Contents

About This Book .. xvii

PART 1 CONFIGURING THE CLUSTER EDITION

CHAPTER 1 An Overview of the Cluster Edition 3
 What is the Cluster Edition? ... 3
 Adaptive Server integrated clusterware .. 6
 The cluster coordinator ... 7
 The quorum device ... 8
 Database devices in the Cluster Edition 8
 Private installation versus shared installation 10
 Backup Server in the Cluster Edition ... 11
 How the Cluster Edition enhances the non-clustered edition 11
 Using interconnected networks in the cluster 12
 Monitoring links between instances ... 13
 Suggested deployment scenarios ... 15
 HA failover for OLTP applications .. 16
 Horizontal scalability for DSS reporting applications 17
 Horizontal scalability for OLTP applications 17
 New client technologies in the Cluster Edition 18
 Support for replication ... 19

CHAPTER 2 Client Applications and Client/ Server Interaction 21
 Open Client .. 22
 Enabling failover in Client-Library applications 23
 Client/server interaction .. 24
 Login redirection ... 24
 Connection migration ... 26
 Context migration .. 28
 Extended high-availability failover 30
 Using isql in a clustered environment 32
 Using remote procedure calls in a clustered environment 32
 RPCs where the remote server is a cluster 33
RPCs where the local server is a cluster................................. 33
RPCs where local and remote servers are instances in the same
cluster .. 33
sp_serveroption ... 33
Reconnecting clients when a node loses power 34

CHAPTER 3

Using Security with a Clustered Environment 37
Using encrypted columns in a clustered environment 37
Using SSL in a clustered environment 37
Specifying a common name with sp_listener 38
Using LDAP as a directory service .. 39
LDAP directory services versus the Sybase interfaces file 40
The libtcl*.cfg file .. 43
Enabling LDAP directory services ... 44
Adding a server to the directory services 45
Multiple directory services .. 47
Encrypting the password ... 47
Performance ... 48
Migrating from the interfaces file to LDAP 48
Using LDAP directory services with the shared-disk cluster ... 49

CHAPTER 4

Using Monitoring Tables in a Clustered Environment 53
Changes for clusters ... 53
Configuring the system view ... 54
Configuring monitoring tables ... 55
Managing the message pipe ... 55
Changes for RPCs .. 56
InstantID added to monitor instances 56
New and changed tables for the cluster cache manager 57
New tables ... 57
Changed tables ... 58
Monitoring tables added for PCM ... 60
monPCM .. 61
Monitoring tables added for recovery 63
monDBRecovery .. 64
monDBRecoveryLRTypes .. 66
monCMSSfailover ... 67
monFailoverRecovery ... 67
Monitoring table added for cluster lock manager (CLM) ... 68
monCLMObjectActivity .. 68
Monitoring tables added for CIPC ... 69
monCIPC ... 69
monCIPCEndpoints ... 71
Contents

Load profile attribute.. 103
Login distribution mode .. 103
Configuring failover ... 104
Adding failover resources .. 105
Managing logical clusters .. 106
User tasks and logical clusters ... 106
Managing the workload manager thread 106
Viewing information about a logical cluster 107
Creating and dropping a logical cluster 109
Adding resources to a logical cluster 109
Dropping resources from a logical cluster 109
Adding, moving, and dropping routes 110
Migrating connections ... 110
Administering failover, failback, and planned downtime 111
Cluster and instance states .. 111
How states change .. 113
Asynchronous commands and logical cluster states 114
Using action descriptors .. 114
An example: scheduling and rescheduling a failover 116
Using failover, failback, online, offline, and deactivate 117
Distributing the workload .. 118
Workload metrics .. 118
Creating a user metric ... 119
Weighting the workload metrics .. 119
Load thresholds .. 120
Load profiles ... 120
Using the sample load profiles ... 121
Creating and configuring your own load profile 122
Creating the load profile ... 122
Building the load profile ... 122
Associating the load profile with a logical cluster 124
Changing a load profile ... 124
Troubleshooting .. 125

CHAPTER 7
Cluster Cache Configuration .. 127
Global caches .. 127
Local caches .. 128
Creating and configuring named data caches 129
Getting information about named caches 129
Creating a new cache ... 129
Configuring and using multiple buffer pools 139
sp_poolconfig ... 139
Moving memory between buffer pools 141
Changing the wash size of a pool ... 141
Contents

Changing a pool’s local asynchronous prefetch percentage. 142
Dropping a buffer pool... 143
Binding objects to named caches .. 144
Syntax for binding objects... 144
Getting information about bound caches............................... 145
Dropping cache bindings... 145
Modifying the configuration file... 146
Format of a local named cache ... 146
Extra line in local cache entries... 147
Deleted named cache with global configuration.................... 148
Named cache with local configuration................................. 148
Deleted entries with valid configuration................................. 148
Creating a local configuration in the presence of a global
configuration... 149
Limitations.. 150

CHAPTER 8 Using Temporary Databases ... 153
Types of temporary databases... 154
Local temporary databases... 154
Summary information .. 156
Creating temporary databases... 157
Creating local system temporary databases 158
Creating local and global user temporary databases 158
Binding users and applications to temporary databases.............. 159
Creating and managing temporary database groups 159
What you can bind... 160
How the session binding is determined................................. 160
Creating and managing bindings... 161
Displaying group and binding information............................. 162
Dropping temporary databases... 162
Restrictions for temporary databases .. 163
Private device support for local databases.......................... 165
Using private devices for temporary data.............................. 166
Creating private devices using disk init 166
Reinitializing private devices using disk reinit 166
Dropping private devices using sp_dropdevice 167
Displaying private device information using sp_helpdevice ... 167
Using create database and alter database with a private device . 170
Using disk refit... 170

CHAPTER 9 Running Job Scheduler in a Clustered Environment 173
Installing and configuring Job Scheduler................................. 173
Contents

Running Job Scheduler in a clustered environment 174
Shutting down Job Scheduler .. 174
Redirecting scheduled jobs ... 174

CHAPTER 10 Additional Topics ... 177

Locks .. 178
Deadlocks .. 178
Retention locks .. 178
Memory .. 179
Thresholds .. 179
dbcc thresholds output .. 180
dbcc dbtable output ... 180
dbcc dbrepair with remap option .. 180
dbcc dbrepair with newthreshold option 181
Cluster interprocess communication ... 182
Recovery ... 182
Recovery algorithm ... 183
Single transaction log ... 184
Distributed checkpoints ... 184
Quorum device heartbeat .. 185
Configuring the quorum device heartbeat 185
Using InfiniBand ... 186
Setting the buffer space ... 187
Configuring InfiniBand in a cluster ... 187
Private installation mode .. 187
Maintaining the server configuration files .. 188
Using Java in a clustered environment .. 191

CHAPTER 11 Using the Cluster Edition with the Veritas Cluster Server 193

Supported platforms, requirements, and limitations 196
Installing and configuring the Cluster Edition on VCS 197
Installing the Cluster Edition .. 198
Creating a new Adaptive Server cluster for Storage Foundation
integration ... 199
Converting an existing cluster to use SF for Sybase CE 200
Managing a cluster under VCS control .. 201
Starting and stopping instances ... 201
Adding and removing instances .. 202
Membership modes ... 202
Determining the membership mode .. 202
Changing membership mode ... 202
Understanding failure scenarios .. 204
VCS troubleshooting .. 205
Cluster Edition fails to start.. 205
Veritas log: “Sybase home directory does not exist”......................... 206
Instance log: “failed to bind to socket”.. 207
Instance log: “Membership service failed to receive initial message from Veritas cluster membership after 301 seconds. Exiting...” 207
Instance log: “Failed to open quorum device ’device_path’. OS error 13, ‘Permission denied’” ... 208
Instance log: “basis_dsizcheck: attempt to open device ’device_path’ failed, system error is: Permission denied” 208
Instance log: “The configuration area in master device appears to be corrupt.” ... 208
Veritas log: “Path not found”.. 209
VCS shuts down the instance after it starts and issues resource faults.. 210
VCS cannot shutdown the instance resource 211
Resource faults for VCS groups ... 212
VCS fails to start... 213

CHAPTER 12 Troubleshooting.. 215
Verifying the cluster environment.. 216
Restarting the cluster using a dataserver binary from an earlier version 217
Errors accessing disk devices... 218
Verifying the cluster is down .. 219
Creating cluster using sybcluster fails with error -131 220
Cluster creation fails leaving files in $SYBASE directory 220
Unified Agent starts but sybcluster connect fails............................ 221
Disk devices in use .. 221
Instances fail to join the cluster ... 222
Private interconnect failure... 222
Client connection failover fails... 222
Client fails to reconnect to alternate high availability servers........ 223
sybcluster cannot connect if all connections use SSL 223
jConnect sample disables HA ... 224
PC-Client installation – java.lang.NoClassDefFound Error 224
The cluster entry “name” did not contain any servers 225
After password change, sybcluster cannot manage the cluster... 225
Agent “cannot be found”... 227
Sybase Central cannot register the AMCP plug-in......................... 227
UAF plug-in register error... 227
Data on disk unavailable: problems affecting database creation........ 228
Access permission to devices is denied after enabling I/O fencing 229
sybcluster cannot find interfaces file .. 229
Contents

IBM errors ... 230
Asynchronous I/O not enabled .. 230
Incorrect permissions on device ... 230
Another machine using device ... 231
Error running chdev .. 232

CHAPTER 13 Administering Clusters with the Adaptive Server Plug-in 233
Managing a shared-disk cluster .. 233
Connecting to a cluster .. 234
Disconnecting from a cluster with the toolbar 235
Enabling Unified Agent functions in the Adaptive Server plug-in . 235
Changing server discovery settings ... 235
Displaying cluster properties ... 237
Starting a cluster ... 240
Shutting down a cluster ... 241
Dropping a cluster ... 241
Removing a server group .. 242
Displaying the status of a cluster .. 242
Managing a clustered instance ... 242
Creating shared database devices .. 244
Managing multiple temporary databases 244
Managing the local temporary databases 245
System temporary databases.. 246
Adding a user-created global temporary database 246
Adding a user-created local temporary database 247
Adding temporary databases to a group 247
Managing the workload .. 249
Load profiles .. 249
Managing logical clusters ... 254
Logical cluster properties ... 255
Viewing workload status ... 260
Managing routes ... 262
Route properties ... 263

CHAPTER 14 Administering Clusters Using sybcluster 265
Using sybcluster ... 266
sybcluster and the Unified Agent Framework 268
Starting sybcluster ... 268
Creating a cluster ... 269
Connecting to the cluster ... 269
Authenticating the user ... 269
Setting the user name and password 270
Contents

Identifying the Unified Agents... 271
Starting the cluster .. 273
Managing the cluster .. 273
Creating a cluster .. 273
Verifying the cluster .. 273
Displaying information about available Unified Agents 274
Displaying cluster information ... 274
Changing cluster configuration values 276
Disconnecting from the cluster .. 278
Shutting the cluster down ... 278
Dropping a cluster ... 279
Managing an instance .. 279
Displaying information about the instance................................. 279
Adding an instance ... 280
Verifying the instance .. 281
Changing the default instance .. 282
Changing instance properties ... 282
Shutting an instance down ... 282
Dropping an instance .. 283
Enabling sybcluster after manually creating the cluster 283
Creating and managing auxiliary servers 284
Creating auxiliary servers .. 284
Dropping auxiliary servers ... 285
Displaying listening port information ... 285
Changing listening port information .. 286
Upgrading the server .. 286

CHAPTER 15 System Changes .. 287
Commands .. 287
alter table .. 287
create database ... 288
create schema ... 289
create table ... 289
New and changed dbcc commands ... 289
disk init .. 291
disk reinit ... 292
grant ... 293
quiesce database ... 293
revoke .. 293
set system_view .. 294
shutdown .. 294
Stored procedures .. 295
New stored procedures .. 295
Changed stored procedures ... 319
Contents

sp_tempdb ... 329
Configuration parameters .. 333
New configuration parameters 333
Changed configuration parameters 340
Utilities .. 341
New utilities .. 342
Changes to utility programs 347
System tables .. 352
timestamp columns 352
Changed identity values 352
Changed system tables 353
Controlling fake-table materialization 355
Monitor tables .. 356
Global variables ... 357
Functions ... 358
New functions ... 358

CHAPTER 16 The sybcluster Utility ... 363
sybcluster ... 363
add backupserver .. 370
add instance .. 371
connect ... 373
create backupserver 374
create cluster ... 375
create monitorserver 377
create xpserver ... 378
deploy plugin ... 379
diagnose cluster ... 380
diagnose instance .. 382
disconnect ... 382
drop backupserver .. 383
drop cluster .. 384
drop instance ... 384
drop monitorserver 385
drop xpserver ... 385
exit .. 386
help ... 386
localize ... 386
quit ... 388
set backupserver .. 388
set cluster .. 389
set instance .. 390
set monitorserver ... 391
set xpserver port ... 392
show agents ... 392
show backupserver config ... 394
show cluster ... 395
show instance ... 398
show membership mode ... 400
show monitorserver config .. 401
show session ... 401
show xpserver .. 403
shutdown cluster .. 403
shutdown instance ... 404
start cluster ... 405
start instance .. 405
upgrade server .. 406
use .. 408

PART 2 GENERAL CONFIGURATION ISSUES

CHAPTER 17 Configuring the Operating System 411
Using the stty setting .. 411
Restoring correct permissions .. 412
File descriptors and user connections 412
 For Linux .. 412
 For Sun Solaris .. 412
 For HP-UX ... 413
Displaying current soft and hard limits 413
Increasing the soft limit ... 413
Increasing the hard limit .. 414
Sample program ... 415
Adjusting the client connection timeout period 416
 For Sun Solaris .. 416
 For Linux .. 416
 For HP-UX ... 416
Checking for hardware errors .. 417
 For Sun Solaris .. 417
 For Linux .. 417
 For HP-UX ... 417
Monitoring the use of operating system resources 418
 A sample C shell maintenance script 418

CHAPTER 18 Customizing Localization for the Cluster Edition 421
Overview of localization support .. 421
 Language modules .. 422
Contents

Default character sets for servers ... 422
Supported character sets ... 424
Character set conversion ... 428
Conversions between server and client .. 429
Sort orders .. 429
Available sort orders .. 430
Language modules... 433
Installing a new language module ... 433
Message languages .. 433
Localization ... 434
Localization directories ... 434
About the directory .. 435
About the charsets directory ... 435
About the locales.dat file .. 435
Changing the localization configuration ... 438
Cluster Edition localization ... 438
Backup Server localization ... 439
Sort orders .. 440
Character sets ... 441
charset utility ... 443

CHAPTER 19 Adding Optional Functionality to the Cluster Edition 445
Adding auditing .. 445
Audit system devices and databases ... 445
Running auditinit with the Cluster Edition 446
Preinstallation tasks for auditing devices 447
Installing auditing ... 447
Installing online help for Transact-SQL syntax 453
Online syntax help: sp_syntax ... 453
Default device for the sybsyntax database 454
Installing sybsyntax ... 454

CHAPTER 20 Logging Error Messages and Events 457
Cluster Edition error logging ... 457
Enabling and disabling error logging .. 458
Setting error log paths ... 458
Setting the Cluster Edition error log path 459
Managing messages .. 459
Logging user-defined messages .. 460
Logging auditing events .. 460

CHAPTER 21 Setting Up Communications Across the Network 463
About This Book

Audience
This manual is for Sybase® system administrators and database owners who install and use the Adaptive Server® Enterprise Cluster Edition. It includes installation and configuration instructions and descriptions of the features available in the Cluster Edition.

How to use this book
This manual includes:

- Part 1: Configuring the Adaptive Server Enterprise version 15.01 Cluster Edition
 - Chapter 1, “An Overview of the Cluster Edition,” is an overview of the shared disk cluster architecture.
 - Chapter 6, “Managing the Workload,” describes how to manage the workload and provide failover for applications that access the Cluster Edition.
 - Chapter 7, “Cluster Cache Configuration,” describes how to configure and use named data caches in a cluster environment.
 - Chapter 8, “Using Temporary Databases,” describes local and global temporary databases, how to create and manage them, and how to bind users or applications to a temporary database or group of temporary databases.
Chapter 9, “Running Job Scheduler in a Clustered Environment,” describes how to run the Job Scheduler in a shared disk cluster environment across all instances in the cluster.

Chapter 10, “Additional Topics,” describes differences between the Cluster Edition and other failover scenarios, explains more about locks and thresholds, and describes the recovery process and its use of distributed checkpoints.

Chapter 11, “Using the Cluster Edition with the Veritas Cluster Server,” describes how to configure and use the Cluster Edition with the Veritas Storage Foundation (SF) for Sybase CE.

Chapter 12, “Troubleshooting,” provides instructions for handling common errors encountered with the Cluster Edition.

Chapter 14, “Administering Clusters Using sybcluster,” describes how to use the sybcluster utility to manage the Cluster Edition.

Chapter 15, “System Changes,” describes new and changed stored procedures, commands, configuration parameters, system tables, global tables, and functions.

Chapter 16, “The sybcluster Utility,” is the reference section for the commands used by the sybcluster utility.

Part 2: General Configuration Issues

Chapter 17, “Configuring the Operating System,” provides configuration information for the Cluster Edition.

Related documents

The Adaptive Server® Enterprise documentation set consists of:
The release bulletin for your platform – contains last-minute information that was too late to be included in the books.

A more recent version of the release bulletin may be available on the World Wide Web. To check for critical product or document information that was added after the release of the product CD, use the Sybase Product Manuals Web site.

The Installation Guide for your platform – describes installation, upgrade, and some configuration procedures for all Adaptive Server and related Sybase products.

ASE Replicator Users Guide – describes how to use the Adaptive Server Replicator feature to implement basic replication from a primary server to one or more remote Adaptive Servers.

Component Integration Services Users Guide – explains how to use the Component Integration Services feature to connect remote Sybase and non-Sybase databases.

The Configuration Guide for your platform – provides instructions for performing specific configuration tasks.

Glossary – defines technical terms used in the Adaptive Server documentation.

Java in Adaptive Server Enterprise – describes how to install and use Java classes as datatypes, functions, and stored procedures in the Adaptive Server database.

Job Scheduler Users Guide – provides instructions on how to install and configure, and create and schedule jobs on a local or remote Adaptive Server using the command line or a graphical user interface (GUI).

Messaging Service Users Guide – describes how to use Real Time Messaging Services to integrate TIBCO Java Message Service and IBM WebSphere MQ messaging services with all Adaptive Server database applications.

Migration Technology Guide – describes different strategies and tools for migrating to a different version of Adaptive Server.
• Monitor Client Library Programmers Guide – describes how to write Monitor Client Library applications that access Adaptive Server performance data.

• Performance and Tuning Series – is a series of books that explain how to tune Adaptive Server for maximum performance:
 • Basics – contains the basics for understanding and investigating performance questions in Adaptive Server.
 • Improving Performance with Statistical Analysis – describes how Adaptive Server stores and displays statistics, and how to use the set statistics command to analyze server statistics.
 • Locking and Concurrency Control – describes how to use locking schemes to improve performance, and how to select indexes to minimize concurrency.
 • Monitoring Adaptive Server with sp_sysmon – describes how to use sp_sysmon to monitor performance.
 • Monitoring Tables – describes how to query Adaptive Server monitoring tables for statistical and diagnostic information.
 • Physical Database Tuning – describes how to manage physical data placement, space allocated for data, and the temporary databases.
 • Query Processing and Abstract Plans – describes how the optimizer processes queries and how to use abstract plans to change some of the optimizer plans.

• Quick Reference Guide – provides a comprehensive listing of the names and syntax for commands, functions, system procedures, extended system procedures, datatypes, and utilities in a pocket-sized book (regular size when viewed in PDF format).

• Reference Manual – is a series of books with detailed Transact-SQL information:
 • Building Blocks – discusses datatypes, functions, global variables, expressions, identifiers and wildcards, and reserved words.
 • Commands – documents commands.
 • Procedures – includes system procedures, catalog stored procedures, system extended stored procedures, and dbcc stored procedures.
• **Tables** – discusses system tables and dbcc tables.

• **System Administration Guide** –
 - *Volume 1* – provides an introduction to the basics of system administration, including a description of configuration parameters, resource issues, character sets, sort orders, and instructions for diagnosing system problems. The second part of this book is an in-depth description of security administration.
 - *Volume 2* – includes instructions and guidelines for managing physical resources, mirroring devices, configuring memory and data caches, managing multiprocessor servers and user databases, mounting and unmounting databases, creating and using segments, using the reorg command, and checking database consistency. The second half of this book describes how to back up and restore system and user databases.

• **System Tables Diagram** – illustrates system tables and their entity relationships in a poster format. Full-size available only in print version; a compact version is available in PDF format.

• **Transact-SQL Users Guide** – documents Transact-SQL, the Sybase-enhanced version of the relational database language. This manual serves as a textbook for beginning users of the database management system. This manual also contains descriptions of the pubs2 and pubs3 sample databases.

• **Troubleshooting Series** –
 - *Troubleshooting: Error Messages Advanced Resolutions* – contains troubleshooting procedures for problems you may encounter. The problems discussed here are the ones the Sybase Technical Support staff hear about most often.
 - *Troubleshooting and Error Messages Guide* – contains detailed instructions on how to resolve the most frequently occurring Adaptive Server error messages. Most of the messages presented here contain error numbers (from the master..sysmessages table), but some error messages do not have error numbers, and occur only in the Adaptive Server error log.

• **Users Guide for Encrypted Columns** – describes how to configure and use encrypted columns with Adaptive Server.
• Using Adaptive Server Distributed Transaction Management Features – explains how to configure, use, and troubleshoot Adaptive Server DTM features in distributed transaction processing environments.

• Using Sybase Failover in a High Availability System – provides instructions for using Sybase Failover to configure an Adaptive Server as a companion server in a high availability system.

• Unified Agent and Agent Management Console – describes the Unified Agent, which provides runtime services to manage, monitor, and control distributed Sybase resources.

• Utility Guide – documents the Adaptive Server utility programs, such as isql and bcp, which are executed at the operating system level.

• Web Services Users Guide – explains how to configure, use, and troubleshoot Web services for Adaptive Server.

• XA Interface Integration Guide for CICS, Encina, and TUXEDO – provides instructions for using the Sybase DTM XA interface with X/Open XA transaction managers.

• XML Services in Adaptive Server Enterprise – describes the Sybase native XML processor and the Sybase Java-based XML support, introduces XML in the database, and documents the query and mapping functions that are available in XML services.

Other sources of information

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase Product Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides in PDF format, and may also contain other documents or updated information not included on the SyBooks CD. It is included with your software. To read or print documents on the Getting Started CD, you need Adobe Acrobat Reader, which you can download at no charge from the Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your software. The Eclipse-based SyBooks browser allows you to access the manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can access through the PDF directory on the SyBooks CD. To read or print the PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the README.txt file on the SyBooks CD for instructions on installing and starting SyBooks.
The Sybase Product Manuals Web site is an online version of the SyBooks CD that you can access using a standard Web browser. In addition to product manuals, you will find links to EBFs/Maintenance, Technical Documents, Case Management, Solved Cases, newsgroups, and the Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at http://www.sybase.com/support/manuals/.

Sybase EBFs and software maintenance

❖ **Finding the latest information on EBFs and software maintenance**
2. Select EBFs/Maintenance. If prompted, enter your MySybase user name and password.
3. Select a product.
4. Specify a time frame and click Go. A list of EBF/Maintenance releases is displayed.

 Padlock icons indicate that you do not have download authorization for certain EBF/Maintenance releases because you are not registered as a Technical Support Contact. If you have not registered, but have valid information provided by your Sybase representative or through your support contract, click Edit Roles to add the “Technical Support Contact” role to your MySybase profile.
5. Click the Info icon to display the EBF/Maintenance report, or click the product description to download the software.

Sybase certifications on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ **Finding the latest information on product certifications**
2. Click Certification Report.
3. In the Certification Report filter select a product, platform, and timeframe and then click Go.
4. Click a Certification Report title to display the report.
Finding the latest information on component certifications

2. Either select the product family and product under Search by Base Product; or select the platform and product under Search by Platform.
3. Select Search to display the availability and certification report for the selection.

Creating a personalized view of the Sybase Web site (including support pages)

Set up a MySybase profile. MySybase is a free service that allows you to create a personalized view of Sybase Web pages.

2. Click MySybase and create a MySybase profile.

Conventions

SQL is a free-form language. There are no rules about the number of words you can put on a line, or where you must break a line. For readability, all examples and most syntax statements in this manual are formatted so that each clause of a statement begins on a new line. Clauses that have more than one part extend to additional lines, which are indented. Complex commands are formatted using modified Backus Naur Form (BNF) notation.

Table 1: Font and syntax conventions for this manual

<table>
<thead>
<tr>
<th>Element</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command names, procedure names, utility names, and other keywords display in sans serif font.</td>
<td>select, sp_configure</td>
</tr>
<tr>
<td>Database names and datatypes are in sans serif font.</td>
<td>master database</td>
</tr>
<tr>
<td>File names, variables, and path names are in italics.</td>
<td>sql.ini file, column_name, $SYBASE/ASE directory</td>
</tr>
<tr>
<td>Variables—or words that stand for values that you fill in—when they are part of a query or statement, are in italic in Courier font.</td>
<td>select column_name from table_name where search_conditions</td>
</tr>
<tr>
<td>Type parentheses as part of the command.</td>
<td>compute row_aggregate (column_name)</td>
</tr>
<tr>
<td>Double colon, equals sign indicates that the syntax is written in BNF notation. Do not type this symbol. Indicates “is defined as”.</td>
<td>::=</td>
</tr>
<tr>
<td>Curly braces mean that you must choose at least one of the enclosed options. Do not type the braces.</td>
<td>{cash, check, credit}</td>
</tr>
</tbody>
</table>
Syntax statements (displaying the syntax and all options for a command) appear as follows:

```
sp_dropdevice [device_name]
```

For a command with more options:

```
select column_name
from table_name
where search_conditions
```

In syntax statements, keywords (commands) are in normal font and identifiers are in lowercase. Italic font shows user-supplied words.

- Examples showing the use of Transact-SQL™ commands are printed like this:

```
select * from publishers
```

- Examples of output from the computer appear as follows:

<table>
<thead>
<tr>
<th>pub_id</th>
<th>pub_name</th>
<th>city</th>
<th>state</th>
</tr>
</thead>
<tbody>
<tr>
<td>0736</td>
<td>New Age Books</td>
<td>Boston</td>
<td>MA</td>
</tr>
<tr>
<td>0877</td>
<td>Binnet & Hardley</td>
<td>Washington</td>
<td>DC</td>
</tr>
<tr>
<td>1389</td>
<td>Algodata Infosystems</td>
<td>Berkeley</td>
<td>CA</td>
</tr>
</tbody>
</table>

(3 rows affected)
In this manual, most of the examples are in lowercase. However, you can disregard case when typing Transact-SQL keywords. For example, SELECT, Select, and select are the same.

Adaptive Server sensitivity to the case of database objects, such as table names, depends on the sort order installed on Adaptive Server. You can change case sensitivity for single-byte character sets by reconfiguring the Adaptive Server sort order. See the System Administration Guide.

This document is available in an HTML version that is specialized for accessibility. You can navigate the HTML with an adaptive technology such as a screen reader, or view it with a screen enlarger.

Adaptive Server HTML documentation has been tested for compliance with U.S. government Section 508 Accessibility requirements. Documents that comply with Section 508 generally also meet non-U.S. accessibility guidelines, such as the World Wide Web Consortium (W3C) guidelines for Web sites.

Note You might need to configure your accessibility tool for optimal use. Some screen readers pronounce text based on its case; for example, they pronounce ALL UPPERCASE TEXT as initials, and MixedCase Text as words. You might find it helpful to configure your tool to announce syntax conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility site includes links to information on Section 508 and W3C standards.

Each Sybase installation that has purchased a support contract has one or more designated people who are authorized to contact Sybase Technical Support. If you cannot resolve a problem using the manuals or online help, please have the designated person contact Sybase Technical Support or the Sybase subsidiary in your area.
This part describes the procedures for configuring Adaptive Server 15.0.3 to run in a clustered environment.
CHAPTER 1

An Overview of the Cluster Edition

What is the Cluster Edition?

The Cluster Edition allows you to configure multiple Adaptive Servers to run as a shared-disk cluster. Multiple machines connect to a shared set of disks and a high-speed private interconnection (for example, a gigabit ethernet), allowing Adaptive Server to “scale” using multiple physical and logical hosts.

In the cluster environment, each machine is referred to as a node and each Adaptive Server as an instance. Connected instances form a cluster, working together to manage a single set of databases on the shared disks. In each case, the instances present as a single system, with all data accessible from any instance. The Cluster Edition assigns SPIDs that are unique to the cluster, so the SPID identifies a single process across all instances in the cluster.

In the clustered system shown in Figure 1-1, clients connect to a shared-disk cluster named “mycluster,” which includes the “ase1”, “ase2”, “ase3”, and “ase4” instances running on machines “blade1”, “blade2”, “blade3”, and “blade4”, respectively. In this example, a single instance resides on each node.
What is the Cluster Edition?

Figure 1-1: Key cluster-aware components

If one cluster member fails, its workload can be transferred to surviving cluster members. For example, if “ase1” fails, clients connected to that instance can fail over to any of the remaining active instances. See Figure 1-2 on page 5.
Note The Cluster Edition can handle multiple failures if they do not happen concurrently, and can recover fully from the initial failure before a subsequent failure occurs.

Figure 1-2: How the cluster handles failure

Applications run on multiple instances with shared data

All instances provide service to a single database store

Public network

Private network

Storage area network

Clustered databases

Quorum disk

“mycluster” shared-disk cluster

Node: blade1

Instance: ase1

Node: blade2

Instance: ase2

Node: blade3

Instance: ase3

Node: blade4

Instance: ase4
Adaptive Server integrated clusterware

The Cluster Edition clusterware is integrated directly into Adaptive Server. No external clusterware is required to run Adaptive Server. Some of the components are new for the Cluster Edition; others are cluster-aware extensions of the existing Adaptive Server infrastructure. Figure 1-3 illustrates these components.

Figure 1-3: Key cluster-aware components of an instance

<table>
<thead>
<tr>
<th>An instance in the Cluster Edition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster logging recovery</td>
</tr>
<tr>
<td>Cluster lock management</td>
</tr>
<tr>
<td>Cluster space/threshold</td>
</tr>
<tr>
<td>Workload manager</td>
</tr>
<tr>
<td>Buffer cache coherency</td>
</tr>
<tr>
<td>Object coherency</td>
</tr>
</tbody>
</table>

DBMS layer

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Single system presentation</td>
</tr>
<tr>
<td>Cluster membership service</td>
</tr>
<tr>
<td>Cluster event service</td>
</tr>
<tr>
<td>Cluster interprocess communication (CIPC)</td>
</tr>
<tr>
<td>Basis I/O and platform abstraction</td>
</tr>
<tr>
<td>Interconnection I/O abstraction</td>
</tr>
</tbody>
</table>

Adaptive Server kernel

Operating system and device drivers

UDP

The Adaptive Server kernel

These are new, native cluster infrastructure components.
- Cluster membership service – manages cluster membership and detects and handles instance failure.
CHAPTER 1 An Overview of the Cluster Edition

- Cluster interprocess communication (CIPC) – provides messaging services and an interconnection abstraction layer that allows the instances to communicate with each other via redundant pathways.
- Cluster event service – supports a generic event-publishing and subscription mechanism for cluster-wide events.

DBMS layer

These key components in the Adaptive Server DBMS layer have been extended to work in the Cluster Edition environment:

- Buffer cache coherency – handles coherency issues related to the shared buffer cache and supports cache-to-cache transfer for allocation pages, index pages, data pages, object allocation map (OAM), and global allocation map (GAM) pages.
- Cluster lock manager – supports distributed locking for coherency control across the cluster.
- Cluster logging and recovery – handles logging from all instances, and fail over database recovery.
- Cluster space and threshold – handles space and threshold management in distributed environment.
- Object coherency – handles coherency issues related to sharing and transferring metadata and global variables. Object coherency must serialize updates to shared objects and make the latest changes available to all instances in the cluster.
- Workload manager – an Adaptive Server module that provides application-level management of resource allocation, availability, and load distribution.

The cluster coordinator

The cluster coordinator handles specific tasks related to membership management and recovery. Any instance attempting to join an existing cluster first contacts the cluster coordinator.

There are no start-up parameters to indicate that a particular instance is the cluster coordinator, and you do not configure the cluster coordinator any differently than any other instance in the cluster. Initially, the cluster coordinator is the first instance you start. If the cluster coordinator exits, another instance dynamically assumes the coordinator role.
What is the Cluster Edition?

The quorum device

The quorum device includes configuration information for the cluster and is shared by all cluster members. The quorum device must be on a raw partition and must be accessible to all nodes that host cluster instances.

Adaptive Server Cluster Edition uses the quorum disk for:

- A location to perform cluster membership management, including voting and arbitration for members joining
- A persistent place to store configuration data used by instances and the UAF
- A communications medium and synchronization point

The quorum device includes information about:

- The name of the cluster, the number of instances in the cluster, the path to the directories containing the interfaces file, log files, master device, and other required configuration information
- Cluster view records that indicate the state (up or down) of each instance in the cluster
- The area that Adaptive Server uses to determine the proper cluster membership when an instance failure is detected

Create the quorum device when you configure the cluster (see the Installation Guide). After the initial configuration, use sybcluster or the qrmutil utility to back up, restore, and reconfigure the quorum device. See Chapter 16, “The sybcluster Utility,” and “qrmutil” on page 342.

Database devices in the Cluster Edition

In the Cluster Edition, database devices—except those private devices that are used by local user temporary databases—must be raw devices (also known as character devices). You cannot use block devices as database devices because they can buffer disk writes at individual hardware nodes, causing data inconsistency among cluster instances.

You can create private devices on block devices. Private devices are used only by local user temporary databases. See your operating system documentation for more information about configuring raw devices.
You can create local user temporary databases on private devices, but you must create local system temporary databases on shared devices. For the Cluster Edition, you can use less expensive, local file system devices (block devices) for managing the storage needs of temporary data in the cluster. These devices are added as private devices and can only be used by local user temporary databases. See Chapter 8, “Using Temporary Databases.”

For example, on Linux systems the path /dev/sda is a block device and should not be used. However you can bind this block device to a raw device such as /dev/raw/raw1.

On Linux systems, you can distinguish character (raw) devices with the file type displayed using the command. Block devices include a b as the file type and character (raw) devices have a c as the file type:

```
[joeadministrator@isles ~]$ ls -l /dev/sda
brw-rw---- 1 root disk 8, 0 Nov 29 06:15 /dev/sda

[joeadministrator@isles ~]$ ls -l /dev/raw/raw1
crw------- 1 sybase sybase 162, 1 Nov 29 12:17 /dev/raw/raw1
```

On Solaris systems, the path /dev/dsk/c0t0d0s1 is a block device and should not be used. However, you can access this same storage as a character device with the path /dev/rdsk/c0t0d0s1. Using an ls -l command on the character device indicates raw at the end of the symbolic link:

```
janeadministrator% ls -l /dev/dsk/c0t0d0s1
lrwxrwxrwx   1 root     root          49 Apr 23  2007 /dev/dsk/c0t0d0s1 ->
.././devices/pci@780/pci@0/pci@9/scsi@0/sd@0,0:b

janeadministrator% ls -l /dev/rdsk/c0t0d0s1
lrwxrwxrwx   1 root     root          53 Apr 23  2007 /dev/rdsk/c0t0d0s1 ->
.././devices/pci@780/pci@0/pci@9/scsi@0/sd@0,0:b,raw
```

On HP Itanium systems, the path /dev/disk/disk4 is a block device and should not be used. However, you can access this storage as a character device with the path /dev/rdisk/disk4. You can distinguish character (raw) devices with the file type displayed using the ls -l command. Block devices include a b as the file type and character (raw) devices have a c as the file type:

```
jphui@hpiastr1-HP-UX:/> ls -l /dev/disk/disk4
brw-r-----   1 bin        sys          3 0x00000000 Feb 23 11:40 /dev/disk/disk4

[jphui@hpiastr1-HP-UX]:/> ls -l /dev/rdisk/disk4
crw-rw-"   1 bin        sys 23 0x00000000 Feb 23 11:40 /dev/rdisk/disk4
```

On IBM AIX systems, you can distinguish character (raw) devices with the file type displayed using the ls -l command. Block devices include a b as the file type and character (raw) devices have a c as the file type. The path /dev/hdisk1 is a block device and should not be used. However, you can access this same storage as a character device with the path /dev/rhdisk1:
What is the Cluster Edition?

Database devices in the Cluster Edition must support SCSI-3 persistent group reservations (SCSI PGRs). The Cluster Edition uses SCSI PGRs to guarantee data consistency during cluster membership changes. Sybase cannot guarantee data consistency on disk subsystems that do not support SCSI PGRs (Sybase does support this configuration for test and development environments where data corruption is tolerated).

PGRs are a feature of the SCSI-3 protocol. However many storage area networks (SANs) that employ less expensive SATA disks still provide this functionality. Contact your storage vendor to verify your system supports SCSI-3 Persistent Group Reservation.

See the installation guide for your platform for additional information about devices and I/O fencing.

Private installation versus shared installation

You can choose whether to configure your cluster using a shared or private installation:

- **Shared installation** – requires a shared file system created using a Network File System (NFS) or a cluster file system. A cluster created using a shared installation supports a single $SYBASE installation directory, Adaptive Server home directory, and server configuration file.

- **Private installation** – supports a separate $SYBASE installation directory, Adaptive Server home directory, and server configuration file for each instance. Parity among the server configuration files is maintained by the master configuration file on the quorum device.

Note Sybase recommends that you use LDAP as your directory service when using a private installation.

The cluster input file contains an entry that identifies whether the installation mode is shared or private:

```
installation mode = private | shared
```
You can find instructions for setting up a private or shared installation in sybcluster, Adaptive Server online help documentation, and in the installation guide for your platform. See also “Private installation mode” on page 187 for instructions on how to maintain the server configuration file when using private installation mode.

Backup Server in the Cluster Edition

The Cluster Edition allows you to configure multiple Backup Servers to perform dump and load operations. dump and load commands are routed to the appropriate Backup Server, depending on how you configured the cluster:

- Dedicated – each instance in the cluster is assigned a specific Backup Server.
- Round robin – instances are not assigned a specific Backup Server, but when they perform a dump or load, the cluster assigns a Backup Server for the job according to availability.

You can elect to have a single Backup Server (named SYB_BACKUP) for the cluster. See Chapter 5, “Using Backup Server in a Clustered Environment.”

How the Cluster Edition enhances the non-clustered edition

With the Cluster Edition, Sybase extends its support of symmetric multiprocessing (SMP), non-clustered servers and introduces an Adaptive Server that can work in a shared-disk environment.

You can group multiple non-clustered servers to provide a single-system view of shared databases that delivers improved reliability and ease of management.

A group of loosely coupled Adaptive Servers, each of which can function as a non-clustered server, work together to provide the user with a single database system image.

The Adaptive Servers in the cluster jointly manage a single installation of Adaptive Server databases residing on shared-disk devices.

The primary advantages of the Cluster Edition architecture are:
Using interconnected networks in the cluster

- Improved availability – the shared-disk nature of the architecture means that applications can continue to run as long as a single cluster member remains viable, even after several others have failed.
- Simple management – does not require data repartition as cluster membership changes, because data is shared by all instances.

Note The Cluster Edition provides a distributed architecture. Internode communication takes place via a network interconnection, not, as with non-clustered Adaptive Server, via shared memory (high-speed system memory). Applications that minimize internode messaging yield the best performance in the Cluster Edition environment.

Using interconnected networks in the cluster

The Cluster Edition allows you to configure one or two interconnected networks between instances in the cluster. Although one interconnected network is sufficient, two interconnected networks allow for a redundant and more robust cluster. The interconnected networks form a series of logical links between every instance in the cluster. These links send messages between instances and are monitored by the Cluster Edition. If any failures are detected, the Cluster Edition reroutes traffic over the alternate networks between the instances.

An interconnection link may fail for various reasons: a physical failure such as a cable that is disconnected or broken, a power supply failure, such as a piece of network infrastructure equipment, or a software failure within the networking stack. The Cluster Edition detects these failures by monitoring the traffic flow between instances. Each instance monitors the messages sent over the various links. A link is considered operational as long as there are incoming messages.

An instance may not always send messages because the node has failed or the link is down. If a particular instance in the cluster is quiet, the Cluster Edition initiates an active probing mechanism to determine if the node supporting the instance can be contacted using the network link. This mechanism ensures that periods of inactivity do not falsely trigger a link failure and subsequent switching event.
If a link is flagged as inoperable, periodic attempts are made to establish if the link has been restored so normal operations can be resumed without manual intervention.

Note Link monitoring is automatically implemented when more than one network is defined in the Cluster Edition.

Monitoring links between instances

The `monCIPCLinks` monitoring table monitors the state of the links between instances in the cluster. `monCIPCLinks` includes two states for each link: “passive” and “active.”

Note A logical cluster and each instance in the cluster can have different states.

- A logical cluster has an overall, or global, state that determines, for example, whether the cluster is offline or online.
- Each instance has a state that describes the state of that particular instance as it is perceived by a logical cluster.

See “Cluster and instance states” on page 111 for a detailed description of cluster “states.”

The “passive” state is used to monitor day-to-day messages sent over the links. The Cluster Edition gathers the active state when there is no message traffic over the link. The status of the link is described as a “state,” and each state has an age associated with it, in milliseconds. The states include “Up,” “Down,” and “In doubt.” The state is “In doubt” when messages are not sent between the instances.

When the cluster is healthy, regular internode traffic is used to determine the state of the link. This is referred to as passive monitoring, and maintains the link’s passive state. If the monitoring that determines the state occurs during a period of inactivity in the cluster, the defined state may become stale and unreliable (that is, a state that is determined to be Up during a period of inactivity may in fact be Down, but the inactivity prevents the `monCIPCLinks` table from showing this in the result set). This inactive state is described in the `PassiveState` column as “In doubt.” Once a link is marked as “In doubt,” the active link state monitoring it is triggered and the value described by the `ActiveState` column is valid.
Each of the active and passive states have an age associated with them, showing when the state was last updated. If the normal traffic is sufficient to maintain the link state, the active state is not updated and the age value associated with this state becomes large. The large value indicates that the associated state may no longer accurately represent the true state of the link.

If instances are not sending messages, the PassiveState is listed as In doubt, but the ActiveState shows the actual state: Up, In doubt, or Down.

This example shows a two-node cluster in which both links are running and have traffic flowing between them. Because the PassiveStateAge is 0 for all links, you can assume the output is a true reflection of the link state:

<table>
<thead>
<tr>
<th>InstanceID</th>
<th>LocalInterface</th>
<th>RemoteInterface</th>
<th>PassiveStateAge</th>
<th>ActiveState</th>
<th>PassiveStateAge</th>
<th>ActiveState</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>ase2</td>
<td>ase2</td>
<td>0</td>
<td>Up</td>
<td>10100</td>
<td>Up</td>
</tr>
<tr>
<td>2</td>
<td>blade2</td>
<td>blade1</td>
<td>0</td>
<td>Up</td>
<td>0</td>
<td>Up</td>
</tr>
<tr>
<td>1</td>
<td>ase1</td>
<td>ase2</td>
<td>0</td>
<td>In doubt</td>
<td>17900</td>
<td>Up</td>
</tr>
<tr>
<td>1</td>
<td>blade1</td>
<td>blade2</td>
<td>0</td>
<td>Up</td>
<td>100</td>
<td>Up</td>
</tr>
</tbody>
</table>

This example shows the same two-node cluster after the primary interconnected network fails. The PassiveState value for the link between the network endpoints “ase1” and “ase2” is “In doubt”, and the value for the PassiveStateAge is “large” (indicating that the ActiveState represents the true state of the links). The ActiveState value is younger and shows the links as “Down”:

<table>
<thead>
<tr>
<th>InstanceID</th>
<th>LocalInterface</th>
<th>RemoteInterface</th>
<th>PassiveStateAge</th>
<th>ActiveState</th>
<th>PassiveStateAge</th>
<th>ActiveState</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>ase2</td>
<td>ase1</td>
<td>13500</td>
<td>Down</td>
<td>700</td>
<td>In doubt</td>
</tr>
<tr>
<td>2</td>
<td>blade2</td>
<td>blade1</td>
<td>0</td>
<td>Up</td>
<td>700</td>
<td>Up</td>
</tr>
<tr>
<td>1</td>
<td>ase1</td>
<td>ase2</td>
<td>13600</td>
<td>Down</td>
<td>400</td>
<td>In doubt</td>
</tr>
<tr>
<td>1</td>
<td>blade1</td>
<td>blade2</td>
<td>0</td>
<td>Up</td>
<td>100</td>
<td>Up</td>
</tr>
</tbody>
</table>
Note There is a slight delay between the failure of a link and the time the active state truly reflects the state of the link.

Ignore any state with the value “large” for ActiveStateAge since this indicates the link is old and the value may be inaccurate. When the link state is old and the value for ActiveStateAge is “large”, active monitoring is triggered by the absence of messages, but has not yet determined the link state.

Suggested deployment scenarios

In general, the Cluster Edition supports the scenarios described in this section, except those that include the features listed in the Release Bulletin for your platform.

Most users considering clustered database architectures have these objectives:

- Increased availability – if a node fails, other nodes in the cluster continue to run and the database continues to be available.
- Increased manageability – multiple applications and databases can be consolidated into a single cluster, thus reducing management complexity and introducing economies of scale.
- Increased scalability – support for multiple nodes that allow clustered databases to scale beyond the limits imposed by single-node environments. Commonly referred to as “vertical scalability,” this means increasing the processing capacity of a single node by adding more CPUs, memory, host bus adaptors (HBAs), network interface cards (NICs), and so on.
- Reduced total cost of ownership – software that can be deployed on industry-standard, nonproprietary hardware, thereby reducing the cost of purchase, maintenance, and support.
Suggested deployment scenarios

HA failover for OLTP applications

If you currently run a production environment using high availability (HA) capabilities, replace those currently provided by Sybase Failover in either active-passive (standby) or active-active (companion) configurations, or the operating system–provided clusterware (for example, Sun Cluster and Veritas Cluster) with one of the Cluster Edition scenarios described below.

Choose and configure a failover scenario that best represents what your company would want given the service-level agreement requirements of the application and financial constraints.

- **1:1 active-passive**
 Cluster nodes and instances are set up in pairs with an idle (passive) node and instance that wait for the corresponding active node to fail. This scenario is cost effective only in extreme environments where requirements do not tolerate service degradation in any failover scenario—including multiple failures.

- **1:1 active-active**
 Cluster nodes and instances are set up in pairs, and each pair services a separate application and database (instance) while monitoring each other in “companion mode” in case the other fails. Although this scenario mimics the current Sybase HA option and provides full utilization of resources, service levels during failed-over processing degrades unless you maintain resource capacity during normal processing that is low enough (less than 50%) to provide sufficient capacity for a single instance to run the workload of both.

- **N:1 (N active nodes covered by a single passive standby node)**
 This scenario provides a single passive standby node and instance to monitor an arbitrary number of active instances. This is the most cost-effective scenario; multiple node failures that fail instances over to a single node can lead to a level of service degradation that can make this scenario unacceptable. Configure the passive node with additional capacity (for example, CPUs and memory) to mitigate the degradation in the most likely failover scenarios.

- **N:M (N active nodes and instances covered by M passive standby nodes)**
This model provides an arbitrary number (M) of passive standby instances to monitor an arbitrary number (N) of active instances. This option reduces costs while covering most typical failure scenarios. The choice of the number of passive standby nodes is typically driven by cost, system-level mean time between failures (MTBF) statistics, and the business impact of running at degraded service levels in a multiple-node failure scenario. In most failure scenarios, you can configure passive nodes with additional capacity to mitigate this degradation.

Horizontal scalability for DSS reporting applications

if you have applications in which the online activity consists primarily of large-scale reports and decision support systems (DSS) querying from a large user population, consider creating a multiple-node cluster in which all Adaptive Server instances service these same applications.

When organizing this system, pay attention to:

- The scalability of users, queries, and response time as the workload expands from one to N nodes.
- The load distribution of clients across instances and their relationship to instance capacity and performance.

Horizontal scalability for OLTP applications

Applications that are read-and write-intensive—such as online transaction processing (OLTP) applications—traditionally pose challenges for scalability because of resource contention while maintaining the ACID properties of a database system. The horizontal scalability of OLTP applications when using shared-disk cluster technology adds additional challenges because of the data coherency and messaging that is required across the server instances in a shared-disk cluster. The physics of computers and networking does not allow OLTP applications to scale infinitely on a shared-disk cluster. As the number of nodes and the load and number of users increase, the amount of internode messaging necessary to maintain buffer coherency across the nodes increases exponentially.
The best method for scaling OLTP workloads on a shared-disk cluster is to partition the application and data into mutually exclusive sets (that is, to separate the data to different databases) to avoid processing coordination across server instances and access the data for an application from the same instance. Because of this, you must carefully consider how you partition “data” at a database level to eliminate the log and data contention across the participating instances. You can facilitate access to this segmented “data” through a single instance with logical clustering and workload management.

Logical clusters allow you to allocate distinct instances to different applications or workloads, logically enabling these groups of data to operate under a single cluster. This reduces inter-instance access and, combined with dedicated temporary databases for each of the instances, helps to deploy an OLTP application in the Cluster Edition that supports continuous data availability.

New client technologies in the Cluster Edition

The Cluster Edition supports a single-system presentation. That is, multiple instances that make up the cluster appear to clients as a single system. New client technologies allow clients to connect logically to a cluster while remaining connected physically to individual instances. This logical connection allows Adaptive Server to redirect the client to various instances in the cluster and to dynamically provide the client with high-availability fail over data. See Chapter 2, “Client Applications and Client/Server Interaction,” and New Features Open Server 15.0 and SDK 15.0 for Microsoft Windows, Linux, and UNIX.

New client technologies include:

- Login redirection – when the client reconnects to another instance in the cluster.
- Connection migration – when an established connection moves to another instance in the cluster.
- Extended high-availability failover – allows the client to fail over multiple times until it finds the first available or least-loaded instance.
Support for replication

The Cluster Edition supports replication using Replication Server and the RepAgent thread. A clustered database can be a source or a destination in a Sybase clustered system. You can perform all of the tasks, such as configuring RepAgent or marking tables for replication, from any instance in the cluster. Replication status is coherent across the entire cluster.

Configuring the RepAgent

When you configure a primary database in a clustered system, the server name you specify should be the cluster name. You can display the cluster name using `select @@servername`.

The syntax for `sp_config_rep_agent` does not require a cluster or instance name. By default, both the Cluster Edition and the non-clustered Adaptive Server edition assume the value of `select @@servername`. In the Cluster Edition, this statement returns the current cluster name. For example:

```
1> select @@servername
2> go
---------------------------
MYCLUSTER
```

Starting the RepAgent

By default, RepAgent starts on the coordinator. However, you can configure RepAgent to start on any instance in the cluster. For example, to configure RepAgent on the primary database pdb to always start on the "ase2" instance, enter:

```
sp_config_rep_agent pdb, "cluster instance name", "ase2"
```

After configuration, you must restart RepAgent using `sp_start_rep_agent` for the new configuration to take effect.

To return to the default behavior with RepAgent always starting on the coordinator, enter:

```
sp_config_rep_agent pdb, "cluster instance name", "coordinator"
```

When an instance starts on its node, it checks if databases are configured to start on its node. If yes, and if the database is marked to start automatically, the RepAgent starts.

When the coordinator starts, it starts all RepAgents not configured to start on a specific instance. If the coordinator fails, or is stopped with a graceful shutdown, a RepAgent starts on the new coordinator.
Support for replication

If a RepAgent is configured to start on a specific instance other than the coordinator, and this instance is shutdown or fails, the RepAgent starts on the coordinator.

Note The Cluster Edition does not support Adaptive Server Enterprise Replicator, which requires the unsupported dbcc logtransfer interface.
CHAPTER 2

Client Applications and Client/Server Interaction

This chapter describes client/server interaction and how to modify applications that make Open Client/Client-Library calls to support clusters. It describes using isql in a shared-disk cluster environment.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Client</td>
<td>22</td>
</tr>
<tr>
<td>Enabling failover in Client-Library applications</td>
<td>23</td>
</tr>
<tr>
<td>Client/server interaction</td>
<td>24</td>
</tr>
<tr>
<td>Using isql in a clustered environment</td>
<td>32</td>
</tr>
<tr>
<td>Using remote procedure calls in a clustered environment</td>
<td>32</td>
</tr>
<tr>
<td>Reconnecting clients when a node loses power</td>
<td>34</td>
</tr>
</tbody>
</table>

Note DB-Library can connect to an instance in a shared-disk cluster, but does not support the Sybase shared-disk or high-availability functionality.

The version of Open Client, jConnect, ODBC, OLE DB, and ADO.NET that ships with the Cluster Edition supports:

- Login redirection – the ability of an instance to redirect an incoming client connection to another instance prior to acknowledging the login. Login redirection occurs during the login sequence. The client application does not receive notification that it was redirected.

- Connection migration – occurs when an existing client is transferred from one instance of a cluster to another. See “Connection migration” on page 26 for information about when migration can occur, and connection criteria.

- Extended high-availability failover – in an extended failover configuration, Adaptive Server provides a list of failover addresses to “high-availability-aware” clients when they connect. This allows high-availability-aware clients or applications to failover multiple times if the instance to which they are connected fails.
These clients are not required to have a HAFAILOVER entry in their interfaces file or directory services. However, if they do have an HAFAILOVER entry in their interfaces file or directory services, the clients continue to use this entry until Adaptive Server sends them a list of failover addresses or servers to connect to. The clients always use the latest list Adaptive Server provides.

To implement login redirection and connection migration, make sure the application uses a current copy of the client libraries:

- If the application is linked to shared libraries – include the new client libraries in the library search path before the old libraries.
- If the application is statically linked – relink the application.

Use the CS_PROP_MIGRATABLE connection property to enable or disable connection migration. CS_PROP_MIGRATABLE is on by default. See the Client Library Reference Manual.

To implement extended failover, make sure the application uses a current copy of the client libraries and that you have enabled high availability. See Using Sybase Failover in a High Availability System for information about enabling high availability.

For information about using the failover features with jConnect, ODBC, OLE DB, and ADO.NET Driver, see “New Features Open Server 15.0 and SDK 15.0 for Microsoft Windows, Linux, and UNIX”.

Login redirection, connection migration, and extended high availability failover are supported for these versions:

- Login redirection – Open Client version 15.0
- Extended high availability – OCS version 15.0 ESD #3
- Migration – OCS version 15.0, ESD #8

The SDK component that supports these versions is OpenClient/Client-Library.
Enabling failover in Client-Library applications

Any existing application can connect to the Cluster Edition. However, to use extended high-availability (HA) capabilities, you may need to change application code.

- For existing HA applications based on existing Adaptive Server HA functionality, no application code changes are required.
- Existing non-HA applications may benefit from some aspects of the HA capabilities of the Cluster Edition with no code changes, or minor ones. However, in these cases, failover is not transparent: the application receives an error message when failover is first detected. The user must resubmit the batch or transaction to initiate failover.

To enable failover for non-HA applications:

- For isql, specify the -Q option when connecting to Adaptive Server.
- For applications linked with Client-Library, set a corresponding connection property that enables failover.

To make failover transparent to users, the application must actively check for failover error status, and automatically resubmit the batch or transaction.

In all cases, you must update the Client-Library version used by the application to use the cluster-related HA capabilities.

To enable failover in Client-Library applications:

1. Set the CS_HAFAILOVER property at either the context or the connection level using the ct_config or ct_con_props Client-Library API calls:

   ```c
   ct_config (context, action, CS_HAFAILOVER, buf, buflen, &outlen);
   ct_con_props (connection, action, CS_HAFAILOVER, buf, buflen, &outlen);
   ```

 See the Client-Library/C Reference Manual for more information about the CS_HAFAILOVER property.

2. If you attempt to connect to an instance that is down, behavior is the same as with a non-clustered Adaptive Server: Client-Library tries all the query entries for the instance name in the interfaces file until one of them works, or it has none left to try. Include query lines in the client-side interfaces file for all instances. Applications can connect to the cluster, which is represented by a series of interfaces file query entries. For information about the interfaces file, see the Cluster Edition Installation Guide.
When a successful failover occurs, the Client-Library issues a return value named CS_RET_HAFAILOVER, which is specific to several Client-Library API calls, including:

```c
ret = ct_results(cmd, result_type)
ret = ct_send(cmd)
```

CS_RET_HAFAILOVER is returned from the API call during a synchronous connection (a routine that requires a server response and blocks until the response is received). In an asynchronous connection (a routine that requires a server response returns CS_PENDING immediately), these APIs issue CS_PENDING, and the callback function returns CS_RET_HAFAILOVER. Depending on the return code, the customer can perform the required processing, set up the context, and send the next command to be executed.

Rebuild your applications using the Open Client SDK with a version that is at least equal to the version of the Open Client SDK shipped with the Cluster Edition.

See Using Sybase Failover in a High Availability System for information about configuring applications for high availability.

Client/server interaction

The features in this section, which use Open Client 15.0 libraries, are enabled automatically.

Login redirection

Login redirection occurs at login time when an instance tells a client to log in to another instance because of load considerations.

You do not need to perform any additional configuration for client redirection.

Login redirection is used by the Adaptive Server workload manager to send incoming connections to specific instances based on the logical cluster configuration and the cluster’s current workload.
If you attempt to connect to an instance that is down, behavior is the same as with a non-clustered Adaptive Server: the client tries all entries in the directory service of a given server until it can connect successfully. Because of this, your server entries in the directory service should contain connection information for all instances in the cluster.

This example includes the Adaptive Servers “ase1,” “ase2,” “ase3,” and “ase4,” on machines “blade1,” “blade2,” “blade3,” and “blade4,” running in the cluster “mycluster.”

```
ase1
  query tcp ether blade1 19786
ase2
  query tcp ether blade2 19786
ase3
  query tcp ether blade3 19786
ase4
  query tcp ether blade4 19786
mycluster
  query tcp ether blade1 19786
  query tcp ether blade2 19786
  query tcp ether blade3 19786
  query tcp ether blade4 19786
```

For example, if a client connects to cluster “mycluster,” it first tries to connect to the “ase1” instance. If “ase1” is down, it tries the next entry in the interfaces file, “ase2”, and so on. After a successful connection, the workload manager may redirect the client to another instance based on workload rules.

Although instances are tried in the order specified in the interfaces file, it can take a considerable amount of time for a connection attempt to fail when hosts or the network are unreachable or down. You can expedite the retry attempt by adding a login timeout to the connection information.

In the example above, if you specified a login timeout interval that is shorter than the default for the connecting client, the client could attempt to connect to instance “ase2” more quickly.

Connection properties for login redirection

Set the connections properties to configure login redirection:

- **CS_PROP_REDIRECT** – enables and disables login redirection
Client/server interaction

- CS_DS_RAND_OFFSET – disables or enables making first query entry randomly retrieved from the directory service lookup for ct_connect. By default, this property is set to false.

See the Client Library Reference Manual.

Connection migration

Connection migration occurs when an existing client is transferred from one instance of a cluster to another. For example, a connection may migrate because the instance to which it is currently connected is brought down for maintenance, or it may migrate for load balancing. The transfer is transparent to the client application. Connection migration allows the cluster to balance the load throughout the logical cluster.

Connection migration allows the workload manager to gracefully move existing connections between instances during administrative failover, failback, or logical clusters going offline. The workload manager can use migration for dynamic load distribution, during which some existing connections are migrated between instances to more evenly distribute load.

Connection migration is enabled automatically when an instance uses the Open Client 15.0. client libraries. You do not need to perform any additional configuration for connection migration.

Difference between migration and failover

Migration is a planned, controlled event that Adaptive Server requests. Failover is an unplanned event that occurs after an Adaptive Server crash or network disconnect.

Applications are not aware of—and you do not need to write code for—migration. However, you must specifically code applications for failover support.

Migration restores the full session context on the new instance. Failover does not; it is up to the application to restore its own context.

When can migration occur?

The workload manager can initiate a migration when a request can successfully be sent to a client. Specifically, migration can occur:

- To connections that have completed their login:
After an instance receives a new batch from the client, but before the batch is parsed and executed.

After an instance completes the processing of a client batch but before it sends a final completion to the client.

When an instance is not executing any batch on behalf of the client.

According to the workload manager’s algorithm. The Work load Manager may migrate certain clients for load balancing or because the current instance is being brought down for maintenance.

When a connection’s context accommodates migration. The workload manager targets connections for migration, but these connections migrate only when their context allows this. In particular, no migration can occur inside a transaction.

Note Connection migration is not supported for connections executing Java. See “Using Java in a clustered environment” on page 191.

Migrated contexts

The source instance propagates the client’s full context to the destination instance when it has successfully completed the migration, and the destination instance retrieves the context.

The client’s full context is restored after the migration is complete, making migration completely transparent to the client. However, a migrated connection acquires a new spid.

The client’s context consists of the following elements:

- The name of the current database
- Any pending batch of commands if the migration occurs in pre-batch mode
- The client’s login record
- The client's language and character sets
- The client’s capabilities
- Any monitor counters and statistic
- Any roles
- Any set options
Client/server interaction

- Trace flags 3604 and 3605

Criteria for migration

Migration is an asynchronous event: a request is issued for the task to migrate, and the task migrates only when it reaches a quiescent state. For the Cluster Edition, a quiescent state is one that:

- Is not executing a query batch
- Has no open transactions
- Has no session-level temporary tables
- Has no declared cursors
- Has not changed its password since its initial connection
- Has not run set user or set proxy
- Is not bound to an engine using the logical process manager
- Is not using ASE Active Messaging
- Is not a logical connection associated with an inbound site handler
- Has not kept a database open in single-user mode.

Context migration

When Adaptive Server migrates an existing connection to another instance, it must also migrate some of the context from the existing connection, such as the current database and set options.

Configuring a client migration

The idle migration timer and session idle timer configuration parameters control when idle clients migrate. The sum of these two parameters determines the upper limit for the number of seconds during which migration is expected to complete.

The default setting for idle migration timer is 60, measured in seconds. The default setting for session idle timer is 600, measured in seconds.
If you set idle migration timer to 0, the instance closes the connection on which a migration request was issued immediately after it sends the migration request. If you set session idle timer to 0, the instance invalidates any idle migration not completed before idle migration timer expires.

Setting session idle timer to a high value increases the chance for idle connections to migrate successfully. However, the instance must preserve the contexts of the migrating clients for a long time. It also means that setting both idle migration timer and session idle timer to 0 disables migration. See “New configuration parameters” on page 333.

The examples below describe various configurations for idle migration timer and session idle timer.

- If an instance issues a migration request against an idle client that cannot process asynchronous notifications, and the user or the application issues a command on the client before the expiration of the idle migration timer, the client migrates immediately and the command is executed on the destination instance.

 “Read ahead” clients read any pending data from the network before the application requests it.

- The instance closes the connection to the client, if the following are all true:
 - Both idle migration timer and session idle timer are set to their default values.
 - An instance issues a migration request against an idle, non read-ahead client.
 - The client remains idle for the duration of idle migration timer.

- If a command is issued on the client during the first 600 seconds (default value of idle migration timer) following the closure of the connection by the instance, the client migrates successfully and the command is executed on the target instance.

- An instance closes the connection to the client if the following are true:
 - Both idle migration timer and session idle timer are set to their default values.
 - An instance issues a migration request against an idle, non read-ahead client.
 - No command is issued against the client before the expiration of the idle migration timer.
Client/server interaction

- An instance invalidates the migration if the following are true:
 - Both idle migration timer and session idle timer are set to their default values.
 - An instance issues a migration request against an idle, non-read-ahead client.
 - No command is issued against the client before idle migration timer expires.

The client attempts to migrate as soon as it detects the migration request, because a command is issued. However, the instance rejects the migration request and the client tries to continue on the initial instance. Because the connection to the instance is closed (idle migration timer timed out), the client attempts an HA failover if it has HA capability, otherwise, it reports a disconnect to the application.

<table>
<thead>
<tr>
<th>idle migration timer set to 0, session idle timer set to 600</th>
</tr>
</thead>
<tbody>
<tr>
<td>If an instance issues a migration request against an idle, non-read-ahead client, the instance closes the connection to the client immediately after sending the migration request. If a command is issued against the client during the initial 600 seconds, the client migrates successfully, otherwise, it fails in the same manner described in the previous bullet.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>idle migration timer set to 60, session idle timer set to 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>The instance issues a migration request against an idle, non-read-ahead client. If a command is issued against the client before idle migration timer expires, the client migrates successfully. However, if no command is issued before idle migration timer expires, the client can migrate, since session idle timer is set to 0.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>idle migration timer and session idle timer set to 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>If both parameters are set to 0, neither instance migrates clients.</td>
</tr>
</tbody>
</table>

Extended high-availability failover

Adaptive Server provides a list of failover addresses to “HA-aware” clients when they connect. This allows high-availability-aware clients or applications to failover multiple times whenever the instance to which it is connected becomes unavailable. If the instance has not sent a failover list to the client, the client uses the HAFAILOVER entry information in the interfaces file.

This example allows an HA-aware client to failover if there is a network failure during login before the instance sends the extended high-availability list:

```bash
asel query tcp ether bladel 19786
```
The HAFAILOVER entry should use the cluster alias as the server name since a client application tries each query line until it establishes a connection to an instance in the cluster.

Extended failover requires Open Client 15.0, ESD #3 or later. The client libraries in the Cluster Edition contain ESD #8.

Open Client uses the CS_PROP_EXTENDEDFAILOVER property for extended failover. See the Client-Library/C Reference Manual for more information.

Differences between HA failover and failover in clusters

From the client side, enabling high availability means the application receives the error code CS_RET_HAFAILOVER during a network failure, and the client library automatically reconnects to a server. In high availability, the application again attempts to connect first to the original server, and then tries the secondary server (as set in the interfaces file entry for the primary server) if the connection fails. If you use the Open Client libraries shipped with the Cluster Edition, the instance sends a failover target list to the client. The application uses this list to determine where to connect when the instance fails.

Whether you use high availability or the Cluster Edition, failover can occur at any point.
Using *isql* in a clustered environment

By default, you can use *isql* to connect to an Adaptive Server instance in a shared-disk cluster environment. However, to connect to an Adaptive Server instance in a shared-disk cluster and turn on high-availability failover or extended high-availability failover for the client, you must start *isql* using the -Q option.

Note Although *isql* -Q can use the extended high-availability capabilities, it is not transparent: when an instance fails, *isql* receives an error and you must resubmit the batch or transaction.

See the *Utility Guide*.

Using remote procedure calls in a clustered environment

Remote procedure calls (RPCs) allow clients to initiate stored procedures on a remote server. The remote server runs the system procedure in its context as if it was requested by a local client, and sends back results to the original server over the network.

In addition to server-to-server RPCs, the Cluster Edition includes three additional classes of RPCs. The first class involves an RPC where the remote server is a cluster. The second class involves an RPC where the local, or originating, server is a cluster instance. The third class involves an RPC where both the local and remote servers are instances in the same cluster.

In earlier versions of Adaptive Server, the default value for cis rpc handling was 0. In the Cluster Edition, the default value is 1, which forces RPC handling to use Component Integration Service (CIS) as the default RPC handling mechanism instead of the site handler.

A cluster instance identifies itself to remote servers using the name of the cluster, not the name of the instance. The @@servername global variable returns the name of the cluster.
RPCs where the remote server is a cluster

Because the Cluster Edition supports a single-system image, using a cluster as a remote server has minimal impact on the server sending the RPC request.

If the server sending the RPC is using cis rpc handling, the cluster perceives the inbound request as a regular client connection. The workload manager attempts to route the RPC to the appropriate instance and logical cluster based on the configured routing rules. The workload manager rules may dictate login redirection, as long as the initiating server indicates that it supports login redirection. Adaptive Server 15.0 and later support login redirection for RPC requests.

If the initiating server uses site handlers, the cluster workload manager is bypassed and the RPC runs in the system logical cluster of the instance that accepted the connection.

RPCs where the local server is a cluster

The Cluster Edition does not support outbound RPCs through site handlers, and, by default, uses CIS RPC handling. Because outbound RPCs from a cluster are identified using the name of the cluster, configure remote servers to accept RPCs from the cluster, rather than from the individual instances.

RPCs where local and remote servers are instances in the same cluster

Instances in a cluster occasionally use RPCs for intra-cluster communication. When the cluster is started, Adaptive Server automatically adds each cluster instance to the sysservers table, and removes any cluster instances from sysservers that are no longer in the cluster definition. This is also done when instances are dynamically added and dropped at runtime. These sysservers entries have the cluster instance status bit set. Because intra-cluster RPCs are intended for specific instances, the sysservers entries do not have the enable login redirection status bit set.

sp_serveroption

The sp_serveroption system procedure includes the enable login redirection and cluster instance options.
Reconnecting clients when a node loses power

enable login redirection

enable login redirection determines if RPC requests are sent to another cluster. The syntax is:

```
sp_serveroption server_name, 'enable login redirection', [ true | false ]
```

where:

- `server_name` – is the name of the remote server for which you are setting enable login redirection. This remote server must be included in sysservers.
- `true` – means the instance can redirect RPC requests to another cluster.
- `false` – means the instance cannot redirect RPC requests.

By default, enable login redirection is enabled. (You must have the sa_role to run `sp_serveroption`.)

cluster instance

cluster instance identifies sysservers entries that store instance information, where `instance_name` is the name of the instance you are adding.

```
sp_serveroption instance_name, 'cluster instance', [ true | false ]
```

By default, `cluster_instance` is disabled (set to false) for each remote server.

The Cluster Edition automatically manages the sysservers rows for instances in the local cluster. You need not manually set or clear the `cluster_instance` flag.

Reconnecting clients when a node loses power

If the network cable is removed from a machine or if a node to which a client is connected loses its power, the client-side socket becomes unreachable. The client socket waits, without results, for a reply from the server or waits for the cluster to issue a send operation.

In the situation shown below, a client application is connected to “big_cluster”, which consists of “Node1” and “Node2” on which instances “ASECE1” and “ASECE2” are running, respectively. A client application is connected to instance “ASECE1” running on “Node1”.

If the power is disconnected from “Node1”, the client application waits for contact from the node. The only way to avoid this situation is to configure the client application to assume the node is down after a specified amount of time. It then connects to another node in the cluster.
The operating system network detects a crash, disconnects the clients, and fails over the sockets from the remote side of the connection.

To reduce the time required to detect when a cluster loses a host or when a public network is disconnected from a node running an instance, you can:

- Set TCP `keepalive` to a reasonable value on the host on which the client is running.
- Set the client application’s timeout value.

The TCP `keepalive` parameter eventually marks the client socket as failed. However, because the default value of the TCP `keepalive` value is a long amount of time (in some systems it may be set to as long as two hours), it may be three or more hours before the client-side sockets fail over. Setting `keepalive` to a small value (several minutes) may not be practical for large organizations, but you can set `keepalive` to a period of time that is appropriate for your site, that works with the HAFAILOVER capabilities.

Set TCP `keepalive` on client machines. The appropriate values vary, depending on the operating system you use. See your client’s operating system documentation for more information.
Reconnecting clients when a node loses power

If you are testing for client timeouts, set the values for the parameters in the first two columns of Table 2-1 to a few minutes, and set the values for the parameters in the third column to a low number.

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Amount of time parameter waits before probing the connection</th>
<th>Amount of time between probes for parameter</th>
<th>Maximum amount of time or attempts for parameter to probe connections before dropping them</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solaris</td>
<td>N/A</td>
<td>tcp_keepalive_interval Measured in milliseconds</td>
<td>N/A</td>
</tr>
<tr>
<td>Linux</td>
<td>tcp_keepalive_time Measured in seconds</td>
<td>tcp_keepalive_intvl Measured in seconds</td>
<td>tcp_keepalive_probes Measured as absolute number</td>
</tr>
<tr>
<td>Windows XP</td>
<td>KeepAliveTime Measured in seconds</td>
<td>KeepAliveInterval Measured in seconds</td>
<td>TCPMaxDataRetransmissions Measured as absolute number</td>
</tr>
<tr>
<td>HP-UX</td>
<td>tcp_time_wait_interval Measured in milliseconds</td>
<td>tcp_keepalive_interval Measured in milliseconds</td>
<td>tcp_keepalive_kill Measured in milliseconds</td>
</tr>
</tbody>
</table>

Set client's timeout value

There are two different timeout properties you can set for Client-Library program connections:

- **CS_LOGIN_TIMEOUT** – determines how long the client waits to connect to an unreachable host.
- **CS_TIMEOUT** – determines how long a client waits for commands to complete.

Based on how you configure the timeout event, the client either fails or fails over to another node.

You can configure clients to set the Client-Library CS_TIMEOUT parameter to determine how long to wait before they time out.

You must set the CS_TIMEOUT and CS_LOGIN_TIMEOUT parameters or the isql -t and -l parameters for clients to fail over during a sudden loss of power to the node.

For more information about the Client-Library parameters CS_TIMEOUT and CS_LOGIN_TIMEOUT, see the Client-Library/C Reference Manual. For information about CS_HAFAILOVER, see “Client/server interaction” on page 24.

For information about using the isql -t and -l parameters, see the Adaptive Server Enterprise Utility Guide.
CHAPTER 3

Using Security with a Clustered Environment

This chapter discusses configuring security in a clustered environment.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using encrypted columns in a clustered environment</td>
<td>37</td>
</tr>
<tr>
<td>Using SSL in a clustered environment</td>
<td>37</td>
</tr>
<tr>
<td>Using LDAP as a directory service</td>
<td>39</td>
</tr>
</tbody>
</table>

For information about auditing, see “Adding auditing” on page 445.

Using encrypted columns in a clustered environment

You cannot:

- Create encryption keys in local temporary databases
- Set the system encryption password in local temporary databases

See the User Guide for Encrypted Columns

Using SSL in a clustered environment

The Cluster Edition allows the server name specified in the directory service entry to be different from the common name the SSL server certificate uses for performing an SSL handshake. This allows you to use a fully-qualified domain name for the SSL certificate common name (for example server1.bigcompany.com) and use the same certificate for multiple servers.

To add a common name to the interfaces file, use this format:
Using SSL in a clustered environment

master tcp ether host_name port_number ssl="CN='common_name'"
query tcp ether host_name port_number ssl="CN='common_name'"
ase2
master tcp ether host_name port_number ssl="CN='common_name'"
query tcp ether host_name port_number ssl="CN='common_name'"
ase3
master tcp ether host_name port_number ssl="CN='common_name'"
query tcp ether host_name port_number ssl="CN='common_name'"
mycluster
query tcp ether host_name port_number ssl="CN='common_name'"
query tcp ether host_name port_number ssl="CN='common_name'"
query tcp ether host_name port_number ssl="CN='common_name'"

Where `common_name` is the fully-qualified domain name for the cluster node. `common_name` can include white space. Instances defined in the interfaces file may or may not use the same common name.

Note You can add only one SSL certificate to a master database. Because each instance in a cluster shares the same disk, they all use the same path for the SSL server certificate. Sybase recommends that all instances use the same common name.

For example, this is a sample interfaces file entry for cluster mycluster:

```
asel
  master tcp ether blade1 19786 ssl="CN='ase1.big server 1.com'"
  query tcp ether blade1 19786 ssl="CN='ase1.big server 1.com'"
as2
  master tcp ether blade2 19886 ssl="CN='ase1.big server 1.com'"
  query tcp ether blade2 19886 ssl="CN='ase1.big server 1.com'"
as3
  master tcp ether blade3 19986 ssl="CN='ase1.big server 1.com'"
  query tcp ether blade3 19986 ssl="CN='ase1.big server 1.com'"
mycluster
  query tcp ether blade1 19786 ssl="CN='ase1.big server 1.com'"
  query tcp ether blade2 19886 ssl="CN='ase1.big server 1.com'"
  query tcp ether blade3 19986 ssl="CN='ase1.big server 1.com'"
```

Specifying a common name with sp_listener

`sp_listener` includes the `CN=common_name` parameter, which allows you to specify a common name for the SSL certificate. The syntax is:
sp_listener 'command', '[protocol:]machine_name:port_number:
"CN=common_name", 'engine_number'

Where CN=common_name is used only if you specify ssltcp as the protocol. If included, it uses the specified common_name to validate the common_name in the SSL certificate. If you do not include CN=common_name, Adaptive Server uses server_name to validate the common name in the SSL certificate. CN=common_name must match the common name entry in the certificate. If you include a fully-qualified domain name in the certificate, it must match the CN=common_name.

The attribute name “CN” is case insensitive, but the attribute value for the common name is case sensitive. For example, the attribute name may be “CN,” “Cn,” or “cn.”

For example, this specifies the common name as1.big server 1.com:

sp_listener 'start', 'ssltcp:blade1:17251:"CN=as1.big server 1.com", '0'

See the Adaptive Server Reference Manual for more information about sp_listener.

Using LDAP as a directory service

Adaptive Server uses directory services to establish client and RPC connections over the Internet. This chapter provides information about using LDAP directory services to establish connections.

Lightweight Directory Access Protocol (LDAP) is an industry standard for accessing directory services. Directory services allow components to look up information by a distinguished name (DN) from an LDAP server that stores and manages server, user, and software information that is used throughout the enterprise or over a network.

The LDAP server can be located on a different platform from the one on which Adaptive Server or the clients are running. LDAP defines the communication protocol and the contents of messages exchanged between clients and servers. Messages are operators, such as client requests for read, write and query, and server responses, including data-format information.

The LDAP server stores and retrieves information about:

- Adaptive Server, such as IP address, port number, and network protocol
- Security mechanisms and filters
Using LDAP as a directory service

- High availability companion server name

The LDAP server can be configured with these access restrictions:

- Anonymous authentication – all data is visible to any user.
- User name and password authentication – Adaptive Server uses the user name and password for UNIX platforms:
 - $SYBASE/$SYBASE_OCS/config/libtcl.cfg on 32-bit platforms
 - $SYBASE/$SYBASE_OCS/config/libtcl64.cfg on 64-bit platforms

User name and password authentication properties establish and end a session connection to an LDAP server.

Note The user name and password that are passed to the LDAP server for user authentication purposes are distinct and different from those used to access Adaptive Server.

When an LDAP server is specified in the libtcl.cfg libtcl64.cfg or libtcl64.cfg file (collectively the libtcl*.cfg file), the server information is searched for using the ordered list of directory services from the libtcl*.cfg file. If the information is not found there, it then searches the interfaces file.

For the Cluster Edition, an interfaces file may be set in the quorum file. When the quorum file specifies an interfaces file, the Cluster Edition ignores the directory services specified in libtcl*.cfg files.

If multiple directory services are supported in a server, then the order in which they are searched is specified in libtcl*.cfg. You cannot specify the search order with the dataserver command-line option. See “Multiple directory services” on page 47.

LDAP directory services versus the Sybase interfaces file

The LDAP driver implements directory services for use with an LDAP server. LDAP directories are an infrastructure that provide:

- A network-based alternative to the traditional Sybase interfaces file
- A single, hierarchical view of information, including users, software, resources, networks, files, and so on

Table 3-1 highlights the differences between the Sybase interfaces file and an LDAP server.
Table 3-1: interfaces file versus LDAP directory services

<table>
<thead>
<tr>
<th>interfaces file</th>
<th>Directory services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform-specific</td>
<td>Platform-independent</td>
</tr>
<tr>
<td>Specific to each Sybase installation</td>
<td>Centralized and hierarchical</td>
</tr>
<tr>
<td>Contains separate master and query entries</td>
<td>One entry for each server that is accessed by both clients and servers</td>
</tr>
<tr>
<td>Cannot store metadata about the server</td>
<td>Stores metadata about the server</td>
</tr>
</tbody>
</table>

LDAP directory services support more attributes than the Sybase interfaces file. These attributes can include server version, server status, and so on. See Table 3-2 for a list of attributes.

Note LDAP is only supported with reentrant libraries. You must use `isql_r`, instead of `isql`, when connecting to a server using LDAP directory services.

Table 3-2 lists the Sybase LDAP directory entries.

Table 3-2: Sybase LDAP directory definitions

<table>
<thead>
<tr>
<th>Attribute name</th>
<th>Value type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ditbase</td>
<td><code>interfaces</code> file or <code>libtcl.cfg</code></td>
<td>DIT base for object tree. If the <code>libtcl.cfg</code> file is specified, the <code>interfaces</code> file is ignored. The <code>libtcl.cfg</code> file can be overridden with <code>ct_con_prop()</code> for a specified connection.</td>
</tr>
<tr>
<td>dn</td>
<td>Character string</td>
<td>Distinguished name. Must be unique name that identifies the object.</td>
</tr>
<tr>
<td>sybaseVersion</td>
<td>Integer</td>
<td>Server version number.</td>
</tr>
<tr>
<td>sybaseServername</td>
<td>Character string</td>
<td>Server name.</td>
</tr>
<tr>
<td>sybaseService</td>
<td>Character string</td>
<td>Service type: Sybase Adaptive Server, Sybase SQL Server, or ASE.</td>
</tr>
<tr>
<td>sybaseStatus</td>
<td>Integer</td>
<td>Status: 1 = Active, 2 = Stopped, 3 = Failed, 4 = Unknown.</td>
</tr>
<tr>
<td>sybaseAddress</td>
<td>String</td>
<td>Each server address includes:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Protocol: TCP, NAMEPIPE, SPX DECNET (entry is case sensitive).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Address: any valid address for the protocol type.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note <code>dscp</code> splits this attribute into Transport type and Transport address.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Filter: None, ssl, or ssl="CN=common_name" weekends.</td>
</tr>
<tr>
<td>sybaseSecurity</td>
<td>String</td>
<td>Security OID (object ID).</td>
</tr>
</tbody>
</table>
Using LDAP as a directory service

<table>
<thead>
<tr>
<th>Attribute name</th>
<th>Value type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sybaseRetryCount</td>
<td>Integer</td>
<td>This attribute is mapped to CS_RETY_COUNT, which specifies the number of times that ct_connect retries the sequence of network addresses associated with a server name.</td>
</tr>
<tr>
<td>sybaseRetryDelay</td>
<td>Integer</td>
<td>This attribute is mapped to CS_LOOP_DELAY, which specifies the delay, in seconds, that ct_connect waits before retrying the entire sequence of addresses.</td>
</tr>
<tr>
<td>sybaseHAServername (optional)</td>
<td>String</td>
<td>A secondary server for failover protection.</td>
</tr>
</tbody>
</table>

The traditional interfaces file with TCP connection and a failover machine looks like:

 looey
 master tcp ether huey 5000
 query tcp ether huey 5000
 hafailover secondary

An example of an LDAP entry with TCP and a failover machine looks like:

 dn: sybaseServername=foobar, dc=sybase,dc=com
 objectClass: sybaseServer
 sybaseVersion: 1500
 sybaseServername: foobar
 sybaseService: ASE
 sybaseStatus: 4
 sybaseAddress: TCP#1#foobar 5000
 sybaseRetryCount: 12
 sybaseRetryDelay: 30
 sybaseHAServername: secondary

All entries in the LDAP directory service are called entities. Each entity has a distinguished name (DN) and is stored in a hierarchical tree structure based on its DN. This tree is called the directory information tree (DIT). Client applications use a DIT base to specify where entities are stored. See “The libtcl*.cfg file” on page 43.

In the example above, the entry describes an Adaptive Server named “foobar” listening on a TCP connection with a port number of 5000. The value 1, located between TCP and 5000, means the entry is used for both QUERY and MASTER entries. This value should always be 1 for an LDAP directory service. This entity also specifies a retry count of 12 (times) and a retry delay of 30 (seconds). Once a client has found an address where a server responds, the login dialog between the client and the server begins.

You can find a complete list of Sybase’s LDAP directory schema in UNIX $SYBASE/$SYBASE_OCS/config.
In the same directory, there is also a file called `sybase-schema.conf`, which contains the same schema, but uses a Netscape-specific syntax.

Since LDAP supports multiple entries for each attribute, each address attribute must contain the address of a single server, including protocol, access type, and address. See `sybaseAddress` in Table 3-2.

For example, this is an LDAP entry for a Windows server listening on two addresses, with different connection protocols:

```
sybaseAddress = TCP#1#TOEJAM 4444
sybaseAddress = NAMEPIPE#1#\pipe\sybase\query
```

Note Each entry in the address field is separated by the `#` character.

You can edit these entries with `dsedit`. See “Adding a server to the directory services” on page 45.

To ensure cross-platform compatibility for all Sybase products, the protocol and address attribute fields should be in a platform- and product-independent format.

The `libtcl*.cfg` file

You use the `libtcl*.cfg` file to specify the LDAP server name, port number, DIT base, user name, and password to authenticate the connection to an LDAP server.

The purpose of the `libtcl*.cfg` file is to provide configuration information such as driver, directory, and security services for Open Client/Open Server and Open Client/Open Server-based applications. 32-bit utilities (such as `dsedit`) look up the `libtcl.cfg`, while 64-bit applications use the `libtcl64.cfg` file for configuration information.

You should edit both the `libtcl.cfg` and the `libtcl64.cfg` files to ensure compatibility between 32- and 64-bit applications.

The default `libtcl.cfg` file is located in `$SYBASE/$SYBASE_OCS/config`.

If LDAP is specified in the `libtcl.cfg` file, the interfaces file is not used.

Note Open Client/Open Server applications that use the `-I` option at start-up override the `libtcl.cfg` file and use the interfaces file.
In its simplest form, the libtcl.cfg file is in this format:

```plaintext
[DIRECTORY]
ldap=libsybdldap.dll ldapurl
```

where the ldapurl is defined as:

```plaintext
ldap://host:port/ditbase
```

The following LDAP entry, using these same attributes, is an anonymous connection and only works only if the LDAP server allows read-only access.

```plaintext
ldap=libsybdldap.dll ldap://seashore/d=sybase,dc=com
```

You can specify a user name and password in the libtcl.cfg file as extensions to the LDAP URL to enable password authentication at connection time.

Enabling LDAP directory services

To use a directory service, you must:

1. Configure the LDAP server according to the vendor-supplied documentation.
2. Add the location of the LDAP libraries to the Unix load library path environment variable for your platform.
3. Configure the libtcl.cfg file to use directory services.

Use any standard ASCII text editor to:

- Remove the semicolon (;) comment markers from the beginning of the LDAP URL lines in the libtcl.cfg file under the [DIRECTORY] entry.
- Add the LDAP URL under the [DIRECTORY] entry. See Table 3-3 for supported LDAP URL values.

Warning! The LDAP URL must be on a single line.

```plaintext
file libtcl.cfg:
ldap=libsybdldap.so ldap://host:port/ditbase??scope??bindname=
username?password
```

```plaintext
file libtcl64.cfg
ldap=libsybdldap64.so
ldap://host:port/ditbase??scope??bindname=username?password
```
For example:

```
[DIRECTORY]
ldap=libsysbdldap.so ldap://huey:11389/dc=sybase,dc=com??one??
bindname=cn=Manager,dc=sybase,dc=com?secret
```

“one” indicates the scope of a search that retrieves entries one level below the DIT base.

Table 3-3 defines the keywords for the `ldapurl` variables.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>host</code> (required)</td>
<td>The host name or IP address of the machine running the LDAP server</td>
<td>None</td>
</tr>
<tr>
<td><code>port</code></td>
<td>The port number that the LDAP server is listening on</td>
<td>389</td>
</tr>
<tr>
<td><code>ditbase</code> (required)</td>
<td>The default DIT base</td>
<td>None</td>
</tr>
<tr>
<td><code>username</code></td>
<td>Distinguished name (DN) of the user to authenticate</td>
<td>NULL (anonymous authentication)</td>
</tr>
<tr>
<td><code>password</code></td>
<td>Password of the user to be authenticated</td>
<td>NULL (anonymous authentication)</td>
</tr>
</tbody>
</table>

4 Verify that the appropriate environment variable points to the required third-party libraries. The Netscape LDAP SDK libraries are located in `$SYBASE/$SYBASE_OCS/lib3p` or `lib3p64`. The Unix load library path environment variable must point to this directory.

5 Add your server entry to the LDAP server using `dscp` or `dsedit`. See “Adding a server to the directory services” on page 45.

Adding a server to the directory services

Warning! Most LDAP servers have an `ldapadd` utility for adding directory entries. Sybase recommends you use `dsedit` instead since it has built-in semantic checks that generic tools do not provide.

Each server entry is made up of a set of attributes. When you add or modify a server entry, you are prompted for information about server attributes. Some attributes are provided by default, others require user input. When a default value is provided, it appears in brackets “[]”. See Table 3-2 on page 41 for accepted values.
Adding a server entry to the directory service using dsedit

Before you can add, delete, or modify an LDAP server entry, you must add the LDAP URL to the libtcl.cfg file. See “The libtcl*.cfg file” on page 43.

Use dsedit to add a server to the directory service:

1. Source SYBASE.csh or SYBASE.sh to set the environment variables.
2. cd to $SYBASE/$SYBASE_OCS/bin.
3. Execute dsedit.
4. Select LDAP from the list of servers, and click OK.
5. Click Add New Server Entry.
6. Enter:
 - The server name – this is required.
 - The security mechanism – optional. This is the name of the high-availability failover server, if you have one.
7. Click Add New Network Transport and:
 - Select the transport type.
 - Enter the host name.
 - Enter the port number.
 - (Optional) enter the SSL filter string.
8. Click OK two times to edit dsedit.

To view the server entries, enter the following URL in Netscape, http://host:port/ditbase??one.

For example:

ldap://huey:11389/dc=sybase,dc=com??one

Note Microsoft Internet Explorer does not recognize LDAP URLs.

For more information about dscp, see the Open Client/Server Configuration Guide, in the 11.1.x Generic Collection at http://www.sybase.com/support/manuals.
Multiple directory services

Any type of LDAP service, whether it is an actual server or a gateway to other LDAP services, is called an LDAP server.

You can specify multiple directory services for high-availability failover protection. Not every directory service in the list needs to be an LDAP server.

For example:

```plaintext
[DIRECTORY]
ldap=libsybdldap.so ldap://test:389/dc=sybase,dc=com
ldap=libsybdldap.so ldap://huey:11389/dc=sybase,dc=com
```

In this example, if the connection to `test:389` fails, the connection fails over to the LDAP server on `huey:11389` is attempted. Different vendors employ different DIT base formats.

Encrypting the password

Entries in the `libtcl.cfg` file are in human-readable format. Sybase provides a `pwdcrypt` utility for basic password encryption. `pwdcrypt` is a simple algorithm that, when applied to keyboard input, generates an encrypted value that can be substituted for the password. `pwdcrypt` is located in `$SYBASE/$SYBASE_OCS/bin`.

From the `$SYBASE/$SYBASE_OCS` directory, enter:

```
bin/pwdcrypt
```

Enter your password twice when prompted.

`pwdcrypt` generates an encrypted password. For example:

```
0x01312a775ab9d5c71f99f05f7712d2ced218d0ae1ce78868d0e8669313d1bc4c706
```

Copy and paste the encrypted password into the `libtcl.cfg` file using any standard ASCII-text editor. Before encryption, the file entry appears as:

```plaintext
ldap=libsybdldap.so
dlапр://seashore/dc=sybase,dc=com??one??bindname=uid=Manager,dc=sybase, dc=com?password
```
Using LDAP as a directory service

Replace the password with the encrypted string:

```plaintext
ldap=libsybdldap.so
ldap://seashore/dc=sybase,dc=com??one??bindname=uid=Manager,dc=sybase,dc=com?
0x01312a775ab9d5c71f99f05f7712d2ced218d0ae1ce78868d0e8669313d1bc4c706
```

Warning! Even if your password is encrypted, you should still protect it using file-system security.

Performance

Performance when using an LDAP server may be slower than when using an interfaces file because the LDAP server requires time to make a network connection and retrieve data. Since this connection is made when Adaptive Server is started, changes in performance will be seen at login time, if at all. During normal system load, the delay should not be noticeable. During high system load with many connections, especially repeated connections with short duration, the overall performance difference of using an LDAP server versus the traditional interfaces file might be noticeable.

Migrating from the *interfaces* file to LDAP

There is no direct method to upgrade an existing server using the *interfaces* file to one that uses lightweight directory services. To upgrade an earlier version of Adaptive Server to Adaptive Server version 15.0, see the *Installation Guide for Windows*.

Once you have upgraded the server, you can configure your server to use LDAP service.

1. Shut down the server. For information about starting and stopping clusters, see the *Users Guide to Clusters*. For shared memory servers, see the configuration guide for Adaptive Server 15.0, Chapter 2, “Starting and Stopping Servers.”

2. Edit the `$SYBASE/$SYBASE_OCS/config/libtcl.cfg` or `libtcl64.cfg` file to add the directory service. See “Enabling LDAP directory services” on page 44.
3 Use dsedit or dscp to add the server, cluster, and instance entries for clustered servers to the directory service. See “Adding a server to the directory services” on page 45.

4 Use qrmutil to verify that the interfaces directory attributes in the cluster quorum file is empty for the cluster and instance definitions. For example, to show the values in the quorum file, enter:

```
$SYBASE/$SYBASE_ASE/bin/qrmutil --quorum-dev=path_to_your_quorum --display=config
```

You must reset the value if a path is defined for the `interface_dir` attribute on any instance, or for the cluster. Specifying this attribute with a path value forces the instance to use the interfaces file and overrides the information in the `libtcl.cfg` and `libtcl64.cfg` files.

For example, use these qrmutil commands to reset the value of the `interface_dir` attributes. The value for `interface_dir` is two single quotes, meaning an empty string.

```
$SYBASE/$SYBASE_ASE/bin/qrmutil --quorum-dev=path_to_your_quorum --interface_dir=''
$SYBASE/$SYBASE_ASE/bin/qrmutil --quorum-dev=path_to_your_quorum --instance=name_of_instance_to_reconfig --interface_dir=''
```

5 Restart your server or cluster.

Using LDAP directory services with the shared-disk cluster

The Cluster Edition can use LDAP directory services to specify its cluster and instance entries. You must specify an empty string for the `interface_dir` attribute in the cluster’s quorum file. Do not use the `dataserver` parameter `-i interfaces_path` to specify the path to the interfaces file.

If you do not specify a value for `interface_dir`, the Cluster Edition uses the ordered list of directory services defined in the `$SYBASE/OCS-15_0/config/libtcl64.cfg` (for 64-bit servers and clients), or `$SYBASE/OCS-15_0/config/libtcl.cfg` (for 32-bit servers and clients). After the server searches the directory services defined in `libtcl64.cfg`, the interfaces file in the default location is searched.

Open Client applications can use LDAP directory service to store cluster and instance server entries. For example, for a cluster named “mycluster” with two instances (“ase1” and “ase2”), the interfaces looks like:
Using LDAP as a directory service

You must use dsedit or dscp to add equivalent LDAP directory service entries for the server names “ase”, “ase2”, and “mycluster” to the LDAP directory service. See “Adding a server to the directory services” on page 45. For more information about dsedit and dscp, see the Utility Guide.

Clients can connect to any instance in the cluster using the cluster name (in this example, “mycluster”) or an instance-specific server name (“ase1” or “ase2”).

When SSL is used for clients to connect to a non-clustered Adaptive Server using SSL, the SSL filter is placed after the port number in the interfaces file. The directory service includes the common name, which you added with dsedit or from hand-editing. Typically, one SSL certificate with one common name is used for the entire cluster, rather than one for each instance. See “Using SSL in a clustered environment” on page 37.

This example adds the SSL filter to an interfaces file entry for the cluster “mycluster:"

mycluster

query tcp ether blade1 10945 ssl="cn=mycluster.domain.com"
query tcp ether blade2 10955 ssl="cn=mycluster.domain.com"

Entries added to an LDAP directory service must specify the common name with the SSL filter, ssl="cn=mycluster.domain.com".

For example, this dscp session adds the example entry above for cluster “mycluster:"

% dscp

>> open ldap

ok

Session 1 ldap>> add mycluster
Service: [ASE]
Transport Type: [tcp]
Transport Address: blade1 10945 ssl="cn=mycluster.domain.com"
Transport Type: [tcp]
Transport Address: blade2 10955 ssl="cn=mycluster.domain.com"
Transport Type: [tcp]
Transport Address:
Security Mechanism [] :
HA Failoverserver:
Retry Count:
Retry Delay:
Added mycluster

Session 1 ldap>> read mycluster

DIT base for object: dc=domain,dc=com
Distinguish name: sybaseServername=mycluster, dc=domain,dc=com
Server Entry Version: 15001
Server Name: mycluster
Server Service: ASE
Server Status: 4 (Unknown)
Server Address:
Transport Type: tcp
Transport Address: yellowstar 2521 ssl="cn=mycluster.domain.com"
Transport Type: tcp
Transport Address: yellowstar 2525 ssl="cn=mycluster.domain.com"

Session 1 ldap>> quit
Using LDAP as a directory service
CHAPTER 4

Using Monitoring Tables in a Clustered Environment

This chapter describes monitor tables for the Cluster Edition, and how to configure and manage them.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changes for clusters</td>
<td>53</td>
</tr>
<tr>
<td>New and changed tables for the cluster cache manager</td>
<td>57</td>
</tr>
<tr>
<td>Monitoring tables added for PCM</td>
<td>60</td>
</tr>
<tr>
<td>Monitoring tables added for recovery</td>
<td>63</td>
</tr>
<tr>
<td>Monitoring table added for cluster lock manager (CLM)</td>
<td>68</td>
</tr>
<tr>
<td>Monitoring tables added for CIPC</td>
<td>69</td>
</tr>
<tr>
<td>Monitoring tables added for temporary databases</td>
<td>74</td>
</tr>
<tr>
<td>Tables added or changed for general statistics</td>
<td>75</td>
</tr>
<tr>
<td>Monitoring tables added for workload manager</td>
<td>77</td>
</tr>
</tbody>
</table>

Changes for clusters

In a clustered environment, monitoring tables report on a per-instance basis instead of returning a cluster-wide result. This allows you to monitor the activities of processes and queries across the cluster to get a better understanding of the statistics for objects that may be opened on more than one instance and resource usage on each instance in the cluster. For example, if you query the monitoring tables about a table, this table may be opened or accessed by more than one instance in the cluster, so the descriptors for this table—and the associated statistics—may be in memory on the instance. Statistics are not aggregated for the cluster. The statistical results for all instances are returned as a unioned result set with rows collected from each instance. Each instance is identified in the result set with a row in the InstanceID column.
Configuring the system view

The system_view is a session-specific setting that allows you to control the scope of monitoring data that queries return from the monitoring tables, sysprocesses, sp_who, and other commands. When you set system_view to cluster, queries on the monitoring tables return data from all active instances in the cluster. When you set system_view to instance, queries on the monitoring tables return data only for processes or objects that are active on the instance to which the client is connected.

Use the set command to configure the scope of the session:

```
set system_view {instance | cluster | clear}
```

where:

- instance – returns statistics for the local instance only. Cross-cluster requests are not sent to any other instance in the cluster.
- cluster – returns statistics for all instances in the cluster.
- clear – returns the system view to the configured default.

This example modifies the session settings so queries on the monitoring tables return data only for the instance to which the client is connected:

```
set system_view instance
```

This example modifies the session settings so queries on the monitoring tables return data for the cluster:

```
set system_view cluster
```

This example clears the current setting of the system view and returns system view to the default setting.

```
set system_view clear
```

If you do not specify an InstanceID when you query a monitoring table or call a monitoring table RPC, the instance uses the current system_view configuration.

The session system view is inherited from its host logical cluster. selecting the @@system_view global variable to determine the current system view.
Configuring monitoring tables

Use configuration parameters for the monitoring tables to determine their cluster-wide or instance-only behavior. By default, all monitoring table configuration values are applied cluster-wide. See “sp_configure” on page 322.

Managing the message pipe

These parameters determine how the cluster and instances manages the memory used to store the data for the historical monitoring tables:

- deadlock pipe max messages
- errorlog pipe max messages
- sql text pipe max messages
- plan text pipe max messages
- statement pipe max messages

You can configure these parameters globally for the cluster and individually for each instance. These parameters allocate memory for the pipe. An instance can dynamically add memory to the pipe but cannot dynamically remove memory from the pipe, so if you reduce the size of the parameter, you must restart the instance for the new pipe size to take effect.

Below are some algorithms for determining the size for the parameters.

- For an individual instance, the memory required for the each pipe configuration is:

 \[\text{configuration _ value} \times \text{number _ of _ engines} \]

- To globally set the memory for each pipe configuration:

 \[\text{configuration _ value} \times \text{number _ of _ engines} \times \text{number _ of _ instances} \]

- If you have set the value for pipe configurations differently for each instance, then the amount of memory required for the cluster is:

 \[(\text{instance_1 _ value} \times \text{number _ of _ engines}) + (\text{instance_2 _ value} \times \text{number _ of _ engines}) + \ldots + (\text{instance_n _ value} \times \text{number _ of _ engines}) \]
Changes for clusters

Changes for RPCs

If you invoke an RPC but do not include the InstanceID as a parameter, the monitoring tables use the system view setting to determine how to report the statistics. If you have set the system view setting to instance, all data gathering is local. If you have set the system view setting to cluster, the monitoring tables communicate with instances forming the all instances in the cluster, not the logical cluster.

InstanceId added to monitor instances

Table 4-1 describes monitoring tables to which the Cluster Edition adds the InstanceID column.

<table>
<thead>
<tr>
<th>Table 4-1: monitoring tables with InstanceID column</th>
</tr>
</thead>
<tbody>
<tr>
<td>monCachePool</td>
</tr>
<tr>
<td>monCachedProcedures</td>
</tr>
<tr>
<td>monDeadLock</td>
</tr>
<tr>
<td>monEngine</td>
</tr>
<tr>
<td>monLicense</td>
</tr>
<tr>
<td>monOpenDatabases</td>
</tr>
<tr>
<td>monOpenPartitionActivity</td>
</tr>
<tr>
<td>monProcess</td>
</tr>
<tr>
<td>moProcessLookup</td>
</tr>
<tr>
<td>monProcessObject</td>
</tr>
<tr>
<td>monProcessSQLText</td>
</tr>
<tr>
<td>monProcessWaits</td>
</tr>
<tr>
<td>monResourceUsage</td>
</tr>
<tr>
<td>monSysPlanText</td>
</tr>
<tr>
<td>monSysStatement</td>
</tr>
<tr>
<td>monSysWorkerThread</td>
</tr>
<tr>
<td>monCachedObject</td>
</tr>
</tbody>
</table>

Table 4-2 describes monitoring tables that return identical information for all instances.
Table 4-2: monitoring tables that include the same information for all instances

<table>
<thead>
<tr>
<th>Table name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>monMon</td>
<td>Metadata view is identical on all instances.</td>
</tr>
<tr>
<td>monTableColumns</td>
<td>Metadata view is identical on all instances.</td>
</tr>
<tr>
<td>monTableParameters</td>
<td>Metadata view is identical on all instances.</td>
</tr>
<tr>
<td>monTables</td>
<td>Metadata view is identical on all instances.</td>
</tr>
<tr>
<td>monWaitClassInfo</td>
<td>List of descriptions is identical on all instances.</td>
</tr>
<tr>
<td>monWaitEventInfo</td>
<td>List of descriptions is identical on all instances.</td>
</tr>
</tbody>
</table>

New and changed tables for the cluster cache manager

New tables

The Cluster Edition adds the monClusterCacheManager for statistical analysis for the cluster cache manager.

monClusterCacheManager

Description

monClusterCacheManager provides diagnostic information about the cluster cache manager daemon running on each instance. monClusterCacheManager reports cluster-wide information on a per-instance basis.

Columns

<table>
<thead>
<tr>
<th>Name</th>
<th>Datatype</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>InstanceID</td>
<td>tinyint1</td>
<td>ID of the instance within the cluster.</td>
</tr>
<tr>
<td>DaemonName</td>
<td>varchar(30)</td>
<td>Name of the cluster cache manager daemon.</td>
</tr>
<tr>
<td>RequestsQueued</td>
<td>int4</td>
<td>Number of requests queued to the cluster cache manager daemon.</td>
</tr>
<tr>
<td>RequestsRequeued</td>
<td>int4</td>
<td>Number of requests requeued to the cluster cache manager daemon.</td>
</tr>
<tr>
<td>RequestsServiced</td>
<td>int4</td>
<td>Number of requests serviced by the cluster cache manager daemon.</td>
</tr>
<tr>
<td>TransfersInitiated</td>
<td>int4</td>
<td>Number of transfers initiated by the cluster cache manager daemon.</td>
</tr>
<tr>
<td>Downgrades</td>
<td>int4</td>
<td>Number of downgrades performed by the cluster cache manager daemon.</td>
</tr>
</tbody>
</table>
New and changed tables for the cluster cache manager

<table>
<thead>
<tr>
<th>Name</th>
<th>Datatype</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Releases</td>
<td>int4</td>
<td>Number of releases performed by the cluster cache manager daemon.</td>
</tr>
<tr>
<td>DiskWrites</td>
<td>int4</td>
<td>Number of disk writes initiated by the cluster cache manager daemon.</td>
</tr>
<tr>
<td>SleepCount</td>
<td>int4</td>
<td>Number of times the cluster cache manager daemon went to sleep.</td>
</tr>
<tr>
<td>AvgServiceTime</td>
<td>int4</td>
<td>Average time (in milliseconds) spent servicing a request.</td>
</tr>
<tr>
<td>MaxQSize</td>
<td>int4</td>
<td>Maximum number of requests queued to the cluster cache manager daemon at any time since the instance started.</td>
</tr>
</tbody>
</table>

Required parameters
None

Changed tables

monOpenObjectActivity and monOpenPartitionActivity

monOpenObjectActivity and monOpenPartitionActivity add these columns for analyzing lock acquisitions.

<table>
<thead>
<tr>
<th>Name</th>
<th>Datatype</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhysicalLocks</td>
<td>int4</td>
<td>Number of physical locks requested per object.</td>
</tr>
<tr>
<td>PhysicalLocksRetained</td>
<td>int4</td>
<td>Number of physical locks retained. You can use this to identify the lock hit ratio for each object. Good hit ratios imply balanced partitioning for this object.</td>
</tr>
<tr>
<td>PhysicalLocksDeadlocks</td>
<td>int4</td>
<td>Number of times a physical lock requested returned a deadlock. The Cluster Physical Locks subsection of sp_sysmon uses this counter to report deadlocks while acquiring physical locks for each object.</td>
</tr>
<tr>
<td>PhysicalLocksWaited</td>
<td>int4</td>
<td>Number of times an instance waits for a physical lock request.</td>
</tr>
<tr>
<td>Name</td>
<td>Datatype</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>PhysicalLocksPageTransfer</td>
<td>int4</td>
<td>Number of page transfers that occurred when an instance requests a physical lock. The Cluster Physical Locks subsection of sp_systm uses this counter to report the node-to-node transfer and physical-lock acquisition as a node affinity ratio for this object.</td>
</tr>
<tr>
<td>PhysicalLocksRetainWaited</td>
<td>int4</td>
<td>Number of physical lock requests waiting before a lock is retained.</td>
</tr>
<tr>
<td>TransferReqWaited</td>
<td>int4</td>
<td>Number of times physical lock requests waiting before receiving page transfers.</td>
</tr>
<tr>
<td>AvgPhysicalLocksWaitTime</td>
<td>int4</td>
<td>The average amount of time clients spend before the physical lock is granted.</td>
</tr>
<tr>
<td>AvgTransferReqWaitTime</td>
<td>int4</td>
<td>The average amount of time physical lock requests wait before receiving page transfers.</td>
</tr>
<tr>
<td>TotalServiceRequests</td>
<td>int4</td>
<td>Number of physical lock requests serviced by the Cluster Cache Manager of an instance.</td>
</tr>
<tr>
<td>PhysicalLocksDowngraded</td>
<td>int4</td>
<td>Number of physical lock downgrade requests serviced by the Cluster Cache Manager of an instance.</td>
</tr>
<tr>
<td>PagesTransferred</td>
<td>int4</td>
<td>Number of pages transferred at an instance by the Cluster Cache Manager.</td>
</tr>
<tr>
<td>ClusterPageWrites</td>
<td>int4</td>
<td>Number of pages written to disk by the Cluster Cache Manager of an instance.</td>
</tr>
<tr>
<td>AvgServiceTime</td>
<td>int4</td>
<td>The average amount of service time spent by the Cluster Cache Manager of an instance.</td>
</tr>
<tr>
<td>AvgTimeWaitedOnLocalUsers</td>
<td>int4</td>
<td>The average amount of service time an instance’s Cluster Cache Manager waits due to page use by users on this instance.</td>
</tr>
<tr>
<td>AvgTransferSendWaitTime</td>
<td>int4</td>
<td>The average amount of service time an instance’s Cluster Cache Manager spends for page transfer.</td>
</tr>
<tr>
<td>AvgIOServiceTime</td>
<td>int4</td>
<td>The average amount of service time used by an instance’s Cluster Cache Manager for page transfer.</td>
</tr>
</tbody>
</table>
Monitoring tables added for PCM

<table>
<thead>
<tr>
<th>Name</th>
<th>Datatype</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AvgDowngradeServiceTime</td>
<td>int4</td>
<td>The average amount of service time the Cluster Cache Manager uses to downgrade physical locks.</td>
</tr>
</tbody>
</table>

monState

monState adds this column for the Cluster Edition version 15.0.3.

<table>
<thead>
<tr>
<th>Name</th>
<th>Datatype</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transactions</td>
<td>int4</td>
<td>Number of transactions run, server-wide</td>
</tr>
</tbody>
</table>

monCachedProcedures

monCachedProcedures adds these columns for the Cluster Edition.

<table>
<thead>
<tr>
<th>Name</th>
<th>Datatype</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RequestCnt</td>
<td>int4</td>
<td>Number of times this procedure was requested from cache</td>
</tr>
<tr>
<td>TempdbRemapCnt</td>
<td>int4</td>
<td>Number of times this procedure was remapped for the temporary database’s ID.</td>
</tr>
<tr>
<td>AvgTempdbRemapTime</td>
<td>int4</td>
<td>Average time (in milliseconds) spent remapping the temporary databases’s ID.</td>
</tr>
</tbody>
</table>

Cluster Edition version 15.0.3 and later includes these monitoring tables for PCM.
monPCM

Description

Tracks the PCM activities in the cluster (for example, the number of fragments that were sent and received), and contains a row for each peer coordination module (PCM) client.

Columns

<table>
<thead>
<tr>
<th>Column name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>InstanceID</td>
<td>int1</td>
<td>Instance ID for which the information is collected</td>
</tr>
<tr>
<td>ModuleName</td>
<td>int4</td>
<td>Name of the PCM client</td>
</tr>
<tr>
<td>Sent</td>
<td>int4</td>
<td>Number of messages sent per module</td>
</tr>
<tr>
<td>Fragments_sent</td>
<td>int4</td>
<td>Number of fragments sent per module</td>
</tr>
<tr>
<td>Fragments_received</td>
<td>int4</td>
<td>Number of fragments received per module</td>
</tr>
<tr>
<td>Received</td>
<td>int4</td>
<td>Number of messages received per module</td>
</tr>
<tr>
<td>Reply</td>
<td>int4</td>
<td>Number of replies received per module</td>
</tr>
<tr>
<td>Unicasts</td>
<td>int4</td>
<td>Number of unicast messages sent per module</td>
</tr>
<tr>
<td>Multicasts</td>
<td>int4</td>
<td>Number of multicast messages sent per module</td>
</tr>
<tr>
<td>Sync</td>
<td>int4</td>
<td>Number of synchronous messages sent per module</td>
</tr>
<tr>
<td>Async</td>
<td>int4</td>
<td>Number of asynchronous messages sent per module</td>
</tr>
<tr>
<td>MinBytes</td>
<td>int4</td>
<td>Minimum number of bytes transferred per message</td>
</tr>
<tr>
<td>AvgBytes</td>
<td>int4</td>
<td>Average number of bytes transferred per message</td>
</tr>
<tr>
<td>MaxBytes</td>
<td>int4</td>
<td>Maximum number of bytes transferred per message</td>
</tr>
<tr>
<td>MinDialog</td>
<td>int4</td>
<td>Minimum length of the dialogues</td>
</tr>
<tr>
<td>AvgDialog</td>
<td>int4</td>
<td>Average length of the dialogues</td>
</tr>
<tr>
<td>MaxDialog</td>
<td>int4</td>
<td>Maximum length of the dialogues</td>
</tr>
<tr>
<td>Dialog</td>
<td>int4</td>
<td>Number of the dialogues</td>
</tr>
<tr>
<td>MinTimeSyncApi</td>
<td>flt4</td>
<td>Minimum time spent in PCM API in synchronous mode in the PCM layer per module</td>
</tr>
<tr>
<td>Column name</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>AvgTimeSyncApi</td>
<td>flt4</td>
<td>Average time spent in PCM API in synchronous mode in the PCM layer per module</td>
</tr>
<tr>
<td>MaxTimeSyncApi</td>
<td>flt4</td>
<td>Maximum time spent in PCM API in synchronous mode in the PCM layer per module</td>
</tr>
<tr>
<td>MinTimeAsyncApi</td>
<td>flt4</td>
<td>Minimum time spent in PCM API in asynchronous mode in the PCM layer per module</td>
</tr>
<tr>
<td>AvgTimeAsyncApi</td>
<td>flt4</td>
<td>Average time spent in PCM API in asynchronous mode in the PCM layer per module</td>
</tr>
<tr>
<td>MaxTimeAsyncApi</td>
<td>flt4</td>
<td>Maximum time spent in PCM API in asynchronous mode in the PCM layer per module</td>
</tr>
<tr>
<td>MinTimeCIPCMsgAlloc</td>
<td>flt4</td>
<td>Minimum time spent in cipcmsg allocations in the PCM layer per module</td>
</tr>
<tr>
<td>AvgTimeCIPCMsgAlloc</td>
<td>flt4</td>
<td>Average time spent in cipcmsg allocations in the PCM layer per module</td>
</tr>
<tr>
<td>MaxTimeCIPCMsgAlloc</td>
<td>flt4</td>
<td>Maximum time spent in cipcmsg allocations in the PCM layer per module</td>
</tr>
<tr>
<td>MinTimeCIPCSendCB</td>
<td>flt4</td>
<td>Minimum time spent in cipc_sendcb per module</td>
</tr>
<tr>
<td>AvgTimeCIPCSendCB</td>
<td>flt4</td>
<td>Average time spent in cipc_sendcb per module</td>
</tr>
<tr>
<td>MaxTimeCIPCSendCB</td>
<td>flt4</td>
<td>Maximum time spent in cipc_sendcb per module</td>
</tr>
<tr>
<td>MinTimeCIPCUnicastsmsg</td>
<td>flt4</td>
<td>Minimum time spent in CIPC while sending the unicasts message per module</td>
</tr>
<tr>
<td>AvgTimeCIPCUnicastsmsg</td>
<td>flt4</td>
<td>Average time spent in CIPC while sending the unicasts message per module</td>
</tr>
<tr>
<td>MaxTimeCIPCUnicastsmsg</td>
<td>flt4</td>
<td>Maximum time spent in CIPC while sending the unicasts message per module</td>
</tr>
<tr>
<td>MinTimeCIPCMulticastsmsg</td>
<td>flt4</td>
<td>Minimum time spent in CIPC while sending the multicasts message per module</td>
</tr>
</tbody>
</table>
CHAPTER 4 Using Monitoring Tables in a Clustered Environment

Monitoring tables added for recovery

The Cluster Edition version 15.0.3 and later include the following monitoring tables to track recovery performance for server boot recovery, load database, load transaction, online database, mount a database, and failover recovery:

- monDBRecovery
- monDBRecoveryLRTypes
- monCMSFailover
- monFailoverRecovery

monDBRecovery and monDBRecoveryLRTypes contain diagnostic information at an individual database level. monCMSFailover contains diagnostic information for cluster failover at the level of the cluster membership service module. monFailoverRecovery contains aggregated failover recovery diagnostic information for cluster lock manager, database recovery and cluster membership service modules.
monDBRecovery

Description

Contains rows from all instances in the cluster and contains rows for every database that contributes to recovery.

Columns

<table>
<thead>
<tr>
<th>Column name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBID</td>
<td>int4</td>
<td>Unique identifier for the database</td>
</tr>
<tr>
<td>DBName</td>
<td>varchar(30)</td>
<td>Name of the database</td>
</tr>
<tr>
<td>InstanceID</td>
<td>int1</td>
<td>Instance that performed the recovery (applicable only to the Cluster Edition)</td>
</tr>
<tr>
<td>FailedInstanceID</td>
<td>int1</td>
<td>ID of the failed instance (applicable only to the Cluster Edition)</td>
</tr>
<tr>
<td>Command</td>
<td>varchar(30)</td>
<td>One of load database, load transaction, online database, mount database, and start or failover commands executed by the process that is running recovery</td>
</tr>
<tr>
<td>RecType</td>
<td>varchar(30)</td>
<td>Type of recovery – one of server start, load database, load transaction, or node failover</td>
</tr>
<tr>
<td>MaxOpenXacts</td>
<td>int4</td>
<td>Maximum number of open transactions seen during recovery</td>
</tr>
<tr>
<td>MaxPFTSEntries</td>
<td>int4</td>
<td>Maximum number of PFTS entries seen during recovery</td>
</tr>
<tr>
<td>Buckets</td>
<td>int4</td>
<td>Number of buckets</td>
</tr>
<tr>
<td>LobBStartime</td>
<td>datetime(8)</td>
<td>Start time for the log boundaries determination pass</td>
</tr>
<tr>
<td>LogBEndtime</td>
<td>datetime(8)</td>
<td>End time for the log boundaries determination pass</td>
</tr>
<tr>
<td>LogBTotPages</td>
<td>int4</td>
<td>Number of log scan getpage requests during the log boundary determination pass</td>
</tr>
<tr>
<td>LogBTotAPFWaited</td>
<td>int4</td>
<td>Number of log scan getpage requests that found the I/O in progress during the log boundary determination pass</td>
</tr>
<tr>
<td>LogBTotIO</td>
<td>int4</td>
<td>Number of log scan getpage requests with physical I/O during the log boundary determination pass</td>
</tr>
<tr>
<td>AnlStartime</td>
<td>datetime(8)</td>
<td>Start time of analysis pass</td>
</tr>
<tr>
<td>AnlEndtime</td>
<td>datetime(8)</td>
<td>End time of the analysis pass</td>
</tr>
<tr>
<td>AnlTotRec</td>
<td>int4</td>
<td>Total number of log records to be scanned by the recovery process</td>
</tr>
<tr>
<td>AnlPhase1Recs</td>
<td>int4</td>
<td>Number of log records in phase 1 recovery process</td>
</tr>
<tr>
<td>Column name</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>AnlPhase1RedoRecs</td>
<td>int4</td>
<td>Number of log records to redo in phase 1 recovery</td>
</tr>
<tr>
<td>AnlPhase2Recs</td>
<td>int4</td>
<td>Number of log records in phase 2 recovery process</td>
</tr>
<tr>
<td>AnlPhase2RedoRecs</td>
<td>int4</td>
<td>Number of log records to redo in phase 2 recovery</td>
</tr>
<tr>
<td>AnlTotPages</td>
<td>int4</td>
<td>Number of log scan getpage requests during the analysis process</td>
</tr>
<tr>
<td>AnlTotAPFWaited</td>
<td>int4</td>
<td>Number of log scan getpage requests that found the I/O in progress during the analysis pass</td>
</tr>
<tr>
<td>AnlTotIO</td>
<td>int4</td>
<td>Number of log scan getpage requests with physical I/O during the analysis pass</td>
</tr>
<tr>
<td>RedoStartTime</td>
<td>datetime(8)</td>
<td>Start time of the redo pass</td>
</tr>
<tr>
<td>RedoEndTime</td>
<td>datetime(8)</td>
<td>End time of the redo pass</td>
</tr>
<tr>
<td>RedoOps</td>
<td>int4</td>
<td>Total operations considered for redo</td>
</tr>
<tr>
<td>RedoOpsNotRedonePFTS</td>
<td>int4</td>
<td>Operations that did not need redo (PFTS check)</td>
</tr>
<tr>
<td>RedoOpsRedonePFTS</td>
<td>int4</td>
<td>Operations that might need redo (PFTS check)</td>
</tr>
<tr>
<td>RedoOpsRedoneTS</td>
<td>int4</td>
<td>Operations that needed redo (timestamp check)</td>
</tr>
<tr>
<td>RedoOpsNotRedoneTS</td>
<td>int4</td>
<td>Operations that did not need redo (timestamp check)</td>
</tr>
<tr>
<td>RedoLogTotPages</td>
<td>int4</td>
<td>Number of log scan getpage requests during the redo pass</td>
</tr>
<tr>
<td>RedoLogTotAPFWaited</td>
<td>int4</td>
<td>Number of log scan getpage requests that found the I/O in progress during the redo pass</td>
</tr>
<tr>
<td>RedoLogTotIO</td>
<td>int4</td>
<td>Number of log scan getpage requests with physical I/O during the redo pass</td>
</tr>
<tr>
<td>RedoRecTotPage</td>
<td>int4</td>
<td>Number of recovery pages getpage requests during the redo pass</td>
</tr>
<tr>
<td>RedoRecTotAPFWaited</td>
<td>int4</td>
<td>Number of recovery pages getpage requests that found the I/O in progress during the redo pass</td>
</tr>
<tr>
<td>RedoRecTotIO</td>
<td>int4</td>
<td>Number of recovery pages getpage requests with physical I/O in progress during the redo pass</td>
</tr>
<tr>
<td>UndoStartTime</td>
<td>datetime(8)</td>
<td>Start time of the undo pass</td>
</tr>
</tbody>
</table>
Monitoring tables added for recovery

monDBRecoveryLRTypes

Description
Tracks log records seen during recovery. Contains a row for each log record type for which at least one log record was seen by recovery.

<table>
<thead>
<tr>
<th>Column name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DatabaseID</td>
<td>int4</td>
<td>Unique identifier for the database</td>
</tr>
<tr>
<td>InstanceID</td>
<td>int1</td>
<td>Instance that performed the recovery (applicable for Cluster Edition only.)</td>
</tr>
<tr>
<td>LogRecType</td>
<td>varchar(30)</td>
<td>Log record type</td>
</tr>
<tr>
<td>NumRecs</td>
<td>int4</td>
<td>Number of records seen during recovery, by type</td>
</tr>
</tbody>
</table>

Required parameters
None
monCMSFailover

Description
Tracks the time at which the cluster membership service (CMS) detects the failure, gets a new cluster view, resynchronizes the heartbeat, posts the failure event, and completes the failure event. There is a row for each instance.

Columns

<table>
<thead>
<tr>
<th>Column name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>InstanceID</td>
<td>int1</td>
<td>Unique identifier for the instance performing the failover</td>
</tr>
<tr>
<td>FailedInstanceID</td>
<td>varchar</td>
<td>Command separated list of failed instance IDs</td>
</tr>
<tr>
<td>FailDetectTime</td>
<td>datetime</td>
<td>Time when cluster failure is detected</td>
</tr>
<tr>
<td>InitViewTime</td>
<td>datetime</td>
<td>Time when initial cluster view is obtained</td>
</tr>
<tr>
<td>FinalViewTime</td>
<td>datetime</td>
<td>Time when final cluster view is obtained</td>
</tr>
<tr>
<td>ResyncHBTime</td>
<td>datetime</td>
<td>Time when cluster-wide heartbeat is resynchronized</td>
</tr>
<tr>
<td>NotifyFailTime</td>
<td>datetime</td>
<td>Time when failure even is posted</td>
</tr>
<tr>
<td>EventDoneTime</td>
<td>datetime</td>
<td>Time when last failure even is done</td>
</tr>
</tbody>
</table>

monFailoverRecovery

Description
Contains aggregated failover recovery diagnostic information for the cluster lock manager (CLM), database recovery, and cluster membership service (CMS) modules

Columns

<table>
<thead>
<tr>
<th>Column name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ModuleName</td>
<td>varchar(30)</td>
<td>Name of the module. One of CML, CMS, or Database</td>
</tr>
<tr>
<td>InstanceID</td>
<td>tinyint1</td>
<td>Instance performing the recovery.</td>
</tr>
<tr>
<td>FailedInstanceID</td>
<td>tinyint1</td>
<td>ID of the failed instance.</td>
</tr>
<tr>
<td>StartTime</td>
<td>datetime(8)</td>
<td>Start time for the module's recovery.</td>
</tr>
<tr>
<td>EndTime</td>
<td>datetime(8)</td>
<td>End time for the module’s recovery.</td>
</tr>
</tbody>
</table>

Required parameters
None
Monitoring table added for cluster lock manager (CLM)

Cluster Edition version 15.0.3 includes a monitoring table for the cluster lock manager.

monCLMObjectActivity

Description: Collects cluster lock information.

<table>
<thead>
<tr>
<th>Column name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>InstanceID</td>
<td>int1</td>
<td>Instance ID.</td>
</tr>
<tr>
<td>DBID</td>
<td>int4</td>
<td>Database ID.</td>
</tr>
<tr>
<td>Object-PartitionID</td>
<td>int4</td>
<td>Identity of the object making the lock request.</td>
</tr>
<tr>
<td>Locktype</td>
<td>varchar(20)</td>
<td>Type of lock.</td>
</tr>
<tr>
<td>LockRequests</td>
<td>int4</td>
<td>Number of cluster lock requests.</td>
</tr>
<tr>
<td>LocalMaster</td>
<td>int4</td>
<td>Number of times a lock request finds the current instance to be the lock master. One instance in the cluster becomes the “lock master.” When an instance needs a cluster lock, it contacts the lock master for the lock.</td>
</tr>
<tr>
<td>Granted</td>
<td>int4</td>
<td>Number of lock requests granted without contention at the remote instance.</td>
</tr>
<tr>
<td>Waited</td>
<td>int4</td>
<td>Number of lock requests granted with contention at the remote instance.</td>
</tr>
<tr>
<td>RWConflictWaited</td>
<td>int4</td>
<td>Number of lock requests that waited because of a read-write conflict lock that was granted to a task at a remote instance.</td>
</tr>
<tr>
<td>AvgRWConflictWaitTime</td>
<td>flt4</td>
<td>Average amount of time spent performing the wait described by RWConflictWaited.</td>
</tr>
<tr>
<td>MaxRWConflictWaitTime</td>
<td>flt4</td>
<td>Maximum amount of time spent performing the wait described by RWConflictWaited.</td>
</tr>
<tr>
<td>WWConflictWaited</td>
<td>int4</td>
<td>Number of lock requests that waited because of a write-write conflict lock that was granted to a task at a remote instance.</td>
</tr>
<tr>
<td>AvgWWConflictWaitTime</td>
<td>flt4</td>
<td>Average amount of time spent performing the wait described by WWConflictWaited.</td>
</tr>
<tr>
<td>MaxWWConflictWaitTime</td>
<td>flt4</td>
<td>Maximum amount of time spent performing the wait described in WWConflictWaited.</td>
</tr>
</tbody>
</table>
CHAPTER 4 Using Monitoring Tables in a Clustered Environment

Usage

- `monCLMObjectActivity` tracks activity for objects only in the master and user databases.
- `monCLMObjectActivity` tracks physical lock activity at the partition level.
- Cluster object locks for a database have an `Object-PartitionID` of 0.

Required parameters

None

Monitoring tables added for CIPC

The `monCIPC`, `monCIPCmesh`, and `monCIPCEndpoints` tables monitor the cluster interprocess communication protocol (CIPC). This protocol is used to pass messages between members of a shared-disk cluster.

monCIPC

Description

`monCIPC` gives summary figures for total messaging within the cluster, as viewed from the current instance or all instances.

Columns

<table>
<thead>
<tr>
<th>Name</th>
<th>Datatype</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>InstanceID</td>
<td>tinyint1</td>
<td>ID of the instance within the cluster.</td>
</tr>
<tr>
<td>ReceivedCount</td>
<td>int4</td>
<td>Number of messages received by this instance.</td>
</tr>
<tr>
<td>TransmitCount</td>
<td>int4</td>
<td>Number of messages sent by this instance.</td>
</tr>
</tbody>
</table>
Monitoring tables added for CIPC

<table>
<thead>
<tr>
<th>Name</th>
<th>Datatype</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicast</td>
<td>int4</td>
<td>Number of messages sent that were addressed to all other instances in the cluster.</td>
</tr>
<tr>
<td>Synchronous</td>
<td>int4</td>
<td>Number of those messages sent synchronously.</td>
</tr>
<tr>
<td>ReceiveSoftErrors</td>
<td>int4</td>
<td>Number of recoverable errors received on this instance.</td>
</tr>
<tr>
<td>ReceiveHardErrors</td>
<td>int4</td>
<td>Number of unrecoverable errors received on this instance.</td>
</tr>
<tr>
<td>TransmitsSoftErrors</td>
<td>int4</td>
<td>Number of recoverable transmit errors on this instance.</td>
</tr>
<tr>
<td>TransmitHardErrors</td>
<td>int4</td>
<td>Number of unrecoverable transmit errors on this instance.</td>
</tr>
<tr>
<td>Retransmits</td>
<td>int4</td>
<td>Number of retransmissions performed by this instance.</td>
</tr>
<tr>
<td>Switches</td>
<td>int4</td>
<td>Number of switches between the primary interconnect network and the secondary interconnect network.</td>
</tr>
<tr>
<td>FailedSwitches</td>
<td>int4</td>
<td>Number of attempts to switch between primary and secondary interconnect networks that have failed.</td>
</tr>
<tr>
<td>RegularBuffersInUse</td>
<td>int4</td>
<td>Number of buffers from the CIPC regular buffer pool currently allocated.</td>
</tr>
<tr>
<td>FreeRegularBuffers</td>
<td>int4</td>
<td>Number of buffers available in the CIPC regular buffer pool.</td>
</tr>
<tr>
<td>MaxRegularBuffersInUse</td>
<td>int4</td>
<td>Maximum number of buffers from the CIPC regular buffer pool allocated at any time since the server was started.</td>
</tr>
<tr>
<td>LargeBuffersInUse</td>
<td>int4</td>
<td>Number of buffers from the CIPC large buffer pool currently allocated.</td>
</tr>
<tr>
<td>FreeLargeBuffers</td>
<td>int4</td>
<td>Number of buffers available in the CIPC large buffer pool.</td>
</tr>
<tr>
<td>MaxLargeBuffersInUse</td>
<td>int4</td>
<td>Maximum number of buffers from the CIPC large buffer pool allocated at any time since the server was started.</td>
</tr>
</tbody>
</table>

One row is returned in the monCIPC table for each instance in the cluster, if the system view is set to cluster; otherwise, a single row is returned.

Required parameters
None
monCIPCEndpoints

Description
monCIPCEndpoints provides a detailed summary, giving traffic data for each bsystem within the cluster instance.

Columns

<table>
<thead>
<tr>
<th>Name</th>
<th>Datatype</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>InstanceID</td>
<td>tinyint1</td>
<td>ID of the instance within the cluster</td>
</tr>
<tr>
<td>ReceivedCount</td>
<td>int4</td>
<td>Number of messages received by this logical endpoint</td>
</tr>
<tr>
<td>TransmitCount</td>
<td>int4</td>
<td>Number of messages sent by this logical endpoint</td>
</tr>
<tr>
<td>ReceiveBytes</td>
<td>int4</td>
<td>Number of bytes received by this logical endpoint</td>
</tr>
<tr>
<td>TransmitBytes</td>
<td>int4</td>
<td>Number of bytes sent by this logical endpoint</td>
</tr>
<tr>
<td>ReceiveQ</td>
<td>int4</td>
<td>Current number of messages queued for this endpoint</td>
</tr>
<tr>
<td>MaxReceiveQ</td>
<td>int4</td>
<td>Maximum number of messages ever observed for endpoint</td>
</tr>
<tr>
<td>DoneQ</td>
<td>int4</td>
<td>Current number of messages that have been processed</td>
</tr>
<tr>
<td>MaxDoneQ</td>
<td>int4</td>
<td>Maximum number of messages ever observed</td>
</tr>
<tr>
<td>EndPoint</td>
<td>varchar(30)</td>
<td>Name of CIPC endpoint</td>
</tr>
<tr>
<td>MaxRecvQTime</td>
<td>real4</td>
<td>Maximum time (in milliseconds) a message spends in</td>
</tr>
<tr>
<td>AvgRecvQTime</td>
<td>real4</td>
<td>Average time (in milliseconds) a message spends in</td>
</tr>
</tbody>
</table>

One row is returned for each logical endpoint in the instance. If the system view is set to cluster, a set of rows is returned for each instance in the cluster.

Required parameters
None

monCIPCLinks

Description
monCIPCLinks monitors the state of the links between instances in the cluster.
monCIPCMesh

Description

monCIPCMesh gives summary figures for the mesh of connections, from the current instance to all other instances in the cluster, on a per instance basis.

<table>
<thead>
<tr>
<th>Name</th>
<th>Datatype</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>InstanceID</td>
<td>tinyint1</td>
<td>ID of the instance within the cluster.</td>
</tr>
<tr>
<td>FarInstanceID</td>
<td>tinyint1</td>
<td>Instance number of the far-end instance in the cluster.</td>
</tr>
<tr>
<td>Received</td>
<td>int4</td>
<td>Number of messages received by this instance from the FarInstanceID instance.</td>
</tr>
<tr>
<td>Dropped</td>
<td>int4</td>
<td>Number of messages from the FarInstanceID instance that have been dropped, due to some lack of resource.</td>
</tr>
<tr>
<td>Transmitted</td>
<td>int4</td>
<td>Number of messages transmitted to the FarInstanceID instance.</td>
</tr>
<tr>
<td>Resent</td>
<td>int4</td>
<td>Number of messages re-sent to the FarInstanceID instance.</td>
</tr>
<tr>
<td>Retry</td>
<td>int4</td>
<td>Number of packets retried to the FarInstanceID instance.</td>
</tr>
<tr>
<td>Name</td>
<td>Datatype</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>SendQ</td>
<td>int4</td>
<td>Current number of messages waiting to be sent to the FarInstanceID instance.</td>
</tr>
<tr>
<td>MaxSendQ</td>
<td>int4</td>
<td>Maximum observed number of messages awaiting transmission to the FarInstanceID node.</td>
</tr>
<tr>
<td>SentQ</td>
<td>int4</td>
<td>Current number of messages sent but where notification of sending has not been processed.</td>
</tr>
<tr>
<td>MaxSentQ</td>
<td>int4</td>
<td>Maximum number of messages sent, but notification of sending is not yet processed.</td>
</tr>
<tr>
<td>MaxSendQTime</td>
<td>real4</td>
<td>Maximum amount of time (in milliseconds) spent by a message in the physical end point queues of the current channel.</td>
</tr>
<tr>
<td>AvgSendQTime</td>
<td>real4</td>
<td>Average amount of time (in milliseconds) spent by a message in the physical end point queues of the current channel.</td>
</tr>
</tbody>
</table>
| Mesh | varchar(30) | The channel name for the connection. One of:
| | | • Out of Band
| | | • Message
| | | • Large Message
| | | • DMA |
| MinRTT | int4 | Minimum round trip delay observed for messages (applies only to UDP transport).|
| MaxRTT | int4 | Maximum round trip delay observed for messages (applies only to UDP transport).|
| AverageRTT | int4 | Average round trip delay observed for messages (applies only to UDP transport).|

One row is returned for each of the four connections to each of the other nodes in the cluster, up to the maximum configured. If the system view is cluster, a set of rows for each instance active in the cluster is returned.

Required parameters
None
Monitoring tables added for temporary databases

monTempdbActivity

Description

Provides statistics for all open local temporary databases, including global system tempdb when the instance is started in tempdb configuration mode. You must enable the object lockwait timing, enabling monitoring, and per object statistics active configuration parameters before monTempdbActivity can gather statistics.

Columns

<table>
<thead>
<tr>
<th>Name</th>
<th>Datatype</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBID</td>
<td>int4</td>
<td>Unique identifier for the database</td>
</tr>
<tr>
<td>InstanceID</td>
<td>tinyint1</td>
<td>ID of the instance within the cluster</td>
</tr>
<tr>
<td>DBName</td>
<td>varchar(30)</td>
<td>Name of the database</td>
</tr>
<tr>
<td>AppendLogRequest</td>
<td>int4</td>
<td>Number of semaphore requests from an instance attempting to append to the database transaction log</td>
</tr>
<tr>
<td>AppendLogWaits</td>
<td>int4</td>
<td>Number of times a task waits for the append log semaphore to be granted</td>
</tr>
<tr>
<td>LogicalReads</td>
<td>int4</td>
<td>Total number of buffers read</td>
</tr>
<tr>
<td>PhysicalReads</td>
<td>int4</td>
<td>Number of buffers read from disk</td>
</tr>
<tr>
<td>APFReads</td>
<td>int4</td>
<td>Number of asynchronous prefetch (APF) buffers read</td>
</tr>
<tr>
<td>PagesRead</td>
<td>int4</td>
<td>Total number of pages read</td>
</tr>
<tr>
<td>PhysicalWrites</td>
<td>int4</td>
<td>Total number of buffers written to disk</td>
</tr>
<tr>
<td>PagesWritten</td>
<td>int4</td>
<td>Total number of pages written to disk</td>
</tr>
<tr>
<td>LockRequests</td>
<td>int4</td>
<td>Number of requests for a lock on the object</td>
</tr>
<tr>
<td>LockWaits</td>
<td>int4</td>
<td>Number of times a task waited for a lock for the object</td>
</tr>
<tr>
<td>CatLockRequests</td>
<td>int4</td>
<td>Number of requests for a lock on the system catalog</td>
</tr>
<tr>
<td>CatLockWaits</td>
<td>int4</td>
<td>Number of times a task waited for a lock for the system table</td>
</tr>
<tr>
<td>AssignedCnt</td>
<td>int4</td>
<td>Number of times this temporary database was assigned to a user task</td>
</tr>
<tr>
<td>ShareTabCnt</td>
<td>int4</td>
<td>Number of shareable tables created</td>
</tr>
</tbody>
</table>

Required parameters

- enable monitoring
• per object statistics active
• object lockwait timing

Tables added or changed for general statistics

New tables

The Cluster Edition adds the monSysLoad table to provide statistical information about each engine.

monSysLoad

Description

Provides trended statistics on a per-engine basis.

<table>
<thead>
<tr>
<th>Name</th>
<th>Datatype</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>InstanceID</td>
<td>tinyint1</td>
<td>ID of the instance within the cluster.</td>
</tr>
<tr>
<td>EngineNumber</td>
<td>smallint2</td>
<td>Engine to which this row belongs.</td>
</tr>
<tr>
<td>SteadyState</td>
<td>real4</td>
<td>Average value for this statistic since start-up.</td>
</tr>
<tr>
<td>Avg_1min</td>
<td>real4</td>
<td>One-minute moving average for this statistic.</td>
</tr>
<tr>
<td>Avg_5min</td>
<td>real4</td>
<td>Five-minute moving average for this statistic.</td>
</tr>
<tr>
<td>Avg_15min</td>
<td>real4</td>
<td>Fifteen-minute moving average for this statistic.</td>
</tr>
<tr>
<td>Max_1min</td>
<td>real4</td>
<td>Maximum one-minute average since start-up.</td>
</tr>
<tr>
<td>Max_5min</td>
<td>real4</td>
<td>Maximum five-minute average since start-up.</td>
</tr>
<tr>
<td>Max_15min</td>
<td>real4</td>
<td>Maximum fifteen-minute average since start-up.</td>
</tr>
<tr>
<td>Max_1min_Time</td>
<td>datetime(8)</td>
<td><code>datetime</code> at which Max_1min occurred.</td>
</tr>
<tr>
<td>Max_5min_Time</td>
<td>datetime(8)</td>
<td><code>datetime</code> at which Max_5min occurred.</td>
</tr>
<tr>
<td>Max_15min_Time</td>
<td>datetime(8)</td>
<td><code>datetime</code> at which Max_15min occurred.</td>
</tr>
</tbody>
</table>
Tables added or changed for general statistics

<table>
<thead>
<tr>
<th>Name</th>
<th>Datatype</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistic</td>
<td>varchar(30)</td>
<td>Name of the statistic this row represents.</td>
</tr>
<tr>
<td>Sample</td>
<td>real4</td>
<td>Value of the metric at the last sample interval (that is, the “current” value of the metric).</td>
</tr>
<tr>
<td>Peak</td>
<td>real4</td>
<td>The highest Sample value since the instance started (that is, the peak Sample value).</td>
</tr>
<tr>
<td>Peak_time</td>
<td>datetime(8)</td>
<td>The date and time the Peak value was achieved.</td>
</tr>
<tr>
<td>StatisticID</td>
<td>smallint2</td>
<td>A fixed identifier for this statistic. You may wish to write applications to the fixed StatisticID instead of the localized Statistic name.</td>
</tr>
</tbody>
</table>

There is one row per engine per statistic, with the exception of kernel run queue length, which is reported only for engine number 0.

Averages are computed using the “exponential moving average” technique, not geometric averaging. This makes averages values more resistant to momentary peaks and valleys.

You need not enable any monitoring configuration parameters to use monSysLoad. These statics are always available and do not conflict with other monitoring tools, such as sp_sysmon.

Required parameters

None

Changed tables

monEngine

The Cluster Editions adds a new column to the monEngine table.

<table>
<thead>
<tr>
<th>Name</th>
<th>Datatype</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOCPUTime</td>
<td>int4</td>
<td>The amount of time (in seconds) the engine has been waiting for issued IOs to complete.</td>
</tr>
</tbody>
</table>
CHAPTER 4 Using Monitoring Tables in a Clustered Environment

Monitoring tables added for workload manager

The workload manager adds these monitoring tables for information reporting.

monLogicalCluster

Description: Displays information about the logical clusters currently configured on the system.

<table>
<thead>
<tr>
<th>Name</th>
<th>Datatype</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ActionRelease</td>
<td>varchar(20)</td>
<td>Current action release mode for the logical cluster</td>
</tr>
<tr>
<td>LCID</td>
<td>int4</td>
<td>Logical cluster ID.</td>
</tr>
<tr>
<td>Name</td>
<td>varchar(30)</td>
<td>Logical cluster name.</td>
</tr>
</tbody>
</table>
| State | varchar(20)| Current state. One of:
| | | • online |
| | | • offline |
| | | • failed |
| | | • inactive |
| | | • time_wait |
| DownRoutingMode | varchar(20)| Down routing-mode setting. One of:
| | | • system |
| | | • open |
| | | • disconnect |
| FailoverMode | varchar(20)| Failover mode setting, instance or cluster. |
| Attributes | int4 | Bitmap of logical cluster attributes. |
| Mode | varchar(20)| Start-up mode setting, automatic or manual. |
| SystemView | varchar(20)| System view setting, instance or cluster. |
Monitoring tables added for workload manager

<table>
<thead>
<tr>
<th>Name</th>
<th>Datatype</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roles</td>
<td>varchar(20)</td>
<td>Comma-delimited list of special roles for this logical cluster. The “system” logical cluster always has the system role. The open logical cluster has the "open" role. If the system logical cluster also has the open role, the value for this column is system, open. Logical clusters without any special roles return a NULL value.</td>
</tr>
<tr>
<td>LoadProfile</td>
<td>varchar(30)</td>
<td>Load profile associated with this logical cluster.</td>
</tr>
<tr>
<td>ActiveConnections</td>
<td>int4</td>
<td>Number of active connections using this logical cluster.</td>
</tr>
<tr>
<td>BaseInstances</td>
<td>tinyint1</td>
<td>Number of instances configured as base instances for this logical cluster.</td>
</tr>
<tr>
<td>ActiveBaseInstances</td>
<td>tinyint1</td>
<td>Number of base instances on which this logical cluster is currently active.</td>
</tr>
<tr>
<td>FailoverInstances</td>
<td>tinyint1</td>
<td>Number of instances configured as failover instances for this logical cluster.</td>
</tr>
<tr>
<td>ActionRelease</td>
<td>varchar(30)</td>
<td>Current action release mode for the logical cluster.</td>
</tr>
<tr>
<td>ActiveFailoverInstances</td>
<td>tinyint1</td>
<td>Number of failover instances on which this logical cluster is currently active.</td>
</tr>
</tbody>
</table>

Required parameters

None

monLogicalClusterInstance

Description
Displays information about the many-to-many relationship between instances and logical clusters.

Columns

<table>
<thead>
<tr>
<th>Name</th>
<th>Datatype</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCID</td>
<td>int4</td>
<td>Logical cluster ID</td>
</tr>
<tr>
<td>LogicalClusterName</td>
<td>varchar(30)</td>
<td>Logical cluster name</td>
</tr>
<tr>
<td>InstanceID</td>
<td>tinyint1</td>
<td>ID of the instance within the cluster</td>
</tr>
<tr>
<td>InstanceName</td>
<td>varchar(30)</td>
<td>Instance name</td>
</tr>
<tr>
<td>Type</td>
<td>varchar(20)</td>
<td>Instance type</td>
</tr>
<tr>
<td>FailoverGroup</td>
<td>tinyint1</td>
<td>Failover group of which this instance is a member (failover instances only)</td>
</tr>
</tbody>
</table>
CHAPTER 4 Using Monitoring Tables in a Clustered Environment

monLogicalClusterRoute

Description
Displays information about the configured routes (application, login, and alias bindings).

Columns

<table>
<thead>
<tr>
<th>Name</th>
<th>Datatype</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCID</td>
<td>int4</td>
<td>Logical cluster ID</td>
</tr>
<tr>
<td>LogicalClusterName</td>
<td>varchar(30)</td>
<td>Logical cluster name</td>
</tr>
<tr>
<td>RouteType</td>
<td>varchar(20)</td>
<td>Route type, one of application, login, or alias</td>
</tr>
<tr>
<td>RouteKey</td>
<td>varchar(30)</td>
<td>Application, login, or alias name associated with this route.</td>
</tr>
</tbody>
</table>

Required parameters
None

monLogicalClusterAction

Description
Shows any actions currently running against logical clusters.
Monitoring tables added for workload manager

<table>
<thead>
<tr>
<th>Name</th>
<th>Datatype</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handle</td>
<td>int4</td>
<td>Unique handle you can use to cancel this action.</td>
</tr>
<tr>
<td>State</td>
<td>varchar(20)</td>
<td>State of the action, active or complete.</td>
</tr>
<tr>
<td>LCID</td>
<td>int4</td>
<td>Logical cluster ID to which this action applies.</td>
</tr>
<tr>
<td>LogicalClusterName</td>
<td>varchar(30)</td>
<td>Logical cluster name of this logical cluster (denormalized to reduce joins).</td>
</tr>
<tr>
<td>Action</td>
<td>varchar(15)</td>
<td>Action being performed. A combination of the command running and its scope.</td>
</tr>
<tr>
<td>FromInstances</td>
<td>varchar(96)</td>
<td>A comma-separated list of from instances for this command and action (instance being brought offline).</td>
</tr>
<tr>
<td>ToInstances</td>
<td>varchar(96)</td>
<td>A comma-separated list of to instances for this command and action (instances being brought online).</td>
</tr>
<tr>
<td>InstancesWaiting</td>
<td>int4</td>
<td>Number of instances waiting to go offline (this is a count of FromInstances that are in the time_wait state).</td>
</tr>
<tr>
<td>WaitType</td>
<td>varchar(20)</td>
<td>Current wait state for this action (one of wait, until, or nowait).</td>
</tr>
<tr>
<td>StartTime</td>
<td>datetime(8)</td>
<td>Date and time the command was issued.</td>
</tr>
<tr>
<td>Deadline</td>
<td>datetime(8)</td>
<td>Date and time the command must be finished (based on the time value supplied to the wait or until options).</td>
</tr>
<tr>
<td>CompleteTime</td>
<td>datetime(8)</td>
<td>Date and time the command and action completed (when InstancesWaiting is zero and the action went from active to the complete state). Returns NULL for non-complete actions.</td>
</tr>
<tr>
<td>ConnectionsRemaining</td>
<td>int4</td>
<td>Number of connections remaining to move as a result of this command.</td>
</tr>
<tr>
<td>NonMigConnections</td>
<td>int4</td>
<td>Number of connections to be terminated because they do not support the migration protocol.</td>
</tr>
</tbody>
</table>
monProcessMigration

Description
Displays information about the connection currently migrating.

Columns

<table>
<thead>
<tr>
<th>Name</th>
<th>Datatype</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPID</td>
<td>int4</td>
<td>Pending migration session process ID</td>
</tr>
<tr>
<td>KPID</td>
<td>int4</td>
<td>Kernel process ID</td>
</tr>
<tr>
<td>Logical cluster</td>
<td>varchar(30)</td>
<td>Current logical cluster</td>
</tr>
<tr>
<td>Instance</td>
<td>varchar(30)</td>
<td>Current instance.</td>
</tr>
<tr>
<td>InstanceMigrationLogicalCluster</td>
<td>varchar(30)</td>
<td>Migration logical cluster.</td>
</tr>
<tr>
<td>MigrationInstance</td>
<td>varchar(30)</td>
<td>Migration instance.</td>
</tr>
<tr>
<td>Command</td>
<td>varchar(30)</td>
<td>Migration trigger.</td>
</tr>
</tbody>
</table>

Required parameters
None

monWorkloadProfile

Description
Displays currently configured workload profiles.

Columns

<table>
<thead>
<tr>
<th>Name</th>
<th>Datatype</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ProfileID</td>
<td>int4</td>
<td>Workload profile ID</td>
</tr>
<tr>
<td>Name</td>
<td>varchar(30)</td>
<td>Workload profile name</td>
</tr>
<tr>
<td>ConnectionsWeight</td>
<td>tinyint1</td>
<td>Weight associated with the active connections metric</td>
</tr>
<tr>
<td>CpuWeight</td>
<td>tinyint1</td>
<td>Weight associated with the cpu utilization metric</td>
</tr>
<tr>
<td>RunQueueWeight</td>
<td>tinyint1</td>
<td>Weight associated with the run queue metric</td>
</tr>
</tbody>
</table>

Required parameters
None
Monitoring tables added for workload manager

monWorkload

Description

Displays the workload score for each logical cluster on each instance according to its load profile.

Columns

<table>
<thead>
<tr>
<th>Name</th>
<th>Datatype</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>InstanceID</td>
<td>tinyint1</td>
<td>ID of the instance within the cluster</td>
</tr>
<tr>
<td>InstanceName</td>
<td>varchar(30)</td>
<td>Instance name</td>
</tr>
<tr>
<td>LCID</td>
<td>int4</td>
<td>Logical cluster ID</td>
</tr>
<tr>
<td>LogicalClusterName</td>
<td>varchar(30)</td>
<td>Logical cluster name</td>
</tr>
<tr>
<td>LoadProfile</td>
<td>varchar(30)</td>
<td>Name of the load profile used to generate the load score</td>
</tr>
<tr>
<td>LoadScore</td>
<td>real4</td>
<td>Load score for this instance or logical cluster</td>
</tr>
<tr>
<td>ConnectionsScore</td>
<td>real4</td>
<td>Weighted value for the user connections metric</td>
</tr>
<tr>
<td>CpuScore</td>
<td>real4</td>
<td>Weighted value for the cpu utilization metric</td>
</tr>
<tr>
<td>RunQueueScore</td>
<td>real4</td>
<td>Weighted value for the run queue metric</td>
</tr>
<tr>
<td>IoLoadScore</td>
<td>real4</td>
<td>Weighted value for the io load metric</td>
</tr>
<tr>
<td>EngineScore</td>
<td>real4</td>
<td>Weighted value for the engine deficit metric</td>
</tr>
<tr>
<td>UserScore</td>
<td>real4</td>
<td>Weighted value for the user metric</td>
</tr>
</tbody>
</table>

Required parameters

None
monWorkloadRaw

Description
Provides the raw workload statistics for each instance.

Columns

<table>
<thead>
<tr>
<th>Name</th>
<th>Datatype</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>InstanceID</td>
<td>tinyint1</td>
<td>ID of the instance within the cluster</td>
</tr>
<tr>
<td>InstanceName</td>
<td>varchar(30)</td>
<td>Instance name</td>
</tr>
<tr>
<td>ConnectionsRaw</td>
<td>real4</td>
<td>Raw value for the user connections metric</td>
</tr>
<tr>
<td>CpuRaw</td>
<td>real4</td>
<td>Raw value for the cpu utilization metric</td>
</tr>
<tr>
<td>RunQueueRaw</td>
<td>real4</td>
<td>Raw value for the run queue metric</td>
</tr>
<tr>
<td>IoLoadRaw</td>
<td>real4</td>
<td>Raw value for the io load metric</td>
</tr>
<tr>
<td>EngineRaw</td>
<td>real4</td>
<td>Raw value for the engine deficit metric</td>
</tr>
<tr>
<td>UserRaw</td>
<td>real4</td>
<td>Raw value for the user metric</td>
</tr>
</tbody>
</table>

Required parameters
None

monWorkloadPreview

Description
Provides an estimate of how a load profile impacts the workload score without enabling the profile. monWorkloadpreview includes one row for each logical cluster and instance on which this logical cluster is running. The load score and components are based on the current profile for that logical cluster. The monWorkloadPreview table has one row for each combination of instance and load profile configured on the system, allowing the administrator to see how workload scoring would be done for each profile.

Columns

<table>
<thead>
<tr>
<th>Name</th>
<th>Datatype</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>InstanceID</td>
<td>tinyint1</td>
<td>ID of the instance within the cluster</td>
</tr>
<tr>
<td>LoadProfileID</td>
<td>tinyint1</td>
<td>Load profile ID</td>
</tr>
<tr>
<td>LoadScore</td>
<td>real4</td>
<td>Load score for this instance or logical cluster</td>
</tr>
<tr>
<td>ConnectionScore</td>
<td>real4</td>
<td>Weighted value for the user connections metric</td>
</tr>
<tr>
<td>CpuScore</td>
<td>real4</td>
<td>Weighted value for the cpu utilization metric</td>
</tr>
<tr>
<td>RunQueueScore</td>
<td>real4</td>
<td>Weighted value for the run queue metric</td>
</tr>
<tr>
<td>IoLoadScore</td>
<td>real4</td>
<td>Weighted value for the io load metric</td>
</tr>
</tbody>
</table>
Monitoring tables added for workload manager

<table>
<thead>
<tr>
<th>Name</th>
<th>Datatype</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EngineScore</td>
<td>real4</td>
<td>Weighted value for the engine deficit metric</td>
</tr>
<tr>
<td>UserScore</td>
<td>real4</td>
<td>Weighted value for the user metric</td>
</tr>
<tr>
<td>InstanceName</td>
<td>varchar(30)</td>
<td>Instance name</td>
</tr>
<tr>
<td>LoadProfileName</td>
<td>varchar(30)</td>
<td>Name of load profile used to generate the load score</td>
</tr>
</tbody>
</table>

Required parameters None
CHAPTER 5

Using Backup Server in a Clustered Environment

This chapter discusses issues related to using Backup Server with a cluster.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nodes joining cluster during a dump</td>
<td>85</td>
</tr>
<tr>
<td>Multiple Backup Servers</td>
<td>86</td>
</tr>
</tbody>
</table>

Nodes joining cluster during a dump

Earlier versions of the Cluster Edition did not allow nodes to join or leave the cluster during a database or transaction log dump. Any instances started during a dump waited until the dump finished before completing its start-up, and instances waited until the dump was complete before shutting down.

For Cluster Edition 15.0.3 and later, nodes—and the instances running on them—can join or leave the cluster while another instance runs `dump database` or `dump transaction`.

Nodes can join and leave the cluster only during phase one of `dump database`. The phases are displayed during the `dump database` command:

Backup Server: 3.43.1.1: Dump phase number 1 completed.
Backup Server: 3.43.1.1: Dump phase number 2 completed.
Backup Server: 3.43.1.1: Dump phase number 3 completed.

If a node attempts to join or leave during phase two or phase three of `dump database`, it waits to join until `dump database` completes.

Nodes may leave a cluster politely during a database dump from a normal shutdown.

Once you configure multiple Backup Servers for the cluster, you need not perform any additional configuration to enable nodes to join or leave the cluster during a `dump database` or `dump transaction`.
Multple Backup Servers

Versions of the Cluster Edition earlier than 15.0.3 used a single Backup Server for the cluster, which was a potential bottle neck for dump and load commands.

Cluster Edition version 15.0.3 and later allows a cluster to use multiple Backup Servers with one of these methods:

- Dedicated method – each instance is assigned a specific Backup Server.
- Round-robin method – at the time of the dump or load command, the Cluster Edition assigns the instance a Backup Server from a group according to availability.
- A single Backup Server named SYB_BACKUP

The Cluster Edition stores information about all Backup Servers in sysservers. When you issue a dump or load command from any instance, the Cluster Edition searches sysservers for the name Backup Server entry, SYB_BACKUP. If it finds the SYB_BACKUP entry pointing to a srvnetname entry of $DEDICATED or $ROUNDROBIN, it uses the appropriate Backup Server to perform the dump or load operation.

For example, the “snack” cluster is configured to use the dedicated method, and includes an instance named “cupcake.” Because the SYB_BACKUP entry points to “$dedicated,” the cluster uses the cupcake_BS Backup Server to perform any dump or load:

<table>
<thead>
<tr>
<th>srvid</th>
<th>srvstatus</th>
<th>srvname</th>
<th>srvnetname</th>
<th>srvclass</th>
<th>srvsecmech</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SYB_BACKUP</td>
<td>$dedicated</td>
<td>7</td>
<td>NULL</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>NULL</td>
<td>2</td>
<td>7</td>
<td>NULL</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>cupcake</td>
<td>cupcake</td>
<td>7</td>
<td>NULL</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>cupcake_BS</td>
<td>cupcake_BS</td>
<td>7</td>
<td>NULL</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>cookie</td>
<td>cookie</td>
<td>7</td>
<td>NULL</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>cookie_BS</td>
<td>cookie_BS</td>
<td>7</td>
<td>NULL</td>
</tr>
</tbody>
</table>

If the snack cluster was configured for the round-robin method, the cupcake instance would use the first available Backup Server to perform dump and loads.
When you upgrade, the Cluster Edition adds entries for all Backup Servers to \texttt{sysservers}.

Entries for Backup Servers are removed from \texttt{sysservers} when you remove an instance from the cluster.

Configuring Cluster Edition to use multiple Backup Servers

Use \texttt{sp_addserver} to add additional Backup Servers:

\begin{verbatim}
sp_addserver instance_name_BS, NULL, instance_name
\end{verbatim}

For example, this adds the \texttt{cookie_BS} entry to \texttt{sysservers}:

\begin{verbatim}
sp_addserver cookie_BS, NULL, cookie
\end{verbatim}

You must insert interfaces file entries for each of the Backup Servers before you can start them. See Chapter 5, “Setting Up Communications Across the Network,” in the \textit{Configuration Guide} for information about editing the interfaces file.

Using the dedicated method

To configure the Cluster Edition for a dedicated method, use:

\begin{verbatim}
sp_addserver 'SYB_BACKUP', NULL, '$DEDICATED'
\end{verbatim}

Each instance in a cluster configured for a dedicated Backup Server method must include a Backup Server.

When a user connects to instance "cookie" using \texttt{isql} and issues a \texttt{dump} or \texttt{load} command, instance \texttt{cat} finds the \texttt{SYB_BACKUP} entry in \texttt{sysservers} pointing to the '$DEDICATED' keyword. If the specified Backup Server ('cookie_BS') is not running, the Cluster Edition automatically restarts this Backup Server.

Using the round-robin method

To configure the Cluster Edition for a round-robin method, use:

\begin{verbatim}
sp_addserver 'SYB_BACKUP', NULL, '$ROUNDROBIN'
\end{verbatim}

Once you configure the Cluster Edition to use the round-robin method, the Cluster Edition selects a Backup Server for a \texttt{dump} or \texttt{load} command according to which Backup Server that is performing the least amount of work.
For example, if a user connects to instance Inst1 from isql and issues a dump command from this session, instance Inst1 checks the SYB_BACKUP entry in sysservers, and finds that it points to keyword $ROUNDROBIN. If Inst1_BS is busy performing another task, the Cluster Edition moves to the next Backup Server, Inst2_BS. If Inst2_BS is available, with no jobs running on it, this Backup Server performs the dump, and its index is incremented to indicate that it is busy and unavailable for work. However, if Inst2_BS is busy, the Cluster Edition moves to the next Backup Server, and so on until it finds a free Backup Server.

If all Backup Servers are busy, the Cluster Edition routes the dump or load request to the Backup server with the least number of running parallel requests. The Cluster Edition automatically restarts any Backup Servers that are not running.

Starting and stopping Backup Servers

sybcluster and the Adaptive Server plug-in automatically start Backup Servers when you use these utilities to create them. See Chapter 16, “The sybcluster Utility,” for information about starting and stopping Backup Servers with sybcluster. See the online help for information about Starting Backup Server with the Adaptive Server plug-in.

Start Backup Servers manually with the startserver command. The startserver command requires the Backup Server to have a runserver file. This starts the MOUSE_BS Backup Server:

```
startserver -f RUN_MOUSE_BS
```


Use the shutdown server_name command to shut down any Backup Server. For example:

```
shutdown MOUSE_BS
```

Shutdown all active Backup Servers by specifying the SYB_BACKUP Backup Server:

```
shutdown SYB_BACKUP
```
CHAPTER 5 Using Backup Server in a Clustered Environment

Backing up to media

Back up objects for the Cluster Edition the same as you back up objects in a non-clustered Adaptive Server. See the System Administration Guide, Volume 2.

Changes to stored procedures

sp_addserver

sp_addserver adds the keywords $DEDICATED and $ROUNDROBIN as a parameter for setting the Backup Server method. See “Configuring Cluster Edition to use multiple Backup Servers” on page 87.

sp_dumpoptimize and sp_helpserver

When the SYB_BACKUP entry in sysservers points to the keywords $DEDICATED or $ROUNDROBIN, the Cluster Edition runs these system procedures for all active Backup Servers in the cluster:

- sp_dumpoptimize
- sp_helpserver

sp_volchanged

sp_volchanged allows you to include the name of a specific Backup Server. The syntax is:

```
sp_volchanged session_id, devname, action[, fname[, vname][, backup_server_name]]
```

For example, this specifies that a volume change request is made on Backup Server Inst3_BS:

```
sp_volchanged 5, "db1.dmp", "proceed", "Inst3_BS"
```

If you do not include the name of a Backup Server with the $DEDICATED or $ROUNDROBIN method, sp_volchanged raises an error.
Multiple Backup Servers
Managing the Workload

This chapter describes how to manage the workload and provide failover for applications accessing the Cluster Edition.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logical cluster resources</td>
<td>92</td>
</tr>
<tr>
<td>The system logical cluster</td>
<td>93</td>
</tr>
<tr>
<td>Setting up a logical cluster</td>
<td>94</td>
</tr>
<tr>
<td>Assigning routing rules</td>
<td>97</td>
</tr>
<tr>
<td>Configuring logical cluster attributes</td>
<td>98</td>
</tr>
<tr>
<td>Configuring failover</td>
<td>104</td>
</tr>
<tr>
<td>Managing logical clusters</td>
<td>106</td>
</tr>
<tr>
<td>Administering failover, failback, and planned downtime</td>
<td>111</td>
</tr>
<tr>
<td>Distributing the workload</td>
<td>118</td>
</tr>
<tr>
<td>Using the sample load profiles</td>
<td>121</td>
</tr>
<tr>
<td>Creating and configuring your own load profile</td>
<td>122</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>125</td>
</tr>
</tbody>
</table>

The Cluster Edition workload manager can customize workload management and failover for each of your business applications so that each performs most efficiently. The logical cluster is the container that allows the workload manager to provide individualized working environments.

A logical cluster is an abstract representation of one or more instances in a physical shared-disk cluster. Each logical cluster has a set of instances it runs on and can have a set of instances to which it fails over. Routing rules direct incoming connections to specific logical clusters based on an application, user login, or server alias supplied by the client. Other rules can restrict a logical cluster to bound connections or allow any authenticated connection to access it.
By creating logical clusters on top of the physical cluster, you can partition applications with different workloads on the same system. The workload is managed at the application level, which means that you can manage incoming connections, failover policies, load distribution strategies, and planned downtime according to how each of your applications use the system.

The system administrator manages the workload using the Adaptive Server plug-in to Sybase Central or the command-line options described in this chapter. The system administrator:

- Configures and manages a logical cluster. This includes creating and dropping logical clusters, adding or removing instances from the cluster, modifying failover rules, starting and stopping the cluster or instances in the cluster, configuring routing rules, and so on.
- Selects or configures load profiles that the system uses to determine the current relative workload.
- Monitors instances in the cluster and the workload on each instance.

Logical cluster resources

A logical cluster is assigned resources from the physical cluster:

- Instances – are a logical cluster’s base instances, which means that they are started when a logical cluster starts and that a failback restores them.
- Failover resources – are an ordered list of instances on which a logical cluster is to run should one or more of the base instances fail. Any instance in the physical cluster can be a failover resource. Workload management capabilities let you group and configure resources to specify failover order and precedence.
The system logical cluster

When you create a shared-disk cluster, Adaptive Server automatically creates a system logical cluster for it. The system logical cluster provides a logical cluster representation for daemons and enables management of certain tasks. It represents the physical cluster, contains all the instances of the physical cluster, and has the same name as the physical cluster. All background tasks, such as checkpoint and housekeeper, run on the system logical cluster. Special rules apply to the system logical cluster. Upon creation, this new system logical cluster is granted the open property, which means that all unbound connections are routed to it.

System administrators typically do not interact with the system logical cluster. However, the following do apply to the system logical cluster:

- Routing rules. For example, you can route logins used by system administrators to the system logical cluster.
- The open property.
- System view setting.
- The load profile.
- Login distribution mode.

The following do not apply to the system logical cluster:

- Failover resources and rules
- Commands that:
 - Create or drop resources of a logical cluster
 - Migrate, fail over, and fail back instances
 - Change a logical cluster or instance state
 - Change failover mode settings
 - Change start-up mode settings
 - Set the down routing mode
Setting up a logical cluster

There are many possible options for configuring a logical cluster; the basic steps for setting up a working logical cluster are:

1. Create a logical cluster.
2. Add instances.
3. Assign routing rules.
4. Start a logical cluster.

In this example, we will create three logical clusters for the “mycluster” physical cluster: “SalesLC,” “HRLC,” and “CatchallLC”.

Creating a logical cluster

You can also use the Adaptive Server plug-in to create logical clusters. See “Adding a logical cluster” on page 255.

Create a logical cluster using `sp_cluster logical, "create"`.

For example, suppose a physical cluster called “mycluster” that contains four instances: “ase1”, “ase2”, “ase3”, and “ase4”. We create three logical clusters:

- “SalesLC” – to handle applications and logins from the Sales Department.
- “HRLC” – to handle applications and logins from the Human Resources Department.
- “CatchallLC” – to use later for an open logical cluster.

To create “SalesLC”, “HRLC”, and “CatchallLC”, enter:

```
sp_cluster logical, "create", SalesLC
sp_cluster logical, "create", HRLC
sp_cluster logical, "create", CatchallLC
```
All instances provide service to a single database store.
Setting up a logical cluster

Adding instances to a logical cluster

Add instances to the cluster using `sp_cluster logical, "add"`.

Add two instances to the mission-critical “SalesLC”:

```
sp_cluster logical, "add", SalesLC, instance, ase1
sp_cluster logical, "add", SalesLC, instance, ase2
```

Add a single instance to “HRLC”:

```
sp_cluster logical, "add", HRLC, instance, ase3
```

Add a single instance to “CatchallLC”:

```
sp_cluster logical, "add", CatchallLC, instance, ase4
```

Adding routes to a logical cluster

Use `sp_cluster logical, "add"` to route clients to a target logical cluster. See “Assigning routing rules” on page 97.

For example, to route the applications “field_sales” and “sales_reports” to “SalesLC,” enter:

```
sp_cluster logical, "add", SalesLC, route, application, "field_sales;sales_reports"
```

To route the login name “sales_web_user,” which is used by several sales applications via the Internet, to “SalesLC,” enter:

```
sp_cluster logical, "add", SalesLC, route, login, sales_web_user
```

To route all clients using human resources applications to “HRLC”, enter an alias route:

```
sp_cluster logical, "add", HRLC, route, alias, HR_SERVER
```

Note Make sure that you include each server alias in the client’s directory service, and that those query entries specify an address on which the physical cluster is listening.

For example, to set up an alias for the client’s directory service:

```
ase1
    query tcp ether blade1 19786
```
Starting a logical cluster

To start a logical cluster, which places it in the online state, use `sp_cluster logical, "online"`. For example, to start “SalesLC” and “HRLC,” enter:

```plaintext
sp_cluster logical, "online", SalesLC
sp_cluster logical, "online", HRLC
```

Assigning routing rules

Each client connection to a shared-disk cluster is associated with a logical cluster. That association can be based on a routing rule; it can also be based on the lack of a routing rule, which means the connection is routed to the open logical cluster.
If the connection cannot be directed to a logical cluster, either because the target logical cluster is offline or the client does not support login redirection, the connection can be handled according to the target logical cluster’s down-routing mode. See “Down-routing mode” on page 100 for information about specifying down-routing rules.

Routing rules

Routing rules direct incoming client connections to the appropriate logical cluster. Once a connection is routed to a logical cluster, an Adaptive Server task entered for that route can be administered by logical cluster management capabilities.

There are three types of routing rules, or bindings. Each binding uses the name in the TDS login record.

Binding routes are listed in the order of precedence, from highest to lowest. Thus, a login route takes precedence over an application route, which takes precedence over an alias route.

- Login routes – establish a relationship between an Adaptive Server login and a logical cluster.
- Application routes – establish a relationship between an application name and a logical cluster.
- Alias routes – associate a server name with a logical cluster. Applications can choose a logical cluster from server aliases placed in the interfaces file. These aliases use unique server names.

The alias entry can point anywhere in the physical cluster. The workload manager sends it to the correct instances via login redirection.

Configuring logical cluster attributes

Every logical cluster possesses a set of attributes, or properties, that control different aspects of logical cluster behavior. Each attribute has a default value. You can accept the default value or change it to best suit your application environment.

To view the current settings for logical cluster attributes, use `sp_cluster logical, "show"`. See “Viewing information about a logical cluster” on page 107.
Use `sp_cluster logical` to manage these attributes:

- **Open** – specifies a logical cluster to which clients without a specific routing plan are directed.
- **System view** – specifies whether monitoring and informational tools such as `sp_who`, `sp_lock`, and monitoring tables describe an instance in the cluster or the whole cluster.
- **Start-up mode** – specifies whether a logical cluster must be started automatically or manually.
- **Down-routing mode** – specifies how client connections are routed if a logical cluster designated by the routing rule is not available.
- **Failover mode** – how and when failover instances are brought online.
- **Fail-to-any** – specifies whether any instance can be a failover resource or only a designated instance can be a failover resource.
- **Load profile** – provides a series of weighted metrics for determining the relative workload on an instance in a logical cluster.
- **Login distribution mode** – specifies how Adaptive Server distributes connections when a logical cluster spans multiple instances.

Open logical cluster

All connections not routed to a logical cluster via an explicit routing rule are routed to the current open logical cluster. When you create a new cluster, the system logical cluster is automatically designated the open logical cluster. You can reset the open attribute for another logical cluster. However, only one open logical cluster can exist per physical cluster.

To specify a new open logical cluster, use `sp_cluster logical, "set"`. For example, to designate “CatchallLC” as the open logical cluster, enter:

```
sp_cluster logical, "set", CatchallLC, "open"
```

When you reset the open attribute for a new logical cluster, Adaptive Server automatically turns off the open attribute for the old open logical cluster.

You can use the open property with the down-routing mode to reserve one or more instances for the exclusive use of a specific logical cluster.
Configuring logical cluster attributes

Down-routing mode

Routing rules direct incoming client connections to the appropriate logical cluster. See “Assigning routing rules” on page 97. However, routing rules do not specify how connections should be handled when the target logical cluster is offline, or when redirection is required and the connection does not support redirection.

Note The Client-Library property CS_PROP_REDIRECT determines whether a client connection supports login redirection. By default, the value of CS_PROP_REDIRECT is true, and the client connection supports login redirection. See the *Client-Library/C Reference Manual*.

You can specify a down-routing mode to direct connections when routing rules cannot be applied.

You can also use this attribute to reserve certain instances for specific connections. See “Resource reservation” on page 100.

Use `sp_cluster logical, "set"` to configure the down-routing mode. Values are:

- **system** – sends unroutable connections to the system logical cluster. `system` ensures the highest availability as the system logical cluster is always online for every instance. This is the default setting.

- **open** – sends unroutable connections to the open logical cluster. If the connection cannot be sent to the open logical cluster, or the connection does not support redirection, Adaptive Server applies the down-routing mode of the open logical cluster.

- **disconnect** – disconnects unroutable connections. This setting can enforce resource reservation by disconnecting clients that cannot be served by instances in the target logical cluster. See “Resource reservation” on page 100.

For example, to set the down-routing mode to `open` for “SalesLC”, enter:

```
sp_cluster logical, "set", SalesLC, downRouting, "open"
```

This example ensures that, if “SalesLC” is unavailable, clients bound to that logical cluster are routed to the open logical cluster.

Resource reservation

You can use the open property in conjunction with the disconnect down-routing mode to reserve one or more instances for the exclusive use of a specific logical cluster. Suppose, for example, that you want to reserve instance “ase3” for the exclusive use of the “HRLC” logical cluster:
1. Set the open property to a logical cluster that does not include “ase3.”

2. Set the down-routing mode of the open logical cluster to disconnect so that even clients that do not support redirection cannot access it.

Only connections with routing rules specifying “HRLC” can connect to “ase3.”

System-view attribute

The `system-view` attribute controls how you see the cluster when using system stored procedures such as `sp_who` and `sp_lock`, or viewing monitor tables, fake tables, and so on. You can set the `system_view` attribute so Adaptive Server displays information about the current instance or the physical cluster.

For example, to set the system view for the instance:

```
sp_cluster logical, "set", SalesLC, system_view, instance
```

To set the system view for the cluster:

```
sp_cluster logical, "set", SalesLC, system_view, cluster
```

Setting the system view at a logical cluster level provides a default value for connections in a logical cluster. See Chapter 15, “System Changes.”

Note The `system-view` attribute is an administrative tool. Its current value does not affect the way applications perceive a logical cluster, its databases, or database objects.

Start-up mode

The start-up mode attribute specifies whether a logical cluster starts automatically when the cluster starts, or whether the administrator starts it manually.

- In automatic mode, a logical cluster starts only when its first base instance comes online following a cluster restart. Thus, a logical cluster does not automatically come online when a failover instance comes online. This is the default value.
Configuring logical cluster attributes

- In manual mode, a logical cluster comes online only after the administrator executes the online command.

For example, to change the start-up mode for “SalesLC” to manual, enter:

```
sp_cluster logical, "set", SalesLC, startup, manual
```

Failover mode

The failover mode specifies when and how a logical cluster runs on failover instances.

Use `sp_cluster logical, "set"` to specify the failover mode. Values are:

- **instance** – specifies that whenever an online instance fails (whether a base or failover instance), it is replaced with a failover instance on a 1:1 basis. For example, suppose logical cluster “SalesLC” runs on instances “ase1” and “ase2” with “ase3” and “ase4” as failover instances, and the failover mode is “instance.” If “ase1” fails, “ase3” comes online, and the cluster runs on “ase2” and “ase3” (or “ase4”, depending on the relative workload of the two failover instances). instance is the default value.

- **group** – specifies that base instances are replaced only when all base instances fail and that all failover instances then come online. Suppose the failover mode for “SalesLC” is “group.” If “ase1” fails, the cluster continues to run on “ase2”. No failover instances are brought online. However, if both “ase1” and “ase2” fail, then the cluster runs on “ase3” and “ase4”.

You can also designate multiple failover groups, so that even if instances in the first failover set fail, another set of failover instances is available to come online.

For example, to set the failover mode for “SalesLC” to “group”, enter:

```
sp_cluster logical, "set", SalesLC, failover, "group"
```

Fail_to_any attribute

The fail_to_any attribute determines whether a logical cluster can fail over to any instance in the cluster, or only to designated failover instances. This attribute becomes important only if designated failover instances cannot be brought online.
Set the fail_to_any attribute using **sp_cluster logical, "set".** Values are:

- **true** – specifies that the system always selects other instances to act as failovers as long as any other instances in the cluster are online and available. This is the default value.
- **false** – specifies that only designated failover instances can be used.

For example, to turn off the fail_to_any attribute for “SalesLC”, enter:

```
sp_cluster logical, "set", SalesLC, fail_to_any, false
```

Load profile attribute

Adaptive Server uses the load profile to provide a load score for each instance in a logical cluster. The load score determines when the workload manager directs connections to other instances to help balance the workload. You can use the sample load profiles tested and provided by Sybase or configure your own. See “Load profiles” on page 120 more information.

Login distribution mode

The login distribution mode lets you specify how connections are distributed in logical clusters with multiple instances. The login distribution mode does not affect single-instance logical clusters.

Values are:

- **affinity** – specifies that the instance accepting a connection retains it as long as the target logical cluster is running on that instance.
 - If the load profile specifies a load threshold, and the load on the instance is too high, the workload manager redirects the connection to the least loaded instance in a logical cluster.
 - If the target logical cluster is not running on the instance, the workload manager redirects the connection to the least loaded instance in a logical cluster.
Configuring failover

- **round-robin** – specifies that incoming connections are distributed in a round-robin fashion among the instances hosting a logical cluster. For example, if “SalesLC” is running on “ase1” and “ase2”, the workload manager sends the first connection to “ase1,” the next to “ase2”, and so on. Load scores are not included in the algorithm.

Note The Cluster Edition does not perform load-based redirection (affinity or round-robin) for connections with the sa_role. However, sa_role connections are redirected if a route directs them to a logical cluster running on another instance.

Sybase recommends

Sybase recommends affinity mode for transactional applications with short, frequent connections, and round-robin mode for read-mostly applications where an application server establishes a persistent pool of connections to Adaptive Server.

Configuring failover

Any instance in a physical cluster can be a failover resource. Logical cluster failover rules do not impact infrastructure, lock remastering, or recovery. You can configure logical cluster failover by specifying:

- **Failover resources** – specific instances or groups of instances to which failover occurs.

- **The failover mode** – determines whether failover occurs for individual members of a logical cluster or only for the cluster as a whole. See “Failover mode” on page 102.

- **The fail_to_any attribute** – determines whether failover occurs only to designated failover resources or to any other instance if the designated failover resources are unavailable. See “Fail_to_any attribute” on page 102.

When you create a logical cluster, default settings for the fail_to_any attribute ensure that if a base instance fails, it is immediately replaced with another instance. This is the simplest failover strategy, and it is adequate for many sites.

If your site requires finer control of failover resources, you can change the default settings and direct failover to specific instances or groups of instances.
You can create up to 31 failover groups for each logical cluster. By grouping failover instances, you can give preference to specific failover groups. For example, you can ensure that instances in group 1 are considered before instances in group 2, and so on. The workload manager chooses failover instances within the group according to workload: instances with the lighter load are chosen first.

Instances can be a member of only one failover group per logical cluster. Thus, if instance “ase4” is in failover group 1 for “SalesLC”, it cannot also be in failover group 2 for “SalesLC”. However, “ase4” can simultaneously be in failover group 1 for “SalesLC”, failover group 2 for “HRLC”, and a base instance for “CatchallLC”.

When the workload manager needs to activate failover instances, it looks first in group 1, then in group 2, and so on until the failover condition is satisfied. If it cannot activate a configured failover resource, the workload manager checks the _fail_to_any_ parameter configuration. If _fail_to_any_ is true, the workload manager attempts to satisfy failover using any available instance. If _fail_to_any_ is false, failover does not occur.

Adding failover resources

Use `sp_cluster logical, "add"` to add failover resources to a logical cluster. You cannot add failover resources to the system logical cluster.

Each time you use `sp_cluster logical, "add"` to add failover resources, Adaptive Server creates one or more failover groups.

If you add one or more failover instances, separating multiple instances with semicolons, Adaptive Server places all instances in a single group.

For example, to add “ase3” as a failover group to “SalesLC”, enter:

```
sp_cluster logical, "add", SalesLC, failover, ase3
```

You can also add failover instances to existing failover groups. For example, suppose “ase3” is a member of failover group 1. To add “ase4” to failover group 1, enter:

```
sp_cluster logical, "add", SalesLC, failover, ase4, "1"
```

To view failover resource information, including the failover group ID, use `sp_cluster logical, "show"`.
Managing logical clusters

This section describes how to manage logical clusters.

User tasks and logical clusters

Each Adaptive Server task (SPID) runs inside a logical cluster. The lcid column in sysprocesses is a logical cluster ID that is hosting a given task. This ID can be passed to the lc_name() built-in function to determine the name of the corresponding logical cluster.

An individual task may run the lc_name() built-in to determine the current logical cluster.

Managing the workload manager thread

The workload manager thread is a system-service thread that runs on each instance. When an instance starts, it automatically spawns the workload manager thread. This thread spends most of its time sleeping, but wakes up periodically to handle a logical cluster action, gather workload metrics, calculate the load on each instance, send load information to all instances, and other management duties.

You can view information about the workload manager by querying sysprocesses and monProcesses, using sp_who, and using other Adaptive Server capabilities for monitoring processes.

You may want to change the default value for maximum memory usage for the workload manager (see “Setting memory requirements for the workload manager” on page 106). Otherwise, the workload manager requires no maintenance.

Setting memory requirements for the workload manager

Set the “workload manager cache size” configuration parameter to specify the maximum amount of memory that the workload manager can use. All memory used by the workload manager comes from the memory pool sized by workload manager cache size.
Connection migration consumes memory from this pool; each configured logical cluster, route, and load profile consumes memory from this pool. Actions resulting from commands such as failover and failback consume memory from this pool and continue to do so until the action is released.

Estimate the memory usage based on these guidelines:

- Four memory pages for each concurrent migrating connection
- One page for three logical clusters
- One page for two load profiles
- One page for 30 routes
- One page for 12 actions

Use `sp_configure` to set the maximum value of the memory pool in increments of 2K pages. For example, to set the value of `workload manager cache size` to 100 2K pages, enter:

```
sp_configure "workload manager cache size", 100
```

`workload_manager_size` is dynamic; you need not restart the server. The default value is 80, or 160KB.

The default value is sufficient for most installations. If you anticipate migrating a logical cluster with many concurrent connections, you may need to increase the size of the memory pool.

Viewing information about a logical cluster

To view information about a logical cluster, you can:

- Use the built-in functions `lc_name()`, `lc_id()`, `instance_name()`, and `instance_id()`.
- Use the global variables `@@clusternname`, `@@instancename`, and `@@instanceid`.
- Query the monitor tables.
- Use `sp_cluster logical, show`.

Querying the monitor tables

The following monitor tables provide information about a logical cluster, the workload, and the workload profile:
Managing logical clusters

- monLogicalCluster – provides summary information about the system’s logical clusters.
- monLogicalClusterInstance – provides information about each instance in the system’s logical clusters.
- monLogicalClusterRoute – provides information about configured routes.
- monLogicalClusterAction – provides information about actions in the system’s logical clusters.
- monWorkload – provides the workload scores for each instance for each load profile.
- monWorkloadProfile – provides information about each load profile.

You can use Transact-SQL commands to query these tables for information. See Chapter 15, “System Changes,” for a complete description of each of the monitor tables.

Using sp_cluster logical, "show"

You can use sp_cluster logical, "show" to:

- View summary information about a specific logical cluster or all logical clusters. For example, to view information about “SalesLC”, enter:

 `sp_cluster logical, "show", SalesLC`

 To view information about all logical clusters, enter:

 `sp_cluster logical, "show"`

- View information about actions. For example, to view information about all completed actions, enter:

 `sp_cluster logical, "show", NULL, action, complete`

 To retrieve information about cancelled actions for “SalesLC”, enter:

 `sp_cluster logical, "show", SalesLC, action, cancelled`

 To retrieve information about active actions for Sales LC, enter:

 `sp_cluster logical, "show", SalesLC, action, active`

- View information about configured routes. You can query on a particular application, login, alias, or combination of these.

 To view information about the “sales_web_user” login route to “SalesLC”, enter:

 `sp_cluster logical, "show", "sales_web_user", SalesLC`
Creating and dropping a logical cluster

- To create a logical cluster, use `sp_cluster logical, "create"`. For example, to create “FinanceLC”, enter:

  ```
  sp_cluster logical, "create", FinanceLC
  ```

- To drop a logical cluster, use `sp_cluster logical, "drop"`, a logical cluster must be offline or inactive before it can be dropped. `sp_cluster logical, "drop"` deletes the cluster and all routes, resources, and attributes associated with the cluster.

 For example, to drop “FinanceLC”, enter:

  ```
  sp_cluster logical, "drop", FinanceLC, cluster
  ```

Adding resources to a logical cluster

Use `sp_cluster logical, "add"` to add resources to a logical cluster. You can add:

- Base instances – see examples in “Adding instances to a logical cluster” on page 96.
- Failover instances – see examples in “Adding failover resources” on page 105.

Dropping resources from a logical cluster

Use `sp_cluster logical, "drop"` to drop one or more resources from a logical cluster. A base instance or a failover instance must be offline before it can be dropped.

You can drop:

- Base instances – for example, to drop instance “ase2” from “SalesLC”, enter:

  ```
  sp_cluster logical, "drop", SalesLC, instance, ase2
  ```
Managing logical clusters

- Failover instances – for example, to drop failover instances “ase3” and “ase4” from “SalesLC”, enter:

 \[\text{sp_cluster logical, "drop", SalesLC, failover, "ase3;ase4"}\]

Adding, moving, and dropping routes

- To add a route, use \text{sp_cluster logical, "add"}. For example, to add a route for the logins “accounting” and “projects” to “SalesLC”, enter:

 \[\text{sp_cluster logical, "add", SalesLC, route, login, "accounting;projects"}\]

- To move a route from one logical cluster to another, use \text{sp_cluster logical, "alter"}. For example, to create a route to “My_LC” using the alias “SalesLC”, and then move the route from “My_LC” to “Your_LC”, enter:

 \[
 \begin{align*}
 &\text{sp_cluster logical, "add", My_LC, route, alias, SalesLC} \\
 &\text{sp_cluster logical, "alter", Your_LC, route, alias, SalesLC}
 \end{align*}
 \]

- To drop a route, use \text{sp_cluster logical, "drop"}. For example, to drop the login “projects” from “SalesLC”, enter:

 \[\text{sp_cluster logical, "drop", SalesLC, route, login, projects}\]

Migrating connections

Use \text{sp_cluster connection “migrate”} to:

- Migrate the logical cluster or instance on which a connection (or another task) is running.

- Migrate an application or login to a logical cluster or instance for which it is not routed.

For example, this migrates the connection with a spid of 73 to the SalesLC logical cluster.

 \[\text{sp_cluster connection, "migrate", SalesLC, NULL, "73"}\]

See “\text{sp_cluster connection, migrate}” on page 295.
Use `sp_cluster logical` to set a manual or automatic migration to another logical cluster or gather groups of connections to another logical cluster when predefined events occur. You can “gather” all qualified connections on the system or logical cluster to a designated logical cluster using the defined routing rules. The Cluster Edition looks for all connections that match the routing rules for this logical cluster, and migrates them to the specified logical cluster.

The syntax is:

```plaintext
sp_cluster logical, 'gather', lc_name
sp_cluster logical 'set', lc_name, 'gather', 'automatic | manual'
```

This gathers all the defined connections to the SalesLC logical cluster:

```plaintext
sp_cluster logical, 'gather', SalesLC
```

This sets the gathering to “manual” for the SalesLC logical cluster:

```plaintext
sp_cluster logical 'set', SalesLC, 'gather' 'manual'
```


Administering failover, failback, and planned downtime

You can manually change the state of a logical cluster and its instances using `sp_cluster logical, "action"`, when the action is one of:

- failover
- failback
- online
- offline
- deactivate

Cluster and instance states

A logical cluster and each instance in the cluster can have different states.

- A logical cluster has an overall, or global, state that determines, for example, whether the cluster is offline or online.
A logical cluster also has an **instance state** that describes the state of a particular instance as it is perceived by a logical cluster. For example, an online logical cluster may be online on its base instances and offline on its failover instances. This state may be independent of the actual Adaptive Server state, as a logical cluster may be offline on an instance that is actually up and running.

There are five states that are visible to the user. These states apply to a logical cluster state as well as the instance state. Table 6-1 describes each state at the global and instance levels.

Table 6-1: Logical cluster states

<table>
<thead>
<tr>
<th>State</th>
<th>At the global level</th>
<th>At the instance level</th>
</tr>
</thead>
<tbody>
<tr>
<td>online</td>
<td>A logical cluster is online and running on one or more instances.</td>
<td>The online logical cluster is accepting and managing connections on the current instance.</td>
</tr>
<tr>
<td>offline</td>
<td>A logical cluster is not running on any instance.</td>
<td>A logical cluster is not running on the current instance, which cannot accept connections or consume resources.</td>
</tr>
<tr>
<td>inactive</td>
<td>Similarly to the offline state, a logical cluster is not running on any instance. Inactive logical clusters are not started automatically and do not participate in failover. The cluster achieves the inactive state only through the deactivate command. Once inactive, the cluster comes online only through the online command.</td>
<td>A logical cluster is not running on the current instance, which cannot accept connections or consume resources. In addition, the inactive instance cannot fail over and is not brought online after an automatic start-up. This state is achieved only via the deactivate command.</td>
</tr>
<tr>
<td>failed</td>
<td>Similarly to the offline state, a logical cluster is not running on any instance. A logical cluster moves to the failed state when its active instances are shutdown with nowait or encounter a system failure when no failure resources are available.</td>
<td>A logical cluster is not running on the current instance, which cannot accept connections or consume resources. The failed state is reached via a shutdown with nowait or system failure.</td>
</tr>
<tr>
<td>time_wait</td>
<td>A transition state between online and offline or inactive. An online logical cluster must enter the time_wait state before becoming offline or inactive. During this time, any new connections are routed according to the down-routing mode, and existing connections migrate or disconnect.</td>
<td>A transition state between online and offline or inactive. When a logical cluster is online for an instance, it must enter the time_wait state before becoming offline or inactive. In the time_wait state, no new connections can be routed to a logical cluster or instance, but existing connections continue to run until they migrate or disconnect.</td>
</tr>
</tbody>
</table>
How states change

Cluster and instance states can change:

- Manually, when you execute a state change using the online, offline, failover, and failback commands; and sometimes with the action command
- Automatically, as a result of system changes

The initial state of the cluster or instance can dictate whether or not a state change is valid, and even the final state. Table 6-2 shows how different actions, executed manually, and states interact. States are described in rows; actions are described in columns. Each cell represents the new state when an action is applied to a logical cluster or instance in the initial state.

Table 6-2: Interaction of action and state

<table>
<thead>
<tr>
<th></th>
<th>offline</th>
<th>online</th>
<th>time_wait</th>
<th>failed</th>
<th>inactive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Online</td>
<td>online</td>
<td>online</td>
<td>failed</td>
<td>time_wait</td>
<td>online</td>
</tr>
<tr>
<td>Offline</td>
<td>offline</td>
<td>online/time_wait</td>
<td>offline</td>
<td>failed</td>
<td>offline</td>
</tr>
<tr>
<td>Failback instance</td>
<td>online</td>
<td>online/time_wait</td>
<td>online</td>
<td>online</td>
<td>online</td>
</tr>
<tr>
<td>Failback cluster</td>
<td>online/time_wait</td>
<td>offline</td>
<td>offline</td>
<td>offline</td>
<td>offline</td>
</tr>
<tr>
<td>Failover instance</td>
<td>online</td>
<td>online</td>
<td>online</td>
<td>online</td>
<td>online</td>
</tr>
<tr>
<td>Failover cluster</td>
<td>online/time_wait</td>
<td>offline</td>
<td>offline</td>
<td>offline</td>
<td>offline</td>
</tr>
<tr>
<td>Cancel action</td>
<td>online</td>
<td>online</td>
<td>time_wait</td>
<td>inactive</td>
<td>inactive</td>
</tr>
<tr>
<td>Modify wait</td>
<td></td>
<td>time_wait</td>
<td>inactive</td>
<td>inactive</td>
<td>inactive</td>
</tr>
<tr>
<td>Deactivate</td>
<td>inactive</td>
<td>inactive/time_wait</td>
<td>inactive</td>
<td>inactive</td>
<td>inactive</td>
</tr>
</tbody>
</table>

States can also change as the result of system changes. Table 6-3 shows the effects of different system changes on the state of the cluster or instance.

Table 6-3: Interaction of action and state

<table>
<thead>
<tr>
<th></th>
<th>offline</th>
<th>online</th>
<th>time_wait</th>
<th>failed</th>
<th>inactive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instance joins cluster</td>
<td>online if automatic start-up is configured</td>
<td>time_wait</td>
<td>online if automatic start-up is enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graceful shutdown</td>
<td>time_wait</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System failure</td>
<td>failed</td>
<td>failed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shutdown with nowait</td>
<td>failed</td>
<td>failed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Failover selection</td>
<td>online</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Note Logical cluster states are not retained following a total cluster restart. For example, suppose you execute the offline command for a logical cluster that is in automatic start-up mode. The cluster is in the online state after you restart it.

Asynchronous commands and logical cluster states

The sp_cluster logical commands deactivate, failback, failover, and offline are asynchronous. They stop an online instance that may have existing transactions. These transactions must be handled before the instance can actually be taken offline or made inactive. As a consequence, these commands can be allowed to complete at a later time and context.

When you execute any of these commands, the target instance is placed in the time_wait state, and no longer accepts new connections.

Each asynchronous command provides three “wait” options for handling existing transactions. Values are:

• wait – lets existing connections remain for a specified period of time, for example five minutes. Connections that support migration migrate as soon as they are quiescent. Connections that do not support migration disconnect when they become quiescent. HA-aware clients fail over; clients that are not HA-aware disconnect. Connections remaining after the specified time are terminated.

• until – lets existing connections remain until a specified time, for example 12:30 p.m. Otherwise, until and wait handle connections in the same way.

• nowait – terminates existing connections immediately. Connections that support migration must migrate immediately, or they are terminated.

Note If you do not specify a wait option when executing an sp_cluster logical asynchronous command, Adaptive Server assumes an infinite wait.

When the last connection using the instance disconnects, the instance state changes from time_wait to offline or inactive.

Using action descriptors

Action descriptors let you track or change an action.
When an asynchronous command seeks to stop one or more instances, it generates an action descriptor. The action descriptor tracks the action, the wait option, and target instances in the time_wait state. You can view information about an action descriptor by querying the `monLogicalClusterAction` table or executing `sp_cluster logical, "show", NULL, action`.

An action can be “active” or “complete.” An action is active when at least one target instance remains in the time_wait state. An action is complete when all target instances are no longer in the time_wait state.

Using `sp_cluster logical, action`, you can manage action descriptors using these options:

- **cancel** – terminates active actions. Instances in the time_wait state due to that action return to the online state. Existing connections remain, even if they were marked for migration or termination.

 If the command that resulted in the creation of the action brought instances online, they remain online. For example, if an action results in the cancellation of a failover from s1 to f1, f1 remains online.

- **modify_wait** – changes the wait option (see “Asynchronous commands and logical cluster states” on page 114) and time associated with an active action. For example, if an action is created with a 10-minute wait, use `modify_wait` to change:

 - The time delay to 20 minutes
 - The time delay to the actual clock time of 4:30 p.m.
 - The wait option to `nowait`

- **release** – removes a completed action from the `monLogicalClusterAction` table.
Administering failover, failback, and planned downtime

Completed actions remain in the monLogicalClusterAction table so you can track their status. However, completed actions consume memory from the workload manager cache. Execute the release command after an action completes to free this memory.

Note Action information is stored in memory only. Restarting the full cluster clears all actions from the monLogicalClusterAction table.

An example: scheduling and rescheduling a failover

You can execute an administrative failover for a cluster or an instance. The cluster or instance fails over to previously configured failover resources.

In this example, we fail over the “SalesLC” cluster, scheduling the failover for 2 a.m. So that we can later track or change the action, we also include the syntax that outputs an action handle:

```
declare @out_handle varchar(15)
declare @out_handle varchar(15)
execute
execute
sp_cluster logical, "failover", SalesLC, cluster, NULL,
sp_cluster logical, "failover", SalesLC, cluster, NULL,
until, "02:00:00", @handle = @out_handle output
until, "02:00:00", @handle = @out_handle output
```

Suppose the command outputs the action handle “1234”, and SalesLC enters the time_wait state. All new connections migrate to the failover resources. Any existing connections remaining after 2 a.m. are terminated, and “SalesLC” enters the offline state.

Suppose we find that we must migrate all connections immediately. We can use the action handle to reschedule an immediate failover. Enter:

```
sp_cluster logical, "failover", SalesLC, modify_time, 
sp_cluster logical, "failover", SalesLC, modify_time, 
"1234", nowait
```

"1234", nowait
Using failover, failback, online, offline, and deactivate

failover

failover initiates a manual failover from a logical cluster’s base resources to its failover resources. Failover resources must be set up previously using `sp_cluster logical, "add"`. When initiating a partial-cluster failover, specify a list of base resources that are to fail over, and a list of failover resource to which the base instances will fail over.

For example, you can fail over a portion of a logical cluster to a set of previously configured failover resources. Here, “SalesLC” is running on instances “ase1” and “ase2.” To keep “SalesLC” running on “ase2”, but fail over “ase1” to the previously defined failover resource “ase3”, enter:

```
sp_cluster logical, "failover", SalesLC, instance, ase1, ase3
```

In this example, the no wait option has been specified, which, by default, specifies an infinite wait.

failback

failback reverses a failover. It initiates a manual failback from a logical cluster’s failover resources to its base resources. When initiating a partial-cluster failover, you specify a list of failover resources that are to fail back and a list of base resources to which the failover instances will fail back.

In this example, we incrementally fail back “SalesLC”, which is running on “ase3", so that “SalesLC” runs on “ase1.” We specify a 2-minute wait.

```
declare @out_handle varchar(15)
execute
sp_cluster logical, "failback", SalesLC, instance, ase3, ase1, wait, "00:02:00", @handle = @out_handle
output
```

online

online starts a logical cluster or instances in a logical cluster, placing them in the online state.

For example, to start SalesLC on “ase1”, enter:

```
sp_cluster logical, "online", SalesLC, ase1
```
Distributing the workload

See “Starting a logical cluster” on page 97 for more examples.

offline

offline stops logical clusters or instances in the online or active state.

For example, to take “SalesLC” offline, wait 5 minutes, and store the action in an action handle in a local variable, enter:

```sql
declare @out_handle varchar(15)
execute
sp_cluster logical, "offline", SalesLC, cluster, wait,
00:05:00, @handle=@out_handle output
```

deactivate

deactivate is identical to offline, except it puts the cluster or instance in the inactive state. See “offline” on page 118.

Distributing the workload

Each instance has a workload manager thread that is responsible for calculating the load on the current instance and sending that information to the other instances in the cluster. The workload manager is a system-service thread; it is spawned when the instance starts.

Adaptive Server uses a workload measurement algorithm to calculate a load score for each instance. This load score is a unitless number that can be compared with other load scores to determine relative workloads. Thus, you can compare load scores across a cluster or at different times for a particular cluster. A load score is meaningful only when compared to other load scores.

Workload metrics

When calculating a load score, Adaptive Server considers five system-defined metrics and, optionally, one user-supplied metric.

- User connections – the capacity of an instance to accept a new connection, based on resource availability.
• CPU utilization – the capacity of an instance to accept additional work.
• Run-queue length – the number of runnable tasks on a system. Run-queue length measures the processing backlog, and is a good indicator of relative response time.
• I/O load – outstanding asynchronous I/Os.
• Engine deficit – the difference in the number of online engines among instances in the cluster.

Note Engine deficit is measurable only when instances in the cluster have unequal numbers of engines. In this scenario, engine deficit adds a metric for maximum relative capacity to the load score.

• User metric – a customer-supplied metric specific to the user’s environment. This metric is optional. See “Creating a user metric.”

Creating a user metric

You can add a site-specific metric to the workload measurement algorithm using the `workload_metric` built-in function. In a typical example, you might monitor response time using an external monitor, and then insert the response-time values into the algorithm.

Adaptive Server normalizes system-supplied metrics before including them in the workload algorithm. For compatibility, you must normalize the user-supplied metric as well. For example, if the maximum acceptable response time is 5 seconds and the measured response time is 2 seconds, the normalized value is 40, which can be entered into the workload algorithm using `workload_metric`.

Weighting the workload metrics

Each component of the load score is weighted according to importance. The metric values are normalized, and the results are summed to give each instance an overall load score. Sybase supplies default values that are sufficient for most sites, but if you are including a site-specific metric, you may want to adjust the weights using `sp_cluster profile`.
Load thresholds

Adaptive Server uses the load score for each instance to determine:

- How best to distribute incoming connections – login redirection.
- Whether to migrate existing connections – dynamic load distribution.

Load distribution is performed only for a logical cluster running on multiple instances. The Sybase load distribution strategy is to redirect work when one instance is overloaded and other instances are available. It does not seek to maintain perfectly balanced load scores. As a result, Adaptive Server maintains load thresholds for login redirection and dynamic load distribution. The load threshold is the percentage difference between the load on the current instance and the load on the least loaded instance currently participating in a logical cluster. That value must be met before Adaptive Server redirects a login or migrates an existing connection.

Adaptive Server maintains separate load thresholds for login redirection and connection migration. Typically, the login redirection threshold is lower than that for connection migration. You can use `sp_cluster profile` to configure the load thresholds when creating a load profile.

Hysteresis value

The load threshold tells Adaptive Server when to redirect connections from an overloaded instance to the least loaded instance. The hysteresis value guards against migration when the threshold value is met, but the actual load scores are too low to require migration.

For example, suppose the load score on the current instance is 2 and that of the least loaded instance is 1. The percentage difference is 100%, which meets the load threshold, but the actual load scores are so low migration is not appropriate.

Load profiles

Load profiles consolidate all configurable aspects of the workload scoring system into a single named entity.

You can assign different load profiles to different logical clusters in the same physical cluster, thus enabling multiple applications with diverse workloads within the same physical cluster. You can also share the same load profile among multiple logical clusters.
For example, a shared-disk cluster can simultaneously host a DSS-based logical cluster that is primarily read-only and an OLTP logical cluster that handles frequent writes. The optimum thresholds for login redirection and connection migration for these two clusters may be very different. The ability to assign specific load profiles to each logical cluster allows each cluster to function more efficiently.

Note Adaptive Server gathers load statistics for each instance without regard to logical cluster. Thus, if two logical clusters run on the same instance, they will have the same raw data for that instance. However, each logical cluster will interpret and use that data according to its own load profile.

Sybase provides a preconfigured profile created for an OLTP environment. You can also create your own load profiles using `sp_cluster profile`.

Using the sample load profiles

Sybase provides two sample load profiles:

- `sybase_profile_oltp` – is configured for OLTP environments. It tries to keep all connections on the same instance by disabling load-based login distribution and dynamic-load distribution. Emphasis is placed on requeue depth, which is a good predictor of response time.

- `sybase_profile_dds` – is configured for primarily read-only, DSS environments. It uses load-based login distribution and dynamic load distribution to distribute load across multiple instances, but places emphasis on balancing CPU usage and user connections.

Table 6-4 lists the metrics for `sybase_profile_oltp` and `sybase_profile_dds`.
Creating and configuring your own load profile

To create and configure your own load profile:

1. Create the empty load profile.
2. Build the load profile by specifying individual metric weights and thresholds.
3. Associate the load profile with a logical cluster.

Creating the load profile

Build the empty load profile using sp_cluster profile, "create". For example, to create the profile “my_profile”, enter:

```
sp_cluster profile, "create", my_profile
```

Building the load profile

Build the load profile by specifying:

- A weight for each of the metrics that make up the load profile
- Load distribution thresholds

Table 6-4: Metrics for the sample load profiles

<table>
<thead>
<tr>
<th>Workload metric</th>
<th>“sybase_profile_oltp”</th>
<th>“sybase_profile_dss”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile ID</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>User connections</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>CPU utilization</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>Run-queue length</td>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td>I/O load</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Engine deficit</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>User weight (not used)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Login threshold</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>Dynamic threshold</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>
Specifying weights for load profile metrics

Use `sp_cluster profile, "set"` to configure weights for each of the metrics covered in the load profile:

- User connections
- CPU busy
- Run-queue length
- I/O load
- Engine deficit
- User metric (optional, see “Creating a user metric” on page 119)

See “Workload metrics” on page 118 for a description of the workload metrics.

Set each metric individually using values between 0 and 255. For example, to set weights for “my_profile”, enter:

```
sp_cluster profile, "set", my_profile, weight, "user connections", "0"

sp_cluster profile, "set", my_profile, weight, "cpu busy", "20"

sp_cluster profile, "set", my_profile, weight, "run queue", "30"

sp_cluster profile, "set", my_profile, weight, "io load", "10"

sp_cluster profile, "set", my_profile, weight, "engine deficit", "10"

sp_cluster profile, "set", my_profile, weight, "user metric", "30"
```

Specify load distribution thresholds

Set load distribution thresholds values between 0 and 100 using `sp_cluster profile, "set"`. A value of zero (0) disables that aspect of load distribution. You can set separate load thresholds for:

- Login redirection
- Dynamic load distribution
Creating and configuring your own load profile

- The hysteresis value

 For example, to turn off dynamic load distribution in “my_profile,” enter:

 sp_cluster profile, "set", my_profile, threshold, "dynamic", "0"

 To set the login redirection threshold to 30 for “my_profile,” enter:

 sp_cluster profile, "set", my_profile, threshold, "login", "30"

 To set the hysteresis value to 20 for “my_profile,” enter:

 sp_cluster profile, "set", my_profile, threshold, "hysteresis", "20"

Associating the load profile with a logical cluster

To associate a load profile with a logical cluster, use sp_cluster logical, "set". For example, to associate the profile “my_profile” with “SalesLC,” enter:

 sp_cluster logical, "set", SalesLC, load_profile, my_profile

Changing a load profile

Each logical cluster is associated with a load profile, either a system load profile or a user-created load profile. To change the load profile, associate the new load profile with a logical cluster.

For example, to change the load profile for “SalesLC” from “my_profile” to “sybase_profile_oltp,” enter:

 sp_cluster logical, "set", SalesLC, load_profile, sybase_profile_oltp

You can then drop the old load profile. For example, to drop “my_profile,” enter:

 sp_cluster profile, "drop", my_profile
Troubleshooting

Sybase provides several trace flags that you can use to troubleshoot the workload manager.

Table 6-5: Trace flags for the workload manager

<table>
<thead>
<tr>
<th>Trace flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>16403</td>
<td>Traces SPID through connection to and disconnection from a logical cluster.</td>
</tr>
<tr>
<td>16404</td>
<td>Traces routes and route resolution.</td>
</tr>
<tr>
<td>16406</td>
<td>Traces client redirection and migration.</td>
</tr>
<tr>
<td>16414</td>
<td>Traces changes in a logical cluster state machines, including transitions from online to offline and so on.</td>
</tr>
</tbody>
</table>
This chapter presents the mechanics of configuring and using named data caches in a Cluster Edition environment.

Cluster cache configuration defines multiple named caches to have local or global caches according to application needs. This feature allows cluster instances to have local caches. Objects can be bound to local or global caches. Multiple buffer pool support provides better access performance to named cache support, by facilitating large I/Os.

Users can also partition an application to localize access of application data to a particular instance serving that application.

Global caches

Global caches are defined for every instance in a cluster. For a global cache, the attributes like cache size, buffer pool setting, are sysconfigures table, and all instances in a cluster read from this entry to create the cache on their respective instances.
Local caches

It is possible to change such attributes as cache size, buffer pool settings, of a global cache to be instance-specific. If a particular instance has local settings, the cache is created using them. If the instance has no local definition, it uses a global definition to create the cache. In other words, instances that have local definitions override the global definitions and settings.

Note You can increase the size of local and global caches dynamically, but you cannot reduce them dynamically.

Local caches

Your application can define local caches for each instance in the cluster, to cater to the instance’s specific needs and to bind the cache to an object. A global definition is not required for each instance-specific cache in the cluster.

Local caches are instance-specific. You can tailor their configuration to the needs of the instance or the logical cluster to which the instance belongs. Sybase recommends that you partition applications across instances within a cluster when a particular application usually runs in a particular instance. This maximizes the benefits of local caches, as you can configure them specifically for a particular application’s access patterns.

An object can be bound to only one cache, either local or global, at any particular instance. If you do not bind the object to any cache, or in case of failover, where an instance-specific cache is not configured, it uses the default data cache. To aid efficient access, Adaptive Server maintains binding information on every instance.

Note A local cache definition on any instance overrides any global definition at that instance.
Creating and configuring named data caches

sp_cacheconfig creates and configures both global and local data caches. When Adaptive Server is installed, it contains a single global cache called the default data cache.

Getting information about named caches

You can see information about caches by entering:

```
sp_cacheconfig
  go
```

<table>
<thead>
<tr>
<th>Cache Name</th>
<th>Status</th>
<th>Type</th>
<th>Config Value</th>
<th>Run Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>default data cache</td>
<td>Active</td>
<td>Global,Default</td>
<td>0.00 Mb</td>
<td>8.00 Mb</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>0.00 Mb</td>
<td>8.00 Mb</td>
</tr>
</tbody>
</table>

Creating a new cache

The maximum data cache size is limited only by the amount of available memory on your system. The memory required to create the new cache is taken from the Adaptive Server global memory.

When the cache is created:

- It has a default wash size.
- The asynchronous prefetch size is set to the value of global asynchronous prefetch limit.
- It has only the default buffer pool.
Creating and configuring named data caches

sp_cacheconfig

Definition

Creates a new named cache. This syntax is extended from that of non-clustered Adaptive Server. It provides an extra option to specify the instance name for the local configuration at the end of the syntax. If you do not specify the instance name, the configuration is global.

Syntax

```
sp_cacheconfig "[cachename [,cache_size [P|K|M|G]]
[,logonly | mixed] [,strict | relaxed]]
[, "cache_partition = [1|2|4|8|16|32|64]"
[, "instance instance_name"]"
```

Parameters

- `cachename`

is the name of the data cache to be created or configured. Cache names must be unique, and can be up to 30 characters long. A cache name does not have to be a valid Adaptive Server identifier, that is, it can contain spaces and other special characters.

- `cache_size`

is the size of the data cache to be created or, if the cache already exists, the new size of the data cache. The minimum size of a cache is 256 times the logical page size of the server. Size units can be specified with P for pages, K for kilobytes, M for megabytes, or G for gigabytes. The default is K. For megabytes and gigabytes, you can specify floating-point values. The cache size is in multiples of the logical page size.

- `logonly | mixed`

specifies the type of cache.

- `strict | relaxed`

specifies the cache replacement policy.

- `cache_partition`

specifies the number of partitions to create in the cache.

Example assumptions

The following examples assume a shared-disk cluster named MYCLUSTER, which contains two instances:

- **SALES_INSTANCE**
- **HR_INSTANCE**

Creating a named cache

We can create a named cache `log_sales` of size 100M which is specific to instance `SALES_INSTANCE`. Executing `sp_cacheconfig` on instance `SALES_INSTANCE` displays this output:

```
sp_cacheconfig 'log_sales','100M','instance SALES_INSTANCE'
go
```

<table>
<thead>
<tr>
<th>Cache Name</th>
<th>Status Type</th>
<th>Config Value</th>
<th>Run Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adaptive Server Enterprise Cluster Edition
CHAPTER 7 Cluster Cache Configuration

default data cache Active Global,Default 0.00 Mb 8.00 Mb
SALES_INSTANCE:log_sales Active Mixed 100.00 Mb 100.00 Mb

----------- ------------
Total 100.00 Mb 108.00 Mb

==
Cache: default data cache, Status: Active, Type: Global,Default
 Config Size: 0.00 Mb, Run Size: 8.00 Mb
 Config Replacement: strict LRU, Run Replacement: strict LRU
 Config Partition: 1, Run Partition: 1

IO Size Wash Size Config Size Run Size APF Percent
---------- ------------- ------------ ------------ -----------
2 Kb 1638 Kb 0.00 Mb 8.00 Mb 10

==
Cache: SALES_INSTANCE:log_sales, Status: Active, Type: Mixed
 Config Size: 100.00 Mb, Run Size: 100.00 Mb
 Config Replacement: strict LRU, Run Replacement: strict LRU
 Config Partition: 1, Run Partition: 1

IO Size Wash Size Config Size Run Size APF Percent
---------- ------------- ------------ ------------ -----------
2 Kb 20480 Kb 0.00 Mb 100.00 Mb 10

(return status = 0)

By default, an isql connection has a cluster view. All instance-specific caches are displayed at any instance. For example, instance HR_INSTANCE displays information about cache log_sales, which is the instance-specific cache for SALES_INSTANCE. If you want HR_INSTANCE to see only the list of the local caches specific to this instance, and the global caches, set the system view to instance.

Executing sp_cacheconfig on instance HR_INSTANCE displays:

set system_view instance

exec

Cache Name Status Type Config Value Run Value
------------------ ------ -------------- ------------
default data cache Active Global,Default 0.00 Mb 8.00 Mb

Total 0.00 Mb 8.00 Mb

==
Cache: default data cache, Status: Active, Type: Global,Default
 Config Size: 0.00 Mb, Run Size: 8.00 Mb
 Config Replacement: strict LRU, Run Replacement: strict LRU
 Config Partition: 1, Run Partition: 1

IO Size Wash Size Config Size Run Size APF Percent
---------- ------------- ------------ ------------ -----------
2 Kb 1638 Kb 0.00 Mb 8.00 Mb 10

(return status = 0)
Creating and configuring named data caches

Restricting the output of cache information to instance level

To display caches at instance SALES_INSTANCE, execute:

```sql
sp_cacheconfig 'instance SALES_INSTANCE'
go
```

<table>
<thead>
<tr>
<th>Cache Name</th>
<th>Status</th>
<th>Type</th>
<th>Config Value</th>
<th>Run Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>default data cache</td>
<td>Active</td>
<td>Global,Default</td>
<td>0.00 Mb</td>
<td>8.00 Mb</td>
</tr>
<tr>
<td>SALES_INSTANCE:log_sales</td>
<td>Active</td>
<td>Mixed</td>
<td>100.00 Mb</td>
<td>100.00 Mb</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------</td>
<td>------------</td>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>100.00 Mb</td>
<td>108.00 Mb</td>
</tr>
</tbody>
</table>

Cache: default data cache, Status: Active, Type: Global,Default
- Config Size: 0.00 Mb, Run Size: 8.00 Mb
- Config Replacement: strict LRU, Run Replacement: strict LRU
- Config Partition: 1, Run Partition: 1

<table>
<thead>
<tr>
<th>IO Size</th>
<th>Wash Size</th>
<th>Config Size</th>
<th>Run Size</th>
<th>APF Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Kb</td>
<td>1638 Kb</td>
<td>0.00 Mb</td>
<td>8.00 Mb</td>
<td>10</td>
</tr>
</tbody>
</table>

Cache: SALES_INSTANCE:log_sales, Status: Active, Type: Mixed
- Config Size: 100.00 Mb, Run Size: 100.00 Mb
- Config Replacement: strict LRU, Run Replacement: strict LRU
- Config Partition: 1, Run Partition: 1

<table>
<thead>
<tr>
<th>IO Size</th>
<th>Wash Size</th>
<th>Config Size</th>
<th>Run Size</th>
<th>APF Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Kb</td>
<td>20480 Kb</td>
<td>0.00 Mb</td>
<td>100.00 Mb</td>
<td>10</td>
</tr>
</tbody>
</table>

(return status = 0)

This output displays both local and global configurations of instance SALES_INSTANCE.

Querying the existence of named caches

To find out whether a specified cache already exists. Executing `sp_cacheconfig` on instance SALES_INSTANCE displays this output:

<table>
<thead>
<tr>
<th>Cache Name</th>
<th>Status</th>
<th>Type</th>
<th>Config Value</th>
<th>Run Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SALES_INSTANCE:log_sales</td>
<td>Active</td>
<td>Mixed</td>
<td>100.00 Mb</td>
<td>100.00 Mb</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------</td>
<td>-----------</td>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>100.00 Mb</td>
<td>100.00 Mb</td>
</tr>
</tbody>
</table>

Cache: SALES_INSTANCE:log_sales, Status: Active, Type: Mixed
- Config Size: 100.00 Mb, Run Size: 100.00 Mb
- Config Replacement: strict LRU, Run Replacement: strict LRU
- Config Partition: 1, Run Partition: 1

<table>
<thead>
<tr>
<th>IO Size</th>
<th>Wash Size</th>
<th>Config Size</th>
<th>Run Size</th>
<th>APF Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Kb</td>
<td>20480 Kb</td>
<td>0.00 Mb</td>
<td>100.00 Mb</td>
<td>10</td>
</tr>
</tbody>
</table>
Using Adaptive Server syntax to create global caches
This cache is created at all instances and memory is allocated at all instances for a global cache. To create global cache `tempdb_cache`, run `sp_cacheconfig` at instance `SALES_INSTANCE`:

```
sp_cacheconfig 'tempdb_cache', '100M'
go
```

<table>
<thead>
<tr>
<th>Cache Name</th>
<th>Status</th>
<th>Type</th>
<th>Config Value</th>
<th>Run Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>default data cache</td>
<td>Active</td>
<td>Global, Default</td>
<td>0.00 Mb</td>
<td>8.00 Mb</td>
</tr>
<tr>
<td>tempdb_cache</td>
<td>Active</td>
<td>Global, Mixed</td>
<td>100.00 Mb</td>
<td>100.00 Mb</td>
</tr>
<tr>
<td>SALES_INSTANCE:log_sales</td>
<td>Active</td>
<td>Mixed</td>
<td>100.00 Mb</td>
<td>100.00 Mb</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>200.00 Mb</td>
<td>208.00 Mb</td>
</tr>
</tbody>
</table>

Cache: default data cache, Status: Active, Type: Global, Default
Config Size: 0.00 Mb, Run Size: 8.00 Mb
Config Replacement: strict LRU, Run Replacement: strict LRU
Config Partition: 1, Run Partition: 1

Cache: tempdb_cache, Status: Active, Type: Global, Mixed
Config Size: 100.00 Mb, Run Size: 100.00 Mb
Config Replacement: strict LRU, Run Replacement: strict LRU
Config Partition: 1, Run Partition: 1

Cache: SALES_INSTANCE:log_sales, Status: Active, Type: Mixed
Config Size: 100.00 Mb, Run Size: 100.00 Mb
Config Replacement: strict LRU, Run Replacement: strict LRU
Config Partition: 1, Run Partition: 1

(return status = 0)
Creating a named cache with a single global and multiple local configurations

All cache operations can be executed from any instance. For example, to create a bigger named cache, tempdb_cache, at SALES_INSTANCE, we can connect to instance HR_INSTANCE and execute:

```
sp_cacheconfig 'tempdb_cache','150M', 'instance SALES_INSTANCE'
```

Executing `sp_cacheconfig` at instance SALES_INSTANCE displays:

<table>
<thead>
<tr>
<th>Cache Name</th>
<th>Status</th>
<th>Type</th>
<th>Config Value</th>
<th>Run Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>default data cache</td>
<td>Active</td>
<td>Global, Default</td>
<td>0.00 Mb</td>
<td>8.00 Mb</td>
</tr>
<tr>
<td>tempdb_cache</td>
<td>Active</td>
<td>Global, Mixed</td>
<td>100.00 Mb</td>
<td>100.00 Mb</td>
</tr>
<tr>
<td>SALES_INSTANCE:log_hr</td>
<td>Active</td>
<td>Mixed</td>
<td>150.00 Mb</td>
<td>150.00 Mb</td>
</tr>
<tr>
<td>SALES_INSTANCE:tempdb_cache</td>
<td>Active</td>
<td>Mixed</td>
<td>150.00 Mb</td>
<td>150.00 Mb</td>
</tr>
</tbody>
</table>

Total 350.00 Mb 408.00 Mb

Cache: default data cache, Status: Active, Type: Global, Default
- Config Size: 0.00 Mb, Run Size: 8.00 Mb
- Config Replacement: strict LRU, Run Replacement: strict LRU
- Config Partition: 1, Run Partition: 1

IO Size Wash Size Config Size Run Size APF Percent
---------- ------------- ------------ ------------ -----------
2 Kb 1638 Kb 0.00 Mb 8.00 Mb 10

Cache: tempdb_cache, Status: Active, Type: Global, Mixed
- Config Size: 100.00 Mb, Run Size: 150.00 Mb
- Config Replacement: strict LRU, Run Replacement: strict LRU
- Config Partition: 1, Run Partition: 1

IO Size Wash Size Config Size Run Size APF Percent
---------- ------------- ------------ ------------ -----------
2 Kb 30720 Kb 0.00 Mb 150.00 Mb 10

Cache: SALES_INSTANCE:log_sales, Status: Active, Type: Mixed
- Config Size: 100.00 Mb, Run Size: 100.00 Mb
- Config Replacement: strict LRU, Run Replacement: strict LRU
- Config Partition: 1, Run Partition: 1

IO Size Wash Size Config Size Run Size APF Percent
---------- ------------- ------------ ------------ -----------
2 Kb 20480 Kb 0.00 Mb 100.00 Mb 10

Cache: SALES_INSTANCE:tempdb_cache, Status: Active, Type: Mixed
- Config Size: 150.00 Mb, Run Size: 150.00 Mb
- Config Replacement: strict LRU, Run Replacement: strict LRU
- Config Partition: 1, Run Partition: 1
CHAPTER 7 Cluster Cache Configuration

<table>
<thead>
<tr>
<th>IO Size</th>
<th>Wash Size</th>
<th>Config Size</th>
<th>Run Size</th>
<th>APF Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Kb</td>
<td>30720 Kb</td>
<td>0.00 Mb</td>
<td>150.00 Mb</td>
<td>10</td>
</tr>
</tbody>
</table>

{return status = 0}

Note The local configuration of the named cache tempdb_cache overrides the global configuration.

For example, if you set the system view to cluster, Adaptive Server may display all the configurations for a named cache, and you should ignore run values of any configuration which is not valid at that instance. For example, SALES_INSTANCE has a valid local configuration, cache tempdb_cache. Therefore, you should ignore the run values for global configuration.

Similarly, HR_INSTANCE has a valid global configuration. Therefore you should ignore the run values for local configuration of tempdb_cache that are related to SALES_INSTANCE at instance HR_INSTANCE.

Adding memory to an existing cache To add memory, use the syntax documented in “System Changes” on page 287. The additional memory you allocate is added to the Adaptive Server page size pool. For example, the smallest size for a pool is 2K in a server with a logical page size of 2K. If the cache is partitioned, the additional memory is divided equally among the partitions.

Note If adding memory to an existing global cache fails at an instance, but succeeds at least one other instance, the server treats the operation as successful at the cluster-wide level. It is thus possible to have different run values for a global cache, but a single configuration value for the cache. sp_cacheconfig shows the run values of a global cache from the syscurconfigs entry of the current instance.

To increase tempdb_cache size to 200MB, in instance HR_INSTANCE, execute the following. Executing sp_cacheconfig 'tempdb_cache' on instance HR_INSTANCE displays this output:

```
sp_cacheconfig 'tempdb_cache','200M'
```

<table>
<thead>
<tr>
<th>Cache Name</th>
<th>Status</th>
<th>Type</th>
<th>Config Value</th>
<th>Run Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>tempdb_cache</td>
<td>Active</td>
<td>Global,Mixed</td>
<td>200.00 Mb</td>
<td>200.00 Mb</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>200.00 Mb</td>
<td>200.00 Mb</td>
</tr>
</tbody>
</table>
Creating and configuring named data caches

You can also increase the cache size of a local cache using the instance option documented on “sp_cacheconfig” on page 130.

Allocating space for a new cache If Adaptive Server cannot allocate the amount of memory you request, it allocates all available memory and issues an error message, telling you how many kilobytes have been allocated dynamically.

However, this memory is not allocated until you restart Adaptive Server. Adaptive Server notifies you of insufficient space, either because memory is unavailable, or because of resource constraints, which system administrators should ensure are temporary. If this behavior persists, a subsequent restart may fail.

For example, if the maximum memory is 700MB, tempdb_cache is 100MB, making the server’s total logical memory 600MB, and you attempt to add 100MB to tempdb_cache, the additional memory fits into maximum memory. However, if the server can allocate only 90MB, it allocates this amount dynamically, but the size field of the cache in the configuration file is updated to 100MB. On a subsequent restart, since Adaptive Server obtains memory for all data caches at once, the size of pub_cache is 100MB.

Decreasing a cache When you reduce a cache size, restart Adaptive Server. For example, to decrease the size of tempdb_cache to 100M, use the following.

```
EXEC sp_cacheconfig 'tempdb_cache', '100M'
go
```

```
Cache Name  Status Type  Config Value  Run Value
------------ ------ ------------ ------------
tempdb_cache Active Global,Mixed  100.00 Mb  200.00 Mb
------------ ------------
Total 100.00 Mb 200.00 Mb

Cache: tempdb_cache, Status: Active, Type: Global,Mixed
   Config Size: 100.00 Mb, Run Size: 200.00 Mb
   Config Replacement: strict LRU, Run Replacement: strict LRU
   Config Partition: 1, Run Partition: 1
```
After restarting Adaptive Server and executing the command on HR_INSTANCE:

 sp_cacheconfig 'tempdb_cache'
 go

Cache Name Status Type Config Value Run Value
------------ ------ ------------ ------------ -------
tempdb_cache Active Global,Mixed 100.00 Mb 100.00 Mb

Total 100.00 Mb 100.00 Mb

===
Cache: tempdb_cache, Status: Active, Type: Global,Mixed
Config Size: 100.00 Mb, Run Size: 100.00 Mb
Config Replacement: strict LRU, Run Replacement: strict LRU
Config Partition: 1, Run Partition: 1

IO Size Wash Size Config Size Run Size APF Percent
---------- ------------- ------------ ------- -------
2 Kb 40960 Kb 0.00 Mb 200.00 Mb 10

Deleting a named cache To delete a named cache completely, reset its size to 0:

 sp_cacheconfig 'tempdb_cache','0'

You cannot delete a named cache if objects are bound to it, and Adaptive Server issues an error message.

If the named cache has multiple configurations, the entry corresponding to the cache in the configuration file is deleted, as are the entries corresponding to the cache in sysconfigures. The cache is deleted the next time the instance is restarted. If the cache has a single configuration, either global or local, cache entry is not deleted from either the configuration file or from sysconfigures. This entry is deleted by either restarting the cluster or by creating a new configuration for the named cache.

When you delete instance-specific configuration, a named cache reverts to its global configuration, if such a configuration exists. Executing sp_cacheconfig on instance SALES_INSTANCE displays this output:

 sp_cacheconfig 'tempdb_cache','0', 'instance SALES_INSTANCE'
 go

Cache Name Status Type Config Value Run Value
----------- ------ ------------ ------------ -------
2 Kb 20480 Kb 0.00 Mb 100.00 Mb 10

(return status = 0)
Creating and configuring named data caches

tempdb_cache Active Global,Mixed 100.00 Mb 100.00 Mb

Total 100.00 Mb 100.00 Mb

Cache: tempdb_cache, Status: Active, Type: Global,Mixed
Config Size: 100.00 Mb, Run Size: 100.00 Mb
Config Replacement: strict LRU, Run Replacement: strict LRU
Config Partition: 1, Run Partition: 1

IO Size Wash Size Config Size Run Size APF Percent
-------- ------------- ------------ ------------ -----------
2 Kb 20480 Kb 0.00 Mb 100.00 Mb 10

{return status = 0}

Changing the cache type To reserve a cache for use only by the transaction log, change the cache type to logonly. This change is dynamic. To create a logonly cache at HR_INSTANCE, enter the following. Executing sp_cacheconfig 'log_hr' on instance HR_INSTANCE displays this output:

sp_cacheconfig 'log_hr','logonly','instance HR_INSTANCE'

Cache Name Status Type Config Value Run Value
------------------ ------ -------- ------------ ------------
HR_INSTANCE:log_hr Active Log Only 150.00 Mb 150.00 Mb

Total 150.00 Mb 150.00 Mb

Cache: HR_INSTANCE:log_hr, Status: Active, Type: Log Only
Config Size: 150.00 Mb, Run Size: 150.00 Mb
Config Replacement: strict LRU, Run Replacement: strict LRU
Config Partition: 1, Run Partition: 1

IO Size Wash Size Config Size Run Size APF Percent
-------- ------------- ------------ ------------ -----------
2 Kb 30720 Kb 0.00 Mb 150.00 Mb 10

{return status = 0}

Configuring cache replacement policy If a cache is dedicated to a table or an index, and the cache has little or no buffer replacement when the system reaches a stable state, you can set the relaxed LRU (least recently used) replacement policy. The relaxed LRU replacement policy can improve performance for caches where there is little or no buffer replacement occurring, and for most log caches. To set relaxed replacement policy:

sp_cacheconfig 'log_sales','relaxed','instance SALES_INSTANCE'

go
Cluster Cache Configuration

<table>
<thead>
<tr>
<th>Cache Name</th>
<th>Status</th>
<th>Type</th>
<th>Config Value</th>
<th>Run Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SALES_INSTANCE:log_sales</td>
<td>Active</td>
<td>Mixed</td>
<td>100.00 Mb</td>
<td>100.00 Mb</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>100.00 Mb</td>
<td>100.00 Mb</td>
</tr>
</tbody>
</table>

Cache: SALES_INSTANCE:log_sales, **Status:** Active, **Type:** Mixed
Config Size: 100.00 Mb, Run Size: 100.00 Mb
Config Replacement: relaxed LRU, Run Replacement: strict LRU
Config Partition: 1, Run Partition: 1

<table>
<thead>
<tr>
<th>IO Size</th>
<th>Wash Size</th>
<th>Config Size</th>
<th>Run Size</th>
<th>APF Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Kb</td>
<td>20480 Kb</td>
<td>0.00 Mb</td>
<td>100.00 Mb</td>
<td>10</td>
</tr>
</tbody>
</table>

(return status = 0)

Note Setting the cache replacement policy is not dynamic and requires you to restart Adaptive Server.

Configuring and using multiple buffer pools

Use **sp_poolconfig** to create multiple buffer pools.

sp_poolconfig

Description
Creates multiple buffer pools.

Syntax

```
sp_poolconfig cache_name [, "mem_size [P|K|M|G]", "config_poolK"
[ [, "affected_poolK"] ] [ , 'instance instance_name' ]
```

Parameters

- `cache_name` – the name of an existing data cache.
- `mem_size` – the size of the memory pool to be created, or the new total size for an existing pool with the specified I/O size. The minimum size of a pool is 256 logical server pages. Specify size units with P for pages, K for kilobytes, M for megabytes, or G for gigabytes. The default unit is kilobytes.
- `config_pool` – the I/O size performed in the memory pool where the memory is allocated or removed. Valid I/O sizes are multiples of the logical page size, up to eight times the amount of the logical page size.
Configuring and using multiple buffer pools

- **affected_pool** – the size of I/O performed in the memory pool where the memory is deallocated, or the pool’s attributes, such as wash size and prefetch limit, are modified. If **affected_pool** is not specified, the memory is taken from the lowest logical page size memory pool.

Examples

Creating a 4K pool for named cache

Executing `sp_poolconfig 'tempdb_cache'` on instance SALES_INSTANCE displays:

```sql
sp_poolconfig 'tempdb_cache','25M','4K'
go
```

Cache Name	Status	Type	Config Value	Run Value
`tempdb_cache` | Active | Global,Mixed | 100.00 Mb | 100.00 Mb |

(1 row affected)

Total 100.00 Mb 100.00 Mb

==

Cache: tempdb_cache, Status: Active, Type: Global,Mixed
Config Size: 100.00 Mb, Run Size: 100.00 Mb
Config Replacement: strict LRU, Run Replacement: strict LRU
Config Partition: 1, Run Partition: 1

IO Size	Wash Size	Config Size	Run Size	APF Percent
2 Kb | 15360 Kb | 0.00 Mb | 75.00 Mb | 10 |
4 Kb | 5120 Kb | 25.00 Mb | 25.00 Mb | 10 |

(return status = 0)

Creating a pool configuration for local caches

You can create an 8K pool for named cache 'log_hr'. Executing `sp_poolconfig 'tempdb_cache'` on instance HR_INSTANCE displays:

```sql
sp_poolconfig 'log_hr','50M','8K','instance HR_INSTANCE'
go
```

Cache Name	Status	Type	Config Value	Run Value
HR_INSTANCE:log_hr | Active | Log Only | 150.00 Mb | 150.00 Mb |

(1 row affected)

Total 150.00 Mb 150.00 Mb

==

Cache: HR_INSTANCE:log_hr, Status: Active, Type: Log Only
Config Size: 150.00 Mb, Run Size: 150.00 Mb
Config Replacement: strict LRU, Run Replacement: strict LRU
Config Partition: 1, Run Partition: 1

IO Size	Wash Size	Config Size	Run Size	APF Percent
2 Kb | 15360 Kb | 0.00 Mb | 75.00 Mb | 10 |
4 Kb | 5120 Kb | 25.00 Mb | 25.00 Mb | 10 |
CHAPTER 7 Cluster Cache Configuration

2 Kb 20480 Kb 0.00 Mb 100.00 Mb 10
8 Kb 10240 Kb 50.00 Mb 50.00 Mb 10

(return status = 0)

Note There is no instance-specific configuration of buffer pools for a global cache. The instance option is used to detect the local cache configuration for which pool configuration is necessary.

Moving memory between buffer pools

To create a new 8K pool and take memory from a 4K pool rather than from a default pool:

```sql
sp_poolconfig 'tempdb_cache','8M','8K','4K'
go
sp_poolconfig 'tempdb_cache'
go
```

<table>
<thead>
<tr>
<th>Cache Name</th>
<th>Status</th>
<th>Type</th>
<th>Config Value</th>
<th>Run Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>tempdb_cache</td>
<td>Active</td>
<td>Global,Mixed</td>
<td>100.00 Mb</td>
<td>100.00 Mb</td>
</tr>
</tbody>
</table>

(1 row affected)

Total 100.00 Mb 100.00 Mb

Changing the wash size of a pool

The wash size is the point in the cache at which Adaptive Server writes dirty pages to disk for a memory pool.
Configuring and using multiple buffer pools

sp_poolconfig cache_name, 'affected_poolK', 'wash=size[P|K|M|G]', [], instance 'instancename'

To change the wash size of an 8K pool of named cache “log_hr” to 12480K, execute sp_poolconfig 'log_hr' on instance HR_INSTANCE to display:

sp_poolconfig 'log_hr', '8K', 'wash=12480K', 'instance HR_INSTANCE'
go

<table>
<thead>
<tr>
<th>Cache Name</th>
<th>Status</th>
<th>Type</th>
<th>Config Value</th>
<th>Run Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR_INSTANCE:log_hr</td>
<td>Active</td>
<td>Log Only</td>
<td>150.00 Mb</td>
<td>150.00 Mb</td>
</tr>
</tbody>
</table>
(1 row affected)

Total 150.00 Mb 150.00 Mb

==

Cache: HR_INSTANCE:log_hr, Status: Active, Type: Log Only
 Config Size: 150.00 Mb, Run Size: 150.00 Mb
 Config Replacement: strict LRU, Run Replacement: strict LRU
 Config Partition: 1, Run Partition: 1

<table>
<thead>
<tr>
<th>IO Size</th>
<th>Wash Size</th>
<th>Config Size</th>
<th>Run Size</th>
<th>APF Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Kb</td>
<td>20480 Kb</td>
<td>0.00 Mb</td>
<td>100.00 Mb</td>
<td>10</td>
</tr>
<tr>
<td>8 Kb</td>
<td>12480 Kb</td>
<td>50.00 Mb</td>
<td>50.00 Mb</td>
<td>10</td>
</tr>
</tbody>
</table>

(return status = 0)

Changing a pool's local asynchronous prefetch percentage

Local asynchronous prefetch is the percentage of buffers in the pool that can be used to hold buffers read into cache by asynchronous prefetch, but that have not yet been used. To change a pool’s asynchronous prefetch percentage:

sp_poolconfig cache_name, "affected_poolK", "local async prefetch limit=percent"

To change the local synchronous prefetch of named cache log_sales, execute sp_poolconfig 'log sales' on instance SALES_INSTANCE to display:

sp_poolconfig 'log_sales', '2K', 'local async prefetch limit=20', 'instance SALES_INSTANCE'
go

<table>
<thead>
<tr>
<th>Cache Name</th>
<th>Status</th>
<th>Type</th>
<th>Config Value</th>
<th>Run Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SALES_INSTANCE:log_sales</td>
<td>Active</td>
<td>Mixed</td>
<td>100.00 Mb</td>
<td>100.00 Mb</td>
</tr>
</tbody>
</table>
(1 row affected)
Asynchronous writes during allpages page split

If a dump database command is active during a page split, the Cluster Edition issues a synchronous write on the new page the split produces.

Dropping a buffer pool

You can drop a buffer pool by setting its size to 0. The memory from this pool is added to the default pool. To drop pool 4k from named cache tempdb_cache, at instance SALES_INSTANCE:

```sql
sp_poolconfig 'tempdb_cache','0','4K'
go
sp_poolconfig 'tempdb_cache'
go
```

Cache Name Status Type Config Value Run Value
--------------------------- ------ ----- ------------ ------------
tempdb_cache Active Global,Mixed 100.00 Mb 100.00 Mb
(1 row affected)

Total 100.00 Mb 100.00 Mb
==
Cache: tempdb_cache, Status: Active, Type: Global,Mixed
Config Size: 100.00 Mb, Run Size: 100.00 Mb
Config Replacement: strict LRU, Run Replacement: strict LRU
Config Partition: 1, Run Partition: 1

<table>
<thead>
<tr>
<th>IO Size</th>
<th>Wash Size</th>
<th>Config Size</th>
<th>Run Size</th>
<th>APF Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 Kb</td>
<td>1632 Kb</td>
<td>8.00 Mb</td>
<td>8.00 Mb</td>
<td>10</td>
</tr>
<tr>
<td>2 Kb</td>
<td>18840 Kb</td>
<td>0.00 Mb</td>
<td>92.00 Mb</td>
<td>10</td>
</tr>
</tbody>
</table>

(return status = 0)
Binding objects to named caches

sp_bindcache assigns a database, table, index, text object, or image object to a cache. Before you can bind an entity to a cache:

- The named cache must exist, and its status must be “Active.”
- The database or database object must exist.
- You can bind tables, indexes, or objects only from the database where they are stored.
- To bind system tables, including the transaction log table syslogs, the database must be in single-user mode.
- You must bind a database from the master database.
- You must bind a database, user table, index, text object, or image object to a cache of type “Mixed.” Only the syslogs table can be bound to a cache of type “Log Only.”
- To bind an object to a cache, you must own the object or the database, or have system administrator status.
- Binding objects to caches is dynamic.

Note Cache binding or unbinding for local system temporary databases is not dynamic, and the owner-instance must be restarted for the bindings to take effect. Cache binding or unbinding for other temporary databases, including the global system temporary database, are dynamic.

Syntax for binding objects

Syntax

sp_bindcache cache_name, dbname

[, [owner.] tablename [, indexname |"text only"]]

Parameters

owner – optional if the table is owned by “dbo”.

Examples

To bind a database SALES to a named cache sales_cache, enter:

sp_bindcache 'sales_cache', 'SALES'
Usage

Cache binding is valid for the entire cluster. There is no instance-specific cache binding. If you bind an object to a local cache, the instance that has the cache configured for it uses that cache, and all other instances use the default data cache.

Note For complete documentation of sp_bindcache, see the Reference Manual: Procedures.

Getting information about bound caches

sp_helpcache provides information about a cache and the entities bound to it when you provide the cache name.

For example:

```
sp_helpcache 'sales_cache'
```

```
--------------
Cache Name Config Size Run Size Overhead
------------------ ----------- ---------- ----------
sales_cache:SALES_INSTANCE 50.00 Mb 50.00 Mb 6.39 Mb
(1 row affected)
--------------
Cache Binding Information: 
Cache Name Entity Name Type Index Name Status
---------- ----------- ---- ----------
sales_cache SALES database V
(return status = 0)
```


Dropping cache bindings

There are two commands to drop cache bindings:

- sp_unbindcache unbinds a single entity from a cache.
- sp_unbindcache_all unbinds all objects bound to a cache.

Syntax

```
sp_unbindcache dbname [, [owner.] tablename [, indexname | text only]]
```

Example

To drop the cache binding of database 'sales':

```
sp_unbindcache 'sales'
```
sp_unbindcache 'SALES'

Usage

- When you drop a cache binding to an object, all the pages currently in memory are cleared from the cache.
- You cannot run `sp_unbindcache_all` on a named cache when there are system or remote local temporary databases bound to the cache. Instead, use `sp_unbindcache` to unbind each of these databases first, then run `sp_unbindcache_all`.

Modifying the configuration file

The named caches section in the configuration file accommodates instance information. The cache section of a global cache is similar to non-clustered Adaptive Server output.

The following definition is from the configuration file in a non-clustered Adaptive Server environment:

```
[Named Cache:tempdb_cache]
  cache size = 100M
  cache status = mixed cache
  cache replacement policy = DEFAULT
  local cache partition number = DEFAULT

[2K I/O Buffer Pool]
  pool size = DEFAULT
  wash size = DEFAULT
  local async prefetch limit = DEFAULT
```

Format of a local named cache

The following shows the format of a local named cache:

```
[Named Cache:log_sales]
  [Instance: SALES_INSTANCE]
  cache size = 100M
  cache status = mixed cache
  cache replacement policy = DEFAULT
  local cache partition number = DEFAULT

[2K I/O Buffer Pool]
  [Instance: SALES_INSTANCE]
```
The global definition should be declared first in the configuration file, and then the local definition. The server does not start otherwise. An instance-specific pool configuration on a named cache, for example, is not permitted if there is no corresponding instance-specific cache configuration. The following example is illegal:

```
[Named Cache: tempdb_cache]
cache size = 100M
cache status = mixed cache
cache replacement policy = DEFAULT
local cache partition number = DEFAULT
[2K I/O Buffer Pool]
pool size = DEFAULT
wash size = DEFAULT
local async prefetch limit = DEFAULT
[instance: SALES_INSTANCE]
pool size = DEFAULT
wash size = 40960K
local async prefetch limit = DEFAULT
```

Extra line in local cache entries

Local caches and buffer pool definitions have an extra line ([Instance: SALES_INSTANCE]), which tells you that the configuration belongs to the instance SALES_INSTANCE. If a named cache has both global and local configurations, the cache section of the configuration file shows:

```
[Named Cache: tempdb_cache]
cache size = 100M
cache status = mixed cache
cache replacement policy = DEFAULT
local cache partition number = DEFAULT
[Instance: SALES_INSTANCE]
cache size = 150M
cache status = mixed cache
cache replacement policy = DEFAULT
local cache partition number = DEFAULT
[2K I/O Buffer Pool]
pool size = DEFAULT
wash size = DEFAULT
local async prefetch limit = DEFAULT
```
Modifying the configuration file

Deleted named cache with global configuration

When a named cache is deleted, the cache configuration entry resembles:

```
[Named Cache: tempdb_cache]
  cache size = 100M
  cache status = deleted
  cache replacement policy = DEFAULT
  local cache partition number = DEFAULT
```

```
[2K I/O Buffer Pool]
  pool size = DEFAULT
  wash size = DEFAULT
  local async prefetch limit = DEFAULT
```

Named cache with local configuration

If the named cache is configured locally, the cache section entry resembles:

```
[Named Cache: tempdb_cache]
  cache size = 100M
  cache status = deleted
  cache replacement policy = DEFAULT
  local cache partition number = DEFAULT
```

```
[2K I/O Buffer Pool]
  pool size = DEFAULT
  wash size = DEFAULT
  local async prefetch limit = DEFAULT
```

Deleted entries with valid configuration

The configuration file should contain no deleted entries that still have at least one valid configuration, such as the following cache section entry:

```
[Named Cache: tempdb_cache]
```

```
[2K I/O Buffer Pool]
  pool size = DEFAULT
  wash size = DEFAULT
  local async prefetch limit = DEFAULT
```
Creating a local configuration in the presence of a global configuration

When you create a local configuration of a named cache in the presence of global configurations, all pool entries are replicated for local configuration. For example, you may have the following global configuration:

```
[Named Cache: tempdb_cache]
  cache size = 100M
  cache status = mixed cache
  cache replacement policy = DEFAULT
  local cache partition number = DEFAULT

[2K I/O Buffer Pool]
  pool size = DEFAULT
  wash size = DEFAULT
  local async prefetch limit = DEFAULT

[4K I/O Buffer Pool]
  pool size = 25.0000m
  wash size = DEFAULT
  local async prefetch limit = DEFAULT
```

If you create a local configuration with size 120M on this global configuration, the cache section of the configuration file resembles the following:

```
cache size = 100M
cache status = mixed cache
cache replacement policy = DEFAULT
local cache partition number = DEFAULT
[Instance: SALES_INSTANCE]
cache size = 150M
cache status = deleted
cache replacement policy = DEFAULT
local cache partition number = DEFAULT

[2K I/O Buffer Pool]
pool size = DEFAULT
wash size = DEFAULT
local async prefetch limit = DEFAULT
[Instance: SALES_INSTANCE]
pool size = DEFAULT
wash size = 40960K
local async prefetch limit = DEFAULT
```

```
```
Limitations

[Named Cache:tempdb_cache]
 cache size = 100M
 cache status = mixed cache
 cache replacement policy = DEFAULT
 local cache partition number = DEFAULT

[Instance:SALES_INSTANCE]
 cache size = 120M
 cache status = mixed cache
 cache replacement policy = DEFAULT
 local cache partition number = DEFAULT

[2K I/O Buffer Pool]
 pool size = DEFAULT
 wash size = DEFAULT
 local async prefetch limit = DEFAULT

[Instance:SALES_INSTANCE]
 pool size = DEFAULT
 wash size = DEFAULT
 local async prefetch limit = DEFAULT

[4K I/O Buffer Pool]
 pool size = 25.0000m
 wash size = DEFAULT
 local async prefetch limit = DEFAULT

[Instance:SALES_INSTANCE]
 pool size = 25.0000m
 wash size = DEFAULT
 local async prefetch limit = DEFAULT

Limitations

- If a named cache has only local configurations and objects bound to it, you cannot create a global cache configuration. You see error 19817. For example:

 sp_cacheconfig 'SALES', '200M', 'instance SALES_INSTANCE'
 go
 sp_bindcache 'SALES','SALES_DB'
 go
 sp_cacheconfig 'SALES', '300m'
 go

 Error 19817, "New configuration on cache 'SALES' is not permitted."
To avoid this situation in the example above, unbind all objects bound to cache “SALES”. Create a new configuration for cache “SALES”, and bind the objects again.

- To avoid physical lock deadlocks, the index pages in the Cluster Edition do not use large pool support.
Using Temporary Databases

This chapter describes local and global temporary databases, how to create and manage them, and how to bind logins or applications to a temporary database or group of temporary databases. This chapter also describes private devices, how to create and manage them, and how to use them for local user temporary databases.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Types of temporary databases</td>
<td>154</td>
</tr>
<tr>
<td>Creating temporary databases</td>
<td>157</td>
</tr>
<tr>
<td>Binding users and applications to temporary databases</td>
<td>159</td>
</tr>
<tr>
<td>Restrictions for temporary databases</td>
<td>163</td>
</tr>
<tr>
<td>Private device support for local databases</td>
<td>165</td>
</tr>
</tbody>
</table>

Temporary databases provide storage for temporary tables and other temporary working storage needs. The Cluster Edition supports both local and global temporary databases. Local temporary databases can be accessed only by the owning instance, and are used primarily to store session-specific private temporary objects: #tables, worktables, and fake tables. Global temporary databases can be accessed by all instances in the cluster and are used to store temporary objects that can exist beyond the current session.

The Cluster Edition supports:

- Local system temporary databases
- Local user temporary databases
- Global user temporary databases
- The global system temporary database (dbid of 2)

Temporary databases are inherited from the model database with these database options set:

- select into/bulkcopy
- trunc log on chkpt
Types of temporary databases

A guest user is automatically added to the temporary database, and all users are granted create table permission.

Types of temporary databases

Local temporary databases

There are two kinds of local temporary databases:

- Local user temporary databases
- Local system temporary databases

The Cluster Edition lets you create temporary databases for each instance in the cluster. An instance-specific temporary database is called a local temporary database; the instance owning the local temporary database is called its owner instance.

Each local temporary database is bound to a particular instance and can be accessed only from that instance. You must create a local system temporary database for each instance in the cluster. Creation of local user temporary databases is optional.

Local user temporary databases

You can create multiple local user temporary databases for each instance and then bind applications or logins to an individual local user temporary database or group of temporary databases.

Local system temporary databases

A local system temporary database is the required default temporary database for each instance. You configure it when the cluster is configured or when a new instance is added to the cluster. The instance stores all session-specific temporary objects (such as # tables and worktables) in this database unless you create and use local user temporary databases for the instance. You must create local system temporary databases on shared storage. See also “Using private devices for temporary data” on page 166.
In a non-clustered Adaptive Server environment, the system temporary database (dbid 2) is added to the default temporary database group. In the Cluster Edition, the local system temporary database is not part of the default group for the instance. The local system temporary database is assigned to a session only if the default group for the current instance is empty and no other bindings have been specified.

Note For the Cluster Edition, the default temporary database assigned to a session is a local temporary database for the instance, not the system tempdb (with a dbid of 2). You may need to modify applications that, in a non-clustered environment assumed the default assigned temporary database as system tempdb (with a dbid of 2) in their actions, so that these actions are now applied to the assigned local temporary database.

For example, in a non-clustered Adaptive Server, if an application truncates the log of the default temporary database by:

```
dump tran tempdb with truncate_only
```

In the Cluster Edition, you must modify the application to truncate the log of the default assigned temporary database:

```
declare @tempdbname varchar(30)
select @tempdbname = db_name(@@tempdbid)
dump tran @tempdbname with truncate_only
```

Separate user log cache for a session’s temporary database

The Cluster Edition supports multiple temporary databases, such as user local temporary databases, system local temporary databases, and global temporary databases (that is, tempdb).

The Cluster Edition supports a separate user log cache only for the session’s temporary database, and not for any other temporary databases.

The session’s temporary database can be a:

- User local temporary database
- System local temporary database
- Global temporary database when the cluster is in tempdb configuration mode
Types of temporary databases

During tempdb configuration, when local system or local user temporary databases do not exist, the session’s default temporary database is the system tempdb (with a database ID of 2). You cannot use a separate user log cache for the system tempdb during its configuration.

Global temporary databases

The system automatically creates a global system temporary database (dbid 2) when the master device is created. You can create additional global temporary databases.

You can access global temporary databases from any instance in the cluster, which allows you to create temporary objects that can be shared across sessions on the same or different instances. You cannot create temporary objects such as # tables and worktables in them as global temporary databases cannot be assigned to a specific session.

Global temporary databases are identical to normal user databases with one exception: they are re-created every time the cluster starts. Global temporary databases provide standard logging, log flushing, I/O behavior, and runtime rollback features. They are supported primarily for backward compatibility with earlier versions of Adaptive Server.

All objects in the global temporary database are lost when the cluster shuts down. However, should an instance fail, the instance failover recovery step recovers the objects in global temporary databases as well, which ensures that objects created during a session on the failed instance continue to be available from surviving instances. The global temporary database ensures that temporary shareable workspace continues to exist as long as even one instance in the cluster is active.

Note Applications created since Adaptive Server 12.5.0.3 may create shareable tables in user-created temporary databases. To enable existing applications to continue to work with the Cluster Edition, user-created temporary databases that include these shareable tables need to be dropped and recreated as global temporary databases with the same names.

Summary information

Table 8-1 summarizes the basic characteristics of these databases.
Table 8-1: Characteristics of temporary databases

<table>
<thead>
<tr>
<th>Feature</th>
<th>Local system temporary database</th>
<th>Local user temporary database</th>
<th>Global user temporary database</th>
<th>Global system temporary database</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported temporary database objects</td>
<td>Both session-specific temporary objects and regular database objects.</td>
<td>Both session-specific temporary objects and regular database objects.</td>
<td>Regular database objects only, no session specific temporary objects.</td>
<td>Regular database objects only, no session specific temporary objects*</td>
</tr>
<tr>
<td>Recovery</td>
<td>Re-created when owning instance restarts.</td>
<td>Re-created when owning instance restarts.</td>
<td>Re-created when the cluster restarts, and transactionally recovered when an instance fails.</td>
<td>Re-created when the cluster restarts, and transactionally recovered when an instance fails.</td>
</tr>
<tr>
<td>Accessibility</td>
<td>Accessible from owning instance only, but it must be created on a shared device so that it can be created and dropped from other instances.</td>
<td>Accessible from owning instance only.</td>
<td>Accessible from any instance</td>
<td>Accessible from any instance</td>
</tr>
<tr>
<td>Creation</td>
<td>User-created, one (required) for each instance.</td>
<td>User-created, zero or more for each instance.</td>
<td>User-created, zero or more for the cluster.</td>
<td>System-generated (dbid = 2), one for the cluster</td>
</tr>
<tr>
<td>Binding allowed?</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Storage (shared or private devices)</td>
<td>Shared storage only</td>
<td>Both shared and local storage</td>
<td>Shared storage only</td>
<td>Shared storage only</td>
</tr>
</tbody>
</table>

* During tempdb configuration mode, the global system temporary database acts like a local system temporary database to the boot coordinator, and thus supports both session-specific temporary objects and regular database objects.

Creating temporary databases

In the Cluster Edition, each cluster has a global system temporary database, and each instance in the cluster has a local system temporary database. Other temporary databases are optional. The global system temporary database is created when you install Adaptive Server. This section describes how to create the other temporary databases.
Creating temporary databases

Sybase recommends that you create temporary databases of a similar size to allow applications to access each instance without regard to temporary space requirements.

Creating local system temporary databases

You must create a local system temporary database for each instance during the initial start-up of the cluster and later on whenever you add an instance to the cluster. Create the local system temporary database on a shared device. You can create or drop a local system temporary database from any instance, but you can access it only from the owning instance.

Create local system temporary databases using the Adaptive Server plug-in or sybcluster. See the installation guide for your platform.

Creating local and global user temporary databases

You can create local and global user temporary databases at any time.

You must create a local user temporary database from the owning instance. For example, to create the local temporary database local_temp1 on asel, enter:

```
create temporary database local_temp1
   for instance asel on default = 50
```

You can create a global user temporary database from any instance in the cluster. For example, to create the global temporary database global_tempdb1 on asel, log in to asel and enter:

```
create global temporary database global_tempdb1
   on default = 50
```

Note The create database phrase for instance instance_name is optional. If you do not include this phrase, Adaptive Server creates the temporary database for the current instance. See “create database” on page 288 for a description of its complete syntax.
Binding users and applications to temporary databases

You can use sp_tempdb to bind logins and applications to temporary databases or temporary database groups, and to create temporary database groups in both the non-clustered Adaptive Server and the Cluster Edition. In the Cluster Edition, which supports both local and global temporary databases, you can bind logins or applications to local user temporary databases or temporary database groups, but not to global temporary databases.

The default temporary database group is system-generated and always present. It is empty unless you use sp_tempdb to add local temporary databases to it. In the Cluster Edition, the local system temporary database is not part of the default group.

The sp_tempdb user interface includes the option unbindall_gr, which removes all bindings to the specified group in either the non-clustered Adaptive Server or the Cluster Edition. In addition, the unbind option includes an instance_name parameter that is specific to the Cluster Edition.

Creating and managing temporary database groups

Creating and managing temporary database groups is the same all editions of Adaptive Server.

Note In the Cluster Edition, the local system temporary database is not, by default, a member of the default group.

- To create a temporary database group, use sp_tempdb create. For example, to create a temporary database group named tempdbgroup1:

 \[sp_tempdb \ "create\", \ "tempdbgroup1" \]

- To drop a temporary database group, use sp_tempdb drop. For example, to drop the temporary database group named tempdbgroup1:

 \[sp_tempdb \ "drop\", \ "tempdbgroup1" \]

- To add a database to a temporary database group, use sp_tempdb add. For example, to add database local_tempdb1 to the temporary database group named tempdbgroup1:

 \[sp_tempdb \ "add\", \ "local_tempdb1", \ "tempdbgroup1" \]
To remove a database from a temporary database group, use `sp_tempdb remove`. For example, to remove database `local_tempdb1` from the temporary database group named `tempdbgroup1`:

```
sp_tempdb "remove", "local_tempdb1", "tempdbgroup1"
```

See the Reference Manual, Procedures for complete syntax and usage information for `sp_tempdb`.

What you can bind

You can bind:

- A user login or application to multiple local user temporary databases, but only to one database per instance.

 For example, you can bind “sa” to `local_tempdb1` on “ase1” and `local_tempdb2` on “ase2”, but you cannot also bind “sa” to `local_tempdb3` on “ase1”.

- A user login or application to only one database group. Temporary database groups are visible from all instances.

 For example, if you bind `isql` to the default group, you cannot also bind `isql` to another temporary database group.

- A user login or application to individual temporary databases or a temporary database group, but not to both.

 For example, if “sa” is bound to `local_tempdb1` on “ase1”, it cannot also be bound to the default group.

How the session binding is determined

When a session is initiated, Adaptive Server checks to see if a binding is applicable. If more than one binding is applicable, the Cluster Edition determines which binding is used based on the following algorithm. Only one binding is supported per session.

1. If a binding exists for the current login, that binding is used. Otherwise, the Cluster Edition searches for a binding for the current application. If both are found, use the binding for the login: a login binding takes precedence over an application binding.
For example, if user “sa” is bound to tempdb1 on instance “ase1”, and isql is bound to tempdb2 on “ase1”, then, when user “sa” uses isql to initiate a session on “ase1”, only the “sa” user binding is used.

Note If the first binding fails, the Cluster Edition automatically assigns a member of the default group. The Cluster Edition does not search for another binding.

2 If the binding is to a database, the database is assigned. If the binding is to a database group, a member database from the current instance, selected in a round-robin fashion, is assigned. Local temporary databases that are members of a group can be assigned only to a session established on the owner instance. They cannot be assigned to a session on another instance using the group binding.

3 If a binding is not found or an assignment cannot be made, an assignment is attempted for a member of the default group—selected in a round-robin fashion.

4 If an assignment cannot be made to a member of the default group, the assignment is made to the local system temporary database.

Creating and managing bindings

sp_tempdb bind binds a login or application to a local temporary database or database group. For example, to bind the “sa” login to the default group, enter:

```
sp_tempdb "bind", "LG", "sa", "GR", "default"
```

To bind isql to local_tempdb1 on ase1, enter:

```
sp_tempdb "bind", "AP", "isql", "DB", "local_tempdb1"
```

sp_tempdb unbind removes one or more bindings. For the Cluster Edition, this command includes an instance_name parameter that lets you drop the binding to a particular local temporary database.

For example, to unbind isql from local_tempdb2 on “ase2”, enter:
Binding users and applications to temporary databases

```sql
sp_tempdb "unbind", "AP", "isql", NULL, "ase2"
```

Note If `isql` is bound to a database group, the above command removes the binding for the group. If multiple database bindings exist for `isql`, the above command removes only the binding for “ase2”; bindings to temporary databases on other instances are unaffected.

To unbind a user login or application from a database group or any temporary databases, use the `unbind` parameter with only the login or application name. For example, to remove the binding for the "sa" login:

```sql
sp_tempdb "unbind", "lg", "sa"
```

To unbind all logins and applications to a particular group, use `sp_tempdb unbindall_gr`. For example, to remove all bindings to `tempdbgroup1`, enter:

```sql
sp_tempdb "unbindall_gr", "tempdbgroup1"
```

To unbind all login and application bindings to a particular database, use `sp_tempdb unbindall_db`. For example, to unbind all bindings to `localtempdb1`, enter:

```sql
sp_tempdb "unbindall_db", "localtempdb1"
```

Displaying group and binding information

To display a list of existing groups, group members, and login and application bindings, use `sp_tempdb show`. For example, to view the members of the temporary database group “tempdbgroup1” and their owner instances, enter:

```sql
sp_tempdb "show", "gr" "tempdbgroup1"
```

To display a list of active sessions assigned a temporary database, use `sp_tempdb who`. For example, to displays active session assigned the temporary database “localtempdb1”, enter:

```sql
sp_tempdb "who", "localtempdb1"
```

Dropping temporary databases

Some restrictions apply to dropping temporary databases:
Dropping all but the last local system temporary database

Because a local system temporary database is always in use if its owner instance is running, you cannot drop a local system temporary database while its owner instance is running.

To drop a local system temporary database, shut down the instance, and then drop the local system temporary database from another instance.

Dropping the last local system temporary database

To drop the local system temporary database of the last instance:

1. Use `sp_tempdb_markdrop` to mark the database to be dropped. For example, if `ase3_tdb1` is the last local system temporary database, mark it with this command:
   ```sql
   sp_tempdb_markdrop ase3_tdb1
   ```

2. Shut down and restart the last instance. The local system temporary database marked for “drop” is not used.

3. Drop the temporary database from this instance.

Restrictions for temporary databases

In the Cluster Edition:

- Attempting to access a local temporary database owned by another instance results in this error:
  ```sql
  Error Number : 969
  You can access database '<local-tempdbname>' only from its owner instance '<owner-instance-name>'. You cannot access local temporary databases from non-owner instances except to use CREATE DATABASE and DROP DATABASE with local system temporary databases.
  ```

In general, you must execute stored procedures and commands that access a local temporary database from the owner instance. Alternatively, you can use the following methods to execute the operation on a local temporary database of a remote instance:
Restrictions for temporary databases

- Use `connect to instance_name` to connect to the owner instance before you access any of the local temporary databases.

- Use `sp_remotesql` to send the Transact-SQL statement to the remote instance. For example, to execute a query on local temporary database `local_tempdb_ase1` owned by instance `ase1`:

  ```sql
  sp_remotesql "ase1", "select * from local_tempdb_ase1..sysobjects"
  ```

- For stored procedures, you can execute the procedure specifying the instance name. For example, to execute `sp_spaceused` on `local_tempdb_ase1` for instance "ase1":

  ```sql
  asel.local_tempdb_ase1.dbo.sp_spaceused
  ```

 Note Use `db_instanceid` to determine the owner instance ID of a local temporary database.

- Some stored procedures and commands that perform operations on all databases in a non-clustered Adaptive Server, may skip these operations on remote local temporary databases in the Cluster Edition. To make sure these operations occur in all databases, execute the operation again for each of the skipped databases from the owner instance.

 For example, if you execute `sp_dbcc_faultreport` without specifying a database name, it skips remote local temporary databases from the fault report.

- You cannot grant or revoke user-defined roles to users of a local temporary database.

- You cannot grant or revoke permissions on objects in a local temporary database.

- You cannot use a local temporary database as the default database for any login; any attempt to do so causes `sp_addlogin` and `sp_modifylogin` to fail.

- You cannot include a referential integrity constraint that references a column on a local temporary database except from a table on the same local temporary database. `create table`, `alter table`, and `create schema` fail when they attempt to create a reference to a column on a local temporary database from a different database.
• You cannot encrypt a column with an encryption key located in a local temporary database unless the table resides on the same local temporary database. `create table` and `alter table` fail when they attempt to encrypt a column with an encryption key located on the local temporary database and the table resides in another database.

• You cannot specify database recovery order for any local system temporary database. Local system temporary databases are user-created, but they are always recovered with system databases.

• You cannot use `sp_configure` to change configuration options from inside the local temporary database context.

Private device support for local databases

The Cluster Edition allows you to use inexpensive storage, such as local disks and file system devices, to provide instance-specific temporary space needs. You can use such storage, created as a private device, to create instance-specific local user temporary databases on the private device. However, do not use private devices for local system temporary databases. Local system temporary databases must be created on shared storage.

In the Cluster Edition, a private device is owned and accessed by one cluster instance only. That a device is private is a *logical* attribute; the physical path to the device may or may not be accessible from a non-owner instance.

In the `sysdevices` table, a private device is identified by the bitmap `status2` column, and the instance that owns the device by the `instanceid` column of the row belonging to the device.

An instance can own many private devices, but a private device is owned by a single instance.

A private device can be used only for local user temporary databases, on the instance that owns the device. It cannot be used as default storage; if you invoke `sp_diskdefault` on a private device, the stored procedure fails and an error message appears.

A private device cannot be mirrored, unmirrored, or remirrored.
Using private devices for temporary data

To achieve optimal performance of temporary data in the Cluster Edition, Sybase recommends that you use fast local disks for local user temporary databases. Local system temporary databases must be created on shared storage. To limit the use of shared storage for temporary data:

1. Create one or more private devices on local disks.
2. Create one or more local user temporary databases on the private devices.
3. Add these local user temporary databases to the default temporary database group.

A user connection that has no explicit temporary-database binding will be assigned a member database from the default group. This limits the use of local system temporary databases created on shared storage to internal system tasks while all user connections use local user temporary databases created on fast local disks.

Creating private devices using disk init

Use disk init to create a private device. disk init includes an optional instance parameter that marks the device private to an instance.

This example creates a device named private_dev1 that is private to the cluster1_1 instance:

```sql
  disk init
  name = "private_dev1",
  physname = "/usr/u/sybase/data/private_dev1.dat",
  vdevno = 2, size = 5102, instance = "cluster1_1"
```

You can execute a disk init command from any of the instances in the cluster. The command is shipped to the owning instance internally. The owning instance, however, must be up and running to process the command. If it is not, the command fails and the private device is not created.

Reinitializing private devices using disk reinit

As part of the procedure for restoring the master database, use disk reinit to restore the private device entries in the master database sysdevices table. disk reinit includes the optional instance parameter, which marks a device as private to an instance.
This example restores the private_dev1 device as a private device for the instance cluster1_1 in the master database sysdevices table:

 disk reinit
 name = "private_dev1"
 physname = "/usr/u/sybase/data/private_dev1.dat"
 vdevno = 2, size = 5120, instance = "cluster1_1"

You can execute this command from any instance in the cluster. If the owning instance is up and running, the command is shipped to it.

If the owning instance is not up and running, disk reinit inserts a row in sysdevices, corresponding to the device, but does not activate it until the instance is running. This is useful when devices must be restored before issuing disk refit.

Note Take extra care regarding the parameters you pass when you restore a private device for an instance that is not running. Adaptive Server cannot verify the physical path of a private device in such cases; it is assumed that the user provides a valid physical path.

Dropping private devices using sp_dropdevice

Use sp_dropdevice to drop a private device. You can execute this procedure from any instance in the cluster. However, it fails to drop a private device if the owning instance is not running. For details about using sp_dropdevice, see the Reference Manual: Procedures.

Displaying private device information using sp_helpdevice

sp_helpdevice reports whether or not a device is private. If the device is private, sp_helpdevice prints the name of the instance in the cluster that owns the private device.

In this example, 'regular_dev' is a regular shareable device, while 'private_dev1' is a private device owned by instance 'cluster1_1'.

```
1> sp_helpdevice
2> go
device_name
physical_name
description
```
Private device support for local databases

<table>
<thead>
<tr>
<th>status</th>
<th>cntrltype</th>
<th>vdevno</th>
<th>vpn_low</th>
<th>vpn_high</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
master
    /remote/percy_dev/user1/sdc-DBs/master.dat
    file system device, special, dsync on, directio off, default disk,
    physical disk, 512.00 MB, Free: 351.00 MB
    3 0 0 0 262143
private_dev1
    /percy_dev/user1/sdc-DBs/private_dev1.dat
    file system device, special, private 'cluster1_1', MIRROR DISABLED, non
    serial writes, dsync off, directio on, physical disk, 2.00 MB
    2050 0 1 0 1023
regular_dev1
    /percy_dev/user1/sdc-DBs/dev1.dat
    file system device, special, dsync off, directio on, physical disk, 2.0
    0 MB
    2 0 2 0 1023
tapedump1
    /dev/nst0
    unknown device type, disk, dump device
    16 2 0 0 20000
tapedump2
    /dev/nst1
    unknown device type, tape, 625 MB, dump device
    16 3 0 0 20000
```

(5 rows affected)
(return status = 0)

If disk refit is pending on a device, sp_helpdevice reflects it in its output.

In this example, 'regular_dev' is a regular shareable device, while
'private_dev1' and 'private_dev2' are private devices owned by
instance 'cluster1_1'. Further disk refit is pending on 'private_dev1'.

1> sp_helpdevice
2> go
device_name
 physical_name
<table>
<thead>
<tr>
<th>description</th>
<th>status cntrltype vdevno</th>
<th>vpn_low</th>
<th>vpn_high</th>
</tr>
</thead>
<tbody>
<tr>
<td>master</td>
<td>/remote/percy_dev/user1/sdc-DBs/master.dat</td>
<td>file system device, special, dsync on, directio off, default disk, physical disk, 512.00 MB, Free: 351.00 MB</td>
<td>3</td>
</tr>
<tr>
<td>private_dev1</td>
<td>/percy_dev/user1/sdc-DBs/private_dev1.dat</td>
<td>file system device, special, private 'cluster1_1', REFIT PENDING, MIRROR DISABLED, nonserial writes, dsync off, directio on, physical disk, 2.00 MB</td>
<td>2050</td>
</tr>
<tr>
<td>private_dev2</td>
<td>/percy_dev/user1/sdc-DBs/private_dev2.dat</td>
<td>file system device, special, private 'cluster1_1', MIRROR DISABLED, nonserial writes, dsync off, directio on, physical disk, 2.00 MB</td>
<td>2050</td>
</tr>
<tr>
<td>regular_dev1</td>
<td>/percy_dev/user1/sdc-DBs/dev1.dat</td>
<td>file system device, special, dsync off, directio on, physical disk, 2.00 MB</td>
<td>2</td>
</tr>
<tr>
<td>tapedump1</td>
<td>/dev/nst0</td>
<td>unknown device type, disk, dump device</td>
<td>16</td>
</tr>
<tr>
<td>tapedump2</td>
<td>/dev/nst1</td>
<td>unknown device type, tape, 625 MB, dump device</td>
<td>16</td>
</tr>
</tbody>
</table>

(6 rows affected)
(return status = 0)
Using *create database* and *alter database* with a private device

Since a private device belongs to only one instance in the cluster, it can be used only for local user temporary databases on the instance that owns the private device. When a private device is used to create or extend a database or its log, unless it is for a local user temporary database of the instance that owns the device, *create database* or *alter database* fails and an error message appears.

Using *disk refit*

If there are no private devices in the cluster, *disk refit* operates as usual.

If there are one or more private devices in the cluster, *disk refit* becomes a two-phased operation:

- Phase One performs *disk refit* only for those devices accessible to the instance that initiated the command—regular shareable devices and private devices owned by that instance.
- Phase Two performs *disk refit* only for the private devices of the instances in the cluster, one instance at a time. *disk refit* is complete only when both these phases are completed successfully.

❖ Executing *disk refit* when there are private devices in the cluster

You must restore the *sysdevices* table correctly before you execute *disk refit*. Use the *disk reinit* command to add regular or private devices for any missing device entry in the *sysdevices* table.

For more information on restoring *sysdevices*, see the *System Administration Guide, Volume 2*.

1 Restart the cluster in single-user mode. This is done by starting an instance in the cluster with the `-m` option. Single-user mode requires only one instance running in the cluster, and no other active connections to the cluster. You must set trace flag 3608.

2 Issue the *disk refit* command on the instance. This removes all rows in *sysdatabases* and *sysusages*, and rebuilds parts of them from the devices in *sysdevices*, which are either regular sharable devices accessible by all instances in the cluster, or are private to this instance. At the end of Phase One, the cluster is shut down.
Adaptive Server prints messages at the end of Phase One that indicate whether disk refit is complete. If it is not, Adaptive Server also prints messages to inform the user which other instances in the cluster have private devices and must perform Phase Two.

Alternatively, you can use `sp_refit_admin 'status'` to find instances with private devices on which disk refit has not yet run.

A sample output:

```
1> sp_refit_admin 'status'
2> go
You need to run DISK REFIT on the following instances to refit their private devices.

<table>
<thead>
<tr>
<th>instance</th>
<th>device</th>
<th>status</th>
</tr>
</thead>
<tbody>
<tr>
<td>cluster1_1</td>
<td>private_dev1</td>
<td>REFIT PENDING</td>
</tr>
</tbody>
</table>

(1 row affected)
(return status = 0)
```

3 For each instance that have private devices and which still have to run disk refit:
 - Start the instance using the `-m` option and trace flag 3608.
Private device support for local databases

- Issue disk refit on that instance.

disk refit rebuilds sysdatabases and sysusages rows for private devices owned by this instance. When Phase Two for the instance is successfully completed, the cluster shuts down.

4 Even if you see no errors while executing disk refit, you must check the consistency of sysdatabases and sysusages before resuming normal operation. “Troubleshooting” on page 215 contains sample SQL statements that help to check and fix common problems encountered by disk refit.

5 Resume normal operation.
This chapter describes how to run Job Scheduler in a shared-disk cluster environment. For information about installing, starting, and configuring Job Scheduler, see the *Job Scheduler Users Guide*.

The Cluster Edition allows you to run the Job Scheduler in a shared-disk cluster environment. A single Job Scheduler services all job scheduling requests originating from all instances in the cluster. Job Scheduler runs on the boot coordinator.

If you manually start the Job Scheduler after the cluster is started, the cluster selects the coordinator to host the Job Scheduler.

Installing and configuring Job Scheduler

The coordinator instance running the Job Scheduler is also known as the “Job Scheduler instance.” To set up and start the Job Scheduler, follow directions in Chapter 2, “Configuring and Running Job Scheduler,” in the *Job Scheduler Users Guide*. See the installation guide for your platform for instructions for installing and configuring Job Scheduler in the Cluster Edition.
Running Job Scheduler in a clustered environment

If a user performs a Job Scheduler action on an instance other than the Job Scheduler instance, the instance issues a request to the Job Scheduler instance. The Job Scheduler processes the request and sends the reply back to the requesting instance.

Shutting down Job Scheduler

Shutting down the Job Scheduler in a shared-disk cluster is the same as shutting it down in a non-clustered Adaptive Server configuration.

From the Adaptive Server Sybase Central plug-in:

1. From any Adaptive Server instance, right-click the Scheduled Jobs folder (the Scheduled Jobs folder appears under each instance, and each instance can initiate all Job Scheduler commands from the plug-in).
2. Select Administer to open the Job Scheduler Administration dialog.
3. From the Task Configuration tab, select Stop.

From the command line, run:

```
use sybmgmtdb
sp_js_wakeup "stop_js", 1
```

Redirecting scheduled jobs

When the Job Scheduler agent attempts to connect to an instance to execute a scheduled job and the instance is too busy, the Workload Manager may redirect the connection to another instance, so any instance in the cluster can perform the scheduled jobs. This happens automatically and does not require you to reconfigure Job Scheduler.

Generally speaking, the Workload Manager takes care of login redirection. You can affect how connections are redirected by setting rules at the logical cluster level. However, if you do not want a scheduled job to be redirected, set the new job property that allows redirection:
• From Adaptive Server plug-in – unselect the Allow Redirection option in the Job Properties dialog box.

The default behavior is to allow the Workload Manager to redirect a scheduled job connection according to the workload rules that exist at the time the connection is made.

• From the command line – set the redirection property no_conn_redirection when you create or modify a job. For example, to set the property for a job named find_old_logins using sp_sjobcreate, enter:

```sql
sp_sjobcreate @name='jname=find_old_logins',
@option='jcmd=exec
sp_find_old_logins,jproperties=no_conn_redirection=true'
```
Redirecting scheduled jobs
This chapter describes some elements of cluster architecture in greater detail. These discussions provide supportive information; in general, a database administrator cannot influence the features described here using Transact-SQL commands or configuration parameters.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locks</td>
<td>178</td>
</tr>
<tr>
<td>Memory</td>
<td>179</td>
</tr>
<tr>
<td>Thresholds</td>
<td>179</td>
</tr>
<tr>
<td>Cluster interprocess communication</td>
<td>182</td>
</tr>
<tr>
<td>Recovery</td>
<td>182</td>
</tr>
<tr>
<td>Distributed checkpoints</td>
<td>184</td>
</tr>
<tr>
<td>Quorum device heartbeat</td>
<td>185</td>
</tr>
<tr>
<td>Using InfiniBand</td>
<td>186</td>
</tr>
<tr>
<td>Private installation mode</td>
<td>187</td>
</tr>
<tr>
<td>Using Java in a clustered environment</td>
<td>191</td>
</tr>
</tbody>
</table>

Many subsystems of non-clustered Adaptive Server work in a shared-disk cluster environment; others have been developed specifically for the Cluster Edition. These subsystems are:

- Lock manager
- Buffer manager
- Cluster interprocess communication (CIPC)
- Recovery (start time and failover handling)
Locks

All database data and metadata objects can be accessed and cached by any instance in the cluster. As a consequence, these objects are subject to distributed locking and cache coherency enforcement, as are runtime global data structures and variables.

The cluster lock manager (CLM) provides distributed locking services for sharing globally accessible and cacheable objects. The CLM creates and queues locks on behalf of locking requests. It arbitrates locking requests for access rights from any instance to any global object in the shared-disk cluster environment.

Locks can have task, transaction, or instance ownership. Locks managed by the local lock manager have task or transaction ownership. Locks managed by the CLM have instance ownership; they are shared among all processes or transactions on that instance, and are retained until another instance requests a conflicting lock mode.

Deadlocks

For all-pages locking in a non-clustered edition of Adaptive Server, if the server fails to acquire a page lock, it retries the attempt instead of waiting for the lock (which can cause a deadlock). The deadlock retries configuration parameter determines the number of retries Adaptive Server attempts.

The Cluster Edition includes a physical lock, which ensures page consistency across nodes. However, a physical lock is not included in the deadlock detection mechanism, so a server cannot detect a deadlock.

The Cluster Edition retries failed attempts to acquire a lock. However, when the server exceeds the value for deadlock retries, it fails or rolls back the query instead of waiting on the lock and risking an undetected deadlock.

Retention locks

The Cluster Edition also uses retention locks, which are cluster-wide locks granted to instances in the cluster with ownership shared among all processes on the instances. Ownership of a retention lock is retained until another instance claims a conflicting lock mode, or the resource associated with the lock is claimed by another instance. The use of retention locks reduces the need to acquire and release locks, and thus reduces intra-instance messaging.
The Cluster Edition uses several different retention locks.
All locks are retention locks.

Memory

The Cluster Edition requires more memory than a standalone SMP Adaptive Server. The additional memory supports internode messaging and cluster locking.

- You can configure the memory for internode messaging using the CIPC regular message pool size configuration parameter. The default value is 8MB.
- To support distributed cache coherency, the Cluster Edition automatically configures locks for buffer caches and system descriptors when an instance starts.

 Each buffer in the data cache is automatically configured with a physical lock. The overhead for each physical lock is approximately 24.6% for databases with 2KB pages and 12.3% for databases with 4KB pages. Thus, for a 100M data cache, the additional memory overhead for physical locking is 24MB for 2KB pages and 12MB for 4KB pages.

 The overhead for system descriptors averages about 1.5KB per open object. For best performance, the lock hashtable size parameter is automatically tuned to 8 locks per bucket. For a large cache configuration, lock hashtable size may be automatically tuned to several megabytes.

Thresholds

A user-created stored procedure executes when free space on a segment drops below the threshold maintained by Adaptive Server.

All databases have a last-chance threshold on the log segment, which is an estimate of the number of free log pages that are required to back up and truncate the transaction log. The last-chance threshold (LCT) is a defined amount of available space; a specified number of free pages on a log segment.
Thresholds

The LCT also defines the action to be taken when the amount of space falls below the specified threshold value. This threshold monitors free space within a database, preventing the transaction log from running out of space.

When you add a threshold to a segment, you must specify the stored procedure used to monitor this threshold. By default, Adaptive Server uses `sp_thresholdaction` for the last-chance threshold.

For users, threshold maintenance in cluster processing is indistinguishable from that of a non-clustered Adaptive Server. However, there are some changes in `dbcc` commands, described below.

dbcc thresholds output

`dbcc thresholds` prints segment structure. The Clustered Edition output differs because segment structure itself is changed. For example, the `sg_below` and `sg_above` threshold pointers for the segment are numbers that specify the positions of the two thresholds in the `dbt_thresholds` array.

dbcc dbtable output

`dbcc dbtable` prints the `dbt_thrmgr_info`, which contains cluster threshold management data, and prints the segment structures in the table.

dbcc dbrepair with remap option

`dbcc dbrepair with remap`:

- Rebuilds the disk map in `dbtable`
- Recalculates the segment free page counts
- Sets up the thresholds in each segment according to the threshold levels on the segment and the total free page count

You can use `dbcc dbrepair with remap` to specify either the segment number or segment name, but you can specify only one segment at a time to remap.

If you do not specify the segment to remap, Adaptive Server remaps all the segments in the database. You can use the optional parameters at the end of `dbcc dbrepair` to specify the segment for remapping.
dbcc dbrepair includes the option fixalloc; to use both remap and fixalloc, add remap before fixalloc. Adaptive Server version 15.1.1 allows you to specify the segment number or segment name at the end of this command. This example specifies the log segment for the pubs2 database:

```
dbcc dbrepair(pubs2, "remap", "fixalloc", -1, "logsegment")
```

To remap the log segment in the pubs2 database without using fixalloc, enter:

```
dbcc dbrepair(pubs2, "remap", NULL, -1, "logsegment")
```

To remap all segments in the pubs2 database, use:

```
dbcc dbrepair(pubs2, "remap")
```

dbcc dbrepair with the remap option is used by sp_addsegment, sp_dropsegment, sp_modifysegment, sp_extendsegment, sp_logdevice, and sp_placeobject. For more information on these stored procedures, and on dbcc dbrepair, see the most recent version of the Adaptive Server Enterprise Reference Manual: Commands.

dbcc dbrepair with newthreshold option

`dbcc dbrepair with newthreshold`:

- Loads thresholds in a database, from systhresholds to dbtable->dbt_thresholds.
- Sets up the threshold pointers in each segment according to the levels of the thresholds on the segment, and the segment free page count.
- Specifies the segment name or number, and reads all thresholds in systhresholds into dbt_thresholds. Only dbt_thresholds segment’s thresholds are set up according to the thresholds that belong to the dbt_thresholds segment and the segment free page count.

dbcc dbrepair with newthreshold is used by sp_addthreshold, sp_dropthreshold, and sp_modifythreshold. For more information about these stored procedures and complete documentation of dbcc dbrepair, see the most recent version of the Adaptive Server Enterprise Reference Manual: Commands.
Cluster interprocess communication

Cluster interprocess communication (CIPC) is a critical subsystem in the cluster architecture. Most cluster subsystems use CIPC to communicate with other instances in the cluster.

Note A high-speed CIPC network is necessary to gain acceptable Cluster Edition performance.

Tasks running on instances within the cluster use CIPC to communicate with other tasks in other instances in the cluster. CIPC information specified in the cluster input file and stored on the quorum device is used to connect all instances in the cluster. Within the input file, CIPC supports a primary and an optional secondary interconnect. The secondary interconnection, if present, is used for buffer-cache transfers, reducing the load on the primary interconnection.

Recovery

The Cluster Edition provides failover recovery, during which time the database remains online and can continue to be used. However, if you request data that was modified by the failed instance, and must be recovered, the user process is blocked until the data is brought to a consistent state by the failover recovery process.

The Cluster Edition supports:

- Recovery that occurs at cluster start-up. This is the same as the non-clustered Adaptive Server recovery that happens when you start the server during a cold restart.
- Failover recovery. (In this document, “failover” refers to an instance failover, not a client connection failover.) This recovers data that a failed instance modified while other instances were using the same database in a shared-disk cluster.
Recovery begins when the cluster membership service detects a failure. The recovery event handler on the coordinator instance recovers the system databases. Then the surviving instances (including the coordinator instance) recover the user databases in parallel. One of the PCM threads on each instance performs the recovery task. Other threads on the coordinator instance, as well as other instances, pursue other activities.

If trace flag 3483 is on, distributed failover recovery is disabled, and user databases are recovered in serial order by the recovery event handler on the coordinator instance.

Processes trying to access other processes trying to access data modified by the failed instance are blocked until recovery of the failed instance is complete.

The Cluster Edition recovers user databases in the order specified by their database ids (dbid), and does not use any user-defined recovery order during instance failover recovery.

Recovery algorithm

The recovery process in a non-clustered Adaptive Server is similar to that of the Cluster Edition:

Table 10-1: Recovery steps for clustered- and non-clustered servers

<table>
<thead>
<tr>
<th>non-clustered recovery steps</th>
<th>Cluster Edition recovery steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Estimate recoverable log boundaries – the recoverable log is from the oldest active transaction recorded in the recovery checkpoint to the end of the log</td>
<td>1) Estimate recoverable log boundaries (same as in non-clustered Adaptive Server).</td>
</tr>
<tr>
<td>2) Analysis – scans the recoverable log forward, from the oldest active transaction to the end of the log, builds recovery information as incomplete transactions and so on. This information is used in the redo, undo, and post-undo passes.</td>
<td>2) Analyze the database’s log being recovered (same as in non-clustered Adaptive Server).</td>
</tr>
<tr>
<td>3) Redo – scans the recoverable log forward, and re-executes operations specified by log records, as needed.</td>
<td>3) Redo. In addition, the locks for incomplete transactions are acquired.</td>
</tr>
<tr>
<td>4) Reserve compensation log record (CLR) space to undo incomplete transactions on the failed instance.</td>
<td>5) Release all locks acquired by the failed instance prior to the failure, except for those acquired at step 3 for incomplete transactions.</td>
</tr>
</tbody>
</table>
Distributed checkpoints

<table>
<thead>
<tr>
<th>non-clustered recovery steps</th>
<th>Cluster Edition recovery steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>4) Undo – works from the end of the log back to the beginning of the oldest incomplete transaction, and undoes operations specified by log records for incomplete transactions. For each transaction, Adaptive Server logs a CLR.</td>
<td>6) Fill free space information (threshold manager recovery).</td>
</tr>
<tr>
<td>5) Post-undo – logs a checkpoint record on the database, fills free space count recovery information (threshold recovery), and clears caches.</td>
<td>7) Undo. In addition, logical locks for incomplete transactions are released as completed.</td>
</tr>
<tr>
<td></td>
<td>8) Post-undo, including flushing all dirty buffers on the recovery instance. The Cluster Edition does not perform a checkpoint after instance failover recovery.</td>
</tr>
</tbody>
</table>

Note See Chapter 11 “Developing a Backup and Recovery Plan,” in the System Administration Guide: Volume 2, for information about the specific steps needed to complete the passes in this algorithm.

Single transaction log

There is only one log per database for the cluster, and it is logically partitioned. A log record marker for the Cluster Edition contains the instance id, which it used internally to scan log records logged by specific instances, especially during failover recovery. A checkpoint log record always has an instance id with a value of zero, so it is always included in the log scan, regardless of the instance id specified in the log scan.

Distributed checkpoints

Checkpoints control recovery in both non-clustered Adaptive Server and Cluster Edition systems, but the process for which they supply the transaction information differs. In the Cluster Edition, the oldest active transaction found is the oldest active transaction across the entire cluster, and dirty buffers are flushed on all clustered instances.
In both types of processing, Adaptive Server finds the oldest active transaction information at the time the checkpoint record is logged, uses it as a cutoff point, and writes the checkpoint record to the log. The dirty buffers are then flushed, up to the current flush sequence number. This checkpoint record is registered as a recovery checkpoint only after all the dirty buffers are flushed.

Quorum device heartbeat

Periodically, each instance in the cluster “checks in” with the quorum device, creating a quorum device heartbeat that enables instances to monitor the status of the cluster. Instances use the device heartbeat to:

- Determine if the quorum device is accessible. If an instance fails to write the heartbeat to the quorum device, the instance may have has lost its storage area network (SAN) link, or it may be blocked from the cluster devices.
- Read the heartbeat values from the quorum disk while it is starting. If the instance detects no changes in the heartbeat after a configured period of time, the instance determines the cluster is not running.

Instances do not use the quorum heartbeat to detect instance failure.

Configuring the quorum device heartbeat

You can configure how often the heartbeat happens and the number or times an instance attempts to detect the quorum heartbeat before it assumes the quorum device is not functioning with the **quorum heartbeat interval** and the **quorum heartbeat retries** configuration parameters, respectively.

The **quorum heartbeat interval** configuration parameter specifies the number of seconds between quorum heartbeats. The default is 5, so each instance writes a quorum heartbeat once every 5 seconds. The minimum value is 1 second and the maximum value is 60 seconds.
Most sites need not tune this configuration parameter. Setting quorum heartbeat interval to a lower number increases the heartbeat overhead, but speeds the detection of a lost disk link, so instances terminate more quickly if they are blocked or have lost their SAN link. Setting quorum heartbeat interval to a higher value reduces the heartbeat overhead, but delays the detection of a lost disk link. The amount of overhead caused by the heartbeat depends on the performance of your disk subsystem.

The quorum heartbeat retries configuration parameter specifies the number of times an instance attempts to detect a quorum heartbeat before determining that the quorum device is no longer running, and exiting. The default is 2 (the instance terminates after the third consecutive quorum heartbeat failure because the first two failed). The minimum value is 0, indicating that the instance should terminate upon the first quorum heartbeat failure, and the maximum value is 32,768.

Tuning this to a lower number causes an instance to fail over more quickly when access to the quorum device is lost, potentially improving application recovery times. Tuning this to a higher number degrades application recovery, reducing the chances that a transient disk access problem causes an instance failure.

Using InfiniBand

Adaptive Server 15.0.1 and later supports InfiniBand (IPoIB) for internal communication between nodes in a cluster.

Note InfiniBand is not supported on HPIA systems for the Cluster Edition.

To use InfiniBand:

- Configure the host channel adaptor (HCA)
- Use an InfiniBand software stack
- For Linux, the Cluster Edition requires OFED 1.2 from OpenFabrics
- InfiniBand software comes with Solaris 10

Note Solaris 10 includes InfiniBand. See your operating system documentation for information about installing and configuring InfiniBand.
CHAPTER 10 Additional Topics

Setting the buffer space

The Cluster Edition must have sufficient buffering space to ensure adequate performance, particularly on faster interconnects. The default values for buffer space on Linux and Solaris systems are too small for gigabit Ethernet and InfiniBand. You must modify them to ensure adequate networking performance.

Configuring buffer space

Linux

Use a command similar to the following to set the buffer space to an appropriate size on your system:

```
/sbin/sysctl -w net.core.rmem_max=value
/sbin/sysctl -w net.core.wmem_max=value
```

On most platforms, the default value for `rmem_max` is set to about 128KB, which is too small for the Cluster Edition. Increase `rmem_max` to the largest value your platform allows (1 megabyte is a good starting value):

```
/sbin/sysctl -w net.core.rmem_max=1048576
```

Solaris

Use a command similar to the following to set the buffer space to an appropriate size on your system:

```
nnd -set /dev/udp udp_max_buf value
```

Configuring InfiniBand in a cluster

After you configure the host channel adapter (HCA), the `/etc/hosts` file includes a corresponding host name and IP address. Use this host name or IP address when Adaptive Server plug-in or `sybcluster` asks for this information during the cluster configuration. If you manually configure the cluster, add the IP address.

Private installation mode

When you install and create your cluster, you choose whether to configure the cluster in shared or private installation mode:
Private installation mode

- Shared installation – supports a shared file system created using a Network File System (NFS) or a cluster file system. A cluster created using a shared installation supports a single $SYBASE installation directory, Adaptive Server home directory, and server configuration file.

- Private installation – requires a separate $SYBASE installation directory, Adaptive Server home directory, and server configuration file for each instance. Parity among server configuration files is maintained by the master configuration file on the quorum device.

Note Sybase recommends that you use LDAP as your directory service when using a private installation.

If the installation mode is private, the cluster input file automatically contains this entry:

```
installation mode = private
```

If the installation mode is shared, the cluster input file automatically contains this entry:

```
installation mode = shared
```

See the installation guide for your platform for instructions about installing and configuring the cluster in private or shared installation mode.

Maintaining the server configuration files

A configuration file version number tracks the most recent copy of the server configuration file. This information is stored on the quorum device and in each server configuration file. Every time a new configuration file to the quorum device, the version number is incremented and Adaptive Server dumps the new server configuration file and version number to each instance.

Use qrmutil to view the current version number of any configuration file:

```
qrmutil --quorum-dev=/dev/raw/raw101 --ase-config-version
```

See “qrmutil” on page 342 for the complete syntax.
Changing configuration options at runtime

While an instance is running, you can use `sp_configure` to update server configuration options. If an option changes, Adaptive Server automatically updates the master configuration file, increments the version number, updates the `sysconfigures` table, and instructs all instances to dump a new copy of the configuration file.

If an instance is not running during the configuration process, its configuration file and version number are not updated. You can either let Adaptive Server detect this when the instance starts (see “If the version numbers do not match at start-up” on page 190), or you can check the version number and dump a new copy from the quorum device:

```
qrmutil --quorum-dev=/dev/raw/raw101 --ase-config-version
```

```
qrmutil --quorum-dev=/dev/raw/raw101 --ase-config-extract=mycluster.cfg
```

Manually changing the configuration file

You can manually change the configuration file when the configuring instance is not running:

1. Extract the configuration file. For example:

```
qrmutil --quorum/dev/raw/raw101 --ase-config-extract=mycluster.cfg
```

2. Edit the configuration file:

```
vi mycluster.cfg
```

3. Restart the instance.

When you restart the instance, Adaptive Server automatically increments the version number, updates the `sysconfigures` table with the new version number, writes the new configuration file to the local directory and to the quorum device, and instructs all instances to dump a new copy of the configuration file from the quorum device.

Note When the configuring instance is not running but the coordinator is running, you can change instance-specific parameters but not cluster-wide parameters.
If the version numbers do not match at start-up

Adaptive Server checks the file version number when each instance is started. The version number in the server configuration file must match the version number that is stored on the quorum device. If the file version numbers do not match, Adaptive Server prints an error message, extracts the latest copy of the configuration file from the quorum disk to the local file system, and aborts the instance start-up.

At this point, you can decide whether to restart the instance using the latest configuration file, or you can manually edit the file and then restart the instance.

- If the version numbers now match, and there has been no change to the configuration file, you can successfully restart the instance.
- If you edit the configuration file, the version numbers match, but the content of the configuration file has now changed. Restart the instance: Adaptive Server automatically increments the version number, updates the sysconfigures table with the new version number, writes the new configuration file to the local directory and to the quorum device, and instructs all instances to dump a new copy of the configuration file from the quorum device.

Recommended configurations

Sybase recommends that:

- You do not manually change the “config file version” parameter in the server configuration file. This should remain a server-generated number.
- You update configuration file parameters only on the start-up instance. If you update configuration file parameters on another instance, when that instance starts up it will generate a new configuration file that will remove all user changes from other instances.
Using Java in a clustered environment

Adaptive Server supports third-party Java Virtual Machines (JVMs), such as the Sun Java 2 Platform, Standard Edition (J2SE), in the clustered environment. See the installation guide for your platform for instructions on how to install the Sybase Java components on the Adaptive Server CE. See *Java in Adaptive Server Enterprise* for a complete description of how to use Java on Adaptive Server.

In general, you can use Java in the same way in clustered and nonclustered environments. These differences apply:

- In the Cluster Edition, connection migration is not supported for connections executing Java.

 If a connection fails, a connection executing Java fails over to another instance as configured. After failover, existing SQL batch processes and Java are executed again automatically.

- Adaptive Server handles static data in different ways, depending on whether or not the JVM is shared or private.

 - In the Cluster Edition, each node has its own JVM – static data is not shareable between nodes. If a node goes down, the JVM goes down as well, and all work on the JVM is lost. You must reapply any extant SQL batch processes.

 - The non-clustered edition of Adaptive Server 15.0.3 shares a single JVM across all engines and connections – static data is sharable for classes loaded from a common class loader.

 - In Adaptive Server 15.0.2 and earlier, each client connection has its own private Sybase JVM – static data is not supported across clients.
CHAPTER 11

Using the Cluster Edition with the Veritas Cluster Server

This chapter describes how to configure and use the Cluster Edition with the Veritas Storage Foundation for Sybase CE (SF for Sybase CE).

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported platforms, requirements, and limitations</td>
<td>196</td>
</tr>
<tr>
<td>Installing and configuring the Cluster Edition on VCS</td>
<td>197</td>
</tr>
<tr>
<td>Managing a cluster under VCS control</td>
<td>201</td>
</tr>
<tr>
<td>Membership modes</td>
<td>202</td>
</tr>
<tr>
<td>Understanding failure scenarios</td>
<td>204</td>
</tr>
<tr>
<td>VCS troubleshooting</td>
<td>205</td>
</tr>
</tbody>
</table>

The integration of the Cluster Edition version 15.0.3 with the Veritas SF for Sybase CE allows the Cluster Edition to leverage the Veritas Storage Foundation storage management technologies, Cluster Server (VCS) application, and cluster management features.

Note Integrating the Cluster Edition version 15.0.3 with the SF for Sybase CE provides cluster availability and data integrity. Other versions of the Veritas Storage Foundation do not contain necessary integration components and should not be used.

The Cluster Edition with SF for Sybase CE includes:

- Storage Foundation Cluster File System – a generic clustered file system you can use with the Cluster Edition installation files (the files and directories located in $SYBASE), database devices, quorum devices, and other application files
- Cluster Volume Manager – creates the logical volumes the cluster nodes share
- Dynamic multipathing – improves storage availability and performance
• Service group–based application management – provides monitoring and failover capabilities, and allows you to create dependencies between applications so that, if a component fails that the application requires (such as a disk volume), you can fail over the entire application.

• Integrated management of multiple clusters, applications, and database servers using VCS agents and management consoles.

• Support for hardware replication technologies and block-level replication using Veritas Volume Replicator.

The Cluster Edition and the SF for Sybase CE include two key elements of cluster operation: membership management and I/O fencing:

• Membership management— the Cluster Edition and SF for Sybase CE maintain their own membership managers. The membership manager is responsible for:
 • Coordinating logging in and logging off the cluster
 • Detecting failures
 • Determining which members of the cluster remain alive in the event of a communications loss (known as arbitration)
 • Maintaining a consistent cluster view

The Veritas Cluster Membership plug-in (VCMP) allows the Cluster Edition membership service to synchronize with the underlying Veritas membership manager, which avoids a situation where two membership managers are not coordinated, arbitrate a failure differently, and cause the cluster to shut down. Using the VCMP ensures that the Cluster Edition arbitrates in favor of instances that run on nodes within the Veritas membership view.

• I/O fencing – so-called because the membership manager builds a fence around the data storage, and allows only instances or nodes that behave properly to perform writes. Use I/O fencing to prevent data corruption from uncooperative cluster members. The Cluster Editions and the SF for Sybase CE coordinate I/O fencing such that:

The

• SF for Sybase CE manages and performs all fencing, and

• The Cluster Edition can communicate to the SF for Sybase CE that a fencing action is necessary because of a Cluster Edition membership change.
Figure 11-1 describes the components that comprise the Cluster Edition and the SF for Sybase CE:

Figure 11-1: Components in clustered Veritas system

The components supplied by Sybase are:
- Cluster Edition – relational database server running on the node
- Quorum device – includes configuration information for the cluster and is shared by all cluster members
- Veritas Cluster Membership plug-in (VCMP) – receives membership change messages from VxFEND and communicates to the Cluster Edition’s membership service, which blocks membership changes until the VCMP permits it to proceed

The components supplied by Veritas are:
- LLT (low latency transport) – allows VCS to communicate across the cluster, detecting heartbeats and failures.
Supported platforms, requirements, and limitations

- GAB (global atomic broadcast) – coordinates the VCS membership. The LLT provides the GAB with information about failure events (for example, no heartbeat).
- CVM (cluster volume manager) – receives membership information from the GAB and coordinates with VxFEN.
- CFS (cluster file system) – a file system that can be simultaneously mounted and accessed by multiple nodes in a cluster. CFS uses a distributed lock manager to maintain consistency across nodes. CVM, with a storage area network (SAN), provides the underlying storage.
- VxFEN (kernel-side I/O fencing control) – VxFEN receives membership information from GAB and performs fencing, when appropriate.
- VxFEND (user space I/O fencing control daemon) – daemon running in the user space (as opposed to a running in the kernel) that communicates with VxFEN. During the membership change, VxFEN sends a message to VxFEND indicating a change of membership. VxFEND informs the Cluster Edition about the membership change through VCMP.
- VCS Agent – VCS monitoring agent for the Cluster Edition. If necessary, the VCS agent can trigger a host panic if the Cluster Edition fails. The VCS agent is also used by VCS to start and stop the Cluster Edition.

Supported platforms, requirements, and limitations

The Cluster Edition with the SF for Sybase CE is supported on these platforms:

- Solaris 10 on SPARC (Sun Sparc 64)
- Redhat Enterprise Linux 5 on x86_64 (Linux AMD 64)

See the Cluster Edition release bulletin and installation guide for your platform for information about required release levels, packages, and patches. See the Veritas Storage Foundation for Sybase CE Release Bulletin and Installation and Configuration Guide, both from Veritas, for a full list of SF for Sybase CE requirements.

The Cluster Edition runs in native or vcs mode. In native mode, the Cluster Edition does not coordinate with a the cluster membership manager; in vcs mode the cluster membership manager cooperates with the Veritas clusterware. See “Membership modes” on page 202.

To use the Cluster Edition in vcs membership mode, you must:
CHAPTER 11 Using the Cluster Edition with the Veritas Cluster Server

- Install and configure SF for Sybase CE v5.0 on the host nodes.
- Make sure that all Cluster Edition storage, including the master device, user database devices, and the quorum device come from SF for Sybase CE managed storage. This can be either a CVM volume or a CFS file.
- Configure the Cluster Edition private networks for the same physical networks as the Veritas LLT links. See “Installing and configuring the Cluster Edition on VCS” on page 197.

Using the Cluster Edition in vcs membership mode includes these limitations:
- You cannot run more than one instance on a given hardware node, even if the instances are participating in different Adaptive Server clusters.
- You cannot have more than four instances or nodes in a cluster.
- Instance failures can cause a panic restart of a host node. Keep in mind that, if you plan to run unrelated, critical applications (including other nonclustered Adaptive Servers) on the same node, these applications are shut down when the node restarts.

Installing and configuring the Cluster Edition on VCS

To install and configure the Cluster Edition to run on the Veritas cluster subsystem, you must perform steps described in the Veritas documentation and in the following sections.

Perform steps 1 – 6 as described in the Veritas SF Sybase CE Installation and Configuration Guide:

1. Install and configure Veritas’s SF for Sybase CE.
2. Configure I/O fencing in Sybase mode.
3. Create a shared disk group, volume, and mount point for Adaptive Server binary installation ($SYBASE).
4. Create a shared disk group, volume, and mount point (if using CFS) for the Adaptive Server quorum device.
5. Create a shared disk group, volume, and mount point (if using CFS) for the Adaptive Server database devices.
6. Ensure the “sybase” user (or equivalent) has appropriate ownership and access for the storage in step 5.
Perform steps 7 and 8 as described in this book in sections “Installing the Cluster Edition” on page 198, “Creating a new Adaptive Server cluster for Storage Foundation integration” on page 199, and “Converting an existing cluster to use SF for Sybase CE” on page 200:

7 Install Adaptive Server Cluster Edition.

8 Create the Adaptive Server cluster or prepare an existing cluster for use.

 Perform step 9 as described in the SF Sybase CE Installation and Configuration Guide.

9 Using the SF for Sybase CE installer, create a VCS service group for your Adaptive Server cluster. This puts the cluster into vcs membership mode.

 Note Once you configure the Cluster Edition in vcs membership mode, start the cluster as part of a VCS service group. If you start the Cluster Edition outside a VCS service group while in vcs mode, the Cluster Edition hangs and shuts down.

Installing the Cluster Edition

Perform the steps described in Chapter 3, “Creating and Starting the Cluster,” in the installation guide for your platform to create a cluster using SF for Sybase CE.

 Note Install the Cluster Edition before you create the VCS service group.

Sybase recommends that you:

- Create the Cluster Edition in a shared installation instead of a private installation

- Create the release directory ($SYBASE) on an storage foundation cluster file system (SFCFS) mount point. Install the SF for Sybase CE prior to installing Cluster Edition. See the Veritas SF Sybase CE Installation Guide.
Creating a new Adaptive Server cluster for Storage Foundation integration

Both `sybcluster` and the Adaptive Server plug-in automatically detect if the SF for Sybase CE is installed on the host node, and guide you to select the appropriate storage and network interconnects. When you create a cluster:

- All storage must be on SF for Sybase CE managed devices, using CVM controlled volumes or SFCFS file systems, with these restrictions:
 - If you access CVM controlled volumes directly, you must access them as raw (character) devices, using `/dev/vx/rdsk` (instead of `/dev/vx/dsk`)
 - You can place private devices added specifically for local temporary databases on local, non-SF for Sybase CE storage devices.
 - Do not use storage provided by non-Sybase CE versions of Veritas Storage Foundation. Do not use storage provided by SF for Sybase CE unless you configure the Cluster Edition for `vcs` membership mode. Adaptive Server cannot perform VxFEN-controlled I/O fencing in native mode as database corruption may result.
- The Cluster Edition primary and secondary cluster interconnects must run over Veritas LLT managed networks. Determine which networks LLT uses from the `/etc/llttab` file. In this example, LLT runs over the `eth0` and `eth1` networks:

  ```
  [admin@sdcc2 ~]$ cat /etc/llttab
  set-node sdcc2
  set-cluster 53
  link eth0 eth-00:19:b9:b0:73:13 - ether - -
  link eth1 eth-00:19:b9:b0:73:15 - ether - -
  ```

 Note Cluster Edition interconnects require that you configure IP addresses for the links. Because LLT does not require IP addresses, you may need to configure the interconnects separately. See your operating system documentation.

 Determine the IP address assigned to a given network using the `ifconfig` command. You can use this address to configure either the primary or secondary cluster interconnect. In this example, the interface `eth0` has an IPv4 address of `10.22.104.141`:

  ```
  [admin@sdcc2 ~]$ /sbin/ifconfig -a eth0
  eth0  Link encap:Ethernet  HWaddr  00:19:B9:B0:73:13
        inet addr:10.22.104.141  Bcast:10.22.104.255  Mask:255.255.255.0
  ```
Inet6 addr: fe80::219:b9ff:feb0:7313/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:19710010 errors:0 dropped:0 overruns:0 frame:0
TX packets:11707065 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:7506123489 (6.9 GiB) TX bytes:1839949672 (1.7 GiB)
Interrupt:169 Memory:f8000000-f8012100

Reset the cluster to vcs mode after you create the cluster.

Converting an existing cluster to use SF for Sybase CE

If you convert the Cluster Edition to work with the SF for Sybase CE, the Storage Foundation software must manage all database storage, and Cluster Edition interconnects must operate over LLT links.

Relocating database storage

How you move existing databases from non-Storage Foundation storage to Storage Foundation storage varies from site to site depending on the configuration and the size and number of the database devices involved.

Reconfiguring interconnects

To reconfigure interconnects:

1. Determine the proper IP address for the LLT links using the ifconfig command.
2. Shut down the cluster using the shutdown cluster command.
3. Use qrmutil to reconfigure the interconnects. Run this command for each instance in the cluster, using the appropriate instance name, primary and secondary addresses:

```
qrmutil --quorum_dev=path_to_quorum_device --instance=instance_name
--primary-address=address_of_primary_interconnect
--secondary-address=address_of_secondary_interconnect
```

This example configures the “ase1” instance to use a primary address of 192.168.0.1 and a secondary address of 192.168.0.2:

```
qrmutil --quorum_dev=/sybase_cfs/quorum.dat --instance=ase1
--primary-address=192.168.0.1 --secondary-address=192.168.0.2
```
As an alternative to running step 3 for each instance, you can extract the current configuration to a file (as in step 4), edit the file for each instance, and reload the file onto the quorum device using the `--load-config` parameter.

4 Use `qrmutil --extract-config` parameter to create a backup of the new cluster configuration. This example backs up the cluster configuration to the `quorum.bak` file:

```bash
qrmutil --quorum_dev=/sybase_cfs/quorum.dat
   --extract-config=/sybase_cfs/quorum.bak
```

5 Restart the Cluster Edition.

Managing a cluster under VCS control

You must place the Cluster Edition under VCS control by changing the Cluster Edition membership mode to `vcs` to activate software that allows the Cluster Edition and SF for Sybase CE to work together.

See the section “Configuring a Sybase ASE CE cluster under VCS control using the SF for Sybase CE installer” in the *SF Sybase CE Installation and Configuration Guide* for instructions on creating a VCS service group.

Starting and stopping instances

Although the Cluster Edition recognizes the Transact SQL `shutdown cluster` and `shutdown cluster with nowait`, the `sybcluster` `shutdown` commands, and the Adaptive Server plug-in start and stop selections while in `vcs` membership mode, Sybase recommends that you use the VCS agent to start and stop instances.

Start and stop an instance running in `vcs` membership mode using the corresponding VCS service group, which uses a VCS agent to start and stop the instance. Control the VCS agent with the VCS Cluster Manager (Java console) or the `hagrp` command line utility.

See “Administering the Sybase Agent” in the *SF Sybase CE Administrator’s Guide*. For more information about the VCS agent and resource management, see the *Veritas Cluster Server User's Guide*.
Membership modes

Adding and removing instances

Adding an instance to the cluster or removing an instance from the cluster involves:

- Adding the host node to VCS or removing the host node from VCS (optional if removing an instance)
- Adding or removing the instance

You can perform the tasks in either order, but you cannot start the instance until both tasks are complete. See Chapter 13, “Administering Clusters with the Adaptive Server Plug-in,” and Chapter 14, “Administering Clusters Using sybcluster.”. For information about adding a node to a VCS cluster, see “Adding a node to SF Sybase CE clusters” in the SF Sybase CE Administrator’s Guide.

Membership modes

The Cluster Edition version 15.0.3 includes two membership modes, native and vcs. The membership mode dictates whether the Cluster Edition’s internal membership manager (CMS) functions autonomously (in native mode, the default setting) or in cooperation with Veritas clusterware (in vcs mode).

Determining the membership mode

Use the @@membershipmode global variable and sybcluster show membership mode to determine the current membership mode. @@membershipmode and sybcluster return “vcs” if the Cluster Edition is running with the VCS cluster subsystem, and returns “native” if the Cluster Edition is running without the VCS cluster subsystem. For example:

```sql
select @@membershipmode
vcs
```

Changing membership mode

You need not generally change the membership mode because creating a VCS service group automatically changes an instance to vcs mode.
Use the qrmutil --membership-mode option to change the membership mode. The cluster must be shut down. The syntax is:

```
qrmutil --[-Q | quorum-dev=quorum_device --membership-mode=mode
```

where:

- `vcs` – indicates the Cluster Edition is running with the VCS cluster subsystem
- `native` – indicates the Cluster Edition is running without the VCS cluster subsystem

For example:

```
qrmutil --quorum-dev=/dev/vx/rdsk/quorum_dg/quorumvol --membership-mode=vcs
```

To manually configure the Cluster Edition to load VCMP and activate the VCS integration, add `membership_mode = vcs` to the cluster configuration file. After you add this line, the Cluster Edition starts as part of the VCS service group. To configure the Cluster Edition without the Veritas cluster subsystem, enter `membership_mode = native` to the cluster configuration file.

This example sets the membership mode to `vcs`:

```
[cluster]
name = isles
max instances = 4
primary protocol = udp
master device = /sybase_cfs/data/master.dat
config file = /sybase_cfg/ASE-15_0/ase.cfg
interfaces path = /sybase_cfg/ASE-15_0/ase.cfg
membership mode = vcs
```

The Cluster Edition starts in native mode if you do not include `vcs` or `native` as the parameter for the `membership_mode =` line, or if you do not include the line.

Changing the membership mode in the cluster configuration file has no affect after you generate the master database. After the master database is generated, use qrmutil to change the membership mode:

```
qrmutil --quorum-dev=quorum_path --membership-mode=[vcs|native]
```
Understanding failure scenarios

Because the Cluster Edition coordinates its membership changes with VCS and relies on the SF for Sybase CE to perform I/O fencing, the Cluster Edition membership manager waits for VCS to reconfigure its membership and perform I/O fencing. However, during some failures, Adaptive Server requires I/O fencing even if the situation does not result in a VCS membership reconfiguration. To acquire the I/O fencing, Adaptive Server passes a message through the quorum device to the VCS agent on the node to be fenced. When it receives the message, the VCS agent panics the node, which triggers a VCS reconfiguration.

How the VCS system reacts during a failure depends on the situation:

- **Host node crashes** – detected by VCS. VCS reconfigures cluster membership and performs I/O fencing from the failed node. The Cluster Edition receives the new membership from VCS and performs recovery.

- **Host node hangs** – results in a VCS LLT timeout and a Cluster Edition heartbeat timeout. VCS reconfigures and performs I/O fencing. The Cluster Edition receives the new membership from VCS and performs recovery. The node that is hanging cannot write to the shared storage and eventually panics.

- **Instance fails or hangs** – the remaining instances detect a heartbeat failure and perform membership arbitration. The cluster passes a message to the VCS agent on the host node on which the instance failed, which triggers a host node panic. From this point, the VCS acts in the manner described in the “Host node crashes” situation described above.

- **Instance shutdown with nowait** – the Cluster Edition does not trigger a VCS membership change in VCS membership mode.

- **Loss of storage access** – the Cluster Edition is unaffected if you configured multipathing and at least one path to storage remains viable. However, if all paths to storage are lost, VCS induces a host panic, which the cluster handles in the same manner described in “Host node crashes” above.

- **Loss of interconnect** – response depends on the availability of an alternate communication channel. Both Adaptive Server and VCS can switch traffic to an alternate channel. If Adaptive Server has no viable channels and VCS does, the cluster reacts in the manner described in “Instance fails or hangs,” above. If VCS has no viable channels, it acts in the manner described in the “Host node crashes” situation described above.
VCS troubleshooting

The information in the error log helps you determine the reason for a problem, and possible solutions. The default error log locations are:

- Cluster Edition – $SYBASE/$SYBASE_ASE/install/instance_name.log
- Veritas – /var/VRTSvcs/log/engine_A.log
- Linux – /var/log/messages
- Solaris – /var/adm/messages

Note Many of the problems listed below are resolved with Veritas commands (for example, hagrp and hares). See your Veritas documentation for syntax and usage information.

Cluster Edition fails to start

A number of problems can cause the Cluster Edition to not start.

The Cluster Edition creates a resource fault if VCS cannot start the Cluster Edition or detects that it is already running. Use the hagrp -clear command to clear the resource fault. This example clears the resource faults for an VCS group named “asegrp1”:

```
hagrp -clear asegrp1
```

VCS uses the ps command to locate the dataserver process: do not rename the dataserver binary.

Validate the **Home** attribute for the Cluster Edition resource using hares -display. **Home** must point to $SYBASE and the dataserver binary must be located in $SYBASE/ASE-15_0/bin. If **Home** does not point to the correct value, change the value using the hares -modify command.

VCS uses the **RUN_server_name** file to start the instances. If the **RUN_server_name** files do not exist, VCS uses the parameters defined in the **Home**, **Server**, and **Quorum_dev** variables to build the execution string that starts the instance:

```
HOME/ASE-15_0/bin/dataserver -s server_name -Q Quorum_dev
```

If you receive a resource fault, you should verify that:

- There is a separate **RUN_server_name** file for each instance in the cluster.
VCS troubleshooting

- The RUN_server_name files include the name of the instance as the suffix.
- Each RUN_server_name file is executable.
- Each RUN_server_name file contains the correct path to the dataserver binary.
- The Quorum_dev attribute value uses the correct path to an existing quorum device. Use hares -display to view the Quorum_dev value. This example assumes an VCS resource named “aseres1”:

  ```
  hares -display aseres1 -attribute Quorum_dev
  ```

 Use hares -modify to modify the path:

  ```
  hares -modify aseres1 Quorum_dev /sybase/quorum
  ```

- The Server attributes correspond to the instance names. Use the hares -display command to verify the Server attributes. This example assumes an VCS resource named “aseres1”:

  ```
  hares -display aseres1 -attribute Server
  ```

 Use hares -modify to modify the value:

  ```
  hares -modify aseres1 Server asel -sys hpcladle1
  ```

- You have enabled the VCS resource using hares -display:

  ```
  hares -display aseres1 -attribute Enabled
  ```

 If necessary, change it using hares -modify:

  ```
  hares -modify aseres1 Enabled 1
  ```

Veritas log: “Sybase home directory does not exist”

Because the Sybase home directory ($SYBASE) must exist on the CFS mount directory, if the CFS mount directory is not available, instances cannot start.

To verify that $SYBASE directory is available, validate that the ASE group is dependent on the cfsmount group using hagrp -dep:

```
hagrp -dep
```

If it is not currently dependent, use hagrp -link to reestablish the dependency:

```
hagrp -link asegrp1 cfsmount1 online local firm
```
Chapter 11 Using the Cluster Edition with the Veritas Cluster Server

Instance log: “failed to bind to socket”

This error occurs when an instance has a VCMP socket error. The “sybase” user must own the VCMP socket (/tmp/vcmp_socket) before it can read and write to the socket and communicate with VxFEN.

Use the ls -l UNIX command to validate that the “sybase” user owns /tmp/vcmp_socket:

```
ls -l /tmp/vcmp_socket
```

If the “sybase” user does not own /tmp/vcmp_socket, change the ownership using the UNIX chown command:

```
chown sybase /tmp/vcmp_socket
```

Instance log: “Membership service failed to receive initial message from Veritas cluster membership after 301 seconds. Exiting...”

Error occurs because an instance has a VCMP timeout. Causes, and their solutions, include:

- The VxFEND resource is unavailable when you bring the ASE group online. To verify VxFEND resource availability:
 a. Take the VxFEND resource offline:
     ```
     hares -offline vxfend -sys <server name>
     ```
 b. Bring the ASE group online:
     ```
     hagrp -online ASE -sys <server name>
     ```

- Another instance is using the socket. Use the UNIX ps command to validate that no other dataserver processes are running on the node:
  ```
  ps -ef | grep dataserver
  ```

- The VxFEND resource is not enabled. Use hares -display to validate that VxFEND is enabled:
  ```
  hares -display vxfend -attribute Enabled
  ```
 If it is not enabled, use hares -modify:
  ```
  hares -modify vxfend Enabled 1
  ```

- The ASE resource is not dependent on the VxFEND resource. Use hares -dep to validate the ASE resource dependency:
  ```
  hares -dep
  ```
VCS troubleshooting

If it is not dependent, use `hares -link` to reestablish the dependency:

```
hares -link aseres1 vxfend
```

- Another Adaptive Server or VxFEND resource conflicts with a resource startup. Use `hares -display` to validate that no other Adaptive Server or VxFEND resource is enabled:

```
hares -display
```

Use `hares -modify` to rectify any problems:

```
hares -modify ASE2 Enabled 0
```

Instance log: “Failed to open quorum device 'device_path'. OS error 13, 'Permission denied'”

Error occurs because permissions on the VCS raw volumes do not include access for the "sybase" user. Grant the "sybase" user read and write permission to the VCS volumes.

```
vxedit -g sybasedg set user=sybase group=sybase mode=660 quorum
vxedit -g sybasedg set user=sybase group=sybase mode=660 master
vxedit -g sybasedg set user=sybase group=sybase mode=660 sybasehome
```

Instance log: “basis_dsizecheck: attempt to open device 'device_path' failed, system error is: Permission denied”

Error occurs for the same reasons as error above. Rectify with the same steps.

Instance log: “The configuration area in master device appears to be corrupt.”

You may also see these messages in the Linux log:

```
Linux log: READ CAPACITY failed
Linux log: reservation conflict
Linux log: attempt to access beyond end of device
```

Error occurs when the master database is corrupted or the clustered file system causes hangs. This problem may occur because the disk array is not properly configured for Veritas. To rectify:
• Verify that the disk array firmware is up to date.
• (Linux only) Verify that the disk initialization format in the Veritas Volume Manager is sliced.
• Correct the disk array connection mode configuration settings so the logical unit numbers (LUNs) reserved for one host are visible to the other host, and verify the SCSI-3 fencing is properly enabled on the array. Generally, these settings are:
 • Set Host Mode Option = 19 (ON)
 • Set Host Mode Option = 254 (ON)
 • Set Host Mode Option = 186 (ON)
 • Set Host Mode Option = 60 (ON)
 • Host Mode = 0A
 • Path Switch Mode (Active/Active) = 1 (Enabled)
 • No_RSV_Conf Mode = 1 (Enabled)
 • Persistent RSV Cluster Mode = 1 (Enabled)
 • Unique Reserve Mode = 1 (Enabled)
See your Veritas documentation for settings specific to your operating system and hardware

Veritas log: “Path not found”

Error occurs because VCS cannot locate the UNIX sh command to start the dataserver binary. Veritas truncates the start of the $PATH environment variable, so verify that Veritas is locating the sh command. Check the value for $PATH and restart Veritas:
1 Check the value for $PATH
echo $PATH
2 Change the value of $PATH to include the sh command:
 export PATH=/bin:/sbin:/usr/bin:/usr/sbin
3 Stop Veritas:
 Issue hastop -local
4 Restart Veritas:
hastart

VCS shuts down the instance after it starts and issues resource faults

Use hagrp -clear to clear the resource faults. This command clears the resource faults for an VCS group named “asegrp1”:

```
hagrp -clear asegrp1
```

This error may result in the instance writing a number of errors to the error log:

- Failed to identify instance – VCS is using the wrong name to start the instance. To rectify:
 - Verify that the each RUN_server_name file includes the correct path to the quorum device, and that the value for server_name is the same as the name of the instance.
 - Use qrmutil to validate the quorum configuration, specifically the instance and host names:
    ```
    qrmutil -Qquorum_path --display=all
    ```

- Shutdown with nowait detected – VCS cannot determine if the instance is running. VCS uses the UNIX ps command with the server name in the execution string to verify whether an instance is running. To make sure the ps command can find each instance:
 - (Solaris only) Verify that the instance name in the RUN_server_name file appears within the first 80 characters
 - Use hares -display to verify that the Server attributes for the ASE resource. The Server attributes must correspond to the instance names. This example displays the instance names for the “aseres1” resource:
    ```
    hares -display aseres1 -attribute Server
    ```

If necessary, use hares -modify to change the values:

```
hares -modify aseres1 Server asel -sys hpcblade1
```

If an instance requires a long time to start, Veritas may stop the dataserver process during startup and issue a resource fault. To prevent these resource faults, allow instances more time for startup by adjusting the following Sybase VCS monitoring parameters:
• Adjust the time between monitor checks for the ASE resource. For example:

 hatype -modify Sybase MonitorInterval 60

• Adjust the number of monitor checks to confirm the ASE resource is online. For example:

 hatype -modify Sybase OnlineWaitLimit 10

• Adjust the number of failed monitor checks before issuing a resource fault for the Sybase resource. For example:

 hatype -modify Sybase ToleranceLimit 2

• Engine exited with signal 11—the instance fails on the Linux platform. To rectify, reset the LD_POINTER_GUARD environment variable in the RUN_server_name files:

 • On the SUSE platform, enter:

 export LD_POINTER_GUARD=1

 • On the RedHat platform issue:

 export LD_POINTER_GUARD=0

VCS cannot shutdown the instance resource

This problem occurs when VSC has trouble using isql to connect to an instance. VCS uses isql to connect and shut down instances. isql uses the interfaces file for the connection parameters. Validate that:

• The interfaces file is defined in the release directory ($SYBASE) and is configured correctly.

• The interfaces file contains definitions for each defined instance.

• The release directory contains a SYBASE.sh or SYBASE.csh file and is configured correctly.

VCS uses the SA and SApwd commands with isql to connect and shut down instances. Use hares -display to verify the SA and SApwd attributes for the ASE resource:

 hares -display aseres1 -attribute SA
 hares -display aseres1 -attribute SApwd

If necessary, use hares -modify to change the attributes:
Resource faults for VCS groups

If you find resource faults from the `cfsmount` group:

- Use `hagrp -dep` to verify that the `cfsmount` group is dependent on the `cvm` and `cvmvoldg` groups:

  ```
  hagrp -dep
  ```

 Use `hagrp -link` to fix any dependencies:

  ```
  hagrp -link cfsmount1 cvm online local firm
  hares -link cfsmount1 cvmvoldg1
  ```

- Use `vxdg list` to verify that the VCS mount and volume disk groups are enabled on all nodes:

  ```
  vxdg -o alldgs list
  ```

 Use `vxdg deport` and `import` to re-enable:

  ```
  vxdg deport disk_group_name
  vxdg -s import disk_group_name
  ```

- Use `vxdisk list` to verify that the VCS mount and volume disks are online:

  ```
  vxdisk list
  hastop -local
  ```

 If necessary, restart VCS on each node:

  ```
  /etc/init.d/vxfen stop
  /etc/init.d/vxfen start
  hastart
  ```

- CFS mounts can fail because VCS volumes are in use. You may need to restart all nodes in the cluster to clear any conflicts. See your operating system documentation.

 If you find resource faults from the `cvm_clus` group, use `hares -dep` to verify that this resource is dependent on the `cvm_vxconfigd` resource:

  ```
  hares -dep
  ```

 Use `hares -link` to fix any dependencies:

  ```
  hares -link cvm_clus cvm_vxconfigd
  ```
CHAPTER 11 Using the Cluster Edition with the Veritas Cluster Server

If you find resource faults from the vxfsckd group, use hares -dep to verify that the this resource group is dependent on the cvm_clus resource:

\[\text{hares -dep}\]

Use hares -link to fix any dependencies:

\[\text{hares -link vxfsckd cvm_clus}\]

VCS fails to start

Occurs when a node cannot join the VCS cluster.

If you see this error in your Solaris or Linux error log, the node cannot join the cluster because VCS cannot start I/O fencing:

\[\text{CVMCluster:???:monitor:node - state: out of cluster}\]

- Use vxdisk list to verify that the vxfencoordg disk group is enabled on all nodes:

\[\text{vxdisk list}\]

If the vxfencoordg disk group is not enabled, deport and re-import the group:

\[\text{vxdg deport vxfencoorddg}\]
\[\text{vxdg -t import vxfencoorddg}\]

- Use vxdisk list to verify that the vxfencoordg disks are online:

\[\text{vxdisk list}\]

If the vxfencoordg disks are not online, restart VCS on each node:

\[\text{hastop -local}\]
\[\text{/etc/init.d/vxfen stop}\]
\[\text{/etc/init.d/vxfen start}\]
\[\text{hastart}\]

- Use vxfenadm -g to verify reservations exist on the vxfencoordg disks:

\[\text{vxfenadm -g}\]

If the reservations do not exist, stop the VCS, use vxfenclearpre to clear the VCS reservations, and restart VCS:

\[\text{hastop -local}\]
\[\text{/etc/init.d/vxfen stop}\]
\[\text{vxfenadm -g all -f /etc/vxfentab}\]
\[\text{vxfenclearpre}\]
VCS troubleshooting

/etc/init.d/vxfen start
hastart

If a new node joins an existing cluster, you may need to use gapconfig -x to reapply the group membership configuration:

gapconfig -x

If you see this message in your Solaris or Linux error log, the Veritas configuration daemon cannot start:

ERROR: IPC Failure: Configuration daemon is not accessible

Clear and restart the configuration daemon:

vxconfigd -k
"vxiod set 10
"vxconfigd -m disable
"vxdctl init
"vxdctl initdmp
"vxdctl enable

If you see this error in your VCS error log, the disk group initialization failed when you ran vxgd init:

Device sda cannot be added to a CDS disk group

By default, vxgd initializes disks as CDS. Rerun the vxgd command with cds=off:

vxgd init disk_group cds=off
This chapter provides instructions for troubleshooting common errors.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verifying the cluster environment</td>
<td>216</td>
</tr>
<tr>
<td>Restarting the cluster using a dataserver binary from an earlier version</td>
<td>217</td>
</tr>
<tr>
<td>Errors accessing disk devices</td>
<td>218</td>
</tr>
<tr>
<td>Verifying the cluster is down</td>
<td>219</td>
</tr>
<tr>
<td>Creating cluster using sybcluster fails with error -131</td>
<td>220</td>
</tr>
<tr>
<td>Cluster creation fails leaving files in SYBASE directory</td>
<td>220</td>
</tr>
<tr>
<td>Unified Agent starts but sybcluster connect fails</td>
<td>221</td>
</tr>
<tr>
<td>Disk devices in use</td>
<td>221</td>
</tr>
<tr>
<td>Instances fail to join the cluster</td>
<td>222</td>
</tr>
<tr>
<td>Private interconnect failure</td>
<td>222</td>
</tr>
<tr>
<td>Client connection failover fails</td>
<td>222</td>
</tr>
<tr>
<td>Client fails to reconnect to alternate high availability servers</td>
<td>223</td>
</tr>
<tr>
<td>sybcluster cannot connect if all connections use SSL</td>
<td>223</td>
</tr>
<tr>
<td>jConnect sample disables HA</td>
<td>224</td>
</tr>
<tr>
<td>PC-Client installation – java.lang.NoClassDefFound Error</td>
<td>224</td>
</tr>
<tr>
<td>The cluster entry “name” did not contain any servers</td>
<td>225</td>
</tr>
<tr>
<td>After password change, sybcluster cannot manage the cluster</td>
<td>225</td>
</tr>
<tr>
<td>Agent “cannot be found”</td>
<td>227</td>
</tr>
<tr>
<td>Sybase Central cannot register the AMCP plug-in</td>
<td>227</td>
</tr>
<tr>
<td>UAF plug-in register error</td>
<td>227</td>
</tr>
<tr>
<td>Data on disk unavailable: problems affecting database creation</td>
<td>228</td>
</tr>
<tr>
<td>Access permission to devices is denied after enabling I/O fencing</td>
<td>229</td>
</tr>
<tr>
<td>sybcluster cannot find interfaces file</td>
<td>229</td>
</tr>
<tr>
<td>IBM errors</td>
<td>230</td>
</tr>
</tbody>
</table>
Verifying the cluster environment

Many errors that occur using the Cluster Edition result from configuration problems in the cluster environment. Sybase recommends that before you configure your cluster:

- Verify that you have set your environment variables by sourcing the `SYBASE.csh` or `SYBASE.sh` file located in `$/SYBASE`.

- Run `dataserver -v` from each node to verify that all required libraries are installed on the host.

 If any system libraries are missing, you see an operating system error, and the data server version number does not appear. Correct this problem before proceeding. If `dataserver` displays the version string without error, you can assume that all required system libraries are installed.

- Verify that each node in the cluster can read from and write to each database device. Use the operating system `ls -l` command to test whether you are able to read from and write to the devices using the `dd` operating system utility.

 To test the readability of a device:

  ```
  dd if=<device path> of=/dev/null count=x
  ```

 You should get a result similar to:

  ```
  %dd if=/dev/raw/raw123 of=/dev/null count=10
  10+0 records in
  10+0 records out
  ```

 You can use the `dd` utility to test the writeability of your devices as well. However, you should do this only if there is no data in the devices to preserve.

- Run the `ping` utility to verify connectivity among all nodes. From each node, attempt to ping the host name or network address of every other node. Do this for each network to be used. For example, if your configuration uses a public and two private networks, verify that `ping` succeeds for all combinations of node and network address.

 Use the `sybcluster 'show cluster config'` parameter to determine the private interconnect addresses used by each instance. For example, if your cluster contains nodes `node1` and `node2`, `sybcluster` displays information similar to this:

  ```
  SYBCE> show cluster config
  ```
** Cluster configuration for "SYBCE" **

Interface Path "/sybce"

Trace Flags:
There were are no trace flags.

Maximum Instances "4"

Quorum "/dev/raw/raw23"

Master Device "/dev/raw/ra24"

logfile INSTANCE1 /sybce/ASE15_0/install/GATEST_INSTANCE1.log
run_parameters INSTANCE1

logfile INSTANCE2 /sybce/ASE-15_0/install/GATEST_INSTANCE2.log
run_parameters INSTANCE2

Primary Interconnect "udp"

Server[1] INSTANCE1 node1_priv 49152 49171
Server[2] INSTANCE2 node2_priv 49172 4919

This cluster includes interconnect network addresses node1_priv and
node2_priv. From node1, execute ping node2_priv to verify that the
address of the private network on node2 is accessible from node1. From
node2, execute ping node1_priv to verify that the private network on node1
can be reached from node2.

If the ping command fails or error messages indicate a problem with the
private network, check:

- The information contained in the /etc/hosts file
- The condition of the network cables, routers, or switches used by the
 private networks
- The names or IP addresses specified in the cluster configuration
 reported by the sybcluster "show cluster config" command

Restarting the cluster using a *dataserver* binary from an earlier version

The Cluster Edition does not start, and writes this message to the error log
"Cluster is running with message version y. This version of
ASE requires message version x," if:

- You attempt to use different versions of the *dataserver* binary in the same
 running cluster.
- You apply an EBF or ESD without first gracefully shutting down a cluster
 using a previous version of the *dataserver* binary.
Errors accessing disk devices

Resolving the problem

Start an instance of the cluster using the old version of the *dataserver* binary, and then issue `shutdown cluster`.

Restart the cluster using the new version of the *dataserver* binary.

If the previous version of the *dataserver* binary is not available, you can resolve this error message by re-creating the quorum device.

Warning! These steps bypass Adaptive Server’s safety checks, and you must make sure no instances are running while you perform them.

1. Verify that all instances of the cluster are shut down.
2. Extract the cluster input file information using `qrmutil`:

   ```
   $SYBASE/ASE-15_0/bin/qrmutil --quorum_dev=path_to_quorum
   --extract_config=quorum.out
   ```

3. Start the Cluster Edition using the new *dataserver* binary, and rebuild the quorum device:

   ```
   dataserver --quorum_dev=path_to_quorum --instance=instance_name
   --buildquorum=force --cluster_input=quorum.out
   ```

4. Shut down the cluster.
5. Start the cluster using normal procedures.

Warning! The `--buildquorum` or `--cluster_input dataserver` parameters are used only for these steps. Do not use them during subsequent cluster or instance restarts.

Errors accessing disk devices

All disk devices used by the Cluster Edition must be configured to be accessible from all the nodes in the cluster. The paths to these devices must be the same on all nodes, and the account used to start the cluster must have permission to read and write to all of the disk devices.

If the Cluster Edition reports that any of the devices cannot be accessed, verify from each node in the cluster that,
• The device paths specified when configuring the cluster are accessible from all nodes in the cluster.
• The account used to start the cluster has permission to read and write to these devices.
• The device paths are the same on all nodes in the cluster.
• Any symbolic links used to refer to the devices are correct.

Use the UNIX `ls` and `ls -l` commands to verify paths and file permissions. You can use the UNIX `dd` utility to verify that the devices can be read and written to by the Sybase account.

See “Verifying the cluster environment” on page 216.

Verifying the cluster is down

The `sybcluster` utility may not be able to determine whether or not the cluster is running if the cluster has crashed and left some status information in the quorum device in an inconsistent state. If you are uncertain about the status of the cluster, analyze each instance in the cluster to determine the cluster’s status.

1 Use `isql` to log in to each instance in the cluster.
2 Use `sybcluster 'show cluster status'` to view the status of each instance in the cluster.
3 If `sybcluster` does not report that the state of all instances is ‘Up’ and that the `heartbeat` is ‘Yes’, the instance may be down.
4 Use the UNIX `ps` command on each node in the cluster to determine whether processes representing the `dataserver` program are running for each instance configured for that node.
5 After starting the first instance, issue `sybcluster start cluster` to start all remaining instances in the cluster.

If you determine the instances are not running, unlock the cluster and restart:

```
start instance instance_name unlock
```
Creating cluster using **sybcluster** fails with error -131

The `sybcluster create cluster` command may fail with error -131 and issue a message stating that the parent directory in which the raw devices are defined cannot be accessed:

```
INFO - Choosing the first instance to be created using the connected agent...
ERROR - Parent directory access error. The parent directory /dev/rdsk for the device can not be accessed. Please change the protection on the device and try again.
INFO - Create cluster error: -131
```

You may have incorrectly spelled the name of the raw device. Check the complete name of each raw device and verify that it is correct.

Cluster creation fails leaving files in $SYBASE directory

If the `sybcluster create cluster` command or the Sybase Central Adaptive Server plug-in Create Cluster Wizard terminates with an error condition, some files may be left in the cluster installation directory. Remove these files before attempting to create the cluster again:

1. Remove any entries for the cluster in the interfaces file in the installation directory.
2. Remove Unified Agent plug-in directories for each node from these locations:
   ```bash
   $SYBASE/UAF-2_5/nodes/node_name/plugins/cluster_name
   ```
3. Remove resource files with names ending in `*.res` from the `$SYBASE` directory.
4. Remove cluster definition files with names ending in `*.inp` from the `$SYBASE` directory.
5. Remove the intermediate `RUN_instance_name` file from `$SYBASE/ASE-15_0/install`.
6. Remove any error log files from `$SYBASE/ASE-15_0/install`.
7. Remove any instance configuration files from `$SYBASE`.

Only steps 1 and 2 are required before you can initiate another cluster creation operation. However, perform the other steps to reduce the number of files in the installation area.

Unified Agent starts but sybcluster connect fails

The sybcluster `connect` command may fail because of incorrect network configuration information during the Unified Agent start-up or when executing the sybcluster command.

- Examine the Unified Agent log files for each agent in the cluster to determine whether any errors are reported opening the RMI listener for the agent. The agent log files are:

 `$SYBASE/UAF-2_5/nodes/node_name/log/agent.log`

- Specify the correct node names and listening port numbers for the `-F` parameter when starting sybcluster:

  ```
  sybcluster -U uafadmin -P -C MYCLUSTER
  -Fnode1:1234,node2:1234
  ```

Disk devices in use

On Linux, some devices are, by default, bound to a disk. If you attempt to create a cluster and inadvertently specify one of these devices, disk init fails and the Create Cluster wizard or sybcluster cannot create the cluster.

Before you start the Create Cluster wizard or a sybcluster session, check to make sure the disk device is available.

See “Verifying the cluster environment” on page 216.
Instances fail to join the cluster

Instances may fail to join the cluster because of problems with the private networks used to support interconnect communication. If one or more instances in the cluster fail to start:

- Examine the error logs for those instances that could not join to see if there are any messages indicating the network communication has failed. The error logs are located in $SYBASE/$SYBASE_ASE/install/instance_log

- Verify that all private networks used on the nodes used by the cluster are accessible from all nodes in the cluster. Use the ping utility to do this. See “Verifying the cluster environment” on page 216.

- Check for errors in the UAF agent logs.

Private interconnect failure

The cluster does not start if a private interconnect is not configured correctly. Use the operating system ping command to validate the private interconnect is working. If ping does not work, see your system administrator to enable the interconnection communication between various nodes.

See “Verifying the cluster environment” on page 216.

Client connection failover fails

This error occurs when a client connection failover fails when the client connects to the cluster using IP addresses and the nodes are not included in the local /etc/hosts or DNS.

Adaptive Server sends the failover instance addresses as they are listed in the cluster’s interfaces file. If the cluster’s interfaces file lists the instance network addresses as host names, Adaptive Server returns the host names to the client applications. However, the client application uses DNS or the /etc/hosts file to resolve the names of the hosts for the cluster instances, so if the clients do not have the host names in their /etc/hosts file or DNS server, failover is unsuccessful.
Verify that all nodes in the cluster are listed in the client systems’s DNS server or the client system’s /etc/hosts file.

Try using IP addresses rather than host names in the cluster’s interfaces file.

Client fails to reconnect to alternate high availability servers

Clients with DNS name resolution problems may fail to reconnect to an alternate high availability server when the instance to which it is connected fails, producing this message:

```
Connection to Sybase server has been lost, connection to the next available HA server also failed. All active transactions have been rolled back.
```

DNS name resolution issues occur when the client’s host cannot correctly resolve a hostname for the alternate instances. To determine if this error is produced by a DNS name resolution problem, issue a ping hostname command for each alternate instance in the high availability list, where hostname is the host on which the alternate servers reside. If the hostname cannot be resolved, or resolves to the wrong IP address, rectify the name resolution issue according to your system administration documentation.

Sybcluster cannot connect if all connections use SSL

If all Adaptive Server listening ports use SSL, Adaptive Server issues this error message:

```
2008-03-20 10:42:46,260 ERROR [Timer-6] GA1:GA1_1:SQLConnect:270:Login Failure - The user "sa" and the entered password is not authorized to connect to the cluster.
```

Verify that there is a non-SSL connection for each instance in the cluster and that this connection is included in the interfaces file Unified Agent uses.
jConnect sample disables HA

The sample jConnect connection string for the Cluster Edition included in the What's New in ESD #12 document for Open Client, Open Server, ODBC, jConnect, and ADO.NET for Adaptive Server version 15.0 is incorrect.

The sample connection string in the document is:

```
```

This string fails because the `JCONNECT_VERSION=6` parameter emulates the high availability companion server functionality. The JDBC driver causes a client Java exception when the client tries to use the jConnect driver’s Failover property but does not have a hafailover server specified in the connection string.

This is the correct connection string:

```
```

PC-Client installation – java.lang.NoClassDefFound Error

Occurs on the Windows platform when you unpack the PC Client tar file using the MKS tar utility rather than the Winzip utility. On Windows platforms, the MKS tar utility truncates full path names, resulting in missing files.

This problem occurs on UNIX platforms if you do not use the GNU tar utility to untar the Adaptive Server installer.

For Windows platforms, always use the Winzip utility to unpack the installer. For UNIX platforms, always use GNU tar utility to untar the installer.
The cluster entry “name” did not contain any servers

If the quorum device is not accessible to the UAF agents, the following errors may occur when you issue the sybcluster start cluster and start instance commands:

start cluster
ERROR - The cluster entry SDCDEMO did not contain any servers
start instance INSTANCE1
ERROR - The cluster entry SDCDEMO did not contain any servers

- The UAF agent may not have permission to read the quorum device. Verify that you started the UAF agent under the proper user account and that this account has permission to both read and write the quorum device.
- sybcluster and the UAF agent are using an incorrect path to the quorum device on one or all nodes in the cluster. If you used symbolic links, verify that all links are correct on all nodes.
- Another process is preventing the UAF agent from reading the quorum device. This could be caused by functional problems or configuration errors in the disk storage system.

After password change, sybcluster cannot manage the cluster

sybcluster uses the UAF agent to connect to and perform operations on the cluster (for example, shutdown cluster). The UAF agent must log in to the cluster to do this. To log in, the UAF agent must use the correct sa login and password.

The sa login and password are stored in encrypted form in the UAF plug-in configure file for the cluster. Use sybcluster set cluster login to change the login and password that UAF uses to connect to the cluster.

Any time you change, Adaptive Server password, you must also change the UAF agent login.

Perform one of the following to change the login and password that UAF uses to connect to the cluster:

- Use sybcluster set cluster login to set the UAF login, password, or both. Connect to the cluster before issuing this command.
After password change, sybcluster cannot manage the cluster

The syntax is:

```
set cluster login sa-login [password sa-password]
```

- Use the Adaptive Server plug-in to modify the UAF plug-in:
 a Connect to the cluster.
 b From “Server Instances,” left-click an instance listed in the tree view pane.
 c Select “Agents Attributes” from the right pane.
 d Click the “password” row.
 e Enter a new password for the agent managing the current instance.
 f Repeat steps c – e for each instance in the cluster
- Edit the UAF configuration files.

Note You must shut down all cluster UAF agents before editing the `agent-plugin.xml` file.

The UAF Adaptive Server login and password are stored in:

```
$SYBASE/UAF-2_5/nodes/<node name>/plugins/<cluster name>/agent-plugin.xml
```

For example:

```
<set-property property="ase.user" value="sa" />
<set-property property="ase.password" value="REVTe1NZVUFgWNvbS5zdW4uY3J5cHRvLnByb3ZpZGVyLlN1bkpDRXtTWVVBn1jUEZPSkJoTTZ2QT0=" />
```

Note If the password tag is missing, add following steps a – f, above.

Enter the password in clear text. `passencrypt` generates an encrypted text string. Enter this `entire` string between the quotation marks in the `password` tag in the `agent-plugin.xml` file.

Generate the encrypted password:

```
$SYBASE/UAF-2_5/bin/passencrypt
```
Agent “cannot be found”

`sybcluster show agents` does not display all agents.

Often, host systems names in a cluster are similar. If you use `sybcluster -F` to specify the connections to each of the agents in your cluster, verify that each host system is spelled correctly, that you have specified port numbers, and that the port numbers are correct.

Sybase Central cannot register the AMCP plug-in

If you get this message when you attempt to register the AMCP plug-in (`amcplugin.jar`):

```
Could not read manifest.file
```

The installer has renamed the `amcplugin.jar` file to `amcplugin.jar.installed` to avoid overwriting existing files.

When you attempt to run `registerAMCP` from the command line, you see:

```
Error: Unable to find the AMC Plugin binary. Please check that $SYBROOT has been set correctly and that the file /AMCP/lib/amcplugin.jar' exists.
```

Rename `amcplugin.jar.installed` to `amcplugin.jar`.

UAF plug-in register error

You may see this error because of an existing cluster parameter value that is inconsistent with a newer configuration parameter:

```
2008-06-16 14:05:16,063 WARN [main] Bootstrap completed with 1 error(s):
2008-06-16 14:05:16,064 WARN [main] Failed to register plugin
```
Data on disk unavailable: problems affecting database creation

com.sybase.ase.cluster_15.0.1. Class
com.sybase.ua.plugins.ase.cluster.ASEClusterAgentPlugin not found. Ignored.
java.lang.ClassNotFoundException:
com.sybase.ua.plugins.ase.cluster.ASEClusterAgentPlugin

If you get this error, it is likely that:

• The UAF agent will not start, and the agent.log file displays Bootstrap completed with x error(s): near the end of the file.

• You have created, dropped, and reconfigured the same cluster a number of times.

This error message appears in the agent.log file or in the terminal window if you did not execute the uafstartup.sh as a background process. Either:

• Clean up the older parameters that may be introducing the error, or

• Remove the cluster directory in $SYBASE_UA/nodes/<node_hostname>/plugins. You can permanently delete the folder or relocate it outside of the directory structure.

Note Do not remove the *snmp and *sysam folders.

After you have performed either of these steps, restart the UAF agent. You may have to manually redeploy the plug-in.

Note If the steps described above removed the cluster’s plugin directory from one of the nodes, use deploy plugin to re-create this directory. The cluster requires that each node of the cluster include a plugin directory. See “deploy plugin” on page 379.

Data on disk unavailable: problems affecting database creation

Disk labels are stored in block 0 of every disk. If raw data slices used for device creation start on block 0, they may overwrite the disk label and make data on the disk inaccessible.

Do not create raw disk slices that start on block 0.
Access permission to devices is denied after enabling I/O fencing

On Solaris systems, the UNIX user starting the Cluster Edition must have SYS_DEVICES inheritable privileges to access the raw devices (/dev/raw/raw# or /dev/rdsk/c###d##s##) used for databases and quorums.

The SYS_DEVICES privilege grants Adaptive Server the ability to execute SCSI-3 PGR commands used in I/O fencing. The UNIX user can be granted temporary or permanent SYS_DEVICES privileges:

- To grant temporary SYS_DEVICES privileges, add SYS_DEVICES privileges to the inheritable privilege set of the current user’s shell process:

  ```bash
  sudo ppriv -s l+sys_devices $$
  ```

- To grant permanent SYS_DEVICES privileges, use the usermod UNIX command to add SYS_DEVICES to the inheritable privilege set of any user:

  ```bash
  usermod -K defaultpriv=basic,sys_devices user_login
  ```

sybcluster cannot find interfaces file

sybcluster may report an error message, stating that it cannot find the interfaces file in a nonexistent directory:

```
ERROR - The interfaces file /remote/ase_cluster/sdclinux/UAF-2_5/bin/interfaces could not be found.
```

This error generally occurs when one or more UAF agents cannot access the quorum device. This may occur because:

- The quorum device does not exist at the configured location.
- The quorum device’s permissions do not allow the UAF agent to read or write data.

To resolve this issue, verify that:

1. You sourced the SYBASE.sh or SYBASE.csh files before starting the UAF agent on each node in the cluster.
2. The quorum device exists and that the login that was used to start the UAF agent has read and write permissions on it.
IBM errors

This section describes errors you may encounter when running the Cluster Edition on the IBM AIX operating system.

Asynchronous I/O not enabled

If asynchronous I/O is not enabled on IBM AIX when you attempt to start the Cluster Edition, the dataserver binary issues this error message and the Cluster Edition does not start:

```
exec(): 0509-036 Cannot load program dataserver because of the following errors:
0509-130 Symbol resolution failed for /usr/ccs/lib/libc.a[aio_64.o] because:
0509-136   Symbol kaio_rdwr64 (number 1) is not exported from dependent module /unix.
0509-136   Symbol listio64 (number 2) is not exported from dependent module /unix.
0509-136   Symbol acancel64 (number 3) is not exported from dependent module /unix.
0509-136   Symbol iosuspend64 (number 4) is not exported from dependent module /unix.
0509-136   Symbol aio_nwait (number 5) is not exported from dependent module /unix.
0509-136   Symbol aio_nwait64 (number 6) is not exported from dependent module /unix.
0509-136   Symbol aio_nwait_timeout (number 7) is not exported from dependent module /unix.
0509-136   Symbol aio_nwait_timeout64 (number 8) is not exported from dependent module /unix.
0509-026 System error: Error 0
0509-192 Examine .loader section symbols with the 'dump -Tv' command.
```

See your IBM AIX operating system documentation for information about enabling asynchronous I/O.

Incorrect permissions on device

If you do not have permission to manage raw devices on IBM AIX, the operating system issues this message when you attempt to start the Cluster Edition and the cluster does not start:

```
dopen: open '/dev/device_name', Not owner
```
• Grant the correct permissions (one of: PV_ROOT, PV_SU_, or PV_KER_RAS):

```
setsecattr -p iprivs=+PV_KER_RAS $$
```

These permissions are inherited by the Cluster Edition process when it starts.

• Grant a non-networked (NIS) user permission to run processes that manage devices:
 a. Create the user:
      ```
      mkuser sybase
      ```
 b. Create the role:
      ```
      mkrole authorizations=aix.device.manage.change
      role_disk_access
      ```
 c. Assign the role to a user:
      ```
      chuser roles=role_disk_access
default_roles=role_disk_access sybase
      ```

Another machine using device

If the Cluster Edition does not have permission to access a device because a process on another machine is using the device, and the device can be used only by a single machine at a time, the operating system issues:

The IBM AIX SDC dataserver may fail to run with one of the following errors:

- Quorum library error 1: Failed to open quorum device '/dev/disk_name'. OS error 16, 'Device busy'

Or:

```
dopen: open '/dev/disk_name', Device busy
```

The device must allow multiple servers simultaneous access. The database devices must have shared reservations where the reservation key is the instance ID defined in the cluster configuration file (for example, where ID = 1):

Change the device access restrictions for the quorum device on each machine in the cluster:

```
chdev -l device_name -a reserve_policy=no_reserve
```

For example, if a disk device is named /dev/hdisk1:

```
chdev -l /dev/hdisk1 -a reserve_policy=no_reserve
```
IBM errors

Run this command for each database device on each instance in the cluster to change the device access restrictions for a database device:

chdev -l device_name -a PR_key_value=instance_ID -a reserve_policy=PR_shared

For example, to change the device access restrictions for /dev/rhdisk2 on instance 1:

chdev -l hdisk2 -a PR_key_value=1 -a reserve_policy=PR_shared

Error running chdev

You may see this error when running the chdev command:

Method error (/usr/lib/methods/chgdisk):
 0514-047 Cannot access a device.

The device is currently in use. Shut down all processes accessing the device.
CHAPTER 13

Administering Clusters with the Adaptive Server Plug-in

The Adaptive Server plug-in for Sybase Central allows you to perform the administrative tasks for the cluster. For example, creating a cluster, adding an instance, starting and stopping a cluster or instance, creating or modifying logical clusters, administering workload management.

The Adaptive Server plug-in is used instead of the command line method.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing a shared-disk cluster</td>
<td>233</td>
</tr>
<tr>
<td>Managing multiple temporary databases</td>
<td>244</td>
</tr>
<tr>
<td>Managing the workload</td>
<td>249</td>
</tr>
<tr>
<td>Managing routes</td>
<td>262</td>
</tr>
</tbody>
</table>

For more information about using Sybase Central and the Adaptive Server plug-in, see Chapter 4, “Introduction to the Adaptive Server Plug-in for Sybase Central,” in the System Administration Guide.

Managing a shared-disk cluster

The Adaptive Server plug-in allows you to manage the shared-disk cluster environment from within Sybase Central.

You must have a Unified Agent running with a cluster agent Adaptive Server plug-in for all of the cluster management functionality to be available through the Adaptive Server plug-in. See “Enabling Unified Agent functions in the Adaptive Server plug-in” on page 235.
Connecting to a cluster

When you start Sybase Central, the main window opens, displaying the Adaptive Server plug-in, with the list of icons of the clusters and instances to which you have previously connected. If the cluster is running, a green triangle appears next to the cluster name.

If the cluster managed by Adaptive Server plug-in is not running, a red square appears in the server icon. If neither triangle nor square indicator is displayed, see the instructions for configuring the Adaptive Server plug-in and Unified Agent at “Starting a cluster” on page 240.

The fastest way to connect to a running cluster in the list is to right-click the cluster name and select Connect. The Adaptive Server plug-in uses the previous connection data to make the connection. If a cluster does not appear in the tree view, you can find it with Server Discovery or provide the cluster’s host and port, login name, and password information. Either method starts by clicking the Connect icon in the toolbar near the top of the Sybase Central window. If you know the required connection information, enter this into the appropriate fields in the Connect window. If you do not have the host and port number for the cluster or a cluster node, enter the login name and password and click the Find button. The Unified Agent searches for clusters and provide a list of those available. If the list does not include the cluster you are searching for, see “Changing server discovery settings” on page 235.

❖ Connecting to a cluster

1. Select Tools | Connect.

 If you are running multiple registered Sybase Central plug-ins, select the Adaptive Server plug-in.

2. Enter the login name you want to use to connect to the instance.

3. Enter the password for the login.

4. Select the cluster name from the Server Name list (which is populated with entries from the interfaces file for Linux, Solaris, IBM AIX, and HP-UX, and from sql.ini from Windows), or type in the host and port of a cluster node.

5. (Optional) Specify the host and port of an instance within the cluster.

6. Click OK.

❖ Shortcuts

- Right-click the cluster icon and select Connect.
CHAPTER 13 Administering Clusters with the Adaptive Server Plug-in

Once you connect to the cluster, the cluster icon changes from grey to blue.

Disconnecting from a cluster with the toolbar

1. Select the icon of the cluster from which you want to disconnect.
2. Select File | Disconnect.

Shortcuts

• Right-click the shortcut icon for the cluster and select Disconnect.
• Select the cluster from which you want to disconnect. Select Disconnect from the toolbar.

Enabling Unified Agent functions in the Adaptive Server plug-in

1. Select Tools | Adaptive Server Enterprise | Preferences. On the Preferences tab, select: “Enable Unified Agent features,” “Check Server Status,” and “Use Agent Port Number.” The default UAF port is 9999. If you need to check UAF agents on a different port, enter this value here. You can change the UAF port number; the default is 9999.
2. Click OK. If the cluster is monitored by the UAF agent, a red square appears on the cluster icon if the cluster is not running. A green triangle appears on the cluster icon if the cluster is running.

Changing server discovery settings

You need not select a single discovery method. Server discovery searches all specified discovery methods.

1. Right-click the cluster’s name.
2. Select Connect.
3. From the Connect dialog box, select Settings.
4. Select the Server Discovery tab.
5. Select the discovery method.

• JINI – an open architecture that enables developers to create network-centric services that are highly adaptive to change. JINI offers a standard lookup service for discovery.
Managing a shared-disk cluster

- User Datagram Protocol (UDP) – a network protocol that provides a procedure for application programs to send messages to other programs with a minimal protocol mechanism.

Note If only UDP is used, only servers on the same subnet as the one on which Sybase Central is running are discovered.

6 Click Add.

7 If you selected JINI in the previous step:
 - Select the host of the JINI server
 - Select either the default host and port or enter new ones

8 Click OK.

9 To add or edit a discovery filter, click Filters. Server Discovery uses only the selected filters for its search to specify a filter:
 a Click Add.
 b Select Enable this Filter.
 c Select the target you want filtered, Host, Name, OS, Platform, Port, Release type, Status, Version, Build Date.
 d Select the condition: contains, does not contain, is, is not, starts with, ends with.
 e Enter the condition string you want filtered.
 f Click OK.

10 Configure the Adaptive Server plug-in to discover clusters currently running on the system. Use
 - Remove – to remove a discovery service from the list.
 - Edit – to edit the settings for a current discovery service.
 - Up – to move the selected discovery service up the list.
 - Down – to move the selected discovery service down the list.

11 If you are using LDAP servers, select the LDAP pane:
 a Select the LDAP server name.
b Use the gauge to set the search timeout period.
c Enter the user name and password to log in to the nodes.
d Select the nodes you want to log in to in the Select Cluster Nodes box.
e Click OK.

Displaying cluster properties

To view the cluster properties, right-click the cluster name and select Properties. The Adaptive Server plug-in displays the Server Properties dialog box, which includes the General, Configuration, Log Space, Job Scheduler Server, Agent, Server Log, Cluster, and Localization tabs.

General properties tab

The General Properties tab displays this information about the Cluster Edition:

- Type – the edition of Adaptive Server.
- Version – version of the software.
- Release Type – whether the release is a Beta or Production version of the software.
- Platform – platform of machine running on the node.
- Host name – name of machine running on this node.
- Operating System – operating system running on the node.
- Build option – options specific to the currently running version of Adaptive Server.
- Build Date – date the dataserver binary was built.
- Character Set – currently configured default character set.
- Language – currently configured language.
- Sort Order – currently configured sort order.
- Status – status of the server, running or down.
Managing a shared-disk cluster

- ASE log file – location of the log file.

Cluster tab

The Cluster tab includes general information about the cluster, including:
- Maximum instances – maximum number of instances allowed for this cluster
- Installation mode – shared or private
- Membership mode – vcs or native
- Quorum device – location of the quorum device
- Master device – location of the master device

The Cluster tab includes a list of available instances, including their node names and port numbers.

Configuration tab

In the Cluster Creation Wizard, each instance uses the same server configuration file (server_name.cfg) to determine its configuration. By default, all instances in the cluster use the cluster_name.cfg file for cluster configuration. However, you can specify a different configuration file for when you configure the instance, allowing you to set different configuration values for different instances.

You can use the Configuration panel for clusters and instances.

To view the current configuration settings, right-click the cluster or instance name and select Configure. You can also select Properties and then select the Configuration panel.

For details about configuration parameters, see the System Administration Guide. For a discussion of configuration issues to consider when determining optimal settings, see the Performance and Tuning Guide: Basics. The following rules govern who can set configuration parameters:

- Logins assigned the system security officer (“sso_role”) role can reset:
 - allow updates
 - audit queue size

- The default character set id parameter is automatically set during the cluster installation and cannot be reset from within Sybase Central.
• Logins assigned the system administration ("sa_role") role can reset all other parameters.

Parameters that require restart

Some configuration parameter values are dynamic, which means the parameter takes effect as soon as you reset the value. Others do not change until you restart the cluster (these are called static parameters). The Adaptive Server plug-in indicates whether the parameter requires a restart when you select the parameter name.

Dropping instance-specific configuration parameters

The Configuration panel for a clustered instance includes a Drop button, which is enabled only for instance-level configuration values, and does not appear on the cluster configuration property tab. Dropping a parameter means you drop it as an instance-specific setting independent of the cluster-wide value.

Drop is disabled until you change a value and select Apply. The next time you select this configuration parameter, Drop is enabled, and you can select it to drop the configuration parameter.

Setting configuration parameters

The Cluster Edition includes global and instance configuration parameters. Global configuration parameters affect the entire cluster, while instance configuration parameters affect only the instance on which they are set. To set global configuration parameters, open the Configuration tab for the cluster and select the name of the cluster, then select the configuration parameters to reset.

By default, instances use the global configuration values unless an instance setting overrides them.

❖ Setting configuration parameters for an instance

1 Right-click the instance name you want to configure.

2 Select Configure (or select File | Properties, then click the Configuration tab).

3 Select the functional group to display, or select “All.”

4 Select the parameter you want to update. For a brief description of the selected parameter, read the Explanation box.

5 Enter the new value in the Value column of the table.

6 Click OK (or Apply if you are changing multiple configuration values).
Managing a shared-disk cluster

- If the parameter takes effect immediately, it is listed in the Value column.
- If the parameter requires you to restart Adaptive Server, it is listed in the Pending Value column.

Log Space tab

The Log Space panel displays this information about the current log space for the cluster:

- Database (Instance) – name of the log space. If the log is specific for an instance, the instance name appears in parentheses. If there are no parentheses, the log is for the cluster.
- Total (MB) – total amount of log space available, in megabytes.
- Used (MB) – amount of log space currently used, in megabytes.
- Free (MB) – amount of free space available for the log, in megabytes.
- Used – percentage of the total space currently used.

Job Scheduler Server tab

The server you designate as a Job Scheduler server must have Job Scheduler installed on it. See the Job Scheduler User's Guide for more information on installing Job Scheduler.

Localization tab

The Localization tab displays the current values for default language, charset, and sort order. You can change the default values and add or remove languages.

Starting a cluster

The Adaptive Server plug-in must have the unified agent features enabled to start the cluster. Clusters that are administered by an agent display a red square (if the cluster is not running) or green triangle (if the cluster is running) on the server icon by the cluster name. To start a cluster that is not running:

1. In the left pane of the tree view, right-click the cluster shortcut icon and select Start.
2 Enter the Unified Agent login and password with administrative access to start the cluster.

3 A messages log window opens when the agent starts the server. The OK button is enabled when the cluster start process is completed.

4 The red square on the cluster icon turns to a green triangle, indicating the cluster is running.

Shutting down a cluster

Shutting down a cluster that is not connected:

1 Right-click the cluster icon to shut down.

2 Select Shut Down.

3 Click Yes to confirm the shut down.

Shutting down a cluster that is connected:

1 In the left pane of the tree view, right-click the cluster icon and select Shut Down.

2 Check the boxes to:
 - Shut down the cluster after processes have finished, and be notified if shutting down takes longer than one, five, or ten minutes, or
 - Shut down the cluster immediately.

3 Click Yes to shut down the cluster.

Dropping a cluster

Dropping a cluster allows a user to undo all the steps he or she performed to create a cluster. Dropping a cluster is different from removing a cluster from a server group. You can only drop clusters that are shut down.

Note You remove a cluster completely when you drop it. It is no longer available for restart.

To drop the cluster:

- Right-click the name of the cluster you want to drop.
Managing a shared-disk cluster

- Select Drop Cluster from the list.
- Enter the login for the managing agent (usually, uafadmin).
- Select OK.

Removing a server group

Removing a server group removes the server group’s cluster entry from the Adaptive Server plug-in. The cluster is unaffected.

To remove a cluster from the default group:
1. Right-click the cluster name and select Remove from Default.
2. Confirm the deletion by selecting the cluster name from the Confirm Delete dialog box and selecting Yes.

Displaying the status of a cluster

If the cluster is managed by a unified agent, the status is provided by the agent whether or not you are connected, but a connected cluster shows more detailed information.

In the tree view, click the Server Instances folder to view the instances in the right pane. Status details include:
- Instance – the name of the instances within the cluster.
- ID – the numerical order of the instance in the cluster.
- State – the current state of the cluster, online or offline.
- Address – the address of the instance in the cluster.
- Start Time – the time the cluster started.
- Connections Active – the number of connections.
- Engines Online – the number of engines.

Managing a clustered instance

This feature enables management of the instances in a cluster.
Adding an instance to a cluster

Before you can add an instance, the max instances parameter must have room for more instances, and a cluster-supported agent must run on the node on which you are creating the instance. You must know the host name and port number of the unified agent (UA).

1. Open the Server Instances folder in the left pane to display the server instances and options in the right pane.
2. Select Add Cluster Server Instance to open the Add Cluster Instance Server instance wizard.
3. Follow the steps in the wizard to add an instance to the cluster.
4. Click Finish. The new instance is listed under the Server Instances view.
5. Start the instance.

Dropping an instance from a cluster

You must shut down an instance before dropping it from the cluster. After you drop an instance, all temporary database definitions for that instance are dropped, including bindings and group memberships.

Note You cannot drop the last remaining instance of a cluster.

1. In the right pane, right-click the instance to be dropped and select Delete.
2. Click Yes. The instance is dropped from the cluster.

Displaying instance properties

The instance properties dialog includes information about the Sybase release directory ($SYBASE), $SYBASE_ASE, and the interfaces directory.

Starting an instance

Right-click the instance icon and select Start. A bar titled “Start in Progress” appears.
Managing multiple temporary databases

Once the instance is started, the state reads “online.”

Note If the instance takes longer to start than anticipated, you may need to manually refresh the folder to update the state of the instance.

Shutting down an instance

1. Right-click the instance icon and select Shut Down.
2. Select whether to:
 - Shut down the instance after all processes have finished, and be notified if shutting down takes longer than one, five, or ten minutes.
 - Shut down the instance immediately.
3. Click Yes. When the shutdown is complete, the new status of the instance appears.

Creating shared database devices

A shared database device is accessible to all of the cluster instances. Select the Database Devices folder in the tree view

- Select Add Database Device to start the Add Database Device wizard.
- Follow the instructions in the wizard.
- Click Finish. The device appears in the right pane under the list of devices.

Managing multiple temporary databases

In the Cluster Edition there are four variations of temporary databases: global system, local system, global user-created, and local user-created.

To view temporary databases, select the Temporary Databases folder:

- Group view – lists the temporary database groups. Only local temporary databases can participate in temporary database groups.
- List View – displays the global temporary databases (not the local temporary databases).
Managing the local temporary databases

A local temporary database can be accessed only by the local instance. Other server instances within the cluster cannot access this temporary database.

To view the temporary databases:
1. Select the Server Instances folder
2. Select the name of the instance.
3. Select Local Temporary Databases

Right-click the temporary database name to configure and maintain your local temporary database. Select the option to:

- Open Interactive SQL – start a session with Interactive SQL.
- Check Consistency – follow the instructions on the wizard to run the database consistency checker (dbcc) on the temporary database.
- Checkpoint – select Yes to run a checkpoint on this database. Select Preview to view the currently running SQL.
- Display Statistics – follow the instructions on the wizard to run optdiag on the temporary database.
- Generate DDL – select Create Database DDL to view the currently running DDL. Select Exclude DDL to view list of objects that you can exclude from the DDL. Check the objects to exclude and select OK.
- Delete – select Delete to drop this temporary database. Select Yes to confirm. Because you cannot delete the last system temporary database, the Delete option is disabled if this is the only temporary database left.
- Properties – select the appropriate pane for information about:
 - General – describes the type of database, the database owner (select Change to change the database owner), the date the database was created, the last time the transaction log was dumped, whether the database has a guest user, the type of data cache, the default database location, and whether to resynchronize the proxy tables.
 - Devices – lists the currently configured database devices. Select:
 - Add – to add a device. Select Data or Transaction Log on the Device Size window, and specify the device size. Click OK to confirm.
 - Remove – remove the device.
Managing multiple temporary databases

- Edit – configure the device. The Device Size window lists the currently configured name, size, unused portion, current allocation, total space allocation, and allows you to add space to the device.
- Move Log – specify a new location for the log device.
- Properties – includes four panes describing general information, mirror device status, databases located on this device, and segment information.
 - Usage – details the space the database uses. Select the unit in which to display the information: Pages, KB, MB, or GB.
 - Transaction log – allows you to configure the bindings, log IO size, and segments that use last-chance thresholds.
 - Options – lists the database options you can set for this database. Check or uncheck the options and click OK.
 - Active sessions – displays SPID and login information for the sessions assigned to this database.

System temporary databases

You create the system temporary databases when you create the cluster or instances. You cannot remove global or local system temporary database. However, local system temporary databases are removed automatically when you delete the instance.

Adding a user-created global temporary database

In the Cluster Edition, you can create global temporary databases (available cluster-wide to all instances) and local temporary database (available to an individual instance).

1. Navigate to Databases | Temporary Databases | List View.
2. Select Add Temporary Database wizard.
3. Follow the instructions outlined in the wizard, clicking Next to go on to the next set of instructions and Back to return to a previous instruction.
4. Click Finish when you are done. The temporary database appears in the right pane under the list of databases.
Adding a user-created local temporary database

The user-created local temporary database can be accessed only by the owning instance:

1. In the right pane of the tree view, navigate to Server Instances | *Instance_name* | Local Temporary Databases.
2. Select Add Local Temporary Database.
3. Follow the instructions in the wizard to create a local temporary database.

Adding temporary databases to a group

To view the database groups, select Group View from the Temporary Databases folder.

Adding a group

Administrators create groups that contain local temporary databases. The default group is created by default. Sybase recommends that you create bindings on groups rather than on individual temporary databases for easier administration.

Select Group View from the Temporary Databases folder to view the Group folder.

1. From the tree view, navigate to Databases | Temporary Databases | Group view
2. Select Add Temporary Database Group
3. The Adaptive Server plug-in starts the Add Temporary Database Group wizard. Follow the instructions provided by the wizard to create a local temporary database group

Group properties

Right-click the group name and select Properties. Sybase Central displays the Bindings and Databases panes.

Databases pane

The Databases pane displays all current temporary databases in the group.

To add a temporary database to the group:

1. Select Add.
Managing multiple temporary databases

2 From the Add Temporary Database screen, select the name of the temporary database you want to add.

3 Click OK.

To remove a temporary database from the group:

1 Select the temporary database name.

2 Select Remove.

3 Click Yes.

Bindings pane

The Bindings pane displays the application and login bindings for the current group.

Binding a new application.

1 Select Bind Application.

2 Enter the application name and Click OK.

Binding a login.

1 Select Bind Login.

2 From the New Login Binding screen, select the login you want to bind.

3 Click OK.

Removing a currently bound application or login.

1 Select the application or login name.

2 Select Unbind.

3 Click Yes to confirm.

You can bind applications or logins to temporary databases or temporary database groups.

Viewing the current bindings.

1 Right-click the temporary database or temporary database group.

2 Select the Bindings tab. The Adaptive Server plug-in lists your current bindings.

Unbinding a login or application.

1 Select the login or application from the list.

2 Click Unbind.

3 Select Yes to confirm.
Unbinding all logins and applications.

1 Click Unbind All.
2 Select Yes to confirm.

Managing the workload

Use the workload manager to view, create, and manipulate logical clusters, workload profiles, load scores, and routes.

Load profiles

Load profiles allow you to define the operating criteria for a logical cluster. These criteria are typically called “load score metrics,” with the value associated for each criteria rolled into a “score” for each instance in the logical cluster that uses the load profile. You can periodically compare load scores for different instances within a logical cluster to detect when the workload is undesirably skewed to one or more instances, or determine if an instance is under-utilized.

Instances included in multiple logical clusters can be impacted by multiple load profiles, so take care when associating instances with multiple logical clusters and when defining, and applying load profiles.

Note The Cluster Edition includes two system load profiles:
- `sybase_profile_oltp` for OLTP environments
- `sybase_profile_dss` for DSS environments.
You cannot modify or delete system load profiles. However, you can duplicate them and modify the duplicates to create your own load profiles.

The load profile status reports the:

- **Name** – the name for the load profile configuration.
- **Type** – the load profile type: system or user.
- **Metric weights** – relative weight assigned to each metric in the load profile. Metrics include:
 - **User connections** – displays the weight of users connected to the particular load profile.
Managing the workload

- CPU busy – displays the weight of CPUs that are currently busy.
- Run queue length – displays the weight of the run queue.
- IO load – displays the weight of the I/O load.
- Engine deficit – displays the weight of the engine deficit.
- Users – displays the weight for a metric the user chooses to measure.
- Thresholds – configured difference (as a percentage) in the load between two instances in a logical cluster at which point the following can occur:
 - Login redirection – used for connection-time load balancing and routing connections to a logical cluster. If necessary, an instance directs a client to stop the current login attempt and try connecting to instances it supplies as a list of available network addresses.
 - Dynamic migration – (also known as the hysteresis value) displays the dynamic migration configuration.
 - Minimum load score – load score necessary to trigger login redirection and dynamic migration.

Adding a load profile

1. Select Load Profiles from the Workload Management folder and select Add Load Profile.
2. Enter the name for your profile.
3. Select Next.
4. Adjust the load profile metric weights.

When a load profile is associated with a logical cluster, the workload manager calculates a load score for each instance in the logical cluster. This is calculated using the weight you entered for each metric, the raw value of each metric for the instance, and the workload measurement algorithm. See “Viewing workload status” on page 260.

The metrics measured by the server are:

- User connections – the capacity of an instance to accept a new connection, based on resource availability.
- CPU utilization – the capacity of an instance to accept additional work.
- Run-queue length – the number of runnable tasks on a system. Run-queue length measures the processing backlog, and is a good indicator of relative response time.
• I/O load – outstanding asynchronous I/Os.
• Engine deficit – the difference in the number of online engines among instances in the cluster.

Note Engine deficit is measurable only when instances in the cluster have unequal numbers of engines. Engine deficit adds a metric for maximum relative capacity to the load score.

• User metric – an optional customer-supplied metric specific to the user’s environment.

Make sure the load scores you specify add up to 100. If they do not sum to 100, the workload manager uses the scores to create proportionate values that add to 100.

5 Select Next.

6 Enter values for:
• Minimum Load Score – the load score is not a percentage, but is the minimum score the workload manager requires before it redirects work to other instances. The minimum load score is meaningful when compared to the load scores of other instances in the logical cluster using the load profile.
• Login Redirection (%) – the load threshold for determining how best to distribute incoming connections.
• Dynamic Connection Migration (%) – the load threshold that determines whether to distribute existing connections.

The load threshold is the percentage difference between the load on the current instance and the load on the least-loaded instance currently participating in a logical cluster. That value must be met before the Cluster Edition redirects a login or migrates an existing connection.

Note The percentages for Login Redirection and Dynamic Connection Migration are independent percentages, and do not need to add up 100.

7 Select Finish to create the load profile.

Deleting load profiles

To delete a load profile:
Managing the workload

1 From the Workload Management | Load Profile folder, right-click the load profile name.
2 Select Delete.

Note You can delete only user-created load profiles.

Associating a load profile with a logical cluster

1 From the Workload Management | Logical Clusters folder, right-click the logical cluster name.
2 Select Properties.
3 Select the Load Profile tab.
4 Click Change. The Adaptive Server plug-in displays a list of available load profiles.
5 (Optional) Select Preview Profiles to display a window that allows you to choose a profile and see how it will influence the weighted metric values for instances within the logical cluster.
 a Highlight the load profile you want to associate with this logical cluster.
 b Select Close.
 c Select OK to exit from the Properties dialog box.
6 Select a load profile.
7 Select OK.
8 Select OK or Apply to associate the new load profile with the logical cluster.

General tab for load profiles

To view the load profile properties:
1 Select Load Profile from the Workload Management folder.
2 Right-click the load profile name and select Properties.

The General tab describes the load profile including its name and type (whether it is a system or user load profile).

See “Load profiles” on page 249.
Metric Weights tab

The Metric Weights tab describes the current weights applied to measurement metrics. If the weights do not sum to 100, the workload manager uses proportionate, adjusted values that do sum to 100.

- User connections – the capacity of an instance to accept a new connection, based on resource availability.
- CPU utilization – the capacity of an instance to accept additional work.
- Run-queue length – the number of runnable tasks on a system. Run-queue length measures the processing backlog, and is a good indicator of relative response time.
- I/O load – outstanding asynchronous I/Os.
- Engine deficit – the difference in the number of online engines among instances in the cluster.

Note: Engine deficit is measurable only when instances in the cluster have unequal numbers of engines. Engine deficit adds a metric for maximum relative capacity to the load score.

- User metric – an optional customer-supplied metric specific to the user’s environment.

Make sure the load scores you specify add up to 100.

Thresholds tab

Use the Thresholds tab to view and change the threshold settings for the load profile. Enter values for:

- Minimum Load Score – the load score is not a percentage, but is the minimum score the workload manager requires before it redirects work to other instances. The minimum load score is meaningful when compared to the load scores of other instances in the logical cluster using the load profile.
- Login Redirection (%) – the load threshold for determining how best to distribute incoming connections.
- Dynamic Connection Migration (%) – the load threshold that determines whether to distribute existing connections.
Managing logical clusters

The Logical Clusters folder contains a list of defined logical clusters and a wizard to help you add new logical clusters. The right pane shows the following details:

- Cluster ID – displays the associated ID number for each logical cluster.
- Current state of the logical cluster – the connection status of the logical cluster, on- or offline.
- Connections – the number of active connections in the logical cluster.
- Base instances – the number of base instances in the logical cluster.
- Active base instances – displays the number of base instances currently active in the logical cluster.
- Failover instances – the number of instances that are configured for failover.
- Active failover instances – displays the number of active failover instances.
- Down routing mode – displays the down-routing configuration. One of:
 - system – sends unroutable connections to the system logical cluster. system ensures the highest availability as the system logical cluster is always online for every instance. This is the default setting.
 - open – sends unroutable connections to the open logical cluster. If the connection cannot be sent to the open logical cluster, or the connection does not support redirection, the instance applies the down-routing mode of the open logical cluster.
 - disconnect – disconnects unroutable connections. This setting can enforce resource reservation by disconnecting clients that cannot be served by instances in the target logical cluster.
- Failover mode – displays the failover mode configuration. The options are instance or group.
- Start-up mode – displays the start-up mode configuration: automatic (the option is unselected) or manual.
- System view – displays the system view configuration, instance or cluster.
Roles – only the system-created logical cluster has the system role. By default, the open role is assigned to the system logical cluster. When the open role is assigned to a new logical cluster, the open role is removed from the logical cluster that previously owned that role.

• Load profile – displays the name of the load profile used for the cluster.

Adding a logical cluster

1. Right-click Add Logical Cluster.
2. Select Open.
3. Enter the cluster name and click Next.
4. Click Add to select the server instances you want to participate in the logical cluster. Click Next.
5. Add the failover server instances for the logical cluster. Click Next.
6. Enter the routed applications, logins, and aliases. You can also drop a route by first selecting the route.
7. To select a load profile other than the default, click Change, then click Next.
8. Set options for new logical cluster. Click Next.
9. Adaptive Server plug-in displays the summary. To make changes, use the Back button. When you are done click Finish.

Dropping a logical cluster

To drop a logical cluster, it must be offline.

1. Right-click the logical cluster and select Delete.
2. Click Yes.

Logical cluster properties

Right-click the logical cluster name and select Properties to view the logical cluster’s configuration.

See “Load profiles” on page 249.
General tab

These options appear in the General tab:

- System view – determines how the logical cluster users view Cluster Edition, whether as an entire cluster, or as individual instances. This affects some queries and stored procedures. Select Instance or Cluster.

- Automatically starts logical cluster – select this option if you want this logical cluster to start when the cluster starts.

- Failover mode – determines whether the logical cluster fails over to another instance or a group:
 - Instance – the logical cluster to fail over one instance at a time.
 - Group – specifies that base instances are replaced only when all base instances fail, and that all failover instances then come online. For example, the failover mode for SalesLC is “group.” If base instance “ase1” fails, the cluster continues to run on base instance “ase2”. No failover instances are brought online. However, if both “ase1” and “ase2” fail, then the cluster runs on failover instances “ase3” and “ase4”.
 - Fail-to-any – permits the logical cluster to fail over even though no failover instances are available. The logical cluster fails over to any available physical instances in the cluster, based on load.

Fail-to-any configures the logical cluster to fail over to any available instance, even if it is not defined as a failover instance within that logical cluster.

- Down routing mode – displays the down-routing configuration. One of:
 - system – sends unroutable connections to the system logical cluster. system ensures the highest availability as the system logical cluster is always online for every instance. This is the default setting.
 - open – sends unroutable connections to the open logical cluster. If the connection cannot be sent to the open logical cluster, or the connection does not support redirection, the instance applies the down-routing mode of the open logical cluster.
 - disconnect – disconnects unroutable connections. This setting can enforce resource reservation by disconnecting clients that cannot be served by instances in the target logical cluster.

- Logical cluster roles – the system role is automatically set to the “system logical cluster.” You cannot change this setting.
By default, the open role is assigned to the system logical cluster. You cannot grant the open role, and it is removed only if another logical cluster assumes that role.

Base Instances tab

The Base Instances tab lists the currently configured logical cluster instances.

- Select Add to add instances to the logical cluster.
- To remove an instance from the logical cluster:
 a. Highlight the instance to remove. This instance must be offline before you can select it.
 b. Select Remove.
 c. Select Yes to confirm the deletion.
- Select Offline to bring an instance offline. You can specify whether to bring the instance offline immediately, or to bring it offline gradually, but to remind you after the specified period of time.
- Select Online to bring an offline instance online.
- Select Failover to fail over from this instance to another.

Adding an instance to a logical cluster

To add an instance to the logical cluster:

1. Click Add.
2. Highlight the instance you want to add.
3. Click OK. These changes do not take effect until you click Apply or OK.

Failover Instances tab

Lists information about the currently configured failover instances, including:

- Name
- ID
- State
- Failover Group
Adding a failover instance

To add a failover instance:

1. Click Add.
2. Select the failover group you want to configure from the Add Failover Instance to Logical Cluster window.

Failover groups allow you to specify the order in which failover instances become active in the event of a failover. A group can have one or more instances.
3. Highlight the instance you want to configure as a failover instance from this list and click OK.

Load Profile tab

Lists information about the load profiles associated with the logical cluster:

- Name – name of the load profile associated with this logical cluster. Click Change to associate another load profile with this logical cluster.
- Type – displays the load profile type: system or user.
- Minimum Load Score – the minimum load score that activates a login redirection or migration.
- Metrics – includes a variety of statistics about the load profile, including
 - User connections – the capacity of an instance to accept a new connection, based on resource availability.
 - CPU utilization – the capacity of an instance to accept additional work.
 - Run-queue length – the number of runnable tasks on a system. Run-queue length measures the processing backlog, and is a good indicator of relative response time.
 - I/O load – outstanding asynchronous I/Os.
 - Engine deficit – the difference in the number of online engines among instances in the cluster.
 - User metric – an optional customer-supplied metric specific to the user’s environment.
• Weight – indicates how important a metric is to the load score. This is a relative measurement, and is based on a upper limit of 100. A metric with a weight of 0 has no value and is not used in calculating the load score, and a metric with a weight of 50 has one half the influence on the load score. If 5 metrics all have a weight of 20, each metric is equally important when calculating the load score.

• Thresholds – currently configured thresholds associated with this load profile.

Routes tab

This tab describes the routes for applications, logins, and aliases that are assigned to this logical cluster.

Adding an application route
1. Click Add Application Route.
2. Enter the application name and click OK.

Adding a login route
1. Click Add Login Route.
2. Select the login (or logins) for the route and click OK.

Adding an Alias route
1. Click Add Alias Route.
2. Enter the alias name.
3. Click OK.

Dropping routes
1. Select the route.
2. Click Drop Route.
3. Select Yes to confirm the deletion.
Managing the workload

Viewing workload status

The Workloads folder displays a cluster-wide view of workload metrics on two tabs: Weighted Scores and Base Metric Values.

Select Workloads from the Workload Management folder in the tree view. The workload scores report the weighted and base scores.

Weighted Scores tab

Each instance tracks a set of load metrics. Load scores and metrics are computed for each combination of instance and logical cluster, and are determined by applying the logical cluster’s load profile to an instance’s workload statistics. The result is an overall load score and a set of weighted scores that represent the relative impact of specific instance attributes.

The Weighted Score tab displays the load score and weighted metric values for each instance and logical cluster combination. If an instance is associated with two logical clusters, there are two entries for that instance in the details tab.

The Weighted scores tab includes:

- Instance – name of the instance whose workload is represented.
- Logical Cluster – name of the logical cluster associated with the instance.
- Load Profile – the load profile assigned to the logical cluster.
- Load score – a computed value representing the overall load on the instance. Compare this unitless number across instances as a means of comparing workloads.
- User connections – the capacity of an instance to accept a new connection, based on resource availability.
- CPU Busy – a measurement of how busy the engines are, and provides the same information as sp_sysmon. Determines an instance’s capacity to accept additional work.
- Run-queue length – the number of runnable tasks on a system. Run-queue length measures the processing backlog, and is a good indicator of relative response time.
- IO load – measures outstanding asynchronous IOs, which indicates the relative IO saturation between instances.
CHAPTER 13 Administering Clusters with the Adaptive Server Plug-in

- Engine Deficit – measures the difference in online engines between instances. In a cluster where all the instances have the same number of engines there is no engine deficit. However, in a two-instance cluster where, for example, “instance1” has four engines and “instance2” has two engines, “instance1” has no engine deficit but “instance2” has a 50% deficit because it has half as many engines as “instance1.”

- User – the weighted value of a metric you specified in the load profile.

Note Because each instance can be included in multiple logical clusters, each instance has one set of metric values for each logical cluster it belongs to.

The Base Metric Values tab displays all workload values for each instance in the cluster. Since each instance has only one set of values, regardless of how many logical clusters it participates in, one set of values is displayed for each instance.

- Instance – name of the instance.
- % User Connections – percentage of configured user connections in use.
- % CPU busy – percentage of time the instance was busy performing work. This is a one minute, moving average taken from all engines on the system.
- % Run queue length – base percentage of runnable tasks on a system. Runqueue length measures the processing backlog, and is a good indicator of relative response time.
- % IO load – base percentage of outstanding asynchronous IOs.
- % Engine deficit – the base percent difference in the number of online engines among instances in the cluster.
- % User – percentage value you provide for the user metric specified in the load profile.

Viewing workload status of an instance

The workload status is based on the load profile associated with the instance. The status displays raw values that indicate how taxed an instance is with regard to each metric area.

To view the workload status:
Managing routes

1. Click the Server Instances folder to display a list of instances in the right pane.
2. Right-click an instance name and select Workload Status. The workload status displays raw values indicating the amount of work each instance is performing for each metric area.
 - User connections – the capacity of an instance to accept a new connection, based on resource availability.
 - CPU busy - a measurement of how busy the engines are, and provides the same information as sp_sysmon. Determines an instance’s capacity to accept additional work. This is measured as a one-minute moving average.
 - Run-queue length – the number of runnable tasks on a system. Run-queue length measures the processing backlog, and is a good indicator of relative response time. This is measured as a one-minute moving average.
 - IO load – measures outstanding asynchronous I/Os, which indicates the relative IO saturation between instances. This is measured as a one-minute moving average.
 - Engine Deficit – measures the difference in online engines between instances. In a cluster where all the instances have the same number of engines, there is no engine deficit. However, in a two-instance cluster where, for example, “instance1” has four engines and “instance2” has two engines, “instance1” has no engine deficit but “instance2” has a 50% deficit because it has half as many engines as “instance1.”
 - User – the weighted value of a metric you specified with the workload_metric function.

Note Because each instance can be included in multiple logical clusters, each instance will have one set of metric values for each logical cluster it is member to.

Managing routes

Routes allow you to direct client connections to specific logical clusters.
Route properties

To view the current routes:

1. From the Workload Management | Logical Clusters folder, right-click the logical cluster name.
2. Select Properties.
3. Select the Routes tab.

The Routes General tab reports the:

- Name of the route.
- Route Type – displays the type of route: application, login, or alias.
- Logical Cluster – name of the logical cluster to which this route is associated.

To associate this route with another logical cluster, select another logical cluster name and click OK.

Creating a route

Use the Add Route wizard to create a route.

To start the wizard:

- Select Routes from the Workload Management folder.
- Double click on Add Route.
- Follow the instructions on the wizard to add a route.
sybcluster is an interactive utility that allows you to perform administrative tasks for the cluster from the command line.

You can use sybcluster to create a cluster, add an instance, start and stop a cluster or instance, display status information, and so on. Alternatively, you can perform these tasks using the Adaptive Server plug-in for Sybase Central as described in Chapter 13, “Administering Clusters with the Adaptive Server Plug-in.”

You cannot manage temporary databases or logical clusters using sybcluster.

- To manage temporary databases, use the Adaptive Server plug-in or follow instructions in Chapter 8, “Using Temporary Databases.”
- To manage logical clusters, use the Adaptive Server plug-in or the sp_cluster logical and sp_cluster profile stored procedures described in Chapter 6, “Managing the Workload.”

For complete syntax and usage information for the sybcluster commands, see Chapter 16, “The sybcluster Utility.”
Using sybcluster

Some sybcluster commands are available before you connect to a cluster; others are available only after you connect to a cluster, see Table 14-1.

The sybcluster prompt lets you know whether or not sybcluster is connected to a cluster, and the default cluster and instance if either or both of these have been set.

- When sybcluster is not connected to a cluster, the prompt is:

 >

- After you have connected to a cluster, the prompt becomes:

 cluster_name>

 For example:

 mycluster>

- If you declare a default instance, the prompt is:

 cluster_name instance_name>

 For example:

 mycluster ase1>

<table>
<thead>
<tr>
<th>Command name</th>
<th>Description</th>
<th>Active before or after connecting to a cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>add backupserver</td>
<td>Configures one or more new Backup Servers on nodes in the cluster not currently configured for Backup Server.</td>
<td>After</td>
</tr>
<tr>
<td>add instance</td>
<td>Adds one new instance to the cluster.</td>
<td>After</td>
</tr>
<tr>
<td>connect</td>
<td>Connects to an existing cluster.</td>
<td>Before</td>
</tr>
<tr>
<td>create backupserver</td>
<td>Create Backup Server.</td>
<td>After</td>
</tr>
<tr>
<td>create cluster</td>
<td>Creates a new cluster.</td>
<td>Before</td>
</tr>
<tr>
<td>create monitorserver</td>
<td>Creates a Monitor Server.</td>
<td>After</td>
</tr>
<tr>
<td>create xserver</td>
<td>Creates an XP Server.</td>
<td>After</td>
</tr>
<tr>
<td>deploy plugin</td>
<td>Deploys the configuration information for a single instance of the cluster to the Unified Agent.</td>
<td>Before</td>
</tr>
<tr>
<td>diagnose [cluster [instance]]</td>
<td>Performs a set of checks to ensure the cluster or instance is working properly.</td>
<td>After</td>
</tr>
<tr>
<td>disconnect</td>
<td>Closes all connections to the current cluster and returns the cluster to the unconnected state.</td>
<td>After</td>
</tr>
<tr>
<td>drop backupserver</td>
<td>Drops the Backup Server.</td>
<td>After</td>
</tr>
<tr>
<td>Command name</td>
<td>Description</td>
<td>Active before or after connecting to a cluster</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>drop cluster</td>
<td>Removes each instance from the cluster and deletes the cluster definition from the cluster configuration file.</td>
<td>After</td>
</tr>
<tr>
<td>drop monitorserver</td>
<td>Drops Monitor Server.</td>
<td>After</td>
</tr>
<tr>
<td>drop xpserver</td>
<td>Drops the XP Server.</td>
<td>After</td>
</tr>
<tr>
<td>drop instance</td>
<td>Removes an instance from the cluster.</td>
<td>After</td>
</tr>
<tr>
<td>exit</td>
<td>Exits sybcluster.</td>
<td>Before or after</td>
</tr>
<tr>
<td>help</td>
<td>Lists the currently available sybcluster interactive commands.</td>
<td>Before or after</td>
</tr>
<tr>
<td>localize</td>
<td>Displays current values for default language, charset, and sort order. Allows you to change the default values and add or remove languages.</td>
<td>After</td>
</tr>
<tr>
<td>quit</td>
<td>Exits sybcluster.</td>
<td>Before or after</td>
</tr>
<tr>
<td>set backupserver</td>
<td>Changes the listening port number for Backup Server on one or more nodes.</td>
<td>After</td>
</tr>
<tr>
<td>set cluster</td>
<td>Sets properties for the cluster.</td>
<td>After</td>
</tr>
<tr>
<td>set instance</td>
<td>Sets properties for the instance.</td>
<td>After</td>
</tr>
<tr>
<td>set monitorserver</td>
<td>Changes the listening port number for Monitor Server on one or more nodes.</td>
<td>After</td>
</tr>
<tr>
<td>set xpserver</td>
<td>Changes the listening port number for XP Server on one or more nodes.</td>
<td>After</td>
</tr>
<tr>
<td>show agents</td>
<td>Displays information about available UAF agents.</td>
<td>Before</td>
</tr>
<tr>
<td>show backupserver config</td>
<td>Displays the names of the nodes on which Backup Server is configured and the associated listening port number.</td>
<td>After</td>
</tr>
<tr>
<td>show cluster</td>
<td>Displays configuration, log, and status values for the cluster.</td>
<td>After</td>
</tr>
<tr>
<td>show instance</td>
<td>Displays information about an instance.</td>
<td>After</td>
</tr>
<tr>
<td>show membership mode</td>
<td>Displays the cluster's current membership mode, which specifies whether or not the cluster supports Veritas Cluster Server integration.</td>
<td>After</td>
</tr>
<tr>
<td>show monitorserver config</td>
<td>Displays the names of the instances and nodes on which Monitor Server is configured and the associated listening port number.</td>
<td>After</td>
</tr>
<tr>
<td>show session</td>
<td>Displays current agent and discovery information.</td>
<td>After</td>
</tr>
<tr>
<td>show xpserver config</td>
<td>Displays the names of the instances and nodes on which XP Server is configured and the associated listening port number.</td>
<td>After</td>
</tr>
<tr>
<td>shutdown cluster</td>
<td>Shuts down the cluster by executing a Transact-SQL shutdown command for each instance in the cluster.</td>
<td>After</td>
</tr>
<tr>
<td>shutdown instance</td>
<td>Shuts down the instance by executing a Transact-SQL shutdown command.</td>
<td>After</td>
</tr>
</tbody>
</table>
sybcluster and the Unified Agent Framework

sybcluster uses the Unified Agent Framework (UAF) to provide remote management capabilities, in the form of runtime services for managing distributed Sybase resources. It offers a set of common services and enables Sybase processes, such as sybcluster and the Adaptive Server plug-in, to plug in to an agent to manage server resources and perform various operations.

Unified Agent servers can broadcast themselves on a subnet using UDP, or register themselves with a lookup server such as Jini or LDAP.

See the Users Guide to the Unified Agent and Management Console for detailed information about UAF.

Starting sybcluster

Start sybcluster from the command line. The simplest way is to enter:

```
sybcluster -U uafadmin -P
```

“uafadmin” is the default user name, and the default password is null or blank.

You can also use authenticated Adaptive Server database user names and operating system user names. See “Authenticating the user” on page 269.

You can also start sybcluster and, at the same time, specify a cluster, identify a default instance, and connect to the Unified Agents on one or more nodes in the cluster. For example:

<table>
<thead>
<tr>
<th>Command name</th>
<th>Description</th>
<th>Active before or after connecting to a cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>start cluster</td>
<td>Starts all instances in the cluster.</td>
<td>After</td>
</tr>
<tr>
<td>start instance</td>
<td>Starts an instance in the cluster.</td>
<td>After</td>
</tr>
<tr>
<td>use</td>
<td>Sets the default instance.</td>
<td>After</td>
</tr>
</tbody>
</table>
Creating a cluster

For instructions for creating a cluster using sybcluster, see the installation guide for your platform.

Connecting to the cluster

You can connect to a cluster by specifying the required information when you start sybcluster; you can also start sybcluster and connect to the cluster at a later time using the connect command. You must connect to a cluster before starting it.

When you install and configure the cluster, you also install and configure a Unified Agent on each node in the cluster. When you start sybcluster, you must provide an authenticated user name and password, and identify the Unified Agents on one or more of the cluster’s nodes using a direct connect, or discovery method. sybcluster can then plug in to the Unified Agents and perform command, control, and discovery operations.

Authenticating the user

You can connect to the cluster using any UAF authenticated user name and password. By default, the user name is “uafadmin”, and the default password is a null or blank string. For example:

```
sybcluster -U uafadmin -P -C mycluster -I asel -F "blade1:9999,blade2:9999,blade3:9999"
```

In this example, the -F option identifies the node and listening port for each Unified Agent in the cluster. If you use this command often, you can create a simple alias for it. For example:

```
sybcluster_mycluster
```
Connecting to the cluster

Setting the user name and password

Sybase recommends that you change the default user name and change and then encrypt a new password. User name and password information for the UAF is stored in the csi.properties files located on each node in the cluster.

❖ Setting the user name

• Enter the new user name in the “username” property in the Simple Log Module section of each $SYBASE/UAF-2_5/nodes/<node_name>/conf/csi.properties file. For example:

 # Simple Login Module
 ...
 CSI.loginModule.2.options.username=newusername
 CSI.loginModule.2.options.password=
 CSI.loginModule.2.options.encrypted=false
 CSI.loginModule.2.options.roles=uaAgentAdmin,uaPluginAdmin

Note Make sure you edit the csi.properties file in each node in the cluster.

❖ Encrypting and setting the password

1 Run passencrypt, located in $SYBASE/UAF-2_5UAF-2_5/bin, to generate the encrypted password.

2 In the Simple Log Module section of each $SYBASE/UAF-2_5/nodes/<node_name>/conf/csi.properties file:

 1 Paste the encrypted value into the password property.
 2 Set the encrypted property to “true”. For example:

 # Simple Login Module
 ...
 CSI.loginModule.2.options.username=newusername
 CSI.loginModule.2.options.password=REVTe1NZVUFgfWNvbS5zdW4uY3J5cHRvLnByb3ZpZGVyL1N1bkpDRXtTWVVBRn1nTUJacVh5R3pnN09RSDJDN1FPUXhBPT0=
 CSI.loginModule.2.options.encrypted=true
 CSI.loginModule.2.options.roles=uaAgentAdmin,uaPluginAdmin

Note Make sure you edit the csi.properties file in each node in the cluster.
Activating the new user name and password

- For the new user name and password to take effect, shut down and restart the Unified Agent on each node in the cluster.

Identifying the Unified Agents

You can identify the Unified Agents using a direct connect or discovery method either when you start `sybcluster` or later using the `connect` to interactive command.

Note If the cluster is running when you connect to it, you normally need to identify only one Unified Agent on one node in the cluster. To start the cluster or to create Monitor Server or XP Server, however, you must identify the agent on each node in the cluster.

`sybcluster` always prompts you when additional information is required.

If you do not know the Unified Agent specifications for a cluster, use the `sybcluster show agents` command to discover available Unified Agents and clusters on your subnet.

You can connect directly to one or more agents by specifying the cluster node and port numbers for the Unified Agents responsible for managing the cluster. Some possible agent specifications are:

- Node name or names of the cluster and optional port numbers – allows you to specify an exact address. If you do not include a port number, `sybcluster` assumes a default value of 9999. For example, to specify agents on “blade1”, “blade2”, and “blade3” of “mycluster,” enter:

  ```
sybcluster -U uafadmin -P -C mycluster -F "blade1:1234,blade2:2345,blade3:3456"
  ```

 To specify node and port numbers using `connect` after you have started `sybcluster`, enter:

  ```
  connect to mycluster -U uafadmin -P
  -F "blade1:1234,blade2:2345,blade3:3456"
  ```

- The domain of the node – lets you specify the exact address through the domain name. For example:

  ```
sybcluster -U uafadmin -P -C mycluster
  -F "blade1.mydomain.com"
  ```
Connecting to the cluster

Sybcluster supports these three discovery methods that locate the agents and the discovery order:

- **User Datagram Protocol (UDP)** – is a broadcast discovery method in which sybcluster broadcasts a request and agents located on the same subnet respond. For example, to use UDP to look up the location of a node in “mycluster”, enter:

  ```
  sybcluster -U uafadmin -P -C mycluster -d "udp()"
  ```

 To perform discovery using connect after starting sybcluster, enter:

  ```
  connect to mycluster login uafadmin password "" discovery "udp()
  jini(myjiniserver1:5678;myjiniserver2:1234)"
  ```

- **Jini server technology** – provides lookup capabilities. Each agent registers with the Jini server, which stores the location of each node and status information. To look up the location of an agent in “mycluster”, enter:

  ```
  sybcluster -U uafadmin -P -C mycluster -d "jini(myjiniserver:4564)"
  ```

 To perform discovery using connect after starting sybcluster, enter:

  ```
  connect to mycluster discovery "jini(myjiniserver:4564)"
  ```

- **LDAP technology** – provides lookup capabilities. Each agent registers with the LDAP server, which stores the location of each node and status information.

 To look up the location of Unified Agents for “mycluster” using all three discovery methods, enter:

  ```
  sybcluster -U uafadmin -P -C mycluster
  -d "udp(),jini(myjiniserver:4123),
  ldap(myyladpserver:6123)"
  ```
Starting the cluster

You must connect to the Unified Agent on each node in the target cluster before you can start the cluster. See “Connecting to the cluster” on page 269. Then, to start the cluster, enter:

```
start cluster
```

`sybcluster` prints a cluster description as it starts all instances in the cluster.

Managing the cluster

This section describes how to perform tasks that help you to manage the cluster and its environment.

Creating a cluster

Create a cluster using either `sybcluster` or the Adaptive Server plug-in. Either method prompts you for required information and creates the cluster for you. You can also create a cluster manually, performing all the tasks yourself.

See the Installation Guide for step-by-step instructions for creating a cluster using each of these methods.

Verifying the cluster

diagnose cluster performs a set of checks that ensures that the cluster is working properly. Enter:

```
diagnose cluster
```

diagnose cluster displays cluster information and checks to see if:

- A Unified Agent is running on all nodes in the cluster.
- The number of nodes in the cluster does not exceed the maximum instances in the cluster.
- The quorum device exists, and if not, checks to see if the directory has write permission.
Managing the cluster

- The interfaces file exists for all nodes, and that node names and port numbers do not conflict.
- The primary and secondary protocol specifications do not overlap.
- The Sybase home directories on each node are shared.

Displaying information about available Unified Agents

Use `show agents` to identify all the configured Unified Agents on your subnet, or narrow the search to show information about specific Unified Agents.

For example, to identify all Unified Agents, enter:

```
show agents
```

`sybcluster` displays the direct connect address for each Unified Agent, its node and cluster name, and other relevant information.

You can display information about specific Unified Agents by restricting discovery or identifying the desired agents. For example, to view information about Unified Agents on “blade2” of “mycluster,” enter:

```
show agents agent "blade2:9999"
```

Displaying cluster information

This section describes how to use `sybcluster` to display information about the cluster, instances in the cluster, and the cluster environment. For complete syntax and usage information, see Chapter 16, “The sybcluster Utility.”

You can perform the same tasks using the Adaptive Server plug-in. See Chapter 13, “Administering Clusters with the Adaptive Server Plug-in.”

- To show configuration information, primary and secondary protocol values, trace flags used, and the addresses for the quorum device and the master device, enter:

  ```
  show cluster config
  ```

To view formatted configuration information for the cluster, enter:

```
show cluster config template
```

- To show status and heartbeat information for each instance in the cluster, enter:
show cluster status

Status values are:

- Up
- Down
- Undefined
- Invalid
- Start
- Init
- Quiesce

- To show all log information, enter:

 show cluster log

You can limit the output by specifying:

- The error severity level, for example:

 show cluster log minseverity 5

- A date range for log entries:

 show cluster log startdate 03:31:08
 enddate 04:30:08

- A number of lines to display from the error log, working backwards from the most recent:

 show cluster log last 25

- To display all UAF and JDBC connections to the cluster, enter:

 show cluster connection

- To display general information about the cluster and detailed information about agent connections, enter:

 show session

- The Symantec Veritas Cluster Server (VCS) manages application services in a cluster environment. If VCS is supported at your site, you can enable VCS on your cluster. See your Veritas documentation. To find out whether VCS is enabled on your cluster, display the membership mode. Enter:

 show membership mode

Membership mode values are:
Managing the cluster

- **vcs** – the cluster supports VCS integration.
- **native** – the cluster does not support VCS.

See “Changing the membership mode” on page 278.

Changing cluster configuration values

You can change certain configuration values for the cluster using `set cluster` and other commands. Verify the cluster status by issuing `show cluster status`.

When the cluster is down, you can change:
- The maximum number of instances
- The active trace flags
- The primary or secondary protocol
- The membership mode

When the cluster is running, you can change:
- The login name or password the Unified Agent uses to log in to the cluster
- The default language, character set, and sort order for the cluster

For example, to change the maximum number of instances to 4 for “mycluster”, enter:

```bash
set cluster maxinst 4
```

To reset the primary protocol for the cluster to “udp”, enter:

```bash
set cluster primary protocol udp
```

Changing user names or passwords

`sybcluster` is a client program that connects to a Unified Agent that is configured to run the cluster. When you start `sybcluster`, you provide a login and password that enables `sybcluster` to log in to the Unified Agent. To change the value of the Unified Agent login or password, use the Agent Management Console Sybase Central plug-in. To encrypt the password, see “Setting the user name and password” on page 270.
For some operations, the Unified Agent must log in to the cluster. This occurs when sybcluster or Sybase Central issues a shutdown command or when the Unified Agent performs cluster heartbeat tasks to determine cluster status. For these tasks, the Unified Agent must use a login with sa_role. By default, the Unified Agent uses the “sa” login with no password. To change this password, use the sybcluster set cluster login command.

For example, to change the password for the “sa” login to “newpassword”, enter:

```
set cluster login sa password newpassword
```

The cluster must be running to perform this command.

Changing localization values

Use the sybcluster localize command to view the current values for language, character set, and sort order. After displaying the current default values, sybcluster localize prompts you to accept each of these values or change them. For example, to view current values without changing them, enter:

```
localize
```

```
Current default locale properties are:
Default Language - portuguese
Default Charset - mac
Default SortOrder - Binary ordering, for use with the Macintosh character set (mac).
```

```
Options for default Language are:
1. spanish
2. portuguese
3. german
4. us_english
5. thai
6. french
7. japanese
8. chinese
9. korean
10. polish
Enter the number representing the language to be set as defaults: [2]
```

```
Options for default charsets are:
```
Managing the cluster

1. gb18030
2. eucgb
3. utf8
Enter the number representing the charset to be set as default: [1]

Options for sort orders are:
1. Binary ordering, for the EUC GB2312-80 character set (eucgb).
Enter the number representing the sort order to be set as default [1]

Do you want to install any language? [Y] n
Do you want to remove any language? [N]
The cluster mycluster was successfully localized with default language portuguese, charset gb18030, sortorder bin_eucgb.

To ensure consistency throughout the cluster, shut down and restart the cluster after changing any of the localization values.

Changing the membership mode

If VCS is supported at your site, you can enable VCS when you create the cluster. Use qrmutil or the Veritas utilities to change the membership mode. See “qrmutil” on page 342 and your Veritas documentation.

Disconnecting from the cluster

To close all connections to the current cluster, enter:

disconnect

Shutting the cluster down

You can shut the cluster down gracefully, which allows transactions to complete before Adaptive Server shuts down each instance in the order specified in the cluster configuration file.

shutdown cluster
To shut down the cluster immediately, without waiting for transactions to complete, enter:

```
shutdown cluster nowait
```

Note If the cluster is running in Veritas Cluster Server (VCS) mode, make sure you shut down or start up servers and the cluster using VCS shutdown and start-up mechanisms. Do not use the `sybcluster shutdown` commands.

Dropping a cluster

Before you can drop a cluster, make sure that the cluster is in the Down state and the Unified Agents are running. Then, enter:

```
drop cluster
```

Adaptive Server removes cluster and instance entries from the interfaces file, deletes the cluster configuration file, marks the quorum disk as unused, deletes the log file, and shuts down and removes the cluster’s Unified Agent plug-ins. You must confirm each deletion.

Managing an instance

This section describes how to perform tasks that help you manage instances in the cluster.

Displaying information about the instance

Similarly to `show cluster`, `show instance` displays configuration, status, and log information about an instance.

- To show configuration information, including the name of the host node, primary and secondary network information, and the path to the log file, enter:

  ```
  show instance instance_name config
  ```

- To display status information, enter:
Managing an instance

show instance instance_name status

This command displays status information for the named instance:

- Up
- Down
- Undefined
- Invalid
- Start
- Init
- Quiesce

- To show all log information, enter:

 show instance instance_name log

You can limit the output by specifying:

- The error severity level, for example:

 show instance instance_name log minseverity 5

- A date range for log entries:

 show instance instance_name log startdate
 03:31:08 enddate 04:30:08

- A number of lines to display from the error log, working backwards from the most recent:

 show instance instance_name log last 25

Adding an instance

You can add an instance to the cluster either interactively, with sybcluster prompting you for required values, or by using an input file.

Note add instance creates a local system temporary database for the new instance. Make sure that there is sufficient space on the device.

If you add the instance interactively, Adaptive Server prompts for:

- The instance name, if one was not specified in the command statement
• The name of the node hosting the instance
• The port number of the Unified Agent on the node
• The query port number
• The primary and secondary address of the node
• The primary and secondary port specifications

If you add the instance using an input file, make sure the file mirrors the format of the cluster input file (see the installation guide for your platform), although you need to include definitions only for the new instance. If auxiliary servers are defined, include port and other information required for configuring the auxiliary servers for the new instance.

For example, to add an instance using an input file, enter:

```
add instance new_instance file /$SYBASE/myfile
```

To add an instance interactively, enter:

```
add instance new_instance
```

Verifying the instance

diagnose instance performs a set of checks to insure that the instance is configured properly. For example, to verify the configuration for “asel”, enter:

```
diagnose instance asel
```

diagnose instance displays configuration information for the instance and verifies:

• The query port
• That a JDBC connection is available
• That the instance is available on the public network
• The minimum and maximum port numbers
• The primary and secondary protocol port ranges
Managing an instance

Changing the default instance

Use the `use` command to set or change the default instance specified in the `sybcluster` command line. After the default instance has been set, you do not need to specify one in the command line for any interactive command. For example, enter:

`use ase1`

You can override the default instance by including an instance name in an interactive command. However, doing so does not change the default designation.

To remove the default designation, omit the instance name. Enter:

`use`

Changing instance properties

You can use `set instance` to change certain properties for the instance. The instance must be in the Down state to use `set instance`. Verify status by issuing `show cluster status`.

Instance properties you can change are:

- The log path
- Arguments used for starting the instance
- The primary or secondary address of the instance
- The primary or secondary port range used by the instance

For example, to reset the primary port range from 6123 to 6126, enter:

`set instance primary port 6123 6126`

Shutting an instance down

You can shut an instance down gracefully, which allows transactions to complete. For example, to shut down “ase1”, enter:

`shutdown instance ase1`

To shut down the instance immediately, without waiting for transactions to complete, enter:

`shutdown instance ase1 nowait`
If you shut down the last instance in a cluster, the cluster status changes to down. If you shut down the instance on the node hosting the cluster coordinator, another node hosts the coordinator.

Dropping an instance

Before you can drop an instance, make sure the instance is in the down state and the cluster is in the up state. Then, enter:

```
drop instance instance_name
```

Adaptive Server deletes entries for the instance from the interfaces file and the quorum device, and notifies the cluster of the topology change. Confirm each deletion.

Note You cannot use `drop instance` to drop the last instance in a cluster. Rather, use `drop cluster`.

Enabling sybcluster after manually creating the cluster

Typically, a cluster is created using `sybcluster` or the Adaptive Server plug-in. In these cases, Adaptive Server automatically adds configuration information that allows `sybcluster` or the Adaptive Server plug-in to connect to the Unified Agent on each node. If you configure the cluster manually (as described in the *Installation Guide*), you must add that configuration information to the Unified Agents before you can use `sybcluster` or the Adaptive Server plug-in to manage the cluster.

You must first deploy the plug-in configuration information.

1. If you have not already done so, start the Unified Agents on the cluster. See Chapter 3, “Installing the Server and Starting the Cluster,” in the installation guide for your platform.

2. Deploy the plug-in. For example, to deploy the cluster agent plug-in information on the default cluster “mycluster”, enter:

```
deploy plugin agent "blade1,blade2,blade3"
```
You can specify the Unified Agents using any of the direct connect or discovery methods described in “Identifying the Unified Agents” on page 271.

After the agents are specified, Adaptive Server prompts you for the paths to:

• The quorum device
• The environment shell script
• The ASE home directory

Note You can use `sybcluster` or Adaptive Server plug-in to manage the cluster after deploying the plug-in to a single node in the cluster. However, to start the cluster, you must deploy the plug-in to all nodes in the cluster.

You can also use `deploy plugin` to update the values for an existing plug-in.

Creating and managing auxiliary servers

Use `sybcluster` to create, drop, configure port numbers, and display current port numbers for these auxiliary servers:

• Backup Server
• Monitor Server
• XP Server

Creating auxiliary servers

See the *Installation Guide* for instructions for creating Backup Server, Monitor Server, and XP Server using `sybcluster`. You can also use the Adaptive Server plug-in to create auxiliary servers.

If you create multiple Backup Servers, all instances in the cluster must have a Backup Server. You can create a single Backup Server for one or more nodes.
If you create Monitor Servers or XP Servers, you must create them for all instances in the cluster.

Dropping auxiliary servers

Use the `drop backupserver`, `drop monitorserver`, or `drop xpserver` to remove an auxiliary server from the cluster. The Cluster Edition prompts for confirmation before dropping a server.

If you have configured multiple Backup Servers for the cluster, you must drop all Backup Servers. If you have configured single Backup Servers, you can drop one or all of them. However, when you use `drop monitorserver` or `drop xpserver`, you drop all Monitor Servers or all XP Servers from the cluster.

To drop all XP Servers from “mycluster”, enter:

```
drop xpserver
```

Are you sure you want to drop the XP Servers from cluster "mycluster"? (Y or N): [N] y
The XP Servers have been dropped for all instances.

To drop the Backup Server from “blade2” of “mycluster” enter:

```
drop backupserver
```

Do you want to drop the Backup Server from:
1. Selected nodes
2. Cluster
Enter choice: 1
Do you want to drop Backup Server from node "blade1"? [N] n
Do you want to drop Backup Server from node "blade2"? [N] y
Do you want to drop Backup Server from node "blade3"? [N] n
The Backup Server has been dropped.

Displaying listening port information

To display current listing port numbers for Backup Server, Monitor Server, or XP Server, use:

- `show backupserver config`
- `show monitorserver config`
- `show xpserver config`
For example, to display Backup Server listening port information for “mycluster”, enter:

 show backupserver config

Backup Server is configured on the following nodes:
 1. blade1: 5001
 3. blade3: 5003

Changing listening port information

To change a listening port for an auxiliary server, use:

• set backupserver
• set monitorserver
• set xpsserver config

For example, to change the listening port number for Monitor Server for instance “ase3” on “blade3”, enter:

 set monitorserver

Enter the Monitor Server port number for instance "blade1": [6011] <CR>
Enter the Monitor Server port number for instance "blade2": [6012] <CR>
Enter the Monitor Server port number for instance "blade3": [6013] 6666

Upgrading the server

See the installation guide for your platform for instructions for upgrading Adaptive Server to the current version of the Cluster Edition.
System Changes

This chapter describes stored procedures, commands, configuration parameters, system tables, global variables, functions, and remote procedure calls that are specific to the Cluster Edition.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commands</td>
<td>287</td>
</tr>
<tr>
<td>Stored procedures</td>
<td>295</td>
</tr>
<tr>
<td>Configuration parameters</td>
<td>333</td>
</tr>
<tr>
<td>Utilities</td>
<td>341</td>
</tr>
<tr>
<td>System tables</td>
<td>352</td>
</tr>
<tr>
<td>Monitor tables</td>
<td>356</td>
</tr>
<tr>
<td>Global variables</td>
<td>357</td>
</tr>
<tr>
<td>Functions</td>
<td>358</td>
</tr>
</tbody>
</table>

Commands

This section describes changes to commands for the Cluster Edition.

alter table

- A referential integrity constraint cannot reference a column on a local temporary database except from a table on the same local temporary database. `alter table` fails when it attempts to create a reference to a column on a local temporary database from a table in another database.

- You cannot encrypt a column with an encryption key stored in a local temporary database unless the column’s table resides on the same local temporary database. `alter table` fails if it attempts to encrypt a column with an encryption key on the local temporary database and the table is in another database.
create database

Description

Creates a new database.

Note This reference page contains information specific to the Cluster Edition. See the Reference Manual for complete syntax and usage information for create database.

Syntax

```
create [ [global | system] temporary] database database_name
for instance instance_name
[on {default | database_device} [= size]
[, database_device [= size]]...]
[log on database_device [= size]
[, database_device [= size]]...]
[with {override | default_location = "pathname"}]
[for {load | proxy_update}]
```

Parameters

- **global temporary** – indicates that you are creating a global temporary database.
- **system temporary** – indicates that you are creating a local system temporary database.
- **temporary** – indicates that you are creating a temporary database.
- **database_name** – is the name of the new database. This name must conform to the rules for identifiers and cannot be a variable.
- **for instance instance_name** – specifies the instance that is to own the local system temporary database or local temporary database you are creating. This parameter is not used when creating global temporary databases.

Note You must create a local user temporary database from the instance that is to own it. You can create a local system temporary database from any instance.

Examples

Example 1 Creates a local user temporary database on “ase1.” Execute the following command from the owner instance (“ase1”).

```
create temporary database local_tempdb1 for instance asel
```

or,

```
create temporary database local_tempdb1
```

Example 2 Creates a local system temporary database on “ase1.” Execute this command from any instance in the cluster.
create system temporary database local_systempdb1 for instance ase1

Example 3 Creates a global temporary database.

create global temporary database global_tempdb1

create schema

You cannot include a referential integrity constraint that references a column on a local temporary database unless it is from a table on the same local temporary database. create schema fails when it attempts to create a reference to a column on a local temporary database from a table in another database.

create table

You cannot include a referential integrity constraint that references a column on a local temporary database unless it is from a table on the same local temporary database. create table fails if it attempts to create a reference to a column on a local temporary database from a table in another database.

You cannot encrypt a column with an encryption key stored in a local temporary database unless the column’s table is on the same local temporary database. create table fails when it attempts to encrypt with an encryption key located on the local temporary database and the table is on another database.

New and changed dbcc commands

This section describes new and changed dbcc commands.

New dbcc commands

dbcc nodetraceon and dbcc nodetraceoff

Description Enables or disables a trace flag on a local instance.

Syntax
dbcc nodetraceon(trace_flag_number)
dbcc nodetraceoff(trace_flag_number)

Parameters trace_flag_number – is the number of the trace flag you are enabling or disabling.
Commands

Examples

Enables trace flag 3604:

```sql
dbcc nodetraceoff(3604)
```

DBCC execution completed. If DBCC printed error messages, contact a user with System Administrator (SA) role.

Usage

dbcc traceon and dbcc traceoff apply trace flags for the entire cluster, while dbcc nodetraceoff and dbcc nodetraceon apply trace flags locally.

dbcc set_scope_in_cluster

Description
Sets the scope of the `dbcc` command to the cluster or instance and specifies what the scope is currently set to.

Syntax

```sql
dbcc set_scope_in_cluster("cluster"|"instance"|"scope")
```

Parameters

- cluster – sets the `dbcc` command scope to the cluster. Subsequent `dbcc` commands have a cluster-wide effect.
- instance – sets the `dbcc` command scope to the current instance. Subsequent `dbcc` commands affect only the local instance.
- scope – displays the current scope of the `dbcc` command, either cluster or instance.

Examples

Example 1
Sets the `dbcc` scope to the cluster:

```sql
dbcc set_scope_in_cluster('cluster')
```

Example 2
Sets the `dbcc` scope to the instance:

```sql
dbcc set_scope_in_cluster('instance')
```

Example 3
Displays the current scope for `dbcc` commands:

```sql
dbcc set_scope_in_cluster('scope')
```

dbcc quorum

Description
Displays the portion of the quorum device related to cluster membership, including the cluster view records that describe the state of the cluster.

Syntax

```sql
dbcc quorum
```

Examples

Displays the contents of the quorum disk for the server:

```sql
dbcc quorum
```

Usage

- Although you issue `dbcc quorum` from an instance, the output goes to the:
 - Terminal that started ASE by default
• Client session if trace flag 3604 is on
• Client session if trace flag 3605 is on.
• \texttt{dbcc quorum} accepts an integer parameter for the number of view records to print. For example this prints the 20 most recent view records:
 \begin{verbatim}
 dbcc quorum(20)
 \end{verbatim}
• If you do not include a parameter \texttt{dbcc quorum} prints the 10 most recent view records. Pass -1 to print all view records.
• Issue \texttt{dbcc quorum (-1)} to view all records.

\section*{Permissions}

You must have the \texttt{sa_role} to run \texttt{dbcc quorum}.

\section*{Changed \texttt{dbcc} command}

\subsection*{\texttt{dbcc checkstorage}}

\texttt{dbcc checkstorage} includes these restrictions for the Cluster Edition:

• You cannot include instance-only named caches with \texttt{dbcc checkstorage}. \texttt{dbcc checkstorage} issues this error message if you include an instance-only named cache:

 \begin{verbatim}
 The cache %1! cannot be used because it is an instance only cache
 \end{verbatim}

• To run \texttt{dbcc checkstorage} against a local temporary database, you must run the command from the same instance that owns the local temporary database.

• Compared to other releases, \texttt{dbcc checkstorage} for the Cluster Edition may report more soft faults when users in multiple instances update data. For performance reasons, \texttt{dbcc checkstorage} may not query the latest version of a page in the cluster, causing it to report more soft faults.

For well-partitioned applications where a single instance updates a database, \texttt{dbcc checkstorage} behaves the same as earlier Adaptive Server releases.

\subsection*{\texttt{disk init}}

The Cluster Edition includes the instance parameter for \texttt{disk init}:

\begin{verbatim}
 dbcc quorum(20)
\end{verbatim}
Commands

disk init

```plaintext
disk init
  name = "device_name"
  physname = "physical_name",
  [vdevno = virtual_device_number ,]
  size = number_of_blocks
    [, vstart = virtual_address
      , cntrtype = controller_number ]
  [, contiguous]
  [, dsync = {true | false}] 
  [, directio = [{true | false}]
  [, instance = "instance_name"]
```

The instance parameter marks the device as private and sets its owning instance to `instance_name`.

By default, the disk init . . . directio parameter is set to false for non-clustered versions of Adaptive Server.

For the Cluster Edition, the default behavior of the disk init . . . directio parameter is set to true.

The Cluster Edition provides a new option in the disk init command to create a private device:

```plaintext
[instance = "instance_name"]
```

For more information on disk init, see “Using Temporary Databases” on page 153.

Note The directio parameter is ignored if you use raw devices.

disk reinit

The Cluster Edition includes the instance parameter for disk reinit:

```plaintext
disk reinit
  name = "device_name"
  physname = "physical_name",
  [vdevno = virtual_device_number ,]
  size = number_of_blocks
    [, vstart = virtual_address
      , cntrtype = controller_number ]
  [, contiguous]
  [, dsync = {true | false}] 
  [, directio = [{true | false}]
  [, instance = "instance_name"]
```
By default, the `disk reinit ... directio` parameter is set to false for non-clustered versions of Adaptive Server.

For the Cluster Edition, the default behavior of the `disk reinit ... directio` parameter is set to true.

The Cluster Edition provides a new option in the `disk init` command to create a private device:

```
[instance = "instance_name"]
```

For more information on `disk init`, see “Using Temporary Databases” on page 153.

Note The `directio` parameter is ignored if you use raw devices.

grant

grant fails if you attempt to grant permissions to user-defined roles in a local temporary database.

quiesce database

The Cluster Edition supports the `quiesce database` command.

- If you issue `shutdown instance` or `shutdown cluster`, the cluster aborts all `quiescedb` commands.
- The cluster rejects all `quiescedb` commands issued by a user if `shutdown instance` or `shutdown cluster` commands are in progress.
- The cluster aborts all `quiescedb` commands if instance failover recovery is in progress.
- The cluster rejects all `quiescedb` commands issued by a user if instance failover recovery is in progress.
- You cannot add a new instance to the cluster while the master database is part of an ongoing `quiesce database` hold command.
 Commands

revoke
revoke fails if you attempt to revoke permissions from user-defined roles in a local temporary database.

set system_view
set system_view allows you to determine the system view for a session, and controls the materialization of fake tables, such as sysprocesses and syslocks, which impact the output of stored procedures such as sp_who. The syntax is:

 set system_view { instance | cluster | clear }

- instance – sets the system view for the current instance.
- cluster – sets the system view for the cluster.
- clear – clears any session level setting, reverting to the system_view setting for the logical cluster hosting that spid. For example, enter select @@system_view to check the current value.

shutdown
The Cluster Edition allows you to shut down the cluster or an individual instance with the shutdown command.

 shutdown {cluster | [instance_name]} [with {wait | nowait}]

Where

- cluster – is a keyword to shut down all instances in this cluster.
- instance_name – is the name of the instance you are shutting down.

For example, to shut down the cluster named “bigcluster”, enter:

 shutdown cluster

To shut down the instance “ase1” (but leave the cluster running):

 shutdown ase1

This form of shutdown are invalid in a clustered environment:

 shutdown
go
Stored procedures

This section describes new and changed stored procedures.

New stored procedures

sp_clusterlockusage

Description
Reports on the free, used, and retained locks in the cluster.

Syntax
sp_clusterlockusage

Parameters
None

Examples
This example reports the locks currently used in the cluster:

<table>
<thead>
<tr>
<th>Lock Usage</th>
<th>count</th>
<th>% of total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Locks</td>
<td>95039</td>
<td>n/a</td>
</tr>
<tr>
<td>Free Locks</td>
<td>85807</td>
<td>90.29 %</td>
</tr>
<tr>
<td>Used Locks</td>
<td>9232</td>
<td>9.71 %</td>
</tr>
<tr>
<td>Object Locks</td>
<td>4032</td>
<td>4.24 %</td>
</tr>
<tr>
<td>Physical Locks</td>
<td>233</td>
<td>0.25 %</td>
</tr>
<tr>
<td>Table Locks</td>
<td>0</td>
<td>0.00 %</td>
</tr>
<tr>
<td>Page Locks</td>
<td>0</td>
<td>0.00 %</td>
</tr>
<tr>
<td>Row Locks</td>
<td>17</td>
<td>0.02 %</td>
</tr>
<tr>
<td>Others</td>
<td>501</td>
<td>0.53 %</td>
</tr>
<tr>
<td>Retention Used</td>
<td>0</td>
<td>0.00 %</td>
</tr>
</tbody>
</table>

Usage
Retention Used reports on the number of locks that are not owned by any task, but are owned at the cluster level because of lock retention.

sp_cluster connection, migrate

Description
Migrates a connection to a different logical cluster or instance.

Syntax
sp_cluster connection, “migrate”, lc_name, instance_name, “spid_list”

Parameters
lc_name – is the name of the logical cluster.
instance_name – is the name of the instance.
spid_list – is the list of spids you are migrating. Separate multiple spids with semicolons.

Examples
Moves the connection with a spid of 73 into the SalesLC cluster:
Stored procedures

sp_cluster connection, migrate, SalesLC, NULL, ‘73’

Moves the current connection to the “ase3” instance:

sp_cluster connection, migrate, NULL, ase3

Moves connections with spid values of 73 and 75 into “ase3” instance and the SalesLC cluster:

sp_cluster connection, migrate, SalesLC, ase3, ‘73;75’

Usage

To migrate the current spid, omit spid_list from sp_cluster connection, migrate.

sp_cluster connection, migrate_cancel

Description

Determines if previous connection migrations to a new instance are pending, and terminates the migrations if they are.

Syntax

sp_cluster connection, ‘migrate_cancel’ [, ‘spid_list’]

Parameters

migrate_cancel – indicates you are investigating the status of connection migrations.

spid_list – is the list of spids you are investigating. Separate multiple spids with semicolons.

Examples

Determines if there is a connection migration occurring on spid 73; if there is, the Cluster Edition cancels the migration:

sp_cluster connection, ‘migrate_cancel’, ‘73’

sp_cluster connection, migrate_status

Description

Determines if previous connection migrations to a new instance are pending.

Syntax

sp_cluster connection, ‘migrate_status’ [, ‘spid_list’]

Parameters

migrate_status – indicates you are investigating the status of connection migrations.

spid_list – is the list of spids you are migrating. Separate multiple spids with semicolons.

Examples

Checks the status of migrated connections for connections with a spid value of 73:

sp_cluster connection, ‘migrate_status’, ‘73’

SPID LogicalCluster Instance
sp_cluster logical, action

Description
Modifies an outstanding action, such as canceling the action or changing the timing of the action.

Syntax

```
sp_cluster logical, "action", lc_name, {
    cancel, action_handle |
    modify_time, action_handle, wait_option[, timeout ] |
    release, action_handle }
```

Parameters

- `lc_name` – is the name of the logical cluster.
- `cancel` – specifies an action to be canceled.
- `action_handle` – is the action identifier.
- `modify_time` – specifies that the time of the action is to be modified.
- `wait_option` – is how the time of the action is to be modified. Values are:
 - `wait` – indicates that existing connections are given a specified amount of time (or an infinite amount of time if no `timeout` is given) to migrate or disconnect.
 - `nowait` – indicates that existing connections are migrated or disconnected immediately.
 - `until` – indicates that existing connections are given until a specific time of day to migrate or disconnect.
- `timeout` – is a specific amount of time (when used with `wait`) or a specific time (when used with `until`). The format is “hh:mm:ss” according to a 24-hour clock. For example, `timeout` records ”11:30 p.m” (or ”11:30pm”) as “23:30:00”.
- `release` – specifies that all resources held by a completed action are to be released.

Examples

Example 1 Cancels a timed action on the “SalesLC” logical cluster. The action handle is 4390.

```
sp_cluster logical, "action", SalesLC, cancel, "4390"
```
Example 2 Changes the wait option for existing action 5364 to nowait.

 sp_cluster logical, "action", SalesLC, modify_time, "5364", nowait

Example 3 Releases action 3456 for the “SalesLC” logical cluster.

 sp_cluster logical, "action", SalesLC, release, "3456"

Example 4 Releases all completed or cancelled actions for the “SalesLC” logical cluster.

 sp_cluster logical, "action", SalesLC, release, "all"

Usage

- Retrieve an action handle by querying the monLogicalClusterAction table or executing:

 sp_cluster logical, "show", NULL, action

- Any client that does not support migration is disconnected when it completes a SQL batch and has no open transactions, or when the timeout period expires, which ever comes first.

- Any client remaining at the end of the timeout period is disconnected.

- Cancelling an action does not roll back the action. Additional tasks may be necessary to restore the configuration to the original state.

- Only completed actions can be released. Releasing an action removes the completed action from the system and from the monLogicalClusterAction table.

sp_cluster logical, add

Description Adds a resource or one or more routes to the logical cluster.

Syntax

 sp_cluster logical, "add", lc_name, { route, route_type, key_list | instance, instance_list | failover, instance_list }

Parameters

- lc_name – is the name of a logical cluster.
- route – specifies that one or more routes are to be added to the logical cluster.
- route_type – is the type of route to be added. Values are:
 - application – specifies a route for an application name to the logical cluster.
 - login – specifies a route for a login name to the logical cluster.
 - alias – specifies a route for a server name alias to the logical cluster.
key_list – is a list of applications, logins, or aliases, depending on the route type. Elements in the key list are delimited by semicolons.

instance – specifies that one or more base instances are to be added to the logical cluster.

instance_list – is the list of instances to be added. Separate multiple instances with semicolons.

failover – specifies that one or more failover instances are to be added to the logical cluster.

Examples

Example 1 Adds instances “ase1” and “ase2” to the “SalesLC” logical cluster.

sp_cluster logical, "add", SalesLC, instance, "ase1;ase2"

Example 2 Creates one failover group with “ase3” for “SalesLC”.

sp_cluster logical, "add", SalesLC, failover, ase3

Example 3 Routes the logins “tom”, “dick”, and “harry” to the “SalesLC” logical cluster

sp_cluster logical, "add", SalesLC, route, login, "tom;dick;harry"

Example 4 Routes the field_sales application to the “SalesLC” logical cluster.

sp_cluster logical, "add", SalesLC, route, application, field_sales

Usage

• You cannot add a base instance or a failover resource to the system logical cluster.

• Separate multiple instance, failover resources, or applications with semicolons.

• Create multiple failover groups by enclosing the group in parenthesis, and separating groups with a comma. If you do not specify group, a new group is created and the instances are added to that group. You can specify a group into which the instances are placed (the group number must be quoted).

For example:

1> sp_cluster logical, 'add', tempLC, failover, "asedemo3;asedemo2"
2> go
Added failover instance 'asedemo3' to group 1 for logical cluster 'tempLC'.
Added failover instance 'asedemo2' to group 1 for logical cluster 'tempLC'.

And then add the instances to the group:

1> sp_cluster logical, 'add', tempLC, failover, asedemo4, "4"
2> go

Added failover instance 'asedemo4' to group 4 for logical cluster 'tempLC'.

sp_cluster logical, alter

Description: Moves a route from one logical cluster to another.

Syntax: `sp_cluster logical, "alter", lc_name, route, route_type, key_list`

Parameters:
- `lc_name` – is the name of a logical cluster.
- `route` – specifies a route is to be altered.
- `route_type` – is the type of route to be altered. Values are:
 - `application` – specifies a route for an application name to the logical cluster.
 - `login` – specifies a route for a login name to the logical cluster.
 - `alias` – specifies a route for a server name alias to the logical cluster.
- `key_list` – is a list of applications, logins, or aliases, depending on the route type. Elements in the key list are delimited by semicolons.

Examples:

- Creates a route of type alias to logical cluster “lc1” with the alias “SalesLC”. Then, changes the logical cluster association of the route from “lc1” to “lc2”. The route is identified by its route type (alias) and its key (SalesLC).
  ```
  sp_cluster logical, "add", "lc1", "route", "alias", "SalesLC"
  sp_cluster logical, "alter", "lc2", "route", "alias", "SalesLC"
  ```

sp_cluster logical, create

Description: Creates a new logical cluster.

Syntax: `sp_cluster logical, "create", lc_name`

Parameters:
- `lc_name` – is the name of the logical cluster.

Examples:

- Creates a logical cluster named “SalesLC”.
sp_cluster logical, "create", SalesLC

sp_cluster logical, deactivate

Description
Stops the logical cluster on one or more instances or the entire logical cluster, and places the instances or the cluster in the inactive state.

Syntax
```
sp_cluster logical, "deactivate", lc_name, {
   "cluster" |
   "instance", instance_list }
[, wait_option[, timeout[, @handle output]]]
```

Parameters
- `lc_name` – is the name of a logical cluster.
- `cluster` – specifies the entire cluster.
- `instance` – specifies that only certain instances in the logical cluster are to be placed in the inactive state.
- `instance_list` – is a list of selected instances in the logical cluster.
- `wait_option` – is how the time of the action is to be specified. Values are:
 - `wait` – indicates that existing connections are given a specified amount of time (or an infinite amount of time if no `timeout` is given) to migrate or disconnect.
 - `nowait` – indicates that existing connections are migrated or disconnected immediately.
 - `until` – indicates that existing connections are given until a specific time of day to migrate or disconnect.
- `timeout` – is a specific amount of time (when used with `wait`) or a specific time (when used with `until`). The format is “hh:mm:ss” according to a 24-hour clock. For example, `timeout` records 11:30 p.m. as 23:30:00.
- `@handle output` – specifies that an action handle is to be retrieved for the action.

Examples

Example 1 Immediately stops all instances in the “SalesLC” logical cluster, and places “SalesLC” in the inactive state.
```
sp_cluster logical, "deactivate", SalesLC, cluster, nowait
```

Example 2 Stops the “ase1” and “ase2” instances, and places “SalesLC” in the inactive state.
```
sp_cluster logical, "deactivate", SalesLC, instance, "ase1;ase2"
```
Usage

- You cannot use the `deactivate` command for the system logical cluster.
- `offline` is identical to the `deactivate`, except `deactivate` places stopped instances or clusters in the inactive state and `offline` places them in the offline state.

sp_cluster logical, drop

Description: Drops a logical cluster, or one or more resources from the logical cluster.

Syntax:
```
sp_cluster logical, "drop", lc_name, {
  cluster  | instance, instance_list |
  failover, instance_list |
  route, route_type, key_list }
```

Parameters:
- `lc_name` – is the name of a logical cluster.
- `cluster` – specifies that the named cluster is to be dropped.
- `instance` – specifies that one or more base instances are to be dropped from the logical cluster.
- `instance_list` – is the list of instances to be dropped. Separate multiple instances with semicolons.
- `failover` – specifies that one or more failover instances are to be dropped from the logical cluster.
- `route` – specifies that one or more routes are to be dropped from the logical cluster.
- `route_type` – is the type of route to be dropped. Values are:
 - `application` – specifies a route for an application name to the logical cluster.
 - `login` – specifies a route for a login name to the logical cluster.
 - `alias` – specifies a route for a server name alias to the logical cluster.
- `key_list` – is a list of applications, logins, or aliases, depending on the route type. Elements in the key list are delimited by colons.

Examples

Example 1 Drops the “SalesLC” logical cluster.
```
sp_cluster logical, "drop", SalesLC, cluster
```

Example 2 Drops the base instances “ase1” and “ase2” from the “SalesLC” logical cluster.
```
sp_cluster logical, "drop", SalesLC, instance, "ase1;ase2"
```
Example 3 Drops the routes from the applications field_sales and web_sales from the “SalesLC” logical cluster.

 sp_cluster logical "drop", SalesLC, route, application, "field_sales;web_sales"

Usage

- You must place an instance or failover resource in the offline state before dropping it.
- Dropping a cluster also drops all routes, resources, and settings associated with the cluster.

sp_cluster logical, failback

Description Reverses a manual failover, reinstating the original base instances.

Syntax

 sp_cluster logical, "failback", lc_name, {
 cluster[, wait_option[, timeout[, @handle output]]] |
 instance, from_instance_list, to_instance_list[, wait_option[,
 timeout[, @handle output]]] } }

Parameters

- **lc_name** – is the name of a logical cluster.
- **cluster** – specifies a failback of the entire logical cluster.
- **to_instance_list** – is a list of predefined failover instances. A value of NULL activates the first failover group.
- **wait_option** – is how the time of the action is to be recorded. Values are:
 - **wait** – indicates that existing connections are given a specified amount of time (or an infinite amount of time if no **timeout** is given) to migrate or disconnect.
 - **nowait** – indicates that existing connections are migrated or disconnected immediately.
 - **until** – indicates that existing connections are given until a specific time of day to migrate or disconnect.
- **timeout** – is a specific amount of time (when used with **wait**) or a specific time (when used with **until**). The format is "hh:mm:ss" according to a 24-hour clock. For example, **timeout** records 11:30 pm as 23:30:00.
- **@handle output** – specifies that an action handle is to be retrieved for the failback.
- **instance** – specifies that only selected instances in the logical cluster are to fail back.
- **from_instance_list** – is a list of instances that are to be taken offline.
Examples

Example 1 Fails back the “SalesLC” logical cluster.

```
sp_cluster logical, "failback", SalesLC, cluster
```

Example 2 “SalesLC” is running on “ase3” and “ase1”. In this example, “ase3” fails back to “ase1”, and “SalesLC” continues to run on “ase2”. The action takes place in two minutes.

```
declare @out_handle varchar(15)
execute
sp_cluster logical, "failback", SalesLC, instance, ase3, ase1, wait, "00:02:00", @handle = @out_handle output
```

Usage

- To initiate a failback, the logical cluster must first be failed over.

sp_cluster logical, failover

Description

Initiates a manual failover from base instances to failover instances.

Syntax

```
sp_cluster logical, "failover", lc_name, { cluster[, to_instance_list[, wait_option[, timeout[, @handle output]]]] | instance, from_instance_list, to_instance_list[, wait_option[, timeout[, @handle output]]]] }
```

Parameters

- **lc_name** – is the name of a logical cluster.
- **cluster** – specifies the failover of the entire logical cluster.
- **to_instance_list** – is a list of predefined failover instances. A value of NULL activates the first failover group.
- **wait_option** – is how the time of the action is to be recorded. Values are:
 - **wait** – indicates that existing connections are given a specified amount of time (or an infinite amount of time if no timeout is given) to migrate or disconnect.
 - **nowait** – indicates that existing connections are migrated or disconnected immediately.
 - **until** – indicates that existing connections are given until a specific time of day to migrate or disconnect.
- **timeout** – is a specific amount of time (when used with wait) or a specific time (when used with until). The format is "hh:mm:ss" according to a 24-hour clock. For example, timeout records 11:30 pm as 23:30:00.
@handle output – specifies that an action handle is to be retrieved for the failover.

instance – specifies that only selected instances in the logical cluster are to fail over.

from_instance_list – is a list of instances that are to be taken offline.

Examples

Example 1 Fails over the “SalesLC” logical cluster to the first group of predefined failover resources. The failover waits 2 minutes before terminating connections.

\[
\begin{align*}
&\text{declare @out_handle varchar(15)} \\
&\text{execute sp_cluster logical, "failover", SalesLC, cluster, NULL,}
\end{align*}
\]

wait, "00:02:00", @handle = @out_handle output

Action '2' has been issued for the 'failover cluster' command.

<table>
<thead>
<tr>
<th>Logical Cluster Handle</th>
<th>Action</th>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>SalesLC</td>
<td>2 failover cluster</td>
<td>2, 4</td>
<td>NULL</td>
</tr>
<tr>
<td>complete</td>
<td></td>
<td>0</td>
<td>0 wait</td>
</tr>
<tr>
<td>Nov 15 2007 3:23PM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remember to issue the `sp_cluster logical, action, <logical cluster name>, release, <handle>' command for any cancelled or completed actions.

Example 2 “SalesLC” is running on “ase1” and “ase2”. In this example, “ase1” fails over to “ase3”, and “SalesLC” continues to run on “ase2”. No wait option is specified, so it defaults to an indefinite wait.

\[
\begin{align*}
&\text{sp_cluster logical, "failover", SalesLC, instance,}
\end{align*}
\]

ase1, ase3

Action '1' has been issued for the 'failover instance' command.

<table>
<thead>
<tr>
<th>Logical Cluster Handle</th>
<th>Action</th>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>SalesLC</td>
<td></td>
<td>2, 4</td>
<td>NULL</td>
</tr>
<tr>
<td>complete</td>
<td></td>
<td>0</td>
<td>0 wait</td>
</tr>
<tr>
<td>Nov 15 2007 3:23PM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Stored procedures

<table>
<thead>
<tr>
<th>WaitType</th>
<th>StartTime</th>
<th>Deadline</th>
<th>CompleteTime</th>
</tr>
</thead>
<tbody>
<tr>
<td>SalesLC</td>
<td>1 failover instance</td>
<td>1 4</td>
<td>Nov 15 2007 3:06PM</td>
</tr>
<tr>
<td></td>
<td>complete</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>infinite</td>
<td>Nov 15 2007 3:06PM</td>
<td>NULL</td>
<td>Nov 15 2007 3:06PM</td>
</tr>
</tbody>
</table>

Remember to issue the `sp_cluster logical, action, <logical cluster name>, release, <handle>' command for any cancelled or completed actions.

sp_cluster logical, [gather | set]

Description
Gathers and migrates a group of connections to a different logical cluster. This can be done manually using “gather” or automatically using “set”.

Syntax

```
sp_cluster logical, [ "gather", lc_name | "set", lc_name, "gather", [ "automatic" | " manual " ] ]
```

Parameters

- **gather** – indicates you are gathering a set of qualified connections to migrate them to another logical cluster.
- **lc_name** – is the name of a logical cluster.
- **set** – indicates that you are setting the migration for a connection to either manual or automatic.
- **gather** – indicates you are combining all connections with similar settings for a migration to another logical cluster.

Usage

- Automatic gather occurs when the cluster is brought online manually, routes are added or modified, or the cluster is specified as a new open cluster.
- The logical cluster must be online to gather connections manually.
- The logical cluster must have defined routes to gather connections.
sp_cluster logical, help

Description
Displays complete syntax for `sp_cluster logical`.

Syntax
```
sp_cluster logical, "help"
```

For more information about `sp_cluster logical`, see Chapter 6, “Managing the Workload,” or individual `sp_cluster logical` stored procedure descriptions in this chapter.

Examples
Displays syntax for the `sp_cluster logical` stored procedures.
```
sp_cluster logical, "help"
```

Usage for `sp_cluster 'logical'`:
```
sp_cluster 'logical', 'help' [, <module>]
```

To show the logical cluster configuration:
```
sp_cluster 'logical', 'show'
sp_cluster 'logical', 'show', <lcname>
sp_cluster 'logical', 'show', <lcname> | NULL, 'action' [, <state>]
sp_cluster 'logical', 'show', <lcname> | NULL, 'route' [, <type [, <key>]]]
```

To create a logical cluster:
```
sp_cluster 'logical', 'create', <lcname>
```

To add resources to a logical cluster:
```
sp_cluster 'logical', 'add', <lcname>, 'failover', <instance_list> [,<group>]
sp_cluster 'logical', 'add', <lcname>, 'instance', <instance_list
sp_cluster 'logical', 'add', <lcname>, 'route', <route_type>, <key_list>
```

To drop resources from a logical cluster:
```
sp_cluster 'logical', 'drop', <lcname>, 'cluster'
sp_cluster 'logical', 'drop', <lcname>, 'failover', <instance_list>
sp_cluster 'logical', 'drop', <lcname>, 'instance', <instance_list
sp_cluster 'logical', 'drop', <lcname>, 'route', <route_type>, <key_list>
```

Argument details:
- `<lcname>` is a logical cluster name
- `<instance_list>` is a ';' separated list of instances
- `<route_type>` is one of {'user', 'application', 'alias'
- `<key_list>` is a ';' separated list of keys

To set attributes of a logical cluster:
```
sp_cluster 'logical', 'set', <lcname>, 'open'
sp_cluster 'logical', 'set', <lcname>, 'down_routing', 'disconnect' | 'system' | 'open'
sp_cluster 'logical', 'set', <lcname>, 'failover', 'instance' | 'group'
```
Stored procedures

sp_cluster 'logical', 'set', <lcname>, 'load_profile', <profile_name>
sp_cluster 'logical', 'set', <lcname>, 'startup', 'automatic' | 'manual'
sp_cluster 'logical', 'set', <lcname>, 'system_view', 'instance' | 'cluster'

To start and stop a logical cluster:
sp_cluster 'logical', 'online', <lcname>[, <instance_list>]
sp_cluster 'logical', 'offline', <lcname>, 'cluster'[, <wait_option>[, <time>[, @handle output]]]
sp_cluster 'logical', 'offline', <lcname>, 'instance',
<instance_list>[, <wait_option>][, <time>[, @handle output]]

To failover and failback a logical cluster:
sp_cluster 'logical', 'failover', <lcname>, 'cluster'[, <instance_list>[, <wait_option>[, <time>[, @handle output]]]
sp_cluster 'logical', 'failover', <lcname>, 'instance', <from_instance_list>,
<instance_list>[, <wait_option>[, <time>[, @handle output]]]
sp_cluster 'logical', 'failback', <lcname>, 'cluster'[, <instance_list>[, <wait_option>[, <time>[, @handle output]]]
sp_cluster 'logical', 'failback', <lcname>, 'instance', <from_instance_list>,
<instance_list>[, <wait_option>[, <time>[, @handle output]]]

To work with action handles:
sp_cluster 'logical', 'action', <lcname>, 'cancel', <handle>
sp_cluster 'logical', 'action', <lcname>, 'modify_time', <handle>,
<wait_option>[, <time>]
sp_cluster 'logical', 'action', <lcname>, 'release', <handle>

Argument details:
<wait_option> is one of {'nowait', 'wait', 'until'}
time is a time in *hh:mm:ss* format
<handle> is an action handle

sp_cluster logical, offline

Description

Stops the logical cluster on one or more instances or the entire logical cluster.

Syntax

```sql
sp_cluster logical, "offline", lc_name, {
    cluster
    [ instance, instance_list ]
    [, wait_option[, timeout[, @handle output ]]]
```

Parameters

lc_name – is the name of a logical cluster.
cluster – specifies the entire cluster.

instance – specifies that only certain instances in the logical cluster are to be taken offline.

instance_list – is a list of selected instances in the logical cluster.

wait_option – is how the time of the action is to be specified. Values are:

• wait – indicates that existing connections are given a specified amount of time (or an infinite amount of time if no timeout is given) to migrate or disconnect.

• nowait – indicates that existing connections are migrated or disconnected immediately.

• until – indicates that existing connections are given until a specific time of day to migrate or disconnect.

timeout – is a specific amount of time (when used with wait) or a specific time (when used with until). The format is "hh:mm:ss" according to a 24-hour clock. For example, timeout records 11:30 pm as 23:30:00.

@handle output – specifies that an action handle is to be retrieved for the action.

Examples

Example 1 Immediately stops all instances in the “SalesLC”, and places “SalesLC” in the offline state.

 sp_cluster logical, "offline", SalesLC, cluster, nowait

Example 2 Stops the “ase1” and “ase2” instances in “SalesLC”, and places “SalesLC” in the offline state.

 sp_cluster logical, "offline", SalesLC, instance, "ase1;ase2"

Usage

• You cannot use the offline command for the system logical cluster.

• offline is identical to deactivate, except deactivate places stopped instances or clusters in the inactive state.

sp_cluster logical, online

Description

Starts the default logical cluster on one or more instances.

Syntax

 sp_cluster logical, "online", { lc_name[, instance_list] }x

Parameters

lc_name – is the name of a logical cluster.

instance_list – is a list of selected instances in the logical cluster.
Examples

Example 1 Starts all base instances in the “SalesLC” logical cluster, and brings the cluster online.

```
sp_cluster logical, "online", SalesLC
```

Example 2 Starts the “ase1” instance in “SalesLC”, and brings the cluster online.

```
sp_cluster logical, "online", SalesLC, ase1
```

Usage

- You cannot use the online command for the system logical cluster.

sp_cluster logical, set

Description Sets logical cluster rules: the open logical cluster, the failover mode, the system view, the start-up mode, and the load profile.

Syntax
```
sp_cluster logical, "set", lc_name, {
  open |
  failover, failover_mode |
  system_view, view_mode |
  startup, { automatic | manual } |
  load_profile, profile_name |
  login_distribution, { affinity | "round-robin" }
}
```

Parameters

- **lc_name** – is the name of a logical cluster.
- **open** – sets the open logical cluster. Unrouted connections are sent to the open logical cluster.
- **failover failover_mode** – sets the failover mode of the logical cluster. Values for **failover_mode** are:
 - instance – specifies a 1:1 failover strategy; every time a base instance fails, a failover resource is brought online.
 - group – specifies that failover resources are brought online only after all base instances in the cluster fail.
- **system_view view_mode** – sets the default system view for tasks running in the logical cluster. Values for **view_mode** are:
 - instance – specifies that monitoring and informational tools such as sp_who, sp_lock, and monitoring tables describe an instance.
 - cluster – specifies that monitoring and informational tools such as sp_who, sp_lock, and monitoring tables describe the whole cluster.
- **startup { automatic | manual }** – sets the start-up mode of the logical cluster.
• automatic – specifies that the logical cluster is started automatically when the cluster starts.
• manual – specifies that the logical cluster must be started manually.

load_profile profile_name – specifies the load profile used to compute load scores for the logical cluster. Values for profile_name are:
• sybase_profile_oltp – is a default profile for OLTP environments supplied by Sybase.
• sybase_profile_dss – is a default profile for primarily read-only, DSS environments supplied by Sybase.
• A user-supplied profile created using sp_cluster profile.

login_distribution – specifies how the Cluster Edition distributes connections when a logical cluster spans multiple instances.

Examples
Example 1 Sets the load profile for the “SalesLC” logical cluster to the Sybase profile sybase_profile_oltp.

sp_cluster logical, "set", SalesLC, load_profile, sybase_profile_oltp

Example 2 Sets the default system view to cluster.

sp_cluster logical, "set", SalesLC, system_view, cluster

Usage
• Only one logical cluster can have the open property. When you set the open property to a new logical cluster, the open property is removed from the previous open logical cluster.

sp_cluster logical, show

Description
Displays information about a logical cluster.

Syntax
sp_cluster 'logical', "show", [lc_name, { action, state } | route, type, key]]

Parameters
lc_name – is the name of the logical cluster. If NULL is entered, summary information for all logical clusters is displayed.
action – specifies information about administrative actions: failover, failback, online, offline, deactivate.
state – is one of: cancelled, complete, or active.
route – specifies information about routes.
Stored procedures

$type$ – is one of: application, alias, or login.

key – is a specific login, alias, or application name.

Examples

Example 1 Displays summary information for all configured logical clusters.

```
sp_cluster logical, "show", NULL
```

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>State</th>
<th>Online Instances</th>
<th>Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>mycluster</td>
<td>online</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>SalesLC</td>
<td>online</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>HRLC</td>
<td>online</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>CatchallLC</td>
<td>offline</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Logical cluster 'mycluster' is the system logical cluster.
Logical cluster 'CatchallLC' is the open logical cluster.

Example 2 Displays a list of all outstanding actions.

```
sp_cluster logical, "show", NULL, action
```

Example 3 Displays information for the SalesLC logical cluster.

```
sp_cluster logical, "show", SalesLC
```

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>State</th>
<th>Online Instances</th>
<th>Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>OrderLC</td>
<td>online</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instance</th>
<th>State</th>
<th>Type</th>
<th>Connections</th>
<th>Load Score</th>
<th>Failover</th>
<th>Gro</th>
</tr>
</thead>
<tbody>
<tr>
<td>asedemol</td>
<td>online</td>
<td>base</td>
<td>0</td>
<td>0.78</td>
<td>NU</td>
<td></td>
</tr>
</tbody>
</table>

Attribute Setting

312

Adaptive Server Enterprise Cluster Edition
Down Routing Mode

- system

Failover Mode

- instance with fail_to_any

LC Roles

- none

Load Profile

- sybase_profile_oltp

Login Distribution

- affinity

Startup Mode

- automatic

System View

- cluster

<table>
<thead>
<tr>
<th>Route Type</th>
<th>Route Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>application</td>
<td>order_app</td>
</tr>
</tbody>
</table>

Logical cluster 'OrderLC' has no associated actions.
(return status = 0)

sp_cluster profile

Description

Lets you set up and manage the load profile for the logical cluster.

Syntax

```
sp_cluster profile, [ "show" [, profile_name ] | "create", profile_name |
  "drop", profile_name | "set", profile_name [, weight [, wt_metric [, wt_value ] | 
```

Parameters

- show – displays configured load profiles and their settings.
- profile_name – is the name of a load profile.
- creates – creates a new load profile.
- drop – drops a load profile.
- set – specifies attributes of a load profile. You must set each attribute individually.
- weight – specifies a weight attribute.
- wt_metric – specifies an individual weight metric. Values are:
 - user connections – the capacity of an instance to accept a new connection, based on resource availability.
 - cpu utilization – the capacity of an instance to accept a new connection, based on resource availability.
 - run queue – the capacity of an instance to accept a new connection, based on resource availability.
Stored procedures

- **io load** – outstanding asynchronous I/Os.
- **engine deficit** – the difference in the number of online engines among instances in the cluster.

Note
engine deficit is measurable only when instances in the cluster have unequal numbers of engines. *engine deficit* adds a metric for maximum relative capacity to the load score.

- **user metric** – an optional, user-supplied metric.
- **wt_value** – specifies a weight value. Valid values are 0 to 255. A weight of zero (0) excludes the metric from calculation.
- **threshold** – specifies a threshold attribute.
- **thr_metric** – specifies a particular threshold attribute. Values are:
 - **dynamic** – specifies a threshold for dynamic load distribution.
 - **login** – specifies a threshold for login redirection
 - **hysteresis** – specifies a minimum load score for any connection redirection.
- **thr_value** – depends on value of **thr_metric**:
 - When **thr_metric** is **dynamic** or **login**, **thr_value** is the percentage difference between the the load scores of two instances. Valid values are 0 to 100. A weight of zero (0) disables this form of load distribution.
 - When **thr_metric** is **hysteresis**, **thr_value** is the minimum load score for the target instance that must be met before dynamic load distribution or login redirection can occur.

Usage

- The user metric value must be normalized so that it is compatible with values for metrics provided by Sybase. Consider a user metric that measures response times. If the maximum acceptable response time is 10 seconds and the measured value is 5, the metric value is 50 (5/10 x 100 = 50).

- Threshold metrics let you configure at what point a load imbalance should cause connections to be redirected from one instance to another. The workload manager redirects connections when the load score difference (as a percent) between the target instance and the least loaded instance meets or exceeds the threshold value.
The hysteresis value guards against redirection when the load score difference meets the threshold value, but the instance load scores (for example, 2 and 8) are so low that redirection is not appropriate.

Examples

Example 1 Creates the load profile “my_profile”:

```
sp_cluster profile, "create", my_profile
```

Example 2 Specifies the metric weights for “my_profile.” “user connections” is set to zero, which excludes that metric from the profile.

```
sp_cluster profile, "set", my_profile, weight, "user connections", '0'
sp_cluster profile, "set", my_profile, weight, cpu utilization, '20'
sp_cluster profile, "set", my_profile, weight, runqueue, '30'
sp_cluster profile, "set", my_profile, weight, io load, '10'
sp_cluster profile, "set", my_profile, weight, engine deficit, '10'
sp_cluster profile, "set", my_profile, weight, user metric, '30'
```

See “Using Monitoring Tables in a Clustered Environment.”

Example 3 Sets the login redirection threshold to 80 and the hysteresis value to 10 for “my_profile.”

```
sp_cluster profile, "set", my_profile, threshold, login, '80'
sp_cluster profile, "set", my_profile, threshold, hysteresis, '10'
```

Example 4 Displays information about a configured profile.

```
sp_cluster profile, "show", my_profile
```

<table>
<thead>
<tr>
<th>ID</th>
<th>Profile</th>
<th>Type</th>
<th>Connections</th>
<th>CPU</th>
<th>Run</th>
<th>Queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>my_profile</td>
<td>user</td>
<td>0</td>
<td>20</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Profile</th>
<th>Logical Cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>my_profile</td>
<td>SalesLC</td>
</tr>
</tbody>
</table>
sp_tempdb_markdrop

Description
Places a local system temporary database in the drop state.

Syntax
```
sp_tempdb_markdrop database_name [, {'mark' | 'unmark'}]
```

Parameters
- `database_name` – is the name of the local system temporary database you are dropping.
- `mark` – marks the specified database for dropping.
- `unmark` – clears the mark from the database.

Examples
This example marks a local system temporary database named "old_cluster_tempdb1" to be dropped:
```
sp_tempdb_markdrop 'old_cluster_tempdb1', 'mark'
```
This example removes the mark from the local system temporary database "old_cluster_tempdb1":

```
sp_tempdb_markdrop 'old_cluster_tempdb1', 'unmark'
```

Usage

To delete the last local temporary database:

1. Use `sp_tempdb_markdrop` to place the local system temporary database in the drop state.
2. Shut down and restart the instance that owns the last local temporary database.

Note After you mark the local system temporary database to be dropped, the owner instance restarts if there are no other active instances. This instance does not use the marked local system temporary database when it starts.

3. Use `drop database` to delete the last local system temporary database.

sp_refit_admin

Description

Provides an interface to perform various disk refit-related actions, such as showing the current status of the disk refit process, resetting the state of the disk refit process, skipping the disk refit process for an instance, and so on.

Note See “Using Temporary Databases” on page 153 for information on the two-phase disk refit process.

Syntax

```
sp_refit_admin ['help']
sp_refit_admin 'status'
sp_refit_admin 'reset' [, instance_name]
sp_refit_admin 'skipprefit'[, instance_name]
sp_refit_admin 'removedevice', device_name
```

Parameters

- `help` – displays information on `sp_refit_admin` syntax and usage.
- `status` – displays the current status of the disk refit process. It lists all the instances and their private devices for which disk refit is still pending. If no such device exists, it prints a message saying so.
- `reset` – resets the state of the disk refit process. It takes an optional parameter `instance_name`.
If `instance_name` is not supplied, this parameter resets the disk refit process back to the beginning of Phase One, so that subsequent `disk refit` command starts the disk refit process from Phase One and refits all the regular shareable devices, as well as private devices of the instance.

If `instance_name` is supplied, this parameter resets the disk refit process back to the beginning of Phase Two for that instance, so that a subsequent `disk refit` command on that instance starts the disk refit process from Phase Two for that instance, and refits only the private devices of that instance.

`skiprefit` – skips running Phase Two of the disk refit process for one or all instances in the cluster without dropping the device. This parameter is meaningful only after the completion of Phase One of the disk refit process. It takes `instance_name` as an optional parameter.

Note The refit-pending devices of the skipped instance are not refitted, so the databases on these devices are not available for use.

`removedevice` – removes a device from the disk refit process. This parameter requires the name of the device that is to be removed, as the input parameter `device_name` or `instance_name`.

`instance_name` – the name of the instance, valid only with `reset` and `skiprefit`.

`device_name` – the name of the device, valid only with `removedevice`.

Examples

Example 1
Resets the state of the disk refit process to the start of Phase One.

```
sp_refit_admin 'reset'
```

After executing `reset`, the user must run Phase One and Phase Two of the disk refit process.

Example 2
Resets the state of the disk refit process on the instance named 'cluster1_instance1' to the start of Phase Two for the instance.

```
sp_refit_admin reset, 'cluster1_instance1'
```

This interface removes `sysdatabases` entry for all the databases created on the private devices owned by 'cluster1_instance1', and the `sysusages` entries corresponding to the private devices owned by 'cluster1_instance1'. After executing, you must run Phase Two of `disk refit` on 'cluster1_instance1'.

Example 3
Skips the disk refit process of all the refit-pending private devices of instance 'cluster1_instance1'.

```
sp_refit_admin 'skiprefit', 'cluster1_instance1'
```
This example removes the sysdatabases entry for all the databases that use any of the refit-pending private devices owned by 'cluster1_instance1', and removes all the entries in sysusages for all the deleted databases.

To skip the disk refit process on all the refit-pending private devices of all the instances in the cluster, enter:

```
sp_refit_admin 'skiprefit'
```

Example 4 To remove the device 'device1' from the disk refit process:

```
sp_refit_admin 'removedevice', 'device1'
```

This action removes the sysdatabases entry for all databases created on 'device1', and all the sysusages entries corresponding to 'device1'. It also removes 'device1' from sysdevices.

Usage

- You must follow the instructions in “Troubleshooting” on page 215 after executing `skiprefit`, to ensure the consistency of the system tables before resuming normal operation.

- Use `removedevice` only during the disk refit process, to remove the device from the refit process. Do not use it in place of `sp_dropdevice`.

- You can use `sp_refit_admin` even when the instance is started with the -m option and trace flag 3608 ON.

Permissions

Only a user with system administrator permissions can execute this procedure.

See also

For information on problems encountered with disk refit, see the *Troubleshooting and Error Guide*.

Changed stored procedures

Configuration changes

In the Cluster Edition, Sybase supports both cluster-wide and instance-specific configuration. Cluster-wide configuration parameters are applied to all instances in the cluster. Local configuration parameters are applied only to a specified instance.

- Local configuration overrides cluster-wide configuration.

- If an instance-specific configuration has not been applied, the cluster-wide configuration applies.
Some parameters, such as default character set id, cannot be applied to a specific instance. These parameters can only be used over an entire cluster.

The configuration file format now includes an instance-specific configuration block. Parameter settings in the instance-specific block override cluster-wide settings. For example:

```
max online engines = DEFAULT

[Instance:ase1]
max online engines = 5
[Instance:ase2]
max online engines = 3
```

sp_audit

New cluster option

sp_audit for the Cluster Edition includes the cluster option which enables you to audit cluster commands. The syntax for sp_audit is:

```
sp_audit 'cluster', login_name, object_name [,setting]
```

Once enabled, the cluster option audits these commands on the cluster:

- `sp_cluster 'logical', 'online', cluster_name`
- `sp_cluster 'logical', 'failover', logical_cluster_name, 'cluster' [, instance_list [, wait_option [, time [, @handle output]]]]`
- `sp_cluster 'logical', 'failback', logical_cluster_name, 'cluster'`
- `sp_cluster 'logical', 'failover', logical_cluster_name, 'instance', from_instance_list, instance_list [, wait_option [, time [, @handle output]]]]`
- `sp_cluster 'logical', 'failback', logical_cluster_name, 'instance', from_instance_list, instance_list [, wait_option [, time [, @handle output]]]]`
- `sp_cluster 'logical', 'offline', cluster_name, 'instance', instance_list`
- `sp_cluster 'logical', 'offline', cluster_name, 'cluster'`
- `sp_cluster 'logical', 'action', logical_cluster_name, 'cancel', handle`
- `sp_cluster 'logical', 'action', logical_cluster_name, 'modify_wait', handle, wait_option [, time]`
- `sp_cluster 'logical', 'action', <lcname>, 'release', <handle>`
- `sp_cluster 'logical', 'drop', logical_cluster_name, 'cluster'`
sp_addengine

sp_addengine includes the *instance_id* parameter to add an engine or engine group to a specific instance. The syntax is:

```
sp_addengine engine_number, engine_group [, instance_id]
```

Where *instance_id* is the id of the instance to which you are adding an engine or engine group. For example, this adds engine number 5 to instance id 8:

```
sp_addengine 5, 8
```

If *sp_cluster set system_view* is set to *cluster*, you can add an engine or engine group to any instance in the cluster. If *system_view* is set to *instance*, you can add an engine or engine group only to a local instance.

sp_addexeclass

sp_addexeclass includes the *instance_id* parameter which allows you to create or update a user-defined execution class and bind it to a specific instance. The syntax is:

```
sp_addexeclass class_name, priority, timeslice, engine_group [, , instance_id]
```

where *instance_id* is the id of the instance to which you are binding a user-defined execution class. For example, to define a new execution class called **DS** with a priority value of LOW and associate it with the engine group **DS_GROUP** on instance number 8, enter:

```
sp_addexeclass "DS", "LOW", 0, "DS_GROUP", 8
```

If *sp_cluster set system_view* is set to *cluster*, you can add an execution class on any instance in the cluster. If the *system_view* is set to *instance*, you can add an execution class only to a local instance.

sp_addserver

sp_addserver includes the *filter* parameter to add a remote server for remote procedure calls (RPCs). The syntax is:

```
sp_addserver 'logical_server_name', ASEnterprise, 'host:port:filter'
```

where filter is:

```
ssl[="CN=common_name"]
```

For example, the following adds the "new_logical_server" server:

```
sp_addserver 'big_logical_server', ASEnterprise, 'maynard:23954:ssl= "CN=as1.big server 1.com"'
```
The rules for common names are same as those used for dynamic listeners and the directory service entries.
You can use this format to declare the host:port number:

\[\text{ip_address:port} \]

sp_addlogin

sp_addlogin fails if you attempt to include a local temporary database as a default database for any login.

sp_dbcc_updateconfig

sp_dbcc_updateconfig includes new two options: enable excluded faults inserts and enable dbcc_counter inserts.

- **enable excluded faults inserts** specifies whether or not excluded faults are inserted in the dbcc_faults and dbcc_fault_params tables during dbcc checkstorage. The default value for enable excluded faults inserts is off (0). The syntax is:

 \[\text{sp_dbcc_updateconfig (db_name | null)}, \text{"enable excluded faults inserts"}, [0 | 1] \]

 Use sp_dbcc_exclusions to specify excluded faults.

- **enable dbcc_counter inserts** specifies whether or not rows are inserted in the dbcc_counters table when dbcc checkstorage completes. The default value for enable dbcc_counter inserts is off (0). The syntax is:

 \[\text{sp_dbcc_updateconfig (db_name | null)}, \text{"enable dbcc_counter inserts"}, [0 | 1] \]

 Two new rows have been added to the dbcc_types table to enable these changes. See “dbcc_types” on page 353. See the Reference Manual: Tables for a description of the dbcc_counters table.

sp_configure

Syntax changes for the Cluster Edition:

- You can now specify an instance name to set an instance-specific option. The syntax is:

 \[\text{sp_configure [configuration_option [, config_value [, ...]] | instance_name] } \]
A new option, drop instance, allows you to drop an instance-specific configuration setting. The syntax is:

```
sp_configure configuration_option, 0, "drop instance", instance_name
```

Usage changes for display:

- If no configuration option or instance name is specified, the information displayed depends on the system_view setting.
- If no configuration option is specified, and the instance name is specified, Adaptive Server displays all instance-specific configuration settings for the specified instance.
- If the configuration option is specified, but the configuration value and instance name are not specified, Adaptive Server displays the current settings for the specified option for all instances under the “cluster” view. If the instance name is specified, Adaptive Server displays configuration information for the specified instance.

Usage changes when setting options:

- If the configuration option and value are specified, but no instance is specified, Adaptive Server configures the cluster-wide setting for the option. If, however, the instance name is specified, Adaptive Server sets the configuration value for the instance only. The syntax is:

```
sp_configure configuration_name, config_value, NULL, instance_name
```

- You cannot set configuration options from inside a local temporary database.
- If an instance already has instance-specific setting for a configuration parameter set, you can reconfigure this parameter for a cluster-wide setting.
- A user can reconfigure only those instances to which they are connected.

sp_dropengine

`sp_dropengine` includes the `instance_id` parameter to drop an engine or engine group from a specific instance. The syntax is:

```
sp_dropengine engine_number, engine_group [, instance_id]
```

Where `instance_id` is the id of the instance from which you are dropping an engine or engine group. For example, this drops engine number 5 from instance id 8:
Stored procedures

`sp_dropengine 5, 8`

If `sp_cluster set system_view is set to cluster`, you can drop an engine or engine group from any instance in the cluster. If the `system_view` is set to instance, you can drop and engine or engine group only from a local instance.

sp_encryption

The command, `sp_encryption help, key_name, display_cols`, displays only encrypted columns in the system database and local temporary database that are owned by the instance where the command is run. This command skips the local temporary database owned by a remote instance and displays a message similar to:

```
Local temporary database '<database name>' is skipped for this operation. The database is accessible from the owner instance '<instance name>' only. Execute this procedure on ASE instance '<instance name>' to see any columns encrypted with key '<keyname>' on database '<database name>'.
```

You must run the command on the remote instance to display the remote instance’s columns encrypted with the specified key on local temporary database.

sp_helpconfig

Syntax changes to `sp_helpconfig`:

- A new option, `cluster options`, displays all strictly cluster-wide configuration options. The syntax is:

 `sp_helpconfig "cluster options"`

Usage changes:

- If `system_view` is set to `cluster`, `sp_helpconfig` displays configuration information for all instances in the cluster.
- If `system_view` is set to `instance`, `sp_helpconfig` displays configuration information for the current instance.

sp_helpdb

`sp_helpdb` does not display device-related information if the specified database is a local temporary database owned by a remote instance.
sp_lock

`sp_lock` in versions of the Cluster Edition earlier than 15.0.3 displayed information about only the locks associated with the instance on which you issued the stored procedure. `sp_lock` on Cluster Edition version 15.0.3 and later displays information about all locks in the cluster.

sp_modifylogin

`sp_modifylogin` fails if you attempt to include a local temporary database as a default database for any login.

sp_sysmon

The Cluster Edition adds these categories for `sp_sysmon`.

<table>
<thead>
<tr>
<th>Task Management</th>
<th>per sec</th>
<th>per xact</th>
<th>count</th>
<th>% of total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Lock Transition</td>
<td>208.9</td>
<td>0.4</td>
<td>26108</td>
<td>4.6%</td>
</tr>
<tr>
<td>Logical Lock Transition</td>
<td>2209.3</td>
<td>4.5</td>
<td>276160</td>
<td>48.5%</td>
</tr>
<tr>
<td>Interconnect Message Sleeps</td>
<td>612.2</td>
<td>1.2</td>
<td>76527</td>
<td>13.5%</td>
</tr>
</tbody>
</table>

- **Physical Lock Transition** – identify context switches related to acquiring physical locks.
- **Logical Lock Transition** – identify context switches related to acquiring cluster logical locks
- **Object Lock Transition** – identify context switches related to acquiring object locks

For these three rows, % total represents a collective number of context switches caused by cluster messaging. Higher values for % total for this context indicates high cluster message activity. Compare this number with `Number of Cluster Lock Requests` to determine the number of cluster messages per lock request. Query the `monSysWaits` monitoring table for more information about context switches.
Assess your application partitioning if a lock requests creates too many context switches. A higher number of context switches indicates additional requirements for the cluster message buffer. `monCIPC` may have high values for `ReceiveCount` and `TransmitCount` if there is a shortage of CIPC message buffers. Increase the size of the CIPC message buffer to resolve this issue.

Lock Summary

<table>
<thead>
<tr>
<th>Lock Summary</th>
<th>per sec</th>
<th>per xact</th>
<th>count</th>
<th>% of total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster Locks Retained</td>
<td>428.6</td>
<td>2000.3</td>
<td>6001</td>
<td>99.4 %</td>
</tr>
</tbody>
</table>

Cluster Locks Retained – Indicates the number of cluster locks retained. A high number indicates a well-partitioned application and that most of the cluster locks are already granted to the current instance. A lower value may indicate that you should reassess the object’s schema and workload pattern to reduce conflicting data access across multiple instances.

`monCLMObjectActivity` includes values for cluster-level lock activity for each object. These values are helpful for making locking decisions at the object level.

Cluster Lock Summary

<table>
<thead>
<tr>
<th>Cluster Lock Summary</th>
<th>per sec</th>
<th>per xact</th>
<th>count</th>
<th>% of total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lock Garbage Collection</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>n/a</td>
</tr>
<tr>
<td>Targeted lock garbage collected</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physical Lock Summary</th>
<th>per sec</th>
<th>per xact</th>
<th>count</th>
<th>% of total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster Lock Requests</td>
<td>17.6</td>
<td>82.3</td>
<td>247</td>
<td>100.0 %</td>
</tr>
<tr>
<td>Local Master</td>
<td>17.6</td>
<td>82.3</td>
<td>247</td>
<td>100.0 %</td>
</tr>
<tr>
<td>Lock Granted</td>
<td>17.6</td>
<td>82.3</td>
<td>247</td>
<td>100.0 %</td>
</tr>
<tr>
<td>Lock Waited</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
<td>0.0 %</td>
</tr>
<tr>
<td>Downgrade Req Recv</td>
<td>0.1</td>
<td>n/a</td>
<td>2</td>
<td>n/a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Logical Lock Summary</th>
<th>per sec</th>
<th>per xact</th>
<th>count</th>
<th>% of total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster Lock Requests</td>
<td>50.0</td>
<td>233.3</td>
<td>700</td>
<td>100.0 %</td>
</tr>
<tr>
<td>Local Master</td>
<td>49.0</td>
<td>228.7</td>
<td>686</td>
<td>98.0 %</td>
</tr>
<tr>
<td>Lock Granted</td>
<td>50.0</td>
<td>233.3</td>
<td>700</td>
<td>100.0 %</td>
</tr>
<tr>
<td>Lock Waited</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
<td>0.0 %</td>
</tr>
<tr>
<td>Downgrade Req Recv</td>
<td>0.0</td>
<td>n/a</td>
<td>0</td>
<td>n/a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Object Lock Summary</th>
<th>per sec</th>
<th>per xact</th>
<th>count</th>
<th>% of total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>Cluster Lock Requests</td>
<td>188.3</td>
<td>878.7</td>
<td>2636</td>
<td>100.0 %</td>
</tr>
<tr>
<td>Local Master</td>
<td>34.9</td>
<td>163.0</td>
<td>489</td>
<td>18.6 %</td>
</tr>
<tr>
<td>Lock Granted</td>
<td>188.3</td>
<td>878.7</td>
<td>2636</td>
<td>100.0 %</td>
</tr>
<tr>
<td>Lock Waited</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
<td>0.0 %</td>
</tr>
<tr>
<td>Downgrade Req Recv</td>
<td>8.2</td>
<td>n/a</td>
<td>115</td>
<td>n/a</td>
</tr>
</tbody>
</table>

sp_sysmon reports on the following activities for cluster locks:

- **Lock Garbage Collection** – number of times lock garbage collection ran. A large number of garbage collections per second indicates the cluster has an insufficient number of locks.

- **Targeted Collection Success** – number of times lock garbage collection was able to successfully reclaim the targeted number of locks. The Cluster Edition determines the target number for locks internally, and is not a configurable parameter. A low number of garbage collections per second indicates the cluster has an insufficient number of locks or insufficient amount of CIPC message space available.

- **Cluster Lock Requests** – number of user physical, logical, or object lock requests that cannot be granted because of retention and require cluster communication. A high value indicates a lot of cluster traffic.

- **Local Master** – number of physical, logical, or object locks that have a local master. A higher value indicates ideal lock, possibly indicating smaller overhead while serving cluster lock requests.

If the Cluster Edition cannot find the local master:

- You may need to reassess your application partitioning.
- A single instance has too great a load, which is leading to load balancing of master to remote instance. Consider changing your workload pattern and schema (such as partitioning your data).

- **Lock Granted** – number of cluster lock requests that wait for a remote instance that owns the cluster lock with no conflicting task ownership. A high value for Lock Granted indicates conflicting lock requests from multiple instances in cluster. Reassess your application partitioning.

- **Lock Waited** – number of cluster lock requests that wait for a remote instance that owns the cluster lock with conflicting task ownership. A high value for Lock Waited indicates lock level contention: two tasks on different instances are attempting to acquire the same lock and are in conflict. To rectify, reassess your application partitioning.
Stored procedures

- Downgrade Req Recv – displays the number of downgrade requests sent by a remote instance when it asks for a lock that is owned by the local instance.

instance_name parameter added

These system procedures add the `instance_name` parameter to their syntax.

sp_cacheconfig

`sp_cacheconfig` includes the instance `instance_name` parameter so you can create, drop, or modify the size of a cache on a specific instance.

Syntax

```
sp_cacheconfig "[cachename [,cache_size [P|K|M|G]]
[logonly | mixed ][strict | relaxed ]
[,"cache_partition = [1|2|4|8|16|32|64"]
[,"instance instance_name"]"
```

where `instance_name` is the name of the instance whose cache you are adjusting.

Examples

This example displays the cache for instance blade1:

```
sp_cacheconfig 'instance blade1'
```

This example sets the size of the Sales Cache size on blade1 to 100 megabytes:

```
sp_cacheconfig 'Sales Cache', '100M', 'instance blade1'
```

This example sets the size of the Sales Cache size on blade1 to 0 megabytes, effectively dropping the cache.

```
sp_cacheconfig 'Sales Cache', '0M', 'instance blade1'
```

This example displays the cache configuration for the entire cluster:

```
sp_cacheconfig
```

Usage

- If you do not specify an `instance_name`, the cache for the cluster is displayed.

sp_poolconfig

`sp_poolconfig` includes the instance `instance_name` parameter so you can create, drop, or modify the size of a buffer pool for a named cache on a specific instance.

Syntax

```
sp_poolconfig cache_name [, "mem_size [P|K|M|G]", "config_pool"
[, "affected_poolK"] [, 'instance instance_name']
```

Adaptive Server Enterprise Cluster Edition
where instance_name is the name of the instance whose buffer pool you are adjusting.

Examples

Creates a a 16KB buffer pool of size 25MB in the default data cache on instance blade1:

```
sp_poolconfig 'default data cache', '25M', '16K', 'instance blade1'
```

Displays the buffer pool configuration in the default data cache on instance blade1:

```
sp_poolconfig 'default data cache', 'instance blade1'
```

Displays the buffer pool configuration for named cache c_log on all instances in the cluster:

```
sp_poolconfig c_log
```

sp_helpcache

Allows you to display cache information for a specific instance. If you do not specify an instance_name, sp_helpcache displays information for all caches.

Syntax

```
[sp_helpcache][cache_name [, 'sizeP|K|M|G']][, 'instance instance_name']
```

where instance_name is the name of the instance whose cache you are investigating.

Examples

Displays cache information for all caches:

```
sp_helpcache
```

Displays the overhead for the cache C2 on instance “blade1” for size 10M:

```
sp_helpcache 'C2', '10M', 'instance blade1'
```

sp_tempdb

Description

sp_tempdb allows users to:

- Create and manage temporary database groups.
- Bind users or applications to the default or other temporary database group or to a specific local temporary database.
- Manage bindings to local temporary databases and temporary database groups.

These bindings are stored in the sysattributes table in master database.
sp_tempdb provides the binding interface for maintaining bindings in sysattributes that are related to the multiple temporary database.

Note This reference page contains information specific to the Cluster Edition. See the Reference Manual: Procedures for complete information for sp_tempdb.

Syntax

```plaintext
sp_tempdb [  
    [ { "create" | "drop" }, "groupname" ]  
  |  
    [ { "add" | "remove" }, "tempdbname", "groupname" ]  
  |  
    [ { "bind", "obtype", "objname", "bindtype", "bindobj"  
      [, "scope", "hardness"] }  
      |  
    [ { "unbind", "obtype", "objname"  
      [, "scope", "instance_name"] }  
      |  
    [ "unbindall_db", "tempdbname" ]  
  |  
    [ "unbindall_gr", "groupname" ]  
  |  
    [ show [, "all" | "gr" | "db" | "login" | "app", "name"] ]  
  |  
    [ who, "dbname"]  
  |  
    [ help ] ]
```

Parameters

- **create** – creates a temporary database group.
- **drop** – drops a temporary database group.
- **groupname** – is the name of the temporary database group.
- **add** – adds a temporary database to a temporary database group.
- **remove** – removes a temporary database from a temporary database group.
- **tempdbname** – is the name of the temporary database you are adding or removing.
- **bind** – binds logins and applications to a temporary database or temporary database group.
- **unbind** – unbinds logins and applications to a temporary database or temporary database group.
- **instance_name** – is the name of the instance owning the local temporary database that is to be unbound. This option is for the Cluster Edition only.
- **obtype** – is the object type. Valid values are:
 - login_name (or LG)
 - application_name (or AP)

Values are not case-sensitive.
- **objname** – is the name of the object you bind or unbind.
CHAPTER 15 System Changes

- **bindtype** – is the bind type. Valid values are:
 - **group** (or **GR**)
 - **database** (or **DB**)

Values are not case sensitive.

- **bindobj** – is the name of the object being bound, and is either a group or a database depending on the **bindtype**.

- **scope** – NULL

- **hardness** – is **hard**, **soft**, or NULL. The default is **soft**.
 When you set the value of **hardness** to **hard**, a failure to assign a temporary database according to the binding results in a failure of the login.
 When you set the value to **soft**, such a failure results in the assignment of a temporary database from the default group or a local system temporary database.

- **unbindall_db** – removes all login and application bindings for a given temporary database. It does not remove any database to group memberships. The **tempdbname** variable is required with this option.

Existing assignments to active sessions are not affected by this operation.

- **unbindall_gr groupname** – removes all login and application bindings for a given temporary database group.

- **show** – displays information stored in the **sysattributes** table about the existing groups, group members, login and application bindings, and active sessions that are assigned to a given database. The values are:
 - **all** or no argument – displays all temporary database groups, all database-to-group memberships, and all login and application bindings.
 - **gr** – displays all temporary database groups. If you specify **name**, displays all members of the group.
 - **db** – displays all databases to group memberships. If you provide **name**, then only the database-to-group memberships for the database **name** are printed.
 - **login** – displays all login bindings where login is not NULL. If you provide **name**, only the bindings for the login **name** are printed.
 - **app** – displays all bindings where the application is not NULL. If you provide **name**, the bindings for the application **name** are printed.
Stored procedures

- who – displays all active sessions assigned to the given temporary database. When using the who parameter, you must use:
 - dbname – is the name of a temporary database. If you provide a nontemporary database name for dbname, sp_tempdb who executes, but does not report any active sessions bound to it.

 If system_view is set to cluster, all active sessions of the cluster are examined. If system_view is set to instance, sessions that are active on the current instance are examined

 This command may be executed from any instance in the cluster.

- help – displays usage information. Executing sp_tempdb without specifying a command is the same as executing sp_tempdb “help”.

Usage

- For the Cluster Edition, tempdbname must be a local user temporary database.
Configuration parameters

This section describes new and changed configuration parameters.

New configuration parameters

The Cluster Edition introduces the “shared-disk cluster” configuration group in the server configuration file. The configuration parameters in this group are defined below.

cluster heartbeat interval

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

cluster heartbeat interval controls the interval that cluster instances use to send and check the heartbeat status.

Using a lower value for cluster heartbeat interval reduces the failure detection time but increases the risk of a false failure because of a transient problem (such as an overloaded CPU). Tuning cluster heartbeat interval to a larger value reduces the risk of a false failure but increases the time needed to detect a failure.

cluster heartbeat retries

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>
Configuration parameters

cluster heartbeat retries controls the number of times an instance retries a failed cluster heartbeat before entering failure mode.

Tuning **cluster heartbeat retries** to a lower value reduces the time to detect failure but increases the risk of a false failure because of a transient problem (such as an overloaded CPU). Tuning **cluster heartbeat retries** to a larger value reduces the risk of a false failure but increases the time needed to detect a failure.

cluster vote timeout

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

cluster vote timeout controls the maximum amount of time an instance waits for other instances to vote during the voting period. An instance waits only for those instances which it believes are running.

Tuning **cluster vote timeout** to a lower value can reduce failover time, but increases the risk that an instance that is running is excluded from the new cluster view. Tuning **cluster vote timeout** to a larger value reduces the risk that an running instance is excluded from the new cluster view, but may increase failover time.

idle migration timeout

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>
idle migration timeout specifies the amount of time after which an idle connection is closed without invalidating the migration request sent to the client, allowing you to stop an instance after a specified period of time without waiting for idle client connections to migrate.

Setting idle migration timeout to a high value slows down a graceful shutdown because the instance must wait the specified period of time for all idle connections that issued a migration request without the client having initiated migration.

session migration timeout

Summary information

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

session migration timeout specifies the amount of time available for a client to complete a migration by connecting to the target instance. If the client does not migrate to the target instance in the time allotted, Adaptive Server fails the connection.

quorum heartbeat interval

Summary information

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>
quorum heartbeat interval specifies the number of seconds between quorum heartbeats. Setting quorum heartbeat interval to a lower number increases the heartbeat overhead but speeds the detection of a lost disk link, resulting in a quicker termination of an instance for which you have set I/O fencing or that has lost its SAN link. Setting quorum heartbeat interval to a high number reduces heartbeat overhead, but delays the detection of a lost disk link.

quorum heartbeat retries

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

quorum heartbeat retries specifies the number of times an instance retries a failed quorum heartbeat before exiting. A value of 2 indicates that an instance terminates after the third consecutive quorum heartbeat failure. Tuning quorum heartbeat retries to a low number causes a faster failover when access to the quorum device is lost on a given instance, possibly improving an application’s recovery time as the risk of failing an instance due to a transient condition is reduced. Setting this parameter to a high number degrades application recovery after an instance loses access to the shared disks, reducing the chances that a transient disk access problem can cause an instance failure.

Note Setting quorum heartbeat interval to the default (5) and quorum heartbeat retries to its default (2) implies the time from disk failure detection to instance shutdown is between 10 and 15 seconds, consisting of 0 to 5 seconds for the first heartbeat failure and 5 seconds for each of two retries.

automatic cluster takeover

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
</tbody>
</table>

Note Setting quorum heartbeat interval to the default (5) and quorum heartbeat retries to its default (2) implies the time from disk failure detection to instance shutdown is between 10 and 15 seconds, consisting of 0 to 5 seconds for the first heartbeat failure and 5 seconds for each of two retries.
Setting automatic cluster takeover to 1 allows an instance that is starting to automatically recover from an abrupt total cluster failure. If you set automatic cluster takeover to 0, the cluster may not be able to recover from an abrupt cluster failover unless you include the --cluster_takeover parameter.

The Cluster Edition uses quorum heartbeats and a cluster takeover algorithm to determine when cluster takeover should be performed. This algorithm allows an instance that is starting to distinguish between an inability to join the cluster because the cluster has crashed (in which case takeover is appropriate) and an inability to join the cluster because the instance that is starting does not have network connectivity (in which case takeover is not appropriate).

If you disable automatic cluster takeover (set it to 0), The Cluster Edition writes the results of the algorithm to the error log as an advisory message and then exits.

If you enable automatic cluster takeover (set it to 1), the Cluster Edition starts as the cluster coordinator and recovers the databases. This is guaranteed to be a safe operation in environments that have I/O fencing enabled.

In environments without I/O fencing, a malfunction of the algorithm could introduce data corruption, so you can set the configuration parameter to 0 to disable this algorithm. However, environments without I/O fencing have a risk of data corruption, and disabling automatic cluster takeover does not mitigate all of those risks.
Configuration parameters

Setting enable i/o fencing to 1 enables I/O fencing for each database device that supports the SCSI-3 Persistent Group Reservation (PGR) standard.

enable backupserver HA

Summary information

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>1</td>
</tr>
<tr>
<td>Valid values</td>
<td>1 (enabled), 0 (disabled)</td>
</tr>
<tr>
<td>Status</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Display level</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration group</td>
<td>Shared disk cluster</td>
</tr>
</tbody>
</table>

Setting enable backupserver HA to 1 starts the high availability Backup Server for the cluster. Setting enable backupserver HA to 0 disables the high availability Backup Server on the cluster.

CIPC large message pool size

Summary information

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>512</td>
</tr>
<tr>
<td>Valid values</td>
<td>512 – 2147483647</td>
</tr>
<tr>
<td>Status</td>
<td>Static</td>
</tr>
<tr>
<td>Display level</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
<tr>
<td>Configuration group</td>
<td>Shared disk cluster</td>
</tr>
</tbody>
</table>

CIPC large message pool size specifies the number of large message buffers allocated by CIPC at start-up time.

CIPC regular message pool size

Summary information

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>8192</td>
</tr>
<tr>
<td>Valid values</td>
<td>2048 – 2147483647</td>
</tr>
<tr>
<td>Status</td>
<td>Static</td>
</tr>
<tr>
<td>Display level</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Required role</td>
<td>System administrator</td>
</tr>
</tbody>
</table>

CIPC regular message pool size

Adaptive Server Enterprise Cluster Edition
CIPC regular message pool size specifies the number of regular message buffer allocated by CIPC at start-up time.

DMA object pool size

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

DMA object pool size specifies the number of DMA (direct memory access) objects allocated by CIPC at start-up time.

workload manager cache size

<table>
<thead>
<tr>
<th>Summary information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
</tr>
<tr>
<td>Valid values</td>
</tr>
<tr>
<td>Status</td>
</tr>
<tr>
<td>Display level</td>
</tr>
<tr>
<td>Required role</td>
</tr>
<tr>
<td>Configuration group</td>
</tr>
</tbody>
</table>

Workload manager cache size specifies the maximum amount of memory, in 2K pages, that the workload manager can use. See Chapter 6, “Managing the Workload.”
Configuration parameters

Changed configuration parameters

cis_rpc_handling

number of open databases

In non-clustered versions of Adaptive Server, the minimum value for number of open databases was 5. For the Cluster Edition, the minimum value for number of open databases is 6.

number of pre-allocated extents

- In earlier versions of Adaptive Server, the maximum value allowed for number of pre-allocated extents was 31. For the Cluster Edition the maximum values for number of pre-allocated extents is 32.

Using a value of 32 for number of pre-allocated extents has a special significance for configuration and impacts the space allocations Adaptive Server performs internally. If you set number of pre-allocated extents to 32, Adaptive Server reserves an entire allocation unit worth of extents for utility operations like BCP-in and select into, both of which use the large-scale allocation scheme of space reservation. This greatly improves the performance of these utilities, particularly when you run them concurrently on multiple nodes. Consequently, using a value of 32 guarantees that each node of a cluster is able to work independently on its own allocation unit without interference from the other nodes.

- In earlier versions of Adaptive Server, the number of pre-allocated extents parameter specified the number of extents reserved in a single allocation call for tables of all sizes.

With this version of Adaptive Server, the value of number of pre-allocated extents is ignored for large tables with 240 or more pages for these commands only:

- alter table table_name add column_name . . .
- alter table table_name modify column_name . . .
- alter table table_name drop column_name . . .
• alter table lock . . .
• reorg rebuild

When you run these command on tables larger than 240 pages, Adaptive Server reserves an entire allocation unit (32 extents), which greatly improves performance, particularly when you run them concurrently on multiple nodes.

The value of number of pre-allocated extents continues to be observed for the above commands for tables with fewer than 240 pages, and for all commands (such as select into, bcp, alter table partition) for tables of all sizes.

Runnable process search count

In non-clustered versions of Adaptive Server, the default value for runnable process search count is 2000. For the Cluster Edition, the default value for runnable process search count is 3. The change from 2000 to 3 ensures that Adaptive Server does not overuse the CPU during system idle times.

Runnable process search count controls the number of times an Adaptive Server engine loops while looking for a runnable task before releasing the CPU to the operating system. A low value for runnable process search count is useful when other applications (for example, Adaptive Server clients, operating system kernel threads, or non–Adaptive Server applications) run on the same machine as Adaptive Server.

With a runnable process search count value of 3, the Cluster Edition can better share the system CPU with other processes running on the same machine. However, if runnable process search count is 3 and Adaptive Server is running as a stand-alone process, users may experience delays in server response times. In this case, reset runnable process search count to 2000.

Utilities

This section describes new and changed utilities.
New utilities

sybcluster

The sybcluster utility lets you set up, configure, and manage a shared-disk cluster. See the Cluster Edition Installation Guide for instructions on how to configure the cluster using sybcluster; see Chapter 16, “The sybcluster Utility,” for syntax and usage information.

qrmutil

qrmutil is a command line utility that allows you to back up, restore, and reconfigure the quorum device. qrmutil is located in $SYBASE/$SYBASE_ASE/bin.

Syntax

```bash
--additional-run-parameters=parameter_list
--ase-config-extract=file_name
--ase-config-info
--ase-config-store=file_name
--ase-config-version=version_number
--buildquorum=[force]--cluster-take-over
--config-file=file_name
--diag={all | boot | toc | nodes | locks | config | cms}
--display={boot | nodes | heartbeat | master | cluster | instance | config | state}
--drop-cluster=[force]
--drop-instance=instance_name
--errorlog=file_name
--extract-config=file_name
-h, --help
-F, --cluster-input=file_name
--fence-capable=device_path
--installation=installation_mode
-s, --instance=instance_name
--instance-node=node_name
--interfaces-dir=path_to_interfaces_file
--max-instances=number_of_instances
--master-dev=master_device
--membership-mode=membership_mode
--primary-address=interconnect_address
--primary-port=port_number
--primary-protocol=protocol
-Q, --quorum-dev=quorum_device
--register-node=node_name
--secondary-address=interconnect_address
--secondary-port=port_number
--secondary-protocol=protocol
--traceflags=traceflag_list
```
Parameters

• `--additional-run-parameters=parameter_list` – parameters that Unified Agent uses to start the data server. Unlike other settings, `dataserver` does not read the additional run parameters. They are read by the unified agent and passed to the `dataserver` command line. If you include the `--instance` parameter, the additional run parameters apply to the specified instance. Otherwise, the additional run parameters apply to all instances in the cluster.

• `--ase-config-extract=file_name` – extracts the Adaptive Server configuration file stored on the quorum device to the named file.

• `--ase-config-info` – displays information about the Adaptive Server configuration file stored on the quorum device.

• `--ase-config-store=file_name` – stores the named file in the quorum device as the Adaptive Server configuration file.

• `--ase-config-version=[version_number]` – displays or sets the version of the master Adaptive Server configuration file stored on the quorum device.

• `--buildquorum=[force]` – builds a new quorum device. Use `=force` to overwrite an exiting file or an existing quorum device on a raw partition. You must include the `--cluster-input` parameter with `--buildquorum`.

• `--config-file=config_file_name` – if used with `--instance`, sets this path to the Adaptive Server configuration file for the specified instance. If you do not include `--instance`, sets the path to the cluster-wide configuration file.

• `--diag={all | boot | toc | nodes | locks | config | cms}` – for internal use only.

• `--display={boot | nodes | heartbeat | master | cluster | instance | config | state}` – displays the current state of cluster or instance:
 • `boot` – displays start-up information for the cluster, including the version of the quorum device, any trace flags issued at start-up, the boot ID of the cluster, and any messages displayed at start-up.
 • `nodes` – displays the registered management nodes.
 • `heartbeat` – displays heartbeat information for all nodes in the cluster.
 • `master` – displays master device information.
 • `cluster` – displays the cluster configuration.
Utilities

- **instance** – displays the instance configuration. You must include
 \--instance=instance_name with this parameter.

- **config** – displays configuration for the cluster and for all instances in
 the cluster.

- **state** – displays the current state for the cluster and for all instances in
 the cluster.

- **\--drop-cluster=[force]** – drops a cluster and removes the quorum device.
 Use =force to force the drop if the quorum indicates the cluster is running.

 Warning! --drop-cluster removes the cluster.

- **\--drop-instance=instance_name** – Sybase internal use only.

 Warning! Use the sybcluster utility to drop an instance from the cluster.

- **\--errorlog=log_file_name** – full path to the error log for the specified
 instance. You must include the -instance-name parameter. Takes effect at
 next restart of the instance.

- **\--extract-config=file_name** – extracts the configuration area of the quorum
 device to the specified file.

- **-h | --help** – displays the full syntax of qrmutil.

- **-F | cluster-input=file_name** – loads the cluster configuration from the
 specified cluster input file.

- **\--fence-capable=device_path** – tests if specified device can be used for I/O
 fencing. Returns either “Device is fence capable” or “Device is not fence
 capable”.

- **\--installation=installation_mode** – changes the installation mode for the
 cluster. Values are:
 - shared (default)
 - private

- **\--instance=instance_name** – applies qrmutil parameters to a specified
 instance.

- **\--interfaces-dir=interfaces_path** – the path to a directory that contains a file
 named interfaces. If this parameter is used with --instance, it sets the path
 to the interfaces file for the specified instance. If --instance is not included,
 sets the path to the cluster-wide interfaces file.
--max-instances=number_of_instances -- sets the maximum number of instances for the cluster configuration.

--master-dev=master_device_name -- changes the master device the cluster uses.

--membership-mode=membership_mode -- sets the membership mode (see Chapter 11, “Using the Cluster Edition with the Veritas Cluster Server”). Values are:

- native (default)
- vcs

--primary-address=interconnect_address -- changes the primary interconnect address for a given instance.

--primary-port=port_number -- changes the starting port number for the primary interconnect for a given instance.

--primary-protocol=protocol -- changes the protocol used for the primary cluster interconnect.

-Q | --quorum-dev=quorum_path -- specifies the full path to the quorum device.

--register-node=node_name -- registers a node for quorum management.

--secondary-address=interconnect_address -- changes the secondary interconnect address for a given instance.

--secondary-port=port_number -- changes the starting port number for the secondary interconnect for a given instance.

--secondary-protocol=protocol -- changes the protocol used for the secondary cluster interconnect.

--traceflags=trace_flag, trace_flag -- changes the cluster-wide or the instance-specific trace flags for start-up. If you do not include a list of trace flags, qrmutil clears the trace flags for the cluster instance.

--unregister-node=node_name -- unregisters a node from quorum management.

--verify-node=node_name -- indicates that the specified node is registered on the quorum device.

-v | --version -- displays the version information for the qrmutil utility.

Examples

Example 1 This example changes the path to the error log to /sybase/opt/cluster/ASE-15_0/ase1.log:
Utilities

qrmutil --quorum_dev=/dev/raw/raw101 --instance=ase1 --errorlog=/sybase/cluster/ASE-15_0/ASE-15_0/ase1.log

Example 2 This example registers the node “blade5” for mycluster:

qrmutil --quorum_dev=/dev/raw/raw101 --register-node=blade5

Example 3 This example creates a new quorum device for the cluster “mycluster”:

qrmutil --quorum-dev=/dev/raw/raw101 --cluster-input=/sybase/cluster/ase1.inp -buildquorum

Example 4 This example backs up the quorum device to /sybase/cluster_bak/quorum.bak:

qrmutil --quorum-dev=/dev/raw/raw101 --extract-config=/sybase/cluster_bak/quorum.bak

Example 5 This example restores the quorum device from the backup created in /sybase/cluster_bak/quorum.bak:

qrmutil --quorum-dev=/dev/raw/raw101 --cluster-input=/sybase/cluster_bak/quorum.bak/quorum.bak --buildquorum=force

Example 6 This example displays the cluster configuration stored on the quorum device:

qrmutil --quorum-dev=/dev/raw/raw101 --display=config

Example 7 This example tests whether the named device can be fenced:

qrmutil --quorum-dev=/dev/raw/raw101 --fence-capable=/dev/raw/raw106

Usage

- qrmutil is primarily a diagnostic utility. Sybase recommends that you use sybcluster to make configuration changes to the cluster.
- You can pass as many as 20 commands to qrmutil. However, you can specify the --instance= parameter only once.
- If you specify --buildquorum, the quorum is built and qrmutil exits without running any commands other than --cluster-input.
- qrmutil exits after it executes the --drop-cluster parameter.
- This is an example of using multiple commands:

qrmutil --quorum-dev=/dev/raw/raw101 --display-cluster --register-node=blade1 --unregister-node=blade2 --verify-node=blade3
Changes to utility programs

bcp

- Versions earlier than 15.0.3 did not allow you to run fast bcp on tables with non-clustered indexes or triggers. Cluster Edition version 15.0.3 and later removes this restriction. See the Utility Guide.

dataserver

For the Cluster Edition, several parameters have been added to the dataserver utility for starting and configuring a cluster.

Syntax

This is the complete syntax for the dataserver command:

```
dataserver
-u, --admin-name=sa/sso_name
--buildquorum=[force]
-a, --caps-file=filename
-F, --cluster-input=filename
--cluster-takeover
-L, --conn-config-file=[filename]
--create-cluster-id [=quorum]
-D, --default-db-size=size_spec
-e, --error-log=[filename]
-G, --event-log-server=logserv_name
-f, --forcebuild
-H, --ha-server
-h, --help=[{0|1|2|3}[,display_width]]
--instance=instance_name
-y, --key-password=[key_password]
-K, --keytab-file=filename
-N, --license-prop-file=filename
-z, --logical-page-size=page_size
-Z, --master-db-size=size_spec
-d, --master-dev=master_device_name
-b, --master-dev-size=[size_spec]
-r, --master-mirror=filename
-m, --masterrecover
-g, --no-event-logging
-Q, --quorum-dev=quorum_dev
-q, --recover-quiesced
-w, --rewrite-db=database_name
-p, --sa-name=(SSO_login_account | sso_role | sa_role)
-k, --server-principal=s_principal
-M, --shared-mem-dir=directory_name
-X, --sybmon
```
Utilities

-\,--trace=trace_flag
-\,--version

Parameters

- --quorum-dev=path_to_quorum_device – is the absolute path to the quorum device. It signals Adaptive Server to start as a shared-disk cluster. This is a required parameter for starting the Cluster Edition.

- --cluster-input=input_file_name – loads the cluster configuration from the specified input file into the quorum device. Required when you include --buildquorum. You can use this parameter without buildquorum, but only when no other instances are running.

- --instance=instance_name – name of the instance to start.

- --create-cluster-id [=quorum] – pairs the master device and the quorum device. This parameter may be required in a disaster recovery situation. Use this parameter with caution because it overrides a safety feature that prevents the Cluster Edition from starting with the wrong combination of master and quorum devices.

 The optional =quorum argument copies the existing identifier from the master device to the quorum device, writing the same unique ID to both quorum devices, allowing the master device to switch between them.

 Note Be very careful when using the --create-cluster-id=quorum parameter. The Adaptive Server algorithms that prevent you from starting an instance that is already running, or two instances from simultaneously becoming the coordinator, are based on the quorum device. The unique ID that pairs the quorum device to the master device ensures that only one quorum device can be used with that master. This unique ID protects you from accidentally starting two clusters that use independent quorum devices but the same master device. Using the --create-cluster-id=quorum parameter weakens this protection by creating two quorums that use the same master device. The system administrator must verify that only one quorum is used at a time.

- --buildquorum[=force] – creates a new quorum device. The force option overwrites an existing quorum device. This parameter requires that you include --cluster-input.

- --cluster-takeover – used to perform a cluster takeover when you set automatic cluster takeover to zero (0). A cluster takeover is necessary when an abrupt total cluster failure leaves stale state information on the quorum device.

See the *Utilities Guide* for a complete description of the dataserver parameters.
Examples

Example 1 Create a new master and quorum device. The parameters in this example specify a 500 megabyte master device with a four kilobyte logical page size. The location of the master device, interface configuration file, interfaces path, and error log are specified in the cluster input file *mycluster.inp*. The name of the instance creating the quorum and master devices is "myase1":

```
dataserver --quorum-dev=/dev/raw/raw101 --buildquorum --cluster-input=mycluster.inp --logical-page-size=4K --master-dev-size=500M --instance=myase1
```

After the master database is built and the server is shut down, you can restart the instance with this:

```
dataserver --quorum-dev=/dev/raw/raw101 --instance=myase1
```

Example 2 Starts the instance myase2 as part of the cluster created in Example 1:

```
dataserver --quorum-dev=/dev/raw/raw101 --instance=myase2
```

Example 3 Recreates the quorum device for mycluster without overwriting the master device (starting the instance “myase1”). The cluster must be shutdown before rebuilding the quorum:

```
dataserver --quorum-dev=/dev/raw/raw101 --buildquorum --cluster-input=mycluster.inp --instance=myase1
```

Reload the cluster configuration from the *mycluster.inp* input file without recreating the quorum device or the master device (the cluster must be shutdown first):

```
dataserver --quorum-dev=/dev/raw/raw101 --cluster-input=mycluster.inp --instance=myase1
```

Usage

- The Cluster Edition pairs the master device with the quorum device to prevent you from accidentally starting your master device in multiple clusters. You can use `--create-cluster-id` to establish a relationship between an existing master device and an existing quorum device.
- The `dataserver` command can read the following start options from the quorum device:
 - `-d` / `--master-dev`
 - `-e` / `--error-log`
 - `-c` / `--config-file`
 - `-i` / `--interface-dir`
 - `-T` / `--trace`
- Options are honored in the following order:
Utilities

- Options that are passed to `dataserver`.
- Options in the instance section of the cluster configuration file stored on the quorum device.
- Options in the cluster section of the cluster configuration file stored on the quorum device.

In many cases you can start an instance by providing only the `--quorum-dev` and `--instance` parameters. However, any traceflags passed to `dataserver` with the `-T` or `--trace` parameters are combined with any traceflags stored on the quorum device.

`dataserver` does not honor the "additional run parameters" stored on the quorum device. These must be explicitly passed to `dataserver` (the values stored on the quorum device are read by the Unified Agent and passed to `dataserver` when it is started by the agent).

Resetting the SSO, sa_role, and sso_role passwords

Because Adaptive Server stores its passwords using a secure, one-way hash algorithm, you cannot recover forgotten passwords. The `dataserver -p` parameter generates new passwords for the system security officer login accounts and the system security officer (sso_role) and system administrator (sa_role) role accounts. Perform one of the following to reset the password:

1. Restart any instance with `dataserver -p` parameter.
2. Add a new instance with the `dataserver -p` parameter.

You must use the most recently generated password if more than one instance generates the password using the `dataserver -p` parameter. Once the Cluster Edition generates the password, reset the password to a more secure one.

`ddlgen`

`ddlgen` adds these features for Adaptive Server 15.0.3:

- `ddlgen` includes a new object type, LC, which allows you to generate DDL for one or all logical clusters on a server.

 To generate DDL for a specific logical cluster, the syntax is:

  ```
  ddlgen -U user_name -P password -S [ server_name | host:port ]
  -TLC -N lc_name
  ```

 For example, to generate DDL for "my_lcluster" on server "ase1", enter:

  ```
  ddlgen -Usa -P -Sase1 -TLC -Nmy_lcluster
  ```
• To generate DDL for all logical clusters on a server, the syntax is:

 ddlegen -U user_name -P password -S server_name | host:port | TLC -N%

 For example, to generate DDL for all logical cluster on server “ase1”, enter:

 ddlegen -Usa -P -Sase1 -TLC -N%

 ddlegen includes the new -XOU extended type for global caches and the new -XOD extended type for local caches.

• To generate DDL for all caches, both global and private, the syntax is:

 ddlegen -U user_name -P password -S server_name | host:port | TC -N%

• To generate DDL for all global caches, the syntax is:

 ddlegen -U user_name -P password -S server_name | host:port | TC -N% -XOD

• To generate DDL for all local caches for all instances, the syntax is:

 ddlegen -U user_name -P password -S server_name | host:port | TC -N%.% -XOD

• To generate DDL for all local caches for a particular instance, the syntax is:

 ddlegen -U user_name -P password -S server_name | host:port | TC -Ninstance_name.% -XOD

• To generate DDL for a global cache, the syntax is:

 ddlegen -U user_name -P password -S server_name | host:port | TC -Ncache_name

• To generate DDL for a local cache for a particular instance, the syntax is:

 ddlegen -U user_name -P password -S server_name | host:port | TC -Ninstance_name.cache_name

isql

• A new isql option -X enables both extended password encrypted connections and password encrypted connections without plain text password reconnection. The password-enabled connection proceeds according to server capabilities:
System tables

- If the server can handle both extended password and password encryption, extended password encryption negotiations are used.
- If the server can handle password encryption only, password encryption negotiations are used.
- If the server cannot handle password encryption or extended password encryption, the first connection attempt fails and the client attempts to reconnect using a plain text password.

The option -W disables both extended password and password encrypted negotiations.

System tables

This section describes new and changed system tables for the Cluster Edition.

timestamp columns

In Adaptive Server, if a table includes a timestamp column, its value is updated when a row is changed. Client applications can use this functionality to detect changes to rows using an access method called “optimistic locking.” The values in the timestamp column are unique in a database. However, in the Cluster Edition, timestamp column values are not guaranteed to be in increasing order in a database across tables, but they are guaranteed to be in increasing order for a particular table.

Changed identity values

Identity columns in the Cluster Edition behave differently from those in non-clustered editions of Adaptive Server. Although the Cluster Edition guarantees that identity values are unique, for performance reasons the values may not monotonically increase.
In a non-clustered Adaptive Server, a set of identity values are burned into memory to reduce disk I/Os as inserts access the next value from memory. In the Cluster Edition, the same size set is burned into memory, but the set is split among the cluster instances. In a two-instance cluster with an identity set size of 250000, the first instance inserts values {1,2,3, and so on}, and the second instance inserts values {125000,125001,125002, and so on}.

The next-identity function reports the next identity value for a table from the instance in which next-identity is executed. For example, next-identity returns 4 for instance 1 and 125003 for instance 2.

The behavior of the identity-burn-max remains the same as for a non-clustered Adaptive Server because the burn size and burn behavior is unchanged in the Cluster Edition.

Changed system tables

dbcc_types

The Cluster Edition adds two columns to the `dbcc_types` system table. The columns are:

<table>
<thead>
<tr>
<th>type_code</th>
<th>type_name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>enable dbcc_counter inserts</td>
<td>Enables (1) or disables (0) inserts in the <code>dbcc_counters</code> table.</td>
</tr>
<tr>
<td>12</td>
<td>enable excluded faults inserts</td>
<td>Enables (1) or disables (0) inserts of excluded faults.</td>
</tr>
</tbody>
</table>

See also “sp_dbcc_updateconfig” on page 322.

sysinstances

The Cluster Edition adds the `sysinstances` fake table, which reports on the state of the instances. `sysinstances` includes a row for each instance defined in the cluster configuration.

Although `sysinstances` is a fake table, it is not impacted by the setting of set `system_view`, and always returns a row for each instance, regardless of the `system_view` setting.
System tables

Table 15-2: sysinstances fake table

<table>
<thead>
<tr>
<th>Column name</th>
<th>Datatype</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>tiny int</td>
<td>ID of the instance</td>
</tr>
<tr>
<td>name</td>
<td>varchar(30)</td>
<td>Name of the instance</td>
</tr>
<tr>
<td>state</td>
<td>char(17)</td>
<td>State of the instance (one of online, offline, joining, leaving, and initiating)</td>
</tr>
<tr>
<td>starttime</td>
<td>datetime</td>
<td>Date and time the instance started</td>
</tr>
<tr>
<td>hostname</td>
<td>varchar(255)</td>
<td>Name of the operating system host running this instance</td>
</tr>
<tr>
<td>connections_active</td>
<td>int</td>
<td>Number of active connections on the instance</td>
</tr>
<tr>
<td>engines_online</td>
<td>smallint</td>
<td>Number of online engines for this instance</td>
</tr>
</tbody>
</table>

nodeid renamed

The nodeid column has been renamed instanceid in these system tables:

- sysprocesses
- syslocks
- syscurconfigs
- sysmonitors
- sysengines
- systlisteners
- sysaudits_01 – sysaudits_08
- systransactions
- syssessions
- syscoordinations

Columns added

Table 15-3: Columns added to system tables

<table>
<thead>
<tr>
<th>System table</th>
<th>Column name</th>
<th>Datatype</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sysconfigures</td>
<td>instanceid</td>
<td>tinyint</td>
<td>Indicates the ID of the instance</td>
</tr>
<tr>
<td>sysdatabases</td>
<td>instanceid</td>
<td>tinyint</td>
<td>Indicates the ID of the instance</td>
</tr>
<tr>
<td>sysprocesses</td>
<td>pad</td>
<td>smallint</td>
<td>Column added for alignment purposes</td>
</tr>
</tbody>
</table>
CHAPTER 15 System Changes

Clusters Users Guide

sysservers.srvnetname length change

The maximum length for the srvnetname column of sysservers changed from 32 characters to 255 characters.

spid columns change from smallint to int

The datatypes for the spid column of these tables have been changed from smallint to int:

- sysprocesses.spid
- sysprocesses.fid
- sysprocesses.blocked
- sysprocesses.fid
- syslocks.spid
- syslocks.fid
- sysaudits_01.spid - sysaudits_08.spid
- syslogshold.spid
- systransactions.spid

Because of this change in spid datatype, Sybase strongly recommends that you archive and truncate audit tables before you upgrade. This reduces the likelihood of a failed upgrade because of insufficient space in the sybsecurity database.

Controlling fake-table materialization

Certain stored procedures, such as sp_who and sp_lock, read from fake tables such as sysprocesses and syslocks. Because their rows are not stored on disk, fake tables present an exception to the shared-data nature of a shared-disk cluster, and special features apply.
You can control whether a fake-table query returns rows from the local instance or all instances in the cluster by using the `set system_view` command. `set system_view` is a session-level command. In addition, `set system_view` also controls MDA table materialization.

For information about setting the default system view at the logical-cluster level, see “System-view attribute” on page 101.

By default, Adaptive Server retrieves rows only from the local instance.

- To specify that fake-table queries materialize rows for all instances, use the `cluster` option. For example:
  ```sql
  set system_view cluster
  ```

- To specify that fake-table queries materialize rows for the local instance, use the `instance` option. For example:
  ```sql
  set system_view instance
  ```

To retrieve the current `system_view` setting, select the `@@system_view` global variable.

Adaptive Server supports cluster-wide materialization for these fake tables:
- `sysprocesses`
- `syslocks`
- `sysengines`
- `syslisteners`
- `sysmonitors`
- `syssechmechs`
- `syscurconfigs`

Note `sysinstances` is always set for cluster-wide materialization, regardless of the `system_view` setting.

Monitor tables

Global variables

This section describes changes to global variables.

Table 15-4: Global variables added for the Cluster Edition

<table>
<thead>
<tr>
<th>Global variable</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>@@instanceid</td>
<td>Returns the id of the instance from which it was executed</td>
</tr>
<tr>
<td>@@active_instances</td>
<td>Returns the number of active instances in the cluster</td>
</tr>
<tr>
<td>@@clusterboottime</td>
<td>Returns the date and time the cluster was first started, even if the instance that originally started the cluster start has shut down</td>
</tr>
<tr>
<td>@@clustercoordid</td>
<td>Returns the instance id of the current cluster coordinator</td>
</tr>
<tr>
<td>@@clustermode</td>
<td>Returns the string: “shared-disk cluster”</td>
</tr>
<tr>
<td>@@clustername</td>
<td>Returns the name of the cluster</td>
</tr>
<tr>
<td>@@instancename</td>
<td>Returns the name of the instance from which it was executed</td>
</tr>
<tr>
<td>@@jsinstanceid</td>
<td>Id of the instance on which the Job Scheduler is running, or will run once enabled</td>
</tr>
<tr>
<td>@@quorum_physname</td>
<td>Returns the physical path for the quorum device</td>
</tr>
<tr>
<td>@@system_busy</td>
<td>Number of ticks during which Adaptive Server was running a system task¹</td>
</tr>
<tr>
<td>@@sys_tempdbid</td>
<td>Returns the database id of the executing instance’s effective local system temporary database</td>
</tr>
<tr>
<td>@@system_view</td>
<td>Returns the session-specific system view setting, either “instance” or “cluster”</td>
</tr>
<tr>
<td>@@user_busy</td>
<td>Number of ticks during which Adaptive Server was running a user task¹</td>
</tr>
</tbody>
</table>

¹The value of @@user_busy + @@system_busy should equal the value of @@cpu_busy

For @@servername, the Cluster Edition returns the name of the cluster, not the instance name. Use @@instancename to return the name of the instance.

Considerations for global variables in a clustered environment
In a non-clustered Adaptive Server environment, the value for @@identity changes for every record inserted. If the most recent record inserted contains a column with the IDENTITY property, @@identity is set to the value of this column, otherwise it is set to “0” (an invalid value). This variable is session-specific, and takes its value based on the last insert that occurred during this session.

In a clustered environment, multiple nodes perform inserts on tables, so the session-specific behavior is not retained for @@identity. In a clustered environment, the value for @@identity depends on the last record inserted in the node for the current session and not on the last record inserted in the cluster.

Functions

This section describes new and changed built-in functions.

New functions

These are new functions for the Cluster Edition.

spid_instance_id

Description

Returns the instance id on which the specified process id (spid) is running.

Syntax

spid_instance_id(spid_value)

Parameters

spid_value – the spid number whose instance id is requested.

Example

Returns the id of the instance that is running process id number 27:

```
select spid_instance_id(27)
```

Usage

- If you do not include a spid value, spid_instance_id returns NULL.
- If you enter an invalid or non-existing process id value, spid_instance_id returns NULL.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute spid_instance_id.
instance_id

Description

Returns the id of the named instance, or the instance from which it is issued if you do not provide a value for `name`.

Syntax

```
instance_id([name])
```

Parameters

- `name` – is the name of the instance whose id you are researching.

Example

Returns the id of the local instance:

```
select instance_id()
```

Returns the id of the instance named “myserver1”:

```
select instance_id(myserver1)
```

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute instance_id.

instance_name

Description

Returns the name for the Adaptive Server whose id you provide, or the name of the Adaptive Server from which it is issued if you do not provide a value for id.

Syntax

```
instance_name([id])
```

Parameters

- `id` – id of the Adaptive Server whose name you are researching.

Example

Returns the name of the instance with an id of 12:

```
select instance_name(12)
```

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute instance_name.

lc_name

Description

Returns the name of the logical cluster whose id you provide, or the current logical cluster if you do not provide an id.

Syntax

```
lc_name([lc_id])
```

Parameters

- `lc_id` – id of the logical cluster.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute lc_name.
Functions

lc_id

Description
Returns the id of the logical cluster whose name you provide, or the current logical cluster if you do not provide a name.

Syntax

```sql
lc_id([lc_name])
```

Parameters

- `lc_name` – the name of the logical cluster.

Examples

Standards
ANSI SQL – Compliance level: Transact-SQL extension.

Permissions
Any user can execute `lc_id`.

workload_metric

Description
Queries the current workload metric for the instance you specify, or updates the metric for the instance you specify.

Syntax

```sql
workload_metric( instance_id | instance_name [, new_value ] )
```

Parameters

- `instance_id` – the id of the instance.
- `instance_name` – the name of the instance.
- `new_value` – is a float value representing the new metric.

Examples

Example 1
To see the user metric on the current instance:

```sql
select workload_metric()
```

Example 2
To see the user metric on instance “ase2”:

```sql
select workload_metric("ase2")
```

Example 3
To set the value of the user metric on “ase3” to 27.54:

```sql
select workload_metric("ase3", 27.54)
```

Usage

- A NULL value indicates the current instance.
- If a value is specified for `new_value`, the specified value becomes the current user metric. If a value is not specified for `new_value`, the current workload metric is returned.
- The value of `new_value` must be zero or greater.
- If a value is supplied for `new_value`, `workload_metric` returns that value if the operation is successful. Otherwise, `workload_metric` returns -1.

Standards
ANSI SQL – Compliance level: Transact-SQL extension.

Permissions
The `sa_role` or `ha_role` is required to execute `workload_metric`.
sys_tempdbid

Description
Returns the id of the effective local system temporary database of the specified instance. Returns the id of the effective local system temporary database of the current instance when `instance_id` is not specified.

Syntax
```
sys_tempdbid(instance_id)
```

Examples
Returns the effective local system temporary database id for the instance with an instance id of 3:
```
select sys_tempdbid(3)
```

Usage
If you do not specify an instance id, `sys_tempdbid` returns the id of the effective local system temporary database for the current instance.

Standards
ANSI SQL – Compliance level: Transact-SQL extension.

Permissions
Any user can run `sys_tempdbid`.

sdc_intempdbconfig

Description
Returns 1 if the system is currently in temporary database configuration mode; if not, returns 0.

Syntax
```
sdc_intempdbconfig()
```

Example
```
select sdc_intempdbconfig()
```

Standards
ANSI SQL – Compliance level: Transact-SQL extension.

Permissions
Any user can run `sdc_intempdbconfig`.

db_instanceid

Description
Returns the id of the owning instance of a specified local temporary database. Returns NULL if the specified database is a global temporary database or a nontemporary database.

Syntax
```
db_instanceid(dbid)
db_instanceid(dbname)
```

Usage
- Access to a local temporary database is allowed only from the owning instance. `db_instanceid` determines whether the specified database is a local temporary database, and the owning instance for the local temporary database. You can then connect to the owning instance and access its local temporary database.
- You cannot run `db_instanceid` with no argument.
Functions

\textbf{db_recovery_status}

\textbf{Description}
Returns the recovery status of the specified database. Returns the recovery status of the current database if you do not include a value for \textit{database_ID} or \textit{database_name}.

\textbf{Syntax}
\texttt{db_recovery_status([database_ID | database_name])}

\textbf{Parameters}
- \textit{database_ID} – the id of the database whose recovery status you are requesting.
- \textit{database_name} – the name of the database whose recovery status you are requesting.

\textbf{Examples}
This returns the recovery status of the current database:
\begin{verbatim}
select db_recovery_status()
\end{verbatim}
This returns the recovery status of the database with named \textit{test}:
\begin{verbatim}
select db_recovery_status("test")
\end{verbatim}
This returns the recovery status of a database with a database id of 8:
\begin{verbatim}
select db_recovery_status(8)
\end{verbatim}

\textbf{Usage}
A return value of 0 indicates the database is not in node-failover recovery. A return value of 1 indicates the database is in node-failover recovery.

\textbf{Permissions}
Any user can execute \texttt{db_recovery_status}.

Adaptive Server Enterprise Cluster Edition
This chapter describes the `sybcluster` utility, which you can use to create, start, manage the cluster, and manage instances in the cluster.

`sybcluster`

Description

Manages a Sybase shared-disk cluster. `sybcluster` lets you create, start, stop, and manage a cluster or any instance in a cluster.

Syntax

```bash
sybcluster

[-C cluster_name]
[-d discovery_list]
[-F agent_connection]
[-h]
[-I instance_name]
[-i input_file_path]
[-L]
[-m message_level]
[-P [password]]
[-U user_name] (the default value is "uafadmin")
[-v]
```

Starting `sybcluster`

The recommended method for starting `sybcluster` and connecting to a cluster is:

```bash
sybcluster -U login_name -P password -C cluster_name -F agent_spec
```

Example 1 Starts `sybcluster` using direct connect and default port numbers.

```
sybcluster -U uafadmin -P -C mycluster -F "blade1,blade2,blade3"
```

Example 2 Starts `sybcluster` using direct connect and port numbers.

```
sybcluster -U uafadmin -P -C mycluster -F "blade1:9100,blade2:9292,blade3:9393"
```
Example 3 You can also start sybcluster using discovery. See “-d discovery_list” on page 364.

 sybcluster -U uafadmin -P -C mycluster
 -d "JINI(myjiniserver:4564)"

The -C cluster_name, -P password, -I instance_name, -F agent_connection, and -d discovery_list parameters are default values that can be changed using subsequent sybcluster interactive commands. If you do not specify these values on the sybcluster command line, sybcluster prompts for them as they are required.

You can also start sybcluster and then use the interactive connect command to connect to the cluster. For example:

 sybcluster
 > connect to mycluster login uafadmin password " "
 agent "blade1,blade2,blade3"

Note See “sybcluster interactive commands” on page 65 for syntax and usage descriptions of the sybcluster interactive commands.

Parameters

- C cluster_name
 is the unique name of the Sybase shared-disk cluster to be managed. sybcluster looks up the name in the cluster directory or uses agent discovery services.

- d discovery_list
 specifies the discovery services to be used to discover a shared-disk cluster agent and the discovery order. Discovery services supported for the Cluster Edition are listed in Table 16-1. The format is:

 "method[(method_specification)[,...]]"

For example:

 -d "udp(),jini(jinithost1,jinithost2)"
Table 16-1: Discovery methods

<table>
<thead>
<tr>
<th>Discovery method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDP()</td>
<td>Performs a UDP broadcast and listens for a response from listening Unified Agents. UDP discovery does not cross subnet boundaries.</td>
</tr>
<tr>
<td>JINI(JINI_spec)</td>
<td>Specifies the JINI servers used to look up the locations of nodes in the cluster. The specification form is: <code>host-name[:port_num]</code>. Indicate multiple JINI servers by placing a semicolon between each specification. By default, <code>sybcluster</code> uses port number 4160 to attach to a JINI server. The JINI server must be running, and the management agents (UAF) must be registered with the JINI server. The locations of the nodes, and status of the instances are stored on the JINI server.</td>
</tr>
<tr>
<td>LDAP(LDAP_spec)</td>
<td>Specifies an LDAP server that will be used to look up the locations of the nodes in the cluster. The specification form is: <code>host-name[:port_num]?registry</code>. Indicate multiple LDAP servers by placing a semicolon between each specification. By default, <code>sybcluster</code> uses port number 389 to attach to an LDAP server and the LDAP directory at “cn=ua-registry,ou=ua,dc=sybase,dc=com”.</td>
</tr>
</tbody>
</table>

-F `agent_connection` specifies the agent to be used to access the cluster. The format is:

```
host_name[:port_num] [, host_name[:port_num]]
```

For example:

- F "node1,node2,node3,node4:9999"

The default port number is 9999.

-h displays `sybcluster` syntax and lists supported interactive commands.
-l instance_name
 specifies the instance to be accessed. If you do not specify the -l option when you execute sybcluster, you may need to specify it when entering certain interactive commands. sybcluster uses this name to discover the remote host, and as a default when executing interactive commands. If an interactive command affects multiple instances, the instance identified by -l, if available, is used as the priority connection.

 To override the instance specified by -l, execute the use command in interactive mode.

-i
 specifies an operating system file for input to sybcluster. This file contains sybcluster commands, one command per line. The final command in the file should be quit.

-L
 creates a sybcluster.log file. sybcluster writes all messages to this file irrespective of the message level set by the -m option.

-m message_level
 specifies which sybcluster and unified agent messages are displayed on the client console. Message levels are:
 • 0 – off (no messages to log file or console)
 • 1 – fatal
 • 2 – error
 • 3 – warning
 • 4 – information
 • 5 – debug

 sybcluster displays all messages of the level you choose and all messages of greater severity (with lower numbers). That is, if you select message level 3, sybcluster displays messages of level 3, 2, and 1. The default level is 4.
-P [password]
is the management agent password for the Sybase Common Security Infrastructure in the Unified Agent framework. The default user name after installation is “uafadmin” with no password. This is the Simple Login Module in the Agent configuration. The user and password can be configured to use several different mechanisms for authentication and authorization, including using the running instance and the operating system logins.

If you do not specify the -P option, sybcluster prompts for a password. For a blank or null password, use the -P option without a value or enter a set of quotation marks without content.

You can encrypt the password using the Sybase passencrypt utility. See “Setting the user name and password” on page 270.

-U user_name
is the management agent login name. The default login after installation is “uafadmin.” See the -P description for more information.

-v
displays the sybcluster version number and other information.

sybcluster interactive commands

This section describes the sybcluster interactive commands. Some commands are active before you connect to a cluster (see “Commands active before connecting to a cluster” on page 367); others are active only after you connect to a cluster (see “Commands active after connecting to a cluster” on page 368).

The sybcluster command prompt includes the current cluster and the default instance when these values have been set. The prompt is:

- > – when sybcluster is not connected to a cluster.
- cluster_name> – when sybcluster is connected to a cluster.
- cluster_name instance_name> – when sybcluster is connected to a cluster and a default instance has been set.

These commands are active before you connect to a cluster. They are not available after you connect to a cluster.

Connect

| to cluster_name |
| Login login_name |
| Password [password] |
| Agent agent_spec |
sybcluster

[Discovery discovery_spec]

Create Cluster [cluster_name]
[Login login_name]
[Password password]
[Agent agent_spec]
[Discovery discovery_spec]
[File input_file]

Deploy Plugin
[Login login_name]
[Password password]
[Agent agent_spec]
[Discovery discovery_spec]

Exit

Help

Quit

Show agents
[login login_name]
[password password]
[agent "agent_spec[, agent_spec[...]]"]
[discovery "discovery_spec[, discovery_spec[...]]"]

Upgrade server server_name
[login login_name]
[password password]
[agent agent_spec]
[discovery discovery_spec]
[file input_file_name]
[checkonly]

These commands are active only after you connect to a cluster:

Add
Instance instance_name
file file_name
Backupserver

Create
Backupserver
Monitorserver
Xpsserver

Disconnect

Diagnose
Cluster
Instance instance_name
Drop
 Backupserver
 Cluster
 Instance instance_name
 Monitorserver
 XPServer

Localize

Set
 Cluster
 MaxInst max_num_instances
 Login [login_name] [Password password]
 TraceFlags trace_flag
 Primary Protocol protocol
 Secondary Protocol protocol
 Instance [instance_name]
 LogPath log_file_path
 Primary
 Address ip_address
 Port port_range_start port_range_end
 Secondary
 Address ip_address
 Port port_range_start port_range_end
 StartArgs startup_arguments
 BackupServer
 MonitorServer
 XPServer
 Port

Show
 Cluster
 Config
 Template
 Log
 [Errors]
 [MinSeverity severity_level]
 [StartDate [date_string]]
 [EndDate [date_string]]
 [Last num_of_lines]
 Status
 Instance [instance_name]
 Config
 Log
 [Errors]
 [MinSeverity severity_level]
 [StartDate [date_string]]
 [EndDate [date_string]]
 [Last num_of_lines]
 Status
add backupserver

Description
Configures Backup Server for nodes not already configured for Backup Server.

Syntax
add backupserver

Examples
Adds a Backup Server to “mycluster” on nodes “blade3” and “blade4”.

 add backupserver

Finding nodes for which Backup Server is not configured...
Do you want to configure Backup Server for node "blade3"? [Y]
Please enter the Backup Server port number for node "blade3": 5001
Do you want to configure Backup Server for node "blade4"? [Y]
Please enter the Backup Server port number for node "blade4": 50011

Usage

- You can configure Backup Server for one or more nodes in the cluster.
- add backupserver lets you add additional nodes when configuring for single Backup Servers. You cannot use this command to add multiple Backup Servers.

add instance

Description

Adds one new instance to the cluster. The instance can be added interactively, with sybcluster prompting for necessary configuration information, or through an input file. add instance also creates a local system temporary database for the new instance. add instance prompts vary depending on whether configuration for the cluster is shared or private.

Syntax

add instance instance_name [file "input_file"]

Parameters

- **instance_name**
 is the name of the instance.

- file "input_file"
 specifies a file name that contains the configuration information for adding an instance.

Usage

- add instance creates a local system temporary database for the new instance. Before executing add instance, make sure that a device with sufficient space for the local system database exists.
- The input file for add instance has the same format as the cluster input file. However, the add instance input file may limit the instance definitions to the new instance in the node section.
- add instance may prompt for this information:
 - The instance name, if you did not enter an instance name in the command statement.
 - The node hosting the instance
 - The port number of the UAF agent on the node
 - The query port number
 - The primary and secondary address of the node
• The primary and secondary port specification

• If you have configured single Backup Servers for the cluster, add instance asks whether Backup Server is already configured for the new instance node. If no, add instance asks if Backup Server should be configured. If yes, it prompts for the Backup Server port for the node.

If you have configured multiple Backup Servers for the cluster, add instance prompts for:

• The name of the Backup Server
• The Backup Server log file path
• The Backup Server port for the new instance

add instance also prompts for Monitor Server and XP Server port number information for the new instance.

• If the installation mode is private, add instance prompts for additional information for the new instance:

 • The $SYBASE home directory
 • The environment shell script path
 • The Adaptive Server home directory
 • The server configuration file path
 • The interfaces file path, if LDAP is not configured
connect

Description

Connects to an existing cluster.

Syntax

```
connect [ to cluster_name ]
    [ login login_name ]
    [ password [password ]]
    [ agent "agent_spec [, agent_spec [,...]]"]
    [ discovery "discovery_spec [, discovery_spec [,...]]"]
```

Parameters

- **cluster_name**
 is the name of the cluster to which you are connecting.

- **login login_name**
 is the management agent login for the Sybase Common Security Infrastructure in the Unified Agent framework. The default user name after installation is “uafadmin” with no password; this is the Simple Login Module in the Agent configuration. The user name and password can be configured to use several different mechanisms for authentication and authorization, including operating system logins.

 For information about Sybase Common Security, see *Unified Agent and Agent Management Console Version 2.0 for Windows and UNIX*.

- **password password**
 is the management agent password for the Sybase Common Security Infrastructure in the Unified Agent framework. The default user name after installation is “uafadmin” with no password; this is the Simple Login Module in the Agent configuration. The user name and password can be configured to use several different mechanisms for authentication and authorization, including operating system logins.

- **agent agent_spec**
 is the agent specification that identifies the nodes in the cluster running a Unified Agent, and the port number that `sybcluster` uses to connect to the Unified Agent. The format is `node_name:port_number`, `node_name:port_number` [...]. The default port number is 9999.

 This is the preferred method for connecting to a cluster.

- **discovery discovery_spec**
 is the discovery method used to identify the agents responsible for the requested cluster. The format is `method[(method_specification)][(method_specification)] [...]`. See Table 16-1 on page 365.

Examples

Example 1 Connects to “mycluster,” when “mycluster” is the default cluster specified in the `sybcluster` command statement.
create backupserver

connect

Example 2 In this example, you connect to “mycluster” using the agent specification and default port numbers.

```
connect to mycluster agent "blade1,blade2,blade3"
```

Usage

- A direct connection is one in which the user identifies the cluster nodes and, optionally, the port numbers for the UAF agents. Sample agent specifications are:
 - `myhost` – identifies the host node and assumes the default listening port of 9999.
 - `myhost.mydomain.com` – includes the host domain name.
 - `myhost:9999` – identifies the host node and listening port number.

create backupserver

Description Creates a Backup Server for the cluster, or, if the cluster has been configured for multiple Backup Servers, creates a Backup Server for each instance in the cluster.

Syntax `create backupserver`

Examples

Example 1 Creates the Backup Server “mycluster_BS” for “mycluster”:

```
create backupserver
Do you want to create multiple Backup Servers? [Y] N
Enter the Backup Server name: [mycluster_BS]
Enter the Backup Server log file path: [$SYBASE/ASE-15_0/install/mycluster_BS.log]
```

```
Do you want to create a Backup Server for node "blade1"? [Y]
Enter the Backup Server port number for node "blade1":
The Backup Server "mycluster_BS" was successfully defined.
```

Example 2 Creates multiple Backup Servers for “mycluster” running on “ase1” on “blade1” and “ase2” on “blade2.”

```
create backupserver
Do you want to create multiple Backup Servers? [Y] Y
```

The "dump/load" commands would be routed to appropriate Backup Server based on following policies:
1. Dedicated - Each instance associated with exactly one Backup Server.
2. Round Robin - Choose the Backup Server with least number of requests in round robin fashion starting from global cluster level counter.

Enter the number corresponding to the policy to be used: [1] 1

Enter the Backup Server name for instance ase1: [ase1_BS]
Enter Backup Server log file path: [/remote/var/sybase/install/ase1_BS_log]
Enter the Backup Server port for node "blade1": 23001

Enter the Backup Server name for instance ase2: [ase2_BS]
Enter Backup Server log file path: [/remote/var/sybase/install/ase2_BS_log]
Enter the Backup Server port for node "blade2": 23002

Backup Servers successfully defined.

Usage

- create backupserver prompts for the Backup Server listening port on each node. It copies other necessary configuration information from the cluster configuration file. create backupserver:
 - Creates directory service entries for Backup Server on each node.
 - Creates the Backup Server configuration and log files, and the RUN_<backup_server> script.
 - Adds the Backup Server name to the cluster’s sysservers table.
 - Enables Backup Server HA.

create cluster

Description

Creates an Adaptive Server shared-disk cluster. Enter the necessary configuration information interactively, as responses to a series of prompts, or use an input file.

Syntax

```plaintext
create cluster [cluster_name ]
[ login login_name ]
[ password password ]
[ agent "agent_spec[,agent_spec[,...]]" ]
[ discovery "discovery_spec[,discovery_spec[,...]]" ]
[ file "input_file" ]
```

Parameters

- **cluster_name**
 - is the name of the cluster.
create cluster

login login_name

is the management agent login for the Sybase Common Security Infrastructure in the Unified Agent framework. The default user name after installation is “uafadmin” with no password; this is the simple login module in the agent configuration. You can configure the user name and password to use several different mechanisms for authentication and authorization, including operating system logins.

password password

is the management agent password for the Sybase Common Security Infrastructure in the Unified Agent framework. The default user name after installation is “uafadmin” with no password; this is the Simple Login Module in the Agent configuration. You can configure the user name and password to use several different mechanisms for authentication and authorization, including operating system logins.

agent agent_spec

is the agent specification that identifies the nodes in the cluster running a Unified Agent, and the port number that sybcluster uses to connect to the Unified Agent. The format is node_name:port_number [, node_name:port_number] [...]. The default port number is “9999.”

discovery discovery_spec

is the discovery method used to identify the agents responsible for the requested cluster. The format is method((method_specification)) [, (method_specification) [...]]. See Table 16-1 on page 365.

file “input_file”

is the operating system input file for creating the cluster.

Examples

Example 1 Creates a new cluster called “mycluster”; sybcluster prompts you for the information necessary to create the cluster.

create cluster mycluster

Example 2 Creates a new cluster called “mycluster1” using configuration information supplied in the mycluster1.xml file.

create cluster mycluster1 file mycluster1.xml

Usage

• When you create a cluster, sybcluster prompts for the:
 • Cluster name, if one has not been provided
 • Number of instances
 • Installation mode for the cluster (private or shared)
• Complete path to the master, quorum, PCI, systemdb, sybsysprocs, and temporary database devices
• Path to the interfaces file, if LDAP is not configured and this is a shared install
• Trace flags (optional)
• Complete path to the dataserver configuration file, if this is a shared install
• Primary and secondary interconnection protocols
• Instance host name, port number, private address, log file location, and start-up arguments.

If this is a private install, sybcluster also prompts for the $SYBASE installation directory, Adaptive Server home directory, dataserver configuration file location, and interfaces file location (if LDAP is not configured).

• If sybcluster detects the Veritas Cluster Server (VCS) on the system, sybcluster asks if it should check whether device is managed by VCS.
• After you create and confirm the cluster, create cluster prompts for an I/O fencing check, which checks whether or not each device has I/O fencing capability (see the Installation Guide for a description of I/O fencing).

create monitorserver
Description Creates a Monitor Server for each instance in the cluster.

Note You must run the installmon isql script, located in $SYBASE/$SYBASE_ASE/scripts, before running Monitor Server.

Syntax create monitorserver
Examples Creates a Monitor Server for each instance in “mycluster”.

Enter the Monitor Server log file location for instance "asel". [$SYBASE/ASE-15_0/install/mycluster_MS1.log]
create xpserver

Enter the Monitor Server port number for instance "ase1":
Enter the Monitor Server log file location for instance "ase2": [$SYBASE/ASE-15_0/install/mycluster_MS2.log]
Enter the Monitor Server port number for instance "ase2":
Enter the Monitor Server log file location for instance "ase3": [$SYBASE/ASE-15_0/install/mycluster_MS3.log]
Enter the Monitor Server port number for instance "ase3":
Enter a username: sa
Enter a password:
WARN — mycluster:AseCfg:411:The SQL script "INSTALLMON" must be run before the Monitor Server can be run.
The Monitor Server has been successfully configured.

Usage
create monitorserver prompts for the listening port number for each instance in the cluster, and a user name and password.

create xpserver

Description
Creates an XP Server for each instance in the cluster.

Syntax
create xpserver

Examples
Creates an XP Server for each instance in “mycluster”.

create xpserver

Enter the XP Server port number for instance "ase1":
Enter the XP Server port number for instance "ase2":
Enter the XP Server port number for instance "ase3":
The XP Server was successfully defined for each instance.

Usage
create xpserver prompts for the XP Server listening port for each node in the cluster. Other information necessary to create the XP Server is read from the cluster configuration file.
deploy plugin

Description
Adds the configuration information for a single instance of the cluster to the Unified Agent. Can be used to configure the Unified Agent to manage a cluster if you created the cluster without using the Adaptive Server plug-in or sybcluster utility, or if you need to recreate the Unified Agent configuration for a cluster. The configuration of a cluster instance is performed by deploying a Unified Agent plug-in.

Syntax
```
deploy plugin
  [ login login_name ]
  [ password password ]
  [ agent agent_spec ]
  [ discovery discovery_spec ]
```

Parameters
- `login login_name` is the management agent login for the Sybase Common Security Infrastructure in the Unified Agent framework. The default user name after installation is “uafadmin” with no password; this is the Simple Login Module in the Agent configuration. The user name and password can be configured to use several different mechanisms for authentication and authorization, including operating system logins.
- `password password` is the management agent password for the Sybase Common Security Infrastructure in the Unified Agent framework. The default user name after installation is “uafadmin” with no password; this is the Simple Login Module in the Agent configuration. The user name and password can be configured to use several different mechanisms for authentication and authorization, including operating system logins.
- `agent agent_spec` is the agent specification that identifies the nodes in the cluster running a Unified Agent, and the port number that `sybcluster` uses to connect to the Unified Agent. The format is “node_name:port_number [, node_name:port_number] [,...]”. The default port number is “9999”.
- `discovery discovery_spec` is the discovery method used to identify the agents responsible for the requested cluster. The format is “method[(method_specification)] [, (method_specification) [...]]”. See Table 16-1 for more information about discovery methods.

Examples
- **Example 1** Deploys the plug-in using the uaf agent on host “system1501”.
  ```
deploy plugin agent system1501
  ```
diagnose cluster

Sybcluster prompts for the cluster name, cluster node number, installation mode, full path to the quorum device, the environment shell script path, and the Adaptive Server home directory.

Example 2 Deploys the plug-in and uses discovery to identify the agent:

```
deploy plugin discovery udp
```

Usage

- After you execute `deploy plugin`, sybcluster prompts you for the:

 - Path to the quorum device.
 - Path to the Sybase home directory.
 - Installation mode (private or shared). The default is shared.
 - The location of your Sybase environment script. This must be a shell script that can be loaded using the "file_name" syntax such as "sh" or "bash". An example is `SYBASE.sh`.
 - The location of your Adaptive Server software directory. The default is `<sybase_home_directory>/ASE-15.0`. When entering the location of the Adaptive Server software directory, include the full path. Do not use `$SYBASE`.
 - The `dataserver` login and password are configured using the `login` command, which updates all Adaptive Server plug-ins managing the cluster.

diagnose cluster

Description

Performs a set of checks to ensure that the cluster is working correctly.

Syntax

diagnose cluster

Examples

Checks that “mycluster” is working correctly.

```
diagnose cluster

Cluster name.................... mycluster
Maximum instances............... 4
Cluster node count............... 1
Instances defined............... 4
Is cluster locked............... Yes
JDBC connection available....... 1 ase1 Yes
JDBC connection available....... 2 ase2 Yes
```
JDBC connection available
- 3 ase3 Yes
- 4 ase4 Yes

Instance Public Network
- 1 ase1 on blade1 (10.22.79.39) Reachable: Yes
- 2 ase2 on blade1 (10.22.79.39) Reachable: Yes
- 3 ase3 on blade1 (10.22.79.39) Reachable: Yes
- 4 ase4 on blade1 (10.22.79.39) Reachable: Yes

Has private Primary network: No
Has private Secondary network: No
Network ports required/instance: 20
Minimum port allowed: 1025
Maximum port allowed: 65535

Current port strategy: Public primary and secondary unique.
...The ports are sequenced primary followed by the next instance primary.
...When the primaries are are completed the secondary ports follow the same pattern.

Recommended port strategy: Public primary and secondary unique.
...The ports are sequenced primary followed by the next instance primary.
...When the primaries are are completed the secondary ports follow the same pattern.

Usage
- diagnose cluster checks that:
 - A Unified Agent is running on each instance in the cluster.
 - The number of instances in the cluster does not exceed the value set for maximum number of instances.
 - The quorum file exists.
 - All instances are defined in the interfaces file and that port numbers do not conflict.
 - The primary and secondary protocol specifications do not overlap.
 - Each of the $SYBASE directories are shared.
diagnose instance

Description
Performs a set of checks to ensure that the instance is configured correctly.

Syntax
diagnose instance [instance_name]

Parameters
- **instance_name**
 - is the name of an instance. If no instance name is entered, `sybcluster` uses the default value.

Examples
Displays and verifies configuration information for “ase1” on “mycluster”.

```plaintext
diagnose instance ase1
Cluster name ............mycluster
Instance id ..............1
Instance name ............. asel
Node name ................. blade1
Query port .................7101

JDBC connection available .....Yes

Instance Public Network ........1 asel on blade1 (10.33.108.139) Reachable: Yes

Minimum port allowed............1025
Maximum port allowed ...........65535

Instance port range ...........1 Primary asel 17100 to 17115 (16) Okay
Instance port range ...........1 Secondary asel 17165 to 17180 (16) Okay
```

Usage
Use `diagnose cluster` to ensure the cluster is configured correctly.

disconnect

Description
Closes all connections to the current cluster and returns `sybcluster` to an unconnected state.

Syntax
disconnect

Usage
Use `connect` to reconnect to an existing cluster.
drop backupserver

Description
Drops Backup Server from a node or from the cluster. If the cluster has been configured for multiple Backup Servers, drops all Backup Servers.

Syntax
drop backupserver

Examples
Example 1 Drops a single Backup Server.

drop backupserver

Do you want to drop the Backup Server from:
 1. Selected nodes
 2. Cluster
Enter choice: 1
Do you want to drop Backup Server from node "blade1"? [N] y
Do you want to drop Backup Server from node "blade2"? [N]
The Backup Server has been dropped from selected nodes.

Example 2 Drops the Backup Server from the cluster.

drop backupserver

Do you want to drop the Backup Server from:
 1. Selected nodes
 2. Cluster
Enter choice: 2
Are you sure you want to drop Backup Server mycluster_BS from cluster mycluster? (Y or N): [N] y
The Backup Server has been dropped.

Example 3 Drops all Backup Servers when multiple Backup Servers have been configured for the cluster:

drop backupserver

Multiple Backup Server are defined for the cluster. This command will drop all of them.
Are you sure you want to continue? (Y/N): [N] y
The Backup Server has been dropped.

Usage
Use drop backupserver to drop a Backup Server from the cluster.
drop cluster

Description
Removes each instance from a cluster and then removes the cluster definition from the cluster configuration file. Also, removes regular files associated with the cluster and the cluster agent plug-ins that manage the cluster. The cluster must be Down to use drop cluster.

Syntax
drop cluster

Examples
Drops all instances from the current cluster and deletes the cluster.

drop cluster

Usage
- sybcluster prompts for confirmation before dropping the cluster.
- drop cluster:
 - Removes cluster and instance entries from the interfaces file, configuration files, and specified data devices.
 - Marks the quorum device as unused.
 - Shuts down and removes the cluster’s UAF agent plug-ins.
 - Due to certain file system locking, the UAF plug-ins may not be deleted after you use drop cluster. Verify that the $SYBASE_UA/nodes/*/plugins/<cluster_name> directory has been deleted. If the directory still exists, delete it.

drop instance

Description
Removes an instance from the cluster configuration file and updates the Unified Agent Framework (UAF) and discovery services. Also, notifies the cluster that an instance is to be dropped, and removes the instance and interfaces file entries.

Syntax
drop instance [instance_name]

Parameters
instance_name
- identifies an instance in a cluster. If an instance name is not specified, sybcluster uses the default specified in the sybcluster command line.

Examples
Removes the “ase3” instance from the current cluster.

drop instance ase3
CHAPTER 16 The sybcluster Utility

Usage
• Before you use drop instance:
 • Start at least one instance in the cluster other than the instance to be dropped.
 • Shut down the instance to be dropped.
 • Manually remove instance-specific information. drop instance automatically removes the local system temporary database.
• sybcluster prompts for confirmation before removing the instance.
• You cannot drop the last instance in the cluster. You must use drop cluster.
• drop instance removes references to the instance in the interfaces file, the instance entry in the quorum device, and notifies the cluster that the instance has been dropped.
• drop instance removes entries for multiple and single Backup Servers if they were configured for the instance you are dropping.
• drop instance drops Monitor Server, XP Server, and single or multiple Backup Server if they have been configured for that instance.

drop monitorserver
Description
Drops the Monitor Server for every instance in the cluster.
Syntax
drop monitorserver
Examples
Drops all Monitor Servers defined for “mycluster”.
```sql
drop monitorserver
Are you sure you want to drop the Monitor Server configurations from the cluster mycluster? (Y or N): [N] y
The Monitor Servers have been dropped for all instances.
```
Usage
Use drop monitorserver to drop a Monitor Server from the cluster.

drop xserv
Description
Drops the XP Server for each instance in the cluster.

exit

Syntax drop xpserver
Examples Drops the XP Servers for “mycluster”.

```
drop xpserver
Are you sure you want to drop the XP Servers from cluster mycluster”? {Y or N): [N] y
The XP Servers have been dropped for all instances.
```
Usage Use drop xpserver to drop an XP Server from the cluster.

exit

Description Exits the sybcluster utility.
Syntax exit
Usage • exit and quit perform the same task: they exit the sybcluster utility.
• If some agents have been shut down while connected to sybcluster, error messages describing the connections may display. You can ignore these messages.

help

Description Lists the currently available sybcluster interactive commands.
Syntax help
Usage The list of currently available interactive commands changes depending on whether or not sybcluster is connected to a cluster.

localize

Description Displays the current values for default language, charset, and sort order. Allows modification of default values, and addition or removal of languages.
Syntax localize
Examples

This example displays default localization values, and then prompts for changes. The default character set changes to Chinese, the default charset to eucgb, and the default sort order to bin_eucgb.

```
localize

Current default locale properties are:
Default Language - portuguese
Default Charset - mac
Default SortOrder - Binary ordering, for use with the Macintosh character set (mac).

Options for default Language are:
1. spanish
2. portuguese
3. german
4. us_english
5. thai
6. french
7. japanese
8. chinese
9. korean
10. polish
Enter the number representing the language to be set as defaults: [2] 8

Options for default charsets are:
1. gb18030
2. eucgb
3. utf8
Enter the number representing the charset to be set as default: [1] 2

Options for sort orders are:
1. Binary ordering, for the EUC GB2312-80 character set (eucgb).
Enter the number representing the sort order to be set as default [1]

Do you want to install any language? [Y] n
Do you want to remove any language? [N ]
The cluster mycluster was successfully localized with default language chinese, charset eucgb, sortorder bin_eucgb
```
quit

Usage
- The current default localization value displays after each prompt. To accept the current value, enter a carriage return instead of a number.
- The options for default languages include all languages present in $SYBASE_ASE. If the selected default language is not configured, use localize to configure it or remove it.
- To ensure that new values are consistent for all instances in the cluster, restart the cluster after changing localization values.

Description
Exits the sybcluster utility.

Syntax
quit

Usage
exit and quit both exit the sybcluster utility.

set backupserver

Description
Changes the listening port number for Backup Server on specified nodes in a cluster.

Syntax
set backupserver

Examples

Example 1 Changes the listening port number for Backup Server on “blade1” of “mycluster”.

```
set backupserver
```

Backup Server is configured on the following nodes:
1. blade1: 3001
2. blade2: 3002
3. blade3: 3003

Do you want to change the Backup Server port on any node? {Y}
Enter the number representing the node whose port you want to change: 1
Enter the Backup Server port number for node "blade1":4001
Backup Server was successfully modified as per new properties.

Example 2 When “mycluster” has been configured for multiple Backup Servers, changes the listening port number for one or more Backup Servers.
set backupserver

Multiple Backup Servers are configured for the cluster. Their configuration is as follows:
Backup Server Policy: Dedicated
1. Backup Server name: ase1_BS
 Configured for blade1:23001
 Log file location: /remote/sybase/ASE-15_0/install/ase1_BS.log
2. Backup Server name: ase2_BS
 Configured for blade2:23002
 Log file location: /remote/sybase/ASE-15_0/install/ase2_BS.log
3. Backup Server name: ase3_BS
 Configured for blade3:23003
 Log file location: /remote/sybase/ASE-15_0/install/ase3_BS.log

Do you want to edit any Backup Server (y/n)? [Y]
Enter the number representing the Backup Server you want to edit: [1]
Enter the new port for Backup Server "ase1_BS":24001
Do you want to edit any more Backup Servers? [N]

Backup Server "ase1_BS" successfully updated.

Usage
When you set a new listening port number, Adaptive Server first checks to see if that port number is already in use.

set cluster

Description
Changes configuration values for the cluster. The cluster must be down to execute all set cluster commands except set cluster login.

Syntax
set cluster {
 maxinst max_instances |
 traceflags trace_flag, trace_flag[,...] | |
 { primary | secondary } protocol udp |
 login login_name { password password }
}

Parameters
maxinst max_instances
 specifies the maximum number of instances that can run in the cluster.
traceflags trace_flag, trace_flag[,...]
 specifies trace flags to be set when the cluster starts.
set instance

`login login_name [password password]`
specifies a user name and password that the Unified Agent uses to log in to the cluster and perform shutdown and certain other tasks. This login must have `sa_role`. By default, the Unified Agent uses the “sa” login with no password. To change this password, use `set cluster login`. See also “Changing user names or passwords” on page 276.

Note `set cluster login` can only be used to change the login or password that the Unified Agent uses to log in to the cluster. To change the login or password `sybcluster` uses to log in to the Unified Agent, use the Agent Management Console Sybase Central plug-in.

`{ primary | secondary } protocol udp`
sets the protocol for the private network for the primary or secondary interface.

Examples

Example 1 Changes the maximum number of instances to 4 for “mycluster”.

```plaintext
set cluster maxinst 4
```

Example 2 Adds the trace flag 15506.

```plaintext
set cluster traceflags 15506
```

Example 3 Changes the password for the “sa” user name.

```plaintext
set cluster login sa password abcde
```

Usage
To check that the cluster is Down, enter `show cluster status`.

Adaptive Server Enterprise Cluster Edition
startargs *startup_args*
specifies arguments for starting the instance.

{ primary | secondary } *address ip_address*
specifies the primary or secondary IP address for the instance.

{ primary | secondary } *port port_range*
specifies the primary or secondary port range for the instance. The format for *port_range* is *start_num end_num*.

Examples

Changes the port range for the primary interface listening port.

```
set instance primary port 7777
```

Usage

To check that the instance is Down, enter *show cluster status*.

set monitorserver

Description

Changes the Monitor Server listening port numbers for specified instances in the cluster.

Syntax

```
set monitorserver
```

Examples

Changes the Monitor Server listening port number for instance “ase2” on “blade2” of “mycluster” without changing the listening port numbers for other instances in the cluster.

```
set monitorserver
Enter the Monitor Server Port number for instance "blade1": [5001] <CR>
Enter the Monitor Server port number for instance "blade2": [5002] 5011
Enter the Monitor Server port number for instance "blade3": [5003] <CR>
```

Usage

- *set monitorserver* prompts you to change the listening port number for each Monitor Server configured in the cluster. You can accept the current value, provided in square brackets, or enter a new port number.
- You can change the Monitor Server listening port number for one or more instances.
set xpserver port

Description
Changes the listening port number for XP Server on specified nodes of the cluster.

Syntax
set xpserver port

Examples
Changes the listening port for the XP Server for instance “ase1” on “blade1” of “mycluster” without changing the listening ports for “ase2” and “ase3”.

 set xpserver port

 Enter the XP Server port number for instance "ase1" [3002]: 4002
 Enter the XP Server port number for instance "ase2" [3002]: <CR>
 Enter the XP Server port number for instance "ase3" [3002]: <CR>

Usage
You can change the XP Server listening port number on one or more instances.

show agents

Description
Displays information about available UAF agents.

Syntax
Show agents
[login login_name]
[password password]
[agent "agent_spec[, agent_spec[,...]]"]
[discovery "discovery_spec[, discovery_spec[,...]]"]

Parameters
login login_name
is the management agent login for the Sybase Common Security Infrastructure in the Unified Agent framework. The default user name after installation is “uafadmin” with no password; this is the Simple Login Module in the Agent configuration. The user name and password can be configured to use several different mechanisms for authentication and authorization, including operating system logins.

password password
is the management agent password for the Sybase Common Security Infrastructure in the Unified Agent framework. The default user name after installation is “uafadmin” with no password; this is the Simple Login Module in the Agent configuration. The user name and password can be configured to use several different mechanisms for authentication and authorization, including operating system logins.
agent $agent_{spec}$

is the agent specification that identifies the nodes in the cluster running a Unified Agent, and the port number that sybcluster uses to connect to the Unified Agent. The format is "$node_{name}:port_{number} [, node_{name}:port_{number}] [...]". The default port number is "9999."

discovery $discovery_{spec}$

is the discovery method used to identify the agents responsible for the requested cluster. The format is "method[(method_specification)] [, (method_specification)] [...]". See Table 16-1 for more information about discovery methods.

Examples

Displays UAF agent information:

```bash
show agents
Agent Information:
  service:jmx:rmi:///jndi/rmi:///bladel:9985/agent-----
-----------------------------------------------
  Node Name: bladel
  Agent Port: 9985
  Agent Version: 2.5.0
  Agent Build: 977
  OS Name: Linux
  OS Version: 2.6.9-42.ELsmp
  OS Architecture: amd64
  Agent Service Info:
    Agent Service (Agent) Build: 977 Status: running
    BootstrapService (BootstrapService) Build: <unavailable> Status: running
    Configuration Service (ConfigService) Build: 977 Status: running
    Deployment Service (DeploymentService) Build: <unavailable> Status: running
    Environment Service (EnvironmentDiscoveryService) Build: 977 Status: running
    File Transfer Service (FileTransferService) Build: 977 Status: running
    Plugin Registration Service (PluginRegisterService) Build: 977 Status: running
    RMI Service (RMIService) Build: 977 Status: running
    Remote Shell Service (RemoteShellService) Build: 977 Status: running
    Security Service (SecurityService) Build: 977 Status: running
    Self Discovery Service (SelfDiscoveryService) Build: 977 Status: running
```

```html

```
show backupserver config

Description
Displays the nodes on which Backup Server is configured, the associated listening port numbers, and the Backup Server policy.

Syntax
`show backupserver config`

Examples
Displays configuration information for “mycluster”, which has been configured for multiple Backup Servers.

```
Multiple Backup Servers are configured for cluster. Their configuration is as follows:
Backup Server policy: Dedicated
1. Backup Server for ase1: ase1_BS
   Configured on (host:port) - blade1:23001
2. Backup Server for ase2: ase2_BS
   Configured on (host:port) - blade2:23002
```

Usage
`show agents` is active before you connect to a cluster.
3. Backup Server for ase3: ase3_BS
 Configured on (host:port) - blade3:23003

Usage

- Use the show backupserver config command to display Backup Server configuration information.
- If you are configuring multiple Backup Servers, show backupserver config includes the Backup Server policy.

show cluster

Description
Displays configuration, log, and status information about the cluster.

Syntax
```
Show
Cluster
Config
  Template
Log
  [Errors]
  [MinSeverity severity_level]
  [StartDate [date_string]]
  [EndDate [date_string]]
  [Last number_of_lines]
Status
```

Parameters

status
displays status information for the cluster. Values are:

- Up
- Down
- Undefined
- Invalid
- Start
- Init
- Quiesce

log
displays logs from all instances in the cluster.
show cluster

errors [minseverity severity_level]

display log file entries for errors. Optionally, limit displayed error entries to a severity level and above.

Note Error severities_level is an attribute of Adaptive Server error messages, not sybcluster messages.

startdate [date_string]

display log file entries that occur on and after the date specified. The format for date_string is: mm:dd:yy.

If you do not specify a startdate or enddate date_string, the default is the current date (today).

enddate [date_string]

display log file entries that occur on or before the date specified.

last num_lines

Limits the number of lines displayed, counting backward from the last line in the log files.

config

displays configuration information for the cluster:

- Maximum number of instances
- Installation mode: shared or private
- Primary and secondary protocols
- Trace flags set
- Location and name of the quorum device
- LDAP information, if LDAP is configured
- Location and name of the master device

template

displays formatted configuration information for the cluster.

Examples

Example 1 Displays current configuration and other information about the default cluster.

```
show cluster status
```

```
Id   Name   Node   State      Heartbeat
-----------------------------------------
1    asel   blade1  Up  Yes
```
Example 2 Displays configuration information (including LDAP, if it is configured) for the default cluster configured for shared installation mode.

```
show cluster config
**Cluster configuration for "mycluster" **
Installation Mode shared
Interfaces Path "/work2/sybase/ASE-15_0/"
Trace Flags:
  15556
Maximum Instances "4"
Quorum "/dev/raw/raw101"
Master Device "/dev/raw/raw102"
logfile ase1 /work2/sybase/ASE-15_0/install/
  ase1.log
run_parameters ase1 null
logfile ase2 /work2/sybase/ASE-15_0/install/
  ase2.log
run_parameters ase2 null

Primary Interconnect "udp"
  Server[1] ase1 tigger.sybase.com 26016 26031
Secondary Interconnect "udp"
  Server[1] ase1 tigger.sybase.com 26081 26096
```

Example 3 Displays configuration information for the default cluster configured for private installation mode.

```
show cluster config
**Cluster configuration for "localcluster" **
Installation Mode "private"
Trace Flags:
There are no trace flags
Maximum Instances "4"
Quorum "/dev/raw/raw101"
Master Device "/dev/raw/raw102"
logfile ase1 /remote/work2/sybase/ASE-15_0/install/ase1.log
run_parameters ase1 null
logfile ase2 /work2/sybase/ASE-15_0/install/ase2.log
```
show instance

run_parameters ase2 null

Primary Interconnect "udp"
 Server[1] ase1 tigger.sybase.com 26016 26031
Secondary Interconnect "udp"
 Server[1] ase1 tigger.sybase.com 26081 26096
LDAP server blade1 2250

Usage

```
show cluster status displays the results of a show instance command on each instance in the cluster.
```

show instance

Description
Displays information about an instance.

Syntax
```
show instance [instance_name] {
  config | status | log
  [ [ errors ] minseverity severity_level ] |
  [ startdate [ date_string ] ] |
  [ enddate [ date_string ] ] |
  [ last num_lines ] }
```

Parameters

- `instance_name`
 specifies a unique name for an instance in the cluster.

- `status`
 displays status information for the instance. Values are:
 - Up
 - Down
 - Undefined
 - Invalid
 - Start
 - Init
 - Quiesce
log
 displays the instance log.

errors [minseverity severity_level]
 displays log file entries for errors. Optionally, limit displayed error entries
to a severity level and above.

Note Error severities_level is an attribute of Adaptive Server error messages,
not sybcluster messages.

startdate [date_string]
 displays log file entries that occur on and after the date specified. The format
for date_string is: mm:dd:yy.

 If a startdate or enddate date_string is not specified, date_string defaults to
the current day.

enddate [date_string]
 displays log file entries that occur on or before the date specified. The format
is: mm:dd:yy.

last num_lines
 Limits the number of lines displayed, counting backwards from the last line
in the log file.

Examples

 Example 1 Displays information about “ase1.”

 show instance ase1 status

 Id Name State

 1 ase1 Down

 Example 2 Displays configuration information for “ase1.”

 show instance ase1 config

 Instance: ase1 at blade6:25001

 Private Primary Network
 Address: blade1
 Port Range: 2541 - 2556
 Sybase home: /sybase/sybase_sdc
 ASE home: /sybase/sybase_sdc/ASE-15_0
 Config file: /sybase/sybase_sdc/ase1.cfg

 Private Secondary Network
show membership mode

Address: blade1
Port Range: 2557 - 2572
Log Path: /blade1/sybase/
ASE-15_0/install/mycluster_ase1.log

Usage

- show instance status displays one of seven different states for the named instance:
 - Down
 - Init
 - Invalid
 - Quiesce
 - Start
 - Undefined
 - Up
- show instance config includes this information when the installation mode is private:
 - The $SYBASE path
 - The ASE path
 - The server configuration file path

Description

Displays the cluster’s current membership mode. Membership mode specifies whether or not Veritas Cluster Integration is supported on the current cluster.

Syntax

show membership mode

Usage

- Values for show membership mode are:
 - vcs – VCS is supported for the current cluster.
 - native – VCS is not supported for the current cluster.
- If the cluster is running in vcs membership mode, make sure you shut down or start up servers and the cluster using VCS shutdown and start-up mechanisms.
show monitorserver config
Description Displays the Monitor Server name, listening port number, node name, and instance name.
Syntax show monitorserver config
Usage Use the sybcluster show monitorserver config command to show Monitor Server information.

show session
Description Displays current discovery and agent information.
Syntax show session
Examples Displays agent status information.

 show session
Session information

Sybase sybcluster Command Line Utility/15.0.1/CE GA
2/S/jdk1.4.2/sybclustermain/129/Mon Aug 13 09:59:51 PDT 2007
Connected Cluster: mycluster
Default Cluster:
 Default Instance:
 Agent Specifications:
 [1]: oddjob:7171
Discovery Specifications:
Agent Connections: 1
 Node Name: oddjob1
 Agent Port: 7171
 Agent Version: 2.5.0
 Agent Build: 980
 OS Name: Linux
 OS Version: 2.6.9-42.ELsmp
 OS Architecture: amd64

Agent Service Info:
show session

Agent Service (Agent) Build: 980 Status: running
BootstrapService (BootstrapService) Build: <unavailable> Status: running
Configuration Service (ConfigService) Build: 980 Status: running
Deployment Service (DeploymentService) Build: 19 Status: running
Environment Service (EnvironmentDiscoveryService) Build: 980 Status: running
File Transfer Service (FileTransferService) Build: 980 Status: running
Plugin Registration Service (PluginRegisterService) Build: 980 Status: running
RMI Service (RMIService) Build: 980 Status: running
Remote Shell Service (RemoteShellService) Build: 980 Status: running
Security Service (SecurityService) Build: 980 Status: running
Self Discovery Service (SelfDiscoveryService) Build: 980 Status: running
Service Registration Service (ServiceRegistrationService) Build: 980 Status: running
Session Service (SessionService) Build: 980 Status: running
Sybase Home Service (SybaseHomeService) Build: 14 Status: running

Agent Plugin Info:
ASE Cluster Agent Plugin (com.sybase.ase.cluster)
 Version: 15.0.1 Build: 129 Instance: 1
 Status: running
Cluster Name: mycluster
Env Shell: /oddjob1/work2/
 sybase_sybclustermain_mycluster_vu/UYBASE.sh
 Shell Type: sh
Sybase Home: /oddjob1/
 work2/sybase_sybclustermain_mycluster_vu
ASE Home: /oddjob1/work2/
 sybase_sybclustermain_mycluster_vu/ASE-15_0
ASE Version: Adaptive Server Enterprise/
 15.0.1/EBF 14721 Cluster Edition/B/x86_64/
 Enterprise Linux/asecluster3/2381/64-bit/
Usage

Use the `sybcluster show session` command to view information about the current cluster.

show xpserver

Description
Displays the XP Server name and listening port number, node name, and instance name configured on each node.

Syntax
`show xpserver`

Examples
Displays the XP Server name, listening port number, node name, and instance name.

```
show xpserver config

**XP Server configuration for the cluster**

<table>
<thead>
<tr>
<th>XPServer Name</th>
<th>Port</th>
<th>Host</th>
<th>Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>ase1_XP</td>
<td>4010</td>
<td>blade1</td>
<td>ase1</td>
</tr>
<tr>
<td>ase2_XP</td>
<td>4011</td>
<td>blade2</td>
<td>ase2</td>
</tr>
<tr>
<td>ase3_XP</td>
<td>4012</td>
<td>blade3</td>
<td>ase3</td>
</tr>
</tbody>
</table>
```

Usage
Use the `sybcluster show xpserver` command to view information about XP Server.

shutdown cluster

Description
Shuts down the cluster by executing a Transact-SQL `shutdown` command for each instance in the cluster’s instance list, in the order specified in the cluster configuration file.

Syntax
`shutdown cluster [nowait]`
shutdown instance

Parameters

- **nowait**

 shuts down the cluster immediately, without waiting for transactions or statements currently executing to conclude. By default, sybcluster waits for all transactions and statements to execute before shutting down the cluster.

Examples

Shuts down the current cluster.

```plaintext
shutdown cluster
```

```
```

Usage

- sybcluster prompts for confirmation before shutting down the cluster.
- If the cluster is managed by VCS, **shutdown cluster** fails. You must use VCS shut down mechanisms to shut down the cluster.

shutdown instance

Description

Shuts down the instance by executing a Transact-SQL **shutdown** command.

Syntax

```plaintext
shutdown instance [ instance_name ] [ nowait ]
```

Parameters

- **instance_name**

 is the unique name of an instance in the cluster.

- **nowait**

 shuts down the instance immediately, without waiting for currently executing transactions or statements to finish.

Examples

Shuts down the instance “ase1,” after waiting for currently executing transactions or statements to finish.

```plaintext
shutdown instance asel
```

```
INFO - 01:00:00000:00113:2007/06/02 00:31:24/14 kernel shutdown server asel INFO - 01:00:00000:00113:2007/06/02 00:31:24/14 Server SHUTDOWN by request. INFO - 01:00:00000:00113:2007/06/02 00:31:24/14 ASE is terminating this process INFO - 01:00:00000:00113:2007/06/02 00:31:24/14 shut down local cluster server. INFO - 01:00:00000:00113:2007/06/02 00:31:24/14 kernel coordinator to be shutdown, newcco is 0. INFO - 01:00:00000:00113:2007/06/02 00:31:24/14 kernel Single server
```
cluster.
INFO - 01:00:00000:00113:2007/06/02 00:31:24/14 kernel cipcnode_down():
Node 1 down event.
INFO - 01:00:00000:00113:2007/06/02 00:31:24/14 server ASE shutdown by
request.
INFO - 01:00:00000:00113:2007/06/02 00:31:24/14 kernel ueshutdown: exiting
INFO - 01:00:00000:00113:2007/06/02 00:31:24/14 kernel SySAM: Checked in

Usage
- Shutting down the last instance in a cluster also shuts down the cluster.
- sybcluster prompts for confirmation before shutting down the instance.
- If the cluster is managed by VCS, shutdown instance fails. You must use
 VCS shut down mechanisms to shut down the instance.

start cluster

Description
Starts all instances in the cluster.

Syntax
start cluster

Examples
Starts the current cluster.

 start cluster

 INFO: [cluster boot log]
 ...

 INFO - 02:00:00000:00002:2007/06/02 00:21:53.56 server 'ase1' (ID=1).
 INFO - 02:00:00000:00002:2007/06/02 00:21:53.56 server Master device size:
 80 megabytes, or 40960 virtual pages.

Usage
You must connect to the cluster before starting it.

start instance

Description
Starts an instance.

Syntax
start instance [instance_name] [unlock]
upgrade server

Parameters

instance_name

specifies a unique name for an instance in the cluster. If you do not enter a cluster name, sybcluster uses the instance specified in the sybcluster command line or specified with the use command.

unlock

removes the lock from a cluster that has been terminated unexpectedly. The cluster must be Down before using unlock.

Warning! Do not use the unlock parameter unless you have verified that all instances in the cluster are shutdown.

Usage

The instance must be Down to use start instance unlock.

upgrade server

Description

Upgrades a non-clustered Adaptive Server to the Adaptive Server Cluster Edition, and creates a cluster with a single instance. You can perform the upgrade by answering prompts at the command line or via an input file.

You can upgrade from Adaptive Server version 12.5 and later to the Cluster Edition.

Syntax

```
upgrade server server_name
    [ login login_name ]
    [ password password ]
    [ agent agent_spec ]
    [ discovery discovery_spec ]
    [ file input_file_name ]
    [ checkonly ]
```

Parameters

server_name

is the name of the non-clustered Adaptive Server.

login login_name

is the management agent login for the Sybase Common Security Infrastructure in the Unified Agent framework. The default user name after installation is “uafadmin” with no password; this is the Simple Login Module in the Agent configuration. The user name and password can be configured to use several different mechanisms for authentication and authorization, including operating system logins.
password password
 is the management agent password for the Sybase Common Security
 Infrastructure in the Unified Agent framework. The default user name after
 installation is “uafadmin” with no password; this is the Simple Login
 Module in the Agent configuration. The user name and password can be
 configured to use several different mechanisms for authentication and
 authorization, including operating system logins.

agent agent_spec
 is the agent specification that identifies the node in the cluster running a
 Unified Agent, and the port number that sybcluster uses to connect the
 Unified Agent. When upgrading a non-clustered Adaptive Server, there is
 only one node. The format for agent_spec is “node_name:port_number”. The
default port number is “9999.”

discovery discovery_spec
 is the discovery method used to identify the agents responsible for the
 requested cluster. The format is “method(method_specification)”. See
 Table 16-1 for more information about discovery methods.

discovery discovery_spec
 is the discovery method used to identify the agents responsible for the
 requested cluster. The format is “method(method_specification)”. See
 Table 16-1 for more information about discovery methods.

file file_name
 is the input file containing values required for upgrading the server.

checkonly
 performs a check run of the non-clustered Adaptive Server to determine its
 readiness for upgrade.

Examples

Example Upgrades “myserver” to the Cluster Edition:
 upgrade server
 Enter the name of the cluster: new_cluster
 Enter the existing Sybase installation directory for server myserver:
 Enter the name of the subdirectory containing the ASE installation for server
 myserver:
 Enter the name of the subdirectory containing the OCS installation for server
 myserver:
 Enter the name of an sa login on server exit: [sa]
 Enter a password:
 Cluster new_cluster - Enter the maximum number of instances: [4]
 Verifying the supplied agent specifications...
 1>tigger 9999 2.5.0 Linux
 Enter the number representing the cluster node 1 [1]
 Will this cluster be configured using private SYBASE installations? (Y/N)
 ...
The information required to upgrade a server or create a cluster are the same. See “create cluster” on page 375 or the installation guide for your platform.

Usage

- `upgrade server` prompts for these values:
 - The Sybase installation directory of the non-clustered Adaptive Server
 - The release home directory of the non-clustered Adaptive Server
 - The Open Client home directory of the non-clustered Adaptive Server
 - The installation mode, private or shared
 - If `sybcluster` detects a VCS subsystem, asks if you want to include VCS integration with the cluster
 - If you have not configured LDAP, the path to the interfaces file
 - The name of the first instance in the cluster
 - Other values as required to create a cluster
 - Use of the `checkonly` option does not perform any upgrade steps; it does check the server’s readiness for upgrade. Any error conditions found by `checkonly` must be resolved before actually performing the upgrade.

use

Description

Specifies the default instance.

Syntax

`use instance_name`

Usage

`use` overrides the instance name specified in the `sybcluster` command line.
This part of the Clusters Users Guide describes general configuration issues for the Cluster Edition.
CHAPTER 17

Configuring the Operating System

This chapter discusses the operating system configuration settings that you can adjust after installing or upgrading the Cluster Edition. Unless stated otherwise, the information pertains to all supported UNIX platforms.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using the stty setting</td>
<td>411</td>
</tr>
<tr>
<td>Restoring correct permissions</td>
<td>412</td>
</tr>
<tr>
<td>File descriptors and user connections</td>
<td>412</td>
</tr>
<tr>
<td>Adjusting the client connection timeout period</td>
<td>416</td>
</tr>
<tr>
<td>Checking for hardware errors</td>
<td>417</td>
</tr>
<tr>
<td>Monitoring the use of operating system resources</td>
<td>418</td>
</tr>
<tr>
<td>A sample C shell maintenance script</td>
<td>418</td>
</tr>
</tbody>
</table>

Using the stty setting

Setting the stty tostop option causes a background server to stop as soon as it tries to write to the terminal. To avoid this error, execute the following command before starting the Cluster Edition:

```
stty -tostop
```

If you are redirecting all Cluster Edition output to files, you do not have to change the stty setting.
Restoring correct permissions

Sybase software files and directories are installed with the correct access permissions. If you notice that the permissions are no longer correct, you can restore the correct permissions with the script `setperm_all`, located in the `$SYBASE/$SYBASE_ASE/install` directory.

File descriptors and user connections

The number of user connections used by the Cluster Edition cannot exceed the number of file descriptors available to the Cluster Edition on the operating system. When configuring user connections on the Cluster Edition, the System Administrator should take into account the number of file descriptors available per process. Although most of the open file descriptors are available for user connections, a few are used by the Cluster Edition for opening files and devices.

For Linux

The number of file descriptors per process is limited to 10,000. You can set the number of file descriptors using `ulimit`.

For Sun Solaris

For Sun Solaris, you can set both soft and hard limits for file descriptors. The soft limit can be increased up to the hard limit by the user, but the hard limit can be increased only by someone with “root” permissions. The soft limit determines the number of open file descriptors available to an Cluster Edition engine. The limit is 10,000.

Although most of the open file descriptors are available for user connections, a few are used by the Cluster Edition engines for opening files and devices.

See the *System Administration Guide* for additional information on user connections.
For HP-UX

The kernel parameters `maxfiles` and `maxfiles_lim` control the number of file descriptors available to any one process. The maximum number of files descriptors is 10,000 for 32-bit HP-UX systems and 60,000 for 64-bit HP-UX systems.

To display the current values for file descriptors, use the Korn or Bourne shell `ulimit` command:

```
ulimit -n
```

Displaying current soft and hard limits

To display the current soft limit, for C shells, enter:

```
limit descriptors
```

For Bourne shells, enter:

```
ulimit -n
```

To display the current hard limit for C shells, enter:

```
limit -h descriptors
```

For Bourne shells, enter:

```
ulimit -Hn
```

Increasing the soft limit

To increase the soft limit for C shells, enter:

```
limit descriptors n
```

For Bourne shells, enter:

```
ulimit -Sn new_value
```
where \(n \) is the current value for the soft limit, and \(\text{new_value} \) is the value to which you want to increase the soft limit.

Note You can use the preceding commands in your `RUN_server_name` file to increase the hard and soft limits. The `RUN_server_name` file is a Bourne shell script, be sure to use the Bourne shell versions of these commands in the `RUN_server_name` file.

Increasing the hard limit

To increase the hard limit, use a program like the sample program shown in “Sample program” on page 415.

❖ **Setting up the sample program to increase the hard limit**

1. Use an ASCII editor to create `file_name.c` (where `file_name` is the name you give the file). Type the text shown in the sample in “Sample program” on page 415.

2. Compile the file:


   ```
   cc file_name.c -o program_name
   ```

 where `file_name` is the name of the source file you created, and `program_name` is the name you want to give the program.

3. Change the program’s permissions and ownership so that it will execute as “root”:

   ```
   chmod 755 program_name
   chown root program_name
   ```

 where `program_name` is the name of the compiled program.

4. The “root” user can use the program to start the Cluster Edition with increased user connections by typing the following command at the operating system prompt:

   ```
   # program_name dataserver -d master_device_name
   ```

 where `program_name` is the name of the compiled program, and `master_device_name` is the full path of the Cluster Edition’s master device. Instead of typing the command at the operating system prompt, you can add `program_name` preceding the dataserver command line in the the Cluster Edition `RUN_server_name` file.
Sample program

Note This is an sample script; modify it as necessary.

The following example shows the source code that you can use to increase the hard limit:

```c
#include <sys/time.h>
#include <sys/resource.h>
#include <sys/types.h>

/*
 ** define MAX_CONNECTIONS to a number less than
 ** 10000. The number defined will then become the maximum
 ** number of connections allowed by an Adaptive Server.
 */
#define MAX_CONNECTIONS 9999
extern int errno;

main(argc,argv)
char **argv;
{
    struct rlimit rlp;
    uid_t uid;

    rlp.rlim_cur = MAX_CONNECTIONS;
    rlp.rlim_max = MAX_CONNECTIONS;
    /* set the number of open file descriptors to
       MAX_CONNECTIONS */
    if (setrlimit (RLIMIT_NOFILE,&rlp) == -1)
    {  
        perror("setrlimit");
        exit(1);
    }

    /* reset the user id to disable superuser
     privileges */
    uid = getuid();
    setuid(uid);

    /* run the program indicated as arguments to
       this program */
    execv(*++argv, argv);
}
```

For additional information on user connections, see the *System Administration Guide*.

Clusters Users Guide 415
Adjusting the client connection timeout period

The Cluster Edition uses the KEEPALIVE option of the TCP/IP protocol to detect clients that are no longer active. When a connection to a client is inactive for a period of time (the timeout period), the operating system sends KEEPALIVE packets at regular intervals. If it does not receive a response from the client machine for any of these packets, the operating system notifies the Cluster Edition that the client is no longer responding. The Cluster Edition then terminates the client’s connection.

The KEEPALIVE default timeout period is 2 hours (7,200,000 ms). To display the current time value, use the command for your platform as shown in the following sections.

For Sun Solaris

To display the timeout value, enter:

```
/usr/sbin/ndd -get /dev/tcp tcp_keepalive_interval
```

To reduce the timeout period to 15 minutes (900,000 ms.), enter:

```
/usr/sbin/ndd -set /dev/tcp tcp_keepalive_interval 900000
```

For Linux

To display the timeout value, enter:

```
/sbin/sysctl -e net.ipv4.tcp_keepalive_time
```

To reduce the timeout period to 15 minutes (900 seconds,) enter:

```
/sbin/sysctl -w net.ipv4.tcp_keepalive_time=900
```

For HP-UX

To display the current timeout period value, enter:

```
/usr/contrib/bin/nettune -l
```

The tcp-keepstart parameter specifies the length of time (in seconds) that an idle connection is kept active before the system checks to see if the connection is no longer viable.
To change the timeout period, use the `nettune -s` command:

Checking for hardware errors

The following types of hardware error messages indicate problems that may lead to database corruption:

- Disk read, write, or retry errors
- Timeouts
- System panics
- Memory problems of any type

For Sun Solaris

Check the `/var/adm/messages` file on a regular basis. If any of the types of hardware errors described in the beginning of this section appear, use the Sun Microsystems diagnostic tool, `sundiag`, to check memory and disks. See the operating system documentation.

For Linux

Check the `/var/log/messages` file on a regular basis. See the operating system documentation.

For HP-UX

Check the `/var/adm/syslog/syslog.log` file on a regular basis. You can view the file directly, or you can use the HP-UX `dmesg` command. See the operating system documentation.
Monitoring the use of operating system resources

The System Administration Guide discusses maintaining the optimal number of server engines for your workload and system configuration. To determine the optimal number, monitor system and CPU usage.

Sun Solaris and Linux supply the following tools to help monitor performance:

- The iostat command reports the amount of I/O on terminals and hard disks and how CPU time is spent.
- The vmstat command monitors virtual memory usage.
- The netstat command monitors network status.
- The ps command gives you an accurate snapshot of accumulated CPU time and usage for individual processes. This can be very helpful in determining the dataserver-, engine-, and process-specific loading.
- The time command can be useful in determining the various user, system, and real-time resources used over a complete run.

For details about these tools, see your operating system documentation.

A sample C shell maintenance script

Running dbcc checks and performing database backups protect the integrity and recoverability of your Cluster Edition databases. The following sample C shell script calls several isql scripts to help you do this:

```
#!/bin/csh -f
if ( -e dbcc_mail.out) then
    rm dbcc_mail.out
endif
foreach i (*.dbcc)
    isql -Usa -Ppassword < $i > dbcc_out
    if ( `grep -c 'Msg 25[0-9][0-9]' dbcc_out` ) then
        echo "There are errors in" $i >> dbcc_mail.out
        cat dbcc_out >> dbcc_mail.out
    else
        echo "Backing up " $i:r >> dbcc_mail.out
        isql -Usa -Ppassword < $i:r.backup
    endif
end
mail -s "Backup Report" jjones < dbcc_mail.out
```
The first set of scripts (one for each database with a file name appended with \textit{.dbcc}) runs \texttt{dbcc checkalloc} and \texttt{dbcc checkdb} for each database and sends the messages to an output file called \texttt{dbcc_out}.

For example, the script \texttt{master.dbcc} runs \texttt{dbcc} to check the \texttt{master} database:

\begin{verbatim}
dbcc checkalloc (master)
go
dbcc checkdb (master)
go
\end{verbatim}

The C shell script then runs the \texttt{grep} command to find 2500-level error messages in the \texttt{dbcc} output. The results of the \texttt{grep} command go into an output file called \texttt{dbcc_mail.out}.

Next, the script invokes an \texttt{isql} backup script for each database for which no 2500-level errors occurred and adds the “Backing up database_name” line to \texttt{dbcc_mail.out}. For example, the script \texttt{master.backup} backs up the \texttt{master} database:

\begin{verbatim}
use master
go
dump database master to master_dump
go
\end{verbatim}

You may want to add appropriate \texttt{dump} transaction commands to your scripts.

If there are 2500-level error messages, the script does not back up the database.

At the end of the script, \texttt{dbcc_mail.out} is mailed to the System Administrator “jjones,” who then has a record of fatal \texttt{dbcc} errors and successful backups.

You can tailor the sample shell and \texttt{isql} scripts to suit the needs of your installation.

To have the scripts execute automatically, edit the \texttt{crontab} file, and add an entry similar to this:

\begin{verbatim}
00 02 * * * /usr/u/sybase/dbcc_ck 2>&1
\end{verbatim}

This example executes a C shell script called \texttt{dbcc_ck} every morning at 2:00 a.m.
A sample C shell maintenance script
CHAPTER 18

Customizing Localization for the Cluster Edition

This chapter provides information about Sybase localization support for international installations, including configuring languages, character sets, and sort order. For more information, see the System Administration Guide.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview of localization support</td>
<td>421</td>
</tr>
<tr>
<td>Character set conversion</td>
<td>428</td>
</tr>
<tr>
<td>Sort orders</td>
<td>429</td>
</tr>
<tr>
<td>Language modules</td>
<td>433</td>
</tr>
<tr>
<td>Localization</td>
<td>434</td>
</tr>
<tr>
<td>Changing the localization configuration</td>
<td>438</td>
</tr>
</tbody>
</table>

Overview of localization support

Localization is the process of setting up an application to run in a particular language or country environment, including translated system messages and correct formats for date, time, and currency. The Cluster Edition supports localization for international customers and for customers with heterogeneous environments.

This support includes:

- Data processing support – the Cluster Edition comes with character set and sort order definition files it uses to process the characters used in different languages.

 Sybase provides support for the major languages in:

 - Western Europe
 - Eastern Europe
 - Middle East
Overview of localization support

- Latin America
- Asia
- Translated system messages – the Cluster Edition includes language modules for:
 - Brazilian Portuguese
 - Chinese (Simplified)
 - French
 - German
 - Japanese
 - Korean
 - Polish
 - Spanish
 - Thai

Language modules

The Cluster Edition stores its localized software messages in separate language modules.

When you install a language module, the installation program loads the messages, character set, and sort-order files that support the new language in the correct locations.

When you install the Cluster Edition and Backup Server, system messages in English are installed by default.

Default character sets for servers

The default character set is the character set in which data is encoded and stored on the Cluster Edition databases.
Changing the default language and character set

Warning! Make all changes to the character set and sort order for a new server before creating any user databases or making any changes to the Sybase-supplied databases. Changing the character set and sort order after data or data structures have been added to the Cluster Edition may require additional steps. To change the character set or sort order after you have added data, see the *System Administration Guide*.

Sybcluster and the Adaptive Server plug-in create an instance with the following defaults:

- us_english language
- iso_1 character set (on HP-UX platforms, use Roman8)
- Binary sort order

Changing the default character set for servers

You can select any character set as the default on the Cluster Edition, including character sets that are not the platform default character sets. Keep the following guidelines in mind when selecting a new default character set:

- To avoid conversion errors or overhead, determine the default character set based on the character set used by your clients.

 For example, if most of your clients use ISO 8859-1, you can minimize the amount of data conversion that has to occur by specifying ISO 8859-1.

- If your server is operating in a heterogeneous language environment, choose a character set that works with all the character sets needed. Often, this is Unicode (UTF-8).

Warning! Make all changes to the default character set and sort order for a new instance before creating any user databases or making any changes to the Sybase-supplied databases. Changing the character set and sort order after data or data structures have been added to the instance can cause incorrect behavior. To change the character set or sort order after you have added data, see the *System Administration Guide*.
Overview of localization support

Supported character sets

The following language, scripts and character sets are supported by the Cluster Edition:

- Arabic – see Table 18-1 on page 424.
- Baltic – see Table 18-2 on page 425.
- Chinese, Simplified – see Table 18-3 on page 425.
- Chinese, Traditional – see Table 18-4 on page 425
- Cyrillic – see Table 18-5 on page 425.
- Eastern European – see Table 18-6 on page 426.
- Greek – see Table 18-7 on page 426.
- Hebrew – see Table 18-8 on page 426.
- Japanese – see Table 18-9 on page 426.
- Korean – see Table 18-10 on page 426.
- Thai – see Table 18-11 on page 427.
- Turkish – see Table 18-12 on page 427.
- Unicode (which supports over 650 languages) – see Table 18-13 on page 427.
- Vietnamese – see Table 18-14 on page 427.
- Western European – see Table 18-15 on page 427.

The tables define each character set.

See “Character set conversion” on page 428.

Table 18-1 lists the Arabic character set:

Table 18-1: Arabic character sets

<table>
<thead>
<tr>
<th>Character set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cp864</td>
<td>PC Arabic</td>
</tr>
<tr>
<td>cp1256</td>
<td>Microsoft Windows Arabic</td>
</tr>
<tr>
<td>iso88596</td>
<td>ISO 8859-6 Latin/Arabic</td>
</tr>
</tbody>
</table>

Table 18-2 lists the Baltic character set:
Table 18-2: Baltic character sets

<table>
<thead>
<tr>
<th>Character set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cp1257</td>
<td>Microsoft Windows Baltic</td>
</tr>
</tbody>
</table>

Table 18-3 lists the simplified Chinese character set:

Table 18-3: Simplified Chinese character sets

<table>
<thead>
<tr>
<th>Character set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eucgb</td>
<td>EUC GB encoding = Simplified Chinese character sets</td>
</tr>
<tr>
<td>cp936</td>
<td>Microsoft Simplified Chinese character sets</td>
</tr>
<tr>
<td>gb18030</td>
<td>PRC 18030 standard</td>
</tr>
</tbody>
</table>

Table 18-4 lists the traditional Chinese character set:

Table 18-4: Traditional Chinese character set

<table>
<thead>
<tr>
<th>Character set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cp950</td>
<td>PC (Microsoft) Traditional Chinese</td>
</tr>
<tr>
<td>euccns</td>
<td>EUC CNS encoding = Traditional Chinese with extensions</td>
</tr>
<tr>
<td>big5</td>
<td>Big 5 Traditional Chinese</td>
</tr>
<tr>
<td>big5hk</td>
<td>Big 5 with HKSCS extensions</td>
</tr>
</tbody>
</table>

Table 18-5 lists the Cyrillic character set:

Table 18-5: Cyrillic character sets

<table>
<thead>
<tr>
<th>Character set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cp855</td>
<td>IBM PC Cyrillic</td>
</tr>
<tr>
<td>cp866</td>
<td>PC Russian</td>
</tr>
<tr>
<td>cp1251</td>
<td>Microsoft Windows 3.1 Cyrillic</td>
</tr>
<tr>
<td>iso88595</td>
<td>ISO 8859-5 Latin/Cyrillic</td>
</tr>
<tr>
<td>koi8</td>
<td>KOI-8 Cyrillic</td>
</tr>
<tr>
<td>mac_cyr</td>
<td>Macintosh Cyrillic</td>
</tr>
</tbody>
</table>

Table 18-6 lists the Eastern European character set:
Overview of localization support

Table 18-6: Eastern European character sets

<table>
<thead>
<tr>
<th>Character set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cp852</td>
<td>PC Eastern Europe</td>
</tr>
<tr>
<td>cp1250</td>
<td>Microsoft Windows 3.1 Eastern European</td>
</tr>
<tr>
<td>iso88592</td>
<td>ISO 8859-2 Latin-2</td>
</tr>
</tbody>
</table>

Table 18-7 lists the Greek character set:

Table 18-7: Greek character sets

<table>
<thead>
<tr>
<th>Character set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cp869</td>
<td>IBM PC Greek</td>
</tr>
<tr>
<td>cp1253</td>
<td>MS Windows Greek</td>
</tr>
<tr>
<td>greek8</td>
<td>HP GREEK8</td>
</tr>
<tr>
<td>iso88597</td>
<td>ISO 8859-7 Latin/Greek</td>
</tr>
<tr>
<td>macgrk2</td>
<td>Macintosh Greek</td>
</tr>
</tbody>
</table>

Table 18-8 lists the Hebrew character set:

Table 18-8: Hebrew character sets

<table>
<thead>
<tr>
<th>Character set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cp1255</td>
<td>Microsoft Windows Hebrew</td>
</tr>
<tr>
<td>iso88598</td>
<td>ISO 8859-8 Hebrew</td>
</tr>
</tbody>
</table>

Table 18-9 lists the Japanese character set:

Table 18-9: Japanese character sets

<table>
<thead>
<tr>
<th>Character set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cp932</td>
<td>IBM J-DBCS:CP897 + CP301 (Shift-JIS)</td>
</tr>
<tr>
<td>eucjis</td>
<td>EUC-JIS encoding</td>
</tr>
<tr>
<td>sjis</td>
<td>Shift-JIS (no extensions)</td>
</tr>
<tr>
<td>deckanji</td>
<td>DEC Kanji</td>
</tr>
</tbody>
</table>

Table 18-10 lists the Korean character set:

Table 18-10: Korean character sets

<table>
<thead>
<tr>
<th>Character set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eucksc</td>
<td>EUC KSC Korean encoding = CP949</td>
</tr>
<tr>
<td>cp949</td>
<td>Ms Windows Korean</td>
</tr>
</tbody>
</table>

Table 18-11 lists the Thai character set:
Table 18-11: Thai client character sets

<table>
<thead>
<tr>
<th>Character set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tis620</td>
<td>TIS-620 Thai standard</td>
</tr>
<tr>
<td>cp874</td>
<td>Microsoft Windows Thai</td>
</tr>
</tbody>
</table>

Table 18-12 lists the Turkish character set:

Table 18-12: Turkish character sets

<table>
<thead>
<tr>
<th>Character set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cp857</td>
<td>IBM PC Turkish</td>
</tr>
<tr>
<td>cp1254</td>
<td>Microsoft Windows Turkish</td>
</tr>
<tr>
<td>iso88599</td>
<td>ISO 8859-9 Latin-5 Turkish</td>
</tr>
<tr>
<td>turkish8</td>
<td>HP TURKISH8</td>
</tr>
<tr>
<td>macturk</td>
<td>Macintosh Turkish</td>
</tr>
</tbody>
</table>

Table 18-13 lists the Unicode character set:

Table 18-13: Unicode character set

<table>
<thead>
<tr>
<th>Character set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>utf8</td>
<td>Unicode UTF-8 encoding</td>
</tr>
</tbody>
</table>

Table 18-14 lists the Vietnamese character set:

Table 18-14: Vietnamese character set

<table>
<thead>
<tr>
<th>Character set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cp1258</td>
<td>Microsoft Windows Vietnamese</td>
</tr>
</tbody>
</table>

Table 18-15 lists the Western European character set:

Table 18-15: Western European character set

<table>
<thead>
<tr>
<th>Character set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ascii8</td>
<td>US ASCII, with 8-bit data, ISO 646</td>
</tr>
<tr>
<td>cp437</td>
<td>IBM CP437 - U.S. code set</td>
</tr>
<tr>
<td>cp850</td>
<td>IBM CP850 - European code set</td>
</tr>
<tr>
<td>cp860</td>
<td>PC Portuguese</td>
</tr>
<tr>
<td>cp858</td>
<td>cp850 with Euro support</td>
</tr>
<tr>
<td>cp1252</td>
<td>Microsoft Windows US (ANSI)</td>
</tr>
<tr>
<td>iso_1</td>
<td>ISO 8859-1 Latin-1</td>
</tr>
<tr>
<td>roman8</td>
<td>HP ROMAN8</td>
</tr>
<tr>
<td>iso15</td>
<td>ISO 8859-15 Latin-1 with Euro support</td>
</tr>
<tr>
<td>roman9</td>
<td>HP ROMAN8 with Euro support</td>
</tr>
<tr>
<td>mac</td>
<td>Macintosh Roman</td>
</tr>
</tbody>
</table>
Character set conversion

Backup Server passes messages to the Cluster Edition in the client’s language and in the Cluster Edition character set. The Cluster Edition then converts the messages and issues them in the client’s language and character set. Keep the following requirements in mind when selecting a character set:

- In a heterogeneous environment, the Cluster Edition and Backup Server may need to communicate with clients running on different platforms and using different character sets. To maintain data integrity, the server converts the code between the character sets.

- Unicode conversions exist for all native character sets. When converting between two native character sets, Unicode conversion uses Unicode as an intermediate character set. For example, to convert between the server default character set (CP 437), and the client character set (CP 860), CP 437 is first converted to Unicode; Unicode is then converted to CP 860. By default, Unicode conversion is used for character set conversion.

- Adaptive Server direct conversions support conversions between two native character sets of the same language group. For example, Adaptive Server supports conversion between CP 437 and CP 850, because both belong to the group 1 language group. To use the direct conversion, you must install the character set definition files on the server for all the character sets being used by your clients. To enable direct conversion, you must run `sp_configure 'enable unicode conversion', 0` to disable Unicode conversion.

If either the Cluster Edition or Backup Server does not support a client’s language or character set, that server issues a warning message. Errors also occur when the Backup Server character set is not compatible with the Cluster Edition character set.

For more information about supported conversions, see the System Administration Guide.

<table>
<thead>
<tr>
<th>Character set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mac_euro</td>
<td>Macintosh Roman with EURO support</td>
</tr>
</tbody>
</table>
Conversions between server and client

If the Cluster Edition does not support the client’s language or character set, the client can connect with the server, but no character conversions occur.

When a localized client application connects to the Cluster Edition, the server checks to see if it supports the client’s language and character set.

- If the Cluster Edition supports the language, it automatically performs all character set conversions and displays its messages in the client’s language and character set.
- If the Cluster Edition does not support the language, it uses the user’s default language or the Cluster Edition’s default language.
- If the Cluster Edition does not support the character set, it issues a warning to the client, turns conversion off, and sets the language to U.S. English.

Sort orders

Each character set comes with one or more sort orders (collating sequences), which are either located in the sort-order definition files (.srt files) or installed in the system if it is a Unicode sort order. These files accompany the character set definition files and can be found in the same directory.

You can select a sort order for your data according to the needs at your site. However, the server can support only one sort order at a time, so select a sort order that will work for all of your clients.

Warning! Make all changes to the default character set and sort order for a new server before creating any user databases or making any changes to the Sybase-supplied databases. Changing the character set and sort order after data or data structures have been added to the Cluster Edition may cause incorrect behavior. To change the character set or sort order after you have added data, see the *System Administration Guide*.
Available sort orders

The sort order determines the collating sequence the Cluster Edition uses to order, compare, and index character data. Each character set comes with one or more sort orders.

Sort orders are located in sort order definition files (.srt files) that accompany your character set definition files.

Note Available sort orders vary according to the character set installed on the Cluster Edition.

You can see the available sort orders for your character set by looking in the .srt file for your language. Sort orders are stored in:

$SYBASE/charsets/<charset_name>/*.srt

To view available Unicode sort orders, run sp_helpsort. See “Localization directories” on page 434.

Table 18-16 describes available sort orders.

<table>
<thead>
<tr>
<th>Sort order name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary order</td>
<td>Sorts all data according to numeric byte values for that character set. Binary order sorts all ASCII uppercase letters before lowercase letters. Accented or ideographic (multibyte) characters sort in their respective standards order, which may be arbitrary. All character sets have binary order as the default. If binary order does not meet your needs, you can specify one of the other sort orders either at installation or at a later time by, using the charset utility.</td>
</tr>
<tr>
<td>Dictionary order, case sensitive, accent sensitive</td>
<td>Case sensitive. Sorts each uppercase letter before its lowercase counterpart, including accented characters. Recognizes the various accented forms of a letter and sorts them after the associated unaccented letter.</td>
</tr>
<tr>
<td>Dictionary order, case insensitive, accent sensitive</td>
<td>Case-insensitive dictionary sort order. Uppercase letters are equivalent to their lowercase counterparts and are intermingled in sorting results.</td>
</tr>
<tr>
<td>Dictionary order, case insensitive, accent insensitive</td>
<td>Case-insensitive dictionary sort order. Diacritical marks are ignored.</td>
</tr>
</tbody>
</table>
To see the sort orders that are available, use the `charset` utility to display the sort orders for the character sets you plan to use. For more information on Unicode sort orders for UTF-8, see “Configuring Character Sets, Sort Orders, and Languages” in the *System Administration Guide*.

<table>
<thead>
<tr>
<th>Sort order name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dictionary order, case insensitive</td>
<td>Case-insensitive dictionary sort order, with case preference for collating purposes. A word written with uppercase letters is equivalent to the same word written with lowercase letters. Uppercase and lowercase letters are distinguished only when you use an <code>order by</code> clause. The <code>order by</code> clause sorts uppercase letters before it sorts lowercase. Note Do not select this sort order unless your installation requires that uppercase letters be sorted before lowercase letters in otherwise equivalent strings for <code>order by</code> clauses. Using this sort order may reduce performance in large tables when the columns specified in an <code>order by</code> clause match the key of the table’s clustered index.</td>
</tr>
<tr>
<td>Alternate dictionary order, case</td>
<td>Case-sensitive alternate dictionary sort order with lowercase variants sorted before uppercase. Use with several of the Western European languages.</td>
</tr>
<tr>
<td>sensitive</td>
<td></td>
</tr>
<tr>
<td>Alternate dictionary order, case</td>
<td>Case-insensitive and accent-insensitive alternate dictionary sort order. Use with several of the Western European languages.</td>
</tr>
<tr>
<td>insensitive, accent insensitive</td>
<td></td>
</tr>
<tr>
<td>Alternate dictionary order, case</td>
<td>Case-insensitive alternate dictionary sort order with uppercase preference. Use with several of the Western European languages.</td>
</tr>
<tr>
<td>insensitive, uppercase preference</td>
<td></td>
</tr>
<tr>
<td>Spanish dictionary order, case</td>
<td>Case-sensitive Spanish dictionary sort order. Use with Spanish and for most Latin American locales.</td>
</tr>
<tr>
<td>sensitive</td>
<td></td>
</tr>
<tr>
<td>Spanish dictionary order, case</td>
<td>Spanish case-insensitive dictionary sort order. Use with Spanish and for most Latin American locales.</td>
</tr>
<tr>
<td>insensitive</td>
<td></td>
</tr>
<tr>
<td>Spanish dictionary order, case</td>
<td>Spanish case-insensitive and accent-insensitive dictionary sort order. Use with Spanish and for most Latin American locales.</td>
</tr>
<tr>
<td>insensitive, accent insensitive</td>
<td></td>
</tr>
<tr>
<td>Scandinavian dictionary order, case</td>
<td>Case-sensitive dictionary sort order. Use with Scandinavian languages.</td>
</tr>
<tr>
<td>sensitive</td>
<td></td>
</tr>
<tr>
<td>Scandinavian dictionary order, case</td>
<td>Case-insensitive and accent-insensitive dictionary sorting, with uppercase preference. Use with Scandinavian languages.</td>
</tr>
<tr>
<td>insensitive, uppercase preference</td>
<td></td>
</tr>
</tbody>
</table>
Table 18-17 lists the available default Unicode sort orders.

Table 18-17: Default Unicode sort orders

<table>
<thead>
<tr>
<th>Name</th>
<th>ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>defaultml</td>
<td>20</td>
<td>Default Unicode multi-lingual ordering</td>
</tr>
<tr>
<td>thaidict</td>
<td>21</td>
<td>Thai dictionary ordering</td>
</tr>
<tr>
<td>iso14651</td>
<td>22</td>
<td>Ordering as per ISO14651 standard</td>
</tr>
<tr>
<td>utf8bin</td>
<td>24</td>
<td>Ordering for UTF-16 that matches the UTF-8 binary</td>
</tr>
<tr>
<td>binary</td>
<td>25</td>
<td>Binary sort</td>
</tr>
<tr>
<td>altnoace</td>
<td>39</td>
<td>Alternate accent-insensitive</td>
</tr>
<tr>
<td>altdict</td>
<td>45</td>
<td>Alternate dictionary ordering</td>
</tr>
<tr>
<td>altnocsp</td>
<td>46</td>
<td>Alternate case-insensitive with preference</td>
</tr>
<tr>
<td>scandict</td>
<td>47</td>
<td>Scandinavian dictionary ordering</td>
</tr>
<tr>
<td>scannocp</td>
<td>48</td>
<td>Scandinavian case-insensitive with preference</td>
</tr>
<tr>
<td>bin_utf8</td>
<td>50</td>
<td>UTF-8 binary sort order</td>
</tr>
<tr>
<td>dict</td>
<td>51</td>
<td>General-purpose dictionary ordering</td>
</tr>
<tr>
<td>nocase</td>
<td>52</td>
<td>General-purpose case-insensitive dictionary ordering</td>
</tr>
<tr>
<td>nocasep</td>
<td>53</td>
<td>General-purpose case-insensitive with preference</td>
</tr>
<tr>
<td>noaccent</td>
<td>54</td>
<td>General-purpose accent-insensitive dictionary ordering</td>
</tr>
<tr>
<td>espdict</td>
<td>55</td>
<td>Spanish dictionary ordering</td>
</tr>
<tr>
<td>espnocs</td>
<td>56</td>
<td>Spanish case-insensitive dictionary ordering</td>
</tr>
<tr>
<td>espnoac</td>
<td>57</td>
<td>Spanish accent-insensitive dictionary ordering</td>
</tr>
<tr>
<td>rusnocs</td>
<td>59</td>
<td>Russian case-insensitive dictionary ordering</td>
</tr>
<tr>
<td>cyrnocs</td>
<td>64</td>
<td>Cyrillic case-insensitive dictionary ordering</td>
</tr>
<tr>
<td>elldict</td>
<td>65</td>
<td>Greek dictionary ordering</td>
</tr>
<tr>
<td>hunnoac</td>
<td>70</td>
<td>Hungarian accent-insensitive dictionary ordering</td>
</tr>
<tr>
<td>hunnocs</td>
<td>71</td>
<td>Hungarian case-insensitive dictionary ordering</td>
</tr>
<tr>
<td>turknocac</td>
<td>73</td>
<td>Turkish accent-insensitive dictionary ordering</td>
</tr>
<tr>
<td>cp932bin</td>
<td>129</td>
<td>CP932 binary sort order</td>
</tr>
<tr>
<td>dynix</td>
<td>130</td>
<td>GB pinyin sort order</td>
</tr>
<tr>
<td>gb2312bn</td>
<td>137</td>
<td>GB2312 binary sort order</td>
</tr>
<tr>
<td>cyrdict</td>
<td>140</td>
<td>Cyrillic dictionary sort order</td>
</tr>
<tr>
<td>turdict</td>
<td>155</td>
<td>Turkish dictionary sort order</td>
</tr>
<tr>
<td>euckscbn</td>
<td>161</td>
<td>EUCKSC binary sort order</td>
</tr>
<tr>
<td>gbpinyin</td>
<td>163</td>
<td>GB pinyin sort order</td>
</tr>
<tr>
<td>rUSDdict</td>
<td>165</td>
<td>Russian dictionary sort order</td>
</tr>
<tr>
<td>sjisbin</td>
<td>179</td>
<td>SJIS binary sort order</td>
</tr>
</tbody>
</table>
Language modules

If you want the Cluster Edition error messages to be displayed in a language other than U.S. English (us_english), you must install the appropriate language module.

When you install a new language module, installation automatically loads the language into the Sybase installation directory to support the new language. See “Localization directories” on page 434.

Installing a new language module

A full server installation includes all the language components automatically. If you did not select a full install, you must install additional language modules manually.

To install a new language module:

1. Load the language module software from the distribution media. You must load this software into the same directory in which you loaded the Cluster Edition.

2. Reconfigure the language and, if necessary, the character set and sort order for the Cluster Edition. See “Changing the localization configuration” on page 438.

Message languages

For messages, U.S. English is installed as the default language in the Cluster Edition. The following rules apply to language modules:

- During the Cluster Edition installation or reconfiguration, you can specify a default language other than U.S. English. However, you must have installed the language module for the language you specify.

<table>
<thead>
<tr>
<th>Name</th>
<th>ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eucjisbn</td>
<td>192</td>
<td>EUCJIS binary sort order</td>
</tr>
<tr>
<td>big5bin</td>
<td>194</td>
<td>BIG5 binary sort order</td>
</tr>
</tbody>
</table>
• If your clients require the Cluster Edition messages in a language other than U.S. English, you must load the language module for those languages. Then, you can configure the Cluster Edition to the language used by your clients.

• If the Cluster Edition does not support messages in a client’s language, these clients receive messages in the server default language.

For example, if your client’s language is Latin, the Spanish language module is installed, and Spanish is specified as the Cluster Edition default language, the client receives messages in Spanish.

Localization

By default, the Cluster Edition and Backup Server configurations use the English locale settings, which include:

• Character set definition files for Western European character sets
• Sort-order definition files for Western European character sets
• U.S. English system message files

During the installation process or through reconfiguration, you can specify a different language, character set, and sort order.

Localization directories

Sybase localization configuration involves the following directories:

• locales
• charsets

The table below illustrates the structure of the localization files. It does not show a complete list of all the files.
CHAPTER 18 Customizing Localization for the Cluster Edition

About the directory

The $SYBASE/locales and $SYBASE/SSYBASE_ASE/locales directory contains a subdirectory for each available language. Each language subdirectory contains a subdirectory for each character set available with that language.

- The .loc files in these subdirectories enable the Cluster Edition or Backup Server to report errors in a specific language, encoded in a specific character set.

There are a variety of .loc files in each subdirectory. Most of these files contain translated error messages for a specific product or utility.

- The common.loc file in each subdirectory contains localized information, such as local date, time, and currency formatting, that is used by all products.

- The locales.dat file contains entries that associate platform-specific locale names with Sybase language and character set combinations.

About the charsets directory

The files in $SYBASE/charsets/charset_name contain information related to each particular character set, such as the definition of the character set and any sort orders available for that character set.

About the locales.dat file

You can edit the locales.dat file to:

- Change the default language or character set for a platform, or
Add new associations between platform locale names and Sybase language and character set names.

Format of locales.dat file entries

Each entry in the locales.dat file links a platform-specific locale definition to a Sybase language and character set combination. Each entry has the following format:

```
locale = platform_locale, syb_language, syb_charset
```

where:

- `platform_locale` is the platform-specific keyword for a locale. For acceptable values, see your operating system documentation. When the locale being defined as the default for the site, `platform_locale` is “default.”

- `syb_language` is the name of the language directory to be used from within $SYBASE/locales/language_name.

- `syb_charset` is the character set name that determines the character set conversion method and identifies the directory location of the message files for clients from within $SYBASE/locales/language_name/charset_name.

For example, the following entry specifies that the default locale uses us_english for the language and iso_1 for the character set:

```
locale = default, us_english, iso_1
```

How client applications use locales.dat

Client applications use the locales.dat file to identify the language and character set to use. The connection process follows these steps:

1. When a client application starts, it checks the operating system locale setting and then checks the locales.dat file to see if that setting is appropriate for the Cluster Edition. For example, a locale entry for French can look like the following:

```
locale = fr_FR, french, iso_1
```

2. When the client connects to the Cluster Edition, the language and character set information is passed to the Cluster Edition in the login record.
the Cluster Edition then uses:

- The character set information, for example, iso_1, to identify the client’s character set and verify whether it can convert character data to this character set
- The language (in the preceding example, French) and character set information to see if it has messages in the client’s language

Note The Cluster Edition software includes some locale entries already defined in the locales.dat file. If these entries do not meet your needs, you can either modify them or add new locale entries.

Editing the locales.dat file

Before beginning the edit, make a copy of the original file, in case you have problems with the resulting edited version.

To edit the locales.dat file:

1. Open the locales.dat file copy in a text editor.
2. Find the section enclosed in brackets:
 - For Sun Solaris, [sun_svr4]
 - For HP, [hp_ux]
 - For IBM, [aix]
3. Make sure the section contains an entry for the language (syb_language) and character set (syb_charset) combination that you want to use.

 Note The value for platform_locale must match the value required by your operating system. If the locales definitions in your system configuration files do not match the Sybase locale definitions, your applications will not run properly.

For example, if you want your Open Client messages to appear in French, and the Cluster Edition is using the ROMAN8 character set, you would check the locales.dat entries for your platform and look for the following entry:

 locale = fr_FR, french, roman8

4. Add the required entry or modify an existing entry.
Changing the localization configuration

By default, the Cluster Edition and Backup Server configurations uses the English locale settings localization, which include:

- Character set definition files for Western European character sets
- Sort order definition files for Western European character sets
- us_english system message files

During the installation process and through reconfiguration, you can specify a different language, character set, and sort order.

Cluster Edition localization

Each language uses about 2MB of database space per module. If necessary, use the alter database command to increase the size of the master database before adding another language.

Note If you want to install more than one language on the Cluster Edition, and the master database is not large enough to manage more than one language, the transaction log may become too full. You can expand the master database only on the master device. See the System Administration Guide.

1 Source SYBASE.csh or SYBASE.sh if you have not set up the Sybase environment variables.

2 Use the langinstall utility to configure localization for the Cluster Edition:

 $SYBASE/$SYBASE_ASE/bin/langinstall

 This is the syntax for langinstall:

 langinstall [-S server_name] [-U user_name] [-P password]
 [-R release_number] [-I path_to_interfaces] [-v] language character_set

 For example, to install the French language with the iso_1 default character set:

 langinstall -Usa -P -S server_name french iso_1
Backup Server localization

You can change the Backup server language and character set by modifying the `RUN_<backup_server_name>` file. See the Utility Guide for more information on the backupserver command arguments.

Configuring the Cluster Edition for other character sets

To configure the Cluster Edition with the character set and sort order for your language, complete the following steps. Your system messages appear in the default language, English.

1. Use the charset utility to load the default character set and sort order.

 To use charset, the server must be running and you must have System Administrator privileges. Use the file name of the sort order:

   ```
   $SYBASE/$SYBASE_ASE/bin/charset -Usa -P password
   -S server_name sort_order_file character_set
   ```

 Replace `sort_order_file` with the name of the sort order file. See Table 18-18 on page 440. Replace `character_set` with the Sybase name for your character set. See Table 18-19 on page 441.

2. Use charset utility to load any additional character sets. See “charset utility” on page 443.

 To use the Cluster Edition built-in character set conversions, load the character set definition files for all the characters set on your client platforms. If you are using the Unilib character set conversions, you do not need to do this.

3. Using `isql`, log in to your server as “sa” and select the master database.

   ```
   1> use master
   2> go
   ```

4. Use the ID of the sort order to configure your server for the new character set and sort order.

   ```
   1> sp_configure "default sortorder_id",
   2> sort_order_id, "character_set"
   3> go
   ```

 Replace `sort_order_id` with the ID for your sort order. See Table 18-18 on page 440. Replace `character_set` with the Sybase name for your character set. See Table 18-19 on page 441.
Changing the localization configuration

5 Shut down the cluster. You can use `sybcluster`, the Adaptive Server plug-in, or, if you configured the cluster manually, a command line option.

6 Restart any instance in the cluster using `sybcluster` or the Adaptive Server plug-in.

Note If you configured the cluster manually, use your normal process on UNIX systems to restart an instance, usually by invoking one of the `RUN_***` scripts from `$SYBASE/$SYBASE_ASE/install`.

7 The instance starts, rebuilds all the system indexes, then shuts down. Restart a second time to bring the instance up in a stable state.

8 Check the cluster log file to verify that the charset and sortorder changes have completed successfully.

Sort orders

Table 18-18 describes the available sort orders. If your language does not appear, then there is no language-specific sort order for your language—use a binary sort order.

Table 18-18: Available sort orders

<table>
<thead>
<tr>
<th>Language or script</th>
<th>Sort orders</th>
<th>File name</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>All languages</td>
<td>Binary order</td>
<td>binary.srt</td>
<td>50</td>
</tr>
<tr>
<td>Central European Czech, Slovak</td>
<td>Dictionary order, case sensitive, accent sensitive</td>
<td>czedit.srt</td>
<td>80</td>
</tr>
<tr>
<td>These sort orders work only with CP 852, CP 1250, and ISO 8859-2</td>
<td>Dictionary order, case insensitive, accent sensitive</td>
<td>czeocs.srt</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>Dictionary order, case insensitive, accent insensitive</td>
<td>czenoac.srt</td>
<td>81</td>
</tr>
<tr>
<td>Cyrillic</td>
<td>Dictionary order, case sensitive, accent sensitive</td>
<td>cyrdict.srt</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Dictionary order, case sensitive, accent sensitive</td>
<td>cyrnocs.srt</td>
<td>64</td>
</tr>
<tr>
<td>English</td>
<td>Dictionary order, case sensitive, accent sensitive</td>
<td>dictiona.srt</td>
<td>51</td>
</tr>
<tr>
<td>French</td>
<td>Dictionary order, case insensitive, accent sensitive</td>
<td>nocase.srt</td>
<td>52</td>
</tr>
<tr>
<td>German</td>
<td>Dictionary order, case insensitive, accent sensitive, with preference</td>
<td>nocasepr.srt</td>
<td>53</td>
</tr>
<tr>
<td>These sort orders work with all Western European character sets.</td>
<td>Dictionary order, case insensitive, accent insensitive</td>
<td>noaccent.srt</td>
<td>54</td>
</tr>
</tbody>
</table>
CHAPTER 18 Customizing Localization for the Cluster Edition

Character sets

Table 18-19 lists the supported character sets and their Sybase name.

Table 18-19: Sybase character set names

<table>
<thead>
<tr>
<th>Character sets</th>
<th>Sybase name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCII 8</td>
<td>ascii_8</td>
</tr>
<tr>
<td>Big 5</td>
<td>big5</td>
</tr>
<tr>
<td>Big 5HK</td>
<td>big5hk</td>
</tr>
<tr>
<td>CP 437</td>
<td>cp437</td>
</tr>
<tr>
<td>CP 850</td>
<td>cp850</td>
</tr>
</tbody>
</table>
Changing the localization configuration

<table>
<thead>
<tr>
<th>Character sets</th>
<th>Sybase name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP 852</td>
<td>cp852</td>
</tr>
<tr>
<td>CP 855</td>
<td>cp855</td>
</tr>
<tr>
<td>CP 857</td>
<td>cp857</td>
</tr>
<tr>
<td>CP 858</td>
<td>cp858</td>
</tr>
<tr>
<td>CP 860</td>
<td>cp860</td>
</tr>
<tr>
<td>CP 864</td>
<td>cp864</td>
</tr>
<tr>
<td>CP 866</td>
<td>cp866</td>
</tr>
<tr>
<td>CP 869</td>
<td>cp869</td>
</tr>
<tr>
<td>CP 874</td>
<td>cp874</td>
</tr>
<tr>
<td>CP 932</td>
<td>cp932</td>
</tr>
<tr>
<td>CP 936</td>
<td>cp936</td>
</tr>
<tr>
<td>CP 949</td>
<td>cp949</td>
</tr>
<tr>
<td>CP 950</td>
<td>cp950</td>
</tr>
<tr>
<td>CP 1250</td>
<td>cp1250</td>
</tr>
<tr>
<td>CP 1251</td>
<td>cp1251</td>
</tr>
<tr>
<td>CP 1252</td>
<td>cp1252</td>
</tr>
<tr>
<td>CP 1253</td>
<td>cp1253</td>
</tr>
<tr>
<td>CP 1254</td>
<td>cp1254</td>
</tr>
<tr>
<td>CP 1255</td>
<td>cp1255</td>
</tr>
<tr>
<td>CP 1256</td>
<td>cp1256</td>
</tr>
<tr>
<td>CP 1257</td>
<td>cp1257</td>
</tr>
<tr>
<td>CP 1258</td>
<td>cp1258</td>
</tr>
<tr>
<td>DEC Kanji</td>
<td>deckanji</td>
</tr>
<tr>
<td>EUC-CNS</td>
<td>euccns</td>
</tr>
<tr>
<td>EUC-GB</td>
<td>eucgb</td>
</tr>
<tr>
<td>EUC-JIS</td>
<td>eucjis</td>
</tr>
<tr>
<td>EUC-KSC</td>
<td>eucksc</td>
</tr>
<tr>
<td>GB 18030</td>
<td>gb18030</td>
</tr>
<tr>
<td>GREEK8</td>
<td>greek8</td>
</tr>
<tr>
<td>ISO 8859-1</td>
<td>iso_1</td>
</tr>
<tr>
<td>ISO 8859-2</td>
<td>iso88592</td>
</tr>
<tr>
<td>ISO 8859-5</td>
<td>iso88595</td>
</tr>
<tr>
<td>ISO 8859-6</td>
<td>iso88596</td>
</tr>
<tr>
<td>ISO 8859-7</td>
<td>iso88597</td>
</tr>
<tr>
<td>ISO 8859-8</td>
<td>iso88598</td>
</tr>
<tr>
<td>ISO 8859-9</td>
<td>iso88599</td>
</tr>
<tr>
<td>ISO 8859-15</td>
<td>iso15</td>
</tr>
</tbody>
</table>

Adaptive Server Enterprise Cluster Edition
CHAPTER 18 Customizing Localization for the Cluster Edition

Use the `charset` utility to load character sets and sort orders into the Cluster Edition. If you are using `charset` to load the default character set and sort order, this should be done only at the time of installation.

To change the default character set and sort order of the Cluster Edition, see the System Administration Guide.

Syntax

```
charset
[ -U username ]
[ -P password ]
[ -S server ]
[ -I interfaces ]
[ -v version ]
sort_order
[ charset ]
```

Table 18-20: Keywords and options for charsets

<table>
<thead>
<tr>
<th>Character sets</th>
<th>Sybase name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Koi8</td>
<td>koi8</td>
</tr>
<tr>
<td>MAC</td>
<td>mac</td>
</tr>
<tr>
<td>MAC_CYR</td>
<td>mac_cyr</td>
</tr>
<tr>
<td>MAC_EE</td>
<td>mac_ee</td>
</tr>
<tr>
<td>MAC_EURO</td>
<td>mac_euro</td>
</tr>
<tr>
<td>MACGRK2</td>
<td>macgrk2</td>
</tr>
<tr>
<td>MACTURK</td>
<td>macturk</td>
</tr>
<tr>
<td>ROMAN8</td>
<td>roman8</td>
</tr>
<tr>
<td>ROMAN9</td>
<td>roman9</td>
</tr>
<tr>
<td>Shift-JIS</td>
<td>sjis</td>
</tr>
<tr>
<td>TIS 620</td>
<td>tis620</td>
</tr>
<tr>
<td>TURKISH8</td>
<td>turkish8</td>
</tr>
<tr>
<td>UTF-8</td>
<td>utf8</td>
</tr>
</tbody>
</table>

charset utility

Use the `charset` utility to load character sets and sort orders into the Cluster Edition. If you are using `charset` to load the default character set and sort order, this should be done only at the time of installation.

To change the default character set and sort order of the Cluster Edition, see the System Administration Guide.

Syntax

```
charset
[ -U username ]
[ -P password ]
[ -S server ]
[ -I interfaces ]
[ -v version ]
sort_order
[ charset ]
```

Table 18-20: Keywords and options for charsets

<table>
<thead>
<tr>
<th>Keywords and options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-U</td>
<td>If you are not already logged in to your operating system as “sa”, you must specify “-Usa” or “/username = sa” in the command line.</td>
</tr>
<tr>
<td>-P</td>
<td>Specifies the “sa” password on the command line. If not specified, the user is prompted for the “sa” password.</td>
</tr>
</tbody>
</table>
Changing the localization configuration

<table>
<thead>
<tr>
<th>Keywords and options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-S</td>
<td>Specifies the name of the server. If not specified, charset uses the DSQUERY environment variable to identify the server name. If there is no DSQUERY environment variable, charset attempts to connect to a server named “SYBASE.”</td>
</tr>
<tr>
<td>-I</td>
<td>Specifies the interfaces file to use. If not specified, charset uses the interfaces file in the SYBASE directory.</td>
</tr>
<tr>
<td>-v</td>
<td>Causes the Sybase version string to be printed, then exits. Use with no other options specified.</td>
</tr>
<tr>
<td>sort_order</td>
<td>When charset is used to load the default character set and sort order, sort_order is a mandatory parameter specifying the name of the sort order file to be used by the Cluster Edition. When loading additional character sets, use charset.loc to indicate the name of the character set files.</td>
</tr>
<tr>
<td>charset</td>
<td>Specifies the directory of the character set to be used by the Cluster Edition.</td>
</tr>
</tbody>
</table>
Adding auditing

Auditing is an important part of security in a database management system. Security-related system activity is recorded in an audit trail, which can be used to detect penetration of the system and misuse of resources. By examining the audit trail, the System Security Officer can inspect patterns of access to objects in databases and can monitor the activity of specific users. Audit records can be traced to specific users, enabling the audit system to act as a deterrent to users who are attempting to misuse the system.

A System Security Officer manages the audit system and is the only user who can start and stop auditing, set up auditing options, and process audit data.

Audit system devices and databases

The audit system includes several components. The main components are:

- The sybsecurity device and the sybsecurity database, which stores audit information
Adding auditing

- The audit trail, which consists of several audit devices and tables that you determine at configuration time
- The syslogs transaction log device, which stores transaction logs

The syssecurity device and database

The syssecurity device stores the syssecurity database. The syssecurity database is created as part of the auditing configuration process. It contains all the system tables in the model database, as well as a system table for keeping track of server-wide auditing options and system tables for the audit trail.

Tables and devices for the audit trail

The Cluster Edition stores the audit trail in system tables, named sysaudits_01 through sysaudits_08. At any given time, only one of the audit tables is current. The Cluster Edition writes all audit data to the current audit table. A System Security Officer can use sp_configure to set or change which audit table is current.

When you configure the Cluster Edition for auditing, you determine the number of audit tables for your installation. You can specify up to eight system tables (sysaudits_01 through sysaudits_08). Plan to use at least two or three system tables for the audit trail and to put each system table on its own device, separate from the master device. If you do this, you can use a threshold procedure that archives the current audit table automatically, before it fills up and switches to a new, empty table for subsequent audit records.

Device for syslogs systems table

During auditing configuration, you must specify a separate device for the syslogs system table, which contains the transaction log. The syslogs table, which exists in every database, contains a log of transactions that are executed in the database.

Running auditinit with the Cluster Edition

If you use auditinit with a non-clustered versions of Adaptive Server, auditinit starts the server if it is not already running. However the Cluster Edition requires that an instance is running before you use the auditinit utility. auditinit does not start the instance if it has not already started. If you attempt to log into a Cluster Edition with auditinit that is not started, auditinit displays this warning message:

Can not login to server because it is not running.
Please manually start the server and retry
Preinstallation tasks for auditing devices

Determine the location of the raw devices for the sybsecurity, syslogs, and sysaudits table devices. You will need to provide this information later.

Sybase recommends that you:

- Configure your system with the minimum number of auditing devices you require—you must configure at least three devices. You can add more auditing devices later with sp_addaudittable. For information, see the Reference Manual.

- Install auditing tables and devices in a one-to-one ratio. Tables that share the same device will share the same upper threshold limit. These tables cannot be used sequentially when a device fills up, because they both reside on the same device.

- Install each auditing table on its own device. This enables you to set up a smoothly running auditing system with no loss of auditing records. With two auditing tables, when one fills up, you can switch to the other. With a third auditing table, if one device fails, the System Security Officer can install a new threshold procedure that changes the device rotation to skip the broken device until the device is repaired.

- Make the device larger than the table. When you use only three auditing tables and devices, the size of the table and the size of the device can be similar, because you can obtain more auditing capacity by adding more auditing tables and devices (up to eight). When you are working toward the upper table and device limit (six to eight), you may want to make the device considerably larger than the table. Then, you can expand the table size later towards the upper size of the device when a larger auditing capacity is desired, and few or no device additions are available.

Installing auditing

Configuring the Cluster Edition for auditing

1. Source SYBASE.csh or SYBASE.sh file if you have not setup the Sybase environment variables.

2. Start auditinit at the UNIX prompt (the auditinit utility is located in $SYBASE/$SYBASE_ASE/install):

 $SYBASE/$SYBASE_ASE/install/auditinit

 auditinit displays the following menu:
Adding auditing

AUDITINIT
1. Release directory: /usr/u/sybase
2. Configure a Server product
5. Select Configure an Existing Sybase Server.
6. Select the server to configure.
7. Provide the SA password for the server you selected.
8. From the Sybase Server Configuration screen, select Configure Auditing.
 As you proceed through the menus in auditinit, you can change any default values that appear. As you finish each menu, press Ctrl+A to accept the defaults or changed values and move to the next menu.

CONFIGURE AUDITING
1. Configure auditing: no
2. Add a device for audit table(s)
3. Add a device for the audit database transaction log
4. Delete a device entry
5. Change a device entry

List of devices for the audit tables:
Logical name Physical name Segment name Table name Size

Device for the audit database transaction log:
Logical name Physical name Segment name Table name Size

9. From the Configure Auditing screen, select Configure Auditing. auditinit redisplays the Configure Auditing menu with the value “yes” displayed for Configure Auditing.

10. Restart the Cluster Edition for the changes to take effect.

Creating a device for an audit table
1. From the Configure Auditing screen, select Add a Device for Audit Table(s).
 auditinit displays the following menu:

 ADD/CHANGE A NEW DEVICE FOR AUDITING
 1. sybsecurity physical device name:
 2. Logical name of the device:
 3. Size of the device (Meg):
4. Device size for auditing:

2 Select Sybase security physical device name.

To create a device for an audit table:

1 Enter the full path of the physical device (raw partition) that you located in “Preinstallation tasks for auditing devices” on page 447, where path_to_partition is the path to the raw partition for the device.

 Enter the physical name of the device to use for the audit database (default is " "): /dev/path_to_partition

If you specify an operating system file, the following warning appears:

 WARNING: '/secret1/sybase_dr/install/aud1.dat' is a regular file which is not recommended for a Server device.

2 Press Return to acknowledge the warning.

auditinit redisplay the Add/Change a New Device for Auditing menu, which displays the physical name of the device:

 ADD/CHANGE A NEW DEVICE FOR AUDITING
 1. Sybase security physical device name: /secret1/sybase_dr/install/aud1.dat
 2. Logical name of the device:
 3. Size of the device:
 4. Device size for auditing:

3 Proceed through the remaining items on this menu.

Note The Size of the Device value must be equal to or greater than the Device Size for Auditing value. The Device Size for Auditing must be equal to the device size. If you are following Sybase auditing guidelines, you do not need to change the value displayed in Device Size for Auditing.

4 Press Ctrl+A to accept the settings. auditinit returns to the Configure Auditing menu and displays the device you have created.

CONFIGURE AUDITING
1. Configure auditing: yes
2. Add a device for audit table(s)
3. Add a device for the audit database transaction log
4. Delete a device entry
5. Change a device entry
Adding auditing

List of devices for the audit tables:
Logical name Physical name Segment name Table name Size

6. Audit_01' /secret1/sybase_dr/install/aud1.dat' sysaudits_01 5

5 To add multiple audit devices, repeat steps 1–6.

You can add as many as eight devices. Sybase recommends adding three or more audit table devices.

After adding a device, auditinit returns to the Configure Auditing menu and displays all the devices you have created.

CONFIGURE AUDITING
1. Configure auditing: yes
2. Add a device for audit table(s)
3. Add a device for the audit database transaction log
4. Delete a device entry
5. Change a device entry

List of devices for the audit tables:
Logical name Physical name Segment name Table name Size

6. Audit_01' /secret1/sybase_dr/install/aud1.dat' sysaudits_01 5
7. Audit_02' /secret1/sybase_dr/install/aud2.dat' sysaudits_02 5

❖ Creating a device for the audit database transaction log
1 From the Configure Auditing menu, select Add a Device for the Audit Database Transaction Log.

auditinit displays the Add/Change a New Device for Auditing menu.

ADD/CHANGE A NEW DEVICE FOR AUDITING
1. sybsecurity physical device name:
2. Logical name of the device:
3. Size of the new device (Meg):
4. Device size for auditing:

2 Select Sybsecurity Physical Device Name.

auditinit prompts for the physical name and supplies you with a default, if available:

Enter the physical name of the device to use for the sybsecurity database (default is''):
3. Enter the full path name of a physical device.

If you enter an operating system file name, the following warning appears:

WARNING: '/secret1/sybase_dr/install/audlog' is a regular file, which is not recommended for a Server device.

4. Press Return to acknowledge this warning.

auditinit displays the Add/Change a New Device for Auditing menu and the value you selected for the physical name of the device.

```
ADD/CHANGE A NEW DEVICE FOR AUDITING
1. sybsecurity physical device name: /secret1/sybase_dr/install/auditlog.dat
2. Logical name of the device:
3. Size of the device:
4. Device size for auditing:
```

5. Proceed through the remaining items on this menu. As you do so, be aware of the following:

- Sybase recommends a minimum size of 2MB for the size of the transaction log.
- auditinit displays the size in both Size of the Device and in Device Size for Auditing in the Add/Change a New Device for Auditing menu.
- The Device Size for Auditing default value is equal to the size of the device, based on the assumption that you may want to devote the entire device to log for the auditing task. If you want to use only a subset of the device, you can edit the Size of the Device value.

6. Press Ctrl+A to accept the settings displayed in the Add/Change a New Device for Auditing menu.

auditinit returns to the Configure Auditing menu and displays all the devices you have created.

```
CONFIGURE AUDITING
1. Configure auditing: yes
2. Add a device for audit table(s)
3. Add a device for the audit database transaction log
4. Delete a device entry
5. Change a device entry
```
Adding auditing

List of devices for the audit tables:

<table>
<thead>
<tr>
<th>Logical name</th>
<th>Physical name</th>
<th>Segment name</th>
<th>Table</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audit_01'</td>
<td>/secret1/sybase_dr/install/aud1.dat'</td>
<td>sysaudits_01</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Audit_02'</td>
<td>/secret1/sybase_dr/install/aud2.dat'</td>
<td>sysaudits_02</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>auditlog</td>
<td>/secret1/.../auditlog.dat</td>
<td>logsegment</td>
<td>syslogs</td>
<td>2</td>
</tr>
</tbody>
</table>

7 When you are ready to execute the audit configuration, press Ctrl+A. auditinit returns you to the Sybase Server Configuration screen.

8 Press Ctrl+A again. auditinit prompts with:

Execute the Sybase Server Configuration now?

9 Enter “y” (yes).

auditinit executes the tasks to install auditing. When the installation completes successfully, the following messages are displayed:

Running task: install auditing capabilities.

....................Done

Auditing capability installed.

Task succeeded: install auditing capabilities.

Configuration completed successfully.

Press <return> to continue.

Enabling auditing

After auditing is installed, no auditing occurs until a System Security Officer enables auditing with sp_configure. See the System Administration Guide.

❖ Deleting a device entry

1 Select Delete a Device Entry from the Configure Auditing menu.

2 Enter the number of the device to delete.

3 Press return.

❖ Changing a device entry

1 Select Change a Device Entry from the Configure Auditing menu.

2 Enter the number of the device to change.

auditinit displays the Add/Change a New Device for Auditing menu with information on the device you selected:

ADD/CHANGE A NEW DEVICE FOR AUDITING

1. subsecurity physical device name:

 /secret1/sybase_dr/install/audlog

2. Logical name of the device: aud.log
3. size of the new device (Meg): 5
4. Device size for auditing: 5

3 Select each remaining entry you want to change.
4 Press Ctrl+A to save the new entries.

Installing online help for Transact-SQL syntax

This section provides instructions for installing online help for Transact-SQL syntax.

Online syntax help: sp_syntax

The $SYBASE/$SYBASE_ASE/scripts directory contains scripts for installing the syntax help database, sybsyntax. You can retrieve this data with sp_syntax. For more information on sp_syntax, see the Reference Manual.

The scripts directory contains one or more of the sp_syntax scripts shown in Table 19-1, depending on which Sybase products are included with your server:

<table>
<thead>
<tr>
<th>Script</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>ins_syn_cl</td>
<td>Open Client Client/Library™</td>
</tr>
<tr>
<td>ins_syn_esql</td>
<td>Embedded SQL™</td>
</tr>
<tr>
<td>ins_syn_os</td>
<td>Open Server</td>
</tr>
<tr>
<td>ins_syn_sql</td>
<td>Transact-SQL</td>
</tr>
</tbody>
</table>

All the Cluster Edition installations include the ins_syn_sql script. This script includes syntax information for Transact-SQL, the system procedures, and the Sybase utilities. When you execute this script, you install the SQL portion of the sybsyntax database.
You can install any of these scripts, depending on the need for Sybase information on your server. The first script you execute creates the sybsyntax database and the needed tables and indexes. Any scripts that you execute after the first one add to the existing information in the database. If you execute a script that was executed previously, the previously installed rows of information are deleted from the table in the database and then reinstalled.

Warning! The ins_syn_cl and ins_syn_os scripts conflict. If you execute both scripts, errors occur.

Default device for the sybsyntax database

The sybsyntax database requires 3MB on your database device. By default, the sybsyntax installation scripts install the sybsyntax database on the device that is designated as the default database device.

If you have not used `sp_diskdefault` to change the status of the master device (which is installed as the default disk) or to specify another default device, the scripts install sybsyntax on the master device. Sybase does not recommend this configuration because sybsyntax uses valuable space, which is best left available for future expansion of the master database.

To avoid installing sybsyntax on the master device, do one of the following:

- Use `sp_diskdefault` to specify a default device other than the master device. For information about `sp_diskdefault`, see the Reference Manual.

- Modify each sybsyntax installation script that you plan to execute to specify a different device, as explained in the following section.

Installing sybsyntax

For each sybsyntax installation script you want to execute:

1. Determine the type (raw partition, logical volume, operating system file, and so on) and location of the device where you plan to store the sybsyntax database. You will need to provide this information later.

2. Make a copy of the original script. Be sure you can access this copy, in case you experience problems with the edited script.
3 Use a text editor to edit the script, if necessary, to change the default device from the master device to the device created in step 1. See “Default device for the sybsyntax database” on page 454.

- Comment out the following section, which specifies the default device:

```sql
/* create the database, if it does not exist */
if not exists (select name from sysdatabases
where name = "sybsyntax")
begin
/* create the sybsyntax table if it doesn't exist */
/* is the space left on the default database devices > size of model? */
if (select sum (high-low +1) from sysdevices where status
& 1 = 1) - (select sum(size) from sysusages, sysdevices
where vstart >= sysdevices.low
and vstart <= sysdevices.high
and sysdevices.status &1 = 1) >
(select sum(sysusages.size) from sysusages
where dbid = 3)
begin
create database sybsyntax
end
else
begin
print "There is not enough room on the default devices to create the sybsyntax database."
return
end
end
```

- After you have commented out this entire section, add a line like this to the script:

```
cREATE DATABASE sybsyntax ON device_name
```

where `device_name` is the name of the device where you want to install sybsyntax.

4 Execute the script with a command like the following:

```
isql -U sa -P password -S servername < $SYBASE/$SYBASE_ASE/scripts/ins_syn_sql
```

where `sa` is the user ID of the System Administrator, `password` is the System Administrator’s password, and `servername` is the Cluster Edition where you plan to install the database.
Installing online help for Transact-SQL syntax

If you have set the DSQUERY environment variable to the *servername*, you can replace the server name with $DSQUERY.

To ensure that you have installed the sybsyntax database and that it is working correctly, use isql to log in to the server on which you installed the database, and execute sp_syntax. For example:

```
isql -Usa -Ppassword -Sservername

1> sp_syntax "select"
2> go
```

The Cluster Edition displays a list of commands that contain the word or word fragment “select.”
CHAPTER 20

Logging Error Messages and Events

This chapter describes how to use the error logging features of the Cluster Edition.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster Edition error logging</td>
<td>457</td>
</tr>
<tr>
<td>Setting error log paths</td>
<td>458</td>
</tr>
<tr>
<td>Managing messages</td>
<td>459</td>
</tr>
</tbody>
</table>

Cluster Edition error logging

Each time the Cluster Edition starts, it writes information to a local error log file, called the Adaptive Server error log:

$SYBASE/$SYBASE_ASE/install/instance_name.log

This file:

- Stores information about the success or failure of each start-up attempt.
- Logs error and informational messages generated by the server during its operations.
- Remains open until you stop the server process.
- Contains startup messages from the Cluster Edition

The Cluster Edition includes the instance ID to the front of the error log header with this format:
Setting error log paths

instance id: engine number : family id: process id: date time

Note When you want to make more disk space available by reducing the size of the error log, stop the instance before deleting logged messages. The log file cannot release its memory space until the instance has stopped.

Enabling and disabling error logging

Logging to the Cluster Edition error log is always enabled. However, when you create or modify a specific user-defined message, you can set it to be omitted from the log. See “Logging user-defined messages” on page 460.

Setting error log paths

The installation program sets the error log location in the Sybase installation directory when you configure a new Cluster Edition. Backup Server and Monitor Server each have their own error logs.

The default location for each server’s error log is:

- Cluster Edition: $SYBASE/$SYBASE_ASE/install/instance_name.log
- Backup Server:
 $SYBASE/$SYBASE_ASE/install/instance_name_back.log
- Monitor Server: $SYBASE/$SYBASE-ASE/install/instance_name_ms.log

At start-up, you can reset the name and location of the Cluster Edition error log file from the command line. Use the -e start-up parameter and value in the dataserver command to start the Cluster Edition. However, if you are using sybcluster to manage the cluster, you must use the sybcluster 'set instance logpath' parameter to change the location of the error log file for each instance.

Note Multiple instances cannot share the same error log.
CHAPTER 20 Logging Error Messages and Events

Setting the Cluster Edition error log path

Note The Cluster Edition installer does not create `RUN_server` files. However, if you create a `RUN_server` file, you can add a new location for the error log.

If you do not provide a path to the error log, the Cluster Edition adds an error log according to the:

- Cluster input file errorlog location. This information is stored in the quorum device and used by the `dataserver` command.
- Default location for error logs. If you do not supply an error log path, a log file named `instance_name.log` is created in the current working directory for `dataserver`.

You can change the log location stored on the quorum device using the `qrmutil --errorlog` parameter or with `sybcluster 'set instance errorlog'`. If you are starting the cluster instances using shell scripts, change the value of the `dataserver -e` parameter, which overrides other settings for the error log location.

Managing messages

When event logging is enabled, you can manage its functions in the following ways:

- Use `sp_addmessage` or `sp_altermessage` to control whether a specific user-defined message is logged in the Cluster Edition error log.

 For the complete syntax for `sp_addmessage` and `sp_altermessage`, see the *Reference Manual*.

- Use configuration parameters to specify whether auditing events are logged. Auditing events pertain to a user’s success, log audit logon success, or failure, log audit logon failure, in logging in to the Cluster Edition.
Managing messages

Logging user-defined messages

You can specify whether a user-defined message is logged to the Cluster Edition error log. The Cluster Edition lets you make this determination for:

- New messages (sp_addmessage).
- Existing messages (sp_altermessage).

For more information about these commands and their parameters, see sp_addmessage and sp_altermessage in the Reference Manual.

New messages

Include the with_log option in sp_addmessage when you add a new user-defined message to sysusermessages. This parameter sets the Cluster Edition to log the message each time that the message appears.

Existing messages

Include the with_log option in sp_altermessage to change an existing user-defined message. This parameter alters the reporting status of that message:

- TRUE – to enable logging.
- FALSE – to disable logging.

Logging auditing events

By default, the Cluster Edition does not log auditing events. However, you can use sp_configure parameters to specify whether the Cluster Edition is to log auditing events, such as logins, to the Cluster Edition error log.

Possible parameters and values are:

- log audit logon success at 1 – to enable logging of successful Cluster Edition logins:

 sp_configure "log audit logon success", 1

- log audit logon failure at 1 – to enable logging of unsuccessful Cluster Edition logins:

 sp_configure "log audit logon failure", 1

- Either parameter at 0 – to disable logging of that message type:
sp_configure "log audit logon success", 0
sp_configure "log audit logon failure", 0

For more information about sp_configure, see the System Administration Guide.
Managing messages
CHAPTER 21

Setting Up Communications Across the Network

Each instance in a cluster can communicate with other Adaptive Servers, Open Server applications, and client software across a network. Clients can communicate with one or more servers, and servers can communicate with other servers via remote procedure calls.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>How the Cluster Edition determines which directory service entry to use</td>
<td>464</td>
</tr>
<tr>
<td>How a client uses directory services</td>
<td>465</td>
</tr>
<tr>
<td>Creating a directory services entry</td>
<td>465</td>
</tr>
<tr>
<td>Supported directory drivers</td>
<td>466</td>
</tr>
<tr>
<td>Contents of an interfaces file</td>
<td>466</td>
</tr>
<tr>
<td>Heterogeneous and homogeneous environments</td>
<td>467</td>
</tr>
<tr>
<td>Understanding the format of the interfaces file</td>
<td>469</td>
</tr>
<tr>
<td>Creating a master interfaces file</td>
<td>472</td>
</tr>
<tr>
<td>Configuring interfaces files for multiple networks</td>
<td>473</td>
</tr>
<tr>
<td>IPv6 support</td>
<td>477</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>480</td>
</tr>
</tbody>
</table>

Directory services contains information about the network locations of servers. Directory services contain entries for all Adaptive Servers, Backup Servers, and other server products on the network.

In the Sybase client/server environment, a client can connect with an instance if it knows where the server resides on the network and if the server supports the client’s language or character set. When a client initiates a connection, it looks in its directory services for the network location of the target server.

Directory services list the name and address of every server, including Backup Server, Monitor Server, and XP Server. When you are using a client program, and you want to connect with a particular server, the client program looks up the server name in the directory services and connects to that server.
How the Cluster Edition determines which directory service entry to use

Servers also need network information. When a server starts up, it looks in its interfaces file to determine where to listen for client connection requests. In addition, each instance can take on a client role when it makes remote procedure calls to other instances.

Table 21-1: Where to find interfaces file tasks and topics

<table>
<thead>
<tr>
<th>Type of interfaces file</th>
<th>Task or topic</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIX server or client</td>
<td>Adding entries for multiple Cluster Edition installations</td>
<td>Adaptive Server Configuration Guide</td>
</tr>
<tr>
<td></td>
<td>Creating a master interfaces file for multiple installations</td>
<td>“Creating a master interfaces file” on page 472</td>
</tr>
<tr>
<td></td>
<td>Configuring for multiple networks</td>
<td>“Configuring interfaces files for multiple networks” on page 473.</td>
</tr>
<tr>
<td></td>
<td>Reference information</td>
<td>“Understanding the format of the interfaces file” on page 469.</td>
</tr>
<tr>
<td>PC-client</td>
<td>Configuring a client</td>
<td>Installation Guide for your platform</td>
</tr>
<tr>
<td></td>
<td>Reference information and instructions for advanced tasks</td>
<td>Open Client and Open Server Programmer’s Supplement for your PC-client platform, or the appropriate Open Client documentation</td>
</tr>
<tr>
<td>Client platforms not listed</td>
<td>Configuring, reference information, and instructions for advanced tasks</td>
<td>Open Client and Open Server Programmer’s Supplement for your PC-client platform, or the appropriate Open Client documentation</td>
</tr>
</tbody>
</table>

How the Cluster Edition determines which directory service entry to use

Each instance uses directory services to determine the address at which it should listen for clients. When you start an instance, it performs the following steps:

1. It looks for the server name supplied in the command line `-s` option. If the server name is not supplied in the command line:
2. It determines its own name by checking the value of the `DSLISTEN` environment variable. If the `DSLISTEN` environment variable is not set, then it assumes that the server name is `SYBASE`.
3. It looks in directory services for an entry whose name matches the name found in the steps above.
4 It uses the network information provided by the directory services entry it has found to listen for client connections.

How a client uses directory services

When a client connects to a server it:

- Determines the name of the server either programmatically or by referring to the DSQUERY environment variable. If the application user has not set DSQUERY, the runtime value for the server name defaults to SYBASE.
- Looks in directory services for an entry whose name matches the name of the server.
- Uses the network information provided by the directory services entry to connect to the server. If the client cannot connect the first time, it makes additional attempts according to the delay and retry numbers indicated in directory services. If no matching entry is found, an error message is written to the client’s standard error file. If multiple networks are supported, the client attempts to connect using the information in the second network address entry for the server.

The Open Client documentation discusses client connections in much greater detail. See the *Open/Client Programmer’s Supplement* for your client platform or the appropriate Open/Client documentation.

Creating a directory services entry

The sybcluster utility creates a directory services entry for the cluster and for each instance when you create the cluster. You can also use the following Sybase utilities to edit the network information in directory services:

- dsedit – a GUI utility.
- dscp – a UNIX command line utility.

For details on using these utilities, see the *Utility Guide*.
Supported directory drivers

There are three supported drivers for UNIX:

- interfaces driver
- Lightweight Directory Services driver.
- Cell Directory Service (CDS) provided by Distributed Computing Environment (DCE)

This remainder of this chapter describes the interfaces file and provides specific configuration information for each supported UNIX platform. For information about LDAP drivers, Cell Directory Services, and for a comparison between interfaces files and LDAP directory services, see the Open Client/Server Configuration Guide for your platform.

Contents of an interfaces file

An interfaces file contains network information about all servers on your network, including instances, Backup Server, and XP Server, plus any other server applications such as Monitor Server, Replication Server, and any other Open Server applications.

The network information in the file includes the server name, network name or address of the host machine, and the port, object, or socket number (depending on the network protocol) on which the server listens for queries. See “Understanding the format of the interfaces file” on page 469.

Each entry in an interfaces file can contain two types of lines:

- Master lines, which are used by server applications to listen for queries over the network. This information is called a listener service.
- Query lines, which are used by client applications to connect to servers over the network. This information is called a query service.

The network information contained in the master and query lines for a server may be identical because a server listens for connection requests on the same port that clients use to request connections.

A server needs master lines in its interfaces file. When servers act as clients to other servers, query lines are required for those servers.
A client’s interfaces file does not need a master line. It functions correctly with only a query line.

If your site has multiple installations

If you have more than one Adaptive Server or Cluster Edition installation, each server’s interfaces file should contain information about all servers on the network.

If all of your server products are running on the same platform, you can create one master interfaces file and copy that file to each machine. See “Creating a master interfaces file” on page 472.

If the host machine supports multiple networks, see “Configuring interfaces files for multiple networks” on page 473.

Heterogeneous and homogeneous environments

You can run the Cluster Edition and clients on the same platform or on different platforms.

If the platforms are different, each platform may require a different format and configuration for its interfaces file. Figure 21-1 illustrates how a PC client uses network information in its interfaces file (sql.ini) to connect to an instance running on UNIX, and how an instance uses its interfaces file to connect to another server during a remote procedure call.
If both a client and a server are running under UNIX, the same interfaces file is valid for both. Figure 21-2 illustrates how clients and instances running in a homogeneous environment can use copies of the interfaces file to establish connections. Because the two instances are running under the same operating system, they can use the same interfaces file or exact copies of the same file.
Figure 21-2: Establishing network connections in a homogeneous environment

Understanding the format of the *interfaces* file

The following rules apply to the format of interfaces file entries:

- Each instance has only one entry, although there may be multiple lines in the entry.
- Each line that follows the `servername` line must begin with a space or a character tab.
- Each element on the line must be separated by a single space.
- Each entry is separated by a blank line.
- You can add comments to an interfaces file by adding a pound sign (#) at the beginning of the line and a line break at the end.

There are two interfaces file entry formats, TLI and TCP.

A TLI style entry looks like:
Understanding the format of the interfaces file

servername retry_attempts delay_interval<newline>
<tab>service_type api protocol device address filter<newline>
<tab>ha_failover servername<newline>

A TCP style entry looks like:

servername retry_attempts delay_interval<newline>
<tab>service_type protocol network machine port filter<newline>
<tab>ha_failover servername<newline>

Components of an interfaces file entry

Table 21-2 describes the components of an interfaces file entry.

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>servername</td>
<td>Name of instance or Backup Server. Requirements for a server name are:</td>
</tr>
<tr>
<td></td>
<td>• The name cannot be more than 30 characters long.</td>
</tr>
<tr>
<td></td>
<td>• The first character must be a letter (ASCII a through z, A through Z).</td>
</tr>
<tr>
<td></td>
<td>• The characters that follow must be letters, numbers, or underscores (_).</td>
</tr>
<tr>
<td>retry_attempts (optional)</td>
<td>Number of times you want the client to try to connect to a server after initial failure. Default is 0.</td>
</tr>
<tr>
<td>delay_interval (optional)</td>
<td>Number of seconds between connection attempts. Default is 0.</td>
</tr>
<tr>
<td>service_type</td>
<td>Type of service defined by entry. Must be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• master</td>
</tr>
<tr>
<td></td>
<td>• query</td>
</tr>
<tr>
<td>api</td>
<td>Application programming interface available to the network. The supported value is tli.</td>
</tr>
<tr>
<td>protocol</td>
<td>Name of the network protocol. Protocol types available are:</td>
</tr>
<tr>
<td></td>
<td>• TCP/IP, represented by the letters “tcp”</td>
</tr>
<tr>
<td>network</td>
<td>Name of the network; not currently used by the Cluster Edition. sybcluster enters “ether” as a placeholder.</td>
</tr>
<tr>
<td>host</td>
<td>Network name or address of server’s host machine.</td>
</tr>
<tr>
<td></td>
<td>• For TCP/IP, use either the host name or Internet address. Maximum size of entry is 32 bytes.</td>
</tr>
<tr>
<td></td>
<td>To determine the host name of a machine, log in to that machine and enter:</td>
</tr>
</tbody>
</table>
| | /bin/hostname

470 Adaptive Server Enterprise Cluster Edition
Component Value

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>machine</td>
<td>Network name or address of server’s host machine. You can use either the host name or Internet address. Maximum size of entry is 32 bytes. To determine the host name of a machine, log in to that machine and enter: /bin/hostname</td>
</tr>
<tr>
<td>device</td>
<td>The network device endpoint. For TCP networks, the device varies according to the vendor supplying the networking software. Check the vendor-specific documentation for the name of the device. Your network may provide multiple stream devices corresponding to different protocols in the TCP protocol suite. Choose the TCP streams device. Common TCP streams devices is /dev/tcp.</td>
</tr>
</tbody>
</table>
| **address for a TLI protocol entry** | Address consists of:
- Address prefix, “x” for TLI.
- Network type, always 0002.
- Port number converted to four digits, hexadecimal. Must be a unique number between 1025 and 65535. Check the /etc/services file on each machine on the network to see what port numbers are in use. Enter the instance port number in a new section of /etc/services labeled “Sybase specific services.” You do not have to make this entry for the operating system to function properly, but the presence of the port number in the file may prevent other users from using the port number.
- IP network node address of the host machine converted to 8 digits, hexadecimal.
- Trailing zeros, optional, 16 digits. |
| **port** | A unique port number between 1025 and 65535. Check the /etc/services file on each machine on the network to see what port numbers are in use. Enter the instance port number in a new section of /etc/services labeled “Sybase specific services.” You do not have to make this entry for the operating system to function properly, but the presence of the port number in the file may prevent other users from using that port number. |
| **ha_failover** | An entry created in directory services or the interfaces file for high availability. |
| **filter** | The Cluster Edition supports Secure Socket Layers (SSL) as a filter which is appended to the master and query lines of the directory services. SSL is the standard for securing the transmission of sensitive information. For more information about SSL, see “Using SSL in a clustered environment” on page 37. |
Creating a master interfaces file

A master interfaces file contains entries for all Sybase servers on the network. It can be used with every server and client connected to the network. By distributing copies of a master interfaces file, you can ensure that all Sybase products on the network interact with one another.

Distributing copies of one interfaces file (a master file) with entries for all instances is the easiest way to maintain consistency in the interfaces files in a homogeneous environment on a network.

You can make all changes to one version of the file and then copy the updated master file to all appropriate Sybase directories.

You can make a master file in one of two ways:

- Using dsedit or dscp
- Using a text editor

Using dsedit or dscp to create a master interfaces file

You can use the dsedit or dscp utility to create a master interfaces file, which you can then distribute to all servers. If you are not an experienced Sybase user, you may find that using dsedit or dscp is easier than using a text editor. Using dsedit or dscp also ensures that your interfaces file is consistent in format.

To create a master interfaces file with dsedit or dscp:

1. Select the interfaces file that contains the most complete, up-to-date information.
2. Begin a dsedit or dscp session in your latest Sybase installation to edit this interfaces file.
3. Add entries for any instances or Backup Servers that are not listed in this file.

For details on using these utilities, see the Utility Guide.

Using a text editor to create a master interfaces file

To construct a single master interfaces file from several individual interfaces files:
1. Concatenate the individual interfaces files.
2. Make a copy of the file.
3. Use an ASCII text editor to modify the copy of the concatenated file.

Note When you manually edit an *interfaces* file, be sure that, for each entry, each line following the first line begins with a `<tab>` character.

The following elements must be correct and unique in the resulting file:

- *servername* – each server entry in the *interfaces* file must be unique. The server name entries for each cluster, and for each instance within the cluster, must be unique within the interfaces file.
- A combination of the host machine’s network name or address and instance’s port or object number.
- If the original *interfaces* file was created when there was only one machine on the network, its entries may have the word “loghost” in place of the machine name (address). If *loghost* is present, replace it with the machine name.

Configuring interfaces files for multiple networks

On some platforms, the Cluster Edition can accommodate multiple networks. This allows instances to listen for clients over multiple network interfaces. You must add an entry for each network interface to the interfaces file.

Configuring the server for multiple network handlers

To configure multiple network listeners:

1. Define a unique host name for each network interface in your operating system’s host database.
2. In your interfaces file, use a text editor to add copies of the “master” line for your instance; one for each additional interface you want the server to listen on.
3. Include a unique host name on each line to configure a network handler for each network interface.
Port numbers within the interface need not be the same, but they can be. They fall under the same rules for naming and numeric range as the primary network interface.

Sample interfaces files for multiple network handlers

The following example shows an interfaces file for an instance with two network interfaces. The server host machine is known as SERV_CORPNET on the corporate network and SERV_ENGNET on the engineering network.

```
# PRODUCTION server with two network listeners
PRODUCTION	3	3
  master tcp ether SERV_CORPNET 4559
  query tcp ether SERV_CORPNET 4559
  master tcp ether SERV_ENGNET 5479
```

When the instance restarts, it spawns a network handler process for each master line in the entry that corresponds to the server’s DLISTEN value. Connections made on each interface are handled equally, as peers.

Configuring the client connections

When an instance’s client scans the interfaces file for a server name, the client uses the first “query” entry it encounters for the server’s entry. This makes configuring clients to use multiple network connections less straightforward than configuring the server ports. You have two choices:

- Use the same DSQUERY name for all clients. The interfaces files on the different machines contain different network names.
- Use different DSQUERY names for the clients. The interfaces files on all the machines are the same, but they contain multiple DSQUERY names.

Using one network-independent DSQUERY name

If uniform client DSQUERY naming is important, you can make the necessary changes in the network addressing of the clients in the interfaces file. You can install separate Sybase installation directories and distinct interfaces files on client file servers on each network to allow users to connect to the correct network address. Instead of altering the DSQUERY name the clients use, you maintain one DSQUERY name for all clients, on all networks, and alter each network’s interfaces file accordingly.
This method assumes that:

- You have complete control over what the Sybase installation clients see on each network.
- The interfaces file (at the very least) is not shared or copied among Sybase installations on different networks.

The interfaces file looks like the following example on the “engineering” network:

```
PRODUCTION<tab>3<tab>3
<tab>query tcp ether SERV_ENGNET 5470
<tab>master tcp ether SERV_CORPNET 4559
<tab>master tcp ether SERV_ENGNET 5479
```

The interfaces file looks like the following example on the “corporate” network:

```
PRODUCTION<tab>3<tab>3
<tab>query tcp ether SERV_CORPNET 4559
<tab>master tcp ether SERV_CORPNET 4559
<tab>master tcp ether SERV_ENGNET 5479
```

The “query” line in each file name is different, depending on the network to be used.

The full “master” entry is present in both files. This is allowed because only the instance will use the “master” lines. Assuming that the server host machine can see both networks (both host names are interchangeable), it does not matter which interfaces file is used for instance start-up.

Using different DSQUERY names

To use different DSQUERY names for each network listener:

1. Choose an additional server name.

 You can concatenate the original server name and the network name. For example, if your server is named PRODUCTION, you could choose the names PRODUCTION_network1 and PRODUCTION_network2.

2. Do one of the following:

 - For PC clients, use sqledit to create multiple sql.ini file entries for the server, one for each network. In the following example, you create one entry for PRODUCTION_network1 and one for PRODUCTION_network2. See the Open Client documentation for your client platform.
• For UNIX clients, you can edit the interfaces files with an ASCII text editor. From the server’s interfaces files, copy the server name line and the “master” line for each network into the client interfaces file. Add the appropriate server name for each entry, and change “master” to “query.”

Clients on each network must use the DSQUERY value that corresponds to the network the client is on. In the following example, either PRODUCTION_network1 or PRODUCTION_network2 can be used.

 # Client entry for PRODUCTION on network1
 PRODUCTION_network1	3	3
 	query tcp ether serv_corpnet 4559

 # Client entry for PRODUCTION on network2
 PRODUCTION_network2	3	3
 	query tcp ether serv_engnet 5479

Configuring for query port backup

Another use for multiple network interfaces is to provide a backup in case of network failure. If a client is connected to a server via two networks, the client can establish a connection via the second network if the first one goes down.

To configure an instance for query port backup:

1. Install multiple “master” and “query” lines in a server entry in the interfaces file.

2. An instance listens for connections at both ports. Clients looking for a host name and a port number for a connection to an instance try the port on each “query” line in order, until they establish a connection.

The following example shows how to configure a backup network that will be used only if the normal connection fails. The primary network is “corporate network” and backup is “engineering network.”

 # PRODUCTION server with two network listeners
 PRODUCTION	3	3
 	master tcp ether SERV_CORPNET 4559
 	master tcp ether SERV_ENGNET 5479
 	query tcp ether SERV_CORPNET 4559
 	query tcp ether SERV_ENGNET 5479
3 Configure PC-client interfaces files with the appropriate multiple “query” entries, as described in the Open Client documentation. For client interfaces files in a homogeneous environment, you can copy the entire interfaces file entry for the instance into the client interfaces file.

4 A connection on the secondary port occurs only if the corporate network is disabled, or if the corporate network interface on the host machine fails or is shut down due to a network-related failure.

IPv6 support

Understanding IPv6

IPv6 addressing terminology:

- Link-local address – an IPv6 address that is usable only over a single link.
- Site-local address – an IPv6 address that can be used within a single-site.
- Global address – an IPv6 address that can be used across the global Internet.

IPv6 application types:

- IPv6-unaware – an application that cannot handle IPv6 addresses.
- IPv6-aware – an application that can communicate with nodes that do not have IPv4 addresses. In some cases, this might be transparent to the application, for instance when the API hides the content and format of the actual addresses.
- IPv6-enabled – an application that, in addition to being IPv6-aware, takes advantage of some IPv6 features.
- IPv6-required – an application that requires some IPv6 features and cannot operate over IPv4.

IPv6 Infrastructure:
IPv6 infrastructure

Dual Stack infrastructure implements both IPv4 and IPv6. This is the recommended infrastructure implementation for using the Cluster Edition as an IPv6-aware server.

Sybase applications are IPv6-aware. All code to turn the Cluster Edition and the Open Client/Server components IPv6-aware was done using the IETF designed primitives, see “Creating or converting for IPv6-aware applications.” The following matrix lists the platform run-time requirements and the specific product and its release version:

Table 21-3: IPv6 support

<table>
<thead>
<tr>
<th>Platform</th>
<th>the Cluster Edition IPv6 awareness</th>
<th>Open Client/Server IPv6 awareness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun Solaris 8 32- and 64-bit</td>
<td>12.5.3a and 15.0</td>
<td>12.5 and 15.0</td>
</tr>
<tr>
<td>HP-UX 11i(v1) 32- and 64-bit</td>
<td>12.5.3a and 15.0</td>
<td>12.5 and 15.0</td>
</tr>
<tr>
<td>Microsoft Server 2003</td>
<td>12.5.3a and 15.0</td>
<td>12.5 and 15.0</td>
</tr>
<tr>
<td>Linux RHEL 3.0</td>
<td>15.0</td>
<td>12.5 and 15.0</td>
</tr>
</tbody>
</table>

Many Sybase products that are Open Client/Server based like XP Server, Backup Server, Replication Server and Open Switch became automatically IPv6-aware due to the layered Open Client Transport Control Layer (CTlib->NETlib) which is IPv6-aware for network-socket operations. An important note is that any DBlib based Open Client product is not IPv6-aware.

For the Cluster Edition, being IPv6-aware is a complex issue because some components within the server are 3rd party components and are not yet IPv6-aware. To understand how this impacts the Cluster Edition, the following list shows all functional mechanisms of the Cluster Edition that are IPv6-aware with respect to the platform / release matrix above:

- Connection Handler
- RPC mechanisms
- Job Scheduler Task / Agent session connection
- Network Host API
- UDP Message support for sybsendmsg
- Component Integration Services connectivity
- Host / name resolving
• XML URL connection handler
• Auditing for client address data

The following functional mechanisms in the Cluster Edition do not support IPv6. These mechanisms in the Cluster Edition are IPv6-unaware:
• Java support
• License Management Server
• LDAP driver
• Private interconnect among various instances in cluster.

Starting the Cluster Edition as IPv6-aware

By default, the Cluster Edition is IPv6-unaware. You must start the Cluster Edition with trace flag 7841 to make it IPv6-aware. This causes the Cluster Edition to determine IPv6 availability and makes the Cluster Edition IPv6-aware.

See your network or IT specialist to configure your platforms and network infrastructure correctly for IPv6 support.

A second trace flag, 7815 can be set when you start the Cluster Edition which captures and logs address connection requests and host / name lookups.

The IPv6 Cluster Edition trace flags:
• T7841 – enable the Cluster Edition IPv6-awareness.
• T7815 – report all the Cluster Edition IPv4 & IPv6 Client address connect requests.

Before starting the Cluster Edition for IPv6-aware operations, make sure that your infrastructure is correctly set up. Once your operating system is correctly configured, you can configure and enable an IPv6 connection handler.

Configuring and enabling the IPv6 connection handler requires adding an additional DCL entry. A single Cluster Edition configuration can typically carry up to 32 connection handler assignments within the DCL.

For example if you have a Site-local setup with two domains administrated under the nameserver setup:
sybase.com - being responsible for all IPv4 networking applications
v6.sybase.com - being responsible for all IPv6 networking applications
The DCL entry for the Cluster Edition to start a cluster named “SYBASE” on the host “revival” for port 17100 looks similar to:

```
SYBASE
master tcp ether revival.sybase.com 17100
query tcp ether revival.sybase.com 17100
master tcp ether revival.v6.sybase.com 17100
query tcp ether revival.v6.sybase.com 17100
```

In the above example, when the Cluster Edition is started as IPv6-aware, it creates two connection handlers. One listens on port 17100 for incoming IPv4 client connection requests, and the other listens on port 17100 for incoming IPv6 client connection requests.

Troubleshooting

This section describes how to correct some common situations that may cause a server to not start.

Server fails to start

If a server fails to start with the following message, the port number specified in the interfaces file may be in use:

```
00:0000:00002:2003/09/22 12:37:23.63 kernel network name SERV_CORPNET, type ether, port 4559, filter NONE
00:0000:00002:2003/09/22 12:37:23.65 kernel ninit: bind, Address already in use
00:0000:00002:2003/09/22 12:37:23.68 server Unable to initialize network 0
00:0000:00016:2003/09/22 16:11:35.46 server SQL Server shutdown by request.
```

- **Investigating the port assignment**

 1. Look in the interfaces file to identify the port number assigned to the server.
CHAPTER 21 Setting Up Communications Across the Network

2 Determine whether another process is using the same port number by entering:

```
netstat -a
```

If the port number is presented as a local address in the `netstat` output, you cannot use that port for the server. Another process is already using that port.

3 To verify that the server port is in use, start the server manually.

The server does not start if its assigned port number is already in use.

For information on starting servers manually, see the installation documentation for your platform and the *Utility Guide*.

❖ If a stale server process is retaining use of the port number

1 Do one of the following:
 • Use the operating system `kill` command to terminate the process.
 • Use another port number for the server by modifying the interfaces file.

2 Start the server manually to confirm that the port number is available.

For information on starting servers manually, see the installation documentation for your platform and the *Utility Guide*.

Error when executing an ESP

If you attempt to execute an ESP (extended stored procedure), you may see the following error:

```
00:00000:00008:1997/09/10 12:52:53.03 kernel  XP Server failed to start. Try bringing up XP Server manually. Check SQL Server documentation for more information on how to bring XP Server up.
```

XP Server cannot start because the port number may be in use by another process. Use the `netstat` command described in the previous section to determine if the port number specified for XP Server is in use.

If you find no processes using the same port number, execute the ESP you attempted earlier. XP Server should start automatically.

If you find a process using the same port number, you can do one of the following:
Troubleshooting

- Change the interfaces file to use a new port number for the XP Server.
- Stop the process using the port number allotted to XP Server.

Restart the Cluster Edition, and execute the ESP that you attempted earlier. XP Server should start automatically.
Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>action</td>
<td>A user-executed command that stops one or more instances at a specified time to initiate a planned failover, downtime, or other administrative task. An action changes the state of an instance. See Chapter 6, “Managing the Workload.”</td>
</tr>
<tr>
<td>base instance</td>
<td>An instance assigned to a logical cluster on which a logical cluster normally runs. See Chapter 6, “Managing the Workload.”</td>
</tr>
<tr>
<td>client migration</td>
<td>The movement of an established client connection from one instance to another. The client is migrated from the old to the new instance without the client application being aware of the migration. Client migration is used for dynamic load distribution and for administrative actions such as logical cluster failback. See Chapter 2, “Client Applications and Client/Server Interaction,” for a complete description.</td>
</tr>
<tr>
<td>cluster</td>
<td>A collection of homogeneous nodes in a network that operate as a single system. Each node has its own CPU and memory. All nodes communicate with each other through private and high-speed communication pathways.</td>
</tr>
<tr>
<td>cluster lock manager (CLM)</td>
<td>The server module that provides distributed locking services for the cluster. The CLM enables sharing of buffers, global objects, and metadata among the instances.</td>
</tr>
<tr>
<td>clusterware</td>
<td>Sybase software included in Adaptive Server that enables the shared-disk cluster.</td>
</tr>
<tr>
<td>dynamic load distribution</td>
<td>The migration of an established client connection to a different instance in an attempt to balance the workload within a logical cluster.</td>
</tr>
<tr>
<td>extended high-availability (HA) failover</td>
<td>Adaptive Server provides a list of failover addresses to high-availability-aware clients when they connect. This allows multiple clients to fail over eliminates the need for the “HAFAILOVER” entry in the directory services or interfaces file.</td>
</tr>
<tr>
<td>failover</td>
<td>The ability to switch automatically to another instance upon the failure or abnormal termination of a previously active node.</td>
</tr>
</tbody>
</table>
Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>failover group</td>
<td>A set of failover instances defined for a logical cluster. Failover groups let you specify preference and order for failover instances. See Chapter 6, “Managing the Workload.”</td>
</tr>
<tr>
<td>failover instance</td>
<td>An instance on which a logical cluster can run if one or more of its base instances fail. See Chapter 6, “Managing the Workload.”</td>
</tr>
<tr>
<td>instance</td>
<td>An Adaptive Server that participates in a shared-disk cluster.</td>
</tr>
<tr>
<td>instance number</td>
<td>A number that uniquely identifies a named instance in the Adaptive Server shared-disk cluster.</td>
</tr>
<tr>
<td>instance state</td>
<td>The state of an instance in a logical cluster as it is perceived by a logical cluster. Thus, an instance can be physically online, but offline to a given logical cluster. See Chapter 6, “Managing the Workload.”</td>
</tr>
<tr>
<td>load profile</td>
<td>A set of weighted metrics used to determine the relative workload on an instance in a logical cluster. You can create your own load profiles or use one of the profiles provided by Sybase. See Chapter 6, “Managing the Workload.”</td>
</tr>
<tr>
<td>load score</td>
<td>A computed value of the overall load on an instance; a unitless number that can be used to compare relative workloads on different instances in a logical cluster, or on the same instance at different times. See Chapter 6, “Managing the Workload.”</td>
</tr>
<tr>
<td>local system temporary database</td>
<td>Space for temporary tables and worktables. Each instance in the cluster has a local system temporary database that it alone can access.</td>
</tr>
<tr>
<td>logical cluster</td>
<td>A method of abstracting the physical cluster so that multiple application services can be established. A logical cluster supports fine-tuned management of the workload within the cluster by enabling application- or user-specific service level agreements, resource assignments, and failover rules. Applications connect directly to a logical cluster. See Chapter 6, “Managing the Workload.”</td>
</tr>
<tr>
<td>login redirection</td>
<td>The mechanism by which an instance can direct an incoming client connection to a different instance in the cluster. Login redirection is used to route inbound connections to instances in a logical cluster and for load balancing. See Chapter 2, “Client Applications and Client/Server Interaction,” for a complete description.</td>
</tr>
<tr>
<td>node</td>
<td>A machine (hardware) that hosts an Adaptive Server instance.</td>
</tr>
</tbody>
</table>
open logical cluster A logical cluster that accepts connections that have no defined route. By default, the system logical cluster has the open property, but you can grant the open property to another logical cluster. Only one logical cluster can have the open property at a time. See Chapter 6, “Managing the Workload.”

physical cluster The shared-disk cluster, with a specific quorum disk, member instances, and interconnection information. All instances in the physical cluster have direct access to a single installation of the databases and are monitored and managed by the cluster membership service.

quorum device This device provides important information that defines the cluster, including the name of the cluster, the names of the instances in the cluster, the number of nodes, and their names. In addition, the quorum device holds state information about the instances in the cluster and defines cluster membership.

resource reservation The practice of setting aside an instance for a specific logical cluster and only allowing clients routed to that logical cluster to connect to it. To practice resource reservation, you must assign the open property to a logical cluster other than the system logical cluster. See Chapter 6, “Managing the Workload.”

shared-disk cluster A cluster configuration where all instances have direct access to all data on all shared disks. In the Cluster Edition, all instances have direct access to database devices and jointly manage the single installation of the databases.

symmetric multiprocessing (SMP) system Is comprised of multiple CPUs and a single RAM memory with a single operating system. The CPUs symmetrically serve and run all functionality of the operating system and applications. This is the non-clustered Adaptive Server environment.

system logical cluster A logical representation of the physical cluster. The system logical cluster is automatically created when the physical cluster is created, and it has the same name as the physical cluster. All background tasks run on the system logical cluster. See Chapter 6, “Managing the Workload.”

workload manager An Adaptive Server module that provides application-level management of resource allocation, availability, and load distribution.
Symbols

::= (BNF notation)
 in SQL statements xxiv
, (comma)
 in SQL statements xxv
{} (curly braces)
 in SQL statements xxiv
() (parentheses)
 in SQL statements xxiv
[] (square brackets)
 in SQL statements xxv

A

accented letters 430
action descriptors 114
Adaptive Server
 character set, changing 423
c client communications with 463
c conversions between, and clients 429
default character set 423
default sort order 423
error log path 459
g language, changing 423
h naming in interfaces file 470
i sort order 423
add instance 371

adding
 a logical cluster in ASE plug-in 257
 a logical clusters in ASE plug-in 255
 an instance to a cluster in ASE plug-in 243
 failover instances in ASE plug-in 258
 load profiles in ASE plug-in 250
temporary databases to a group in ASE plug-in 247–249
user-created global temporary database in ASE plug-in 246
user-created local temporary database in ASE plug-in 247

alter database, using with private device 170
allow updates configuration parameter, setting 238
API component in interfaces file
described 470
Arabic character sets 424
ASE plug-in
 adding a logical cluster 257
 adding a logical clusters 255
 adding an instance to a cluster 243
 adding failover instances 258
 adding load profiles 250
 adding temporary databases to a group 247–249
 adding user-created global temporary database 246
 adding user-created local temporary database 247
 associating a load profile with a logical cluster 252
 changing the server discovery settings 235
 cluster properties 237
 connecting to a cluster 234
 creating shared database devices 244
deleting load profiles 251
disconnecting from a cluster 235
displaying a cluster’s status 242
displaying the log space 240
dropping a cluster 241
dropping a logical clusters 255
dropping an instance from a cluster 243
enabling Unified Agent 235
failover instances 257
JINI discovery method 235
load profiles for logical clusters 258
logical cluster properties 255–259
managing a shared-disk cluster 233–244
managing local temporary databases 245–246
managing logical clusters 253–262
managing multiple temporary databases 244–249
managing the workload 249–262
metric weights 253
properties for routes 262
Index

- buffer pools
 - changing prefetch percentage 142
 - changing the wash size 141
 - creating 139
 - dropping 143
 - moving memory between 141
 - transferring memory between 141

- cache
 - binding objects to named 144
 - bound, getting information about 145
 - dropping bindings 145
 - local named, format of 146
 - local, extra line in 147
 - named with global configuration, deleted 148
 - named with local configuration 148
 - cache configuration, clusters 127
 - case sensitivity
 - in SQL xxvi
 - changing
 - character sets 423, 438
 - languages 438
 - sort order 438
 - character sets 428
 - changing 423, 438
 - client selection of 423
 - code conversions and 428
 - configuring 439
 - converting between 428
 - databases and 429
 - default 422
 - in a heterogeneous environment 428
 - sort orders and 430
 - charsets directory 430, 434
 - about the 435
 - Chinese character sets 425
 - client applications 21–34
 - client interfaces files
 - difference between client and server versions 466
 - heterogeneous 467
 - homogeneous 467
 - client/server interaction 24
 - clients

- B
 - Backup Server
 - character sets 439
 - configuring 434, 438
 - Backus Naur Form (BNF) notation xxiv
 - base instances 92
 - binary sort order 430
 - binding
 - dropping cache 145
 - objects, syntax 144
 - objects to named caches 144
 - BNF notation in SQL statements xxiv
 - bound cache 144
 - displaying information about 145
 - dropping binding 145
 - getting information about 145
 - brackets. See square brackets []
 - buffer cache coherency 7

removing a server group 242
routes for logical clusters 259
setting configuration parameters 238
shutting down a cluster 241
shutting down an instance 244
starting a cluster 240
starting an instance 243
system temporary databases 246
thresholds 253
UDP discovery method 236
workload status for logical clusters 260–262
asynchronous commands 114
 - wait options 114
audit queue size, setting 238
audit system 445
audit trail
 - overview 445
 - system audit tables 446
auditing
 - database for 446
 - device for 446
 - global options 446
 - installing using the script 446
 - process 446
 - tables for tracking 446
Adaptive Server communications with applications and locales.dat file | 463
conversion between, and server | 429
default character set | 423
dSQUERY and | 474
file servers | 474
cluster
database devices | 8
DBMS layer | 7
definition | 3
interconnect networks | 12–15
lock manager | 7
logging and recovery | 7
membership service | 6
space and threshold | 7
storage of information | 8

cluster cache
configuring | 127
definition | 127
global | 127
local | 128

cluster coordinator | 7

Cluster Edition
advantages of | 11
associating a load profile with a logical cluster in ASE plug-in | 252
changing the server discovery settings | 235
configuring | 239
connecting to with ASE plug-in | 234
creating shared database devices in ASE plug-in | 244
deleting load profiles in ASE plug-in | 251
deployment scenarios | 15
disconnecting from | 235
disconnecting from using ASE plug-in | 235
displaying a cluster’s status in ASE plug-in | 242
displaying cluster properties | 237
displaying the log space in ASE plug-in | 240
dropping a cluster with ASE plug-in | 241
dropping a logical clusters in ASE plug-in | 255
dropping an instance from a cluster in ASE plug-in | 243
debug clusters in ASE plug-in | 257
debug scenarios | 16
load profiles for logical clusters in ASE plug-in | 258
load profiles in ASE plug-in | 249
logical cluster properties in ASE plug-in | 255–259
managing | 233–244
managing local temporary databases with ASE plug-in | 245–246
managing logical clusters in ASE plug-in | 253–262
managing multiple temporary databases with ASE plug-in | 244–249
managing the workload in ASE plug-in | 249–262
metric weights in ASE plug-in | 253
new client technologies | 18
properties for routes in ASE plug-in | 262
removing a server group in ASE plug-in | 242
routes for logical clusters in ASE plug-in | 259
scenarios for DSS/reporting applications | 17
scenarios for OLTP applications | 17
setting configuration parameters with ASE plug-in | 238
shutting down a cluster with ASE plug-in | 241
shutting down an instance in ASE plug-in | 244
starting a cluster with ASE plug-in | 240
starting an instance in ASE plug-in | 243
system temporary databases in ASE plug-in | 246
thresholds in ASE plug-in | 253
workload status for logical clusters in ASE plug-in | 260–262

Cluster Edition vs nonclustered Adaptive Server | 11
cluster event service | 7
cluster interprocess communication (CIPC) | 7, 182
cluster lock manager (CLM) | 178
clusterware | 6
components | 6
collating sequences. See sort orders | 429
comma (,) in SQL statements | xxv
commands
alter database | 170
create database | 170
disk init | 166, 291
disk refit | 170
disk reinit | 166, 292
common.loc file | 435
communications between client and Adaptive Server | 463
configuration
valid, with deleted entries | 148
configuration file
 modifying 146
configuration parameters, setting with ASE plug-in 238
configuring
 Backup Server 434, 438
 character sets 439
 Cluster Edition 239
 immediate and restart 239
 instance, roles required 238
 multiple buffer pools 139
 System Administrators and 239
configuring caches in a cluster 127
configuring Job Scheduler 173
configuring named cache 146
configuring the Cluster Edition on Veritas 197
connect 373
connection migration 26
criteria for 28
 CS_PROP_MIGRATABLE property 22
migration 26
 migration context 27
 migration vs failover 26
connection redirection 21
context migration 28
conversions, Unicode character 424
converting a cluster for Veritas 200
converting between character sets 428
cpic large message pool size configuration parameter
 333, 334, 335, 336, 337, 338
cpic regular message pool size configuration parameter
 338
create cluster 375
create database 170, 288
create database, using with private device 170
creating
 interfaces files 465, 472
 interfaces files automatically 464
 master interfaces files with dscp utility 472
 master interfaces files with dsedit 472
 master interfaces files with text editor 472
 multiple buffer pools 139
 private devices using disk init 166
creating a cluster for Veritas 199
creating Backup Server 284
creating Monitor Server 284
CS_DS_RAND_OFFSET property 26
CS_HAFAILOVER property 23
CS_NOREDIRECT property 25
CS_PROP_EXTENDEDFAILOVER property 31
CS_PROP_MIGRATABLE property 22
CS_PROP_REDIRECT property 25
CS_RET_FAILOVER property 24
CS_RET_HAFAILOVER property 31
CTLIB API calls, modifying for failover 23
curly braces ({}) in SQL statements xxiv
cyrillic character sets 425
D
data cache
 adding memory to 135
 allocating space for 136
 changing cache type 138
data translation 421
database devices
 sybsyntax 454
database devices in the cluster 8
databases 429
datasyncer utility 347
dbcc error messages 419
dbcc notraceoff command 289
dbcc notraceon command 289
dbcc quorum command 290
dbcc set_scope_in_cluster command 290
debug service type 470
default
 character set for Adaptive Server 423
 character set, changing 423
 language for Adaptive Server 423
 language, changing 423
 sort order 423
delay_interval component in interfaces files 470
deleted entries with valid configuration 148
deploy plugin 379
deployment scenarios 15
device component in interfaces files 471
diagnose cluster 380
diagnose instance 382
directory sort orders 430
 Scandinavian 431
 Spanish 431
directories
charsets 430
 charsets 435
 localization 434
directory schema, LDAP 42
disconnect 382
disconnecting from a cluster with ASE plug-in 235
disk init command 166, 291
disk refit, executing on private device in cluster 170
disk refit, executing procedure with private device 170
disk refit, using with private device 170
disk reinit command 166, 292
displaying
current file descriptors 412
 information about logical cluster 107
 private device information using sp_helpdevice 167
distributed checkpoints
 Cluster Edition vs SMP 184
DMA object pool size configuration parameter 339
don-routing mode 100
disconnect command 100, 254, 256
open command 100, 254, 256
system command 100, 254, 256
values for 100
downtime
 planning for 111, 116
drop cluster 384
drop instance 384
dropping a buffer pool 143
dropping private devices using sp_dropdevice 167
dscp 472
dsdp utility
 creating master interfaces files with 472
dsdet utility
 adding an LDAP server 46
 creating master interfaces files with 472
DSQUERY environment variable
 client connections and 474
 described 465
 multiple networks, using different values 475
 naming in 474

Index

E
 enabling sybcluster 283
 entries
 deleted with valid configuration 148
 extra line in local cache 147
 environment variables
 DSQUERY 465, 474
 error log paths 458, 459
 configuring 458
 errors in dbcc messages 419
 /etc/services file 471
 ether placeholder in interfaces files 470
 examples
 sp_poolconfig 140
 exit 386
 extended high-availability failover 21, 30
 application changes for 23
 differences from HA failover 31
 directory service 30
 Open Client support levels 31

F
 failover groups 105
 failover in sybcluster
 configuring 104
 enabling 23
 modifying CTLIB API calls 23
 failover resource 104
 adding 105
 failure
 handled by cluster 4
 fake table materialization 355
 files
 common.loc 435
 configuration, modifying 146
 displaying current descriptors 412
 locales.dat 435
 localization 422
 localized error messages (.loc) 435
 servers 474
 sort order definition (.srt) files 429
 format
 of local named cache 146
 formatting for local date, time, and currency 435
Index

G
- global cluster cache 127
- global configuration
 - creating a local configuration in the presence of deleted named cache 148
- global temporary databases 153, 156
 - adding user created in ASE plug-in 246
- creating 158
- global variables 357
- globalization support, Sybase 421, 434, 438
- Greek character sets 426

H
- HAFAILOVER property 22, 31
- hardware error messages 417
 - UNIX 417
- Hebrew character sets 426
- help 386
- heterogeneous environments 423, 428
 - described 467
 - interfaces files and 467
- homogeneous environments 423, 428
 - described 467
 - interfaces files and 467
- host component in interfaces files 470
- host name
 - determining 470
- HP-UX
 - network protocol 470
- hysteresis value 120

I
- I/O fencing 194
- IBM RS/6000
 - network protocol 470
- identity values 352
- installing Job Scheduler 173
- installing the Cluster Edition on Veritas 197
- instance
 - adding to a cluster in ASE plug-in 243
 - definition 3
 - dropping from a cluster in ASE plug-in 243
- shutting down in ASE plug-in 244
- starting in ASE plug-in 243
- instance_id function 359
- instance_name function 359
- instances, monitoring links 13
- interconnect networks 12–15
- interfaces files
 - described 463
- interfaces files
 - Adaptive Server, naming in 470
 - Adaptive Server, used by 467
 - API component in 470
 - automatic creation of 464
 - client and server versions, differences in 466
 - contents of 465
 - creating automatically 464
 - creating master files with dsedit 472
 - creating master files with text editor 472
 - creating, for beginners 472
 - debug service type 470
 - default location 464
 - delay_interval component 470
 - device component 471
 - ether placeholder 470
 - heterogeneous environments and 465
 - homogeneous environments and 465
 - host component 470
 - location 464
 - loghost placeholder 473
 - machine component 471
 - master service type 470
 - multiple network listeners 473
 - multiple networks 465, 473
 - network component 470
 - port component 471
 - protocol component 470
 - query port backup configuration 476
 - query service type 470
 - retry_attempt component 470
 - servername component 470
 - service_type component 470
 - spaces in 469
 - tab characters in 469
 - unique elements in entries 473
 - used by clients 465

492

Adaptive Server Enterprise Cluster Edition
international systems support for 421
Sybase support for 421

iostat command
Sun Solaris 418
iso-Latin1 character set 423
isql utility 32

J
Java in a clustered environment 191
JINI discovery method 235
Job Scheduler 173–175
configuring 173
installing 173
redirecting jobs 174
running 174
shutting down 174
JVM 191

K
KEEPALIVE option, TCP/IP 416
kernel 6
cluster components 6
Korean character sets 426

L
language modules 422, 433, 434
installing new 433
localization files 422
memory requirements for 438
languages changing 438
error reporting in specific 435
selecting message 433
translation support 421
Latin character sets 426
lc_id function 360
lc_name function 359
LDAP
access restrictions 40
adding a server 45
defined 39
directory definitions 41
directory schema 42
enabling 44
libraries, environment variables 45
multiple directory services 47
sample entry 42
server, using **dsedit** utility to add and modify 46
specifying in **libtcl.cfg** 43
versus the **interfaces** file 40
ldap
defined 44
ldap
example 44
keywords 45
letter case in sort orders 430
libtcl*.cfg file 43
format of 44
location of 43
password 47
purpose of 43
limitations 150
limits for file descriptors 412
links
between nodes 12–15
monitoring between instances 13
listener service 466
load profile 120
associating with logical cluster 124
building 122
creating 122
in ASE plug-in 249
load distribution threshold 123
modifying 124
samples 121
load threshold 120
hysteresis value 120
loc files 435
local
named cache 146
named cache, format of 146
local asynchronous prefetch percentage of pool,
changing 142
local cache
extra line in entries 147

Clusters Users Guide
selecting language for 433
metric weights in ASE plug-in 253
migration context
 elements of 27
monitor tables
 monLogicalCluster 77
 monLogicalClusterAction 79
 monLogicalClusterInstance 78
 monLogicalClusterRoute 79, 81
 monSysLoad 75
 monWorkload 82
 monWorkloadPreview 83
 monWorkloadProfile 81
 monWorkloadRaw 83
querying 107
monitoring
 operating system resources 417
 monLogicalCluster 77
 monLogicalClusterAction 79
 monLogicalClusterInstance 78
 monLogicalClusterRoute 79, 81
 monSysLoad 75
 monWorkload 82
 monWorkloadPreview 83
 monWorkloadProfile 81
 monWorkloadRaw 83
moving memory between buffer pools 141
multiple buffer pools, configuring and using 139
multiple directory services
 LDAP 47
multiple installations
 affecting interfaces files 467
 creating one interfaces file for 465, 472
multiple networks
 interfaces files and 465
 interfaces files for 473
 used as a backup in case of network failure 476

N
named cache
 binding objects to 144
 configuration file 146
 deleted with global configuration 148
 local 146
 with global configuration 148
named data cache 129
 allocating space for 136
 binding objects to 144
 changing cache type 138
 configuring replacement policy 138
 creating 129
 decreasing size of 136
 deleting 137
 displaying information about 129
 naming requirements for servers 470
 native membership mode 196
netstat command
 Sun Solaris 418
network component in interfaces files 470
network protocols
 Digital UNIX 470
 HP-UX 470
 IBM RS/6000 470
 Sun Solaris 470
 UnixWare 470
networks
 backup connections and 476
 DSQUERY and 475
 failure of 477
 interfaces files 463
 multiple 465
 node
 definition 3

O
object coherency 7
online syntax help 453
Open Client 21
 support levels 22
open logical cluster 99
operating system resources 417

P
parameters
 functional groups 239
Index

requiring restart 239
parentheses ()
in SQL statements xxiv
password encryption
for libtcl*.cfg 47
pwdcrypt command 47
paths, error log 458
Pending Value column 240
permissions
restoring of 412
planning
downtime 111, 116
platform-specific locale names 435
pools
buffer, moving memory 141
changing local asynchronous prefetch percentage 142
changing wash size 141
dropping a buffer 143
port component in interfaces files 471
port numbers and interfaces files 473
private devices 165
private installation mode 187
protocol
component in interfaces files 470
SPX 470
TCP/IP 470
ps command
Sun Solaris 418
pwdcrypt command
location of 47
password encryption 47

Q
qrmutil utility 188, 200, 203
query port backup configuration 476
query service type 466, 470
quit 388
quorum device
description of 8

R
reconfiguring interconnects for Veritas 200

recovery 182
Cluster Edition vs SMP 182
reinstantiating private devices using disk reinit 166
remote procedure calls (RPCs) 32
RepAgent thread 19
replication
cluster support for 19
Replication Server 19
resource reservation 100
retention locks 178
retry_attempts component in interfaces files 470
roles
configuring an instance 238
resetting Configuration options 239
System Administrator 239
System Security Officer 238
roman8 character set 423
route properties in ASE plug-in 262
routing rules 97
for aliases 98
for applications 98
for logins 98
when using SSL 98

S
Scandinavian dictionary sort orders 431
scripts
C shell 418
maintenance 418
sample maintenance 418
sdc_intempdbconfig function 361
Secure Sockets Layer (SSL) 37
security. See auditing
server configuration file 188
server discovery, changing the settings 235
server group, removing with ASE plug-in 242
servername component in interfaces files 470
servers
naming requirements 470
service types
debug 470
listener 466
master 470
query 466, 470

Adaptive Server Enterprise Cluster Edition
Index

Clusters Users Guide

service_type component in interfaces file 470
set cluster 389
set instance 390
set system view 294
setperm_all permissions 412
setting configuration parameters 239
shared database devices, creating in ASE plug-in 244
shared installation mode 187
show agents 392
show cluster 395
show instance 398
show session 401
shutdown 294
shutdown cluster 403
shutdown instance 404
SMP Adaptive Server versus Cluster Edition 11
sort order 429
binary 430
changing 423, 438
dictionaries and 430
default for Adaptive Server 423
definition files 429
dictionaries 430
letter case in 430
sp_addengine stored procedure 321
sp_addexeclass stored procedure 321
sp_audit stored procedure 320
sp_bindcache stored procedure 144
sp_cacheconfig stored procedure 130, 328
sp_cluster logical stored procedure 307
sp_configure stored procedure 322
sp_dropdevice stored procedure 167
sp_dropengine stored procedure 323
sp_helpcache stored procedure 329
sp_helpdevice stored procedure 167
sp_poolconfig stored procedure 139, 140
sp_refit_admin stored procedure 317, 318
sp_serveroption stored procedure 33
sp_tempdb 329
tty settings 411
Sun Solaris
iostat command 418
netstat command 418
ps command 418
time command 418
timeout period 416
vmstat command 418
sundiag system diagnostic tool 417
supported platforms for Veritas and the Cluster Edition 196
Sybase 125
$SYBASE environment variable as default server name 473
Sybase globalization support 421, 434, 438
sybcluster
adding an instance 280
authenticating the user 269
changing instance properties 282
connecting to the cluster 269
creating XP Server 284
disconnecting from the cluster 278
displaying cluster information 274
Index

displaying configuration values 276
displaying instance information 279
displaying session information 275
dropping an instance 283
dropping the cluster 279
enabling sycluster after manual creation 283
identifying the Unified Agents 271
list of commands 266
performing cluster check 273
restrictions 265
setting the default instance 282
shutting an instance down 282
shutting the cluster down 278
starting 266, 268, 273
Unified Agent Framework and 268, 274
upgrading the server 286
verifying an instance 281
sybcluster commands
 add backupserver 370
 add instance 371
 connect 373
 create backupserver 374
 create cluster 375
 create monitorserver 377
 create xpserver 378
 deploy plugin 379
 diagnose cluster 380
 diagnose instance 382
 disconnect 382
 drop backupserver 383
 drop cluster 384
 drop instance 384
 drop monitorserver 385
 drop xpserver 385
 exit 386
 help 386
 localize 386
 quit 388
 set backupserver 388
 set cluster 389
 set instance 390
 set monitorserver 391
 set xpserver port 392
 show agents 392
 show backupserver config 394
 show cluster 395

 show instance 398
 show membership mode 400
 show monitorserver config 401
 show session 401
 show xpserver 403
 shutdown cluster 403
 shutdown instance 404
 start cluster 405
 start instance 405
 upgrade server 406
 use 408
sybcluster utility 265–286, 342, 363
sybsecurity database 446
sybsyntax database 453
symbols
 in SQL statements xxiv
symmetric multiprocessing (SMP) 11
syntax
 binding objects to 144
sys_tempdbid function 361
sysinstances system table 353
system administrators
 configuring a cluster 239
system audit tables 446
system logical cluster
 definition 93
 open property 93
system messages, translated 422
system security officer
 configuring an instance 238
system temporary databases in ASE plug-in 246

T

tab characters in interfaces files 469
TCP/IP 416, 470
 KEEPALIVE option 416
temporary databases 153–165
 adding to a group in ASE plug-in 247–249
 binding applications to 159, 160
 binding users to 159, 160
 characteristics of 156
 creating 157
 creating bindings 161
 creating groups 159
Index

definition 153
dropping 162
global 153
guidelines for using 163
inherited from model database 153
local 153
managing bindings 161
managing with ASE plug-in 244–249
session binding 160
Thai character sets 427
thresholds in ASE plug-in 253
time command
 Sun Solaris 418
timestamp columns 352
TLI protocol 470
trace flags 125
translated messages
 error (.loc files) 435
 system 422
troubleshooting the workload manager 125
troubleshooting Veritas and the Cluster Edition 205
 cluster does not start 205
 resource faults 210, 211, 212
 Veritas does not start 213
Turkish character sets 427

U
UDP discovery method 236
Unicode
 character conversion 424
 Unified Agent Framework 268
 Unified Agent, enabling 235
UNIX
 hardware error messages 417
 network protocol 470
UnixWare
 network protocol 470
us_english language 423
use 408
user connections 412
User Datagram Protocol (UDP) 236
user-defined message 460

V
vcs membership mode 196
 limitations of 197
 requirements for 196
Veritas and the Cluster Edition 193–214
 benefits of 193
 components 195
 configuring 197
 converting a cluster 200
 creating a cluster 199
 I/O fencing 194
 installing 197, 198
 managing 201
 membership management 194
 reconfiguring interconnects 200
 supported platforms for 196
 Sybase components 195
 troubleshooting 205
 understanding failure scenarios 204
 Veritas components 195
 Veritas Sybase components 195
Veritas Cluster Membership plug-in (VCMP) 194
Veritas SF for Sybase CE 193
Veritas Storage Foundation 193
vmstat command
 Sun Solaris 418

W
wash size of pool, changing 141
workload management 118–124
 load profile 120
 load threshold 120
 metrics 118
 sample load profiles 121
 troubleshooting 125
 workload manager 7, 91–125
 memory requirements 106
 workload manager in ASE plug-in 249–262
workload manager size configuration parameter 339
workload metrics 118
 CPU utilization 119
 engine deficit 119
 I/O load 119
 run-queue length 119

Clusters Users Guide 499
Index

user connections 118
user-supplied metric 119
weighting of 119
workload_metric function 360