.

To ensure that the data types are portable, the c8types.h header file includes a typedef for each of

these data types.

Error Handling Functions

All the error handling functions are available through functions defined in

#include "c8messages.h"

These error-handling functions are available to both in-process and out-of-process tasks.

The design of error handling permits flexibility in its use. An application may implement error

handling to whatever degree necessary. If desired, error handling may be ignored or it may be

used after every single call. Ignoring error conditions may result in undefined behavior.

Users may implement their own error code with associated text messages. This is an alternative

way to log errors on the Coral8 engine logger. All calls to C8ErrorSet() result in a log entry in

the Coral8 system log. All C8ErrorSet() calls are considered equal in the sense that there is no

distinction between informational, warning, or fatal messages.

Errors are tracked on a per-thread basis. Once an error condition is detected, the error code will

persist until C8ErrorClear() zeroes the error code or until the next Coral8 API function is called.

(Each Coral8 API call will reset the error.)

Coral8 C/C++ SDK

109

A zero error code indicates no errors; this is the initial state.

Refer to c8messages.h for Coral8 error codes.

void C8ErrorClear();

Purpose: Clear any existing error code to the zero state. This implies no errors.

Parameters: None.

Returns: Nothing.

void C8ErrorSet(C8Int error_code, const char *err_text, ...);

Purpose: This sets the error code (which may subsequently be read). It also prints both

the error code and the message to Coral8 Server log.

The err_text variable may contain not only text, but also any of the print format specifiers

allowed by the NSPR C-language printf() function (e.g. "%s", "%d", etc.). See the table

below for details. As with the standard C printf() call, the call to C8ErrorSet() should

have as many additional parameters as there are print format specifiers. For example:

C8ErrorSet(-99, "Err: expected = %d actual = %d", v1, v2);

Unlike when calling printf(), you do not need to include a newline to force each message

to be put on a separate line in the Coral8 log.

The table below shows the print format specifiers used with Coral8 data types.

Coral8 Data

Type

NSPR

Print

Format

Specifier

Meaning

C8Blob None

There is no format specifier for printing a BLOB.

To display a BLOB's contents, you may convert it

to a string of hexadecimal digits (using the

C8ConvertBlobToHexString() function) and

then display that string.

C8Boolean %d
Signed integer (note that this will print a number,

not a word such as "TRUE" or "FALSE").

C8CharPtr Or

C8Char *
%s String

C8Float %f
64-bit floating point number ("double" on most

platforms)

C8Int %ld Signed 32-bit integer ("decimal")

C8UInt %u Unsigned 32-bit integer ("decimal")

C8Interval %lld This will print the length of an interval in

Coral8 Integration Guide

110

microseconds.

C8Long %lld Signed 64-bit integer

C8ULong

(UNIX)
%llu Signed 64-bit integer

C8ULong

(Microsoft

Windows)

%I64u Unsigned 64-bit integer

C8Timestamp %lld

This will print the timestamp as a number of

microseconds since midnight January 1, 1970,

UTC

For consistency, we recommend that you follow the convention of pairing up error

numbers and error messages so that the user sees the same error message each time she

sees a particular error number (and vice versa). However, Coral8 does not require or

check that error codes and error messages are consistently paired up. In different calls,

the same error code may be used with different text and vice versa.

Note that the error that you set with C8ErrorSet() will normally remain until you

explicitly clear it with the C8ErrorClear() function or until it is written over by another

error.

Note that errors are "per thread". Each thread sees only its own error codes.

Calls to the Coral8 API will clear any error code when they succeed and set the error

code when they fail. We recommend that users always check the return codes of Coral8

calls to make sure they succeeded.

 For calls that return C8Status, the return value of C8_FAIL indicates a failed call,

while C8_OK indicates success.

 For functions that return pointers, a return value of NULL indicates that the call

failed.

 For void functions, users need to check whether C8ErrorGetCode() returns a

non-zero value, which indicates an error.

If the Coral8 API call failed, the user may get the error code and error text with

C8ErrorGetCode(), C8ErrorGetMessageLength(), and C8ErrorGetMessageText().

Parameters:

 error_code - The error number that you want to set.

 err_text - The text of the error message that you would like to set.

Returns: Nothing.

void C8Log(const char *log_text, ...);

Coral8 C/C++ SDK

111

Purpose: This prints the message to Coral8 Server log.

The log_text variable may contain not only text, but also any of the print format

specifiers allowed by the NSPR C-language printf() function (e.g. "%s", "%d", etc.).

See the table in C8ErrorSet() for details. As with the standard C printf() call, the call

to C8ErrorSet() should have as many additional parameters as there are print format

specifiers. For example:

C8Log("expected = %d actual = %d", v1, v2);

Unlike when calling printf(), you do not need to include a newline to force each message

to be put on a separate line in the Coral8 log.

Parameters:

 log_text - The text to write to Coral8 Server log.

Returns: Nothing.

void C8LogMessage(C8Int i_code, const enum C8LogLevels i_level, const C8Char *i_fmt,

...);

Purpose: This allows the user to specify message for the log file and control the

circumstances under which that message will be printed to the log.

You may have some messages that you want logged only under certain circumstances,

such as when debugging a problem. This function allows you to specify a message and

the "severity" of that message. By specifying the appropriate severity for each message,

and by setting the LogLevel parameter in the server configuration file, you may control

whether a particular message is logged or ignored on a particular run of the server.

The pre-defined levels are shown in the table below.

C8LogFatalError -4

C8LogError -3

C8LogWarning -2

C8LogStatus -1

C8LogInfo 0

C8LogDebug 1

C8LogDebug2 2

C8LogTrace 3

The level of the message, combined with the setting of the LogLevel parameter in the

coral8-server.conf file, controls whether the message is sent to the log. For example, if

coral8-server.conf file contains the following:

<section name="FileLogger">

 ...

Coral8 Integration Guide

112

 <preference name="LogLevel">Warning</preference>

 ...

</section>

then all calls to C8LogMessage() that have an i_level of Warning or lower will be printed

in the log, and the rest will not. In this example, all FatalErrors, Errors, and Warnings

will be printed, while Status, Info, Debug, Debug2, and Trace messages will not be

logged.

The i_fmt variable may contain both text and any of the print format specifiers allowed

by the NSPR C-language printf() function (e.g. "%s", "%d", etc.). See the table in

C8ErrorSet() for details about the print format specifiers. As with the standard C

printf() call, the call to C8LogMessage() should have as many additional parameters as

there are print format specifiers. For example:

C8LogMessage(2001, C8LogDebug, "At start of foo(), param1 = %d",

param1);

Unlike when calling printf(), you do not need to include a newline to force each

message to be put on a separate line in the Coral8 log.

Parameters:

 i_code - This is a number that identifies the type of error that occurred.

 i_level - This identifies the severity of the message, according to the table shown

above.

 i_fmt - This contains the text of the error message.

Returns: Nothing.

C8Int C8ErrorGetCode();

Purpose: Return the most recent error code. The error code and text are maintained on a

per-thread basis and persist until cleared or overwritten by another error.

Parameters: None.

Returns: the most recent error code.

C8SizeType C8ErrorGetMessageLen();

Purpose: returns the length of the buffer (in bytes) required to hold the message

associated with the current error code (for the current thread). This length takes into

account the space needed for the terminating null. If the return value is zero, there is no

text information. It is possible to have a non-zero error code and no associated text if this

is what the user has set. (Coral8 software always associates textual information with an

error code.)

Parameters: None.

Coral8 C/C++ SDK

113

Returns: the length of the buffer (in bytes) required to hold the message associated with

the current error code (for the current thread). Note that this includes the space required

for the string termination character.

C8Bool C8ErrorGetMessageText(char *o_text, C8SizeType i_buf_size);

Purpose: The text associated with the current error code is copied into o_text. It is

assumed the user has properly prepared a buffer of adequate size based on the length

returned by C8ErrorGetMessageLen(). If the buffer is not large enough to hold the

message, then the function will copy as much of the message as will fit (taking into

account the byte required to terminate the truncated string with a null.) The internal copy

of the text remains unaffected.

Parameters:

 o_text - the buffer into which to copy the error message.

 i_buf_size - the size of the buffer.

Returns: C8_TRUE if the entire message was copied, C8_FALSE otherwise.

Memory Management API

The following memory management functions may be used with either in-process operations or

out-of-process operations.

void* C8Malloc(C8SizeType count);

Purpose: Allocates an area of memory count bytes in size and returns a pointer to this

memory area. Note that the input parameter is an unsigned value (type C8UInt). The

memory returned by C8Malloc() will contain random data (i.e. the bytes are not

initialized to a value such as 0). Except where this documentation explicitly states

otherwise, memory allocated by C8Malloc() must be de-allocated by C8Free() or a

memory leak will occur. See the warnings in Notes about Allocating and Deallocating

Memory in In-process Code.

Parameters:

 count - the number of bytes to allocate.

Returns: a pointer to the allocated memory.

void* C8Realloc(void *old_mem_ptr, C8SizeType new_size);

Purpose: Assumes old_mem_ptr has been allocated by C8Malloc() and provides for a

new memory area of size new_size. The data in the old memory is copied to the new

memory. The C8Realloc() function follows the same rules as realloc(). See the warnings

in Notes about Allocating and Deallocating Memory in In-process Code.

Parameters:

Coral8 Integration Guide

114

 old_mem_ptr - a pointer to the "old" memory.

 new_size - the size of the new block of memory to be reallocated.

Returns: nothing.

void C8Free(void *mem_ptr);

Purpose: The memory pointed to by mem_ptr is released. mem_ptr should have been

acquired via C8Malloc(), C8Realloc(), or another SDK function that explicitly states

that its returned value may be C8Free'd. See the warnings in Notes about Allocating and

Deallocating Memory in In-process Code.

Parameters:

 mem_ptr - a pointer to the memory to be free'd.

Returns: nothing.

Although the memory management API is the same for in-process and out-of-process operations,

some special cautions apply when these are used with in-process operations. These cautions are

explained in the section below.

Notes about Allocating and Deallocating Memory in In-process Code

Unless a function's description states otherwise, if you allocate a piece of memory, then you are

responsible for de-allocating that memory, and if the server allocates a piece of memory and

returns it to you, then the server is responsible for de-allocating the memory.

For each piece of memory that is allocated by either you or the server, the de-allocation method

must correspond to the allocation method that you (or the server) used. For example, if you

allocate a piece of memory using C8Malloc(), then you should free the memory using C8Free()

rather than free() or some other de-allocation method. If you use the wrong de-allocation method

for a particular piece of memory, the results are undefined.

Similarly, if you allocate a piece of memory that the server will be responsible for de-allocating,

you must allocate the memory using the appropriate function so that the server will de-allocate it

correctly.

These rules apply to all code in In-process Adapters and User-Defined Functions (including user-

defined aggregate functions).

The following table shows when to use each type of de-allocation method:

Allocated By Deallocated By Language

C8Malloc() / C8Realloc() C8Free() C or C++

malloc() / realloc() free() C or C++

new (C++ memory allocation)
delete (C++ memory

deallocation)
C++

Coral8 C/C++ SDK

115

C8MessageCreate() or
C8MessageCreateWithSize()C8MessageCreateWithSize()

or C8AdapterReceiveMessage() or
C8AdapterReceiveMessageWait()

C8MessageDestroy() C or C++

You must use the appropriate de-allocation function for each piece of memory. For

example, use C8Free(), not free(), to free a piece of memory that you allocated with

C8Malloc().

In general, if a function returns a pointer to an object A that is part of another object B, then you

should not specifically de-allocate object A; A will be de-allocated when B is de-allocated. In the

Coral8 C/C++ SDK function prototypes, objects that are part of other objects are usually marked

as "const" ; for example, in the function prototype below, the return value is "const C8Schema

*", which indicates that the returned schema is part of a C8Publisher object, and therefore should

not be de-allocated separately.

const C8Schema * C8PublisherGetSchema(...);

C/C++ Data Conversion Functions

The Data Conversion Functions permit customers to change data from one data type to another -

e.g. to convert the string "2006-02-01 09:00:00.000000" into a value that is formatted as a

TIMESTAMP.

These functions may be used in both in-process and out-of-process code.

Conversion API

The API for all conversions requires inclusion of the c8conversions.h header file:

#include "c8conversions.h"

The actual code to convert the data types is in a shared object library (".so" file on most UNIX-

like operating systems) or a Dynamic Link Library (".dll" file on Microsoft Windows systems).

When you compile and link your code, you should include the appropriate library as part of the

link command.

Datatype ToString()

All of the ToString() functions take an input data value and convert it to a string. The string is

stored in a user-supplied data buffer with a specified max size. All data types except C8Bool

require a conversion format. To use the Coral8 default format, pass NULL as the format

argument. The user is responsible for supplying the buffer to save the output.

If conversion is successful, the function returns C8_TRUE. If conversion is unsuccessful, then

the function returns C8_FALSE; the content of the output buffer is undefined; and the Coral8

Coral8 Integration Guide

116

engine log will contain an error message. If the output buffer is too short, the output string is

silently truncated and C8_FALSE is returned.

C8Bool C8ConvertIntToString(C8Int i_value, const C8Char *format, C8Char *o_buf,

C8SizeType o_buf_size);

Purpose: This function converts an Integer to a String. The format defaults to "%d" (the

standard C-language format specifier for integer). Users may provide any C-style integer

format.

Parameters:

 i_value - the value to convert to a string.

 format - a format specifier indicating the desired format of the resulting string

value.

 o_buf - the location into which to store the string. The user must have allocated

enough memory to hold the desired string.

 o_buf_size - the length of the buffer.

Returns: C8_TRUE on success, C8_FALSE otherwise.

C8Bool C8ConvertLongToString(C8Long i_value, const C8Char *format, C8Char *o_buf,

C8SizeType o_buf_size);

Purpose: This function converts a Long to a String. The format defaults to "%lld". Users

may provide any C-style long format.

Parameters:

 i_value - the value to convert.

 format - a format specifier indicating the desired format of the resulting string

value.

 o_buf - the location into which to store the string. The user must have allocated

enough memory to hold the desired string.

 o_buf_size - the length of the buffer.

Returns: C8_TRUE on success, C8_FALSE otherwise.

C8Bool C8ConvertBoolToString(C8Bool i_value, C8Char *o_buf, C8SizeType o_buf_size);

Purpose: This function converts a Boolean to a String. The result will be the string "true"

or "false". If i_value is non-zero, the result will be "true". If i_value is zero, then the

output will be "false".

Parameters:

 i_value - the value to convert.

 o_buf - the location into which to store the string. The user must have allocated

enough memory to hold the desired string.

Coral8 C/C++ SDK

117

 o_buf_size - the length of the buffer.

Returns: C8_TRUE on success, C8_FALSE otherwise.

C8Bool C8ConvertTimestampToString(C8Timestamp i_value, const C8Char *i_format,

C8Char *o_buf, C8SizeType o_buf_size);

Purpose: This function converts a timestamp to a string. If the i_format parameter is

invalid, conversion may fail.

Parameters:

 i_value - the value to convert.

 i_format - a format specifier indicating the desired format of the resulting string

value, e.g. "YYYY-MM-DD HH24:MI:SS.FF". If the format parameter is a null

pointer, then the output is in microseconds. To specify another format, please

refer to the CCL Reference Guide's description of valid formats for TIMESTAMP

data type. If the time zone is not specified, then the format will default to using

local time.

 o_buf - the location into which to store the string. The user must have allocated

enough memory to hold the desired string.

 o_buf_size - the length of the buffer.

Returns: C8_TRUE on success, C8_FALSE otherwise.

C8Bool C8ConvertTimestampTimezoneToString(C8Timestamp i_value, const C8Char

*i_format, const C8Char *i_timezone, C8Char *o_buf, C8SizeType o_buf_size);

Purpose: This function converts an internal timestamp to a string while applying

appropriate timezone offsets. Conversion may fail if the format or timezone is invalid.

Please refer to the time formatting specifications for supported formats. The timezone

abbreviations are defined in the c8_timezones.csv file in the plugins directory. See the

discussion of time zones and the c8_timezones.csv file in the Coral8 CCL Reference

Guide for more details.

Parameters:

 i_value - the value to convert.

 i_format - a format specifier indicating the desired format of the resulting string

value, e.g. "YYYY-MM-DD HH24:MI:SS.FF". If the format parameter is a null

pointer, then the output is in microseconds.

 i_timezone - the timezone abbreviation, e.g. "PST" for Pacific Standard Time.

 o_buf - the location into which to store the string. The user must have allocated

enough memory to hold the desired string.

 o_buf_size - the length of the buffer.

Coral8 Integration Guide

118

Returns: C8_TRUE on success, C8_FALSE otherwise.

C8Bool C8ConvertIntervalToString(C8Interval i_value, const C8Char* i_format, C8Char

*o_buf, C8SizeType o_buf_size);

Purpose: This function converts an Interval to a String. The parameter i_format is usually

NULL, in which case the output interval in o_buf will be in the standard Coral8 interval

form, similar to +1 23:45:67.123456 (days, hours, minutes, seconds, and fractions of a

second). For alternative formats, see the NSPR prprf.h file, which lists the formats

accepted by the underlying PR_snprintf code.

Parameters:

 i_value - the value to convert.

 i_format - a format specifier indicating the desired format of the resulting string

value.

 o_buf - the location into which to store the string. The user must have allocated

enough memory to hold the desired string.

 o_buf_size - the length of the buffer.

Returns: C8_TRUE on success, C8_FALSE otherwise.

C8Bool C8ConvertFloatToString(C8Float i_value, const C8Char *i_format, C8Char

*o_buf, C8SizeType o_buf_size);

Purpose: This function converts a Float to a String. The format uses the default of "%lg".

Users may provide any C style format that is valid for the C "double" data type (64-bit

floating point value), which corresponds to the CCL FLOAT type.

Parameters:

 i_value - the value to convert.

 i_format - a format specifier indicating the desired format of the resulting string

value.

 o_buf - the location into which to store the string. The user must have allocated

enough memory to hold the desired string.

 o_buf_size - the length of the buffer.

Returns: C8_TRUE on success, C8_FALSE otherwise.

C8Bool C8ConvertBlobToHexString(const C8Blob * i_val, C8UInt i_blob_size, C8Char *

o_buf, C8SizeType i_buf_size);

Purpose: This function converts a raw BLOB to a string of hexadecimal digits. The caller

must provide a buffer for the string large enough to contain the converted string

(including the terminating null). Since each byte of the blob will take 2 characters (hex

digits), the size of the buffer must be 2 * i_blob_size + 1.

Coral8 C/C++ SDK

119

Note that since strings are limited to 2^32 bytes on many platforms, the longest Blob you

can convert to a hex string on those platforms is 2^31 - 1 bytes. Blobs that are 2GB or

longer cannot be converted.

C8SizeType is typedef'd in c8types.h.

Parameters:

 i_value - the value to convert.

 i_blob_size - the number of bytes in the raw BLOB.

 o_buf - the location into which to store the string. The user must have allocated

enough memory to hold the desired string.

 i_buf_size - the length of the buffer.

Returns: C8_TRUE on success, C8_FALSE otherwise.

StringToDatatype()

All the StringToDatatype functions take an input string and output a parsed value of the

appropriate data type. If the parse cannot be performed, the functions return C8_FALSE. An

invalid parse results in an undefined result. A valid parse returns C8_TRUE and the parsed value

of the appropriate type in o_out.

Data may be preceded or followed by whitespace. The entire string is assumed to contain the

data. The parse is not as in sscanf() where "123XX456" produces the integer 123. In Coral8,

parsing "123XX456" as a number will result in a parse error. A string of " 123\t " (where \t is the

tab char), is perfectly acceptable since whitespace may lead and follow a numeric value.

C8Bool C8ConvertStringToInt (const C8Char *s, C8Int *o_out);

C8Bool C8ConvertStringToLong (const C8Char *s, C8Long *o_out);

C8Bool C8ConvertStringToBool (const C8Char *s, C8Bool *o_out);

C8Bool C8ConvertStringToTimestamp(const C8Char *s, C8Char*i_format,

 C8Timestamp *o_out);

C8Bool C8ConvertStringToFloat (const C8Char *s, C8Float *o_out);

// Convert a "raw" blob to a "hex string" blob.

C8Bool C8ConvertHexStringToBlob (const C8Char *s, C8Blob *o_out,

 C8SizeType *o_size,

 C8SizeType i_buf_size);

Note that the C8ConvertStringToTimestamp() function is the only one of these

StringToDatatype() functions that allows you to specify a format. If the format parameter is a

Coral8 Integration Guide

120

null pointer, then the output is in microseconds. To specify another format, e.g. "YYYY-MM-

DD HH24:MI:SS.FF", please refer to the CCL Reference Guide's description of valid formats for

TIMESTAMP data type. If the format is invalid, conversion may fail.

Note that since 2 hex digits are converted to a single byte in the BLOB, and since the trailing null

(string terminator) is not needed as part of the blob, the o_out parameter to the

C8ConvertHexStringToBlob() function only needs to be CEIL((N-1)/2) bytes long, where N is

the length of the hex string.

Note also that C8SizeType is typedef'd in c8types.h.

Miscellaneous

C8Bool C8ParseURL(const C8Char *url, C8Char *scheme, C8SizeType scheme_size,

C8Char *host, C8SizeType host_size, C8Int *port, C8Char* path, C8SizeType path_size);

Purpose: Given a URL of the form:

parse the URL into the various components:

 scheme - the protocol, e.g. "ccl://" or "http://"

 host - the host computer

 port - the port number

 path - the remainder of the URL after the port number.

If the parse is successful, C8_TRUE is returned; otherwise, C8_FALSE is returned. The

user must provide C8Char arrays of adequate size to contain the output of the parse.

Results will be truncated if the arrays are too small. If the return value is C8_FALSE, the

results are undefined. Suggested sizings are shown in the code fragment below:

C8Char scheme[8];

C8Char host[256];

C8Int port = 0;

C8Char path[256];

if (! C8ParseURL(url, scheme, sizeof(scheme), host,

sizeof(host),

 &port, path, sizeof(path)))

 { ... }

Parameters:

 url - the URL (Uniform Resource Locator) that you would like parsed.

 scheme - the scheme specifies the protocol, e.g. "ccl://" or "http://".

Coral8 C/C++ SDK

121

 scheme_size - the number of bytes in the "scheme" variable.

 host - the name of the host computer specified in the URL.

 host_size - the number of bytes available to store the host name.

 port - the port number specified in the URL.

 path - the path is the remainder of the URL after the port number.

 path_size - the number of bytes available to store the path.

Returns: C8_TRUE if the url is parsed successfully; otherwise, C8_FALSE.

Generic Functions Available in Out-of-process and In-process Tasks

C8Timestamp C8Now();

Purpose: This returns the current time. The returned value is a standard TIMESTAMP

value; i.e. it is the number of microseconds since midnight January 1, 1970 UTC/GMT.

Although the time is returned as a number of microseconds, the actual precision depends

upon the platform. On Microsoft Windows, the typical resolution of C8Now() is 15

milliseconds (15,000 microseconds).

Parameters: none.

Returns: the current time as a C8Timestamp.

C8Timestamp C8HighResolutionNow();

Purpose: This returns the current time. The returned value is a standard TIMESTAMP

value; i.e. it is the number of microseconds since midnight January 1, 1970 UTC/GMT.

This function uses high-resolution timers for microsecond accuracy on the platforms that

support such timers.

Note that this function is considerably more "expensive" than C8Now().

Parameters: none.

Returns: the current time as a C8Timestamp.

void C8Sleep(C8Interval us_delay);

Purpose: The thread sleeps for the specified amount. The header file c8types.h contains

definitions that may be useful in specifying durations; e.g., to delay 3 seconds, use

3*C8PerSecond.

Note that small intervals are probably inappropriate depending on your CPU speed,

system clock resolution, and system loading. In general, resolutions less than 100

milliseconds are very imprecise. Even for larger values, the actual length of the sleep will

almost certainly not be exactly what was specified.

Parameters:

Coral8 Integration Guide

122

 us_delay -- the number of microseconds to delay.

Returns: nothing.

APIs Used for Out-of-process Adapters and Control
Programs

The following API(s) are used both by out-of-process adapters (i.e. adapters that run as separate

programs rather than as part of the server process) and programs that do "control" activities such

as compiling and executing CCL code.

c8client.h

The c8client.h library contains the following functions:

C8Status C8ClientSDKInitialize(const C8Char * i_progname, const C8Char * i_pref_file);

Purpose: This function "initializes" the SDK. This function must be called before calling

any of the functions in the out-of-process adapter API or the control API. Call the

function C8ClientSDKShutdown() when the SDK is no longer needed.

Parameters:

 i_progname - program name (used for logging).

 i_pref_file - path to preferences file to use (pass NULL to specify no preferences

file and to use defaults).

Returns: C8_OK if successful, C8_FAIL otherwise.

If you are writing an out-of-process adapter that uses SSL, you must create a

subdirectory named secure in the directory containing your executable

containing security certificate information. Simply copy the secure directory into

the same directory as your executable from the top-level directory of either the

Coral8 Server or Coral8 Studio installation, first making sure that the Coral8

application is not running. If you fail to take this step, you will see an error

similar to the following:

CRITICAL ERROR: Error: Error while generating

certificate (Reason='Error: failed to initialize

internal key slot')

C8Status C8ClientSDKShutdown();

Purpose: This function cleans-up after using the out-of-process adapter SDK or the server

control SDK. No SDK functions may be called after the call to C8ClientSDKShutdown().

Parameters: none.

Returns: C8_OK if successful, C8_FAIL otherwise.

Coral8 C/C++ SDK

123

APIs Used for In-process and Out-of-process
Adapters

The following APIs may be used with both in-process and out-of-process adapters.

API Interface

Coral8 provides some header (.h) files that are used in both in-process and out-of-process

adapters.

The header file c8types.h provides the data type information.

The shared APIs include:

 Schema. The Schema API provides meta-information about the data. Information such as

the number, names and types of columns are accessible. The schema API is applicable

both to in-process adapters and out-of-process adapters. The function prototypes for the

schema API are in the file c8messages.h

 Message. Data routing in the Coral8 engine is in terms of data packets called "messages"

(informally also called "rows" or "tuples"). A message contains, among other things, a

particular row of information matching the schema. The API includes functions that give

you information about messages. The message API is applicable both to in-process

adapters and out-of-process adapters. For Guaranteed Delivery, messages are sent in

batches. The function prototypes for the message and message batch APIs are in the file

c8messages.h

Schema API

This section describes the schema-related APIs in the header file c8messages.h.

C8UInt C8SchemaGetColumns(const C8Schema *i_s);

Purpose: For a given schema, return the number of columns in the schema.

Parameters:

 i_s - a pointer to a schema object.

Returns: the number of columns in the schema.

C8_TYPES C8SchemaGetColumnType(const C8Schema *ptr, C8UInt col_ndx);

Purpose: For a given schema and a particular column index in that schema, return the

type of information contained in that column. The type information may be used in a

switch statement or other control code. Column indexes are 0-based, not 1-based -- i.e.

they range from 0 to C8SchemaGetColumnsCount()-1.

Parameters:

Coral8 Integration Guide

124

 ptr - a pointer to a schema object.

 col_ndx - indicates which column to get the info for. Note that column indexes

are 0-based, not 1-based.

Returns: the type of information contained in that column. This is one of the enumerated

data types defined for C8_TYPES; see c8types.h for details. The function returns

C8_INVALID if col_ndx is out of range or if another error occurs.

C8_TYPES C8SchemaGetColumnTypeByName(const C8Schema *ptr, const char

*i_fieldname);

Purpose: For a given schema and a particular column name in that schema, return the

type of information contained in that column. The definition of C8_TYPES is in

c8types.h. The type information may be used in a switch statement or other control code.

Column indexes are 0-based, not 1-based -- i.e. they range from 0 to

C8SchemaGetColumnsCount()-1.

Parameters:

 ptr - a pointer to a schema object.

 i_fieldname - the name of the field for which you want the data type.

Returns: the type of information contained in that column. This is one of the enumerated

data types defined for C8_TYPES; see c8types.h for details. The function returns

C8_INVALID if col_ndx is out of range or if another error occurs.

const C8Char* C8SchemaGetColumnName(const C8Schema *ptr, C8UInt col_num);

Purpose: For a given schema and a particular column index in that schema, return the

name of that column. This may be useful in printing titles, etc.

Parameters:

 ptr - a pointer to a schema object.

 col_num - the index of the column for which you want the information.

Returns: the name of the column. The return value is a pointer. The user should not

change the memory that the pointer points to, and the user should not C8Free() this

pointer. The returned pointer is valid as long as the schema pointer is valid.

C8Status C8SchemaGetColumnPosition(const C8Schema *ptr, const C8Char *col_name,

C8UInt *o_ndx);

Purpose: Given a schema pointer and a column name, return the corresponding column

number. Column names are 0-based, not 1-based.

Parameters:

 ptr - a pointer to a schema object.

 col_name - the name of the column for which you want the info.

Coral8 C/C++ SDK

125

 o_ndx - a pointer to a C8UInt that can hold the column number. Column names

are 0-based, not 1-based.

Returns: C8_OK if successful, C8_FAIL otherwise.

C8Schema *C8SchemaCreate(void);

Purpose: This creates a schema that is empty (i.e. for which no columns are defined). You

may add columns by using the C8SchemaAddColumn() function. The schema must be

destroyed with C8SchemaDestroy().

Parameters: none.

Returns: a new schema pointer, or NULL if there was an error.

C8Status C8SchemaAddColumn(C8Schema *i_schema, C8_TYPES i_type, const C8Char

*i_name)

Purpose: Adds a column to the schema. The new column will have the specified name

and data type.

Parameters:

 i_schema - the schema to which you wish to add a column.

 i_type - the data type the new column should have.

 i_name - the name that the new column should have.

Returns: C8_OK if success, C8_FAIL otherwise.

C8Schema *C8SchemaReadFromFile(const C8Char *i_filename)

Purpose: Reads a schema from a file. The input parameter is the name of the file to read

the schema from. This file must be a file that contains a compiled schema (i.e. a "tuple

descriptor"). For information about how to compile a .ccs schema file and generate a

.ccx file, see Compile a Project or a Schema File.

Parameters:

 i_filename - the name of the file from which to read the schema.

Returns: Returns a pointer to the schema if successful, NULL otherwise. When you are

done using the schema, the returned pointer must be freed with a call to

C8SchemaDestroy().

C8Schema *C8SchemaReadFromString(const C8Char *i_str)

Purpose: Reads a schema from a string. The returned pointer must be freed with a call to

C8SchemaDestroy(). The input parameter is the string to read the schema from. The

stream must contain the XML text representation of a compiled schema (i.e. a "tuple

descriptor").

Parameters:

Coral8 Integration Guide

126

 i_str - the string from which to read the schema.

Returns: a pointer to the schema if successful, NULL otherwise. When you are done

using the schema, the returned pointer must be freed with a call to C8SchemaDestroy().

void C8SchemaDestroy(C8Schema* i_schema)

Purpose: Destroys a schema (de-allocates its memory. Any constant pointers returned by

calling functions with this schema are invalidated upon return from this method.

Parameters:

 i_schema - a pointer to the schema to destroy.

Returns: nothing.

C8Status C8SchemaToXML(const C8Schema *i_s, C8Char **o_buf)

Purpose: Converts a schema to a string containing the schema's XML representation (the

representation is of a compiled schema, i.e. a tuple descriptor). This function allocates

enough memory for the string, and the pointer returned through the o_buf parameter

needs to be free'd with a call to C8Free().

Parameters:

 i_s - a pointer to a schema.

 o_buf - a pointer that can be set to point to a string containing the XML

representation of the schema.

Returns: C8_OK if success, C8_FAIL otherwise (in which case *o_buf is unchanged).

C8Status C8SchemaWriteToFile(const C8Schema *i_s, const C8Char *i_fn)

Purpose: writes a schema to a file in Tuple Descriptor representation.

Parameters:

 i_s - a pointer to the schema.

 i_fn - the name of the file to write the schema to.

Returns: C8_OK if success, C8_FAIL otherwise.

C8Bool C8SchemaCompare(const C8Schema *i_s1, const C8Schema *i_s2)

Purpose: return a value indicating whether 2 schemas are identical.

Parameters:

 i_s1 - first schema

 i _ s2 - second schema

Returns: C8_TRUE if the schemas are identical, C8_FALSE otherwise.

Coral8 C/C++ SDK

127

Message API

This section describes the message-related APIs in the header file c8messages.h.

A C8_MESSAGE_TYPE describes whether a message is entering or exiting an internal window.

Most adapters will use C8_MESSAGE_POSITIVE for all messages. A "normal" message is a

"positive" message. I.e. it corresponds to a row of data in the stream.

The other types of messages are not currently intended for use with adapters.

Note that, in general, when a "const *" is returned for data associated with an object (e.g. a

schema associated with a message), the validity of the returned pointer is limited to the lifetime

of the pointer's "owner" (e.g. the message). Attempts to de-reference the pointer after the

"owner" no longer exists may, of course, result in a runtime exception.

C8Message* C8MessageCreate(enum C8_MESSAGE_TYPES msg_type, const C8Schema

*schema_ptr)

Purpose: Creates an empty message of the specified message type with the specified

schema. This is the initial call in composing a message.

Parameters:

 msg_type - in almost all cases, this will be C8_MESSAGE_POSITIVE. For a list

of other message types, see the definition of C8_MESSAGE_TYPES in the file

c8messages.h.

 schema_ptr - a pointer to the schema that you want to define the structure of the

message.

Returns: a pointer to the newly created message. When you are done using this message,

you must destroy it by passing it to C8MessageDestroy().

See also the function C8MessageCreateWithSize().

C8Message* C8MessageCreateWithSize(enum C8_MESSAGE_TYPES msg_type, const

C8Schema *schema_ptr, C8UInt fields_size)

Purpose: Creates an empty message of the specified message type with the specified

schema and with the specified amount of memory allocated. This is the initial call in

composing a message. By allowing the user to specify the size of the entire message,

performance may be increased.

Parameters:

 msg_type - in almost all cases, this will be C8_MESSAGE_POSITIVE. For a list

of other message types, see the definition of C8_MESSAGE_TYPES in the file

c8messages.h.

 schema_ptr - a pointer to the schema that you want to define the structure of the

message.

Coral8 Integration Guide

128

 field_size - A user estimated size of the entire message.

Returns: a pointer to the newly created message. When you are done using this message,

you must destroy it by passing it to C8MessageDestroy().

To calculate the fields_size, sum up the sizes of all of the fields, where the size of each

field is the number of bytes of data stored in the field rounded to the closest larger

multiple of 4, plus 4 bytes. For example, if you have a a value that requires 5 bytes, then

the total size for that field will be 8 + 4 (5 rounded up to 8, plus 4) -- a total of 12 bytes.

Estimates that are greater than the actual resulting messages size will result in unused

memory. Estimates that are too low will result in automatic adjustments upward to the

correct message size. Adjustments upward in size may decrease performance.

See also the function C8MessageCreate().

void C8MessageDestroy(C8Message *msg_ptr)

Purpose: destroys the message pointed to by msg_ptr. If a message has been created, it

must be destroyed after it has been dispatched to the Coral8 Server. All messages created

by the user or received by the C8AdapterReceiveMessage() or

C8AdapterReceiveMessageWait() call must be destroyed or else a memory leak will

occur.

Parameters:

 msg_ptr - a pointer to the message to be destroyed (de-callocated).

Returns: nothing.

enum C8_MESSAGE_TYPES C8MessageGetType(const C8Message *msg_ptr)

Purpose: The message type is returned. There are three different "categories" of

messages. There are "positive" messages, which are simply normal messages. There are

also "negative" messages, which represent rows removed from window.

The third category of message is "control" messages. Some of these are only used

internally, and you are unlikely to see them or have to deal with them.

Messages may arrive in "bundles" (see the definition of bundle earlier in this manual).

The beginning of a bundle is marked by a special start-of-bundle control message (for

which C8MessageGetType() returns C8_MESSAGE_START_BUNDLE) and the end of

a bundle is marked with a special end-of-bundle control message (for which

C8MessageGetType() returns C8_MESSAGE_END_BUNDLE). If you need to handle

bundled messages differently from individual messages, then you can recognize the start

and end of a bundle by recognizing these messages. If you don't need to deal with

bundled messages differently from the way that you deal with individual messages, then

you can simply ignore all messages for which C8MessageGetType() returns

C8_MESSAGE_START_BUNDLE and C8_MESSAGE_END_BUNDLE.

Coral8 C/C++ SDK

129

Parameters:

 msg_ptr - a pointer to the message for which you want to know the type.

Returns: the message type. For a list of the valid message types, see the declaration of

C8_MESSAGE_TYPES in the file c8messages.h.

C8MessageID C8MessageGetID(const C8Message* i_msg)

Purpose: Given a message, return the ID of that message. Useful when you want to

mirror a master window, so that you can identify which row to remove from the mirror

when a negative message arrives. The ID of the negative message matches the ID of the

original positive message. See "Create Window Statement" in the Coral8 CCL Reference

for more information about master and mirror windows.

Parameters:

 i_msg - a pointer to the message for which you want to know the ID.

Returns: the message ID.

const C8Schema *C8MessageGetSchema(const C8Message *msg_ptr)

Purpose: Given a message, return the associated schema. This is useful after

C8AdapterReceiveMessage() or C8AdapterReceiveMessageWait() provides a

message and the user wishes to process depending upon the schema.

Parameters:

 msg_ptr - a pointer to the message for which you want to know the schema.

Returns: a pointer to the schema. The user should not change the memory that the pointer

points to, and the user should not C8Free() this pointer. The lifetime of the returned

pointer is limited to the lifetime of the pointer's "owner" (in this case, the message).

C8Timestamp C8MessageGetMessageTimestamp(const C8Message* msg_ptr)

Purpose: Given a message, return the associated row timestamp. This is the row

timestamp of the message, not one of the timestamps in the data columns.

Parameters:

 a pointer to the message for which you want to know the row timestamp.

Returns: the row timestamp of the message.

void C8MessageSetMessageTimestamp(C8Message* msg_ptr, C8Timestamp i_timestamp)

Purpose: Set the row timestamp of the message to i_timestamp. This is the row

timestamp of the message and not the timestamp in any columns in the message.

Parameters:

 msg_ptr - the message whose row timestamp you want to set.

 i_timestamp - the timestamp that you want to set the row timestamp to.

Coral8 Integration Guide

130

Returns:

C8Status C8MessageColumnIsNull(const C8Message* msg_ptr, C8UInt col_ndx, C8Bool

*o_res)

Purpose: For a given message, determines if the column specified by col_ndx is a NULL

value or not. Users should always check for a NULL entry for each column before

attempting to read a value from that column, or check the returned status after reading a

value from a column.

Parameters:

 msg_ptr - a pointer to the message that contains the column.

 col_ndx - the index number of the desired column within the message. Note that

the index is 0-based, not 1-based, and thus valid values range from 0 to N-1 where

N is the number of columns in the message.

 o_res - this variable is set to C8_TRUE if the column is NULL, C8_FALSE

otherwise.

Returns: C8_OK if success, C8_FAIL otherwise.

C8Status C8MessageColumnIsNullByName(const C8Message* msg_ptr, const C8CHAR

*i_fldnm, C8Bool *o_res)

Purpose: For a given message, determines if the column whose name is specified in

i_fldnm contains a NULL value or not. Users should always check for a NULL entry for

each column before attempting to read a value from that column.

Parameters:

 msg_ptr - a pointer to the message that contains the column that you want to

check.

 i_fldnm - the name of the column you want to check.

 o_res - a pointer to a boolean that is set to C8_TRUE if the column has NULL

and C8_FALSE otherwise.

Returns: C8_OK if success, C8_FAIL otherwise.

C8Status C8MessageColumnSetToNull(C8Message *msg_ptr, C8UInt col_ndx)

Purpose: set the column indicated by col_ndx to NULL.

Parameters:

 msg_ptr - a pointer to the message containing the column that you want to set to

NULL.

 col_ndx - the index number of the desired column within the message. Note that

the index is 0-based, not 1-based, and thus valid values range from 0 to N-1 where

N is the number of columns in the message.

Coral8 C/C++ SDK

131

Returns: C8_OK if success, C8_FAIL otherwise.

C8Status C8MessageColumnSetToNullByName(C8Message *msg_ptr, const C8Char

*i_fldnm)

Purpose: Given a message and column name (i_fldnm) within that message, set that

column to NULL.

Parameters:

 msg_ptr - a pointer to the message.

 i_fldnm - the name of the field to set to NULL.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8MessageColumnGetAsString(const C8Message *i_msg, C8UInt i_ndx, C8Char

**o_res)

Purpose: Given a message and an index of a column in that message, return the value of

the column in the form of a string. o_res will be set to point to that string. When you are

done with the string, free it with C8Free().

Parameters:

 i_msg - a pointer to a message.

 i_ndx - indicates which column you want to retrieve the value from. Column

numbers start at 0, not 1.

 o_res - a pointer to a location that can store a pointer to the string that is retrieved.

Returns: C8_OK on success, C8_FAIL otherwise. The string returned by this function

must be freed by the user with the C8Free() function.

C8Status C8MessageColumnGetAsStringByName(const C8Message *i_msg, const C8Char

*i_fldnm, C8Char **o_res)

Purpose: given a message and the name of a column in that message, return the value of

the column in the form of a string. o_res will be set to point to that string. When you are

done with the string, free it with C8Free().

Parameters:

 i_msg - the message from which you want to extract the data.

 i_fldnm - the name of the field/column for which to get the data.

 o_res - a pointer to a string; the function will set this pointer to point to the string

retrieved.

Returns: C8_OK on success, C8_FAIL otherwise. The string returned by this function

must be freed by the user with the C8Free() function.

Coral8 Integration Guide

132

C8Status C8MessageColumnGetInt(const C8Message *msg_ptr, C8UInt col_ndx, C8Int

*o_res)

Purpose: given a message pointer, a column index, and a pointer o_res to a place to store

a C8Int, put the column's value in the location pointed to by o_res.

Prior to using this function on a column for the first time, a caller should ensure that the

desired data type is indeed stored at col_ndx by calling C8SchemaGetColumnType().

Before retrieving each row's value, a caller should ensure that the field contains a value

by calling C8MessageColumnIsNull().

Parameters:

 msg_ptr - - the message from which you want to extract the data.

 col_ndx - indicates which column to retrieve data from. (Column numbers start

from 0, not 1.)

 o_res - a pointer to a location that can hold the C8Int value retrieved by the

function.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8MessageColumnGetLong(const C8Message *msg_ptr, C8UInt col_ndx,

C8Long *o_res)

Purpose: Given a message pointer, a column index, and a pointer o_res to a place to store

a C8Long, put the column's value in the location pointed to by o_res.

Prior to using this function on a column for the first time, a caller should ensure that the

desired data type is indeed stored at col_ndx by calling C8SchemaGetColumnType().

Before retrieving each row's value, a caller should ensure that the field contains a value

by calling C8MessageColumnIsNull().

Parameters:

 msg_ptr - - the message from which you want to extract the data.

 col_ndx - indicates which column to retrieve data from. (Column numbers start

from 0, not 1.)

 o_res - a pointer to a location that can hold the C8Long value retrieved by the

function.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8MessageColumnGetFloat(const C8Message *msg_ptr, C8UInt col_ndx,

C8Float *o_res)

Purpose: Given a message pointer, a column index, and a pointer o_res to a place to store

a C8Float, put the column's value in the location pointed to by o_res.

Coral8 C/C++ SDK

133

Prior to using this function on a column for the first time, a caller should ensure that the

desired data type is indeed stored at col_ndx by calling C8SchemaGetColumnType().

Before retrieving each row's value, a caller should ensure that the field contains a value

by calling C8MessageColumnIsNull().

Parameters:

 msg_ptr - - the message from which you want to extract the data.

 col_ndx - indicates which column to retrieve data from. (Column numbers start

from 0, not 1.)

 o_res - a pointer to a location that can hold the C8Float value retrieved by the

function.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8MessageColumnGetBool(const C8Message *msg_ptr, C8UInt col_ndx, C8Bool

*o_res)

Purpose: Given a message pointer, a column index, and a pointer o_res to a place to store

a C8Bool, put the column's value in the location pointed to by o_res.

Prior to using this function on a column for the first time, a caller should ensure that the

desired data type is indeed stored at col_ndx by calling C8SchemaGetColumnType().

Before retrieving each row's value, a caller should ensure that the field contains a value

by calling C8MessageColumnIsNull().

Parameters:

 msg_ptr - - the message from which you want to extract the data.

 col_ndx - indicates which column to retrieve data from. (Column numbers start

from 0, not 1.)

 o_res - a pointer to a location that can hold the C8Bool value retrieved by the

function.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8MessageColumnGetTimestamp(const C8Message *msg_ptr, C8UInt col_ndx,

C8Timestamp *o_res)

Purpose: given a message pointer, a column index, and a pointer o_res to a place to store

a C8Timestamp, put the column's value in the location pointed to by o_res.

Prior to using this function on a column for the first time, a caller should ensure that the

desired data type is indeed stored at col_ndx by calling C8SchemaGetColumnType().

Before retrieving each row's value, a caller should ensure that the field contains a value

by calling C8MessageColumnIsNull().

Parameters:

Coral8 Integration Guide

134

 msg_ptr - - the message from which you want to extract the data.

 col_ndx - indicates which column to retrieve data from. (Column numbers start

from 0, not 1.)

 o_res - a pointer to a location that can hold the C8Timestamp value retrieved by

the function.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8MessageColumnGetInterval(const C8Message *msg_ptr, C8UInt col_ndx,

C8Interval *o_res)

Purpose: Given a message pointer, a column index, and a pointer o_res to a place to store

a C8Interval, put the column's value in the location pointed to by o_res.

Prior to using this function on a column for the first time, a caller should ensure that the

desired data type is indeed stored at col_ndx by calling C8SchemaGetColumnType().

Before retrieving each row's value, a caller should ensure that the field contains a value

by calling C8MessageColumnIsNull().

Parameters:

 msg_ptr - - the message from which you want to extract the data.

 col_ndx - indicates which column to retrieve data from. (Column numbers start

from 0, not 1.)

 o_res - a pointer to a location that can hold the C8Interval value retrieved by the

function.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8MessageColumnGetString(const C8Message *msg_ptr, C8UInt col_ndx, const

C8Char **o_res)

Purpose: given a message pointer and column index, set o_res to the C8Char* stored in

that message. Note: The user must not C8Free() the returned pointer as this pointer points

to a part of the message! The pointer to the string is valid as long as the pointer to the

message is valid.

Prior to using this function on a column for the first time, a caller should ensure that the

desired data type is indeed stored at col_ndx by calling C8SchemaGetColumnType().

Before retrieving each row's value, a caller should ensure that the field contains a value

by calling C8MessageColumnIsNull().

Parameters:

 msg_ptr - - the message from which you want to extract the data.

 col_ndx - indicates which column to retrieve data from. (Column numbers start

from 0, not 1.)

Coral8 C/C++ SDK

135

 o_res - a pointer to a location that can hold a pointer to the string (C8Char *)

value retrieved by the function.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8MessageColumnGetBlob(const C8Message *msg_ptr, C8UInt col_ndx, const

C8Blob **o_res, C8UInt *o_sz)

Purpose: Given a message pointer and a column index, set o_res to the C8Blob * stored

in that message, and set o_sz to the number of bytes in that BLOB. Note: The user must

not C8Free() the returned pointer as this pointer points to a part of the message! The

pointer to the BLOB is valid as long as the pointer to the message is valid.

Prior to using this function on a column for the first time, a caller should ensure that the

desired data type is indeed stored at col_ndx by calling C8SchemaGetColumnType().

Before retrieving each row's value, a caller should ensure that the field contains a value

by calling C8MessageColumnIsNull().

Parameters:

 msg_ptr - - the message from which you want to extract the data.

 col_ndx - indicates which column to retrieve data from. (Column numbers start

from 0, not 1.)

 o_res - a pointer to a location that can hold a pointer to the BLOB value retrieved

by the function.

 o_sz - the function stores the length of the blob in the location pointed to by o_sz.

Returns: C8_OK on success, C8_FAIL otherwise.

The returned value is a "raw" BLOB (as opposed to a hex string or a base64 string). For

an explanation of raw vs. hex string vs. base64 string formats, see Data Types and

Subroutines for UDFs and In-process Adapters.

C8Status C8MessageColumnGetBlobAsBase64String(const C8Message *msg_ptr, C8UInt

col_ndx, const C8Blob **o_res)

Purpose: Given a message pointer and a column index, return a pointer to a string that

contains the base64 representation of the BLOB.

Prior to using this function on a column for the first time, a caller should ensure that the

desired data type is indeed stored at col_ndx by calling C8SchemaGetColumnType().

Before retrieving each row's value, a caller should ensure that the field contains a value

by calling C8MessageColumnIsNull().

Parameters:

 msg_ptr - - the message from which you want to extract the data.

 col_ndx - indicates which column to retrieve data from. (Column numbers start

from 0, not 1.)

Coral8 Integration Guide

136

 o_res - a pointer to a location that can hold a pointer to the BLOB value retrieved

by the function.

Returns: C8_OK on success, C8_FAIL otherwise.

The returned value is in a "base64 string" format (as opposed to a hex string or a raw

BLOB). For an explanation of raw vs. hex string vs. base64 string formats, see Data

Types and Subroutines for UDFs and In-process Adapters.

C8Status C8MessageColumnGetXmlAsString(const C8Message *msg_ptr, C8UInt

col_ndx, const C8Char **o_res)

Purpose: Given a message pointer and a column index, set o_res to point to a copy of the

XML value represented as a string. When you are done using the XML value, C8Free()

the string. Note that this is different from what you do for a C8String or C8Blob.

Prior to using this function on a column for the first time, a caller should ensure that the

desired data type is indeed stored at col_ndx by calling C8SchemaGetColumnType().

Before retrieving each row's value, a caller should ensure that the field contains a value

by calling C8MessageColumnIsNull().

Parameters:

 msg_ptr - - the message from which you want to extract the data.

 col_ndx - indicates which column to retrieve data from. (Column numbers start

from 0, not 1.)

 o_res - a pointer to a location that can hold a pointer to the string value retrieved

by the function.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8MessageColumnGetIntByName(const C8Message *msg_ptr, const C8Char

*i_fldnm, C8Int *o_res)

Purpose: Given a message pointer, a column name, and a pointer o_res to a place to store

a C8Int, put the column's value in the location pointed to by o_res.

Prior to using this function on a column for the first time, a caller should ensure that the

desired data type is indeed stored at col_ndx by calling C8SchemaGetColumnType().

Before retrieving each row's value, a caller should ensure that the field contains a value

by calling C8MessageColumnIsNull().

Parameters:

 msg_ptr - - the message from which you want to extract the data.

 i_fldnm - indicates which column to retrieve data from.

 o_res - a pointer to a location that can hold the C8Int (integer) value retrieved by

the function.

Coral8 C/C++ SDK

137

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8MessageColumnGetLongByName(const C8Message *msg_ptr, const C8Char

*i_fldnm, C8Long *o_res)

Purpose: given a message pointer, a column name, and a pointer o_res to a place to store

a C8Long, put the column's value in the location pointed to by o_res.

Prior to using this function on a column for the first time, a caller should ensure that the

desired data type is indeed stored at col_ndx by calling C8SchemaGetColumnType().

Before retrieving each row's value, a caller should ensure that the field contains a value

by calling C8MessageColumnIsNull().

Parameters:

 msg_ptr - - the message from which you want to extract the data.

 i_fldnm - indicates which column to retrieve data from.

 o_res - a pointer to a location that can hold the C8Long value retrieved by the

function.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8MessageColumnGetFloatByName(const C8Message *msg_ptr, const C8Char

*i_fldnm, C8Float *o_res)

Purpose: given a message pointer, a column name, and a pointer o_res to a place to store

a C8Float, put the column's value in the location pointed to by o_res.

Prior to using this function on a column for the first time, a caller should ensure that the

desired data type is indeed stored at col_ndx by calling C8SchemaGetColumnType().

Before retrieving each row's value, a caller should ensure that the field contains a value

by calling C8MessageColumnIsNull().

Parameters:

 msg_ptr - - the message from which you want to extract the data.

 i_fldnm - indicates which column to retrieve data from.

 o_res - a pointer to a location that can hold the C8Float value retrieved by the

function.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8MessageColumnGetBoolByName(const C8Message *msg_ptr, const C8Char

*i_fldnm, C8Bool *o_res)

Purpose: given a message pointer, a column name, and a pointer o_res to a place to store

a C8Bool, put the column's value in the location pointed to by o_res.

Prior to using this function on a column for the first time, a caller should ensure that the

desired data type is indeed stored at col_ndx by calling C8SchemaGetColumnType().

Coral8 Integration Guide

138

Before retrieving each row's value, a caller should ensure that the field contains a value

by calling C8MessageColumnIsNull().

Parameters:

 msg_ptr - - the message from which you want to extract the data.

 i_fldnm - indicates which column to retrieve data from.

 o_res - a pointer to a location that can hold the C8Bool value retrieved by the

function.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8MessageColumnGetTimestampByName(const C8Message *msg_ptr, const

C8Char *i_fldnm, C8Timestamp *o_res)

Purpose: given a message pointer, a column name, and a pointer o_res to a place to store

a C8Timestamp, put the column's value in the location pointed to by o_res.

Prior to using this function on a column for the first time, a caller should ensure that the

desired data type is indeed stored at col_ndx by calling C8SchemaGetColumnType().

Before retrieving each row's value, a caller should ensure that the field contains a value

by calling C8MessageColumnIsNull().

Parameters:

 msg_ptr - - the message from which you want to extract the data.

 i_fldnm - indicates which column to retrieve data from.

 o_res - a pointer to a location that can hold the C8Timestamp value retrieved by

the function.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8MessageColumnGetIntervalByName(const C8Message *msg_ptr, const

C8Char *i_fldnm, C8Interval *o_res)

Purpose: given a message pointer, a column name, and a pointer o_res to a place to store

a C8Interval, put the column's value in the location pointed to by o_res.

Prior to using this function on a column for the first time, a caller should ensure that the

desired data type is indeed stored at col_ndx by calling C8SchemaGetColumnType().

Before retrieving each row's value, a caller should ensure that the field contains a value

by calling C8MessageColumnIsNull().

Parameters:

 msg_ptr - - the message from which you want to extract the data.

 i_fldnm - indicates which column to retrieve data from.

 o_res - a pointer to a location that can hold the C8Interval value retrieved by the

function.

Coral8 C/C++ SDK

139

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8MessageColumnGetStringByName(const C8Message *msg_ptr, const C8Char

*i_fldnm, const C8Char **o_res)

Purpose: given a message pointer and column name, set o_res to the C8Char* stored in

that message. Note: The user must not C8Free() the returned pointer as this pointer

points to a part of the message! The pointer to the string is valid as long as the pointer to

the tuple is valid.

Prior to using this function on a column for the first time, a caller should ensure that the

desired data type is indeed stored at col_ndx by calling C8SchemaGetColumnType().

Before retrieving each row's value, a caller should ensure that the field contains a value

by calling C8MessageColumnIsNull().

Parameters:

 msg_ptr - - the message from which you want to extract the data.

 i_fldnm - indicates which column to retrieve data from.

 o_res - a pointer to a location that can hold a pointer to the string (C8Char *)

value retrieved by the function.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8MessageColumnGetBlobByName(const C8Message *msg_ptr, const C8Char

*i_fldnm, const C8Blob **o_res, C8UInt *o_sz)

Purpose: given a message pointer and a column name, set o_res to the C8Blob * stored in

that message, and set o_sz to the number of bytes in that BLOB. Note: The user must not

C8Free() the returned pointer as this pointer points to a part of the message!

Prior to using this function on a column for the first time, a caller should ensure that the

desired data type is indeed stored at col_ndx by calling C8SchemaGetColumnType().

Before retrieving each row's value, a caller should ensure that the field contains a value

by calling C8MessageColumnIsNull().

Parameters:

 msg_ptr - - the message from which you want to extract the data.

 i_fldnm - indicates which column to retrieve data from.

 o_res - a pointer to a location that can hold a pointer to the BLOB value retrieved

by the function.

 o_sz - the function stores the length of the blob in the location pointed to by o_sz.

Returns: C8_OK on success, C8_FAIL otherwise.

Coral8 Integration Guide

140

The retrieved blob is a "raw" blob (as opposed to a hex string or a base64 string). For an

explanation of raw vs. hex string vs. base64 string formats, see Data Types and

Subroutines for UDFs and In-process Adapters.

C8Status C8MessageColumnGetXmlAsStringByName(const C8Message *msg_ptr, const

C8Char *i_fldnm, const C8Char **o_res)

Purpose: given a message pointer and a column name, set o_res to point to a copy of the

XML value represented as a string. When you are done using the XML value, C8Free()

the string. Note that this is different from what you do for a C8String or C8Blob.

Prior to using this function on a column for the first time, a caller should ensure that the

desired data type is indeed stored at col_ndx by calling C8SchemaGetColumnType().

Before retrieving each row's value, a caller should ensure that the field contains a value

by calling C8MessageColumnIsNull().

Parameters:

 msg_ptr - - the message from which you want to extract the data.

 i_fldnm - indicates which column to retrieve data from.

 o_res - a pointer to a location that can hold a pointer to the string value retrieved

by the function.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8MessageColumnSetInt(C8Message *msg_ptr, C8UInt col_ndx, C8Int value)

Purpose: given a message pointer and a column index, set the value in the message to the

indicated value. If the column type in the message is not a C8Int, the results are

undefined and an error will be logged. If the col_ndx is out of range, the set will be

ignored and an error message logged.

Parameters:

 msg_ptr - - the message from which you want to extract the data.

 col_ndx - indicates which column to retrieve data from. (Column numbers start

from 0, not 1.)

 value - the value to store in the message.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8MessageColumnSetLong(C8Message *msg_ptr, C8UInt col_ndx, C8Long

value)

Purpose: given a message pointer and a column index, set the value in the message to the

indicated value. If the column type in the message is not a C8Long, the results are

undefined and an error will be logged. If the col_ndx is out of range, the set will be

ignored and an error message logged.

Coral8 C/C++ SDK

141

Parameters:

 msg_ptr - - the message from which you want to extract the data.

 col_ndx - indicates which column to retrieve data from. (Column numbers start

from 0, not 1.)

 value - the value to store in the message.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8MessageColumnSetFloat(C8Message *msg_ptr, C8UInt col_ndx, C8Float

value)

Purpose: given a message pointer and a column index, set the value in the message to the

indicated value. If the column type in the message is not a C8Float, the results are

undefined and an error will be logged. If the col_ndx is out of range, the set will be

ignored and an error message logged.

Parameters:

 msg_ptr - - the message from which you want to extract the data.

 col_ndx - indicates which column to retrieve data from. (Column numbers start

from 0, not 1.)

 value - the value to store in the message.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8MessageColumnSetBool(C8Message *msg_ptr, C8UInt col_ndx, C8Bool value)

Purpose: given a message pointer and a column index, set the value in the message to the

indicated value. If the column type in the message is not a C8Bool, the results are

undefined and an error will be logged. If the col_ndx is out of range, the set will be

ignored and an error message logged.

Parameters:

 msg_ptr - - the message from which you want to extract the data.

 col_ndx - indicates which column to retrieve data from. (Column numbers start

from 0, not 1.)

 value - the value to store in the message.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8MessageColumnSetTimestamp(C8Message *msg_ptr, C8UInt col_ndx,

C8Timestamp value)

Purpose: given a message pointer and a column index, set the value in the message to the

indicated value. If the column type in the message is not a C8Timestamp, the results are

undefined and an error will be logged. If the col_ndx is out of range, the set will be

ignored and an error message logged.

Coral8 Integration Guide

142

Parameters:

 msg_ptr - - the message from which you want to extract the data.

 col_ndx - indicates which column to retrieve data from. (Column numbers start

from 0, not 1.)

 value - the value to store in the message.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8MessageColumnSetInterval(C8Message *msg_ptr, C8UInt col_ndx,

C8Interval value)

Purpose: given a message pointer and a column index, set the value in the message to the

indicated value. If the column type in the message is not a C8Interval, the results are

undefined and an error will be logged. If the col_ndx is out of range, the set will be

ignored and an error message logged.

Parameters:

 msg_ptr - - the message from which you want to extract the data.

 col_ndx - indicates which column to retrieve data from. (Column numbers start

from 0, not 1.)

 value - the value to store in the message.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8MessageColumnSetString(C8Message *msg_ptr, C8UInt col_ndx, C8Char*

value)

Purpose: given a message pointer and a column index, set the column in the message to

the indicated value. If the data type of the column is not C8Char *, the results are

undefined and an error will be logged. If the col_ndx is out of range, the set will be

ignored and an error message logged.

If the pointer named "value" was obtained through C8Malloc(), the user must free the

pointer (via C8Free()) after calling C8AdapterSendMessage() or a memory leak will

result. (The C8MessageColumnSetString() routine will make a copy of the value, so

freeing that value will not cause the server to lose access to the information.)

Parameters:

 msg_ptr - - the message from which you want to extract the data.

 col_ndx - indicates which column to retrieve data from. (Column numbers start

from 0, not 1.)

 value - the value to store in the message.

Returns: C8_OK on success, C8_FAIL otherwise.

Coral8 C/C++ SDK

143

C8Status C8MessageColumnSetBlob(C8Message *msg_ptr, C8UInt col_ndx, const C8Blob

*i_buf, C8UInt i_sz)

Purpose: given a message pointer and a column index, set the column in the message to

the indicated value. If the data type of the column is not C8Blob *, the results are

undefined and an error will be logged. If the col_ndx is out of range, the set will be

ignored and an error message logged.

If the i_buf pointer was obtained through C8Malloc(), the user must free the pointer (via

C8Free()) after C8AdapterSendMessage() or a memory leak will result. (The

C8MessageColumnSetBlob() routine will make a copy of the value, so freeing that value

will not cause the server to lose access to the information.)

Note that the i_buf parameter should contain the original data value -- do not convert the

data to a string of hexadecimal values first (the function will do that for you). Note that

since converting the data to a hexadecimal string will require 2N + 1 bytes (2 hex digits

for each byte of the original data, plus a null byte as a string terminator), and since the

longest allowable string is 4GB, the longest blob you can put in is 2GB - 1 bytes.

Parameters:

 msg_ptr - - the message from which you want to extract the data.

 col_ndx - indicates which column to retrieve data from. (Column numbers start

from 0, not 1.)

 i_buf - the BLOB value to store in the message. The value is a "raw" BLOB (as

opposed to a hex string or a base64 string). For an explanation of raw vs. hex

string vs. base64 string formats, see Data Types and Subroutines for UDFs and

In-process Adapters.

 i_sz - The number of bytes in the BLOB.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8MessageColumnSetBlobFromBase64String(C8Message *msg_ptr, C8UInt

col_ndx, const C8Char *i_base64_string)

Purpose: given a message pointer and a column index, set the column in the message to

the indicated value. If the data type of the column is not C8Blob *, the results are

undefined and an error will be logged. If the col_ndx is out of range, the set will be

ignored and an error message logged.

If the i_base64_string pointer was obtained through C8Malloc(), the user must free the

pointer (via C8Free()) after C8AdapterSendMessage() or a memory leak will result. (The

C8MessageColumnSetBlob() routine will make a copy of the value, so freeing that value

will not cause the server to lose access to the information.)

Parameters:

Coral8 Integration Guide

144

 msg_ptr - - the message from which you want to extract the data.

 col_ndx - indicates which column to retrieve data from. (Column numbers start

from 0, not 1.)

 value - the BLOB value to store in the message. The value is a "raw" BLOB (as

opposed to a hex string or a base64 string). For an explanation of raw vs. hex

string vs. base64 string formats, see Data Types and Subroutines for UDFs and

In-process Adapters.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8MessageColumnSetXmlFromString(C8Message *msg_ptr, C8UInt col_ndx,

C8Char* value)

Purpose: given a message pointer and a column index, set the column in the message to

the indicated value. If the data type of the column is not a C8Char *, the results are

undefined and an error will be logged. If the col_ndx is out of range, the set will be

ignored and an error message logged.

If the value pointer was obtained through C8Malloc(), the user must free the pointer (via

C8Free()) after C8AdapterSendMessage() or a memory leak will result. (The

C8MessageColumnSetXmlFromString() routine will make a copy of the value, so

freeing that value will not cause the server to lose access to the information.)

Parameters:

 msg_ptr - - the message from which you want to extract the data.

 col_ndx - indicates which column to retrieve data from. (Column numbers start

from 0, not 1.)

 value - the value to store in the message.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8MessageColumnSetIntByName(C8Message *msg_ptr, const C8Char *i_fldnm,

C8Int value)

Purpose: given a message pointer and a column name, set the value in the message to the

indicated value. If the schema type in the message is not a C8Int, the results are

undefined and an error will be logged. If the col_ndx is out of range, the set will be

ignored and an error message logged.

Parameters:

 msg_ptr - - the message from which you want to extract the data.

 col_ndx - indicates which column to retrieve data from. (Column numbers start

from 0, not 1.)

 value - the value to store in the message.

Coral8 C/C++ SDK

145

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8MessageColumnSetLongByName(C8Message *msg_ptr, const C8Char

*i_fldnm, C8Long value)

Purpose: given a message pointer and a column name, set the value in the message to the

indicated value. If the schema type in the message is not a C8Long, the results are

undefined and an error will be logged. If the col_ndx is out of range, the set will be

ignored and an error message logged.

Parameters:

 msg_ptr - - the message from which you want to extract the data.

 col_ndx - indicates which column to retrieve data from. (Column numbers start

from 0, not 1.)

 value - the value to store in the message.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8MessageColumnSetFloatByName(C8Message *msg_ptr, const C8Char

*i_fldnm, C8Float value)

Purpose: given a message pointer and a column name, set the value in the message to the

indicated value. If the schema type in the message is not a C8Float, the results are

undefined and an error will be logged. If the col_ndx is out of range, the set will be

ignored and an error message logged.

Parameters:

 msg_ptr - - the message from which you want to extract the data.

 col_ndx - indicates which column to retrieve data from. (Column numbers start

from 0, not 1.)

 value - the value to store in the message.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8MessageColumnSetBoolByName(C8Message *msg_ptr, const C8Char

*i_fldnm, C8Bool value)

Purpose: given a message pointer and a column name, set the value in the message to the

indicated value. If the schema type in the message is not a C8Bool, the results are

undefined and an error will be logged. If the col_ndx is out of range, the set will be

ignored and an error message logged.

Parameters:

 msg_ptr - - the message from which you want to extract the data.

 col_ndx - indicates which column to retrieve data from. (Column numbers start

from 0, not 1.)

Coral8 Integration Guide

146

 value - the value to store in the message.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8MessageColumnSetTimestampByName(C8Message *msg_ptr, const C8Char

*i_fldnm, C8Timestamp value)

Purpose: given a message pointer and a column name, set the value in the message to the

indicated value. If the schema type in the message is not a C8Timestamp, the results are

undefined and an error will be logged. If the col_ndx is out of range, the set will be

ignored and an error message logged.

Parameters:

 msg_ptr - - the message from which you want to extract the data.

 col_ndx - indicates which column to retrieve data from. (Column numbers start

from 0, not 1.)

 value - the value to store in the message.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8MessageColumnSetIntervalByName(C8Message *msg_ptr, const C8Char

*i_fldnm, C8Interval value)

Purpose: given a message pointer and a column name, set the value in the message to the

indicated value. If the schema type in the message is not a C8Interval, the results are

undefined and an error will be logged. If the col_ndx is out of range, the set will be

ignored and an error message logged.

Parameters:

 msg_ptr - - the message from which you want to extract the data.

 col_ndx - indicates which column to retrieve data from. (Column numbers start

from 0, not 1.)

 value - the value to store in the message.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8MessageColumnSetStringByName(C8Message *msg_ptr, const C8Char

i_fldnm, C8Char value)

Purpose: given a message pointer and a column name, set the column in the message to

the indicated value. If the data type of the column is not a C8Char *, the results are

undefined and an error will be logged. If the col_ndx is out of range, the set will be

ignored and an error message logged.

If the value pointer was obtained through C8Malloc(), the user must free the pointer (via

C8Free()) after C8AdapterSendMessage() or a memory leak will result. (The

Coral8 C/C++ SDK

147

C8MessageColumnSetStringByName() routine will make a copy of the value, so freeing

that value will not cause the server to lose access to the information.)

Parameters:

 msg_ptr - - the message from which you want to extract the data.

 col_ndx - indicates which column to retrieve data from. (Column numbers start

from 0, not 1.)

 value - the value to store in the message.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8MessageColumnSetBlobByName(C8Message *msg_ptr, const C8Char

*i_fldnm, const C8Blob * i_buf, C8UInt i_sz)

Purpose: Given a message pointer and a column name, set the column in the message to

the indicated value. If the data type of the column is not a C8Blob *, the results are

undefined and an error will be logged. If the col_ndx is out of range, the set will be

ignored and an error message logged.

If the value pointer was obtained through C8Malloc(), the user must free the pointer (via

C8Free()) after C8AdapterSendMessage() or a memory leak will result. (The

C8MessageColumnSetBlobByName() routine will make a copy of the value, so freeing

that value will not cause the server to lose access to the information.)

Note that the i_buf parameter should contain the original data value -- do not convert the

data to a string of hexadecimal values first -- the function will do that for you. Note that

since converting the data to a hexadecimal string will require 2N + 1 bytes (2 hex digits

for each byte of the original data, plus a null byte as a string terminator), and since the

longest allowable string is 4GB, the longest blob you can put in is 2GB - 1 bytes.

Parameters:

 msg_ptr - - the message from which you want to extract the data.

 col_ndx - indicates which column to retrieve data from. (Column numbers start

from 0, not 1.)

 value - the value to store in the message. The value is a "raw" BLOB (as opposed

to a hex string or a base64 string). For an explanation of raw vs. hex string vs.

base64 string formats, see Data Types and Subroutines for UDFs and In-process

Adapters.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8MessageColumnSetXmlFromStringByName(C8Message *msg_ptr, const

C8Char *i_fldnm, C8Char* value)

Purpose: given a message pointer and a column name, set the column in the message to

the indicated value. If the data type of the column is not a C8Char *, the results are

Coral8 Integration Guide

148

undefined and an error will be logged. If the col_ndx is out of range, the set will be

ignored and an error message logged.

If the value pointer was obtained through C8Malloc(), the user must free the pointer (via

C8Free()) after C8AdapterSendMessage() or a memory leak will result. (The

C8MessageSetXmlFromStringByName() routine will make a copy of the value, so

freeing that value will not cause the server to lose access to the information.)

Parameters:

 msg_ptr - - the message from which you want to extract the data.

 col_ndx - indicates which column to retrieve data from. (Column numbers start

from 0, not 1.)

 value - the value to store in the message.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Char* C8MessageSerialize(const C8Message *msg_ptr, enum

C8_MESSAGE_FORMAT fmt)

Purpose: a serialized form of msg_ptr is returned as formatted by fmt. Currently the only

format supported is C8_MESSAGE_XML.

The user is responsible for C8Free()'ing the returned string!

Parameters:

 msg_ptr - - the message from which you want to extract the data.

 col_ndx - indicates which column to retrieve data from. (Column numbers start

from 0, not 1.)

 value - the value to store in the message.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Message* C8MessageDeserialize(const C8Char* string, enum

C8_MESSAGE_FORMAT fmt)

Purpose: the input string of format fmt is converted to a Coral8 message. Currently the

only format supported is C8_MESSAGE_XML. The user is responsible for

C8Destroy()'ing the returned message.

Parameters:

 msg_ptr - - the message from which you want to extract the data.

 col_ndx - indicates which column to retrieve data from. (Column numbers start

from 0, not 1.)

 value - the value to store in the message.

Returns: C8_OK on success, C8_FAIL otherwise.

Coral8 C/C++ SDK

149

C8SizeType C8MessageBatchGetCount(C8MessageBatch* batch)

Purpose: determines the number of messages in a batch.

Parameters:

 batch - the batch about which you want the count.

Returns: the number of messages in the batch.

C8Message* C8MessageBatchPopMessage(C8MessageBatch* batch)

Purpose: extracts the next message from a batch.

Parameters:

 batch - the batch from which you want to extract a message.

Returns: a pointer to a message or NULL if there are no messages in the batch. Use

C8MessageDestroy to destroy each message when you are through with it.

const C8Char* C8MessageBatchGetId(C8MessageBatch* batch)

Purpose: retrieves the ID of this batch of messages.

Parameters:

 batch - the batch for which you want the ID.

Returns: a NULL-terminated string containing the batch ID.

void C8MessageBatchDestroy(C8MessageBatch* batch)

Purpose: destroys a batch, including all the messages, and deallocates the associated

memory.

Parameters:

 batch - the batch you want to destroy.

Returns: nothing.

Creating an Out-of-process Adapter in C/C++

This chapter explains how to write your own out-of-process adapter in the C/C++ programming

language. You may write either an input adapter or an output adapter this way.

Coral8 provides a set of functions that allow you to attach to (connect to) a stream, read or write

data, and detach from the stream. These functions are referred to as the Coral8 C Adapter library.

Coral8 provides:

 A library for resolving a CCL stream URI.

 A library for transferring data via a network.

 Documentation.

Coral8 Integration Guide

150

Coral8 provides a sample out-of-process input adapter and a sample out-of-process output

adapter.

 example_input_adapter.c

 example_output_adapter.c

Both examples are located in the same directory. On Microsoft Windows, if you installed the

Coral8 Engine to the default location, the directory is:

C:\Program Files\Coral8\Server\sdk\c\examples

On UNIX-like operating systems, if you installed the Coral8 Engine to "/home/<userid>", the

directory is

/home/<userid>/coral8/server/sdk/c/examples

API Interface

As we mentioned earlier, a typical out-of-process adapter performs the following tasks:

1. Acquire an "address" (URI) that will uniquely identify a specific stream and tell the

communication layer (provided by Coral8) how to find that stream.

2. Open a connection to the stream.

3. Read (or write) the desired data. Typically the read (or write) operation is in a loop.

4. Close the connection (if the adapter is not going to run indefinitely).

If the adapter is reading from the stream, then the adapter may need to wait until the next

message arrives. There are three possible ways that the adapter can wait for the next message:

 The adapter can "poll" until a message arrives;

 The adapter can make a blocking call that will wait until a message arrives;

 The adapter can register a callback function that will be called when a message arrives;

To poll, the adapter should call the C8SubscriberGetNextMessage() function and specify a

maximum amount of time to wait. If a message does not arrive within the specified time,

C8SubscriberGetNextMessage() will return control to the caller, which may do some work (or

yield the processor) and then continue polling later by calling C8SubscriberGetNextMessage()

again. Passing 0 as the wait time returns control immediately, without waiting.

To register a callback function, use the C8SubscriberSetCallback() function.

Below we describe all the functions in the API, including the functions that allow users to attach

to streams, read or write streams, and detach from streams. (Acquiring a stream's "address" is

done outside the API, and will be explained later.) The header file c8adapter.h describes the

interface.

Remember to call C8ClientSDKInitialize() before calling any functions in an out-of-process

adapter!

Coral8 C/C++ SDK

151

C8Publisher *C8PublisherCreate(const C8Char *i_uri)

Purpose: create a publisher to the given URI for publishing messages. The publisher

object returned by this function is used later when sending (publishing) messages.

Parameters:

 i_uri - - the URI of the stream to which you wish to publish.

Returns: a pointer to a C8Publisher object (or NULL if error). Publishers returned by this

function must be freed with C8PublisherDestroy().

C8Publisher *C8PublisherCreateA(const C8Char *i_uri, const C8UserCredentials

*i_credentials)

Purpose: like C8PublisherCreate(), this creates a publisher to the given stream URI,

but this function requires user authentication. The returned publisher object is used later

when sending (publishing) messages.

Parameters:

 i_uri - - the URI of the stream to which you wish to publish.

 i_credentials - - a pointer to a structure containing the user's credentials (username

and password).

Returns: a pointer to a C8Publisher object (or NULL if error). Publishers returned by this

function must be freed with C8PublisherDestroy().

C8Publisher *C8PublisherCreateGD(const C8Char *i_uri, const C8UserCredentials

*i_credentials,

 const C8Char *i_session_id, C8Interval i_timeout

Purpose: creates a Guaranteed Delivery publisher to the given stream URI (see

Implementing Guaranteed Processing for information about Guaranteed Delivery) and

establishes (or re-establishes) a session with Coral8 Server. The returned publisher object

is used later when sending (publishing) messages.

Parameters:

 i_uri -- the URI of the stream to which you wish to publish.

 i_credentials -- a pointer to a structure containing the user's credentials (user name

and password). Optional.

 i_session_id -- the unique session ID for Guaranteed Delivery. If you are

reconnecting after a failure, be sure to use the same session ID.

 i_timeout -- how long to wait to establish a session before timing out.

Returns: a pointer to a C8Publisher object (or NULL if error). Publishers returned by this

function must be freed with C8PublisherDestroy().

void C8PublisherDestroy(C8Publisher *i_pub)

Coral8 Integration Guide

152

Purpose: frees a C8Publisher object and any associated schema objects.

Parameters:

 i_pub - a pointer to the publisher object to be destroyed (de-allocated).

Returns:

C8Bool C8PublisherIsConnected(C8Publisher * i_pub)

Purpose: determines whether or not a publisher is connected and ready to send messages.

Parameters:

 i_pub - the publisher.

Returns: C8_TRUE if connected, C8_FALSE otherwise.

const C8Schema * C8PublisherGetSchema(const C8Publisher *i_pub)

Purpose: get the schema of the stream that is being published to.

Parameters:

 i_pub - the publisher for which you want to get the schema.

Returns: a pointer to a schema. The returned schema remains valid while the publisher

remains valid. The user should not C8Free() the schema; the schema will be de-allocated

when the publisher is de-allocated.

C8Status C8PublisherSendMessage(C8Publisher *i_pub, C8Message *i_msg)

Purpose: publishes a message to the stream whose URI was specified when the publisher

*i_pub was created by calling C8PublisherCreate().

Once a message is published, modifying the message is not allowed. However, you may

deallocate a message with C8MessageDestroy() at any time. If the publisher is a

Guaranteed Publisher, the message is not actually sent to the stream until you call

C8PublisherCommit.

Parameters:

 i_pub - the publisher for which you want to get the schema.

 i_msg - the message that you want to publish.

Returns: C8_OK if successful, C8_FAIL otherwise.

C8Status C8PublisherSendMessages(C8Publisher *i_pub, C8Message **i_msg, C8UInt

i_cnt)

Purpose: publishes an array of messages to a stream. If the publisher is a Guaranteed

Publisher, the messages are not actually sent to the stream until you call

C8PublisherCommit.

Parameters:

 i_pub - the publisher that specifies which stream to publish to.

Coral8 C/C++ SDK

153

 i_msg - a pointer to an array of messages to be sent.

 i_cnt - the number of messages in the array.

Returns: C8_OK if successful, C8_FAIL otherwise.

C8Status *C8PublisherCommit(C8Publisher *i_pub, const C8Char *i_batch_id)

Purpose: send as a batch all messages that have been queued with

C8PublisherSendMessage or C8PublisherSendMessages. Used with a Guaranteed

Delivery publisher.

Parameters:

 i_pub - the Guaranteed Delivery publisher that specifies which stream to publish

to.

 i_batch_id -- the ID of this batch. See Implementing Guaranteed Processing for

information about Guaranteed Delivery.

Returns: C8_OK if successful, C8_FAIL otherwise.

C8Status * C8PublisherSendMessageBatch(C8Publisher * i_pub, C8Message** i_msgs,

 C8UInt i_cnt, const C8Char * i_batch_id)

Purpose: send a batch of messages. Used with a Guaranteed Delivery publisher.

Parameters:

 i_pub - the Guaranteed Delivery publisher that specifies which stream to publish

to.

 i_msgs - an array of messages

 i_cnt - the number of messages in i_msgs

 i_batch_id -- the unique ID of this batch. See Implementing Guaranteed

Processing for information about Guaranteed Delivery.

Returns: C8_OK if successful, C8_FAIL otherwise.

const C8Char *C8PublisherGetLastBatchId(C8Publisher *i_pub)

Purpose: retrieves the ID of the last batch of messages received by the server from a

Guaranteed Delivery publisher.

Parameters:

 i_pub - the Guaranteed Delivery publisher.

Returns: A constant pointer to the ID of the last batch processed by the server, or NULL

if no batch has been processed since the last restart with clean slate.

C8Subscriber *C8SubscriberCreate(const C8Char *i_uri)

Purpose: create a subscriber to a given stream.

Parameters:

Coral8 Integration Guide

154

 i_uri is the URI of the stream to subscribe to.

Returns: Returns a pointer to a subscriber object. Returns NULL if error. Subscribers

should be freed with C8SubscriberDestroy().

C8Subscriber *C8SubscriberCreateA(const C8Char *i_uri, const C8UserCredentials

*i_credentials)

Purpose: create a subscriber to a given stream that requires user authentication.

Parameters:

 i_uri is the URI of the stream to subscribe to.

 i_credentials - - a pointer to a structure containing the user's credentials (username

and password).

Returns: Returns a pointer to a subscriber object. Returns NULL if error. Subscribers

should be freed with C8SubscriberDestroy().

C8Subscriber *C8SubscriberCreateGD(const C8Char *i_uri, const C8UserCredentials

*i_credentials, const C8Char * i_session_id, const C8Char * i_last_batch_id, C8Interval

i_timeout)

Purpose: create a Guaranteed Delivery subscriber to a given stream (see Implementing

Guaranteed Processing for information about Guaranteed Delivery) and establishes (or

re-establishes) a session with the server.

Parameters:

 i_uri -- the URI of the stream to subscribe to.

 i_credentials - - a pointer to a structure containing the user's credentials (username

and password). Optional.

 i_session_id -- the unique session ID for Guaranteed Delivery. If you are

reconnecting after a failure, be sure to use the same session ID.

 i_last_batch_id -- the ID of the last batch processed by this adapter. The server

should begin sending messages with the batch following the one specified here.

 i_timeout -- how long to wait to establish a session before timing out.

Returns: Returns a pointer to a subscriber object. Returns NULL if error. Subscribers

should be freed with C8SubscriberDestroy().

C8Message * C8SubscriberGetNextMessage(C8Subscriber *i_sub, C8Interval i_to)

Purpose: get the next pending message from the subscriber. If this is a Guaranteed

Delivery subscriber, call C8SubscriberGetNextBatchId to determine if this message

begins a new batch of messages.

Parameters:

 i_sub - the subscriber object from which to get the next message.

Coral8 C/C++ SDK

155

 i_to - indicates the maximum amount of time (in microseconds) to wait for the

next message.

Returns: the next pending message, or NULL if no messages are pending. In case of a

timeout, the call to C8ErrorGetCode() returns C8_ERR_TIMEOUT; a different error

code is returned if there was an actual error. The message must be deleted with

C8MessageDestroy().

Note that whether or not the timeout was reached, this function may return

NULL to indicate that there were no messages, so you must always check the

return value from this function -- do not assume that you will always get a

message.

C8Status C8SubscriberGetNextBatch(C8Subscriber * i_sub, C8Message** o_msgs,

 C8UInt* io_cnt, const C8Char** o_batch_id, C8Interval i_to)

Purpose: get the next batch of messages from the subscriber. For use with a Guaranteed

Delivery subscriber.

Parameters:

 i_sub - the Guaranteed Delivery subscriber object from which to get the next

batch of messages.

 o_msgs - pointer to an array to hold the returned messages.

 io_cnt - the number of messages that will fit into 0_msgs (input) or the number of

messages in o_msgs (output). If the entire batch of messages does not fit in the

allocated array, subsequent calls to this method will retrieve the rest of the batch.

 o_batch_id - the ID of this batch of messages.

 i_to - indicates the maximum amount of time (in microseconds) to wait for the

batch.

Returns: C8_OK if successful, C8_FAIL otherwise. The messages must be deleted with

C8MessageDestroy().

const C8Char *C8SubscriberGetLastBatchId(C8Subscriber *i_sub)

Purpose: retrieves the ID of the last batch of messages sent by the server to a Guaranteed

Delivery subscriber.

Parameters:

 i_sub - the Guaranteed Delivery subscriber.

Returns: A constant pointer the ID of the last batch sent.

void C8SubscriberSetCallback(C8Subscriber *i_sub, C8SubscriberCallbackFn i_cb, void

*i_cb_prm)

Coral8 Integration Guide

156

Purpose: sets a callback function that will be called when a new message is available on

the stream that has been subscribed to.

The callback function will be called by the Coral8 adapter library code (which is linked

into the user's out-of-process adapter) and therefore will be running in a thread that is

running the Coral8 library code. Thus, the callback function should be as short as

possible and require minimum locking. The callback function should not itself process

the newly-arrived message. In many cases, the callback function may simply set a flag

and then return, leaving other parts of the user's code to check the flag, retrieve the

message, and then process the message when their thread executes.

In some cases the callback routine may be called even if there is no message.

When you call C8SubscriberGetNextMessage() (which you should NOT call

inside the callback routine itself), be sure to check that

C8SubscriberGetNextMessage() returned a valid C8Message pointer, not NULL.

Parameters:

 i_sub - the subscription whose stream you want to be notified about.

 i_cb is the new callback function for this subscriber.

 i_db_prm is the parameter with which to call the callback.

Returns: nothing.

void C8SubscriberDestroy(C8Subscriber *i_sub)

Purpose: Frees the subscriber.

Parameters:

 i_sub - the subscriber that you want to destroy (de-allocate).

Returns: nothing.

C8Bool C8SubscriberIsConnected(C8Subscriber * i_sub)

Purpose: determines whether or not a subscriber is connected and ready to receive

messages.

Parameters:

 i_sub - the subscriber.

Returns: C8_TRUE if connected, C8_FALSE otherwise.

const C8Schema *C8SubscriberGetSchema(const C8Subscriber *i_sub)

Purpose: get the schema of the stream subscribed to.

Parameters:

 i_sub - the subscriber specifies which stream you want to know the schema of.

Coral8 C/C++ SDK

157

Returns: the schema of the stream you've subscribed to. Returns NULL if error. The

returned schema remains valid while the subscriber remains valid.

C8Char * C8ResolveUri(const C8Char * i_uri);

Purpose: This resolves a CCL URI into an HTTP/HTTPS URI.

Parameters:

 i_uri - the URI to resolve.

Returns: the HTTP URL. This returns NULL if there is an error.

The pointer returned must be freed with C8Free().

C8Char * C8ResolveUriA(const C8Char * i_uri, const C8UserCredentials *i_credentials);

Purpose: This resolves a CCL URI into an HTTP/HTTPS URI, requiring that the user

pass appropriate user authentication credentials before doing so.

Parameters:

 i_uri - the URI to resolve.

 i_credentials - a pointer to a structure containing the user's credentials (user name

and password).

Returns: the HTTP URL. This returns NULL if there is an error.

The pointer returned must be freed with C8Free().

C8Char ** C8ResolveClusterUri(const C8Char * i_uri);

Purpose: This resolves a CCL URI into one or more HTTP/HTTPS URIs.

Parameters:

 i_uri - the URI to resolve.

Returns: a pointer to a NULL-terminated array of string pointers, or NULL if there is an

error.

The returned array pointer and all of it's contained pointers must be freed with

C8Free().

C8Char ** C8ResolveClusterUri(const C8Char * i_uri, const C8UserCredentials

*i_credentials);

Purpose: This resolves a CCL URI into one or more HTTP/HTTPS URIs, requiring that

the user pass appropriate user authentication credentials before doing so.

Coral8 Integration Guide

158

Parameters:

 i_uri - the URI to resolve.

 i_credentials - a pointer to a structure containing the user's credentials (user name

and password).

Returns: a pointer to a NULL-terminated array of string pointers, or NULL if there is an

error.

The returned array pointer and all of it's contained pointers must be freed with

C8Free().

C8Char * C8UriAppendQueryString(const C8Char* i_base_uri, const C8Char*

i_query_string);

Purpose: Appends a query string to the passed-in URI. Useful if you want to specify

filters when subscribing to a stream.

Parameters:

 i_base_uri - the URI to extend.

 i_query_string - the URL-encoded string to append to i_base_uri.

Returns: the URI in the form base_uri?query_string. This returns NULL if there is an

error.

The pointer returned must be freed with C8Free().

C8Char * C8UriAppendQueryStringParameter(const C8Char* i_base_uri, const C8Char

i_key, const C8Char i_value);

Purpose: Appends query parameters to the passed-in URI. Useful if you want to specify

filters when subscribing to a stream.

Parameters:

 i_base_uri - the URI to extend.

 i_key - the unencoded key.

 i_value - the unencoded value.

Returns: the URL-encoded URI in the form base_uri?key=value. This returns NULL if

there is an error.

The pointer returned must be freed with C8Free().

Coral8 C/C++ SDK

159

Creating a Sample Input Adapter

This section provides a detailed method to connect a simple adapter for writing to Coral8 Server.

To create and run our demo, we use the following files:

 example_input_adapter.c - This file is a very basic input adapter. Like any input adapter,

it attaches to a stream, writes data to the stream, and then detaches from the stream. This

example may be used as a skeleton for other out-of-process adapters. This file is in

server/sdk/c/examples

E.g. on Microsoft Windows, the directory is typically:

C:\Program Files\Coral8\Server\sdk\c\examples

On UNIX-like operating systems, the directory is typically

/home/<username>/coral8/server/sdk/c/examples

Sample Input Adapter

The example shows how to write data to Coral8 Server.

This example generates its own data; when you write your own adapter, you will probably read

the data from a data source.

After the normal declarations and command line argument parsing, the input stream is opened.

Notice the return status is examined for success.

Acquiring the Address (URI) of a Stream

One open issue remains: acquiring the "address" of the stream so that you can pass it to the

function that opens a connection to the stream. The address is a URI. To get the URI of a

particular stream, you must first create the stream in Coral8 Studio, then open a stream viewer

(right-click on the stream and click on the "view" command), then read the URI shown in the

title of the stream viewer window. The URI will look somewhat similar to the one shown below:

ccl://localhost:6789/Stream/Default/PassThrough/InTrades

You can see this URI at the top of the figure below:

Coral8 Integration Guide

160

The URI of the stream will not normally change unless the stream name itself changes or unless

the query module and stream are run on a different host computer.

For more information about URIs, see Stream URIs.

If your out-of-process adapter will send data to multiple streams (for use with the Parallel Query

feature), see the section titled "Parallel Queries and URIs" in that same appendix.

Compiling and Linking the Example

The following instructions show you how to compile and link the example code on Microsoft

Windows and on UNIX-like operating systems.

Compiling and Linking on Microsoft Windows

This section explains two ways to compile and link on Microsoft Windows:

 from inside Visual Studio, or

 from the command line.

Both sets of instructions assume that you are using Microsoft Visual Studio 2005.

Compiling Using Visual Studio

This section explains how to compile and link on Microsoft Windows from inside Visual Studio.

These instructions assume that you are using Microsoft Visual Studio 2005.

1. Start Microsoft Visual Studio.

2. Create a project file by going to the menu and clicking on File -> New -> Project.

A. Click on the [+] to expand "Visual C++ " Project Types.

Coral8 C/C++ SDK

161

B. Click on "Win32 Console Application".

C. In the "Name:" field, fill in the name that you'd like to use for your project.

D. In the "Location:" field, browse and specify the directory in which you'd like the

project to be stored.

E. Click OK.

F. The next window to appear will be the "Win32 Application Wizard" window.

G. Click on "Finish".

3. Microsoft Visual Studio will create a simple C++ (.cpp) file to use as a starting point. We

recommend that you remove all the contents of this file and then insert your own C/C++

code for the adapter.

Make sure that your file includes the following:

#include <nspr.h>

#include "c8adapter.h"

#include "c8client.h"

#include "c8conversions.h"

#include "c8messages.h"

4. If you have other C-language source files that you need, add them to the project

5. You will need to update several settings that are available in the "Property Pages" for this

project.

A. Update the list of directories to search for #include files.

To do this, go to the menu, click on "Project" and then on "MySample

Properties".

You should get a new window titled something like "MySample Property Pages".

In the left-hand pane of this window, click on "Configuration Properties, then on

"C/C++", and then on "General".

The right-hand pane should now show a list of settings that you may modify.

Click in the field to the right of "Additional Include Directories" and add the

directories listed below.

On 32-bit Microsoft Windows, the directories are typically:

C:\Program Files\Coral8\Server\sdk\c\include\

C:\Program Files\Coral8\Server\sdk\c\include\nspr

On 64-bit Microsoft Windows, the directories are typically:

C:\Program Files (x86)\Coral8\Server\sdk\c\include

C:\Program Files (x86)\Coral8\Server\sdk\c\include\nspr

You may also add other directories if necessary for your adapter.

Coral8 Integration Guide

162

To add these, do the following:

a. Click in the "Additional Include Directories" field, and paste in the first

path.

b. Then click on the ellipsis ("..."), click on the folder icon (the tool tip will

refer to this as "new line"), and then enter the next path.

Repeate step "b" as many times as necessary to add any remaining required paths.

B. Turn off precompiled headers. To do this, go to the left-hand pane in the

"Property Pages" window, click on "C/C++" and then on "Precompiled headers",

then click on "Create/Use Precompiled Header" and set it to "Not Using

Precompiled Headers".

C. Add the Coral8 library files. To do this, go to the left-hand pane of the "Property

Pages" window, click on "Linker" and then on "General".

In the field to the right of "Additional Library Directories", add the directory that

contains the Coral8 library.

On 32-bit Microsoft Windows, this directory is typically:

C:\Program Files\Coral8\Server\sdk\c\lib

On 64-bit Microsoft Windows, this directory is typically:

C:\Program Files (x86)\Coral8\Server\sdk\c\lib

D. Add a dependency on the c8_sdk_client_lib.lib file. To do this, go to the left-hand

pane of the "Property Pages" window, click on "Linker" and then on "Input".

In the field to the right of "Additional Dependencies", enter

c8_sdk_client_lib.lib nspr4.lib

(Note that you do not need to enter the complete path of either of these libraries;

entering the file names is sufficient.)

If you are using Microsoft's Visual C development and environment and you'd like to

double check that you haven't skipped a step, you can look at the "Command Line" for the

C/C++ compiler and the "Command Line" for the Linker. (These show the command-line

parameters passed from Microsoft's GUI IDE to the command-line compiler and linker.)

To view the command line for the C/C++ compiler, go to the left-hand pane of the Property

Pages window, click on "C/C++" and then click on "Command Line". The command line

should look similar to the following:

/Od /I "C:\Program Files\Coral8\Server\sdk\c\include\nspr"

 /I "C:\Program Files\Coral8\Server\sdk\c\include\\"

 /D "WIN32" /D "_DEBUG" /D "_CONSOLE" /D "_UNICODE"

 /D "UNICODE" /Gm /EHsc /RTC1 /MDd /Fo"Debug\\"

 /Fd"Debug\vc80.pdb" /W3 /nologo /c /Wp64 /ZI

 /TP /errorReport:prompt

Coral8 C/C++ SDK

163

If you set the warning level to a value other than 3, then the "/W3" will be different.

The command line may or may not include

/D "_DEBUG"

If the command line includes this, you may only be able to use the .DLL on a computer that

has the debug version of the C runtime library. (For more information, see the

Troubleshooting section.)

To view the command line for the linker, go to the left-hand pane of the Property Pages

window, click on "Linker" and then click on "Command Line". The command line should

look similar to the following:

/OUT:"C:\c8test\E3\SDKC\TESTAdapter1.2\TESTAdapter1.2\Debug\TESTA

dapter1.2.exe"

 /INCREMENTAL /NOLOGO /LIBPATH:"C:\Program

Files\Coral8\Server\sdk\c\lib"

 /MANIFEST

/MANIFESTFILE:"Debug\TESTAdapter1.2.exe.intermediate.manifest"

 /DEBUG

 /PDB:"c:\c8test\e3\sdkc\testadapter1.2\testadapter1.2\debug\TES

TAdapter1.2.pdb"

 /SUBSYSTEM:CONSOLE /MACHINE:X86

 /ERRORREPORT:PROMPT c8_sdk_client_lib.lib nspr4.lib

kernel32.lib user32.lib

 gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib

ole32.lib

 oleaut32.lib uuid.lib odbc32.lib odbccp32.lib

Now that you have entered all the project properties, click the "OK" button on the "Property

Pages" window.

At this point, you should be ready to compile.

6. To compile, use the appropriate option on the "Build" menu, for example, "Build

MySample".

7. To execute the file that you have created, you must ensure that your PATH environment

variable includes the directories that contain the .dll files that the adapter needs.

Typically, these directories are:

C:\Program Files\Coral8\Server\bin

C:\Program Files\Coral8\Server\sdk\c\lib

Compiling Using the Command Line

The following instructions show how to compile and link the example code on Microsoft

Windows by using the command line. These instructions assume that you are using the compiler

that comes with Microsoft Visual Studio 2005.

Coral8 Integration Guide

164

1. Make sure that you have configured your C compiler so that you can compile and link at

least a simple "hello world" C program. For a sample script that sets environment

variables, see the sample script later in this section.

To ensure that you can access the MS Visual Studio 2005 resources (e.g. library files),

you will typically need to set the environment variables PATH, INCLUDE, and LIB

appropriately, which you can do by running the vcvars32.bat script provided by

Microsoft with Visual Studio:

C:\Program Files\Microsoft Visual Studio 8\VC\bin\vcvars32.bat

2. Update your INCLUDE environment variable to include the following Coral8 directories:

C:\Program Files\Coral8\Server\sdk\c\include\

C:\Program Files\Coral8\Server\sdk\c\include\nspr

3. Update your LIB environment variable to include the following Coral8 directory(s):

C:\Program Files\Coral8\Server\sdk\c\lib

so the compiler/linker can find the required .lib files when linking.

To do this, execute commands similar to the following:

set LIB=%LIB%;C:\Program Files\Coral8\Server\sdk\c\lib

4. When you execute the program, make sure that your path includes the following files

C:\Program Files\Coral8\Server\sdk\c\lib

C:\Program Files\coral8\server\bin

so the program can find the .dll (Dynamic Link Library) files or .so (Shared Object) files

at runtime.

To do this, execute commands similar to the following:

set PATH=%PATH%;C:\Program Files\Coral8\Server\sdk\c\lib

set PATH=%PATH%;C:\Program Files\Coral8\Server\bin

5. On Microsoft Windows, execute "cl" (Compile and Link) commands similar to those

shown below:

rem Compile and link the C Adapter SDK example

rem program, which uses the Adapter API. cl

example_input_adapter.c c8_sdk_client_lib.lib nspr4.lib

Below is a sample Microsoft Windows .bat file to configure the environment for compiling and

running the C Adapter SDK example with the Microsoft Visual Studio .NET 2005 development

environment.

@echo off

rem ---

rem PURPOSE: The purpose of this file is to configure the environment

rem so that we can compile stream adapters, which require that

rem we have the NSPR (Netscape Portable Runtime) files, which

rem include .h and library files that we need.

Coral8 C/C++ SDK

165

rem This assumes that you have installed

rem Microsoft Visual Studio .NET 2005 to the directory

rem C:\Program Files\Microsoft Visual Studio 8

rem and have already run the vcvars32.bat script.

rem ---

rem --- Set the env vars to enable us to find the Coral8 .h files

rem --- and the NSPR .h files.

set INCLUDE=C:\Program Files\Coral8\Server\sdk\c\include;%INCLUDE%

set INCLUDE=C:\Program Files\Coral8\Server\sdk\c\include\nspr;%INCLUDE%

rem --- Set the env vars to enable us to find the Coral8 library files

set LIB=C:\Program Files\Coral8\Server\sdk\c\lib\;%LIB%

rem Needed for SSL.

rem NOTE TO READER: The following should all be on one

rem line, not split across lines.

set INCLUDE=C:\Program

Files\Coral8\Server\sdk\c\include\nss\public;%INCLUDE%

rem --- Make sure that the PATH contains the .DLL files.

set PATH=%PATH%;c:\Program Files\Coral8\Server\bin

set PATH=%PATH%;c:\Program Files\Coral8\Server\sdk\c\lib

Compiling and Linking on UNIX-like Operating Systems

The following instructions show how to compile and link the example code on UNIX-like

operating systems.

1. Make sure that you have configured your C compiler (e.g. gcc) so that you can compile

and link at least a simple "hello world" C program.

You will typically need to set the environment variables PATH, INCLUDE, and LIB

appropriately.

2. Update your LIB environment variable to include the proper library directory. If you

installed the Coral8 Engine under the directory "/home/<userid>" then the paths will be

/home/<userid>/coral8/server/sdk/c/lib

so the compiler/linker can find the required .lib files when linking.

To do this, execute commands similar to the following:

export LIB=${LIB}:/home/<userid>/coral8/server/sdk/c/lib

3. Make sure that your PATH environment variable includes the following paths

/home/<userid>/coral8/server/sdk/c/lib

/home/<userid>/coral8/server/bin

so the program can find the .so (Shared Object) files at runtime.

To do this, execute commands similar to the following:

export PATH=${PATH}:/home/<userid>/coral8/server/sdk/c/lib

export PATH=${PATH}:/home/<userid>/coral8/server/bin

Coral8 Integration Guide

166

4. Compile and link

Compile the bulk of the code and link all the

pieces together. Note that the command below

should all be on one line, even if

it is displayed as multiple lines.

gcc -Wl,--allow-shlib-undefined -I${INCLUDE1}

 -I${INCLUDE2} -L${LIB1} -L${LIB2} myAdapter.c

 ${LIB1}/libc8_sdk_client_lib.so

Below is a sample shell script to configure the environment for compiling and running the C

Adapter SDK example. You will need to customize this file to specify the userid. If you did not

install the Coral8 Engine in "/home/<userid>" then you will need to make additional

customizations, also. The example below assumes that you are using gcc on linux.

PURPOSE:

Set up the environment so that we can compile an

out-of-process adapter.

echo "Don't forget to 'source' this script"

echo "(e.g. with the '.' command) "

echo "rather than simply run it."

Include the standard Coral8 C/C++ SDK files.

We'll use this environment variable later when we compile.

export INCLUDE1=/home/<userid>/coral8/server/sdk/c/include

Include additional files needed for out-of-process adapters.

We'll use this environment variable later when we compile.

export INCLUDE2=/home/<userid>/coral8/server/sdk/c/include/nspr

export LIB1=/home/<userid>/coral8/server/sdk/c/lib

export LIB2=/home/<userid>/coral8/server/bin

export PATH=$PATH:$LIB1:$LIB2

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$LIB1:$LIB2

Below is a sample shell script to compile and link the adapter. You may need to customize this

file to specify the program name (we used "myAdapter" below). The example below assumes

that you are using gcc on linux.

PURPOSE:

Compile and link the out-of-process adapter.

This script is for UNIX-like operating systems.

echo "This assumes that you already ran set_adapter_env.bat, "

echo "which sets the INCLUDE and LIB env vars."

Compile the bulk of the code and link all the pieces together.

Note that the command below should all be on one line, even if

it is displayed as multiple lines.

gcc -Wl,--allow-shlib-undefined -I$INCLUDE1 -I$INCLUDE2 -L${LIB1}

 -L${LIB2} myAdapter.c ${LIB1}/libc8_sdk_client_lib.so

Coral8 C/C++ SDK

167

Give the executable file whatever name you want.

mv a.out myAdapter

The "--allow-shlib-undefined" command tells the gcc compiler to proceed even if it can't find all

the library files it needs. (The required library files are in the PATH or the

LD_LIBRARY_PATH and will be resolved at runtime.)

Executing the Out-of-process Input Adapter

These instructions assume that you have already installed the Coral8 Server and Coral8 Studio,

and that you have compiled the programs according to the instructions in the previous section.

1. Start the server and let it fully initialize.

2. Start Studio.

3. Start Coral8 Studio, connect to the Default workspace, and load the PassThrough

example, located in the Coral8 repository under

examples/FeatureExamples/Basic/PassThrough.

4. Click on the '+' icon next to the PassThrough to show the Streams.

5. Click on the '+' icon next to the InTrades stream to view the existing adapter. (optional)

6. Open stream viewers for both InTrades and OutTrades. (You can open a stream viewer

by right-clicking on the stream name and then selecting "view stream".) Notice the URI

in the header of each viewed stream. This URI is used to connect to the stream.

7. Press the "Start Module" button (the green triangle) in Studio's tool bar. After a brief

delay, both the InTrades and OutTrades windows should start displaying values.

8. Start the input adapter. Note that you should start the input adapter LAST. If the query

module is not already running, the streams won't be "live" and the example input adapter

won't be able to connect to them.

Creating an In-process Adapter in C/C++

In-process adapters are compiled into dynamically linkable libraries (called "shared object"

libraries on most UNIX-like operating systems). These libraries are linked into the server, and

the code in them runs as part of the server process.

This API allows you to write both input adapters and output adapters.

In-process adapters tend to have lower overhead than out-of-process adapters. They also give

you access to some internal features in the engine; for example, you can call a function to find

out the schema of a stream.

This chapter shows how to create simple adapters for reading from and writing to a Coral8

Server in the C and C++ programming languages. Since this example is provided in source form,

modifications are easily performed.

Coral8 Integration Guide

168

For an adapter to function, it is sufficient that it knows how to attach to its Coral8 stream and

convert data to (or from) the Coral8 Server representation. These two tasks -- communications

and conversion -- are independent of each other. The primary purpose of the In-process Adapter

API is to provide the functions needed to communicate with the Coral8 Server. The user must

write conversion functions that are appropriate for the source (or destination) of the data.

The Components of an In-process Adapter

This in-process adapter must be linked with Coral8 Server and with SDK libraries. This linking

is done dynamically at run time.

A complete in-process adapter includes not only a library file that can be linked to the server, but

also an associated ADL (Adapter Definition Language) file; this ADL file specifies the adapter's

library file name, the names of the functions in that file, and the adapter properties that may be

used with that adapter. The user must write an ADL file for each in-process adapter and place it

in both the Studio plugins directory and the Server plugins directory. This is necessary since the

Coral8 Studio and Server may execute on different machines across a network.

Users must also place a library containing their in-process adapter code into the bin folder of the

server. When the Coral8 Server determines a user adapter must be loaded, the Coral8 Server

code will load the user written adapter ADL, find the name of the library and entry points in the

library, load the library and begin executing user-written code.

Algorithm Overview

The C/C++ subroutines in an in-process adapter run only when called by Coral8 Server. Each in-

process adapter must provide three or four subroutines that can be called by the server:

 initialize()

 execute()

 shutdown()

 reconnect() (Only required for a Guaranteed Delivery adapter)

Because these functions must be registered with, and called by, the server, they are sometimes

referred to as "callback" functions.

The actual names of the functions may be chosen by the user; for convenience, we will refer to

them as the initialize(), execute(), and shutdown() functions.

The initialize() function is called once. In this function, the user does whatever initialization

steps are required. For example, if the adapter is an input adapter, then the initialize() routine will

typically open or connect to the data source. If the data source is a file, then the initialize()

routine will open the input file. The Initialize routine may also read parameters (such as the

location of the input, e.g. the directory path in which the input file resides), allocate memory, etc.

Coral8 C/C++ SDK

169

The execute() function is called periodically. If the adapter is an input adapter, the execute()

function will read one or more rows from the data source, do any required conversion of the data,

and then send that data to the stream. If the adapter is an output adapter, the execute() function

will read one or more rows from the data stream, do any required conversion of the data, and

then send that data to the data destination. Note that when the execute() function is called, there

is not necessarily any data to process. By calling the execute() function periodically, whether

there is data or not, the server gives the adapter a chance to check for other conditions, such as

timeouts, as well as to check for data.

The shutdown() function is called when the server would like to stop the in-process adapter.

Typically this is when the server itself is going to shut down. The shutdown() function should

do any appropriate "cleanup", such as closing files, releasing memory, etc.

When each of these functions is called, the server passes the function a pointer to a C8Adapter

object. This C8Adapter object stores information about this particular instance of the adapter.

(You may have multiple instances of a user-created adapter running simultaneously, just as you

may have multiple copies of a built-in adapter running simultaneously.) This adapter pointer is

required for many of the calls to the Coral8 API. For example, if you want to get the schema of

the stream used by a particular instance of an adapter, then you will call the

C8AdapterGetSchema() function and pass it the C8Adapter pointer that indicates which adapter

(and thus which stream) the function should return the schema of.

Naturally, each of these functions may call other functions written by the user and various library

routines that are part of the server or the In-process Adapter SDK. The library file that contains

the user's in-process adapter will typically have not only the 3 main routines, but also all the

other routines that the user has written in support of those main routines.

Session State Information and Persistent State Information

An adapter's execute() function is typically called many times. Many adapters need to "carry

over" information from one invocation to the next. For example, if you write an output adapter

that writes to a file, then after you open that output file you will want to store a file pointer to that

file so that you can write to the file each time without the overhead of reopening the file. We

refer to this "carried over" information as "session state", and the Coral8 C/C++ SDK provides

functions that allow you to store and retrieve session state. Note that session state information is

not carried over if the server crashes or is restarted.

Persistent State information is much like Session State information, except that if Persistence

was enabled for the query module that is using this adapter instance, then Persistent State

information will persist across system restarts and crashes.

Coral8 Integration Guide

170

API Interface

Coral8 provides several header (.h) files. These files help users to declare variables as Coral8

data types in a platform-independent way, and also contain the function prototypes of the server

and SDK library functions that users may call.

The header file c8types.h provides the data type information.

The API has been divided into the following major sections:

 Schema. The Schema API provides meta-information about the data. Information such as

the number, names and types of columns are accessible. The schema API is applicable

both to in-process adapters and out-of-process adapters, and was described earlier.

 Message. Data routing in the Coral8 engine is in terms of data packets called "messages"

(informally also called "rows" or "tuples"). A message contains, among other things, a

particular row of information matching the schema. The API includes functions that give

you information about messages. The message API is applicable both to in-process

adapters and out-of-process adapters, and was described earlier.

 In-process Adapter. Each adapter provides an access point for a message to enter or exit

the Coral8 engine. Each adapter runs in its own thread. The adapter callbacks (the

initialize(), execute(), and shutdown() functions) are always called from this thread.

 Server. This contains a few useful functions.

Most or all in-process adapter code should include:

#include "c8types.h"

#include "c8adapter_in_process.h"

#include "c8conversions.h"

#include "c8server.h"

Coral8 also provides a set of functions that convert between strings and Coral8's internal data

types (such as TIMESTAMP, FLOAT, etc.)

Memory Management API

The memory management API is the same for in-process and out-of-process operations. See

Memory Management API. Some special cautions apply when these are used with in-process

operations. See Notes about Allocating and Deallocating Memory in In-process Code.

In-process Adapter API

These in-process adapter API signatures are defined in c8adapter_in_process.h.

Each adapter gets executed in its own thread. All adapter callbacks (initialize(), execute(), and

shutdown()) are always called from this thread.

Coral8 C/C++ SDK

171

For input adapters, the Coral8 engine will call the execute() callback function as often as

possible.

For output adapters, the Coral8 engine will call the execute() callback on a periodic basis. The

user should check for message availability. There may be an arbitrary number of messages (0, 1,

or more than 1) available for any single call of the execute() function. The output adapter is

responsible for processing the messages and should then return control to the Coral8 engine.

const C8Schema *C8AdapterGetSchema(C8Adapter *i_aptr)

Purpose: given an adapter pointer, return the associated schema. The schema specifies the

name and the data type for each of the columns. The return value is a pointer. The user

should not change the memory that the pointer points to, and the user should not C8Free()

this pointer.

Parameters:

 i_aptr - a pointer to the adapter object.

Returns: a pointer to the schema of this adapter.

The following "GetParam()" functions interface with the ADL files. Please refer to Adapter

Definition Language for detailed descriptions of how to use ADL files. All the GetParam names

are displayed on the adapter Properties View in Coral8 Studio and are user configurable. All

parameters may access the original string form as displayed in Coral8 Studio by calling

C8AdapterGetParamString(). If a user has additional data types C8AdapterGetParamString() is

the appropriate function call. After obtaining the string, the user may call one of the data

conversion functions supplied by Coral8.

The "name" string should be the identical string as provided in the ADL file. For instance, if the

ADL file contains

<Parameter Name="TitleRow" xsi:type="xsi:boolean">

then the "name" should be "TitleRow". Case is significant. Using an unknown "name" results in

the "default" value being returned.

C8Int C8AdapterGetParamInt(C8Adapter *adapter_ptr, const C8Char *name, C8Int

default)

Purpose: for the specified adapter, reads the value of the named property and returns that

value. If there is no adapter property with that name in the project, returns the default

value for the property as specified in the ADL file. If the parameter is not defined in

either place, then returns the value passed as default.

Parameters:

 adapter_ptr - a pointer to the C8Adapter object that stores information about this

instance of the adapter.

 name - the name of the adapter property whose value you would like to retrieve.

Coral8 Integration Guide

172

 default - the default value to return if the adapter property is not set in the project

or the ADL file.

Returns: the value of the adapter property, the default value as specified in the ADL file,

or the default value passed as a parameter.

C8Long C8AdapterGetParamLong(C8Adapter *adapter_ptr, const C8Char *name,

C8Long default)

Purpose: for the specified adapter, reads the value of the named property and returns that

value. If there is no adapter property with that name in the project, returns the default

value for the property as specified in the ADL file. If the parameter is not defined in

either place, then returns the value passed as default.

Parameters:

 adapter_ptr - a pointer to the C8Adapter object that stores information about this

instance of the adapter.

 name - the name of the adapter property whose value you would like to retrieve.

 default - the default value to return if the adapter property is not set in the project

or the ADL file.

Returns: the value of the adapter property, the default value as specified in the ADL file,

or the default value passed as a parameter.

C8Float C8AdapterGetParamFloat(C8Adapter *adapter_ptr, const C8Char *name,

C8Float default)

Purpose: for the specified adapter, reads the value of the named property and returns that

value. If there is no adapter property with that name in the project, returns the default

value for the property as specified in the ADL file. If the parameter is not defined in

either place, then returns the value passed as default.

Parameters:

 adapter_ptr - a pointer to the C8Adapter object that stores information about this

instance of the adapter.

 name - the name of the adapter property whose value you would like to retrieve.

 default - the default value to return if the adapter property is not set in the project

or the ADL file.

Returns: the value of the adapter property, the default value as specified in the ADL file,

or the default value passed as a parameter.

C8Bool C8AdapterGetParamBool(C8Adapter *adapter_ptr, const C8Char *name, C8Bool

default);

Purpose: for the specified adapter, reads the value of the named property and returns that

value. If there is no adapter property with that name in the project, returns the default

Coral8 C/C++ SDK

173

value for the property as specified in the ADL file. If the parameter is not defined in

either place, then returns the value passed as default.

Parameters:

 adapter_ptr - a pointer to the C8Adapter object that stores information about this

instance of the adapter.

 name - the name of the adapter property whose value you would like to retrieve.

 default - the default value to return if the adapter property is not set in the project

or the ADL file.

Returns: the value of the adapter property, the default value as specified in the ADL file,

or the default value passed as a parameter.

C8Timestamp C8AdapterGetParamTimestamp(C8Adapter *adapter_ptr, const C8Char

*name, C8Timestamp default);

Purpose: for the specified adapter, reads the value of the named property and returns that

value. If there is no adapter property with that name in the project, returns the default

value for the property as specified in the ADL file. If the parameter is not defined in

either place, then returns the value passed as default.

Parameters:

 adapter_ptr - a pointer to the C8Adapter object that stores information about this

instance of the adapter.

 name - the name of the adapter property whose value you would like to retrieve.

 default - the default value to return if the adapter property is not set in the project

or the ADL file.

Returns: the value of the adapter property, the default value as specified in the ADL file,

or the default value passed as a parameter.

C8Interval C8AdapterGetParamInterval(C8Adapter *adapter_ptr, const C8Char *name,

C8Interval default);

Purpose: for the specified adapter, reads the value of the named property and returns that

value. If there is no adapter property with that name in the project, returns the default

value for the property as specified in the ADL file. If the parameter is not defined in

either place, then returns the value passed as default.

Parameters:

 adapter_ptr - a pointer to the C8Adapter object that stores information about this

instance of the adapter.

 name - the name of the adapter property whose value you would like to retrieve.

Coral8 Integration Guide

174

 default - the default value to return if the adapter property is not set in the project

or the ADL file.

Returns: the value of the adapter property, the default value as specified in the ADL file,

or the default value passed as a parameter.

C8Char *C8AdapterGetParamString(C8Adapter *adapter_ptr, const C8Char *name,

C8Char* default);

Purpose: for the specified adapter, reads the value of the named property and returns that

value. If there is no adapter property with that name in the project, returns the default

value for the property as specified in the ADL file. If the parameter is not defined in

either place, then returns the value passed as default. The parameter "name" may specify

a parameter of any data type at all. This can be convenient for user-defined data types.

The returned pointer must be released by C8Free() or a memory leak will occur.

Parameters:

 adapter_ptr - a pointer to the C8Adapter object that stores information about this

instance of the adapter.

 name - the name of the adapter property whose value you would like to retrieve.

 default - the default value to return if the adapter property is not set in the project

or the ADL file.

Returns: a pointer to the value of the specified adapter property, or the default as

specified in the ADL file, or the default value passed as a parameter. The returned pointer

must be released by C8Free() or a memory leak will occur.

C8Char *C8AdapterGetParamBlob(C8Adapter *adapter_ptr, const C8Char *name,

C8Char* default);

Purpose: for the specified adapter, reads the value of the named property and returns that

value. If there is no adapter property with that name in the project, returns the default

value for the property as specified in the ADL file. If the parameter is not defined in

either place, then returns the value passed as default. This can be convenient for user-

defined data types. The returned pointer must be released by C8Free() or a memory leak

will occur.

Parameters:

 adapter_ptr - a pointer to the C8Adapter object that stores information about this

instance of the adapter.

 name - the name of the adapter property whose value you would like to retrieve.

 default - the default value to return if the adapter property is not set in the project

or the ADL file.

Coral8 C/C++ SDK

175

Returns: a pointer to the value of the specified adapter property, or the default value

specified in the ADL file, or the default value passed as a parameter. The returned pointer

must be released by C8Free() or a memory leak will occur.

The BLOB values used by this function are "raw" BLOBs (as opposed to hex strings or

base64 strings). For an explanation of raw vs. hex string vs. base64 string formats, see

Data Types and Subroutines for UDFs and In-process Adapters.

C8Char *C8AdapterGetParamXml(C8Adapter *adapter_ptr, const C8Char *name,

C8Char* default);

Purpose: for the specified adapter, reads the value of the named property and returns that

value. If there is no adapter property with that name in the project, returns the default

value for the property as specified in the ADL file. If the parameter is not defined in

either place, then returns the value passed as default. This can be convenient for user-

defined data types. The returned pointer must be released by C8Free() or a memory leak

will occur.

Parameters:

 adapter_ptr - a pointer to the C8Adapter object that stores information about this

instance of the adapter.

 name - the name of the adapter property whose value you would like to retrieve.

 default - the default value to return if the adapter property is not set in the project

or the ADL file.

Returns: a pointer to the value of the specified adapter property, or the default value

specified in the ADL file, or the default value passed as a parameter. The returned pointer

must be released by C8Free() or a memory leak will occur.

C8Bool C8AdapterIsGDSupported(C8Adapter* adapter_ptr);

Purpose: determines whether or not this adapter supports Guaranteed Delivery.

Parameters:

 adapter_ptr - a pointer to the C8Adapter object that stores information about this

instance of the adapter.

Returns: C8_TRUE if the ADL file for this adapter has the SupportsGuranteedDelivery

attribute set to "true", otherwise C8_FALSE.

C8Bool C8AdapterConnect(C8Adapter* adapter_ptr, const C8Char* session_id,

C8Interval timeout);

Purpose: initiates a connection for an adapter that supports Guaranteed Delivery.

Parameters:

 adapter_ptr - a pointer to the C8Adapter object that stores information about this

instance of the adapter.

Coral8 Integration Guide

176

 session_id - the ID of the session being established. The ID must be unique.

 timeout - how long to wait for the connection to be made.

Returns: C8_TRUE on success, C8_FALSE if the timeout is reached or an error occurs.

const C8Char* C8AdapterGetLastBatchId(C8Adapter* adapter_ptr);

Purpose: retrieves the ID of the last batch of messages processed. Used in a Guaranteed

Delivery input adapter to determine which messages to send after a reconnect.

Parameters:

 adapter_ptr - a pointer to the C8Adapter object that stores information about this

instance of the adapter.

Returns: the ID of the last batch processed.

void C8AdapterSetLastBatchId(C8Adapter* adapter, const C8Char* i_batch_id);

Purpose: sets the ID of the last batch of messages processed. Used in a Guaranteed

Delivery output adapter to specify which messages Coral8 Server should send after a

reconnect.

Parameters:

 adapter - a pointer to the C8Adapter object that stores information about this

instance of the adapter.

 i_batch_id - the batch ID.

Returns: nothing.

C8Message *C8AdapterReceiveMessage(C8Adapter *adapter_ptr);

Purpose: returns a pointer to a C8Message received by this adapter. If no messages are

available, a null pointer is returned.

When the user has finished processing the message, the user should call

C8MessageDestroy() to release message resources. The user-written execute()

function should continue to process messages as long as C8AdapterReceiveMessage()

provides them. When a null is returned from C8AdapterReceiveMessage(), the

execute() callback function should return to Coral8 Server.

This function works only for output adapters.

Parameters:

 adapter_ptr - a pointer to the C8Adapter object that stores information about this

instance of the adapter.

Returns: a pointer to the message received by this adapter. Returns NULL if there are no

new messages.

Coral8 C/C++ SDK

177

C8Message *C8AdapterReceiveMessageWait(C8Adapter *adapter_ptr, C8Interval

interval);

Purpose: returns a pointer to a C8Message received by this adapter. If no messages are

available, the call will wait for a maximum of "interval" microseconds. If no message is

available within "interval" microseconds, then a null pointer is returned. Callers should

check the return value to see whether a message arrived or whether a null pointer was

returned.

When the user has finished processing the message, the user should call

C8MessageDestroy() to release message resources. The user-written execute()

function should continue to process messages as long as

C8AdapterReceiveMessageWait() (or C8AdapterReceiveMessage()) provides them.

When a null is returned from C8AdapterReceiveMessageWait(), the execute()

callback function should return to Coral8 Server.

This function works only for output adapters.

Parameters:

 adapter_ptr - a pointer to the C8Adapter object that stores information about this

instance of the adapter.

 interval - the maximum number of microseconds to wait for a message.

Returns: a pointer to the message received by this adapter. Returns NULL if there are no

new messages.

C8MessageBatch* C8AdapterGetNextMessagesBatch(C8Adapter* adapter, C8Interval

i_timeout);

Purpose: retrieves the next batch of messages from Coral8 Server. Used in a Guaranteed

Delivery output adapter.

Parameters:

 adapter - a pointer to the C8Adapter object that stores information about this

instance of the adapter.

 i_timeout - how long to wait for the batch of messages.

Returns: a pointer to the batch of messages.

void C8AdapterSendMessage(C8Adapter *adapter_ptr, C8Message *msg_ptr);

Purpose: sends the specified message to Coral8 Server. This function works only for

input adapters.

Parameters:

 adapter_ptr - a pointer to the C8Adapter object that stores information about this

instance of the adapter.

Coral8 Integration Guide

178

 msg_ptr - the message to send to the server.

Returns: nothing

After you send a particular msg_ptr, you may not "re-use" that msg_ptr; i.e. you

may not put new values into it and send it again. You must use

C8MessageDestroy() to dispose of the msg_ptr and then use C8MessageCreate()

to create a new msg_ptr when you want to send another message.

void C8AdapterFlushMessages(C8Adapter *adapter_ptr);

Purpose: force all queued messages to be sent to the server.

The C8AdapterSendMessage() call does not send messages right away. Sent messages

are actually sent at the end of the "execute" callback or during a C8AdapterSleep() call.

To force the adapter to send all messages that have not yet been sent, call this function.

Parameters:

 adapter_ptr - a pointer to the C8Adapter object that stores information about this

instance of the adapter.

Returns: nothing.

C8Bool C8AdapterSendMessageListAsBatch(C8Adapter* adapter, C8Message**

i_messages,

 C8SizeType i_num_messages, const C8Char* i_batch_id, C8Interval i_timeout);

Purpose: sends the list of messages to Coral8 Server as a batch and waits for an

acknowledgment that the batch has been processed. This function works only for

Guaranteed Delivery input adapters.

Parameters:

 adapter - a pointer to the C8Adapter object that stores information about this

instance of the adapter.

 i_messages - the array of messages to send to the server.

 i_num_messages - the number of messages in i_messages.

 i_batch_id - the ID of this batch of messages.

 i_timeout - how long to wait for the messages to be processed.

Returns: C8_TRUE on success; C8_FALSE if the timeout is reached or an error occurs.

After you send a particular message pointer, you may not "re-use" that message

pointer; i.e. you may not put new values into it and send it again. You must use

C8MessageDestroy() to dispose of the message pointer and then use

C8MessageCreate() to create a new message pointer when you want to send

another message.

const C8UserCredentials* C8AdapterCopyCredentials(C8Adapter* adapter);

Coral8 C/C++ SDK

179

Purpose: creates a copy of the user credentials as set for an adapter. The copy can then be

used with other API calls that require credentials. For security reasons, the password is

not accessible to the caller.

Parameters:

 adapter - a pointer to the C8Adapter object.

Returns: a copy of the user credentials or NULL if the credentials aren't set or an error

occurs. You must call C8UserCredentialsDestroy to free the memory when you are

finished with the credentials.

const C8Char * C8AdapterGetName (C8Adapter *adapter_ptr);

Purpose: the "full" adapter name, e.g.

"workspace/project/submodule1/submodule2/.../adapter".

Parameters:

 adapter_ptr - a pointer to the C8Adapter object that stores information about this

instance of the adapter.

Returns: a string that represents the "path name" of the adapter. This is the CCL or HTTP

path name of the instance of the adapter that is running. This is not the pathname of the

library file containing the adapter code.

C8Float C8AdapterGetPlaybackRate (C8Adapter *adapter_ptr);

Purpose: returns the accelerated playback rate. A rate of 1.0 is "normal" (non-

accelerated).

Parameters:

 adapter_ptr - a pointer to the C8Adapter object that stores information about this

instance of the adapter.

Returns: returns the accelerated playback rate. A rate of 1.0 is "normal" (non-

accelerated).

C8Bool C8AdapterIsPersistent (C8Adapter *adapter_ptr);

Purpose: This returns true if the query module in which this instance of the adapter is

running has Persistence turned on.

Parameters:

 adapter_ptr - a pointer to the C8Adapter object that stores information about this

instance of the adapter.

Returns: C8_TRUE if Persistence is on; C8_FALSE otherwise.

C8Bool C8AdapterIsInterrupted (C8Adapter *adapter_ptr);

Coral8 Integration Guide

180

Purpose: This returns true if the server needs the adapter to return control to the server as

soon as possible. Typically, if this function returns C8_TRUE, the adapter should finish

processing the current row and return, not continue processing until it runs out of rows.

Parameters:

 adapter_ptr - a pointer to the C8Adapter object that stores information about this

instance of the adapter.

Returns: C8_TRUE if the server needs the adapter to return control to the server as soon

as possible; C8_FALSE otherwise.

C8Bool C8AdapterIsConnected (C8Adapter *adapter_ptr);

Purpose: determines whether or not the adapter is connected and ready to send or receive

messages.

Parameters:

 adapter_ptr - a pointer to the C8Adapter object that stores information about this

instance of the adapter.

Returns: C8_TRUE if the adapter is connected; C8_FALSE otherwise.

void C8AdapterLock(C8Adapter *adapter_ptr);

Purpose: Provides an indivisible sequence of instructions that cannot be interrupted.

Users should not perform lengthy operations in a locked state. Nested locks are undefined

and should not be used.

Parameters:

 adapter_ptr - a pointer to the C8Adapter object that stores information about this

instance of the adapter.

Returns: nothing.

void C8AdapterUnlock(C8Adapter *adapter_ptr);

Purpose: Unlocks a previously locked state. Unlocking an unlocked state is undefined

and should not be used.

Parameters:

 adapter_ptr - a pointer to the C8Adapter object that stores information about this

instance of the adapter.

Returns: nothiing.

void C8AdapterSleep(C8Adapter *adapter_ptr, C8Interval us_delay);

Purpose: The adapter thread sleeps for the specified amount. This is not normally needed

because the Coral8 Adapter framework provides appropriate synchronization. This

function is provided for any special needs.

Coral8 C/C++ SDK

181

The header file c8types.h contains definitions that may be convenient for specifying

durations; e.g., to delay 3 seconds, use 3*C8PerSecond.

Note that small intervals are probably inappropriate depending on your CPU speed,

system clock resolution, and system loading. In general, on many systems, resolutions

less than 100 milliseconds are very imprecise. Even for larger values, the actual length of

the sleep will almost certainly not be exactly what was specified.

Parameters:

 adapter_ptr - a pointer to the C8Adapter object that stores information about this

instance of the adapter.

 us_delay - the number of microseconds to delay.

Returns: nothing

void C8AdapterSetSleepInterval(C8Adapter *adapter_ptr, C8Interval us_delay);

Purpose: This passes the server a parameter that tells the code that calls the adapter's

execute() function how long to wait between calls to the execute() function. (The default

is 1 millisecond (1000 microseconds).)

A value of 0 means that the caller will not sleep at all, but will call the execute() function

again as soon as the previous call to execute() has returned.

Note that this sleep interval is the time that the CALLER sleeps, not the time that the

execute() function sleeps.

In most cases, the default value is best; this function is provided for any special needs.

The header file c8types.h contains definitions that may be convenient for specifying

durations; e.g., to delay 3 seconds, use 3*C8PerSecond.

As with any sleep-related function, the actual duration will depend upon how heavily

loaded the system is, the granularity of the system clock, etc. The actual sleep will only

be an approximation of the amount you request. The actual length of the sleep is likely to

be longer than requested if you requested a time smaller than the finest granularity of the

system clock, or if the system is heavily loaded. The length of the sleep may be less than

the amount of time requested if there is a change in server state (e.g. a shutdown) or if the

adapter is an output adapter and data is available for that output adapter. (If CPU time is

available, the server will try to call the execute() function as soon as data is available,

rather than waiting until the end of the requested sleep length.

Parameters:

 adapter_ptr - a pointer to the C8Adapter object that stores information about this

instance of the adapter.

 us_delay - the number of microseconds to delay.

Returns: nothing

Coral8 Integration Guide

182

C8Interval C8AdapterGetSleepInterval(C8Adapter *adapter_ptr);

Purpose: This returns a value that indicates how long the server sleeps between calls to

the adapter's execute() function. Note that this is the time that the CALLER sleeps, not

the time that the execute() function sleeps. See the description of the

C8AdapterSetSleepInterval() function for more details.

Parameters:

 adapter_ptr - a pointer to the C8Adapter object that stores information about this

instance of the adapter.

Returns: nothing

void C8AdapterSetSessionState(C8Adapter *adapter_ptr, void *session_state)

Purpose: This stores the "session state", which is a set of user-defined information that

the user wants to make available across multiple invocations of the adapter's "execute()"

function. Although the session state is retained by the Coral8 engine, the user is

responsible for populating and updating the session state. The session state does not

contain a size because the session is not persisted over crashes and restarts. A session

state should thus be created in a user defined struct using C8Malloc() or a similar heap-

based allocation. In particular, session structures must not be defined on the stack as the

stack is popped each time the function exits! See comments on

C8AdapterGetSessionState(). When you are done with the session state, free it. For tips

and warnings about allocating and de-allocating memory, see the section titled Notes

about Allocating and Deallocating Memory in In-process Code

In the shutdown() callback function, the session state should be set to a Null pointer.

Note that storing and retrieving session information is optional.

Parameters:

 adapter_ptr - a pointer to the C8Adapter object that stores information about this

instance of the adapter.

 session_state - a pointer to the "state" information that the user would like to be

able to see the next time that the adapter's execute() function is called.

Returns: nothing.

void *C8AdapterGetSessionState(C8Adapter *adapter_ptr);

Purpose: given an pointer to a C8Adapter object, return the "session state" information

associated with that instance of the adapter. On the initial call to

C8AdapterGetSessionState(), a null pointer will be returned. This indicates no session

exists, so the user is responsible for creating a session. The session state is usually

constructed by a call to C8Malloc() and populating it with a user-defined structure.

Coral8 C/C++ SDK

183

Using a static or global for session states is NOTthread safe and the consequences are

undefined.

Parameters:

 adapter_ptr - a pointer to the C8Adapter object that stores information about this

instance of the adapter.

Returns: a pointer to session state information. The exact structure of this information is

defined by the user; thus the function simply returns a pointer to the memory without

"interpreting" that memory in any way.

void *C8AdapterGetPersistentState(C8Adapter *adapter_ptr, C8UInt *o_data_size);

Purpose: get a pointer to Persistent State information. if you have information that must

be available in subsequent invocations of the adapter, then you may use the

C8AdapterSetPersistentState() function to tell the server to make that memory

persistent, and you may call this function (C8AdapterGetPersistentState()) to

retrieve a pointer to that memory. If Studio requested that the stream be persistent, this

memory block will persist over reboots and system crashes. The o_data_size pointer

permits the use of dynamic structure verification. Depending on the needs of the user, the

o_data_size may be ignored for fixed sized structures. The inclusion of o_data_size

provides a convenience utility only. Since persistence depends on the size of the user

data, a user calling C8AdapterRealloc() possibly needs this information. If you have

not already called C8AdapterSetPersistentState(), then a call to

C8AdapterGetPersistentState() returns a null pointer. See also the

C8AdapterSetPersistentState() function.

Do not free the pointer returned by this function.

Parameters:

 adapter_ptr - a pointer to the C8Adapter object that stores information about this

instance of the adapter.

 o_data_size - the number of bytes in the user-defined block of memory that was

persisted.

Returns: a pointer to the stored information. The exact structure of this information is

defined by the user; thus the function simply returns a pointer to the memory without

"interpreting" that memory in any way.

void C8AdapterSetPersistentState(C8Adapter *adapter_ptr, const void* data, C8UInt

data_size);

Purpose: This function allows the user to specify that a particular block of memory be

made persistent - i.e. preserved so that it can be read back on a subsequent invocation of

Coral8 Integration Guide

184

the adapter or even after a crash. The parameter named "data" must point to the starting

address of the block of memory to be preserved. The parameter named "data_size"

specifies how many bytes long that block is. The data_size may vary from call to call.

Note that only one piece of user memory may be made persistent at a time. If you call

this function more than once, then only the pointer passed in the most recent call to

C8AdapterSetPersistentState() will be returned when you call

C8AdapterGetPersistentState(). If you need to expand the amount of memory you

want to store persistently, use the C8Realloc() function to get a new (larger) piece of

memory and then call C8AdapterSetPersistentState() with the address of that new

piece of memory.

Note that the memory you persist is normally memory that you yourself have allocated

(e.g. via C8Malloc()) and that therefore you yourself must deallocate (e.g. via C8Free())

when you are done with it (e.g. when the adapter's shutdown() function is called). If this

memory contains any structures that must be cleaned up (e.g. pointers to other memory

that must be deallocated, file handles to files that must be closed, etc.), then make sure

that you clean up those before you deallocate this memory.

Parameters:

 adapter_ptr - a pointer to the C8Adapter object that stores information about this

instance of the adapter.

 data - a pointer to the block of memory containing the bytes that should be stored.

 data_size - the number of bytes of data stored.

Returns: nothing.

Below is sample pseudo code showing how C8AdapterSetPersistentState() and related functions

are typically used.

initialize()

{

pMem = C8Malloc(...);

...

C8AdapterSetPersistentState(..., pMem, ...);

...

}

execute()

{

pMem = C8AdapterGetPersistentState(...);

...

}

Again, remember that if the allocated memory itself contains pointers, handles, etc. then those

must be cleaned up, too.

Coral8 C/C++ SDK

185

Server API

These adapter API signatures are defined in c8server.h.

C8Char* C8ServerGetPreference(const C8Char *i_section, const C8Char *i_preference,

const C8Char *i_default)

Purpose: When the Coral8 Server starts, it reads configuration information from an XML

file. (By default, this file is named coral8-server.conf.) You may read the configuration

information (as of the time that the server started) by using the C8ServerGetPreference()

function call.

Parameters:

 i_section - specifies a particular "section" within the configuration file, which is

an XML file.

 i_preference - specifies the name of a particular parameter within that section.

 i_value - a default that you would like to have returned if the section and

preference that you specified are not set in the configuration file.

Returns: the value stored in the specified preference and section.

For example, suppose that we want to find out the adapters base folder for input and

output files used by the adapters supplied by Coral8. The XML for this part of the server

configuration file looks like:

 ...

<section name="Coral8/Adapters">

 ...

 <section name="ReadWriteBaseFolder">

 <preference name="BaseFolder" value="/c8test/D5"/>

 </section>

</section>

Thus the value of the section should be

"Coral8/Adapters/ReadWriteBaseFolder"

(Note that since one section was nested within another, we composed a single name that

included the entire XML "path", i.e. the whole chain of section names down to the

preference.)

And of course the value of the preference should be

"BaseFolder"

Sample C code is below:

C8Char i_section[] = "Coral8/Adapters/ReadWriteBaseFolder";

C8Char i_preference[] = "BaseFolder";

C8Char i_default[] = ""; // Default to empty string.

C8CharPtr preferenceValue = NULL;

Coral8 Integration Guide

186

preferenceValue = C8ServerGetPreference(i_section,

 i_preference, i_default);

if (preferenceValue != NULL) {

 ...

 C8Free(preferenceValue);

 }

Note: the value returned by this function is stored in memory allocated by the server. To

avoid a memory leak, you must free this memory using the C8Free() function.

Session States vs. Persistent States

This section provides more detailed information about Session States and Persistent States.

A persistent state is a user-defined memory block containing information necessary to describe

connections and to perform the adapter function across multiple invocations of the execute()

function. Connection-related information includes filenames, stream URIs, etc. Additional

persistent state information may include such items as file offsets, intermediate calculations that

span multiple rows, processing subtotals or summaries, etc. Persistent state information remains

available even after the server crashes. If you call C8AdapterGetPersistentState() after a crash,

you'll get the same information that you would have gotten before the crash.

A session state is a user-defined memory block containing information that is dependent on

transient data items such as file pointers (e.g., FILE*), transient socket connection information,

etc. A session state should contain only these items. Session information is not preserved across

crashes. If you call C8GetState() after a crash, your session state data will not be available.

A pivotal question in distinguishing between session state and persistent state is, "If the system

crashed and the in-process adapter was restarted, what would I have to recreate to properly

continue my adapter stream?" The persistent state would contain information that does not

change; while the session state should contain information that must be re-created each time the

adapter re-connects to its data sources.

For example, suppose that an adapter is reading from a data file. The adapter starts with the name

of the data file, then calls the fopen() function to get a file pointer to that file. The adapter also

keeps track of the line number of the line that it last read from the file. If the computer crashes

and the in-process adapter must resume, the name of the input file will be the same, and the line

number at which to resume reading will be the same, so those two pieces of information should

be stored in the persistent state. The adapter will have to re-open the data file (e.g. by calling the

fopen() function) and may get a different file pointer than it had previously. Thus the file pointer

should be stored in the session state rather than in the persistent state. After a crash, you will use

the same persistent state information, but will re-generate session state information.

So how does a user determine when the system has crashed and needs to re-initialize? Notice in

the execute() function the suggested sequence at the very beginning. Please refer to the "In-

process Input Adapter" and "In-process Output Adapter" sections for more details.

Coral8 C/C++ SDK

187

my_xxx_c8adapter_execute(C8Adapter *i_adapter_ptr)

{

 ...

 // Get the session state

 struct MySessionState *l_session_ptr = (struct MySessionState*)

 C8AdapterGetSessionState(i_adapter_ptr);

 if(! l_session_ptr) {

 // The Coral8 engine has been restarted for some reason.

 // Need to recreate the session data.

 if (! my_input_c8adapter_session(i_adapter_ptr)) {

 ...

Suggested Session and Persistent State Initialization

The session state should be set up in the initialization routine. If the Coral8 engine or the system

crashes, the session state will return a null pointer when C8AdapterGetSessionState() is called.

Users must then perform whatever initialization is necessary to properly process information. In

the initialization call, files may need to be opened, permissions tested, environments probed and

tested, etc. Similarly, when the Coral8 engine restarts, the session state is again missing and the

same initialization sequence must be performed. The only difference between an initial Coral8

engine start and a restart is that the persistent state should be present on a restart, an initial start

has no persistent state.

For non-trivial adapters, a session state and persistent state may resemble the following skeleton

code:

// Perform session initialization

C8Bool my_xxx_c8adapter_session(C8Adapter *i_adapter_ptr)

{

 // The user must define this struct!

 struct MySessionState *l_session_ptr =

 (struct MySessionState*)C8Malloc(

 (C8UInt) sizeof(struct MySessionState));

 // Open files, sockets, db connections, ...

 // Specific information in the session

 l_session_ptr->m_file = fopen(...);

 ...

 C8AdapterSetSessionState(i_adapter_ptr, (void*)l_session_ptr);

 return C8_TRUE;

}

// Perform adapter initialization

C8Bool my_xxx_c8adapter_initialize(C8Adapter *i_adapter_ptr)

{

 struct MyPersistentData *l_persistent_ptr =

 (struct MyPersistentData *)C8Malloc(

Coral8 Integration Guide

188

 (C8UInt) sizeof(struct MyPersistentData));

 // Test ptrs for existence - possibly error out

 ...

 // Populate persistent state - Read parameters, test file

 // existence, permissions, etc

 ...

 // Create session state. Open files and record session

 if (! my_xxx_c8adapter_session(i_adapter_ptr)) {

 // Could not initialize session!

 C8ErrorSet(...);

 return C8_FALSE;

 }

 // Save persistent state

 C8AdapterSetPersistentState(i_adapter_ptr,

(void*)l_persistent_ptr,

 sizeof(struct MyPersistentData));

 return C8_TRUE;

}

The initialization call provides a proper session state, the execute() function uses that session

state and also the persistent state. The first call to C8AdapterGetPersistentState() in the

initialization function will return a null pointer. The user must create whatever memory structure

is necessary to perform proper adapter functions. Thereafter, C8AdapterGetPersistentState() will

return a pointer to the last saved persistent state.

Signatures of User Functions

Each user-defined adapter must provide three or four entry points in order to function. These

entry points are identical for both input and output adapters, even though the internal logic will

differ. Refer to "In-process Input Adapters", "In-process Output Adapters", and the examples for

details on function implementation.

While the actual function names are arbitrary, the names must match the names specified in the

ADL file (described below). If the names are missing or do not match, a fatal runtime error will

result.

For example, part of the ADL file may look like:

<LibraryName>my_input_adapter_lib</LibraryName>

 <InitializeFunction>my_input_adapter_init</InitializeFunction>

 <ExecuteFunction>my_input_adapter_execute</ExecuteFunction>

 <ShutdownFunction>my_input_adapter_shutdown</ShutdownFunction>

 <ReconnectFunction>my_input_adapter_reconnect</ReconnectFunction>

The corresponding C function signatures would be:

Coral8 C/C++ SDK

189

C8Bool my_input_adapter_init(C8Adapter* i_adapter_ptr);

C8Bool my_input_adapter_execute(C8Adapter* i_adapter_ptr);

void my_input_adapter_shutdown(C8Adapter* i_adapter_ptr);

C8Bool my_input_adapter_reconnect(C8Adapter* i_adapter_ptr);

C8Bool my_input_c8adapter_initialize(C8Adapter *i_adapter_ptr)

Purpose: This initialization function prepares the adapter for operation.

The user may perform file opening, socket connections, etc. in anticipation of adapter

execution. Depending upon adapter needs, the session state may or may not be created.

Parameters:

 i_adapter_ptr - a pointer to a set of information about this instance of the adapter.

Returns: If the adapter is properly initialized, the routine will return C8_TRUE. If the

adapter cannot initialize, the user is expected to issue appropriate error messages, release

any allocated Coral8 resources, and return C8_FALSE. If the Coral8 engine receives a

C8_FALSE, the adapter will be considered inactive and no further communications will

be attempted.

C8Bool my_input_c8adapter_execute(C8Adapter *i_adapter_ptr)

Purpose: The Coral8 engine will periodically call the user-defined adapter for execution.

The user must write the internals of the execute() function according to his own needs.

An input adapter differs from an output adapter; please refer to the appropriate sections.

The user-defined execute() function is called repeatedly.

Parameters:

 i_adapter_ptr - a pointer to a set of information about this instance of the adapter.

Returns: On successful processing, the execute function will return C8_TRUE. As long

as the execute function returns C8_TRUE, the execute function will be called again. If a

problem is encountered, the user is expected to issue appropriate error messages and

return C8_FALSE. The Coral8 engine will then 1) Call the shutdown function, 2) call the

initialization function, 3) call the execute function exactly one more time. If this last call

to the execute function returns C8_FALSE, the adapter is considered dead and will no

longer be called. This logic exists to accommodate cases of disconnection, etc.

void my_input_c8adapter_shutdown(C8Adapter *i_adapter_ptr);

Purpose: The Coral8 engine has determined the adapter must be shut down. Either the

associated stream is being shut down by the engine (perhaps directed by Studio), or the

execute function needs reinitializing. The user should perform whatever is necessary to

close the adapter. This may involve such closing files, sockets, database connections, etc.

If the Coral8 engine is closing the stream, the thread of the adapter is being terminated

and no further calls will be made to these user functions.

Parameters:

Coral8 Integration Guide

190

 i_adapter_ptr - a pointer to a set of information about this instance of the adapter.

Returns: nothing.

C8Bool my_input_c8adapter_reconnect(C8Adapter *i_adapter_ptr);

Purpose: The Coral8 engine has determined that the adapter is attempting to perform a

Guaranteed Delivery function but is currently disconnected. Your adapter should

reconnect with Coral8 Server with C8AdapterConnect. For an input adapter, request the

last batch ID. For an output adapter, specify the last batch ID. Only used with Guaranteed

Delivery.

Parameters:

 i_adapter_ptr - a pointer to a set of information about this instance of the adapter.

Returns: C8_TRUE on successful reconnection, C8_FALSE on failure.

Warning: The adapter SDK does not restrict the number of times the reconnect function is

called, and it does not sleep between reconnects. In order to prevent a loop, you should take

precautions to avoid repeatedly attempting to reconnect.

In-process Input Adapters

An in-process input adapter gets data from some source and sends the data to the Coral8 engine.

The sample code performs the outlined operations as well as other demonstration routines. The

purpose of the sample code is to create a random input adapter that will work for any schema.

The sample code also provides various routines to access parameters of various data types, print

schemas, etc. These functions demonstrate the various API calls.

As we described previously, an in-process input adapter must have at least three subroutines:

Initialization: The user must initialize the adapter. This may include such activities as opening

sockets, verifying the existence of files and/or directories, pinging network connections, etc.

Both persistent and session data do not yet exist and should be created. To make it easier to

handle restarts, we recommend that the code for creating and storing session data be put in a

separate subroutine.

Execution: The user queries for any input to send to the Coral8 engine. If input is available,

messages get created and sent to the input stream. Whether one or multiple messages are sent per

invocation depends on the user's expected behavior of the adapter. If no input is available, the

routine should call C8AdapterSleep() and specify a short time period, e.g. one second.

(Alternatively, the function may simply return and wait until it is called again.)

Shutdown: The Coral8 engine has received information that the user's adapter should shut down.

This may be from someone clicking the "Stop" button in the Studio, or from another source such

as an end of a data file. The shutdown routine should perform appropriate shutdown operations

pertinent to the adapter: closing sockets, closing database connections, closing files, etc. Finally,

the user must release any resources obtained from the Coral8 engine. In particular, the user must

Coral8 C/C++ SDK

191

call C8AdapterSetSessionState(adapter_ptr, NULL) to allow the Coral8 engine to release

internal resources.

An outline of the user code for an input adapter is shown below.

// Perform session initialization

C8Bool my_input_c8adapter_session(C8Adapter *i_adapter_ptr)

{

 struct MySessionState *l_session_ptr =

 (struct MySessionState*)C8Malloc(

 (C8UInt) sizeof(struct MySessionState));

 // Open files, sockets, db connections, ...

 // Specific information in the session

 l_session_ptr->m_file = fopen(...);

 ...

 C8AdapterSetSessionState(i_adapter_ptr, (void*)l_session_ptr);

 return C8_TRUE;

}

C8_Bool my_input_c8adapter_initialize(C8Adapter *i_adapter_ptr)

{

 struct MyPersistentData *l_persistent_ptr =

 (struct MyPersistentData*)C8Malloc(

 (C8UInt) sizeof(struct MyPersistentData));

 // Perform session initialization

 if (! my_input_c8adapter_session(i_adapter_ptr)) {

 C8ErrorSet(MY_ERR_CODE, "Cannot initialize ...");

 return C8_FALSE;

 }

 // Perform persistent data initialization

 if (! l_persistent_ptr) {

 C8ErrorSet(MY_ERROR_CODE, "Cannot obtain memory...");

 return C8_FALSE;

 }

 // Get user parameters from Studio. Notice these may be placed

 // in persistent data or re-read as required.

 l_persistent_ptr->m_ms_delay =

 C8AdapterGetParamInt(i_adapter_ptr, (const C8Char*)"MsDelay",

 (C8Int)10);

 ... other parameters setup ...

 // Save the persistent state

 C8AdapterSetPersistentState(i_adapter_ptr, l_persistent_ptr,

 sizeof(struct MyPersistentData));

 return C8_TRUE;

}

C8_BOOL my_input_c8adapter_execute(C8Adapter * i_adapter_ptr)

Coral8 Integration Guide

192

{

 // Get the session state

 struct MySessionState *l_session_ptr = (struct MySessionState*)

 C8AdapterGetSessionState(i_adapter_ptr);

 if (! l_session_ptr) {

 // The Coral8 engine has been restarted for some reason.

 // Need to recreate the session data.

 if (! my_input_c8adapter_session(i_adapter_ptr)) {

 // Cannot create session!

 C8ErrorSet(...);

 return C8_FALSE;

 }

 l_session_ptr = (struct MySessionState*)

 C8AdapterGetSessionState(i_adapter_ptr);

 if (! l_session_ptr) {

 // Cannot retrieve newly created session state!

 C8ErrorSet(...);

 return C8_FALSE;

 }

 }

 // Get the persistent data for operations.

 ...

 // Get data from the data source and publish the data to Coral8

 ...

 return C8_TRUE;

}

// Close any input files, socket connections, database

// connections, etc.

void my_input_c8adapter_shutdown(C8Adapter *i_adapter_ptr)

{

 C8UInt l_data_size = 0;

 MySessionState *l_session_ptr = (struct MySessionState*)

 C8AdapterGetSessionState(i_adapter_ptr);

 MyPersistentData *l_persistent_ptr =

 (MyPersistentData*)C8AdapterGetPersistentState(i_adapter_ptr

,

 &l_data_size);

 if(l_persistent_ptr) {

 printf("Closing data source. Lines processed: %d\n",

 l_persistent_ptr->m_number_lines_read);

 C8AdapterSetPersistentState(i_adapter_ptr, (void *)NULL, 0);

 } else {

 printf("Cannot get persistent data in shutdown!\n");

 }

 C8AdapterSetSessionState(i_adapter_ptr, NULL);

Coral8 C/C++ SDK

193

 if(l_session_ptr) {

 C8Free((void *)l_session_ptr);

 } else {

 printf("Cannot get session data in shutdown!\n");

 }

 return;

}

In-process Output Adapters

A typical in-process output adapter gets data from the Coral8 engine and publishes to some

destination. The tutorial output adapter, like the input tutorial adapter, provides additional

routines of interest to the adapter developer.

The three callbacks for an output in-process adapter are:

Initialization: The user must initialize the adapter in anticipation to receiving messages form the

Coral8 engine and sending the messages to some external data sink. This may include such

activities as opening sockets, verifying the existence of files and/or directories, pinging network

connections, etc. Any relevant state information created must be saved.

Execution: The user queries for any messages. If a message is available, the user extracts

relevant information from the message and handles the information according to the user desired

behavior of the adapter. This may include, but is not limited to, creating CSV, XML, ... files,

filtering according to some criteria, redirecting to some data sink, ... The exact mechanism is

highly dependent upon user intentions. Whether one or multiple messages are processed depends

on the Coral8 message queue. If no messages are available, the routine will usually return to the

caller. Note that the output adapter execute function may be called even if no messages are

available. Users may be interested in maintaining connections, querying external events...

Shutdown: The Coral8 engine has received information that the user's adapter should shut down.

This may be from someone clicking the "Stop" button in Studio, or from another source. The

shutdown routine should perform whatever shutdown operations pertain to the adapter: closing

sockets, closing database connections, closing files, flushing buffers, etc. Finally, the user must

release any resources obtained from the Coral8 engine. In particular, the user must call

C8AdapterSetSessionState(adapter_ptr, NULL) to allow the Coral8 engine to release internal

resources.

A typical pattern for an output adapter would be:

C8Bool my_output_c8adapter_initialize(C8Adapter *adapter_ptr)

{

 // Do initialization if needed. This includes session and

 // persistent data creation. See the input adapter for examples.

}

C8Bool my_output_c8adapter_execute(C8Adapter *adapter_ptr)

Coral8 Integration Guide

194

{

 C8Message *msg = NULL;

 // The output adapter setup is the same as the input adapter.

 ...

 // Receive messages and process.

 // As long as the engine provides messages, the adapter

 // should process them.

 while (C8AdapterIsInterrupted(adapter_ptr) != C8_TRUE &&

 C8AdapterReceiveMessage(adapter_ptr) != NULL) {

 // Publish message to the external user destination

 ...

 // Destroy message

 C8MessageDestroy(msg);

 }

 return C8_TRUE;

}

void my_output_c8adapter_shutdown(C8Adapter *adapter_ptr)

{

 // The shutdown matches the pattern in the input adapter.

}

In-process Adapter

In this section we provide more information about the initialize(), execute(), and shutdown()

routines required in an in-process adapter.

Initialization

Our tutorial ADL file contains at least one of each Coral8 data type. Each of these values may be

entered in a Properties View (in Studio) and retrieved with the sample code:

DumpParamName(i_adapter_ptr, (C8Char*)"Filename");

DumpParamInt(i_adapter_ptr, (C8Char*)"UserDefinedInteger");

...

The parameter name gets associated with the value from the adapter's Properties View in Coral8

Studio. This printing of parameter values may be observed by displaying an instance of the

adapter in Studio. Make sure Coral8 Server is properly connected, then press "Start Module".

The adapter initialization routine will be called and the parameter printing routines will display

the Studio values on Coral8 Server window.

To change the values and have Coral8 Server notice the changes, press the "Stop Module" in the

Studio window. Now change the value of the parameters and press "Start Module" once again.

The Coral8 Server log will contain the values that were entered into the adapter's Properties

View in Coral8 Studio.

Coral8 C/C++ SDK

195

This exercise demonstrates proper communications between the Coral8 Studio and the Coral8

Server.

Another useful printout for initialization would the current working directory of the server.

Because Studio may execute on a different machine than Coral8 Server, it is sometimes

confusing to determine the working directory of Coral8 Server. Printing this directory aids in this

problem.

For this simple example, nothing more is required.

A session state may be required if the user needs to initialize variables, open file/sockets/db

connects, ... Remember that the user must define a single block of memory to store this data.

This means that you cannot use such useful structures as hash maps, linked lists, etc. (While

these data structures may be used, the user is responsible for formatting the data structures into

and out of a single memory block.)

The initialization should return C8_TRUE to indicate a proper initialization sequence. If, for

some reason, the code is not able to properly initialize the adapter, C8_FALSE should be

returned. Reasons for improper initialization may include input files not found, permissions

problems, connection problems, etc.

A fatal initialization sequence should, of course, provide details to Coral8 Server log file in

whatever helpful manner is adequate to resolve the issue.

Returning a C8_TRUE will continue the adapter execution while a C8_FALSE will produce an

error condition visible on Studio.

IMPORTANT: The call to the initialize() function is a blocking call. Some server operations

may not run while the initialize() function is running, and therefore you should write your

initialize() function so that it finishes quickly (preferably in less than 1 second).

Execution

For an in-process input adapter, Coral8 Server will call the execute function over and over. The

time period between calls cannot be reliably predicted since this depends heavily upon system

load, etc. Each adapter runs in its own thread and should limit the amount of time processing

input data. An input adapter should not block on waiting for input.

The execution function of input adapters is to retrieve data from an external source, create a

Coral8 message, and send that message to the Coral8 engine. An input adapter may send more

than one message per invocation, but should not send an excessive number of messages. What is

excessive? A million messages would be extravagant while 100,000 might be a heavy load. As a

general rule of thumb, sending more than 100 messages per execute call is probably not a good

idea. If the number of messages per invocation of the execute module is important, add a

"number of messages" parameter to the ADL so that Studio will allow easy tuning of your

application.

Coral8 Integration Guide

196

Message creation is an important part of execution. Empty messages are created as:

// Wait a limited time for data to show up in the data source

if (MyDataSourceSelect(i_adapter_ptr, l_ds, l_ds->m_ms_delay)) {

 /* Create a message to send to the Coral8 Engine */

 l_message_ptr = C8MessageCreate(C8_MESSAGE_POSITIVE,

 i_schema_ptr);

 if(l_message_ptr == 0) {

 printf("ERROR: Cannot create positive message!!\n");

 return C8_FALSE;

 }

 // Arbitrarily create a Null record every 50th line.

 if((l_ds->m_number_lines_read % 50) == 0) {

 l_is_null = C8_TRUE;

 }

 MyCreateRandomMessage(l_ds, l_message_ptr, i_schema_ptr,

 l_is_null);

 C8AdapterSendMessage(i_adapter_ptr, l_message_ptr);

 ++l_ds->m_number_lines_read;

 C8MessageDestroy(l_message_ptr);

}

The function MyDataSourceSelect() returns true when data is available. A message must be

created to send to the Coral8 engine; C8MessageCreate() performs the task of constructing an

empty message. The message gets populated with MyCreateRandomMessage() that fills each

column according to datatype with random data, then the message gets sent by

C8AdapterSendMessage().To illustrate setting message fields to null, every fiftieth message will

get all the fields nulled. This may be observed in the input Studio stream viewer.

After the Coral8 engine has received the message, the message gets processed by the Coral8

engine. The user's adapter must destroy the message as seen by the adapter. C8MessageDestroy()

performs this function. Failure to perform this destroy will result in a memory leak.

Because the persistent state has changed, it must be saved. The function

C8AdapterSetPersistentState() saves the state.

The execution function finishes by returning C8_TRUE. This indicates to Coral8 Server that all

is well and no fatal conditions occurred. Problems that might arise include socket timeouts, file

permissions, broken connections, ..., anything that is not recoverable. These fatal conditions

should return C8_FALSE.

If the execution function returns C8_FALSE the following sequence will be performed one time

in an attempt to recover:

1. The shutdown function will be called. This should properly close/terminate the adapter.

2. The initialization function will be called. This will be an attempt to re-initialize the

adapter.

Coral8 C/C++ SDK

197

3. The execute function will be called once again. If this call fails, no further attempts at

revival will be performed.

Shutdown

No further messages will be sent to the adapter. The shutdown function should prepare to release

any and all resources the adapter has acquired. Actions such as buffer flushing, file closing,

socket and/or database disconnection should be performed. Users might wish to print an activity

summary on Coral8 Server log.

The shutdown is similar to:

void user_input_c8adapter_shutdown(C8Adapter *i_adapter_ptr)

{ C8UInt l_data_size = 0;

 MySessionState *l_session_ptr = (struct MySessionState*)

 C8AdapterGetSessionState(i_adapter_ptr);

 MyPersistentData *l_persistent_ptr =

 (MyPersistentData*)C8AdapterGetPersistentState(i_adapter_ptr

,

 &l_data_size);

 if(l_persistent_ptr) {

 printf("Closing data source. Lines processed: %d\n",

 l_persistent_ptr->m_number_lines_read);

 C8AdapterSetPersistentState(i_adapter_ptr, (void *) NULL,

0);

 } else {

 printf("Cannot get persistent data in shutdown!\n");

 }

 // Close the session state

 C8AdapterSetSessionState(i_adapter_ptr, NULL);

 if(l_session_ptr) {

 C8Free((void*)l_session_ptr);

 } else {

 printf("Cannot get session data in shutdown!\n");

 }

 return;

}

Session state and persistent state are retrieved from the Coral8 engine. Then the number of lines

processed is displayed on the Coral8 window.

The C8AdapterSetSessionState() call releases the Coral8 engine resources that were acquired

for this adapter.

IMPORTANT: The call to the shutdown() function is a blocking call. Some server operations

may not run while the shutdown() function is running, and therefore you should write your

shutdown() function so that it finishes quickly.

Coral8 Integration Guide

198

Useful Utility Functions

Below are some "utility" functions that you may find useful.

Printing the Schema

Sending or receiving data with the Coral8 engine requires a schema for the message containing

the data. Coral8 Studio creates a schema interactively with the user. When the user interfaces to

this data, the schema provides information such as column names and column data types.

Users should try to develop adapters that are flexible enough to accommodate change, rather

than hard-coding a schema.

A major first step in this flexibility is obtaining the existing schema. The following function

simply prints the existing schema. This function is identical for both an input and an output

adapter.

static

void PrintSchema(C8Adapter* i_adapter_ptr)

{

 const C8Schema* i_schema_ptr =

C8AdapterGetSchema(i_adapter_ptr);

 C8Char *l_name;

 const char *l_type_name;

 C8UInt ndx;

 C8UInt l_col_cnt;

 if(i_schema_ptr == 0) {

 printf("Cannot get schema pointer.\n");

 return;

 }

 l_col_cnt = C8SchemaGetColumns(i_schema_ptr);

 printf("This schema has %d columns.\n", l_col_cnt);

 for (ndx = 0; ndx < l_col_cnt; ++ndx) {

 l_name = (C8Char*)C8SchemaGetColumnName(i_schema_ptr, ndx);

 l_type_name = MapC8TypeToString(C8SchemaGetColumnType(

 i_schema_ptr, ndx));

 printf("\t%s\t%s\n", l_name, l_type_name);

 }

}

This routine takes the adapter pointer and retrieves the schema pointer. The

C8SchemaGetColumns() function provides the number of columns in a schema and provides the

upper limit to the print loop. Column names get retrieved with C8SchemaGetColumnName() and

the Coral8 datatypes with another utility function C8SchemaGetColumnType(). The output of

this function will be displayed on the same window as Coral8 Server since adapters run tightly

bound to Coral8 Server.

Coral8 C/C++ SDK

199

A minor utility function, MapC8TypeToString() converts a Coral8 data type to a displayable

string.

// Given a C8_TYPES object, return a printable string.

static

const char *MapC8TypeToString(C8_TYPES i_atype)

{

 switch(i_atype) {

 case C8_INT: return "C8_INT";

 case C8_LONG: return "C8_LONG";

 case C8_FLOAT: return "C8_FLOAT";

 case C8_CHAR_PTR: return "C8_CHAR_PTR";

 case C8_TIMESTAMP: return "C8_TIMESTAMP";

 case C8_INTERVAL: return "C8_INTERVAL";

 case C8_BOOL: return "C8_BOOL";

 case C8_XML: return "C8_XML";

 case C8_INVALID: // fall through to default

 default: return "C8_INVALID";

 }

 // Should not happen

 return "C8_INVALID";

}

Printing a Parameter

Coral8 Studio provides a Properties View for each instance of an adapter. Depending upon

needs, each instance of a user defined adapter may have different run-time parameters. There

may be multiple instances of each user adapters present. Each instance of a user defined in-

process adapter will be run in a separate thread.

Access to the individual values for each parameter ensures proper configuration. This parameter

value retrieval is normally performed as an initialization step. Each parameter must be retrieved

according to its own datatype. The specific datatype retrieved corresponds to the xsi:name in the

ADL file. The correspondence is shown in the table below:

C8_TYPES xsi:name

C8_CHAR_PTR xsi:string

C8_INT xsi:integer

C8_LONG xsi:long

C8_BOOL xsi:boolean

C8_TIMESTAMP xsi:timestamp

C8_INTERVAL xsi:interval

Coral8 Integration Guide

200

C8_FLOAT xsi:double

While there is currently no API function to retrieve the data type of a parameter in the ADL file,

parameter data types change infrequently. Attempting to retrieve a parameter with incorrect data

type results in an error message on Coral8 Server log and an undefined value returned to the user

SDK.

An example of printing C8Int data types would be:

static

void DumpParamInt(C8Adapter*i_adapter_ptr, C8Char*i_param_name)

{

 C8Int l_param_value;

 l_param_value = C8AdapterGetParamInt(i_adapter_ptr,

 i_param_name, 0);

 printf("Parameter Int %s=%d\n", i_param_name, l_param_value);

}

In the C8AdapterGetParamInt() call, the third parameter is the default parameter. If the SDK

cannot find the parameter for some reason, this value becomes the function return value. Default

parameters exist because users may choose not to enter these values on the adapter's Properties

View in Coral8 Studio. It is not currently possible to determine if the value has been defaulted or

if the user has chosen not to assign a value to the parameter.

Obtaining data from other data types is exactly the same process with different GetParam() data

type function calls.

Requirements for the C/C++ File

Your source code will need to #include the proper headers.

// Include the Coral8 header files.

#include "c8types.h" // Definitions of C8Float, C8Bool,

etc.

#include "c8adapter_in_process.h"

#include "c8conversions.h" // Access to funcs like

FloatToString()

#include "c8server.h"

Your in-process adapter must contain "initialize()", "execute()", "shutdown()", and, if your

adapter supports Guaranteed Delivery, "reconenct()" functions. You may choose any names that

you want for these functions (as long as those names don't duplicate the names of other

functions), but you must tell the compiler and linker to make those names visible externally and

to use the C naming conventions (not the C++ naming conventions, which are sometimes

referred to as "name mangling). To do that, your C file should have the following near the

beginning:

Coral8 C/C++ SDK

201

// Ensure that functions are "exported" properly from dll.

#if defined(_MSC_VER)

#define USER_ADAPTER_EXPORT __declspec(dllexport)

#else // defined(_MSC_VER)

#define USER_ADAPTER_EXPORT

#endif // defined(_MSC_VER)

// forward declarations of callback functions for

// the in-process adapter

#ifdef __cplusplus

extern "C" {

#endif /* __cplusplus */

USER_ADAPTER_EXPORT

C8Bool user_input_adapter_initialize(C8Adapter *adapter_ptr);

USER_ADAPTER_EXPORT

C8Bool user_input_adapter_execute(C8Adapter *adapter_ptr);

USER_ADAPTER_EXPORT

void user_input_adapter_shutdown(C8Adapter *adapter_ptr);

// Reconnect callback required only if your adapter

// supports Guaranteed Delivery

USER_ADAPTER_EXPORT

C8Bool user_input_adapter_reconnect(C8Adapter *adapter_ptr);

Your in-process adapter should contain the following at the end:

#ifdef __cplusplus

} /* extern "C" */

#endif /* __cplusplus */

The combination of these two pieces of code tells the compiler that the functions you define

between the "extern C {" and the closing "}" should be externally visible and should use the C

naming convention, not the C++ name-mangling convention.

You use one of the examples that Coral8 ships as a starting point. You can find the examples

under the Coral8 Repository at examples/FeatureExamples/Adapters/InProcess.

Step-by-Step Instructions for Creating an In-process Adapter

1. Write the C or C++ program.

2. Create a "project" file or a script file to specify what to compile and link. (This is

explained in more detail below.)

3. Compile and link the program into a dynamically linkable library (.dll on Microsoft

Windows, typically .so on UNIX-like operating systems).

4. Create the .ADL file that describes the adapter's parameters, and which also specifies the

name of the library file (.dll or .so) that you created and the names of the "entry

Coral8 Integration Guide

202

points"(the initialize, execute, shutdown, and, for Guaranteed Delivery, reconnect

routines) in that library file.

5. Copy the library file to the server's bin directory.

On Microsoft Windows, this is typically:

C:\Program Files\Coral8\server\bin

On UNIX-like operating systems, this is typically

/home/<userid>/coral8/server/bin

6. Copy the .adl file to the server's plugins directory.

7. Copy the .adl file to studio's plugins directory.

On Microsoft Windows, this is typically:

C:\Program Files\Coral8\Studio\plugins

On UNIX-like operating systems, this is typically

/home/<userid>/Coral8/Studio/plugins

8. Stop both Studio and the server; then re-start both the server and Studio.

Compiling an In-process Adapter

To compile your in-process adapter, you must specify appropriate settings for your compiler,

including:

1. Specify that the compiler should generate a shared object file (.so) or a .DLL file.

2. Your list of "include" directories should include the directory that holds c8adapter.h.

3. The list of libraries that you link to should include c8_sdk_server_lib.lib on Microsoft

Windows or c8_sdk_server_lib.so on UNIX-like operating systems.

If you are on Microsoft Windows, then you may use Microsoft's Visual Studio. If you are using

Visual Studio, please do the following:

1. Start Microsoft Visual Studio.

2. Create a project file by going to the menu and clicking on File -> New -> Project.

A. Click on the [+] to expand "Visual C++ Projects".

B. Click on "Win32".

C. In the right-hand pane, Click on "Win32 Project".

D. Fill in the name that you'd like to use for your project.

E. Browse and specify the directory in which you'd like the project to be stored.

F. Click OK.

Coral8 C/C++ SDK

203

G. The next window to appear will be the "Win32 Application Wizard" window. On

the left, click on "Application Settings", then click on "DLL".

H. Click on "Finish".

3. Microsoft Visual Studio will create a simple .cpp file to use as a starting point. We

recommend that you remove all the contents of this file and then insert your own C code

for the in-process adapter. Make sure that your code contains the #includes and forward

declarations described in the section titled Requirements for the C/C++ File.

4. If you have other C-language source files that you need, add them to the project

5. You will need to update several settings that are available in the "Property Pages" for this

project.

A. Update the list of directories to search for include files.

To do this, go to the menu, click on "Project" and then on "MySample

Properties".

You should get a new window titled something like "MySample Property Pages".

In the left-hand pane of this window, click on "Configuration Properties, then on

"C/C++", and then on "General".

The right-hand pane should now show a list of settings that you may modify.

Click in the field to the right of "Additional Include Directories" and add the

directory that contains the c8adapters.h file (which is included with the Coral8

product).

On 32-bit Microsoft Windows, this directory is typically:

C:\Program Files\Coral8\Server\sdk\c\include

On 64-bit Microsoft Windows, this directory is typically:

C:\Program Files (x86)\Coral8\Server\sdk\c\include

You may also add other directories if necessary for your in-process adapter.

B. Turn off precompiled headers. To do this, go to the left-hand pane in the

"Property Pages" window, click on "C/C++" and then on "Precompiled headers",

then click on "Create/Use Precompiled Header" and set it to "Not Using

Precompiled Headers".

C. Add the Coral8 library files. To do this, go to the left-hand pane of the "Property

Pages" window, click on "Linker" and then on "General".

In the field to the right of "Additional Library Directories", add the directory that

contains the Coral8 library.

On 32-bit Microsoft Windows, this directory is typically:

C:\Program Files\Coral8\Server\sdk\c\lib

Coral8 Integration Guide

204

On 64-bit Microsoft Windows, this directory is typically:

C:\Program Files (x86)\Coral8\Server\sdk\c\lib

D. Tell the linker not to include debugging information. To do this, go to the left-

hand pane of the "Property Pages" window, click on "Linker" and then on

"Debugging". For the field "Generate Debugging Info", change the value to "No".

E. Add a dependency on the c8_sdk_server_lib.lib file. To do this, go to the left-

hand pane of the "Property Pages" window, click on "Linker" and then on "Input".

In the field to the right of "Additional Dependencies", enter

c8_sdk_server_lib.lib

(Note that you do not need to enter the complete path; entering the file name is

sufficient.)

If you are using Microsoft's Visual C development and environment and you'd like to

double check that you haven't skipped a step, you can look at the "Command Line" for the

C/C++ compiler and the "Command Line" for the Linker. (These show the command-line

parameters passed from Microsoft's GUI IDE to the command-line compiler and linker.)

To view the command line for the C/C++ compiler, go to the left-hand pane of the Property

Pages window, click on "C/C++" and then click on "Command Line". The command line

should look similar to the following:

/Od /I "C:\Program Files\Coral8\Server\sdk\c\include"

 /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_USRDLL"

 /D "INPROCESSOUTPUTADAPTER4_EXPORTS" /D "_WINDLL"

 /D "_UNICODE" /D "UNICODE" /Gm /EHsc /RTC1 /MDd

 /Fo"Debug\\" /Fd"Debug\vc80.pdb" /W4 /nologo /c

 /Wp64 /ZI /TP /errorReport:prompt

If you set the warning level to a value other than 3, then the "/W3" will be different.

The command line may or may not include

/D "_DEBUG"

If the command line includes this, you may only be able to use the .DLL on a computer that

has the debug version of the C runtime library. (For more information, see the

Troubleshooting section.)

To view the command line for the linker, go to the left-hand pane of the Property Pages

window, click on "Linker" and then click on "Command Line". The command line should

look similar to the following:

/OUT:"C:\c8test\E2\C_SDK\Adapter4\Adapter4\Debug\Adapter4.dll"

 /INCREMENTAL /NOLOGO /LIBPATH:"C:\Program

Files\Coral8\Server\sdk\c\lib"

 /DLL /MANIFEST

/MANIFESTFILE:"Debug\Adapter4.dll.intermediate.manifest"

Coral8 C/C++ SDK

205

 /SUBSYSTEM:WINDOWS /MACHINE:X86 /ERRORREPORT:PROMPT

c8_sdk_server_lib.lib

 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib

advapi32.lib

 shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib

odbccp32.lib

Now that you have entered all the project properties, click the "OK" button on the "Property

Pages" window.

At this point, you should be ready to compile.

6. To compile, use the appropriate option on the "Build" menu, for example, "Build

MySample".

7. Copy the DLL file to the server's "bin" directory.

If you are using a command-line compiler (such as "cc"), please perform the following steps.

1. Create and execute a script file with commands similar to the following. The example

below is based on the "cc" compiler found on many UNIX-like operating systems:

 cc -I${HOME}/coral8/server/sdk/c/include \

 -o libmma.so \

 -L${HOME}/coral8/server/sdk/c/lib/ \

 -lc8_sdk_server_lib \

 -fPIC \

 -shared \

 mma.c

where

"mma.c" is the name of your source code file and "libmma.so" is the name you'd like to

use for the library file.

-I specifies the directory(s) to be searched for "#include" files.

-o specifies the name of the output file (i.e. the shared library file)

-L specifies the directory(s) to search for library files that need to be linked with this one.

-l specifies the name of the Coral8 library to link with to use the Coral8 functions, such as

C8GetFloat()

-fPIC specifies that the compiler should generate Position-Independent Code, i.e. code for

dynamic linking.

-shared specifies that the output will be a shared object library file (as opposed to, for

example, a stand-alone executable program).

WARNING: Although on UNIX-like operating systems your library file name will

typically be of the form "libXYZ.so" (e.g. "libmma.so"), your .adl file should specify

only "mma" as the library name; do not specify "libmma.so" in the .adl file. The .adl file

Coral8 Integration Guide

206

"interpreter" will make platform-specific adjustments for the filename extension (.so vs.

.dll) and, if necessary, an initial "lib" prefix.

2. Copy the compiled shared library file to the server's "bin" directory.

3. Copy the .adl file to both the server's plugins directory and Studio's plugins directory.

You may, of course, use a makefile or other technique to compile the file.

Practical Tips for Using the In-process Adapter SDK

This section provides tips for debugging adapters and improving the performance of adapters.

Testing and Debugging

This section provides tips useful for testing and debugging your in-process adapter.

In the initialization code, query and print the parameters that Studio provides through the

C8AdapterGetParamInt() type calls. This provides assurance of proper communication and

updating with Studio.

The initialization function is also a good place to print the current working directory. The sample

code provides an #ifdef to call the proper system function switch regardless of whether you are

on Microsoft Windows or one of the UNIX-like operating systems. In developing and deploying

a system, the correct working directory for Coral8 Server can sometimes be confusing.

Since your in-process adapter is running as part of the server, if your code "asserts", you will

stop the server as well as your adapter. Although you may want to use asserts during the

development and debugging states, you should avoid using them in production. Note that some

of the example code provided by Coral8 uses asserts. You should remove these asserts (or

replace them with other error-handling code) before you move your system from development to

production.

You can create and use an ADL file without having written the C/C++ code for the in-process

adapter. Simply put the ADL file in Studio's plugins directory and use it in Studio. This allows

you to do some basic testing of the ADL file and also to show the parameters to potential users

and allow them to comment.

Since Coral8 Server and Studio only read ADL files and library files when they start, make sure

that you restart the server and Studio any time that you copy an updated ADL file to the plugins

directory or copy an updated library file to the bin directory.

All parameters known to Studio for a specific ADL instance can be printed to stdout by a call to

PrintParamsAsStrings(). This can be useful in resolving some kinds of problems. A discrepancy

between expected and display values may indicate a missing update for an adapter or library file.

Users experimenting with exceptionally large or small values may be encountering

overflow/underflow problems.

Coral8 C/C++ SDK

207

If there are problems with obtaining typed parameters from Studio, parameters of any data type

may be retrieved as a string with C8AdapterGetParamString(). Remember to C8Free() the

returned pointer! This could be useful for specialized user data types that do not conform to

Coral8 data types. A user could display the data type as a string, retrieve with

C8AdapterGetParamString() and convert with a specialized conversion routine.

If you use the Persistence feature, the server stores persistent data in a directory named "storage".

This is why a stream will begin immediately upon server invocation even when Studio has not

selected the "Start Stream" function. This is a feature and not a bug. To stop this action for

debugging, remove the directory name "storage" in the server execution directory (do this only

on a development system, not a production system, of course). These directories may be different

for release and debug versions. Another way is to select the "Run with clean slate" from the

Studio "Run" pull-down menu. This will cause persistence to be reinitialized before execution

begins.

In the course of development, the "storage" directory should be cleared as a normal course. If the

stream is persisted and not removed, schema changes or normal starting/stopping can display

erratic behavior. Removing the "storage" directory should require re-creation of the workspace as

well. This is normal and to be expected.

In the development cycle, adapters will probably have to be modified. Because Studio and

Coral8 Server cache adapter information, stop both Studio and the server. Remove the storage

directory. Copy the adapter's ADL file to the adapter directories. Now restart Studio. Go to the

display of the adapter and remove it from the stream. Reattach the adapter to the stream. If

display information was modified, the updated adapter should reflect the update. If there was an

ADL coding error such as misspelled XML elements, etc. Studio will refuse to load the adapter

and an error message will appear at Studio startup.

C8AdapterGetParamString() can be used to differentiate between a zero value and the empty

string. If the parameter field was an integer, and C8AdapterGetParamInt() were called, there is

no difference between a 0 value and an empty field. By calling C8AdapterGetParamString(), the

adapter author may detect the difference.

To avoid generating overwhelming amounts of data during early testing phases, consider calling

the C8Sleep() function between each row that you send. When testing an output adapter, use an

input adapter that is configured to send data at a slow rate.

A debugger may be used on user-developed code in the usual manner. The libraries distributed

by Coral8 do not contain debugging information.

Performance Optimizations

This section describes some ways to optimize performance of your adapter.

 In most cases, in-process adapters should process multiple rows (if available) each time

that the execute() function is called.

Coral8 Integration Guide

208

This can dramatically improve performance. In most situations, the server runs each

adapter on a separate thread. Each thread runs in a loop that does the following:

1. Call the adapter's execute() function, and waits for the execute() function to

return.

2. Sleep. By default, on most platforms the thread sleeps for 1 millisecond (1/1000

of a second).

This means that the execute() function will, of course, be called no more than 1000 times

per second. If the adapter processes only 1 row per call, then the adapter will process no

more than 1000 rows per second.

If data is available to be processed, the adapter should try to process multiple rows per

call. This can increase performance by a factor of tens or hundreds.

Of course, the adapter should not process so many rows that it prevents the server from

having enough CPU time, either.

You may need to experiment to find the optimal number of rows to process per call,

depending upon your hardware, the other processes (besides the server and adapter(s))

that are running on your computer, etc. A general rule is to try to process 30-100 rows per

call and then experiment with increasing or decreasing the number of rows per call to

find where performance is best.

You may also write the adapter so that rather than processing a fixed number of rows per

call, the adapter will "listen" for "interrupt requests" from the server. Your adapter can

call the function C8AdapterIsInterrupted() to see whether the server would like the

adapter to yield control of the CPU. See In-process Adapter API for a description of the

function. See In-process Output Adapters for sample code that uses this function.

 Change the sleep interval used by the thread that calls the execute() function.

In most cases, you will want to change the number of rows sent per call to the execute()

function. In some cases, you may also want to adjust the "sleep" interval in between calls to

the execute() function. You can get and set this sleep interval value by using the following

functions:

o C8AdapterGetSleepInterval()

o C8AdapterSetSleepInterval()

These functions are defined in c8adapter_in_process.h. This sleep value is used by the

framework between calls to the execute function. The default sleep value is 1 millisecond.

Multi-Stream In-Process Adapters

Although most adapters connect to a single stream, it is possible to connect an adapter to

multiple streams. This may be useful if, for example, the processing load for each row is

Coral8 C/C++ SDK

209

relatively heavy, and you want to spread the processing workload across multiple Coral8 Servers

(more precisely, across multiple containers working under the same manager). In this situation,

you can use Coral8's distributed (parallel) query feature and write a single adapter that will write

to multiple input streams.

Similarly, it is possible to write a single adapter that will read from multiple output streams, for

example to "merge" data from multiple streams. (Note that in most cases the easiest way to

merge streams is through CCL, rather than writing a custom adapter.)

Generally, if you want to read from or write to multiple streams, you will use an out-of-process

adapter. This is relatively straightforward once you know how to read from or write to a single

stream.

However, to maximize performance, you may wish to have a single in-process adapter write to

(or read from) multiple streams. For an example of an in-process adapter that writes to multiple

streams, look at the c8_multistream_adapter.cpp example, which you can find in:

C:\Program Files\Coral8\Server\sdk\c\examples\c8_multistream_adapter.cpp

or

/home/<userid>/coral8/server/sdk/c/examples/c8_multistream_adapter.cpp

Note that this example uses C++ features and therefore cannot be compiled as a pure C program.

Note also that the term "managed" adapter in the source code means the same thing as "in-

process" adapter.

Although the adapter uses a combination of in-process and out-of-process API calls, the adapter

is considered to be an in-process adapter and generally must follow the rules for an in-process

adapter, including:

 The list of #include files should NOT include client (out-of-process) files such as

c8client.h.

 Similarly, you should NOT link with client libraries, such as c8_sdk_client_lib

 You SHOULD call the C8ClientSDKInitialize() and C8ClientSDKShutdown() functions

appropriate for in-process adapters, and should not call the versions that are appropriate

for output adapters.

Troubleshooting

If you see a compiler/linker error message similar to the following:

error ... second C linkage of overloaded function

'C8ClientSDKInitialize' not allowed

then you probably tried to #include both the server-side #include and the client-side #include. To

avoid this problem, make sure that both your #includes and your list of libraries for the linker

EXCLUDE client libraries.

Coral8 Integration Guide

210

Setting Up Dynamic Queries and Streams with the
C/C++ SDK

The Coral8 C/C++ SDK includes a way to register a query.

Before reading this section, please read Creating Streams and CCL Statements from Inside A

Program if you have not already done so.

Remember that "registering" a query includes:

 creating the streams specified in the registered query;

 creating the statements specified in the registered query;

 compiling the CCL statements (when we refer to "registering a query", the word "query"

refers to zero or more CCL statements)

 loading the query into the server

 connecting ("binding") the stream names in the CCL statements to the existing streams

(i.e. to the URIs of those streams), or creating new streams

 starting execution of the query

To register a query, use the C8RegisterQuery() function.

You must use a C8StreamInfo object to specify information about each of the streams used in the

query. The information about each stream must include the following:

 the name of the stream as used in the query;

 whether the stream is used as output stream, input stream, or local stream;

 the CCL URI of the stream (for input or output streams only).

The project whose streams the registered query binds must be up and running for the

C8RegisterQuery() function to succeed.

Naturally, if databases or user-defined extensions are used in the queries, the databases and the

extensions must be configured in the server (and in the compiler) for the query to work properly.

The query may use any of the streams in a project (query module) as well as any streams the

query defines locally. The only restriction is that the "local" streams must be defined in such a

way that the CCL compiler can deduce their schemas automatically. Also, the streams defined

locally for this query are not available in any other queries. The query may also create new input

streams and output streams.

The API

The functions available in the C/C++ SDK to register a query are listed below:

Coral8 C/C++ SDK

211

C8Status C8RegisterQuery (const C8Char * i_server_uri, const C8Char *i_workspace,

 const C8Char *i_query_name, const C8Char *i_query_text, C8SizeType i_stream_cnt,

 const C8StreamInfo ** i_streams, C8SizeType i_parameter_cnt,

 const C8ParameterInfo **i_parameters, const C8CompilerOptions *i_opts,

 C8Bool i_cleanup_tmp_files, C8Char *** o_tmp_file_list);

Purpose: The purpose of this function is to register a query.

Parameters:

 i_server_uri: the URL of the Coral8 Server (e.g. http://localhost:6789) that will

manage the query.

 i_workspace: the name of the workspace in which the query will be run.

 i_query_name: the name of the query (this name must be unique among the

dynamically loaded queries for this workspace).

 i_query_text: the text of the query. The text of the query is a set of zero or more

CCL statements. Any CCL constructs may be used in the query.

 i_stream_cnt: the number of streams in the query.

 i_streams: an array of objects describing the streams used by the query.

 i_parameter_cnt: the number of parameters in the query.

 i_parameters: an array describing the query parameters. (If you are not specifying

any parameters (e.g. "$XYZ" in a CCL statement), you may pass NULL.)

 i_opts: a struct describing the compiler options to be set. Pass NULL to use

defaults.

 i_cleanup_tmp_files: a boolean indicating whether to clean up temporary files.

 o_tmp_file_list: a pointer that will be set to point to an array of character strings

that contain the names of the temporary files. (If you do not want the names of

these files, simply pass NULL.) Note that this is a pointer to a pointer to a pointer

(3 asterisks) since it's a pointer to an array of arrays of characters. If a non-null

pointer to a C8Char ** is passed, the location is filled with a newly allocated,

NULL-terminated array of NULL-terminated strings. Please, see the example of

how to iterate and free the returned array. Note, that the array may be filled (and

therefore will need to be freed) even if the function does not return success.

Returns: The function returns C8_OK or C8_FAIL.

C8StreamInfo * C8StreamInfoCreateInputBound(const C8Char * i_name,

 const C8Char * i_src_uri, C8Interval i_max_delay, C8Bool i_is_out_of_order,

 C8Interval i_out_of_order_delay, C8Bool i_is_use_server_timestamp);

Purpose: creates an instance of C8StreamInfo describing a bound input stream.

Parameters:

Coral8 Integration Guide

212

 i_name: stream name as used in the CCL query text.

 i_src_uri: the URI of the stream this stream binds to.

 i_max_delay: max delay parameter for the input stream, in microseconds.

 i_is_out_of_order: C8_TRUE if the stream is to accept out-of-order messages;

C8_FALSE otherwise.

 i_out_of_order_delay: if out-of-order messages are accepted, the maximum out-

of-order delay, in microseconds.

 i_is_use_server_timestamp: C8_TRUE if the stream is to set the timestamp of

incoming messages to the current server time.

Returns: an instance of the C8StreamInfo if successful, NULL otherwise. The object

returned by this function must be deallocated with C8StreamInfoDestroy().

C8StreamInfo * C8StreamInfoCreateInputUnbound(const C8Char * i_name,

 const C8Schema * i_schema, C8Interval i_max_delay, C8Bool i_is_out_of_order,

 C8Interval i_out_of_order_delay, C8Bool i_is_use_server_timestamp);

Purpose: creates an instance of C8StreamInfo describing an unbound input stream.

Parameters:

 i_name stream: name as used in the CCL query text.

 i_schema: stream schema (see schema manipulation methods on how to obtain an

instance of a schema).

 i_max_delay: max delay parameter for the input stream, in microseconds.

 i_is_out_of_order: C8_TRUE if the stream is to accept out-of-order messages;

C8_FALSE otherwise.

 i_out_of_order_delay: if out-of-order messages are accepted, the maximum out-

of-order delay, in microseconds.

 i_is_use_server_timestamp: C8_TRUE if the stream is to set the timestamp of

incoming messages to the current server time.

Returns: an instance of C8StreamInfo if successful, NULL otherwise

C8StreamInfo * C8StreamInfoCreateOutputUnbound(const C8Char * i_name,

 const C8Schema * i_schema);

Purpose: creates an instance of C8StreamInfo describing an unbound output stream.

Parameters:

 i_name: stream name as used in the CCL query text.

 i_schema: stream schema (see schema manipulation methods on how to obtain an

instance of a schema).

Coral8 C/C++ SDK

213

Returns: an instance of the C8StreamInfo if successful, NULL otherwise. The object

returned by this function must be deallocated with C8StreamInfoDestroy().

C8StreamInfo * C8StreamInfoCreateOutputBound(const C8Char * i_name,

 const C8Char * i_dst_uri);

Purpose: creates an instance of C8StreamInfo describing a bound output stream.

Parameters:

 i_name: stream name as used in the CCL query text.

 i_dst_uri: the URI of the stream this stream binds to.

Returns: an instance of the C8StreamInfo if successful, NULL otherwise. The object

returned by this function must be deallocated with C8StreamInfoDestroy().

C8StreamInfo * C8StreamInfoCreateLocal(const C8Char * i_name);

Purpose: creates an instance of C8StreamInfo describing a local stream.

Parameters:

 i_name stream name as used in the CCL query text.

Returns: an instance of the C8StreamInfo if successful, NULL otherwise. The object

returned by this function must be deallocated with C8StreamInfoDestroy().

void C8StreamInfoDestroy(C8StreamInfo * i_stream_info);

Purpose: destroys (deallocates) a C8StreamInfo object.

Parameters:

 i_stream_info: the object to destroy.

C8ParameterInfo * C8ParameterInfoCreateInteger (const C8Char * i_name,

 C8Int i_value);

Purpose: creates an instance of a C8ParameterInfo describing an integer query parameter.

Parameters:

 i_name: parameter name.

 i_value: parameter value.

Returns: an instance of the C8ParameterInfo if successful, NULL otherwise.

C8ParameterInfo * C8ParameterInfoCreateFloat (const C8Char * i_name,

 C8Float i_value);

Purpose: creates an instance of a C8ParameterInfo describing a query parameter of type

float.

Parameters:

 i_name: parameter name.

Coral8 Integration Guide

214

 i_value: parameter value.

Returns: an instance of the C8ParameterInfo if successful, NULL otherwise. The object

returned by this function must be deallocated with C8ParameterInfoDestroy().

C8ParameterInfo * C8ParameterInfoCreateString (const C8Char * i_name,

 const C8Char * i_value);

Purpose: creates an instance of a C8ParameterInfo describing a query parameter of type

string.

Parameters:

 i_name: parameter name.

 i_value: parameter value.

Returns: instance of the C8ParameterInfo if successful, NULL otherwise. The object

returned by this function must be deallocated with C8ParameterInfoDestroy().

C8ParameterInfo * C8ParameterInfoCreateBoolean (const C8Char * i_name,

 C8Bool i_value);

Purpose: creates an instance of a C8ParameterInfo describing a query parameter of

boolean type.

Parameters:

 i_name: parameter name.

 i_value: parameter value.

Returns: an instance of the C8ParameterInfo if successful, NULL otherwise. The object

returned by this function must be deallocated with C8ParameterInfoDestroy().

C8ParameterInfo * C8ParameterInfoCreateLong (const C8Char * i_name, C8Long

i_value);

Purpose: creates an instance of a C8ParameterInfo describing a query parameter of long

type.

Parameters:

 i_name: parameter name.

 i_value: parameter value.

Returns: an instance of the C8ParameterInfo if successful, NULL otherwise. The object

returned by this function must be deallocated with C8ParameterInfoDestroy().

C8ParameterInfo * C8ParameterInfoCreateTimestamp (const C8Char * i_name,

 C8Timestamp i_value);

Purpose: creates an instance of a C8ParameterInfo describing a query parameter of type

timestamp.

Coral8 C/C++ SDK

215

Parameters:

 i_name: parameter name.

 i_value: parameter value.

Returns: an instance of the C8ParameterInfo if successful, NULL otherwise. The object

returned by this function must be deallocated with C8ParameterInfoDestroy().

C8ParameterInfo * C8ParameterInfoCreateInterval (const C8Char * i_name,

 C8Interval i_value);

Purpose: creates an instance of a C8ParameterInfo describing a query parameter of the

timestamp type.

Parameters:

 i_name: parameter name.

 i_value: parameter value.

Returns: an instance of the C8ParameterInfo if successful, NULL otherwise. The object

returned by this function must be deallocated with C8ParameterInfoDestroy().

void C8ParameterInfoDestroy (C8ParameterInfo * i_prm_info);

Purpose: destroys (deallocates) a C8ParameterInfo object.

Parameters:

 i_prm_info: the C8ParameterInfo object to destroy.

Example

This section contains an example program that registers a query. The outline of the program is:

1. "Initialize" the SDK (this step is required before calling other functions in the SDK).

2. Compile a project named "streamkeeper", which will contain the streams that our

dynamic query will bind to.

3. Start executing the "streamkeeper" project.

4. Create StreamInfo objects that contain the information required to bind the registered

query's streams to the streamkeeper project's streams.

5. Create a C8ParameterInfo object to store information about the parameter

($VolumeThreshold) that is referenced in the registered query's CCL statement(s).

6. Register our query.

7. Publish some messages/rows.

8. Read those messages/rows.

9. Stop the registered query.

Coral8 Integration Guide

216

10. Stop the project whose streams we bound to.

11. Clean up.

The example code below is a modified subset of the example example_register_query.c

provided with the SDK.

On Microsoft Windows, if you installed to the default directory, the file(s) will be in:

C:\Program Files\coral8\server\sdk\c\examples

On UNIX-like operating systems, if you installed to the default directory, the file(s) will be in:

/home/<userid>/coral8/server/sdk/c/examples

/**

 * Example for registering a query in C

 * Copyright (C) 2006, Coral8, Inc. All rights reserved.

 */

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include "nspr.h" /* for PR_snprintf */

#include "c8adapter.h"

#include "c8compiler.h"

#include "c8status.h"

#include "c8regqry.h"

int

example_register_query_main(int argc, char **argv)

{

 /*

 * This is an example of using the Coral8 C API

 * for registering queries.

 */

 /* Before this example can be run, Coral8 Server

 * must be running, and a workspace named "Default"

 * must exist on it (create the workspace with

 * Coral8 Studio or the c8_client application).

 */

 /* declare necessary variables */

 int ret = -1;

 const C8Char * workspace_name = "Default";

 // This is the name of a 'project' that will have

 // streams that our registered query can bind to.

 const C8Char * stream_keeper_name = "StreamKeeper";

 const C8Char * in_stream_name = "InTrades";

 const C8Char * out_stream_name = "OutTrades";

 const C8Char * server_hostname = "localhost";

Coral8 C/C++ SDK

217

 const C8Char * server_port = "6789";

 C8Char server_uri [1024];

 C8Char ccl_uri_of_input_stream [1024];

 C8Char ccl_uri_of_output_stream [1024];

 const C8Char * query_name = 0;

 const C8Char * query_text = 0;

 // For each stream that the registered query uses,

 // we must provide a description in the form of a

 // C8StreamInfo object. In this example, our

 // registered query will use 3 streams: an Input

 // stream, an Output stream, and a local stream.

 C8StreamInfo *streams[3] = { 0,0,0 };

 // In this example, we will use a CCL parameter

 // named $VolumeThreshold, e.g. in the CCL statement:

 // INSERT INTO ...

 // SELECT ...

 // FROM

 // WHERE Volume > $VolumeThreshold;

 // We will define a C8ParameterInfo object that

 // contains information about that $VolumeThreshold

 // parameter.

 C8ParameterInfo *parameters[1] = {0};

 C8Subscriber * sub = 0;

 C8Publisher * pub = 0;

 C8Schema * schema = 0;

 // The message/row that we will send.

 C8Message * msg_1 = 0;

 // The message/row that we expect to receive.

 C8Message * rcv_msg_1 = 0;

 // This will point to an array of strings that

 // contain the names of the temporary files that

 // will be used during the compile-and-register

 // process.

 C8Char ** tmp_files = 0;

 C8Timestamp now = 0;

 const C8Char * str = 0;

 /* Initialize the SDK; must do this exactly once per

 * process. Note that NSPR and other libraries are

 * initialized within this call as well.

 */

 if (C8_OK != C8ClientSDKInitialize(argv[0], 0)) {

 return -1;

 }

 // Compose the URI of the server.

 PR_snprintf(server_uri, 1024, "http://%s:%s",

Coral8 Integration Guide

218

 server_hostname,

 server_port);

 /* First, we need a module that defines our streams.

 * The StreamKeeper.ccl is an example of such a

 * module.For the purposes of this example, we will

 * compile and start it here; however, in a typical

 * application this will be done elsewhere.

 */

 if (C8_OK != C8Compile("stream-keeper.ccl", "stream-keeper.ccx",

 workspace_name, "StreamKeeper", 0)) {

 fprintf(stderr, "%s: Could not compile StreamKeeper\n",

 argv[0]);

 ret = -1;

 goto cleanup;

 }

 if (C8_OK != C8StartProgram(server_uri, workspace_name,

 "stream-keeper.ccx")) {

 fprintf (stderr, "%s: Could not start StreamKeeper\n",

 argv[0]);

 ret = -1;

 goto cleanup;

 }

 C8Sleep(5*C8PerSecond); /* give it some time to settle */

 /* Determine the URIs for the StreamKeeper's streams.

 * Typically, these would be hard-coded or passed as

 * parameters.

 */

 PR_snprintf(ccl_uri_of_input_stream, 1024,

 "ccl://%s:%s/Stream/%s/%s/%s",

 server_hostname, server_port,

 workspace_name, stream_keeper_name, in_stream_name);

 PR_snprintf(ccl_uri_of_output_stream, 1024,

 "ccl://%s:%s/Stream/%s/%s/%s",

 server_hostname, server_port,

 workspace_name, stream_keeper_name, out_stream_name);

 /*

 * Now, that the environment is set up, on to the core

 * of the example!

 *

 * The StreamKeeper contains two streams, InTrades and

 * OutTrades, but no queries. The query we will be

 * registering in this example filters the data on its

 * input stream and forward the query results into its

 * output stream.

 *

Coral8 C/C++ SDK

219

 * The query uses three streams:

 * MyStrIn (input),

 * MyStrOut (output), and

 * MyStrLocal (a local stream for the query's own use).

 * We need to define the array of StreamInfo

 * in order to bind these streams appropriately.

 */

 streams [0] = C8StreamInfoCreateInputBound(

 "MyStrIn", ccl_uri_of_input_stream,

 2*C8PerSecond, C8_FALSE, 0, C8_FALSE);

 streams [1] = C8StreamInfoCreateLocal("MyStrLocal");

 streams [2] = C8StreamInfoCreateOutputBound(

 "MyStrOut", ccl_uri_of_output_stream);

 if (0 == streams[0] ||

 0 == streams[1] ||

 0 == streams[2]) {

 fprintf (stderr,

 "%s: Could not create stream info objects\n",

 argv[0]);

 ret = -1;

 goto cleanup;

 }

 parameters[0] = C8ParameterInfoCreateFloat("VolumeThreshold",

 100.0);

 if (0 == parameters[0]) {

 fprintf (stderr,

 "%s: Could not create parameter info objects\n",

 argv[0]);

 ret = -1;

 goto cleanup;

 }

 /*

 * Note, that the registerQuery() call determines the schema

 * for the input and output streams automatically by querying

 * the server (that's why the module containing the streams,

 * in our case StreamKeeper, must be running).

 * There can be more than one input stream and more than

 * one output stream defined for the query.

 *

 * A note about "local" streams. There can be 0 or more local

 * streams defined for the query (depending on the query).

 * The query does not define the schema for the MyStrLocal

 * explicitly: the query must be written in such a way that

 * the compiler can determine the local streams' schemas

 * automatically. (See Coral8 Programmer's Guide and CCL

Coral8 Integration Guide

220

 * Reference for details on how to write CCL in such a way that

 * the compiler can deduce the schemas for the local streams.)

 */

 query_name = "MyFilter";

 query_text =

 "INSERT INTO "

 " MyStrLocal "

 "SELECT * "

 "FROM "

 " MyStrIn "

 "WHERE "

 " Volume > $VolumeThreshold;\n"

 "INSERT INTO "

 " MyStrOut "

 "SELECT * "

 "FROM MyStrLocal;\n"

 ;

 if (C8_OK != C8RegisterQuery(server_uri, workspace_name,

 query_name, query_text, (C8SizeType) 3,

 (const C8StreamInfo **) streams, (C8SizeType) 1,

 (const C8ParameterInfo **) parameters,

 0, C8_FALSE, & tmp_files)) {

 fprintf (stderr, "%s: Could not register query\n",

 argv[0]);

 ret = -1;

 goto cleanup;

 }

 if (tmp_files) {

 /* tmp_files contains null-terminated array of strings;

 * let's print it out! later, we'll have to free all the

 * strings as well as tmp_files.

 */

 C8Char ** pp = tmp_files;

 for (; *pp; ++pp) {

 fprintf(stderr, "Created temporary file: %s\n", *pp);

 }

 }

 /* The official example is now over! Well, almost over (we

 * still need to be able to stop the module we just started).

 * However, let's make sure it works. There are no

 * adapters connected to the StreamKeeper module, so we

 * must (a) generate some data, and (b) receive the output.

 */

 C8Sleep(5*C8PerSecond); /* let things settle a bit */

 /* Create a subscription first (note, that the stream URI

Coral8 C/C++ SDK

221

 * is the URI from the StreamKeeper module).

 */

 sub = C8SubscriberCreate(ccl_uri_of_output_stream);

 if (0 == sub) {

 fprintf (stderr, "%s: Could not subscribe to stream\n",

 argv[0]);

 ret = -1;

 goto cleanup;

 }

 /* Create a publisher (note, that the stream URI is the

 * URI from the StreamKeeper module).

 */

 pub = C8PublisherCreate(ccl_uri_of_input_stream);

 if (0 == pub) {

 fprintf (stderr,

 "%s: Could not create a publisher to stream\n",

 argv[0]);

 ret = -1;

 goto cleanup;

 }

 C8Sleep(3*C8PerSecond); /* wait for things to settle */

 schema = C8GetStreamSchema(ccl_uri_of_input_stream);

 if (0 == schema) {

 fprintf (stderr, "%s: Could not determine stream schema\n",

 argv[0]);

 ret = -1;

 goto cleanup;

 }

 /* Now, publish some data */

 msg_1 = C8MessageCreate(C8_MESSAGE_POSITIVE, schema);

 if (0 == msg_1) {

 fprintf (stderr, "%s: Could not create message\n",

 argv[0]);

 ret = -1;

 goto cleanup;

 }

 now = C8Now();

 if (C8_OK !=

 C8MessageColumnSetStringByName(msg_1,"Symbol","IBM") ||

 C8_OK !=

 C8MessageColumnSetFloatByName(msg_1,"Price",50.11) ||

 C8_OK !=

 C8MessageColumnSetIntByName(msg_1,"Volume",120)) {

 fprintf (stderr, "%s: Could not set message data\n",

 argv[0]);

Coral8 Integration Guide

222

 ret = -1;

 goto cleanup;

 }

 C8MessageSetMessageTimestamp(msg_1, now);

 if (C8_OK != C8PublisherSendMessage(pub, msg_1)) {

 fprintf (stderr, "%s: Could not publish message\n",

 argv[0]);

 ret = -1;

 goto cleanup;

 }

 /* let's now receive the message */

 rcv_msg_1 = C8SubscriberGetNextMessage(sub, 20*C8PerSecond);

 if (0 == rcv_msg_1) {

 fprintf (stderr, "%s: didn't receive first message\n",

 argv[0]);

 ret = -1;

 goto cleanup;

 }

 /* check that the expected messages came through: */

 if (C8_OK != C8MessageColumnGetStringByName(rcv_msg_1,

 "Symbol", &str)) {

 fprintf (stderr, "%s: could not read message value\n",

 argv[0]);

 ret = -1;

 goto cleanup;

 }

 if (strcmp (str, "IBM")) {

 fprintf (stderr, "%s: unexpected message value received\n",

 argv[0]);

 ret = -1;

 goto cleanup;

 }

 /* disconnect publisher and subscriber */

 C8SubscriberDestroy(sub);

 sub = 0;

 C8PublisherDestroy(pub);

 pub = 0;

 /* unregister query by stopping it */

 if (C8_OK != C8StopProgram(server_uri, workspace_name,

 query_name)) {

 fprintf (stderr, "%s: could not stop program %s\n",

 argv[0], query_name);

 ret = -1;

 goto cleanup;

 }

Coral8 C/C++ SDK

223

 /* stop the master query */

 if (C8_OK != C8StopProgram(server_uri, workspace_name,

 "StreamKeeper")) {

 fprintf (stderr, "%s: could not stop program %s\n",

 argv[0], "StreamKeeper");

 ret = -1;

 goto cleanup;

 }

 ret = 0; /* completed successfully! */

cleanup:

 if (ret != 0) {

 C8SizeType l_errtxtlen = C8ErrorGetMessageLength();

 C8Char * l_errbuf = 0;

 if (l_errtxtlen > 0) {

 l_errbuf = (C8Char *) C8Malloc(l_errtxtlen);

 *l_errbuf = 0;

 C8ErrorGetMessageText(l_errbuf, l_errtxtlen);

 fprintf(stderr, "Error message: %s\n", l_errbuf);

 C8Free(l_errbuf);

 l_errbuf = 0;

 }

 }

 /* release all resources */

 if (sub) { C8SubscriberDestroy(sub); sub = 0; }

 if (pub) { C8PublisherDestroy(pub); pub = 0; }

 if (0 != ret) {

 C8StopProgram(server_uri, workspace_name, query_name);

 C8StopProgram(server_uri, workspace_name, "StreamKeeper");

 }

 if (streams[0]) {

 C8StreamInfoDestroy(streams[0]); streams[0] = 0;

 }

 if (streams[1]) {

 C8StreamInfoDestroy(streams[1]); streams[1] = 0;

 }

 if (streams[2]) {

 C8StreamInfoDestroy(streams[2]); streams[2] = 0;

 }

 if (parameters[0]) {

 C8ParameterInfoDestroy(parameters[0]); parameters[0] = 0;

 }

 if (msg_1) {

 C8MessageDestroy(msg_1); msg_1 = 0;

 }

 if (rcv_msg_1) {

Coral8 Integration Guide

224

 C8MessageDestroy(rcv_msg_1); rcv_msg_1 = 0;

 }

 if (schema) {

 C8SchemaDestroy(schema); schema = 0;

 }

 if (tmp_files) {

 C8Char ** pp = tmp_files;

 for (; *pp; ++pp) {

 C8Free(*pp);

 *pp = 0;

 }

 C8Free(tmp_files);

 tmp_files = 0;

 }

 /* and shut down the library */

 if (C8ClientSDKShutdown() != C8_OK) {

 /* could not shutdown the library */

 ret = -1;

 }

 return ret;

}

Again, the complete source code is in the example_register_query.c program.

On Microsoft Windows, if you installed to the default directory, the file(s) will be in:

C:\Program Files\coral8\server\sdk\c\examples

On UNIX-like operating systems, if you installed to the default directory, the file(s) will be in:

/home/<userid>/coral8/server/sdk/c/examples

The example uses two additional files, named stream-keeper.ccl and stock-trades.ccs, which are

in the same directory.

Instructions for compiling and linking this code are very similar to the instructions for compiling

and linking an out-of-process adapter. Because this example uses some code in the nspr library,

you must also do the following steps:

 add ".../coral8/server/sdk/c/include/nspr" or

"...\coral8\server\sdk\c\include\nspr" (depending upon your operating system)

to the list of include directories (where "..." represents the directory in which you

installed Coral8).

 add nspr4.lib and plc4.lib to the list of library files (e.g. in MS Visual Studio, add this to

the "Additional Dependencies" in the "Linker/Input" section).

Coral8 C/C++ SDK

225

Creating Streams Dynamically

In earlier sections, we showed how to bind the query to existing streams. You may also create

your own streams.

We will provide more information in a future release; however, the approach is similar to that

shown in the Java SDK chapter.

Troubleshooting

Below are error cases you may encounter:

 The project that contains the streams to which we will bind is not running

The program won't be able to find out information about the streams in the project

(including tuple descriptors) and load the program into the workspace. The exception will

most likely indicate a failed SOAP call. Please check that the server is actually running,

the server URL you are passing is the correct URL for this server (it must include the

correct hostname and port number), and that all the project has been started successfully.

 Compiler Errors

These errors result from invalid CCL files or CCL Syntax errors. The easiest way to

troubleshoot this kind of errors would be to try compiling the same CCL files with Coral8

Studio.

Control: Compile/Start/Stop/Status

This section describes how to:

 compile a project (query module) -- i.e. how to compile CCL code.

 start/stop a project (query module).

C8ClientSDKInitialize() must be called prior to calling any of these functions.

Compiling a CCL Project

You may write a C/C++ program that calls the Coral8 compiler to compile a Coral8 project (a

.ccp file and the files that it references). Note that if you have just a .ccl file without a .ccp file,

you may also compile that.

You may also compile a schema file (a .ccs file).

The C/C++ SDK supports only compilation of projects and .ccl query modules.

Coral8 Integration Guide

226

When you use the compiler API, you may set the same options (e.g. turning on debug mode,

turning off warnings) as you can set when you use the standalone c8_compiler program.

The Compiler API

The c8compiler.h file contains function prototypes for the Coral8 Compiler API, a set of

functions that allow you to compile a Coral8 project file (.ccp) or schema file.

The primary functions in this API are the C8Compile() function and the C8RemoteCompile()

function, which essentially do the same thing as the Coral8 compiler (c8_compiler on UNIX or

c8_compiler.exe on Microsoft Windows), i.e. they translate a group of CCL statements into a

form that the server can use. You can specify the same options for C8Compile() as you can

specify on the command line of the Coral8 compiler. (For a description of the command-line

parameters of the c8_compiler program, see Compile a Project or a Schema File.)

The API provides additional functions that you may find useful, especially if you want to specify

options for the compiler, such as turning warning messages on or off. This section does not

explain all those options; we recommend that you read Compile a Project or a Schema File,

especially the first table in that section.

Remember: prior to calling any function from the client SDK (be it adapter-, compiler-,

or server management-related), the SDK initialization function C8ClientSDKInitialize()

must be called. See the descriptions of the C8ClientSDKInitialize() and

C8ClientSDKShutdown() functions for more information.

The functions in the compiler API may be called from any "out-of-process" program. (These

functions may not be called from inside an in-process task, such as an in-process adapter or an

in-process User-Defined Function.)

The functionality provided by this compiler API is similar in at least the following Coral8 SDKs:

this C/C++ SDK, the Java SDK, and the .NET SDK.

The Coral8 CCL compiler API is shown below.

C8Status C8Compile(const C8Char * i_input_file, const C8Char * i_output_file,

 const C8Char * i_workspace, const C8Char * i_load_name,

 const C8CompilerOptions * i_opts);

Purpose: This function compiles a CCL program.

If non-default compiler options are needed, create an instance of C8CompilerOptions

with C8CompilerOptionsCreate, use the C8CompilerOptionsSet... methods to modify the

options, pass the options to the C8Compile call, and destroy them afterwards with the

C8CompilerOptionsDestroy call. In general, the calls to manipulate compiler options

match the compiler options as shown by executing c8_compiler --help and described in

the Coral8 documentation.

Note that this function only compiles; it does not start executing the compiled code.

Coral8 C/C++ SDK

227

Parameters:

 i_input_file - the CCL project file to compile. This may include the path as well

as the complete file name. (The function does not assume a particular filename

extension such as .ccp or .ccl.)

 i_output_file - where to write the output (the compiled ccx program). This should

include the path as well as the complete file name. (The function does not assume

a particular filename extension such as .ccx.) You should specify a location at

which the c8_client program (or Coral8 Studio) can find the file (all relative paths

are relative to the current working directory of the process that calls the

C8Compile() function).

 i_workspace - the workspace name.

 i_load_name - the load name for the module. This name should be unique within

the workspace. For a description of the load name, see the description of the "--

name=progname" c8_compiler option in the first table in Compile a Project or a

Schema File.

 i_opts - contains the compiler options to use or NULL for defaults.

Returns: C8_OK if successful, C8_FAIL otherwise.

C8Status C8RemoteCompile(const C8Char * i_input_file, const C8Char * i_output_file,

 const C8Char * i_compiler_flags, const C8Char * i_workspace,

 const C8Char * i_load_name, const C8CompilerUri * i_compiler_uri);

Purpose: This function compiles a CCL program. Compilation is done on the server, not

the client. For more information about server-side vs. client-side compilation, see Client-

side vs. Server-side Compilation.

If non-default compiler options are needed, create an instance of C8CompilerOptions

with C8CompilerOptionsCreate, use the C8CompilerOptionsSet... methods to modify the

options, pass the options to the C8Compile call, and destroy them afterwards with the

C8CompilerOptionsDestroy call. In general, the calls to manipulate compiler options

match the compiler options as shown by executing c8_compiler --help and described in

the Coral8 documentation.

Note that this function only compiles; it does not start executing the compiled code.

Parameters:

 i_input_file - the CCL project file to compile. This may include the path as well

as the complete file name. (The function does not assume a particular filename

extension such as .ccp or .ccl.) Note that this is the path and name of a file on

the client, not the server. The client reads the file and sends the text to the server

to be compiled.

Coral8 Integration Guide

228

 i_output_file - where to write the output (the compiled ccx program). This should

include the path as well as the complete file name. (The function does not assume

a particular filename extension such as .ccx.) You should specify a location at

which the c8_client program (or Coral8 Studio) can find the file (all relative paths

are relative to the current working directory of the process that calls the

C8Compile() function). Note that this is the path and name of a file on the client,

not the server.

 i_compiler_flags - contains the compiler options to use or NULL for defaults.

 i_workspace - the workspace name.

 i_load_name - the load name for the module. This name should be unique within

the workspace. For a description of the load name, see the description of the "--

name=progname" c8_compiler option in the first table in Compile a Project or a

Schema File.

 i_compiler_uri - a string containing the URI of the compiler service. Since the

URI is being compiled on a remote server, this string simply contains the URI of

that remote server, in the usual form: "http://hostname:port", e.g.

"http://Mgr1:6789".

Returns: C8_OK if successful, C8_FAIL otherwise.

C8Status C8CompileStreamSchema(const C8Char * i_input_file,

 const C8Char * i_output_file);

Purpose: This function allows you to compile a stream schema file and create a file that

contains a Tuple Descriptor.

Parameters:

 i_input_file - the name (optionally including the path) of the input file, i.e. the

schema file. By convention, the filename extension is normally .ccs.

 i_output_file - the name (optionally including the path) of the input file, i.e. the

schema file. By convention, the filename extension is normally .ccx.

Returns: C8_OK if successful, C8_FAIL otherwise.

C8CompilerOptions * C8CompilerOptionsCreate();

Purpose: Gets a newly allocated compiler options structure containing default values.

(The structure must be de-allocated with C8DestroyCompilerOptions().)

Parameters: none.

Returns: a pointer to the new structure or NULL if the structure could not be allocated.

void C8CompilerOptionsDestroy(C8CompilerOptions * i_opts);

Purpose: Destroys an instance of the C8CompilerOptions structure. The parameter i_opts

must be a valid pointer to the structure to destroy.

Coral8 C/C++ SDK

229

Parameters:

 i_opts - a pointer to a C8CompilerOptions structure.

Returns: nothing.

C8Status C8CompilerOptionsGetRepositoryPath (const C8CompilerOptions * i_opts,

 const C8Char ** o_res);

Purpose: This gets the path to the Coral8 Repository.

Parameters:

 i_opts - valid pointer to a compiler options structure.

 o_res - is the location to write the result (the repository path) to.

Returns: C8_OK if successful, C8_FAIL otherwise.

C8Status C8CompilerOptionsSetRepositoryPath (C8CompilerOptions * i_opts,

 const C8Char * value);

Purpose: This sets the repository path.

Parameters:

 i_opts - a valid pointer to a compiler options structure.

 value - the new path.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8CompilerOptionsGetDebugMode(const C8CompilerOptions * i_opts,

 C8Bool * o_res);

Purpose: This gets a value that indicates whether the compiler options are set for debug

mode.

Parameters:

 i_opts - a valid pointer to a compiler options.

 o_res - the location to write the result to.

Returns: C8_TRUE if debug mode, C8_FALSE otherwise.

C8Status C8CompilerOptionsSetDebugMode(C8CompilerOptions * i_opts, C8Bool value);

Purpose: This specifies whether to compile in debug mode.

Parameters:

 i_opts - a valid pointer to a compiler options structure.

 value - C8_TRUE to set debug mode, C8_FALSE to clear debug mode.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8CompilerOptionsGetPlaybackRate (const C8CompilerOptions * i_opts,

 C8Float * o_res);

Coral8 Integration Guide

230

Purpose: This function gets the accelerated playback rate, e.g. 10.0 if the data is

accelerated by a factor of 10, or 0.5 if the data is is processed at 1/2 the speed indicated

by the row timestamps.

Parameters:

 i_opts - is a valid pointer to a compiler options structure.

 o_res - the location to write the result to.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8CompilerOptionsSetPlaybackRate (C8CompilerOptions * i_opts, C8Float

value);

Purpose: This function sets playback rate (i.e. the Accelerated Playback rate). For

example, to process the data 10.0 times as fast, set the value to 10.0. To slow the data by

a factor of 2, use 0.5.

Parameters:

 i_opts - a valid pointer to a compiler options structure.

 value - the new playback rate.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8CompilerOptionsGetDeprecationWarningsEnabled (const

C8CompilerOptions * i_opts,

 C8Bool * o_res);

Purpose: this gets a value that indicates whether deprecation warnings are enabled.

Parameters:

 i_opts - a valid pointer to a compiler options structure.

 o_res - a location to write the result to.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8CompilerOptionsSetDeprecationWarningsEnabled (C8CompilerOptions *

i_opts,

 C8Bool value);

Purpose: this function specifies whether to enable or disable deprecation warnings.

Parameters:

 i_opts - a valid pointer to a compiler options structure.

 value - a C8_TRUE to enable, C8_FALSE to disable.

Returns: C8_OK on success, C8_FAIL otherwise.

Coral8 C/C++ SDK

231

C8Status C8CompilerOptionsGetWarnImplicitConversionsEnabled (const

C8CompilerOptions * i_opts,

 C8Bool * o_res);

Purpose: this function gets a value that indicates whether implicit conversion warnings

are enabled.

Parameters:

 i_opts - a valid pointer to a compiler options structure.

 o_res - a location to write the result to.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8CompilerOptionsSetWarnImplicitConversionsEnabled (C8CompilerOptions *

i_opts,

 C8Bool value);

Purpose: this function sets whether to enable or disable implicit conversions options.

Parameters:

 i_opts - a valid pointer to a compiler options structure.

 value - a C8_TRUE to enable, C8_FALSE to disable.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8CompilerOptionsGetFilterAsap (const C8CompilerOptions * i_opts, C8Bool *

o_res);

Purpose: this function gets whether the "filter as soon as possible" optimization is

enabled.

Parameters:

 i_opts - a valid pointer to a compiler options structure.

 o_res - a location to write the result to.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8CompilerOptionsSetFilterAsap (C8CompilerOptions * i_opts, C8Bool value);

Purpose: the function specifies whether to enable the "filter as soon as possible"

optimization.

Parameters:

 i_opts - valid pointer to a compiler options structure.

 value - a C8_TRUE to enable, C8_FALSE to disable.

Returns: C8_OK on success, C8_FAIL otherwise.

Coral8 Integration Guide

232

C8Status C8CompilerOptionsGetFoldRedundantPrimitives (const C8CompilerOptions *

i_opts,

 C8Bool * o_res);

Purpose: the function gets whether the optimization to fold redundant primitives is

enabled.

Parameters:

 i_opts - a valid pointer to a compiler options structure.

 o_res - a location to write the result to.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8CompilerOptionsSetFoldRedundantPrimitives (C8CompilerOptions * i_opts,

 C8Bool value);

Purpose: the function sets whether to enable the optimization to fold redundant

primitives.

Parameters:

 i_opts - a valid pointer to a compiler options structure.

 value - C8_TRUE to enable, C8_FALSE to disable.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8CompilerOptionsGetIndexWarningsEnabled (const C8CompilerOptions *

i_opts,

 C8Bool * o_res);

Purpose: the function gets a value that indicates whether the index warnings are enabled.

Parameters:

 i_opts - valid pointer to a compiler options structure.

 o_res - location to write the result to.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8CompilerOptionsSetIndexWarningsEnabled (C8CompilerOptions * i_opts,

 C8Bool value);

Purpose: the function sets whether to enable index warnings.

Parameters:

 i_opts - valid pointer to a compiler options structure.

 value - C8_TRUE to enable, C8_FALSE to disable.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8CompilerOptionsGetShortcutAndOr (const C8CompilerOptions * i_opts,

 C8Bool * o_res);

Coral8 C/C++ SDK

233

Purpose: the function gets whether "Shortcut And-Or" optimization is enabled.

Parameters:

 i_opts - valid pointer to a compiler options structure.

 o_res - location to write the result to.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8CompilerOptionsSetShortcutAndOr (C8CompilerOptions * i_opts, C8Bool

value);

Purpose: the function sets whether to enable "Shortcut And-Or" optimization.

Parameters:

 i_opts - valid pointer to a compiler options structure.

 value - C8_TRUE to enable, C8_FALSE to disable.

Returns: C8_OK on success, C8_FAIL otherwise.

Sample C Program to Compile a Project

...

#include "c8client.h"

#include "c8compiler.h"

int main(int argc, char **argv)

{

 /*

 * This is an example of using the Coral8 C API

 * to compile CCL programs.

 */

 int ret = 0;

 // The value (C8_OK or C8_FAIL) returned by C8Compile()

 int r;

 const char * ccl = "pass-through.ccl";

 const char * ccx = "pass-through.ccx";

 const char * workspace = "Default";

 C8CompilerOptions * opts = 0;

 /* You must initialize the client library before calling

 * C8Compile() or any other methods from the Client SDK!

 */

 if (C8_OK != C8ClientSDKInitialize(argv[0], 0)) {

 return -1;

 }

 /* get default compiler options. */

 opts = C8CompilerOptionsCreate();

 /* To demonstrate how to set compiler options,

 * let's tell the compiler to compile in release mode.

Coral8 Integration Guide

234

 * To use default compiler options, it is safe to

 * just pass NULL.

 */

 C8CompilerOptionsSetDebugMode(opts, C8_FALSE);

 r = C8Compile(ccl, // Input file name (e.g. foo.ccl)

 ccx, // Output file name (e.g. foo.ccx)

 workspace, // Name of workspace foo will run in.

 "", // No need to load this under a name

 // other than foo.

 opts // Compiler options

);

 if (r = C8_OK) {

 ret = 0;

 printf ("Compilation successful!\n");

 } else {

 /* try printing out the actual compiler error */

 C8SizeType l_errtxtlen = C8ErrorGetMessageLength();

 ret = -1;

 printf ("Compilation failed.\n");

 if (l_errtxtlen > 0) {

 C8Char * l_errbuf = (C8Char *) C8Malloc(l_errtxtlen);

 C8ErrorGetMessageText(l_errbuf, l_errtxtlen);

 printf("Error message: %s\n", l_errbuf);

 C8Free(l_errbuf);

 }

 }

 /* don't forget to free the compiler options */

 if (opts)

 C8CompilerOptionsDestroy(opts);

 /* and shut down the library */

 if (C8ClientSDKShutdown() != C8_OK) {

 /* could not shut down the library */

 ret = -1;

 }

 return ret;

}

To compile this, follow the instructions that were given for compiling the "register query"

example at the end of Example.

Additional Sources of Information

An example program example_ccl_compile.c is included in the SDK examples.

On Microsoft Windows, if you installed to the default directory, the file(s) will be in:

C:\Program Files\coral8\server\sdk\c\examples

Coral8 C/C++ SDK

235

On UNIX-like operating systems, if you installed to the default directory, the file(s) will be in:

/home/<userid>/coral8/server/sdk/c/examples

Start/Stop a Project

C8Status C8StartProgram (cost C8Char *i_mgr_uri, const C8Char *i_ws_name,

 const C8Char *i_filename);

Purpose: starts a compiled program in Coral8 Server. This does not compile the program;

you must have already done the compilation separately.

Parameters:

 i_mgr_uri is the URI of the manager.

 i_ws_name is the name of the workspace.

 i_filename is the name of the compiled file (i.e. the .ccx file).

Returns: C8_OK or C8_FAIL.

C8Status C8StartProgramA (const C8Char *i_mgr_uri, const C8Char *i_ws_name,

 const C8Char *i_filename, const C8UserCredentials *i_credentials);

Purpose: starts a compiled program in Coral8 Server. This does not compile the program;

you must have already done the compilation separately.

This version is used if the User Authentication feature limits the right to start and stop

programs.

Parameters:

 i_mgr_uri is the URI of the manager.

 i_ws_name is the name of the workspace.

 i_filename is the name of the compiled file (i.e. the .ccx file).

 i_credentials - - a pointer to a structure containing the user's credentials (username

and password).

Returns: C8_OK or C8_FAIL.

C8Status C8StopProgram (const C8Char *i_mgr_uri, const C8Char *i_ws_name,

 const C8Char *i_progname);

Purpose: Stops a running program in Coral8 Server.

Parameters:

 i_mgr_uri is the URI of the manager.

 i_ws_name is the name of the workspace.

 i_progname is the name of the program (if you compiled the program yourself, it

is the "load name")..

Coral8 Integration Guide

236

Returns: C8_OK or C8_FAIL.

C8Status C8StopProgramA (const C8Char *i_mgr_uri, const C8Char *i_ws_name,

 const C8Char *i_progname, const C8UserCredentials *i_credentials);

Purpose: Stops a running program in Coral8 Server. This version is used if the User

Authentication feature limits the right to start and stop programs.

Parameters:

 i_mgr_uri is the URI of the manager.

 i_ws_name is the name of the workspace.

 i_progname is the name of the program (if you compiled the program yourself, it

is the "load name")..

 i_credentials - - a pointer to a structure containing the user's credentials (username

and password).

Returns: C8_OK or C8_FAIL.

C8Status C8GetStreamSchema (const C8Char *i_uri);

Purpose: Gets the schema of the stream.

Parameters:

 i_uri is the URI of the stream.

Returns: C8_OK or C8_FAIL.

C8Status C8GetStreamSchemaA (const C8Char *i_uri,

 const C8UserCredentials *i_credentials);

Purpose: Gets the schema of the stream. This version is used if the User Authentication

feature limits the right to start and stop programs.

Parameters:

 i_uri is the URI of the stream.

 i_credentials - - a pointer to a structure containing the user's credentials (username

and password).

Returns: C8_OK or C8_FAIL.

Monitoring Servers and Queries

This section provides some information about monitoring servers and queries.

Coral8 C/C++ SDK

237

Status API

This section describes the API for getting status information, including information about a

Coral8 Manager server, a workspace, or a project (query module).

C8StatusInfo * C8GetManagerStatusInfo(const C8Char * i_manager_uri);

Purpose: Get the status of a manager.

Parameters:

 i_manager_uri - the manager URI.

Returns: the pointer to the status info object, or NULL if the function fails. The returned

object needs to be freed with C8StatusInfoDestroy().

C8StatusInfo * C8GetManagerStatusInfoA(const C8Char * i_manager_uri,

 const C8UserCredentials *i_credentials);

Purpose: Get the status of a manager.

This version is used if the User Authentication feature limits the right to get status.

Parameters:

 i_manager_uri - the manager URI.

 i_credentials - - a pointer to a structure containing the user's credentials (username

and password).

Returns: the pointer to the status info object, or NULL if the function fails. The returned

object needs to be freed with C8StatusInfoDestroy().

C8StatusInfo * C8GetWorkspaceStatusInfo(const C8Char * i_manager_uri,

 const C8Char * i_workspace_name, C8Bool i_need_ccx_info);

Purpose: Get the status of a workspace.

Parameters:

 i_manager_uri - the manager URI.

 i_workspace_name - the workspace name.

 i_need_ccx_info - whether to include CCX information in the returned status

object.

Returns: the pointer to the status info object, or NULL if the function fails. The returned

object needs to be freed with C8StatusInfoDestroy().

C8StatusInfo * C8GetWorkspaceStatusInfoA(const C8Char * i_manager_uri,

 const C8Char * i_workspace_name, C8Bool i_need_ccx_info,

 const C8UserCredentials *i_credentials);

Purpose: Get the status of a workspace.

Coral8 Integration Guide

238

This version is used if the User Authentication feature limits the right to get status.

Parameters:

 i_manager_uri - the manager URI.

 i_workspace_name - the workspace name.

 i_need_ccx_info - whether to include CCX information in the returned status

object.

 i_credentials - - a pointer to a structure containing the user's credentials (username

and password).

Returns: the pointer to the status info object, or NULL if the function fails. The returned

object needs to be freed with C8StatusInfoDestroy().

C8StatusInfo * C8GetApplicationStatusInfo(const C8Char * i_manager_uri,

 const C8Char * i_workspace_name, const C8Char * i_app_name,

 C8Bool i_need_ccx_info);

Purpose: Get the status of a CCL application.

Parameters:

 i_manager_uri - the manager URI.

 i_workspace_name - the workspace name.

 i_app_name - the CCL application name.

 i_need_ccx_info - whether to include CCX information in the returned status

object.

Returns: the pointer to the status info object, or NULL if the function fails. The returned

object needs to be freed with C8StatusInfoDestroy().

C8StatusInfo * C8GetApplicationStatusInfoA(const C8Char * i_manager_uri,

 const C8Char * i_workspace_name, const C8Char * i_app_name,

 C8Bool i_need_ccx_info, const C8UserCredentials *i_credentials);

Purpose: Get the status of a CCL application.

This version is used if the User Authentication feature limits the right to get status.

Parameters:

 i_manager_uri - the manager URI.

 i_workspace_name - the workspace name.

 i_app_name - the CCL application name.

 i_need_ccx_info - whether to include CCX information in the returned status

object.

Coral8 C/C++ SDK

239

 i_credentials - - a pointer to a structure containing the user's credentials (username

and password).

Returns: the pointer to the status info object, or NULL if the function fails. The returned

object needs to be freed with C8StatusInfoDestroy().

void C8StatusInfoDestroy(C8StatusInfo * i_status);

Purpose: Destroys a status object.

Parameters:

 i_status - valid pointer to a valid status object.

Returns: nothing.

C8Status C8StatusInfoGetTimestamp(const C8StatusInfo * i_status, C8Timestamp * o_ts);

Purpose: Returns the timestamp of the status info object.

Parameters:

 i_status - valid pointer to a valid status object.

 o_ts - location where the result is to be written.

Returns: C8_OK on success, C8_FAIL if anything goes wrong.

C8Status C8StatusInfoGetMessage (const C8StatusInfo * i_status,

 const C8Char * i_grp_name, const C8Char * i_obj_name,

 const C8Char * i_msg_name, const C8Message ** o_msg);

Purpose: Gets a status message. The pointer to the message is valid while the pointer to

the status is valid.

Parameters:

 i_status - valid pointer to a valid status object.

 i_grp_name - the name of a group.

 i_obj_name - a name of an object in a group.

 i_msg_name - a name of a message in an object.

 o_msg - location where the result is to be written.

Returns: C8_OK on success, C8_FAIL if anything goes wrong.y

C8Status C8StatusInfoGetMessageByMessageIndex (const C8StatusInfo * i_status,

 const C8Char * i_grp_name, const C8Char * i_obj_name, C8UInt i_msg_ndx,

 const C8Message ** o_msg);

Purpose: Gets a status message. The pointer to the message is valid while the pointer to

the status is valid.

Parameters:

Coral8 Integration Guide

240

 i_status - valid pointer to a valid status object.

 i_grp_name - the name of a group.

 i_obj_name - a name of an object in a group.

 i_msg_ndx - a valid index of a message in an object (0-based).

 o_msg - location where the result is to be written.

Returns: C8_OK on success, C8_FAIL if anything goes wrong.

C8Status C8StatusInfoGetMessageByObjectIndex (const C8StatusInfo * i_status,

 const C8Char * i_grp_name, C8UInt i_obj_ndx, const C8Char * i_msg_name,

 const C8Message ** o_msg);

Purpose: Gets a status message. The pointer to the message is valid while the pointer to

the status is valid.

Parameters:

 i_status - valid pointer to a valid status object.

 i_grp_name - the name of a group.

 i_obj_ndx - a valid index of a message in an object (0-based).

 i_msg_name - a name of a message in an object.

 o_msg - location where the result is to be written.

Returns: C8_OK on success, C8_FAIL if anything goes wrong.

C8Status C8StatusInfoGetMessageByObjectAndMessageIndex (const C8StatusInfo *

i_status,

 const C8Char * i_grp_name, C8UInt i_obj_ndx, C8UInt i_msg_ndx, const C8Message **

o_msg);

Purpose: Gets a status message. The pointer to the message is valid while the pointer to

the status is valid.

Parameters:

 i_status - valid pointer to a valid status object.

 i_grp_name - the name of a group.

 i_obj_ndx - a valid index of a message in an object (0-based).

 i_msg_ndx - a valid index of a message in an object (0-based).

 o_msg - location where the result is to be written.

Returns: C8_OK on success, C8_FAIL if anything goes wrong.

C8Status C8StatusInfoGetMessageByGroupIndex (const C8StatusInfo * i_status,

 C8UInt i_grp_ndx, const C8Char * i_obj_name, const C8Char * i_msg_name,

 const C8Message ** o_msg);

Coral8 C/C++ SDK

241

Purpose: Gets a status message. The pointer to the message is valid while the pointer to

the status is valid.

Parameters:

 i_status - valid pointer to a valid status object.

 i_grp_ndx - a valid index of a group (0-based).

 i_obj_name - a name of an object in a group.

 i_msg_name - a name of a message in an object.

 o_msg - location where the result is to be written.

Returns: C8_OK on success, C8_FAIL if anything goes wrong.

C8Status C8StatusInfoGetMessageByGroupAndMessageIndex (const C8StatusInfo *

i_status,

 C8UInt i_grp_ndx, const C8Char * i_obj_name, C8UInt i_msg_ndx,

 const C8Message ** o_msg);

Purpose: Gets a status message. The pointer to the message is valid while the pointer to

the status is valid.

Parameters:

 i_status - valid pointer to a valid status object.

 i_grp_ndx - a valid index of a group (0-based).

 i_obj_name - a name of an object in a group.

 i_msg_ndx - a valid index of a message in an object (0-based).

 o_msg - location where the result is to be written.

Returns: C8_OK on success, C8_FAIL if anything goes wrong.y

C8Status C8StatusInfoGetMessageByGroupAndObjectIndex (const C8StatusInfo *

i_status,

 C8UInt i_grp_ndx, C8UInt i_obj_ndx, const C8Char * i_msg_name,

 const C8Message ** o_msg);

Purpose: Gets a status message. The pointer to the message is valid while the pointer to

the status is valid.

Parameters:

 i_status - valid pointer to a valid status object.

 i_grp_ndx - a valid index of a group (0-based).

 i_obj_ndx - a valid index of a message in an object (0-based).

 i_msg_name - a name of a message in an object.

 o_msg - location where the result is to be written.

Coral8 Integration Guide

242

Returns: C8_OK on success, C8_FAIL if anything goes wrong.

C8Status C8StatusInfoGetMessageByGroupAndObjectAndMessageIndex(

 const C8StatusInfo * i_status, C8UInt i_grp_ndx, C8UInt i_obj_ndx,

 C8UInt i_msg_ndx, const C8Message ** o_msg);

Purpose: Gets a status message. The pointer to the message is valid while the pointer to

the status is valid.

Parameters:

 i_status - valid pointer to a valid status object.

 i_grp_ndx - a valid index of a group (0-based).

 i_obj_ndx - a valid index of a message in an object (0-based).

 i_msg_ndx - a valid index of a message in an object (0-based).

 o_msg - location where the result is to be written.

Returns: C8_OK on success, C8_FAIL if anything goes wrong.

C8Status C8StatusInfoHasMessage(const C8StatusInfo * i_status,

 const C8Char * i_grp_name, const C8Char * i_obj_name,

 const C8Char * i_msg_name, C8Bool* o_res);

Purpose: Check whether the status info object contains a message.

Parameters:

 i_status - valid pointer to a valid status object.

 i_grp_name - the name of a group.

 i_obj_name - a name of an object in a group.

 i_msg_name - a name of a message in an object.

 o_res - location where the result is to be written.

Returns: C8_OK on success, C8_FAIL if anything goes wrong.

C8Status C8StatusInfoHasMessageByMessageIndex (const C8StatusInfo * i_status,

 const C8Char * i_grp_name, const C8Char * i_obj_name, C8UInt i_msg_ndx,

 C8Bool* o_res);

Purpose: Check whether the status info object contains a message.

Parameters:

 i_status - valid pointer to a valid status object.

 i_grp_name - the name of a group.

 i_obj_name - a name of an object in a group.

 i_msg_ndx - a valid index of a message in an object (0-based).

Coral8 C/C++ SDK

243

 o_res - location where the result is to be written.

Returns: C8_OK on success, C8_FAIL if anything goes wrong.

C8Status C8StatusInfoHasMessageByObjectIndex (const C8StatusInfo * i_status,

 const C8Char * i_grp_name, C8UInt i_obj_ndx, const C8Char * i_msg_name,

 C8Bool* o_res);

Purpose: Check whether the status info object contains a message.

Parameters:

 i_status - valid pointer to a valid status object.

 i_grp_name - the name of a group.

 i_obj_ndx - a valid index of a message in an object (0-based).

 i_msg_name - a name of a message in an object.

 o_res - location where the result is to be written.

Returns: C8_OK on success, C8_FAIL if anything goes wrong.y

C8Status C8StatusInfoHasMessageByObjectAndMessageIndex (const C8StatusInfo *

i_status,

 const C8Char * i_grp_name, C8UInt i_obj_ndx, C8UInt i_msg_ndx, C8Bool* o_res);

Purpose: Check whether the status info object contains a message.

Parameters:

 i_status - valid pointer to a valid status object.

 i_grp_name - the name of a group.

 i_obj_ndx - a valid index of a message in an object (0-based).

 i_msg_ndx - a valid index of a message in an object (0-based).

 o_res - location where the result is to be written.

Returns: C8_OK on success, C8_FAIL if anything goes wrong.

C8Status C8StatusInfoHasMessageByGroupIndex (const C8StatusInfo * i_status,

 C8UInt i_grp_ndx, const C8Char * i_obj_name, const C8Char * i_msg_name,

 C8Bool* o_res);

Purpose: check whether the status info object contains a message.

Parameters:

 i_status - valid pointer to a valid status object.

 i_grp_ndx - a valid index of a group (0-based).

 i_obj_name - a name of an object in a group.

 i_msg_name - a name of a message in an object.

Coral8 Integration Guide

244

 o_res - location where the result is to be written.

Returns: C8_OK on success, C8_FAIL if anything goes wrong.

C8Status C8StatusInfoHasMessageByGroupAndMessageIndex (const C8StatusInfo *

i_status,

 C8UInt i_grp_ndx, const C8Char * i_obj_name, C8UInt i_msg_ndx, C8Bool* o_res);

Purpose: check whether the status info object contains a message.

Parameters:

 i_status - valid pointer to a valid status object.

 i_grp_ndx - a valid index of a group (0-based).

 i_obj_name - a name of an object in a group.

 i_msg_ndx - a valid index of a message in an object (0-based).

 o_res - location where the result is to be written.

Returns:C8_OK on success, C8_FAIL if anything goes wrong.

C8Status C8StatusInfoHasMessageByGroupAndObjectIndex (const C8StatusInfo *

i_status,

 C8UInt i_grp_ndx, C8UInt i_obj_ndx, const C8Char * i_msg_name, C8Bool* o_res);

Purpose: check whether the status info object contains a message.

Parameters:

 i_status - valid pointer to a valid status object.

 i_grp_ndx - a valid index of a group (0-based).

 i_obj_ndx - a valid index of a message in an object (0-based).

 i_msg_name - a name of a message in an object.

 o_res - location where the result is to be written.

Returns: C8_OK on success, C8_FAIL if anything goes wrong.

C8Status C8StatusInfoHasMessageByGroupAndObjectAndMessageIndex(const

C8StatusInfo * i_status,

 C8UInt i_grp_ndx, C8UInt i_obj_ndx, C8UInt i_msg_ndx, C8Bool* o_res);

Purpose: check whether the status info object contains a message.

Parameters:

 i_status - valid pointer to a valid status object.

 i_grp_ndx - a valid index of a group (0-based).

 i_obj_ndx - a valid index of a message in an object (0-based).

 i_msg_ndx - a valid index of a message in an object (0-based).

Coral8 C/C++ SDK

245

 o_res - location where the result is to be written.

Returns: C8_OK on success, C8_FAIL if anything goes wrong.

C8Status C8StatusInfoGetValue (const C8StatusInfo * i_status, const C8Char *

i_grp_name,

 const C8Char * i_obj_name, const C8Char * i_msg_name, const C8Char ** o_val);

Purpose: Get a string value of the message. The returned pointer is valid while the pointer

to the status info object remains valid.

Parameters:

 i_status - valid pointer to a valid status object.

 i_grp_name - the name of a group.

 i_obj_name - a name of an object in a group.

 i_msg_name - a name of a message in an object.

 o_val - location where the result is to be written.

Returns: C8_OK on success, C8_FAIL if anything goes wrong.

C8Status C8StatusInfoGetValueByMessageIndex (const C8StatusInfo * i_status,

 const C8Char * i_grp_name, const C8Char * i_obj_name, C8UInt i_msg_ndx, const

C8Char ** o_val);

Purpose: Get a string value of the message. The returned pointer is valid while the pointer

to the status info object remains valid.

Parameters:

 i_status - valid pointer to a valid status object.

 i_grp_name - the name of a group.

 i_obj_name - a name of an object in a group.

 i_msg_ndx - a valid index of a message in an object (0-based).

 o_val - location where the result is to be written.

Returns: C8_OK on success, C8_FAIL if anything goes wrong.

C8Status C8StatusInfoGetValueByObjectIndex (const C8StatusInfo * i_status,

 const C8Char * i_grp_name, C8UInt i_obj_ndx, const C8Char * i_msg_name,

 const C8Char ** o_val);

Purpose: Get a string value of the message. The returned pointer is valid while the pointer

to the status info object remains valid.

Parameters:

 i_status - valid pointer to a valid status object.

 i_grp_name - the name of a group.

Coral8 Integration Guide

246

 i_obj_ndx - a valid index of a message in an object (0-based).

 i_msg_name - a name of a message in an object.

 o_val - location where the result is to be written.

Returns: C8_OK on success, C8_FAIL if anything goes wrong.

C8Status C8StatusInfoGetValueByObjectAndMessageIndex (const C8StatusInfo *

i_status,

 const C8Char * i_grp_name, C8UInt i_obj_ndx, C8UInt i_msg_ndx, const C8Char **

o_val);

Purpose: Get a string value of the message. The returned pointer is valid while the pointer

to the status info object remains valid.

Parameters:

 i_status - valid pointer to a valid status object.

 i_grp_name - the name of a group.

 i_obj_ndx - a valid index of a message in an object (0-based).

 i_msg_ndx - a valid index of a message in an object (0-based).

 o_val - location where the result is to be written.

Returns: C8_OK on success, C8_FAIL if anything goes wrong.

C8Status C8StatusInfoGetValueByGroupIndex (const C8StatusInfo * i_status, C8UInt

i_grp_ndx,

 const C8Char * i_obj_name, const C8Char * i_msg_name, const C8Char ** o_val);

Purpose: Get a string value of the message. The returned pointer is valid while the pointer

to the status info object remains valid.

Parameters:

 i_status - valid pointer to a valid status object.

 i_grp_ndx - a valid index of a group (0-based).

 i_obj_name - a name of an object in a group.

 i_msg_name - a name of a message in an object.

 o_val - location where the result is to be written.

Returns: C8_OK on success, C8_FAIL if anything goes wrong.

C8Status C8StatusInfoGetValueByGroupAndMessageIndex (const C8StatusInfo *

i_status,

 C8UInt i_grp_ndx, const C8Char * i_obj_name, C8UInt i_msg_ndx, const C8Char **

o_val);

Coral8 C/C++ SDK

247

Purpose: Get a string value of the message. The returned pointer is valid while the pointer

to the status info object remains valid.

Parameters:

 i_status - valid pointer to a valid status object.

 i_grp_ndx - a valid index of a group (0-based).

 i_obj_name - a name of an object in a group.

 i_msg_ndx - a valid index of a message in an object (0-based).

 o_val - location where the result is to be written.

Returns: C8_OK on success, C8_FAIL if anything goes wrong.

C8Status C8StatusInfoGetValueByGroupAndObjectIndex (const C8StatusInfo * i_status,

 C8UInt i_grp_ndx, C8UInt i_obj_ndx, const C8Char * i_msg_name, const C8Char **

o_val);

Purpose: Get a string value of the message. The returned pointer is valid while the pointer

to the status info object remains valid.

Parameters:

 i_status - valid pointer to a valid status object.

 i_grp_ndx - a valid index of a group (0-based).

 i_obj_ndx - a valid index of a message in an object (0-based).

 i_msg_name - a name of a message in an object.

 o_val - location where the result is to be written.

Returns: C8_OK on success, C8_FAIL if anything goes wrong.

C8Status C8StatusInfoGetValueByGroupAndObjectAndMessageIndex(const C8StatusInfo

* i_status,

 C8UInt i_grp_ndx, C8UInt i_obj_ndx, C8UInt i_msg_ndx, const C8Char ** o_val);

Purpose: Get a string value of the message. The returned pointer is valid while the pointer

to the status info object remains valid.

Parameters:

 i_status - valid pointer to a valid status object.

 i_grp_ndx - a valid index of a group (0-based).

 i_obj_ndx - a valid index of a message in an object (0-based).

 i_msg_ndx - a valid index of a message in an object (0-based).

 o_val - location where the result is to be written.

Returns: C8_OK on success, C8_FAIL if anything goes wrong.

Coral8 Integration Guide

248

C8Status C8StatusInfoGetGroupCount(const C8StatusInfo * i_status, C8UInt * o_cnt);

Purpose: Get the number of groups in the status info object.

Parameters:

 i_status - valid pointer to a valid status object.

 o_cnt - location where the result is to be written.

Returns: C8_OK on success, C8_FAIL if anything goes wrong.

C8Status C8StatusInfoGetGroupName(const C8StatusInfo * i_status, C8UInt i_grp_ndx,

 const C8Char ** o_grp_name);

Purpose: Get the name of a group in the status object.

Parameters:

 i_status valid pointer to a valid status object.

 i_grp_ndx a valid index of a group (0-based).

 o_grp_name location where the result is to be written.

Returns: C8_OK on success, C8_FAIL if anything goes wrong.

C8Status C8StatusInfoGetObjectCount (const C8StatusInfo * i_status,

 const C8Char * i_grp_name, C8UInt * o_cnt);

Purpose: get the number of objects in a group.

Parameters:

 i_status - valid pointer to a valid status object.

 i_grp_name - the name of a group.

 o_cnt - location where the result is to be written.

Returns: C8_OK on success, C8_FAIL if anything goes wrong

C8Status C8StatusInfoGetObjectCountByGroupIndex(const C8StatusInfo * i_status,

 C8UInt i_grp_ndx, C8UInt * o_cnt);

Purpose: Get the number of objects in a group.

Parameters:

 i_status - valid pointer to a valid status object.

 i_grp_ndx - a valid index of a group (0-based).

 o_cnt - location where the result is to be written.

Returns: C8_OK on success, C8_FAIL if anything goes wrong.

C8Status C8StatusInfoGetObjectName (const C8StatusInfo * i_status,

 const C8Char * i_grp_name, C8UInt i_obj_ndx, const C8Char ** o_name);

Purpose: Get the name of an object in a group.

Coral8 C/C++ SDK

249

Parameters:

 i_status - valid pointer to a valid status object.

 i_grp_name - the name of a group.

 i_obj_ndx - a valid index of a message in an object (0-based).

 o_name - location where the result is to be written.

Returns: C8_OK on success, C8_FAIL if anything goes wrong.

C8Status C8StatusInfoGetObjectNameByGroupIndex(const C8StatusInfo * i_status,

 C8UInt i_grp_ndx, C8UInt i_obj_ndx, const C8Char ** o_name);

Purpose: get the name of an object in a group.

Parameters:

 i_status - valid pointer to a valid status object.

 i_grp_ndx - a valid index of a group (0-based).

 i_obj_ndx - a valid index of a message in an object (0-based).

 o_name - location where the result is to be written.

Returns: C8_OK on success, C8_FAIL if anything goes wrong.

C8Status C8StatusInfoGetMessageCount (const C8StatusInfo * i_status,

 const C8Char * i_grp_name, const C8Char * i_obj_name, C8UInt * o_cnt);

Purpose: Get the number of messages in an object.

Parameters:

 i_status valid pointer to a valid status object.

 i_grp_name the name of a group.

 i_obj_name a name of an object in a group.

 o_cnt location where the result is to be written.

Returns: C8_OK on success, C8_FAIL if anything goes wrong.

C8Status C8StatusInfoGetMessageCountByObjectIndex (const C8StatusInfo * i_status,

 const C8Char * i_grp_name, C8UInt i_obj_ndx, C8UInt * o_cnt);

Purpose: Get the number of messages in an object.

Parameters:

 i_status - valid pointer to a valid status object.

 i_grp_name - the name of a group.

 i_obj_ndx - a valid index of a message in an object (0-based).

 o_cnt - location where the result is to be written.

Coral8 Integration Guide

250

Returns: C8_OK on success, C8_FAIL if anything goes wrong.

C8Status C8StatusInfoGetMessageCountByGroupIndex (const C8StatusInfo * i_status,

 C8UInt i_grp_ndx, const C8Char * i_obj_name, C8UInt * o_cnt);

Purpose: get the number of messages in an object.

Parameters:

 i_status - valid pointer to a valid status object.

 i_grp_ndx - a valid index of a group (0-based).

 i_obj_name - a name of an object in a group.

 o_cnt - location where the result is to be written.

Returns: C8_OK on success, C8_FAIL if anything goes wrong.

C8Status C8StatusInfoGetMessageCountByGroupAndObjectIndex(const C8StatusInfo *

i_status,

 C8UInt i_grp_ndx, C8UInt i_obj_ndx, C8UInt * o_cnt);

Purpose: Get the number of messages in an object.

Parameters:

 i_status - valid pointer to a valid status object.

 i_grp_ndx - a valid index of a group (0-based).

 i_obj_ndx - a valid index of a message in an object (0-based).

 o_cnt - location where the result is to be written.

Returns: C8_OK on success, C8_FAIL if anything goes wrong.

C8Status C8StatusInfoGetMessageName (const C8StatusInfo * i_status,

 const C8Char * i_grp_name, const C8Char * i_obj_name, C8UInt i_msg_ndx,

 const C8Char ** o_name);

Purpose: get the name of a message.

Parameters:

 i_status - valid pointer to a valid status object.

 i_grp_name - the name of a group.

 i_obj_name - a name of an object in a group.

 i_msg_ndx - a valid index of a message in an object (0-based).

 o_name - location where the result is to be written.

Returns C8_OK on success, C8_FAIL if anything goes wrong.:

Coral8 C/C++ SDK

251

C8Status C8StatusInfoGetMessageNameByObjectIndex (const C8StatusInfo * i_status,

 const C8Char * i_grp_name, C8UInt i_obj_ndx, C8UInt i_msg_ndx,

 const C8Char ** o_name);

Purpose: get the name of a message.

Parameters:

 i_status - valid pointer to a valid status object.

 i_grp_name - the name of a group.

 i_obj_ndx - a valid index of a message in an object (0-based).

 i_msg_ndx - a valid index of a message in an object (0-based).

 o_name - location where the result is to be written.

Returns: C8_OK on success, C8_FAIL if anything goes wrong.

C8Status C8StatusInfoGetMessageNameByGroupIndex (const C8StatusInfo * i_status,

 C8UInt i_grp_ndx, const C8Char * i_obj_name, C8UInt i_msg_ndx,

 const C8Char ** o_name);

Purpose: get the name of a message.

Parameters:

 i_status valid pointer to a valid status object.

 i_grp_ndx a valid index of a group (0-based).

 i_obj_name a name of an object in a group.

 i_msg_ndx a valid index of a message in an object (0-based).

 o_name location where the result is to be written.

Returns: C8_OK on success, C8_FAIL if anything goes wrong.

C8Status C8StatusInfoGetMessageNameByGroupAndObjectIndex(const C8StatusInfo *

i_status,

 C8UInt i_grp_ndx, C8UInt i_obj_ndx, C8UInt i_msg_ndx, const C8Char ** o_name);

Purpose: get the name of a message.

Parameters:

 i_status - valid pointer to a valid status object.

 i_grp_ndx - a valid index of a group (0-based).

 i_obj_ndx - a valid index of a message in an object (0-based).

 i_msg_ndx - a valid index of a message in an object (0-based).

 o_name - location where the result is to be written.

Returns: C8_OK on success, C8_FAIL if anything goes wrong.

Coral8 Integration Guide

252

Tracer Message API

A stream may contain not only normal data messages, but also "tracer" messages, which may be

used for purposes such as calculating the time required for a message to move through Coral8

Server (from the input stream to the output stream).

Tracer messages are identified by having a message type of C8_MESSAGE_TRACER. For a

brief description of different message types, see Message API.

The Coral8 C/C++ SDK includes functions that allow you to get and set the values of fields in

these tracer messages. You may get or set the tracer:

 CreationUri - The value should be a valid Coral8 HTTP Stream URI e.g.
http://<host>:<port>/Stream/<ws-name>/<program-name>[/<module-

name>]/<stream-name>

 CreationTime - The time at which the tracer message was created.

 CreationFrequency - The frequency (actually the interval (measured in microseconds)

between tracer messages) with which tracer messages are injected into the stream. If there

are no periodic tracers, the frequency is 0. If a tracer source is disconnected, the

frequency is -1.

Below is a description of each of the tracer-related functions in the API:

C8Status C8TracerGetCreationURI(const C8Message* i_msg, const C8Char ** o_res);

Purpose: Get the creation uri field from a Tracer message. The value is represented by a

null-terminated string. The strings returned by this function must be freed by the user

with the C8Free() function.

Parameters:

 i_msg - the message from which you wish to read the Creation URI. The message

must be of type C8_MESSAGE_TRACER.

 o_res - location to which the function should write a pointer to the result.

Returns: C8_OK on success, C8_FAIL if anything goes wrong.

C8Status C8TracerGetCreationTime(const C8Message* i_msg, C8Timestamp* o_res);

Purpose: Get the creation frequency from a Tracer message.

Parameters:

 i_msg - a valid pointer to a message of type C8_MESSAGE_TRACER.

 o_res - location filled with the creation time on success.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8TracerGetCreationFrequency(const C8Message* i_msg, C8Interval* o_res);

Purpose: Get the creation frequency from a Tracer message.

Coral8 C/C++ SDK

253

Parameters:

 i_msg - a valid pointer to a message of type C8_MESSAGE_TRACER.

 o_res - location filled with the creation frequency on success.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8TracerSetCreationURI(C8Message* i_msg, const C8Char * i_val);

Purpose: Set the creation uri field of a Tracer message.

Parameters:

 i_msg - a valid pointer to a message of type C8_MESSAGE_TRACER.

 i_val - pointer to NULL terminated string containing the creation URI

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8TracerSetCreationTime(C8Message* i_msg, C8Timestamp i_val);

Purpose: Set the creation frequency of a Tracer message.

Parameters:

 i_msg - a valid pointer to a message of type C8_MESSAGE_TRACER.

 i_val - creation timestamp.

Returns: C8_OK on success, C8_FAIL otherwise.

C8Status C8TracerSetCreationFrequency(C8Message* i_msg, const C8Interval i_val);

Purpose: Set the creation frequency of a Tracer message.

Parameters:

 i_msg - a valid pointer to a message of type C8_MESSAGE_TRACER.

 i_val - creation frequency.

Returns: C8_OK on success, C8_FAIL otherwise.

User-Defined Functions

Coral8 permits users to write their own User-Defined Functions (UDFs) in C or C++ and then

call those functions from within CCL code.

For example, the user may write a function "foo" that processes an integer value and returns a

single value, and then call that function from a query:

INSERT INTO OutputStream

SELECT foo(InputStream.MyIntegerColumn)

FROM InputStream... ;

Coral8 Integration Guide

254

UDFs: Requirements and Example

Since the server must be able to find the library that contains your User-Defined Function, load

the library into memory, call your UDF, and pass appropriate parameters to the UDF, each UDF

must meet the following requirements:

 The UDF must be written in C or C++. The function names that are externally visible

must use C naming conventions. (C++ name mangling will prevent the code from being

accessible.)

 The UDF implementation must be compiled into a shared library (.so or .dll) for the

specific platform. That library may contain one or more user-defined functions.

 Before the server can call a function, the server must be told the name of the library, the

names of the User-Defined Function(s) in that library, and the data types of the

parameters passed to each function. This information must be stored in an XML file that

the server reads when it starts up. (The format of this file is described in UDFs: XML

Signatures.)

 The UDF must declare appropriate C-language data types that match the CCL data types

of the parameters. For example, if the server calls the UDF with a value of type

TIMESTAMP, the corresponding C-language variable must be of type C8Timestamp.

To write a UDF, you must create the following files:

 A C-language file that contains your User-Defined Function and code to "pack" and

"unpack" values that are stored in a "context" parameter. (This is described in more detail

in Accessing Parameter Values.)

 An XML file with the library name, function name, and parameter types.

Each of these files is described in this document.

UDFs: Packing and Unpacking Parameter Values

In addition to writing the User-Defined Function that does the actual work that you want (e.g. to

return pi), you must also write code to "pack" and "unpack" values and to detect NULL values.

As we saw in the code sample earlier

INSERT INTO OutputStream

SELECT foo(InputStream.MyIntegerColumn)

FROM InputStream... ;

the server may call the UDF with zero or more parameters. Those parameters may be of any of

the data types that CCL supports (INTEGER, FLOAT, STRING, TIMESTAMP, etc.). Although

the function is called with (and returns) a CCL data type (INTEGER, FLOAT, STRING, etc.),

your C-language UDF must pass (and receive) a C data type (int, double, char *, etc.).

Coral8 C/C++ SDK

255

To ensure proper conversion between CCL data types and C data types, and to identify NULL

values, CCL data types are processed and then stored in a single variable-size parameter that is

passed to your UDF. This parameter is called the "context" parameter. Your UDF then calls

library functions that extract the data and return it to you in a C-compatible format. This is called

"Unpacking". When you return a value to the caller, you go through the reverse process; i.e. you

"Pack" the return value by calling a special function that stores the value in a CCL-compatible

format, and set a NULL flag if appropriate.

The UDF does the following:

1. Declares appropriate C-language variables;

2. Checks for NULL values and handles them appropriately;

3. "Unpacks" the input parameters (i.e. reads the "context" parameter and converts the data

from the CCL data types to the C data types);

4. Does the "real work" (e.g. calculates pi, or whatever);

5. "Packs" the return value (i.e. converts the output value from a C-language data type to a

CCL data type and copies that data into the output portion of the "context" parameter);

6. Returns to the caller.

The "context" variable contains a copy of all the individual parameters that are intended for your

UDF. The context variable also stores values that indicate whether each of the input parameters

is NULL.

The context variable is declared as type C8U. Thus your function will declare a single parameter

of type C8Udf. For example:

int foo(C8Udf ctx)

{

/* "Unpack" parameters from foo and store them

 * in local variables.

 */

...

}

An example call to this function looks like:

INSERT INTO OutStream

SELECT WAvg3(var1, weight1, var2, weight2, var3, weight3)...

Note that we used the CCL name (WAvg3), not the C name (weightedAverage3). Note also that

in the CCL code, the name is not case-sensitive. You could use "WAVG3", or "wavg3" as well

as "WAvg3" when calling the function.

Coral8 Integration Guide

256

Example UDF

In this example, we'll create a UDF that calculates the weighted average of 3 values. Here is the

C signature of our user defined function, along with declarations of the local variables that we

will use:

/**

* Calculates a weighted average of 3 values.

* Performs (var1*wt1 + var2*wt2 + var3*wt3)/3.0

*/

void weightedAverage3(C8Udf *ctx)

 float var1; /* first user variable */

 float weight1; /* 2nd user var: weight for var1 */

 float var2; /* 3rd user var */

 float weight2; /* 4th user var */

 float var3; /* ... */

 float weight3);

The user must provide an xml implementation of this signature, and must also describe the

parameters that will be passed from the CCL statement. The XML would look like:

<UserDefinedFunctions

 Name="TestingUserDefinedFunctions"

 Type="ns1:UserDefinedFunctionType"

 xmlns="http://www.coral8.com/udf/2005/04/"

 xmlns:udf="http://www.coral8.com/udf/2005/04/"

 xmlns:ns1="http://www.coral8.com/cpx/2005/04/"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

>

<Description>Coral8 User Function Definition test cases

</Description>

<Vendor>Coral8 Inc.</Vendor>

<Version>1.0</Version>

<Functions>

 <!-- Name : Name in C code -->

 <!-- Library : Library that the C func is in -->

 <!-- CclName : Name used in call from in CCL -->

 <!-- IsAggregator : This function is not an aggregator -->

 <Function Name="weightedAverage3"

 Library="user_function_lib"

 CclName="WAvg3">

 <Description>

 XML to describe a C function that performs a

 weighted average of 3 values.

 </Description>

Coral8 C/C++ SDK

257

 <Input>

 <Parameter Name="var1" Type="C8Float"/>

 <Parameter Name="weight1" Type="C8Float"/>

 <Parameter Name="var2" Type="C8Float"/>

 <Parameter Name="weight2" Type="C8Float"/>

 <Parameter Name="var3" Type="C8Float"/>

 <Parameter Name="weight3" Type="C8Float"/>

 </Input>

 <Output>

 <Parameter Type="C8Float"/>

 </Output>

 </Function>

 </Functions>

</UserDefinedFunctions>

This xml file is placed in the plugins subdirectory of the server directory and in the plugins

subdirectory of the Studio directory. See Compiling a UDF and Putting It in the Correct

Directory for more details.

Please note the following points:

1. You must specify both the name of the C function and the name that will be used by CCL

statements. These names are usually, but not necessarily, the same.

A. The name of the C function is specified in the line

Function Name="weightedAverage3"

and is case-sensitive, just as any C code is case-sensitive.

B. The name of the function called from CCL is specified in the line

CclName="WAvg3"

and is not case-sensitive, just as most CCL code is not case-sensitive.

2. The "Library" is the name of the file that contains the compiled UDF code. In the

example above, the library name is

"user_function_lib"

When Coral8 loads the library code, it will look for a file with this name and with an

extension that is appropriate for the operating system (e.g. .lib, .dll, .so, etc.).

3. For each parameter, the file specifies the name and the data type.

4. The data type of the return value (output parameter) is also specified.

5. This UDF was not an aggregator function, so we omitted the optional IsAggregator

portion of the function specification.

An example call to this function looks like:

Coral8 Integration Guide

258

INSERT INTO OutStream

SELECT WAvg3(var1, weight1, var2, weight2, var3, weight3)...

Note that we used the CCL name (WAvg3), not the C name (weightedAverage3). Note also that

in the CCL code, the name is not case-sensitive. Your CCL statement could use "WAVG3", or

"wavg3" as well as "WAvg3" when calling the function.

Sample C code containing the UDF is below. A file with this code is included in the installation,

under

Coral8Repository/version/examples/FeatureExamples/FunctionsAndOperat

ors/UserDefinedFunctions.

#include <stdio.h>

#include "c8udf.h"

#if defined(_MSC_VER)

// Exporting functions from dll

#if defined(user_function_lib_EXPORTS)

#define USER_FUNCTION_EXPORT __declspec(dllexport)

#else

#define USER_FUNCTION_EXPORT __declspec(dllimport)

#endif //defined(user_function_lib_EXPORTS)

#else // defined(_MSC_VER)

#define USER_FUNCTION_EXPORT

#endif // defined(_MSC_VER)

extern "C" {

USER_FUNCTION_EXPORT void weightedAverage3(C8Udf* ctx);

}; // extern "C"

/* --

* Return the weighted average of 3 float values.

* --

*/

void weightedAverage3(C8Udf* ctx)

{

 C8Float value; /* The output value that we return. */

 C8Float var1, weight1;

 C8Float var2, weight2;

 C8Float var3, weight3;

 int i = 0; /* Used when looping thru the NULL indicators. */

 /* If any of the input parameters are NULL, return NULL. */

 for (i = 0; i <= 5; i++) {

 if (C8GetIsNull(ctx, (C8UInt) i) == C8_TRUE) {

 C8SetOutputIsNull(ctx);

 return;

 }

 }

 /* "Unpack" the actual param values intended for the UDF */

Coral8 C/C++ SDK

259

 var1 = C8GetFloat(ctx, 0);

 weight1 = C8GetFloat(ctx, 1);

 var2 = C8GetFloat(ctx, 2);

 weight2 = C8GetFloat(ctx, 3);

 var3 = C8GetFloat(ctx, 4);

 weight3 = C8GetFloat(ctx, 5);

 /* Do the real work. */

 value = (var1*weight1 + var2*weight2 + var3*weight3)/3.0;

 /* "Pack" the output value into the context variable. */

 C8SetOutputFloat(ctx, value);

 return;

}

The user may, of course, write any C function at all and may call any other C routines. For the

above example, this may involve placing the parameters in an array and using the array or any

other useful technique.

Notice the various "#if" statements necessary to externalize symbols on Windows and UNIX-like

operating systems.

In our examples, we used a single function to do the real work (e.g. return the weighted average

of some values) and to pack and unpack the parameter values. If you already have a function

foo() that you would like to use without modifying, then you can simply write an intermediate

function that unpacks the values, calls foo(), packs the result, and returns. When you use an

intermediate function, the Coral8 Server calls the intermediate function, and the intermediate

function calls your UDF. Since the Coral8 Server actually calls the intermediate function, the

XML file that describes the UDF must have the name of the intermediate function.

User-Defined Aggregate Functions

For an aggregate function, the user must have a place to store her data in between invocations of

the function. For example, if you write your own "SUM()" function, you must store the previous

subtotal from the previous calls to the function and then add the new value from the current call

to the function.

Since an aggregate function may be called by many queries at overlapping times, you cannot use

local storage space or global variables to store values such as subtotals.

Thus the user's aggregate function must work with the server to store data in a place that will

persist after the UDF returns from its call. Coral8 provides a pair of functions that allow you to

store and retrieve data. The function

void C8SetState(C8Udf *ctx, const void *data, C8UInt data_size)

allows you to pass a sequence of bytes to the server and store those bytes. The complementary

function

const void *C8GetState(C8Udf *ctx, C8UInt *data_size)

Coral8 Integration Guide

260

allows your UDF to retrieve bytes that it stored previously. The bytes stored and retrieved are

specific to a particular occurrence of a particular function in a particular statement. If your Query

Module has the following statements:

...

SELECT aggregate_foo(col1)

FROM Window1

...

SELECT aggregate_foo(col2)

FROM Window2

then each "aggregate_foo" will have a unique internal identifier that the server uses as part of the

"context" variable passed to your function. The context variable then allows the server to know

which aggregate_foo's bytes to return when the UDF calls

C8GetState(ctx, ...)

The C8GetState() and C8SetState() functions are documented in more detail later in this chapter.

An aggregate function operates on a "window" (e.g. the window created by a "KEEP 3 ROWS"

or "KEEP 10 MINUTES" clause). Your UDF must take into account not only newly arriving

rows, but also expiring rows. To do this, your aggregate UDF will usually be called twice each

time that a new record arrives. Your aggregate UDF will be called once with the value of the

new record and once with the value of the expired record. Inside your aggregate UDF, you will

distinguish between the new and displaced values by calling a function named

C8IsPositiveMessage() or C8IsNegativeMessage().

Below is a sample of code that shows typical usage of these aggregate-related functions. The

sample shows an aggregate UDF that performs the same work as the pre-defined AVG()

function.

...

typedef struct _AvgData {

 C8Int m_sum;

 int m_count;

} AvgData;

...

AvgData initial_data = { 0, 0 };

C8UInt size = 0;

struct AvgData *data_ptr = NULL;

/* Get state (if any) from previous calls. */

data_ptr = (AvgData*)C8GetState(ctx, &size);

// If there is no state from previous calls, then

// this is probably the first invocation and we must

// allocate memory.

if (data_ptr == NULL || (size != sizeof(AvgData))) {

 data_ptr = &initial_data;

}

Coral8 C/C++ SDK

261

/* Update the sum and count */

if(C8IsPositiveMessage(ctx)) {

 data_ptr->m_sum += C8GetInt(ctx, 0);

 data_ptr->m_count++;

} else {

/* Negative message - a row just exited the window */

 data_ptr->m_sum -= C8GetInt(ctx, 0);

 data_ptr->m_count--;

}

/* Set the result */

C8SetOutputFloat(ctx,

(C8Float)(data_ptr->m_sum)/data_ptr->m_count);

/* Save state */

C8SetState(ctx, data_ptr, sizeof(AvgData));

return;

...

Please note the following:

 The initial_data variable is allocated as a local, non-static variable. This is the variable

that the function uses to store data if this is the first time that the function has been called.

 When data is passed to the C8SetState() function, C8SetState() copies that data from the

user's local memory (e.g. init_data) to persistent memory that the server allocates. The

storage allocated locally (e.g. init_data) does not itself persist after the UDF returns to the

caller. Only a copy of the contents persists. The UDF is responsible for deallocating any

memory that the UDF allocated, and the server is responsible for deallocating any

memory that the server allocated. The user must not try to deallocate any memory (such

as the memory returned by C8GetState()) that was allocated by the server.

You must also set the IsAggregator attribute to "true" in the .udf file (the XML file that describes

the function).

You may want to look at the sample code for the runningAverage() function, located in the

Coral8 Repository, under

examples/FeatureExamples/FunctionsAndOperators/UserDefinedFunctions/src.

UDFs: XML Signatures

Coral8 software requires the C function description to be in XML. The XML is stored in a file

with the extension ".udf", and a copy of that file is put in the "plugins" directory of both the

server and Studio. See Compiling a UDF and Putting It in the Correct Directory for details about

where to put this XML signature file.

This file's contents are similar to the following:

Coral8 Integration Guide

262

<!-- Header information -->

<UserDefinedFunctions

 Name="TestingUserDefinedFunctions"

 Type="ns1:UserDefinedFunctionType"

 xmlns="http://www.coral8.com/udf/2005/04/"

 xmlns:udf="http://www.coral8.com/udf/2005/04/"

 xmlns:ns1="http://www.coral8.com/cpx/2005/04/"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 >

 <!-- The "Functions" section contains descriptions of 1 or

 more functions.

 -->

 <Functions>

 <!-- There is a "Functions" section for each function. -->

 <Function>

 ... info about the specific function goes here ...

 </Function>

 </Functions>

</UserDefinedFunctions>

This "header" information may change from version to version. We recommend that you copy

one of the .udf files that we provide, remove all of the "Function" sections, and then add

descriptions for one or more functions.

For each function, the translation of the C function to Coral8 user defined function signatures is

straightforward.

For the example above:

1. void weightedAverage3(float var1, /* first user variable */

2. float weight1, /* 2nd user var: weight for var1 */

3. float var2, /* 3rd user var */

4. float weight2, /* 4th user var */

5. float var3, /* ... */

6. float weight3);

The user-defined xml is similar to the following:

2. <Functions>

3. <Function Name="weightedAvg3"

 InitFunctionName="weightedAvg3Init"

 ShutdownFunctionName="weightedAvg3Shutdown"

 Library="user_function_lib"

 CclName="WAvg3"

 IsAggregator="false">

4. <Input>

5. <Parameter Name="var1" Type="C8Float"/>

6. <Parameter Name="weight1" Type="C8Float"/>

Coral8 C/C++ SDK

263

7. <Parameter Name="var2" Type="C8Float"/>

8. <Parameter Name="weight2" Type="C8Float"/>

9. <Parameter Name="var3" Type="C8Float"/>

10. <Parameter Name="weight3" Type="C8Float"/>

11. </Input>

12. <Output>

13. <Parameter Name="result" Type="C8Float"/>

14. </Output>

15. </Function>

16. </Functions>

For each function described in the .udf file, the initial function element is always named

"Function" and has the following attributes:

 The "Name" attribute of Function provides the name of the function that will be called

from the user-designated "Library". This name is case-sensitive. If you set session state in

an initialization function, use C8GetSessionState to retrieve it.

 The optional "InitFunctionName" attribute identifies a function that will be called on

initialization. Use the initialization function to perform resource-intensive tasks, like

reading from disk, and to set session state (C8SetSessionState) for calls to the function

identified with the Name attribute.

 The optional "ShutdownFunctionName" attribute identifies a function that will be called

on shutdown. If you have set session state in an initialization function, you must destroy

the session state (C8SetSessionState) in the shutdown function.

 The "Library" should be the name of the .dll containing the user function. For UNIX-like

operating systems, this will be a .so library. Note that on UNIX-like operating systems,

you should not preface the library name with "lib". Note that the extension .dll or .so is

NOT included as part of the library name in the xml file. (You may use the same XML

file for both UNIX-like operating systems and Microsoft Windows environments without

changing the library name.)

 The CclName is the name that will be used in CCL queries (e.g. "select FOO() ... from

..."). The CclName is case insensitive.

 The IsAggregator attribute should be true for aggregate functions and false for other

functions.

The "Functions" element of the XML file may describe an arbitrary number of functions. This

convenience allows grouping of related functions and/or library modules. There may be an

arbitrary number of function modules in a library. In the XML file, each function should be

described inside its own "<Function> ... </Function>" element. For example:

<Functions>

 <Function Name="foo" ...>

 ...

Coral8 Integration Guide

264

 </Function>

 <Function Name="bar" ...>

 ...

 </Function>

</Functions>

The "Input" element inside each "Function" element must contain a list of all input parameters.

Only one "Input" element is permitted per function.

Each "Parameter" element inside the "Input" element includes two attributes: the parameter

"Name" and "Type". The "Name" is arbitrary, but should reflect the parameter usage. The

"Name" attribute is used for error reporting if there is a type mismatch for any parameters at

runtime. These names are passed to the user for similar uses.

The Coral8 software uses strong type checking to help ensure correctness of data at runtime. The

"Type" of each parameter supports this requirement. The types available map directly into C base

types via these typedefs:

typedef int C8Bool;

typedef char C8Char;

typedef char* C8CharPtr;

typedef void* C8BlobPtr;

typedef void C8Blob;

// For Microsoft Windows

#if defined(_MSC_VER)

typedef __int32 C8Int;

typedef unsigned __int32 C8UInt;

typedef __int64 C8Long;

typedef unsigned __int64 C8ULong;

typedef double C8Float;

typedef __int64 C8Timestamp;

typedef __int64 C8Interval;

typedef size_t C8SizeType;

#else /* defined(_MSC_VER) */

typedef int32_t C8Int;

typedef u_int32_t C8UInt;

typedef int64_t C8Long;

typedef u_int64_t C8ULong;

typedef double C8Float;

typedef int64_t C8Timestamp;

typedef int64_t C8Interval;

typedef size_t C8SizeType;

#endif /* defined(_MSC_VER) */

Only the above typedef names are supported in the "Type" attribute. Throughout the C code for

your UDF, you should use the typedef'd names (e.g. "C8Float") rather than the underlying C

types (e.g. "double").

Coral8 C/C++ SDK

265

The "output" element at line 12 of the sample XML file contains only a single "Parameter" field

and describes the function output in the same manner as input parameters. The "Name" attribute

is optional. It is not currently possible to return more than a single value from a user defined

function.

UDFs: Interface Code

The function will have the following signature:

void weightedAverage3(C8Udf *ctx);

The user must use accessor functions to unpack the parameters in the call, and then call the

actual requested function. The accessor functions are easy to use and reflect the user's parameter

typing.

The context structure allows for access to type information and input/output values, NULL

indicators, and meta-information about the function call. The user may choose to ignore meta-

information as this contains only supporting information such as parameter names and types. The

user must, however, extract the parameters from the input parameter list. Depending upon the

application, the user should test each parameter for the NULL status. If a parameter is NULL, the

parameter value is undefined.

Coral8 passes data by value as in C. Input values should not be modified or freed; they are read-

only values. Memory allocated by Coral8 must be freed by Coral8. Memory allocated by the user

must be allocated by the user.

After the user routine finishes, the output value should either contain a value or be set to NULL.

Metadata

const C8Char *C8GetFunctionName(C8Udf *ctx)

Purpose: returns the name of the function as defined in the UDF XML file.

Parameters:

 ctx - a "context" object that contains information about the parameters passed to

the UDF.

Returns: returns the name of the function as defined in the UDF XML file. The return

value is a pointer. The user should not change the memory that the pointer points to, and

the user should not C8Free() this pointer.

const C8Char *C8GetLibraryName(C8Udf *ctx)

Purpose: returns the name of the library as defined in the UDF XML file.

Parameters:

Coral8 Integration Guide

266

 ctx - a "context" object that contains information about the parameters passed to

the UDF.

Returns: returns the name of the library as defined in the UDF XML file. The return

value is a pointer. The user should not change the memory that the pointer points to, and

the user should not C8Free() this pointer.

const C8UInt C8GetNumberInputParameters(C8Udf *ctx)

Purpose: given a context, ctx, return the number of input parameters. This may be used

for loops to fill arrays, error checking, etc.

Parameters:

 ctx - a "context" object that contains information about the parameters passed to

the UDF.

Returns: the number of input parameters stored in the context object.

const C8Char *C8GetInputType(C8Udf *ctx, C8UInt ndx)

Purpose: given a context, ctx, and a parameter index, provide the type string for that

parameter as provided in the Parameter attribute in the UDF XML file. This may be used

in error messages or type checking.

Parameters:

 ctx - a "context" object that contains information about the parameters passed to

the UDF.

 ndx - indicates which of the parameters in the context object you want to get the

type string for.

Returns: the type string for that parameter as provided in the Parameter attribute in the

UDF XML file. The return value is a pointer. The user should not change the memory

that the pointer points to, and the user should not C8Free() this pointer.

const C8_TYPES C8GetInputEnumType(C8Udf *ctx, C8UInt ndx)

Purpose: Given a context, ctx, and a parameter index, provide the type string for that

parameter as provided in the Parameter attribute in the UDF XML file. This may be used

in error messages or type checking. For definitions of the valid values of the enumeration,

see the definition of _C8_TYPES in the file c8types.h.

Parameters:

 ctx - a "context" object that contains information about the parameters passed to

the UDF.

 ndx - indicates which of the parameters in the context object you want to get the

type string for.

Coral8 C/C++ SDK

267

Returns: the type string for the specified parameter as provided in the Parameter attribute

in the UDF XML file.

const C8Char *C8GetInputName(C8Udf *ctx, C8UInt ndx)

Purpose: given a context, ctx, and a parameter index, provide the name of that parameter

as provided in the Parameter attribute in the UDF XML file. This may be used in error

messages or type checking.

Parameters:

 ctx - a "context" object that contains information about the parameters passed to

the UDF.

 ndx - indicates which of the parameters in the context object you want to get the

type string for.

Returns: the name of that parameter as provided in the Parameter attribute in the UDF

XML file. The user should not change the memory that the pointer points to, and the user

should not C8Free() this pointer.

const C8Char *C8GetOutputType(C8Udf *ctx)

Purpose: Given a context, ctx, provide the type string for the output parameter. This may

be used in error messages or type checking. .

Parameters:

 ctx - a "context" object that contains information about the parameters passed to

the UDF.

Returns: provide the type string for the output parameter. The return value is a pointer.

The user should not change the memory that the pointer points to, and the user should not

C8Free() this pointer.

const enum C8_TYPES C8GetOutputEnumType(C8Udf *ctx)

Purpose: Given a context, ctx, and a parameter index, provide the type enumeration for

that parameter. This may be used in error messages or type checking.

Parameters:

 ctx - a "context" object that contains information about the parameters passed to

the UDF.

Returns: the type enumeration for that parameter.

const C8Char *C8GetOutputName(C8Udf *ctx)

Purpose: given a context, ctx, provide the string for the output parameter name. This may

be used in error messages or type checking. If the user has not provided an output name

in the UDF XML, then this string will be "" (i.e. the empty string).

Parameters:

Coral8 Integration Guide

268

 ctx - a "context" object that contains information about the parameters passed to

the UDF.

Returns: the string for the output parameter name. If the user has not provided an output

name in the UDF XML, then this string will be "" (i.e. the empty string). The return value

is a pointer. The user should not change the memory that the pointer points to, and the

user should not C8Free() this pointer.

void C8SetSessionState(C8Udf *ctx, void *data)

Purpose: This stores the "session state", which is a set of user-defined information that

the user wants to make available across multiple invocations of the UDF's "execute()"

function. Although the session state is retained by the Coral8 engine, the user is

responsible for populating and updating the session state. The session state does not

contain a size because the session is not persisted over restarts. A session state should

thus be created in a user-defined class allocated with the new operator or in a user-

defined struct using C8Malloc() or a similar heap-based allocation. In particular, session

structures must not be defined on the stack as the stack is popped each time the function

exits. When you are done with the session state, free it. For tips and warnings about

allocating and de-allocating memory, see the section titled Notes about Allocating and

Deallocating Memory in In-process Code

In the shutdown() callback function, the session state should be destroyed.

Note that storing and retrieving session information is optional.

Parameters:

 ctx - a "context" object that contains information about the parameters passed to

the UDF.

 data - a pointer to the "state" information that the user would like to be able to see

the next time that the adapter's execute() function is called.

Returns: nothing.

void * C8GetSessionState(C8Udf *ctx)

Purpose: given an pointer to a C8Udf object, return the "session state" information

associated with that instance of the UDF. On the initial call to C8GetSessionState(), a

null pointer is returned. This indicates no session exists, so the user is responsible for

creating a session. The session state is usually constructed by a call to C8Malloc() and

populating it with a user-defined structure. Using a static or global for session states is

not thread safe and the consequences are undefined.

Parameters:

 ctx - a "context" object that contains information about the parameters passed to

the UDF.

Coral8 C/C++ SDK

269

Returns: a pointer to session state information. The exact structure of this information is

defined by the user; thus the function simply returns a pointer to the memory without

"interpreting" that memory in any way.

Accessing Parameter Values

C8Float C8GetFloat(C8Udf *ctx, C8UInt ndx)

Purpose: given a context, ctx, and a parameter index, provide the floating point value of

that parameter.

Parameters:

 ctx - a "context" object that contains information about the parameters passed to

the UDF.

 ndx - indicates which parameter to get the value of. The first parameter is

parameter 0.

Returns: the floating point value of that parameter.

C8Int C8GetInt(C8Udf *ctx, C8UInt ndx)

Purpose: given a context, ctx, and a parameter index, provide the integer value of that

parameter.

Parameters:

 ctx - a "context" object that contains information about the parameters passed to

the UDF.

 ndx - indicates which parameter to get the value of. The first parameter is

parameter 0.

Returns: the integer value of the specified parameter.

C8Long C8GetLong(C8Udf *ctx, C8UInt ndx)

Purpose: given a context, ctx, and a parameter index, provide the long value of that

parameter.

Parameters:

 ctx - a "context" object that contains information about the parameters passed to

the UDF.

 ndx - indicates which parameter to get the value of. The first parameter is

parameter 0.

Returns: the long value of that parameter.

const C8Char *C8GetCharPtr(C8Udf *ctx, C8UInt ndx)

Coral8 Integration Guide

270

Purpose: given a context, ctx, and a parameter index, provide the C8Char pointer value of

that parameter. C8Char pointer corresponds to the CCL "STRING" data type. The return

value of this accessor function is a pointer to a normal C string, i.e. a sequence of ASCII

characters terminated with a 0 ('\0').

Parameters:

 ctx - a "context" object that contains information about the parameters passed to

the UDF.

 ndx - indicates which parameter to get the value of. The first parameter is

parameter 0.

Returns: the C8Char pointer value of that parameter. C8Char pointer corresponds to the

CCL "STRING" data type. The return value of this accessor function is a pointer to a

normal C string, i.e. a sequence of ASCII characters terminated with a 0 ('\0').

Note that the server (not the UDF) allocated the memory for this string, and

therefore the server (not the UDF) is responsible for freeing the memory for this

string. Do not modify or free this string, or change the value of the C8Char

pointer (e.g. to point to something else).

C8Timestamp C8GetTimestamp(C8Udf *ctx, C8UInt ndx)

Purpose: given a context, ctx, and a parameter index, provide the timestamp value of that

parameter. Coral8 timestamps are in microsecond units.

Parameters:

 ctx - a "context" object that contains information about the parameters passed to

the UDF.

 ndx - indicates which parameter to get the value of. The first parameter is

parameter 0.

Returns: the timestamp value of the specified parameter. Coral8 timestamps are in

microsecond units.

C8Interval C8GetInterval(C8Udf *ctx, C8UInt ndx)

Purpose: Given a context, ctx, and a parameter index, provide the interval value of that

parameter. Coral8 intervals are in microsecond units.

Parameters:

 ctx - a "context" object that contains information about the parameters passed to

the UDF.

 ndx - indicates which parameter to get the value of. The first parameter is

parameter 0.

Returns: the interval value of that parameter. Coral8 intervals are in microsecond units.

Coral8 C/C++ SDK

271

C8Bool C8GetBool(C8Udf *ctx, C8UInt ndx)

Purpose: given a context, ctx, and a parameter index, provide the boolean value of that

parameter. Valid C8Boolean values (C8_TRUE and C8_FALSE) are #defined in the

c8udf.h file.

Parameters:

 ctx - a "context" object that contains information about the parameters passed to

the UDF.

 ndx - indicates which parameter to get the value of. The first parameter is

parameter 0.

Returns: the boolean value of that parameter. Valid C8Boolean values (C8_TRUE and

C8_FALSE) are #defined in the c8udf.h file.

C8Bool C8GetIsNull(C8Udf *ctx, C8UInt ndx)

Purpose: Given a context, ctx, and a parameter index, return the NULL status for that

ndx'th parameter. A return value of C8_FALSE means a non-NULL value is being

passed, and a value of C8_TRUE means a NULL is being passed. If a NULL is passed,

the parameter value is undefined.

Parameters:

 ctx - a "context" object that contains information about the parameters passed to

the UDF.

 ndx - indicates which parameter to get the value of. The first parameter is

parameter 0.

Returns: C8_TRUE if a NULL is being passed; C8_FALSE if a non-NULL value is

being passed.

const C8Blob *C8GetBlob(C8Udf *ctx, C8UInt ndx)

Purpose: given a context, ctx, and a parameter index, return a pointer to the BLOB value

of that parameter. If the BLOB is NULL, the function will return 0. If the BLOB is

empty, the function will return a non-zero pointer, and the length of the BLOB (returned

by the C8GetBlobLength() function) will be 0.

Parameters:

 ctx - a "context" object that contains information about the parameters passed to

the UDF.

 ndx - indicates which parameter to get the value of. The first parameter is

parameter 0.

Returns: a pointer to a BLOB. The value is a "raw" BLOB (as opposed to a hex string or

a base64 string). For an explanation of raw vs. hex string vs. base64 string formats, see

Data Types and Subroutines for UDFs and In-process Adapters.

Coral8 Integration Guide

272

The return value is a pointer. The user should not change the memory that the

pointer points to, and the user should not C8Free() this pointer.

C8Char *C8GetBlobBase64String(C8Udf *ctx, C8UInt ndx)

Purpose: given a context, ctx, and a parameter index, return a pointer to that parameter's

BLOB value in the form of a Base64 String. (For information about Base64 String

format, see Data Types and Subroutines for UDFs and In-process Adapters.) If the BLOB

is NULL, the function will return 0. If the BLOB is empty, the function will return a non-

zero pointer, and the length of the BLOB (returned by the C8GetBlobLength() function)

will be 0.

Parameters:

 ctx - a "context" object that contains information about the parameters passed to

the UDF.

 ndx - indicates which parameter to get the value of. The first parameter is

parameter 0.

Returns: a pointer to a BLOB in Base64 String format. (For an explanation of raw vs. hex

string vs. base64 string formats, see Data Types and Subroutines for UDFs and In-

process Adapters.)

The return value is a pointer. The user should not change the memory that the

pointer points to, and the user should not C8Free() this pointer.

C8UInt C8GetBlobLength(C8Udf *ctx, C8UInt ndx)

Purpose: given a context, ctx, and a parameter index, return the length of the BLOB (in

bytes) of that parameter. A return value of zero indicates either that the BLOB is NULL

or that the length of the BLOB is zero.

To distinguish between these 2 cases (NULL vs. 0 length), you can do either of the

following:

 Call C8GetIsNull() to determine whether the BLOB is NULL.

 Check whether the pointer returned by C8GetBlob() is 0 (meaning that the BLOB

is NULL) or non-zero (meaning that the BLOB is non-NULL).

Parameters:

 ctx - a "context" object that contains information about the parameters passed to

the UDF.

 ndx - indicates which parameter to get the value of.

Returns: the length of the BLOB. If the parameter is not of type BLOB, the server will

issue an error message and the return value of the function is undefined.

Coral8 C/C++ SDK

273

C8Char *C8GetBlobHexString(C8Udf *ctx, C8UInt ndx)

Purpose: given a context, ctx, and a parameter index, return a pointer to the hexadecimal

representation of the BLOB value. The hexadecimal string will consist only of the

characters 0..9a..f, with no line breaks or other whitespace. The length of the returned

string is exactly 1 + 2*C8GetBlobLength() bytes (including the string terminator).

Parameters:

 ctx - a "context" object that contains information about the parameters passed to

the UDF.

 ndx - indicates which parameter to get the value of.

Returns: a pointer to a copy of the BLOB in HexString format. (For an explanation of

raw vs. hex string vs. base64 string formats, see Data Types and Subroutines for UDFs

and In-process Adapters.)

The user must C8Free() the returned pointer or a memory leak will occur.

C8Char *C8GetAsStringXml(C8Udf *ctx, C8UInt ndx)

Purpose: Given a context, ctx, and a parameter index, return a pointer to a string

containing the XML value.

Parameters:

 ctx - a "context" object that contains information about the parameters passed to

the UDF.

 ndx - indicates which parameter to get the value of. The first parameter is

parameter 0.

Returns: a pointer to the XML field as a string.

The user must C8Free() the returned pointer or a memory leak will occur.

After the user has evaluated the function, the user should use an output accessor function to

return the value to the Coral8 software. The output accessor functions are:

void C8SetOutputInt(C8Udf *ctx, C8Int value)

Purpose: Given a context ctx and a value, place the value so that Coral8 can access the

value.

Parameters:

 ctx - a "context" object that contains information about the parameters passed to

the UDF.

Coral8 Integration Guide

274

 value - the value to return.

Returns: nothing.

void C8SetOutputLong(C8Udf *ctx, C8Long value);

Purpose: Given a context ctx and a value, place the value so that Coral8 can access the

value.

Parameters:

 ctx - a "context" object that contains information about the parameters passed to

the UDF.

 value - the value to return.

Returns: nothing.

void C8SetOutputFloat(C8Udf *ctx, C8Int value);

Purpose: Given a context ctx and a value, place the value so that Coral8 can access the

value.

Parameters:

 ctx - a "context" object that contains information about the parameters passed to

the UDF.

 value - the value to return.

Returns: nothing.

void C8SetOutputTimestamp(C8Udf *ctx, C8Timestamp value);

Purpose: Given a context ctx and a value, place the value so that Coral8 can access the

value.

Parameters:

 ctx - a "context" object that contains information about the parameters passed to

the UDF.

 value - the value to return.

Returns: nothing.

void C8SetOutputInterval(C8Udf *ctx, C8Interval value);

Purpose: Given a context ctx and a value, place the value so that Coral8 can access the

value.

Parameters:

 ctx - a "context" object that contains information about the parameters passed to

the UDF.

 value - the value to return.

Coral8 C/C++ SDK

275

Returns: nothing.

void C8SetOutputBool(C8Udf *ctx, C8Bool value)

Purpose: Given a context ctx and a value, place the value so that Coral8 can access the

value.

Parameters:

 ctx - a "context" object that contains information about the parameters passed to

the UDF.

 value - the value to return.

Returns: nothing.

void C8SetOutputCharPtr(C8Udf *ctx, C8CharPtr value)

Purpose: Given a context ctx and a value, place the value so that Coral8 can access the

value.

The second parameter of this function is a STRING (C8CharPtr). Coral8 will copy the

string to its own internal buffer. The user may then free or delete the string as desired.

For example, your code might look like:

char *ErrorStr1 = NULL;

ErrorStr1 = (char *) malloc(MaxErrorMsgSize);

sprintf(ErrorStr1, "Error...", ...);

C8SetOutputCharPtr(ctx, (C8CharPtr) ErrorStr1);

free(ErrorStr1);

Parameters:

 ctx - a "context" object that contains information about the parameters passed to

the UDF.

 value - the value to return.

Returns: nothing.

void C8SetOutputBlob(C8Udf *ctx, const C8Blob *blob, const C8UInt blob_length)

Purpose: Given a context ctx and a BLOB of length blob_length, return the BLOB as the

output value. The BLOB value must be a byte array of blob_length bytes. The BLOB is

copied to an internal Coral8 buffer. (Thus you can and should deallocate your copy after

C8SetOutputBlob() returns.)

Parameters:

 ctx - a "context" object that contains information about the parameters passed to

the UDF.

 blob - the BLOB that you want to return. The BLOB must be a "raw" BLOB. (For

an explanation of raw vs. hex string vs. base64 string formats, see Data Types and

Subroutines for UDFs and In-process Adapters.)

Coral8 Integration Guide

276

 blob_length - the length of the BLOB in bytes.

Returns: nothing.

void C8SetOutputBlobBase64String(C8Udf *ctx, const C8Char *base64_string)

Purpose: Given a context ctx and a BLOB in Base64 String format, return the BLOB as

the output value. (For information about Base64 String format, see Data Types and

Subroutines for UDFs and In-process Adapters.) The BLOB is copied to an internal

Coral8 buffer. (Thus you can and should deallocate your copy after

C8SetOutputBlobBase64String() returns.)

Parameters:

 ctx - a "context" object that contains information about the parameters passed to

the UDF.

 base64_string - the BLOB (in Base64 String format) that you want to return. (For

an explanation of raw vs. hex string vs. base64 string formats, see Data Types and

Subroutines for UDFs and In-process Adapters.)

Returns: nothing.

void C8SetOutputIsNull(C8Udf *ctx)

Purpose: given a context ctx, the output value is set to NULL. Any other output values

will be ignored if this function is used.

Parameters:

 ctx - a "context" object that contains information about the parameters passed to

the UDF.

Returns: nothing.

Functions Primarily for Aggregator UDFs

The following functions are used primarily or exclusively in aggregator UDFs:

C8Bool C8IsPositiveMessage(C8Udf *ctx)

Purpose: indicates that the message has entered the window (i.e. is a "positive" message).

If so, the user should add the message to the aggregation.

Parameters:

 ctx - a "context" object that contains information about the parameters passed to

the UDF.

Returns: C8_TRUE if the message is positive. C8_FALSE otherwise.

C8Bool C8IsNegativeMessage(C8Udf *ctx)

Coral8 C/C++ SDK

277

Purpose: indicates that the message has exited the window (i.e. is a "negative" message).

If so, the user should subtract the message to the aggregation.

Parameters:

 ctx - a "context" object that contains information about the parameters passed to

the UDF.

Returns:

void C8SetState(C8Udf *ctx, const void *data, C8UInt data_size)

Purpose: save the user-defined data structure of data_size bytes. This function copies

your data into memory allocated by the server. This memory will persist after your UDF

has returned. You may retrieve the saved memory by using the C8GetState() function.

Parameters:

 ctx - a "context" object that contains information about the parameters passed to

the UDF.

 data - the data that you want to save as state information.

 data_size - the number of bytes of data you are saving.

Returns: nothing.

const void *C8GetState(C8Udf *ctx, C8UInt *data_size)

Purpose: obtain the current state. The return value has type "void * " and should be cast

to the user-defined data structure and the data_size pointer will contain the number of

bytes in the data structure. The return value is a pointer. The user should not change the

memory that the pointer points to, and the user should not C8Free() this pointer.

Parameters:

 ctx - a "context" object that contains information about the parameters passed to

the UDF.

 data_size - a pointer to a location into which the function can insert the number of

bytes retrieved.

Returns: a pointer to the memory that was retrieved.

Memory Management API

The memory management API is the same for in-process and out-of-process operations. See

Memory Management API. Some special cautions apply when these are used with in-process

operations. See Notes about Allocating and Deallocating Memory in In-process Code.

Coral8 Integration Guide

278

Compiling a UDF and Putting It in the Correct Directory

The user must code the UDF in C and create a .dll file for windows or a .so file for UNIX-like

operating systems. The user must also describe the function signature in terms of the XML file

(.udf file) detailed above.

The user must copy the .udf file to both the server and Studio plugins directories, and must copy

the .dll (or .so) files to the server bin directory.

On Microsoft Windows, these directories are typically

C:\Program Files\Coral8\Server\bin

C:\Program Files\Coral8\Server\plugins

C:\Program Files\Coral8\Studio\plugins

On UNIX-like operating systems, these directories are typically

/home/<userid>/coral8/server/bin

/home/<userid>/coral8/server/plugins

/home/<userid>/coral8/studio/plugins

Since the Coral8 Server and Studio load these files at startup, if the server or Studio is running

when the files are copied, the server or Studio must be restarted to load these files.

The user should thoroughly debug the user defined functions in a context other than the Coral8

environment since the Coral8 software contains no debugging information.

Coral8 Access Function Header and Source Files

Coral8 provides header files containing typedef and context structures as well as the access

functions in C source code format. This distribution is not intended to convey permission to

modify these sources but is intended to allow compilation with the user's own function code.

Thus, typedefs for C8Int, etc. as well as access functions are provided. The three context

structures are provided as well as code to access these structures. Users must not modify this

code as the Coral8 Server and Studio depend upon these structures.

Compiling a UDF

To compile your UDF, you must specify appropriate settings for your compiler, including:

1. Specify that the compiler should generate a shared object file (.so) or a .DLL file.

2. Your list of "include" directories should include the directory that holds c8udf.h.

If you are on Microsoft Windows and are using Microsoft's Visual Studio, please do the

following:

1. Start Microsoft Visual Studio.

2. Create a project file by going to the menu and clicking on File -> New -> Project.

A. Specify that this is a "Visual C++ Project".

Coral8 C/C++ SDK

279

B. Click on "Win32".

C. In the right-hand pane, Click on "Win32 Project".

D. Fill in the name that you'd like to use for your project.

E. Browse and specify the directory in which you'd like the project to be stored.

F. Click OK.

G. The next window to appear will be the "Win32 Application Wizard" window. On

the left, click on "Application Settings", then click on "DLL".

H. Click on "Finish".

3. Microsoft Visual Studio will create a simple .cpp file to use as a starting point. We

recommend that you remove all the contents of this file and then insert your own C code

for the UDF. Make sure that your code includes the following:

#include "c8udf.h"

// Ensure functions are "exported" properly from dll.

#if defined(_MSC_VER)

#define USER_FUNCTION_EXPORT __declspec(dllexport)

#else // defined(_MSC_VER)

#define USER_FUNCTION_EXPORT

#endif // defined(_MSC_VER)

extern "C" {

USER_FUNCTION_EXPORT void my_function(C8Udf* ctx);

}; // extern "C"

Naturally, you will need to customize the names and return types of each UDF (and any

intermediate function, if you have one).

4. If you have other C-language source files that you need, add them to the project.

5. You will need to update several settings that are available in the "Property Pages" for this

project.

A. Update the list of directories to search for include files.

To do this, go to the menu, click on "Project" and then on "Properties".

You should get a new window titled something like

"MySample Property Pages".

In the left-hand pane of this window, click on "Configuration Properties", then

"C/C++", and then on "General".

The right-hand pane should now show a list of settings that you may modify.

Click in the field to the right of "Additional Include Directories" and add the

directory that contains the file

c8udf.h file

Coral8 Integration Guide

280

(which is included with the Coral8 product).

On 32-bit Microsoft Windows, this directory is typically:

C:\Program Files\Coral8\Server\sdk\c\include

On 64-bit Microsoft Windows, this directory is typically:

C:\Program Files (x86)\Coral8\Server\sdk\c\include

You may also add other directories if necessary for your UDF.

B. Turn off precompiled headers.

To do this, go to the left-hand pane in the "Property Pages" window, click on

"C/C++" and then on "Precompiled headers", then click on "Create/Use

Precompiled Header" and set it to "Not Using Precompiled Headers".

C. Add the Coral8 library directory (which contains accessor functions that let you

read and write information to the "context variable") to the list of library

directories. To do this, go to the left-hand pane of the "Property Pages" window,

click on "Linker" and then on "General".

In the field to the right of "Additional Library Directories", add the directory that

contains the Coral8 library.

On 32-bit Microsoft Windows, this directory is typically:

C:\Program Files\Coral8\Server\sdk\c\lib

On 64-bit Microsoft Windows, this directory is typically:

C:\Program Files (x86)\Coral8\Server\sdk\c\lib

D. Tell the linker not to include debugging information. To do this, go to the left-

hand pane of the "Property Pages" window, click on "Linker" and then on

"Debugging". For the field "Generate Debugging Info", change the value to "No".

E. Add a dependency on the c8_sdk_server_lib.lib file. To do this, go to the left-

hand pane of the "Property Pages" window, click on "Linker" and then on "Input".

In the field to the right of "Additional Dependencies", enter

c8_sdk_server_lib.lib

(Note that you do not need to enter the complete path; entering the file name is

sufficient.)

If you'd like to double check that you haven't skipped a step, you can look at the "Command

Line" for the C/C++ compiler and the "Command Line" for the Linker. (These show the

command-line parameters passed from Microsoft's GUI IDE to the command-line compiler

and linker.)

To view the command line for the C/C++ compiler, go to the left-hand pane of the Property

Pages window, click on "C/C++" and then click on "Command Line". The command line

should look very similar to the following:

Coral8 C/C++ SDK

281

/Od /I "C:\Program Files\Coral8\Server\sdk\c\include"

 /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_USRDLL"

 /D "TEST_UDF_AGGR1_EXPORTS" /D "_UNICODE"

 /D "UNICODE" /D "_WINDLL" /Gm /EHsc /RTC1 /MDd

 /Fo"Debug\\" /Fd"Debug\vc80.pdb" /W3 /nologo /c

 /Wp64 /ZI /TP /errorReport:prompt

If you set the warning level to a value other than 3, then the "/W3" will be different.

The command line may or may not include

/D "_DEBUG"

If the command line includes this, you may only be able to use the .DLL on a computer that

has the debug version of the C runtime library. (For more information, see the

Troubleshooting section below.)

To view the command line for the linker, go to the left-hand pane of the Property Pages

window, click on "Linker" and then click on "Command Line". The command line should

look similar to the following:

/OUT:"C:\c8test\E2\C_SDK\TAggr1\TAggr1\Debug\TAggr1.dll"

 /INCREMENTAL /NOLOGO

 /LIBPATH:"C:\Program Files\Coral8\Server\sdk\c\lib"

 /DLL /MANIFEST

 /MANIFESTFILE:"Debug\TAggr1.dll.intermediate.manifest"

 /SUBSYSTEM:WINDOWS /MACHINE:X86 /ERRORREPORT:PROMPT

 c8_sdk_server_lib.lib kernel32.lib user32.lib gdi32.lib

 winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib

 oleaut32.lib uuid.lib odbc32.lib odbccp32.lib

Now that you have entered all the project properties, click the "OK" button on the "Property

Pages" window.

At this point, you should be ready to compile.

6. To compile, use the appropriate option on the "Build" menu, for example, "Build

MySample".

7. Copy the DLL file to the server's "bin" directory, and copy the XML (.udf) file to both

the server's plugins directory and Studio's plugins directory. On Microsoft Windows,

these directories default to:

C:\Program Files\Coral8\Server\bin

C:\Program Files\Coral8\Server\plugins

C:\Program Files\Coral8\Studio\plugins

If you are using a command line compiler (such as "cc"), you may use a "make" file or a script

file. The example below uses a script.

1. Create a script or a "make" file to compile the UDF. The examples below are based on

the "cc" compiler found on many UNIX-like operating systems.

Coral8 Integration Guide

282

A. This example uses a "make" file.

TARGET=libc8_udf_regexp_match.so

all: $(TARGET)

OBJECTS = regexp_match.o regexpr2.o syntax2.o

CORAL8 = /home/henry/coral8

SDK_PATH = $(CORAL8)/server/sdk/c

INC = -I$(SDK_PATH)/include -I$(SDK_PATH)/include/stlport

C8_LIB = -L$(SDK_PATH)/lib -lc8_sdk_server_lib -lstlport

CPPFLAGS = -fPIC -shared

%.o : %.cpp

 gcc $(INC) $(CPPFLAGS) $< -o $@

$(TARGET) : $(OBJECTS)

 gcc -o $@ $?

(Note that you probably will not be able to copy this and use it directly. In

addition to customizing the file names, you will also have to replace blank spaces

with tab characters in appropriate places to satisfy the "make" program.)

Note that if you are compiling for a 64-bit x86 architecture, you will probably

also want to use the -m64 flag or equivalent.

B. This example uses a script.

cc -I${HOME}/coral8/server/sdk/c/include \

 -o libmma.so \

 -L${HOME}/coral8/server/sdk/c/lib/ \

 -lc8_sdk_server_lib \

 -fPIC \

 -shared \

 mma.cpp

where

"mma.c" is the name of your source code file and "libmma.so" is the name you'd

like to use for the library file.

-I specifies the directory(s) to be searched for "#include" files.

-o specifies the name of the output file (i.e. the shared library file).

-L specifies the directory(s) to search for library files that need to be linked with

this one.

-l specifies the name of the Coral8 library to link with to use the Coral8

functions.

-fPIC specifies that the compiler should generate Position-Independent Code, i.e.

code for dynamic linking.

Coral8 C/C++ SDK

283

-shared specifies that the output will be a shared object library file (as opposed

to, for example, a stand-alone executable program).

WARNING: Although on UNIX-like operating systems your library file name

will typically be of the form "libXYZ.so" (e.g. "libmma.so"), your .udf file

should specify only "mma" as the library name; do not specify "libmma.so" in the

.udf file. The .udf file "interpreter" will make platform-specific adjustments for

the filename extension (.so vs. .dll) and, if necessary, an initial "lib" prefix.

Note that if you are compiling for a 64-bit x86 architecture, you will probably

also want to use the -m64 flag or equivalent.

2. Compile the code by executing the script or the "make" file.

3. Copy the shared library file to the server's "bin" directory, e.g.

/home/<userid>/coral8/server/bin

4. Copy the XML (.udf) file to both the server's plugins directory and Studio's plugins

directory.

/home/<userid>/coral8/server/plugins

/home/<userid>/coral8/studio/plugins

UDFs: Summary

For each user-defined function that you want called, you will create two functions:

 The User-Defined Function, which gets the "context" parameter from the server, unpacks

the intended parameters from the context parameter, and then processes them.

 If you already have a function that does what you want, you may use an "intermediate

function" that gets the "context" parameter from the server, unpacks the intended

parameters from the context parameter, and then calls your function. This intermediate

function also "packs" the output value into the context variable and returns an error

indicator. Both functions will be put in the same library.

You will create two files:

 A library file that contains your function and the corresponding intermediate function.

 An XML file that lists the name of the library, the name of the intermediate function, and

the data types of the parameters to the UDF.

UDFs: Cautions

 Because your UDF may be called from multiple queries (and even multiple places in the

same query), your C code should be re-entrant. Specifically, it should avoid static

variables.

 Your UDF should "free" any memory that it allocates (unless the Coral8 API description

specifically states that the Coral8 library function will free the memory).

Coral8 Integration Guide

284

 Your UDF should not free any memory that is passed to it (unless the Coral8 API

description specifically states that the user should free the memory). For example, do not

free the context variable that is passed to the user-defined function.

 In CCL statements, your function should be used as a "per-row" function, not as an

aggregate function (such as SUM, AVG, etc.)

 You should explicitly handle the following:

 Error conditions that occur inside your own UDF.

 NULL input values.

 Since the server reads the library file and the XML description of the UDF at the time

that the server starts, changes to the library file or XML file will not take effect until the

next time that the server starts.

 Since the UDF runs as part of the server, an error in the UDF can cause the server to

crash. Your UDF should be thoroughly tested before you use it in a production system.

Querying a Public Window

Coral8 Server supports "public windows" (created via the CREATE PUBLIC WINDOW

statement), which can be queried from outside the server. (For an overview of public windows,

see Public Windows. For syntax and other information about the CREATE PUBLIC WINDOW

statement, see the Coral8 CCL Reference Guide.)

The API functions for querying a public window are shown below:

C8WindowQueryResultSet *C8QueryWindow(const char *i_mgr_uri,

 const char *i_workspace_name, const char *i_project_name, const char *i_sql);

Purpose: This submits a query of a public window and returns the result set.

Parameters:

 i_mgr_uri - the URI of the server (manager).

 i_workspace_name - the name of the workspace that contains the public window.

 i_project_name - the name of the project that defines the window.

 i_sql - a string that contains the text of the query to execute.

Returns: the result-set or NULL.

IMPORTANT: The returned result-set needs to be destroyed with

C8WindowQueryResultDestroy().

C8WindowQueryResultSet *C8QueryWindowA(const char *i_mgr_uri,

 const char *i_workspace_name, const char *i_project_name, const char *i_sql,

 const C8UserCredentials *i_credentials);

Coral8 C/C++ SDK

285

Purpose: This submits a query of a public window and returns the result set. This function

includes a parameter that allows you to specify the credentials of the user whom you

want to act as. (For general information about user authentication, see the Coral8

Administrator's Guide. For more information about user authentication and the Coral8

C/C++ SDK, see User Authentication.)

Parameters:

 i_mgr_uri - the URI of the server (manager).

 i_workspace_name - the name of the workspace that contains the public window.

 i_project_name - the name of the project that defines the window.

 i_sql - a string that contains the text of the query to execute.

 i_credentials - credentials (user name and password).

Returns: result-set or NULL.

IMPORTANT: The returned result-set needs to be destroyed with

C8WindowQueryResultDestroy().

void C8WindowQueryResultDestroy(C8WindowQueryResultSet *i_result);

Purpose: Frees the given public window query result-set.

Parameters:

 i_result - a valid pointer to a query result-set.

Returns: nothing.

const C8Schema *C8WindowQueryResultGetSchema(C8WindowQueryResultSet

*i_result);

Purpose: Gets schema corresponding to the result of the public window query. The

returned schema remains valid while the C8WindowQueryResultSet remains valid.

Parameters:

 i_result - a valid pointer to a query result-set.

Returns: the result-set's schema if successful, NULL otherwise.

C8SizeType C8WindowQueryResultGetSize(C8WindowQueryResultSet *i_result);

Purpose: Gets number of rows in result-set.

Parameters:

 i_result - a valid pointer to a query result-set.

Returns: the number of rows in the result set.

C8WindowQueryGetRowByPos(C8WindowQueryResultSet *i_result, C8SizeType i_pos);

Purpose: Get message (representing a row in query result-set) by position.

Coral8 Integration Guide

286

Parameters:

 i_result - a valid pointer to a query result-set.

 i_pos - a valid row number. The number should be between 0 and

C8WindowQueryResultGetSize() -1 (inclusive).

Returns: the requested message.

Important: The message must be deleted with C8MessageDestroy().

/* Example: Query a public window */

...

/* Submit the query and get the result set */

C8WindowQueryResultSet *res = C8QueryWindow(

 "http://manager:12345",

 "Default",

 "MyPublicWindowProject",

 "SELECT * FROM MyPublicWindow"

);

/* If there is a result set (res is not NULL)...*/

if (res) {

 /* Get the number of rows in the resultset */

 C8SizeType row_count = C8WindowQueryResultGetSize(res);

 /* For each row/message in the resultset ... */

 for (C8SizeType ii = 0; ii < row_count; ++ii) {

 /* Get the message out of the resultset */

 C8Message *msg = C8WindowQueryGetRowByPos(res, ii);

 /* use the message here

 ...

 */

 /* Destroy message when done using it */

 C8MessageDestroy(msg);

 }

 /* destroy result set when it's no longer needed */

 C8WindowQueryResultDestroy(res);

}

...

RPC Plugins

In Remote Procedure Calls, Database Queries, and Public Windows, we described Coral8 RPC

Plugins, which allow CCL statements to call remote procedures and remote functions. In this

section, we will provide more information about compiling and using Coral8 RPC Plugins.

Coral8 C/C++ SDK

287

The information in this section is based on the RPC plugins that Coral8 supplies, but the steps

should be nearly identical for any RPC plugin, including RPC plugins written by customers or

third parties.

Remember, Coral8 supplies a .dll or .so file with the HTTP and SOAP plugins, so you will only

need these instructions if you need a custom RPC plugin. (You may use the Coral8-supplied

source code as a starting point for your custom plugin if you wish.) The locations of the

compiled library and the source code files are listed in Generic HTTP and SOAP Plugins.

RPC Plugin API

This section lists the functions in the RPC Plugin API. The header file with the function

prototypes is c8rpc.h.

Note that for each RPC plugin instance, there is a data structure that stores information about this

particular instance. We refer to this data structure as an "RPC context" or just a "context". Many

of the functions in the API require a pointer to this context so that the server knows which RPC

plugin you are trying to operate on.

Functions for Accessing Configuration Information

For each RPC plugin, the coral8-services.xml file has an entry that contains configuration

information about that RPC plugin. These functions access that configuration information.

const C8Char *C8RpcGetServiceName(C8Rpc *rpcctx);

Purpose: Returns the name of the service entry in the coral8-services.xml file.

Parameters:

 rpcctx - a pointer to the "context" (data structure) for this particular instance of the

plugin.

Returns: a pointer to the service name.

const C8Char *C8RpcGetServiceParameter(C8Rpc *rpcctx, const C8Char *paramName);

Purpose: Returns the value of a given parameter from the services file for this plugin's

instance. If the parameter is not found, then NULL is returned.

Parameters:

 rpcctx - a pointer to the "context" (data structure) for this particular instance of the

plugin.

 paramName - a string that contains the name of the parameter for which you want

the value.

Returns: a string that contains the value of the parameter.

const C8Schema *C8RpcGetInputSchema(C8Rpc *rpcctx);

Coral8 Integration Guide

288

Purpose: Gets the input messages schema for this instance of the plugin.

Parameters:

 rpcctx - a pointer to the "context" (data structure) for this particular instance of the

plugin.

Returns: a pointer to a C8Schema object that describes the schema of the input messages.

const C8Schema* C8RpcGetOutputSchema(C8Rpc *rpcctx);

Purpose: Gets the output messages schema for this plugin's instance.

Parameters:

 rpcctx - a pointer to the "context" (data structure) for this particular instance of the

plugin.

Returns: a pointer to a C8Schema object that describes the schema of the output

messages.

API Function for Publishing Messages

C8Status C8RpcReturnMessage(C8Rpc *rpcctx, C8Message *msgptr);

Purpose: Returns an output message from the plugin. This function can be called multiple

times to return multiple messages. If the plugin does not want to return any messages

then this function should not be called. Note that the output message schema must match

the schema returned by the C8RpcGetOutputSchema() function.

Parameters:

 rpcctx - a pointer to the "context" (data structure) for this particular instance of the

plugin.

 msgptr - a pointer to an empty message that the server can "fill in".

Returns: C8_OK on success, C8_FAIL if anything goes wrong.

API Functions for Managing Session State

The session state of an RPC plugin is analogous to the session state of an in-process adapter. An

RPC Plugin's execute() function is typically called many times. Some plugins need to "carry

over" information from one invocation to the next. We refer to this "carried over" information as

"session state", and the Coral8 C/C++ SDK provides functions that allow you to store and

retrieve session state. Note that session state information is not carried over if the server crashes

or is restarted. (Note that, unlike in-process adapters, RPC plugins do not allow you to set and

get "persistent state".)

void C8RpcSetSessionState(C8Rpc *rpcctx, void *state);

Coral8 C/C++ SDK

289

Purpose: Sets the plugin's session state. The state is a contiguous piece of memory

containing whatever information the plugin wants to store. When the user sets the state

(e.g. in the initialize() function or the execute() function), the server stores a copy of the

pointer to this memory. When the user calls the C8RpcGetSessionState() function (e.g.

in the execute() function or the shutdown() function), the server returns that same pointer.

Parameters:

 rpcctx - a pointer to the "context" (data structure) for this particular instance of the

plugin.

 state - This is a pointer to a user-defined structure.

Returns: nothing.

void *C8RpcGetSessionState(C8Rpc *rpcctx);

Purpose: Gets the plugin's session state. Returns NULL if no state was set.

Parameters:

 rpcctx - a pointer to the "context" (data structure) for this particular instance of the

plugin.

Returns: a pointer to the session state information. See the description of the

C8RpcSetSessionState() function for more information about this pointer.

API Functions for Reading Runtime Status

C8Status C8RpcIsCanceled(C8Rpc *rpcctx);

Purpose: Checks if plugin needs to cancel the current operation.

Parameters:

 rpcctx - a pointer to the "context" (data structure) for this particular instance of the

plugin.

Returns: C8_OK on success, C8_FAIL if anything goes wrong.

Compiling an RPC Plugin and Putting It in the Correct Directory

The RPC Plugin must be compiled into a .dll file for windows or a .so file for UNIX-like

operating systems.

The user must copy the .dll (or .so) files to the server bin directory.

On Microsoft Windows, the directory is typically

C:\Program Files\Coral8\Server\bin

On UNIX-like operating systems, the directory is typically

/home/<userid>/coral8/server/bin

Coral8 Integration Guide

290

Since the Coral8 Server loads these files at startup, if the server is running when the files are

copied, the server must be restarted to load these files.

The user should thoroughly debug the user defined functions in a context other than the Coral8

environment since the Coral8 software contains no debugging information.

The user must also update the coral8-services.xml file to specify the library and function

names. (See the Coral8 Administrator's Guide for details about updating the coral8-

services.xml file.)

Coral8 Source files

Coral8 provides three source code files related to RPC plugins:

 c8_rpc_http.cpp -- This is the Coral8 RPC plugin that uses the HTTP protocol.

 c8_rpc_soap.cpp -- This is the Coral8 RPC plugin that uses the SOAP protocol.

 c8_http_client.h -- This header file is used with BOTH the preceding files (the SOAP

protocol is built on top of the HTTP protocol, and therefore both the SOAP and HTTP

plugins use material in the HTTP header file).

You may use these as-is or you may make a copy and customize it.

Compiling an RPC Plugin

To compile an RPC plugin, you must specify appropriate settings for your compiler, including:

1. Specify that the compiler should generate a shared object file (.so) or a .DLL file.

2. The list of "include" directories should include the directory that holds c8_http_client.h.

This could be either the directory in which Coral8 originally supplied this file

(server\sdk\c\examples) or a separate directory that you have created and to which

you have copied the file.

If you are on Microsoft Windows and are using Microsoft's Visual Studio, please do the

following:

1. Start Microsoft Visual Studio.

2. Create a project file by going to the menu and clicking on File -> New -> Project.

A. Specify that this is a "Visual C++ Project".

B. Click on "Win32".

C. In the right-hand pane, Click on "Win32 Project".

D. Fill in the name that you'd like to use for your project.

E. Browse and specify the directory in which you'd like the project to be stored.

F. Click OK.

Coral8 C/C++ SDK

291

G. The next window to appear will be the "Win32 Application Wizard" window. On

the left, click on "Application Settings", then click on "DLL".

H. Click on "Finish".

3. Microsoft Visual Studio will create a simple .cpp file to use as a starting point. We

recommend that you remove all the contents of this file and then insert the C code for the

RPC plugin. Make sure that the source code file includes code similar to the following:

#include "c8rpc.h"

#include "c8_http_client.h"

// exporting stuff from dll

#if defined(_MSC_VER)

#define USER_ADAPTER_EXPORT __declspec(dllexport)

#else // defined(_MSC_VER)

#define USER_ADAPTER_EXPORT

#endif // defined(_MSC_VER)

// forward declarationsof RPC plugin callback functions

#ifdef __cplusplus

extern "C" {

#endif /* __cplusplus */

USER_ADAPTER_EXPORT

C8Status c8_rpc_http_initialize(C8Rpc * rpc_ctx);

USER_ADAPTER_EXPORT

C8Status c8_rpc_http_execute (C8Rpc * rpc_ctx,

 const C8Message *);

USER_ADAPTER_EXPORT

void c8_rpc_http_shutdown (C8Rpc * rpc_ctx);

#ifdef __cplusplus

} /* extern "C" */

#endif /* __cplusplus */

You may customize the names shown in bold. However, the names used in the source

code file and the names used in the coral8-services.xml file must match.

4. If you have other C-language source files that you need, add them to the project.

5. You will need to update several settings that are available in the "Property Pages" for this

project.

A. Update the list of directories to search for include files.

To do this, go to the menu, click on "Project" and then on "Properties".

You should get a new window titled something like

"MySample Property Pages".

In the left-hand pane of this window, click on "Configuration Properties", then on

"C/C++", and then on "General".

Coral8 Integration Guide

292

The right-hand pane should now show a list of settings that you may modify.

Click in the field to the right of "Additional Include Directories" and add the

directory that contains the files

c8rpc.h

c8_client_http.h

(which are included with the Coral8 product).

On 32-bit Microsoft Windows, this directory containing c8rpc.h is typically:

C:\Program Files\Coral8\Server\sdk\c\include

On 64-bit Microsoft Windows, this directory is typically:

C:\Program Files (x86)\Coral8\Server\sdk\c\include

The directory containing c8_http_client.h depends upon where you've copied

this file to.

You may also add other directories if necessary.

B. Turn off precompiled headers.

To do this, go to the left-hand pane in the "Property Pages" window, click on

"C/C++" and then on "Precompiled headers", then click on "Create/Use

Precompiled Header" and set it to "Not Using Precompiled Headers".

C. Add the Coral8 library directory to the list of library directories. To do this, go to

the left-hand pane of the "Property Pages" window, click on "Linker" and then on

"General".

In the field to the right of "Additional Library Directories", add the directory that

contains the Coral8 library.

On 32-bit Microsoft Windows, this directory is typically:

C:\Program Files\Coral8\Server\sdk\c\lib

On 64-bit Microsoft Windows, this directory is typically:

C:\Program Files (x86)\Coral8\Server\sdk\c\lib

D. Tell the linker not to include debugging information. To do this, go to the left-

hand pane of the "Property Pages" window, click on "Linker" and then on

"Debugging". For the field "Generate Debugging Info", change the value to "No".

E. Add a dependency on the c8_sdk_server_lib.lib file. To do this, go to the left-

hand pane of the "Property Pages" window, click on "Linker" and then on "Input".

In the field to the right of "Additional Dependencies", enter

c8_sdk_server_lib.lib nspr4.lib plc4.lib libxml2.lib

(Note that you do not need to enter the complete path; entering the file name is

sufficient.)

Coral8 C/C++ SDK

293

If you'd like to double check that you haven't skipped a step, you can look at the

"Command Line" for the C/C++ compiler and the "Command Line" for the Linker.

(These show the command-line parameters passed from Microsoft's GUI IDE to the

command-line compiler and linker.)

To view the command line for the C/C++ compiler, go to the left-hand pane of the

Property Pages window, click on "C/C++" and then click on "Command Line".

Now that you have entered all the project properties, click the "OK" button on the

"Property Pages" window.

At this point, you should be ready to compile.

6. To compile, use the appropriate option on the "Build" menu, for example, "Build

MySampleRPC".

7. Copy the DLL file to the server's "bin" directory. On Microsoft Windows, this directory

defaults to:

C:\Program Files\Coral8\Server\bin

If you are using a command line compiler (such as "cc"), please perform the following steps.

1. Create a script to compile the RPC plugin. The example below is based on the "cc"

compiler found on many UNIX-like operating systems.

cc -I${HOME}/coral8/server/sdk/c/include \

 -o libmma.so \

 -L${HOME}/coral8/server/sdk/c/lib/ \

 -lc8_sdk_server_lib -lnspr4 -lplc4 -llibxml2\

 -fPIC \

 -shared \

 mma.cpp

where

"mma.c" is the name of your source code file and "libmma.so" is the name you'd like to

use for the library file.

-I specifies the directory(s) to be searched for "#include" files.

-o specifies the name of the output file (i.e. the shared library file).

-L specifies the directory(s) to search for library files that need to be linked with this one.

-l specifies the names of the Coral8 libraries to link with to use the Coral8 functions.

-fPIC specifies that the compiler should generate Position-Independent Code, i.e. code

for dynamic linking.

-shared specifies that the output will be a shared object library file (as opposed to, for

example, a stand-alone executable program).

2. Compile the code by executing the script.

Coral8 Integration Guide

294

3. Copy the shared library file to the server's "bin" directory, e.g.

/home/<userid>/coral8/server/bin

User Authentication

In this section, we discuss using the Coral8 C/C++ SDK with user authentication. We assume

that you have already read (User-Defined Functions and Plugins and Server Plugins). If you are

not using the User Authentication feature of Coral8 Engine Enterprise Edition, you do not need

to read this section.

In the first part of this section, we show the functions in the Coral8 C/C++ SDK that allow you

to get and set "credentials" (ID and password).

In the second part of this section, we provide information about how to write your own plugin to

authenticate users.

User Credentials API

If you are using the Enterprise Edition of the Coral8 engine and you have enabled the User

Authentication feature, you may need to get and set "credentials". A "credential" is a data

structure that contains a user's ID and password. When you want to perform an action that

requires authentication, you create a set of credentials, fill them in with the user's ID and

password, and pass those credentials to the function that performs the action that you need -- e.g.

the function to subscribe to a stream.

(Remember that specifying credentials will add access only to those resources (workspaces,

streams, etc.) and actions (create, read, startProgram...) for which the specified user was granted

privileges in the ACL file (coral8-acl.xml). If the user wasn't granted acces to a particular

resource/action, then specifying Credentials will not give you access.)

The following parts of the Coral8 C/C++ API. These functions allow you to get and set

"credential" information. The functions that actually "use" these credentials (e.g. to subscribe to

a stream) are documented elsewhere in this manual.

C8UserCredentials* C8UserCredentialsCreate (void);

Purpose: Creates an empty UserCredentials structure. The credentials may be filled in

with a user name and password by calling the functions C8UserCredentialsSetUser() and

C8UserCredentialsSetPassword(). The credentials must be destroyed with

C8UserCredentialsDestroy().

Parameters:

 none

Returns: a pointer to an empty UserCredentials structure. Returns NULL if there is an

error.

Coral8 C/C++ SDK

295

C8Status C8UserCredentialsSetUser (C8UserCredentials* i_credentials,

 const C8Char* i_user);

Purpose: fills in the username field in the user credentials structure.

Parameters:

 i_credentials - a pointer to the instance of C8UserCredentials in which the

username should be written.

 i_user - the username

Returns: C8_OK or C8_FAIL.

C8Status C8UserCredentialsSetPassword (C8UserCredentials* i_credentials,

 const C8Char* i_password);

Purpose: fills in the password field in the user credentials structure.

Parameters:

 i_credentials - a valid pointer to user credentials.

 i_password - password

Returns: C8_OK or C8_FAIL.

const C8Char * C8UserCredentialsGetUser (const C8UserCredentials* i_credentials);

Purpose: Returns the username for the given credentials.

Parameters:

 i_credentials - the credentials for which you want to look up the user name.

Returns: Returns the username for the given credentials. The returned pointer is valid as

long as the user credentials pointer is valid and must not be deallocated.

const C8Char *C8UserCredentialsGetPassword (const C8UserCredentials* i_credentials);

Purpose: Returns the password for the given credentials.

Parameters:

 i_credentials - the credentials for which you want to look up the user's password.

Returns: Returns the password for given credentials. The returned pointer is valid as long

as the user credentials pointer is valid and must not be deallocated.

void C8UserCredentialsDestroy (C8UserCredentials* i_credentials);

Purpose: Destroys user credentials. Any constant pointers (e.g. pointers to the user name

or password) returned by calling functions with this set of credentials are invalidated

upon return from this method.

Parameters:

 i_credentials - a pointer to the credentials to destroy.

Coral8 Integration Guide

296

Returns: nothing.

Creating Your Own Authentication Plugin

As described elsewhere (User-Defined Functions and Plugins and Server Plugins), if the

authentication plugins (LDAP and htpasswd) supplied by Coral8 do not meet your needs, you

may write your own plugin to authenticate users. This section describes the API for writing your

own plugin.

The Coral8 Server can use only one authentication plugin at a time.

An authentication plugin uses a "plugin pointer" and an "authentication context".

The plugin pointer is passed to the plugin each time the initialize(), authenticate(), or shutdown()

function is called. The user then passes this pointer on to other library functions when calling

them. The data structure that the plugin pointer points to is "opaque"; the user does not need to

read it or change.

The authentication context holds information about the user (username, ID, and the names of the

groups that this user is a member of) and the information about the authentication results:

/**

 * The plugin pointer

 */

typedef struct C8AuthPluginImp C8AuthPlugin;

/**

 * Authentication result codes

 */

#define C8_AUTH_SUCCESS 0

#define C8_AUTH_FAILURE 1

#define C8_AUTH_ERROR 2

#define C8_AUTH_UNAVAIL 3

/**

 * The authenticationg context

 */

typedef struct C8AuthContextImp C8AuthContext;

The following functions allow you to get and set information in the authentication context

variable.

const char * C8AuthContextGetUsername (C8AuthContext *ctxt);

Purpose: This gets the user name from an existing authorization context.

Parameters:

Coral8 C/C++ SDK

297

 ctxt - a pointer to the authorization context from which you wish to retrieve the

user name.

Returns: a string containing the username (also called the "username").

const char * C8AuthContextGetpassword (C8AuthContext *ctxt);

Purpose: This gets the user password from an existing authorization context.

Parameters:

 ctxt - a pointer to the authorization context from which you wish to retrieve the

user's password.

Returns: a string containing the password.

void C8AuthContextSetResult (C8AuthContext *ctxt, C8Int res);

Purpose: This sets a value that indicates the result of the authentication, i.e. whether the

user was authenticated or not. The possible values (C8_AUTH_SUCCESS,

C8_AUTH_FAILURE, etc.) are enumerated above.

Parameters:

 ctxt - a pointer to the authorization context for which you wish to set the result.

 res - the result (e.g. C8_AUTH_SUCCESS).

Returns: nothing.

void C8AuthContextAddGroup (C8AuthContext *ctxt, const char *groupName);

Purpose: This adds a group to the list of groups that the user is a member of. Note that a

single user may be a member of multiple groups. You may call this function more than

once for a single user (i.e. for a single ctxt); each time that you call, the group name that

you specify will be added to the list of group names for this user.

Parameters:

 ctxt - a pointer to the authorization context for which you wish to set the result.

 groupName - the name of a group that this user is a member of.

Returns: nothing.

Add the groups after you have authenticated the user. Only users who have been

successfully authenticated should have the list of groups.

As with any Coral8 Server plugin, an authentication plugin contains "initialize()", "execute()"

(i.e. "authenticate") and "shutdown()" functions. Below we show some examples with the correct

input parameter types and return types. Note that the function names may be different; you

specify the actual names of the function in the "AccessControl/Authentication/plugin" section of

the server configuration file (this will be explained in more detail later).

Coral8 Integration Guide

298

C8Status c8authplugin_demo_initialize(C8AuthPlugin *plugptr);

Purpose: This does any initialization that the plugin needs. This may involve allocating

memory, opening a file, connecting to an authentication service, etc.

Parameters:

 plugPtr - a pointer to a C8AuthPlugin object.

Returns: C8_OK if successful, C8_FAIL otherwise.

C8Status c8authplugin_demo_authenticate(C8AuthPlugin *plugPtr, C8AuthContext *);

Purpose: This is the function that is called each time that the server needs to authenticate

a user.

Parameters:

 plugPtr - a pointer to a C8AuthPlugin object.

 i_credentials - a pointer to the credentials to of the user.

Returns: C8_OK if successful, C8_FAIL otherwise.

C8Status c8authplugin_demo_shutdown(C8AuthPlugin *plugPtr);

Purpose: This does any cleanup that the plugin needs. This may involve de-allocating

memory, closing a file, etc.

Parameters:

 plugPtr - a pointer to a C8AuthPlugin object.

Returns: C8_OK if successful, C8_FAIL otherwise.

If you want to preserve information across calls to the execute/authenticate function, you can

store information by using the following:

void* C8AuthPluginGetSessionState (C8AuthPlugin *plugPtr);

Purpose: Gets plugin's state. Returns NULL if no state was set. The pointer points to a

user-defined structure that holds information, such as file pointers, that the user needs

each time that the execute/authenticate function is called.

Parameters:

 plugPtr - a pointer to a C8AuthPlugin object.

Returns: C8_OK if successful, C8_FAIL otherwise.

void C8AuthPluginSetSessionState (C8AuthPlugin *plugPtr, void *statePtr);

Purpose: Sets the plugin's state. The pointer points to a user-defined structure that holds

information, such as file pointers, that the user needs each time that the

execute/authenticate function is called. Note: the plugin is responsible for destroying

private data during the "shutdown" callback

Parameters:

Coral8 C/C++ SDK

299

 plugPtr - a pointer to a C8AuthPlugin object.

 statePtr - a pointer to the "state" information that the user wants to preserve.

Returns: C8_OK if successful, C8_FAIL otherwise.

Note that the state information is not retained if the server restarts.

The instructions for compiling a C/C++ plugin are virtually identical to the instructions for

compiling an in-process adapter. See Step-by-Step Instructions for Creating an In-process

Adapter. Note that you will need to #include the c8auth_plugin.h file

Plugin Configuration

The authentication plugin is declared in the

Coral8/Security/AccessControl/Authentication/Plugin section of the Coral8 Server configuration

file (coral8-server.conf). Below is a sample configuration section. You will customize the

actual names of the library file and the 3 functions, all of which are boldfaced in the listing

below.

<section name="AccessControl">

 ...

 <section name="Authentication">

 <!-- Sample authentication plugin configuration -->

 <section name="Plugin">

 <preference name="LibraryName"

 value="c8authplugin_demo_lib"/>

 <preference name="InitializeFunction"

 value="c8authplugin_demo_initialize"/>

 <preference name="AuthenticateFunction"

 value="c8authplugin_demo_authenticate"/>

 <preference name="ShutdownFunction"

 value="c8authplugin_demo_shutdown"/>

 </section>

 </section>

 </section>

Custom configuration parameters may be passed to a plugin by specifying a preference with any

name in the Coral8/Security/AccessControl/Authentication/Plugin section of the server

configuration file (coral8-server.conf). For example, in the htpasswd plugin provided by

Coral8, the paths and names of the htpasswd and htgroup files are specified this way. A generic

example is shown below:

<section name="AccessControl">

 ...

 <section name="Authentication">

 ...

 <section name="Plugin">

Coral8 Integration Guide

300

 ...

 <preference name="MyPreference"

 value="MyValue"/>

 </section>

 </section>

 </section>

You can then call the following function to read the preference:

/**

 * Gets specified preference from server config file.

 * The caller is responsible for de-allocating the returned value.

 *

 * @param pref - name of preference to read

 * (under

Coral8/Security/AccessControl/Authentication/)

 * @param def_val - default value to return if preference is not

present

 * @return - string value of preference (copy of default if not

present).

 */

C8Char* C8AuthPluginGetPreference (C8AuthPlugin *plugPtr,

 const C8Char *pref,

 const C8Char *def_val);

E.g. to read the "MyPreference" preference above, one would call:

C8Char *pref = C8AuthPluginGetPreference(plugPtr, "MyPreference",

 "default");

Library-Wide Initialization and Shutdown

As we mentioned earlier, one library (.dll or .so file) for Coral8 Server may contain more than

one UDF, or more than one in-process adapter, or more than one server plugin. In some cases,

you may wish to have initialize() and shutdown() functions that apply to the entire library (in

addition to those that apply for a particular in-process adapter, etc.) and that are called once at

the time that the library is loaded or unloaded by Coral8 Server.

To implement this, you write 2 functions with the following signatures:

C8Int c8_library_initialize()

Purpose: This function is called immediately after the library is loaded. This function can

do any initialization required for the library as a whole. This function can also return a

value to the Coral8 system indicating whether the library is unloadable or not.

Parameters: none.

Coral8 C/C++ SDK

301

Returns: This function returns to Coral8 Server any one of the values in the

C8LibraryResult enumeration:

 C8_LIBRARY_INIT_ERROR: Initialize failed. The library will not be loaded.

The c8_library_shutdown() function will be called if it is present.

 C8_LIBRARY_INIT_OK: Initialize completed successfully.

 C8_LIBRARY_INIT_OK_CAN_UNLOAD: The initialization completed

successfully. Furthermore, Coral8 Server may unload the library if there are no

remaining references to it (e.g. if the library is a UDF library, and if at some

future time the server has unloaded all projects that call UDFs in this library, then

it would be safe to unload this library).

void c8_library_shutdown()

Purpose: This function is called immediately prior to the library being unloaded. This

function can do any cleanup required for the library as a whole.

Returns: nothing.

These functions are purely optional. In your library, you may include either function, both

functions, or neither function.

The function prototypes and the C8LibraryResult enumeration (which defines the return codes

such as C8_LIBRARY_INIT_ERROR) are in the c8server.h file in the "include" subdirectory of

the Coral8 C/C++ SDK directory. If you installed to the default directory on Microsoft

Windows, this will be:

C:\Program Files\Coral8\Server\sdk\c\include

If you installed to the default directory on a UNIX-like operating system, this will be:

/home/user/coral8/server/sdk/c/include

303

Coral8 Java SDK

You use the Coral8 Java SDK to write out-of-process adapters, control Coral8 Engine, register

queries, and a variety of other tasks. This chapter shows you how to examine, compile, and run

the examples that ship with the product, which perform some of the most common tasks involved

in writing an adapter.

Note that Coral8 only validates against the Sun JDK, and not any other Java

development environment. See "Coral8 Engine Third-Party Software

Dependencies" in the Coral8 Administrator's Guide for version information.

Locating Files

When you install Coral8 Server or Coral8 Studio, you also install the Coral8 Java SDK. For

installation instructions, see the Coral8 Administrator’s Guide. You will find all of the Java SDK

files in the directory java5 under the Coral8 Server or Coral8 Studio installation directory. The

SDK reference documentation is in the directory java5/doc. Open the file index.html in a Web

browser to get started with the reference documentation.

Coral8 ships several examples with the Java SDK, which you will find under

java5/examples/com/coral8/sdk/examples. The examples are thoroughly commented to help

you understand the purpose of each line of code.

Setting Up Your Environment

The only task you need to perform to set up your development environment for the Coral8 Java

SDK is to modify your CLASSPATH variable to include java5/c8-sdk-java5.jar under your

installation directory. A manifest file in this JAR file automatically includes the files under

java5/lib. If you need to use a different version of any of the files under java5/lib, specify each

of those separately in your CLASSPATH.

Using the Examples

The Java SDK examples provide sample code that performs all of the most common tasks you

will perform while writing an adapter with the SDK. The examples progress from simple, basic

tasks to more complicated implementations. Your best path for learning the Java SDK is to trace

the source code of each example before compiling and executing it, using the HTML files under

java5/doc for syntax and usage reference.

Coral8 Integration Guide

304

As you examine and run the Java examples, be sure to read the embedded comments. A

description of each example generally begins with the comments in the runExample method and

frequently begins with the words "The core of the example starts here."

Most of the examples use the same internal CCL query module mimicking temperature readings

from sensors at different locations.

Every example, with one exception, requires you to identify the location of the Coral8 compiler

(bin/c8_compiler under your Coral8 Studio or Coral8 Server installation) by passing the –D

option to the JVM to specify a value for the variable c8.compilerPath.

Examining Example 1: Subscribing to a Stream

If you are writing an output adapter, you will need to subscribe to a stream. Typically, you will

read the data being fed to a stream by a query module, process that data according to your

application, and then send it to its final destination. For more information about streams, see

Data Stream. For more information about adapters, see Adapters.

The file Example_01_GettingDataFromAStream.java contains source code demonstrating the

basic steps you perform to subscribe to a data stream:

1. Create an instance of a Coral8 Engine client

2. Create a CCL URI identifying the stream

3. Subscribe to the stream

4. Read data from the stream (and process it)

5. Disconnect from the stream

Creating an Engine Client

First you create an instance of a client to connect to and communicate with an instance of Coral8

Server, as part of the constructor:

engineClient = SDK.getEngineClientFactory().newEngineClient(

 serverUrl, CredentialsFactory.newCredentials(userName,

 password));

This line creates a new engine client to run operations on a particular Coral8 Server process. The

newEngineClient method takes parameters specifying the HTTP URL of the host running

Coral8 Server (such as http://mymachine.mycompany.com:6789) and the authentication

credentials to use when connecting with a server that requires authentication. The example

defaults to a server process on the local host with no authentication required. When you run any

of the Java examples, all of which contain this code, you can pass a server URL, account name,

and password on the command line to override the default behavior, if needed for your

environment.

Coral8 Java SDK

305

Creating a URI

Now you need to create the CCL URI of the stream you will be getting data from (subscribing

to):

String cclUri = CclUriFactory.newCclStreamUri(

 serverUrl, CORAL8_JAVA_SDK_EXAMPLES_WORKSPACE,

 "SensorNetwork", "SensorReadings");

The parameters passed to this method include the URL of the Coral8 Server process, the name of

the workspace containing the module, the name of the module containing the stream, and the

name of the stream. In your application, this stream information might be hard-coded, read from

an external configuration file, or be from a stream belonging to a query created internally to your

application. The example does the latter, calling prepareExampleQuery to create a simple

stream containing generated random data.

Subscribing to a Stream

Now you're ready to subscribe to the stream:

subscription = engineClient.subscribeToStream(cclUri);

Here the code is using a method of the engine client that was created in the first step, passing it

the CCL URI generated in the second step.

Reading Data from a Stream

Now you can read a tuple (row) from the stream:

Tuple tuple = subscription.getNextTuple(1000);

The parameter specifies a timeout for this blocking call, in milliseconds.

In your application you will process the data in the tuple according to your design, but this

example simply prints out the tuple using the message serializer.

Make sure to check the return value of getNextTuple for null, which indicates that no row is

available.

Disconnecting from a Stream

At the end of processing, the example disconnects the subscription:

subscription.disconnect();

Compiling and Running

Navigate to the examples directory under the installation: sdk/java5/examples.

Coral8 Integration Guide

306

Enter the following command:

javac com/coral8/sdk/examples/Example_01_GettingDataFromAStream.java

Run the compiled project by entering the following command, replacing

<PathToCoral8Compiler> with the full path to and name of the Coral8 compiler on your

system, typically bin/c8_compiler under the installation directory:

java –Dc8.compilerPath=<PathToCoral8Compiler>

 com.coral8.sdk.examples.Example_01_GettingDataFromAStream

Running the example produces output that looks similar to this:

Ts,SensorID,Reading

1206999928816643,Rw,2.08615

1206999928926019,YH,9.3957

1206999929035394,Xo,6.69305

1206999929144770,qj,5.507

1206999929254146,N4,2.71035

1206999929363521,UF,4.9583

1206999929472897,rk,0.62637

1206999929582273,eV,4.72496

1206999929691649,TY,3.39727

1206999929801024,Mn,8.46074

1206999929910400,pY,1.80193

1206999930019776,OR,8.98612

1206999930129151,by,6.31523

The first line lists the column names from the schema, while the remaining output is a list of the

rows (tuples) from the data stream.

Other Examples

The rest of this chapter describes each of the other Java examples, briefly explaining the purpose,

listing the classes and methods of primary interest for the particular example, and specifying the

location of relevant information in the documentation.

Publishing to a Stream

Name Example_02_PublishingDataToAStream

Description

This example demonstrates the steps necessary to publish data to a stream,

a typical activity when writing an input adapter (take data from an outside

source and publish it to a stream feeding a query module).

Notable

Classes and

Publisher

engineClient.createPublisher(cclUriOfInputStream)

Coral8 Java SDK

307

Methods publisher.publishRow(point)

publisher.disconnect()

Related

Information

For more information about streams, see Data Stream. For more

information about adapters, see Adapters.

Controlling the Engine

Name Example_03_ControllingTheCoral8Engine

Description

This example presents methods used to perform engine control: retrieving

general server, workspace, and project information; stopping a project;

creating a workspace; and destroying a workspace.

Notable

Classes and

Methods

engineClient.getServerVersion()

SDK.getVersion()

SDK.isCompatibleWithServerVersion(serverVersion)

WorkspaceInfo

engineClient.getWorkspaces()

ws.getName()

ws.getDescription()

engineClient.getProjectsInWorkspace

engineClient.stopProject

engineClient.createWorkspace

engineClient.destroyWorkspace

Related

Information
For more information about engine control, see Engine Control: Overview.

Registering a Query

Name Example_04_RegisteringAQuery

Description

This example demonstrates how to register a query. This same code is used

in examples 1 and 2 to create a stream for subscribing and publishing. In

this example, the primary purpose is to register a query, so the example

produces no output.

Notable

Classes and

Methods

RegisterableQueryFactory.newInstance()

rqf.newQuery

engineClient.registerQuery(query)

Related

Information

For more information about registering a query, see Dynamically

Registering Queries and Streams.

Coral8 Integration Guide

308

Compiling and Starting a Project

Name Example_05_CompilingAndStartingAProject

Description

This example demonstrates how to compile and start a project. The CCL and

project files for this example are under java5/examples/projects. If you do

not run this example from java5/examples, you need to set the variable

c8.examples.example05ProjectDir with the D option to the path to the

projects directory. Note that this example includes intentional errors to

demonstrate compiler messages.

Notable

Classes and

Methods

CclCompilerFactory.newInstance().newLocalCompiler()

localCompiler.compile

CclCompilerFactory.newInstance().newRemoteCompiler

e.getCompilerOutput()

Related

Information
For more information about compiling and starting projects, see Commands.

Exploring Value Types

Name Example_06_ExploringCoral8ValueTypes

Description

This example creates and manipulates objects of various types,

demonstrating the data types available in the Java SDK. You do not need

to set the compiler variable to run this example since it does not register or

compile any queries.

Notable

Classes and

Methods

ValueFactory vf = ValueFactory.newInstance()

Examining Schemas

Name Example_07_ExploringStreamSchema

Description
This example demonstrates how to read the schema of a stream or row,

create a schema, and compare two schemas.

Notable Classes

and Methods

Schema

engineClient.getStreamSchema(cclUri)

t.getSchema()

SchemaFactory

sf.newSchema

SchemaColumn

Coral8 Java SDK

309

schema.toCclDefinition

schema1.equivalentTo

Related

Information
For more information about schemas, see Schema.

Working with Tuples

Name Example_08_ExploringTuples

Description
This example presents methods for creating and manipulating

tuples (data rows).

Notable Classes and

Methods

Tuple

tuple.getTimestamp()

tuple.getValues()

tuple.getValuesWithTimestamp

tuple.getValuesAsStrings()

tuple.getValuesAsStringsWithTimestamp

MessageFactory mf.newTuple

Related Information
For more information about tuples, see Data Streams and

Messages.

Retrieving Server Status

Name Example_09_QueryingCoral8EngineStatus

Description
This example demonstrates how to retrieve information about an

instance of Coral8 Server and its activities.

Notable Classes

and Methods

StatusInfo

engineClient.getManagerStatus()

managerStatus.getObjectName

managerStatus.getValue

managerStatus.getObjectCount

workspaceStatus.getMessageCount

workspaceStatus.getMessageName

workspaceStatus.getValue

Related

Information

For more information about status, see Data Streams and Messages

and Status Information.

Coral8 Integration Guide

310

Publishing Asynchronously

Name Example_10_PublishingAsynchronously

Description

This example demonstrates how to publish data to a stream asynchronously.

This is a variation of Example 2 that produces very similar output, since the

difference is not in the data, but rather in how the data is published. In

particular, this example shows how to define and register a listener. Note

that the actual publish method is the same for both synchronous and

asynchronous publishing.

Notable

Classes and

Methods

publisher.setOption

Publisher.Listener

publisher.setListener

Subscribing Asynchronously

Name Example_11_SubscribingAsynchronously

Description

This example demonstrates how to subscribe to a stream and retrieve data

asynchronously. This is a variation of Example 1 that produces very similar

output, since the difference is not in the data, but rather in how the data is

retrieved. In particular, this example shows how to define and register a

listener.

Notable

Classes and

Methods

subscription.setOption

SampleListener

subscription.getAllAvailableTuples()

Working with Bundles

Name Example_12_WorkingWithMessageBundles

Description
This example illustrates how to create, retrieve, and process

messages as part of a bundle.

Notable Classes and

Methods

MessageBundle

mf.newMessageBundle

bundle.getMessages()

if (msg instanceof Tuple)

Subscription.FLATTEN_BUNDLES

subscription.getNextMessage

bundle.getSize()

Coral8 Java SDK

311

Related Information For more information about bundles, see Bundles.

Guaranteeing Message Delivery

Name Example_13_WorkingWithGuaranteedDelivery

Description
This example illustrates how to publish and subscribe with guaranteed

delivery.

Notable Classes

and Methods

engineClient.createPublisherWithGuaranteedDelivery

publisher.getLastBatchId()

BatchOfMessages

mf.newBatchOfMessages

subscription1.getNextBatchOfMessages

receivedBatch1.getTuples()

engineClient.resumeSubscriptionWithGuaranteedDelivery

receivedBatch1.getBatchId()

Related

Information

For more information about guaranteed delivery, see Implementing

Guaranteed Processing.

Registering a Query with Parameters

Name Example_14_RegisteringParameterizedQuery

Description This example illustrates how to register a query with parameters.

Notable Classes and

Methods

Parameter

parameterFactory.newParameter

Related Information
For more information about parameters, see Engine Control:

Overview.

Working with URIs

Name Example_15_WorkingWithStreamURIs

Description

This example demonstrates how to create a new CCL URI (which has

also been shown in most of the other example programs) and then convert

the URI to an HTTP URL.

Notable Classes

and Methods
engineClient.resolveUri

Related

Information
For more information about URIs, see Stream URIs.

Coral8 Integration Guide

312

Querying a Public Window

Name Example_16_QueryingWindowState

Description This example demonstrates how to query a public window.

Notable Classes and

Methods

engineClient.getWindowState

WindowQueryFactory.newInstance().newSQLQuery

Related Information
For more information about public windows, see Public

Windows.

Working with Parallel Queries

Name Example_17_WorkingWithParalellizedQueries

Description This example demonstrates how to work with parallel queries.

Notable Classes and

Methods
engineClient.resolveClusterUri

Related Information
For more information about parallel queries, see the Coral8

Administrator's Guide.

313

Coral8 .NET SDK

You use the Coral8 .NET SDK to write out-of-process adapters, control Coral8 Engine, register

queries, and a variety of other tasks. This chapter shows you how to examine, compile, and run

the examples that ship with the product, which perform some of the most common tasks involved

in writing an adapter.

Locating Files

When you install Coral8 Server or Coral8 Studio, you also install the Coral8 .NET SDK. For

installation instructions, see the Coral8 Administrator’s Guide. You will find all of the .NET

SDK files in the directory net3 under the Coral8 Server or Coral8 Studio installation directory.

The SDK reference documentation is in the directory net3/doc. Open the file

Documentation.chm to get started with the reference documentation.

Coral8 ships several examples with the .NET SDK. You will find compiled versions of the

examples under net3/examples and the corresponding source code under net3/examples/src.

The examples are thoroughly commented to help you understand the purpose of each line of

code.

Using the Examples

The .NET SDK examples provide sample code that performs all of the most common tasks you

will perform while writing an adapter with the SDK. The examples progress from simple, basic

tasks to more complicated implementations. Your best path for learning the .NET SDK is to

trace the source code of each example before executing it, using the reference documentation

(net3/doc/Documentation.chm) for syntax and usage reference.

As you examine and run the examples, be sure to read the embedded comments. A description of

each example generally begins with the comments in the RunExample routine and frequently

begins with the words "The core of the example starts here."

Most of the examples use the same internal CCL query module mimicking temperature readings

from sensors at different locations.

In order to run the examples, copy the three .dll files from net3 to net3/examples. Every

example, with one exception, requires you to identify the location of the Coral8 compiler

(bin/c8_compiler under your Coral8 Studio or Coral8 Server installation) by setting a value for

the variable c8.compilerPath.

Coral8 Integration Guide

314

Examining Example 1

If you are writing an output adapter, you will need to subscribe to a stream. Typically, you will

read the data being fed to a stream by a query module, process that data according to your

application, and then send it to its final destination. For more information about streams, see

Data Stream. For more information about adapters, see Adapters.

The file Example_01_GettingDataFromAStream.cs contains source code demonstrating the

basic steps you perform to subscribe to a data stream:

1. Create an instance of a Coral8 Engine client

2. Create a CCL URI identifying the stream

3. Subscribe to the stream

4. Read data from the stream (and process it)

5. Disconnect from the stream

Creating an Engine Client

First you create an instance of a client to connect to and communicate with an instance of Coral8

Server, as part of the constructor:

engineClient = SDK.EngineClientFactory.NewEngineClient(

 serverUrl, CredentialsFactory.NewCredentials(

 userName, password));

This line creates a new engine client to run operations on a particular Coral8 Server process. The

NewEngineClient method takes parameters specifying the HTTP URL of the host running

Coral8 Server (such as http://mymachine.mycompany.com:6789) and the authentication

credentials to use when connecting with a server that requires authentication. The example

defaults to a server process on the local host with no authentication required. When you run any

of the .NET examples, all of which contain this code, you can pass a server URL, account name,

and password on the command line to override the default behavior, if needed for your

environment.

Creating a URI

Now you need to create the CCL URI of the stream you will be getting data from (subscribing

to):

string cclUri = CclUriFactory.NewCclStreamUri(

 serverUrl, CORAL8_NET_SDK_EXAMPLES_WORKSPACE,

 "SensorNetwork", "SensorReadings");

Coral8 .NET SDK

315

The parameters passed to this method include the URL of the Coral8 Server process, the name of

the workspace containing the module, the name of the module containing the stream, and the

name of the stream. In your application, this stream information might be hard-coded, read from

an external configuration file, or be from a stream belonging to a query created internally to your

application. The example does the latter, calling PrepareExampleQuery to create a simple

stream containing generated random data.

Subscribing to a Stream

Now you're ready to subscribe to the stream:

subscription = engineClient.SubscribeToStream(cclUri);

Here the code is using a method of the engine client that was created in the first step, passing it

the CCL URI generated in the second step.

Reading Data from a Stream

Now you can read a tuple (row) from the stream. The example calls this statement inside a loop:

ITuple tuple = subscription.GetNextTuple(1000);

The parameter specifies a timeout for this blocking call, in milliseconds.

In your application you will process the data in the tuple according to your design, but this

example simply prints out the tuple using the message serializer.

Make sure to check the return value of getNextTuple for null, which indicates that no row is

available.

Disconnecting from a Stream

At the end of processing, the example disconnects the subscription:

subscription.Disconnect();

Compiling and Running

You can compile the example source code from command line using the csc compiler and

referencing the file Coral8-x.y.z.dll, where x.y,z is the Coral8 Engine version number. You can

also load the project file Examples.csproj into Visual Studio, set up a reference to the file

Coral8-x.y.z.dll, and then compile from within Visual Studio.

Running the first example produces output that looks similar to this:

Ts,SensorID,Reading

1206999928816643,Rw,2.08615

1206999928926019,YH,9.3957

Coral8 Integration Guide

316

1206999929035394,Xo,6.69305

1206999929144770,qj,5.507

1206999929254146,N4,2.71035

1206999929363521,UF,4.9583

1206999929472897,rk,0.62637

1206999929582273,eV,4.72496

1206999929691649,TY,3.39727

1206999929801024,Mn,8.46074

1206999929910400,pY,1.80193

1206999930019776,OR,8.98612

1206999930129151,by,6.31523

The first line lists the column names from the schema, while the remaining output is a list of the

rows (tuples) from the data stream.

Other Examples

The rest of this chapter describes each of the other .NET examples, briefly explaining the

purpose, listing the classes and methods of primary interest for the particular example, and

specifying the location of relevant information in the documentation.

Publishing to a Stream

Name Example_02_PublishingDataToAStream

Description

This example demonstrates the steps necessary to publish data to a stream,

a typical activity when writing an input adapter (take data from an outside

source and publish it to a stream feeding a query module).

Notable

Classes and

Methods

IPublisher

engineClient.CreatePublisher(cclUriOfInputStream)

publisher.PublishRow(point)

publisher.Disconnect()

Related

Information

For more information about streams, see Data Stream. For more

information about adapters, see Adapters.

Controlling the Engine

Name Example_03_ControllingTheCoral8Engine

Description

This example presents methods used to perform engine control: retrieving

general server, workspace, and project information; stopping a project;

creating a workspace; and destroying a workspace.

Coral8 .NET SDK

317

Notable

Classes and

Methods

engineClient.ServerVersion

SDK.Version

SDK.IsCompatibleWithServerVersion(serverVersion)

IWorkspaceInfo

engineClient.GetWorkspaces

ws.Name

ws.Description

engineClient.GetProjectsInWorkspace

engineClient.StopProject

engineClient.CreateWorkspace

engineClient.DestroyWorkspace

Related

Information
For more information about engine control, see Engine Control: Overview.

Registering a Query

Name Example_04_RegisteringAQuery

Description

This example demonstrates how to register a query. This same code is used

in examples 1 and 2 to create a stream for subscribing and publishing. In

this example, the primary purpose is to register a query, so the example

produces no output.

Notable

Classes and

Methods

RegisterableQueryFactory.NewInstance()

rqf.NewQuery

engineClient.RegisterQuery(query)

Related

Information

For more information about registering a query, see Dynamically

Registering Queries and Streams.

Compiling and Starting a Project

Name Example_05_CompilingAndStartingAProject

Description

This example demonstrates how to compile and start a project. The CCL and

project files for this example are under net3/examples/projects. If you do

not run this example from net3/examples, you need to set the variable

c8.examples.example05ProjectDir to the path to the projects directory.

Note that this example includes intentional errors to demonstrate compiler

messages.

Notable

Classes and

CclCompilerFactory.NewInstance().NewLocalCompiler()

localCompiler.Compile

Coral8 Integration Guide

318

Methods CclCompilerFactory.NewInstance().NewRemoteCompiler

e.CompilerOutput()

Related

Information
For more information about compiling and starting projects, see Commands.

Exploring Value Types

Name Example_06_ExploringCoral8ValueTypes

Description

This example creates and manipulates objects of various types,

demonstrating the data types available in the .NET SDK. You do not need

to set the compiler variable to run this example since it does not register or

compile any queries.

Notable

Classes and

Methods

ValueFactory vf = ValueFactory.NewInstance()

Examining Schemas

Name Example_07_ExploringStreamSchema

Description
This example demonstrates how to read the schema of a stream or row,

create a schema, and compare two schemas.

Notable Classes

and Methods

ISchema

engineClient.GetStreamSchema(cclUri)

t.Schema()

SchemaFactory

sf.NewSchema

ISchemaColumn

schema.ToCclDefinition

schema1.EquivalentTo

Related

Information
For more information about schemas, see Schema.

Working with Tuples

Name Example_08_ExploringTuples

Description
This example presents methods for creating and manipulating

tuples (data rows).

Coral8 .NET SDK

319

Notable Classes and

Methods

ITuple

tuple.Timestamp

tuple.Values

tuple.GetValuesWithTimestamp

tuple.GetValuesAsStrings()

tuple.GetValuesAsStringsWithTimestamp

mf.NewTuple

Related Information
For more information about tuples, see Data Streams and

Messages.

Retrieving Server Status

Name Example_09_QueryingCoral8EngineStatus

Description
This example demonstrates how to retrieve information about an

instance of Coral8 Server and its activities.

Notable Classes

and Methods

IStatusInfo

engineClient.GetManagerStatus()

managerStatus.GetObjectName

managerStatus.GetValue

managerStatus.GetObjectCount

workspaceStatus.GetMessageCount

workspaceStatus.GetMessageName

workspaceStatus.GetValue

Related

Information

For more information about status, see Data Streams and Messages

and Status Information.

Working with Bundles

Name Example_12_WorkingWithMessageBundles

Description
This example illustrates how to create, retrieve, and process messages as

part of a bundle.

Notable Classes

and Methods

IMessageBundle

mf.NewMessageBundle

bundle.Messages

if (msg is ITuple)

subscription.SetOption(EngineConstants.FLATTEN_BUNDLES,

"false")

subscription.GetNextMessage

Coral8 Integration Guide

320

bundle.Size

Related

Information
For more information about bundles, see Bundles.

Guaranteeing Message Delivery

Name Example_13_WorkingWithGuaranteedDelivery

Description
This example illustrates how to publish and subscribe with guaranteed

delivery.

Notable Classes

and Methods

engineClient.CreatePublisherWithGuaranteedDelivery

publisher.LastBatchId

IBatchOfMessages

mf.NewBatchOfMessages

subscription1.GetNextBatchOfMessages

receivedBatch1.Tuples

engineClient.ResumeSubscriptionWithGuaranteedDelivery

receivedBatch1.BatchId()

Related

Information

For more information about guaranteed delivery, see Implementing

Guaranteed Processing.

Registering a Query with Parameters

Name Example_14_RegisteringParameterizedQuery

Description This example illustrates how to register a query with parameters.

Notable Classes and

Methods

IParameter

parameterFactory.NewParameter

Related Information
For more information about parameters, see Engine Control:

Overview.

Working with URIs

Name Example_15_WorkingWithStreamURIs

Description

This example demonstrates how to create a new CCL URI (which has

also been shown in most of the other example programs) and then convert

the URI to an HTTP URL.

Coral8 .NET SDK

321

Notable Classes

and Methods
engineClient.ResolveUri

Related

Information
For more information about URIs, see Stream URIs.

Querying a Public Window

Name Example_16_QueryingWindowState

Description This example demonstrates how to query a public window.

Notable Classes and

Methods

engineClient.getWindowState

WindowQueryFactory.NewInstance().NewSQLQuery

Related Information
For more information about public windows, see Public

Windows.

Working with Parallel Queries

Name Example_17_WorkingWithParalellizedQueries

Description This example demonstrates how to work with parallel queries.

Notable Classes and

Methods

compilerOptions.Add("NumberOfInstances", "3";

engineClient.ResolveClusterUri

Related Information
For more information about parallel queries, see the Coral8

Administrator's Guide.

323

Coral8 Perl SDK

This chapter describes how to use the Coral8 Perl SDK, which allows you to do things such as

write adapters in Perl.

Prerequisites

This chapter assumes that you have already installed Perl and are fluent in the language.

Version of Perl. The Coral8 Perl SDK has been tested with version 5.8.6 of Perl. Later versions

should work. Earlier versions may also work, but have not been tested.

Perl Modules. Coral8 Perl adapters depend on the following CPAN (Comprehensive Perl

Archive Network) modules:

 URI::URL

 LWP::UserAgent

 Text::CSV

 SOAP::Lite

 XML::DOM

 XML::XPath

 Error

For instructions on installing the Coral8 Perl SDK, see Installation and Configuration.

API Interface

As we mentioned earlier, a typical adapter performs the following tasks:

1. Acquire an "address" (a URI) that will uniquely identify a specific stream and tell the

communication layer (provided by Coral8) how to find that stream.

2. Open a connection to the stream.

3. Write the desired data. Typically the write operation is in a loop; the adapter will keep

sending multiple rows of data.

4. Close the connection.

When you use the Perl SDK, the URI of the data stream is typically passed to the Perl program

as a command-line parameter. To find the URI of an active stream, look at the stream properties

page in Coral8 Studio. Right-click on the stream, then choose "properties", and read the stream's

URI in the "Stream URI".

Coral8 Integration Guide

324

When you use the Perl SDK, there is no explicit call to close the connection. The connection is

closed when you destroy the C8::Subscriber or C8::Publisher object that has the connection.

Perl API

The Perl API consists of three parts:

 a tuple API for manipulating Coral8 messages (C8::Tuple module)

 a publisher API for sending data to Coral8 Server (C8::Publisher module)

 a subscriber API for receiving data from Coral8 Server (C8::Subscriber module)

With this combination, you can write input or output adapters. For example, in an input adapter,

you would read data from the data source, transform it into an appropriate format, and then use

the publisher API in C8::Publisher to send the data to the server. Similarly, in an output adapter,

you would use the C8::Subscriber module to read data from the server, then transform the data

into the external data format and write the data to its destination.

The complete Coral8 Perl SDK, including example source code, is available in the sdk/perl

subfolder of your Coral8 Server installation.

Below, we describe all of the functions in the API:

C8::Tuple

A C8::Tuple object represents a tuple - in other words, a row of data.

If you are writing data to a stream, you create a tuple object, fill it with data, then write it to the

stream. Similarly, if you are reading data from a stream, you receive a row of data, read the

individual field/column values from the tuple object, and then write the data to whatever

destination you want.

new()

Creates a new C8::Tuple object.

column_names()

Gets an array that contains the names of the tuple columns.

column_names(@val)

Sets the tuple column names to the values listed in the array.

column_name_pos($name)

Gets the position of a column name. The first column is column 0 (not 1).

timestamp()

Gets the tuple's timestamp, expressed as the number of seconds since midnight January 1,

1970. WARNING: This value is in seconds, not microseconds. NOTE: The Perl library

Coral8 Perl SDK

325

contains functions to convert between seconds and more human-readable formats such as

"YYYY-MM-DD HH24:MI:SS".

timestamp($val)

Sets the tuple's timestamp to the specified value, expressed as the number of seconds

since midnight January 1, 1970.

WARNING: This value is in seconds, not microseconds.

NOTE: The Perl library contains functions to convert between seconds and more human-

readable formats such as "YYYY-MM-DD HH24:MI:SS".

fields()

Get the tuple fields list. This gets a complete row. The data is returned as an array, with

one field per array element.

fields($val)

Set the tuple fields list. This sets a complete row. The data is passed as an array, with one

field per array element.

field($name)

This gets a single value from the current tuple. Given the name of the field, return the

value as a string.

field($name,$val)

This sets a single value in the current tuple. The input parameters are the name of the

field and the value of the field.

as_csv_string()

Gets the tuple fields value from a CSV string. Note that the first field in the CSV string is

the row timestamp value (microseconds since 00:00:00 Jan 1, 1970).

WARNING: The precision is in seconds, not microseconds.

as_csv_string($val)

Sets the tuple fields value from a CSV string. Note that the first field in the CSV string is

the row timestamp value (microseconds since 00:00:00 Jan 1, 1970).

WARNING: The precision is in seconds, not microseconds.

C8::Publisher

You create a C8::Publisher object if you want to write data to a stream. You need one

C8::Publisher object per stream.

new()

Creates a new C8::Publisher object.

Coral8 Integration Guide

326

connection($uri)

Creates a publisher connection to the given $uri that identifies a Coral8 Stream. Returns 1

if the connection is ready to receive data. Returns an undefined value if an error occurs.

write_tuple($tuple)

Writes C8::Tuple object to the stream.

Note: There is no explicit call to close the connection. The connection will be closed

when you destroy the C8::Publisher object.

C8::Subscriber

You create a C8::Subscriber object if you want to read data from a stream. You need one

C8::Subscriber object per stream.

new()

Creates a new C8::Subscriber object.

connect($uri)

Creates a subscription connection to the given $uri that identifies a Coral8 Stream.

Returns 1 if the subscription is ready to receive data.

Returns an undefined value if an error occurs.

read_tuple()

Gets the next message from the stream. Note that the first row returned is always the title

row (which contains the names of the fields). This is true even if you have connected to a

stream that has transmitted messages to other subscribers. (A stream may have more than

one subscriber.)

Note that calls to read_tuple() are blocking calls. The call will not return until a message

is received on the stream.

Returns the C8::Tuple object or an undefined value if there are no more messages in the

stream or a connection error occurs.

column_names()

Gets the list of column names (valid only after successful connect call).

Note: There is no explicit call to close the connection. The connection will be closed

when you destroy the C8::Subscriber object.

Perl Input Adapter (Sending Data to a Coral8 Stream)

The following example demonstrates a simple input adapter that publishes generated messages to

the Coral8 Stream. The Perl program connects to the Coral8 stream by using a URI specified in

Coral8 Perl SDK

327

the command line. The stream schema is assumed to have exactly two fields ('Symbol' and

'Price') and the generated messages look like the following:

Symbol1, 1

Symbol2, 2

Symbol3, 3

...

The full listing with line numbers is below:

1 use C8::Publisher;

2 use C8::Tuple;

3

4 # Get command-line argument(s).

5 my $usage = "$0 <uri>"; # Usage msg to display if err

6 my $uri = shift or

 die "ERROR: URI is missing.\nUsage: $usage\n";

7

8 # Create a publisher object.

9 my $publisher = C8::Publisher->new();

10 $publisher->connect($uri) or

 die "ERROR: cannot publish to '$uri'\n";

11

12 # Create tuples and publish them.

13 my @field_names = ('Symbol', 'Price');

14 # Loop "forever"...

15 for(my $n = 0; ; $n++) {

16 # create tuple

17 my $tuple = C8::Tuple->new(@field_names);

18

19 # Set tuple fields, e.g. to "Symbol1", 1.

20 $tuple->fields('Symbol' . $n, $n);

21

22 # publish tuple to the stream

23 $publisher->write_tuple($tuple) or last;

24

25 sleep(1); # sleep a little bit

26 }

Lines 1-2. Load the Coral8 modules C8::Tuple and C8::Publisher. The modules need to be

available in the Perl include path (see Perl documentation for more details).

Lines 4-6. Get the Coral8 Stream URI from the command line.

Lines 8-10. Create Coral8 publisher and connect to the Coral8 Stream with given URI.

Lines 12-13. Declare the list of field names in the tuple.

Coral8 Integration Guide

328

Lines 15-26. The main loop: create a tuple, publish it to Coral8, sleep; create a tuple, publish it to

Coral8, sleep; ...

Lines 16-17. Create a tuple with given list of fields.

Lines 19-20. Set tuple fields to given values.

Lines 22-23. Publish newly created tuple.

Line 25. Sleep a little bit.

Perl Output Adapter (Receiving Data from a Coral8
Stream)

The following example receives data from a Coral8 stream and publishes that data.

The full listing with line numbers is below:

1 use C8::Subscriber;

2

3 # Get command-line arguments.

4 my $usage = "$0 <uri>"; # Usage message to use if err

5 my $uri = shift or die "ERR: uri is not specified.\nUsage:

$usage\n";

6

7 # Create a subscriber object.

8 my $subscriber = C8::Subscriber->new();

9 $subscriber->connect($uri) or die "ERR: cannot subscribe to

'$uri'\n";

10

11 # First, print column names.

12 print join(',', $subscriber->column_names()) . "\n";

13

14 # then print each message row

15 while(1) {

16 my $tuple = $subscriber->read_tuple or last;

17 print "Ts: " . localtime($tuple->timestamp) . "\n";

18 print "Fields: " . join(',', $tuple->fields) . "\n";

19 }

Line 1. Load the Coral8 module C8::Subscriber. The module must be available in the Perl

include path (see Perl documentation for more details).

Lines 3-5. Get the Coral8 Stream URI from the command line.

Lines 7-9. Create Coral8 subscriber and connect to the Coral8 Stream with given URI.

Lines 11-12. Get the list of column names from the Coral8 Server and print it out.

Lines 15-19. The main loop: read a tuple, print it out; read a tuple, print it out; ...

Coral8 Perl SDK

329

Line 16. Read the new tuple.

Lines 17-18. Print tuple.

Installation and Configuration

This section explains how to run the Coral8 Perl SDK installation script and how to specify the

path to the library files.

Running the Installation Script

Before you use the Coral8 Perl SDK, you should run the installation script, named Makefile.PL.

perl Makefile.PL

On Microsoft Windows, this file is typically in the directory:

C:\Program Files\Coral8\Server\sdk\perl\C8

On UNIX-like operating systems, this file is typically in the directory:

/home/<userID>/coral8/server/sdk/perl/C8

If you install modules into the site-specific perl library directories, you will probably need root

privileges (on UNIX-like operating systems) or /administrator privileges (on Microsoft

Windows).

If you are installing into your own personal perl libraries, you do not need root privileges, but

you do need to install the libraries in such a way that perl will find them. To install into personal

directories, you may need a command similar to the following:

perl Makefile.pl LIB=/my/dir/perllib \

INSTALLMAN1DIR=/my/dir/man/man1 \

INSTALLMAN3DIR=/my/dir/man/man3 \

INSTALLBIN=/my/dir/bin \

INSTALLSCRIPT=/my/dir/scripts

Specifying the Path to the Library Files

If you have not already done so, you must download and install the Perl modules that the Coral8

SDK relies on. Use the commands shown below:

1 $ perl -MCPAN -e shell

2 > install URI::URL LWP::UserAgent Text::CSV \

 SOAP::Lite XML::DOM XML::XPath Error

3 > quit

(Due to formatting constraints, this is shown as 4 lines rather than 3; the 2nd and 3rd lines should

be a single line without a backslash.)

Line 1: we execute a command that goes to CPAN (Comprehensive Perl Archive Network).

Coral8 Integration Guide

330

Line 2: when prompted, we enter the names of the libraries that we want to download from

CPAN.

Line 3: exit the perl interpreter.

Note that these commands ("install ..." and "quit") should be entered when you are prompted to

enter commands. Depending upon how your system is initially configured, you may be asked

various questions before you are shown the prompts at which you should enter these two

commands.

To use the Coral8 Perl API, the directories that contain the Coral8 Perl modules must be in the

Perl include path. The Coral8 Perl modules are in the subdirectories:

server/sdk/perl/C8

server/sdk/perl/C8/C8

under the directory in which you installed the Coral8 product.

On Microsoft Windows, these are typically:

C:\Program Files\Coral8\Server\sdk\perl\C8

C:\Program Files\Coral8\Server\sdk\perl\C8\C8

On UNIX-like operating systems, these are typically:

/home/<userID>/coral8/server/sdk/perl/C8

/home/<userID>/coral8/server/sdk/perl/C8/C8

Prior to loading the module, you will need to do at least one of the following:

 Execute the command

use lib "/my/dir/perllib"

 set the PERL5LIB env variable,

 use perl's -I switch

Running the Example

To run the example that Coral8 supplies, do the following:

1. Start Coral8 Server.

2. Start Studio and create an input stream that has the following schema:

Field Name Data Type

Symbol String

Price Float

3. Copy the URI of this stream. To copy the URI, go to the Coral8 Studio window, select

the Explorer View, then click on the stream, and then look at the "Properties" tab for the

stream and copy the URI shown in the "Stream URI" field.

Coral8 Perl SDK

331

Alternatively, you can see the stream URI in the top of the stream viewer window (see

Acquiring the Address (URI) of a Stream).

4. Execute the following command to start the publisher:

perl -I C8 examples/c8_publish.pl <URI just copied>

5. Execute the following command to start the subscriber:

perl -I C8 examples/c8_subscribe.pl <URI just copied>

Note that in this over-simplified example the subscriber is actually reading from the input

stream. We did this to minimize the number of steps that you would need to execute before you

could see a publisher and subscriber working. In the real world, you would also have:

1. created an output stream

2. looked up the URI of that output stream

3. launched the subscribe.pl script with the URL of the output stream rather than the URL of

the input stream, and.

4. of course you would also have written one or more queries that fed data into the output

stream.

Troubleshooting

This section provides some troubleshooting tips that are specific to the Coral8 Perl SDK.

Additional troubleshooting tips are in Troubleshooting.

You get an error similar to the following:

Can't locate C8/Publisher.pm in @INC (@INC contains:

/usr/lib/perl5/5.8/cygwin /usr/lib/perl5/5.8

/usr/lib/perl5/site_perl/5.8/cygwin /usr/lib/perl5/site_perl/5.8

/usr/lib/perl5/site_perl/5.8/cygwin /usr/lib/perl5/site_perl/5.8

/usr/lib/per l5/vendor_perl/5.8/cygwin /usr/lib/perl5/vendor_perl/5.8

/usr/lib/perl5/vendor_perl/5.8/cygwin /usr/lib/perl5/vendor_perl/5.8 .) at

examples/c8_publish.pl line 10. . . .

The most likely cause is that you have not set your perl "include" path to include the Coral8

directory that includes the Coral8 perl modules. To configure your environment properly, see

Prerequisites.

You get an error similar to the following:

Can't locate URI/URL.pm in . . .

The most likely cause is that you have not set your path to include the appropriate CPAN

(Comprehensive Perl Archive Network modules). For a list of these modules, see Specifying the

Path to the Library Files. If you have not already acquired these modules, you may need to

Coral8 Integration Guide

332

acquire them. If you have acquired them, you need to set your perl "include" path to include

these modules.

333

Coral8 Python SDK

This chapter provides a brief explanation of the Coral8 Python SDK, which allows you to do the

following:

 Write an input adapter or an output adapter in Python.

 Start or stop the Coral8 Server from inside a python program.

API Interface

As we mentioned earlier, a typical adapter performs the following tasks:

1. Acquire an "address" (a URI) that will uniquely identify a specific stream and tell the

communication layer (provided by Coral8) how to find that stream.

2. Open a connection to the stream.

3. Write the desired data. Typically the write operation is in a loop; the adapter will keep

sending multiple rows of data.

4. Close the connection.

When you use the Python SDK, the URI of the data stream is typically passed to the program as

a command-line parameter. To find the URI of an active stream, look at the stream properties

page in Coral8 Studio. Right-click on the stream, then choose "properties", and read the stream's

URI in the "Stream URI".

When you use the Python SDK, there is no explicit call to close the connection. The connection

is closed when you destroy the connection object.

We recommend that you use Version 2.4.2 or later of Python.

Python API

The Python API consists of three parts:

 a Tuple class for manipulating Coral8 messages

 a Publisher class for sending data to Coral8 Server

 a Subscriber class for receiving data from Coral8 Server

With this combination, you can write input or output adapters. For example, in an input adapter,

you would read data from the data source, transform it into an appropriate format, and then use a

Publisher object to send the data to the server. Similarly, in an output adapter, you would use a

Subscriber object to read data from the server, then transform the data into the external data

format and write the data to its destination.

Coral8 Integration Guide

334

The complete Coral8 Python SDK, including example source code, is available in the

sdk/python subfolder of your Coral8 Server installation. The primary files are:

 sdk/python/coral8.py file, which contains the Tuple, Publisher, and Subscriber classes;

 sdk/python/examples/c8-pubsub.py file, which contains example code using a Publisher

and a Subscriber;

 sdk/python/examples/c8-server.py file, which contains example code to start and stop

Coral8 Server.

Below, we describe all of the functions in the API:

Tuple

A Tuple object represents a tuple - in other words, a row of data.

If you are writing data to a stream, you create a tuple object, fill it with data, then write it to the

stream. Similarly, if you are reading data from a stream, you receive a row of data, read the

individual field/column values from the tuple object, and then write the data to whatever

destination you want.

getcolumnnames()

Returns a list that contains the names of the tuple columns.

gettimestamp()

Gets the tuple's timestamp, expressed as the number of seconds since midnight January 1,

1970.

WARNING: This value is in seconds, not microseconds.

The "time" module in the Python library contains functions to convert between seconds

and more human-readable formats such as "YYYY-MM-DD HH24:MI:SS".

getvalue(self, name)

Gets the value in the field specified by the "name" parameter.

setvalue(self, name, value)

Sets the value in the field specified by the "name" parameter to the value specified in the

"value" parameter.

getvalues(self)

Gets the value in the field specified by the "name" parameter.

setvalues(self, value)

Sets the value in the field specified by the "name" parameter to the value specified in the

"value" parameter.

getcsv(self)

Coral8 Python SDK

335

Returns the tuple as a single CSV (Comma-Separated Value) string. Note that the first

field in the CSV string is the row timestamp value (in microseconds since 00:00:00 Jan 1,

1970).

setcsv(self, str)

Given a string that contains comma-separated values, set the values of the fields in the

tuple to the values in the string. Note that the first field in the CSV string should the row

timestamp value (in microseconds since 00:00:00 Jan 1, 1970).

Publisher

You create a Publisher object if you want to write data to a stream. You need one Publisher

object per stream.

write_tuple(self, tuple)

Writes a tuple object to the stream.

Note: There is no explicit call to close the connection. The connection will be closed

when you destroy the C8::Publisher object.

Subscriber

You create a Subscriber object if you want to read data from a stream. You need one Subscriber

object per stream.

getcolumnnames()

Gets the list of column names (valid only after successful connect call).

Note: There is no explicit call to close the connection. The connection will be closed

when you destroy the Subscriber object.

read_tuple()

Gets the next message from the stream. Note that the first row returned is always the title

row (which contains the names of the fields). This is true even if you have connected to a

stream that has transmitted messages to other subscribers. (A stream may have more than

one subscriber.)

Note that calls to read_tuple() are blocking calls. The call will not return until a message

is received on the stream.

Returns the tuple object or an undefined value if there are no more messages in the

stream or a connection error occurs.

Coral8 Integration Guide

336

Python Input Adapter (Sending Data to a Coral8
Stream)

The following example demonstrates a simple publisher that writes messages to a Coral8 Stream.

This could be extended to make it an input adapter.

The stream schema is assumed to have exactly two fields ('Symbol' and 'Price') and the generated

messages look like the following:

Row 1, 1

Row 2, 2

Row 3, 3

...

import sys

import time

from threading import Thread

from coral8 import Coral8

When you start this program, pass:

1) the URI of the stream to publish to, e.g.

"ccl://localhost:6789/Stream/Default/Subscriber2/StreamIn1"

2-N) the column names of the stream

class Coral8Test(Thread):

def __init__ (self, mode, uri, column_names):

 Thread.__init__(self)

 self.mode = mode

 self.uri = uri

 self.column_names = column_names

def run(self):

 if self.mode == 'publish':

 self.publish()

def publish(self):

 publisher = Coral8.Publisher(self.uri)

 j = 0

 while True:

 tuple = Coral8.Tuple(self.column_names)

 for i in range(len(self.column_names)):

 tuple.setvalue(self.column_names[i], self.column_names[i]

 + '-' + str(j))

 # print 'Pub Ts: ' + repr(tuple.gettimestamp())

 # print 'Pub Sym: ' + tuple.getvalues()[self.column_names[0]]

 print 'Pub Csv: ' + tuple.getcsv()

Coral8 Python SDK

337

 publisher.write_tuple(tuple)

 time.sleep(1)

 j = j + 1

def main():

try:

 if len(sys.argv) < 3:

 print 'Error: Wrong number of arguments, usage: ' + sys.argv[0]

 + ' <uri> <column-name>, [<column-name>, ...]'

 return

 # Extract column names from the command-line arguments.

 columns = [] + sys.argv;

 # Ignore/remove the name of the program (sys.argv[0])

 columns.pop(0);

 # Ignore/remove the uri (sys.argv[1])

 columns.pop(0);

 pub = Coral8Test('publish', sys.argv[1], columns)

 pub.start()

 # This example runs for 60 seconds. A real

 # adapter would probably run indefinitely.

 while True:

 time.sleep(60)

except IOError (errno, strerror):

 print "I/O error(%s): %s" % (errno, strerror)

else:

 print 'bye!'

if __name__ == '__main__':

main()

Python Output Adapter (Receiving Data from a Coral8
Stream)

The following reads (subscribes to) data in a Coral8 stream. This code could be extended to

make an output adapter.

The listing is below:

from coral8 import Coral8

This is the URI to which we will try to connect.

uri = "ccl://localhost:6789/Stream/Default/Subscriber2/StreamOut1"

Create a new Subscriber object.

subscriber = Coral8.Subscriber(uri)

Coral8 Integration Guide

338

Minimize buffering (do this only for demo).

This reduces performance, but makes sure that there

is not much delay before the output is visible.

subscriber.buf_size = 1

Retrieve several rows.

j = 1

while j <= 6:

tuple = subscriber.read_tuple()

print 'Sub Csv: ' + tuple.getcsv()

j = j + 1

Configuring Your Environment

Make sure that the python interpreter can find the coral8.py file

server/sdk/python/coral8.py

339

Adapter Definition Language

This chapter describes the Adapter Definition Language (ADL), which is an XML-based

language that can describe the parameters of an in-process adapter. (Out-of-process adapters do

not use ADL.) You only need to read this chapter if you are writing an in-process adapter.

An in-process adapter may have zero or more adapter properties. These allow one instance of an

adapter to have custom values that tell it to behave differently (such as use a different data

source) than other instances of the adapter. For example, the ReadFromCSVFile adapter, which

is one of the built-in adapters supplied by Coral8, allows the user to specify which file to read

from. Similarly, if you write your own in-process adapter, you may use parameters to allow a

user to specify the exact data source to read from (in the case of an input adapter) or the exact

data destination to write to (in the case of an output adapter). If you have not already looked at

any built-in in-process adapters, we recommend that you look at one now. Create a stream, attach

the ReadFromCSVFile adapter to that stream, and then click on the adapter in the Explorer View

of Coral8 Studio. The Explorer View of Coral8 Studio will display the adapter properties, such

as Filename, Loop count, Rate, etc.

ADL allows you to describe your parameters in such a way that Coral8 Studio can display labels

and empty fields to the user, and then pass the filled-in values to your in-process adapter. For

example, your adapter might use ADL to tell Studio that it should display the label "Filename",

read the string that a user types into a field next to that label, and then pass the user's string to

you.

As we mentioned in the chapter on creating an in-process adapter, your adapter will consist of

two files: one file is the library with your Initialize(), Execute(), and Shutdown() functions, and a

second file (the .adl file) contains a description of the adapter's parameters. This chapter

describes what that .adl file will contain.

Each ADL File must include:

 Name of the Adapter

 Direction of Adapter: Input or Output

 ScreenName

 Vendor

 Version

 Description

 InstanceParameterDefinitions

Each InstanceParameter Definition comprises one or more Parameter elements that each contain:

 Name

Coral8 Integration Guide

340

 Type

 Default Value

 Description

 A flag to indicate whether the parameter is required or not (the user may be allowed to

leave some parameters blank)

The ADL file must also include Adapter Definition information such as the xmlns field (for

details, see the "AdapterDefinition" section in the example below).

Below is an example of an ADL file :

<AdapterDefinition xmlns="http://www.coral8.com/adl/2005/04/"

Name="ReadFromXmlFileAdapterType"

xmlns:ns1="http://www.coral8.com/cpx/2004/03/"

Type="ns1:AdapterType" Direction="Input"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

SupportsGuaranteedDelivery="true">

<ScreenName>Read From XML File Adapter</ScreenName>

<Vendor>Coral8, Inc.</Vendor>

<Version>1.0</Version>

<Description>An input adapter that reads tuples from an XML file

</Description>

<LibraryName>sdk_adapter_lib</LibraryName>

<InitializeFunction>my_input_adapter_initialize</InitializeFunction>

<ExecuteFunction>my_input_adapter_execute</ExecuteFunction>

<ShutdownFunction>my_input_adapter_shutdown</ShutdownFunction>

<ReconnectFunction>my_input_adapter_reconnect</ReconnectFunction>

<InstanceParameterDefinitions>

<Parameter Name="Filename" xsi:type="xsi:string">

<Default/>

<Description>The name of the file from which to read tuples.

</Description>

<Required>1</Required>

</Parameter>

<Parameter Name="Rate" xsi:type="xsi:integer">

<Default/>

<Description>Post tuples at given rate (tuples per second)

</Description>

<Required>0</Required>

</Parameter>

</InstanceParameterDefinitions>

</AdapterDefinition>

NOTE: When Coral8 releases updated versions of the software, the structure of ADL files may

change. If you want to create your own ADL file, and if you want to use an existing ADL file

Adapter Definition Language

341

(such as the c8_read_from_csv_file.adl file) as a baseline, you should use the version that came

with your product, which may differ from the version shown above. The ADL files supplied by

Coral8 can be found in the directory

<install_dir>/Studio/plugins

On Microsoft Windows, this is typically

C:\Program Files\coral8\Studio\plugins

On UNIX-like operating systems, this is typically

/home/username/coral8/studio/plugins

The ADL file begins with a section similar to that shown below.

<AdapterDefinition

xmlns="http://www.coral8.com/adl/2005/07/"

Name="UserDefinedReadFromCsvFileAdapterType"

xmlns:ns1="http://www.coral8.com/cpx/2004/03/"

Type="ns1:AdapterType"

Direction="Input"

SupportsGuaranteedDelivery="true"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

>

<ScreenName>CServer SDK Adapter: Read From CSV File</ScreenName>

<Vendor>Coral8, Inc.</Vendor>

<Version>1.0</Version>

<Description>An input adapter that reads messages from a CSV file

</Description>

<Documentation>An input adapter that reads messages from a file that

 contains messages in the Comma Separated Values (CSV)

 format, one message per line

</Documentation>

Change the "Name" attribute to an appropriate value. Do not use spaces or tabs in the name.

Warning: Multiple ADL files with the same "Name" attribute in the AdapterDefinition will result

in an error message.

The Direction="Input" may require modification to Direction="Output" for an output adapter.

Specify SupportsGuaranteedDelivery="true" if yours is a Guaranteed Delivery adapter. See

Implementing Guaranteed Processing for more information.

The ScreenName is the name displayed by Studio in the drop-down selection menu that you see

when you attach an adapter. Use a name that users will understand. While it is not an error for

multiple in-process adapters to display the same screen name, users will be unable to

differentiate between identically displayed adapter screen names.

The Description and Documentation elements provide summary and detailed information

relevant to the adapter.

Coral8 Integration Guide

342

To invoke the user-written C/C++ code, the Coral8 engine needs to know the names of the

Initialize(), Execute(), Shutdown(), and possibly Reconnect() functions and the name of the

library file that contains those functions. These are provided by:

<LibraryName>sdk_adapter_lib</LibraryName>

<InitializeFunction>my_input_adapter_initialize</InitializeFunction>

<ExecuteFunction>my_input_adapter_execute</ExecuteFunction>

<ShutdownFunction>my_input_adapter_shutdown</ShutdownFunction>

<ReconnectFunction>my_input_adapter_reconnect</ReconnectFunction>

The "sdk_adapter_lib" is the name of the loadable library containing the three entry points.

Notice the library name does not contain a trailing ".dll" or ".so". This permits cross-platform

loading of libraries that will be handled by the Coral8 engine.

The external name of each of the adapter entry points specifies the name that Coral8 Engine will

call for initialization, execution, shutdown, and reconnection (for Guaranteed Delivery only) of

the adapter. The name must match the name in the C/C++ code that the user wrote; the name

must also be externalized within the library.

The parameters section is the next section of the ADL file.

Each parameter will be displayed on the adapter's Properties View in Coral8 Studio. The exact

form of the display depends on each parameter's definition. An example of a parameters section

is shown below.

<InstanceParameterDefinitions>

<Parameter Name="Filename" xsi:type="xsi:string">

<Default>stock-trades.csv</Default>

<Description>The file from which to read rows.</Description>

<Required>false</Required>

<ScreenName>Filename</ScreenName>

<Documentation>

 The name of the file from which to read rows.

</Documentation>

<MultiLine>false</MultiLine>

</Parameter>

<Parameter Name="Port" xsi:type="xsi:integer">

<Default/>

<Description>TCP port number of the message source</Description>

<Required>true</Required>

<ScreenName>Port</ScreenName>

<Documentation>TCP port number of the message source</Documentation>

<MultiLine>false</MultiLine>

<Min>1</Min>

<Max>65535</Max>

</Parameter>

Adapter Definition Language

343

The <Parameter> element configures an individual parameter. There may be an arbitrary

number of parameters in an ADL file; the exact number depends on the user's needs. The

<Default>, <Description> and <Required> elements are mandatory for each parameter. The

remaining elements are optional.

The Name attribute is used by the C/C++ code to retrieve the displayed value of the parameter.

Each parameter name must be unique within an ADL file.

The xsi:type determines the data type of the parameter. See Printing a Parameter for a table that

shows which xsi:type corresponds to each internal Coral8 datatype.

The <Default> element determines the default value of the parameter. This value gets displayed

in Studio on the initial display. When the value is modified, Studio remembers the modified

value so it does not have to be reset on subsequent Studio invocations. The <Default> must be of

the same data type as the xsi:name, otherwise Studio will issue an error message. Notice that in

this example Port does not have a default and the <Required> element is true, meaning the user

must enter a value.

The <Description> provides textual information for the "?" popup help message Studio displays.

The <Required> element specifies whether it is absolutely necessary for a user to provide a

value for this parameter. If the user provides a <Default> for a <Required> parameter, and does

not modify the parameter, then the default will be used. If the user blanks the input field of a

<Required> parameter, Studio will highlight the input field to indicate that the user input a value.

An example of a possibly required parameter is a filename for an output adapter that writes to a

file.

The <ScreenName> value gets displayed to the left of the input field. The <ScreenName>

prompts the user for inputting into the field.

The <MultiLine> element causes a larger rectangular display to appear on the adapter's

Properties View in Coral8 Studio. This would be used for parameters requiring potentially

lengthy input strings. An example might be a database query that consumes several lines of

input.

Numeric datatypes may use the <Min> and/or <Max> elements. It is possible to have a <Min>

without a <Max> and vice versa; these elements are independent. The Port parameter above

must be between 1 and 65536.

Adapter Definition Language (ADL)

Warnings and Tips

1. When you create your own ADL file, make sure that you change only "values", not

"tags", inside the ADL file.

Coral8 Integration Guide

344

2. Do not change the header (the "AdapterDefinition" section) except the direction ("Input"

or "Output") and the name of the adapter.

3. Certain characters, such as "<" and ">", have special meanings in XML and should not be

used in the values inside an ADL file. If you need to use one of these characters as part of

a value, the best solution is to surround it by special delimiters that tell the XML

processor to treat the characters as literals rather than as part of the language. The

delimiters are "<![CDATA[" and "]]>". An example is shown below:

<Documentation>

<![CDATA[

 Inside these delimiters, the following characters will be

 treated as literals rather than as XML language elements:

 < > & ' "

 (i.e. the greater than sign, less than sign, ampersand,

 single quote, and double quote).

]]>

</Documentation>

For a complete and up-to-date list of special characters, see the XML standards.

XML 1.0: http://www.w3.org/TR/2004/REC-xml-20040204/

XML 1.1: http://www.w3.org/TR/2004/REC-xml11-20040204/

In particular, see sections 2.2 and 2.4 of each.

4. When you upgrade your Coral8 Engine, the Coral8 Studio installation program will

delete and then re-create the directory that has the ADL files. This means that any ADL

files that you have added will be lost! Each ADL file that you create should be backed up

in a location outside your coral8 directory.

Furthermore, when you upgrade, you should not copy your backed-up ADL files to your new

directory; you should instead create new ADL files based on the structure of the ADL files in

your upgraded Coral8 system, but with the same types of customizations as were in the backed-

up ADL files that you built yourself.

Configuring Your System to Find ADL Files

ADL files are always assumed to be in a plugins directory.

This is the server's search path for .adl files:

 The plugins directory specified by the Coral8/General/PluginsFolder preference in the

server's configuration file. Unless you have changed this preference or installed in a

directory other than the default directory, the plugins directory will be:

C:\Program Files\Coral8\Server\plugins (on Microsoft Windows)

or

$HOME/coral8/server/plugins (on UNIX-like operating systems)

Adapter Definition Language

345

 <app path>/plugins

(i.e. in the plugins subdirectory of the directory in which the application was started)

 <app path>/../plugins

(i.e. in the plugins directory that is a sibling of the directory in which the application was

started)

 ./plugins

(i.e. in the plugins subdirectory of the current directory)

 ../plugins

(i.e. in the plugins directory that is a sibling of the current directory)

 $C8_PLUGINS_FOLDER

(or, in Microsoft Windows, the equivalent environment variable:

%C8_PLUGINS_FOLDER%)

 The user plugins directory.

On Microsoft Windows, this is:

Coral8 Repository\<version>\plugins

On UNIX-like operating systems, this is:

Coral8 Repository/<version>/plugins

(Note the blank space in the path name on both operating systems.)

Studio (and the compiler) normally look for .adl files in:

C:\Program Files\Coral8\Studio\plugins (on Microsoft Windows)

or

$HOME/coral8/server/plugins (on UNIX-like operating systems)

If the CCL compiler is unable to find the .adl files after searching the directories specified above,

then the compiler issues a message stating that it cannot locate the plugins directory.

Importing New Adapters

In Coral8 Studio, the Attach Adapters Dialog displays a list of input and output adapters that

come out of the box with Coral8. When you develop a new in-process adapter, you will typically

want it to be included in the list of available adapters that you can attach. There are two main

ways to do this. You can copy the .adl file to Studio's "plugins" directory and then re-start

Studio. If you don't want to stop and re-start Studio, you may import the ADL file into Studio.

To import a new Adapter Definition, go to the "Tools" Menu and select "Import Adapter

Definition..." This brings up the dialog depicted below showing a list of ADL files that can be

selected to import. Select the ADL file for your new adapter. Once successfully imported, the

Adapter will be available for selection in the list of Adapters in the Attach Adapter Dialog.

Coral8 Integration Guide

346

347

Server Plugins

Coral8 Server's functionality may be extended with one or more "plugins", each of which is a

linkable library (.so (shared object) file on UNIX-like operating systems, or .dll (Dynamic Link

Library) on Microsoft Windows).

Before you read the rest of this chapter, you should have already read Plugins, which provides an

overview of how plugins work.

In the next few sections, we will describe:

 the types of events that may occur;

 the generic plugin that Coral8 provides;

 how to use the generic plugin to implement High Availability (HA) of Coral8 Server

Managers.

 authentication-related plugins

Message-Driven Plugins

A plugin is an event handler; in other words, when a particular "event" occurs, specific code

within the handler is invoked. That code may, in turn, do almost anything. For example, if the

event is that the original manager died and the "backup" has taken over as manager, then the

plugin might send email notifying a system administrator that a manager died and a new backup

manager must be started. A High Availability Server includes 1 or more containers, which do

work such as executing queries, and 1 or more managers, which assign particular work to

particular containers. As another example, the plugin may call a netsnmp process to send a "trap"

signal to an event handler in another process (outside the Coral8 manager).

Events

The manager writes status information to Server Status streams, which are special Coral8

streams that transmit messages with various server events and metrics. (Each message is

sometimes referred to as an "event". You may also think of each message as a row in the stream.)

The code to listen to the status stream and act upon the events is called a "plugin", and it runs as

part of the server process.

We currently have two groups of status events: container events that apply to the container server

and manager events that apply to the manager server.

Container Events

The status events currently implemented for containers are:

Coral8 Integration Guide

348

Message Code Frequency Description

ServiceStarted On event
Event: service is started

(value = 1)

ServiceStopped On event
Event: service is stopped

(value = 1)

ServiceKilled On event
Event: service is killed

(via soap) (value = 1)

ContainerTotalMemory 1/sec
Total memory available

to Coral8 Server (Bytes)

ContainerUsedMemory 1/sec
Total memory used by

the Coral8 Server (bytes)

ContainerCPUUtilization 1/sec

Percentage of CPU

utilized by the Coral8

Server process (1 =

100%)

ContainerCPUTime 1/sec

CPU Time used by the

Coral8 Server process

since start

(Microseconds)

ModuleSentMessages 1/sec
Count of sent messages (

value = count)

ModuleReceivedMessages 1/sec

Count of received

messages (value = count

)

ModulePendingMessages 1/sec

Count of pending

messages (value = count

)

ModulePersistentDbPendingMessagesNum 1/sec

Count of persistent db

pending messages (value

= count)

ModuleError On event

Event: module generated

an error message (value

= error ModuleRunState

xml or text)

ModuleRunState On event
Event: module is started

(value = 1) or

Server Plugins

349

stopped(value = 0)

"Pending" messages are messages that have been received but not yet processed.

Manager Events

Status events currently implemented in managers are:

Message Code Frequency Description

ServiceStarted On event
Event: service is started

(value = 1)

ServiceStopped On event
Event: service is stopped

(value = 1)

ServiceKilled On event
Event: service is killed (via

soap) (value = 1)

ManagerHAPromotedToPrimary On event

Event: manager HA node

promoted to primary (value

= 1)

ManagerHADemotedToBackup On event

Event: manager HA node

demoted to backup (value =

reason)

ManagerHAParticipatingInElection On event

Event: manager HA

participating in primary

elections (value = 1)

ContainerAdded On event

Event: Container added

(value = "Active" or

"Passive")

ContainerKilled On event
Event: Killing container

(value = reason)

ContainerRemoved On Event
Event: Container removed

(value = reason)

ProgramRegistrationState On event

Event: program is registered

(value = 1) or unregistered

(value = 0)

ProgramLoadState On event

Event: program is loaded

(value = 1) or unloaded

(value = 0)

Coral8 Integration Guide

350

The Coral8 Generic Plugin

Coral8 provides a generic plugin that allows you to invoke a specified executable program when

a specified status event occurs.

To use this plugin, you update Coral8 Server's configuration file (coral8-server.conf by

default) to specify the event that you want to watch for and the name of the program that you

want to execute when that event occurs. The relevant section of the configuration file looks like

the following:

<section name="ManagerFailoverDDNSPlugin">

<preference name="LibraryName"

 value="c8_server_plugins_lib"/>

<preference name="InitializeFunction"

 value="c8_command_line_plugin_initialize"/>

<preference name="ExecuteFunction"

 value="c8_command_line_plugin_execute"/>

<preference name="ShutdownFunction"

 value="c8_command_line_plugin_shutdown"/>

<preference name="MessageGroup"

 value="ManagerInfo"/>

<preference name="MessageName"

 value="ManagerHAPromotedToPrimary"/>

<preference name="CommandName"

 value="REPLACE_WITH_PATH_TO_NSUPDATE"/>

<preference name="CommandArgument1"

 value="-k"/>

<preference name="CommandArgument2"

 value="REPLACE_WITH_PATH_TO_KEY_FILE"/>

<preference name="CommandArgument3"

 value="-v"/>

<preference name="CommandArgument4"

 value="REPLACE_WITH_PATH_TO_UPDATE_COMMANDS"/>

<preference name="MaxRunningProcesses" value="1"/>

<preference name="CommandTimeoutSeconds" value="30"/>

</section>

The section name ("ManagerFailoverDNSPlugin" in this case) may be any valid section name,

but must be unique within this configuration file.

The first four preferences are required. You must specify:

 the LibraryName, which is the name of the library that contains the code (the

c8_server_plugins_lib library is supplied by Coral8).

 the names of the initialize(), execute() and shutdown() functions.

Server Plugins

351

When you use the generic plugin supplied by Coral8, these preferences are always the same - in

other words, the name of the library, and the names of the initialize(), execute() and shutdown

functions are always the same.

The next preference, the EventType, is also required. The value that you specify will be one of

the valid events listed in the event tables shown earlier in this chapter.

The next preference, the CommandName, is also required. This is the name of the executable

program (a program, a shell script, etc.) that you want to run. The actual value depends upon

what action you want to take when the event occurs. IMPORTANT: On UNIX-like operating

systems you must specify the full path as well as the program name. On Microsoft Windows, you

may specify only the name of the program if the path to the program appears in the %PATH%

environment variable.

The parameters that contain command arguments (i.e. command-line arguments to the program

specified in the CommandName parameter) are optional and will vary depending upon what

action you want to take and what parameters your command requires. You may have up to 1024

of these parameters.

The last two parameters, MaxRunningProcesses and CommandTimeoutSeconds, are also

optional.

The MaxRunningProcesses parameter allows you to set an upper limit on the number of event-

handling programs that were spawned by this instance of the plugin and are still executing. If

you have already reached this limit and a new event arrives, the server will check which of the

event-handling processes have been running for at least the amount of time specified by the

CommandTimeoutSeconds parameter; if there are any, the server will try to kill one of those

processes (if the server is unable to kill an old process, then it will not launch a new one). The

default value for MaxRunningProcesses is 32.

The CommandTimeoutSeconds parameter should be used in conjunction with

MaxRunningProcesses preference. If MaxRunningProcesses is reached, then processes that have

been running longer than the CommandTimeoutSeconds interval will be terminated, so that

another process can be spawned in their place. IMPORTANT: CommandTimeoutSeconds has

NO EFFECT until MaxRunningProcesses is reached. The default value of

CommandTimeoutSeconds is 60. A value of 0 means that processes should not be timed out.

For events (e.g. messages about CPU consumption) that occur once per second, most event-

handling programs should finish fairly quickly. For example, if you want to update a display

showing CPU consumption, the Nth update should finish before the N+1th update starts, which

means that each update should take less than 1 second (i.e. less than the time interval between

events, which is 1 second for CPU consumption events).

For events that occur infrequently (such as a container dying), you may not need to worry much

about how long these take to run, but you do have to have a good idea of the "worst-case

Coral8 Integration Guide

352

scenario" (i.e. the maximum number of such events that might occur within a specified time) so

that you can set MaxRunningProcesses high enough.

You may specify as many event/program pairs as you wish for each server.

A single event may spawn multiple programs. You'll need to specify a separate event/program

pair for each of these - there's no direct way to specify that a single event will run multiple

programs. Conversely, more than one type of event may spawn the same program. You'll need to

specify a separate event/program pair for each of these - there's no direct way to specify that a

single event will run multiple programs. In each of these cases, you'll specify the parameters

independently.

Server plugins may be used with either managers or containers. Make sure that you put the

"plugins" section in the correct part of the server configuration file. Manager plugin information

should go in the manager section and container plugin information should go in the container

section.

How to Implement Manager HA with the Coral8 Generic Plugin

One of the major uses of a plugin is to notify the DNS server of the IP address of the new

primary manager node. Specifically, the new active manager must re-point the generic manager

hostname to the new IP address by updating the record on the DNS server.

When the primary manager fails and the backup becomes the new primary manager, a

ManagerHAPromotedToPrimary event will be triggered. The Coral8 generic plugin can be

configured to respond to this event by calling a program (e.g. nsupdate) that will update the DNS

record.

For more information on this topic, please consult the Administrator's Guide.

Non-Message-Driven Plugins

The server may call a plugin's execute() function for reasons other than the arrival of a particular

type of message in a status stream. In this section we describe plugins that are called without a

status message being generated.

The User Authentication Plugins

Coral8 Engine Enterprise Edition allows users to explicitly permit or deny access to specified

resources. For example, you might allow only certain specific users or computers to subscribe to

(read from) a stream that contains private financial data.

The Coral8 Administrator's Guide describes the "Actions", "Resources", and "Subjects" that may

be restricted. In short, a subject is a particular user, a particular group, or a particular computer.

A resource is a particular Coral8 Server object, such as a stream or a workspace. An action may

Server Plugins

353

be "read", "write", "create workspace", etc. So, for example, I might have rules that permit user

Jane Smith to subscribe to and publish to the stream "StockQuotes", while I allow Patty Jones to

subscribe to this stream but not to publish to it, and I might disallow any other user from reading

or writing to this stream.

To implement this restriction, you might use a plugin that asks a user to enter her username and

password before she is allowed to access a particular resource -- such as subscribe to a stream.

The plugin is passed the username and the password and then returns a value indicating whether

the password matched the password for the specified user. If the password does not match, then

the server will not allow the user to access that particular resource. You may choose whatever

software you wish to use to verify that the password is correct for the username.

Coral8 provides the following plugins for user authentication:

 LDAP - this plugin allows you to use standard LDAP as a way of determining whether a

user is who she claims to be.

 htpasswd - this is a simple plugin that allows you to use encrypted password files to

determine whether a user is who she claims to be.

 Pluggable Authentication Module (PAM) - this is a tool that lets you use different

authentication methods at different times, without re-compiling the program (e.g. without

recompiling the Coral8 Server).

In addition to using these plugins, you may write your own plugin, which may connect to some

other system to verify the password. If you write your own plugin, you will need to specify the

library name that contains the plugin, and the names of the initialize(), execute(), and shutdown()

functions of the plugin. Please see the documentation of the htpasswd plugin (below) for an

example.

For more information on this topic, please see the following:

 User Authentication htpasswd Plugin

 User Authentication LDAP plugin

 User Authentication via Pluggable Authentication Module (PAM)

 the Coral8 Administrator's Guide (explains how to configure the Coral8 Server

configuration file (coral8-server.conf) to tell the server to read the ACL file (coral8-

acl.xml)

 the Coral8 Administrator's Guide (explains some contents of ACL files (Subjects,

Resources, and Actions))

For any of these authentication plugins, you must customize the coral8-server.conf file in at

least 2 places. The first place is shown below; you must de-comment the "ACLFile" preference

and, optionally, replace the file name "coral8-acl.xml" with another file name if you want to

use a different file:

Coral8 Integration Guide

354

<section name="Coral8/Security">

<section name="AccessControl">

<!-- The location of the coral8 access control list file -->

<!-- Default: empty -->

<!-- <preference name="ACLFile"

 value="C:\Program Files\Coral8\Server/conf/coral8-acl.xml"/> -->

You must, of course, customize the contents of the coral-acl.xml file (see the Coral8

Administrator's Guide for details).

The second part of the coral8-server.conf file that you must customize will depend upon which

plugin you are using. More information is provided in the descriptions of the individual plugins

below.

User Authentication htpasswd Plugin

The htpasswd plugin uses an encrypted password file to authenticate a user and to determine

whether the user is a member of any group that is permitted to access a particular resource.

As with any plugin, you must update the coral8-server.conf configuration file to specify

information about the plugin. Below is an excerpt from the default coral8-server.conf file,

which shows the preferences used by the htpasswd plugin, which has the 4 standard preferences

(LibraryName, InitializeFunction, AuthenticateFunction, and ShutdownFunction) and 2 custom

preferences (PasswordFilePath and GroupFilePath).

<section name="Plugin">

 <preference name="LibraryName"

 value="c8_server_plugins_lib"/>

 <preference name="InitializeFunction"

 value="c8_auth_plugin_htpasswd_initialize"/>

 <preference name="AuthenticateFunction"

 value="c8_auth_plugin_htpasswd_authenticate"/>

 <preference name="ShutdownFunction"

 value="c8_auth_plugin_htpasswd_shutdown"/>

 <preference name="PasswordFilePath"

 value="C:\Program Files\Coral8\Server/conf/htpasswd.txt"/>

 <preference name="GroupFilePath"

 value="C:\Program Files\Coral8\Server/conf/htgroup.txt"/>

</section>

The initialize and shutdown functions perform just as described in Plugins.

The AuthenticateFunction corresponds to the "execute()" function described in Plugins; this

function is called each time that a user gives her username and password in order to access a

resource, such as a stream.

This custom entry PasswordFilePath containspairs of usernames and passwords that the plugin

uses to determine whether a user is who she claims to be.

Server Plugins

355

Finally, the custom entry GroupFilePath lists the groups that each user is in. This is used when

the ACL file permits (or denies) privileges to particular groups.

Let's look at an example. Suppose that we have multiple people who are system administrators,

and we want to create a group named "SysAdmins" and allow any member of that group to

create or destroy workspaces. Here's how to do that:

1. In the ACL (Access Control List) file (named coral8-acl.xml by default), enter

information similar to the following:

<!-- Permit members of the group "sysadmin" to

 create and destroy workspaces -->

<Rule RuleId="SysadminWorkspaceRul1" Effect="Permit">

 <Target>

 <Subjects>

 <!-- Any member of the "SysAdmin" group. -->

 <Group>SysAdmins</Group>

 </Subjects>

 <Resources>

 <!-- any workspace name. (".*" is a regular

 expression that indicates any sequence of

 characters -- i.e. any name.)

 -->

 <Workspace>.*</Workspace>

 </Resources>

 <Actions>

 <CreateDestroy/>

 <GetStatus/>

 </Actions>

 </Target>

</Rule>

Note that group names, host names, and user names are not case-sensitive.

Note that values may be regular expressions. In the example above, the "." represents any

character, and the "*" is a repeat indicator -- i.e. it indicates that there may be any number

of these characters.

2. In the groups file (we specified "htgroup.txt" in the GroupFilePath preference in the

coral8-server.conf file), enter at least the following:

SysAdmins:jsmith

You may of course specify more than one member of a group, using the comma as a

separator, for example:

SysAdmins:jsmith,pjones,andrews

3. Add an entry to the htpasswd.txt file (we specified this file in the PasswordFilePath

preference of the coral8-server.conf file). The password in this file must be encrypted

Coral8 Integration Guide

356

using md5 format. Use apache's 'htpasswd -m' command to create htpasswd records. For

example:

Create a new htpasswd.txt file with a user named "root"

whose password is "carrot".

htpasswd -bcm ./htpasswd.txt root carrot

Add user jsmith with password "taro9" to the htpasswd.txt

file.

htpasswd -bm ./htpasswd.txt jsmith taro9

Note that the htgroup.txt file is a "plain text" file; no part of it is encrypted.

When user jsmith tries to create a new workspace, the following will happen:

1. The user starts Studio and attempts to add a new workspace.

2. Studio prompts the user for her username and password.

3. The user enters "jsmith" as the username and "carrot" as the password.

4. The server sees that the server configuration file specifies that the htpasswd plugin should

be used, and so the server calls the function specified in the AuthenticateFunction and

passes the ID and password that the user typed in.

5. The plugin encrypts the password that the user entered, then looks in the htpasswd.txt file

for user "jsmith" and determines that the encrypted password in the file matches the

password that the user entered for jsmith. The plugin then returns a value indicating that

user has been authenticated as jsmith.

6. The server then looks at the ACL file and sees that although there no rule explicitly

permits jsmith to create a workspace, the group "SysAdmins" is permitted to create a

workspace.

7. The server then looks in the htgroup.txt file and sees that jsmith is a member of the group

"SysAdmins".

8. The server then allows the authenticated user to create a new workspace.

User Authentication LDAP plugin

As with any plugin, you must update the coral8-server.conf configuration file to specify

information about the plugin. The LDAP plugin supplied by Coral8 follows the standard pattern

for LDAP. The parameters that you must specify in the coral8-server.conf configuration file

are:

 (required) Hostname : e.g. 'ldap.eng.coral8.com'

 (optional) Port : (default 389)

 (optional) Timeout : connections timeout in sec (default: 10)

 (optional) Version : 2 or 3 (default 3)

Server Plugins

357

 (optional) Debug: yes or no (default - no)

 SSL/TLS settings

o (optional) SslStart : yes or no (default - no)

o (optional) TlsStart : yes or no (default - no)

o (optional (not available on Microsoft Windows)) TlsCheckServerCert : yes or no

(default - no)

o (required if TlsCheckServerCert is yes (not available on Microsoft Windows))

TlsCaCert : path to the cert

 (optional) BindDN, BindPassword : if left empty/not specified then use anonymous

search

 User settings

o (optional) UserUidAttr : string (default 'uid')

o (optional) UserBaseDN : string (e.g. 'ou=People,dc=coral8,dc=com')

o (optional) UserFilter : string (e.g 'objectclass=posixAccount')

 Group settings

o (optional) GroupMemberUidAttr : string (default 'memberuid') - if not an empty

string, then we provide user's uid (username) for groups search (also see

GroupMemberDnAttr). This is typical setup for OpenLDAP and RedHat/Fedora

Directory Server.

o (optional) GroupMemberDnAttr : string (default '') - if not an empty string, then

we provide user's DN for groups search (also see GroupMemberUidAttr). This is

typical setup for Microsoft AD/ADAM Server.

o (optional) GroupBaseDN : string (e.g. 'ou=Groups,dc=coral8,dc=com')

o (optional) GroupFilter : string (e.g 'objectclass=posixGroup')

o (optional) GroupLimit: integer - how many groups to return (default : 0 - no limit)

Note that SSL or Transport Layer Security (TLS)-protected connection must be used to prevent

user credentials from network analyzers. Please see the Coral8 Administrator's Guide for more

information about configuring SSL.

User Authentication via Pluggable Authentication Module (PAM)

Users of Linux and some other unix-like operating systems (including recent versions of Solaris)

may use the Pluggable Authentication Module (PAM) system. (At the time PAM was added to

Coral8, PAM was not available on MS-Windows systems.)

PAM allows PAM-compatible applications (including the Coral8 Server) to switch

authentication methods without recompiling the application. This allows a system administrator

Coral8 Integration Guide

358

to upgrade to a completely different authentication system (such as moving from passwords to

retinal scans) without recompiling the application. Changes are made by updating configuration

files (to specify which authentication method should be used) and optionally by adding

additional subroutine libraries (to add new types of authentication methods). The additional

subroutine libraries may be purchased or may be developed by users.

This document assumes that you already have the PAM modules that you need and therefore we

explain only how to configure your Coral8 Server to use existing PAM modules. For more

information about PAM, including information about how to develop PAM modules of your

own, see the PAM documentation on the internet. As of the date that this feature was introduced

in Coral8, these documents were located at:

http://www.kernel.org/pub/linux/libs/pam/

 Linux-PAM-html/Linux-PAM_SAG.html

http://www.kernel.org/pub/linux/libs/pam/

 Linux-PAM-html/Linux-PAM_ADG.html

The first of these documents is the System Administrator's Guide, which explains how to

configure a PAM system when you already have the files you need. The second document

explains how to write your own pluggable authentication module.

We assume:

 You have already read an overview of the PAM system (e.g. chapters 1-4 of the PAM

System Administrator's Guide) and understand how PAM works.

 You have already downloaded and installed the PAM files (library files, etc.) that you

will need. (Note that some unix-like operating systems may already come with PAM

installed.)

 You have acquired system administrator privileges on your computer or have other

privileges sufficient to allow you to create or modify files under:

/etc

so that you can create or add to one of the following:

o /etc/pam.d: a directory containing PAM configuration files

o /etc/pam.conf: a file containing PAM configuration information

Please note that access to the /etc/pam.d directory or the /etc/pam.conf file should be

tightly restricted; otherwise, a malicious user could change the configuration files and

weaken security.

 You have acquired system administrator privileges on your computer or have other

privileges sufficient to allow you to create or modify the coral8-server.conf file and

the coral8-acl.xml file.

The location of the server configuration file depends upon where you install Coral8 to,

but a typical location is:

Server Plugins

359

<install-dir>/server/conf/coral8-server.conf

A Brief Overview of PAM with Coral8

In the diagram below, you can see the basic components involved when Coral8 uses PAM.

Coral8 Server contains functions designed to work with PAM, including the initialize,

authenticate, and shutdown functions. You will need to configure your coral8-server.conf

file to specify the name of the library that contains these functions. (We will explain this in more

detail below.)

The API box indicates what type of information is transmitted from the Coral8 Server to the

Coral8 PAM Plugin (which is a library that actually runs as part of the same process as the

server). The server passes user and password information to the C8 PAM Plugin, and the C8

PAM Plugin returns a set of values that indicate:

 whether the specified user is permitted or denied access, and

 if the user is permitted access, then which groups the user is a member of.

The C8 PAM Plugin calls appropriate functions in the PAM library, and passes appropriate

information to that library.

The PAM library does a variety of things, including:

 Read the /etc/pam.d/coral8 file to determine which configuration method (e.g.

password, retina scan, fingerprint, etc.) should be used;

 Call the appropriate functions to authenticate the user (e.g. request password info, request

fingerprint info);

 Return a permit/deny value to the C8 PAM Plugin, which, in turn, passes this information

back to the Coral8 Server.

Coral8 Integration Guide

360

The PAM library does more than this, but these are the key high-level tasks as far as the Coral8

Server is concerned.

The /etc/pam.d/coral8 file specifies which authentication method should be used, and other

details. Some of these details are explained in more detail below. For other information, see the

internet pages that document PAM.

Configuring Coral8 Server to Use PAM

As with any plugin, you must update the coral8-server.conf configuration file to specify

information about the plugin. The default coral8-server.conf file included with your Coral8

Engine contains a commented-out section with PAM-related configuration parameters. The basic

parameters are described here.

<!-- Sample PAM authentication plugin configuration -->

<section name="Plugin">

<preference name="LibraryName" value="c8_server_plugins_lib"/>

<preference name="InitializeFunction"

value="c8_auth_plugin_pam_initialize"/>

<preference name="AuthenticateFunction"

value="c8_auth_plugin_pam_authenticate"/>

<preference name="ShutdownFunction"

value="c8_auth_plugin_pam_shutdown"/>

<!--

 Uncomment the following line and change 'value' to

 set the password prompt that PAM sends to applications.

 The defaultprompt is "Password: ". (Note the required

 space at the end.) You should only need to do this if

 you encounter a system that does not use the default,

 and as such, it failing authenticiation.

-->

<!-- <preference name="PasswordPrompt" value="Password: "/> -->

</section>

(You should look carefully at your coral8-server.conf file to see the exact parameters for

your version of Coral8. See also the Coral8 Administrator's Guide.)

By default, this section is commented out in the coral8-server.conf file. Make sure that you

de-comment it.

As you can see, to use a PAM, you must specify:

 the name of the library file that contains the initialize(), authenticate(), and shutdown()

functions.

 the name of the initialize() functions in that library.

 the name of the authenticate() function in that library.

Server Plugins

361

 the name of the shutdown() function in that library.

Since the C8 PAM library is supplied by Coral8, the names of the library and the functions in it

are known, and you can simply de-comment this section of the coral8-server.conf file; you

do not need to change the values of the library or function names.

For an explanation of the PasswordPrompt preference, see the section called "PAM

Troubleshooting".

Configuring the PAM Service

You create or edit a PAM configuration file to specify which authentication method (e.g.

password, fingerprint, etc.) you want to use with Coral8. Coral8 Server calls the PAM library

functions to read this configuration file. The PAM library functions then know which of the

many PAM authentication functions to use. Complete documentation about this PAM

configuration file can be found as part of the PAM documentation. We cover key aspects below.

In this document, we assume that you will create

/etc/pam.d/coral8

Although PAM allows 4 different types of management group rules (account, auth, password,

and session), Coral8 uses only two: account and auth.

 auth: this indicates that the user must be authenticated to prove that she is whom she

claims to be, and also allows the module to indicate which groups the user is a member

of.

 account: this allows the system to permit or deny access based on factors other than the

user's identity. For example, the module might temporarily deny a user access to a system

if the system is already heavily loaded.

The examples below use only a single rule. (See the PAM documentation if you need

information about how to use a "stack" containing multiple rules.)

This sample configuration file will check the user against the system password:

type control module-path module-arguments

------- -------- ------------ -------------------

auth required pam_stack.so service=system-auth

account required pam_stack.so service=system-auth

The "type" is either "auth" or "account".

In this case, the user must follow the specified authentication rule, so we put "required". (If you

are using a "stack" that contains multiple rules, you might specify values other than "required"

for some rules. For more information, see the PAM documentation.)

The module-path indicates which PAM library we want to use to perform the authentication. The

module-path is either the absolute path and filename of the PAM to be used by the application (if

Coral8 Integration Guide

362

the path begins with a '/'), or a relative pathname from the default module location: /lib/security/

or /lib64/security/, depending on the architecture.

The module-arguments are a space-separated list of tokens that can be used to modify the

specific behavior of the given PAM. The exact values depend upon which PAM library module

you are using. See the documentation for that specific module. In this example, we are specifying

that we want the normal system-wide authentication method on this computer (typically a user

ID and password).

This configuration file allows all users (this may be useful for testing, but is insecure!).

type control module-path module-arguments

----- -------- ------------- ----------------

auth required pam_permit.so

account required pam_permit.so

This configuration file denies all access (useful for testing)

type control module-path module-arguments

----- ------- ----------- ----------------

auth required pam_deny.so

account required pam_deny.so

PAM Troubleshooting

This section provides troubleshooting tips for some PAM-related problems.

 Specifying the "service":

PAM allows two different file formats and locations for configuration files. If you use

/etc/pam.conf, then you will must include a "service" column in the PAM

configuration file. If you use /etc/pam.d/coral8, then you must omit the "service"

column from the PAM configuration file. For more information, see the documentation

for PAM.

 PasswordPrompt:

If your system uses a password prompt different from the one shown in the coral8-

server.conf file's PasswordPrompt preference (which may occur if your password

prompt has been localized), then you will need to change the coral8-server.conf file's

preference to match your actual prompt.

Explanation: At a certain point in the authentication process, the PAM library calls the

Coral8 PAM plugin and passes the system's password prompt. The PAM library expects

the Coral8 Server to display the prompt, retrieve the password from the user, and then

return the password to the PAM library. However, when Coral8's PAM plugin receives

the prompt, Coral8's PAM plugin does not actually display the prompt, but instead

returns password information that Coral8 Server already has. If the system's password

Server Plugins

363

prompt does not match the PasswordPrompt preference, then Coral8 Server doesn't

recognize when to return the password. To prevent this problem, set the PasswordPrompt

preference to match your system's actual password prompt. Note that this string must

exactly match the actual password prompt, including any blank space in the prompt.

Unfortunately, if the password prompt sent by the PAM library does not match the

password prompt expected by the Coral8 PAM plugin, you will not get a detailed error

message. The only symptom you will see will be that authentication fails.

365

Datatype Mappings

This table shows the approximate mappings between CCL data types, and ANSI data types.

Not all data types can be mapped exactly. For example, CCL Integer is a 32-bit integer data type

with a maximum positive value of 2,147,483,647.

Please note that some database servers (including Coral8) use LONG for a numeric data type,

while other database servers use LONG to refer to a character data type.

Recommended Datatype Mappings between CCL and SQL

The following tables show the recommended mappings between CCL and SQL. These are useful

if you are going to read data from a database server into your Coral8 Server (e.g. by using the

READ FROM DATABASE input adapter, the POLL FROM DATABASE input adapter, or a

database subquery) or if you are going to write data to a database server from your Coral8 Server

(e.g. by using the WRITE TO DATABASE output adapter or by using the Database Statement

("EXECUTE STATEMENT DATABASE ...").

These recommended mappings are based on our in-house testing. Note that in some cases, other

mappings will also work. For example, although we map Coral8 BOOLEAN to MySQL

INTEGER, it is likely that MySQL BOOLEAN will also work.

Note also that different database servers may have different length limits. Not all database

servers allow VARCHAR(2147483647), so even when you are using the recommended type

mappings you may still see truncation for long pieces of data.

We provide 2 tables: The first table shows the mappings between several specific database

servers and Coral8. The second table shows the mapping between Coral8 data types and ANSI

SQL data types. We recommend that you look in the first table for your database server. If your

database server is not listed, then if your database server supports ANSI SQL data types, use the

second table.

CCL Type DB2 MySQL MySQL MaxDB

BLOB VARCHAR(N) [7] VARCHAR(N) [6] [7] VARCHAR(N) [7]

BOOLEAN INTEGER INTEGER INTEGER

INTEGER INTEGER INTEGER INTEGER

LONG BIGINT BIGINT FIXED(38)

FLOAT FLOAT DOUBLE FLOAT

STRING [3] VARCHAR(N) VARCHAR(N) VARCHAR(N)

INTERVAL BIGINT BIGINT FIXED(38)

TIMESTAMP TIMESTAMP DATETIME TIMESTAMP(6)

Coral8 Integration Guide

366

XML VARCHAR(N) VARCHAR(N) VARCHAR(N)

CCL Type SQL Server Sybase PostgreSQL

BLOB VARCHAR(N) [7] TEXT VARCHAR(N) [7]

BOOLEAN INTEGER INTEGER INTEGER

INTEGER INTEGER INTEGER INTEGER

LONG BIGINT BIGINT BIGINT

FLOAT FLOAT FLOAT DOUBLE PRECISION

STRING [3] VARCHAR(N) VARCHAR(N) VARCHAR(N)

INTERVAL BIGINT BIGINT BIGINT

TIMESTAMP DATETIME DATETIME TIMESTAMP

XML VARCHAR(N) VARCHAR(N) VARCHAR(N)

Notes:

1. This data type is not part of the ANSI SQL92 specification.

2. Coral8 does not support YEAR-MONTH intervals.

3. On some platforms, Coral8 strings may be limited to 65,535 bytes.

4. Although internally Coral8 supports BLOBs up to 4GB, the practical maximum size is

often 2GB due to other limits. For example, Coral8 Server cannot read a file (or write a

file) larger than 2GB, so you cannot read a 4GB blob from, or write a 4GB blob to, a file.

5. As a practical matter, the larger the amount of data to be handled, the fewer rows per

second the server can handle. Large values of type BLOB (or of type STRING or type

XML) will severely limit throughput.

6. Note specifically that MySQL BLOB is not supported for use with Coral8 BLOB.

7. Note also that when Coral8 BLOB data is stored in VARCHAR or another ASCII format

(as opposed to a binary format), the BLOB is converted to a string by using bas64

encoding, which converts 3 bytes of BLOB data to 4 bytes of ASCII data. This expands

the size of the data by 4/3 (which typically means that if the database server's data size

limit is 2GB for VARCHAR, then only 1.5 GB of BLOB data can be stored in it). For a

little more information about base64 encoding, see Reading and Writing BLOBs on

External Database Servers.

The table below shows the mappings between Coral8 data types and ANSI SQL data types. If

your database server supports ANSI SQL data types, then you should be able to use this table.

CCL Type ANSI SQL Type Description

Datatype Mappings

367

BLOB [footnote 1]

A sequence of 0 - 4294967295 (2^32 - 1) bytes,

each of which may contain any value from 0 - 255.

[4][5]

BOOLEAN [1]
If the type is stored as a NUMBER or INTEGER,

then false = 0 and true = 1

INTEGER INTEGER
Integer values between -2147483648 and

+2147483647 (-2^31 to 2^31 - 1)

LONG [1]
Integer values from -9223372036854775808 to

+9223372036854775807 (-2^63 to +2^63 - 1

FLOAT FLOAT For NUMBER(p,s) when s>0

STRING [3]

CHARACTER

VARYING

(2147483647)

Character strings

INTERVAL
DAY-TIME

INTERVAL [2]

Interval of time, specified as days, hours, minutes,

seconds, and fractions of a second. For Coral8

INTERVAL data type, the precision is in

microseconds.

TIMESTAMP TIMESTAMP
A date and time specified with a precision as fine

as 1 microsecond.

XML

CHARACTER

VARYING

(2147483647)

A string containing valid XML.

369

Troubleshooting

This appendix helps you identify and resolve problems that are commonly experienced by users

of the Coral8 SDKs.

General Tips

Re-compile in-process adapters, UDFs, and server plugins when you upgrade Coral8

versions. Code that runs inside the server (such as in-process adapters, User-Defined Functions

(UDFs), and server plugins) is not necessarily binary compatible from version to version. If you

have written your own in-process code, then each time you upgrade your Coral8 engine (e.g.

from version 5.0 to version 5.1), you should re-compile that code (and, of course, copy it to the

appropriate location, such as the server bin directory).

For out-of-process code, on the other hand, you must re-compile only if the API has changed in a

way that is not backwards compatible. Such changes are listed in the Coral8ReleaseNotes.txt file

in the server "doc" directory. (Note that if you skip over intermediate versions, e.g. you jump

from version 4.4 to version 5.1, then you may need to read the release notes for each of the

intermediate versions to learn about changes that are not backwards compatible.)

Upgraded versions of Microsoft Visual Studio .NET if appropriate. When Coral8 Engine

was upgraded from Version 5.0 to Version 5.1, it required users to upgrade from Microsoft

Visual Studio .NET 2003 to Microsoft Visual Studio .NET 2005.

Visual Studio .NET 2005 updates project-related files (e.g. .vcproj or .sln), and earlier

versions of Visual Studio cannot read the updated files. Therefore, upgrading is

"irreversible". You would have to re-create the project-related files to downgrade.

Errors When Compiling C-language Adapters, UDFs
and RPC Plugins

Problem

You are using MS Visual Studio and you get the following error when you try to Build/Rebuild

the project or link the .DLL file:

LNK2005: _DllMain@12 already defined in MSVCRTD.lib(dllmain.obj)

If you see this message, delete the .cpp file from the project and then add it back to the project.

To delete the file from the project, first open the "solution explorer" window (go to the menu and

click on "View", then click on "Solution Explorer"); the Solution Explorer window will open up

Coral8 Integration Guide

370

on the right-hand side of the MS Visual C IDE window. Click on the .cpp file (e.g. MyUDF.cpp)

and press the delete key.

To add the file back to the project, go to the menu and click on the menu item "Project" and then

"Add Existing Item", and then specify the .cpp file.

Problem

Compile/link error "Error LNK2019: unresolved external symbol __imp__xmlFree"

You need to include the library libxml2 in the list of dependencies. See Compiling an RPC

Plugin.

Error Messages When Compiling Java-Language
Adapters

Problem

When you compile, you see one or more error messages similar to the following:

MapPublisher1.java:1: package com.coral8.toolbox does not exist

import com.coral8.toolbox.Toolbox;

MapPublisher1.java:33: cannot find symbol

symbol : variable Toolbox

location: class MapPublisher1

Toolbox.publishRow(cclUrl, data);

The most likely cause is that your CLASSPATH environment variable is not set properly.

Make sure that you include the following files in your CLASSPATH:

C:\Program Files\Coral8\Server\sdk\java\c8-adapters.jar

C:\Program Files\Coral8\Server\sdk\java\c8-sdk-java.jar

Errors When Starting the Server

Problem

When Coral8 Server is attempting to start, it exits without apparent reason.

There may be another server running that is using the same port number.

Problem

When the Coral8 Server is attempting to start, it freezes up after displaying the message

"Reading Adapter ADL definitions from..."

Troubleshooting

371

This problem has been observed by a customer who was using cygwin (a linux look-alike

product) Microsoft Windows, and who compiled an in-process adapter using the "cygwin"

libraries.

If you are running on Microsoft Windows and using cygwin or a similar product under Microsoft

Windows, please make sure that you compile and link in-process adapters and User-Defined

Functions with a Microsoft Windows development system such as Microsoft Visual Studio,

rather than with the C compiler supplied with cygwin. Note that for out-of-process adapters and

other code that is not run as part of the server itself, you may be able to use cygwin development

tools.

Error Messages Displayed During Execution

You will usually see these messages displayed during execution, typically displayed by Coral8

Studio, for example.

Problem

Coral8 Studio produces an error similar to:

In workspace 'Default', top module 'PassThrough':

Error: Cannot find user_output_c8adapter_initialize in library

sdk_adapter_lib.

Error C8_SERVER-3601: Module

'Default/PassThrough/PassThrough_SDKOutputTutorialCsvFileAdapter'

execution failed.

This means that Coral8 Server cannot find the entry point in the adapter library.

Notice this error also is printed in the Coral8 Server log. Please check the following to see if any

of them might be causing your problem.

 Has the library been copied to the bin subdirectory of the Coral8 Server directory?

 Is the entry point name spelled correctly? Remember also that these names are case

sensitive.

 If the user is debugging with Visual Studio, the debug and release versions can be in

different directories.

 Has the user copied adapter files to the correct plugins directories?

 Has the user copied adapter library files to the correct bin directory?

 Note also that the API is in C, not C++, so make sure that the user routines have been

properly "externed".

Problem

Coral8 Integration Guide

372

You get an error message similar to one of the following:

 Error: Function or library not found (function_name='my_initialize_func',

library_name='my_managed_adapter_lib')').

 Error: Cannot find my_initialize_func in library MyManagedInputAdapter.

 Error: failed to start program (program_path=

'C:/Documents and Settings/jsmith/My Documents/Coral8

Repository/5.2.0/ccx/Default_SDKDemo.ccx',

reason='Request processing failed: Server returned: Exception Error C8_SERVER-4404:

Could not execute register command on container 'http://localhost:6789/Container'.

Request processing failed: Server returned: Sender Invalid Request: Error parsing XML:

Error: Function or library not found. Library: avgbool Function: avgbool.Error

C8_SERVER-4101: Could not execute register command for workspace 'Default'.',

server='http://localhost:6789/', workspace_name='Default')

Errors: 1----- ERROR: Module 'SDKDemo' in workspace 'Default' was not started

(05/09/06 09:27:29) -----

Possible causes include:

 Your .adl file might not specify the same library name and function name as the .dll/.so

file use.

The "case" (e.g. upper case vs. lower case) for the C function in the C-language source file might

not match the case of the name in the .adl file.

 You may not have copied the .dll/.so file to the correct directory. Make sure that you

copy it to the "bin" directory of the server, e.g.

C:\Program Files\Coral8\Server\bin

or

/home/<userID>/coral8/server/bin

 Your .udf file might not specify the same library name and function name as the .dll/.so

file use.

 The "case" (e.g. upper case vs. lower case) for the C function in the C-language source

file might not match the case of the name in the UDF file. In your UDF file, look for a

line similar to:

Function Name="weightedAvg3"

and make sure that the name there matches the name of the function in the C source code.

 You may have omitted the "extern C" section of your C file, which specifies that the

function names should be externally visible. You should have a section similar to the

following:

Troubleshooting

373

extern "C" {

USER_FUNCTION_EXPORT void my_func(C8Udf* ctx);

}; // extern "C"

If you will be compiling and executing on both Microsoft Windows and other platforms,

your section should look more like the following:

// Ensure functions are "exported" properly from dll.

#if defined(_MSC_VER)

#define USER_ADAPTER_EXPORT __declspec(dllexport)

#else // defined(_MSC_VER)

#define USER_ADAPTER_EXPORT

#endif // defined(_MSC_VER)

// forward declarations of callback functions for the

// in-process adapter

#ifdef __cplusplus

extern "C" {

#endif /* __cplusplus */

USER_ADAPTER_EXPORT C8Bool initialize(C8Adapter *adapter_ptr);

USER_ADAPTER_EXPORT C8Bool execute(C8Adapter *adapter_ptr);

USER_ADAPTER_EXPORT void shutdown(C8Adapter *adapter_ptr);

#ifdef __cplusplus

} /* extern "C" */

#endif /* __cplusplus */

Problem

You are using a UDF that you compiled on Microsoft Windows and you see an error message

similar to the following:

Error: failed to start program

(program_path='C:/Documents and Settings/<username>/My

Documents/Coral8

Repository/5.2.0/UserDefinedAggregators/Xconcat/xconcat.ccx',

reason='Request processing failed: Server returned: Exception Error

C8_SERVER-4404: Could not execute a command in container

'http://<nodename>:<port>/Container'.

Request processing failed: Server returned: Client Invalid Request:

Error parsing XML: Error: Can not load library 'xconcat' with path

'C:/Program Files/Coral8/Server/bin\xconcat.dll'. (nspr_error='error

126', system_error='The operation completed successfully. ').

Error C8_SERVER-4101: Could not execute loader command for workspace

'Default'.', server='http://localhost:<port>/',

workspace_name='Default')

Possible causes include:

 You may not have put the .dll file into the server bin directory.

Coral8 Integration Guide

374

 When you compile your .DLL file, you may have turned on debugging. As a result, your

.DLL may reference the debug version of the C runtime library (e.g. MSVCR8D.DLL)

rather than the non-debug version (e.g. MSVCR8.DLL (note the missing "D" before the

period)). If you don't have a copy of the referenced file, you'll get this error.

 You may have compiled your UDF with project settings that indicate that you want your

.DLL file to use functions in MFC (Microsoft Foundation Classes).

Possible solutions:

 Put the .dll file into the server bin directory.

 You may need to turn off debugging. In the Microsoft Visual C compiler, you can turn

off debugging by doing the following 2 steps:

1. Check whether you're using the debug version of the run-time library.

A. Build->Project->Properties-

B. Click on "C/C++".

C. Click on "Code Generation".

D. For the Runtime library, you should have

"Multi-threaded DLL (/MDd)".

If you see "Multi-threaded Debug DLL (/MDd)", then switch to

the non-debug version, i.e. . "Multi-threaded DLL (/MDd)"

2. Check the pre-processor settings

A. Click on "Preprocessor".

B. In the Preprocessor Definitions section, you will probably see

"WIN32;_WINDOWS;_DEBUG;_USRDLL".

C. Remove "_DEBUG;".

 You may need to modify or re-create your project and specify that you want to create a

DLL that does not depend upon the Microsoft Foundation Classes.

Rebuild the .DLL, copy it to the server bin directory; then stop and restart the server.

Problem

You are using an in-process adapter that you compiled on Microsoft Windows and you see an

error message similar to the following:

Error: failed to start program

(program_path='C:/Documents and Settings/<username>/My

Documents/Coral8

Repository/5.2.0/UserDefinedAggregators/Xconcat/xconcat.ccx',

reason='Request processing failed: Server returned: Exception Error

Troubleshooting

375

C8_SERVER-4404: Could not execute a command in container

'http://<nodename>:<port>/Container'.

Request processing failed: Server returned: Client Invalid Request:

Error parsing XML: Error: Can not load library 'xconcat' with path

'C:/Program Files/Coral8/Server/bin\xconcat.dll'. (nspr_error='error

126', system_error='The operation completed successfully. ').

Error C8_SERVER-4101: Could not execute loader command for workspace

'Default'.', server='http://localhost:<port>/',

workspace_name='Default')

Possible causes include:

 You may not have put the .dll file into the server bin directory.

 When you compile your .DLL file, you may have turned on debugging. As a result, your

.DLL may reference the debug version of the C runtime library (e.g. MSVCR8D.DLL)

rather than the non-debug version (e.g. MSVCR8.DLL (note the missing "D" before the

period)). If you don't have a copy of the referenced file, you'll get this error.

 You may have compiled with project settings that indicate that you want your .DLL file

to use functions in MFC (Microsoft Foundation Classes).

Possible solutions:

 Put the .dll file into the server bin directory.

 You may need to turn off debugging. In the Microsoft Visual C compiler, you can turn

off debugging by doing the following 2 steps:

1. Check whether you're using the debug version of the run-time library.

A. Build->Project->Properties-

B. Click on "C/C++".

C. Click on "Code Generation".

D. For the Runtime library, you should have

"Multi-threaded DLL (/MDd)".

If you see "Multi-threaded Debug DLL (/MDd)", then switch to

the non-debug version, i.e. . "Multi-threaded DLL (/MDd)"

2. Check the pre-processor settings

A. Click on "Preprocessor".

B. In the Preprocessor Definitions section, you will probably see

"WIN32;_WINDOWS;_DEBUG;_USRDLL".

C. Remove "_DEBUG;".

Coral8 Integration Guide

376

 You may need to modify or re-create your project and specify that you want to create a

DLL that does not depend upon the Microsoft Foundation Classes.

Rebuild the .DLL, copy it to the server bin directory; then stop and restart the server.

Don't forget: If you are using Microsoft Windows, you must make sure that the initialize(),

execute(), and shutdown() functions are exported from your .dll.

Problem

When you run your out-of-process adapter, you see one or more error messages similar to one of

the following:

Exception in thread "main" java.lang.NoClassDefFoundError:

org/apache/axis/EngineConfiguration

Exception in thread "main" java.lang.NoClassDefFoundError:

javax/xml/rpc/Service

(The exact name of the missing class may vary.)

The most likely cause is that your CLASSPATH environment variable is not set properly. Make

sure that you include each of the .jar files in the directory

C:\Program Files\Coral8\Server\sdk\java\lib

See Setting Up Your Environment, which lists the .jar files that should be in your CLASSPATH.

Problem

When you run the program, you get a message similar to the following:

Could not send tuple: java.io.IOException: Could not resolve url

'ccl://localhost:6789/Stream/Default/JavaInputAdapter1/InStream':

Info: Can not resolve uris

(The exact URL may be different, of course.)

The possible causes include the following:

1. The server is not running.

2. The server is running but the query module is not executing.

3. The URL is incorrect.

Make sure that the server is running and the query is running. After you start the server, you

should start the components in the following order:

1. The output adapter (if it is an out-of-process adapter).

2. The query module.

3. The input adapter (if it is an out-of-process adapter)

Troubleshooting

377

Make sure that the URL is correct. In Coral8 Studio, you can see the URL by clicking on the

stream and then clicking on the "Properties" tab for that stream.

Problem

If C8OpenStreamConnForReading() or C8OpenStreamConnForWriting() returns a value other

than C8_OK, check the following possibilities:

1. Is the URI spelled correctly? (Remember that the URI is case-sensitive.)

2. Is the Coral8 Server running? Is it accessible from the test client machine.

3. Has the Coral8 Studio initialized the stream? If Coral8 Studio is not running, or if the

query module has not been loaded into Studio, then the stream will not be initialized and

the adapter will not be able to connect to it.

4. If a file is specified, are permissions set correctly to allow reading and writing?

Problem

If you try to use a TitleRow (i.e. a list of the column names in the stream schema) and parts of

the title row are processed as though they were data, then remove the TitleRow from the input.

Problem

You see a message similar to:

error while loading shared libraries: libstlport.so.5.1: cannot open

shared object file: No such file or directory

or

Can not load library 'library_name' with path 'some_path'.

(Reason='Failure to load dynamic library (-5977,0)')

If you are on a Unix-like operating system, and if you are trying to compile and register a query,

then you may not have set the LD_LIBRARY_PATH environment variable to include the

server/bin directory or whatever directory the library file is in.

To solve the problem, update your LD_LIBRARY_PATH and then restart the server.

On both MS-Windows and Unix-like operating systems, also check that your PATH is correct.

Problem

You see a message similar to the following when you try to compile a CCL module that uses a

UDF (User-Defined Function):

CCLC2036: Error: Unknown operator 'MyFunc(long)'. MyFunc(x)

Coral8 Integration Guide

378

The error indicates that the compiler did not recognize the function named MyFunc with

parameters of the specified types (the type "long" in this example).

Possible causes include:

 You may not have created the .udf file.

 The contents of the .udf file may be incorrect. For example, you might have the wrong

values for the Function Name, Library, or CclName, or you might have the wrong data

types specified for the Input and Output parameters.

You may not have copied the .udf file to Studio's plugins directory. (You might have copied the

file only to the server's plugins directory.)

Check that you used the correct values

379

HTTP and SOAP Plugin Configuration

The coral8-services.xml configuration file contains preferences related to interfacing Coral8

with other systems, including:

 Database Servers

o MySQL, PostgresSQL, SQLServer via ODBC

 RPC (Remote Procedure Call) servers

Coral8 Server treats an external data source (or data destination) as a "service". For each service,

the coral8-services.xml file must contain a unique "service name", along with the

information required to access that service (e.g. username, password, etc.). The Coral8

Administrator's Guide describes how to configure your coral8-services.xml file with the

service name and most other information needed to access remote database servers and RPC

servers.

The Administrator's Guide does not describe configuration preferences for the HTTP plugin and

the SOAP plugin, either of which may be used to call remote procedures on RPC servers. Those

HTTP plugin and SOAP plugin configuration preferences are described here.

The generic HTTP plugin expects the following configuration preferences in the coral8-

services.xml file:

HttpURI
Required: this is the HTTP URI to which the request should be sent.

For example: http://localhost/cgi-bin/getStock-Price.cgi

HttpTimeout

Optional: specifies the HTTP connection timeout, either an integer

specifying the number of seconds or in the following format:

[D day[s]][][HH hour[s]][][MM minute[s]][

][SS[.FF] second[s]]

For example, "3 minutes 12.5 seconds". Defaults to 30 seconds.

HttpKeepAlive
Optional: TRUE or FALSE, indicating whether to use keep-alive

connections. The default value is FALSE.

HttpEnableRedirects
Optional: TRUE or FALSE, indicating whether to follow redirects.

The default value is TRUE.

HttpEnableLogging
Optional: TRUE or FALSE, indicating whether to log arguments

and return values for all plugin calls. The default value is FALSE.

HttpEnableDebugging

Optional: TRUE or FALSE, indicating whether to print debug

information from the plugin (for example, request/response dumps).

The default value is FALSE.

Coral8 Integration Guide

380

HttpRequestHeaders

Optional: specifies extra HTTP request headers. Multiple headers

must be separated with the 2-character sequence Carriage Return

and Line Feed (represented as "\r\n below)", for example, Accept:

text/xml\r\n SOAPAction:"TempConvert#f2c"

The generic SOAP plugin expects the following configuration preferences in the coral8-

services.xml file:

All the HTTP plugin

preferences
Same as for the HTTP plugin

SoapUri
Required: indicates the URI of the SOAP resource, for example,
urn:StockPriceService

SoapMethod
Required: specifies the name of the SOAP method to call, for

example, GetStockPrice

SoapAction
Optional: indicates the SOAPAction HTTP header. The default

value is "<SoapURI>#<SoapMethod>"

SoapVersion
Optional: indicates the version of SOAP in use, either "1.1" (the

default) or "1.2".

SoapMethodNamespace

Optonal: indicates the namespace to use for the method node.

Defaults to the same value as SoapUri. If you set this to the empty

string, then the method node is written without a namespace.

SoapValuesNamespace

Optonal: indicates the namespace to use for the values node.

Defaults to the same value as SoapMethodNamespace. If you set

this to the empty string, then the values node is written without a

namespace.

SoapEncodingStyle
Optional: "Document" (the default) or "Rpc", specifying the

encoding style for the SOAP request and response.

SoapXsdNamespace

Optional: specifies the "xsd" namespace URI. The default value is

http://www.w3.org/2001/XMLSchema However, old SOAP servers

may require the old version: http://www.w3.org/1999/XMLSchema

SoapXsiNamespace

Optional: specifies the "xsi" namespace URI. The default value is

http://www.w3.org/2001/XMLSchema-instance However, old

SOAP servers might require the old version
http://www.w3.org/1999/XMLSchema-instance

SoapDotNet20Compat

Optional: TRUE or FALSE, indicating whether .NET 2.0

compatibility mode should be enabled or disabled. .NET 2.0

compatibility mode causes timestamps to be generated without time

zones. The default value is FALSE.

HTTP and SOAP Plugin Preferences

381

SoapTimestampFormat

Optional: specifies the timestamp string serialization format, for

example: YYYY-MM-DDTHH24:MI:SS.FFZTZH:TZM The default value

is the default SOAP format. (The SOAP format requires the "T"

before the hour and the "Z" before the time zone information. These

extra characters are compatible with the Coral8 format; Coral8

simply treats them as literals.)

The remote service entry may also be configured for a number of additional settings, as

described in the Coral8 Administrator's Guide section titled "Setting Optional Preferences for

Services".

To learn the syntax of RPC and Database statements and subqueries, please see the Coral8

Reference Guide.

383

Stream URIs

You should read this section if you are going to use any of the following features:

 Out-of-process adapters or any other program that uses the Coral8 SDKs

 Distributed queries (including pipelined queries and parallel queries)

 High Availability (HA)

You should also read this section if you need to make URIs "portable" across servers.

What Is a URI and What Is It Used For?

Each Coral8 stream has a unique stream URI ("Uniform Resource Identifier"), which provides

enough information that a program (such as an out-of-process adapter) can connect to that

stream. (If you are already familiar with URLs, it may be helpful to know that a URI is a lot like

a URL.) You must also specify a URI when you connect streams in different projects.

The simplest use of stream URIs is with an out-of-process adapter, which runs as a separate

process, rather than as part of the server. For an out-of-process input adapter to connect to an

input stream and write data to that stream, the adapter must know the URI of that stream.

Similarly, an out-of-process output adapter must know the URI of the stream from which it will

read. Any other program that uses a Coral8 SDK to access a stream must also know the URI of

the stream.

A more complex use of stream URIs occurs with parallel queries; the adapter must write data to

multiple instances of a stream, and thus must know the URI of each of those instances of a

stream. (This is explained in more detail in the section titled URIs and Distributed Queries.)

Another use of stream URIs is with the High Availability (HA) feature. When using HA, Coral8

Server cluster has a manager and one or more "containers". The manager coordinates the work

among the containers. The containers not only run queries; they also "run" streams and adapters.

When a manager or container dies, a different manager or container takes over the work, and

thus a program "talking to" or "listening to" a stream may need to re-connect to that stream since

the stream may now be running on a different computer. Thus, Coral8 Server must use stream

URIs that can be resolved to the current location of the stream, rather than hard-coding a host as

part of the URI.

Types of URIs

This section discusses logical vs. physical stream URIs, and absolute vs. relative stream URIs.

Note: Coral8 URI naming follows the RFC 3986 standard for URIs. A CCL URI is a URI with

the "ccl" scheme.

Coral8 Integration Guide

384

Logical vs. Physical Stream URIs

Coral8 stream URIs may be "logical" or "physical" URIs. User-written programs, such as out-of-

process adapters, generally specify a logical URI, which the manager resolves (translates) into a

physical URI. The physical URI includes information about which container the stream is

running on. (If you are not already familiar with managers and containers, see the explanation in

the High Availability (HA) documentation.)

 Logical URI -- Logical URIs start with "ccl://".

 Physical URI -- Physical URIs start with "http://".

Absolute vs. Relative Stream URIs

URIs that start with "http:" or "ccl:" are "absolute" URIs. You may also specify "relative URIs",

i.e. URIs that are relative to the local Coral8 Server manager. For example, the following binding

is valid:

/Stream/wkspc2/MyProject/strm_OrderUpdate~1

(Note the "~1" at the end of the relative URI.)

This looks up the stream named "strm_OrderUpdate~1" in the current manager. ("wkspc2" is

the name of the workspace.) If the project is running on host "dev7" and port "6782", then the

binding

/Stream/wkspc2/MyProject/strm_OrderUpdate~1

is the same as

ccl://dev7:6782/Stream/wkspc2/MyProject/strm_OrderUpdate~1

By using relative bindings, you make projects much more portable across servers.

URIs and Distributed Queries

Distributed queries may be pipelined or parallelized (or both).

If you are using the parallel query feature of Coral8 Engine, a stream will be split into separate

"instances" and the addresses of the stream instances will be the same except for a tilde ("~")

followed by a number, as shown below:

ccl://chili:6789/Stream/StockWS/StockEPSqm/Subq/StockPriceFeed~1

ccl://chili:6789/Stream/StockWS/StockEPSqm/Subq/StockPriceFeed~2

ccl://chili:6789/Stream/StockWS/StockEPSqm/Subq/StockPriceFeed~3

(You should start with the number 1, and increase by 1 for each additional stream you will

distribute the data across.)

An input adapter attempting to write to stream instances in a parallel query must resolve each of

these logical URIs into a physical URI by passing that individual logical URI to a resolve_uri()

Stream URIs

385

function. You will wind up with a separate physical URI for each stream instance, and your

adapter splits the data across all of these physical URIs.

An output adapter may subscribe to the individual stream instances (the ones whose names end

with "~#", where the "#" represents a positive integer) or the combined stream. If the output

adapter specifies the URI without the "~#", the adapter will get the combined output of the

stream. If the output adapter specifies the URI with the "~#", then of course the adapter will get

the output of just one individual stream instance. Similarly, if an input adapter publishes a row to

the stream URI with a "~#", then just that stream instance gets the row; if the adapter publishes

to a stream URI without a "~#", then each instance of the stream will get a copy of the row.

Note that if you set the number of project instances to 1, then there will only be one stream

instance, and accessing a stream with a name ending with "~1" will not work.

If you are pipelining queries across projects (i.e. sending data from an output stream in one

project to an input stream in another project), you will need to specify the URIs of the streams

when you bind a stream in one project to a stream in another project. For information about

binding streams from inside Coral8 Studio, see the Coral8 Studio Guide.

URIs and High Availability

The physical URI of a stream includes the name or IP address of the computer on which the

stream is running. Anything that might cause the stream to run on a different computer will cause

the stream's physical URI to change. The CCL URI will not change, however, so we recommend

that you use the CCL URI rather than the HTTP URI whenever possible.

For example, in an HA (High Availability) system, if a server dies, the streams on that server

will be moved to another server. If you are using the High Availability feature and the Parallel

Query feature together, then if one of these streams to the parallel query moves, your out-of-

process adapter will need to get the stream's new physical URI by calling the resolve_uri()

function again.

How to Find the URI of a Stream

The easiest way to find the URI for a particular stream is to use Coral8 Studio and follow the

steps below to find the stream's URI in Coral8 Studio's Properties View for the stream.

1. Start Studio (if you have not already started it).

2. Load the query module that contains the stream (if you have not already loaded it).

3. Click on the stream (in the Explorer View, which is usually the upper left-hand pane of

Coral8 Studio).

4. Click on the stream to display the "Properties" View for the adapter.

5. Read the "Stream URI" and the "Http URI" from the Properties View.

Coral8 Integration Guide

386

Summary

Out-of-process adapters -- Out-of-process adapters (and other programs that access Coral8

Server through a Coral8 SDK) that are used without Parallel Queries should use the logical URI,

which can be copied from a stream viewer window or can be composed dynamically based on

the name of the stream, etc.

Distributed Queries -- Distributed queries may be pipelined or parallelized (or both). When

using out-of-process adapters with parallel queries, if you need all the physical URIs for all of

the streams, then compose the logical URIs and then call resolve_uri() to get the physical URIs

for each of the streams.

High Availability -- Programs that need to contact an HA container should store the logical

URI, resolve it to a physical URI, and connect to that physical URI. If a container dies and its

work (including streams) fails over to another container, then re-resolve the logical URI to get

the new physical URI, and then connect to that new physical URI.

If a manager is lost because its entire host computer shut down, and if a computer with a

passive (i.e. "backup") manager is standing by, the standby computer should be a full

mirror of the original host computer. The reason for this is that the standby will

communicate with the DDNS process and will "take" the hostname of the original

computer. This means that if there are other (non-Coral8) processes that were running on

the old (dead) host, and if those processes were accessed from other computers, anyone

trying to contact those processes will be confused when the replacement host comes up

under the old hostname and those other processes are missing.

387

Connecting to Streams over a Network

As we mentioned earlier, the Coral8 Engine reads and writes data only in its native stream

formats. Every adapter writes to (or reads from) a stream in one of these formats. The formats

are:

 Binary

 XML

 CSV (Comma-Separated Values)

This chapter describes how to connect directly to a Coral8 stream over the network and how to

publish or subscribe to a stream after you've connected to it directly.

This chapter contains these sections:

 Data Stream URI

 Subscribing To Data Stream

 Publishing To Data Stream

 Binary Data Stream Format

 CSV Data Stream Format

 XML Data Stream Format

Data Stream URI

Each native data stream has a URI (Uniform Resource Identifier) that uniquely identifies the

stream. The stream URI can be used to subscribe or publish to a stream. The stream URI

contains information about the Coral8 Server hostname and port number and Stream URI "path"

on this server. For example, the following stream URI points to stream

/Stream/Default/PassThrough/InTrades running on Coral8 Server located on localhost and port

6789:

ccl://localhost:6789/Stream/Default/PassThrough/InTrades

Note that the URI uses "ccl:" instead of "http:".

Subscribing to a Data Stream

To receive data from a Coral8 data stream, the subscriber must perform an HTTP GET request to

the Coral8 Server. The HTTP GET request must include the following HTTP headers and an

empty HTTP body:

Coral8 Integration Guide

388

GET <path> HTTP/1.0\r\n

Host: <server-hostname-or-ip>\r\n

X-C8-StreamFormat: <stream-format>\r\n

X-C8-StreamFormatOptions: <stream-format-options>\r\n

\r\n

where

 <path> is the path portion of the Stream URI;

 <server-hostname-or-ip> is the hostname portion of the Stream URI;

 <stream-format> is the data stream format (CSV or XML); if the format is omitted, then

binary format is assumed.

 <stream-format-options> is the format specific options. (If the stream-format-options are

omitted, the default values for format options are used.)

NOTE: The "\r\n" represents the 2-character sequence carriage return and line feed, not the 4-

character literal "\r\n".

NOTE: The header should be followed by a blank line terminated with a carriage return and line

feed.

The client should expect to receive an HTTP response which contains an HTTP header and an

HTTP body. Since the data stream may continue indefinitely, the HTTP body is essentially an

endless series of messages, each of which will have data in the stream format specified in the

HTTP request. A typical HTTP response would look similar to the following:

HTTP/1.0 200 OK\r\n<header1>: <header-value1>\r\n<header2>: <header-

value2>\r\n

...

<headerN>: <header-valueN>\r\n

\r\n

<data-in-specified-data-stream-format>

where

 <header1>:<header-value1>, ... ,<headerN>:<header-valueN> are the regular HTTP

headers (should be ignored by subscriber).

As before, note that the "\r\n" represents the 2-character sequence of a Carriage Return followed

by a Line Feed.

Note that the Coral8 HTTP response is different from most HTTP responses from entities other

than Coral8 Server. The output data stream is a series of messages that may continue

indefinitely. Thus there is no way for the response to specify the length of the message in the

header. Furthermore, the response is a series of messages (not a single message) and each of

those messages should be dealt with when the message (i.e. the complete output row) arrives.

The recipient does not wait until the "end" of the HTTP response to start processing the

messages in it.

Connecting to Streams over a Network

389

We will now look at an example of an HTTP request and response.

For example, the following HTTP request subscribes to stream

/Stream/Default/Finance/StreamIn:

GET /Stream/Default/Finance/StreamIn HTTP/1.0\r\n

Host: localhost\r\n

X-C8-StreamFormat: CSV\r\n

X-C8-StreamFormatOptions: TitleRow=true,

TimestampColumn=true,

TimestampColumnFormat=YYYY/MM/DD HH24:MI:SS\r\n

\r\n

Note: Due to limitations on the page width of this manual, the X-C8-StreamFormatOptions line

is shown as split across multiple lines, but is really a single line (note carefully where the "\r\n"

sequences are shown).

And the subscriber would receive trading data in CSV format in the following HTTP response:

HTTP/1.0 200 OK\r\n

Date: Wed, 28 Jan 2005 10:23:53 GMT\r\n

\r\n

Timestamp,Symbol,Price,Volume\r\n

"2005/01/28 10:23:54",ABC,11.40,300000\r\n

"2005/01/28 10:23:55",XYZ,32.84,1260000\r\n

...

Publishing to a Data Stream

To publish data to a Coral8 data stream, the publisher must perform an HTTP POST request to

the Coral8 Server. The HTTP POST request must include the following HTTP header and an

infinite HTTP body with data in the specified data stream format:

POST <path> HTTP/1.0\r\n

Host: <server-hostname-or-ip>\r\n

X-C8-StreamFormat: <stream-format>\r\n

X-C8-StreamFormatOptions: <stream-format-options>\r\n

\r\n

<data-in-specfied-data-stream-format>

where

 <path> is the path portion of the Stream URI;

 <server-hostname-or-ip> is the hostname portion of the Stream URI;

 <stream-format> is the data stream format (CSV or XML);

 <stream-format-options> is the format specific options. (If the stream-format-options are

omitted, the format defaults to binary.)

Coral8 Integration Guide

390

The publisher should expect no response on the HTTP request it sends. When done publishing

data, the publisher should close the TCP connection.

For example, the following HTTP request publishes trading information in CSV format to
/Stream/Default/Finance/StreamIn

POST /Stream/Default/Finance/StreamIn HTTP/1.0\r\n

Host: localhost\r\n

X-C8-StreamFormat: CSV\r\n

X-C8-StreamFormatOptions: TitleRow=true,TimestampColumn=true,

 TimestampColumnFormat=YYYY/MM/DD HH24:MI:SS\r\n

\r\n

Timestamp,Symbol,Price,Volume\r\n

"2005/01/28 10:23:54",ABC,11.40,300000\r\n

"2005/01/28 10:23:55",XYZ,32.84,1260000\r\n

"2005/01/28 10:24:06",XYZ,32.74,6300000\r\n

"2005/01/28 10:24:32",ABC,12.01,50000\r\n

...

Note: Due to formattiing limitations, the X-C8-StreamFormatOptions line is shown as split

across multiple lines, but is really a single line (note carefully where the "\r\n" sequences are

shown).

Data Stream Formats

This section describes each of the three Coral8 data formats:

 binary

 CSV (Comma-Separated Value)

 XML

Binary Data Stream Format

Binary Data Stream Format is the primary data stream format for Coral8 Engine. It is very fast

and efficient. The format description will be available in future versions of this document.

CSV Data Stream Format

Coral8 Engine can use CSV Data Stream Format which is compatible with the CSV data files

format used by Microsoft Excel and many other applications.

The box below shows the valid syntax for the Data Stream. The syntax descriptions include

characters (such as square brackets) that are not literals in this context but instead have special

meanings. These special meanings are explained below:

 Square Brackets

Connecting to Streams over a Network

391

Square brackets ("[]") indicate optional items.

For example, in the following line

[foo] bar

the "foo" is optional, while the "bar" is required. If the "foo" occurs, it must occur only

once.

 Ellipsis

An ellipsis ("...") after an element means that the element may be repeated one or more

times. For example, in the following line

PLAIN_CHAR ...

the ellipsis means that after the first PLAIN_CHAR you may have additional

PLAIN_CHARs.

 Capitalized Words

To avoid confusion with punctuation marks, when a punctuation mark is part of what you

must type, the punctuation mark is written as a capitalized word. E.g. "COMMA

ColumnName" means to put the comma character (",") followed by a column name.

Similarly, QUOTE means to put one double quote character.

Putting all this together, the following line

Tuple = [Field [, Field ...]] NEWLINE

means that a tuple may have 0 fields, 1 field, or more fields, and if there is more than 1 field then

the fields must be separated by commas. The Tuple must be terminated with a NEWLINE. For

example, all of the following are valid values for Tuple:

col1

col1, col2

col1, col2, col3

Each of these would of course be terminated with a NEWLINE.

An empty line (terminated with a NEWLINE) would also be valid.

Stream = [Headers] [Tuple]

Tuple = [Field [, Field ...]] NEWLINE

 Note: Fields correspond to tuple field values.

NonEmptyTuple = Field [, Field ...]

Headers = <same as Tuple, but fields correspond to tuple field

names.>

Field = [QUOTE] [PLAIN_CHAR ...] [QUOTE] |

 " [(ANY_NONQT_CHAR | DOUBLEQUOTE) ...] "

QUOTE = single quote (ascii 0x22) or double quote ascii 0x27).

Note that if you start a quoted string with a particular type

Coral8 Integration Guide

392

of quote, you must close with the same type of quote. E.g.

these are invalid:

 'Hi"

 "Bye'

DOUBLEQUOTE = '""' representing a single '"' within the field value.

ANY_NONQT_CHAR = <any ASCII character except for '"' (0x22) and

 including line separators>

PLAIN_CHAR = <any printable ASCII char except ',' and '"',

 i.e. ASCII 0x21 and ASCII 0x23 - 0x7e>

NEWLINE = CR | LF | CR LF

CR = the Carriage Return character (0x0D)

LF = the Line Feed character (0x0A)

By default, Coral8 reads and writes the NEWLINE using the convention for the current platform

(e.g. CR LF for Microsoft Windows and LF for UNIX-like operating systems).

A LineEndCRLF format option may be used to specify the line ending. If the value of this option

is 'true', CRLF line ending is used; if it is 'false', LF ending is used.

For example, the CSV trades stream can look like the following:

Timestamp,Symbol,Price,Volume\r\n

"2005/01/28 10:23:54",ABC,11.40,300000\r\n

"2005/01/28 10:23:55",XYZ,32.84,1260000\r\n"

"2005/01/28 10:24:06",XYZ,32.74,6300000\r\n

"2005/01/28 10:24:32",ABC,12.01,50000\r\n

...

The CSV Data Stream format has the following options:

 TitleRow (true or false) which specifies whether the title row is present or not;

 TimestampColumn (true or false) which specifies whether the first column is the

message's timestamp column or not;

 TimestampColumnFormat (string) which specifies the format of the TimestampColumn

(if it exists). If the format is not specified, then the row timestamp will be a 64-bit integer

number whose value is the number of microseconds since midnight January 1, 1970

GMT.

Note that for input adapters:

 If you do not use a title row, then the number of fields and the order of fields are assumed

to be exactly the same as the number and order specified in the stream's schema.

 If you do use a title row, then

o The column names in the title row must exactly match the column names

specified in the stream's schema.

o The columns may appear in any order, as long as the order of the data values is

the same as the order of the column names in the title row. (The sole exception is

Connecting to Streams over a Network

393

that if you use a row timestamp, then the row timestamp must always be the first

column, and the name of that column does not matter.)

o If there are "extra" columns in the input, those are ignored; only the columns

whose names match are used.

For output adapters:

 The order of the columns is the same as the order specified by the schema. There is no

way to change this. (Note also that if you specified that the row timestamp should be

included in the output, then the row timestamp will always be the first column.)

 Not surprisingly, if you specify that the output should include a title row, the names of

the columns in that title row will be exactly the same as the names in the schema.

XML Data Stream Format

Coral8 Engine can use XML Data Stream Format which is compatible with the XML data format

used by many third party applications. The XML data stream consists of an infinite number of

Tuple elements following one after another. Note that there is no single root element in the

stream. Each Tuple element must conform to the following schema:

<xs:schema xmlns="http://www.coral8.com/cpx/2004/03/"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://www.coral8.com/cpx/2004/03/"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified">

<xs:element name="Tuple">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Field" maxOccurs="unbounded">

 <xs:complexType>

 <xs:complexContent>

 <xs:extension base="xs:anyType">

 <xs:attribute name="Name" type="xs:Name"

 use="required"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="Ts" type="xs:long" use="optional"/>

 </xs:complexType>

</xs:element>

</xs:schema>

Coral8 Integration Guide

394

Note that tuple fields' names must exactly match the column names specified in the stream's

schema.

The "Ts" attribute in the "Tuple" element contains the tuple's timestamp as a number of

microseconds since 00:00:00 January 1, 1970.

For example, the XML trades stream can look as follows:

<Tuple Ts="11032230450" xmlns="http://www.coral8.com/cpx/2004/03/">

xmlns="http://www.coral8.com/cpx/2004/03/">

 <Field Name="Timestamp">2005/01/28 10:23:54</Field>

 <Field Name="Symbol">ABC</Field>

 <Field Name="Price">11.40</Field>

 <Field Name="Volume">300000</Field>

</Tuple>

<Tuple Ts="11032230454" xmlns="http://www.coral8.com/cpx/2004/03/">

 <Field Name="Timestamp"> 2005/01/28 10:23:55</Field>

 <Field Name="Symbol">XYZ</Field>

 <Field Name="Price">32.84</Field>

 <Field Name="Volume">1260000</Field>

</Tuple>

<Tuple Ts="11032230464" xmlns="http://www.coral8.com/cpx/2004/03/">

 <Field Name="Timestamp"> 2005/01/28 10:24:06</Field>

 <Field Name="Symbol">XYZ</Field>

 <Field Name="Price">32.74</Field>

 <Field Name="Volume">6300000</Field>

</Tuple>

<Tuple Ts="11032230467" xmlns="http://www.coral8.com/cpx/2004/03/">

 <Field Name="Timestamp">2005/01/28 10:24:32</Field>

 <Field Name="Symbol">ABC</Field>

 <Field Name="Price">12.01</Field>

 <Field Name="Volume">50000</Field>

</Tuple>

...

The XML Data Stream format has no options.

395

Coral8 Adapters

This chapter describes the input adapters and output adapters that Coral8 provides.

Some of these adapters are in-process adapters and some are out-of-process adapters. If an

adapter is an out-of-process adapter, it is not started automatically by the server, and the

description of the adapter will include instructions on starting the adapter.

Configuring Coral8 Adapters

Most adapters supplied by Coral8 have user-settable properties (also called "parameters "). Some

of these properties have default values and some do not. You should set the properties to values

that are appropriate for your data.

You can set adapter properties using the CCL Attach Adapter statement or through the user

interface of Coral8 Studio. See the Coral8 CCL Reference and the Coral8 Studio Guide for more

information.

Each adapter and its properties are described in more detail later in this chapter.

Some adapter properties may interact with server parameters that are set in the server

configuration file, named coral8-server.conf.

Setting the Base Folder for File Input/Output Adapters

You specify a directory as the adapters base folder when you install Coral8 Server. You can

change the base folder by editing the Coral8 Server configuration file and modifying the value

for the "Coral8/Adapters/ReadWriteBaseFolder" preference. The adapters base folder tells Coral

Server where to find the data files that an input or output adapter reads or writes. The data files

for such adapters must be stored somewhere under the adapters base folder on Coral8 Server

(this prevents Coral8 Server from accidentally interfering with files used by other software).

Adapters supplied by Coral8 that access data files include:

 ReadFromCSVFile

 WriteToCSVFile

 ReadFromXMLFile

 WriteToXMLFile

 ReadFromRegularExpressionFile

Relative Paths

In addition to restricting where data files can be stored, the adapters base folder allows you to

specify relative paths to data files in your projects. Most people build their Coral8 projects on a

Coral8 Integration Guide

396

different computer than the one where the project will ultimately be deployed. Because the

directory structure on the two computers may be entirely different (they may be running different

operating systems, for example), using relative paths for data files allows you to deploy your

project without having to modify the file name adapter properties.

When you attach a file adapter to a data stream, you must specify the path to and name of the file

that the adapter reads from or writes to. You start the path with one of two variables:

$BaseFolder or $ProjectFolder. Coral8 Server replaces $BaseFolder with the value of the

"Coral8/Adapters/ReadWriteBaseFolder" preference in the server configuration file. It replaces

$ProjectFolder by concatenating $BaseFolder with the path to your project .cpp file on the

client, relative to the Coral8 repository. The repository is the directory Cora8 Studio uses for its

preferences file, environment file, security file, the examples directory, and its temporary

directory. If you use the Coral8 Eclipse Plug-In, the workspace directory is equivalent to the

repository directory. Note that, by default, if you install Coral8 Server and Coral8 Studio on the

same computer, the repository and the adapters base folder are set to the same directory. If you

create your project in a directory outside of the repository, then Coral8 Server replaces

$ProjectFolder with the absolute path to the project directory without inserting $BaseFolder.

Example

For example, say that the repository on your client Windows computer is set to

C:\Documents and Settings\jsmith\My Documents\Coral8 Repository\5.5

You create a project under the repository in the directory MyProjects\Project1. The full path to

your project on the client computer is then

C:\Documents and Settings\jsmith\My Documents\Coral8

Repository\5.5\MyProjects\Project1

You put your adapter's data file in a subdirectory named Data. When you attach an input adapter

to one of your data streams, you specify the data file name as

$ProjectFolder/Data/MyData.csv.

On your Linux Coral8 Server, say that you've set your adapters base folder to

/var/Coral8/BaseFolder.

When you compile and run your project on Coral8 Server, it will look for the data file with the

following path:

/var/Coral8/BaseFolder/MyProjects/Project1/Data/MyData.csv

This is the adapters base folder on the server (/var/Coral8/BaseFolder) plus the relative path of

the project (/MyProjects/Project1) plus the rest of the path and file name specified in the project

(/Data/MyData.csv).

Now say that you create a project outside of the repository in this directory:

C:\Documents and Settings\jsmith\My Documents\MyProjects\Project1

Coral8 Adapters

397

In this situation Coral8 Server would replace $ProjectFolder/Data/MyData.csv with

/Documents and Settings/jsmith/My

Documents/MyProjects/Project1/Data/MyData.csv

If you instead specify $BaseFolder/Data/MyData.csv as the file name, regardless of where the

project is stored on the client computer, Cora8 Server would look for the data file with this path:

/var/Coral8/BaseFolder/Data/MyData.csv

This is just the adapters base folder followed by the rest of the path and file name specified in the

project.

Reading and Writing BLOB Data

This section provides information about reading and writing BLOB data via adapters.

The in-process adapters supplied by Coral8 handle the BLOB data type. When data is read or

written in Comma Separated Values format (e.g. via the ReadFromCSVFile adapter or the

WriteToCSVFile adapter), each BLOB is represented as a string of hexadecimal digits in which

each byte of BLOB data is represented by 2 hexadecimal digits (and thus 2 bytes). Since CSV

files themselves are limited to 2GB (Coral8 cannot read or write files larger than 2GB), the

effective limit on the size of a BLOB in a CSV file is 1,073,741,823 bytes (1GB - 1).

Setting Up the Environment for Java Adapters

Adapters that are written in the Java Programming language, including

 JDBC Input Adapter

 JDBC Output Adapter

 JMS Input Adapter

 JMS Output Adapter

 JMS Reliable Adapter (Guaranteed Delivery)

 Java Email Output Adapter

must have the environment (including the CLASSPATH environment variable) set properly. For

more information, see Setting Up Your Environment. The instructions for setting CLASSPATH

apply to all out-of-process Java adapters, whether provided by Coral8 or written by the customer.

Setting Up the Environment for the JMS Adapters

This section describes how to configure your system to use the Coral8 JMS (Java Messaging

Service) Adapters. Coral8 provides a JMS Input Adapter and a JMS Output Adapter. Each of

these adapters is effectively a "client" in a JMS system.

Coral8 Integration Guide

398

Before you can use the JMS (Java Messaging Service) adapters, you will have to install and

configure some software, including a JMS server. The Coral8 JMS adapters are designed to work

with any JMS Server. To make our discussion more concrete, we will sometimes refer to the

BEA™ WebLogic™ JMS server, but you may use a different JMS server.

Note: This section of the manual focusses on using a Coral8 JMS Output adapter, but most of the

steps are the same for a Coral8 JMS Input adapter.

Prerequisites

You will need the following:

 Coral8 Server and Studio.

 A JMS Server, such as the BEA™ WebLogic™ server or the Joram distribution. (Other

JMS servers may also be used.)

 The Java JDK 1.4.2 or later. Not all JDKs are compatible. Only the Sun™ JDK is known

to be compatible.

Configuring and Setting Up Your JMS Server

This section describes how to configure and set up your JMS server.

Create a New JMS Server and Deploy It.

The instructions for this depend upon which JMS server you are using, and are not included in

this Coral8 document. Please see the instructions for your JMS server.

Create a New Connection Factory for the Server, and Deploy It.

Connection factories are objects that enable JMS clients to create JMS connections. You will

need to create a Connection Factory before the Coral8 JMS Adapter (which is a JMS client) can

connect to the JMS server.

Create a Connection Factory appropriate for your JMS server. (The exact instructions for doing

this may depend upon which JMS server you are using.)

Set the Factory Name and JNDI Name for your new Connection Factory. The JNDI Name is the

name you will give the Coral8 JMS adapters so that they can look up this JMS Connection

Factory.

Example:

Name: cgTopic

JNDI Name: weblogic.jws.jms.TopicConnectionFactory

After you create the Connection Factory, you must deploy it.

Coral8 Adapters

399

If necessary, create a JMS Module to hold your Connection Factory. Specify the Connection

Factory name and JNDI name where necessary.

If necessary, create a Topic and give it the same name as the JNDI name.

Set Up a Destination Topic for the JMS Server.

Note: Some JMS Servers can have destination queues and/or topics. Coral8 publish/subscribes

only to topics, not queues.

Configure a new JMS Topic for your JMS server. Set the Topic Name and the JNDI Name for

that topic. The JNDI Name is the name you will give Coral8 to lookup the JMS Topic.

Example:

Name: MyJMSTopic

JNDI Name: weblogic.jws.jms.MyJMSTopic

If explicit deployment of this topic is required, then deploy the topic.

Configuring and Setting Up Coral8

This section describes how to configure and set up Coral8 to work with the JMS adapters.

Coral8 Studio

Using Coral8 Studio, create a simple CCL module to test the unmanaged JMS Output Adapter.

In Studio, create an input stream and attach an input adapter to that stream. (You may use

whatever data source you wish.) Using the JMS Output Adapter, we will subscribe to this stream

and publish the stream data to the desired JMS Topic destination.

Coral8 JAR files

You will need some Coral8 .jar files. These .jar files are in installed on your system

automatically when you install Coral8 Server.

Testing the Coral8 JMS Adapter

1. Make sure that you have all of the required .jar files:

 c8-adapters.jar

 c8-sdk-java.jar

 jaxrpc.jar

 jms.jar

 axis.jar

Coral8 Integration Guide

400

 commons-logging-1.0.4.jar

 commons-discovery-0.2.jar

 saaj.jar

 wsdl4j-1.5.1.jar

 activation.jar

 mail.jar

 castor-0.9.9.jar

 xercesImpl.jar

You will typically need one or more .jar files provided with your JMS server. For

example, if you are using the BEA WebLogic JMS server, then you will need

weblogic.jar, which is supplied by BEA.

NOTE: Although most of the required .jar files already reside in C:\Program

Files\Coral8\Server\sdk\java\lib, a few are not found there. The exceptions are listed

below:

 The location of the .jar file for your JMS server depends upon which web server

you are using. For example, weblogic.jar is found in your

BEA\weblogic81\server\lib directory

 c8-adapters.jar and c8-sdk-java.jar are found in the Coral8\Server\sdk\java

directory

2. Make sure that all the required processes are up and running:

A. Make sure that your JMS server is running.

B. Make sure that the Coral8 Server is started. To start the server, go to Start -> All

Programs->Coral8->Server->Coral8 Server

C. Make sure that your CCL Module is running. Do this by starting the Coral8

Studio and then running your CCL module from within Coral8.

3. Start the JMSOutputAdapter, so that messages from Coral8 get sent to the desired JMS

Server topic destination.

A. Set your CLASSPATH so that it includes all the jarfiles listed in Step 1 of this

section.

B. Give the command to start the JMSOutputAdapter. The command below is

appropriate for the WebLogic JMS server. If you are using a different server, you

will have to change some items, including the boldfaced items and probably the

port. Naturally, the following is a single command; we have spread it across

multiple lines to make it easier to read.

Coral8 Adapters

401

java -Dc8.baseHostPort=localhost:6789

com/coral8/adapter/JMSOutputAdapter

--messageType=TextMessage

--topic=weblogic.jws.jms.MyJMSTopic

--factoryName=weblogic.jws.jms.TopicConnectionFactory

--factoryClass=weblogic.jndi.WLInitialContextFactory

--url=ccl://localhost:6789/Stream/Default/TestJMS/instream1

--host=localhost

--port=7001

Explanation of the adapter properties:

The environment variable c8.baseHostPort controls where to establish the

connection to the server. This can be set by the -D option on the command line.

The value given for --topic (weblogic.jws.jms.MyJMSTopic)is the JNDI Name

for the Topic Destination you want to send the c8 messages to.

The value given for --factoryName (weblogic.jws.jms.TopicConnectionFactory)

is the JNDI name for the Connection Factory you created which targets the

WebLogic Server where your JMS Server is deployed.

The value given for --factoryClass (weblogic.jndi.WLInitialContextFactory) is

the name of the factory class to use to make the connection.

The value given for --URL

(ccl://localhost:6789/Stream/Default/TestJMS/instream1) is the URL of the

Coral8 stream you want to subscribe to. Note: The value of the URL can be

obtained from Studio, by clicking on the stream in the Explorer View and then

clicking on the Properties View.

Make sure that you set the host and port to be the host and port of the JMS

server, not the Coral8 Server. The host and port for the Coral8 Server are

specified as part of the c8.baseHostPort.

4. If the JMSOutputAdapter started successfully, you should see the following output:

Connecting to CPX server...

Opening a subscription...

Listening for messages...

5. Check to make sure that the messages arrive at the topic destination. The way to do this

depends upon which JMS Server you are using.

Shutdown Sequence

We recommend that you shut down in the following order:

1. Stop the input source.

2. Stop the output adapter.

Coral8 Integration Guide

402

3. Stop the query.

If the Coral8 module is shut down before the output adapter is stopped, the adapter will display

error messages and it will seem like there is some problem with the adapter when the adapter

merely cannot find the stream to subscribe to.

Reading, Writing, and Converting Timestamps

Internally, timestamps are always stored as the number of microseconds since midnight January

1, 1970 UTC/GMT. (We refer to this time as "the beginning of the epoch".) This is true for

columns of type TIMESTAMP and for the internal row timestamp.

Although internally timestamps are always stored in UTC/GMT, when timestamps are converted

to or from a string (e.g. "2007-12-31 13:00:00.000000") the time zone is taken into account. The

rules used in converting between internal timestamps and strings are shown below:

 If no format is supplied, the value is assumed to be in microseconds since the beginning

of the epoch. Such times are ALWAYS assumed to be in UTC/GMT.

 If the format specifier includes a timezone specifier (e.g. "YYYY-MM-DD

HH24:MI:SS.FF TZD") then timestamp values should be supplied with a time zone (e.g.

"PST" for U.S. Pacific Standard Time) and the time is assumed to be correct for that

timezone.

 If the timestamp is supplied as a string, and if a format specifier (e.g. "YYYY-MM-DD

HH24:MI:SS.FF") is supplied, but the format specifier does not include a time zone

specifier, then the time is assumed to be provided in local time, where local time is

determined by the machine on which the program is running.

For example, if you enter the timestamp as 0 microseconds, and then you convert this to U.S.

Pacific Standard Time (which is 8 hours behind UTC/GMT) using a format specifier "YYYY-

MM-DD HH24:MI:SS TZD" the resulting string will be "1969-12-31 16:00:00 PST", which is of

course 8 hours before midnight January 1, 1970.

Generally, you don't need to deal with the internal timestamps, but you should either:

 use the same time zone (local time) in all your calculations, or

 specify the time zone for each timestamp that you enter.

If all of your work is done in the same time zone (e.g. your company has one office, and all dates

and times are entered as local time), you may not need to specify time zone information.

However, if you have multiple offices, or if you enter times and dates for customers in different

time zones, you probably need to specify the time zone in the format specifier and in the data

that you enter.

These rules apply to all adapters that use read or write timestamp information as a string.

Coral8 Adapters

403

For more information about how to specify timestamp formats, see the appropriate appendix in

the Coral8 Reference Guide.

For more information about time zones, see Daylight Savings Time and the Coral8 Time Zone

Database in this manual.

Adapters Supplied by Coral8

This section describes the built-in input adapters and output adapters provided by Coral8.

We start with a table that lists the adapters and the adapter "types". You'll need to know the

adapter type if you use an ATTACH ADAPTER statement, e.g.

ATTACH INPUT ADAPTER Adapter1

 TYPE ReadFromCsvFileAdapterType

 ...

In the preceding statement, the type "ReadFromCsvFileAdapterType" is the adapter type for the

Read From CSV File adapter.

This table also contains links to the first page describing each adapter.

Note that only in-process adapters can be attached with the ATTACH ADAPTER statement, so

only in-process adapters have an adapter type. In the tables below, out-of-process adapters have

"N / A" or "(Not Applicable)" as their adapter type.

Adapter Data

Type
Read / Write

Adapter Type (used in ATTACH

ADAPTER statement)

Atom
Atom Reader

N / A

AtomReaderAdapterType

N / A

Binary file

Read from binary file

Write to binary file

ReadFromBinaryFileAdapterType

WriteToBinaryFileAdapterType

Comma-

Separated

Values (CSV)

File

Read from CSV (Comma-

Separated Value) File

Write to CSV (Comma-

Separated Value) File

ReadFromCsvFileAdapterType

WriteToCsvFileAdapterType

Comma-

Separated

Values (CSV)

Read from CSV (Comma-

Separated Value) Socket

ReadFromCsvSocketAdapterType

WriteToCsvSocketAdapterType

Coral8 Integration Guide

404

Socket
Write to CSV (Comma-

Separated Value) Socket

Database: Poll

From Database

(see also

JDBC)

Poll From Database

Write to database

ReadFromDBAdapterType

WriteToDBAdapterType

Database: Read

From Database

(see also

Database,

JDBC)

Read From Database

N / A

ReadFromDatabaseAdapterType

N / A

Email: Send

Email Out

(SMTP)

N / A

Send Email Out (SMTP)

N / A

OpenSourceEmailAdapterType

Email: Java

Send Mail

N / A

Java Send Mail

N / A

N / A

Ganglia

Ganglia Reader

N / A

GangliaReaderAdapterType

N / A

Java Messaging

Service (JMS)

JMS Input Adapter

JMS Output Adapter

N / A

N / A

JDBC (see also

Database)

JDBC Input

JDBC Output

N / A

N / A

Random Tuples

Generator

Random Tuples Generator

N / A

RandomTuplesGeneratorAdapterType

N / A

Regular

Expression File

Read from Regular Expression

File
ReadFromRegexFileAdapterType

Coral8 Adapters

405

N / A

N / A

Regular

Expression

Socket

Read from Regular Expression

Socket

N / A

ReadFromRegexSocketAdapterType

N / A

RSS

RSS reader

N / A

RssReaderAdapterType

N / A

SNMP

SNMP Get

SNMP Set

SNMPGetAdapterType

SNMPGetAdapterType

SNMP V1 Trap

N / A

SNMP Send V1 Trap

N / A

SNMPV1SendTrapAdapterType

SNMP V2 Trap

N / A

SNMP Send V2c Trap

N / A

SNMPV2SendTrapAdapterType

Sybase RAP

N / A

Sybase RAP

N / A

N / A

XML File

Read from XML File

Write to XML File

ReadFromXmlFileAdapterType

WriteToXmlFileAdapterType

XML Socket
Read from XML Socket

Write to XML Socket

ReadFromXmlSocketAdapterType

WriteToXmlSocketAdapterType

XML over

HTTP

N / A

Write XML Over HTTP

N / A

WriteXmlOverHttpAdapterType

Adapter Adapter Type (used in ATTACH ADAPTER

Coral8 Integration Guide

406

statement)

Atom Reader AtomReaderAdapterType

Binary: Read from binary file ReadFromBinaryFileAdapterType

Comma-Separated Values (CSV): Read

from CSV File
ReadFromCsvFileAdapterType

Comma-Separated Values (CSV): Read

from CSV Socket
ReadFromCsvSocketAdapterType

Database: Poll From Database adapter ReadFromDBAdapterType

Database: Read From Database adapter ReadFromDatabaseAdapterType

Ganglia Reader GangliaReaderAdapterType

JDBC Input N / A

JMS Input Adapter N / A

Random Tuples Generator RandomTuplesGeneratorAdapterType

Regular Expressions: Read from

Regular Expression File
ReadFromRegexFileAdapterType

Regular Expressions: Read from

Regular Expression Socket
ReadFromRegexSocketAdapterType

RSS reader RssReaderAdapterType

SNMP Get SNMPGetAdapterType

XML: Read from XML file ReadFromXmlFileAdapterType

Adapter
Adapter Type (used in ATTACH ADAPTER

statement)

Binary: Write to binary file WriteToBinaryFileAdapterType

Comma-Separated Values (CSV):

Write to CSV File
WriteToCsvFileAdapterType

Comma-Separated Values (CSV):

Write to CSV Socket
WriteToCsvSocketAdapterType

Database: Write to database WriteToDBAdapterType

Email: Java Send Mail N / A

Email: Send Email Out (SMTP) OpenSourceEmailAdapterType

JDBC Output N / A

Coral8 Adapters

407

JMS Output Adapter N / A

SNMP Set SNMPGetAdapterType

SNMP Send V1 Trap SNMPV1SendTrapAdapterType

SNMP Send V2c Trap SNMPV2SendTrapAdapterType

XML: Write to XML file WriteToXmlFileAdapterType

XML: Write XML Over HTTP WriteXmlOverHttpAdapterType

Adapter Properties (Parameters). Almost all in-process adapters have properties that you can

set. In Studio, these properties are displayed in, and can be edited in, the adapter's Properties

View after you attach the adapter to a stream. Each of these properties is described in the

adapter's .adl file. (Inside the .adl file, each property is referred to as a "parameter". When

discussing adapter properties, we sometimes use the words "property" and "parameter"

interchangeably, but we will generally favor the term "property" since that is the term shown in

Studio and in the ATTACH ADAPTER statement.) For example, in the Read From CSV File

adapter, one of the properties that you must set is the name of the file to read from. For each

adapter, we include a table that lists the properties for that table. In general, each table contains

four columns:

 Property Name (screen) - This is the property name that you will see on-screen when you

use Studio to edit an adapter's property values.

 Property Name (Attach Adapter) - This is the property name that you must use in

ATTACH ADAPTER statements, e.g. the "Filename" in the ATTACH ADAPTER

statement below.

ATTACH INPUT ADAPTER someName ... PROPERTIES Filename = 'xyz.csv' ...;

 Type - the data type, e.g. STRING, INTEGER, etc.

 Description

In many cases, the property's screen name and "AA" name are the same.

Atom Feed Reader Input Adapter

The ATOM feed reader is designed to allow you to get information from ATOM data sources.

ATOM data sources allow connections via URL and send their information in a special XML

format.

The retrieved information will be inserted into a Coral8 stream. The incoming XML information

must include:

 feed_title

 feed_link

 feed_author_name

Coral8 Integration Guide

408

 entry_title

 entry_link

 entry_content

If additional fields exist in the XML file, they will be ignored.

The following table describes the properties for the ATOM feed reader:

Property

Name

(screen)

Property Name

(Attach Adapter)
Type Description

URL URL String
The URL of the ATOM data

source.

Refresh

interval
RefreshInterval Interval

How often to query the specified

URL for data. In microseconds,

unless qualified with Interval

formatting (see "Time Literals" in

the Coral8 CCL Reference for

more information). Optional.

Defaults to 1 minute.

Timestamp

Format
TimestampFormat String

The format of the timestamp. See

"Timestamp Format Codes" in

the Coral8 CCL Reference for

more information. Optional.

Defaults to

"YYYY/MM/DDTHH24:MI:SS".

For an example of how to use the ATOM Feed Reader, see the LiveJournalAlerts example in the

"examples" directory under Coral8 Server installation directory.

E.g. on Microsoft Windows, the directory is typically:

C:\Program Files\Coral8\Server\examples\Web\LiveJournalAlerts

On UNIX-like operating systems, the directory is typically

/home/<username>/coral8/server/examples/Web/LiveJournalAlerts

If you are not already familiar with the specific XML format used by ATOM, you may find

useful information at the following Web site:

http://www.atomenabled.org/developers/syndication/atom-format-spec.php

http://www.atomenabled.org/developers/syndication/atom-format-spec.php

Coral8 Adapters

409

Binary: Read From Binary File Adapter

ARead from Binary File adapter reads Rows from a Coral8 binary file. This adapter is used for

internal testing only.

DO NOT USE THIS ADAPTER.

Binary: Write To Binary File Adapter.

A Write To Binary File adapter writes received Rows to a Coral8 binary output file. This adapter

is used for internal testing only. DO NOT USE THIS ADAPTER.

Comma-Separated Values (CSV): Read From CSV File Adapter.

A Read From CSV File adapter reads Rows from a CSV (Comma-Separated Values) file.

Property

Name

(screen)

Property Name (Attach

Adapter)
Type Description

Filename Filename String

The name (and path) of

the CSV file to read data

from. You may specify a

file name and path either

by typing it in or by

clicking on the Browse

button for this field. By

default, the path is

relative to the server's

adapters base folder and

must be underneath that

base folder, but you can

use $ProjectFolder to

specify a path relative to

the project folder. For

more information,

see Setting The Base

Folder For File

Input/Output Adapters.

For details about the

Browse and Edit buttons

to the right of the

filename, see the

Coral8 Integration Guide

410

discussion following this

table.

Loop count LoopCount

Integer Min: 0

Max:

2000000000

Default: 1

If the Loop Count is

greater than 1, then the

data will be sent the

specified number of

times (after the adapter

finishes reading the file,

the adapter will start

reading again from the

beginning). If the Loop

Count is 1, the file is

read only once and the

adapter stops sending

data once the end of file

is reached. If the Loop

Count is 0, then repeat

forever. If the loop count

is left blank, the default

value (1) will be used.

Rate Rate
Float Min:

0.000001

If this property is non-

zero, then the adapter

will read data from the

input file at the specified

rate (per second). Any

row timestamps in the

input file will not be

used to determine the

time at which rows are

sent. This property takes

precedence over the "File

has timestamp column"

property. The default is

to leave this unset, in

which case the row

timestamp determines

the relative timing at

which rows are sent.

Set UseCurrentTimestamp Boolean Default: If true, the adapter

Coral8 Adapters

411

timestamp to

current time

false overrides the row

timestamp specified in

the file with the current

system time.

File has

timestamp

column

TimestampColumn
Boolean Default:

true.

Every row must have a

row timestamp that

indicates the time that

the row was created. The

row timestamp may be

specified by the user in

the input data (e.g. in the

CSV file), or this

timestamp may be set by

the adapter at the time

that the row is sent to the

server. If "File has

timestamp column" is

true, then the adapter

assumes that the first

field in each row

contains a row

timestamp. If this flag is

set to false, the adapter

inserts the current time

into the row timestamp

field before sending the

row. (Note: the column

with the row timestamp

is not explicitly listed in

the schema. See the

discussion of "row

timestamp" in the

Programmer's Guide for

more information about

row timestamps.)

Timestamp

column

format

TimestampColumnFormat String

If "File has timestamp

column" is set to true,

then the Timestamp

column format specifies

Coral8 Integration Guide

412

the format of that row

timestamp column, e.g.

'YYYY/MM/DD

HH24:MI:SS.FF TZD'.

If no timestamp format is

specified, the adapter

assumes that the

timestamp is represented

as a number of

microseconds since

00:00:00 Jan 1, 1970

UTC/GMT. For more

information, see

Reading, Writing, and

Converting Timestamps.

Note that if you specify a

format specifier, this

format specifier applies

only to the row

timestamp column; it

does not apply to all

input columns of type

TIMESTAMP.

Timestamp

Base
TimestampBase Timestamp

If this property is set,

then when the adapter

starts, it behaves as

though it had started at

the time specified by the

Timestamp base. This

affects the time that the

first row in the input file

has sent. For example, if

the Timestamp base is

2006-02-01 09:00:00 and

the row timestamp of the

first row in the input file

is 2006-02-01 09:00:05

(i.e. 5 seconds after the

timestamp base), then the

adapter will not send the

Coral8 Adapters

413

first row until 5 seconds

after the adapter was

started (regardless of

what time the adapter

was actually started).

This can be used to help

you synchronize data in

multiple streams (i.e.

multiple input files). If

this property is left

blank, the first row will

be sent immediately after

the adapter module

starts.

File Has A

Title Row
TitleRow

Boolean Default:

false

If this flag is true then

adapter assumes that the

first line in the file

contains column names,

in which case the adapter

tries to match the column

names in the file with the

column names in the

stream's schema. If this

flag is set to false, the

adapter assumes that the

first line in the file

contains a row of data, in

which case the order of

the CSV columns should

be the same as the order

of the Row descriptor

fields.

Field

Separator

Character

CsvDelimiterString
String Default: ,

(comma)

This indicates which

character(s) separate the

fields in the file. In most

cases, you will leave this

at the default value,

which is the comma.

However, you may

Coral8 Integration Guide

414

specify a different

separator character(s),

such as a vertical pipe

symbol ("|") etc. Note

that if you specify

multiple characters, then

EACH of those

characters is treated as a

separator; the adapter

does not look for a multi-

character separator.

Line

Continuation

Character

CsvLineContinuationCharacter
String Default: ^

(caret)

If a single row (tuple) of

data must be split across

multiple input lines, then

you may specify a line

continuation character

that tells the adapter to

treat the multiple lines as

a single row. By default,

this line continuation

character is the caret

("^") symbol. Note that

this character is treated

as the line continuation

character ONLY if it is

the last non-whitespace

character preceding a

newline. See the

discussion below for an

example. Note that if you

specify multiple

characters, then EACH

of those characters is

treated as a line

continuation character;

the adapter does not look

for a multi-character

line-continuation

indicator. Note that if the

line continuation field is

Coral8 Adapters

415

empty, no line

continuation will be

possible in the CSV file.

This allows data with

wildly varying input

characters to be properly

processed.

String Quote

Characters
CsvQuoteCharacters

String Default: '

(single quote)

and " (double

quote)

By default, both the

single quote and the

double quote characters

may be used to delimit a

string. Note that if you

specify multiple

characters, then EACH

of those characters is

treated as a quote

character; the adapter

does not look for a multi-

character quote indicator.

If the string is started

with a double quote

character, then it must

end with a double quote

character, and single

quote characters within

that string are treated as

regular characters rather

than as the end of the

string. Similarly, if the

string is started with a

single quote character,

then it must end with a

single quote character,

and any double quote

characters within the

string are treated as

normal characters. If you

change the defaults, then

only the character(s) that

you specify are treated as

Coral8 Integration Guide

416

quote characters.

NULL string

value
CsvNullString

String Default:

NULL

This allows you to

specify what value

indicates a NULL value

in the file. Note that the

value should not be

quoted. If the NULL

string value is the word

NULL (without quotes),

then the value "NULL"

(with quotes) is a 4-letter

string, not an indication

that you want to use a

NULL value. If you do

not specify a NULL

string value, then if a

string field is "empty"

(i.e. if there is nothing

between the field

separator characters for

that field), then the value

will be treated as NULL.

Line

Terminator

Character

CsvLineTerminatorChar
String Default:

\n

This allows you to

specify what character

represents the end-of-line

character. You specify

the character in one of

the following ways:

 \n This 2-

character

sequence

represents the

Line Feed

character (ASCII

10).

 \r This 2-

character

sequence

represents the

Coral8 Adapters

417

Carriage Return

character (ASCII

13).

 \t This 2-

character

sequence

represents the

Tab character

(ASCII 9).

 <any printable

char> This 1

character may be

any printable

character, e.g. '$',

'|', etc., except the

backslash. Note

that you enter the

character without

any quotation

marks and

without any

leading

backslash.

 \x## where "#"

represents a

hexadecimal digit

(0-9, A-F). Thus,

for example, to

indicate that you

want to use ctrl-Z

as the end-of-line

character, you

would specify the

4-character

sequence \x26

Escape

Characters
CsvEscapeCharacters String Default: \

The character or

characters used to escape

the special meaning of

other characters, such as

column separators and

Coral8 Integration Guide

418

quotes.

Note that each input stream has a property (see the stream's Properties tab in Coral8 Studio) that

can specify whether to use the current server timestamp value instead of the row timestamp set

by the adapter. If this stream property is set to true, it overrides any row timestamp set by the

adapter.

The "Browse" button for the filename property. The Adapter Properties screen in Coral8

Studio allows you to specify an input path and file name for the file by clicking the Browse

button and identifying the file. The path is relative to the adapters base folder, either as specified

for Coral8 Server running on the same computer as Coral8 Studio, or as specified in the

preferences for Coral8 Studio. For more information, see Setting The Base Folder For File

Input/Output Adapters. In order for this feature to work properly, make sure that the Adapter's

Base Folder field in Studio Settings is set to the same folder as the adapters base folder for

Coral8 Server. The Base Folder setting for the Server is specified during the installation process,

and may also be changed later in the Server's coral8-server.conf file. The base folder setting

for Coral8 Studio may be set from the Tools->Settings command on the Studio menu.

The "Edit" button for the filename property. The edit button opens an editor that will allow

you to edit the file whose name you entered into the filename field. This allows you to correct

errors in the data. If the file's extension is "csv" or "xml", then Studio will open the appropriate

editor specified in the "External Tools" tab available from the menu item "Tools -> Settings".

For files with other extensions, on Microsoft Windows the editor will be the one specified by the

operating system's file associations, and on UNIX-like operating systems Coral8 Studio will

open the editor specified by the EDITOR environment variable.

When you click the Edit button, Coral8 Studio will look for the file in the Coral8

Repository, even if the adapters base folder is set to another location. You may need to

use the Browse button (adjacent to the Edit button) to navigate to the desired directory

before you try to edit the file.

NULL Values

To specify a NULL value, simply do not put any value into that field of the row. For example, in

the 3 rows below, the first row will have a NULL value for the first column; the second row will

have a NULL value in the second column, and the third row will have a NULL value in the third

column.

,2,3

1,,3

1,2,

Coral8 Adapters

419

Title Rows and the Hidden Row Timestamp Column

The ReadFromCSVFile adapter allows input data to contain an optional "title row", which lists

the names of the columns of data. To ensure that the number of column names in the title row

matches the number of columns in the data, you must enter a "placeholder" name in the title row

if your input data contains a "hidden row timestamp" column. For example, if your data contains

a name column, an ID column, and a hidden row timestamp column, then the title row might

look similar to the following:

Ts,Name,ID

The name "Ts" is a placeholder. The name must follow the usual rules for column names, but the

name is not used in any way. The name will not appear in the stream schema, and you cannot use

the name in queries. Since the hidden row timestamp column must be the first column, the

placeholder name must be the first name in the title row.

More Detailed Descriptions of Time-Related Properties

Rate

The Rate property allows you to specify the rate (in rows per second) at which the server reads

and processes rows. The minimum value for Rate (if you specify it) is 0. The maximum rate you

can enter is approximately 2 billion (rows per second), but of course the practical maximum

depends upon the speed of your computer.

Furthermore, the exact time that rows are sent will depend upon low-level factors such as task

switching, so the actual rate at which rows are sent will be only approximately the same as the

rate that you specify.

Note that if Rate is set, the server will act as though "Set timestamp to current time" is also set.

In other words, the actual time that the row is sent will overwrite the row timestamp (if any) in

the input file.

Note that setting the rate does not change the row timestamps in the rows.

File has timestamp column, and Timestamp format column

If you set the "File has timestamp column" property to true, the first column will be treated as the

row timestamp column.

When the Read From CSV File adapter starts running, it sends the first row in the file

immediately. Subsequent rows will be sent based on the differences between row timestamps.

E.g. if the second row's row timestamp is 5 seconds after the first row's row timestamp, then the

second row will be sent 5 seconds after the first row (if no other property, such as Rate, overrides

this). If you are using the Accelerated Playback feature, then the actual time that the second row

is sent will depend upon the Accelerated Playback rate.

Coral8 Integration Guide

420

The "Rate" property and "Timestamp base" property override or alter the behavior of the

"File has timestamp column" property. See the descriptions of those properties for

details.

If you set "Has title row" to true, then the first row of the input file must include a name

for the row timestamp column, even though that column name is not used in any way.

For example, if your stream has three columns, "row timestamp", "department number",

and "department name", and if "File has title row" is set to true, then the first line of your

input file should look similar to:

dummyTsColName,DeptNum,DeptName

where "dummyTsColName" may be any string that is valid as a column name.

The "Timestamp format column" property allows you to specify the format of the row timestamp

column (e.g. 'YYYY-MM-DD HH24:MI:SS.FF'). Since the row timestamp column is of type

TIMESTAMP, the format may be any of the formats that are valid for columns of type

TIMESTAMP. (See the CCL Reference manual for a description of the valid formats for

TIMESTAMP data type. See Daylight Savings Time and the Coral8 Time Zone Database and

Reading, Writing, and Converting Timestamps for more information about time zones.)

The property Timestamp Format Column should only be set to a value if you set the property

File Has Timestamp Column to true.

If you do not set the Timestamp Format Column, then the server will assume that the row

timestamp is specified in microseconds since midnight January 1, 1970 GMT.

Timestamp Base

The timestamp base allows you to minimize a common problem, which is that if you have

multiple input files that are related, the first row in each file may not have the same starting time

as the first row in all the other files. Since the adapters do not communicate directly with each

other, and since the adapters do not control the exact time at which they start running or the order

in which the operating system gives them "time slices", if each adapter sends its first row as soon

as it can, rows may arrive out of order even though the rows all have correct row timestamps.

Imagine a simple case in which the first row of file F1 has a row timestamp of 2006-02-01

09:00:00 and the first row of file F2 has a row timestamp 5 seconds later, i.e. 2006-02-01

09:00:05. When you start processing the data, you'd like to tell F2's input adapter to stall 5

seconds relative to F1's input adapter. To tell F2's input adapter to stall, specify the same

"timestamp base" for both adapters. E.g. if you tell the adapter reading file F1 to use a timestamp

base of 2006-02-01 09:00:00, then that adapter will send its first row (with timestamp 2006-02-

01 09:00:00) as soon as it can. If you tell the adapter reading file F2 to use the same timestamp

base (2006-02-01 09:00:00), then that adapter will wait approximately 5 seconds before sending

its first row, which has a timestamp of 2006-02-01 09:00:05.

Coral8 Adapters

421

Note: If you are using Timestamp base with the Accelerated Playback feature, the actual delays

will be adjusted to factor in the accelerated playback rate.

The value in the Timestamp base field will be interpreted according to the setting in the

Timestamp Column Format (e.g. "YYYY-MM-DD HH24:MI:SS.FF") if that field is set.

Note that Timestamp base is ignored if "Rate" is set.

Set Timestamp to Current Time

If "Set timestamp to current time" is set to true, then Coral8 sets each row's row timestamp to the

current system clock date and time, even if the row already has a row timestamp. If "Set

timestamp to current time" is set to "no", then Coral8 leaves the row timestamp unchanged.

If the data does not already have a row timestamp, you should set "Set timestamp to current

time" to true.

Note that the "Set timestamp to current time" property does not control the rate at which rows are

sent. You should specify either the Rate or set "File has timestamp column" to true to control

when rows are sent.

It is possible to use existing row timestamp values in the file to control when rows are sent, but

then overwrite the row timestamp with the current time. This is useful if you want to send data in

the file at the same rate (relative timing) as the data was originally created, but you want the

actual row timestamps to be set to the current time. For example, suppose that the original row

timestamps of the first 3 rows were:

2006-02-01 09:00:00.000000

2006-02-01 09:00:05.000000

2006-02-01 09:00:10.000000

In other words, the rows have timestamps 5 seconds apart. If you'd like to process the rows using

the current date and time, but still have the rows appear to arrive 5 seconds apart, then specify

BOTH "File has timestamp column" AND "Set timestamp to current time". (Also, make sure that

you do NOT set the Rate property, since Rate overrides "File has timestamp column".)

If you also set "Timestamp base" (in addition to setting "Set timestamp to current time" to true,

and "File has timestamp column" to true), then the adapter will send the first row based on the

difference between its row timestamp and the timestamp base, and subsequent rows will be sent

based on the difference in row timestamps (e.g. if the row timestamps are 5 seconds apart then

the rows will be sent 5 seconds apart).

Loop Count

Note that if you choose to loop through the data repeatedly, and if the data contains row

timestamps, the row timestamps will be adjusted on the 2
nd

 and subsequent iterations.

Coral8 Integration Guide

422

(Otherwise, you would get an error message about rows being out of order when the first row

was read in again after the last row had been processed.)

Note

The ReadFromCSVFile adapter always has a 3-second startup delay before the first row is sent.

For CSV files, if a user has "Timebase starts at", then a further delay may be inserted, depending

upon user supplied data and property settings.

If looping is used, the 3-second delay does *NOT* happen after the initial delay, but the

"Timebase starts at" *does* happen on each loop.

Line Continuation Character

Normally, each row is on a single line, i.e. each row is terminated by a newline. (The

ReadFromCSVFile adapter provided by Coral8 treats both a bare LineFeed (ASCII 10) and the

sequence CarriageReturn+LineFeed (ASCII 13 followed by ASCII 10) as newlines.) In some

cases, you want to split lengthy data onto multiple lines. To indicate that the next line is part of

the current line (row), use a line continuation character.

Note that the character is interpreted as a line continuation character ONLY when it is the last

non-whitespace character prior to a newline. For example, consider the following data:

Row1, "The caret character (^) is treated as a line continuation ^

character only when it is at the end of a line."

Row2, "This row is the second row."

The first caret on the first line is treated as part of the data. Only the last caret is treated as a line

continuation character.

Cautions on Using Quote Characters, Line Continuation Characters, and Field
Separator Characters

You may use almost any ASCII character(s) that you want for each of these purposes; however,

please follow the rules listed below:

The set of characters for one purpose should not overlap the set of characters for any other

purpose. For example, you should not use the same character as both a field separator and a line

continuation character.

Do not use the newline character (or individual Line Feed or Carriage Return characters) as

quote character(s), line continuation character(s), or field separator character(s).

As mentioned above, when you specify more than one character, EACH of the characters that

you specify will be used for the specified purpose. You cannot create multi-character strings for

any of these purposes; for example, if you specify "][" as the field separator characters, then each

Coral8 Adapters

423

of the individual characters will be treated as field separators. In other words, the sequence "]["

will be treated as 2 separate field separators.

There is currently no "escape character" that indicates that the next character should be treated as

a literal rather than as a special character.

Format Of INTERVAL Values In The CSV File

The format of INTERVAL values inside a CSV or XML file may be any of the acceptable

formats for INTERVAL values, including:

 a 64-bit signed integer representing a number of microseconds

 [D [day[s]]][][HH:MI[:SS[.FF]]] (e.g. 1 02:03:04.000005)

 [D day[s]][][HH hour[s]][][MI minute[s]][][SS[.FF] second[s]] (e.g. 1 day 2 hours 3

minutes 4.000005 seconds)

For a complete list of valid formats for INTERVAL values, search for 'INTERVAL Literals" in

the CCL Reference.

Although CCL statements require the keyword INTERVAL prior to the value for some

of these forms, no INTERVAL keyword is required when using such values in CSV or

XML files.

Comma-Separated Values (CSV): Write To CSV File Adapter.

A Write To CSV File adapter writes received rows to a CSV (Comma-Separated Values) output

file.

Property

Name

(screen)

Property Name (Attach

Adapter)
Type Description

Filename Filename String

The name (and path)

of the CSV file to

write data to. You

may specify a file

name and path either

by typing it in or by

clicking on the

Browse button for this

field. By default, the

path is relative to the

server's "Base Folder"

and must be

Coral8 Integration Guide

424

underneath that base

folder, but you can use

$ProjectFolder to

specify a path relative

to the current project

folder. For more

information, see

 Setting The Base

Folder For File

Input/Output

Adapters. For more

information about the

Browse and Edit

buttons, see the

discussion that follows

this table.

Maximum

Size in

bytes

MaximumSize
Integer

Min: 1

The maximum size of

the output file. If this

property is set then the

adapter starts writing a

new file every time

the size of the current

output file becomes

greater than this

property. The files are

named <filename>,

<filename>.001,

<filename>.002, ...

where <filename> is

the value of the

Filename property.

Append

To

Existing

File

Append Boolean

This parameter affects

how the adapter

behaves when the

adapter re-starts.

In all cases, when the

adapter writes to a file

and the size of the file

reaches the size

Coral8 Adapters

425

specified in the

MaximumSize

parameter described

above, the adapter

renames <Filename>

to <Filename>.###,

where "###" is the

next available number.

The adapter then

opens another file

named <filename>

and writes to it.

If "Append To

Existing File" is set to

False, then when the

adapter is [re-]started,

the adapter moves any

existing file named

<Filename> to

<Filename>.### and

starts a new file

named <Filename>.

If a maximum size is

specified and "Append

To Existing File" is

set to True, then when

the adapter is [re-

]started, the adapter

appends to any

existing file named

<Filename> rather

than immediately

renaming the existing

file.

Set

timestamp

to current

time

UseCurrentTimestamp Boolean

If set to true, the

adapter overrides the

timestamp specified in

the row with the

current system time.

Defaults to false.

Coral8 Integration Guide

426

Write title

row
TitleRow Boolean

If this flag is set to

true, then the adapter

adds a title row to the

output. The title row

lists the column

names.

Write

timestamp

column

TimestampColumn Boolean

If set to true, the

adapter writes the

message timestamps

in the first column of

the file.

Timestamp

column

format

TimestampColumnFormat String

The Timestamp

column format

specifies the format of

the row timestamp

column, e.g.

'YYYY/MM/DD

HH24:MI:SS.FF

TZD'. If no timestamp

format is specified, the

adapter assumes that

the timestamp is

represented as a

number of

microseconds from

00:00:00 Jan 1, 1970

UTC/GMT. For more

information, see

Reading, Writing, and

Converting

Timestamps.

Flush each

row
FlushAfterEachRow Boolean

If set to true, the

adapter writes

("flushes") each row

to disk as soon as

possible. If set to

false, the adapter may

wait until multiple

rows are ready to be

Coral8 Adapters

427

written to disk and

then write them as a

group. Not

surprisingly, flushing

after each row may

reduce overall

performance

(throughput).

CSV

delimiter

string

CsvDelimeterString String

The character that

separates columns in

the output. Defaults to

a comma (,).

The "Browse" button for the filename property. The Adapter Properties screen in Coral8

Studio allows you to specify an input path and file name for the file by clicking the Browse

button and identifying the file. The path is relative to the adapters base folder, either as specified

for Coral8 Server running on the same computer as Coral8 Studio, or as specified in the

preferences for Coral8 Studio. For more information, see Setting The Base Folder For File

Input/Output Adapters. In order for this feature to work properly, make sure that the Adapter's

Base Folder field in Studio Settings is set to the same folder as the adapters base folder for

Coral8 Server. The Base Folder setting for the Server is specified during the installation process,

and may also be changed later in the Server's coral8-server.conf file. The base folder setting

for Coral8 Studio may be set from the Tools->Settings command on the Studio menu.

The "Edit" button for the filename property. The edit button brings up an editor that will

allow you to view the file whose name you entered into the filename field. If the file's extension

is "csv" or "xml", then Studio will bring up the appropriate editor specified in the "External

Tools" tab available from the menu item "Tools -> Settings". For files with other extensions, on

Microsoft Windows the editor will be the one specified by the operating system's file

associations, and on UNIX-like operating systems Studio will bring up the editor specified by the

EDITOR environment variable.

When you click the Edit button, Coral8 Studio will look for the file in the Coral8

Repository, even if the adapters base folder is set to another location. You may need to

use the Browse button (adjacent to the Edit button) to navigate to the desired directory

before you try to open the file.

Format of TIMESTAMP Values In the CSV File. Unless specified otherwise, the format of

TIMESTAMP values (including the row timestamp) inside the CSV file is a 64-bit signed integer

representing the number of microseconds since the beginning of the epoch (midnight January 1,

1970 UTC/GMT).

Coral8 Integration Guide

428

Format of INTERVAL Values In the CSV File. When Coral8 Server writes INTERVAL

values in CSV format, the values are always written as a 64-bit signed integer representing a

number of microseconds.

Comma-Separated Values (CSV): Read From CSV Socket Adapter.

A Read from CSV Socket adapter attempts to open a TCP connection to a given address

(specified through Host and Port properties) and, once connection is established, reads rows from

this connection as comma-separated values. If a connection is lost during adapter execution, it

attempts to reconnect.

Property

Name

(screen)

Property Name (Attach

Adapter)
Type Description

Host Host String

Host name or IP

address of the data

source

Port Port

Integer

Min: 1

Max:

65535

Default:

none

Port number of the

data source

Data Has

Title Row
TitleRow Boolean

Whether to expect

a title row (default:

true)

Data has

timestamp

column

TimestampColumn

Boolean

Default:

True

Every row must

have a row

timestamp that

indicates the time

that the row was

created. This row

timestamp may be

set by the system at

the time that the

row arrives, or the

timestamp may be

specified by the

user (e.g. if

running a

Coral8 Adapters

429

simulation). If the

"Data has

timestamp column"

flag is true, then

the adapter

assumes that the

first column in

each row contains

a row timestamp

AND that this row

timestamp should

be used to control

the timing of when

the rows are sent to

the server. If this

flag is set to false,

the adapter inserts

the row's arrival

time into the row

timestamp column,

and the adapter

will send the data

as quickly as it can.

If a row timestamp

is supplied, the

adapter assumes

that the timestamp

is represented as a

number of

microseconds from

00:00:00 Jan 1,

1970 UTC/GMT.

Timestamp

Column

Format

TimestampColumnFormat String

The format in

which timestamp

values are stored,

e.g.,

YYYY/MM/DD

HH24:MI:SS.FF If

blank, timestamp

values are in

Coral8 Integration Guide

430

microseconds since

January 1, 1970,

12:00:00 AM.

Field

Separator

Character

CsvDelimiterString

String

Default: ,

(comma)

This indicates

which character(s)

separate the fields

in the data. In most

cases, you will

leave this at the

default value,

which is the

comma. However,

you may specify a

different separator

character(s), such

as a vertical pipe

symbol ("|") etc.

Note that if you

specify multiple

characters, then

EACH of those

characters is

treated as a

separator; the

adapter does not

look for a multi-

character separator.

Line

Continuation

Character

CsvLineContinuationCharacter

String

Default: ^

(caret)

If a single row

(tuple) of data must

be split across

multiple input

lines, then you may

specify a line

continuation

character that tells

the adapter to treat

the multiple lines

as a single row. By

default, this line

Coral8 Adapters

431

continuation

character is the

caret ("^") symbol.

Note that this

character is treated

as the line

continuation

character ONLY if

it is the last non-

whitespace

character preceding

a newline. Note

that if you specify

multiple

characters, then

EACH of those

characters is

treated as a line

continuation

character; the

adapter does not

look for a multi-

character line-

continuation

indicator. Note that

if the line

continuation field

is empty, no line

continuation will

be possible. This

allows data with

wildly varying

input characters to

be properly

processed.

String Quote

Characters
CsvQuoteCharacters

String

Default: '

(single

quote) and

" (double

By default, both

the single quote

and the double

quote characters

may be used to

Coral8 Integration Guide

432

quote) delimit a string.

Note that if you

specify multiple

characters, then

EACH of those

characters is

treated as a quote

character; the

adapter does not

look for a multi-

character quote

indicator. If the

string is started

with a double

quote character,

then it must end

with a double

quote character,

and single quote

characters within

that string are

treated as regular

characters rather

than as the end of

the string.

Similarly, if the

string is started

with a single quote

character, then it

must end with a

single quote

character, and any

double quote

characters within

the string are

treated as normal

characters. If you

change the

defaults, then only

the character(s)

Coral8 Adapters

433

that you specify are

treated as quote

characters.

NULL string

value
CsvNullString

String

Default:

NULL

This allows you to

specify what value

indicates a NULL

value in the file.

Note that the value

should not be

quoted. If the

NULL string value

is the word NULL

(without quotes),

then the value

"NULL" (with

quotes) is a 4-letter

string, not an

indication that you

want to use a

NULL value. If

you do not specify

a NULL string

value, then if a

string field is

"empty" (i.e. if

there is nothing

between the field

separator

characters for that

field), then the

value will be

treated as NULL.

Line

Terminator

Character

CsvLineTerminatorChar
String

Default: \n

This allows you to

specify what

character

represents the end-

of-line character.

You specify the

character in one of

Coral8 Integration Guide

434

the following

ways:

 \n This 2-

character

sequence

represents

the Line

Feed

character

(ASCII 10).

 \r This 2-

character

sequence

represents

the

Carriage

Return

character

(ASCII 13).

 \t This 2-

character

sequence

represents

the Tab

character

(ASCII 9).

 <any

printable

char> This

1 character

may be any

printable

character,

e.g. '$', '|',

etc., except

the

backslash.

Note that

you enter

the

Coral8 Adapters

435

character

without any

quotation

marks and

without any

leading

backslash.

 \x## where

"#"

represents a

hexadecima

l digit (0-9,

A-F). Thus,

for

example, to

indicate

that you

want to use

ctrl-Z as the

end-of-line

character,

you would

specify the

4-character

sequence
\x26

Escape

Characters
CsvEscapeCharacters

String

Default: \

The character or

characters used to

escape the special

meaning of other

characters, such as

column separators

and quotes.

Note that each input stream has a property (see the stream's Properties tab in Studio) that can

specify whether to use the current server timestamp value instead of the row timestamp set by the

adapter. If this stream property is set to true, it overrides any row timestamp set by the adapter.

Coral8 Integration Guide

436

Comma-Separated Values (CSV): Write To CSV Socket Adapter.

A Write to CSV Socket adapter attempts to open a TCP connection to a given address (specified

through Host and Port properties) and, once connection is established, writes Rows into this

connection as Comma-Separated Values. If a connection is lost during adapter execution, it

attempts to reconnect.

Property

Name

(screen)

Property Name (Attach

Adapter)
Type Description

Host Host String

Host name or IP

address of the data

destination

Port Port Integer
Port number of the

data destination

Write title

row
TitleRow Boolean

Whether to send title

row (default: "true")

Write

timestamp

column

TimestampColumn Boolean

If set to true, the

adapter writes the

message timestamps

in the first column of

the file. The

timestamp is

represented as a

number of

microseconds from

00:00:00 Jan 1, 1970

UTC/GMT.

Timestamp

Column

Format

TimestampColumnFormat String

The format in which

timestamp values are

stored, e.g.,

YYYY/MM/DD

HH24:MI:SS.FF If

blank, timestamp

values are in

microseconds since

January 1, 1970,

12:00:00 AM.

CSV CsvDelimeterString String The character that

Coral8 Adapters

437

delimiter

string

separates columns in

the output. Defaults to

a comma (,).

Database: Poll From DB Input Adapter

The Poll From DB (Poll From Database) adapter reads information from a table on an external

database server.

The adapter reads the table repeatedly, at intervals specified by the "polling interval" property.

The user may choose to read the entire table each time, or read only the rows that have been

added since the last time that the user read the table.

This adapter is an in-process adapter. The server starts it automatically when necessary. You

attach this adapter to a stream by using commands inside Coral8 Studio, and properties for this

adapter are set using Coral8 Studio. Alternatively, you may use the ATTACH ADAPTER

statement to attach the adapter to a stream and specify the values of the adapter properties.

The adapter properties are listed in the table below.

Property

Name

(screen)

Property Name (Attach

Adapter)
Type Description

Query Query String

The Query is the SQL

query (e.g. SELECT

statement) that you want

to run on the external

database server. This field

is required. Note that the

order of fields that you

retrieve should match the

order of the fields in the

stream to which you are

writing. E.g. the first field

in the SELECT list of the

SQL query should

correspond to the first

field in the schema of the

stream.

DBName DBName String
This indicates which

database to execute the

Coral8 Integration Guide

438

query on. This is actually

be the name of a "service"

that is defined in the
coral8-services.xml

file, not the name of the

database. The service

information will include

information about how to

connect to the external

database server and the

name of the database to

connect to. This field is

required.

Poll

Interval
PollInterval Interval

Poll interval. This

indicates how frequently

Coral8 Server should

check the external

database server for

changes. The value may

be a number of

microseconds or may use

standard INTERVAL

values such as "100

milliseconds" or "1 hour"

(without quotes, of

course). This field is

required.

Counter

field
CounterField

Integer or

Long

This is the name of the

counter/sequence number

field. (Note that this is the

name of the field in the

Coral8 schema, not the

name of the field in the

external table. This is

explained in more detail

later in this section.) This

column's data type should

be compatible with

Coral8's INTEGER or

LONG data type.

Coral8 Adapters

439

Counter

field initial

value

CounterFieldInitValue
Integer or

Long

If this field is set, then the

first time that the query is

executed, the adapter will

retrieve only records

whose "counter" field

contains values greater

than the value specified in

this Initial Value field.

(Data values equal to the

Initial Value will NOT be

retrieved.) Note that the

initial value of the

Counter Field may be

either a LONG or an

INTEGER, depending

upon the data type of the

Counter Field.

Timestamp

Field
TimestampField String

This is the name of the

timestamp/datetime

column. (Note that this is

the name of the field in

the Coral8 schema, not the

name of the field in the

external table. This is

explained in more detail

later in this section.) Note

that this column's data

type should be compatible

with Coral8's

TIMESTAMP data type.

(See Datatype Mappings

for tables that show which

database data types

correspond to Coral8's

TIMESTAMP data type.)

The actual data type may

have a resolution less than

or equal to TIMESTAMP.

If the resolution is greater

than TIMESTAMP (e.g.

Coral8 Integration Guide

440

nanosecond vs.

microsecond), you may

get occasional cases of

missing or duplicate

records.

Timestamp

field initial

value

TimestampFieldInitValue Timestamp

If this field is set, then the

first time that the query is

executed, the adapter will

retrieve only records

whose timestamp field

contains values greater

than the value specified in

this Initial Value field.

(Data values equal to the

Initial Value will NOT be

retrieved.)

Note that each input stream has a property (see the stream's Properties tab in Studio) that can

specify whether to use the current server timestamp value instead of the row timestamp set by the

adapter. If this stream property is set to true, it overrides any row timestamp set by the adapter.

The query is usually a SELECT statement that will read values from the external database server.

For example, the query might look like:

SELECT col2 FROM StockTable WHERE col1 = 'IBM';

The query may contain a statement other than SELECT. For example, you may call a stored

procedure that returns values.

The "Database Name" property indicates which database to connect to. Despite the fact that we

call this property the "Database Name", it is actually the name of a service (which must be

configured in the coral8-services.xml file), and that service name is not necessarily identical

to the name of the database. Each service has information about how to connect to the external

database server and the name of the database on that server. For more information about

configuring a service to provide access to a database on an external database server, please see

the Coral8 Administrator's Guide.

The poll interval specifies how frequently to read data from the external database server.

You may set property values to specify whether you want the entire table re-read each time, or

whether you want to read only records that were added since the last time the table was read.

To read the entire table each time, leave the Counter Field, Counter Field Initial Value,

Timestamp Field, and Timestamp Field Initial Value empty. This will cause the adapter to read

the entire external table at an interval specified by the Poll Interval property

Coral8 Adapters

441

To read just the records that were added since the last time the table was read, please read the

section below.

Retrieving a Subset of Records

Normally, the query specified in the Query property will retrieve all records in the table (or all

records that meet specific criteria if you use a WHERE clause). If the table is large, then

retrieving all the rows may consume a lot of resources.

To save resources, the Poll From DB adapter allows you to specify that you want to read only the

records that were added since the last time that the query was run. To do this, you need to tell the

adapter which column to look at to determine which records are new since the last query ran.

This column must be either a date/time column (e.g. the date and time at which a stock trade was

executed) or some type of counter or sequence number that is assigned in ascending order by the

data source.

For example, suppose you are querying a table that contains stock information, in which each

row has a column named "TradeTime" that indicates the time at which the stock trade took place.

Suppose also that the previous execution of the query was at 10:00 July 1, 2006, and at 10:05

you want to retrieve just the stock trades that were executed since 10:00. Conceptually, you

could do this by modifying your WHERE clause to look similar to:

...WHERE... TradeTime > TO_TIMESTAMP("2006-07-01 10:00:00")...

Each time that the query is run, the value "2006-07-01 10:00:00" must be replaced with the time

of the query's most recent previous run. Since the adapter reads the rows from the external table,

the adapter itself can keep track of the highest value read so far and plug that in each time that

the query is executed. You must specify which column to use, i.e. which column contains the

timestamp or counter.

To specify which column to use, you enter a column name into either of two adapter properties,

named Timestamp Field and Counter Field. You must also modify your query to refer to a

"variable" stored by the adapter itself; this variable holds the highest timestamp or the highest

counter read so far, and you must include an ORDER BY clause that refers to the column name

that you entered into the Timestamp Field or Counter Field property.

Note that the name of the column that you enter must be the name of the column in the CCL

schema, not the name in the external table. For example, if you decide to use the TradeTime

column of the external table, and if the TradeTime column of the external table is read into the

TimeOfTrade column in the CCL stream, then you would specify "TimeOfTrade" in the

"Timestamp Field" property of this Poll From DB adapter.

Using our example of a table of stock trades, the SQL Query would look like:

SELECT ...

FROM StockTable

Coral8 Integration Guide

442

WHERE TradeTime > ?C8_TIMESTAMP_FIELD ...

ORDER BY TradeTime ...;

The Timestamp Field (or the Counter Field, if you use a Counter Field) must be a column that is

always higher for newer records. For example, if you were reading from a table of employees,

you would want to use a timestamp that indicated each employee's hiring date and time, not her

birthday. If you used birthdays, then the timestamps in new rows would not necessarily be

greater than the timestamps in the most recently read row, and thus a query that retrieved only

rows with newer timestamps would not necessarily retrieve all of the new employees.

If the external table does not have an appropriate timestamp/datetime column, you may be able

to use a column that acts like a "counter" or a sequence number, i.e. which has values that are

unique and that ascend over time. In some cases, the table's primary key column may meet these

requirements.

For example, suppose that you ship packages to customers, and each package is given a unique

serial number. Serial numbers increase over time, and rows are inserted into the table in order by

serial number. The serial number is in a column named "SerialNum" (we'll assume that the

column name is the same in the external table and the Coral8 stream). In that case, you would set

the adapter's property named Counter Field to "SerialNum", and you would write your query to

look similar to:

SELECT ...

FROM Shipments

WHERE SerialNum > ?C8_COUNTER_FIELD ...

ORDER BY SerialNum ...;

The variable ?C8_COUNTER_FIELD will be replaced with the most recent value of the Counter

Field column that was read during the previous Poll From DB operation. For example, if the

previous Read operation read rows with serial numbers 200-220, then the WHERE clause above

would be sent to the external database server as

WHERE SerialNum > 220 ... ;

The server uses the value of the Timestamp Field or the Counter Field in the most recently read

row, not the largest value seen so far. Therefore, you must include an ORDER BY clause to

ensure that the values are returned in order and thus that the most recently read row contains the

largest value.

If you are reading rows incrementally, rather than reading all rows every time that the query

executes, then you must decide whether the very first read should get all rows in the table, or

only the rows since a particular cutoff point. The adapter properties named "Timestamp Field

Initial Value" and "Counter Field Initial Value" allow you to specify this.

If you want to read all of the rows in the table, then set the "...Initial Value" property to a value

lower than the lowest value in the table.

Coral8 Adapters

443

If you want the first execution of the query to return only the rows that were added to the table

after a particular cutoff point, then enter that cutoff point into the "...Initial Value" property.

Note that the "... Initial Value" must be set to a value LOWER than, not equal to, the first value

you want to retrieve. For example, if you want to retrieve all rows with a timestamp at or greater

than 9:00 AM July 1, 2006, then the initial value should be "2006-07-01 08:59:59.999999", not

"2006-07-01 09:00:00.000000".

The first time that you query the table, you will probably want to get all of the records in the

table, in which case you should set the "...InitialValue" to a value lower than the lowest value in

the table.

Here is a complete example.

 The table named Shipments has a column named TimeOfShipment which has a data type

compatible with Coral8's TIMESTAMP data type.

 The corresponding column in the stream is named "ShippingTime" and is of course of

type TIMESTAMP.

 Each time that a shipment is made, a new record is added to the table, and the

TimeOfShipment field of that record is set to the actual time that the item was shipped.

 The table has data going back as far as January 1, 1998, but you only want to use data

since the year 2000.

To access this table with the Poll From DB adapter, you set the following:

 Timestamp Field: set the adapter property Timestamp Field to the stream column name

"ShippingTime".

 Timestamp Field Initial Value: Set the adapter property "Timestamp Field Initial Value"

to "1999-12-31 23:59:59.999999").

 The Query's WHERE clause: Set the WHERE clause to include

"... TimeOfShipment > ?C8_TIMESTAMP_FIELD..."

Incremental retrievals work well when the only changes to a table are INSERTs. If there

are any UPDATE and DELETE operations, those may require special handling. For

example, suppose that you are using incremental retrievals on a table that contains stock

transactions, and the "Timestamp Field" for that table is the TradeTime column, i.e. the

time at which the trade was execute. If the record is updated to correct the name of the

purchaser, for example, the adapter will not see that change (unless the TradeTime is

also updated, which would be inappropriate if the TradeTime itself was correct). Thus

the adapter would not see the new value (and would still cache the old value) for that

particular stock trade.

Similarly, if a row were deleted (perhaps the purchaser did not have enough money to

pay for the stock that he bought), there might not be any indication of that sent to Coral8

Coral8 Integration Guide

444

Server. If the database that you connect to implements UPDATE as a DELETE plus an

INSERT, then you will see the new/updated values, but you won't know that the old

values were deleted. Thus Coral8's local cache of the external table's contents will have

both the original value and the new value. Therefore, as a general rule, you will

probably use incremental retrievals with tables that have only INSERTs, not UDPATEs

or DELETEs.

The dates from the external database server are assumed to be in UTC/GMT (not local

time).

If you use incremental retrievals, then since the values in the Counter Field or

Timestamp Field must be assigned in ascending order chronologically, the values must

not include any NULL values.

TIP: In addition to the C8_ROWCOUNT and C8_TIMESTAMP variables, there is also a

C8_INVOCATIONS variable that stores the number of times that the adapter has invoked the

query. This may be useful in debugging or if you want the adapter to run for only a finite amount

of time or a finite number of executions.

Database: Read From DB Input Adapter

The Read From DB (Read From DataBase) adapter reads information from a table (or view) on

an external database server and sends that data to a stream.

This adapter has some of the characteristics of the Poll From Database adapter and some of the

characteristics of the Read From CSV File adapter. The table below compares and contrasts

some key characteristics of these three adapters.

Poll From

Database adapter
Read From Database adapter

Read From CSV File

adapter

This adapter is

used primarily for

processing live

data.

This adapter is used primarily

for replaying historical data or

running simulations, rather than

for processing live data.

This adapter is used

primarily for replaying

historical data or

running simulations,

rather than for

processing live data.

This adapter does

not support

Accelerated

Playback.

This adapter supports

Accelerated Playback.

This adapter supports

Accelerated Playback.

The user specifies

the entire database

The user specifies the database

table name (or view name) and

The user specifies the

name of a file that

Coral8 Adapters

445

query. the WHERE clause. contains the data.

The user may

specify the order of

the records by

using an ORDER

BY clause.

The adapter automatically

includes an ORDER BY clause

that orders by the Timestamp

Field (see below for a

description of the Timestamp

Field property for this adapter).

The order is determined

by the physical order of

the rows in the data file

and by the row

timestamps in the data

file.

See "Coral8 Engine Third-Party Software Dependencies" in the Coral8 Administrator's Guide

for information about supported databases.

This adapter is an in-process adapter. The server starts it automatically when necessary. You

attach this adapter to a stream by using commands inside Coral8 Studio, and properties for this

adapter are set using Coral8 Studio. Alternatively, you may use the ATTACH ADAPTER

statement to attach the adapter to a stream and specify the values of the adapter properties.

The adapter properties are listed in the table below.

Property

Name

(screen)

Property Name (Attach

Adapter)
Type Description Required?

DBName DBName String

This indicates

which database to

execute the query

on. This is actually

be the name of a

"service" that is

defined in the
coral8-

services.xml file,

not the name of the

database. The

service information

will include

information about

how to connect to

the external

database server and

the name of the

database to connect

to. This field is

Required

Coral8 Integration Guide

446

required.

Table or

View
Table String

The table from

which to retrieve

the data. Note that

this may be a table

or a view.

Required

Where

Clause
WhereClause String

This clause limits

the result set. This

WHERE clause

will be applied on

the remote

database server,

and thus may

reference any of

the fields in the

remote table, even

if those fields are

not also in the

schema of the

stream into which

the data will be

inserted. Note that

you should omit

the keyword

WHERE. E.g.

enter "X = Y"

rather than

"WHERE X = Y".

Optional

Loop

Count
LoopCount Integer

How many times to

loop through this

data. If the field is

left empty, then the

default value is 1.

Optional

Rate Rate Float

How fast to read

the records. This

field is optional. If

this field is not set,

Optional

Coral8 Adapters

447

then the timing of

the data will be

based on the

Timestamp field.

Timestamp

Column
TimestampColumn String

This is the name of

the

timestamp/datetime

column. Note that

this is the name of

the field in the

external table, not

the name of the

field in the Coral8

schema.(This is

explained in more

detail later in this

section.) Note that

this column's data

type should be

compatible with

Coral8's

TIMESTAMP data

type. (See

Datatype

Mappings for

tables that show

which database

data types

correspond to

Coral8's

TIMESTAMP data

type.) The actual

data type may have

a resolution less

than or equal to

TIMESTAMP. If

the resolution is

greater than

TIMESTAMP (e.g.

Required

Coral8 Integration Guide

448

nanosecond vs.

microsecond), you

may get occasional

cases of missing or

duplicate records.

Timestamp

column

initial

value

TimestampColumnInitValue Timestamp

If this field is set,

then the first time

that the query is

executed, the

adapter will

retrieve only

records whose

timestamp field

contains values

greater than the

value specified in

this Initial Value

field. (Data values

equal to the Initial

Value will NOT be

retrieved.) The

format of the date

should be "YYYY-

MM-DD

HH24:MI:SS.FF",

where "FF"

indicates

microseconds (up

to 6 digits).

Optional

Note that each input stream has a property (see the stream's Properties tab in Studio) that can

specify whether to use the current server timestamp value instead of the row timestamp set by the

adapter. If this stream property is set to true, it overrides any row timestamp set by the adapter.

The "Database Name" property indicates which database to connect to. Despite the fact that we

call this property the "Database Name", it is actually the name of a service (which must be

configured in the coral8-services.xml file), and that service name is not necessarily identical

to the name of the database. Each service has information about how to connect to the external

database server and the name of the database on that server. For more information about

Coral8 Adapters

449

configuring a service to provide access to a database on an external database server, please see

the Coral8 Administrator's Guide.

The database query will be constructed from the Table Name, the Where clause, and the

Timestamp Field. The query will select the columns of the table (or view) that match the names

and data types of the fields in the target stream. This means that the stream schema must either

match the table schema, or be a subset of the table schema.

The user will also specify which field in the table should be used as the Timestamp field. The

Timestamp field acts like the Row Timestamp in a file read by a Read From CSV File adapter --

the Row Timestamp controls the order and relative timing with which rows are processed. The

adapter will use the Timestamp field as the ORDER BY clause in the query. Once the rows

arrive at the server, the server will treat the rows as though they arrived at the same relative times

as the Timestamp field (Row Timestamp) specifies -- for example, if the row timestamps are

10,000 microseconds apart, then the server treats the rows as though they had arrived 10,000

microseconds apart. This Timestamp field must be one of the columns of the table; the

Timestamp field may also be, but is not required to be, one of the columns in the stream schema.

The Loop Count property allows you to tell the adapter to read the same data more than once.

This is useful in prototyping if you want to do a test run with a large amount of data but you only

have a small amount of data available.

When looping is used, the row timestamps in the data are incremented appropriately for each

loop so that time does not appear to jump backwards when you finish one loop and start the next

(which of course involves re-reading rows you have already read).

For each loop iteration, the adapter will re-run the query. This allows the adapter to avoid

buffering old query results, which would significantly hamper performance for large results sets.

Since the query is re-executed each time, and since the table data may change between

queries, the data may change between loop iterations.

If you are using looping, you may set property values to specify whether you want the entire set

of records read on the first cycle, or whether you want to read only records that have a

Timestamp field value greater than a value that you specify in the Timestamp Field Initial Value.

To read the entire table on the first cycle, leave Timestamp Field Initial Value empty. To read

just the records with Timestamp field values greater than a specified value (e.g. greater than

2007-09-01 11:30:00.0), put that specified value into the Timestamp Field Initial Value property.

Database: Write to DB Output Adapter

The Write to DB (Write to DataBase) adapter writes information to an external database server.

Coral8 Integration Guide

450

This adapter is an in-process adapter. The server starts it automatically when necessary. You

attach this adapter to a stream by using commands inside Coral8 Studio, and properties for this

adapter are set using Coral8 Studio.

The adapter properties are listed in the table below.

Property

Name

(screen)

Property Name

(Attach Adapter)
Type Description

Query Query String

The query (e.g. INSERT

statement) that you want to

run on the external database

server. This field is

required. Note that this

statement must be written

in the language (e.g. SQL)

of the external database

server, not in CCL. (For

example, do not use a CCL

Database Statement

("EXECUTE

STATEMENT

DATABASE...") as the

query.)

DBName DBName String

Database name. This must

be the name of a "service"

defined in the coral8-

services.xml file. The

service information will

include information about

how to connect to the

external database server

and the name of the

database to connect to. This

field is required.

Commit

frequency
CommitFrequency Integer

If this field is left empty or

is set to 0, Coral8 Server

will send a "commit" for

each row sent to the

external database server. If

Coral8 Adapters

451

you want to commit every

N rows (e.g. every 3rd row)

rather than every row, then

enter the desired value of N

(e.g. 3) into this field. This

field is optional. See More

Information about Commit

Frequency below for more

details.

The query is usually an INSERT statement that will insert values into the external database

server. The INSERT statement typically contains placeholders for values; when a new row

arrives in the stream associated with this output adapter, values in that stream are substituted for

the placeholders in the INSERT statement.

For example, the query might look like:

INSERT INTO table1 (col1, col2)

VALUES (?streamColA, ?streamColB);

If the Write To DB output adapter is on a stream named StockStream, then when a new row

arrives in StockStream, the values from streamColA and StreamColB in StockStream will be

substituted for the query properties "?streamColA" and "?streamColB", and the query will be

sent to the external database server and executed there.

You may use statements other than INSERT. For example, you may use UPDATE or DELETE.

You may also call stored procedures or other statements on the external database server. You

could even use a SELECT statement as the query; however, since this is an output adapter, no

values from the external server are returned, and thus a SELECT statement probably would not

do anything useful. Similarly, calling a "function" (stored procedure) whose sole effect is to

return a value probably would not do anything useful, either.

The database name property must be the name of a "service" configured in the coral8-

services.xml file. For more information about configuring a service to provide access to a

database on an external database server, please see the Coral8 Administrator's Guide.

See Datatype Mappings for tables that show which database data types correspond to Coral8's

data types.

More Information about Commit Frequency. If you set the commit frequency to a value

larger than 0, then the adapter will do "commit" operations EITHER when the specified number

of rows has been sent, OR i.e. when the queue of rows to write to the database is empty. This

prevents ready-to-be-committed rows from having to "wait" indefinitely until the the number of

rows to be committed reaches N.

Coral8 Integration Guide

452

Uncommitted rows will not be committed when a project is stopped. For example,

suppose that you set the commit frequency to 5 minutes. As the project runs, it commits

writes to the database every 5 minutes. However, when the project is stopped, a final

commit is not executed. If the project is stopped 2 minutes after the most recent commit,

then the most recent 2 minutes of database writes will not get committed.

Email: Send Email Out Adapter (SMTP)

The Send Email Out adapter sends email messages with fixed "From", "To", "Cc", "Bcc",

"Subject", and "Body" fields in every email message as configured in the Adapter.

For each message that this output adapter receives, this adapter sends email to the specified

address(es).

Property

Name

(screen)

Property

Name

(Attach

Adapter)

Type Description

SMTP

Service
Service String

Name of SMTPService

definition in coral8-
services.xml

To To String
Email address(es) to send the

message to.

From From String
Email address that the

generated email will be from.

Cc Cc String
Email address(es) to send the

copy to.

Bcc Bcc String
Email address(es) to send the

blind copy to

Subject Subject String Email subject

Body

template
BodyTemplate String

Body template; i.e. the text

of the message that you

would like to send.

HTML

Mail
HtmlMail Boolean

Set this to true (i.e. put a

checkmark in the box by

clicking on the box) if you

want the email sent in HTML

format. Set this to false (i.e.

remove the checkmark in the

Coral8 Adapters

453

box by clicking on the box) if

you do not want the email

sent in HTML format.

Instead of specifying a specific value for the "From", "To", "Cc", "Bcc", "Subject", and "Body

template" fields, you may use a property that tells the server to read the value from the stream.

For example, suppose that your stream has a column named "ErrorCode", which contains an

error number that you would like to include in the "Subject" field of the email message. You can

put "ERROR = ?ErrorCode" in the "Subject" property of this adapter; when the recipient gets the

message, the "?ErrorCode" will be replaced with the value in the ErrorCode field of the stream.

The question mark character ("?") immediately preceding the "ErrorCode" tells the adapter to get

the value in the ErrorCode field, rather than use "ErrorCode" as a literal value.

The coral8-services.xml file needs to have an entry like this:

<Service Name="MySMTPServiceName" Type="SMTP">

 <Description>Description of MySMTPService</Description>

 <!-- Hostname of SMTIP service. Required -->

 <Param Name="Server">smtp.server.hostname</Param>

 <!-- Port number of SMTP service. Optional -->

 <Param Name="Port"></Param>

 <!-- Username for SMTP service access. Optional -->

 <Param Name="Username">smtp.server.username</Param>

 <!-- Password for SMTP service access. Optional -->

 <Param Name="Password">smtp.server.password</Param>

</Service>

Obviously, the name here needs to match the name on the SMTPService property on the adapter.

You need to correctly configure the Server param and optionally the Username and Password.

Email: Java Email Output Adapter

The Java Email Output adapter sends email to the specified recipient(s). When a Row is received

by this Adapter, the Row information is put into the body of an email message and then sent out.

The Java Email Output adapter is an out-of-process adapter.

Set your CLASSPATH environment variable according to the instructions in Setting Up Your

Environment. The instructions for setting CLASSPATH apply to all out-of-process Java

adapters, whether provided by Coral8 or written by the customer.

To run this adapter, execute the following command:

java com.coral8.adapter.EmailOutputAdapter <parameters>

Each parameter is of the form

--<paramname>=<paramvalue>

Coral8 Integration Guide

454

Note that "--" (two dashes) must precede each parameter name.

For example, the beginning of such a command line will look similar to the following:

java com.coral8.adapter.JavaEmailAdapter --url= ...

Use the command-line parameters shown in the table below. Note that these parameters are case-

sensitive.

Parameter Description Required?

url The CCL URL of the stream to read from. Required

smtpHost This is the name of the SMTP host. Required

from
Email address that the email message will show

the email as being from.
Required

to Email address(es) to send the messages to Required

subject Email subject Optional

body

The body of the message. (Note that you may use

either the "--body" or the "--bodyFile" option, but

not both.)

Optional

bodyFile

A file that contains the body of the message. (Note

that you may use either the "--body" or the "--

bodyFile" option, but not both.)

Optional

smtpPort
The port that the SMTP program uses to

communicate
Optional

smtpUsername User name Optional

smtpPassword Password Optional

useTLS

Use a TLS secure connection when connecting to

the mail server. This option will work only if your

mail server supports a TLS connection. (Note that

you may use either the "--TLS" option or the "--

SSL" option, but not both.)

Optional

useSSL

Use an SSL (Secure Socket Layer) connection

when connecting to the mail server. This option

will work only if your mail server supports an SSL

connection. (Note that you may use either the "--

TLS" option or the "--SSL" option, but not both.)

Optional

timeout SMTP timeout in milliseconds Optional

timeFormat
The date format in the format of

java.text.SimpleDateFormat
Optional

Coral8 Adapters

455

It is possible to insert values from the stream into the subject and body of the message. You do

this by including "variables" in the subject or body. A variable is the name of a field, with a

question mark immediately preceding that field. For example, if you want to insert the value of

the field named "Price" into the body of the message, then put "?Price" in the body. Your body

might look like:

The price reached ?Price.

It is also possible to insert values from the stream into the "to" field -- i.e. to specify to whom the

message should be sent. Below is an example command line that starts the server and specifies

that the "to" field should come from the stream:

java com.coral8.adapter.EMailOutputAdapter ... --to=?ContactField

...

The message will be sent to the person whose email address is specified in the "ContactField"

column of the stream.

SSL uses a secure connection from the beginning, while TLS is a method provided by some

servers to allow an unencrypted connection to connect and negotiate an encrypted connection for

the remainder of that session (on the same port that may also allow non-secure traffic).

Depending on how the server is configured, it may require that the session be escalated to an

encrypted connection before anything of importance can be done over it. This method (TLS)

allows a mail server to use a single port for both non-encrypted and encrypted traffic, rather than

requiring separate ports for encrypted and non-encrypted traffic.

If you do not specify either the -body or the -bodyfile option, then the body of the email message

will contain the XML representation of the Coral8 row/message that arrived at the adapter.

Excel RTD Output Adapter

RTD Refresh Interval

Excel does not update RTD data on every single update. It refreshes RTD data periodically based

on a system-wide throttle interval named Excel.Application.RTD.ThrottleInterval. This throttle

interval can be set in either of the following ways:

 Via Visual Basic / VBA - in immediate mode or in a startup handler, you can set

Application.RTD.ThrottleInterval.

 Via the Registry - On startup, Excel will initialize the throttle interval from the registry

value.

For Excel 2002:

HKEY_CURRENT_USER\Software\Microsoft\Office\10.0\

 Excel\Options\RTDThrottleInterval

For Excel 2003:

Coral8 Integration Guide

456

HKEY_CURRENT_USER\Software\Microsoft\Office\11.0\

 Excel\Options\RTDThrottleInterval

The throttle interval can be set to any one of the following values:

ThrottleInterval

value
Effect

-1

Manual mode. Never automatically

refreshes.

Excel.Application.RTD.RefreshData

must be called.

0
Checks for updates every chance it

gets.

> 0

Excel waits at least the specified

number of milliseconds before getting

updates.

For more information, please refer to the following Microsoft FAQ item from MSDN, which

explains the details best:

http://msdn2.microsoft.com/en-us/library/

 aa140060(office.10).aspx#odc_xlrtdfaq_howconfigrtdthrottle

Ganglia Input Adapter

The Ganglia adapter takes data from a Ganglia Monitoring System source and sends the rows to

the Coral8 stream.

Property Name

(screen)

Property Name

(Attach Adapter)
Type Description

MCAST Port MCastPort Integer

The Ganglia MCAST

port. This property is

required. The default

value is 8649.

MCAST Group MCastGroup String

The Ganglia MCAST

group. This property is

required. The default

value is 239.2.11.71

Resolve hostnames ResolveHostnames Boolean

If this is set to true, the

adapter attempts to

convert IP addresses

into real hostnames by

Coral8 Adapters

457

doing a reverse

lookup.

Note that each input stream has a property (see the stream's Properties tab in Studio) that can

specify whether to use the current server timestamp value instead of the row timestamp set by the

adapter. If this stream property is set to true, it overrides any row timestamp set by the adapter.

For more information see the Ganglia Alerts example in the

examples/NetworkAndSecurity/GangliaAlerts directory.

E.g. on Microsoft Windows, the directory is typically:

C:\Program Files\Coral8\Server\examples\NetworkAndSecurity\GangliaAlerts

On UNIX-like operating systems, the directory is typically

/home/<username>/coral8/server/examples/NetworkAndSecurity/GangliaAlerts

JDBC Input Adapter

The JDBC Input adapter attempts to establish a JDBC session with the specified database. It then

executes the given query periodically based on the specified frequency.

Each time the query is submitted, the data stream will get rows that have columns with names

and types equivalent to those selected from the source table. The SQL types that map to CCL

data types are shown in the Datatype Mappings table in JDBC Output Adapter. in the section that

describes the JDBC Output adapter.

This adapter is run as an out-of-process adapter.

Set your CLASSPATH environment variable according to the instructions in Coral8 Java SDK.

(The instructions for setting CLASSPATH apply to all out-of-process Java adapters, whether

provided by Coral8 or written by the customer.)

Execute the following command:

java com.coral8.adapter.JDBCInputAdapter <parameters>

Each parameter is of the form

--<paramname>=<paramvalue>

For example, the beginning of such a command line will look similar to the following:

java com.coral8.adapter.JDBCInputAdapter --queryFile=q1.sql ...

Note that "--" (two dashes) must precede each parameter name.

Use the command-line parameters shown in the table below. Note that these parameters are case-

sensitive.

Parameter Description Required?

queryFile A file with the SQL query, which may be Required

Coral8 Integration Guide

458

almost any SQL statement that is valid for the

database that the adapter is connected to. The

query can be parameterized.

username
The username with which to log into the

database.
Required

password The password for the specified user name. Required

databaseUrl
A database "address" in the standard form

used by JDBC.
Required

streamUrl The URL of the stream to send tuples to. Required

driver

The database driver to use. For example: --

driver=sybase.jdbc.driver.SybaseDriver.

Coral8 does not bundle JDBC drivers with

our product, so customers must provide the

drivers themselves. In order for the Coral8

JDBC Input adapter to work, you must

include the JDBC driver in the Java

CLASSPATH as well as pass the driver on

the command line.

Required

pollInterval
Frequency in microseconds with which to

periodically resubmit the query.
Required

tupleDescriptorFile

This must be the name of a file with a tuple

descriptor that describes the schema that we

are publishing to. See the discussion of the

tupleDescriptor File below.

Required

fetchSize

The size of the batch to read from the

database and accumulate before sending

tuples to the stream. (The default is 10.)

Optional

incrementalUpdates

If this is set to true, then add the retrieved

rows to the existing rows. If this is set to

false, then replace all the rows each time that

the query is executed. (Set this to true if you

are repeatedly retrieving the same relatively

small, semi-static data set.)

Optional

Note that each input stream has a property (see the stream's Properties tab in Studio) that can

specify whether to use the current server timestamp value instead of the row timestamp set by the

adapter. If this stream property is set to true, it overrides any row timestamp set by the adapter.

Coral8 Adapters

459

After the adapter starts, it will initialize its connection to Coral8 Server and the remote database

server. The adapter then sleeps the initial hard-coded time and then starts executing the query

against the database.

To shut down the adapter, send an interrupt signal (e.g. ctrl-C).

Like any out-of-process adapter, this adapter requires that the server and query module already

be running, and that the stream exists so that the adapter can attach to it.

Tuple Descriptor File

This Tuple Descriptor File must describe the schema of the stream that we are publishing to.

This file is required because out-of-process adapters have no way of knowing the schema on

Coral8 Server side unless we tell it to them. An example tuple descriptor looks like this:

<?xml version="1.0" encoding="UTF-8"?>

<TupleDescriptor

 xmlns="http://www.coral8.com/cpx/2004/03/"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.coral8.com/cpx/2004/03/cpx_td.x

sd"

 Name="MyTuple"

 >

 <Field Name="field1" xsi:type="StringFieldType" />

 <Field Name="field2" xsi:type="IntegerFieldType" />

</TupleDescriptor>

JDBC Output Adapter

A JDBC Output adapter allows you to write output to another database server (e.g. an Oracle

server) through JDBC.

You must specify several pieces of information, including

 information about connecting to the database server (e.g. a connection string or other

connection information, a user ID with appropriate privileges on the external database,

and a password).

 an SQL statement (typically an INSERT statement) that will insert a row into the external

database. This statement will contain placeholders for parameters; the values for the

parameters will be read from each row received by the output adapter.

After the JDBC Output Adapter is loaded, it attempts to establish a JDBC session with the given

database. It then executes the specified SQL statement on each row it receives from the output

data stream. The query is parameterized in the fashion of a JDBC PREPARE Statement (see

JDBC standard documentation for details). The columns in each row are inserted into the query

in the order they appear in the row descriptor.

Coral8 Integration Guide

460

The JDBC Output adapter submits a database INSERT query in order to write each row of

output. The parameters necessary to connect to the external database are specified in Coral8

Server configuration file. (For more information about Coral8 Server configuration file, see the

Coral8 Administrator's Guide.) Whenever a row is output to this Adapter, the row is INSERTed

into the table specified in the input Query statement.

This adapter is run as an out-of-process adapter.

To run it, execute the following steps:

Set your CLASSPATH environment variable according to the instructions in Coral8 Java SDK.

The instructions for setting CLASSPATH apply to all out-of-process Java adapters, whether

provided by Coral8 or written by the customer.

Execute the following command:

java com.coral8.adapter.JDBCOutputAdapter <parameters>

Each parameter is of the form

--<paramname>=<paramvalue>

For example, the beginning of such a command line will look similar to the following:

java com.coral8.adapter.JDBCInputAdapter --queryFile=q1.sql ...

Note that "--" (two dashes) must precede each parameter name.

Use the command-line parameters shown in the table below. Note that these parameters are case-

sensitive.

Parameter Type Description

queryFile

A file with the SQL query, which may be almost any

SQL statement that is valid for the database that the

adapter is connected to. The query can be

parameterized.

Required

username The username with which to log into the database. Required

password The password for the specified user name. Required

databaseUrl
A database "address" in the standard form used by

JDBC.
Required

streamUrl The URL of the stream to read tuples from. Required

driver

The database driver to use. Coral8 does not bundle

JDBC drivers with our product, so customers must

provide the drivers themselves. In order for the

Coral8 JDBC Input adapter to work, you must

include the JDBC driver in the Java CLASSPATH as

well as pass the driver on the command line.

Required

Coral8 Adapters

461

Here's a sample command to call JDBCOutputAdapter to connect to a db (no tnsnames used):

java com.coral8.adapter.JDBCOutputAdapter

--queryFile=/home/lita/QueryFileOutputAdapter --username=lita

--password=CORAL8

--databaseURL=jdbc:sybase:Tds:<host>:<port>/<database>--

streamUrl=ccl://pc03.c8.com:7777/Stream/DbWrite/OutStream

When a value from the Coral8 output data stream is inserted into an external database, the data

type of the Coral8 output value must be compatible with the data type of the corresponding

column in the table in the external database. The table below shows the mapping between CCL

data types and SQL data types. It is assumed that the output table exists in the destination

database and has types that conform to the ones shown.

Datatype Mappings between CCL and ANSI SQL

CCL Type ANSI SQL Type Description

INTEGER INTEGER

Integer values between -

2147483648 and +2147483647 (-

2^31 to +2^31 - 1)

LONG (See footnote 1)

Integer values between -

9223372036854775808 and

+9223372036854775807 (-2^63

to +2^63-1)

FLOAT FLOAT 64-bit floating point numbers

STRING
CHARACTER

VARYING(2147483647)
Character strings

TIMESTAMP TIMESTAMP

Date and time, specified as years,

months, days, hours, minutes,

seconds, and fractions of a

second.

INTERVAL
INTERVAL DAY TO

SECOND (See footnote 2)

Interval of time, specified as days,

hours, minutes, seconds, and

fractions of a second.

Footnotes:

1. The LONG data type is not part of the ANSI SQL-92 specification.

2. Coral8 does not support YEAR TO MONTH intervals.

Your query must use the same number of binding variables as you have fields in the stream

schema that you use. For example, if a stream that feeds the output adapter has 3 fields in it, the

query must have 3 binding variables. Since this is an unmanaged adapter, it simply cycles

Coral8 Integration Guide

462

through each row received, and tries to place each column in the row in a corresponding binding

variable.

Like any out-of-process adapter, this adapter requires that the server and query module already

be running, and that the streams exist so that the adapter can attach to them.

To shut down the adapter, send an interrupt signal (e.g. ctrl-C).

Connectivity Instructions for UNIX-like Operating Systems

Here's a sample command to call JDBCOutputAdapter to connect to a remote database server:

java com.coral8.adapter.JDBCOutputAdapter

 --queryFile=/home/lita/QueryFileOutputAdapter

 --username=lita --password=CORAL8

 --databaseURL=jdbc:sybase:Tds:<host>:<port>/<database>

 --driver=sybase.jdbcc.driver.SybaseDriver

 --streamUrl=ccl://pc03.c8.com:7777/Stream/OutStream

For more information about connecting on UNIX-like operating systems, see Connectivity

Instructions for UNIX-like Operating Systems.

JMS Input Adapter

This adapter has been deprecated. Use the JMS Adapter instead.

This adapter attempts to establish a JMS (Java Messaging Service) session and subscribes to the

given topic, then listens on that session and sends incoming messages as tuples into the stream,

framed by reset and commit tuples. Messages must be set up in such a way that fields in

MapMessages correspond exactly to the stream's tuple descriptor.

The non-GD JMS input and output adapters work with JMS messages that have message body

type "MapMessage" or "TextMessage".

The JMS Input adapter is an out-of-process adapter.

To run it, execute the following steps:

Set your CLASSPATH environment variable according to the instructions in Coral8 Java SDK.

The instructions for setting CLASSPATH apply to all out-of-process Java adapters, whether

provided by Coral8 or written by the customer.

Update your CLASSPATH to include the necessary JMS libraries. (Coral8 does not supply the

libraries for any JMS implementation.)

Execute the following command:

java com.coral8.adapter.JMSInputAdapter <parameters>

Coral8 Adapters

463

Each parameter is of the form

--<paramname>=<paramvalue>

Note that "--" (two dashes) must precede each parameter name. For example:

java com.coral8.adapter.JMSInputAdapter --topic=...

The command-line parameters are specified below. Note that these parameters are case-sensitive.

Parameter Description Required?

Topic
The name of the topic to

publish/subscribe to.
Required

Factory Connection factory name Required

factoryClass Factory class Optional

url
The CCL URL of the stream to

write to.
Required

Host

Host name: The host on which

the WebLogic server (not Coral8

Server) is running.

Optional

Port

port: The port number of the

Weblogic server (not Coral8

Server).

Optional

c8.baseHostPort
Host and port of Coral8 Server.

See below for details
Optional

Note that each input stream has a property (see the stream's Properties tab in Studio) that can

specify whether to use the current server timestamp value instead of the row timestamp set by the

adapter. If this stream property is set to true, it overrides any row timestamp set by the adapter.

c8.baseHostPort

This adapter allows the user to set the Sytem Property c8.baseHostPort.

The c8.baseHostPort should look like:

host:port

where host is the host name of the computer that is running Coral8 Server to which the adapter

will connect, and the port is the port number of Coral8 Server to which the adapter will connect.

The adapter needs this host and port information to assemble a URL to contact the Manager.

(The adapter calls the Manager to resolve the CCL url that the adapter is given as a command

line parameter.) To set the property, use the java -D option. For example:

java -Dc8.baseHostPort=pc03:6790

 com.coral8.adapter.JMSInputAdapter

 --topic=weblogic.jws.jms.MyJMSTopic

Coral8 Integration Guide

464

 --factoryName=weblogic.jws.jms.TopicConnectionFactory

 --factoryClass=weblogic.jndi.WLInitialContextFactory

 --url=ccl://pc03.c8.com:6790/TestJMS/instream2

 --host=localhost

If you do not specify the c8.baseHostPort, the adapter will assume the default values for host and

port: host name: localhost port number: 6789

Note: Do not confuse the c8.baseHostPort with the "host" and "port" parameters. Those host and

port parameters are specific to the WebLogic JMS Server and they specify where the WebLogic

server is running (as opposed to where the Coral8 Server is running).

JMS Output Adapter

This adapter has been deprecated. Use the JMS Adapter instead.

This adapter attempts to look up a JMS (Java Messaging Service) topic and publish to it the data

received from the Coral8 Server. Messages sent out are JMS MapMessages. The order and type

of fields must exactly match the tuple descriptor.

The non-GD JMS input and output adapters work with JMS messages that have message body

type "MapMessage" or "TextMessage".

The JMS Output adapter is an out-of-process adapter.

To run it, execute the following steps:

Set your CLASSPATH environment variable according to the instructions in Coral8 Java SDK.

The instructions for setting CLASSPATH apply to all out-of-process Java adapters, whether

provided by Coral8 or written by the customer.

Update your CLASSPATH to include the necessary JMS libraries. (Coral8 does not supply the

libraries for any JMS implementation.)

Execute the following command:

java com.coral8.adapter.JMSOutputAdapter <parameters>

Note that "--" (two dashes) must precede each parameter name. For example:

java com.coral8.adapter.JMSOutputAdapter --topic=...

The command-line parameters are specified below. Note that these parameters are case-sensitive.

Parameter Description Required?

Topic
The name of the topic to

publish/subscribe to.
Required

factoryName Connection factory name Required

Coral8 Adapters

465

factoryClass Factory class Optional

url
The CCL URL of the stream to

write to.
Required

messageType

May be either "MapMessage" or

"TextMessage". The default is

"MapMessage". If you use

"TextMessage", the adapter will

accept XML data in the first

data field and wrap it in a

TextMessage object; all fields

after the first field will be

ignored. "TextMessage" is

compliant with the JMS

specification.

Optional

Host

Host name: The host on which

the WebLogic server (not

Coral8 Server) is running.

Optional

Port
Port number of the WebLogic

server (not Coral8 Server).
Optional

c8.baseHostPort
Host and port of Coral8 Server.

See below for details.
Optional

c8.baseHostPort

This adapter allows the user to set the System Property c8.baseHostPort.

The c8.baseHostPort should look like:

host:port

where host is the host name of the computer that is running Coral8 Server to which the adapter

will connect. the port is the port number of Coral8 Server to which the adapter will connect.

The adapter needs this host and port information to assemble a URL to contact the Manager.

(The adapter calls the Manager to resolve the CCL url that the adapter is given as a command

line parameter.) To set the property, use the java -D option. For example:

java -Dc8.baseHostPort=pc03p:6790

com.coral8.adapter.JMSOutputAdapter

 --topic=weblogic.jws.jms.MyJMSTopic

 --factoryName=weblogic.jws.jms.TopicConnectionFactory

 --factoryClass=weblogic.jndi.WLInitialContextFactory

 --url=ccl://localhost:6789/Stream/Default/TestJMS/instream1

 --host=localhost

Coral8 Integration Guide

466

If you do not specify the c8.baseHostPort, the adapter will assume the default values for host and

port: host name: localhost port number: 6789

Note: Do not confuse the c8.baseHostPort with the "host" and "port" parameters. Those host and

port parameters are specific to the WebLogic JMS Server and they specify where the WebLogic

server is running (as opposed to where the Coral8 Server is running).

JMS Adapter

This adapter can be configured as either an input adapter or an output adapter.

This adapter attempts to establish a JMS (Java Messaging Service) session and does one of the

following:

 If the adapter is configured as an input adapter, then it subscribes to the given topic and

listens on that session. When the adapter receives a message from the JMS server, it

sends the message as a tuple into the Coral8 server (in other words, into a stream), framed

by reset and commit tuples. Messages must be set up in such a way that fields in

MapMessages correspond exactly to the stream's tuple descriptor.

 If the adapter is configured as an output adapter, then it takes data received from a Coral8

Server stream and publishes the data to the JMS topic. Messages sent out are JMS

MapMessages. The order and type of fields in the JMS messages must exactly match

order and type of fields in the Coral8 stream's tuple descriptor.

The JMS server should use the JMS 1.1 protocol.

This adapter may be configured to use Coral8's Guaranteed Delivery (GD) or "normal" (non-

GD) delivery when reading from or writing to a Coral8 stream.

The non-GD JMS input and output adapters work with JMS messages that have message body

type "MapMessage" or "TextMessage".

If GD is turned on, then the adapter provides "At Least Once" semantics for outbound

MapMessage and TextMessage messages from Coral8 and "Exactly Once" semantics for

inbound messages.

The JMS adapter is an out-of-process adapter.

To run it, execute the following steps:

1. Make sure that you have a JMS server up and running.

2. Make sure that you have installed the JMS client.

3. Set the desired values in the jndi.properties file, and set your CLASSPATH to include the

directory that holds the jndi.properties file. (Note that CLASSPATH should include only

the path, not the path plus the filename, of the jndi.properties file.)

Coral8 Adapters

467

4. Set your CLASSPATH environment variable according to the instructions in Coral8 Java

SDK. The instructions for setting CLASSPATH apply to all out-of-process Java adapters,

whether provided by Coral8 or written by the customer.

5. Update your CLASSPATH to include the necessary JMS libraries. (Coral8 does not

supply the libraries for any JMS implementation.)

6. Execute the following command:

java com/coral8/adapter/JMSAdapter <parameters>

Each parameter is of the form

--<paramname>=<paramvalue>

Note that "--" (two dashes) must precede each parameter name. For example:

java com/coral8/adapter/JMSAdapter --topic=test1 --GD=true ...

The command-line parameters are specified in a table later in this section. Note that these

parameters are case-sensitive.

Parameter Description Required?

kind={input | output}
Indicates whether the adapter should run as an input adapter or

as an output adapter.
Yes

serverURL=<URL to server>

URL of Coral8 Server, for example http://localhost:6789.

If your manager and containers are separate, this must be the

URL of the manager.

Yes

queue=<queueName> Name of the JMS queue, to be looked up in JNDI.

You must

specify

either a

queue or a

topic.

topic=<topicName> Name of the JMS topic, to be looked up in JNDI.

You must

specify

either a

queue or a

topic.

GD={true | false}

Use Guaranteed Delivery. The default value is false. Note: for

best results, the stream's GD setting should match the adapter's

setting.

No

sessionID=<text>

The session ID is an arbitrary identifier, but must be unique

among all publishers to a stream and among all subscribers to a

stream. An adapter instance must be started with the same

sessionID each time.

Required

for GD.

Coral8 Integration Guide

468

clientID=<text> A JMS clientID.

Required

for GD

input using

a topic.

durableName=<text>
The name used within the clientID for the durable subscription

(JMS GD input adapter only).

Required

for GD

input using

a topic.

factoryName=<factoryName>
Name of the factory in JMS. This varies depending upon the

which vendor's JMS you are using.
Yes

initialNamingFactory=

<factoryClass>

Initial naming factory for JMS implementation. For example, the

Joram JMS implementation uses

fr.dyade.aaa.jndi2.client.NamingContextFactory as the

value. This value is also the default value.

No

streamURL=<CCL_URL>

The CCL URL of the stream to which the adapter should publish

or subscribe. For example,
ccl://localhost:6789/Stream/Default/JMSTest/InStream

Yes

messageType=<message type>
"MapMessage" or "TextMessage". The default is

"MapMessage".
No

C8username=<userID>
If this is set, then the connection to Coral8 Server uses

credentials to authenticate the user.
No

C8password=<password> Used in the credentials, along with the C8username. No

JMShost=<hostname>
The host computer on which the JMS server is running. The

default value is localhost.
No

JMSport=<port>
The port that the JMS server is using. The default value is

16400.
No

batchSize=<integer>

If the adapter is using GD, then the adapter will attempt to send

rows in batches of the specified size.

 Input: When running as an input adapter, the adapter will

send the data to the Coral8 Server as soon as either the

batch size or commitIntervalMsec is reached, whichever

comes first. Note: if both batchsize and rate are set, rate

is used.

 When running as an output adapter, the adapter will do a

JMS transaction when it reaches either the batchSize or

the commitIntervalMsec, whichever comes first. The

default batch size is 500.

No

Coral8 Adapters

469

rate=<float>
For GD input, attempts to send at approximately this rate. If

both rate and batchSize are set, rate is used.
No

commitIntervalMsec=<integer>
Send batch at least this often (in milliseconds) unless there are

no rows to send. The default value is 500 (milliseconds).
No

statusFile=<filename>

The file name to which the adapter should write status if the

adapter is either

 a GD output adapter, or

 a GD input adapter for topics.

File names MUST be different for each instance of the adapter.

The default file name is JMSAdapter.status

No

debug=true
Print out debug information about "high-level" operations. By

default, debugging is off.
No

debugVerbose=true
Print out debug information about each message. By default

verbose debugging is off.
No

Although the GD (Guaranteed Delivery) settings of the stream and adapter are not required to

match, Coral8 strongly recommends that the settings match -- in other words that both turn on

GD or both turn off GD. A stream's GD settings may be specified at the level of the stream, or

may be inherited from the project that the stream is within.

When the JMS adapter constructs the message, the adapter uses the current time as the message

time. This can cause issues if the commit interval for the server is larger than the max delay (or

even approximately the same length as the max delay), or if the adapter machine’s clock is

skewed significantly later than the server machine’s clock.

Troubleshooting. When the adapter starts, it prints all the arguments set on the command line

and in the jndi.properties file. Check these values to ensure that the arguments the adapter used

are the arguments you intended. The jndi.properties printing serves two purposes. First, it shows

that the adapter found a jndi.properties file in one of the directories specified in the

CLASSPATH. Second, it shows the contents.

If you use GD with topics (as opposed to queues), you will need durable subscriptions. Not all

JMS implementations support durable subscriptions.

Log File Reader Adapter

Installation

This section describes how to install this adapter. (Unlike most other Coral8-supplied adapters,

this adapter is not installed automatically.)

Coral8 Integration Guide

470

On UNIX-like operating systems, this adapter is provided in the form of a .tgz file named c8-

clicks-adapter.tgz. Source code and an example .properties file are included. You can find

the .tgz file in the adapters directory, which is typically

/home/<userID>/coral8/server/adapters

When you extract the files from the .tgz file, you should put those files into the /etc/c8clicks

directory. Typically, you will use shell commands similar to the following:

mkdir /etc/c8clicks

cp c8-clicks-adapter.tgz /etc/c8clicks

De-compress the .tgz file by using the gnu "unzip" utility.

gunzip c8-clicks-adapter.tgz

Extract the files.

tar -xvf c8-clicks-adapter.tar

Random Tuples Generator Adapter

The Random Tuples Generator adapter (Sometimes called the Random Messages Generator)

generates random rows (tuples) according to the given schema and sends the rows to the stream.

This adapter is useful primarily for prototyping and basic testing.

Property

Name

(screen)

Property

Name

(Attach

Adapter)

Type Description

Rate Rate

Float MIN: 0

MAX: 1000000

Default: 100

The number of Rows

generated per second. It

is important to note that

this Rate may not exceed

the "MaxRate" parameter

set in the server

configuration file.

Row

Count
RowCount

Long MIN: 0

MAX:

2000000000

DEFAULT: 0

(infinity)

How many rows to

generate. If the row count

is 0, the value is treated

as infinite.

CAUTION: Data generated by this adapter is not evenly distributed across the range of possible

values for each data type. The table below shows the range of value generated for each data type.

Note that even within this range, values are not necessarily evenly distributed.

Data Type Range of Values

Coral8 Adapters

471

C8Bool true/false

C8Int 0 .. 99 inclusive

C8Long 0 .. 99 inclusive

C8Float
0.0 .. 10.0 exclusive (should

never get 10.0)

C8Interval 0 .. 9 inclusive

C8Timestamp Sets value to current time

C8CharPtr
2 characters from the following

ranges a..z, A..Z, 0..9

C8BlobPtr 2 bytes each with range 0..255

Regular Expressions: Read From File Using a Regular Expression
Adapter.

Read From File Using a Regular Expression adapter reads an input file line by line, matches

each line against a given regular expression (which may contain multiple subexpressions), and

produces Rows. Only rows that match all of the subexpressions are inserted into the stream, and

only the portions of those rows that match the subexpressions are inserted into the stream.

(Effectively, you are selecting both rows and columns from the input.)

POSIX regular expression syntax is used. (This is compatible with Perl-style regular

expressions.) Use (...) to denote sub-expressions.

The order of sub-expressions must match the Row descriptor order. Binding of RegEx matches

to fields is performed by position (the name is ignored).

For example, suppose that you search using the following regular expression:

/(J).*(SMITH)/

and that the input rows are:

1) JOHN SMITH

2) JANE SMITHERS

3) JANE AUSTEN

4) DAVE SMITH

5) JANET SMITHSONIAN

This will return 3 rows (taken from rows 1, 2, and 5 above), each with 2 columns of output:

J SMITH

J SMITH

J SMITH

More sophisticated patterns would allow you to extract a broader range of values (e.g. the

complete last names).

Coral8 Integration Guide

472

This adapter always has a 3-second startup delay before the first row is sent. If looping is used,

the 3-second delay occurs only on the first iteration of the loop, not subsequent iterations.

Property

Name

(screen)

Property Name (Attach

Adapter)
Type Description

Filename Filename String

The name (and path)

of the file to read data

from. You may

specify a file name

and path either by

typing it in or by

clicking the Browse

button for this field.

The path is relative to

the server's adapters

base folder and must

be underneath that

base folder. For more

information, see

 Setting The Base

Folder For File

Input/Output

Adapters. For details

about the Browse and

Edit buttons to the

right of the filename,

see the discussion

following this table.

Loop count LoopCount

Integer

Min: 0

Max:

2000000000

Default: 1

If the Loop count is

greater than 1, then

after finishing

reading the file, start

reading again from

the beginning. If the

Loop count is 1, the

file is read only once

and the adapter stops

sending data once the

end of file is reached.

Coral8 Adapters

473

If the Loop Count is

0, then repeat forever.

Rate Rate Float

If this property is

non-zero, then the

adapter will read data

from file with the

given rate (per

second). Any

timestamps in the

input file will be

ignored.

Timestamp

Base
TimestampBase Timestamp

The point at which

time "starts" for this

adapter, relative to

the file's first

timestamp. For

example, if

Timestamp base is 0

and the first row's

timestamp is 5000000

(in microseconds),

the first row will be

sent 5 seconds

(5000000

microseconds) after

the module starts. If

blank, the first row

will be sent

immediately after the

module starts.

Set Timestamp

To Current

Time

UseCurrentTimestamp Boolean

If set to true, the

adapter overrides the

timestamp specified

in the file with the

current system time.

Defaults to false.

Regular

expression for

parsing rows

RegEx String

Regular expression to

use when parsing

rows.

Coral8 Integration Guide

474

Fields Fields String

Comma-separated list

of fields

corresponding to sub-

expressions.

Ignore

Mismatch
IgnoreMismatch Boolean

If true, a line not

matching the regular

expression is ignored.

If false, then if there

is a line that does not

match the regular

expression, the

adapter raises an

error condition and

stops.

Log Mismatch LogMismatch Boolean

If true, lines that don't

match the regular

expression are

logged. Otherwise,

the mismatched lines

are dropped silently.

(This option is only

used when Ignore

Mismatch option is

set to true.)

Timestamp

column format
TimestampColumnFormat String

The Timestamp

column format

specifies the format

of the timestamp

columns (e.g.

YYYY/MM/DD

HH24:MI:SS.FF). If

no timestamp format

is specified, the

adapter assumes that

the timestamp is

represented as a

number of

microseconds from

00:00:00 Jan 1, 1970

Coral8 Adapters

475

UTC/GMT. For more

information, see

Reading, Writing,

and Converting

Timestamps. Note

that this format

specifier applies to all

input columns of type

TIMESTAMP. (In

this adapter, the

Timestamp column

format does NOT

apply only to the row

timestamp column.)

This means that ALL

columns of type

TIMESTAMP must

be formatted the

same way; you

cannot specify

independent formats

for each

TIMESTAMP

column.

Note that each input stream has a property (see the stream's Properties tab in Studio) that can

specify whether to use the current server timestamp value instead of the row timestamp set by the

adapter. If this stream property is set to true, it overrides any row timestamp set by the adapter.

The "Browse" button for the filename property. The Adapter Properties screen in Coral8

Studio allows you to specify an input path and file name for the file by clicking the Browse

button and identifying the file. The path is relative to the adapters base folder, either as specified

for Coral8 Server running on the same computer as Coral8 Studio, or as specified in the

preferences for Coral8 Studio. For more information, see Setting The Base Folder For File

Input/Output Adapters. In order for this feature to work properly, make sure that the Adapter's

Base Folder field in Studio Settings is set to the same folder as the adapters base folder for

Coral8 Server. The Base Folder setting for the Server is specified during the installation process,

and may also be changed later in the Server's coral8-server.conf file. The base folder setting

for Coral8 Studio may be set from the Tools->Settings command on the Studio menu.

The "Edit" button for the filename property. The edit button opens an editor that will allow

you to edit the file whose name you entered into the filename field. This allows you to correct

Coral8 Integration Guide

476

errors in the data. If the file's extension is "csv" or "xml", then Studio will open the appropriate

editor specified in the "External Tools" tab available from the menu item "Tools -> Settings".

For files with other extensions, on Microsoft Windows the editor will be the one specified by the

operating system's file associations, and on UNIX-like operating systems Coral8 Studio will

open the editor specified by the EDITOR environment variable.

When you click the Edit button, Coral8 Studio will look for the file in the Coral8

Repository, even if the adapters base folder is set to another location. You may need to

use the Browse button (adjacent to the Edit button) to navigate to the desired directory

before you try to edit the file.

Regular Expressions: Read From Socket Using a Regular Expression
Adapter.

ARead from Socket Using a Regular Expression adapter attempts to open a TCP connection to a

given address (specified through Host and Port properties) and, once connection is established,

reads tuples from this connection line by line, matching each line against a given regular

expression and producing tuples from subexpressions.

POSIX regular expression syntax is used. Use (...) to denote sub-expressions. The order of sub-

expressions must match the tuple descriptor order. See the description of the "Read From File

Using a Regular Expression" Adapter for more details about regular expressions.

If a connection is lost during adapter execution, the adapter attempts to reconnect.

Property

Name

(screen)

Property Name (Attach

Adapter)
Type Description

Host Host String Host name or IP address of the data source

Port Port

Integer

Min: 1

Max:

65535

Port number of the data source

Regular

expression
RegEx String

Regular expression to use when parsing

rows.

Fields Fields String
Comma-separated list of fields

corresponding to sub-expressions.

Timestamp

column

format

TimestampColumnFormat String

The Timestamp column format specifies

the format of the timestamp columns (e.g.

YYYY/MM/DD HH24:MI:SS.FF). If no

Coral8 Adapters

477

timestamp format is specified, the adapter

assumes that the timestamp is represented

as a number of microseconds from

00:00:00 Jan 1, 1970 UTC/GMT. For more

information, see Reading, Writing, and

Converting Timestamps. Note that this

format specifier applies to all input

columns of type TIMESTAMP. (In this

adapter, the Timestamp column format

does NOT apply only to the row timestamp

column.) This means that ALL columns of

type TIMESTAMP must be formatted the

same way; you cannot specify independent

formats for each TIMESTAMP column.

Ignore

Mismatch
IgnoreMismatch Boolean

If true, a line not matching the regular

expression is ignored. If false, error

condition is raised and adapter is stopped.

Log

Mismatch
LogMismatch Boolean

If set to true, lines that don't match the

regular expression are logged. Otherwise,

the mismatched lines are dropped silently.

(This option is only used when

IgnoreMismatch option is set to true.)

Note that each input stream has a property (see the stream's Properties tab in Studio) that can

specify whether to use the current server timestamp value instead of the row timestamp set by the

adapter. If this stream property is set to true, it overrides any row timestamp set by the adapter.

RSS Feed Reader Adapter.

An RSS Feed Reader adapter attempts to open a connection to a given URL and, once a

connection is established, reads rows from this connection.

Property

Name (screen)

Property

Name (Attach

Adapter)

Type Description

URL URL String

The RSS feed

URL. This field

is required.

Ignore URL

Errors
IgnoreErrors Boolean

Specifies how the

adapter behaves

Coral8 Integration Guide

478

if it cannot

connect to the

URL when it

starts. If true, the

adapter attempts

to reconnect

every five

minutes. If false,

the adapter exits.

Refresh

interval

(microseconds)

RefreshInterval

String.

Default:

60000000

microseconds

(60 seconds)

Refresh interval

(how often to poll

the RSS feed at

the given URL).

This may be a

number of

microseconds or

may be a string

of the form "#

<unit>", e.g. "10

seconds" or "1

minute". Note

that not all valid

format for the

INTERVAL data

type may be used

in this field.

Note that each input stream has a property (see the stream's Properties tab in Coral8 Studio) that

can specify whether to use the current server timestamp value instead of the row timestamp set

by the adapter. If this stream property is set to true, it overrides any row timestamp set by the

adapter.

The adapter filters out the messages it has already seen and publishes to the stream only the

messages that are new in the feed using the 'pubDate' RSS message field. The RSS feed "item" is

converted to a message using mapping between Coral8 schema column names and RSS feed

"item" elements. For example, if the Coral8 schema has 3 fields named "title", "link" and

"description" then the Coral8 message for the following RSS "item":

<item>

<title>Star City</title>

<link>http://nasa.gov/news/SpacePoll.asp</link>

<description>Space Exploration</description>

Coral8 Adapters

479

<pubDate>Tue, 03 Jun 2003 09:39:21 GMT</pubDate>

<guid>http://nasa.gov/2003/06/03.html#item573</guid>

</item>

will be

"title", "link", "description"

"Star City", "http://nasa.gov/news/SpacePoll.asp", "Space

Exploration"

Source code for this adapter is provided. If you wish to create a customized version of this

adapter, you may do so by:

Copying and modifying the files c8_rss_reader.cpp and c8_rss_reader.adl;

Compiling the .cpp file into a shared object library (.so) or dynamic link library (.dll).

Copying the compiled file into the server's bin directory, and the .adl file into the server and

Studio plugins directories.

The RSS adapter is an in-process adapter. For detailed instructions about compiling and linking

an in-process adapter, see Coral8 C/C++ SDK.

SNMP Get OIDs Adapter

The Simple Network Management Protocol (SNMP) is an Internet-standard protocol for

managing devices on IP networks. The SNMP Get OIDs Adapter allows you to receive SNMP

information about system devices, network devices, and other devices.

Property

Name

(screen)

Property Name

(Attach Adapter)
Type Description Required?

SNMP

version
Version String

Indicates whether to use

SNMP version 1, 2c, or 3.

Note that the Coral8

SNMP Get and Set

adapters support only

SNMP versions 1 and 2c.

Optional

Community

String
CommunityString String

The SNMP password.

The default value is

"public". WARNING:

The SNMP community

string will be transmitted

unencrypted!

Optional

Host Host String Host machine. Either an Optional

Coral8 Integration Guide

480

machine IP address or a symbolic

address may be used.

Coral8 will not address

issues of firewalls in

accessing the host

machine. If the host

machine is not supplied,

it will default to

localhost.

OID list OIDList String

The Object ID (OID) of

the device from which

messages will be

received. There may be

an arbitrary number of

OIDs entered into the

OID list. It is the

responsibility of the user

to ensure the SNMP

datatype associated with

the OID matches the

Coral8 schema datatype.

Required

Seconds Per

Poll
SecondsPerPoll Integer

The specified OID will be

polled with this period (in

seconds). The five second

default suffices for testing

purposes, but a poll of a

minute or more is

probably adequate for

more real-life situations.

Optional

Note that each input stream has a property (see the stream's Properties tab in Studio) that can

specify whether to use the current server timestamp value instead of the row timestamp set by the

adapter. If this stream property is set to true, it overrides any row timestamp set by the adapter.

These properties determine which SNMP object(s) the data will be sent to or from. The schema

of the stream will depend upon the device that you are getting information for. To determine the

fields needed in the stream schema, you may need to look at the MIB (Management Information

Base) that describes the device.

This Coral8 demonstration adapter uses the Net-SNMP get_node() call to poll the OID. Other

calls such as read_oid() or read_objio()may be more appropriate to a specific application.

Get_node()was chosen because it provides access to a wide variety of OIDs.

Coral8 Adapters

481

Coral8 Datatypes vs. SNMP Datatypes

SNMP supports data types that do not directly correspond to Coral8 data types. For example,

Coral8 does not have unsigned data types. Coral8 also does not support the SNMP Sequence and

Sequence-of datatypes without user assistance.

Coral8 maps the SNMP datatypes as follows:

ASN.1 Datatype Coral8 Datatype

ASN_INTEGER C8_INT

ASN_OCTET_STR C8_CHAR_PTR

ASN_BIT_STR C8_BLOB_PTR

ASN_OPAQUE C8_BLOB_PTR

ASN_OBJECT_ID C8_BLOB_PTR

ASN_TIMETICKS C8_INTERVAL

ASN_GAUGE C8_INT

ASN_COUNTER C8_INT

ASN_IPADDRESS C8_INT

ASN_NULL C8_BLOB_PTR

ASN_UINTEGER C8_INT

ASN_COUNTER32 C8_LONG

ASN_COUNTER64 C8_LONG

ASN_OPAQUE_I64 C8_BLOB_PTR

ASN_OPAQUE_U64 C8_BLOB_PTR

ASN_OPAQUE_COUNTER64 C8_BLOB_PTR

ASN_OPAQUE_FLOAT C8_FLOAT

ASN_OPAQUE_DOUBLE C8_FLOAT

Users should provide a fixed schema that takes the entire SNMP request and sends a single

message to the Coral8 engine. This single message will provide a time basis for the SNMP

query.

There are several items you must take into consideration.

 You should define columns that will hold SNMP type Counter32 as Long rather than

Integer to allow proper extraction. Otherwise, overflow may result in negative values.

 Coral8 has only signed integer and long values while ASN.1/net-snmp has both signed

and unsigned values.

Coral8 Integration Guide

482

 Coral8 uses a C/C++ double for C8_FLOAT while ASN.1/net-snmp has both C/C++

float and double.

 ASN_TIMETICKS uses a resolution of hundredths of a second while Coral8 uses

microseconds. This adapter will multiply the value by 10,000 to convert to microseconds.

ASN_TIMETICKS is an interval, not a wall clock time, so the conversion to

C8_INTERVAL is correct.

 The conversions to C8_BLOB_PTR are left to developers to decode as necessary. The

coded interpretation will generally be OID specific.

The object IDs may be in either of two forms: symbolic or numeric. Numeric OIDs contain

embedded period characters (".") as part of the OID. If more than one OID is specified, the OIDs

must be separated by a blank, tab, or newline.

SNMP Set Adapter

The SNMP Set Adapter allows you to send SNMP information. The Simple Network

Management Protocol (SNMP) is an Internet-standard protocol for managing devices on IP

networks.

When the Coral8 engine sends a message to the Set adapter, the only column present is a string.

A PDU (Protocol Data Unit) is created and the adapter sends the contents of the message to the

target OID.

Property

Name

(screen)

Property Name

(Attach Adapter)
Type Description Required?

SNMP

version
Version String

Indicates whether to use

SNMP version 1, 2c, or

3. Note that the Coral8

SNMP Get and Set

adapters support only

SNMP versions 1 and

2c.

Optional

Community

String
CommunityString String

The SNMP password.

WARNING: The SNMP

community string will

be transmitted

unencrypted!

Optional

SNMP Host

machine
Host String

Host machine. Either an

IP address or a symbolic

address may be used.

Optional

Coral8 Adapters

483

Coral8 will not solve

issues of firewalls in

accessing the host

machine.

OIDs OIDList String
The Object ID to which

messages will be sent.
Optional

These properties determine which SNMP object the data will be sent to or from. The schema of

the stream will depend upon the device that you are getting information for. To determine the

fields needed in the stream schema, you may need to look at the MIB (Management Information

Base) that describes the device.

The object IDs may be in either of two forms: symbolic or numeric. Numeric OIDs contain

embedded period characters (".") as part of the OID. If more than one OID is specified, the OIDs

must be separated by a blank, tab, or newline.

For information about mapping Coral8 data types to SNMP data types, please see Coral8

Datatypes vs. SNMP Datatypes.

SNMP Send V1 Traps Adapter

The Coral8 engine supports sending V1 traps and V2c notifications. The adapter's Properties

View for V1 traps appears as:

Coral8 Integration Guide

484

The properties derive from the Net-snmp sendtrap utility. The syntax for this command

corresponds closely to the adapter Properties View settings. The "uptime" in the sendtrap utility

is determined from internal values and should represent a decent approximation to the uptime of

the system hosting Coral8 Server. The Generic Trap Number corresponds to the commonly used

"enterprise" trap.

The variable length list in the "OIDs, Type and Value" field contains data sent with the trap. This

list must conform to the schema definition. Since there are three OID/types in this list, there

should be three data items in the schema. The actual data is converted to a string and appended to

the OID list item. There is an assumption that the schema types will map into the Net-snmp

types. This mapping is:

Abbreviation Datatype

i integer

u unsigned32

c counter32

t Time ticks 1/100 second

a IP address

Coral8 Adapters

485

o Object ID

s, x, d Octet string

n Null

b bit string

U ASN_OpaqueU64

I ASN_OpaqueI64

F ASN_Opaque_Float

D ASN_Opaque_Double

Which datatype should be used? This depends on the datatype on the host machine of the OID. If

numeric datatypes are used, it is not necessary to provide a valid MIB OID, a made-up OID as

illustrated in the screenshot will suffice. A made-up OID places the burden of processing on the

trap daemon on the host machine. This can be convenient as this corresponds closely to a "name

value" pair on the host machine.

Using a symbolic OID requires a proper correspondence of datatypes.

The Coral8 schema should closely approximate the Net-snmp datatype. Since all data is first

converted to a string before calling the Net-snmp libraries, this allows flexibility in datatype

matching.

SNMP Send V2c Notifications

The Coral8 engine supports sending V1 traps and V2c notifications. The adapter Properties View

for V2c Notifications looks like the following:

Coral8 Integration Guide

486

The use of V2c notifications is even simpler than V1 traps. The notification OID lets the SNMP

host machine know the particular type of trap. The datatype abbreviations correspond exactly to

the V1 datatypes, as does the Coral8 matching of schema values to Net-snmp values. See the

table that describes Net-SNMP trap datatypes.

Sybase RAP Output Adapter

The Sybase RAP adapter reads a Coral8 data stream and transforms it into a feed handler for

Sybase RAP. This out-of-process C/C++ adapter, named c8_sybase_rap_adapter, is installed in

the adapters directory under your Coral8 Server or Coral8 Studio installation directory. Note

that the adapter is not available for all platforms. Check the release notes for the currently

supported platforms.

The Sybase RAP adapter takes a single parameter that identifies a file containing preferences

information. The file sample_sybase_rap_prefs.xml, also located in the adapters directory,

contains thorough comments explaining the file structure and purpose of each preference. Note

that you must be familiar with Sybase RAP in general and your Sybase RAP installation in

particular, in order to set up your preferences file correctly. Edit a copy of the sample preferences

file to meet your requirements.

Before you run the adapter, be sure to modify your PATH and LD_LIBRARY_PATH

environment variables to include the bin directory under your Coral8 Server or Coral8 Studio

installation directory.

To run the adapter, simply execute the following command, replacing my_prefs_file.xml with the

name of your preferences file:

c8_sybase_rap_adapter my_prefs_file.xml

Windows Event Logger Adapter

Schema

The Windows Event Log adapter will send messages to the Coral8 Server in the following

schema:

Field Type Description

Category String Text associated with the Category Number

CategoryNumber Integer Category of event log entry

Data Blob Binary data associated with the event

EntryType String

May be one of the following:

 Error

 Warning

Coral8 Adapters

487

 Information

 SuccessAudit

 FailureAudit

Index Integer Index of the entry in the event log

InstanceID Long Resource identifier that identifies the message text of the event

MachineName String Machine where the event occurred

Message String Text message associated with the event

Source String Application that generated the event

TimeGenerated Timestamp Time that the event occurred (UTC, not local time)

TimeWritten Timestamp Time that the event was written to the log (UTC, not local time)

User_Name String Name of user responsible for event

LogName String Event Log in which the event was generated

Site String Text name of the ISite of the event

The event schema may also be found in the wineventlog.ccs file. If you installed Coral8

Engine to the default directory, this file will be in the C:\Program

Files\Coral8\Server\sdk\net\ccl directory.

The timestamp of the event is the time that the event was generated. The time that the event was

written is recorded separately within the message.

For further information, see the documentation for the EventLogEntry class on MSDN.

XML: Read From XML File

A Read From XML File adapter reads Rows from an XML file.

Property

Name

(screen)

Property Name

(Attach Adapter)
Type Description

Filename Filename String

The name (and path)

of the XML file to

read data from. You

may specify a file

name and path either

by typing it in or by

clicking on the

Browse button for this

field. By default, the

Coral8 Integration Guide

488

path is relative to the

server's adapters base

folder and must be

underneath that base

folder, but you can

use $ProjectFolder to

specify a path relative

to the current project

folder. For more

information, see

 Setting The Base

Folder For File

Input/Output

Adapters. For details

about the Browse and

Edit buttons to the

right of the filename,

see the discussion

following this table.

Loop

Count
LoopCount

Integer Min:

0 Max:

2000000000

Default: 1

If the Loop Count is

greater than 1, then

the data will be sent

the specified number

of times (after the

adapter finishes

reading the file, the

adapter will start

reading again from

the beginning). If the

Loop Count is 1, the

file is read only once

and the adapter stops

sending data once the

end of file is reached.

If the Loop Count is

0, then repeat forever.

Rate Rate

Float Min:

0.0000001

(if set to a

If this property is non-

zero, then the adapter

will read data from

Coral8 Adapters

489

number

greater than

zero)

the input file at the

specified rate (per

second). Any row

timestamps in the

input file will be

ignored (i.e. will not

affect the rate at

which data is read and

sent to the server).

The default is to leave

this unset, in which

case the row

timestamp controls

when each row is

sent.

Timestamp

Base
TimestampBase Timestamp

The point at which

time "starts" for this

adapter, relative to the

file's first timestamp.

For example, if

Timestamp base is 0

and the first row's

timestamp is 5000000

(in microseconds), the

first row will be sent 5

seconds (5000000

microseconds) after

the module starts. If

blank, the first row

will be sent

immediately after the

module starts.

Set

Timestamp

To Current

Time

UseCurrentTimestamp Boolean

If set to true, the

adapter overrides the

row timestamp

specified in the file

with the current

system time. Defaults

to false.

Coral8 Integration Guide

490

Note that each input stream has a property (see the stream's Properties tab in Studio) that can

specify whether to use the current server timestamp value instead of the row timestamp set by the

adapter. If this stream property is set to true, it overrides any row timestamp set by the adapter.

A sample XML file with 2 rows is shown below:

<Tuple xmlns="http://www.coral8.com/cpx/2004/03/"

 Timestamp="946713600000001">

 <Field Name="ID">1</Field>

 <Field Name="BandName">Soft White Underbelly</Field>

</Tuple>

<Tuple xmlns="http://www.coral8.com/cpx/2004/03/"

 Timestamp="946713600000002">

 <Field Name="ID">2</Field>

 <Field Name="BandName">The Quarrymen</Field>

</Tuple>

The "http://www.coral8.com/cpx/2004/03/" part of the first line in each tuple should always be

the same. (Do not change the date).

The first tuple (row) is shown in lines 1-4, and the second tuple (row) is shown in lines 5-8.

The first line of each tuple contains the row timestamp. The row timestamp follows the usual

rules for Coral8 timestamps; i.e. it is the number of microseconds since midnight January 1,

1970.

Lines 2-3 contain the field values for one row and lines 6-7 contain the field values for a separate

row.

Note that the values and column names are specified but the data types are not. The data must be

appropriate for the data type of the column.

Note also that the XML file is not necessarily formatted as shown in the example above; the

usual format is spread out less and is less "human-readable".

The ReadFromXMLFile adapter always has a 3-second startup delay before the first row is sent.

If looping is used, the 3-second delay occurs only on the first iteration of the loop, not

subsequent iterations.

Format Of TIMESTAMP Values In The File. Unless specified otherwise, the format of

TIMESTAMP values (including the row timestamp) inside the file is a 64-bit signed integer

representing the number of microseconds since the beginning of the epoch (midnight January 1,

1970 UTC/GMT). Unless you've specified otherwise for TIMESTAMP values, do not use

formats such as "2007-01-09 12:30:34.567891 PDT" in the CSV file. For more information, see

Reading, Writing, and Converting Timestamps.

Format Of INTERVAL Values In The File. The format of INTERVAL values inside the file

may be any of the acceptable formats for INTERVAL values, including:

 a 64-bit signed integer representing a number of microseconds

Coral8 Adapters

491

 [D [day[s]]][][HH:MI[:SS[.FF]]] (e.g. 1 02:03:04.000005)

 [D day[s]][][HH hour[s]][][MI minute[s]][][SS[.FF] second[s]] (e.g. 1 day 2 hours 3

minutes 4.000005 seconds)

For a complete list of valid formats for INTERVAL values, search for 'INTERVAL Literals" in

the CCL Reference.

Although CCL statements require the keyword INTERVAL prior to the value for some

of these forms, no INTERVAL keyword is required when using such values in CSV or

XML files.

The "Browse" button for the filename property. The Adapter Properties screen in Coral8

Studio allows you to specify an input path and file name for the file by clicking the Browse

button and identifying the file. The path is relative to the adapters base folder, either as specified

for Coral8 Server running on the same computer as Coral8 Studio, or as specified in the

preferences for Coral8 Studio. For more information, see Setting The Base Folder For File

Input/Output Adapters. In order for this feature to work properly, make sure that the Adapter's

Base Folder field in Studio Settings is set to the same folder as the adapters base folder for

Coral8 Server. The Base Folder setting for the Server is specified during the installation process,

and may also be changed later in the Server's coral8-server.conf file. The base folder setting

for Coral8 Studio may be set from the Tools->Settings command on the Studio menu.

The "Edit" button for the filename property. The edit button opens an editor that will allow

you to edit the file whose name you entered into the filename field. This allows you to correct

errors in the data. If the file's extension is "csv" or "xml", then Studio will open the appropriate

editor specified in the "External Tools" tab available from the menu item "Tools -> Settings".

For files with other extensions, on Microsoft Windows the editor will be the one specified by the

operating system's file associations, and on UNIX-like operating systems Coral8 Studio will

open the editor specified by the EDITOR environment variable.

When you click the Edit button, Coral8 Studio will look for the file in the Coral8

Repository, even if the adapters base folder is set to another location. You may need to

use the Browse button (adjacent to the Edit button) to navigate to the desired directory

before you try to edit the file.

XML: Read from XML Socket

A Read from XML Socket adapter attempts to open a TCP connection to a given host and port

address and, once connected, reads rows from the connection as XML. If the connection is lost

during execution, the adapter attempts to reconnect.

Property

Name

(screen)

Property Name (Attach

Adapter)
Type Description

Coral8 Integration Guide

492

Host Host String
Host name or IP address of

the data source.

Port Port

Integer

Min: 1

Max:

65535

Default:

none

Port number of the data

source.

XML: Write To XML File Adapter.

A Write To XML File adapter writes received Rows to an XML file. If the file already exists, the

adapter overwrites it.

Property

Name

(screen)

Property Name

(Attach Adapter)
Type Description

Filename Filename String

The name (and path) of the

XML file to write data to. You

may specify a file name and path

either by typing it in or by

clicking on the Browse button

for this field. By default, the

path is relative to the server's

"Base Folder" and must be

underneath that base folder, but

you can use $ProjectFolder to

specify a path relative to the

current project folder. For more

information, see Setting The

Base Folder For File

Input/Output Adapters. For more

information about the Browse

and Edit buttons, see the

discussion that follows this table.

Maximum

Size in

bytes

MaximumSize
Integer

Min: 1

The maximum size of the output

file. If this property is set then

the adapter starts writing a new

file every time the size of the

Coral8 Adapters

493

current output file becomes

greater than this property. The

files are named <filename>,

<filename>.001,

<filename>.002, ... where

<filename> is the value of the

Filename property. If the

property is not set, then output is

written to a single file, which

may grow as large as the

available space.

Append To

Existing

File

Append Boolean

This parameter affects how the

adapter behaves when the

adapter re-starts.

In all cases, when the adapter

writes to a file and the size of the

file reaches the size specified in

the MaximumSize parameter

described above, the adapter

renames <Filename> to

<Filename>.###, where "###" is

the next available number. The

adapter then opens another file

named <filename> and writes to

it.

If "Append To Existing File" is

set to False, then when the

adapter is [re-]started, the

adapter moves any existing file

named <Filename> to

<Filename>.### and starts a new

file named <Filename>.

If a maximum size is specified

and "Append To Existing File"

is set to True, then when the

adapter is [re-]started, the

adapter appends to any existing

file named <Filename> rather

than immediately renaming the

existing file.

Coral8 Integration Guide

494

Set

timestamp

to current

time

UseCurrentTimestamp Boolean

If set to true, the adapter

overrides the timestamp

specified in the row with the

current system time. Defaults to

false.

Formatted Formatted Boolean

If the flag is set to true, then the

output XML will be indented

and will include end-of-line

characters. If the flag is set to

false, then the output XML will

not be indented.

Include

Column

Names

Extended Boolean

If the flag is set to true, then

field names will be included

within each output message. If

the flag is set to false, then field

names will not be included

within each output message.

For more information about the format of the data written to the XML file, see the description of

the file format in the section about the "Read From XML File" adapter XML: Read From XML

File. Note that when Coral8 Server writes INTERVAL values in XML format, the values are

always written as a 64-bit signed integer representing a number of microseconds.

The "Browse" button for the filename property. The Adapter Properties screen in Coral8

Studio allows you to specify an input path and file name for the file by clicking the Browse

button and identifying the file. The path is relative to the adapters base folder, either as specified

for Coral8 Server running on the same computer as Coral8 Studio, or as specified in the

preferences for Coral8 Studio. For more information, see Setting The Base Folder For File

Input/Output Adapters. In order for this feature to work properly, make sure that the Adapter's

Base Folder field in Studio Settings is set to the same folder as the adapters base folder for

Coral8 Server. The Base Folder setting for the Server is specified during the installation process,

and may also be changed later in the Server's coral8-server.conf file. The base folder setting

for Coral8 Studio may be set from the Tools->Settings command on the Studio menu.

The "Edit" button for the filename property. The edit button brings up an editor that will

allow you to view the file whose name you entered into the filename field. If the file's extension

is "csv" or "xml", then Studio will bring up the appropriate editor specified in the "External

Tools" tab available from the menu item "Tools -> Settings". For files with other extensions, on

Microsoft Windows the editor will be the one specified by the operating system's file

associations, and on UNIX-like operating systems Studio will bring up the editor specified by the

EDITOR environment variable.

Coral8 Adapters

495

When you click the Edit button, Coral8 Studio will look for the file in the Coral8

Repository, even if the adapters base folder is set to another location. You may need to

use the Browse button (adjacent to the Edit button) to navigate to the desired directory

before you try to open the file.

XML: Write to XML Socket

A Write to XML Socket adapter attempts to open a TCP connection to a given host and port

address and, once connected, writes rows to the connection as XML. If the connection is lost

during execution, the adapter attempts to reconnect.

Property

Name

(screen)

Property Name (Attach

Adapter)
Type Description

Host Host String
Host name or IP address of

the data destination.

Port Port

Integer

Min: 1

Max:

65535

Default:

none

Port number of the data

destination.

XML: Write XML Over HTTP Adapter.

For each message that this adapter receives, it posts the message in XML format to an HTTP

server.

Property

Name

(screen)

Property Name

(Attach

Adapter)

Type Description

URL URL String

The URL to which the

message should be posted.

(This property is required.)

XSL

Template
XSLTemplate String

XSL Template for

converting XML message.

This property is optional.

See the description below.

The XSL template can be used for converting the raw XML message to some other format.

Coral8 Integration Guide

496

To convert the raw XML to a SOAP call, you can use an XSL template similar to the following

(this example is based on raw data from Coral8 that consists of 2 fields per message, "Symbol"

and "Price"):

<?xml version="1.0" ?>

<xsl:stylesheet xmlns:c8=http://www.coral8.com/cpx/2004/03/

xmlns:xsl=http://www.w3.org/1999/XSL/Transform version="1.0">

<!-- Specify lookup key -->

<xsl:key name="FieldName" match="c8:Tuple/c8:Field" use="@Name" />

<xsl:template match="/">

<soap:Envelope xmlns:soap=http://www.w3.org/2001/12/soap-envelope

 soap:encodingStyle=http://www.w3.org/2001/12/soap-encoding>

 <soap:Body xmlns:m=http://www.example.org/stock>

 <m:SetStockAlert>

 <m:StockName>

 <xsl:value-of select="key('FieldName','Symbol')"/>

 </m:StockName>

 <m:StockPrice>

 <xsl:value-of select="key('FieldName','Price')"/>

 </m:StockPrice>

 </m:SetStockAlert>

 </soap:Body>

</soap:Envelope>

</xsl:template>

</xsl:stylesheet>

If more customization is needed (e.g. for custom HTTP headers), you may copy and modify the

adapter code in the file

.../coral8/server/sdk/c/examples/c8_write_xml_over_http.cpp

To create a customized version of this adapter, do the following:

Copy and modify the files c8_rss_reader.cpp and c8_rss_reader.adl;

Compile the .cpp file into a shared object library (.so) or dynamic link library (.dll).

Copy the compiled file into the server's bin directory, and the .adl file into the server and Studio

plugins directories.

The RSS adapter is an in-process adapter. This code can be modified and compiled into an in-

process adapter. For more information about how to compile in-process adapters written in C,

see Coral8 C/C++ SDK.

497

SNMP Adapter Information

This section provides information about SNMP (Simple Network Management Protocol)

adapters.

Motivation

The Simple Network Management Protocol (SNMP) is an Internet-standard protocol for

managing devices on IP networks. Many devices support SNMP and uses range from ordinary to

exotic. Monitoring the health of these devices can provide useful functionality to a Coral8

system. Adding the SNMP capabilities to control network devices, page someone or take

automatic actions on pre-programmed events makes SNMP an important part of an

administrator's toolkit.

Coral8 allows you to both get and set SNMP OIDs.

Configuring Your Environment for SNMP Adapters

The Coral8 distribution assumes there is an existing SNMP implementation including a properly

configured and working daemon or service. The configuration files for Net-snmp 5.4 are

included in the Coral8 distribution. In order to preserve existing SNMP configuration files,

environment variables are used to append the Coral8 Server information to the user 's

configuration. Care has been taken to not overwrite user configuration files, but, as in all similar

installation processes, users should back up their files before the files are modified. Please refer

to http://net-snmp.sourceforge.net/docs/man/snmp_config.html and similar installation

documentation for a thorough discussion of Net-snmp configuration.

The Coral8 implementation of SNMP assumes a daemon is running. The Net-SNMP service

cannot co-exist with the Windows SNMP service unless specific configuration instructions are

followed. Refer to the README.win32 instructions for this installation configuration. The user is

responsible for this and all other Net-SNMP installation configurations.

In the following list, the CORAL8_INSTALL is the directory in which Coral8 Server is

installed. The default locations of Net-SNMP files and directories are assumed. If the user sets an

environment variable, Coral8 software will not overwrite that variable.

 INSTALL_BASE=CORAL8_INSTALL/snmp

This is the snmp directory in the installation directory of Coral8 Server.This value is

normally set to C:/usr for Windows and /usr/local for Linux; the same defaults in the

source distribution. By setting this value to CORAL8_INSTALL/snmp, user

configuration and MIB files will not be overwritten.

Coral8 Integration Guide

498

 NETSNMP_DEFAULT_MIBS=C:/usr/share/snmp/mibs; D:/usr/share/snmp/mibs;

CORAL8_INSTALL/mibs

This is the location of the MIBs directory. The Net-snmp defaults are first. This is

because users are expected to maintain their own MIBs. The Coral8 MIBs cannot cover

all user hardware configurations. On Linux the default MIB directory is

/usr/local/share/snmp/mibs. MIBs directories, just as in Net-snmp, must contain

MIBs and only mibs. Non-MIB files are likely to cause syntax errors that will crash the

MIB parser!

 NETSNMP_PERSISTENT_DIRECTORY=CORAL8_INSTALL/snmp

This directory is used only by the snmpd daemon and is not expected to be used in Coral8

Server environment. This corresponds to the SNMP_PERSISTENT_DIR variable.

 SNMPLIBPATH=CORAL8_INSTALL/snmp

This is the location of the net-snmp libraries. Overriding this variable should be

performed with caution if the user version of net-snmp is not Net-snmp 5.4. This should

probably be left alone.

 SNMPSHAREPATH=CORAL8_INSTALL/snmp

The shared path. On linux this is /usr/local/share/snmp

 SNMPCONFPATH=CORAL8_INSTALL/snmp

A list of directories fo search for configuration files. Refer to http://net-

snmp.sourceforge.net/docs/man/snmp_config.htm for more information.

 SNMPDLMODPATH=CORAL8_INSTALL/snmp

The dynamically linked library path. See http://net-

snmp.sourceforge.net/docs/man/snmp_config.html.

 NETSNMP_TEMP_FILE_PATTERN=CORAL8_INSTALL/snmp/snmpdXXXXXX

The temp file pattern for the mktemp() function.

Configuring the coral8-server.conf File for SNMP

SNMP adapters usually need to reference information in MIBs (Management Information

Bases). You can set a preference in the coral8-server.conf file to specify where those MIBs

should be read from.

Net-snmp uses the "MIBDIRS" environment variable to specify which directories to read when

loading MIBs at startup. You can set a value to tell the server to add directories to that MIBDIRS

environment variable.

The section of coral8-server.conf relevant to these preferences is in the "Coral8/Adapters"

section and looks similar to:

SNMP Adapter Information

499

<section name="SNMP">

 <!-- The semi-colon separated list of folders with MIBS for SNMP

-->

 <preference name="MIBDIRS" value="C:\Program

Files\Coral8\Server\bin\mibs"></preference>

</section>

The preference "SNMP"/"MIBDIRS" allows you to load additional MIBs; if the MIBDIRS

preference is set, then its value will be concatenated to the semicolon-separated list of directories

of the existing "MIBDIRS" environment variable. (If the "MIBDIRS" environment variable does

not exist, it will be created.)

If this preferences section does not exist, then by default the server will load the MIBs in the

directories specified in the MIBDIRS environment variable.

501

Coral8 Drivers

This chapter describes the custom drivers (such as database drivers) provided by Coral8. Note

that many major database vendors, such as MySQL, supply their own drivers, so Coral8 does not

supply drivers for them.

Configuring Coral8 Drivers

To use a Coral8 driver to communicate with an outside entity, such as a database server, you

must configure the coral8-services.xml file. Please see the Coral8 Administrator's Guide for

instructions.

503

Status Information

This appendix provides information about Message Groups and Message Names that were

described in the section titled Monitoring Servers and Projects.

Status Information about a CCL Application

Description CclApplicationInfo status messages contain runtime information about a given CCL

Application ("Project").

ObjectID The ObjectID is the full path to the given CCL in the form:

<WorkspaceName>/<ApplicationName>

where ApplicationName is the top module's load name.

Name of MessageGroup CclApplicationInfo

MessageName Value Type

Message

Availability and

Frequency

Description

AutoRestartAttempt Long

Sent when an

automatic module

restart occurs (auto-

restart must be

configured).

The number of

times the module

has been auto-

restarted. The

number is reset

back to zero if the

user manually

restarts module or

if the container is

restarted.

DroppedMessages Long
By default, once per

second.

The total number

of Dropped out-

of-order and late

messages for the

project

InputMessages Long

Everywhere, updated

every ~1 sec (i.e.

approximately every

1 second).

How many

messages the

application

received. Sum of

output messages

for all external

Coral8 Integration Guide

504

input streams.

IsLoadSavedState Boolean
Status object only,

never updated.

False if module

was started 'from

clean slate' True

otherwise

LastError String
Everywhere, updated

on event

Event:

application gets

an error.

LoadedAt Timestamp
Status object only,

never updated.

When the

application was

loaded into the

Manager.

ManagerBuildDate String
Status object only,

never updated.

The Manager's

build date.

ManagerURI String
Status object only,

never updated.

The Manager's

URI.

ManagerVersion String
Status object only,

never updated.

The Manager's

version string.

OutputMessages Long
Everywhere, updated

every ~1 sec

How many

messages the

application sent.

Sum of input

messages for all

external output

streams.

OwnerName String
Status object only,

never updated.

The UserName of

the User who

started this

particular project.

This message is

only available for

projects that are

running, and only

if user

authentication is

enabled.

PendingMessages Long Everywhere, updated How many

Status Information

505

every ~1 sec messages the

application needs

to process. This is

a sum of pending

messages number

for all CCX

modules in the

corresponding

program.

PendingPersistentMessages Long
Everywhere, updated

every ~1 sec

How many

messages the

application needs

to persist on disk.

This is a sum of

pending

messages number

for all CCX

modules in the

corresponding

program.

ProjectLatency Long

Everywhere, updated

approximately 1 time

per second.

The average

latency of the

CCL query,

excluding

adapters and

other queries. See

also

"SystemLatency".

RequestedState String
Everywhere, updated

every ~1 sec

For how long the

application is

running

(available only if

application is

running).

RpcFailedMessages Long Updated every ~1 sec

The total number

of failed RPC

calls for the

project.

RpcSentMessages Long Updated every ~1 sec The total number

Coral8 Integration Guide

506

of successful

RPC calls for the

project.

RunningTime Interval
Status object only,

never updated.

For how long the

application is

running

(available only if

application is

running).

StartedAt Timestamp
Status object only,

never updated.

When the

application was

started (available

only if

application is

running).

State String
Everywhere, updated

on event

Event:

application

changes it state: -

Unloaded -

Unregistered -

Unregistering -

Registered -

Registering -

RegisterFailed -

Started - Starting

- StartFailed

SystemLatency Long

Everywhere, updated

approximately 1 time

per second.

The average

latency of the

CCL query

including

adapters and

other queries. See

also

"ProjectLatency".

VersionString String
Status object only,

never updated.

The application's

version string

generated from

CCL sources.

Status Information

507

Status Information about CCL Compiler Settings

Description CclCompilerInfo status messages contain information about Coral8 Compiler

options used when the given CCL Application was compiled into CCX Program.

ObjectID The ObjectID is the full path to the given CCL Application in the form:

<WorkspaceName>/<ApplicationName> Where ApplicationName is the project's (i.e. the top

module's) load name.

Name of MessageGroup CclCompilerInfo

MessageName
Value

Type

Message

Availability

and

Frequency

Description

CclFile String

Status object

only, never

updated.

The path to the top module's

CCL file relative to Coral8

Repository specified by

RepositoryPath.

CcxFile String

Status object

only, never

updated.

The path to the CCX file relative

to Coral8 Repository specified

by RepositoryPath.

CclName String

Status object

only, never

updated.

The "load name" for the top

module (i.e. "application name").

Other Compiler

command line

parameters (see

compiler help for

details).

String

Status object

only, never

updated.

The compiler parameters used.

RepositoryPath String

Status object

only, never

updated.

The path to the Coral8

Repository. The repository path

name is the root for relative

pathnames, e.g. for the .ccp and

.ccl files (projects and modules).

Status Information for a CCL Query

Description

CclQueryInfo status messages contain runtime information about a given CCL Query.

Coral8 Integration Guide

508

ObjectID

The ObjectID is the full path to the given Query in the form:

<WorkspaceName>/<FullCclPath>/<StatementNumber>

Where <FullCclPath> and <StatementNumber> are assigned to the query by the compiler.

Name of MessageGroup CclQueryInfo

MessageName Value Type

Message

Availability

and

Frequency

Description

InputMessages Long

Everywhere,

updated every

~1 second.

How many messages

the query received

(sum of input

messages count for

all query's "input" ccx

primitives).

RpcFailedMessages Long

Everywhere,

updated every

~1 second.

The total number of

failed RPC calls for

the given CCL query.

RpcSentMessages Long

Everywhere,

updated every

~1 second.

The total number of

successful RPC calls

for the given CCL

query.

OutputMessages Long

Everywhere,

updated every

~1 second.

How many messages

the query sent (sum

of output messages

count for all query's

"output" ccx

primitives).

Status Information about CCL Stream Pairs

Description CclStreamPairInfo status messages contain information about Coral8 streams.

ObjectID The ObjectID is the full path to the first stream in the pair and is provided in the form:

ccl://<hostname>:<portNumber>/Stream/<WorkspaceName>/<ApplicationName>/<Strea

mName>

Where ApplicationName is the project's (i.e. the top module's) load name.

Status Information

509

ObjectID2 The ObjectID2 is the full path to the second stream in the pair and is provided in the

form:

ccl://<hostname>:<portNumber>/Stream/<WorkspaceName>/<ApplicationName>/<Strea

mName>

Where ApplicationName is the project's (i.e. the top module's) load name.

Name of MessageGroup CclStreamPairInfo

MessageName
Value

Type

Message

Availability and

Frequency

Description

Latency Long

The message is

updated

approximately 1

time per second.

The value is the average

latency between

ObjectID1(stream1) and

ObjectID2 (stream2).

Status Information about a Workspace

Description CclWorkspaceInfo status messages contain information about a given Workspace.

ObjectID

<WorkspaceName>

Name of MessageGroup CclWorkspaceInfo

MessageName Value Type

Message

Availability

and

Frequency

Description

Description String

Status object

only, never

updated.

The description

that was

specified for the

workspace when

it was created.

ManagerBuildDate String

Status object

only, never

updated.

The Manager's

build date.

ManagerURI String

Status object

only, never

updated.

The Manager's

URI.

ManagerVersion String Status object The Manager's

Coral8 Integration Guide

510

only, never

updated.

version string.

Status Information about a Container

Description ContainerInfo status messages contain runtime information about the specified

Container.

ObjectID The objectID is the Container's URI:

http://hostname:port/Container

or

https://hostname:port/Container

Name of MessageGroup ContainerInfo

MessageName Value Type
Message Availability

and Frequency
Description

BuildDate String
Status object only,

never updated.

The Container's build

date.

ContainerAdded String
Status Stream Only,

updated on event

Event: Container

added (value =

"Active" or

"Passive")

ContainerKilled String
Status Stream Only,

updated on event

Event: Killing

container (value =

reason)

ContainerRemoved String
Status Stream Only,

updated on event

Event: Container

removed (value =

reason)

CPUTime Interval
Everywhere, updated

every ~1 sec

CPU Time used by

Coral8 Server

process since start

CPUUtilization Float
Everywhere, updated

every ~1 sec

Percentage of CPU

utilized by the Coral8

Server process (1 =

100%)

HeartbeatPeriod Interval
Status object only,

never updated.

How often the

container sends

heartbeats.

Status Information

511

LoadLimit Long
Status object only,

never updated.

Container load limit

(max number of CCX

modules allowed to

run)

LogErrorCount Long
Everywhere, updated

every ~1 second.

The total number of

Errors that have been

logged in the server

log for a given

container. This

number is reset to 0 if

the container is

restarted.

LogWarningCount Long
Everywhere, updated

every ~1 second.

The total number of

Warnings that have

been logged in the

server log for a given

container. This

number is reset to 0 if

the container is

restarted.

ManagerURI String
Status object only,

never updated.

The Manager's URI

this Container is

connected to.

StartTime Timestamp
Status object only,

never updated.

When the Container

was started.

State String
Status object only,

never updated.

Container state

(Active or Passive).

Note: Only available

through manager's

GetContainerStatus

and

GetManagerStatus

calls

TotalMemory
Long

(bytes)

Everywhere, updated

every ~1 second

Total memory

available to Coral8

Server (bytes)

UsedMemory
Long

(bytes)

Everywhere, updated

every ~1 second

Total memory used

by Coral8 Server

Coral8 Integration Guide

512

(Bytes)

Version String
Status object only,

never updated.

The Container's

version string.

Status Information about a Manager

Description ManagerInfo status messages contain runtime information about a given Manager.

ObjectID The objectID is the Manager's URI:

http://hostname:port

or

https://hostname:port

Name of MessageGroup ManagerInfo

MessageName Value Type

Message

Availability

and

Frequency

Description

BuildDate String

Status object

only, never

updated.

The Manager's

build date.

Version String

Status object

only, never

updated.

The Manager's

version string.

StartTime Timestamp

Status object

only, never

updated.

When the

Manager was

started.

ManagerHA

PromotedToPrimary
String

Manager

status stream

only, updated

on event

Event: manager

HA node

promoted to

primary (value

= reason)

ManagerHA

DemotedToBackup
String

Manager

status stream

only, updated

on event

Event: manager

HA node

demoted to

backup (value =

reason)

ManagerHA String Manager Event: manager

Status Information

513

ParticipatingInElection status stream

only, updated

on event

HA

participating in

primary

elections (value

= reason)

515

Daylight Saving Time and the Coral8
Time Zone Database

This appendix describes how to configure the Coral8 Engine to deal with time zone issues,

including:

 Change the start and end dates of Daylight Saving Time.

 Create custom time zones.

 Customize information (such as time zone abbreviations) for existing time zones.

Background

A time zone is a region of earth that has adopted the same standard time, usually referred to as

the local time. Most time zones are exactly one hour apart. By convention, all time zones

compute their local time as an offset from GMT/UTC. (GMT ("Greenwich Mean Time") is an

historical term, originally referring to mean solar time at the Royal Greenwich Observatory in

Britain. GMT has been replaced by UTC ("Coordinated Universal Time"), which is based on

atomic clocks. For all Coral8 purposes, GMT and UTC are equivalent. For details about GMT

and UTC, see the U.S. Naval Observatory web page: http://aa.usno.navy.mil/faq/docs/UT.html.)

Due to political and geographical practicalities, time zone characteristics may change over time.

For example, the start date and end date of daylight savings time may change, or new time zones

may be introduced to handle the needs of newly created countries.

Internally, Coral8 always stores timestamp information as a number of microseconds since

midnight January 1, 1970 GMT. When data is converted from internal format to external format

(e.g. to a string in a form such as "YYYY-MM-DD HH24:MI:SS.FF"), Coral8 takes into account

the time zone and generates the correct local time (according to the clock and time zone

information stored in the computer). Similarly, when converting from a string to the internal

format, Coral8 also takes into account the local time zone and GMT. To allow customers to

specify information such as whether their local time zone uses daylight savings time, Coral8

provides a time zone "database" that customers can customize. Customers may need to change

this database under certain circumstances, including:

 Changes in the start and end dates of Daylight Savings Time.

 Addition of time zones that are not included in the default list provided by Coral8.

 A desire to use different abbreviations (e.g. "PDT") for certain time zones, e.g. to avoid

duplicate abbreviations. (This is discussed in more detail later.)

Other customizations are also possible.

Coral8 Integration Guide

516

Coral8's time zone "database" is in the form of a Comma-Separated Values (CSV) file named

c8_timezones.csv, which contains one row per time zone. The Coral8 Server and Coral8

Studio each have a copy of this file in their respective plugins directories, e.g. on Microsoft

Windows

C:\Program Files\Coral8\Server\plugins\c8_timezones.csv

C:\Program Files\Coral8\Studio\plugins\c8_timezones.csv

and on UNIX-like operating systems

/home/<userid>/coral8/server/plugins/c8_timezones.csv

/home/<userid>/coral8/studio/plugins/c8_timezones.csv

The reason that the file is located in both the Studio and server plugins directories is that the

server and studio may be running on separate computers, and both the server and studio must

interpret and display time zones. Obviously, if one time zone database file is changed, the

changes should be copied to the other plugins directory(s).

Default Time Zones

Unless time zones are specified as part of timestamp information, both input and output

timestamps will be in local time.

Users may specify timezone information in various CCL function calls (e.g.

TO_TIMESTAMP()) and in some Coral8 SDK calls. For example:

... TO_TIMESTAMP("2002-06-18 13:52:00.123456 PST", "YYYY-MM-DD HH24:MI:SS.ff

TZD") ...

In this example, "TZD" tells the function to look for a time zone designator such as the "PST" at

the end of the first string. The "PST" indicates that the time zone is Pacific Standard Time

(assuming that the user has not changed the default abbreviations in the Coral8 time zone

database).

Users must run Coral8 software on machines with proper time zone configurations.

Daylight Savings Time

If the user specifies a particular time zone, and if that time zone uses daylight savings time, then

Coral8 software takes that into account. Specifically, Coral8 looks at the time zone database file,

reads the starting and ending dates for daylight savings time, and takes those dates into account

when converting times from external format to the internal timestamp format. For example, the

following 2 lines produce the SAME internal timestamp, even though one line specifies "PST"

and the other specifies "PDT":

TO_TIMESTAMP("2002-06-18 13:52:00.123456 PST",

 "YYYY-MM-DD HH24:MI:SS.ff TZD")

TO_TIMESTAMP("2002-06-18 13:52:00.123456 PDT",

 "YYYY-MM-DD HH24:MI:SS.ff TZD")

Daylight Saving Time and the Coral8 Time Zone Database

517

If a time zone designator is not used, then local time is applied. Again, daylight savings time will

be taken into account if the local time zone uses daylight savings time and if the specified

timestamp is in the time period covered by daylight savings time.

If the start and end dates for daylight savings time change, you must change the Coral8

Time Zone Database to take into account the new start and end dates.

The United States changed its start and end dates for daylight savings time; the change

takes effect in 2007. If you are using Coral8 Engine 4.6.2 or earlier and use U.S. time

zones in any data, you should check and, if necessary, update the Coral8 Time Zone

Database to take into account the new dates. Information about changing the database is

included later in this appendix.

Transitioning from Standard Time to Daylight Savings Time and Vice-Versa

During the transition to/from daylight savings time, certain times do not exist. For example, in

the U.S., during the spring transition from standard time to daylight savings time, the wall clock

jumps from 01:59 to 03:00 and the time of 02:00 does not exist! Conversely, in the fall, 01:00 to

01:59 appears twice in one night because time jumps backward from 2:00 to 1:00 when daylight

savings time ends.

However, since these undefined and/or ambiguous times may still be input, the Coral8 software

must deal with them in some manner. During the transition to daylight savings time, the time

from 02:00 to 02:59 does not exist as the wall clock jumps from 01:59 to 03:00. Coral8 will

interpret 02:59 PST as 01:59 PST. In the fall, when daylight savings time disappears, ambiguous

times exist because at 02:00, time jumps backwards one hour. Thus, Coral8 will interpret 02:00

PDT as 01:00 PST on this morning.

Users truly concerned with these matters should either not use daylight savings time or should

use GMT times (which do not include daylight savings time).

Duplicate Time Zone Abbreviations

Although you might expect that there would be only 24 time zones on earth, there are many

more. Some countries, such as India, have time zones that are not a multiple of an hour different

from GMT. The Coral8 Time Zone database contains approximately 40 commonly-used time

zones, and this is not a complete list.

In part because there are so many time zones, two or more time zones may have the same

abbreviation. For example, both Australia and the U.S. use "EST" ("Eastern Standard Time") to

refer to the time zone on the eastern side of their respective countries. Since each time zone

abbreviation in the Coral8 time zone database must be unique, Coral8 users in the U.S. may

prefer to keep "EST" as a reference to U.S. Eastern Standard Time and use a different

abbreviation (e.g. "AEST") for Australia's Eastern Standard Time. Users in Australia, of course,

Coral8 Integration Guide

518

may prefer to do the converse. Since Coral8's time zone database is user-customizable,

customers may choose the abbreviations that they wish, as long as each time zone's abbreviations

do not overlap the abbreviations for any other time zone.

Coral8 Time Zone Database

Coral8 stores information about each time zone, including the abbreviation for the time zone

(e.g. "PDT" for "Pacific Daylight Time"), the start date of Daylight Savings Time (if applicable)

and the end date of Daylight Savings Time (if applicable), as a table of Comma-Separated

Values in a file. We loosely refer to this table (and the file that contains it) as the "Coral8 time

zone database". The file is named "c8_timezones.csv" and a copy is stored in the server plugins

directory and the studio plugins directory.

There are 11 fields in the Coral8 time zone database. The fields are separated by commas. The

first line of the time zone database must be a title line containing the column names. This line

must be present and contain eleven fields. This title line serves as a memory jog for the fields in

the time zone database.

Each line is expected to have eleven fields. Some of these fields can be empty. While fields in

the default file are quoted with double quotes, this is not mandatory. An empty field is

designated by two successive commas, or by using double quotes, as shown in the 2 examples

below:

,,

,"",

Empty lines are ignored. Lines beginning with '#' are comments and are also ignored. Users are

encouraged to supply comment and spacer lines.

Some of the 11 fields are lengths of time. Some are "date rules", e.g. they indicate when daylight

savings time starts. Before we describe each of the 11 fields in each row of the database, we will

describe the format for lengths of time, and the format for date rules.

Lengths of Time

Some fields represent a length of time. The format of these fields must be: {+|-}hh:mm[:ss]

where the leading sign is optional, "hh" represents a number of hours, "mm" represents a number

of minutes, and "ss" represents a number of seconds. The "ss" for seconds is optional. If the

value is negative, the leading "-" is, of course, mandatory. Leading zeroes for hours and minutes

are optional.

Date Rules

A "Date Rule" is a specially formatted string used to indicate a day of the year for transitions

(e.g. transitions to or from Daylight Savings Time). A date rule indicates dates such as "the

Daylight Saving Time and the Coral8 Time Zone Database

519

second Sunday in April" or "the last Sunday in October". These are typical descriptions of

daylight savings time transitions. Date rules consist of three subfields:

 "nth" weekday of the month. For example, the 3rd Sunday.

 The day of the week.

 The month.

The "nth" weekday uses these values in the field designation:

1 - The first weekday of the month.

2 - The second weekday of the month

3 - The third weekday of the month.

4 - The fourth weekday of the month.

5 - The fifth weekday of the month.

-1 - The last weekday of the month.

The "day of the week" is indicated by the values 0 to 6:

0 - Sunday

1 - Monday

2 - Tuesday

3 - Wednesday

4 - Thursday

5 - Friday

6 - Saturday

The month is indicated by numerical values:

1 - January

2 - February

...

12 - December

All date rules must have all three fields (weekday, day of week, and month). Each field is

separated by a semi-colon (';') character. No spaces or other characters are allowed in a date rule.

Double quotes around the fields are not required.

Here are some examples of date rules:

"-1;5;9" = The last Friday in September

"2;1;3" = The second Monday in March.

Coral8 Integration Guide

520

Field Descriptions

This section describes the 11 fields in each row of the time zone database.

 ID - Contains the identifying label for time zone regions. A "region" is a longer string

used to identify the time zone. An example would be "America/Pacific" for the Pacific

coast time zone in America. Any string will suffice as long as it is unique within the time

zone database. Each entry must have a region ID.

 STD Abbreviation - This contains the abbreviation of the time zone. The "STD" means

"Standard Time zone Designator". This is the familiar "PST", "EST", etc. and is the

standard time when daylight savings is not in effect. Abbreviations should consist only of

upper case letters while the name may be any descriptive string. Lower case

abbreviations, if present, will be capitalized. This entry is required.

 STD Name - The "STD" means "Standard Time zone Designator". The STD Name is the

longer version of the name for standard time. For "PST" this could be "Pacific Standard

Time".

 DST Abbreviation -This contains the abbreviation of the time zone. The DST

Abbreviation is used to label daylight savings time. For example, in the "PST" time zone,

this would be "PDT". Abbreviations should consist only of upper case letters while the

name may be any descriptive string. Lower case abbreviations, if present, will be

capitalized. This entry is optional; time zones that do not use daylight savings time do not

need the "DST" abbreviation and name. Please see below for further discussion of DST

entries.

 DST Name -The DST name is a longer version of the name of the time zone. For "PDT"

this could be "Pacific Daylight Savings Time". This entry is optional; time zones that do

not use daylight savings time do not need the "DST" abbreviation and name. Please see

below for further discussion of DST entries.

 GMT Offset - This is the number of hours added to Greenwich Mean Time to get the

local time before any daylight savings adjustments are made. Some examples are:

America/Pacific offset: -8:00 hours, Africa/Cairo offset: +2:00 hours.

 DST Adjustment - The amount of time added to the local time when daylight savings is

in effect. This format must follow the length-of-time format described above. For the

United States this is typically "1:00"

 DST Start Date Rule - Describes the day of the year in which the transition to daylight

savings time takes place. See "Date Rules" above for specific formatting rules.

 Start Time - The time of day to begin daylight savings time in 24 hour time format. The

format must follow the length-of-time describe above. For time zones in the United States

this is typically "+02:00" meaning daylight savings starts 2 hours past midnight.

Daylight Saving Time and the Coral8 Time Zone Database

521

 DST End Date Rule - Describes the day of the year in which daylight savings time ends

and standard time begins again.

 End Time - The sames as the Start Time, but for the ending date. For the United States

this is typically "+02:00".

Optional Fields - Daylight Savings

Daylight savings time is optional. Many time zones do not use daylight savings time. The time

zone software insists that daylight savings time either be wholly present or wholly absent. An

error message will be generated if this is not true. A missing field is indicated by simply using a

comma to skip to the next field. Thus, for Japan Standard Time, there is no daylight savings time

and the entry would be similar to:

ID - "Asia/Japan"

STD Abbr - "JST"

STD Name - "Japan Standard Time"

DST Abbrev - empty

DST Name - empty

GMT Offset - +09:00

DST Adjustment - empty

DST Start Rule - empty

DST Start Time - empty

DST End Date Rule - empty

DST End Time - empty

The Coral8 Time Zone Database stores only one set of information about each time

zone. This means that when rules (e.g. for daylight savings time) are updated, Coral8

knows only the current rules. Thus, for example, if in the year 2007 you change the

starting date of daylight savings time from "the first Sunday in April" to "the second

Sunday in March", then after you update the Coral8 time zone database, Coral8 will treat

the second Sunday in March as the start of daylight savings time, even for years prior to

2007.

CCL Abbreviations

The fields in the time zone CSV database are used by the Coral8 software to link external time

zone names to the proper time calculations. Within the time zone database, the following must be

unique within the entire database:

 ID

Coral8 Integration Guide

522

 STD Abbreviation

 DST Abbreviation

This uniqueness allows users to identify time zones in various ways. The identification applies to

both input and output of time zones.

 ID maps to "TZR", the "Time Zone Region". This is output only.

 STD abbreviation maps to "TZD", the "Time Zone Designator". Use in input or output.

 DST abbreviation maps to "TZD" as well. Use in input or output.

 TZH:TZM displays as time zone hours and minutes from GMT. This is output only.

While TZH and TZM are typically displayed together, they may be separated and placed

as the user desires.

Standard and Daylight savings time abbreviations may be used interchangeably. The Coral8

software will, if applicable, modify the time for daylight savings and interpret the appropriate

STD or DST abbreviation. As in all date-time format strings, multiple uses of the same format

code are illegal on input, but are legal in output formats. Thus the following is illegal because

multiple TZD formats are illegal for input:

TO_TIMESTAMP("2002-06-18 PDT13:52:00.123456 PST",

 "YYYY-MM-DD TZDHH24:MI:SS.ff TZD");

An output request allows multiple format requests:

TO_STRING(ts, "YYYY-MM-DD TZDTZDTZD", "PDT")

 yields: "2006-06-18 PDTPDTPDT"

523

Index

.

.NET

Bundles 319

Compiling a Project with 317

Creating a URI with 314

Creating an Engine Client with 314

Engine Control with 316

Examining Schemas with 318

Examples 313

Examples, Compiling and Running 315

Guaranteed Delivery with 100, 102, 320

Publishing with 316

Querying a Public Window with 321

Reading from a Stream 315

Registering a Parameterized Query with

 320

Registering a Query with 317

Retrieving Server Status with 319

SDK 313

Subscribing to a Stream with 315

Tuples, Working with in 318

Value Types with 318

6

64-Bit Windows

Compiling on 106

A

Adapter Definition Language 339, 344, 345

Adapter Type

for Coral8-Provided Adapters 403

Adapters 456

Adapter Type for 403

Atom Feed Reader 407

BLOB Data with 397

Configuring 395

Database, Poll from 441

Definition 15

Definition Language for 339, 345

Email, Java 453

Ganglia Input 456

In-Process 20

In-Process Compared to Out-of-Process16

In-Process, API for 107, 170

In-Process, Compiling 202

In-Process, Writing 167, 168, 170, 193,

194, 195, 197

Java, Environment for 397

JDBC Input 457, 459

JDBC Output 459

JMS 397, 398, 466

JMS Input 462

JMS Output 399, 464

Log File Reader 469

Out-of-Process, Writing 18

Out-of-Process, Writing in C/C++ 122,

149

Poll from Database 437

Properties 395

Provided by Coral8 403

Random Message Generator 470

Coral8 Integration Guide

524

Read from Binary File 409

Read from CSV File 409, 419, 420, 421,

422

Read from CSV Socket 428

Read from Database 444

Read from XML File 487

Read from XML Socket 491

Regular Expression Read from File 471

Regular Expression Read from Socket 476

RSS Feed Reader 477

RTD for Excel 455

Send Email 452

SNMP 497, 498

SNMP Get OIDs 479

SNMP Send V1 Traps 483

SNMP Send V2c Notifications 485

SNMP Set 482

Starting and Stopping 21

Sybase RAP 486

Timestamps and 402

Windows Event Logger 486

Write to Binary File 409

Write to CSV File 423

Write to CSV Socket 436

Write to Database 449

Write to XML File 492

Write to XML Socket 495

Write XML over HTTP 495

Writing 188, 195

Writing, for Guaranteed Delivery 96

Writing, in Perl 326, 328

Writing, in Python 337

ADL 339, 344

ANSI

Data Types 365

Arbitrary Predicates 18

Asynchronous

Publishing, with Java 310

Atom Feed Reader

Input Adapter 407

Authentication 40, 357

with C/C++ 294, 299

Authentication Plug-Ins 352

Creating 296, 299

B

Binary

Adapter, Read from File 409

Data Stream Format 390

Binding 34

BLOB

and External Databases 64

Data with Adapters 397

Bundles 12, 310

in .NET/C# SDK 319

C

C#

Bundles 319

Compiling a Project with 317

Creating a URI with 314

Creating an Engine Client with 314

Engine Control with 316

Examining Schemas with 318

Examples 313

Examples, Compiling and Running 315

Index

525

Guaranteed Delivery with 100, 102, 320

Publishing with 316

Querying a Public Window with 321

Reading from a Stream 315

Registering a Parameterized Query with

 320

Registering a Query with 317

Retrieving Server Status with 319

SDK 313

Subscribing to a Stream with 315

Tuples, Working with in 318

Value Types with 318

C/C++

Authentication with 294

Compiler API 226

Compiling a Project with 225

Compiling on 64-bit Windows 106

Engine Control with 225

Guaranteed Delivery with 98, 99

In-Process Adapter API 107, 170, 193

In-Process Adapter with 99, 167, 195, 197

In-Process Adapter, Multi-Stream 208

Memory Allocation 114

Memory Management API 113

Message API 127

Out-of-Process Adapter with 122, 149

Printing a Schema with 198

Public Windows, Querying with 284

Registering a Query with 210

RPC Plug-In API 59, 287, 288

Schema API 123

SDK 105, 122, 169, 225

Server API 185

Session State API 288

Status API 237, 289

Tracer Message API 252

User Credentials API 294

User-Defined Function API 107

c8_client 71

Compiling a Project with 75

Compiling and Running a Project 85

Create a Workspace with 74

Project Status with 86

Publishing with 86

Registering a Project with 84

Starting a Project 84

c8_compiler 71, 75

c8_server 71

CclApplicationInfo Status Messages 503

CclCompilerInfo Status Messages 507

CCLQueryInfo Status Messages 507

CclStreamPairInfo Status Messages 508

CclWorkspaceInfo Status Messages 509

Clean Slate

Start with 96

Client-Side Compilation

Compared to Server-Side 32

Compiler API 226

Compiling

.NET/C# Examples 315

a Project with .NET/C# 317

a Project with C/C++ 225

a Project, with c8_client 75

C/C++ on 64-bit Windows 106

Coral8 Integration Guide

526

In-Process Adapter 202

Java Examples 305

Java, and Errors 370

On Client Compared to On Server 32

RPC Plug-In 60, 289, 290

User-Defined Function 278

with c8_compiler 75

Configuring

Adapter Properties 395

Container

Status Information 510

ContainerInfo Status Messages 510

Coral8 Engine

Settings for Guaranteed Delivery 95

Coral8 Server

Retrieving Status with .NET/C# 319

coral8-services.xml 63

CSV

Adapter, Read from File 409, 419, 420,

421, 422

Adapter, Read from Socket 428

Adapter, Write to File 423

Adapter, Write to Socket 436

Data Stream Format 390

D

Data Stream

Binary Format 390

CSV Format 390

XML Format 393

Data Types

Mapping to Database Types 365

SNMP and Coral8 481

Database

Adapter, Poll from 437, 441

Adapter, Read from 444

Adapter, Write to 449

Data Type Mapping to 365

External, and BLOBs 64

Remote Queries 61, 62

DB2

Data Types 365

E

Email

Adapter, Java 453

Adapter, Send 452

Engine Client

Creating in .NET/C# 314

Creating in Java 304

Engine Control 307

Compiling and Running a Project 75, 85

from the Command-Line 71

Registering Queries 28, 33

Stopping a Query 35

with .NET/C# 316

with C/C++ 225

with Java 307

Event Logger

Adapter 486

Excel

RTD Adapter for 455

F

Filter Expressions 18

Functions

Aggregate, User-Defined 45, 259, 276

Index

527

User-Defined, in C 43, 44, 46, 254, 259,

278, 283

G

Ganglia

Input Adapter 456

General Purpose Plug-In

and Container Events 347

and Manager Events 349

Guaranteed Delivery

Application Development 93, 98

Coral8 Engine Settings for 95

Implementing 93, 94, 95, 96

Implementing, with .NET/C# 320

Implementing, with C/C++ 98

Properties 95

Publishing, In-Process Adapter 98

Publishing, Out-of-Process Adapter 98

Publishing, with C#/.NET 100

Subscribing, in .NET/C# 102

Subscribing, in C/C++ 99

with .NET/C# 100

with Java 311

Writing an Adapter for 96

Guaranteed Processing

and Persistence 96

Application Components 93

Implementing 93, 94, 96

Variations of 103

Writing an Adapter for 96

H

High Availability

and the General Purpose Plug-In 352

and URIs 385

htpasswd

User Authentication Plug-In 354

HTTP 379

Plug-In 56, 290

Publishing to a Stream with 389

Subscribing to a Stream with 387

HTTP URL 311

I

In-Process Adapter 20

Compared to Out-of-Process 16

Compiling 202

Writing 167, 168, 193, 194, 195, 197

Writing, Multi-Stream 208

J

Java

Adapters, Environment for 397

Compiling and Starting a Project with 308

Compiling Errors 370

Creating a URI with 305

Creating an Engine Client in 304

Engine Control with 307

Examining Schemas with 308

Examples 303

Examples, Compiling and Running 305

Guaranteed Delivery with 311

Publishing Asynchronously with 310

Publishing with 306

Querying a Public Window with 312

Reading from a Stream with 305

Registering a Query with 307

Retrieving Server Status with 309

Coral8 Integration Guide

528

SDK 303, 370

Subscribing Asynchronously with 310

Subscribing to a Stream with 304, 305

Tuples, Working with in 309

Value Types with 308

JDBC

Adapter, Input 457, 459

Adapter, Output 459

JMS

Adapter, Input 462

Adapter, Output 399, 464

Adapters 398, 466

Adapters, Environment 397

L

LDAP

Plug-In 356

Log File

Adapter, Reader 469

M

ManagerInfo Status Messages 512

Memory

Allocation with C/C++ 114

Memory Management API 113

Message

Definition 7

Message API 127

MySQL

Data Types 365

N

Network

Connecting to a Stream Over 387

O

ODBC 69

Oracle

Data Types 365

Out-of-Process Adapter

Compared to In-Process 16

Writing 18

Writing in C/C++ 122, 149

P

PAM 357

Parallel Queries 312, 321

Perl

SDK 323, 324, 326, 328, 329

Persistence 96

Persistent State 169, 186

Pluggable Authentication Modules 357

Plug-In 347

and High Availability 352

Authentication, Creating 296, 299

Generic 350

htpassword 354

HTTP 56, 290, 379

LDAP 356

RPC 55, 286

RPC, compiling 60, 289, 290

RPC, for CSV Files 57

RPC, Writing 59

SOAP 56, 290, 379

User Authentication 352

Writing 49

Plug-In, General Purpose 352

and Container Events 347

Index

529

and Manager Events 349

Poll From Database

Adapter 437

Predicates 18

Project

Compiling and Starting with C/C++ 225

Compiling and Starting with c8_client 85

Compiling and Starting, with .NET/C#

 317

Compiling and Starting, with Java 308

Compiling with c8_client 75

Compiling with c8_compiler 75

Registering with c8_client 84

Retrieving Status with c8_client 86

Starting with c8_client 84

Status Information About 503

Public Windows 69

Querying, with .NET/C# 312

Querying, with C/C++ 284

Querying, with Java 321

Publishing

Asynchronously, in Java 310

for Guaranteed Delivery, with .NET/C#

 100

with .NET/C# 316

with c8_client 86

with HTTP 389

with Java 306

Python

Output Adapter, Writing in 337

SDK 333, 335, 336, 337

Q

Query

Definition 23

Parallel 312, 321

Registering 28, 33, 34

Registering with .NET/C# 320

Registering with C/C++ 210

Registering with Java 307

Remote Database 61, 62

Status Information 507

Stopping, through SDK 35

R

Random Message Generator Adapter 470

Regular Expression

Adapter, Read from File 471

Adapter, Read from Socket 476

Remote Database Query 61

Row

Definition 7

RPC 52, 54, 55, 63

Compared to User-Defined Function 51

Plug-In 55, 286

Plug-In, API 59, 287, 288

Plug-In, compiling 60, 289, 290

Plug-In, for CSV Files 57

RSS

Adaer, Feed Reader 477

RTD

Adapter, for Excel 455

S

Schema

API, C/C++ 123

Coral8 Integration Guide

530

Definition 8

Examining with .NET/C# 318

Examining, with Java 308

Printing, with C/C++ 198

SDK

.NET/C# 313, 315

C/C++ 105, 122, 169

Java 303, 370

Perl 323, 324, 326, 328, 329

Python 333, 335, 336, 337

Server API 185

Server-Side Compilation

Compared to Client-Side 32

Session State 169, 186

API for Managing 288

SMTP 452

SNMP

Adapers 497

Adapter, Get OIDs 479

Adapter, Send V1 Traps 483

Adapter, Send V2c Notifications 485

Adapter, Set 482

Configuring coral8-server.conf for 498

Data Types 481

SOAP 379

Plug-In 56, 290

SQL Server

Data Types 365

Start with Clean Slate 96

Status

Project, Retrieving with c8_client 86

Status API 237

Status Information 36, 503

APIs 38

Application 503

CCL Stream Pairs 508

Compiler Settings 507

Container 510

Manager 512

Project 503

Query 507

Workspace 509

Status Messages

CclApplicationInfo 503

Status Stream 37

Stream

Connecting to Over a Network 387

Definition 15

Determining URI of 385

Subscribing to with HTTP 387

URI, Determining 159

Subscribing

Asynchronously, with Java 310

with .NET/C# 315

with Guaranteed Delivery, in .NET/C#

 102

with Guaranteed Delivery, in C/C++ 99

with HTTP 387

with Java 304, 305

Sybase

RAP Adapter 486

T

Time Zone Database 515, 518, 520

TIMESTAMP

Index

531

and Adapters 402

Tracer Message API 252

Troubleshooting 35, 209, 225, 331, 369

Tuple 334

Working with, in .NET/C# 318

Working with, in Java 309

Tuple Descriptor 8

U

URI

and High Availability 385

Creating, with .NET/C# 314

Creating, with Java 305

Determining for a Stream 159

Working with 311

URIs 320, 383, 384, 387

and Distributed Queries 384

Definition 383

Determining 385

User Authentication 40, 357

htpassword Plug-In 354

LDAP Plug-In for 356

Plug-Ins 352

with C/C++ 294, 299

User Credentials API 294

User-Defined Functions 10, 283

Aggregate 45, 259, 276

C/C++ API for 107

Compared to RPCs 51

Compiling 278

Creating 276

Writing, in C/C++ 43, 44, 46, 107, 253,

254, 259, 261, 278

XML Signature for 261

W

Windows 10

64-bit, Compiling C/C++ on 106

Public 69

Public, Querying with .NET/C# 321

Public, Querying with C/C++ 284

Public, Querying with Java 312

Workspace 24

Creating, with c8_client 74

Status Information 509

Write to Binary File Adapter 409

X

XML

Adapter, Read from File 487

Adapter, Read from Socket 491

Adapter, Write over HTTP 495

Adapter, Write to File 492

Adapter, Write to Socket 495

Data Stream Format 393

	Preface
	Who This Integration Guide Is For
	How to Use This Guide

	Integrating Coral8 with External Systems
	Coral8 Integration and Enterprise Software Architecture
	Software Development Aspects of Coral8 Integration
	Other Interfaces to Coral8
	Other Documents that You May Find Helpful

	Data Streams and Messages
	Definitions
	Field
	Message / Row
	Row Timestamp
	Schema
	Tuple Descriptor
	Data Stream
	Stream URI
	Publishing and Subscribing
	Windows
	User-Defined Functions
	Windows and Expiring Messages
	Bundles
	SDK

	Adapters
	Streams and Adapters
	In-process vs. Out-of-process Adapters
	Coral8 Adapters vs. User-written Adapters
	Creating Your Own Stream Adapter: Overview
	Key Tasks: Conversion and Communication
	Conversion
	Communication
	Out-of-process Adapter
	In-process Adapter

	Input Adapter Algorithm (Out-of-process)
	Input Adapter Algorithm (In-process)
	Output Adapter Algorithm (Out-of-process)
	Output Adapter Algorithm (In-process)
	Adapter APIs

	Starting and Stopping Adapters

	Engine Control: Overview
	Definitions
	Query / Statement
	Project / Query Module
	Workspace

	Introduction
	A Note About ADL Files

	Commands
	Creating Streams and CCL Statements from Inside a Program
	Motivation: When to Dynamically Create Queries and Streams
	Background
	Dynamically Registering Queries and Streams
	Client-side vs. Server-side Compilation
	Guidelines
	Binding a Registered Query's Stream to an Existing Stream
	Registering Streams When Registering A Query

	Stopping A Query
	Troubleshooting

	Monitoring Servers and Projects
	Status Information
	Status Streams
	Status APIs

	User Authentication from Inside SDKs

	User-Defined Functions and Plugins
	User-Defined Functions
	Requirements
	User-Defined Aggregate Functions
	XML Signatures

	Coral8 SDKs that Support UDFs

	Plug-Ins
	Coral8 SDKs that Support Plugins

	Remote Procedure Calls, Database Queries, and Public Windows
	Remote Procedures
	Overview: Calling a Remote Procedure from a CCL Statement
	How to Choose Whether to Use an RPC or a UDF
	What Is an RPC?

	The Components
	The CCL Statement
	The coral8-services.xml File
	The Coral8 Server
	The RPC Plugin
	The RPC

	Additional Information about Remote Procedure Calls
	Generic HTTP and SOAP Plugins
	RPC Plugin for CSV Files
	Configuring the Plugin
	Using the Plugin
	Examples

	Writing Your Own Coral8 RPC Plugin
	Compiling a Coral8 RPC Plugin

	Remote Database Queries
	Overview: Querying a Remote Database or Public Window from a CCL Statement
	What Is a Remote Database Query?

	The Components
	The CCL Statement
	The coral8-services.xml File
	Coral8 Server
	The Driver
	The Remote Database Server

	Additional Information
	Reading and Writing BLOBs on External Database Servers
	Background
	Reading From and Writing to External Database Servers that Do Not Support BLOBs
	Reading From and Writing to Database Servers that Support BLOBs

	Remote Requests, Synchronization, and Performance
	Caching
	Internal Parallelization

	Public Windows

	Engine Control: Command-line Tools
	Start the Server
	Start the Server on UNIX-like Operating Systems
	Start the Server on Microsoft Windows

	Access a Running Coral8 Server
	Create a Project and its Associated Schema Files
	Coral8 Project Files
	Coral8 Schema Files

	Create a Workspace on the Server
	Compile a Project or a Schema File
	Compiling Directly via the CCL Compiler
	A Note About ADL Files

	Execute the Project
	Registering a Project via the c8_client Program
	Compiling and Running a Project
	Get Status of an Executing Project
	Publishing Data to a Server
	Stop Execution of a CCL Project
	Clean Up a Workspace's Resources
	Stop the Coral8 Server
	Stop the Server on UNIX-like Operating Systems
	Stop the Server on Microsoft Windows

	Implementing Guaranteed Processing
	Overview
	Application Components
	Guaranteed Processing Implementation
	Coral8 Engine
	Adapters
	Source and Destination

	Coral8 Engine Settings
	Settings for Projects, Modules, and Streams
	Persistence
	Start with Clean Slate

	Writing an Adapter for Guaranteed Processing
	Guaranteed Delivery Mechanisms
	Guaranteed Delivery with the Coral8 C/C++ SDK
	Publishing for an In-Process Adapter
	Publishing for an Out-of-Process Adapter
	Subscribing for an In-Process Adapter
	Subscribing for an Out-of-Process Adapter

	Guaranteed Delivery with the Coral8 .NET SDK
	Publishing
	Subscribing

	Variations of Guaranteed Processing

	Coral8 C/C++ SDK
	Overview
	Compiling for 64-bit Microsoft Windows
	In-process vs. Out-of-process Activities

	Data Types and Subroutines for UDFs and In-process Adapters
	Error Handling Functions
	Memory Management API
	Notes about Allocating and Deallocating Memory in In-process Code

	C/C++ Data Conversion Functions
	Conversion API
	Datatype ToString()
	StringToDatatype()

	Miscellaneous
	Generic Functions Available in Out-of-process and In-process Tasks

	APIs Used for Out-of-process Adapters and Control Programs
	c8client.h

	APIs Used for In-process and Out-of-process Adapters
	API Interface
	Schema API
	Message API

	Creating an Out-of-process Adapter in C/C++
	API Interface
	Creating a Sample Input Adapter
	Sample Input Adapter
	Acquiring the Address (URI) of a Stream
	Compiling and Linking the Example
	Compiling and Linking on Microsoft Windows
	Compiling Using Visual Studio
	Compiling Using the Command Line
	Compiling and Linking on UNIX-like Operating Systems
	Executing the Out-of-process Input Adapter

	Creating an In-process Adapter in C/C++
	The Components of an In-process Adapter
	Algorithm Overview
	Session State Information and Persistent State Information
	API Interface
	Memory Management API
	In-process Adapter API
	Server API

	Session States vs. Persistent States
	Suggested Session and Persistent State Initialization

	Signatures of User Functions
	In-process Input Adapters
	In-process Output Adapters
	In-process Adapter
	Initialization
	Execution
	Shutdown

	Useful Utility Functions
	Printing the Schema
	Printing a Parameter

	Requirements for the C/C++ File
	Step-by-Step Instructions for Creating an In-process Adapter
	Compiling an In-process Adapter
	Practical Tips for Using the In-process Adapter SDK
	Testing and Debugging
	Performance Optimizations

	Multi-Stream In-Process Adapters
	Troubleshooting

	Setting Up Dynamic Queries and Streams with the C/C++ SDK
	The API
	Example
	Creating Streams Dynamically
	Troubleshooting

	Control: Compile/Start/Stop/Status
	Compiling a CCL Project
	The Compiler API
	Sample C Program to Compile a Project
	Additional Sources of Information

	Start/Stop a Project

	Monitoring Servers and Queries
	Status API

	Tracer Message API
	User-Defined Functions
	UDFs: Requirements and Example
	UDFs: Packing and Unpacking Parameter Values
	Example UDF
	User-Defined Aggregate Functions
	UDFs: XML Signatures
	UDFs: Interface Code
	Metadata
	Accessing Parameter Values
	Functions Primarily for Aggregator UDFs
	Memory Management API

	Compiling a UDF and Putting It in the Correct Directory
	Coral8 Access Function Header and Source Files
	Compiling a UDF

	UDFs: Summary

	Querying a Public Window
	RPC Plugins
	RPC Plugin API
	Functions for Accessing Configuration Information
	API Function for Publishing Messages
	API Functions for Managing Session State
	API Functions for Reading Runtime Status

	Compiling an RPC Plugin and Putting It in the Correct Directory
	Coral8 Source files
	Compiling an RPC Plugin

	User Authentication
	User Credentials API
	Creating Your Own Authentication Plugin
	Plugin Configuration

	Library-Wide Initialization and Shutdown

	Coral8 Java SDK
	Locating Files
	Setting Up Your Environment
	Using the Examples
	Examining Example 1: Subscribing to a Stream
	Creating an Engine Client
	Creating a URI
	Subscribing to a Stream
	Reading Data from a Stream
	Disconnecting from a Stream

	Compiling and Running
	Other Examples
	Publishing to a Stream
	Controlling the Engine
	Registering a Query
	Compiling and Starting a Project
	Exploring Value Types
	Examining Schemas
	Working with Tuples
	Retrieving Server Status
	Publishing Asynchronously
	Subscribing Asynchronously
	Working with Bundles
	Guaranteeing Message Delivery
	Registering a Query with Parameters
	Working with URIs
	Querying a Public Window
	Working with Parallel Queries

	Coral8 .NET SDK
	Locating Files
	Using the Examples
	Examining Example 1
	Creating an Engine Client
	Creating a URI
	Subscribing to a Stream
	Reading Data from a Stream
	Disconnecting from a Stream

	Compiling and Running
	Other Examples
	Publishing to a Stream
	Controlling the Engine
	Registering a Query
	Compiling and Starting a Project
	Exploring Value Types
	Examining Schemas
	Working with Tuples
	Retrieving Server Status
	Working with Bundles
	Guaranteeing Message Delivery
	Registering a Query with Parameters
	Working with URIs
	Querying a Public Window
	Working with Parallel Queries

	Coral8 Perl SDK
	Prerequisites
	API Interface
	Perl API
	C8::Tuple
	C8::Publisher
	C8::Subscriber

	Perl Input Adapter (Sending Data to a Coral8 Stream)
	Perl Output Adapter (Receiving Data from a Coral8 Stream)
	Installation and Configuration
	Running the Installation Script
	Specifying the Path to the Library Files

	Running the Example
	Troubleshooting

	Coral8 Python SDK
	API Interface
	Python API
	Tuple
	Publisher
	Subscriber

	Python Input Adapter (Sending Data to a Coral8 Stream)
	Python Output Adapter (Receiving Data from a Coral8 Stream)
	Configuring Your Environment

	Adapter Definition Language
	Adapter Definition Language (ADL)
	Warnings and Tips
	Configuring Your System to Find ADL Files
	Importing New Adapters

	Server Plugins
	Message-Driven Plugins
	Events
	Container Events
	Manager Events

	The Coral8 Generic Plugin
	How to Implement Manager HA with the Coral8 Generic Plugin

	Non-Message-Driven Plugins
	The User Authentication Plugins
	User Authentication htpasswd Plugin
	User Authentication LDAP plugin
	User Authentication via Pluggable Authentication Module (PAM)

	Datatype Mappings
	Troubleshooting
	General Tips
	Errors When Compiling C-language Adapters, UDFs and RPC Plugins
	Error Messages When Compiling Java-Language Adapters
	Errors When Starting the Server
	Error Messages Displayed During Execution

	HTTP and SOAP Plugin Configuration
	Stream URIs
	What Is a URI and What Is It Used For?
	Types of URIs
	Logical vs. Physical Stream URIs
	Absolute vs. Relative Stream URIs

	URIs and Distributed Queries
	URIs and High Availability
	How to Find the URI of a Stream
	Summary

	Connecting to Streams over a Network
	Data Stream URI
	Subscribing to a Data Stream
	Publishing to a Data Stream
	Data Stream Formats
	Binary Data Stream Format
	CSV Data Stream Format
	XML Data Stream Format

	Coral8 Adapters
	Configuring Coral8 Adapters
	Reading and Writing BLOB Data
	Setting Up the Environment for Java Adapters
	Setting Up the Environment for the JMS Adapters
	Prerequisites
	Configuring and Setting Up Your JMS Server
	Create a New JMS Server and Deploy It.

	Configuring and Setting Up Coral8
	Coral8 Studio
	Coral8 JAR files

	Testing the Coral8 JMS Adapter
	Shutdown Sequence

	Reading, Writing, and Converting Timestamps
	Adapters Supplied by Coral8
	Atom Feed Reader Input Adapter
	Binary: Read From Binary File Adapter
	Binary: Write To Binary File Adapter.
	Comma-Separated Values (CSV): Read From CSV File Adapter.
	NULL Values
	Title Rows and the Hidden Row Timestamp Column
	Timestamp Base
	Loop Count
	Line Continuation Character
	Cautions on Using Quote Characters, Line Continuation Characters, and Field Separator Characters
	Format Of INTERVAL Values In The CSV File

	Comma-Separated Values (CSV): Write To CSV File Adapter.
	Comma-Separated Values (CSV): Read From CSV Socket Adapter.
	Comma-Separated Values (CSV): Write To CSV Socket Adapter.
	Database: Poll From DB Input Adapter
	Retrieving a Subset of Records

	Database: Read From DB Input Adapter
	Database: Write to DB Output Adapter
	Email: Send Email Out Adapter (SMTP)
	Email: Java Email Output Adapter
	Excel RTD Output Adapter
	RTD Refresh Interval

	Ganglia Input Adapter
	JDBC Input Adapter
	Tuple Descriptor File

	JDBC Output Adapter
	Connectivity Instructions for UNIX-like Operating Systems

	JMS Input Adapter
	JMS Output Adapter
	JMS Adapter
	Log File Reader Adapter
	Installation

	Random Tuples Generator Adapter
	Regular Expressions: Read From File Using a Regular Expression Adapter.
	Regular Expressions: Read From Socket Using a Regular Expression Adapter.
	RSS Feed Reader Adapter.
	SNMP Get OIDs Adapter
	Coral8 Datatypes vs. SNMP Datatypes

	SNMP Set Adapter
	SNMP Send V1 Traps Adapter
	SNMP Send V2c Notifications
	Sybase RAP Output Adapter
	Windows Event Logger Adapter
	Schema

	XML: Read From XML File
	XML: Read from XML Socket
	XML: Write To XML File Adapter.
	XML: Write to XML Socket
	XML: Write XML Over HTTP Adapter.

	SNMP Adapter Information
	Motivation
	Configuring Your Environment for SNMP Adapters
	Configuring the coral8-server.conf File for SNMP

	Coral8 Drivers
	Configuring Coral8 Drivers

	Status Information
	Status Information about a CCL Application
	Status Information about CCL Compiler Settings
	Status Information for a CCL Query
	Status Information about CCL Stream Pairs
	Status Information about a Workspace
	Status Information about a Container
	Status Information about a Manager

	Daylight Saving Time and the Coral8 Time Zone Database
	Background
	Default Time Zones
	Daylight Savings Time
	Transitioning from Standard Time to Daylight Savings Time and Vice-Versa

	Duplicate Time Zone Abbreviations

	Coral8 Time Zone Database
	Lengths of Time
	Date Rules
	Field Descriptions
	Optional Fields - Daylight Savings
	CCL Abbreviations

	Index

