
Working with Web and JSP Targets

PowerBuilder®

10.5

DOCUMENT ID: DC77883-01-1050-01

LAST REVISED: March 2006

Copyright © 1991-2006 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication,
Adaptive Server Everywhere, Adaptive Warehouse, Afaria, Answers Anywhere, Anywhere Studio, Application Manager, AppModeler,
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Translator, APT-Library, AvantGo Mobile Delivery, AvantGo Mobile
Inspection, AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon
Application Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker,
ClearConnect, Client-Library, Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench, DataArchitect, Database
Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Developers Workbench, DirectConnect,
DirectConnect Anywhere, Distribution Director, e-ADK, E-Anywhere, e-Biz Impact, e-Biz Integrator, E-Whatever, EC Gateway,
ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise
Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work
Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager,
GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information
Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, M2M Anywhere, Mach Desktop, Mail
Anywhere Studio, Mainframe Connect, Maintenance Express, Manage Anywhere Studio, M-Business Anywhere, M-Business Channel,
M-Business Network, M-Business Suite, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, mFolio, Mirror
Activator, MySupport, Net-Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL
Access Module, OmniSQL Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open Client/Server Interfaces,
Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library,
Pharma Anywhere, PocketBuilder, Pocket PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation
Class Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage,
PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst,
QAnywhere, Rapport, RemoteWare, RepConnector, Replication Agent, Replication Driver, Replication Server, Replication Server
Manager, Replication Toolkit, Report-Execute, Report Workbench, Resource Manager, RFID Anywhere, RW-DisplayLib, RW-Library,
Sales Anywhere, SDF, Search Anywhere, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners,
smart.parts, smart.script, SOA Anywhere, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug,
SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL
Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, S.W.I.F.T.
Message Format Libraries, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase IQ,
Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber
Financial, SyberAssist, SybFlex, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, TradeForce,
Transact-SQL, Translation Toolkit, UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for
UniCode, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, Watcom,
Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-
Library, XA-Server, XcelleNet, and XP Server are trademarks of Sybase, Inc. 10/05

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents
About This Book ... ix

CHAPTER 1 Working with Web Targets ... 1
About Web targets ... 1

About the Web target object model ... 2
What kinds of applications can you develop? 3
Do you need to know Java or HTML? 3
Advantages of the Web Target development environment 4

Using the Web Target development environment 5
About the editors ... 8
Tools for editing... 8
System options and editor preferences................................... 10

Working in an integrated Web delivery environment...................... 11

CHAPTER 2 Developing Web Applications.. 17
Setting up Web targets... 17

Creating a Web target ... 18
Adding deployment configurations .. 19
Importing files for an existing Web site.................................... 21
Defining connection profiles .. 22

Working with files in a Web target .. 22
Types of files ... 23
Adding content .. 24
Using the System Tree.. 26

Creating Web pages .. 31
Adding content and style to your Web pages.......................... 31
Building and deploying Web targets.. 32

CHAPTER 3 Working with HTML Pages ... 33
HTML editor views ... 33

Page view.. 33
Source view... 36
Preview view ... 37
Working with Web and JSP Targets iii

Contents
Choosing a view to work in.. 38
Switching between views .. 38

Opening the HTML editor and setting options................................ 39
Opening the HTML editor .. 39
Saving your work and closing the editor.................................. 41
Giving your page a title.. 42
Formatting HTML source display .. 43

Basic editing in Page and Source views .. 45
Using the PowerBuilder menu... 45
Formatting tips... 47
Using the System Tree.. 47
Properties for HTML elements .. 49
Undo and Redo ... 52
Finding and changing text ... 52
Using the Script editor ... 53

Correspondences of common elements .. 53
Headings and paragraphs ... 53
Lists ... 55
Character formatting.. 57
Inserting special symbols .. 58
Links and anchors ... 58
More complex formatting... 60

Absolute positioning ... 63
About absolute positioning .. 63
What you can do ... 63
Toggling between static and absolute positioning................... 65
Setting absolute positioning options.. 66
Manipulating an absolutely positioned element....................... 66

CHAPTER 4 Working with Style Sheets and Framesets 69
About style sheets.. 69

Working with styles.. 70
Syntax for style attributes and selectors.................................. 70
Working with IDs and classes ... 71

About the Web Target style and style sheet editors....................... 71
The Style Sheet editor tab page interface 73
Integration with other Web target editors 74

Basic editing with the style sheet editors 75
Creating an external style sheet.. 75
Importing an existing style sheet ... 76
Linking an external style sheet to an HTML page 78
Embedding style definitions in an HTML page 79
Opening an existing style sheet .. 79
Using the Inline Styles editor... 80
iv PowerBuilder

Contents
Adding selectors for HTML elements, classes, and IDs.......... 81
Removing items from a style sheet ... 85

Editing frames and framesets .. 85
About the Frameset editor... 86
Creating a new frameset document .. 87
Modifying a frameset ... 88
Modifying frame properties.. 89

CHAPTER 5 Working with Images, Other Media, and Components 91
Images and image maps.. 91

Inserting images .. 92
Creating image maps .. 94

Multimedia.. 96
Components... 96

Viewing available components .. 97
Inserting a component... 97
Design-time controls.. 99

The Java class path ... 100
Class path values .. 100
Using the class path .. 101

The custom tag library search path.. 102

CHAPTER 6 Writing Scripts .. 103
About scripts .. 103

Editing scripts .. 103
Scripting languages... 105
Types of scripts ... 105
Objects in an HTML document.. 108

Procedures for editing scripts... 109
Choosing an object or event for scripting 109
Assigning an ID to an object in the document 110
Creating a new script... 110
Writing the code .. 111
Finding and changing code ... 115
Setting default formats for scripts in the Script editor............ 115

Techniques and tips for creating scripts....................................... 116
Position of scripts .. 116
URLs in scripts .. 117

CHAPTER 7 Working with Application Servers and Transaction Servers.. 119
Integrating with application servers.. 119
Working with server scripts .. 122
Working with Web and JSP Targets v

Contents
Using the Web Target object model ... 123
Accessing database content from your Web target 127
Managing page data .. 128

About page parameters and variables 128
Using page parameters in server scripts............................... 129
Using session variables in server scripts 130
Samples for retrieving and displaying data 133

Integrating with EAServer .. 138
Accessing components ... 139

CHAPTER 8 Working with JSP Targets .. 143
About JavaServer Pages ... 143

How JavaServer Pages work .. 144
What a JSP contains ... 145
Application logic in JSPs ... 145

JSP Web Target wizard ... 146
Specifying a server type .. 146
Custom command line deployment 147

JSP page authoring.. 148
JSP actions ... 149
Directives... 153
JSP scripting elements.. 155
Custom tags .. 158
Error handling.. 159

JSP Web services .. 161
Using the JSP Web Service Proxy wizard............................. 161
SOAP processing in JSP targets... 165
Adding a custom tag for Web services.................................. 166

JSP Web Target object model ... 168
Custom tag library for the Web DataWindow 170

CHAPTER 9 Developing 4GL JSP Pages .. 171
About 4GL JSP pages.. 171
Developing pages .. 172

Creating a new 4GL JSP page.. 172
Enabling 4GL mode in an existing page................................ 175
Adding content to 4GL JSP pages .. 176

Using parameters and variables .. 177
Setting up page parameters .. 178
Setting parameter bindings on the linking page 180
Setting up page and session variables.................................. 180

Accessing EAServer components.. 181
About EAServer integration... 182
vi PowerBuilder

Working with EAServer components 182
Setting up EAServer login variables 185

Adding controls... 186
Binding controls to properties of EAServer components 187
Binding controls to page data .. 189
Disabling server scripting for a control................................... 190

Writing server scripts .. 191
Responding to events on your page...................................... 192
Adding scripts to 4GL JSP pages.. 194
Writing scripts to access EAServer components 196

How page request processing works.. 197
Disabling 4GL mode ... 199

CHAPTER 10 Setting Up Page Navigation ... 201
About page navigation.. 201
Managing client hyperlinks ... 204
Managing client form submission ... 206
Managing server redirection ... 209

CHAPTER 11 Using the Web DataWindow Design-Time Control................... 213
About the Sybase Web DataWindow DTC................................... 213

Web DataWindow support ... 213
Server-side environment.. 216
Benefits of using the Web DataWindow DTC........................ 217

Adding a DataWindow to a Web page.. 217
Creating a page that has a Web DataWindow DTC 218
What you see in Page view ... 219
What you see in Source view .. 220
What you see in a non-4GL Web page.................................. 221
What you see in a 4GL Web page... 222
Using the Web Target object model 223

Setting Web DataWindow DTC properties 223
Selecting the source for a DataWindow object 223
Selecting a database profile .. 225
Controlling the behavior of the DTC 227
Setting the bind type and values for retrieval arguments....... 229
Defining links ... 231
Selecting a Web DataWindow generator............................... 232

Editing existing Web DataWindow DTC properties 233
DataWindow presentation styles and data sources...................... 234
Binding data to DataWindow retrieval arguments 234

Constants... 235
Control Values ... 236
Working with Web and JSP Targets vii

JavaScript Expressions ... 236
Page Parameters... 238
Page Variables .. 240

Defining hyperlinks on objects in a DataWindow.......................... 240

CHAPTER 12 Building and Deploying Web Targets 243
About building and deploying Web targets 243
Building Web targets .. 244
The deployment process .. 247

Working with server types.. 247
Deploying to ASP... 248
Deploying using the Basic deployment controller 249

Setting up a deployment configuration ... 250
Editing a Web site deployment configuration 251
Editing a JSP deployment configuration....................................... 252

General deployment options.. 253
JSP deployment options .. 255

Enterprise Portal deployment options... 266
Deploying a Web target .. 269
Running a Web target... 270
Troubleshooting 4GL JSP pages.. 270

Displaying runtime errors... 270
Displaying trace messages.. 272

Troubleshooting JSP targets .. 273
Problems deploying and running JSPs.................................. 274
Troubleshooting JSP Web services....................................... 275
Additional resources for JSPs and Web services 276

Index.. 277
viii PowerBuilder

Working with Web and JSP Targets ix

About This Book

Audience This book is for developers who build business applications for the Web.

The discussion of Web targets in this book includes references to both
Web site and JavaServer Pages (JSP) targets. The same development
environment is used for creating HTML pages and JSPs.

How to use this book This book provides an overview of the Web and JSP target features of
PowerBuilder®.

Related documents Reference information for the Web and JSP target features is available in
the Web and JSP Target Reference, the DataWindow Reference, and the
Online Help.

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase
Product Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation
guides in PDF format, and may also contain other documents or
updated information not included on the SyBooks CD. It is included
with your software. To read or print documents on the Getting Started
CD, you need Adobe Acrobat Reader, which you can download at no
charge from the Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access
the manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or
print the PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or
the README.txt file on the SyBooks CD for instructions on installing
and starting SyBooks.

x PowerBuilder

• The Sybase Product Manuals Web site is an online version of the
SyBooks CD that you can access using a standard Web browser. In
addition to product manuals, you will find links to
EBFs/Maintenance, Technical Documents, Case Management,
Solved Cases, newsgroups, and the Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product
Manuals at http://www.sybase.com/support/manuals/.

If you need help Each Sybase installation that has purchased a support contract has one or
more designated people who are authorized to contact Sybase Technical
Support. If you cannot resolve a problem using the manuals or online help,
please have the designated person contact Sybase Technical Support or the
Sybase subsidiary in your area.

http://www.sybase.com/support/manuals/

Working with Web and JSP Targets 1

C H A P T E R 1 Working with Web Targets

About this chapter This chapter describes Web targets and how you work with them in
PowerBuilder. The same development environment is used for creating
Java Server Pages (JSP) and HTML Web pages.

Contents

About Web targets
A Web target is a collection of files and components used to create a Web
application. A Web application can represent part or all of a Web site. Web
applications created using PowerBuilder Web targets deliver dynamic,
interactive content by integrating database data, scripting for client- and
server-side events, and access to components stored on middle-tier
servers. Using the PowerBuilder development environment simplifies
how you develop and maintain these types of Web applications.

Development environment PowerBuilder lets you develop both PowerScript and Web targets in a
workspace. You can add as many targets to a workspace as you want, and
open and edit objects in multiple targets. If your Web application uses
DataWindow® and EAServer components, you can work with all of them
in a single workspace. PowerBuilder provides an intuitive user interface,
combined with wizards that step you through complex or repetitive tasks
to help you develop pages faster and spend less time on Web site
maintenance.

Deployment environment You can deploy Web applications to JSP page servers or Active Server
Pages (ASP). JSP targets can be deployed to Apache Tomcat, Sybase
EAServer, or other JSP 1.2 compatible servers. ASP or Web Site targets
can be deployed to a static file system folder or to an FTP server directory.

Topic Page

About Web targets 1

Using the Web Target development environment 5

Working in an integrated Web delivery environment 11

About Web targets

2 PowerBuilder

The page servers can in turn access components on transaction servers such as
EAServer or Microsoft COM+. If you use Tomcat as a JSP server, you can still
access components running on EAServer in your Web applications. With JSP
targets, you can use 4GL Web technology to manage page data and easily
integrate middle-tier components into Web pages.

For more information on 4GL Web technology, see Chapter 9, “Developing
4GL JSP Pages.”

About the Web target object model
What is an object
model?

Object models provide Web developers with a scripting environment by
providing objects—and their properties, methods, and events—for easier Web
development.

Object models can be server side or client side. In a client script, objects belong
to the Document Object Model of the client browser. In a server script, objects
belong to the object model existing on or deployed to the selected server.

You can view representations of client-side and server-side object models in
the Language page of the System Tree.

About the Web Target
object model

The Web Target object model streamlines the process of developing and
deploying Web applications. During the development phase, the object model
hides many of the platform-specific details you would otherwise need to know
to write server pages. At deployment time, the object model takes care of
mapping your platform-independent code to each application server platform
you choose to target.

The structures and objects in the Web Target object model are defined in Java
classes for JSP targets and in JavaScript for ASP targets.

When you deploy a Web page that uses the Web Target object model, the Web
target automatically adds an object model file to your deployed application and
imports the contents of that file into your page. The object model file resolves
references you make to Web target objects to appropriate objects in the target
application server. The deployment controller imports an object model file into
any HTM, ASP, or JSP file containing one or more server scripts that use the
Web Target object model.

For more information about the Web target object model, see “Using the Web
Target object model” on page 123.

CHAPTER 1 Working with Web Targets

Working with Web and JSP Targets 3

What kinds of applications can you develop?
The applications you build with PowerBuilder for JSP targets and ASP targets
can include simple text-based Web pages as well as complex Web pages with:

• Client- and server-side scripting

• Database content

• Web DataWindows

• Components, such as EAServer components (including Enterprise
JavaBeans) or ActiveX controls

• Component transaction server access

Dynamic, data-driven
applications

Dynamic business-critical Web applications typically use application servers
to display data stored in a database and present interactive interfaces through
which users execute business transactions in real time. The Web DataWindow,
easily created within the Web Target development environment, gives your
page real-time access to databases for retrieval and update.

Open applications Web targets you build in PowerBuilder support an open architecture. The basic
Web Target object model supports server-side programming for multiple
application servers, enabling you to develop Web targets for deployment to
multiple servers. To provide dynamic content for your Web applications, you
can create server-side scripts in Java for JSP targets, or you can create scripts
in JavaScript or any ECMA-compliant script (VBScript, JScript, and others).

4GL applications 4GL extensions to the Web Target object model provide server-side event
processing and generate server-side code automatically from selections you
make in the Web Target user interface. For Web site targets, 4GL applications
must be used with EAServer. For JSP targets, 4GL applications can be
deployed to EAServer, Tomcat, or other JSP 1.2 compatible JSP servers.

Do you need to know Java or HTML?
HTML is one of the underlying technologies for your Web site, so it helps to
know what it can and cannot do. However, you can edit pages in the Web target
HTML editor without knowing HTML syntax. Page view (one of three views)
in the HTML editor feels more like a word processor than a code editor.

You can also create styles in the Style Sheet editor without knowing the syntax
for style definitions. If you do know HTML, the editors help you create more
complex HTML layouts like tables and forms.

About Web targets

4 PowerBuilder

For JSP targets, you can edit pages in the HTML editor without knowing Java
syntax. When you drag and drop controls onto a page, the HTML editor adds
code that you can see in the Source view. For 4GL pages, this includes Java
code to construct the control using 4GL object model classes.

If you need to create scripts, you certainly need to know about the objects on
your page and their events, as well as the syntax of your scripting language. In
addition to providing an object view of your document, the System Tree shows
you the HTML object model.

Advantages of the Web Target development environment
The Web Target development environment simplifies the configuration and
coding tasks for your applications. Wizards and dialog boxes let you provide
the information an application needs while the development tool takes care of
implementation details.

Simplifies Web application creation You can use three wizards to create a
new Web target: the JSP Target wizard, the Web Site wizard, and the Source
Controlled Web Target wizard.

The JSP Target wizard prompts you to select a JSP server and select connection
properties for the server. The wizard also steps you through the Deployment
Configuration wizard screens.

The Web Site wizard prompts you for a target name and suggests default
Source and Build folders.

The Source Controlled Target wizard creates a Web target that is checked in to
source control.

Helps automate deployment configuration After you create a Web Site
target, you can manually run the Deployment Configuration wizard. You
access the Deployment Configuration wizard through the Web target properties
sheet. When you set up a deployment configuration, you specify the type of
server you want your Web files to run on—the available choices depend on
your target type.

For JSP targets, you can choose either Tomcat or EAServer as your JSP server.
For Web site targets, your deployment target can be Active Server Pages or
Basic (a file system that can be used by a Web server of your choice).

CHAPTER 1 Working with Web Targets

Working with Web and JSP Targets 5

Dynamically extends supported object models The Web Target object
model extends the programming interface for your Web pages by simplifying
how you include connections to databases, Web DataWindows, and EAServer
components, and how you handle error reporting. The entries you make in
dialog boxes generate server scripts that you can extend and customize.

The Web Target object model supports an open architecture. However, 4GL
extensions cannot be used with ASP Web site targets.

Automates link management The build process for Web targets verifies the
links between files, writing warnings for broken links or bad syntax to the
Output window. It does not attempt to fix the links and it does not prevent
deployment of the target files.

Enables the use of a team environment If you create Web targets in a team
environment, you can control file access though the source control system you
have configured for your workspace. You work with the source control system
the same way as for PowerScript targets in PowerBuilder, except that for Web
targets, you do not need to compile the files you obtain from the source control
server.

Using the Web Target development environment
When you work in the Web Target environment, you do so within the context
of a PowerBuilder workspace. Inside this workspace a Web target includes all
of the files you need to produce a Web application (a Web site or part of a Web
site). When you create or open a Web target, a comprehensive set of Web
development features is available to you.

Web Target tools The Web Target development environment provides the following
development and authoring features:

• System Tree As an active resource for programming information, the
System Tree lists language elements and object models for HTML and
scripting. It lets you view the list of controls on a Web page and the
properties and methods available to them. It also lets you view
components and component methods available on EAServer servers, and
custom tag libraries that you want to use with your JSP applications.

• HTML editor The primary development tool is the HTML editor. In it,
you typically use the Page view to add controls and the Source view to edit
text.

Using the Web Target development environment

6 PowerBuilder

The editor lets you include lists, links and anchors, tables, forms, images,
components, and other features in your Web pages.

Table 1-1: HTML editor views

• Script editor The script editor supports writing both client- and
server-side scripts. The editor is available as an integrated part of the
HTML editor or as a standalone tool.

Table 1-2: Script editor features

• Cascading Style Sheet editor You can define styles for a set of HTML
files, or for individual HTML files, by creating style definitions in the
Cascading Style Sheet editor. Quick access to styles through a tabbed
dialog box lets you create embedded and inline styles as well as separate
style sheets.

Editor view Description

Page view A fully formatted, editable view of your content

Source view An editable view of the tags and content

Preview view A non-editable view that lets you test how the document
should appear

Editor type Features

Integrated Script editor Appears as a pane at the bottom of the HTML editor.

You can select an object or event from your current
page for scripting. Drag-and-drop programming and
InstaCode help you choose the objects and
properties to include in your code.

Standalone Web Script
editor

Appears as a separate window.

You can create standalone scripts in it, and then
access those scripts from a number of pages.

CHAPTER 1 Working with Web Targets

Working with Web and JSP Targets 7

• Frameset editor The Frameset editor helps you to edit and work with
framesets in a document. A Frameset wizard helps with the initial creation
of frameset documents.

• Wizards PowerBuilder wizards guide you though setup tasks, such as
creating workspaces, targets, Web pages, 4GL Web pages, DataWindow
elements, script files, EAServer components, and many others. You must
add a Web target to your workspace before you can use the page or script
creation wizards.

• 4GL Web pages When you develop 4GL Web pages, you can easily
create page parameters and also variables that you can bind to controls. On
4GL pages you can also select and code server-side events from the
integrated Script editor.

• Design-time controls (DTCs) Design-time controls create basic HTML
and script from information you provide in property sheets that display
when you drop a DTC on a Web page in the HTML editor.

The Web DataWindow DTC provides an easy way to access a database
from a Web page. It displays dynamic database content in a variety of
presentation styles and supports inserts, updates, and deletes against the
database.

• To-Do List The To-Do List tracks your progress in completing tasks for
your targets. The To-Do List for a Web target works the same way as it
does for other targets in PowerBuilder.

• Deployment controllers The deployment controllers manage
server-specific coding and configuration. When you create content and
scripts using the Web Target object model, you can create one version of
your source files rather than one for each server destination. The Web
target deployment controller automatically modifies the scripts for
compatibility with the servers that you select for your Web site
deployment.

• Link management A Web target displays information in the Output
window about broken links from one file to another whenever you build a
target. This gives you the opportunity to fix links before you deploy the
target.

Using the Web Target development environment

8 PowerBuilder

About the editors
PowerBuilder includes several editors for preparing HTML pages.

Table 1-3: Web target editors

Tools for editing
Several tools help you develop content in the editors.

Toolbars

There are several toolbars that include buttons for:

• Saving, undo/redo, using the clipboard, searching, and setting properties

• Inserting HTML elements such as lines, tables, images, hyperlinks,
anchors, form controls, tables, DataWindows, and components

Editor Description

HTML editor Provides views, which let you:

• Edit in a WYSIWYG word-processing window (Page view)

• Edit in a color-coded window of HTML tags and content (Source
view)

• Preview the page as it would appear in a browser (Preview view)

Script editor Either standalone or integrated with an HTML or JSP page. The
Script editors let you:

• Write scripts for objects and events in the page

• Save scripts in external files that you link to the page

Style Sheet
editor

Either global, embedded, or inline (available from property sheets
of elements and controls on your page). Style Sheet editors let you:

• Create external style sheets, embedded styles, and inline styles

• Edit styles in tabbed pages that hide style sheet syntax

• View the output of editing from a Source tab

Frameset
editor

Lets you define frames graphically and specify the HTML pages to
display in the frames.

CHAPTER 1 Working with Web Targets

Working with Web and JSP Targets 9

• Applying character formatting (font, style, and size changes), bold, italic,
underlining, and various alignment changes

You can manage and customize the toolbars using the Toolbars dialog box that
you access from the Tools>Toolbars menu. In the dialog box, you can turn on
PowerTips and, by clicking the Customize button, examine toolbar icons and
their commands in the Customize dialog box.

System Tree

The System Tree is an active resource. It provides a quick reference list of
programming information.

The System Tree has four tabs and lists the HTML tags, language syntax, and
object models that you use in the Web Target HTML and Script editors. There
is information for the major browsers and scripting languages. You can view
the client-side object models for Microsoft and Netscape browsers, and syntax
information for VBScript and JavaScript.

The System Tree window displays by default when you start PowerBuilder for
the first time. You can hide or display the System Tree using the System Tree
button on the PowerBar or by selecting Window>System Tree.

For more information on using the System Tree with Web targets, see
Chapter 2, “Developing Web Applications.”

Wizards for HTML elements

PowerBuilder provides several tools to help you create the more complex
HTML elements: frame, table, and form. After you create the element, you can
edit the tags in Source view. For tables and forms, you can add content to the
element in Page view.

Frames The Frameset wizard is available from the New dialog box. You can
graphically lay out the frames and specify an HTML or JSP document for each
frame. After you create the frameset, you can edit the No Frames section in the
editor.

Using the Web Target development environment

10 PowerBuilder

If you want to change the frameset specifications, you can make the changes in
Source view or in the Frameset Properties dialog box available from the
Frames view pop-up menu.

Tables The Table wizard is available on the Table menu in either the Page view or
Source view of the HTML editor. You can specify the columns and rows, and
the alignment and color attributes. You can also add content to the cells.

After you leave the Table wizard, you can edit the table content in Page view
or Source view. In Page view, you can also use the Table menu to manipulate
(insert, delete, merge, split) the table's rows, columns, and cells. In Source
view, you can directly edit the TR and TD elements for the table.

Other Web Target
wizards

Information on other Web target wizards is available elsewhere in the Sybase
documentation.

Table 1-4: Location of information about Web target wizards

Design-time controls

PowerBuilder provides a design-time control, the Web DataWindow DTC, that
lets you use DataWindow objects you have created in PowerBuilder or
InfoMaker to specify data you want to display. When you insert a Web
DataWindow DTC, PowerBuilder uses the DataWindow object definition to
generate HTML and server-side scripting logic for the page.

For more information on the Web DataWindow DTC, see Chapter 11, “Using
the Web DataWindow Design-Time Control.”

System options and editor preferences
To make changes to PowerBuilder system options, select Tools>System
Options from the PowerBuilder menu.

Wizard type Where to find information

Target wizards Chapter 2, “Developing Web Applications”

Web page wizards Chapter 3, “Working with HTML Pages”

Style Sheet wizard Chapter 4, “Working with Style Sheets and Framesets”

Deployment
Configuration
wizard

Chapter 12, “Building and Deploying Web Targets”

JavaScript
Caching wizard

DataWindow Programmer’s Guide

CHAPTER 1 Working with Web Targets

Working with Web and JSP Targets 11

The System Options dialog box has:

• Five tabs with options that apply to all target types in PowerBuilder,
including Web targets.

• A sixth tab that applies to JSP targets and allows you to add search paths
for custom tag libraries.

The Java tab page of the System Options dialog box allows you to include
search paths—in addition to the paths defined in the system CLASSPATH
variable—for applets and JavaBeans. For information on specific fields in the
System Options dialog box, see the online Help and the PowerBuilder User’s
Guide.

Before you start developing Web content, you can set preferences for the Web
Target Script editors. For information about configuring the Script editors, see
“Formatting HTML source display” on page 43 and “Setting default formats
for scripts in the Script editor” on page 115.

Working in an integrated Web delivery environment
In Web delivery environments, application and transaction servers play a vital
role in delivering dynamic content to Web site users by extending the
capabilities of a Web server and integrating database management systems
(DBMS) into the delivery strategy.

An application server processes server scripts to produce customized pages,
whereas a transaction server manages components that encapsulate business
logic and manage database connections. An application server can integrate
with, but does not require, a transaction server.

Server types Web delivery environments use several types of application and transaction
servers.

Working in an integrated Web delivery environment

12 PowerBuilder

Table 1-5: Server types in Web delivery environments

These servers can run on one machine, or run on a number of machines for load
balancing. The following illustration shows an environment where the Web
server and application server run on the same system, and the component
transaction server on another system. In this example, the application server
uses its own database to store all of the files included in the Web site:

Figure 1-1: Web server environment example

This type of server Performs these actions

Application server as a Web
server; personal Web server

Manages requests for Web pages

Application server as a
dynamic page server

Processes server-side scripts

Component transaction server Provides access to components that provide
business logic

Database management system Provides database access

CHAPTER 1 Working with Web Targets

Working with Web and JSP Targets 13

Web servers and
application servers

You can use any commercially available Web server that can communicate
with the application servers where you deploy a Web target.

Table 1-6: Application servers and Web servers

These application servers create dynamic pages on the fly by processing
server-side scripts. The scripts are part of a template (source) page. A template
page can contain HTML and client scripts as well as server scripts.

Web target type Application server Web server

Web site target Active Server Pages Microsoft Internet Information Server
(IIS) or a Web server that can
communicate with the Active Server
Pages application server through
ISAPI or CGI

Other application
servers (deploy using
the Basic deployment
controller)

Any Web server that can communicate
with the application server where you
deploy the Web site target

JSP target Tomcat Apache Tomcat or any Web server that
can communicate with the Tomcat
application server

EAServer EAServer or any Web server that can
communicate with the EAServer
application server

Other JSP 1.2 servers
(You can use
third-party command
line tools to deploy a
JSP target to other JSP
servers.)

Any Web server that can communicate
with the application server where you
deploy the JSP target

Working in an integrated Web delivery environment

14 PowerBuilder

An application server also acts as an intermediary between a Web server and a
DBMS. Page templates can be stored in one database and the data accessed
from Web pages in the same or another database. The following figure shows
how an application server integrates into a Web delivery environment (without
a transaction server):

Figure 1-2: Web delivery environment without transaction server

Transaction server Transaction servers are used in multitier applications to host executable
components. They make it possible to shift processing to the middle tier,
enabling application clients (such as Web pages) to be thin. They also handle
database connections, thereby distributing the processing load and making it
easy to manage connections through connection caching and pooling.

The EAServer component transaction server can host various kinds of
components, including Java classes, JavaBeans, Enterprise JavaBeans (EJBs),
servlets, JSPs, and PowerBuilder objects. Web targets provide ready access to
a server and its components, including Web DataWindow server components.

DBMS A key feature of dynamic Web pages is the ability to retrieve and update
database information. A Web target’s support for application server
technologies makes it easy to incorporate dynamic database content into Web
pages.

Using the Web DataWindow
Adding a Web DataWindow to a Web page facilitates retrieving and updating
database information. See the DataWindow Programmer’s Guide.

CHAPTER 1 Working with Web Targets

Working with Web and JSP Targets 15

EAServer
environment

EAServer provides the following services:

• HTTP server

• Component transaction server (CTS)

• JSP server

The basic architecture and communications protocols used by the transaction
server and the page and personal servers are shown below:

Figure 1-3: Web delivery environment with transaction server

Can be a single server
The Web server and the component transaction server can be on the same
server machine.

4GL Web pages provide enhanced integration with EAServer environments.
They make it easy for you to access EAServer components, bind properties of
those components to controls on your page, manage page data, and simplify
server scripting tasks.

JSP and EAServer only
You cannot use 4GL Web pages if you deploy your Web pages to an ASP
application server, or if you use a transaction server other than EAServer. A
4GL-enabled Web page can be used only in a JSP target.

For how to work with 4GL JSP pages, see Chapter 9, “Developing 4GL JSP
Pages.”

Working in an integrated Web delivery environment

16 PowerBuilder

Working with Web and JSP Targets 17

C H A P T E R 2 Developing Web Applications

About this chapter This chapter describes how to create and work with Web targets to develop
Web applications.

Contents

Setting up Web targets
A Web target provides the physical and management structure for the
folders and files within it. When you work with a Web target, you do so
within the context of a workspace. You must set up the Web target before
you can begin developing content. After you set up a Web target, you can
add new content or content based on existing files that you import.

To produce most Web targets, you must complete the following tasks :

• Create a Web target

• Modify Web target properties, configuring the Web target to meet
your Web environment delivery requirements

• Set up connection profiles and the folder structure for your files

• Import existing files you want to use

• Create new Web pages with the Web page wizards and the HTML
editor

• Add HTML elements and controls, including design-time controls, to
your Web pages using drag-and-drop programming

• Write scripts that take advantage of the event-driven infrastructure
provided by the Web Target object model

Topic Page

Setting up Web targets 17

Working with files in a Web target 22

Creating Web pages 31

Setting up Web targets

18 PowerBuilder

• Test your pages to make sure that they appear and work as planned

• Deploy your Web application to a production environment where client
browsers can access your Web site

Creating a Web target
You create a Web target using the Web Site wizard or the JSP Target wizard.
Creating a Web target defines the folder structure for the target.

❖ To create a Web target:

1 From an open workspace, select File>New
or
In the Workspace tab of the System Tree, right-click the workspace name,
and select New from the pop-up menu.

2 On the Target page of the New dialog box:

The New Target wizard starts.

3 Follow the instructions on the wizard pages.

Target Properties
dialog box

After you create a Web target, you can modify the target properties and add
deployment configurations from the Target Properties dialog box. You access
the Target Properties dialog box from the pop-up menu for a Web target in the
System Tree.

Click this wizard To create this

JSP Target A JSP Web site that you deploy to a JSP 1.2
component server such as Tomcat or EAServer

Web Site A Web site that gets deployed to a file system or
an FTP server

CHAPTER 2 Developing Web Applications

Working with Web and JSP Targets 19

The Target Properties dialog box for a Web site target has the following options
for property selections:

Table 2-1: Target properties dialog box for a Web site target

Adding deployment configurations
After you create a target, you can add deployment configurations and change
settings for the target from the property pages for the target. For information
about deploying a Web target, see Chapter 12, “Building and Deploying Web
Targets.”

Local and target
deployment
configurations

Before you add a deployment configuration, you should decide whether you
want to create a test (local) configuration, a shared or production (target)
configuration, or both. You can deploy using both types of configuration at the
same time.

Local configurations are stored in your registry, whereas target configurations
are stored in the PBT file. PBT files with target configurations can be shared in
a source control system, but users will have to make certain that any
configuration paths, database profiles, and target mappings have identical
names on all machines that use the source-controlled target configurations.

Multiple deployment
configurations

You can add multiple deployment configurations to the list of local or target
configuration profiles. You can change the order of the configurations in the list
by using the wavy arrow keys above the configuration list boxes. A check box
next to each deployment configuration in the list lets you select which of the
configurations you want to use the next time you deploy your Web target.
When you add a configuration, it is selected for deployment by default.

On this page Set these options

Options The path of the Web target’s Source folder and Build folder.

Deploy The local and remote deployment configurations for your target.

You can also set the deployment priority of the various
deployment configurations, create new deployment
configurations, make changes to existing configurations, and
remove deployment configurations.

Run The start page for the target and the deployment configuration
you want to use for running when you click the Run button from
the PowerBar or select Run>Run Target from the PowerBuilder
menu.

Setting up Web targets

20 PowerBuilder

❖ To add deployment configurations:

1 Right-click the Web target on the Workspace tab of the System Tree and
select Properties from the pop-up menu.

2 Click the Deploy tab.

The Deploy page is one of three pages in the Properties dialog box for a
Web Site target and a JSP target.

3 Click the Create New Configuration button for either a local deployment
configuration or a target deployment configuration.

The New Deployment Configuration wizard starts.

4 Follow the instructions in the New Deployment Configuration wizard.

In the wizard, you provide the following information:

A name for the deployment configuration
The Web server to deploy to (Active Server Page or Basic)
The access to the ASP site or Web server (static file system or FTP)
FTP server name, deployment directory, and login ID and password
HTTP server name and port
Whether you are using the default object model or no object model
How to handle failures (deploy all or nothing or only successful files)
A folder name for a local copy of the deployed files

CHAPTER 2 Developing Web Applications

Working with Web and JSP Targets 21

After you click Finish on the last wizard page, the new deployment
configuration displays in one of the list boxes on the Deploy page of the
Target Properties dialog box. You can use the toolbar above the list box to
edit, delete, or change the order of the configurations in the list.

5 Click the Run tab and select a start page for your Web target.

For ASP targets, you must give the complete URL, including the server
name, if you want to start your Web application from the design-time
environment. For JSP targets, you do not need the complete URL.

Choosing a URL (only for ASP targets)
If you use the Choose URL dialog box (URL picker) that you access from
the ellipsis button next to the Start Page field, only the file name portion
of the URL that you select is added to the field. You must then type in the
protocol, domain, and prefix portion of the URL (before the file name in
the Start Page field) to be able to start the application from your
design-time environment.

6 Select a deployment configuration that you want to use for running.

The deployment configurations you created for the current Web target are
available for selection from the Deploy Configuration For Running
drop-down list.

Importing files for an existing Web site
You can import folders or multiple files into your Web target. If you want to
use an existing Web site as the starting point for development, you can import
the site into a Web target.

The site you import must be a file-based Web site. The folder structure of the
Web site becomes the folder structure in the Web target. The Web target creates
a map of the resources used by the site and tracks the content, links, and
components.

Once you have imported files or a complete Web site, you can modify the
content and organizational structure to suit your Web application.

Working with files in a Web target

22 PowerBuilder

❖ To import files or an existing Web site into a Web target:

1 Right-click the Web target on the Workspace tab of the System Tree.

2 Select Import Files or Import Folder from the pop-up menu.

3 Select the files or the folder you want to import and click OK or Open.

Defining connection profiles
If you plan to use database connections or EAServer connections, you must
define connection profiles for these types of connections:

You set up database connection profiles from the Tools>Database Profile menu
item. You can set up EAServer profiles either from the Tools>EAServer Profile
menu item or by right-clicking anywhere on the Components tab of the System
Tree.

For information on setting up these profiles, see Connecting to Your Database.

Working with files in a Web target
When building a Web application that uses EAServer components and
DataWindows, you can use the Web target environment to develop these
separate components in the same workspace. A Web target lists and tracks all
of the files and folders in your Web site. The target identifies the root directory
used to store source files and specifies build and deploy options.

Profile type Create for

Database connections Database connections that your pages use directly,
and connections to be used by Web DataWindow
objects

Connections to EAServer Components your application will access that are
stored on the server

CHAPTER 2 Developing Web Applications

Working with Web and JSP Targets 23

Types of files
A Web target can contain various types of files:

HTML files
JSP files
Scripts
Component files
Accessory files, such as images and video files

HTML files HTML files determine the presentation for your Web applications. In Web site
targets, HTML files provide the framework for adding components to your
Web pages. You can use HTML pages in JSP targets, but you must import them
as accessory files rather than create them directly in the JSP target.

JSP files You can use JSPs in many ways in Web-based applications that you deploy to
a JSP server. JSPs are invoked by a Web server in the middle tier in response
to HTTP requests from Web clients. As part of the J2EE application model,
JSPs can invoke, in turn, the business methods of Enterprise JavaBeans (EJB)
components on a transaction server.

Scripts Scripts drive application behavior both on the client side and on the server side.
You can write scripts in the Script editor in a number of languages including
JavaScript, JScript, and VBScript, as well as server scripts in Java for JSP
targets.

Client-side scripting Client-side scripts contain instructions that the
browser executes on the user’s local machine. Client-side scripts can use
syntax, functions, and objects supported by the major browsers.

Server-side scripting Server-side scripts contain instructions that an
application server or Web server executes before sending a Web page to a client
browser. These scripts provide a way to include conditional execution, looping,
and other programming structures in your Web pages. They can also provide
access to integrated server systems such as a DBMS or EAServer.

Server-side scripts can take advantage of the Web Target object model, which
uses a set of language structures and objects. Although many of the objects and
programming structures are common to a number of application server
technologies, a subset is specific to the EAServer environment.

Working with files in a Web target

24 PowerBuilder

Components You can include the following types of components in your Web pages to
deliver the content and functionality your site users need:

Web DataWindow DTCs
EAServer components
Java applet and JavaBean components
Microsoft ActiveX controls
Netscape plug-ins
Custom tag libraries and their supporting classes (JSP targets)

Accessory files Web sites include several other types of files, such as images, video files, and
audio files. You can import accessory files into a Web target from another
location. See “Importing files for an existing Web site” on page 21.

Adding content
After you create a Web target, you are ready to begin developing content. You
should probably start by setting up the folder structure for your target.

Adding new folders When you add content to a Web target, you use folders to set up a logical
directory structure for the content. When you deploy a Web target, the
deployment engine replicates the folder structure on the server system. It also
processes the content for the target Web server and application server, and
rewrites link information to fit the directory structure.

❖ To add a new folder to a Web target:

1 On the Workspace tab of the System Tree, right-click a Web target (or a
folder under a Web target), then select New Folder from the pop-up menu.

2 Right-click the new folder that displays under your Web target and select
Rename from the pop-up menu.

3 Type in the name you want to give to your folder.

Adding new HTML or
JSP files

With a folder structure in place, you can begin adding files to those folders. The
Web page of the New dialog box has wizards for creating the various types of
files you can edit in a Web target.

Table 2-2: Web page wizards

Select this To do this

Quick Web/JSP Page Open a new, unnamed HTML (Web site targets) or JSP
(JSP targets) page in the HTML editor

Web/JSP Page Create a new HTML or JSP page, specify design
settings such as background color for the page, and
open the page in the HTML editor

CHAPTER 2 Developing Web Applications

Working with Web and JSP Targets 25

❖ To add new HTML or JSP files to a Web target:

• Right-click a Web target, or a folder under a Web target, then click New
from the pop-up menu.

The Web page of the New dialog box displays:

Selecting an item in the New dialog box launches a wizard that helps you
set up a new file.

4GL JSP Page Create a new 4GL JSP page, specify design settings
such as the background for the page, select error
reporting settings, page parameters, and EAServer
components, and open the page in the HTML editor

Web/JSP DataWindow
Page

Create a new HTML or JSP page that contains a Web
DataWindow design-time control (DTC), specify
design settings such as the background for the page and
configuration information for the DTC, including the
EAServer profile

Frameset Page Create a new frame page for your HTML or JSP files

Script Open a new, unnamed script file in the standalone
Script editor

Cascading Style Sheet Open a new external style sheet file (and optionally
reference an existing style sheet) in the Style Sheet
editor

JSP Web Service Proxy Create a proxy object to use Web services

Select this To do this

Working with files in a Web target

26 PowerBuilder

Using the System Tree
The System Tree is an active resource for page development, providing an
organized framework for developing your targets, pages, and components. Its
four tab pages let you browse items available to your Web pages.

You can view the properties for any item in the System Tree by right-clicking
the item and selecting Properties from the pop-up menu. On the Language,
Components, and Page tab pages, you can view, but not change, properties.

Table 2-3: System Tree tab pages

You can drag and drop HTML elements, scripting resources, and other
components from a System Tree tab page onto Web pages open in the HTML
editor.

System Tree
tab page Displays this content

Workspace Workspace contents — including targets, folders, files, and libraries

Language HTML tags, client- and server-side object models (listing object
properties, methods, and events), and scripting language elements
(including JavaScript and VBScript syntax elements)

Components ActiveX controls, plug-ins, Java applets, JavaBeans, EAServer
components, and custom tag libraries available to your target

Page The page components of the active page open in the HTML editor

CHAPTER 2 Developing Web Applications

Working with Web and JSP Targets 27

Workspace tab The Workspace tab lets you manage your targets. From it you change target
properties, add, remove, and rename files and folders, migrate JSP targets
created in PowerBuildes 9, and build, deploy, and run targets. The pop-up
menu for a Web target gives you access to these features:

Table 2-4: Workspace tab pop-up menu selections for Web targets

Page tab The Page tab shows the hierarchy of objects on the current page in the HTML
editor. The page tab also lists properties, methods, and events for:

• Predefined Microsoft Internet Explorer page objects

• Predefined HTML objects

• Predefined JavaScript objects

• User-defined controls

• Server-side EAServer components placed on a 4GL Web page

You can create script to refer to the object or its methods, properties, and events
by dragging it from the Page tab to the Source view of the HTML editor, or to
the integrated Script editor.

Web target
pop-up menu
item Feature

New Displays PowerBuilder New dialog box

New Folder Creates a new folder in the target

Import Files Allows you to select files to import to the target

Import Folder Allows you to select a folder to import to the target

Incremental Build Builds only files in the Web target that have changed since the
previous build

Full Build Builds all files in the Web target

Migrate JSP Target Migrates a JSP target created in PowerBuilder 9 to
PowerBuilder 10

Deploy Deploys the target according to the deployment
configurations selected in the Target Properties dialog box

Deploy To EP Deploys a JSP target to Sybase Enterprise Portal (EP) rather
than a JSP server

Run Starts a browser that opens to the page you specify in the Start
Page field in the Run tab page of the Target Properties dialog
box

Remove Target Deletes the target from the workspace

Show Toggles display of items in the System Tree

Properties Opens the Target Properties dialog box

Working with files in a Web target

28 PowerBuilder

Language tab The language tab provides quick access to:

• HTML elements and attributes The most commonly used HTML
elements appear in this list. The elements are organized alphabetically as
well as by category to make browsing easy. Elements appear in categories
such as format, headers, image, and multimedia. Attributes appear
alphabetically under elements.

You can drag an HTML element or attribute from the Language tab to the
Page view or the Source view in the HTML editor, or to the Script editor.

• Script language syntax The syntax elements for JavaScript and
VBScript.

You can drag a script syntax element from the Language tab to the Source
view in the HTML editor, or to the Script editor.

• Object models The objects, and their methods, properties, and events,
for the Microsoft and Netscape client-side object models. Methods,
properties, and events are also listed for the Web Target and Active Server
Pages server-side object models, as well as for JSP implicit objects.

You can drag an object model from the Language tab to the Source view
in the HTML editor, or to the Script editor.

Components tab The Components tab of the System Tree lists client-side and server-side
ActiveX controls, plug-ins, Java applets, and JavaBeans installed on your
system, and EAServer components accessible from your system.

Information about installed components
A Web target gets information about installed components from the Windows
registry, browser plug-in directories, MIME extensions recognized by your
primary browser, and user-specific folder lists. It relies on the Java classpath,
if set on your system, to find Java applets and JavaBeans.

Custom tag libraries for JSP targets must be listed (or contained in directories
that are listed) on the JSP page of the System Options dialog box. You must
then make sure the classes for the custom tag libraries are available to your JSP
target.

The list of servers on the Components tab is populated from the EAServer
profiles configured for PowerBuilder. A profile must be configured for a server
for it to appear on the Components tab. The server must be running for you to
see the components available in its repository.

CHAPTER 2 Developing Web Applications

Working with Web and JSP Targets 29

To give a page access to a component listed on the Components tab, drag the
component from the Components tab to the Page view or Source view in the
HTML editor.

Drag and drop You can drag files, HTML tags, objects, and methods from the System Tree
into the HTML or Script editors, or you can copy from the System Tree and
paste into an editor window. The result depends on the item you drag or copy,
on the System Tree tab, and on the editor view:

Table 2-5: Drag-and-drop elements from the System Tree

From To Item Result

Workspace
tab

Page view or
Source view

Text file (such
as HTM, JS,
ASP, JSP)

Creates a hyperlink to a file
from the current page. If the
HTML editor is not already
open, opens the item dragged
or copied in the appropriate
editor.

Page view or
Source view

Image file (such
as GIF, JPG, and
so on)

Creates image element
with link to image file in its
SRC attribute.

Page tab Source view or
integrated
Script editor

Object method,
event, or
property
available on
current page

Inserts the appropriate dot
notation to fully qualify the
object method, event, or
property name.

Language tab Page view or
Source view

HTML element
(tag) that does
not have an
associated Web
Target property
sheet

If no text is selected in the
HTML editor, the element is
inserted, but you must be in or
switch to Source view to put
the cursor between the start and
end tags and add content. In
Page view, the editor formats
selected text according to the
element you dragged.

Page view or
Source view

HTML element
(tag) that has a
Web Target
property sheet

Web Target property sheet
displays. You can fill in
property sheet fields before the
element (control) is added to
the open page in the editor.

Page view,
Source view, or
Script editor

Object model
method, event,
or property

Inserts the appropriate dot
notation with text in brackets
that you must replace to fully
qualify the method, event, or
property.

Working with files in a Web target

30 PowerBuilder

Copying items You can also copy items from the System Tree and paste them to the Page view
or Source view.

❖ To copy items from the System Tree:

1 Right-click the item you want to copy and select Copy from the pop-up
menu.

2 Right-click in the Page view or Source view, and select Paste from the
pop-up menu.

Migrating JSP targets If you open an existing workspace created in an earlier version of
PowerBuilder using File>Open Workspace or File>Recent Workspace, the
new workspace could contain JSP targets created in the earlier version. To
migrate a JSP target to PowerBuilder 10.5, right-click the JSP target, select
Migrate Web from the pop-up menu, and click OK.

Page view,
Source view, or
Script editor

Scripting
language
function,
keyword,
operator, or
escape
sequence

Inserts the appropriate dot
notation to fully qualify the
scripting language syntax.

Component
tab

4GL page in
Source view

EAServer
component

Opens the Page properties
dialog box to the EAServer
page on which the control is
associated with the page.

Script editors EAServer
component

Inserts the appropriate dot
notation to fully qualify the
component.

Page view or
Source view

Custom Tag
Library (JSP
target), Plug-in,
or ActiveX,

Opens the Web Target property
sheet associated with object.
(To add a custom tag library
class, you must first add the tag
library to the page.)

Script editors Applet or
JavaBean
method,
Plug-in, or
ActiveX

Inserts the object name or
identifier.

From To Item Result

CHAPTER 2 Developing Web Applications

Working with Web and JSP Targets 31

After the JSP target migration is complete, the JSPs in the target use the
HTMLGenerator105 component, class IDs for design-time controls are
changed to the new version, the original JSP files are saved to files with
UTF-8 encoding, and the original page directive character set is changed to
UTF-8 for each JSP in the target.

Creating Web pages
The remainder of this book provides detailed information about how you
develop pages within a Web target, and how you use the development
environment to produce Web applications. This section gives an overview of
the types of tasks you need to complete to develop a page, and gives references
to sections in this book that describe how to complete these tasks.

Adding content and style to your Web pages
You use the tools available in a Web target to add content and style to your Web
application.

Table 2-6: Where to find information about page content and style

For information about this topic See this chapter

Opening a page in the HTML editor
and adding text, images, and other
page elements

Chapter 3, “Working with HTML Pages”

Using absolute positioning on a page Chapter 3, “Working with HTML Pages”

Setting up page formatting using style
sheets

Chapter 4, “Working with Style Sheets and
Framesets”

Developing dynamic Web pages Chapter 8, “Working with JSP Targets”

Chapter 7, “Working with Application
Servers and Transaction Servers”

Developing dynamic Web pages for
deployment to EAServer

Chapter 9, “Developing 4GL JSP Pages”

Writing client and server scripts Chapter 6, “Writing Scripts”

Chapter 7, “Working with Application
Servers and Transaction Servers”

Chapter 9, “Developing 4GL JSP Pages”

Creating Web pages

32 PowerBuilder

Building and deploying Web targets
When you build a Web target or Web target files, the target or the files are
copied from the target Source directory to the target Build directory. Building
a target before you deploy it can be useful to verify links and make sure they
work.

You can build Web target files in a separate action, but when you deploy a Web
target or Web target files, the target files are built automatically before being
deployed. You can find more information in Chapter 12, “Building and
Deploying Web Targets”.

You can make sure that your Web pages appear and function as planned by
inspecting the pages during development and then after deployment. Web
servers are important for testing and deployment.

You can develop Web site applications that are independent of the application
server used for production deployment. If your server-side scripting uses the
Web Target object model, then mapping information supplied during
deployment translates between the Web Target object model and the object
model for the application server you choose.

Table 2-7: Where to find information about testing Web targets

Adding database forms for retrieval
and update using the Web
DataWindow design-time control

Chapter 11, “Using the Web DataWindow
Design-Time Control”

Adding components such as Java
applets, JavaBeans, and EAServer
components to a page

“Using the System Tree” on page 26

Adding custom tags and custom tag
libraries to a JSP

“Custom tags” on page 158

For information about this topic See this chapter

For information about this topic See this chapter

Viewing the appearance of your page in a
browser or in the HTML editor’s
Preview view

Chapter 3, “Working with HTML Pages”

Using customized troubleshooting tools
for 4GL Web pages

Chapter 9, “Developing 4GL JSP Pages”

Viewing the deployed pages in the
browsers you want your application to
support

Chapter 12, “Building and Deploying
Web Targets”

Working with Web and JSP Targets 33

C H A P T E R 3 Working with HTML Pages

About this chapter This chapter introduces the HTML editor for Web targets. The HTML
editor can be used to edit HTML pages in Web site targets and JSP pages
in JSP targets.

For information on the Style Sheet and Frameset editors, see Chapter 4,
“Working with Style Sheets and Framesets”.

For information on the Script editor, see Chapter 6, “Writing Scripts.”

Contents

HTML editor views
The HTML editor has three views: Page, Source, and Preview. Each view
provides a different way of working with your HTML project.

Page view
Page view provides WYSIWYG editing for an HTML page without
requiring knowledge of HTML tagging. Use Page view as your main
editing environment or to supplement the editing you do in Source view.

Hiding page view
You can hide page view by selecting Design>Options and clearing the
Show Page View check box. To see the change, close the HTML editor
and then open it again.

Topic Page

HTML editor views 33

Opening the HTML editor and setting options 39

Basic editing in Page and Source views 45

Correspondences of common elements 53

Absolute positioning 63

HTML editor views

34 PowerBuilder

Modifying the
WYSIWYG view

Although Page view provides WYSIWYG editing, you can show HTML tags
on your page through a toggle switch in the PowerBuilder Design menu or in
the Page view pop-up menu. The tags display in symbol form inside yellow
blocks. This image shows a page in Page view with the Show Non-Visual Tags
menu item selected.

Part of a client-side script is displayed in the integrated Script editor at the
bottom of Page view. For more information about the Script editor, see
Chapter 6, “Writing Scripts.”

CHAPTER 3 Working with HTML Pages

Working with Web and JSP Targets 35

The same page looks like this when the Show Non-Visual Tags item is not
selected:

Forms on non-4GL
pages and script
elements

In Page view, you can also see FORM elements around controls that you insert
on a non-4GL page. You can see icons for client and server scripts that you add
to the page, and on JSP pages, you can see icons for JSP directives and custom
tag library classes that you add to a page. These elements and icons remain
visible in Page view even after you clear the Show Non-Visual Tags item, but
they are not visible in the Preview view.

Basic document
structure

The basic document structure (HTML, HEAD, and BODY elements) is
supplied when the page is first created. The editor creates the structure for you.
Any text you type in Page view is inserted in the Body section of the HTML or
JSP document.

The HEAD element includes a document title and can include links to external
style sheets.

For more information on adding a page title from Page view, see “Giving your
page a title” on page 42. For information on style sheets, see Chapter 4,
“Working with Style Sheets and Framesets.” For information on other basic
editing techniques, see “Basic editing in Page and Source views” on page 45.

HTML editor views

36 PowerBuilder

Source view
Source view gives you total control over the HTML tags and content of your
file, including the Head section and scripts. You can view and edit content as
well as the HTML tags and their attributes.

Basic document
structure

When you create a new HTML file and switch to Source view, the basic
document structure has already been created for you, including the HTML,
HEAD, and BODY elements.

Using menu items and
tools

In Source view you can type the tags manually, use menu items or tools, such
as wizards, toolbar buttons, element property sheets, or the System Tree, and
drag-and-drop items to add content and formatting. You can then edit these tags
and attributes in the source code.

For more information on editing techniques in Source view, see “Basic editing
in Page and Source views” on page 45.

CHAPTER 3 Working with HTML Pages

Working with Web and JSP Targets 37

Formatting the HTML
source

Source view in the HTML editor can format your HTML code to make it more
readable. Use the Editors tab of the Options Properties dialog box to specify
formatting. You display the Options Properties dialog box by selecting the
Design>Options menu item from the HTML editor menu bar.

You can also select an option to format the source code automatically, or trigger
the formatting manually from the Source view pop-up menu.

For more information on formatting Source view display, see “Formatting
HTML source display” on page 43.

Preview view
Preview view lets you test the work you do in Page and Source view. It defaults
to the Microsoft Internet Explorer (IE) browser to display your current page
and execute the client scripts it contains. Server scripts are ignored.

HTML editor views

38 PowerBuilder

Choosing a view to work in
Page view and Source view provide very different ways of working with
HTML. This table lists some of the advantages and disadvantages of each view.

Table 3-1: Choosing a view to work in

Edit in Source view to keep HTML source from being reformatted
If you do not want the editor to alter the layout of your HTML source, use
Source view instead of Page view for all of your editing. By default, if you edit
in Page view, the source will be reformatted.

Switching between views
You can switch between views by clicking the tabs at the bottom of the editing
pane. Each view preserves its own insertion point. When you switch back to a
view, especially if you have done no editing, the cursor will be where you
left it.

View Advantages Disadvantages

Page • Displays paragraph and character
formatting

• Provides easy manipulation of
tables and absolute positioning of
elements

• Does not require detailed HTML
knowledge

• Focuses on content, not HTML
tags

• Incorporates Script editor

• No manual control over the
layout of the HTML source
code

• Extra HTML tags added for
formatting purposes

• Some HTML elements not
supported

• Cannot edit Title section of
document, although you can
use Page Properties to set the
title and you can add LINK
and STYLE tags from the
Format menu

Source • Complete control of HTML
source code layout

• Use formatting menu items as well
as edit HTML tags directly

• Edit the whole document in one
window, including HEAD and
scripts

• Must know HTML

• Concentration on formatting
instead of content

CHAPTER 3 Working with HTML Pages

Working with Web and JSP Targets 39

If you make changes in a view, it can affect the cursor position in another view.
For example, if changes you make in Source view cause Page view to
recalculate the layout, the cursor moves to the start of the file. If you delete or
insert text in Page view that is before a Source view insertion point, the
insertion point moves accordingly.

Remembering views
from a previous
session

PowerBuilder provides an option to automatically reload any editor windows
that were open when you ended your previous session. If you select this option,
the next time you open your workspace, the HTML editor will redisplay the
pages you had open in the previous session.

When reloading an HTML editor window, PowerBuilder displays the view that
you were last in (Page, Source, or Preview).

❖ To reload pages that were open when you ended a previous session:

1 Select Tools>System Options from the PowerBuilder menu.

2 Select the Workspaces tab, check Reload Painters When Opening
Workspace, and click OK.

Opening the HTML editor and setting options
The following procedures describe how to use the HTML editor to prepare
HTML files. HTML tags and their attributes can be dragged and dropped from
the Language tab of the System Tree onto a page in the HTML editor. The tags
are organized alphabetically or by category.

Opening the HTML editor
You can open the HTML editor with a new file that you create with a Web page
wizard, or you can open the editor with an existing file, regardless of whether
it is in your current Web target.

Opening the HTML editor and setting options

40 PowerBuilder

Creating a new document

PowerBuilder has several wizards that help you create new Web pages. The
main Web page wizards are listed below. Each of the wizards can create an
HTM file or a JSP file, depending on the type of target to which you are adding
the page.

Table 3-2: Web page wizards

❖ To start the editor with a new document:

1 Select File>New.
Click the Web tab in the New dialog box.

2 Double-click a Web page wizard icon.

3 Follow the instructions in the wizard.

4 When the HTML editor opens, begin editing in Page view.
or
Click the Source tab to edit in Source view.

Web page wizard Use this to

Quick Web/JSP Page Create an HTML page without any content (HEAD and
BODY elements are visible in Source view as soon as
you begin to add content to the page).

Web/JSP Page Create an HTML page with a file name and optional
content, such as a title, an associated style sheet, a
background image or color selection, a header based on
the title, and a footer with the page creation date.

4GL JSP Page Create a 4GL Web page with error and trace options,
parameter definitions, and EAServer component
selections in addition to the standard content options of
the Web Page wizard.

Web/JSP DataWindow
Page

Creates an HTML page with a Web DataWindow. You
define the DataWindow source and connection
information in wizard screens.

CHAPTER 3 Working with HTML Pages

Working with Web and JSP Targets 41

Starting the editor with an existing document

PowerBuilder can automatically open text, style sheets, scripts, and image
files. A file's treatment is based on its extension:

• Text files with TXT extensions are opened for editing in the PowerBuilder
File editor.

• Text files with ASP, HTM, HTML, or JSP extensions are opened for
editing in the HTML editor.

• Style sheet files are opened in the standalone Style Sheet editor.

• Script files are opened in the standalone Script editor.

• Image files are opened in a browsing window for viewing only.

Dragging files onto an open page in the HTML editor
Text files, style sheets, or script files can also be referenced as hyperlinked
documents. If you drag and drop a file from the System Tree (or from an
external file management system) onto an open page in the HTML editor, the
dragged file is treated as a hyperlink reference, and the Hyperlink Properties
dialog box displays.

❖ To open an existing Web target file:

• Double-click the file in the Workspace tab of the System Tree

❖ To open a file that is not part of a target:

• Select File>Open from the menu bar, select a file type in the Files Of Type
text box, and browse to find the file in the Open dialog box

Saving your work and closing the editor

❖ To save changes to a file:

• Select File>Save

For a new file, File>Save displays the Save As dialog box so you can name
the file.

❖ To create another copy of the file:

• Select File>Save As

If you try to close the editor without saving, it prompts you to save the changes.

Opening the HTML editor and setting options

42 PowerBuilder

Giving your page a title
Use the Page Properties dialog box to add a title and to set inline styles and
parameters for your HTML or JSP page.

4GL page properties for JSP targets
If you select the Enable 4GL Web Server Side Event Model check box on the
Page tab of the Page Properties dialog box, you enable additional dialog box
tabs. These tabs allow you to define server-scriptable properties for your page.
For information on 4GL JSP pages, see Chapter 9, “Developing 4GL JSP
Pages.”

❖ To give your page a title:

1 Right-click anywhere in a document in Page view and choose Page
Properties from the pop-up menu.

2 Type a title for your page in the Title text box on the Page tab of the Page
Properties dialog box.

CHAPTER 3 Working with HTML Pages

Working with Web and JSP Targets 43

Formatting HTML source display
Source view allows you to format your HTML source code for readability. This
feature enables you to specify your own HTML source formatting rules. It
overrides the default formatting that the editor applies when you edit a file in
Page view or use a tool or menu item to generate code in Source view.

Why use HTML
source formatting

This feature is important if you use Page view to develop or modify your
HTML files. Page view edits your HTML source code behind the scenes, then
formats that code according to its own rules for indenting, new lines, and so on.
Although this default formatting is generally adequate, it might differ from the
coding style you want.

Source formatting options enable you to override the default formatting
generated from Page view with your own code formatting rules.

Invoking HTML source
formatting

If you select the Format Source option (on the Editors tab of the Options
Properties dialog box), PowerBuilder automatically performs HTML source
formatting in these cases:

• When you switch to Source view from other HTML editor views after
making changes

• When you perform operations in Source view that generate code

Whether or not you check the Format Source option, you can invoke HTML
source formatting manually at any time by selecting the Format Source
command on the Source view pop-up menu.

Preserving your own
source formatting

If you prefer to format your HTML source code manually and keep it in that
format, use Source view instead of Page view for all your editing, and do not
select the Format Source command from the Source view pop-up menu.

❖ To change the Source view display formatting:

1 Select Design>Options.

 The Options Properties dialog box opens to the Editors page.

2 In the Windows list, highlight Source View.
Select the Format Source check box.
Type or select other options in the Editors panel.

Opening the HTML editor and setting options

44 PowerBuilder

3 Select an HTML tag or Script tag from the Tags list.
Select a radio button for the type of formatting you want for that tag.

4 Repeat the previous step for as many types of tags as you want to format
and click Apply.

5 Select the Colors/Fonts tab.
In the Window list, highlight Source View.

6 Select a display element in the Types list.
Modify the display element colors and fonts as desired.

7 Repeat the previous step for as many display element types as you want to
format, and click OK.

CHAPTER 3 Working with HTML Pages

Working with Web and JSP Targets 45

Basic editing in Page and Source views
There are several methods for adding and changing content on your page in
Page and Source views of the HTML editor:

• Using options on the PowerBuilder menu

• Clicking toolbar buttons

• Using keystrokes assigned to format settings

• Dragging elements from the System Tree into the editor

• Dragging HTML content saved in the PowerBuilder Clip Window into the
editor

• Adding styles from a style sheet

Validating HTML source code
If you use toolbar or menu items to insert content or format settings in Page
view, the HTML editor generates valid HTML code in Source view. If you use
the same toolbar or menu items in Source view, you must make sure your
choice of insertion point does not corrupt other HTML tags or otherwise
invalidate the HTML structure of your document.

Using the PowerBuilder menu
PowerBuilder menu items can be used to add new content or modify existing
content and formatting in Page or Source view.

Table 3-3: PowerBuilder menu items for adding or formatting page
content

Menu item
Type of
content Description of new or existing page content

Format Paragraph
formatting

You use the Format menu to choose a paragraph
style for the current paragraph. When you choose a
style, the editor puts HTML tags like P, H1, PRE, or
ADDRESS around the paragraph. The tags are
visible in Source view.

Character
formatting

The Character menu item lets you change the font
and apply bold and italic to selected text.

Basic editing in Page and Source views

46 PowerBuilder

Do not format empty paragraphs
When you use the Format>Paragraph dialog box in Page view, do not format
empty paragraphs. Type some text and then apply the format. Otherwise, the
format you choose will be discarded.

Table HTML tables Launch the table wizard to add a table to your page
in Page or Source view. You can also modify table
settings and formatting for the table (or table items)
you select in Page view.

Insert Non-text
content

Lets you add line breaks, rules, images, and
components such as Java applets, ActiveX controls,
and data for plug-ins. You can use DataWindow
design-time controls (DTC) to generate and edit
database forms, application server access, and more.

Position Content
positioning

Lets you turn on absolute positioning for certain
kinds of HTML elements. Use absolute positioning
to place elements anywhere on the two-dimensional
space of your page just by dragging them.

Edit Document,
control, or
paragraph
information

Select the Properties menu to view and set default
information for the document, selected control, or
selected paragraph.

Style sheet
links

Select the Global Style Sheet menu item to select an
external link to a style sheet and include embedded
styles in the Head section of the page.

Menu item
Type of
content Description of new or existing page content

CHAPTER 3 Working with HTML Pages

Working with Web and JSP Targets 47

Formatting tips
Paragraph and
character formatting

Here are tips for some common formatting activities.

Table 3-4: Tips for common formatting activities

Paragraph style The paragraph styles you can select from the Paragraph dialog box are not
identical to the HTML tags that are generated in the source code. For
correspondences between paragraph styles and HTML tags, see “Headings and
paragraphs” on page 53.

Clip window If you regularly use a particular document template, you can store the HTML
or JSP file in the PowerBuilder Clip Window (up to 2048 characters per clip
entry) for easy reuse. Use Source view when your template includes a Head
section or controls. In Page view, only text elements in the Body section of the
page get copied to or from the Clip Window.

Redundant formatting Both the Format menu and System Tree tend to add elements without removing
elements that are redundant. By using keystrokes and the toolbar, you can do a
better job of changing existing formatting without adding redundant tags.
Avoid a buildup of elements that cancel each other out by checking Source
view and removing redundant tags.

Using the System Tree
The Language page of the System Tree lists all the HTML elements supported
by the common browsers. Use the System Tree to insert HTML elements and
their attributes into your document.

Using drag and drop Most HTML elements have start and end tags. You can insert HTML tags in
Page or Source view using drag-and-drop. You can set attributes of elements
through property sheets. When you select text and then drag an element from
the System Tree, the editor puts the element's start tag before the selection and
its end tag after the selection.

To Do this

Change heading styles Select the text or put the insertion point
somewhere in the heading and use
Format>Paragraph and choose a heading level

Create lists from paragraphs Select the paragraphs or some portion of the
paragraphs and use Format>Paragraph and choose
a list type

Change font or font
characteristics of selected text

Select the text and use Format>Character and
choose the preferred font type, style, or size

Basic editing in Page and Source views

48 PowerBuilder

HTML elements dragged from the System Tree do not have any context. You
must make sure elements and their attributes are properly nested. Because of
this, the System Tree is more useful when you work in Source view. In Page
view, it is better to select text before dragging or pasting elements from the
System Tree onto the text.

Do’s and don'ts for
using the System Tree
with Page view

Some HTML elements require you to select text in a page in the HTML editor
before you can drag the elements from the System Tree to the page. Other
elements (like lists) are not suited for insertion by dragging, because the results
will not be properly nested. Here are some tips:

• Do drag to insert single-tag elements, like BR and HR. You can also use
the Insert menu (or the toolbar line icon for a horizontal line).

• Do drag to apply simple character formatting to selected text. You can also
use keystrokes or the toolbar.

• Do drag to apply the FONT tag to selected text. You can also use
Format>Character.

• Do drag to change a paragraph to a heading or a heading to another
heading type. The whole paragraph is affected regardless of selected text.

• Do not drag to create complex nested elements, like lists. Use
Format>Paragraph to convert existing paragraphs to a list.

Selecting text before
dragging from the
System Tree

When you drag onto selected text in either Page or Source view, the text will
be formatted according to the chosen element.

For some elements, such as FONT, if you drag to an insertion point, you will
not see any effect, but an element is inserted anyway. In Page view you cannot
position the cursor between the start and end tags, so what you type next is not
affected by the element.

Other elements, such as the anchor <A> and <TABLE> elements, display a
properties dialog box. If you close the properties dialog box without specifying
properties, future changes to element attributes must be made using Source
view.

CHAPTER 3 Working with HTML Pages

Working with Web and JSP Targets 49

Inserting an element from the System Tree

❖ To insert an element from the System Tree:

1 Select text in the editor if applicable, or insert the cursor at the insertion
point.

2 Use drag-and-drop or copy and paste to move the element from the
Language tab of the System Tree to the editor where you want it to appear.

To surround the selected text with the element's start and end tag, you must
place the element on top of the selected text.

If applicable, the properties dialog box for the new element displays.

3 Fill in any properties as appropriate.

Inserting an attribute for an element from the System Tree

You should use the System Tree to insert an attribute for an element only when
you are editing in Source view. Dragging an attribute to the page in Page view
only adds the text for the attribute—plus an equals sign—to the open page in a
displayable format. (In this case it is not added as an attribute of an element.)

❖ To insert an attribute for an element from the System Tree:

1 Insert the element.

2 Drag the attribute from the Language tab of the System Tree to its correct
position within the element's brackets.

3 Enter a value for the attribute.

Setting attributes from a properties dialog box
You can also set attribute values using the properties dialog box for an element.

Properties for HTML elements
Each HTML element has a properties dialog box for its attributes. The first tab,
labeled with the element name, displays settings for the common attributes.
You can define inline styles on the Inline Styles tab, or add other attributes on
the Advanced tab.

Basic editing in Page and Source views

50 PowerBuilder

In many cases, when you insert a new instance of the element, PowerBuilder
displays the properties dialog box so that you can set attribute values. You can
display the properties dialog box anytime.

If you give names or IDs to HTML elements, the pop-up menu that displays the
available properties dialog boxes uses your name instead of the generic HTML
element.

Displaying element properties in Page view

Because many tags cannot be displayed in Page view, you cannot always target
a particular element. The pop-up menu includes items for all the elements in
effect at the insertion point. For example, when you click on a link, you can
choose to view the properties dialog box for the <A> (link), <P> (paragraph),
or <BODY> element.

❖ To display the properties dialog box for an element in Page view:

1 Right-click the element's text.

2 Select one of the property menu items on the pop-up menu, such as
Paragraph Properties or Body Properties.

Displaying element properties in Source view

❖ To display the properties dialog box for an element in Source view:

• Right-click the element's start tag or end tag and select Properties from the
pop-up menu
or
Click to set the insertion point inside the element's brackets and select
Edit>Properties from the menu bar.

Using the Inline Styles tab

If you want to override styles defined in an external style sheet or in an
embedded style, you can do so on the Inline Styles tab.

Browser-specific implementation of style hierarchy
Some browsers might not permit the overriding of external styles with inline
styles, or might have different implementations of style hierarchies. You
should always test the appearance of styles and style overrides with the
browsers that will be used to view your Web site.

CHAPTER 3 Working with HTML Pages

Working with Web and JSP Targets 51

❖ To add or modify a style definition using the Inline Styles tab:

1 In Source view, right-click the element's start tag or end tag and select
Properties from the pop-up menu
or
In Page view, select the viewable object and right-click to access the
Properties dialog box.

2 Select the Inline style type.

3 Select the Inline radio button and click the Edit button.

4 Specify style definitions for the selected tag on the tabbed pages of the
Inline Style dialog box. To modify the font of the selected item:

• Select the Font from the Available Font window.

• Use the arrow key to add the font to the Selected Font window. Select
the new font in the Selected Font window and click OK.

5 In the Style Attributes and Values source box, view the styles selected.
Click Apply or OK when finished defining styles.

For more information on styles, see Chapter 4, “Working with Style Sheets and
Framesets.”

Using the Advanced tab

If an attribute you want to set does not correspond to a property on the main tab
of the element properties dialog box, you can set it on the Advanced tab.

The attributes you enter are not verified as valid. Make sure you check the
HTML reference or the Language tab of the System Tree for valid attributes.

❖ To add an attribute on the Advanced tab:

1 From Source view right-click the element's start tag or end tag and select
Properties from the pop-up menu
or
In Page view select the viewable object, and right-click to access the
Properties dialog box.

2 Double-click to type an appropriate value in the Attribute Name column
and the Value column.

3 Do not include quotes when you specify the value.

If the value requires quotes (for example, if it includes spaces), they are
inserted automatically.

Basic editing in Page and Source views

52 PowerBuilder

❖ To remove a setting:

1 Click anywhere on the line for the attribute you want to delete.

2 Press the Delete key or the Delete button.

Undo and Redo
While you remain in a single view, you can use Edit>Undo multiple times to
undo each change you make. You can also use Edit>Redo multiple times.

If you switch to another view, all the changes you made in the first view
become a single set of changes. When you use Undo after switching views, all
the changes made in the previous view are undone at once.

Finding and changing text

❖ To find or replace text in Page view or Source view:

1 Select Edit>Find or Edit>Replace on the menu bar
or
Right-click a page in the HTML editor and select Find or Replace from the
pop-up menu.

Settings in the dialog box let you control the direction of the search and
whether upper- and lowercase letters must match the search string.

2 Specify a search string in the Find text box.

In either view, you search for the text as you see it displayed. In Source
view, you can search for HTML tags and property values.

If you need to change many element tags or property values, switch to Source
view. It is the most efficient way to make many similar changes.

Special characters
The editor does not support searching for special characters, such as line breaks
and tabs.

CHAPTER 3 Working with HTML Pages

Working with Web and JSP Targets 53

Using the Script editor
In Page view, the Script editor lets you associate scripts with objects and events
in the HTML document. You can also define new scripts and functions that are
independent of an object. The editor handles the HTML syntax for scripts
automatically. You can save a script on the page itself or in an external file.

For more information, see Chapter 6, “Writing Scripts.”

Correspondences of common elements
When you insert a control or choose a paragraph or character style to include
on your page, PowerBuilder adds HTML syntax to Source view that enables
Web browsers to render the object or style selected.

Headings and paragraphs
You can add headings and paragraphs to your page from a dialog box that you
open from Page view or Source view with the Format>Paragraph menu
command. The paragraph styles in the Format Paragraph dialog box for
headings and paragraphs include:

Table 3-5: Format menu items for paragraphs and headings

Other styles in the Format Paragraph dialog box can be used to format lists. For
information about formatting lists, see “Lists” on page 55.

Paragraph style
in Page view

HTML tag in
Source view Description

Normal <P></P> A standard paragraph

Formatted <PRE></PRE> A paragraph that preserves all spacing
including extra white space and is
usually displayed in a monospaced font

Address <ADDRESS>
</ADDRESS>

Usually displayed in italic

Heading 1 to
Heading 6

<H1></H1> to
<H6></H6>

Headings of various levels

Correspondences of common elements

54 PowerBuilder

❖ To create a heading in Page view:

1 Type the heading text and leave the insertion point in the heading
paragraph.

2 Select Format>Paragraph from the menu bar.

3 In the Paragraph Style list box, select one of the heading styles (Heading
1 through Heading 6).

❖ To create a heading in Source view:

1 In the Body section, select the heading text
or
Put the insertion point where you want the heading to appear.

2 Select Format>Paragraph from the menu bar.

3 In the Paragraph list box, select one of the heading styles (Heading 1
through Heading 6).

4 After you click OK, the Header Properties dialog box appears. Add text if
new, change the properties if you want, and click OK.

❖ To format text with a paragraph style in Page view:

1 Type at least some of the paragraph text and leave the insertion point in the
paragraph.

2 Select Format>Paragraph from the menu bar.

3 In the Paragraph Style list box, select one of the paragraph styles.

❖ To format text with a paragraph style in Source view:

1 Select all the text of the paragraph
or
Put the insertion point in the Body section where you want the paragraph
to appear.

2 Select Format>Paragraph from the menu bar.

3 In the Paragraph Style list box, select one of the paragraph styles.

4 After you click OK, the Paragraph Properties dialog box appears.
Change the properties if you want to, and click OK.

5 If you didn't select the paragraph text in step 1, type the text now between
the paragraph's start and end tags.

CHAPTER 3 Working with HTML Pages

Working with Web and JSP Targets 55

Lists
There are several list types available in the Format>Paragraph dialog box. The
basic types are numbered and bulleted. In most browsers, Menu and Directory
List styles also appear as bulleted lists.

Table 3-6: Format menu items for lists

If you do not see the formatting you specify, you must make sure that list item
tags () precede each item in a regular (ordered or unordered) list. For a
definition list, you must make sure that the correct definition tags (<DT> or
<DD>) precede all the terms and definitions in the list. You must verify the
positioning of the tags in Source view.

The two-part definition lists are more complicated. Procedures for using them
are described separately.

Ordered and unordered lists in Page view

❖ To create a new list:

1 With the insertion point in an empty paragraph, choose Format>Paragraph
from the menu bar and select the type of list you want.

The editor inserts a number or a bullet.

2 Type the item text and press enter.

The editor inserts another numbered or bulleted paragraph.

Paragraph style
in Page view

HTML tag in
Source view Description

Numbered List

An ordered list

Bulleted List

An unordered list

Directory List <DIR>
</DIR>

A directory list

Menu List <MENU>
</MENU>

A menu list

Definition Term <DL><DT>
</DL>

The definition term in a definition list

Definition <DD> The definition value in a definition list

Correspondences of common elements

56 PowerBuilder

3 Continue typing items and pressing enter.

If you press enter with the insertion point at the end of any list item, the
editor inserts another item.

4 When you have finished, end the list by pressing enter in an empty list
item.

The editor removes the last empty bullet or number and changes the
paragraph style to Normal.

❖ To change paragraphs into list items:

1 Highlight a group of paragraphs.

2 Select Format>Paragraph from the menu bar and choose the type of list
you want.

Definition lists in Page view

Each item in a definition list has two parts: the term or phrase being defined,
and the definition.

❖ To create a definition list:

1 Type the first term.

2 With the cursor in the term paragraph, select Format>Paragraph from the
menu bar and select the Definition Term paragraph style.

3 Back in the editor, press ENTER and type the term's definition.

4 In the editor, press ENTER and repeat the steps to create terms and
definitions
or
Press ENTER twice to end the list.

Typing definitions and formatting paragraphs in separate procedures
Each time you press ENTER, you create another element of the same type. If
you're in a Definition Term, pressing ENTER creates another term. Instead of
formatting each paragraph right after you type it, you can apply formatting as
needed to selected paragraphs.

CHAPTER 3 Working with HTML Pages

Working with Web and JSP Targets 57

Lists in Source view
For regular lists The Format Paragraph dialog box inserts the list container
in your document. You must insert LI elements for each list item.

For definition lists The Format Paragraph dialog box inserts DL, DT, and
DD elements when you choose the Definition Term and Definition styles. You
might have to type one or more of these elements directly in the source code.

❖ To insert the list container:

1 If the list items are already in the document, select all the items
or
Put the insertion point in the body where the list should be.

2 Choose Format>Paragraph and select a list style.

When you click OK, the properties dialog box for the list appears. The list
style name shown matches the element, not the styles of the first dialog
box. (For example, Numbered List is now called Ordered List for the OL
element.)

3 Set properties if you want to, and click OK.

4 For regular lists, add tags before the list items.
For definition lists, make sure <DT> and <DD> tags are included before
the appropriate definition list items.

Character formatting
You can apply character formatting to selected text, or you can choose settings
so that the formatting applies to the next text you type.

❖ To change font characteristics:

• Select Format>Character from the menu bar and specify settings in the
Font dialog box.

Applying simple formatting
The Format Character dialog box always inserts the FONT element, even
if you want only to turn on bold or italic. Use keystrokes or toolbars to
apply simple formatting.

Correspondences of common elements

58 PowerBuilder

Inserting special symbols
Insert Symbol can be used in Source or Page view.

❖ To insert special symbols or accented characters:

1 Set the insertion point in Source view or Page view.

2 Select Insert>Symbol from the menu bar.

3 In the Insert Symbol dialog box, select a symbol.

The named entity or numeric value of the symbol displays in the
Equivalent Escape Sequence box.

4 Click OK.

Links and anchors
When you type a URL that uses an HTTP protocol directly in Page view, the
editor automatically turns it into a hyperlink. If you want to display different
text for the hyperlink, you should use the following procedure.

❖ To create a hyperlink:

1 Select the text that you want to display for the link or set the insertion point
where you want to add the link.

2 Choose Format>Hyperlink from the menu bar.

The Hyperlink Properties dialog box displays.

3 If you did not select text in step 1, type the text you want to display for the
hyperlink in the Text of the Hyperlink text box.

You cannot type text if you selected text in step 1. Instead, the Text of the
Hyperlink text box is grayed, and it displays the text that you selected.

4 Enter the URL for the link in the Destination text box
or
Click the browse button to open the Choose URL dialog box.

When you click OK, the selected text becomes a hyperlink and is
underlined. In Source view, you can enter the link ID and text between the
A tags.

CHAPTER 3 Working with HTML Pages

Working with Web and JSP Targets 59

❖ To create an anchor that can be a target of a hyperlink:

1 Select text or set the insertion point where the anchor should be.

2 Choose Format>Hyperlink from the menu bar.

3 Click the Advanced tab and type the attribute name in the left column and
the value (name) of the anchor on the right. Include quotes around the
value.

❖ To link to an anchor within your document:

1 Select the text that will be the link.

2 Choose Format>Hyperlink from the menu.

3 In the Link text box, type a pound sign (#) followed by the anchor name.

❖ To transform a URL into a hyperlink:

1 Enter the URL in your document, followed by a space. The URL does not
need to be complete—it needs just enough for the editor to recognize it as
a URL. The text will be turned into an underlined active link target.

2 Edit the underlined text if you want to.

Spaces in link text
If you select the link text and begin typing, you replace the selected text as
usual. When you type a space, the editor takes you out of the link so that you
can type normal text. To create link text that includes spaces, you can:

• Type the text with no spaces and insert the spaces afterward.

• Type the text with spaces, then cut the text that is no longer part of the link
but should be, and paste it at the end of the link.

• Select all but the first or last character of the displayed URL, type the link
text, then delete the non-selected characters from the URL when you have
finished.

Correcting link problems When you paste a relative link into Page view, the
extra text about: might sometimes appear in the HREF. If this happens, use
Source view to remove the extra text.

Correspondences of common elements

60 PowerBuilder

More complex formatting

Forms

The Insert menu has items for several types of form fields. The menu items
insert the HTML elements displayed in the following table:

Table 3-7: HTML elements added to Web page by Insert menu items

If you insert any of these items into a non-4GL page, FORM tags are also
inserted automatically as long as the insertion point is not already inside a
FORM element. In Page view, you can add the FORM element yourself by
selecting all the fields you want to include in a form, then dragging the FORM
element from the Language tab of the System Tree to the selection.

Do not add FORM tags to a 4GL-enabled Web page
When you work with a 4GL page, the page itself is a form, and therefore all
forms are submitted as a single form. Existing FORM tags must be manually
removed from a 4GL page.

❖ To insert form fields:

1 Select Insert>Form Field from the menu bar and select a type of form field
from the cascading menu.

2 Add text to the form by typing before and after the inserted fields.

If you are working in Page view, check Source view to make sure text and
fields are nested correctly inside the FORM element.

Menu item HTML element

Single Line Text Input TYPE=TEXT

Text Box Textarea

Text (for 4GL pages only) Object

Check Box Input TYPE=CHECKBOX

Radio Button Input TYPE=RADIO

List Box Select

Push Button Input TYPE=BUTTON, SUBMIT, or RESET

Image Button Input TYPE=IMAGE

DataWindow Object

CHAPTER 3 Working with HTML Pages

Working with Web and JSP Targets 61

Tables
Adding new tables You can use the Table wizard to add a table to your Web page.

❖ To insert a table:

1 Select Table>Table Wizard from the menu bar.

2 Use the Table wizard to specify the number of rows and columns and to
specify formatting for the table, individual rows, and individual cells.

3 Type the content of cells in the Create Table dialog box or directly in the
document.

Reorganizing existing
tables

You can manipulate rows, columns, or cells in an existing table from the Table
menu or from a pop-up menu when you right-click on the table items you want
to modify. Table actions are available only in Page view.

Table 3-8: Actions for manipulating table rows, columns, or cells

Action What it does

Insert Row Inserts a new row above the current one.

The new row will contain the same number of cells as the
current row, with the same COLSPAN attributes, cell attributes,
and styles.

Insert Column Inserts a new column to the left of the current one.

The new column will contain the same number of cells as the
current column. The individual cell attributes are copied cell for
cell from the current column to the new one.

Insert Cell Inserts a single cell to the left of the current one.

If your selection includes more than one cell, the current cell is
defined as the one that's leftmost and topmost in the selection.
When the new cell is inserted, individual cell attributes are
copied from the current cell to the new one.

Delete Row Deletes the selected rows.

If your selection includes more than one row, all rows
containing any portion of the selection will be deleted. It is not
necessary to select the entire contents of a row.

Delete Column Deletes the selected columns.

If your selection includes more than one column, it must be
within a single row. All columns containing any portion of the
selection will be deleted. It is not necessary to select the entire
contents of a column.

Correspondences of common elements

62 PowerBuilder

❖ To manipulate rows, columns, or cells in an existing table:

1 In Page view, highlight text in the rows, columns, or cells you want to
manipulate.

2 Select Table from the menu bar
or
Right-click the highlighted text and select Table from the pop-up menu.

3 Select the menu item for the action you want from the Table menu.

The overall table width is not altered when you perform any of the table
actions. Instead, the cell widths are adjusted. When you are working in
Page view, table cells might appear equal in size. By selecting the table and
using the mouse, you can expand or shrink the width of the columns.

Other formatting

To use absolute positioning for elements on a page, see "Absolute positioning"
next. To add images, components, and other non-text content, see Chapter 5,
“Working with Images, Other Media, and Components.”

Delete Cell Deletes the selected cells.

If your selection includes more than one cell, all cells containing
any portion of the selection will be deleted. It is not necessary to
select the entire contents of a cell.

Merge Cells Merges two or more cells into a single cell.

All cells containing any portion of your selection will be
merged. It is not necessary to select the entire contents of a cell.
When cells are merged, their contents are concatenated in the
remaining cell. The merged cells assume the attributes of the
cell that was leftmost and topmost in the selection.

Split Cell Splits one cell into two.

The selected cell is split horizontally—an empty cell is added to
its right.

Action What it does

CHAPTER 3 Working with HTML Pages

Working with Web and JSP Targets 63

Absolute positioning
You can use absolute positioning on the HTML editor's Page view. The
following sections describe how it works and what it can do for you.

About absolute positioning
Dynamic HTML allows HTML elements to be positioned on a page,
independent of their position within the HTML stream. An absolutely
positioned HTML element has its position attribute set to absolute instead of
static.

Absolutely positioned elements also have a z-index, which specifies the visual
order of overlapping absolutely positioned elements (and how absolutely
positioned elements are ordered relative to elements in the HTML stream).

An absolutely positioned element is also known as a two dimensional (2D)
element. A statically positioned element is known as a one dimensional (1D)
element. A relatively positioned element (an element with its position attribute
set to relative) is treated as a 1D element.

Browser specificity
Absolute positioning is implemented differently in Netscape and Internet
Explorer. The HTML editor implements absolute positioning that is optimized
for Internet Explorer. This implementation does not work with Netscape
browsers. (Absolute positioning in Netscape requires the use of LAYER tags
or STYLE tags with a position property.)

What you can do
The HTML editor's Page view makes it easy to work with absolutely
positioned elements. By using the Position menu, you can toggle an element
from static positioning to absolute positioning and vice versa. Once an element
uses absolute positioning, you can place it anywhere on the 2D space of your
page just by dragging it.

Absolute positioning

64 PowerBuilder

The Position menu also enables you to:

• Change the z-index of an absolutely positioned element

• Move (nudge) an absolutely positioned element by a specified number of
pixels

• Lock an absolutely positioned element in place to prevent it from being
inadvertently moved or resized

• Constrain absolutely positioned elements to move only horizontally or
vertically when you drag them

• Adjust the invisible grid that Page view provides to help you place
absolutely positioned elements

Elements that can be absolutely positioned

You can use absolute positioning on the following kinds of elements:

Absolute positioning is not available for other kinds of elements or for
design-time controls (DTCs).

Using style sheets for absolute positioning

If you want to use the same position definitions in a number of files, you can
set these values in an external style sheet.

For more information, see Chapter 4, “Working with Style Sheets and
Framesets.”

APPLET HR OBJECT

BUTTON IFRAME SELECT

DIV IMG SPAN

EMBED INPUT TABLE

FIELDSET MARQUEE TEXTAREA

CHAPTER 3 Working with HTML Pages

Working with Web and JSP Targets 65

Toggling between static and absolute positioning
In Page view of the HTML editor, you can use absolute positioning to place
HTML controls anywhere on the 2D space of your page.

The z-index style attribute of a new absolutely positioned element is initially
set higher than all other absolutely positioned elements in its document or
container. As a result, that element will display in front of older absolutely
positioned elements.

In addition, the new element's z-index always begins as a positive value,
causing that element to display in front of the HTML (1D) stream of the page.
(Absolutely positioned elements with a negative z-index display behind the
HTML stream.)

❖ To toggle from static positioning to absolute positioning:

1 Select a control in Page view by clicking its outside edge.

The control should now display a dotted border. (If you see a slashed
border, click that border to make it dotted.)

2 Select Position>Use Absolute Positioning from the menu bar
or
Right-click the dotted border and select Position>Use Absolute
Positioning from the pop-up menu.

3 Drag the control anywhere you want on the page.

❖ To toggle from absolute positioning to static positioning:

1 Select a control in Page view by clicking its outside edge.

The control should now display a dotted border. (If you see a slashed
border, click that border to make it dotted.)

2 Select Position>Use Absolute Positioning from the menu bar
or
Right-click the dotted border and select Position>Use Absolute
Positioning from the pop-up menu.

The control automatically moves from its absolute position to its position
within the HTML stream of the page.

Absolute positioning

66 PowerBuilder

Setting absolute positioning options

❖ To set absolute positioning options for Page view:

1 Select Position from the menu bar.

2 Select one of these actions from the Position menu:

Manipulating an absolutely positioned element

❖ To manipulate an absolutely positioned element:

1 Select a control in Page view by clicking its outside edge.

The control should now display a dotted border. (If you see a slashed
border, click that border to make it dotted.)

2 Select Position from the menu bar
or
Right-click the dotted border and select Position from the pop-up menu.

Action What it does

Constrain Positioning Toggles constrain mode on or off.

In constrain mode, absolutely positioned elements
move along only one axis at a time (either X or Y)
when you drag them. This enables you to adjust an
element's horizontal position without affecting its
vertical position and vice versa.

Set Grid Size Sets the cell size of the invisible grid that absolutely
positioned elements snap to when you drag them.

You specify the X and Y values for the cell size (in
pixels) in the Set Grid Cell Size dialog box.

CHAPTER 3 Working with HTML Pages

Working with Web and JSP Targets 67

3 Select one of these actions from the Position menu:

Action What it does

Bring To Front Brings the element to the front of its document or
container.

This sets the element's z-index style attribute to the
highest of all the absolutely positioned elements on its
side of the HTML stream, adjusting the z-index of other
elements as necessary.

Send To Back Sends the element to the back of its document or
container.

This sets the element's z-index style attribute to the lowest
of all the absolutely positioned elements on its side of the
HTML stream, adjusting the z-index of other elements as
necessary.

Bring Forward Brings the element forward by one z-index layer in its
document or container, adjusting the z-index of other
elements as necessary.

Send Backward Sends the element backward by one z-index layer in its
document or container, adjusting the z-index of other
elements as necessary.

Bring Above Text Brings the element in front of the HTML stream of the
page by making its z-index a positive value.

Send Below Text Sends the element in back of the HTML stream of the
page by making its z-index a negative value.

Nudge Element Moves the element from its current X and Y coordinates
by the number of pixels you specify in the Nudge Object
dialog box.

Lock Element Locks the element in place to prevent it from being
inadvertently moved or resized in Page view.

Lock Element prevents you from changing the element's
X and Y coordinates, but not its z-index. It does not affect
the runtime behavior of the element.

Absolute positioning

68 PowerBuilder

Working with Web and JSP Targets 69

C H A P T E R 4 Working with Style Sheets and
Framesets

About this chapter This chapter describes the Style Sheet editor and the Frameset editor for
Web targets. It does not attempt to teach the use of HTML tagging or Web
design.

Contents

About style sheets
Style sheet files store common design and layout information separately
from the page content of HTML or JSP files. By using style sheets, you
can:

• Create a standard design for your HTML pages that can be reused for
additional pages as needed.

• Make it easy to change style definitions within a Web site. Editing a
style sheet propagates any style change across all of the HTML pages
that use that style sheet.

• Separate document design from content development, letting some
team members concentrate on the design while other team members
develop content.

Topic Page

About style sheets 69

About the Web Target style and style sheet editors 71

Basic editing with the style sheet editors 75

Editing frames and framesets 85

About style sheets

70 PowerBuilder

Working with styles
You can define and modify style definitions in external style sheets or inside an
HTML page. Precedence rules govern how your document appears when the
browser finds overlapping style definitions. Styles for the same element might
be defined in any of the following (listed inversely to the order of precedence
as defined for the Microsoft Internet Explorer browser):

• External style sheets store style definitions in separate files external to
HTML pages. These files are also known as cascading style sheets because
styles can be defined at different levels, with a browser's interpretation of
the styles cascading from one level to another.

• Embedded styles can be used to create new styles for HTML elements or
to modify the appearance of styles from style definitions in an external
style sheet. The new or modified styles are included in a STYLE element
tag that you add to the Head section of an HTML page.

• Inline styles can be used to create new styles for HTML elements or to
modify the appearance of embedded and external styles. You define inline
styles as style attributes of elements on an HTML page.

• Classes and IDs can have styles of their own. These styles are linked to
particular objects and classes, not to particular elements.

• Scripts can modify any style. With recent versions of HTML, any style on
a page is considered an object. The Style Sheet editor lets you create style
objects associated with IDs. For information about the Script editor, see
Chapter 6, “Writing Scripts.”

Syntax for style attributes and selectors
For external style sheets and embedded styles, a selector is the link between an
HTML element and a style attribute. The selector specifies what element is to
be affected by a declaration for a specific style attribute. The style is that part
of the rule that sets forth what the effect will be. In this example, the selector
is H1 and the style is color:red:

H1 {color: red }

When this declaration is included in an embedded style tag on an HTML page
or in an external style sheet linked to the page, all H1 elements on the page will
appear in red (unless overridden by inline styles or scripts for particular
elements).

CHAPTER 4 Working with Style Sheets and Framesets

Working with Web and JSP Targets 71

You can use the Web Target style sheet editors to assign specific style attributes
to HTML elements and selectors through a user-friendly interface. The editors
insert the correct syntax for your style definitions onto your HTML page or
external style sheet.

Working with IDs and classes
Classes and IDs, as well as HTML elements, are implemented as selectors in
external or embedded style sheets. In the terminology for style sheets, a
selector is an element to which a style definition is assigned. Selector elements
are not enclosed in angle brackets (< >).

If you define classes and IDs in external style sheets, they are available to all
of the files that share that style sheet. You can define style characteristics for
an ID or class, then assign that ID or class as an attribute to an HTML element.

About the Web Target style and style sheet editors
Style sheet editors simplify the process for creating cascading style sheets or
embedded or inline styles through the use of tabs and property sheets. You can
access the following style and style sheet editors in PowerBuilder:

Table 4-1: Style sheet editors available for Web targets

Style sheet editor How to open What to use it for

Global Select Edit>Global Style
Sheet when a Web page is
open in the HTML editor.

Add links to external files or
embedded styles to the
current HTML page. Can use
to create styles for HTML
elements, classes, and IDs.

Standalone Double-click a CSS file in
the System Tree or, when a
Web page is not open in the
HTML editor, drag and drop
a CSS file into the editor
area. The Cascading Style
Sheet wizard also opens this
editor.

Create or modify external
files. Can use to create styles
for HTML elements, classes
and IDs. The external file
must be linked to a Web page
for these styles to be used by
the page.

About the Web Target style and style sheet editors

72 PowerBuilder

Style sheet
components

The style sheet editors inside PowerBuilder are composed of the following
components:

Style sheet tree The left pane of the Global Style Sheet editor provides a list
of current embedded styles and links to external style sheets, as well as to
elements included in embedded style tags. When you add a new element, or
selector, it appears in the left pane under the embedded style to which it was
added.The left pane of the standalone Style Sheet editor includes a list of all
styles in the open style sheet. Imported style sheets are also displayed in the left
pane of these style sheet editors.

Style sheet tab pages The right panes of the Global Style Sheet editor and
the standalone Style Sheet editor provide a series of tab pages that give you
quick access to style attributes. The Inline Styles editor interface is composed
entirely of these style sheet tab pages.

The tab pages group similar attributes: font style, margin settings, and so on.
When you select attributes for an element, the editor inserts the correct syntax
for your style definition.

Style sheet source The standalone Style Sheet editor tab pages include a
Source tab page. The other tab pages generate style sheet syntax that you can
view in the Source tab page. You can also use this page to copy and paste
elements between CSS files.

Support for CSS2 The style sheet editors support styles for both formatting and layout as
specified in the CSS2 (Cascading Style Sheets, level 2) specification. Current
versions of the Internet Explorer and Netscape browsers implement CSS2.

For information about the CSS2 specification, go to the Web site for the World
Wide Web Consortium at http://www.w3.org.

Inline Click the Inline Styles tab
from the property sheet for
any HTML element in the
current Web page in the
HTML editor. Select the
Inline radio button and click
Edit.

Create or modify styles for
the selected HTML element
in the current Web page.

Style sheet editor How to open What to use it for

http://www.w3.org

CHAPTER 4 Working with Style Sheets and Framesets

Working with Web and JSP Targets 73

The Style Sheet editor tab page interface
All Web Target style sheet editors provide tab pages that allow you to create
and modify style or style sheet attributes easily. The tabs are grayed if a
selected element in the style sheet editor or HTML page does not support any
of the attributes available on the tab page, or if no element is selected.

The following table lists the attributes available for each tab page.

Table 4-2: Style attributes available in Style Sheet editor

Tab page Style attribute

Advanced Aural attributes and the following style attributes: content, counter
increment, counter reset, direction, marker offset, quotes, text
shadow, and unicode-bidi

Background Background position, attachment, image, repeat, and color

Border Border width, color, and style

Font Font family, size, color, style, variant, weight, stretch, size
adjustment, and line height

List Attributes for list items: image, position, and type

Margin Margins for all sides of an element

Padding Padding for all sides of an element

Print Printing attributes: page size, page break before, page break after,
page break inside, marks, orphans, and widows

Source HTML source code (standalone Style Sheet editor only)

Table Table attributes: caption side, layout, border collapse, empty cells,
speak header, and border spacing

Text Text alignment, decoration, transform, white space, indent, letter
spacing, and word spacing

Visual Display, position, visibility, clear, z-index, overflow, vertical
alignment, clip, and cursor

About the Web Target style and style sheet editors

74 PowerBuilder

Integration with other Web target editors
The editors used in Web targets provide integrated support for creating and
maintaining style components in your projects.

HTML editor

The HTML editor provides direct access to the style sheet editor. When you are
working on a page in the HTML editor, you can open the Global Style Sheet
editor to:

• Link the current page to external style sheets

• Embed styles by inserting the STYLE element in the Head section of the
HTML page

You can use the Inline Styles editor to add inline styles through the property
sheets for individual elements on the current Web page.

The style sheet editors add the appropriate syntax to your file.

Script editor

In the Script editor, you add style objects (typically generic IDs created with
the Style Sheet editor) to scripts. Scripts let you produce dynamic style
implementations. These scripts can be internal or external to an HTML
document.

If you plan to implement selector IDs in scripts, you should be familiar with the
naming conventions for these components in the scripting language you use.

CHAPTER 4 Working with Style Sheets and Framesets

Working with Web and JSP Targets 75

Basic editing with the style sheet editors
The style sheet editors and wizard allow you to create external style sheets and
link them to your Web pages. You can also create embedded styles and inline
styles and make style assignments to HTML elements and selectors using the
style sheet editors.

Creating an external style sheet
You can use the Cascading Style Sheet wizard to create a new style sheet. You
can also use the wizard to link the new style sheet to an existing style sheet.

❖ To create an external style sheet:

1 Select File>New.

2 In the New dialog box, click the Web tab and double-click the Cascading
Style Sheet icon.

3 Follow the instructions in the wizard to complete the entries required.

You can specify a name for the style sheet you want to create and,
optionally, you can link it to an existing style sheet. When you click Finish,
the new style sheet displays in the standalone Style Sheet editor.

No styles or links to existing style sheets are defined in this style sheet:

Basic editing with the style sheet editors

76 PowerBuilder

Importing an existing style sheet
You can import a style sheet in the Global Style Sheet editor and in the
standalone Style Sheet editor. The style sheet editors include a pointer to the
imported style sheet using the @import rule.

The @import rule allows you to import style rules from other style sheets. Any
@import rules must precede all rule sets in a style sheet. The @import keyword
must be followed by the URI of the style sheet you want to include.

Import rules and client browsers
Not all browsers support @ rules. You should make sure the browsers that will
be used to view your Web site support these rules before you link a style sheet
through the @import rule.

❖ To import an existing style sheet:

1 Right-click the STYLE[#] item (or the style ID) in the left pane of a style
sheet editor.

This is the top item in the standalone Style Sheet editor. This is a second
level item in the Global Style Sheet editor. If you assign an ID to a style
sheet in the Global Style Sheet editor, the ID for the style sheet replaces
the generic STYLE[#] listing in the left pane of the editor.

2 Select Insert@import from the pop-up menu.

CHAPTER 4 Working with Style Sheets and Framesets

Working with Web and JSP Targets 77

3 In the Choose URL dialog box, specify the URL of the style sheet that you
want to import, save, and click OK.

A pointer is added to the chosen style sheet. You can view the source code
for the pointer directly in the Source tab of the standalone Style Sheet
editor while the topmost item in the left pane is selected:

To view the source code generated by the Global Style Sheet editor, you
must look at the current Web page in the Source view of the HTML editor.

Basic editing with the style sheet editors

78 PowerBuilder

Linking an external style sheet to an HTML page
After you create style sheets for your project, you can link them to your
documents using the Global Style Sheet editor.

❖ To link an external style sheet to an HTML document:

1 Open the HTML file to which you want to link a style sheet, and select
Edit>Global Style Sheet from the HTML editor menu bar.

2 Right-click an item in the left pane of the Global Style Sheet editor, and
select Insert <LINK> Tag item from the pop-up menu.

The Insert New Link Tag dialog box displays.

3 (Optional) Type a title and ID in the appropriate text boxes, select a media
type from the Media drop-down list, and select or clear the Disabled check
box.

4 Click the browse (...) button to select a file or type the name of the external
style sheet to be linked to your Web page. Click OK.

When you close the Global Style Sheet editor, the editor inserts the new
LINK tag in the Head section of your HTML file with any optional
attributes you selected.

CHAPTER 4 Working with Style Sheets and Framesets

Working with Web and JSP Targets 79

Embedding style definitions in an HTML page
You can use the Global Style Sheet editor to add embedded styles to the current
page in the HTML editor.

Embedded styles and client browsers
Older browsers might not recognize the STYLE element. You can surround the
style definitions with comment tags (as you would for SCRIPT elements) to
direct these browsers to ignore the embedded style definitions. You must add
the comment tags (<!-->) directly in the Source view for the HTML page.

❖ To add or embed style definitions in an HTML document:

1 Open the HTML file in which you want to embed style definitions and
select Edit>Global Style Sheet from the HTML editor menu bar.

2 Right-click an item in the left pane of the Global Style Sheet editor, and
select Insert <STYLE> Tag from the pop-up menu.

3 (Optional) In the Insert New Style Tag dialog box, specify a title and ID in
the appropriate text boxes, select a media type from the Media drop-down
list, and select or clear the Disabled check box.

4 In the left pane, right-click the newly specified style or another style that
you want to edit. Then define styles and click OK.

When you close the Global Style Sheet editor, the editor inserts the new
STYLE element in the Head section of your HTML file, along with any
selector styles for HTML elements, classes, and IDs that you add.

Separate STYLE tags are generated in the HTML page for each STYLE
element you add to the left pane of the Global Style Sheet editor. Selector
styles are added to the HTML page only between STYLE tags that
correspond to the STYLE element under which they appear in the left pane
of the style sheet editor.

Opening an existing style sheet
You open an existing style sheet in the standalone Style Sheet editor. Although
you can import a style sheet and modify embedded styles with the Global Style
Sheet editor, you can open or edit an external style sheet only by using the
standalone editor.

Basic editing with the style sheet editors

80 PowerBuilder

❖ To open an existing style sheet for editing:

• Right-click the file in the System Tree and select Edit from the pop-up
menu
or
Drag an existing CSS file from the System Tree to the editor area for
PowerBuilder.

If you drag a CSS file while an HTML page is open in the HTML editor,
the file does not open in the Style Sheet editor, but becomes the target of a
hyperlink instead.

For information on linking style sheets to HTML pages, see “Linking an
external style sheet to an HTML page” on page 78.

❖ To open a file that is not part of your Web target:

• From a drag-and-drop file viewer, such as Microsoft Windows Explorer,
drag the file into the Web Target workspace
or
Select File>Open from the PowerBuilder menu bar and browse to find the
file in the Open dialog.

Using the Inline Styles editor
You open the Inline Styles editor from the properties dialog box for HTML
elements for the current page in the HTML editor. You can set inline styles for
an element when you drag that element from the System Tree to an HTML
page.

❖ Using the inline style editor to modify HTML tag elements:

1 From the Page view or Source view of the HTML editor, right-click the
desired HTML element or control and select Properties from the pop-up
menu.

2 Select the Inline Styles tab of the properties dialog box, select the Inline
radio button, and click Edit.

3 On the tab pages of the Inline Styles editor, specify the type of style you
want to add by selecting or typing values for the style attributes.

CHAPTER 4 Working with Style Sheets and Framesets

Working with Web and JSP Targets 81

Some of the tab pages or items on the tab pages might be grayed if they are
inappropriate for the selected element. This is the Inline Styles editor for
a button control:

You can view the generated inline styles in the Style Attributes And Values
list box on the Inline Styles page of the element property sheet, and in the
Source view of the HTML editor.

Adding selectors for HTML elements, classes, and IDs
You can define styles for HTML tags, classes, and IDs in the Global Style Sheet
editor or in the standalone Style Sheet editor.

Global Style Sheet editor restrictions

In the Global Style Sheet editor, you must right-click an embedded STYLE
element or an item at a level below an embedded STYLE element. If you right-
click a LINK element or the topmost StyleSheets item, the Insert HTML Tag
Selector menu item is grayed.

You can right-click any item in the left pane of the standalone Style Sheet editor
to add selectors to an external style sheet.

Basic editing with the style sheet editors

82 PowerBuilder

Defining styles for HTML element selectors

❖ To define styles for HTML element selectors:

1 Right-click an item in the left pane of a style sheet editor, then select Insert
HTML Tag Selector from the pop-up menu. (See “Global Style Sheet
editor restrictions” on page 81.)

2 In the Insert New HTML Tag Selector dialog box, double-click the tag for
which you want to define a style
or
Select the tag to be added to your style sheet and click the > button.

The selected tag is copied into the Selected Tag list box:

3 (Optional) Select the Contextual Selector check box and add another tag
that you nest inside the first tag.

The styles you select are applied to the nested element only when it is
nested below the element at the top of the Selected Tag list box. You can
change positions of nested elements by selecting one of the elements in the
list box and clicking the Up or Down buttons.

4 Click OK and select the new element in the left pane of the style sheet
editor.

5 On the tab pages in the right pane of the style sheet editor, specify the type
of style you want to add for the element by selecting or typing values for
the style attributes.

6 After you finish setting the style definitions, you can insert another
element in the external or embedded style sheet.

CHAPTER 4 Working with Style Sheets and Framesets

Working with Web and JSP Targets 83

Defining styles for ID Selectors

ID selectors define style rules for an individual element. You can create an ID
in the context of an element, or as a generic identifier. However, even as a
generic identifier, an ID should be assigned to only one element in a document.
IDs can be used within HTML elements or in scripts.

Web Target style sheet editors use generic IDs as style objects. Several
scripting languages, such as JavaScript and VBScript, can manipulate these
objects to dynamically change the appearance of elements associated with the
ID.

❖ To define styles for ID selectors:

1 Right-click an item in the left pane of a style sheet editor, then select Insert
ID Selector from the pop-up menu. (See “Global Style Sheet editor
restrictions” on page 81.)

2 In the Insert New ID Selector dialog box, identify the new ID for the style
sheet.

3 To create a generic ID, click OK
or
To assign the ID to an HTML tag, select the For HTML Element check
box, then select an element and click OK.

4 With the new ID selected in the left pane, define styles for the ID in the tab
pages in the right pane.

Basic editing with the style sheet editors

84 PowerBuilder

Defining styles for class selectors

Class selectors define style rules in the context of a specific HTML element or
as a generic component. When applied to a specific element, the class is
available only with the associated tag. Generic classes are available as
attributes for any tag.

For example, to apply a class at the tag level, you can define a tag as:

H1.NewStyle {font-family:arial; font_color:navy;}

In an HTML document, the tag would be referenced as H1.NewStyle. The
NewStyle class is available only to H1 tags.

As a generic class, you could define the NewStyle class this way:

NewStyle {font-family:arial; font_color:navy;}

To implement this style in an H1 tag, you would use this syntax:

<H1 CLASS="NewStyle">

The Insert New Class Selector dialog includes the following well-known
classes (also called pseudo-classes):

❖ To define styles for classes:

1 Right-click an item in the left pane of a style sheet editor, then select Insert
Class Selector from the pop-up menu. (See “Global Style Sheet editor
restrictions” on page 81.)

2 Select or type a class name in the Insert New Class Selector dialog box.

You can define styles for a new class or for existing classes.

:active :focus

:after :hover

:before A:active

:first-child A:hover

:first-letter A:link

:first-line A:visited

CHAPTER 4 Working with Style Sheets and Framesets

Working with Web and JSP Targets 85

3 Click OK to create a generic class
or
To assign the class to an HTML tag, select the For HTML Element check
box. Then select an element and click OK.

4 With the new class selected in the left pane, define styles for the class in
the tab pages in the right pane.

Removing items from a style sheet
You can remove style selectors, embedded styles, and linked style sheets in the
Global Style Sheet editor, and you can remove imported style sheets and style
selectors in the standalone Style Sheet editor.

Removing styles using the Inline Styles editor
To remove styles using the Inline Styles editor, you can either set each style
attribute to a null value or remove the attributes directly in the Source view of
the HTML editor.

❖ To remove items from a style sheet:

1 In the left pane of the style sheet editor, right-click the item you want to
remove.

2 From the pop-up menu, select Delete.

Editing frames and framesets
A Frameset document is an HTML page with preset frame divisions. These
frames can be used to display the content of other HTML pages. When you
open a Frameset file in PowerBuilder, the file displays in the Frameset editor.

Editing frames and framesets

86 PowerBuilder

About the Frameset editor
There are four frameset views in the Frameset editor: Frames, Source, Preview,
and No Frames. You can make modifications to the frames or frameset in the
Frames, Source, and No Frames views. No Frames view displays the page as
seen with a Web browser that does not support frames.

Frames view Frames view displays the frames you have defined and the contents of the
pages. Frames view lets you drag and drop Web pages from your Web target to
frame panes in your frameset. You can also modify the size of the frames by
stretching the frame panes. Data cannot be placed directly in the frame panes.

Source view Source view lets you edit in the source file. As with Source view in the rest of
the Web target environment, Source view provides the most flexible editing
environment. In Source view you can drag and drop items from the component
or language tab in the System Tree area.

Preview view Preview is a display-only view. It shows what the page would look like when
viewed with a Frame-enabled Web browser.

No Frames view The No Frames view displays the page as it is seen with a Web browser that
does not support frames. No Frames view lets you add text to the page that is
not seen when you switch back to the Frames view.

CHAPTER 4 Working with Style Sheets and Framesets

Working with Web and JSP Targets 87

Creating a new frameset document
You can use the Frameset wizard to create a new frameset document.

❖ To create a new frameset document:

1 Right-click a target and select New from the pop-up menu
or
Select File>New from the menu bar.

2 In the New dialog, click the Files tab, then double-click the Frameset Page
icon.

3 In the Frameset wizard, specify file information for the frameset document
and click Next.

4 Select one of the six layout choices and click Next.

If you want to specify a different frameset pattern with more than three
frame panes, you must do that later from the Source view of the Frameset
editor, or by using the Split Horizontally and Split Vertically commands
from the pop-up menu on frames in the Frames view.

5 Click Finish.

When you complete the entries in the wizard, the editor displays the frame
structure in the Frames view of the Frameset editor.

Editing frames and framesets

88 PowerBuilder

Modifying a frameset
Formatting a frameset
page

The Frameset editor lets you modify the look of your frame pages and allows
you to make connections to other Web pages.

❖ To modify a frameset page format:

1 Open the frameset file in the Frameset editor.

2 In Frames view, right-click a Frame pane and choose Frameset Properties
from the pop-up menu
or
In Source view, right-click a Frameset tag and choose Properties from the
pop-up menu.

You can use the Frameset page of the dialog box to add or remove a border
between frames of the frameset and to set the spacing in pixels between
the frames. On the Advanced page of this dialog box, you can add or
modify frameset attributes, such as percentage of the page for frames in
ROWS and COLS.

For information on the Inline Styles page, see “Using the Inline Styles
editor” on page 80.

CHAPTER 4 Working with Style Sheets and Framesets

Working with Web and JSP Targets 89

Modifying frame properties
From the Frame Properties dialog box, you can modify the properties of frames
and change or select the URL of a file to be displayed in a frame. You can
modify the sizes, borders, fonts, and other related format items of the
individual frame elements within a frameset.

❖ To modify frame properties:

1 Open the frameset file in the Frameset editor.

2 In Frames view, right-click a Frame pane and choose Properties from the
pop-up menu
or
In Source view, right-click a Frame tag and choose Properties from the
pop-up menu.

Editing frames and framesets

90 PowerBuilder

Working with Web and JSP Targets 91

C H A P T E R 5 Working with Images, Other
Media, and Components

About this chapter This chapter describes how to add images, sound, video, and other
components to your Web pages using the System Tree and Web Target
editors and toolbars.

Contents

Images and image maps
You can use your favorite image editing tool to create image files and add
them to your HTML page or JSP file. You can use any image format
supported by the major browser vendors.

Topic Topic

Images and image maps 91

Multimedia 96

Components 96

The Java class path 100

The custom tag library search path 102

Images and image maps

92 PowerBuilder

Inserting images
You can insert images in both Page view and Source view of the HTML Editor.
You can define attributes for the inserted image in the Image Properties dialog
box.

Table 5-1: Attributes you can set in the Image Properties dialog box

❖ To insert an image:

1 Put the insertion point where you want to insert the image.

2 Select Insert>Image from the menu bar.

The Image Properties dialog box displays.

Image properties
page

IMG element attributes definable through user
interface

Image SRC, ALT, LOWSRC, ISMAP, USEMAP, ID

Layout ALIGN, WIDTH, HEIGHT, HSPACE, VSPACE,
BORDER

Video DYNSRC, CONTROLS, START, LOOP

Inline Styles All inline style attributes (see Chapter 4, “Working with
Style Sheets and Framesets”)

Advanced All attributes and attribute values you want to set for the
image object

CHAPTER 5 Working with Images, Other Media, and Components

Working with Web and JSP Targets 93

3 Click the Browse button (...) to select an image file using the URL Picker
or
Type the URL for the image in the Image Location text box.

4 Set other image attributes as needed, and click OK.

Setting height and width attributes for images

After you insert an image in Page view, the editor displays the dimensions of
the image in the Properties dialog box. However, these are default values and
are not automatically included in the HTML source.

If you resize the image or explicitly set different values, the HEIGHT and
WIDTH attributes and their values will be included. Use the following steps if
you want the default values included in the HTML source.

❖ To have HEIGHT and WIDTH attributes added to the HTML source:

1 In Page view, right-click the image and select Properties from the pop-up
menu.

2 On the Layout tab, change the Height and Width values, or retype them,
and click Apply.

Source view will now show HEIGHT and WIDTH in the IMG element.

If you know the image dimensions
If you know the image dimensions, work in Source view and type the HEIGHT
and WIDTH attributes in the IMG element. For example:

Images and image maps

94 PowerBuilder

Converting the image to a hyperlink

❖ To make the image a hyperlink:

1 Select the image:

• In Source view, select the entire IMG tag.

• In Page view, drag the cursor over the image or use the Shift and
arrow keys to highlight the entire image. (Do not click on the image
so that the resizable selection border displays.)

2 Select Format>Hyperlink from the menu bar, and create the link.

For information on formatting hyperlinks, see Chapter 3, “Working with
HTML Pages.”

Creating image maps
An image map is an image that links to different files or URLs depending on
the area of the image clicked by the user. Not all browsers support client-side
image maps, but you can still make this work on the server side.

You can set up the same image to be a client-side and server-side image map.
The client-side processing takes priority in browsers that support it.

Creating a client-side image map

This is how you set up a client-side image map.

❖ To create a client-side image map:

1 In Page view or Source view of the HTML editor, select Insert>Image to
insert the image in your document.

2 On the Image tab of the Image Properties dialog box, type a pound sign (#)
followed by the name of a MAP element (which you will create next) in
the Corresponding <MAP> Object For A Client-Side Image Map text box.
Click OK.

CHAPTER 5 Working with Images, Other Media, and Components

Working with Web and JSP Targets 95

In the Source view for the current HTML document, the IMG element
includes the USEMAP attribute that is assigned to the map name you
entered:

3 In Source view, insert a MAP element in the document and assign it a
NAME attribute that matches the name you typed for the USEMAP
attribute:

<MAP NAME="mymap"></MAP>

You can add this to the document source before or after the IMG element,
or in the Head section.

4 Inside the MAP element, add the AREA elements required to identify
different regions of the image. A basic syntax is shown here:

<AREA SHAPE="shape" COORDS="x1,y1,x2,y2..."
HREF="url">

Creating a server-side image map

This is how you set up a server-side image map.

❖ To create a server-side image map:

1 In Page view or Source view of the HTML editor, select Insert>Image to
insert the image into your document.

2 On the Image tab of the Image Properties dialog box, select the Use A
Server-Side Image Map check box and click OK.

This adds the ISMAP attribute to the IMG element in the source for the
current Web page.

3 Select the image and use Format>Hyperlink to add a hyperlink.

The Hyperlink Properties dialog box opens to the Hyperlink page. For
more information, see “Converting the image to a hyperlink” on page 94.

4 In the Destination text box on the Hyperlink page, specify a URL that
points to the server program that processes the image map and ends with
a path to the map file.

5 Install a map file on the server that describes the shapes within the image
and their URLs.

The format of the map file depends on your server.

Multimedia

96 PowerBuilder

Multimedia
In addition to attributes for managing single images, the IMG element includes
advanced attributes for video images. You can create or modify video attributes
settings on the Video tab of the Image Properties dialog box. These video
settings are not available in all browsers.

Elements for other media and effects are best entered directly in Source view.
You can use the System Tree to view a list of available attributes for these
elements. Many of the less frequently used elements do not have a custom
properties dialog box, just an Advanced tab in which you can enter the
attributes and the attribute values you want to set.

Examples of HTML elements for other media and effects include BGSOUND
and MARQUEE. Components such as applets and ActiveX enable customized
effects and user interaction.

Components
The Components page of the System Tree lists the components that are
installed on your PC. There are several categories:

• ActiveX Controls The registered components are self-categorizing. The
categories you see depend on what is installed on your system. The
categories of greatest interest are:

• Web design-time control (DTC)

• Controls that are safely scriptable

If a control does not identify itself as safely scriptable, this does not
mean that it is unsafe.

• Controls (all registered controls)

• Plugins The plug-ins installed in the Netscape and Internet Explorer
Plugins directories.

• Java Applets and Java Beans The applets and JavaBeans that are in
the class path.

• EAServer Servers Lists the servers for which you have defined
EAServer profiles. You can see the packages, components, and component
methods available on accessible servers. You can insert the components on
4GL pages only.

CHAPTER 5 Working with Images, Other Media, and Components

Working with Web and JSP Targets 97

• Custom Tag Libraries Lists the custom tag libraries in the paths you
specify on the JSP page of the System Options dialog box. To use the
custom tag libraries, you must make sure that the classes of the libraries
are available to the server where you deploy your JSP target. You can
insert custom tag libraries on JSP target pages only.

Right-clicking anywhere in the Components page produces a pop-up menu
with access to the System Options and the EAServer Profiles dialog box.

In Page view, components display as they would appear on the page, but they
do not execute. To interact with components for testing, use Preview view or
open a browser window.

Viewing available components
To use the tools for inserting components, you must have the components
installed and available on your system. If they are not, you have to know how
to fill in the OBJECT, EMBED, and APPLET property dialogs with the correct
values.

❖ To view the components available on your system:

1 In the System Tree, select the Components tab.

2 Expand the branches for the different types of components.

The Java branches might be slow to expand because every Java file in the
path must be examined to determine its type.

Inserting a component
You can insert an ActiveX control, applet, plug-in, JavaBean, EAServer
component, or custom tag library by dragging it from the System Tree to the
current page in the HTML editor.

For information on inserting EAServer components, see “Integrating with
EAServer” on page 138 and “Accessing EAServer components” on page 181.

If an ActiveX component has not identified itself as safely scriptable, the editor
displays a warning. To interact with the component and view its custom
property pages, you must allow it to initialize and run scripts.

Components

98 PowerBuilder

Disabling the warning
To disable the warning (which comes from Internet Explorer), start the Internet
control panel from your Windows Start menu. Then, using Custom, change the
settings for Initialize And Script ActiveX Controls Not Marked As Safe. If you
make this change, be aware that your system is more vulnerable when you
browse the Web with Internet Explorer.

❖ To insert a component into a Web page:

1 Drag the component from the System Tree to the current page
or
Set the insertion point in the current page and select
Insert>Component>Component Type from the menu bar.

You can drag and drop EAServer components to a 4GL Web page and
custom tag libraries to JSPs, but you cannot use the Insert menu to add
EAServer components or custom tag libraries to your page.

2 If a warning about initializing and scripts displays, click Yes.

PowerBuilder displays the properties dialog box for the OBJECT,
EMBED, or APPLET element.

An applet inserted from the Insert menu or toolbar might not display
immediately on exiting the properties dialog box. You can force it to
display by making any small change to the file in Source view.

3 Set properties as needed, especially the Name (For Forms Or Scripting) at
the bottom of the ComponentType Properties dialog box.

It is important to supply valid values for parameters on the component's
custom property dialog. Parameters can have invalid values because:

• A value was not specified on the component's property sheet and the
component did not supply a valid default value

• An invalid value was specified on the property sheet and the
component did not do appropriate error checking

• The component expected a value but the property sheet had not yet
been displayed

These problems occur most often with applets but can occur with other
components too.

4 For an ActiveX control, click the Control Properties button to display and
edit the control's custom property dialog box.

CHAPTER 5 Working with Images, Other Media, and Components

Working with Web and JSP Targets 99

Control Properties button
This button is enabled only when you are working in Page view.

After you close the property dialog boxes, an OBJECT element is inserted
in the document and the control displays in Page view.

Design-time controls
Design-time controls (DTCs) are ActiveX controls that write HTML into your
document while you edit. They provide custom property pages where you can
specify options that affect the HTML.

For information on using the Sybase Web DataWindow DTC, see Chapter 11,
“Using the Web DataWindow Design-Time Control.”

Viewing and editing DTC properties

In the editor, you can view the control's custom property pages and make
changes. When you click OK, the HTML for the control is regenerated.

❖ To view or make changes in the control's custom property dialog box:

1 In Source view, right-click the DTC's METADATA tag, the subsequent
OBJECT tag, or generated code, and then select Properties from the
pop-up menu.

2 In Page view, right-click the object and select the custom menu item for
the control's properties.

Working with the generated HTML

Normally you should not modify any of the HTML generated for a DTC
because the changes you make will be lost the next time you modify the control
properties and regenerate the output.

It is possible to insert the DTC-generated HTML without the control itself. If
you choose Insert>Component>ActiveX from the HTML editor's menu bar
and check the Generate Static Output property (on the Design-time tab), you
get the HTML produced by the DTC but not the METADATA comments or
OBJECT element. You can then modify this static output as you like without
any worry of accidentally re-executing the DTC and overwriting your
modifications.

The Java class path

100 PowerBuilder

The Java class path
The Java class path is a list of directories and archive files that specify where
to look for applets, JavaBeans, and other files containing Java code.
PowerBuilder uses the class path to find the Java classes it lists in the System
Tree.

PowerBuilder searches the directories in the class path and their subdirectories.
It also searches the contents of the ZIP and JAR archive files listed in the class
path. It determines whether any of the files are Java CLASS files and whether
they are applets or JavaBeans. If it finds more than one CLASS file with the
same name, only the first one appears in the System Tree.

Class path values
When you use Web targets, there are two possible values for the class path:

• System default class path This value is stored in the CLASSPATH
environment variable.

• System options class path The Java page of the System Options
dialog box lets you list directories and archive files to be searched in
addition to those listed in the system default class path (without changing
the system default value).

To go to the Java page of the System Options dialog, you can either:

• Select Tools>System Options from the menu bar and click the Java
tab.

• Right-click anywhere in the Components tab of the System Tree and
select Java Classpath from the pop-up menu.

If the Java VM has already started, you can see the effects of your changes by
restarting PowerBuilder and expanding a Java branch on the Components tab
of the System Tree.

CHAPTER 5 Working with Images, Other Media, and Components

Working with Web and JSP Targets 101

Using the class path
The class path value in use during your Web target session depends on how the
Java VM starts. PowerBuilder starts the Java VM in these situations:

• The first time you look at a page that contains a Java applet, the Java VM
starts automatically using the default system class path. The system
options class path is not used.

• When you expand a Java branch on the Components tab of the System
Tree, the Java VM starts using a combination of the system options and
system default class paths.

Once the Java VM is started, it remains running until you exit your workspace.

When you include a Java applet in your document, the Applet element provides
a CODEBASE attribute that specifies where to find the applet on the server.
The class path setting on the user's computer is irrelevant.

Viewing results of class path changes in the System Tree
If you use the Java tab of the System Options dialog box to change the class
path after the Java VM is started in your current session, you must restart
PowerBuilder to see the result. Even then, your changes take effect only after
the Java VM starts as a result of actions in the System Tree.

The custom tag library search path

102 PowerBuilder

The custom tag library search path
Custom tags in a JSP file perform actions defined in a custom tag library.
PowerBuilder supports custom tag libraries that use the JSP 1.2 format. On the
JSP page of the System Options dialog box, you can indicate paths that you
want PowerBuilder to search to add tag library descriptor (TLD) files to the
Components tab of the System Tree. You do not need to restart PowerBuilder
for any changes you make to the custom tag library path to take effect.

To go to the JSP page of the System Options dialog, you can either:

• Select Tools>System Options from the menu bar and click the JSP tab.

• Right-click anywhere in the Components tab of the System Tree and select
Custom Tag Libraries Search Path from the pop-up menu.

To add a tag library to a JSP page, you can insert a taglib page directive or you
can drag a tag library from the Components tab of the System Tree to a target
page in the HTML editor.

When you add a custom tag library to a page, you need to specify a prefix to
identify the custom tag as well as the location where the TLD file can be found
relative to the root of the Web application. The folder that contains the
deployed Web application has a WEB-INF subdirectory. Typically the TLD
files are deployed to the tlds subdirectory of the WEB-INF directory. You must
also remember to make your custom tag library classes available on the class
path of the application server.

For more information about custom tag libraries, see “Custom tags” on page
158. For information about the Custom Tag Library page of the Deployment
Configuration dialog box, see “Tag Libraries” on page 259.

Working with Web and JSP Targets 103

C H A P T E R 6 Writing Scripts

About this chapter This chapter describes how to include scripts with your Web targets and
how to edit them.

Contents

About scripts
Scripts for a Web site include event handlers for HTML objects,
client-side scripts associated with a document, and server-side scripts run
before a document is downloaded to a browser. Scripts can be written in
several languages. Which languages you use depends on the browsers you
want to support or the application server your site uses.

Code snippets can be saved in the Clip window and dropped into client-
or server-side scripts as needed. Scripts can be saved as part of an HTML
or JSP document, or in a separate file (one script per file).

Editing scripts
The HTML editor and the Script editor provide a flexible approach to
writing scripts. You can work in the Script editor that is integrated with the
HTML editor or in the standalone Web Script editor.

Topic Page

About scripts 103

Procedures for editing scripts 109

Techniques and tips for creating scripts 116

About scripts

104 PowerBuilder

Working in the HTML editor

The integrated Script editor is a pane in Page view of the HTML editor. It
provides an organized view of your scripts, supports color-coding based on the
selected scripting language, and provides facilities for saving and testing
scripts. When you add a script in Page view, the editor automatically inserts
appropriate HTML elements and attributes for the script into your document.

An HTML page can contain many scripts. The integrated Script editor lets you
focus on one script at a time. Using the Script toolbar, use the three drop-down
lists to select an object, an event, and a scripting language. If an object such as
a server script does not have events, the event drop-down is blank.

In Source view, you can edit the HTML script elements and the script itself in
a single window. The scripts are intermixed with the rest of the document
content.

Working in the standalone Web Script editor

The standalone Web Script editor is a separate window, independent of the
HTML editor. Scripts can be created here and saved to a file, becoming
independent code you can reuse in many documents and projects.

You can open the Web Script editor by selecting the Script wizard in the New
dialog box or by dragging and dropping a script file to the PowerBuilder editor
area. The Web Script editor supports the following extensions: JS, STS, PSS,
SSS, and VBS. However, the editor allows you to save a script file with any
extension you want.

Using the Clip window

The PowerBuilder Clip Window button opens a window in which you can store
bits of code you use frequently. You can copy text to the Clip window to be
saved and then drag or copy this text to the Script editor when you want to
use it.

The Clip window displays a list of named clips and a preview of the
information contained in each. It provides buttons to move Clip window
contents to the clipboard, copy clipboard contents to the Clip window, rename
a clip, and delete a clip. Clips you save in one workspace are available in all
your workspaces. You can hide or display the Clip window by using the Clip
Window button on the PowerBar or selecting Window>Clip.

CHAPTER 6 Writing Scripts

Working with Web and JSP Targets 105

Where and when to save scripts

By default, the scripts you write in the integrated Script editor are stored in the
HTML document. They are saved when you save the document. If you use the
standalone Web Script editor to write a script, you can incorporate the script
into a document by pointing to the file or copying the script into the document.

When you save a script in an external file from the integrated Script editor, the
editor inserts an SRC attribute to point to the file. When you edit the script, the
editor gets the script from the file and saves it again when you save the
document.

Scripting languages
Web Targets support several client scripting languages, including JavaScript
and VBScript. For server scripting, Web Targets also support several
application server scripting languages and object models.

For more information about working with application servers, see Chapter 7,
“Working with Application Servers and Transaction Servers.”

Choosing a scripting language When you write a script, you specify which
scripting language you are using. The editor uses this information to:

• Add a LANGUAGE attribute to the SCRIPT element

• Recognize the language syntax for color coding

Types of scripts
There are several ways to write scripts in an HTML page or JSP. The following
examples show the HTML elements for each type of script as you would see
the script in Source view. In Page view, you do not see this syntax.

Inline event handlers

The code for an inline script is included in the start tag of an HTML element.
It is assigned to a property associated with an event.

<BODY LANGUAGE=JavaScript
onload='alert("Confidential!");'>

About scripts

106 PowerBuilder

Script for objects that are not HTML elements
If an object such as a document has events but is not an HTML element, the
script is contained in a SCRIPT element and uses the FOR property to associate
itself with the object and the EVENT property to associate itself with an event:

<SCRIPT LANGUAGE=JavaScript
FOR="document" EVENT="afterupdate">
alert("Confidential!");
</SCRIPT>

In the integrated Script editor, use the Script toolbar to select an object and an
event. The script is stored in the property associated with the event.

Client scripts

Client scripts are not necessarily associated with an event. In HTML or JSP
documents surround these scripts with SCRIPT tags. (The integrated Script
editor can do this for you.) The scripts are evaluated as they are loaded with the
Web page. They can include functions that can be called by other scripts.

<SCRIPT Language="JavaScript">
function navigate(myform){

durl=(myform.mylist.options
[myform.mylist.selectedIndex].value);
location.href=durl;

}
</SCRIPT>

In the integrated Script editor, use the pop-up menu to create a new client
script. Client scripts are part of an array of Script objects.

Server scripts

You can write scripts that are run on the server before the document is sent to
a Web browser.

To create a server script, use the pop-up menu to create a new server script. The
HTML that marks the script varies depending on the server you choose.

For information on how to insert a server script in your page, see “Creating a
new script” on page 110. For more information about working with application
servers, see Chapter 7, “Working with Application Servers and Transaction
Servers.”

CHAPTER 6 Writing Scripts

Working with Web and JSP Targets 107

Scripts in external files

You can store any script in a separate file. The SCRIPT element has an SRC
attribute to refer to the file. For JavaScript, the file usually has a JS extension.

<SCRIPT Language="JavaScript" SRC="script1.js">
</SCRIPT>

There are two ways to create an external script file:

• In the integrated Script editor, the Save As External File pop-up menu item
stores the current client script in a file and points to that file with the SRC
attribute.

• The standalone Web Script editor creates a script with no specific
association to an HTML document. To use the script in an HTML
document, switch to Source view to edit the SRC attribute to point to the
standalone script file.

Other scripts
Read-only scripts Scripts that have been automatically generated are
marked as read-only. These scripts are usually associated with design-time
controls (DTCs) and are part of the METADATA information for the control.
You can view them but not change them in the Script editor.

If you change the script in Source view and later cause the DTC to regenerate
its output, the script is rewritten and your changes are lost.

Static output for design-time controls
In some cases, you might want to insert generated scripts for a DTC without
the control itself. If you choose Insert>Component>ActiveX from the menu
bar and select the Generate Static Output check box (on the Design-time tab),
you will get the scripts produced by the DTC but not the METADATA
comments or <OBJECT> element. You can then modify this static output
without accidentally re-executing the DTC and overwriting your
modifications.

About scripts

108 PowerBuilder

Objects in an HTML document
An HTML document is made up of objects organized in a hierarchy. Initial
releases of JavaScript used a small set of objects. With the latest updates to
HTML, any component of the page—a paragraph, a link, a table cell—is an
object.

IDs for HTML objects

To help identify objects when scripting, you can give them names or IDs. For
example, instead of referring to each member of the array of link objects
(anchor elements) on a page by using the default document object identifier
(document.A with a numeric index), you could name the links to identify them
at a glance:

<A ID=beginnerguidelink
HREF="http://www.finance.com/info/index.html">
Beginner's Guide to Finance

Assigning an ID You can assign an ID in the HTML editor using the HTML
element's properties dialog box. You can also type the ID attribute into the
document directly in Source view.

HTML objects in the Script toolbar

All commonly scripted objects are included in the integrated Script editor’s
Object drop-down list. To identify each object in the Object list box, a Web
target uses the following rules of precedence:

• If the object has a name, the name is used as the identifier.

• If the object has an ID but no name, the ID is used as the identifier.

• If the object does not have a name or an ID, it is identified by its array
index. (For example, the first image on a page would have the identifier
IMG[0].)

Radio buttons Radio buttons in a form are handled differently. Because
radio buttons are linked together by assigning them the same name, the
identifier for a radio button is its ID. If no ID is given, the ID is the radio button
array index.

Client and server scripts Client scripts and server scripts are identified by
their array indexes. For example, the first client script on a page would have
the identifier SCRIPT[0] and the first server script would have the identifier
ServerScript[0]. IDs for scripts are not displayed in the drop-down list.

http://www.finance.com/info/index.html

CHAPTER 6 Writing Scripts

Working with Web and JSP Targets 109

About array indexes Array indexes for items without an ID, including
scripts, correspond to the items' positions in the document. If you insert an item
earlier in the document or if you move items around, the index value associated
with the item will change and any scripts for the item will now be associated
with the new index value.

For example, if you create three client scripts and then move the third script,
SCRIPT[2], to the Head section, that script becomes SCRIPT[0], SCRIPT[0]
becomes SCRIPT[1], and SCRIPT[1] becomes SCRIPT[2]. If you change the
order in Page view, you might need to open the Source view to force the editor
to update the array index numbers.

Procedures for editing scripts
In the integrated Script editor, you can create scripts for object events or
independent scripts.

Choosing an object or event for scripting

❖ To write a script for an object event:

1 In the rightmost drop-down list, select a scripting language.

2 In the Script toolbar, select an object in the leftmost drop-down list.

The object list box lists all client and server scripts you create. In addition,
it lists all scriptable HTML objects (objects for which events are
triggered).

3 In the center drop-down list, select an event.

If the object you have selected is an independent script and does not have
events, the list box is blank. If you have enabled the 4GL event model,
server-side events are listed in blue.

The script you write is saved in the HTML page, associated with the HTML
object and its event attribute.

Procedures for editing scripts

110 PowerBuilder

Assigning an ID to an object in the document
A Web target assigns default IDs when you create commonly scripted objects.
You can assign or change the ID for any object from Page view or Source view
of the HTML editor.

❖ To assign or change an ID:

1 Right-click the object and select the Properties menu item for the element
from the pop-up menu
or
Select the HTML element and select Edit>Properties from the menu bar.

2 In the ID For Scripting text box, type a new value for the object.

IDs for style definitions
You can assign IDs for style definitions in the Style Sheet editor.

Creating a new script
When you select New Script from the pop-up menu in the integrated Script
editor, the script is inserted in the Body section, after any existing scripts. If the
script needs to be in the Head section, you can switch to Source view and move
the script. In Source view, you can insert scripts anywhere in the document.

❖ To create a new top-level script in the HTML document:

1 Right-click in the script editor.

2 Select New Script from the pop-up menu and choose Server or Client from
the cascading menu.

3 If you select Server, choose the target application server from the
cascading menu.

Your choice of server affects the type of delimiter used for the script.
When you choose Web Target and then create a script using the Web Target
object model, you can deploy the page to any supported server type.

For information about writing server scripts, see Chapter 7, “Working
with Application Servers and Transaction Servers,” and Chapter 9,
“Developing 4GL JSP Pages.”

CHAPTER 6 Writing Scripts

Working with Web and JSP Targets 111

❖ To create a script in a separate file:

1 Select File>New from the menu bar.

2 In the New dialog, click the Web tab.

3 On the Web tab page, double-click the Script icon.

The Web Script editor displays in its own window, not as a pane within the
HTML editor.

Writing the code
The Web Target script editors provide many techniques to help you write
scripts easily. You can:

• Build syntax using the System Tree

• Use InstaCode to complete object names and select from property lists
(integrated Script editor only)

• Save and reuse syntax with the Clip window

• Copy and paste, including pasting text with generated document.write
statements

• Use code in external files

Procedures for editing scripts

112 PowerBuilder

System Tree

The Language page of the System Tree lists objects and language syntax for
several scripting languages.

The Current page of the System Tree lists the objects in the HTML document.
The standard objects are listed along with any objects to which you have
attached an ID. The Current page is empty if you are working in the standalone
Web Script editor.

❖ To insert a language element or object from the System Tree into a script
editor:

• Drag the item to the editor, which inserts the fully qualified object name
or property at the cursor position
or
Right-click an item in the System Tree, choose Copy from the pop-up
menu, and paste the item (CTRL + V) into the script editor.

InstaCode

InstaCode helps you write code by providing a list of objects, properties, and
methods that are appropriate completions to code you have started to type. As
you type in the script editor, you can press F2 to get a list of suggestions.

InstaCode completes code in two ways:

• When you type part of an object name, press F2 to see a list of all the
objects that begin with those letters.

• When you type the dot after an object name, press F2 to see a list of
properties and methods for that object.

The list of suggestions depends on the context. In a client script, you see objects
belonging to the document object model and objects you have inserted in the
HTML page, such as HTML elements and components. In a server script, you
see objects belonging to the object model for the selected server.

CHAPTER 6 Writing Scripts

Working with Web and JSP Targets 113

❖ To use InstaCode:

1 Type part of an object name and press F2.

2 Select an item from the list. (To close the list without making a selection,
press ESC or click the close box.)

• To select using keystrokes:

a Use the arrow keys or press a letter key to highlight an item.

b Press ENTER to insert the item in the document and close the
window.

• To select using the mouse:

a Click to highlight an item.

b Double-click to insert that item in the document and close the list.

Examples

❖ To insert the window object and the alert method in a client script:

1 On a blank line or after a space, type "w" and press F2.

2 Select "window" from the list.

3 Type "." after "window" and press F2.

4 Select "alert(message)" from the list.

The script now contains the code "window.alert(message)". Edit the method
argument if necessary.

❖ To insert the scroll method for the window object in a client script:

1 On a blank line or after a space, type "s" and press F2. Because window is
the default object, the list displays window methods and properties.

2 Select "scroll(x,y)" from the list.

The script now contains the code "scroll(x,y)".

Procedures for editing scripts

114 PowerBuilder

❖ To insert the Write method for the psDocument object in a server script:

1 On a blank line or after a space, type "ps" and press F2.

2 Select "psDocument" from the list.

3 Type "." and press F2.

4 Select "Write(string)" from the list.

The script now contains the code "psDocument.Write(string)".

Code in external files

You can reuse code by copying it into another file or by referring to the code in
a separate file through the SRC attribute for the SCRIPT element.

❖ To get code from a file and insert it in a Web Target Script editor:

• Select Insert From File from the pop-up menu. The code appears in the
script editor, and there is no further connection with the original file.

Scripts in HTML documents can be stored in external files, rather than in the
HTML document. When the browser sees an SRC reference in a SCRIPT tag,
it requests the script file from the server.

❖ To put a script saved in the page into an external file:

1 Right-click in the integrated Script editor and choose Save As External
Script from the pop-up menu.

2 In the Save dialog, you can include the external file in the target by saving
the file in the local directory for the Web target.

❖ To associate the script with code in an existing external file:

1 Right-click in the integrated Script editor and choose New Script. Choose
Client for the type of script.

2 Switch to Source view and add an SRC attribute to the SCRIPT element.
For the value of the SRC attribute, you can assign:

• A relative path to specify a file in the target:

<SCRIPT LANGUAGE=JavaScript
SRC="../../common/frameset/test.js"></SCRIPT>

• An absolute path to any file (such a path might not be valid when you
deploy the target)

CHAPTER 6 Writing Scripts

Working with Web and JSP Targets 115

The HTML editor recognizes the reference to the external file and displays the
code in the integrated Script editor (when the script object is selected in the first
drop-down list) as if it were part of the HTML document. The icon next to the
object name in the drop-down list displays an additional image (of a paper
sheet with a folded-back corner) to indicate that the script is saved separately.

To reference a server script that is stored in a separate file, you need to use the
PSIMPORT tag. For more information about the PSIMPORT tag, see the Web
and JSP Target Reference.

Finding and changing code

❖ To find or replace text in the current script:

1 Click inside the script that you want to search.

2 Select Edit>Find or Edit>Replace from the PowerBuilder menu.

Settings in the Find and Replace dialog boxes let you control the direction
of the search. You can also select options restricting searches to whole
words only or to strings matching the case of the search text.

If you need to find or replace text across many scripts on a page, switch to
Source view. The Find and Replace dialog boxes look through all the scripts in
a single pass.

Searches for special characters
The Web Target Script editors do not support searching for special characters,
such as line breaks and tabs.

Setting default formats for scripts in the Script editor
You can specify the font size, text colors, and how the tab key behaves for the
the Script editor (as well as the Source view).

❖ To configure the editor:

1 With a page open in the HTML editor, select Design>Options from the
menu bar.

2 On the Editors tab, select Script Editor in the Windows list box and change
settings as appropriate.

Techniques and tips for creating scripts

116 PowerBuilder

You can make only minimal style selections for the Script editor,
determining tab size and indent size, and whether to maintain tabs for
blank space. You can also add or delete scripting languages for the Script
editor. The Source view allows you to format individual HTML elements.

3 Click the Colors/Fonts tab, select a view in the Windows list box, and
change the color and font setting as appropriate.

You can change colors and fonts for both the Script editor and the Source
view.

For more information about applying formatting to text, see “Formatting
HTML source display” on page 43.

Techniques and tips for creating scripts

Position of scripts
It is standard practice to put client-side scripts in the Head section of your
document, but the Page view in the HTML editor does not handle scripts in the
Head section.

You can put client-side scripts in the Body section, but:

• Scripts are not allowed within a TEXTAREA or SELECT tag

• There are restrictions for server scripts that build client scripts

Balanced HTML that the editor can understand

Page view in the HTML editor requires valid HTML, so if you use a script to
build part of an element and use straight HTML for the rest of the element, the
editor will have trouble displaying the page containing the element in Page
view. If you want to use Page view, make sure the HTML on your page is
balanced. Start and finish an element in HTML only or in a script only. Do not
start in one mode and finish in the other.

CHAPTER 6 Writing Scripts

Working with Web and JSP Targets 117

For example, if a script is to provide data for a table, you might think it would
be easiest to code the table's heading row in HTML and then include a script
for the data. To take advantage of the editor, however, it would be better to
create the heading row in the script too, even if it seems like more work. When
you save a page containing unbalanced client- and server-side script, the editor
might alter part of the script that displays in the integrated Script editor.

URLs in scripts
A Web target manages links in HTML pages and JSPs. It remaps the URLs
according to the directory structure of the target or deployed site. However, a
Web target cannot manage URLs in scripts the way it manages URLs in HTML
attributes. Therefore, when you build URLs dynamically in a script, use
methods provided in the Web Target object model to get information about the
server and directory structure so that the URLs reflect the current environment.

The following methods belong to psDocumentClass and can be used to build a
URL dynamically:

• File

• FileExtension

• Path

• Site

Example To build a URL, your script might include code like this:

"http://" + psDocument.Site() + "/" + filefortoday +
".htm";

Techniques and tips for creating scripts

118 PowerBuilder

Working with Web and JSP Targets 119

C H A P T E R 7 Working with Application Servers
and Transaction Servers

About this chapter This chapter describes how to create dynamic Web content by working
with pages in a Web delivery environment that contains an application
server, a transaction server, or both.

Contents

Integrating with application servers
If you want to deliver dynamic content for your Web site, you must
integrate an application server (to process server-side scripts) into your
Web site delivery strategy. For sites that use JSPs, you can take advantage
of 4GL extensions to the Web Target object model. The 4GL JSP page
interface can handle many of the coding details for you.

For information about 4GL JSP pages, see Chapter 9, “Developing 4GL
JSP Pages.”

Topic Page

Integrating with application servers 119

Working with server scripts 122

Using the Web Target object model 123

Accessing database content from your Web target 127

Managing page data 128

Integrating with EAServer 138

Integrating with application servers

120 PowerBuilder

Selecting an object
model

For non-4GL Web site targets, you can write scripts that directly target an
application server using the object model specific to that server, such as the
Active Server Pages object model. However, you can also write platform-
independent code using the Web Target object model (without the 4GL
extensions). If you want to deploy Web site targets to more than one application
server platform, you need to write your server scripts in JavaScript, which is
supported by ASP (as well as by most client browsers).

For 4GL and non-4GL JSP targets, you write server-side scripts in Java,
although you can still use JavaScript for client-side scripting. You can also use
the JSP implicit object model in your server scripts.

For more information about the implicit object model, see “Implicit objects”
on page 156.

What an application
server does

An application server processes code on the server system before a Web server
sends a page to a Web browser. By taking advantage of the capabilities of an
application server, you can include conditional execution, looping, and other
programming structures in your Web pages.

Application servers process template or source files to return dynamic content.
The server evaluates server scripts when the page is requested and generates
the HTML page, which it sends to the client browser.

For an overview on how application servers fit into an integrated Web delivery
environment, see Chapter 1, “Working with Web Targets.”

Dynamic Web pages A dynamic page is a page that is generated each time it is accessed. Using
application servers to create dynamic pages helps you enhance your Web site.
Dynamic Web pages can:

• Respond to input from a browser, returning data requested by the user.

For example, a user can complete a form on a Web page, then view another
page in response to data entered on the form.

• Customize the output for each user.

After a user provides information on a Web page (such as areas of interest,
or level of expertise), the content delivered to the user’s browser can be
fine-tuned to the information provided.

• Customize the output for the display capabilities of the Web browser.

Different page presentations can be generated based on the type of browser
a client uses to access the Web site.

CHAPTER 7 Working with Application Servers and Transaction Servers

Working with Web and JSP Targets 121

Processing dynamic
Web pages

The template for a dynamic Web page typically provides all of the following
content before and after processing by an application server:

Table 7-1: Content processing by an application server

Users do not see the unprocessed template page in their browsers. They see the
page content after the application server processes the template page, and after
their browser processes client-side scripts.

Two ways to create
dynamic Web pages

When you are working with a Web target, you can create template pages in two
ways:

• 4GL Web pages provide an event-driven infrastructure that lets you
create JSP pages with dynamic content easily. The Web Target object
model extensions that underlie these pages handle many of the coding
details required to produce dynamic pages.

For more information about 4GL JSP pages, see Chapter 9, “Developing
4GL JSP Pages.”

• Server-scripted pages let you create all of your own server scripts. The
Web Target object model provides a number of server objects that you
integrate into your scripts. Other server-side object models are available
for deployment to specific server types.

Pages you deploy to Active Server Pages, to your file system, or to more
than one platform, require manual coding for server scripts without
recourse to the automatic coding (for parameter binding and page data
management) available with 4GL page templates.

For more information about writing server scripts without the 4GL Web
page technology, see "Working with server scripts" next and “Managing
page data” on page 128.

Template contents before processing Contents after processing

HTML-encoded text HTML-encoded text

Embedded Web DataWindows or database
queries with instructions for formatting the
retrieved data

Formatted database information

Server-side scripts Results of execution of server
scripts

Client-side scripts Client-side scripts

Working with server scripts

122 PowerBuilder

Working with server scripts
You can embed server scripts in your HTML pages or place them in separate
script files. You can import a server script file that contains code for processing
by the application server you specify, or you can include a server script file if
its contents need only to be redirected, without modification, from the server
to client-side browsers.

For Web site targets, if you want your server scripts to be
platform-independent, you need to write in JavaScript. JavaScript is supported
by ASP. For JSP targets, you typically write server scripts in Java.

Using script files By storing code in separate script files, you can centralize common functions,
thereby simplifying development and maintenance. Once you have created a
script file, you can import this file into Web pages and into other script files, or
you can insert the file contents into a page as embedded script. You can use the
standalone Script editor to create separate script files.

For information on using the standalone Script editor, see Chapter 6, “Writing
Scripts.”

Embedding server
scripts

If you want server scripts to appear within an HTML page, you can write them
in the integrated Script editor or insert them from a script file.

An embedded server script is delimited by HTML tags that can differ
depending on the object model you are using. You can create an embedded
server script for deployment to a specific application server or for platform-
independent deployment.

When you create a server script in the integrated Script editor, you can make
the following choices for HTML tag delimiters, with restrictions based on the
target type.

Table 7-2: Server script HTML tag delimiters

When you add a Web target server script, the Script editor inserts <% ... %>
script tag delimiters in the source for your Web page. If necessary, these tags
are converted by the deployment controller to the correct syntax for the
platform where you deploy your Web site.

Target type Server script HTML tag delimiters Restrictions

ASP or Basic You can choose from four script delimiters:
<% ... %>, <%! ... %>, <%= ... %>, and
<SCRIPT RUNAT=SERVER> </SCRIPT>

Available to Web
site targets only

JSP You can choose from three script delimiters:
<% ... %>, <%! ... %>, and <%= ... %>

Available to JSP
targets only

CHAPTER 7 Working with Application Servers and Transaction Servers

Working with Web and JSP Targets 123

❖ To embed a server script on a Web page:

1 With a Web page open in the HTML editor, right-click in the integrated
Script editor.

2 Select New Script>Server>target server type from the pop-up menu, then,
if a choice is available, select the type of delimiter you want.

The server script delimiters you select appear in the Source view for your
Web page. A new server script icon appears in the Page view, which you
can position on the page, and a server script item appears (as the current
item) in the first drop-down list of the integrated Script editor.

Using existing ASP
pages

If you have an existing ASP page that you want to use in your Web target, and
that page includes server code written in VBScript, you must add the following
line at the very top of the file:

 <%@ LANGUAGE=VBScript %>

Make sure you do this before opening the file in the HTML editor or importing
the file into a Web target.

Using the Web Target object model

For information about the Web Target object model
See “About the Web target object model” on page 2.

Object model file When you use the Web Target object model, the name of the object model file
imported depends on which application server you deploy to:

Table 7-3: Web Target object model file names

The deployment controller converts basic objects (but not the 4GL classes and
objects) of the Web Target object model to equivalent objects for the server to
which you deploy your pages. The 4GL objects in the Web Target object model
are designed for deployment to JSP only.

Application server Object model file imported

ASP OBJMOD.JS

JSP JSPOBJECT100.JAR

Using the Web Target object model

124 PowerBuilder

Basic Web target
objects

The object model file includes the following Web target classes:

Table 7-4: Web Target object model classes

Pre-instantiated objects The Web Target object model automatically
creates unique instances of the following objects:

Table 7-5: Instantiated classes in Web Target object model

In your scripts, you always refer to these objects. You do not need to instantiate
PSDocumentClass, PSServerClass, and PSSessionClass.

Class Description

PSCommandClass Defines a SQL statement or stored procedure that can be
reused multiple times on the same page

PSCursorClass Represents a result set that is the output of a database
retrieval operation

PSDocumentClass Describes the current document

PSConnectionClass Allows you to connect to a database

PSServerClass Represents the application server environment in which
Web pages run

PSSessionClass Describes information that needs to persist for the duration
of a particular session between a Web client and a Web site

PSErrorClass Provides access to errors captured by the application server

Class Pre-instantiated object name

PSDocumentClass psDocument

PSServerClass psServer

PSSessionClass psSession

CHAPTER 7 Working with Application Servers and Transaction Servers

Working with Web and JSP Targets 125

Object comparison Web target objects are converted to different objects
depending on the platform to which you deploy your Web page:

Table 7-6: Conversion of Web target objects to application server
objects

Objects to support the
Web DataWindow

Typically you use the Web DataWindow DTC to integrate DataWindows into
your Web application. The Web Target object model also supplies objects that
enable you to instantiate and manipulate Web DataWindow controls. The
following table lists the classes you can instantiate in a script to set up access
to a Web DataWindow. For details about these objects, see the Web and JSP
Target Reference.

Table 7-7: Classes for Web DataWindow instantiation

Web target class ASP object JSP object

PSCommandClass Command —

PSConnectionClass Connection Connection

PSCursorClass RecordSet ResultSet

PSDocumentClass Request, Response request, response

PSErrorClass Error —

PSServerClass Server, Application pageContext

PSSessionClass Session session

Class Description

PSConnectionParmsClass Specifies the database connection parameters
required for a Web DataWindow control to
connect to a database. The object does not
connect to the database.

PSDataWindowClass Creates a new object for a Web DataWindow
control. This object lets you add a DataWindow
control (that you create in DataWindow Builder,
PowerBuilder, or InfoMaker) to your page.

PSDataWindowSourceClass Creates a new source parameter object. The
object specifies an existing definition of a Web
DataWindow control.

PSJaguarConnection Specifies the connection information required to
connect to a server component on EAServer.
This component provides interoperability
between the Web DataWindow control and page
servers that support ActiveX or Java.

PSNamedConnectionParmsClass
(not available to JSP targets)

Specifies the database connection information
required to connect to a named (cached or
profiled) database. The object does not connect
to the database.

Using the Web Target object model

126 PowerBuilder

Objects that support
4GL Web pages

A psPage server object is created for each 4GL-enabled Web page you create.

JSP only
A 4GL-enabled Web page can be used only in a JSP target.

Objects that you place on a 4GL-enabled Web page are assigned the
PSSERVERSCRIPTABLE attribute by default. This attribute allows you to
write server-side scripts (in addition to client-side scripts) to access properties,
methods, and events for these objects.

References to controls require a psPage prefix
References to controls must be prefixed with psPage for server-side
processing. Using a prefix was unnecessary in earlier versions of
PowerBuilder. The change is needed now to make the pages thread safe.

4GL pages rely on the psPage server object and the following classes for each
supported object:

Table 7-8: 4GL Classes and objects

Object Description

psPage Represents a 4GL Web page on the server,
encapsulates the other server objects available to 4GL
Web pages, and controls page processing

PSButtonClass Represents a client-side button on the server

PSCheckBoxClass Represents a client-side check box control on the
server

PSDropDownListClass Represents a client-side drop-down list control on the
server

PSImageClass Represents a client-side image on the server

PSLinkClass Represents a client-side hyperlink (anchor element)
on the server

PSPasswordClass Represents a client-side text box control on the server

PSRadioGroupClass Represents a client-side group of radio button
controls on the server

PSStaticTextClass Lets you manipulate the specified text from a server
script

PSTextAreaClass Represents a client-side multiline text box control on
the server

PSTextClass Represents a client-side single-line text box control
on the server

PSWebDataWindowClass Represents a Web DataWindow control on the server

CHAPTER 7 Working with Application Servers and Transaction Servers

Working with Web and JSP Targets 127

Accessing database content from your Web target
If you want to access database content from your Web application, you should
define a database profile to make this connection available throughout your
Web target. A database profile is a named set of parameters stored in the
registry that defines a connection to a particular database.

Defining database
profiles

To define a database connection profile, select the DB Profiles button from the
PowerBar. Use the Database Profiles dialog box and the interface-specific
Database Profile Setup dialog box to define your profile. The database profile
specifies the parameters for connecting to the database, including a user ID and
password, a server name, a database name, and other optional information.

For more information about defining database profiles, see Connecting to Your
Database.

Using database
profiles in a DTC

After you set up database access for a Web target, you can add a Web
DataWindow DTC to your page or write scripts that otherwise reference a
database profile. In the Properties dialog box for the Web DataWindow DTC,
you select both the DataWindow object you want to use and the database
connection profile used by that DataWindow.

For more information, see “Selecting a database profile” on page 225.

Using database
profiles in a script

If you choose not to use the DTC and instead create a database connection from
a script, you can add logic to the connection definition that gets executed
during page processing by an application server.

For information on writing scripts to access a database, see the DataWindow
Programmer’s Guide.

Setting up database
connections on a
component server

When you use the Web DataWindow (with or without the DTC), it is the Web
DataWindow server component that interacts with the database, so you need to
set up database connections on the server where the component is running.

To make sure you have the same results at design time and runtime, it is
preferable to select the same database connection type in the DataWindow
painter (when you create a DataWindow object) that you plan on using on the
server where the DataWindow is deployed (and that you select from a database
connection drop-down list if you are using the Web DataWindow DTC).

For more information on the database connectivity software available on
EAServer and COM+, see Connecting to Your Database and the DataWindow
Programmer’s Guide.

Managing page data

128 PowerBuilder

Managing page data
Displaying Web content dynamically (in response to a user’s actions) enhances
the user experience of your Web site. Passing data from one page to another or
sharing data among pages lets you generate the dynamic content for your site.
When a user moves from one page to another, server scripts interpret the values
of parameters and variables to define the content sent to the user’s browser.

When discussing data transfer between Web pages:

• The linking page is the page on which a user action initiates a move
(redirect) to another page

• The target page is the destination page of a move from a linking page

About page parameters and variables
Parameters and variables let you share page data in different ways. Basically
you define page parameters for information that will be passed to your page;
you define page variables to contain values internal to the page.

Parameters A page parameter is a named value that you can pass from one page to
another. Usually a page parameter is appended to a URL as a query string or is
submitted with a form. After the value is passed from a page, a server script can
access the value and use it as needed in generating the target page.

Variables A page variable is a temporary value that can be saved and made accessible
to other pages, including the page where the variable is set. A page variable is
available as long as a page is active.

A session variable is like a page variable, but with a longer life-span. A
session variable is available for the length of the user’s browser session. You
use a session variable to make the user’s information available to many pages.

Variables and login data Variables, either page or session, can be used to
store login information for a user’s site visit. This lets that person visit a
number of pages without needing to log in again.

4GL JSP pages 4GL JSP pages give you a straightforward way to define and keep track of
parameters and variables during development. The 4GL extensions to the Web
Target object model manage the parameters and variables when the page is
processed by a JSP server.

For information about 4GL JSP pages, see Chapter 9, “Developing 4GL JSP
Pages.” For information on referring to parameters and variables in scripts on
4GL JSP pages, see “Adding scripts to 4GL JSP pages” on page 194.

CHAPTER 7 Working with Application Servers and Transaction Servers

Working with Web and JSP Targets 129

Using page parameters in server scripts
If you are not using the 4GL interface to manage your page parameters, you
can access parameters submitted to a page by writing server scripts.

Non-4GL pages To make full use of the page parameters, you can have the server script
generate a client script. This server-side script generates a client-side script that
sets a text box value (on a Web page that is not 4GL enabled) to the id
parameter:

psDocument.WriteLn("<script>");
psDocument.WriteLn("function setValues()");
psDocument.WriteLn("{");

psDocument.WriteLn("myForm.sle_1.value='" +
psDocument.GetParam("id")+ "'");

psDocument.WriteLn("}");
psDocument.WriteLn("</script>");

You can then code a client-side event (such as an onclick event for a button or
the onload event for the page) to call the setValues function in the generated
client-side script.

Passing a parameter
in an anchor element

Passing page parameters from one page to another requires identifying the
parameter (of the target page) on the linking page, then accessing the value in
a server script on the target page. You can set up an anchor element or a form
on the linking page to link to the page parameter of the target page.

On the linking page, create an anchor element (<A>). In the HREF attribute,
specify the target URL with a query string appended to it. The query string can
have one or more name-value pairs. A question mark separates the query string
from the URL and an ampersand separates each name-value pair. The format
is:

 url?name1=value1&name2=value

Example: passing data in a query string Here a link on the linking page
goes to the target page nextpage.htm. There are two values passed in the query
string: Data and Name. On the target page, the page parameter names are called
Data and Name and their values are "1" and "Jane". Note that parameter names
are case-sensitive.

Jane's data

Managing page data

130 PowerBuilder

Passing a parameter
in a form

On the linking page, create a form for which the action is the URL of the target
page. When the user submits the form, the form field names and values are
passed to the target page as page parameters. Depending on the form method
(GET or POST), the parameters are formatted as a query string or sent
separately. No matter which method you use, server scripts on the target page
see the values as page parameters.

Example: passing data from a form Here a form on the linking page asks
the user to specify a name and a number. On the target page, nextpage.htm, the
page parameters are called "Name" and "Data", and their values are whatever
the user entered in the form fields.

<FORM id=FORM1 name=NameAndData action="nextpage.htm"
method=post>

User Name: <INPUT id=INPUT1 name="Name" type="TEXT">
Number of requests: <INPUT id=INPUT2 name="Data"

type="TEXT">
<INPUT id=INPUT3 name="Submit" type=submit>
</FORM>

Accessing the value of
a page parameter

In a server script on the target page, you can get the value of page parameters
with the GetParam method.

Example Here the script gets the value of "Name" and "Data".

username = psDocument.GetParam("Name");
userdata = psDocument.GetParam("Data");

Using session variables in server scripts
The psSession object allows you to keep track of user login information and
other data that you want to make available to all the pages in your Web
application during a user’s browser session. The psSession object also keeps
track of user activity so that a user's session can be terminated if it becomes
inactive.

The actual behavior of the session object depends on its implementation on
each application server, but typically a session object is instantiated only if you
try to access it. Session variables are properties of the psSession object. You
create properties as you need them simply by setting them in a server script.
For complete information about session objects, see the documentation for
your application server.

CHAPTER 7 Working with Application Servers and Transaction Servers

Working with Web and JSP Targets 131

Setting the length of a
session

The psSession object handles the lifespan of the session as well as session
variables. When the user does not access the server for a specified number of
minutes, the session times out. If you use the psSession object to manage user
login information, the login information disappears when the user is inactive
for the specified amount of time.

Ending a session One way to implement a timeout is by destroying the
psSession object on the application server so that the psSession object and its
properties no longer exist until you set new properties. If you query a property
after the session ends, the GetValue method on the session object returns null.
Pages that rely on shared information must handle the disappearance of that
information. If your page gets values of psSession properties, your code should
check for null and handle the situation of an expired session.

Changing the length of a session You can change the length of a session
either in the server configuration or dynamically in a script. The server's own
session object stores the session length in its timeout property. You can change
the lifespan of a session by:

• Setting the server’s timeout property using a psSession object

• Writing code that uses the correct property name for the server

• Writing conditional code tailored to each server you want to support

Creating and setting
the value of a session
variable

You create a session variable with the SetValue method. This method creates
the variable, if necessary, and sets the variable's value. If the psSession object
does not exist, calling this method instantiates it. Creating the psSession object
triggers timeout management.

Example: creating a session variable This script sets the value of the
userid and password session variables:

psSession.SetValue("Userid", "jdoe");
psSession.SetValue("password", "mydogsname");

For a Web site target, you can also set the timeout property in server script, but
the case-sensitive code you use depends on your deployment platform.

Managing page data

132 PowerBuilder

Example: specifying the application server This code uses the
ObjectModelType method to determine the current application server and sets
the timeout property as named on that server:

if (psServer.ObjectModelType() == "ASP")
{
psSession.SetValue("Timeout", 30);
}

else if (psServer.ObjectModelType() == "JSPObject")
{

 psSession.SetValue("timeOut", 30);
}

For a JSP target, the server timeout value is set in the web.xml file for the target.
You can modify this on the JSP Options page of the Deployment Configuration
Properties dialog box for the target. To change the timeout dynamically in a
JSP session, you can call the setMaxInactiveInterval method on the session
object:

session.setMaxInactiveInterval(1800);

The web.xml value for the session timeout is in minutes, whereas the value for
the argument used by the setMaxInterval method is in seconds.

Getting the value of a
session variable

The GetValue method gets a value from a property of the psSession object. If
the property does not exist, GetValue returns null. The property does not exist
if the session has timed out.

Example: getting a session variable This code gets the user's ID. If the ID
does not exist, the user is redirected to the login.htm page.

In a real application, you would want to explain to the user what happened.

curruser = psSession.GetValue("Userid");
if (curruser == null)

{
psDocument.Redirect("login.htm");
}

CHAPTER 7 Working with Application Servers and Transaction Servers

Working with Web and JSP Targets 133

Samples for retrieving and displaying data
This section presents separate examples for a Web site target to illustrate the
objects and methods you use to:

• Get the value of a page parameter

• Establish a database connection and handle database errors

• Create a SQL query and use the page parameter in the WHERE clause

• Display the query results in a table with link formatting

In these examples, the target page receives the value of a department passed
from a link on another page to a target page parameter. It then retrieves the
names and IDs of employees who work in that department.

The employee names are then displayed in a table with a link to an employee
detail page. The employee ID is in a query string of the link so that it can be
used in another query on the detail page.

The complete source for these examples is provided at the end of this section.

Getting the value of a
page parameter

The GetParam method for the psDocument object accesses the value of a page
parameter. You can assign the value to a variable and use that variable in other
scripts on the page.

Example: getting the value of a page parameter This script would appear
after the first heading in the file. It assigns the page parameter value to the
variable curr_dept. It also writes the department name on the page:

 curr_dept = psDocument.GetParam("Dept");
 psDocument.Write("<P>Employees for department ");
 psDocument.Write(curr_dept + "</P>");

Establishing a
database connection

The psServer instance is automatically instantiated in your Web target and is
available to server scripts on every page. Using psServer methods, you can
define new connections at execution time or you can access connections you
defined in PowerBuilder. (When you deploy a Web target, the connection
information is made available to the application server.)

Managing page data

134 PowerBuilder

Example: connecting to a database Here the GetConnection method for
psServer instantiates a PSConnectionClass object using the connection profile
Employees. If an error occurs, the code calls a WriteError function to display
error information:

conn = psServer.GetConnection("Employees");
rows = 0;
 if (conn.GetError() != null)
{
 WriteError("GetConnection", conn);
 return;
 }

The WriteError function is called only if the error object is not null. The script
that defines the WriteError function is shown in the next example and is placed
in the Head section of the document. The arguments for WriteError are:

• The method that caused the error

• The instance of the PSConnectionClass object

The WriteError function calls the GetError method for the connection object to
get the first instance of the PSErrorClass object. An error object is available
only if an error has occurred; otherwise, GetError returns null.

Handling database
errors

After getting error information, the GetError function writes the connection
name, error code, error message, and the name of the function that failed in the
document. The GetCode and GetMessage methods for PSErrorClass get the
error code and message.

Example: handling database errors This is the code for the WriteError
function:

function WriteError(function_called, connName){
errobj = connName.GetError();
str = errobj.GetCode() + " " + errobj.GetMessage();

psDocument.Write("<P>Error: ");
psDocument.Write (function_called + " " + str);
psDocument.Write("</P>");

return;
}

CHAPTER 7 Working with Application Servers and Transaction Servers

Working with Web and JSP Targets 135

Using the page
parameter in a SQL
query

After you establish a connection, you can retrieve data with a SQL statement
and store the result set in a PSCursorClass object. To retrieve data, this code:

• Builds a string that is the SQL statement. The curr_dept variable, which
holds the page parameter value, is incorporated into the WHERE clause.

• Uses the string with the SQL statement as an argument for the
CreateCursor method. This method belongs to the PSConnectionClass
object.

• Assigns the returned result set to the newly instantiated PSCursorClass
object called "mycursor".

• Checks whether a database error occurred and calls the WriteError function
if necessary.

Example: retrieving and storing data The code that creates the cursor and
retrieves data looks like this:

//build a SQL statement
sqlquery = " SELECT \"employees\".\"fname\" , " +

" \"employees\".\"lname\" , " +
" \"employees\".\"empid\" " +
" FROM \"employees\" " +
" WHERE \"employees\".\"deptid\" = " +
"'" + curr_dept + "'";

// Do the query and assign the result set to
mycursormycursor = conn.CreateCursor(sqlquery);
if (conn.GetError() != null){

WriteError("CreateCursor", conn);
return;
}

Displaying the query
results in a table with
link formatting

After the rows are retrieved, methods for the PSCursorClass object provide
access to the data. Code that writes HTML for displaying data is mixed with
method calls that get the data from the PSCursorClass object. This code:

• Calls GetRowCount, a method of the PSCursorClass object, to find out
how many rows are in the result set

• Writes HTML for the Table element

• Writes HTML to close the Table element

• Loops through the rows in the result set

Managing page data

136 PowerBuilder

For each row in the result set, the code:

• Writes HTML for a table row with one cell.

• Writes an anchor element (<A>) tag with a query string using data from
the second column (empid). The GetValue method for the PSCursorClass
object gets the data.

• Writes text inside the anchor element, using GetValue to get the employee
first name from the first column (0) and the last name from the second
column (1). Column numbers start with 0 and correspond to the columns
in the SQL SELECT statement.

• Writes HTML that closes the A, TD, and TR elements.

• Calls the MoveNext method for the PSCursorClass object to go to the next
row in the result set.

Example: processing rows The code that processes the rows looks like this:

rows = mycursor.GetRowCount();
// Write Table start tag
psDocument.Write("<TABLE BORDER=1>");
// Loop over retrieved rows
// where rows variable is the row count
for (var i=0; i < rows; i++)
{

// Write TR and TD start tags
psDocument.Write("<TR><TD>");

// Write A element with employee ID in query string
psDocument.Write("<A HREF=\"detail.htm?Key=");
psDocument.Write(mycursor.GetValue(2) + "\">");

// Write first and last names
psDocument.Write(mycursor.GetValue(0) + " ");
psDocument.Write(mycursor.GetValue(1));

// Write A, TD, and TR end tags
psDocument.Write("<TD><TR>");
// Go to next row in result set mycursor.MoveNext();

}
// Write Table end tag
psDocument.Write("</TABLE>");

CHAPTER 7 Working with Application Servers and Transaction Servers

Working with Web and JSP Targets 137

Complete example The complete page looks like this in Source view:

<HTML>
<HEAD>
<%
// function for displaying error information
function WriteError(function_called, connName)
{ errobj = connName.GetError();

str = errobj.GetCode() + " " + errobj.GetMessage();
psDocument.Write("<P>Error: ");
psDocument.Write (function_called + " " + str);
psDocument.Write("</P>");
return;

}
%>
</HEAD>
<BODY>
<H1>Employees</H1>
<P><% // Get page parameter and write value in document
curr_dept = psDocument.GetParam("Dept");
psDocument.Write("<P>Employees for department ");
psDocument.Write(curr_dept + "</P>");%></P>

<P><% // Get a connection
conn = psServer.GetConnection("Employees");
rows = 0;
if (conn.GetError() != null) {

WriteError("GetConnection", conn);
return;

}
 // Construct the SQL statement

sqlquery = " SELECT \"employees\".\"fname\" , " +
" \"employees\".\"lname\" , " +
" \"employees\".\"empid\" " +
" FROM \"employees\" " +
" WHERE \"employees\".\"deptid\" = " +
"'" + curr_dept + "'";

// Retrieve the data
mycursor = conn.CreateCursor(sqlquery);
if (conn.GetError() != null) {

WriteError("CreateCursor", conn);
return;

}
// Get the number of rows retrieved
rows = mycursor.GetRowCount();

psDocument.Write("<TABLE BORDER=1>");

Integrating with EAServer

138 PowerBuilder

for (var i=0; i < rows; i++) {
// Write TR and TD start tags
psDocument.Write("<TR><TD>");
// Write A element with employee ID in query string
psDocument.Write("<A HREF=\"detail.htm?Key=");
psDocument.Write(mycursor.GetValue(2) + "\">");
// Write first and last names
psDocument.Write(mycursor.GetValue(0) + " ");
psDocument.Write(mycursor.GetValue(1));
psDocument.Write("<TD><TR>");
mycursor.MoveNext();

}
psDocument.Write("</TABLE>");
%>
</BODY>
</HTML>

Integrating with EAServer
EAServer is a middle-tier component transaction server that hosts executable
business objects called components. You can access components on EAServer
from your Web applications.

EAServer can host various types of components including PowerBuilder
objects and Java classes or beans. Although these components have different
origins, they have several things in common. They:

• Encapsulate business logic that one or more applications need to execute

• Shift processing to the middle-tier EAServer server, enabling application
clients to remain thin

• Are stored in packages and contain methods that clients can call to perform
specific operations

Developers typically create components using tools such as PowerJ or
PowerBuilder. These tools enable developers to build classes or objects and
deploy them directly to EAServer as components. For more information about
EAServer, see the EAServer Programmer’s Guide.

CHAPTER 7 Working with Application Servers and Transaction Servers

Working with Web and JSP Targets 139

Access to
components

You can take advantage of the Web Target user interface to access EAServer
components by using:

• 4GL JSP pages to help you create server scripts that access EAServer
components.

• Web DataWindow DTCs to let you access Web DataWindow server
components available on EAServer. The Web DataWindow retrieves,
processes, and displays data on a page, and EAServer manages the
database connection.

4GL JSP pages 4GL JSP pages give you quick access to EAServer components by:

• Letting you bind page controls to EAServer component properties

• Giving your scripts access to EAServer components as represented by
variables

• Providing drag-and-drop programming access to methods of EAServer
components

For more information about 4GL JSP pages see Chapter 9, “Developing 4GL
JSP Pages.”

Web DataWindow
DTC

The Web DataWindow DTC provides a design-time interface that lets you
select the DataWindow objects to include on a Web page. It also permits you
to override certain settings of the DataWindow object before the Web
DataWindow displays in the client browser.

4GL Web pages also provide enhancements for Web DataWindow objects
available through EAServer. A server representation of a Web DataWindow
object (the PSWebDataWindowClass object) allows you to write server-side
scripts for DataWindow events and methods. For more information about the
Web DataWindow DTC, see Chapter 11, “Using the Web DataWindow
Design-Time Control.”

Accessing components
Before you can view information about or include an EAServer component on
your Web page, you must make sure a profile exists for the server that contains
a component you want to use. A connection from a Web target to EAServer
uses the Internet Inter-ORB Protocol (IIOP). You must make sure the
EAServer has an IIOP listener configured before you set up a connection for
your Web target.

Integrating with EAServer

140 PowerBuilder

With a connection to the server established, you can:

• View a list of accessible servers from the Components tab page of the
System Tree

• Display the packages, components, and methods installed on EAServer

• Get information about a component or method

You can drag and drop an EAServer component from the System Tree to a 4GL
Web page that is open in the Page view of the HTML editor. This opens the
Page Properties dialog box to the EAServer page and adds the component to
the list of components available to the Web page.

❖ To define an EAServer connection profile:

1 Select Tools>EAServer Profile from the PowerBuilder menu
or
Right-click anywhere in the Components tab page of the System Tree and
select EAServer Servers from the pop-up menu.

The EAServer Server Profiles dialog box displays.

2 Edit the list of EAServer profiles.

You can add, modify (configure), or remove EAServer connections as
needed. You can also select a connection and test it. You should make sure
the server is running before you test the connection.

3 Click Done to save your changes.

An item representing the server appears under the EAServer Servers node
on the Components tab page of the System Tree.

CHAPTER 7 Working with Application Servers and Transaction Servers

Working with Web and JSP Targets 141

Viewing components After you establish a connection to an EAServer for your Web target, you can
see the components and the methods for those components installed on the
server.

You can view the list of server components that you have added to a page from
the Page Properties dialog box for 4GL Web pages. When you add a Web
DataWindow DTC to a page, you can select a DataWindow component from
the Web DataWindow DTC Properties dialog box; the DataWindow
HTMLGenerator105 component is selected and enabled by default.

Getting information
about components
and methods

After you define a connection, you can get information about components and
component methods from the System Tree.

❖ To get information about EAServer components and methods:

1 From the Components tab of the System Tree, expand the EAServer
Servers branch.

2 Expand the appropriate server and package to find the component you
want information about
or
Expand the appropriate server, package, and component to find the
method you want information about.

Integrating with EAServer

142 PowerBuilder

3 Right-click the component or method and select Properties from the
pop-up menu.

The properties dialog box for the selected component or method displays:

Method properties have a Parameters tab to display the parameters of the
component method.

4 (Optional) Click the Parameter tab to see information about the parameters
the method uses.

Working with Web and JSP Targets 143

C H A P T E R 8 Working with JSP Targets

About this chapter This chapter describes how to work with JSP targets using the Web Target
object model.

Contents

About JavaServer Pages
JavaServer Pages (JSP) technology provides a quick, easy way to create
Web pages with both static and dynamic content. JSPs are text-based
documents that contain static markup, usually in HTML or XML, as well
as Java content in the form of scripts and/or calls to Java components.
JSPs extend the Java Servlet API and have access to all Java APIs and
components.

You can use JSPs in many ways in Web-based applications. As part of the
J2EE application model, JSPs typically run on a Web server in the middle
tier, responding to HTTP requests from clients, and invoking the business
methods of Enterprise JavaBeans (EJB) components on a transaction
server.

JSP pages built with PowerBuilder support:

• Version 1.2 of the JavaServer Pages specification.

• Version 2.3 of the Java Servlet specification.

PowerBuilder supports custom tag libraries that use the JSP 1.2 format.

Topic Page

About JavaServer Pages 143

JSP Web Target wizard 146

JSP page authoring 148

JSP Web services 161

JSP Web Target object model 168

Custom tag library for the Web DataWindow 170

About JavaServer Pages

144 PowerBuilder

You can choose to deploy a JSP target as a Web application to:

• EAServer 4.2.2 and later

• Apache Tomcat 4.1.13 and later

• Any other JSP 1.2 server for which you can configure command line
deployment capabilities

• Sybase Enterprise Portal instead of a JSP server

For more information, see the JavaServer Pages specification at
http://java.sun.com/products/jsp/index.html, and the Java Servlets specification at
http://java.sun.com/products/servlet/index.html.

How JavaServer Pages work
JSP pages are executed in a JSP engine (also called a JSP container) that is
installed on a Web or application server. The JSP engine receives a request
from a client and delivers it to the JSP page. The JSP page can create or use
other objects to create a response. For example, it can forward the request to a
servlet or an EJB component, which processes the request and returns a
response to the JSP page. The response is formatted according to the template
in the JSP page and returned to the client.

Translating into a
servlet class

In PowerBuilder, JSP pages are deployed to the server in source form. If a JSP
page is in source form, the JSP engine typically translates the page into a class
that implements the servlet interface and stores it in the server’s memory.
Depending on the implementation of the JSP engine, translation can occur at
any time between initial deployment and the receipt of the first request. As long
as the JSP page remains unchanged, subsequent requests reuse the servlet class,
reducing the time required for those requests.

Requests and
responses

Some JSP engines can handle requests and responses that use several different
protocols, but all JSP engines can handle HTTP requests and responses. The
JspPage and HttpJspPage classes in the javax.servlet.jsp package define the
interface for the compiled JSP, which has three methods:

• jspInit()

• jspDestroy()

• _jspService(HttpServletRequest request, HttpServletResponse response)

http://java.sun.com/products/jsp/index.html
http://java.sun.com/products/servlet/index.html

CHAPTER 8 Working with JSP Targets

Working with Web and JSP Targets 145

What a JSP contains
A JSP contains static template text that is written to the output stream. It also
contains dynamic content that can take several forms:

• Directives provide global information for the page, or include a file of text
or code.

• Scripting elements (declarations, scriptlets, and expressions) manipulate
objects and perform computations.

• Standard tags, or actions, perform common actions such as instantiating a
JavaBeans component or getting or setting its properties, downloading a
plug-in, or forwarding a request.

• Custom tags perform additional actions defined in a custom tag library.

“JSP page authoring” on page 148 provides a brief description of each of these
types of dynamic content. For more detailed information, see the JavaServer
Pages at http://java.sun.com/products/jsp/index.html, or one of the many books
about JavaServer Pages technology.

Application logic in JSPs
The application logic in JSPs can be provided by components such as servlets,
JavaBeans, and EJBs, customized tag libraries, scriptlets, and expressions.
Scriptlets and expressions hold the components and tags together in the page.

JavaBeans You can easily use JavaBeans components in a JSP with the useBean tag. For
more information, see “<jsp:useBean>” on page 149.

Enterprise JavaBeans To use an EJB component, you need to use JNDI to establish an initial naming
context for the EJB’s home interface. You could do this in a scriptlet, using a
JavaBeans component, or using a custom tag.

Custom tag libraries Custom tag libraries define a set of actions to be used within a JSP for a specific
purpose, such as handling SQL requests. See “Custom tags” on page 158.

http://java.sun.com/products/jsp/index.html

JSP Web Target wizard

146 PowerBuilder

JSP Web Target wizard
The JSP Web Target wizard creates a target with Source and Build folders and
a deployment configuration. JSP pages are deployed as a Web application in a
Web Archive (WAR) file.

The JSP Web Page wizard includes a server-specific deployment page with
properties that depend on the selection you make in the JSP server page of the
wizard. Any properties you specify in the wizard, except for the deployment
configuration name, can be modified after target creation in the Deployment
Configuration Properties dialog box for the JSP target.

Specifying a server type
When you select a server type, the wizard presents a page where you specify
how to connect to the server.

Table 8-1: Server-specific selections in the JSP Target wizard

JSP server Server-specific selections

EAServer The EAServer profile and the HTTP port you want to use

Tomcat The deployment folder (typically, the webapps folder under the
Tomcat installation directory), the HTTP server and port name,
and a login name and password

Command Line Command lines you can use to deploy your Web application to
any JSP 1.2 compatible server

CHAPTER 8 Working with JSP Targets

Working with Web and JSP Targets 147

Custom command line deployment
Custom deployment
configuration
properties

You can use the custom command line deployment configuration to set
commands for Java command line build tools such as Apache Ant, or to deploy
a target to JSP 1.2 servers other than EAServer and Tomcat, such as IBM
WebSphere or BEA WebLogic. The configuration screen for custom command
line deployment includes the following fields and check boxes:

Table 8-2: Custom command line deployment configuration properties

Property
Field
type Use this field to

Description Text box Set a description for your deployment configuration.

Command Column Add one or more command lines in a defined
sequence of execution. You can move command lines
up or down in the command sequence by using the
arrow controls. You can enter macros.

Start-up
directory

Column (Optional) Change the current directory to the
location you want before executing the command you
entered for the same row in the Command column.
This is equivalent to a cd command to change
directories.

Show
messages in
output
window

Check box Display messages from the command line tool in the
PowerBuilder Output window (selected by default).

Automatically
generate WAR
file

Check box Generate the target WAR file when you deploy the
target (selected by default). You should clear this
check box if you generate the WAR file from a
command you enter in the Command column.

Abort
execution on
error

Check box Halt the execution of command lines once an error is
detected (selected by default).

Command
time-out

Text box (Optional) Enter a time-out value in seconds that
applies to all the command lines you enter.

JSP page authoring

148 PowerBuilder

Command line macros
for custom
deployment

You can use macros on any of the command lines you enter in the list of
commands for your custom deployment configuration. There are five macros
available for use on the command lines you enter in the JSP Target wizard (or
in the Deployment Configuration wizard):

Table 8-3: Command line macros

JSP page authoring
JSP pages can be written in any well-formed language, including XML, but
they are usually written in HTML. In PowerBuilder, you create JSP pages
using any of the page wizards on the Web page of the New dialog box, and you
edit them in much the same way as any other HTML page. When you create a
new Web page, the wizard gives it the extension .jsp by default instead of .htm.

JSP authoring
elements

Standard HTML elements, controls, and client-side scripts are available to JSP
pages. In addition, JSP-specific elements are available in the development
environment for editing JSP Web pages:

• JSP actions

• Directives

• JSP scripting elements

• Custom tags

• JSP Web services

Macro text Pasted text Value added by macro

Configuration
Directory

$(ConfigDir) Location of the local copy directory that you
specify in a subsequent page of the wizard.

Display Name $(DisplayName) Display name from web.xml for the target.
You also specify this in the wizard.

WAR Filename $(WARFile) File name, but not the full path. If you do not
use a command line to build the WAR file,
the value is specified in a subsequent page of
the wizard.

Build Directory $(BuildDir) Full path to the build directory for the target
that you specified in the JSP Target wizard.

Source Directory $(SourceDir) Full path to the source directory for the target
that you specified in the JSP Target wizard.

CHAPTER 8 Working with JSP Targets

Working with Web and JSP Targets 149

Page view icons In the Page view, JSP standard actions and scripting elements are represented
by icons showing the element’s delimiters. When you select a scripting element
or a 4GL server-side event, Java is the only language available in the script
editor.

Table 8-4: Icons displaying in Page view for JSP-specific elements

JSP actions
Actions are standard tags that perform common actions. All JSP standard
actions use the prefix jsp.

You can insert any of the following actions:

<jsp:useBean> The useBean, getProperty, and setProperty actions are all used with JavaBeans
components. The useBean id attribute is the name of the bean and corresponds
to the name attribute for getProperty and setProperty. The useBean action
locates or instantiates a JavaBeans component:

<jsp:useBean id="labelLink" scope="session"
class="LinkBean.labelLink" />

The bean class and classes required by the bean class must be deployed under
a JavaCode base that is available to the Web Application where the JSP is
installed.

<jsp:getProperty> The getProperty action gets the value of a JavaBeans component property so
that you can display it in a result page:

<jsp:getProperty name="labelLink" property="url" />

Icon Description

<%> Server-side scriplet

<%=> Server-side expression

<%!> Server-side declaration

<jsp:> Standard action, such as <jsp:useBean ...>

</jsp:> Close tag of standard action, such as </jsp:useBean>

<jsp:/> Self-closing standard action, such as <jsp:getProperty ... />

<ctl:> Custom tag, such as <j2ee:action ...>

</ctl:> Close tag of custom tag, such as </j2ee:action>

<ctl:/> Self-closing custom tag, such as <j2ee:action ... />

<?:> Unknown custom tag

<%@ins> Include page directive, such as <%@ include ... %>

JSP page authoring

150 PowerBuilder

<jsp:setProperty> The setProperty action sets a property value or values in a JavaBeans
component:

<jsp:setProperty name="labelLink" property="url"
value="<%= labelLink.getURL() %>"/>

<jsp:include> The include action includes a static file or sends a request to a dynamic file:

<jsp:include page="cart.html" flush="true" />

<jsp:forward> The forward action forwards a client request to an HTML file, JSP file, or
servlet for processing:

<jsp:forward page="/jsp/datafiles/ListSort.jsp" />

<jsp:param> The param action specifies request parameters in the body of an include or
forward action. It can also be used in the body of a params action.

<jsp:forward page="/jsp/datafiles/ListSort.jsp" />
<jsp:param name="bgColor" value="blue" />

</jsp:forward>

<jsp:params> The params action can be used only in the body of a plugin action to enclose the
applet parameters specified by param actions.

<jsp:plugin> The plugin action downloads plug-in software to the Web browser to execute
an applet or JavaBeans component. It generates HTML <embed> or <object>
elements in the page. You can use the params and param actions to specify
parameters required by the plug-in, and the fallback action to specify the text
that displays if the browser does not support <embed> or <object> elements:

<jsp:plugin type=applet code=”Calc.class”
codebase=”/mathutils” >

<jsp:params>
<jsp:param name=”multiplier”

value=”multipliers/tax.val”/>
</jsp:params>
<jsp:fallback>

<p> unable to start plugin </p>
</jsp:fallback>

</jsp:plugin>

<jsp:fallback> The fallback action can be used only in the body of a plugin action to specify the
text that displays if the browser does not support <embed> or <object>
elements.

CHAPTER 8 Working with JSP Targets

Working with Web and JSP Targets 151

Inserting an action

❖ To insert an action in a JSP page:

1 Select Insert>JSP Standard Action from the menu bar and select an action:

2 In the dialog box that displays, specify the values of the action’s attributes.

A Y in the Required column indicates that you must specify a value for the
attribute:

JSP page authoring

152 PowerBuilder

For a description of each of the values available for the scope attribute of the
<jsp:usebean> action, see “Scopes” on page 158.

Adding applets and JavaBeans

Adding applets and JavaBeans to a JSP page inserts the appropriate JSP action.
To view JavaBeans and applets on the Components tab of the System Tree, you
must make sure that the component you want and the WTInfo105.jar file are
included in the Java class path. The WTInfo105.jar is installed in the
Sybase\Shared\Web Targets directory. It should be included in the class path by
default.

Adding applets When you drag an applet from the Components tab to a JSP page in Page view
or Source view, the jsp:plugin Properties dialog box displays with default
values for the applet you selected. When you click OK, the applet is added to
the page in a jsp:plugin action tag.

When you add an applet to a JSP page, you must make sure the applet classes
are stored in a location accessible to client browsers. You can assign this
location, using a file or http protocol, to the codebase attribute of the jsp:plugin
directive.

Adding JavaBeans
and JavaBean
properties

When you drag a JavaBean from the Components tab to a JSP page in Page
view or Source view, the jsp:useBean Properties dialog box displays with
default values for the JavaBean you selected. When you click OK, the
JavaBean is added to the page in a jsp:useBean action tag. If the JavaBean is in
a class file, the class file is added to the Web-Inf\classes directory for your
target. If the JavaBean is in an archive file, the archive file is added to the
Web-Inf\lib directory for your target.

JavaBean properties with both read and write permissions are listed twice on
the Components tab: one time for the read property and another time for the
write property. The icon for the read-enabled property is a yellow arrow
pointing upward. The icon for the write-enabled property is a green arrow
pointing downward.

CHAPTER 8 Working with JSP Targets

Working with Web and JSP Targets 153

When you drag a read-enabled JavaBean property from the Components tab to
a JSP page, the jsp:getProperty Properties dialog box displays with default
values for the JavaBean property you selected. When you drag a write-enabled
JavaBean property from the Components tab to a JSP page, the jsp:setProperty
Properties dialog box displays with default values for the JavaBean property
you selected.

Directives
Directives are messages to the JSP engine that provide global information for
the page or include a file of text or code. Directives begin with the character
sequence <%@ followed by the name of the directive and one or more attribute
definitions. They end with the character sequence %>.

There are three directives: page, include, and taglib.

Page directive The page directive defines attributes that apply to an entire JSP page, including
language, the class being extended, packages imported for the entire page, the
size of the buffer, and the name of an error page. For example:

<%@ page language="java" import="mypkg.*"
session="true" errorPage="ErrorPage.jsp" %>

For more information about error pages, see “Error handling” on page 159.

Include directive The include directive includes a static file, parsing the file’s JSP elements:

<%@ include file="header.htm" %>

Include directive and include standard tag Note that the include directive
parses the file’s contents, whereas the include tag does not.

Taglib directive The taglib directive defines the name of a tag library and its prefix for any
custom tags used in a JSP page:

<%@ taglib uri="http://www.mycorp/printtags"
prefix="print" %>

If the tag library with the prefix print includes an element called doPrintPreview,
this is the syntax for using that element later in the page:

<print:doPrintPreview>
...
</print>

For more information, see “Custom tags” on page 158.

http://www.mycorp/printtags

JSP page authoring

154 PowerBuilder

Inserting a directive

❖ To insert a directive in a JSP page:

1 Right-click inside a page in Page view and select Page Properties from the
pop-up menu
or
Right-click inside the <BODY ...> tag in Source view and select
Properties from the pop-up menu.

2 In the Page Properties or Body Properties dialog box, select the JSP
Directives tab and click the New icon.

3 Select the type of directive you want to add in the drop-down list box in
the Name column.

4 Click inside the Value column, then click the Browse (...) button that
displays at the right of the Value column.
Complete the dialog box that displays.

CHAPTER 8 Working with JSP Targets

Working with Web and JSP Targets 155

The type of dialog box that displays depends on the type of directive you
are adding. The Page Directive Attributes dialog box looks like this:

JSP scripting elements
Scripting elements manipulate objects and perform computations. The
character sequence that precedes a scripting element depends on the element’s
type: <% for a scriptlet, <%= for an expression, and <%! for a declaration.
Scriptlets, expressions, declarations, and server-side comments are all closed
with the sequence %>.

Scriptlets A scriptlet contains a code fragment valid in the page-scripting language
(usually Java, but other languages can be defined in the page directive):

<% cart.processRequest(request); %>

Expressions An expression contains an expression valid in the page-scripting language:

Value="<%= request.getParameter("amount") %>"

Declarations A declaration declares variables or methods valid in the page-scripting
language:

<%! Connection myconnection; String mystring; %>

JSP page authoring

156 PowerBuilder

Comments You can add two types of comments to a JSP file:

• HTML comments optionally contain an expression. They are sent to the
client and can be viewed in the page source:

<!-- Copyright (C) 2002 Acme Software -->

• Hidden comments document the source file and are not sent to the client:

<%-- Add new module here --%>

To insert a comment, type it in the Source view.

Inserting a scripting element

❖ To insert a scripting element in a JSP page:

1 Open a JSP page, select the Page tab, and right-click in the Script editor.

2 From the pop-up menu, select New Script>Server>JSP and then the
delimiters for the type of scripting element you want.

3 Type the script, expression, or declaration in the Script editor.

Implicit objects

When a JSP page processes a request, it has access to a set of implicit objects,
each of which is associated with a given scope. Other objects can be created in
scripts. These created objects have a scope attribute that defines where the
reference to that object is created and removed.

CHAPTER 8 Working with JSP Targets

Working with Web and JSP Targets 157

References to an object created in script are stored in the pageContext, request,
session, or application implicit object, according to the object’s scope.

Table 8-5: Implicit objects for a JSP target

Implicit objects display on the Language tab page in the System Tree.

Implicit
object Description Scope

request The request triggering the servlet invocation. Request

response The response to the request that triggered the
servlet invocation.

Page

pageContext The page context for this JSP. Page

session The session object created for the requesting
client (if any).

Session

application The servlet context obtained from the servlet
configuration, as in the call
getservletConfig().getContext().

Application

out An object that writes to the output stream. Page

config The ServletConfig instance for this JSP. Page

page The instance of this page’s implementation
class that is processing the current request. A
synonym for this when the programming
language is Java.

Page

exception The uncaught Throwable exception that caused
the error page to be invoked.

Page

JSP page authoring

158 PowerBuilder

Implicit objects other than the exception object are always available within
scriptlets and expressions. If the JSP is an error page (the page directive’s
isErrorPage attribute is set to true), the exception implicit object is also
available.

You can often use an implicit object or a Web Target object model wrapper
class to obtain the same functionality. For example, calling out.println in a
server-side event is equivalent to calling psDocument.Write.

For more information about the exception implicit object, see “Error handling”
on page 159. For more information about server-side events, see “Writing
server scripts” on page 191.

Scopes

There are four scopes for objects in a JSP application.

Table 8-6: Scopes for objects in a JSP application

Custom tags
Custom tags, also called tag extensions or custom actions, extend the
capabilities of JSP pages. Tag libraries define a set of actions to be used within
a JSP page for a specific purpose, such as handling SQL requests. The tag
libraries you use in PowerBuilder can be built using another tool, although you
can create custom tags for Web services using a PowerBuilder wizard (see
“JSP Web services” on page 161).

The URI identifying a tag library is associated with a Tag Library Descriptor
(TLD) file and with tag handler classes.

Scope Description

Page Accessible only in the page in which the object is created. Released
when the response is returned or the request forwarded.

Request Accessible from pages processing the request in which the object is
created. Released when the request has been processed.

Session Accessible from pages processing requests in the same session in
which the object is created. Released when the session ends.

Application Accessible from pages processing requests in the same application
in which the object is created. Released when the runtime
environment reclaims the ServletContext.

CHAPTER 8 Working with JSP Targets

Working with Web and JSP Targets 159

Tag handlers A tag handler is a Java class that defines the semantics of an action. The
implementation class for the JSP instantiates a tag handler object for each
action in the page. Tag handler objects implement the
javax.servlet.jsp.tagext.Tag interface, which defines basic methods required by
all tag handlers, including doStartTag and doEndTag. The BodyTag interface
extends the Tag interface by adding methods that enable the handler to
manipulate its body.

Packaging tag
libraries

To associate a tag library with a JSP page, you use a taglib directive that
identifies the URI where the tag library’s TLD file can be located. The TLD file
must be in (or deployed to) the class path of the JSP container and is usually
placed in the Web application’s WEB-INF /tlds directory. The class files for the
tag library must also be in the class path of the JSP container. Typically they
are placed in the Web application’s WEB-INF/classes directory or in a JAR file
in the WEB-INF/lib directory.

For information on adding a taglib directive to a JSP page, see “Taglib
directive” on page 153.

Using tag libraries in
PowerBuilder JSP
pages

In PowerBuilder, you can add tag libraries to a JSP page from the Components
tab of the System Tree as well as from the JSP Directives page of the Page
Properties dialog box. A tag library must be in the PowerBuilder custom tag
library search path in order to be listed on the Components tab. You can add
directories or tag library descriptor files to the custom tag library search path
on the JSP page of the System Options dialog box.

When you add a tag library to a JSP page, a dialog box prompts you to enter a
prefix. The prefix you enter is used as a shorthand entry to refer to the tag
library when you add a tag from the library to the page. PowerBuilder
automatically includes the path to the TLD file in the web.xml file for the target
to which the page belongs. PowerBuilder also adds an entry for the tag library
on the Tag Libraries page of the Deployment Configuration Properties dialog
box for the target.

For more information about the Tag Libraries page of the Deployment
Configuration Properties dialog box, see “Tag Libraries” on page 259.

Error handling
When a client request is processed, runtime errors can occur in the body of the
implementation class for the JSP or in Java code that is called by the page.
These exceptions can be handled in the code in the JSP page, using the Java
language’s exception mechanism.

JSP page authoring

160 PowerBuilder

Uncaught exceptions Exceptions that are thrown from the body of the implementation class that are
not caught can be handled using an error page. You specify the error page using
a page directive. Both the client request and the uncaught exception are
forwarded to the error page. The java.lang.Throwable exception is stored in the
javax.ServletRequest instance for the client request using the putAttribute
method, with the name javax.servlet.jsp.jspException.

Using an error page
JSP

If you specify a JSP page as the error page, you can use its implicit exception
variable to obtain information about the exception. The exception object is of
type java.lang.Throwable and is initialized to the Throwable reference when the
uncaught exception is thrown. For more information about the exception
object, see “Implicit objects” on page 156.

To specify an error page for a JSP, set its errorPage attribute to the URL of the
error page in a page directive:

<%@ page errorPage="ErrorPage.jsp" %>

To define a JSP as an error page, set its isErrorPage attribute to true:

<%@ page isErrorPage="true" %>

This sample error page uses the exception object’s toString method to return the
name of the class of the object causing the exception and the result of the
getMessage method for the object. If no message string was provided, toString
returns only the name of the class.

The example also uses the getParameterNames and getAttributeNames methods
of the request object to obtain information about the request.

<%@ page language="java" import="java.util.*"
isErrorPage="true" %>

<H1 align="Center">Exceptions</H1>

<%= exception.toString() %>
<%! Enumeration parmNames; %>
<%! Enumeration attrNames; %>

Parameters:
<%

parmNames = request.getParameterNames();
while (parmNames.hasMoreElements()) {

%>

<%= parmNames.nextElement().toString() %>

<%
}

%>

Attributes:<%

CHAPTER 8 Working with JSP Targets

Working with Web and JSP Targets 161

attrNames = request.getAttributeNames();
while (attrNames.hasMoreElements()){

%>

<%= attrNames.nextElement().toString() %>

<%
}

%>

JSP Web services
You can use Web services in your JSP by generating custom tags for them. The
JSP Web Service Proxy wizard on the Web page of the New dialog box creates
a custom tag library with the information necessary for calling a Web service
in a JSP.

For more information on custom tags and custom tag libraries, see “Custom
tags” on page 158 and “Adding a custom tag for Web services” on page 166.

Using the JSP Web Service Proxy wizard
The JSP Web Service Proxy wizard collects information such as the location of
a Web Services Description Language (WSDL) file, the service, and port. You
can specify overrides to the WSDL file for a custom bean name, Java class
name, Java package name, tag library descriptor (TLD) name, JAR file name,
output variables, and the selection of operations within a service.

PowerBuilder client Web services wizard
The JSP Web Service Proxy wizard is similar to the Web Service Proxy wizard
on the Project page of the New dialog box, but the latter creates a PowerBuilder
client for a Web service and can only be used in PowerScript targets.

For more information about Web services and the Web Service Proxy project
wizard, see the chapter on Web services in Application Techniques.

JSP Web services

162 PowerBuilder

Files added by the wizard and files required by the server
Files added by the
JSP Web Service
Proxy wizard

The JSP Web Service Proxy wizard adds a TLD and a JAR file containing TLD
classes to JSP target subdirectories. When you deploy the JSP target, these files
are deployed along with the other target files. Table 8-7 lists the files created
by the JSP Web Service Proxy wizard.

Table 8-7: Files added to target WEB-INF subdirectories

Files created on a full build of your JSP target
When you build a JSP target for the first time, PowerBuilder creates
Jaguar.properties and Database.properties files in the target’s WEB-INF\Class
directory. These files contain connection information from your current
PowerBuilder database and EAServer profiles. If you modify these profiles
before you deploy a JSP target, you should perform a full build to make sure
the Jaguar.properties and Database.properties files contain up-to-date
connection information.

For information about performing a full build, see “Building Web targets” on
page 244.

Other files required on
the JSP server

At runtime, the JSP server where you deploy your target must have additional
files in its class path for a Web service to work:

axis.jar
commons-discovery.jar
commons-httpclient.jar
commons-logging.jar
dom.jar
jaxrpc.jar
log4j-1.2.8.jar
pbwst105.jar
saaj.jar
sybasewst.jar
wsdl4j.jar
xercesImpl-2.1.0.jar
xml-apis.jar

File added by wizard Description

tlds\Service_Name.tld A default file name is provided by the Web service
WSDL, but the JSP Web Services Proxy wizard lets
you rename the TLD file that it adds to the target

lib\Service_Name.jar A default file name is provided by the Web service
WSDL, but the JSP Web Services Proxy wizard lets
you rename the JAR file that it adds to the target

CHAPTER 8 Working with JSP Targets

Working with Web and JSP Targets 163

If you are using EAServer 5.1
EAServer 5.1 already has these files in its class path.

These files are not deployed with your JSP target. If your server does not have
these files in its class path, you can copy them to a directory in the server class
path from the Sybase\Shared\PowerBuilder\WEB-INF\lib directory. For
Tomcat, you should copy them to the Tomcat Shared\Lib directory.

For HTTPS connections over SSL, you also need to copy the following files to
your JSP server class path:

jcert.jar
jnet.jar
jsse.jar

Using the UDDI browser in the wizard

PowerBuilder provides live access to Universal Description, Discovery, and
Integration (UDDI) registries for both PowerScript and JSP targets. The UDDI
service is an industry-wide effort to bring a common standard for business-to-
business integration. It defines a set of standard interfaces for accessing a
database of Web services.

The UDDI browser is incorporated into the Web Service Proxy wizard and the
JSP Web Service Proxy wizard. You open UDDI search pages by clicking the
Search From UDDI button on the Select WSDL File page of these wizards.

JSP Web services

164 PowerBuilder

The UDDI Search page has three required search fields and four search options
listed in the following table:

Table 8-8: UDDI search fields and options

The next wizard page in the UDDI search depends on whether you are
searching a key word in business names or service names:

• For a business name search The Select Business wizard page returns
a list of business names and descriptions that meet your search criteria.
After you select a business name and click Next, a list of service names is
returned on the Select Service wizard page, along with a service
description and WSDL file name for each service listed.

• For a service name search The Select Service wizard page returns a
list of service names along with a business name, service description, and
WSDL file name for each service listed.

Search field or option Description

UDDI profile Editable drop-down list for the name of a UDDI
operator. You can associate a UDDI profile with a query
URL. The drop-down list allows you to select
predefined profiles for the Microsoft and IBM public
UDDI registries.

Query URL Text box that displays the URL for the Web service
registry in which you want to find a Web service. If you
selected a predefined profile in the UDDI Profile
drop-down list, the URL associated with that profile
displays in the text box. You can also enter a query URL
and associate the URL with a profile name by clicking
the Save Profile button.

Search For Text box for entering the keyword you want to use in a
UDDI search.

In Drop-down list for “Service Names” (default) or
“Business Names.”

Exact Match Check box option. If selected, limits search to the
current value in the Search For drop-down list.

Case Sensitive Check box option. If selected, limits the search to the
capitalization used by the current value in the Search
For drop-down list.

Sort Radio button option. Sorts search results in ascending or
descending order.

Maximum Rows Spin button option. Limits the number of search results
returned to the number that you enter in this spin button
control.

CHAPTER 8 Working with JSP Targets

Working with Web and JSP Targets 165

After you select a service on the Select Service page of a wizard, the UDDI
search is complete and you continue your selections on the remaining pages of
the wizard.

SOAP processing in JSP targets
Datatype support JSP targets in PowerBuilder use the Apache Software Foundation’s Axis

software for Simple Object Access Protocol (SOAP) processing. The Axis
software includes support for user-defined complex datatypes and
document-type WSDL files.

Axis provides a WSDL2 Java tool that builds Java proxies and skeletons for
Web services with WSDL descriptions. Axis follows the Java API for the
XML-Based Remote Procedure Calls (JAX-RPC) specification when
generating Java client bindings from the WSDL descriptions and generates
only those bindings necessary for the client. Table 8-9 shows the type of Java
file generated from each entry type in the WSDL file.

Table 8-9: Java client bindings generated from WSDL file

In a JSP target, the authoring tool (HTML editor) is Unicode enabled so you
can input text in multiple languages on a single page. It accepts UTF-16
Unicode text only, however JSP files with ANSI-encoded or UTF-8 text can
still be imported in the editor. Text with these encodings is automatically
converted to UTF-16.

Custom tag support in
JSP targets

Custom tags to be used in a JSP target are processed at design time. The code
to process a custom tag invoking a Web service is generated in Java and
compiled using the Java compiler in the JDK. The generated code uses the Java
client binding class generated by the Axis toolkit.

For each WSDL Java class generated

Type in the types section JavaBean

complexType Holder if this type is used as an in/out parameter

portType Java interface

binding Stub class

service Service interface and service implementation (the
locator)

JSP Web services

166 PowerBuilder

The main purpose of the generated code is to provide the glue needed to call
and pass arguments from a custom tag in a JSP to the Axis toolkit. The custom
tag provides the ability to access both input and output arguments through
attributes (for input variables) and scripting variables (for output variables). In
addition, the ability to access the return value is provided by a scripting
variable.

For a custom tag to function properly, three components must be created:

• JavaBean to handle custom tag at runtime Each bean provides
support for one operation in a WSDL file. All beans that support the same
service in the WSDL file are placed in the same package. The default name
of the package is the service name. The name of the package can be
overridden by the user in the wizard.

For each argument in the Web service there is an instance variable in the
class. If the argument is an input variable to the Web service, there is a
setArgumentName method. If the argument is an output variable from the
Web service, there is a getArgumentName method.

After the code has been generated, it is compiled to a .class file

• TagLib directive in the JSP file When a Web service is added to a JSP
page, a directive is added to the top of the JSP page to import the
appropriate tag library.

• Tag Library Descriptor (TLD) file A TLD is one of the three key
components required for the use of a custom JSP tag. A TLD is an XML
document that describes a tag library. A TLD contains information about
the tag library as a whole and about each tag contained in the library. The
generated TLD files are placed in the WEB-INF/services directory of the
target application.

Adding a custom tag for Web services
Once you have generated your custom tag, it appears in the System Tree. When
you drag it to a JSP, the tag library is automatically associated with the page.
You must specify the input and output arguments for the custom tags for the
Web services in the JSP. Output arguments are stored in the pageContext of the
JSP container.

Deployment of the custom tag for Web services is the same as deployment of
any custom tag in PowerBuilder. See “Editing a JSP deployment
configuration” on page 252 for details.

CHAPTER 8 Working with JSP Targets

Working with Web and JSP Targets 167

Custom tags for Web services throw a JspTagException for nonrecoverable
errors. The JspTagException contains information about the root cause of the
exception and the point where the error occurred in processing the custom tag.
This exception can be caught in a Try-Catch block or mapped to a specific error
page in the Deployment Configuration Properties dialog box for the JSP target.
An error page can also be specified in a page directive. See “Error handling”
on page 159 and “Error Mapping” on page 258 for details.

Example using a
currency exchange
Web service

This example, using the currency exchange service available on the XMethods
Web site at http://www.xmethods.com/sd/CurrencyExchangeService.wsdl,
demonstrates how custom tags for Web services on a JSP are defined to a JSP
container. You proceed with these steps after generating a TLD and JAR file
for the service using the JSP Web Service Proxy wizard. The remainder of this
example assumes that you accept all the wizard defaults after selecting the
CurrencyExchangeService.wsdl file.

First you declare the custom tag library to the JSP. This makes all of the tags in
the library available to the JSP. The exchange prefix allows for easy reference
to the tag library. You can drag the library from the Components tab of the
System Tree to the JSP in the HTML editor to add this code.

<%@ taglib
uri="WEB-INF/tlds/CurrencyExchangeService.tld"
prefix="exchange" %>

Once the tag library is available to the page, you declare the input arguments
for the custom tags in a server script.

<%
String firstCountry = "usa";
String secondCountry = "japan";

%>

Next, you invoke the Web service through the custom tag, passing the input
parameters in a server-side expression.

<exchange:getRate country1="<%= firstCountry %>"
country2="<%= secondCountry %>" />

Then you get the value of the returnValue variable from the custom tag and
display it. This value is set when the tag is executed.

<P>The exchange rate between "<%= firstCountry %>" and
"<%= secondCountry %>" is:
<%= CurrencyExchangeService_getRate_returnValue %></P>

http://www.xmethods.com/sd/CurrencyExchangeService.wsdl

JSP Web Target object model

168 PowerBuilder

JSP Web Target object model
Classes in the Web Target object model handle the complexities of data
transfer, HTML generation, and JavaScript generation for client scripts. The
non-4GL part of the JSP object model provides a set of utility Java classes that
implement this functionality and encapsulate most of the JSP page's implicit
objects. These object classes can be used on non-4GL Web pages as well as
4GL JSP pages. The JSP deployment controller imports the JSP object model
for each JSP page it deploys.

For more information about the server scripts added by the JSP deployment
controller, see “Transformations for JSP targets” on page 248.

Use of constructors For Web site targets, you do not need to use a constructor for objects of type
PSCommandClass, PSConnectionClass, or PSCursorClass. You can simply
designate an untyped JavaScript variable to reference an instance of the object
that is returned by the CreateCommand, CreateConnection, or CreateCursor
methods. For JSP targets, you must assign a variable of the correct class type
before you can create an instance of the object or call methods on it.

For more information about JSP constructors for Web Target object model
classes, see the Web and JSP Target Reference.

Object model changes
for JSP targets

A few Web Target object methods have either not been implemented for JSP
targets or have changed syntaxes for JSP targets. The psServer GetConnection
and MapPath methods and the SetSQL method on the PSCommandClass object
are not implemented for JSP targets. The psServer CreateConnection method
has separate syntaxes for JSP targets that allow it to return objects of the
PSConnectionClass type for these targets.

The GetValue method on the PSCursor object does not return a value of a set
datatype and therefore cannot be used with JSP pages. This method has been
replaced by a series of methods that return values of a specific datatype.

CHAPTER 8 Working with JSP Targets

Working with Web and JSP Targets 169

Table 8-10: Object model methods for JSPs only

These methods are described in more detail in the Web and JSP Target
Reference. If the syntax of a method is target dependent, the Web and JSP
Target Reference indicates the proper syntax to use for each target type.

Server-side events When you enable 4GL functionality on a JSP page, you can rely on an
event-driven infrastructure to handle many of the details of coding server
scripts. The JSP 4GL object model provides foundation classes for the
event-driven infrastructure, such as the server control classes, the DataWindow
class, server variables, and parameter classes.

In JSP Web targets, you must script a return value for the server-side events of
a 4GL Web page that have a return value as part of their event signature. If there
is no return statement, a servlet translation error occurs at runtime. The
following server-side events on the 4GL psPage object have boolean return
types: BeforeAction, BeforeGenerate, FirstTime, RequestStart, ServerError,
and Validate.

You can use the SetTrace method to trace the server-side events on a generated
page. The psPage object in the JSP Web Target object model also has a method
to check if tracing is on before you call other trace methods multiple times. The
IsTrace method returns a boolean and takes no arguments.

Method Return value datatype

GetColumn<DataType> (String strColName)
where <DataType> can be Boolean, Byte,
Double, Float, Int, Long, Short, or String

Corresponds to DataType used in
method name

GetColumn<DataType> (int iColNo)
where <DataType> can be Boolean, Byte,
Double, Float, Int, Long, Short, or String

Corresponds to DataType used in
method name

GetColumnLength (String strColName) int

GetColumnLength (int iCol) int

GetColumnName(int iCol) String

GetColumnType(int iCol) int

GetColumnTypeName (int iCol) String

GetPrecision(int iCol) int

GetResultSet() ResultSet

GetResultSetMetaData() ResultSetMetaData

GetScale(int iCol) int

Custom tag library for the Web DataWindow

170 PowerBuilder

Variables When you create variables on the Variables page of the Page Properties dialog
box for 4GL JSP pages, you must associate a datatype with each variable. The
following variable datatypes are supported in 4GL JSP pages: boolean, byte,
char, double, float, int, long, short, and String.

For more information on setting 4GL page and session variables, see “Setting
up page and session variables” on page 180.

Custom tag library for the Web DataWindow
You can use the Web DataWindow custom tag library to specify the parameters
and values required by a Web DataWindow on a JSP page. The tag library is
defined in the file DataWindow105.tld. To use the tag library, place the
DataWindow105.tld file in a WEB-INF/tlds directory in your Web applications
Source directory. The tag classes are included in the jspobject.jar file that is
deployed with all PowerBuilder JSP Web applications.

The tag library contains two tags, DataWindow and DWColumnLink. The
DWColumnLink tag is an inner tag—it can be used inside the DataWindow tag
only. On 4GL JSP Web pages, you must set the fourGLWeb attribute of the
DataWindow tag to true.

Attributes have three subelements: name, required, and rtexprvalue. The
rtexprvalue element is optional and indicates whether the attribute’s value can
be dynamically calculated at runtime.

For more information about the DataWindow and DWColumnLink tags in the
Web DataWindow custom tag library, see the Web and JSP Target Reference.

Working with Web and JSP Targets 171

C H A P T E R 9 Developing 4GL JSP Pages

About this chapter This chapter describes how to create and develop 4GL JSP pages using
extensions to the Web Target object model. By enabling 4GL
functionality, you can take advantage of a rich user interface that
simplifies how you develop Web sites with dynamic content.

Contents

Before you begin For information on troubleshooting 4GL JSP pages, see “Troubleshooting
4GL JSP pages” on page 270.

About 4GL JSP pages
4GL JSP pages are enhanced Web pages that incorporate extensions to the
Web Target object model to generate template (source) code for dynamic
Web pages. 4GL JSP pages rely on the object model to handle the
complexities of data transfer, HTML generation, and Java or JavaScript
generation for server scripts. With many of the implementation details
taken care of for you, you can concentrate on designing your pages and
coding the application logic.

Topic Page

About 4GL JSP pages 171

Developing pages 172

Using parameters and variables 177

Accessing EAServer components 181

Adding controls 186

Writing server scripts 191

How page request processing works 197

Disabling 4GL mode 199

Developing pages

172 PowerBuilder

4GL JSP pages integrate with other Web pages on your Web site. They are
suitable for sharing data with other pages across your site and accessing
components installed on EAServer. 4GL JSP pages provide enhanced support
for Web DataWindow objects on HTML or JSP pages. You cannot hand-code
a Web DataWindow on a 4GL JSP page.

4GL JSP pages can be deployed to EAServer, Tomcat, or other JSP 1.2 servers
that support command line deployment.

4GL JSP pages help you:

• Manage page data among Web pages (using page parameters, page
variables, and session variables)

• Access data from EAServer components

• Bind data to controls on your page

• Manage page navigation

• Create server scripts with minimal coding effort

Developing pages
With 4GL functionality enabled, you can rely on an event-driven infrastructure
to handle many of the details of coding server scripts for your Web pages. As
with other Web target files, you edit 4GL JSP pages in the HTML editor and
write scripts in one of the script editors. The integrated Script editor provides
additional support for some of the features available in 4GL pages.

You can create new 4GL pages or you can modify existing pages to enable 4GL
processing after you add the pages to your Web target. If you change a
non-4GL page to 4GL mode, you must manually remove any existing FORM
tags in Source view. Each 4GL JSP page is represented as a single form. You
cannot use nested FORM tags on these pages.

Creating a new 4GL JSP page
You create new 4GL JSP pages using the 4GL JSP Page wizard. If you want to
change an existing page to 4GL mode, you can enable 4GL mode by selecting
a check box in the Page Properties dialog box for the page.

CHAPTER 9 Developing 4GL JSP Pages

Working with Web and JSP Targets 173

The 4GL JSP Page wizard prompts you for basic design information, options
for error reporting, page parameters, and EAServer components that you want
to use on the page. If you are unsure about values to enter for a particular
wizard field, you can leave the field blank or accept the field default, then add
or change the information later in the Page Properties dialog box.

Table 9-1: 4GL JSP Page wizard page design information

The 4GL JSP Page wizard also includes a page with selections for the
specialized error reporting capabilities available to 4GL pages:

Table 9-2: Error reporting selections for 4GL pages

❖ To create a new 4GL JSP page:

1 From a Web target select File>New from the menu bar
or
Right-click a target or target folder in Workspace view and select New
from the pop-up menu.

2 Click the Web tab in the New dialog box.
Make sure the Web target to which you want to add a 4GL JSP page is
selected in the Target drop-down list box.

3 Click the 4GL JSP Page wizard icon to start the wizard, then click Next.

Specify this To do this

Style sheet Select an existing style sheet for the page.

Background image Select an image that displays as the page background.

Scroll image Make the background image scroll with the page.

Background color Select a color for the page background.

Header based on title Add a page header that is the same as the title. This header
appears on the printed version of the page.

Date created footer Add a page footer that shows the date the page was created.
This footer appears on the printed version of the page.

Select this To do this

Show runtime errors in
alert message box

Display page processing errors in an alert message box

Show runtime errors as text
at the top of the page

Display page processing errors at the top of a generated
page

Show runtime errors as text
at the bottom of the page

Display page processing errors at the bottom of a
generated page

Enable trace Display detailed information about page processing
during page development

Developing pages

174 PowerBuilder

4 On the Specify New 4GL JSP File page of the 4GL JSP Page wizard, enter
the title and file name for the page you want to create.

5 Provide design information for your Web page in subsequent wizard
pages.

6 Specify options for error reporting and click Next.

7 Specify any page parameters that will provide input values for the page,
and click Next.

You can add page parameters at a later time from the Page Properties
dialog box for your page.

8 Select an EAServer profile, making sure the EAServer you select is
running, and click Next to list the available components on this server
or
Select the Skip EAServer Components check box if you want to select
components at a later time, then click Next and skip the next step in this
procedure.

This wizard page lists EAServer profiles already configured in your
development environment.

Make sure your EAServer is running
If you click Next without selecting the Skip EAServer Components check
box, the wizard attempts to connect to the server that is selected in the
Choose EAServer Profile dialog box.

CHAPTER 9 Developing 4GL JSP Pages

Working with Web and JSP Targets 175

9 Select the EAServer components you want your 4GL JSP page to access,
and click Next.

10 On the last wizard page, review the summary of page properties, and click
Finish.

Enabling 4GL mode in an existing page
You change an existing page in your Web target to 4GL mode by opening the
page in the HTML editor and selecting a check box in the Page Properties
dialog box. Some of the pages of the Page Properties dialog box are available
only to Web pages for which you select the 4GL mode. After you select the
4GL mode check box, you can add other 4GL properties to the page and access
the server-side event model in the integrated Script editor.

Table 9-3: Property pages of the Page Properties dialog box

On this page Specify this

Page Presentation details for the page.

Destination A self-link, or a link to a target page, including parameters and
parameter bindings for the target page. Available to 4GL pages
only.

Parameters Page parameters for the current page and default values for those
parameters, if any. You cannot enter default values for parameters
on a non-4GL page.

Variables Variables that your page will use. Available to 4GL pages only.

EAServer Variables that represent EAServer components. Available to 4GL
pages only.

Developing pages

176 PowerBuilder

Post-conversion manipulation
If you change an existing page to 4GL mode, you must manually remove any
existing FORM tags and you must make sure that each control on the page has
a unique name. If you want to take advantage of 4GL functionality with a
control you added before changing the page to 4GL mode, you must select the
Server Side Scriptable check box on the control property sheet (or add the
PSSERVERSCRIPTABLE attribute for the corresponding INPUT or OBJECT
tag in Source view).

❖ To enable 4GL mode in an existing page:

1 Open the page in the HTML editor.

2 Right-click in the page, then select Page Properties from the pop-up menu.

3 On the Page tab of the Page Properties dialog box, select the Enable 4GL
Web Server Side Event Model check box.

When you select the check box, the 4GL property pages of the Page
Properties dialog box are enabled.

4 (Optional) Specify properties for the 4GL page on the newly enabled
pages of the Page Properties dialog box.

Adding content to 4GL JSP pages
After you open a new Web page in the HTML editor, you are ready to start
developing the page contents. The Page tab page of System Tree displays
information about any objects and controls that you add to your page.

When you develop a page, you typically add content in a prescribed order. For
example, you define parameters and variables as a first step, in order to access
those values from objects or scripts as you build the page. The following
procedure shows the steps you will most likely follow to develop 4GL JSP
pages.

Errors Type of error reporting the page uses. Available to 4GL pages only.

JSP Directives Add directives (page, include, or taglib) to your page. Available in
JSP targets only.

Inline Styles Style properties for the page.

Advanced Additional attributes for the page (some user interface properties,
such as a target page link, are also listed here).

On this page Specify this

CHAPTER 9 Developing 4GL JSP Pages

Working with Web and JSP Targets 177

❖ To develop a 4GL JSP page:

1 Add page parameters, page variables, and session variables.

See “Using parameters and variables” on page 177.

2 Add access to properties of EAServer components.

See “Accessing EAServer components” on page 181.

3 Insert form controls, and then bind these controls to parameters, variables,
or EAServer component properties already accessible on your page.

See “Adding controls” on page 186.

4 Set up page navigation.

See Chapter 10, “Setting Up Page Navigation.”

5 Write scripts for the events on your page.

See “Writing server scripts” on page 191.

Using parameters and variables
Web pages rely on page parameters and page variables to share data between
Web pages or to pass data from one page to another. For more information
about page parameters and variables, see “Managing page data” on page 128.

4GL advantage 4GL JSP pages provide a straightforward way to keep track of parameters and
variables during development. You can define parameters and variables from
the Page Properties dialog box. The 4GL extensions to the Web Target object
model help manage the parameters and variables when the page is processed
by JSP servers.

You can set target page parameters for a non-4GL page, but to take advantage
of the Web Target user interface for parameter binding, the linking page must
be 4GL enabled.

Navigation style The type of value you can pass to a target page parameter depends on the
navigation style you select. You can navigate to another page through a
hyperlink, a form submit, or a server-side redirect script. However, if you use
only the hyperlink navigation style, you lose the advantages of 4GL
functionality for passing parameters.

Using parameters and variables

178 PowerBuilder

The 4GL form submit style is equivalent to setting FORM element attributes
as follows: the ACTION attribute to the target URL and the METHOD
attribute to POST. The entire 4GL page is considered as a single form. You
select the target URL on the Destination tab of the Page Properties dialog box.
Parameters on the target page are automatically bound to parameters, variables,
or controls on the linking page that have the same names.

For more information on navigation style and its effects on passing parameters,
see “About page navigation” on page 201.

Steps in passing
parameters

Typically, the steps involved in passing parameters from one page to another
include:

• Setting up parameters for a target page from the 4GL JSP Page wizard or
the Parameters page of the Page Properties dialog box.

• Setting up the parameters, variables, or control values on the linking page
that you want to send to the target page.

• Selecting the binding type and setting the value you want to bind from the
linking page to the target page.

Automatic selection of binding type and bind value
When you use a 4GL form submit navigation style (by selecting the target
page on the Destination tab of the property sheet for the linking page),
binding type and bind value are automatically selected. These noneditable
selections are based on name matching between parameters on the target
page and parameters, variables, or controls on the linking page.

For information on referring to parameters and variables in scripts on 4GL JSP
pages, see “Adding scripts to 4GL JSP pages” on page 194.

Setting up page parameters
You use page parameters on a target page to manage data sent from a linking
page. If no data is sent and the target page is 4GL-enabled, the target page can
use default values for its parameters. You set default values for parameters on
the Parameters page of the Page Properties dialog box. Default values for page
parameters are valid only on 4GL-enabled pages.

CHAPTER 9 Developing 4GL JSP Pages

Working with Web and JSP Targets 179

If a default value is not set
If no data is sent from a linking page for a given parameter and a default value
is not set on the 4GL target page, the only value available to the target page is
an empty string ("").

On 4GL JSP pages, parameter values also become page variables that you can
access in server scripts.

Identifying parameters
on a target page

To pass data from one page to another, you set up parameters on the target page
to receive the data from a linking page. You can set up parameters on the
linking page following the same procedure.

❖ To set page parameters for a target page:

1 Right-click a Web page in the HTML editor, then select Page Properties
from the pop-up menu.

2 In the Page Properties dialog box, click the Parameters tab.

3 On the Parameters page, click the New button.

4 Under the Parameter Name column, type the name of the parameter.
(Optional) If your page is 4GL-enabled, type the default value for the
parameter under the Default Value column.

The default value is the value set for a parameter when a linking page does
not pass a value for the parameter.

Using parameters and variables

180 PowerBuilder

5 Repeat steps 3 and 4 for each parameter you want to add.

6 Click Apply.

Setting parameter bindings on the linking page
In a Web application, you often pass data from a linking page to a target page
that has page parameters defined for receiving the data. At design time, after
you set page parameters on a target page, you can see those parameters in the
user interface for a linking page. On the linking page, depending on the
navigation style you select, you can specify the target for page navigation in a
dialog box. The linking page must be 4GL-enabled.

There are three principle navigation styles: hyperlink, form submit, and server
redirect. The user interface for binding parameters is different for each
navigation style. To view and bind the target page parameters from the linking
page using the different navigation styles, see “About page navigation” on
page 201.

Setting up page and session variables
You create page and session variables for use in server scripts. The variables
for a 4GL JSP page are available to all server scripts, including events and
blocks of server scripts used to generate a section of a page. The Web Target
user interface makes it easy to bind variables from a linking page to parameters
from a target page.

For more information about page variables and session variables, see
“Managing page data” on page 128. For information about passing parameters
using different navigation styles, see “About page navigation” on page 201.

Variable properties The value of a variable depends on the following:

Table 9-4: Properties of variables

A read/write variable lets users set a value on a page in their browser. A server
action for the page returns the client-entered value to the server.

Property Value

Data Type (JSP
targets only)

boolean, byte, char, double, float, int, long, short, String

Life Time Page or session

Client Access None, read only, or read/write

CHAPTER 9 Developing 4GL JSP Pages

Working with Web and JSP Targets 181

Defining variables When you define variables for a page, you can set the scope and the client
access attributes for each variable.

❖ To define page or session variables:

1 Right-click in a 4GL JSP page open in the HTML editor, then select Page
Properties from the pop-up menu.

2 In the Page Properties dialog box, click the Variables tab.

3 On the Variables page, click the New button, and then specify values for
the variable.

4 Repeat step 3 for each variable you want to define.

5 Click Apply.

Accessing EAServer components
4GL JSP pages provide tight integration with EAServer servers. Using 4GL
JSP pages facilitates access to EAServer components, component properties,
and component methods.

Accessing EAServer components

182 PowerBuilder

For a deployed 4GL JSP page, the connection to the EAServer server
associated with the page is made before the page is loaded in a client browser.
If component stubs are available to the page server, components accessed by
the page get instantiated at load time.

Before you start working with EAServer components, you should be familiar
with component support in EAServer. For details about EAServer components,
see the EAServer Programmer’s Guide.

About EAServer integration
4GL JSP pages integrate EAServer components in several ways, by:

• Binding controls to the properties of an EAServer component to
incorporate data returned from the EAServer component

For information about binding controls to the property of an EAServer
component, see “Binding controls to properties of EAServer
components” on page 187.

• Writing a server script that directly accesses an EAServer component

You can drag an EAServer component or a method on an EAServer
component directly from the System Tree to a server script. For more
information about adding EAServer methods to a page, see “Writing
scripts to access EAServer components” on page 196.

• Writing a server script that manipulates a variable representing an
EAServer component. For more information about working with variables
that represent EAServer components, see “Making properties of
EAServer components available for binding” on page 183 and “Writing
scripts to access EAServer components” on page 196.

Working with EAServer components
After you define an EAServer profile in PowerBuilder, the 4GL JSP Page
wizard and the Components tab of the System Tree list the components
available on the server. You can select components in the wizard, or drag
components from the System Tree to your page to give your page access to the
components.

CHAPTER 9 Developing 4GL JSP Pages

Working with Web and JSP Targets 183

Making properties of
EAServer components
available for binding

Providing page access to a component lets you use it for data binding. Data
binding lets you bind a property of an EAServer component to a page control,
associating the control with the property value.

Properties available for binding comprise a standardized set of set and get
methods. In general, components are available for binding if they display a get
method that does not require arguments.

For example, the picture that follows is part of a System Tree display of
components on an EAServer server:

The Artist component has a getInfo method that does not have any arguments.
That means that if you add the component to your 4GL JSP page, the Info
property of the Artist component is available for binding to controls on the
page.

The 4GL JSP Page wizard lets you select components to add to your page. You
can also defer adding components until after the page is created.

❖ To make properties of EAServer components available for binding:

1 Drag an EAServer component from the Components tab of the System
Tree to the Page view of a 4GL JSP page in the HTML editor.

Start EAServer
The server must be running before you can see the server components in
the System Tree.

Accessing EAServer components

184 PowerBuilder

The EAServer page of the Page Properties dialog box displays. This page
supplies the component name, a default variable name (based on the
component name), and a default scope (page) for the variable.

2 Change any of these values as needed and click OK.

Now the variable representing the component is available to your page.

For information about binding controls to EAServer component properties, see
“Binding controls to properties of EAServer components” on page 187.

Getting information
about EAServer
components

After your page has access to an EAServer component, you can display
information about the characteristics of that component on the Page tab of the
System Tree (as well as on the Components tab). You can find the component
under the EAServer Objects branch of the Server Side node of the Page tab.
The Properties menu item on the pop-up menu for the component displays the
properties of the component.

Drag and drop from the Page tab
If you drag an EAServer component from the Page tab of the System Tree to
the integrated Script editor or the Source view, the name of the component is
added to the open script or the source code. The Page Properties dialog box
does not display as it does when you drag and drop the same component from
the Components tab to the Page view.

CHAPTER 9 Developing 4GL JSP Pages

Working with Web and JSP Targets 185

Setting up EAServer login variables
4GL JSP pages make it easy to set up client login for pages that access
EAServer components. If your application prompts users for user name and
password, you can bind this data to either a page or a session variable. By using
a session variable, a user can log on once during a browser session, and then
access multiple EAServer components from the server using the same user
name and password.

❖ To set up login variables:

1 Right-click in a 4GL JSP page open in the HTML editor, then select Page
Properties from the pop-up menu.

2 In the Page Properties dialog box, click the EAServer tab.

3 Click the New button on the EAServer page.

The cursor displays in a new line in the list box of components for the
page. An ellipsis button displays on the same line.

4 Click the ellipsis button on the new line under Component Name.

The Select EAServer Component dialog box displays.

5 Specify the user ID (user name) and password for the component, and the
appropriate binding type for each value.

You can bind the User ID and Password for the component to a constant
value, a page parameter, a page variable, or a session variable.

Adding controls

186 PowerBuilder

For more information about binding, see “About page navigation” on
page 201.

Adding controls
You add controls to 4GL JSP pages the same way you add them to other Web
pages. When you add controls to 4GL JSP pages, however, the server scriptable
property is turned on by default.

Server scriptable
property

The server scriptable property does the following:

• Creates a server object that represents the control

For server scripts, you access the object as a page variable that has the
same name as the control (which is why controls must have unique
names). The control is added under the Server Side branch in the Page tab
of the System Tree when the server scriptable property is selected.

• Supports binding to properties of EAServer components and other page
data (from page parameters, page variables, and session variables)

CHAPTER 9 Developing 4GL JSP Pages

Working with Web and JSP Targets 187

Supported controls 4GL pages provide enhanced support for HTML form field controls. Several
controls present special conditions on 4GL JSP pages:

• Hidden text This is a client-side control. It is not server scriptable, but is
available for 4GL-enabled Web pages only.

• Static text The Static Text control is a specialized text field that can be
manipulated by server scripts. The client cannot change the value of this
text. The Static Text control is available on 4GL JSP pages only.

• Check box The value of a check box sent to the server from a 4GL JSP
page is a boolean value (T or F). The Value To Send To Server field on the
Checkbox Properties dialog box for a 4GL JSP page is grayed.

• Standard button A standard button on a 4GL JSP page can work like a
submit button if you add a server redirect on the ServerAction event.
However, if you code the client-side onclick event to return False, the
ServerAction event will not be triggered.

• Submit button The client-side onclick event for a submit button is
triggered only on a 4GL-enabled Web page. If you code this event to return
False, a form submit (either to the current page in a self-link or to a URL
that you select on the Destination page of the Page Properties dialog box)
does not occur and the ServerAction event is not triggered.

• Radio button Radio buttons are different from other controls because
they function as a group. The server scriptable property is either enabled
or disabled for all buttons in the group. Each button in the group uses the
same binding and has the same properties. If you make a change to a
binding or a property for one button, the change takes effect for the others
too.

Binding controls to properties of EAServer components
Binding a server-scriptable control to the property of an EAServer component
gives the control access to the data encapsulated by that property. It also
automates the process of moving data to and from the component. For
components that encapsulate data from a database, binding a property of that
component to a control lets you quickly get data and update it.

Adding controls

188 PowerBuilder

Adding the component
to a page

Before you can bind a control to the value of an EAServer component property,
the component value must be available to your page. You can add a component
to an existing page by selecting the component on the EAServer page of the
Page Properties dialog box or by dragging and dropping it onto the page from
the System Tree. The component must have at least one get method for a
property that you want to bind to your control. The required get method must
not include any arguments.

For more information about accessing a property for an EAServer component,
see “Accessing EAServer components” on page 181.

Using component
stubs at runtime

For the binding to work at runtime, component stubs must be available to the
page server. Component stubs can be generated automatically from
PowerBuilder or you can use EAServer Manager to generate the stubs.

Regenerating component stubs
EAServer stubs are regenerated only if you select a full rebuild for your target
deployment rebuild option. You can make this selection in the Deployment
Configuration wizard or in the Deployment Configuration Properties dialog
box. By default, the default rebuild option for a deployment configuration is
incremental. If the incremental rebuild option is selected, the time it takes to
deploy a 4GL target that uses EAServer components can be significantly
reduced.

The directory containing the component stubs must be included in the classpath
used by the page server. If the page server caches pages it generates, and if you
modify a component and regenerate the stubs after loading a page from your
Web server, you may need to stop and restart the Web server to see changes on
the client side.

❖ To bind an EAServer component property to a control:

1 Select Insert>Form Field, then select the type of control (such as Single
Line Text) you want to bind to a component property.

The Properties dialog box for the control displays.

2 On the main page of the control properties dialog box, type the name of
the control and other information as needed.

3 On the Bind page, select an EAServer component.

The list includes only EAServer components that have properties available
for binding.

CHAPTER 9 Developing 4GL JSP Pages

Working with Web and JSP Targets 189

4 Select a component property.

The property name is the property that provides access to the component
through a get method defined for it in EAServer. The get method must not
take any arguments for it to appear in the Property Name drop-down list.

Binding controls to page data
You can also bind a server-scriptable control to the value of a page parameter,
page variable, or session variable. The Bind page in the Properties dialog box
for each control lists the properties available for each of these components.

❖ To bind page data (the value of a parameter or variable) to a control:

1 Select Insert>Form Field, then select the type of control (such as Single
Line Text) you want to add to your Web page.

The Properties dialog box displays.

2 On the main page of the control properties dialog box, type the name of
the control and other information as needed.

3 On the Bind page, select Page Parameter, Page Variable, or Session
Variable as the component you want to bind to the control.

Adding controls

190 PowerBuilder

4 Select the name of a parameter or a variable that appears in the property
list:

Disabling server scripting for a control
Disabling server scripting for a control makes the control unavailable for
binding to input data. The control is inaccessible to server scripts and cannot
pass data back to the server.

❖ To disable server scripting for a control:

1 Right-click the control on a page open in the HTML editor, then select
Properties from the pop-up menu.
or
Insert a new control.

The Properties dialog box for the control displays.

2 On the initial page, clear the Server Side Scriptable check box.

CHAPTER 9 Developing 4GL JSP Pages

Working with Web and JSP Targets 191

Writing server scripts
When editing Web pages in Page view of the HTML editor, you use the
integrated Script editor to add scripts for events appropriate to the context in
which you are working. You add scripts for the server events and write other
server scripts the same way you do for client event scripts. For more
information about using the integrated Script editor, see Chapter 6, “Writing
Scripts.”

System Tree The System Tree lists the objects, methods (including EAServer methods),
properties, events, parameters, and variables you can access from server
scripts:

You can drag any of these items from the System Tree and drop them onto the
Script editor (or into Source view of the HTML editor). When you drop
methods or properties into a script, the appropriate format for the call appears;
you need only supply the arguments.

psPage object The psPage object represents a 4GL JSP page. It is a global object on the server
that encapsulates the extensions to the Web Target object model and controls
page processing for 4GL JSP pages. For information about page processing,
see “How page request processing works” on page 197.

Writing server scripts

192 PowerBuilder

Responding to events on your page
An event-driven architecture is the foundation for working with 4GL JSP
pages. Writing scripts to respond to server events controls the data that displays
on your Web page.

Server events In the events list of the Script editor, server events appear in
blue text. You must enable the 4GL Web server-side event model to display
these events in the events list (a 4GL JSP page is required). When you write a
script to handle an event, an icon identifies which events have associated
scripts.

Server events for a page appear in the events list for the window object; server
events for a control appear in the events list for a control object. Here the events
list shows a partial listing of the server events available for the page (window
object):

Client events You can also write scripts for client-side JavaScript events.
Client events appear in black text in the events list. You do not need to enable
the 4GL mode to write scripts for these events.

Summary of principal
events for a page

For most 4GL JSP pages, you should add scripts to handle initialization,
response to page controls, and validation:

Table 9-5: Typical server-side events to script on 4GL pages

To do this Write a script to handle this event

Initialize page the first time a user visits it FirstTime

For pages that use self-navigation,
initialize a page on subsequent visits
during the same user session

BeforeBinding

Respond to an action that a user
performed using a page control (such as
clicking a button)

ServerAction

Validate a page Validate and ValidationError

CHAPTER 9 Developing 4GL JSP Pages

Working with Web and JSP Targets 193

Example 1: Initialize a page for a first visit Here the page retrieves the data
about a user and displays it in the Web DataWindow dw_cart when the page
initializes:

Example 2: Validate page If the ValidationError event is fired in response to
a page validation error, the user sees the following message in an alert box:

Summary of optional
events for a page

The following events are available on 4GL JSP pages:

Table 9-6: Server-side events for 4GL JSP page

This event Occurs

RequestStart At the very beginning of page processing, before server-side
objects have been created and before any data binding or
variable retrieval.

AfterBinding After the controls have been bound to the input data and all
validation has been done, but before any actions are
performed.

BeforeAction After data binding and validation and just before performing
any action.

AfterAction After all actions have been performed but before page
generation.

BeforeGenerate Before any generation happens. It is triggered both when the
page is requested for the first time and when a
self-navigation is done.

AfterGenerate When all generation has taken place.

RequestFinish After all generation is complete. It is the last event to occur
on the page.

ServerError When the ReportError method is called. It can be used to
alert you when something goes wrong during processing.

Writing server scripts

194 PowerBuilder

psDocumentWrite
HTML generation occurs after the BeforeGenerate event. Do not place
psDocument.Write in a script before this event. The appearance of the resulting
page would be unpredictable.

Events for page
controls

4GL JSP pages also provide events for the various types of controls:

Table 9-7: Server-side events for controls on a page

For a description of server-side events on Web DataWindows, see the
DataWindow Reference. For a description of the server-side events on other
controls on 4GL pages, see the Web and JSP Target Reference.

In addition to viewing the events available for a control from the events list in
the integrated Script editor, you can expand a control on the Page tab page of
the System Tree to see a list of events for that control.

❖ To view a list of events available for a control:

1 On the Page tab page of the System Tree, click the name of the control.

2 Expand the item for the control, then expand its Events folder.

Adding scripts to 4GL JSP pages
The extensions to the Web Target object model give you other ways to
customize a page by writing scripts to access:

• Properties and methods for the psPage object

• Methods for objects that represent controls

For these controls These events are available

SingleLineText Validate, ValidationError, ItemChanged

TextArea Validate, ValidationError, ItemChanged

RadioButton group ItemChanged

ListBox ItemChanged

PushButton ServerAction

CheckBox ItemChanged

StaticText ServerAction

DataWindow AfterAction, AfterRetrieve, AfterUpdate, BeforeAction,
BeforeRetrieve, BeforeUpdate, OnDBError, Validate,
ValidationError

CHAPTER 9 Developing 4GL JSP Pages

Working with Web and JSP Targets 195

Properties and
methods of the
psPage object

The psPage object represents an entire 4GL JSP page. You can add properties
as well as methods for the psPage object to your page by dragging them from
the System Tree, dropping them into the appropriate place in the Script editor
(or in Source view of the HTML editor), then defining arguments.

For a list and description of psPage properties and methods, see the Web and
JSP Target Reference.

All psPage methods (except Redirect) help fine-tune error reporting for your
page. The psPage Alert method lets you display a client-side Alert box to make
sure that users of your Web application see important messages. If you use the
Alert method to inform users about validation errors, it lets them correct entries
that are not in the correct syntax.

Here is how you can use the Alert method in a script in response to a
ValidationError event:

Adding scripts for
properties of controls

Objects for controls also have associated properties that you can access in
server-side scripts:

Table 9-8: Typical properties for controls on a 4GL JSP page

Typically you set values for object properties on the property pages for the
control rather than in server scripts.

Using the psPage
prefix

When referring to read-write variables in script for client-side events, it is best
to include the psPage prefix before the variable name. Otherwise,
client-modified values might not be passed on to a target page; initial values
are passed if the prefix is not included in the script. Page parameters cannot be
accessed in client-side script. You can optionally use the psPage prefix for the
names of controls on the page.

Property Description

name The name of the control. This is a read-only property.

value The label for the control.

visible Sets whether or not the client control is generated. If not visible, there
is no access to the client control.

enabled Sets whether or not the control allows focus. (This property works
only in browsers that support the DISABLED attribute.)

Writing server scripts

196 PowerBuilder

Example 1: Client-side code This script in a client-side onchange event sets
the v1 read-write variable to a value the client enters in the sle_1 text box (an
alert message should not be prefixed with psPage on the client side):

alert("This is the client-side onchange event");
psPage.v1=psPage.sle_1.value;

Example 2: Server-side code This same script in a server-side event (such
as ItemChanged or ServerAction) should omit the references to psPage, except
for code that calls methods on the server page object:

psPage.Alert("This is a server-side event");
v1=sle_1.value;

For more information on scripting, see Chapter 6, “Writing Scripts” and
Chapter 7, “Working with Application Servers and Transaction Servers.”

Writing scripts to access EAServer components
4GL JSP pages provide ready access to EAServer components from server
scripts. You can drag and drop a method for an EAServer component into a
script or access a variable for an EAServer component.

Adding EAServer
methods to server
scripts

You can drag any component method visible in the System Tree to a server
script.

The following illustration shows the result of dragging the getInfo method of
the Artist component to the integrated Script editor in the script for the
BeforeGenerate server-side event. The method is called when the
BeforeGenerate event is triggered for the page.

If you drag and drop a method that requires arguments, you simply type the
arguments in the Script editor.

For how to set up access to an EAServer server to view components and
component methods installed on a server, see “Working with EAServer
components” on page 182.

CHAPTER 9 Developing 4GL JSP Pages

Working with Web and JSP Targets 197

Manipulating variables
that represent
EAServer components

Scripts can also access EAServer components represented as variables on your
page. Whenever you drag an EAServer component from the System Tree and
drop it on your page, the component is available as a variable. The variable
name is the same as the component name unless you change it.

❖ To view the EAServer variables for your page:

1 Right-click in a 4GL JSP page open in the HTML editor, then select Page
Properties from the pop-up menu.

2 In the Page Properties dialog box, click the EAServer tab.

On the EAServer page, you see the list of EAServer components and the
associated variables.

How page request processing works
When processing a 4GL JSP page, the Web Target object model calls events for
the psPage object in a specified order. The psPage global object controls the
event model and the communication between pages.

Sequence for
processing pages

When a browser requests a page, the JSP application server processes a 4GL
JSP page in this order:

1 Starts page processing

• Initializes and restores page variables and parameters

• Creates the server object model

2 Performs page-specific processing

• Validates the page and binds input data if data is submitted to the
current page (typically in preparation for redirection to another page)

• Binds values for EAServer component properties to controls

3 Generates the new page

How page request processing works

198 PowerBuilder

The following tables summarize the processing of 4GL JSP pages and show the
order in which server-side events are triggered during that processing:

Table 9-9: Order of events at the start of page processing

Table 9-10: Order of events that perform page-specific processing

Table 9-11: Order of events that generate the new page

Page processing Events

Initiate page request psPage.RequestStart

First page request psPage.FirstTime

Reload page with data submitted to the reloaded page
(typically in preparation for redirection to another page)

psPage.BeforeBinding

Page processing Events

A control had a specified value on request and the value of
that control changed

control.Validate

The validation fails control.ValidationError

The validation succeeds control.ItemChanged

Data binds to component properties; sets the value of the
property of a corresponding EAServer component (for
each server object)

none

Validate page psPage.Validate

The page or any control on the page fails validation psPage.ValidationError

Binding and validation complete psPage.AfterBinding

Page control initiates a form submit psPage.BeforeAction

control.ServerAction

psPage.AfterAction

For a first request or for pages that require data binding,
sets the value of the property of a corresponding EAServer
component (for each server object)

none

Page processing Events

If the script does not redirect to another page, process the
page template as before. Include other server scripts.

psPage.BeforeGenerate

If the script does not redirect to another page, generation is
complete.

psPage.AfterGenerate

Generation is complete. This event is always triggered. psPage.RequestFinish

CHAPTER 9 Developing 4GL JSP Pages

Working with Web and JSP Targets 199

Disabling 4GL mode
Usually there is no reason to disable 4GL mode for a page. If you do so, you
should be aware of the impact of this change.

If you turn off 4GL mode on the Page page in the Page Properties dialog box,
the page cannot use any of the processing done by the 4GL JSP pages. In this
case, the events do not produce any action because the server objects
representing the controls are not available.

Server event scripts that you created remain in the source file. If you want to
remove those scripts, you must edit the source file and delete them. You must
also edit the source to place FORM tags around existing fields or controls
whose values you want to submit to a different page.

Disabling 4GL mode

200 PowerBuilder

Working with Web and JSP Targets 201

C H A P T E R 1 0 Setting Up Page Navigation

About this chapter This chapter describes how you can link one page to another and pass data
from one page to the next in 4GL pages and non-4GL Web pages.

Contents

About page navigation
One of the major tasks when creating a set of Web pages is managing how
one page links to another and how data is passed from one page to the
next.

Navigation styles You can link from one page to another using any of three navigation
styles:

• A hyperlink using the HTML <A> element

• A form submit for the page

• A server redirection using self-navigation (where the form
representing the current page submits back to itself)

All three styles let you bind parameters to target pages, but the level of
support for binding varies. Which navigation style you choose depends on
how you want data passed, whether or not the data requires processing by
the server, and the flexibility you need. Most 4GL Web pages navigate to
other pages by server redirection, which provides the most flexible way to
navigate from one page to another. Server redirection can also be used to
navigate from non-4GL pages, but more coding is required. Table 10-1
next shows the advantages and disadvantages of the three navigation
styles.

Topic Page

About page navigation 201

Managing client hyperlinks 204

Managing client form submission 206

Managing server redirection 209

About page navigation

202 PowerBuilder

Table 10-1: Navigation style advantages and disadvantages

Navigation Advantages Disadvantages

Hyperlink • Jumps directly to another
page without server
processing

• Works well with a range of
different target pages when
processing is unnecessary
before moving to the target
page

• Allows non-matching
names for parameter
binding (binding defined
in HREF attribute in page
source)

• Requires the values of
parameters to be available when
the page is generated.

• Does not return to the server to
process current page before
moving to the next page. (Not
all parameters and variables are
available to the target page.)

• Does not support server actions.

• Does not support validation
before navigation.

• Does not allow the user to
recover from errors caused by
entering data in an invalid
format.

Form submit • Jumps directly to another
page without server
processing

• Requires the target page to
define parameter names to
match the parameters passed.

• Provides only the data from the
fields on the page form.

• Does not support validation
before navigation.

Server redirect • Supports validation and
server actions

• Processes the values of
parameters before passing
them to a target page

• Allows non-matching
names for parameter
binding (binding defined
in server script)

• Retains the values of
parameters and makes all
the data available for
parameter binding

• Lets you redirect the client
to another page from the
middle of a server script

• Lets you stop navigation if
validation fails

• Loads a current page, then the
target page in the user’s browser
(making this method slower
than the other two styles).

• Does not allow you to add
FORM elements to a 4GL Web
page. (A FORM represents an
entire 4GL Web page.) You can
still insert form field controls,
but they are not surrounded by
FORM tags in Source view.

CHAPTER 10 Setting Up Page Navigation

Working with Web and JSP Targets 203

Target pages When you develop Web pages, you can specify a target page that already exists,
or one that you plan to create. If you specify a page that already exists, you can
bind values from the linking page to the parameters of the target page. If you
specify a page that does not yet exist, you can set parameters on the linking
page; then, when you create the target page, you specify which parameters it
requires of those being passed from the linking page. For more information
about page parameters, see “Setting up page parameters” on page 178.

Parameter binding When you establish navigation from one page to another, you can bind values
from the linking page to parameters on the target page. 4GL Web pages support
several types of parameter bindings:

Table 10-2: Parameter binding for 4GL Web pages

The user interface for binding parameters is different for each navigation style:

Table 10-3: Information about navigation style and parameter binding

Type of binding Description Navigation style restrictions

Constant A fixed value Not available for form submit.

Page Variable A variable whose
value is set on the
server

Only initial value used by hyperlink
(cannot be changed by client). Variable
name must match parameter name on
target page for form submit.

Page Parameter A parameter
whose value is set
on the server

Only initial value used by hyperlink
(cannot be changed by client). Parameter
name must match parameter name on
target page for form submit.

Expression The value of an
expression set on
the server

Not available for form submit.

Control The value property
of a server object

Not available for hyperlink.

Navigation style For information, see

Hyperlink "Managing client hyperlinks" next

Form submit “Managing client form submission” on page 206

Server redirect “Managing server redirection” on page 209

Managing client hyperlinks

204 PowerBuilder

Managing client hyperlinks
For client hyperlinks, an HTML anchor <A> element directly links one page
to another. On the linking page, you specify the parameters (including the type
of binding and the value for the parameter) you want to pass to parameters on
the target page.

The following drawing illustrates how parameters are made available to a
target page from a hyperlink on a linking page in a target. Parameters are
passed the same way for JSP targets, except that the target and linking pages
would typically have .jsp extensions instead of the .htm extensions displayed
in the drawing:

Figure 10-1: Passing parameters in a hyperlink

The server sets the parameters sent to the target page. Only initial values are
passed to the target parameters; client-entered values are not processed.

❖ To pass parameters with a client hyperlink:

1 Drag an HTML A element from the Language tab of the System Tree to a
4GL Web page in the HTML editor (Page or Source view)
or
Click the hyperlink tool button in the painter bar for the HTML editor with
a 4GL Web page open in Page or Source view.

The Hyperlink Properties dialog box displays.

2 On the Hyperlink page, specify link information, including a target page
destination.
Make sure the Server-Side Scriptable check box is selected.

CHAPTER 10 Setting Up Page Navigation

Working with Web and JSP Targets 205

3 On the Parameters page, specify page parameters for the target page, the
type of binding for each parameter, and the value from the current page
that you want to bind to each parameter.

If not 4GL
If the linking page is not 4GL, the Parameters tab is grayed out.

If the linking page is 4GL and the target page exists and has page
parameters defined for it, these parameters display automatically under the
Parameter Name column. They are available for binding to constants,
expressions, page parameters, and page variables from the current page.

You can add new parameters to the list and define them later in the target
page. Parameters and variables on the current page automatically display
under the Bind Value column when you select a bind type of Page
Parameter or Page Variable, respectively.

4 Click OK after you finish setting the hyperlink properties.

For information about setting hyperlinks on DataWindow objects and columns,
see Chapter 11, “Using the Web DataWindow Design-Time Control.”

Managing client form submission

206 PowerBuilder

Managing client form submission
When a form submits directly to another page, the data passed to the target
page must already be available from the linking page. The following data is
available to the target page:

• Values for server-scriptable controls

• Client-side parameters (including parameter values set on the client)

On 4GL Web pages, a form represents a page. When a user action submits a
page form, the form can submit to the same page (self-navigation) to refresh a
page in the user’s browser or to prepare for a server redirection. Otherwise, it
can be submitted directly to another page (form submit). For more information
about server redirection, see “Managing server redirection” on page 209.

For a form submit, the names of the client controls must map to (match) the
names of the parameters on the target page. To take advantage of the Web
Target interface for the form submit navigation style, you must first set the
parameter names on the target page.

No forms on 4GL Web pages
You should not add FORM tags to 4GL Web pages. If you change a non-4GL
page to 4GL mode, you must manually remove any FORM tags in Source view.
For 4GL Web pages, the entire page is represented as a single form.

CHAPTER 10 Setting Up Page Navigation

Working with Web and JSP Targets 207

The following drawing illustrates how parameters get passed when a page form
submits directly to another form in a Web site target or a non-4GL JSP target.
Parameters are passed the same way for JSP targets, except that the target and
linking pages would typically have .jsp extensions instead of the .htm
extensions displayed in the drawing:

Figure 10-2: Passing parameters in a form submit

For a fuller description of how to pass parameters using the form submit
navigation style, see “Using parameters and variables” on page 177.

Managing client form submission

208 PowerBuilder

❖ To set parameter bindings for a 4GL form submit:

1 Right-click the linking page in the HTML editor, then select Page
Properties from the pop-up menu.

The Page Properties dialog box displays.

2 Click the Parameters tab
or
Click the Variables tab.

3 Click the New button, and add a parameter or variable with the same name
as a parameter on the target page.

For parameter binding purposes, the names you type are case sensitive.
The parameter or variable name on the linking page must exactly match
the parameter name on the target page.

For steps to add a parameter, see “Setting up page parameters” on page
178. For steps to add a variable, see “Setting up page and session
variables” on page 180.

4 Repeat steps 2 and 3 for each parameter and variable you want to add to
the current (linking) page.

5 Click the Destination tab on the open (linking) page.

6 Select the Submit To URL radio button option.
Click the browse (...) button and select your target page from the Choose
URL dialog box.

The parameters of the target page are listed in the Parameter Name column
of the grayed-out list box. You cannot directly modify the items in this list.

CHAPTER 10 Setting Up Page Navigation

Working with Web and JSP Targets 209

If a parameter or variable name on the current (linking) page matches a
parameter on the target page, the matching name is listed in the Bind Value
column. The Bind Type indicates whether the matching name is a page
parameter or page variable on the current page.

7 Click Apply.

Managing server redirection
4GL Web page
navigation

4GL Web pages provide added support for navigation between pages. Server
redirection is the navigation style of choice when a parameter value passed to
another page relies on user input, or when you want to validate user input. The
4GL Web page generates the server script that specifies the target page and the
values that get passed to parameters on the target page.

A server redirection can initiate a link to another page from anywhere in a
server script. Typically you add a Redirect call in a ServerAction event for a
command or picture button, or in the AfterAction event for the psPage object
or a Web DataWindow control that you place on the page.

Managing server redirection

210 PowerBuilder

All server data is available for parameter binding, because the redirection
occurs in the server script. The page gets processed by the server, enabling the
page to take advantage of all variables available there. Because the ASP object
model does not support 4GL functionality, server redirection is not available
for ASP targets.

The following drawing illustrates how parameters get processed in a 4GL JSP
application when a server redirection displays another page. Parameters are
passed the same way for JSP targets, except for the application server name.
Also, the target and linking pages in a JSP application would typically have .jsp
extensions instead of the .htm extensions displayed in the drawing:

Figure 10-3: Passing parameters in a server redirect

Setting up a server
redirection

You can set up a server redirection from the integrated Script editor by
selecting a server event, then specifying the target page and the parameters to
pass to that page. The script is created for you.

❖ To set up a server redirection from the integrated Script editor:

1 In a server script or in the script for a control with a server action event
selected in the events list, right-click in the Script editor.

2 Select Insert Redirect from the pop-up menu.

3 In the Redirect Properties dialog box, specify the target file or URL.

CHAPTER 10 Setting Up Page Navigation

Working with Web and JSP Targets 211

4 Specify the target page parameters, the type of binding for each parameter,
and the value you want to bind to the parameter.

If the target page exists with input parameters identified for it, these
parameters appear in the list of parameters on the Redirect page. You can
edit these parameters and add new ones.

5 When you finish setting the Redirect Properties, click OK.

The Script editor inserts a block of code. You can modify or remove this
block of code using the pop-up menu.

Changing parameter
bindings

You can change the binding for parameters from the Redirect Properties dialog
box.

❖ To change parameter bindings or parameter values for a server
redirection:

1 Right-click in the Redirect code in the integrated Script editor.

2 Select Edit Redirect from the pop-up menu.

3 In the Redirect Properties dialog box, make any changes needed to the
parameter definitions.

Managing server redirection

212 PowerBuilder

Working with Web and JSP Targets 213

C H A P T E R 1 1 Using the Web DataWindow
Design-Time Control

About this chapter This chapter describes the Web DataWindow design-time control (DTC)
you can add to your Web target pages.

Contents

About the Sybase Web DataWindow DTC
The Web DataWindow DTC (design-time control) lets you add
database-driven content to your Web applications.

Web DataWindow support
Thin-client implementation The Web DataWindow DTC provides support for the features available in

the Web DataWindow, a thin-client DataWindow implementation. As a
thin client, the Web DataWindow does not require any runtime
components on the client—only a standard Web browser.

Topic Page

About the Sybase Web DataWindow DTC 213

Adding a DataWindow to a Web page 217

Setting Web DataWindow DTC properties 223

Editing existing Web DataWindow DTC properties 233

DataWindow presentation styles and data sources 234

Binding data to DataWindow retrieval arguments 234

Defining hyperlinks on objects in a DataWindow 240

About the Sybase Web DataWindow DTC

214 PowerBuilder

The Web DataWindow has three types of implementation:

• XML Web DataWindow Separate XML (content), XSLT (layout), and
CSS (style) with a subsequent transformation to XHTML

• XHTML Web DataWindow XHTML content only

• HTML Web DataWindow HTML content only

Security setting
requirements

The Web DataWindow DTC is an ActiveX control. To use the Web
DataWindow DTC, you must be able to run ActiveX controls on the
development machine and script ActiveX controls marked safe for scripting.

You can change your machine’s ActiveX security settings in the Internet
Options dialog box that you access from the Control Panel or from the Tools
menu of the Internet Explorer browser. Changing the Default Level settings to
Medium is all that is required to enable you to use the Web DataWindow DTC.

Since the DTC is used only at design time, client security settings do not
require modification. Web DataWindow pages are still visible to client
browsers with High security settings.

Use existing
DataWindow objects

The Web DataWindow DTC lets you create Web applications that include
DataWindow objects created in PowerBuilder or InfoMaker. When you add a
Web DataWindow DTC to a Web page, the Sybase Web DataWindow DTC
Properties dialog box displays.

From this dialog box you can select the DataWindow object you want, the
location and connection information required by the server, and bindings for
any retrieval arguments. The script for accessing the Web DataWindow is
automatically inserted in your page.

CHAPTER 11 Using the Web DataWindow Design-Time Control

Working with Web and JSP Targets 215

What happens in a
Web application

Here is what happens when a client browser requests a page with an XHTML
or HTML Web DataWindow on it:

Figure 11-1: Architecture required for use with Web DataWindow

1 The user's browser requests the URL for the page template.

2 Server-side scripts in the template run, calling the server component
methods that generate the Web DataWindow code.

3 The Web page with the Web DataWindow is delivered to the browser.

4 The user interacts with the DataWindow.

5 Actions by the user cause the URL, with added action parameters, to be
sent to the server. The actions are communicated to the server component,
which causes modifications to the regenerated DataWindow, and the cycle
continues again with step 2.

When a client browser requests a page with an XML Web DataWindow
When an XML Web DataWindow is generated, the server-side and client-side
processes are more complex than with XHTML or HTML generation. For
information about what happens when a client browser requests a page with an
XML Web DataWindow on it, see the DataWindow Programmer’s Guide.

About the Sybase Web DataWindow DTC

216 PowerBuilder

Server-side environment
The Web DataWindow works with a server component hosted in:

• EAServer

• Microsoft Transaction Server

• COM+

The Web DataWindow retrieves and manipulates data from your enterprise
database. When you create a DataWindow object, you can set properties that
determine how the DataWindow object appears in the browser. The server
component can generate XML, XSLT, and CSS (with subsequent
transformation to XHTML), XHTML directly, or HTML for your
DataWindow object.

Additional EAServer
support

When you set up EAServer, the DataWindow HTMLGenerator100 is installed
for you as a default server component. It contains many methods that you can
display on the Components tab of the System Tree and invoke in server-side
method calls.

You can also create a custom DataWindow server component and deploy it to
your component server for greater flexibility. However, if your custom
component does not implement the HTMLGenerator100 interface, you cannot
use the Sybase Web DataWindow DTC. (You must manually code the
DataWindow connection information in a server script on your page.)

You can use the Web DataWindow Container component wizard to create a
custom component that implements the HTMLGenerator100 interface. The
main advantage of the wizard-created component is that it deploys all the
DataWindow objects in a selected target with the connection information
encoded in the component.

For information on creating and deploying a custom server component or a
Web DataWindow Container component, see the DataWindow Programmer’s
Guide. For information on DataWindow methods, see the DataWindow
Reference.

CHAPTER 11 Using the Web DataWindow Design-Time Control

Working with Web and JSP Targets 217

Benefits of using the Web DataWindow DTC
The Web DataWindow DTC provides an easy way to access a database from a
Web page. The DTC offers the following benefits:

• Enhanced productivity Using the Web DataWindow with the Web
DataWindow DTC decreases the amount of code you need to write. A Web
DataWindow DTC generates the scripts that access a DataWindow server
component, as well as the scripts and HTML to render the page. It also
generates the scripts that allow the server component to access a database.

• Reusability You can use a DataWindow object in as many Web pages as
you like.

• Ease of maintenance Whenever the data-driven requirements for a
Web page change, you do not need to rewrite the server scripts in the page;
instead you can simply modify the DataWindow object and update the
properties for the DTC if needed.

Adding a DataWindow to a Web page
You can use the Web/JSP DataWindow Page wizard to create a new Web page
with a DataWindow on it. For existing pages, you add a DataWindow to your
page using the Web Target toolbar or the Insert>Form Field menu in the Page
view or Source view of the HTML editor. You can also drag and drop a
DataWindow (or a Web DataWindow Container component) onto a Web page
in the HTML editor.

If you want your page to access a Web DataWindow component on EAServer,
both the wizard and the property pages give you quick access to a list of the
components available.

Adding a DataWindow to a Web page

218 PowerBuilder

Creating a page that has a Web DataWindow DTC

❖ To create a new page with a Web DataWindow DTC:

1 In an open Web Target workspace, select File>New from the menu bar.

2 Click the Web tab of the New dialog box.

3 Double-click the Web/JSP DataWindow Page wizard icon.

4 Follow the instructions in the wizard to complete the entries required.

The new page is not 4GL-enabled
If you want to enable 4GL processing for a new JSP page, you need to
select the Enable 4GL Web Server Side Event Model check box in the
Page Properties dialog box for the page after you create it.

❖ To insert a new Web DataWindow DTC in an existing HTML page:

1 In Page view or Source view of the HTML editor, put the insertion point
where you want the control to appear.

2 Select Insert>Form Field>DataWindow from the menu bar
or
Click the DataWindow button on the Insert toolbar.

Drag and drop
You can also drag the Sybase Web DataWindow DTC control from the
Components tab of the System Tree to an open page in the HTML editor
Page view or Source view. You can find the control under the ActiveX
Controls>Web Design-Time Controls branch on the Components tab.

The Sybase Web DataWindow DTC Properties dialog box displays.

3 Specify Web DataWindow DTC properties by making the following
selections:

Property selection For information

Source for the DataWindow
object

See “Selecting the source for a DataWindow
object” on page 223

Database profile See “Selecting a database profile” on
page 225

Web DataWindow generator See “Selecting a Web DataWindow generator”
on page 232

CHAPTER 11 Using the Web DataWindow Design-Time Control

Working with Web and JSP Targets 219

Specifying properties also typically involves taking these actions:

4 Do one of the following:

• In Page view Click OK in the Sybase Web DataWindow DTC
Properties dialog box.

• In Source view Click OK in the Sybase Web DataWindow DTC
Properties dialog box and then click OK to close the Edit Design Time
Control dialog box.

Using the Edit Design Time Control dialog box
You can do any of the following in the Edit Design Time Control
dialog box:

• Click OK to insert the control in the page

• Click Cancel to cancel the insert operation

• Click Properties to redisplay the Sybase Web DataWindow DTC
Properties dialog box

What you see in Page view
The labels from the header band of the DataWindow object that you select in
the Web DataWindow Properties dialog box (or in the Web DataWindow
wizard) display in Page view. If you did not specify a DataWindow object, you
see only an empty box—with a title based on the default DataWindow control
name to represent the Web DataWindow.

Typical actions For information

Binding data to DataWindow
retrieval arguments

See “Binding data to DataWindow retrieval
arguments” on page 234

Defining hyperlinks on
objects in a DataWindow

See “Defining hyperlinks on objects in a
DataWindow” on page 240

Changing presentation
details stored in the
DataWindow definition

See “DataWindow presentation styles and data
sources” on page 234

Scripting client or server-
side events on the
DataWindow

See “Choosing an object or event for
scripting”on page 109

Adding a DataWindow to a Web page

220 PowerBuilder

If you saved data in your DataWindow object, you can also see data in Page
view—unless you use a Web DataWindow Container component as the source
for your DataWindow object.

When you deploy the page, the generated source HTML and script is passed to
the server.

What you see in Source view
When you insert a Web DataWindow DTC in a Web page, the following text is
added to the page source between two METADATA comments:

• An <OBJECT> element that embeds the Web DataWindow DTC ActiveX
in the page. The control provides the information to manage the server
component that generates the client control. The OBJECT element has
parameters that keep track of various kinds of information about the DTC
definition.

For example, the OBJECT SourceFileName parameter specifies the PBL,
PSR, or SRD file that contains the DataWindow object definition. This
value is set to an empty string if a Web DataWindow Container component
is the DataWindow source.

• Server script generated by the DTC that provides logic for accessing the
Web DataWindow server component. To allow you to target multiple
application servers from the same source page, platform-independent code
is generated that takes advantage of the capabilities of the Web Target
object model.

The OBJECT element in the METADATA comment is required only when you
are authoring the page; it is not needed at execution time. However, when the
application server processes the page, it executes the generated server script on
the page and returns the resulting HTML to the Web browser.

CHAPTER 11 Using the Web DataWindow Design-Time Control

Working with Web and JSP Targets 221

Working with the generated text
Typically, you do not modify any of the text generated for the Web
DataWindow DTC. Changes you make are lost the next time you modify the
properties of the control and regenerate the text.

What you see in a non-4GL Web page
You can see the generated source for your page in the Source view of the
HTML editor. The following example shows the OBJECT element (and some
of the PARAM tags) added to the Source view for a Web DataWindow DTC in
a non-4GL page. They are wrapped in a METADATA comment:

The code for the DTC includes source and connection information. It calls the
Generate method on the server component inside a server script immediately
following the closing OBJECT tag and just before the closing METADATA
comment:

Adding a DataWindow to a Web page

222 PowerBuilder

What you see in a 4GL Web page
When placed on a 4GL Web page, the Web DataWindow DTC becomes an
object of type PSWebDataWindowClass (an extension to the Web Target object
model) with its own server-side methods and events. These are listed under the
Web Target object model node on the Language tab of the System Tree.

The OBJECT element on a 4GL Web page includes a special CREATE
attribute that sets the source and connection information for the DataWindow
object (similar to the code that is generated inside a server script on a non-4GL
page):

The server script generated on a 4GL page calls only the Generate method on
the server component:

On the Page view of the Web Target HTML Editor, you can code server-side
events (in 4GL Web mode only) from the integrated Script editor. After you
select a Web DataWindow control in the first drop-down list in the Script
editor, you can select a server-side event in the second drop-down list.
Server-side events display in blue, and client-side events display in black.

CHAPTER 11 Using the Web DataWindow Design-Time Control

Working with Web and JSP Targets 223

Using the Web Target object model
The Sybase Web DataWindow DTC uses the following classes of the Web
Target object model to set up the database and component server connections:

• PSConnectionParmsClass

• PSDataWindowClass

• PSDataWindowSourceClass

• PSJaguarConnection

• PSNamedConnectionParmsClass (not supported in JSP targets)

For more information, see the Web and JSP Target Reference.

Setting Web DataWindow DTC properties
The Web DataWindow DTC property page has six tab pages that you use for
setting DTC properties.

Selecting the source for a DataWindow object
You create a DataWindow object in PowerBuilder or InfoMaker. If you use a
DataWindow or report (PSR) in a PowerBuilder Library (PBL) or an exported
source (SRD) file as the source for your Web DataWindow, you must make
sure that the file is available to the application (page) server. This means either
that the file containing the DataWindow definition must be deployed to the
system path of the server, or you must specify an absolute path to the file.

Setting Web DataWindow DTC properties

224 PowerBuilder

To specify an absolute path, you use the DataWindow page of the Sybase Web
DataWindow DTC Properties dialog box:

When the source is a Web DataWindow Container component
If you use a Web DataWindow Container component as the source for a Web
DataWindow, you must build the project you create with the Web DataWindow
Container Component wizard and deploy the component directly to the
component server for your Web application.

Generating the path in
script

PowerBuilder allows you to deploy a DataWindow that you select in the Web
DataWindow DTC as part of your JSP or Web target. The Generate Path in
Script field on the DataWindow page of the Web DataWindow DTC Properties
dialog box contains three radio buttons: Absolute, Relative, and No Path.

After you add or import a PBL or PSR to your current target path and select
that PBL or PSR as your DataWindow source, you can select the Relative radio
button. If the Relative radio button is selected when you deploy your target, the
PBL or PSR will be deployed with the target. Typically, you would select the
Relative radio button only if your page server also functions as a DataWindow
component server.

CHAPTER 11 Using the Web DataWindow Design-Time Control

Working with Web and JSP Targets 225

Deploying more than once
If EAServer has loaded a DataWindow from your target and you attempt to
deploy the target a second time while the Relative radio button is selected, your
PBL might be locked and the deployment might fail. To avoid this, you can
disable instance pooling for the component in EAServer Manager. After you
have finished testing and editing the target containing the DataWindow object,
you can enable instance pooling.

Instance pooling provides better performance in a production environment
when a component instance can be reinitialized and reused for multiple clients.

If you select the Absolute radio button, you must make sure that the path to the
DataWindow source is the same on your development machine as on the
machine that hosts the server. If you intend to deploy the DataWindow source
manually to the system path of the server machine, you can select the No Path
radio button.

Selecting a database profile
On the Connection tab page of the Sybase Web DataWindow DTC Properties
dialog box, you can override the database connection defined for a
DataWindow object in a Web DataWindow Container component. A default
value for the database connection is set when a Web DataWindow Container is
created. The database connection is a container component property that you
can also modify in EAServer Manager.

Setting Web DataWindow DTC properties

226 PowerBuilder

When you build your DataWindow, you must define a data source connection.
In PowerBuilder, you must also set up a database profile to define access to the
data source connection. Database profiles that you define in PowerBuilder
automatically populate the Database Connection drop-down list on the
Connection page of the Sybase Web DataWindow DTC Properties dialog box.
For information on defining a database profile, see Connecting To Your
Database.

Connection information not needed for PSR file
You do not need—and cannot select—a database connection for a report
definition that you get from a PSR file. Report data is embedded in the report
with no connection to the database.

You must make sure that the application server can use the database connection
defined in your database profile to connect to the data source for the
DataWindow object. See your server documentation for the types of
connection and the connection options it supports.

CHAPTER 11 Using the Web DataWindow Design-Time Control

Working with Web and JSP Targets 227

In JSP targets, the deployment controller creates a Database.properties file that
it deploys to the server with your target. The Database.properties file contains
the connection information from all the database profiles defined in
PowerBuilder on the development machine.

If you use a Web
DataWindow
Container component

If you use a Web DataWindow Container component, you should make sure
that the database connection you define on your local machine is also defined
as a connection cache on the EAServer machine to which you deploy the
component. If you are using a JDBC connection and do not define a connection
cache, you will get a runtime error when you try to use a DataWindow
definition from the container component.

With a Web DataWindow Container component, you also have the option of
overriding the database connection defined in the component.

Controlling the behavior of the DTC
The Control properties page displays name and behavior properties for the Web
DataWindow DTC.

Setting Web DataWindow DTC properties

228 PowerBuilder

In the Control tab page you can modify specific settings for the instance of the
DataWindow object on your page. You can define settings on this page to
override these values set in the DataWindow object:

Instead of using
overrides

Instead of using the Control tab page overrides, you can change the original
(default) values for these settings in the DataWindow painter. You do this on
the HTML Generation page of the Properties view for the DataWindow object
that you selected in the Web DataWindow DTC.

Values you
can override Description

DataWindow
name

The name identifies the client-side Web DataWindow control.
You can use this name in client-side scripts that you write. The
Override check box lets you change the name of this instance of
the Web DataWindow control.

Weight The weight identifies the type of functionality included on your
HTML page, including whether you allow client data entry,
client-side events, and client-side scripting. As you include more
functionality on your page, the size of the control increases. The
largest (heaviest) but most feature-rich objects support both
client-side formatting and client-side scripting.

Number of rows
per page

The Rows Per Page property shows the number of rows
displayed on each page. Override lets you change the number of
rows that are displayed. With Override selected, you can specify
that the Web DataWindow DTC display fewer rows than the
number defined in the DataWindow object.

CHAPTER 11 Using the Web DataWindow Design-Time Control

Working with Web and JSP Targets 229

Setting the bind type and values for retrieval arguments
If the Web DataWindow object has one or more retrieval arguments, then the
Retrieval tab page displays the names of the retrieval arguments defined for the
Web DataWindow object. You can specify retrieval argument bind type and
bind values for the Web DataWindow DTC.

Specifying the bind
type

The bind type is the type of data that will be passed to the Web DataWindow.
The Bind Type column has a drop-down list box that allows you to specify how
the Web DataWindow DTC will get a value for each retrieval argument:

• Control For 4GL JSP pages only, the value property of a server object.

• Constant A fixed value.

• JavaScript Expression For ASP pages only, the value of an expression
set on the server.

Setting Web DataWindow DTC properties

230 PowerBuilder

• Page Parameter For JSP pages only, a parameter whose value is set on
the server, either as a value passed from one page to another or as a default
value set for the page if no value is passed.

If you type in a parameter name for a 4GL Web page
If you type in a parameter name for a 4GL Web page (instead of selecting
it from the drop-down list box), make sure to add the parameter to the list
on the Parameters tab of the Page Properties dialog box.

• Page Variable A variable whose value is set on the server. This selection
is available only on 4GL JSP pages.

Specifying bind values Bind values are the data values that will be passed to the DataWindow as
retrieval arguments. The value you specify depends on the option you select in
the Bind Type drop-down list box. Available page parameters, page variables,
and control values automatically populate the Bind Value list when you select
these types in Bind Type.

For more information about binding data to retrieval arguments, see “Binding
data to DataWindow retrieval arguments” on page 234.

CHAPTER 11 Using the Web DataWindow Design-Time Control

Working with Web and JSP Targets 231

Defining links
The Link To property page displays a list of the columns, text, computed fields,
and graphical elements for your DataWindow object, and lets you define links
for them for the Web DataWindow DTC.

The properties on the Link To tab apply when you use a DataWindow object
that has a Tabular or Grid presentation style.

DataWindow object
column

List of the columns, text, computed fields, and graphical elements available for
linking from the DataWindow object. Links on columns work only when the
columns are read-only. You can change a column to read-only by setting its tab
order to 0 in the DataWindow painter. (In the DataWindow painter, you can
also replace the column with a text field that uses a DataWindow expression
for the column. You can then define links for the text field that contains the
column data).

Link To column The URL of the target page that gets displayed when a user clicks on the
specified object. To add a target with defined parameters, click in the box under
Link To in the row that specifies the column name. You define the link in the
Link Definition dialog box.

For information about defining hyperlinks on an object in a DataWindow, see
“Defining hyperlinks on objects in a DataWindow” on page 240.

Setting Web DataWindow DTC properties

232 PowerBuilder

Selecting a Web DataWindow generator
EAServer hosting If your Web DataWindow generator component is hosted in EAServer, you

select the particular Web DataWindow generator that you want to use in the
HTML Generator page of the Web DataWindow DTC Properties dialog box:

You must first define a profile for the EAServer machine you want to use. For
information on defining an EAServer profile, see “Accessing components” on
page 139. In JSP targets, the deployment controller creates a Jaguar.properties
file that it deploys to the server with your target. The Jaguar.properties file
contains the EAServer information from all the EAServer profiles defined in
PowerBuilder on the development machine.

From the Sybase Web DataWindow DTC Properties dialog box, you can select
a custom component that implements the default generator or a Web
DataWindow Container component that you want to use for the generation.

Using a Web DataWindow Container component
If you select a Web DataWindow Container component as the source for your
DataWindow, you cannot select a different component for the generation.

CHAPTER 11 Using the Web DataWindow Design-Time Control

Working with Web and JSP Targets 233

By default, a DataWindow that you add to a Web page in the HTML Editor uses
the HTMLGenerator100 component on an EAServer machine to generate the
DataWindow as HTML. It is likely, though, that you might want to generate
your Web DataWindow as XML (with subsequent transformation to XHTML
and CSS) or as XHTML directly. The GenerateXMLWeb and GenerateXHTML
methods that enable you to do that are in the PSDataWindowClass and
PSWebDataWindowClass of the Web target object model. For information
about the Web DataWindow implementations, see the DataWindow
Programmer’s Guide.

COM+ hosting You cannot select a generator component on COM+ from the Web
DataWindow DTC. However, if you are using such a component for generating
a DataWindow, you must select the Use COM+ radio button on the HTML
Generator page of the Sybase Web DataWindow DTC Properties dialog box.

To access a COM component from a JSP page, you must use a Java-COM
bridge. For more information, see the white paper How to set up a JSP that uses
a DW DTC to access the Web DW on MTS via Tomcat on the Sybase Web site
at http://www.sybase.com/detail?id=1029911.

Editing existing Web DataWindow DTC properties
You can edit Web DataWindow DTC properties in Page view or Source view.

❖ To edit Web DataWindow DTC properties in Page view:

1 Right-click the DTC object in Page view and select Sybase Web
DataWindow DTC Properties from the pop-up menu.

The Sybase Web DataWindow DTC Properties dialog box displays.

2 Make the changes you want to the property settings and click OK.

❖ To edit Web DataWindow DTC properties in Source view:

1 Right-click the METADATA or OBJECT tag for the DataWindow source
code and select Properties from the pop-up menu.

A representation of the control displays in the Edit Design Time Control
dialog box, and the Sybase Web DataWindow DTC Properties dialog box
displays with the current settings for this control.

2 Make the changes you want to the property settings and click OK.

3 Click OK to close the Edit Design Time Control dialog box.

http://www.sybase.com/detail?id=1029911

DataWindow presentation styles and data sources

234 PowerBuilder

DataWindow presentation styles and data sources
The Web DataWindow supports most PowerBuilder DataWindow
functionality.

Presentation styles The Web DataWindow and the Web DataWindow DTC support the following
presentation styles

• Freeform

• Tabular

• Grid

• Group

• N-Up

• Cross tab

• Label

Data sources The Web DataWindow and the Web DataWindow DTC support the following
DataWindow data sources:

• Quick Select

• SQL Select

• Query

• Stored Procedure

For more information For complete information about designing DataWindow objects for the
WebDataWindow, see the DataWindow Programmer’s Guide.

Binding data to DataWindow retrieval arguments
The Web DataWindow DTC can bind data from the current page or a linking
page as values for retrieval arguments, allowing you to control what data is
retrieved. You can use retrieval arguments to allow a single page to retrieve
different sets of data depending on a user's selection, or to enable the reuse of
a single DataWindow object in the design of many pages.

CHAPTER 11 Using the Web DataWindow Design-Time Control

Working with Web and JSP Targets 235

To use retrieval arguments, you define them when you create the DataWindow
object in PowerBuilder or InfoMaker. You make the retrieval arguments part of
the WHERE clause for the SQL statement. Then, when you select the
DataWindow object for your Web DataWindow, the retrieval arguments you
defined are automatically listed in the Argument Name column on the
Retrieval tab of the Sybase Web DataWindow DTC Properties dialog box.

You can have the following types of binding for your retrieval arguments,
depending on whether or not your DataWindow Web page is 4GL enabled:

Table 11-1: Binding types for Web DataWindow retrieval arguments

Constants
Use a constant when the retrieval argument is always the same in the particular
page you are designing. You specify the value directly on the Retrieval tab of
the Sybase Web DataWindow DTC Properties dialog box.

Example Using a constant This example has a single page called emplist.htm in the
Massachusetts section of your site. The DataWindow object has a retrieval
argument called state, which allows you to use the same DataWindow object
on other pages that list employees by state.

Binding type 4GL enabled (JSP only) Not 4GL enabled

Constants Yes Yes

Control Values Yes No, but you can use page
parameters to bind control values
(sent in a form submit or query
string) to retrieval arguments

JavaScript
Expressions

No Yes, but not available for JSP
targets

Page Parameters Yes, but the parameter you
bind must be on the list of
parameters in the Page
Properties dialog box

Yes

Page Variables Yes No

Binding data to DataWindow retrieval arguments

236 PowerBuilder

On the Retrieval page of the Sybase Web DataWindow DTC Properties dialog
box, you can type MA as a constant value for the state retrieval argument.

Control Values
Use a control when the value you want to bind to the retrieval argument is
specified in a server-scriptable control on the same page as the Web
DataWindow DTC. You can set a server-scriptable control value for a retrieval
argument on a 4GL-enabled JSP page only.

JavaScript Expressions
Use a JavaScript expression when the retrieval argument value requires
processing before the DataWindow retrieves data. You can include variables
that have been defined in another script on the same page in your JavaScript
expression. Binding a retrieval argument to a JavaScript expression is not
possible in a JSP target. To use a variable, you must declare the variable in a
server script that runs before the Web DataWindow DTC.

Verify in the Source view
You can look at the page in Source view to make sure scripts appear on the page
in the right order.

CHAPTER 11 Using the Web DataWindow Design-Time Control

Working with Web and JSP Targets 237

Example 1 Using a JavaScript variable In this example, a server script establishes the
value of the State retrieval argument. In the script, which must be executed
before the DataWindow scripts on the page, the variable currstate is assigned
a value. The script can do any other processing that you need.

var currstate = "MA";

On the Retrieval page of the Sybase Web DataWindow DTC Properties dialog
box, specify currstate as a JavaScript expression for the state retrieval
argument.

Example 2 Using an expression In this example, a server script on a login
confirmation page for employees created a Userid property for the psSession
object. The value was passed to the confirmation page as a page parameter.

psSession.SetValue("Userid",
psDocument.GetParam("loginid"));

On some other page in the Web application, a Web DataWindow DTC can use
the Userid value by specifying this expression on the Retrieval tab.

psSession.GetValue("Userid")

Binding data to DataWindow retrieval arguments

238 PowerBuilder

Page Parameters
Use a page parameter when the value for the retrieval argument is specified on
another page. You can add page parameters on the Parameters tab page of the
Page Properties dialog box. The parameters you specify automatically appear
in the Bind Value drop-down list on the Retrieval tab of the Sybase Web
DataWindow DTC Properties dialog box when you select Page Parameters as
the bind type.

For 4GL Web pages When the linking page is 4GL enabled, the Web Target
user interface lets you specify parameters (and variables, expressions, and so
on) to pass to the target page using different navigation styles: Hyperlink, Form
Submit, or Server Redirect. After you link these values to parameters that you
specify on a target page containing a Web DataWindow, you can select the
parameters from the Bind Value drop-down list to bind them to your retrieval
arguments.

For more information on navigation styles for 4GL pages, see Chapter 10,
“Setting Up Page Navigation.”

For non-4GL Web pages When the linking page is not 4GL enabled, you
can use the Hyperlink or the Form Submit navigation styles, but you must
manually edit or verify the source code rather than rely on the Web Target user
interface to generate this for you. The following table shows the tasks required
on the linking page to submit a value as a parameter for a retrieval argument on
the target page.

Table 11-2: Using a parameter from a non-4GL linking page as a
retrieval argument

On the Retrieval tab of the Sybase Web DataWindow DTC (in the target page),
select Page Parameter as the bind type and type in the parameters you are
passing in the Bind Value column. The parameters you type must match the
parameters you submit from the linking page.

For more information about page parameters, see “Managing page data” on
page 128.

Navigation style Tasks on linking page

Hyperlink Set HREF attribute for the A element to the target URL.
Append a page parameter to the URL using a query string.

Form Submit Make sure all controls (whose values you want to bind to the
retrieval argument on a target page) are wrapped in a FORM
element. Set the ACTION attribute of the FORM element to
the target URL.

CHAPTER 11 Using the Web DataWindow Design-Time Control

Working with Web and JSP Targets 239

Example 1 Setting up and using a page parameter In this example, the user selects a
state and views a list of employees in that state. Two Web pages are involved:
the linking page has a form for selecting the state and the target page has a Web
DataWindow DTC. This example demonstrates one way to pass page
parameters from a linking page that is not 4GL enabled.

The first page, Empstate.htm, includes this form:

<FORM id=FORM1 name=EmployeeState action="emplist.htm"
method=post>

Choose a state:
<SELECT id=SELECT1 name=State size=3>

<OPTION value=MA>Massachusetts
<OPTION value=CA>California
<OPTION value=TX>Texas

</SELECT>
<INPUT value=Go id=INPUT1 name=Submit type=submit>
</FORM>

When the user clicks the button labeled Go, the target page Emplist.htm
displays. Emplist.htm has two page parameters with names that match the two
form fields: State and Submit.

In the Web DataWindow DTC, the DataWindow object has a retrieval
argument called state. On the Retrieval tab of the Properties dialog box, you
make the connection between the state retrieval argument, which is listed
automatically, and the State page parameter.

The names of the form field and the target page parameter must match in
capitalization. In the form above, the NAME attribute of the SELECT element
is State; therefore, the page parameter name in the Bind Value column must
also be State, with the same capitalization.

Defining hyperlinks on objects in a DataWindow

240 PowerBuilder

Example 2 Page parameters passed from <A> elements An alternative to the Form
Submit method is a list of hyperlinks. On the linking page Empstate.htm,
several HTML anchor elements could include a query string as part of the
target URL. In each anchor element, the query string assigns a different value
to the name State.

Massachusetts

California

Texas

Page Variables
Use a page variable when the value you want to bind to a retrieval argument is
specified in a variable on the same page as the Sybase Web DataWindow DTC.
You can set page or session variables for the retrieval argument only on
4GL-enabled JSP pages.

Defining hyperlinks on objects in a DataWindow
The Web DataWindow DTC can pass data in query strings to a target page. You
can use the Link To tab page in the Sybase Web DataWindow DTC Properties
dialog box to generate hyperlinks around headers and labels, computed fields
that are not calculated on the client, graphical elements in a DataWindow, or
read-only columns.

Setting links on
columns

You can change a column to read-only by setting its tab order to 0, its Protect
property to 1, or its Edit.DisplayOnly property to Yes. Hyperlinks can also be
set around text objects that use DataWindow expressions to display data from
database columns.

When you click in the Link To column next to a DataWindow object, a browse
(...) button displays to the right in the row that you clicked. The browse button
opens the Link Definition dialog box, where you specify the target page for the
link and the data to bind to target page parameters.

CHAPTER 11 Using the Web DataWindow Design-Time Control

Working with Web and JSP Targets 241

Bind types The types of values you can pass to the target page from a DataWindow object
are:

• Control Select this to pass the value of any control from the current page
to the target page. The initial value of the control is passed, even if the
control is editable at runtime. You can use a control as a bind type in a 4GL
Web page only.

• Constant Use a constant when you know the value you want to pass to
the target page. Type the value directly in the Bind Value column of the
Link Definition dialog box.

• Database column Use a database column when you want to pass data
for a column from the row a user clicks. You can bind column data to any
DataWindow object you select on the Link To tab. If you select a column
(label) as the DataWindow object link, the column value you bind is not
restricted to the column you selected for the link; you can pass data from
another column, such as a column that is not displayed.

• DataWindow Expression Use a DataWindow expression to pass a value
derived from retrieved data for the DataWindow.

• JavaScript Expression Use a script variable when you want to pass a
value that was calculated in a previously-run server script on the current
page, or that you can specify as an expression. The variable's value is not
derived from the retrieved data for the DataWindow, although it could
refer to other data you have retrieved. You cannot use a JavaScript
expression as a bind type in a JSP target.

• Page Parameter Use a page parameter when you want to pass on, as is,
to the target page, a value that was passed to the current page. The value is
not derived from the retrieved data for the DataWindow.

• Page Variable Use a page variable to pass on the value of a variable on
the current page. You can use a variable as a bind type in a 4GL Web page
only.

❖ To link to parameters on other pages

1 Right-click on a Web DataWindow DTC and select Sybase Web
DataWindow DTC Properties.

2 Click the Link To tab.

3 Select a DataWindow object to link to (for example, a header or a picture).

4 Click under the Link To column for the object you selected.

An ellipsis button displays in the row where you clicked.

Defining hyperlinks on objects in a DataWindow

242 PowerBuilder

5 Click the ellipsis button.

The Link Definition dialog box displays.

6 Click the browse (...) button to open the Choose URL dialog box, select a
Web page or file to which you want to link, and click OK.

You return to the Link Definition dialog box. The name of the target page
displays in the URL box. Existing parameters on the target page display
under the Name column. You can type in additional parameters, but you
need to define them later on the target page.

7 Select a bind type (for one of the target page parameters) from the Bind
Type drop-down list.

The Bind Value drop-down list is automatically populated for certain bind
type selections.

8 Select or type a value in the Bind Value drop-down list, and click OK.

Working with Web and JSP Targets 243

C H A P T E R 1 2 Building and Deploying Web
Targets

About this chapter This chapter describes the production process for Web targets, and
explains how to build and deploy Web targets from your workspace.

Contents

About building and deploying Web targets
You build and deploy Web targets to:

• Test part or all of a Web target

• Move a completed target into a production environment

The build phase Building a Web target prepares your files for deployment and verifies
links from a Web page to another file. You can build a target anytime
during development to get information about broken links so that you can
fix them. You must build a target or individual files before deployment to
make the files available for deployment. The deployment process does
this automatically.

Topic Page

About building and deploying Web targets 243

Building Web targets 244

The deployment process 247

Setting up a deployment configuration 250

Editing a Web site deployment configuration 251

Editing a JSP deployment configuration 252

Enterprise Portal deployment options 266

Deploying a Web target 269

Running a Web target 270

Troubleshooting 4GL JSP pages 270

Troubleshooting JSP targets 273

Building Web targets

244 PowerBuilder

The deployment
phase

Deploying a Web target processes target files from the Build folder and moves
them to the runtime environment you specify. Typically you deploy your
application in a local test environment before deploying it to the production
servers.

You can deploy Web site targets to:

• Active Server Pages (ASP) Microsoft’s model for delivering dynamic
content through an ISAPI application

• A file system Any location on a local or server system

You can deploy JSP targets to:

• EAServer The JSP container included with EAServer

• Tomcat The official reference implementation for Java servlet and JSP
technologies from the Apache Software Foundation’s Jakarta project

• Other JSP servers Any server that supports the JSP 1.2 specifications

• Sybase Enterprise Portal Instead of a JSP server

Building Web targets
The build phase for a Web target:

• Provides link verification

• Creates the Jaguar.properties and Database.properties files for JSP
targets from current EAServer and database profiles, and places them in
the target Web-Inf\classes directory

• Moves the files to a Build folder under the target folder to make the files
available for deployment

You can build an entire target, or just one file. Building a file lets you quickly
make sure that links from the file work.

Link verification When the build process verifies the links from one file to another in the target,
it displays information about broken links in the Output window. It also verifies
the syntax—but not the integrity—of links outside the target.

Double-clicking the broken link in the Output window opens the file in the
HTML Editor. You can choose to fix the link or not. If you do not fix the link,
the deployed files will also have a broken link.

CHAPTER 12 Building and Deploying Web Targets

Working with Web and JSP Targets 245

The Web target processes the following HTML attributes during link
verification:

Elements that use these attributes include:

Table 12-1: HTML elements parsed for link integrity

Files in Build folder The Web target build process copies files from the target Source folder to the
target Build folder. These folders are visible in the Web target development
environment (in the Library painter or in the System Tree when the root is set
to My Computer).

Files from the Build folder are processed during deployment to a Web site.
When you explicitly build a target, you can choose to build all of the files in
the target, or only those files that have changed since the last build.

ACTION CODEBASE HTTP-EQUIV

BACKGROUND DYNSRC SRC

CODE HREF

Element Attributes processed

A HREF

Applet CODE, CODEBASE

Base HREF

Bgsound SRC

Body BACKGROUND

Form ACTION

Frame SRC

Img SRC, DYNSRC

Input SRC (for TYPE="image")

IsIndex ACTION

Layer SRC, BACKGROUND

Link HREF

Meta HTTP-EQUIV

Script SRC

Object CODE, CODEBASE

Table BACKGROUND

TD BACKGROUND

TH BACKGROUND

Building Web targets

246 PowerBuilder

How to build a target Invoking the build process whenever you save a file gives you timely
information about the links in the file, and ensures that you have a copy of your
changes in the Build folder, ready for deployment. You can also build a file or
an entire target at any time.

Table 12-2: Build selection options

❖ To build a Web target:

• On the Workspace tab page of the System Tree, right-click a target and
select Full Build or Incremental Build from the pop-up menu.

You can also set a deployment option to specify if you want to do a full
build or incremental build when you deploy your Web target. You must do
a full build to make sure connection properties for new database or
EAServer profiles are available to a JSP target. For information on setting
this option, see “Editing a Web site deployment configuration” on page
251.

If you want to build all of the files within a workspace, you can use the
workspace Run menu. When you build a workspace, the build processes
target files within the active workspace. A workspace build can also be full
or incremental.

❖ To build an individual file:

• On the Workspace tab page of the System Tree, right-click a file, then
select Build from the pop-up menu.

❖ To build multiple files (without building a target or workspace):

1 In the List view of the Library painter, displace the Source directory under
your Web target directory.

2 Use the CTRL key to select all the files you want to build.

You can use the SHIFT key instead to select consecutive files in the list.

3 Right-click the selected files and select Build from the pop-up menu.

Select this menu item To do this

Full Build Build all the files in the target and regenerate the
Jaguar.properties and Database.properties files

Incremental Build Build target files that have changed since the last build

CHAPTER 12 Building and Deploying Web Targets

Working with Web and JSP Targets 247

The deployment process
The deployment
process

The deployment process involves three phases:

• Get Retrieves a file from the Build folder

• Transform Processes the contents of the file, changing HTML tags and
scripts, or adding server scripts as necessary to suit the target application
server

• Put Writes out the deployed pages to your local or network file system,
to an FTP site, or directly to an application server

When you deploy a target, the deployment controller executes these three
phases for each HTML, JSP, and script file you deploy.

About deployment
configurations

A deployment configuration is a named set of instructions for deployment. You
can deploy to one configuration, or to as many as you like. Deployment
configurations can be stored in a target file or in your Windows registry.

When you define a configuration, you specify the type of server to deploy the
Web site files to, and other information about your site that the deployment
controller requires to transform files into the syntax used by the server.

You can use the JSP Target wizard to define a deployment configuration for a
JSP server. Otherwise, you set up and modify deployment configurations from
the Web target properties dialog box.

Working with server types
About server types Each deployment configuration is associated with a specific type of server. A

controller for that type of server provides program logic that performs:

• The Get, Transform, and Put phases of deployment

• Pre-deployment and post-deployment procedures as required

The deployment process

248 PowerBuilder

Transformations for
Web site targets

When you deploy to ASP, the deployment controller performs these
transformations for each page:

• Updates links in HTML elements to reflect the deployment file structure.

• Replaces the delimiters in the HTML editor (<% and %>) for server scripts
with the correct delimiters for the specified application server.

• If a page includes any server scripts, includes the object model file
specified for the deployment configuration. The object model file maps
the Web Target objects you use in your scripts to objects and methods on
the application server. The deployment controller also changes the page
extension to ASP.

When you use the Basic deployment controller, the controller does not modify
the pages you deploy.

Transformations for
JSP targets

When you deploy a JSP target, the JSP deployment controller adds the
following server scripts to the top of each JSP page:

<%@ page import="com.sybase.powerbuilder.jspobject.*" %>
<%

// global instance for the page
PSDocumentClass psDocument = new PSDocumentClass

(request, response, out, application);
PSSessionClass psSession = new

PSSessionClass(session);
PSServerClass psServer = new

PSServerClass(psDocument);
%>

Deploying to ASP
Procedures performed
by the deployment
controller for ASP

When you deploy to ASP, the controller performs several additional procedures
during the deployment process:

• Changes the file extension to ASP for those files that contain server-side
scripts. When the deployment controller changes a file's extension to ASP,
it is possible that some links to that file might break.

To avoid breaking links, use the ASP extension for the target file within
your Web target. If two different files have the same file names but
different extensions (for example TEST.HTM and TEST.HTML), and both
contain server-side code, the deployment controller will rename both files
to the same name (for example, TEST.ASP) and overwrite one of the files.
To prevent this, assign your files unique file names.

CHAPTER 12 Building and Deploying Web Targets

Working with Web and JSP Targets 249

• Creates a GLOBAL.ASA file. This file contains a Session_onStart routine
that establishes session variables for each database connection used in the
pages you deploy.

If your project already contains a GLOBAL.ASA file, the deployment
controller updates it to include the necessary code instead of creating a
new file.

To allow your Web pages to use the predefined connections, you need to create
a data source for each connection if one does not already exist. The DSN name
for each data source must match the DSN specified in the ConnectionString
session variable.

Targets using the Web
Target object model

When you deploy a Web page that uses the Web Target object model, the
deployment controller automatically includes an object model file in the page.
When you deploy to ASP, the controller for ASP generates a server-side
include (<!--#INCLUDE -->) statement that specifies the name of the target in
the path to the object model file, as shown in the following example:

<!--#INCLUDE VIRTUAL="/MyProject/ObjMod.js"-->

Any references to the Web Target object model do not work when you deploy
to ASP unless the name of the virtual mapping you deploy to matches the name
of the target exactly. So, the <!--#INCLUDE --> statement shown above would
work only if the virtual mapping were MyProject.

Server-specific setup
steps

After deploying the target to an ASP Web site, you may need to perform some
additional procedures to get your Web application up and running. For detailed
instructions, see the documentation provided for your Web and application
servers.

Deploying using the Basic deployment controller
When you deploy Web pages using the Basic deployment controller, the pages
you deploy are the same as the source files—the deployment controller does
not change them. Use the Basic controller for deploying Web applications that
do not require the services of an application server. The Basic controller
deploys pages to a target directory on your file system or to an FTP site.

Setting up a deployment configuration

250 PowerBuilder

Setting up a deployment configuration
From a Target Properties dialog box for a Web target, you can set up both local
and target configurations:

• Local configuration A local deployment configuration is stored in your
local registry for personal use. Use a local configuration if you have a test
server to deploy, and if other developers will not be editing the target.

• Target configuration A target deployment configuration is stored in the
target file for use by anyone with access to the target. Typically, you use
target configurations if you share a deployment configuration with other
developers or check your target files into a source control system.

❖ To set up a deployment configuration:

1 From the Workspace tab of the System Tree, right-click the Web target,
then select Properties from the pop-up menu.

2 In the Properties of Target TargetName dialog box, click the Deploy tab.

3 On the Deploy page, click one of the create new configuration buttons
(local or target) to set up a new local or target deployment configuration:

The New Deployment Configuration wizard starts.

4 Follow the instructions on the wizard pages.

CHAPTER 12 Building and Deploying Web Targets

Working with Web and JSP Targets 251

Editing a Web site deployment configuration
You can change properties of the deployment configuration for a Web site
target from the Deployment Configuration Properties dialog box. Some
properties in the dialog box are available for selection only after you make a
selection for a different configuration property.

For example, if you select FTP on the Server Information pane for an Active
Server Pages or Basic server type, an FTP Connection Information pane
displays. If you select Static File System, a File System Information pane
displays.

To configure deployment properties for a JSP target, see “Editing a JSP
deployment configuration” on page 252.

Table 12-3: Deployment configuration options for a Web site target

On this pane Specify this

General A description for the deployment configuration. The
configuration name is not editable.

Server Information The type of server to which the Web site is deployed:

• Active Server Pages (ASP)

• Basic

For ASP or Basic servers, specify whether you want to
deploy to a static file system or to an FTP site.

File System Information
or
FTP Connection
Information
(available for ASP or
Basic server selection)

A folder for your Web site
or
The FTP server name and directory for your Web site.
You can also select a login ID and password for the FTP
server.

Object Model Whether or not you use the Web Target object model.

HTTP Information Server and port for your Web site. You should enter
values here to be able to run Web site targets from the
PowerBuilder Run menu.

Deploy What/Local Copy
Folder

• Whether to deploy all files, or only those that do not
generate errors. If the latter, specify whether you
want to make a local copy of all deployed files.

• Specify the type of build you want for your target
(Full or Incremental).

If you select Deploy All Or Nothing, or if you do not
clear the Make Local Copy Of Deployed Files check
box, you must select a copy folder for build files that are
processed during deployment.

Editing a JSP deployment configuration

252 PowerBuilder

❖ To edit a deployment configuration:

1 From the Workspace tab of the System Tree, right-click the Web target,
and select Properties from the pop-up menu.

2 In the Properties of Target TargetName dialog box, click the Deploy tab.

3 On the Deploy tab, select a configuration and click the Edit button.

The Deployment Configuration Properties dialog box displays:

4 Click the items in the tree view to view and change the properties.

Editing a JSP deployment configuration
The Deployment Configuration Properties dialog box for a JSP target includes
properties for:

• "General deployment options" next

• “JSP deployment options” on page 255

CHAPTER 12 Building and Deploying Web Targets

Working with Web and JSP Targets 253

When you deploy the JSP target, PowerBuilder builds a Web Archive (WAR)
file in the deployment configuration folder created by the JSP Web Target
wizard. The WAR file contains the JSP files you added to the target, any classes
or JAR files you added to the Source folder, and a web.xml file that conforms
to the Document Type Definition (DTD) for Web applications. The Web
application is automatically deployed to the server you selected in the target
wizard.

The web.xml file is the deployment descriptor for the Web application. The
deployment configuration properties you define in the JSP Options section of
the JSP Deployment Configuration Properties dialog box are written to the
web.xml file.

In general, you should not edit the web.xml file manually. The changes you
make in the Deployment Configuration Properties dialog box are propagated
to copies of the web.xml file in the WAR file and appropriate subdirectories of
your JSP target.

You open the Deployment Configuration Properties dialog box for a JSP target
in the same way as for a Web site target: select Properties from the target’s
pop-up menu and double-click the deployment configuration you want to view
or edit on the Deploy page of the Target Properties dialog box.

General deployment options
The general deployment options of a JSP target allow you to:

• Enter a description for the deployment configuration

• Enter server information

• Include the JSP object model in the deployment archive

• Select a build strategy and how you want to handle deployment errors

You cannot change the deployment configuration name from the Deployment
Configuration Properties dialog box. If you want to create a different
deployment configuration name, close this dialog box and start the Name New
Deployment Configuration wizard from the Deploy page of the Properties
dialog box for the target.

Editing a JSP deployment configuration

254 PowerBuilder

The general deployment options for a JSP target consist of four main selection
pages that you access from the tree view in the Deployment Configuration
Properties dialog box:

Table 12-4: General deployment configuration options for a JSP target

Deployment
selection page Description

General Type a description for the deployment configuration.

Server Information Lists the server types to which you can deploy. The current
selection is highlighted. Additional selections are available
depending on which server you select:

EAServer Select a deployment profile and an HTTP port.

Tomcat Select the deployment folder and the HTTP server
and port. You can also select a login name and password, and
choose to stop and restart the server automatically after the
target is deployed.

Custom Command Line Type deployment commands
required for deploying the target WAR file to a JSP server other
than EAServer or Tomcat. You can use macros to build the
command lines and select options allowing you to abort
deployment on detection of an error, show deployment
messages in the output window, or create the target WAR file
from the command line (by blocking PowerBuilder from
generating the WAR file).

Object Model Select whether you want to deploy the JSP object model with
your JSP target. You can select the default JSP object model
only.

Deploy What? Select Deploy All Or Nothing to make sure that nothing gets
deployed when one of the files selected for deployment fails
the build or predeployment processing. Select Deploy Only
Successful Files to prevent failure of a single file from
affecting deployment of other files in the target.

The Rebuild field lets you select whether to use an incremental
or full rebuild of files you select for deployment with the
current configuration. For targets that use 4GL pages,
EAServer stubs are regenerated only if you select a full
rebuild.

Local Copy Folder When you build the JSP target,
PowerBuilder generates a WAR file containing JSP files and
supporting objects in the folder you specify as the Local Copy
Folder. You can clear the Make Local Copy Of Deployed Files
check box only if you selected the Deploy Only Successful
Files option.

CHAPTER 12 Building and Deploying Web Targets

Working with Web and JSP Targets 255

JSP deployment options
The JSP options that you specify in the Deployment Configuration Properties
dialog box are added to the web.xml deployment descriptor for the WAR file
that contains the Web application. These properties are defined under the
following dialog box headings:

JSP options
Web Application
Name

The Web Application Name is the display name used on the server to identify
a deployed WAR file.

Description Use the description box to provide any information that might be required by
the consumer of the application.

Session Timeout Session Timeout is a specified time in minutes after which the server will
terminate servlet sessions. This value applies to all the servlets within an
application. A value of 0 indicates that servlet sessions never expire.

Distributable Web applications can run on only one Java VM at any one time. To override
this rule, you must mark the Web application as distributable in the deployment
descriptor. However, the application must conform to additional requirements.
A distributable Web application cannot use setAttribute and putValue methods
to place objects into a javax.servlet.http.HttpSession object unless the object is
one of the following types:

• java.io.Serializable

• javax.ejb.EJBObject

• javax.ejb.EJBHome

• javax.transaction.UserTransaction

• javax.naming.Context object for the java:comp/env context

For more information, see the Java Servlet specification, available at
http://java.sun.com/products/servlet/index.html.

JSP options Mime Mapping Security

Context Params Welcome Files Environment

Filters Error Mapping EJBs

Listeners Tag Libraries

Servlets Resource References

http://java.sun.com/products/servlet/index.html

Editing a JSP deployment configuration

256 PowerBuilder

Context Params

The Context Params page is where you specify the value of parameters that
convey initialization information for the Web application, such as a Web
master’s address or the name of a system that holds critical data. They can be
retrieved using the getInitParameter and getInitParameterNames methods of the
ServletContext interface.

In a JSP page, the parameter can be retrieved in a scriptlet using the application
implicit object, for example:

<%
String iURL = application.getInitParameter("iURL");

%>

Filters
Filter content You can write a filter to modify requests and responses and then declare it on

the Filters page. Filters implement the javax.servlet.Filter interface.

Table 12-5: Filter content properties for a JSP target

For more information about filters, see the Java Servlet specification or the
EAServer Programmer’s Guide.

Filter mapping The container uses the filter mappings you specify on the Filter Mapping page
to determine how to apply the filters that have been defined to requests. You
can apply a filter to a single servlet by specifying its name, or to a group of
servlets and other Web content by specifying a URL pattern. For example, *
specifies that a filter applies to all servlets in the Web application. The filters
are applied in the order in which they appear in the list of filter-mapping
elements in the deployment descriptor.

Listeners

You can provide listener classes implementing one or more of the listener
classes in the Servlet API. Listeners can support event notifications or manage
resources or state. You package the listener classes in the WAR file and list
them in the deployment descriptor in the order in which they are to be invoked.

Setting Value

Filter Name Specify the name of the filter, for example, Image Filter

Filter Class Specify the fully qualified class name of the filter, for example,
com.acme.ImageServlet

Init Parameters Specify initialization parameter names and values for each filter
that you select

CHAPTER 12 Building and Deploying Web Targets

Working with Web and JSP Targets 257

Servlets
Servlet details Use the servlet pages to describe a servlet class or JSP page used in the Web

application. Click New to give the servlet or page a short name that can be used
to reference it. Then select Servlet Class or JSP Filename from the drop-down
list box. For servlets, you must specify the fully qualified class name in the text
box next to the drop-down list box.

If you want to see target JSPs listed in the management tool for your server, you
must enter a short name for each JSP, select JSP Filename from the drop-down
list box, and enter the JSP file name in the text box next to the drop-down list
box. However, this information is not required for access to the JSPs from a
client browser.

You can specify the following properties for each servlet or JSP from the
Deployment Configuration Properties dialog box: Load on Startup, Init Param,
Role references, and Servlet mapping URL pattern.

Load on Startup Load on Startup indicates whether you want a servlet loaded and initialized
when the application is deployed. Otherwise, the servlet class is loaded when
the first client requests it. Servlet classes that perform lengthy processing in the
init method can be loaded at startup so that the first client to invoke the servlet
does not experience increased response time.

A value of 0 or a positive integer requires the container to load the servlet when
the application is deployed. Servlets with a low Load on Startup value are
loaded before those with a higher value. If you do not specify a value, or if you
specify a negative integer, the container can load the servlet at any time.

Init Param Use the Init Param table to assign values of parameters specifying setup
information for the servlet or JSP page. In a JSP page, the parameter can be
retrieved in a scriptlet using the config implicit object, for example:

<%
String initVal = config.getInitParameter("initVal");

%>

Editing a JSP deployment configuration

258 PowerBuilder

Role references Role references provide a mechanism for an application to map a role name
used in the application’s code to a security role defined in its deployed
environment.

Table 12-6: Role reference properties for a JSP target

Servlet mapping URL
pattern

A servlet mapping defines the association between a URL pattern and a servlet.
This mapping is used to map requests to servlets. The default is
/ServletTargetName, for example, /MyServlet.

If the container handling the request is a JSP container, a URL containing a .jsp
extension is implicitly mapped.

Mime Mapping

Specify mime mappings to ensure that the Web container knows how to
associate a file extension with a mime type. For example, if you specify .txt as
the extension, you must specify a predefined mime type such as text/plain.

Welcome Files

The welcome file list contains an ordered list of welcome file elements to be
used when the container receives a valid partial request. A valid partial request
is a request for a URI that corresponds to a directory entry in the WAR not
mapped to a Web component.

For example, if the container receives a request for
//myhost:8080/myapp/mydir, and mydir is not mapped to a servlet or JSP
file, then if the welcome file list includes the mapping mydir/index.html,
index.html is displayed.

Error Mapping

You can customize what the client sees when an error or an exception is
generated by specifying the locations of error pages for different kinds of
errors. Error pages you specify here are used for servlets and for any JSP pages
that do not specify an error page for the error type.

Setting Value

Name Name of the security role used as a parameter to the
IsCallerInRole method

Description (Optional) A comment to explain how the property is used

Link The security role (see “Roles” on page 263) to which this
reference should be linked

CHAPTER 12 Building and Deploying Web Targets

Working with Web and JSP Targets 259

In the left column, you can specify an HTTP error code, for example 404, or a
fully qualified class name of a Java exception type. In the right column, specify
where to find the resource in the Web application relative to the root of the Web
application. The value of the location must have a leading forward slash (/).
For example, /404.html.

PowerBuilder adds the following elements to the target Web.xml file depending
on the value in the Error column:

Table 12-7: Element added to target Web.xml file

If you specify an exception class in the left column rather than an HTTP error
code, you must change the Error column value to N. Otherwise you may have
problems deploying or running the target, depending on the JSP container to
which you deploy, or try to deploy, your target.

Tag Libraries

If the Web application uses one or more tag libraries, you can make sure that
the Web container can locate them by specifying a mapping for each tag library
in the deployment descriptor. If you selected tag libraries in the JSP Web Target
wizard, they display here.

You use a taglib directive to refer to a tag library in a JSP page. For example:

<%@ taglib uri="/WEB-INF/tlds/mycalc.tld" prefix="mc" %>

The uri attribute specifies the uniform resource locator (URI) for the TLD file
relative to the root of the Web application. You can map this path to a short
name in the deployment descriptor. Specify the name you want to use in the
Tag Library URI column, and the location relative to the root of the Web
application in the Descriptor File Location column. The value of the location
must have a leading forward slash (/). For example,
/WEB-INF/tlds/Testlibrary_1_3.tld.

If you specify /mycalc as the short name for the
/WEB-INF/tlds/mycalc.tld, the taglib directive can be written like this:

<%@ taglib uri="/mycalc" prefix="mc" %>

Error column value Element added to Web.xml file

Y <error-code>

N <exception-type>

Editing a JSP deployment configuration

260 PowerBuilder

Resource References
References To be platform independent, an application should refer to resources within the

operating environment in which it is deployed, rather than having a specific
location coded within the application. The J2EE specification defines a
mechanism for an application to obtain resource references in its deployed
environment. Resource references are used to obtain database connections,
JavaMail sessions, URL factories, and JMS connection factories.

Table 12-8: Resource reference properties for a JSP target

Setting Value

Name Specify the JNDI name used to refer to a resource. Use the prefix
mail/ for JavaMail references, jdbc/ for data source references,
url/ for java.net.URL references, and jms/ for javax.jms
references. For example, if your code refers to
java:comp/env/jdbc/MyDatabase, enter
jdbc/MyDatabase.

Type Use one of these resources:

• javax.sql.DataSource for JDBC connections

• java.net.URL for URL factories

• javax.mail.Session for mail sessions

• javax.jms.QueueConnectionFactory for a JMS queue

• javax.jms.TopicConnectionFactory for a JMS topic

Authentication Enter:

• Container if the container signs on to the resource manager
on behalf of the servlet component. The methodology used to
sign on is server specific.

• Application if the application signs on programmatically to
the resource manager.

• Servlet if the servlet (not the container) signs on
programmatically to the resource manager.

Sharing Scope By default, connections to a resource manager can be shared by
other components that use the resource in the same transaction
context, optimizing the use of connections. Select Unshareable if
the application cannot share connections to the resource.

Description (Optional) A comment to explain how the property is used.

CHAPTER 12 Building and Deploying Web Targets

Working with Web and JSP Targets 261

Environment
references

Resource environment references allow the JSP page to use logical names to
refer to administered objects associated with resources. These references must
be bound to administered objects in the deployment environment.

Table 12-9: Environment reference properties for a JSP target

Security
Security constraints Security constraints let you control access to a Web resource collection. A Web

resource collection identifies the resources, defined by URL patterns, and the
HTTP methods on those resources, to which the security constraints apply. The
security constraints define the roles authorized to use the Web resource
collection (authorization constraint) and the level of transport security required
of the client server (user data constraint).

You define the Web resource collection and its constraints on the Security
Constraints page.

If you do not assign a user role, no user has access to the resources in the
specified collection. If you do not specify HTTP methods, the constraints apply
to all methods.

Table 12-10: Security constraint properties for a JSP target

Setting Value

Name Specify a name for a reference to an administered object
associated with resources, such as a JMS message queue. The
name is relative to the java:comp/env context, for example,
jms/MyQueue.

Type Specify the type of the resource, for example, javax.jms.Queue.

Description (Optional) A comment to explain how the property is used.

Setting Value

Name Specify a name for the Web resource collection.

URL Pattern Select one or more URL patterns to specify the resources in this
Web application to which the constraints apply.

HTTP Methods (Optional) Specify the HTTP methods to which the constraints
apply. If you do not specify any methods, the constraints apply to
all methods.

Authorized
Roles

Select the roles authorized to access the collection of Web
resources defined in the URL Pattern and HTTP Methods boxes.
You can define roles on the Roles page of the Deployment
Configuration Properties dialog box.

Editing a JSP deployment configuration

262 PowerBuilder

Login configuration Protected resources on a server can be partitioned into separate protection
spaces. Each protection space can be configured with a specific security
scheme, such as an authentication protocol or authorization database. When a
Web server asks a client to authenticate a user, it passes a realm to the client. A
realm is a string that defines a protection space.

Use of the term realm
In J2EE applications, the term realm is also used to refer to a security policy
domain. In this deployment descriptor, it refers to the string passed as part of
HTTP basic authentication.

Transport
Guarantee

Establish a level of transport security appropriate for the Web
resources you are protecting. If you use basic or form-based
authentication, passwords and other sensitive information are not
protected for confidentiality. If you have sensitive information
that you want to protect, establish a security constraint that uses a
greater level of protection:

• NONE – uses insecure HTTP. SSL-protected sessions require
more overhead than insecure HTTP sessions. Use none for
transport guarantee if you do not need the added
confidentiality of SSL.

• INTEGRAL – uses an SSL-protected session that checks for
data integrity.

• CONFIDENTIAL – uses an SSL-protected session to ensure
that all message content, including the client authenticators, is
protected for confidentiality as well as data integrity. A
confidential transport guarantee has more overhead than none.

Setting Value

CHAPTER 12 Building and Deploying Web Targets

Working with Web and JSP Targets 263

The client passes the user name and password to the Web server, and the Web
server authenticates the user in the specified realm. The login-config element
is used to configure the authentication method, the realm name that should be
used for this application, and the attributes that are needed by the form login
mechanism.

Table 12-11: Login authentication properties for a JSP target

Roles A security role is a grouping of permissions that a given type of user of an
application must have to successfully use an application and its components.
The Roles page allows you to define security roles—for example, admin or
user—that you can associate with specific resources on the Security
Constraints page.

Setting Value

Authentication
Method

Select the authentication method to be used to configure the
authentication mechanism for the Web application:

• BASIC – the server asks the client for a user name and
password. You must also provide a realm name.

• DIGEST – advanced form of BASIC authentication using an
MD5 message-digest hash of the credentials and a unique
value supplied by the server. The password is not sent in clear,
unencrypted text as with BASIC authentication.

• FORM – the Web application developer creates an HTML
login page, where the client enters a user name and password.
The entire HTML page is sent to the server. You also create an
error page that is returned to the client in the event of a server
error.

• CLIENT-CERT – the client connects to the server using SSL
tunneled within HTTP. The client must provide a certificate
that the server accepts and authenticates.

Realm Name Specify the realm name to be used in HTTP basic authentication.

Form Login
Page

Specify the location in the Web application where the page to be
used for login can be found. The path begins with a leading / and
is interpreted relative to the root of the Web application.

Form Error Page Specify the location in the Web application where the error page
that is displayed when login fails can be found. The path begins
with a leading / and is interpreted relative to the root of the Web
application.

Editing a JSP deployment configuration

264 PowerBuilder

Environment

Environment properties allow you to specify global read-only data for use by
all the JSP pages in the Web application.

Servlets and JSP pages must use JNDI to retrieve environment properties,
using the prefix java:comp/env in JNDI lookups. Unlike context initialization
properties, environment properties can have datatypes other than
java.lang.String.

The deployment descriptor catalogs the environment properties used by your
servlets and JSP pages, as well as each property’s Java datatype and default
value. You can tailor the values to match a server’s configuration. For example,
you might have environment properties to specify the name of a logging file or
to tune cache usage.

Table 12-12: Environment properties for a JSP target

Setting Value

Name Specifies the JNDI name, relative to the java:comp/env prefix, used
in servlet and JSP code to refer to this resource.

Type Select the Java datatype of the property from the drop-down list
box. The specified type must have a constructor that takes a single
java.lang.String argument.

Value The initial or post-deployment value of the property, specified as
text that is valid for the type constructor that takes a single
java.lang.String argument.

Description (Optional) A comment to explain how the property is used.

CHAPTER 12 Building and Deploying Web Targets

Working with Web and JSP Targets 265

EJBs

EJBs that support the EJB 2.0 specification can have both remote and local
interfaces.

EJB references When servlets and JSP pages reference remote EJBs, the EJB reference in the
deployment descriptor is used to instantiate proxies for EJB home interfaces.
EJB references must be catalogued in the deployment descriptor so that the
Web application does not depend on a specific naming configuration. When
deploying the Web application, a site administrator can specify site-specific
EJB home names.

Table 12-13: EJB reference properties for a JSP target

Setting Value

Name (New
button)

Click New to create a new remote reference to an enterprise bean.
Specifies the JNDI name used to refer to this EJB.

Type Choose Session for session beans or Entity for entity beans.

Home
Interface

The Java class name of the EJB home interface, specified in dot
notation. For example, com.sybase.myBeanHome.

Remote
Interface

The Java class name of the EJB remote interface, specified in dot
notation. For example, com.sybase.myBeanRemote.

Description (Optional) A comment to describe the EJB reference.

Link The JNDI name of an instance of the specified EJB that is installed
in the server where the Web application is to be deployed.

Enterprise Portal deployment options

266 PowerBuilder

Local references Servlets and JSP pages can reference EJBs running in the same Java VM using
local interfaces. The settings for EJB local references are analogous to the
settings for EJB references, which are used when the EJB is not running in the
same Java VM.

Table 12-14: Local EJB reference properties for a JSP target

Enterprise Portal deployment options
You can deploy a JSP target to a Sybase Enterprise Portal (EP) rather than a
JSP server. You can use the Deployment Configuration Properties dialog box
to add or change deployment information for an EP target.

General information
for EP deployment

Table 12-15 describes the general information settings you must enter before
you deploy to EP.

Table 12-15: General information for EP deployment

Setting Value

Name (New
button)

Click New to create a new local reference to an enterprise bean.
Specifies the JNDI name used to refer to this EJB.

Type Choose Session for session beans or Entity for entity beans.

Local Home The Java class name of the EJB local home interface, specified in
dot notation. For example, com.sybase.shopping.LocalCartHome.

Local
Interface

The Java class name of the EJB local interface, specified in dot
notation. For example, com.sybase.shopping.LocalCart.

Description (Optional) A comment to describe the local EJB reference.

Link The JNDI name of an instance of the specified EJB that is installed
in the server where the Web application is to be deployed.

Setting Description

EP Host The EP host name, including the domain (for example:
mycomputer.sybase.com)

EP Port The HTTP port of the host machine

User A registered Portal Studio user with permissions to create and approve
Portlets, Pages, and PageGroups

Password The password for the named user

RID A resource ID with which the user is associated. The RFID drop-down
is automatically populated after you enter the EP Host and EP Port and
connect to the EP server

CHAPTER 12 Building and Deploying Web Targets

Working with Web and JSP Targets 267

Building a portlet for
EP deployment

Table 12-16 describes the information settings to create a portlet for the EP
host.

Table 12-16: Building a portlet for EP deployment

Setting Description

Portlet Name A unique name for the portlet. The default name for the
portlet you create is the same as the name of the target.

Portlet Type
(unlabeled drop-down)

Select Web Application if the JSP element references a
WAR file deployed on the application server. For this
portlet type, you must enter the following information:

• WebApp Display Name The name displayed for the
Web application

• Initial Resource The initial JSP page to display

• WAR File Name The name of the WAR file, including
the .war extension

Select Remote URL if the JSP element does not reference
a WAR file. For this portlet type, you enter:

• Remote URL A remote URL that calls a Web
application

• Input Parameters (Optional) The input parameter
names as defined by JSP code

Set Refresh Rate Select a refresh time for the portlet you create

Set Default Height Select a default height for the portlet you create

Display Last
Refreshed

Select this check box to always display the date and time the
portlet was last refreshed.

iFrame Select this check box to display the portlet in an HTML
<IFRAME> element.

No Popups Select this check box to disallow pop-up windows from
displaying with your portlet

Enterprise Portal deployment options

268 PowerBuilder

Building a page for EP
deployment

Table 12-17 describes the information settings to build or create pages for the
EP portlet.

Table 12-17: Building a page for EP portlets

Building a page group
for EP deployment

Table 12-18 describes the information settings for building or creating a page
group for the EP pages.

Table 12-18: Building a page group for EP pages

Setting Description

Create Page If selected, creates a new page and adds the portlet to the
page. You must enter the following information:

• Page Name A unique page name

• Choose Layout The layout type that you want for the
page (two-column 50/50 by default)

Select Page If selected, adds the portlet to an existing page. You must
enter:

• Page Name An approved page created by the current
user

Position The position of the portlet on the page in ascending order:
the leftmost column starts at position 101, and the next
column (if the page layout is not Full) starts at 201. Position
for a portlet in a third column (if the page layout is 3
column) is 301.

Setting Description

Create Page Group If selected, creates a new page group and adds the
new portlet page to the group. You must enter the
following information:

• Page Group Name A unique page group name

Select Page Group If selected, adds the page to an existing page group.
You must enter:

• Page Group Name An approved page group
created by the current user

Position The position of the page in the page group. The
position starts at 101. The page group lists the pages
that belong to it in ascending order.

CHAPTER 12 Building and Deploying Web Targets

Working with Web and JSP Targets 269

Deploying a Web target
After you set up local or target deployment configurations, you can deploy a
Web target for testing or production whenever you want.

❖ To deploy a Web target using selected configurations:

1 Right-click the target, and select Properties from the pop-up menu.

2 Click the Deploy tab, then select only the configurations you want to use.

When you deploy a target, it is deployed to all selected configurations. You
can also choose the order of deployment to the selected configurations by
moving configurations up or down in the configuration list.

3 (Optional) Click the Run tab, select a start page for your target, and select
the deployment configuration for running.

Selecting a start page
You can run the Web target from PowerBuilder (from the Run menu) if
you select a valid start page. For JSP targets, if you define a server and port
in your current deployment configuration, you can enter a relative URL in
the Start Page text box, preceding the start page with a forward slash. For
example, you could use the relative path /First.jsp or
/MyFolder/First.jsp as a relative URL.

You can also enter a complete URL, in which case the server, port, and
mapping selections in your current deployment configuration are ignored
when you run the target from PowerBuilder.

4 Click OK to close the target properties dialog box.

5 Right-click the target, and select Deploy from the pop-up menu.

The output window displays messages and lets you know if the
deployment is successful or if errors are encountered.

Deploying more than one target at once
You can also deploy a workspace with multiple Web targets.

Running a Web target

270 PowerBuilder

Running a Web target
After you deploy a Web target, you can view the Web site files from your
browser. Make sure your Web server is running. You may also need to start a
component server. You need to make sure that a start page was defined for your
deployment configuration when you deployed the Web target.

For information on defining a target start page, see “Deploying a Web target”
on page 269.

❖ To view deployed files:

• On the Workspace tab of the System Tree, right-click a target, then select
Run from the pop-up menu
or
Select Run>Run
or
Select Run>Select and Run, and then select the target to run.

Troubleshooting 4GL JSP pages
4GL JSP pages provide two troubleshooting features:

• Displaying runtime errors

• Displaying trace messages

You can enable these features when you set up your file in the 4GL JSP Page
wizard or in the Page Properties dialog box for your page.

Displaying runtime errors
4GL JSP pages provide centralized error processing that reports errors
occurring before page generation, such as errors generated when server events
are triggered during page processing. When you display runtime errors for
production pages, the messages tell your users about problems they might
encounter when they view a page.

CHAPTER 12 Building and Deploying Web Targets

Working with Web and JSP Targets 271

Enabling runtime error
reporting

You enable the reporting of runtime errors on the Errors page of the Page
Properties dialog box. You choose where the errors get displayed.

❖ To enable reporting of runtime errors:

1 Right-click on a 4GL JSP page open in the HTML editor, then select Page
Properties from the pop-up menu.

2 Click the Errors tab.

3 On the Errors page, select how you want runtime errors displayed.

You can display errors on a page, in an alert box, or in both places:

Writing scripts to
customize runtime
error reporting

Another way to report runtime errors is by writing scripts that call methods and
properties on the psPage object. The ReportError method triggers the
ServerError event, then depending on the return value from ServerError, adds
an error to the error log. The psPage object has the following properties to
support error reporting:

Table 12-19: psPage properties that support error handling

To display errors elsewhere on a page, use the BeforeGenerate event to make
sure the errors are available when the page generates.

Use this property To do this

showErrorsOnPage Generate processing errors when the page is generated

showErrorsAtTop Display processing errors at the top or bottom of the page

showErrorsInAlert Display processing errors in a separate alert box

Troubleshooting 4GL JSP pages

272 PowerBuilder

The psPage object also has these methods for displaying errors:

Table 12-20: psPage methods for displaying errors

For more information about the methods and properties that support error
reporting on the psPage object, see the online Web and JSP Target Reference.

Displaying trace messages
Tracing code for 4GL JSP pages helps troubleshoot server processing problems
you might encounter as you develop your pages. With tracing enabled, you can
view details about the processing of your page, including all the server-side
events that are triggered. Trace messages appear at the top of your page.

Disable for production pages
Be sure to disable tracing when you deploy your Web target to a production
environment, so that your production pages do not display the messages.

Enabling tracing You enable trace messages on the Errors page of the Page Properties dialog
box.

❖ To enable tracing:

1 Right-click on a 4GL JSP page open in the HTML editor, then select Page
Properties from the pop-up menu.

2 Click the Errors page.

Use this method To do this

WriteErrorsToDocument Define a precise location where error messages are to
appear on a page

TestCompError Check whether a method on an EAServer component
caused any errors

CHAPTER 12 Building and Deploying Web Targets

Working with Web and JSP Targets 273

3 On the Errors tab page, select Enable Trace.

Writing scripts to
customize tracing

You customize tracing by writing scripts that call methods on psPage. These
methods add a message to the trace and control the appearance of the text. The
psPage object provides the following methods:

IsTrace (JSP targets only)
SetTrace
Trace
TraceIndent
TraceOutdent

For details about these methods, see the online Web and JSP Target Reference.

Troubleshooting JSP targets
Several common problems can occur during JSP deployment or at runtime.
Problems can also arise during the processing of a WSDL file by the JSP Web
Service Proxy wizard. A few of these problems are described in this section, as
well as some steps you can take to resolve them.

Troubleshooting JSP targets

274 PowerBuilder

Problems deploying and running JSPs
Problems deploying JSPs can be specific to a particular JSP server.
PowerBuilder provides an interface for deployment of JSPs to Tomcat and to
EAServer, but you can also use the command line tool to deploy JSPs to other
servers that support the JSP 1.2 specification.

For more information, see “Custom command line deployment” on page 147.

Problem running JSPs
deployed to Tomcat

After you deploy a JSP application to Tomcat, you might need to shut down the
Tomcat server and restart it before you can run the application from a client
browser.

If you are using the JSP in a Tomcat server with a component running in
EAServer, you might need to change the HTTP listener port for EAServer or
Tomcat before you restart Tomcat. Both servers use port 8080 as the default
HTTP listener port. If you do not change the HTTP listener port on either
server, you can still run both servers, but you must restart the Tomcat server
before starting or restarting EAServer.

Integer parsing
problem

When deploying JSPs to EAServer, it is possible to run into problems creating
Integers. The issue is that in a JSP file the following code fails to compile in
EAServer:

Integer doesNotWork = new Integer (0);

To fix this issue, the JSP should contain:

Integer doesWork = new Integer ("0");

Quotation marks are required around the integer (0) in the construction of the
Integer.

Problems deploying
after setting a target
exception page

If you specify an exception class (as opposed to an HTML error code) in the
Error Mapping pane of the Deployment Configuration Properties dialog box
for a JSP target, you must change the default value in the Error column from
"Y" to "N". Otherwise, you will not be able to deploy your target to EAServer
or run your target application on a different JSP server.

For more information about JSP target deployment properties, see “Editing a
JSP deployment configuration” on page 252.

Problems deploying to
an upgraded version
of EAServer

PowerBuilder installs easclient.jar and easj2ee.jar files to the
Sybase\Shared\Web Targets directory. These JAR files must be compatible
with the EAServer to which you deploy your JSP target, or you will have
problems deploying to the server. If you are using a version of EAServer that
is different from the version supplied with the PowerBuilder installation, you
should replace these JAR files with the easclient.jar and easj2ee.jar files from
the Sybase\EAServer\Java\Lib directory.

CHAPTER 12 Building and Deploying Web Targets

Working with Web and JSP Targets 275

Troubleshooting JSP Web services
When you run the JSP Web Services Proxy wizard, you can encounter
problems if you select invalid WSDL files.

Using the wrong
WSDL file

If you use a WSDL file created by the EAServer Web Services Toolkit, be
aware that the toolkit creates two different WSDL files: an interface (or
abstract) file and an implementation file. In the JSP Web Services Proxy
wizard, you must select the implementation file rather than the interface file to
access the Web services described by these files.

The WSDL files that you select must conform to version 1.1 of the WSDL
specification found on the W3C Web site at http://www.w3.org/TR/wsdl.

Class not found error If you get a class not found error at runtime (typically a provider not found
error or a java.lang.NoClassDefFoundError error), make sure all the required
JAR files are in your JSP server’s class path. You can find a description of these
required files in “Files added by the wizard and files required by the server”
on page 162.

If you are using EAServer 5.1
With EAServer 5.1, the required files are already in the server’s class path.

You can copy these files from the Sybase\Shared\PowerBuilder\WEB-INF\lib
directory to a directory in your JSP server class path. In EAServer, these files
can be copied to the EAServer\java\lib directory, but if EAServer is already
running, you must shut down and restart EAServer to make sure they are
included in the class path.

Nonspecific runtime
error

Some browsers do not display complete error information returned from the
JSP server. If you get a nonspecific runtime error, you may want to test the
same JSP in a different browser.

http://www.w3.org/TR/wsdl

Troubleshooting JSP targets

276 PowerBuilder

Additional resources for JSPs and Web services
Quick reference cards for JSPs, as well a link to JSP specifications, are
available on the Sun Microsystem Web site at
http://java.sun.com/products/jsp/docs.html.

Links to tutorials for various Web service technologies are available on the
XMethods Web site at http://www.xmethods.com.

The Web Service Toolkit User’s Guide is available on the Sybase Web site at
http://sybooks.sybase.com/eag.html. You can find it in the EAServer 4.x
and 5.x collections.

http://java.sun.com/products/jsp/docs.html
http://www.xmethods.com
http://sybooks.sybase.com/eag.html

Working with Web and JSP Targets 277

Numerics
4GL Web pages

about 171
adding content to pages 176
classes and objects 126
disabling 199
displaying runtime errors 270
displaying trace messages 272
EAServer integration 181, 182
error reporting 173
page request processing 197
parameter binding 180
troubleshooting 270
variables 180
wizard 40

A
absolute positioning 63
ActiveX controls

installed components 96
not marked as safe 97

adding
elements from System Tree 48
styles 78

Advanced tab 51
application logic in JSPs 145
application object, JSP 157
application scope, JSP 158
applications, developing 17
ASP

deploying to 248
using VBScript 123

authentication methods, JSP applications 263

B
binding retrieval arguments

constants 235
control values 236
JavaScript expressions 236
page parameters 238
variables 240

buttons 108

C
cascading style sheets, CSS2 72
class path

custom tag library search path 102, 159
Java 100

classes
for 4GL Web pages 126
for JSP object model 168

command line deployment
JSP targets 147
macros 148

comments
in JSPs 156
METADATA tags 220

components
inserting 97, 98
values 98

config object, JSP 157
configuration

deployment 19, 251
controls

binding 187
server scriptable 186

create
HTML page 40
Web target 18

custom deployment, JSP targets 147
custom tag libraries

Index

Index

278 PowerBuilder

about 145
listing on Components tab 97

custom tag libraries for JSP 158
custom tags and JSPs 145

D
data

binding 189
binding to Web DataWindow 234
displaying 133

databases
accessing 127
connection profiles 127
connections 133
display query results 135
handling errors 134
profiles in a script 127
SQL queries 135
using with Web DataWindow DTC 127, 226

declarations in a JSP 155
deployment

by server type 247
configuration 19, 251
JSP command line 147
JSP targets 146
local configuration 250
setting up 249
target configuration 250
to ASP 248
to EAServer 146
to Enterprise Portal 266
to Tomcat 146
using Web Target object model 249
Web targets 243, 247

description property, for JSP targets 255
design-time controls

inserting 99
METADATA tags 107
Web DataWindow DTC 213

directives, in JSPs 145, 153
display, element properties 50
distributable property, for JSP targets 255
document, HTML 40
DTC see also design-time controls 99

E
EAServer

adding methods to scripts 196
components 141
integrating with Web applications 138
JSP deployment 146
list of servers 96
variables 197

editing
frames 85
options 45

editor
configuring 43
HTML editor 33
integrated Script editor 104
standalone Web Script editor 104
Style Sheet editor 73, 74

EJB local references property, for JSP targets 266
EJB references property, for JSP targets 265
elements, HTML 49
Enterprise Portal 266
environment

settings 43
Web delivery 11

environment properties, for JSP targets 264
error handling, for JSP targets 159
error pages

in JSP targets 160
property for JSP targets 258

errors
4GL Web pages 270

events
4GL Web Pages 193
scripting 109
server 192

exception object, JSP 157

F
fallback, JSP tag 150
files

importing 21
types 23

filter mappings property, for JSP targets 256
filters property, for JSP targets 256

Index

Working with Web and JSP Targets 279

fonts 57
form field 60
format

character 57
paragraph style 47
Source view 43
tips 47

forms
inserting on page 60
submitting from 4GL pages 206

forward, JSP tag 150
frames 85

G
getProperty, JSP tag 149

H
headings, paragraph syles 53
HTML

common tagging 53
editing 33
modifying 99
SCRIPT tag 106

HTML editor
formatting 43
insert form field 60
page title 42
starting 39
switching views 38

HTTP (Hypertext Transfer Protocol)
requests and responses, JSPs 144

hyperlink
creating 59
using images 94

I
image

as hyperlink 94
creating maps, client side 94
creating maps, server side 95

inserting 92
setting height and width 93

import, files to Web target 21
include

JSP directive 153
JSP tag 150

initialization parameters property, for JSP targets 257
inline styles 50, 70
insert

HTML tables 61
special symbols 58

InstaCode
about 112
examples 113

Internet Explorer, warning 98

J
J2EE, JSP support 23, 143
Java

applets and Java Beans 96
class path 100

JavaBeans
listing in System Tree 100
using in JSP targets 145

JavaScript expressions, binding to retrieval arguments
236

JSP (JavaServer Pages)
application logic 145
application object 157
comments 156
custom tag libraries 145, 158
custom tags 145
declarations 155
directives 145, 153
error handling 159
error pages 160
handling requests and responses 144
implicit objects 157
include directive 153
overview 144
page directive 153
scope 158
scripting elements 145, 155
scriptlets 155

Index

280 PowerBuilder

standard tags 145, 149
taglib directive 153
translating to a servlet class 144
using JavaBeans in 145
Web application development and 143

JSP targets, working with 143
JSP Web Service Proxy wizard 161
JSP Web Target wizard 146

L
links

anchors 58
binding types 203
using Web DataWindow DTC 240

listener property, for JSP targets 256
lists

definition-style 56
paragraph syles 55
types of 55

load on start-up property, for JSP targets 257
login config property, for JSP targets 262
login variables, EAServer 185

M
macros, JSP command line deployment 148
menus, for formatting 45
METADATA tags 107
mime mapping property, for JSP targets 258
multimedia 96

O
object model

ASP 123
JSP 168
Web Target 2, 223

objects 221
4GL Web page 126
array indexes 109
assigning IDs 108, 110
editing in scripts 109

implicit 156
in Web Target object model 124
inserting from System Tree 112
session 130
supporting Web DataWindows 125
Web target 124

options, system settings 39
out object, JSP 157

P
page directive for a JSP 153
page object for a JSP 157
page properties, title 42
page request processing 197
page scope for JSP 158
Page view 33

about 33
add page title 42
edit 45

pageContext object for a JSP 157
parameters

4GL Web pages 177
passing with hyperlinks 204

params, JSP tag 150
plugin, JSP tag 150
plug-ins

Internet Explorer 96
Netscape 96

position, absolute on page 63
properties

JSP targets 253
Web pages 42
Web targets 18

Q
Quick Web Page wizard 40

R
redirection

hyperlink 201

Index

Working with Web and JSP Targets 281

managing server redirection 209
redo changes 52
request object, JSP 157
request scope, JSP 158
requests and responses, JSPs 144
resource environment references properties, for JSP

targets 261
resource references properties, for JSP targets 260
response object, JSP 157
retrieval arguments, Web DataWindow 234
runtime errors, displaying 270

S
Script editor

about 74
formatting 115
integrated 104
object list boxes 108
standalone 104

scripting elements in JSPs 145, 155
scriptlets, JSP 155
scripts

accessing EAServer components 196
adding to 4GL pages 194
assigning object IDs 110
creating 110
creating as separate file 111
disabling server scripting for a control 190
editing 104
editing HTML 104
editing server scripts 191
external files 107
file extensions 104
getting values using 133
inline event handlers 105
read-only 107
saving 105
server-side 106, 122
session variables 131
supported languages 105
tips and techniques 116
using external code 114
using Page view 116
VBScript 123

writing 103, 111
security constraints property, for JSP targets 261
security roles property, for JSP targets 263
server types 11
servers

application 119
application and transaction 119
deployment 247
EAServer components 182
session variables 130
supported 11
transaction 138
Web Data Window 216

servlet class, translating JSPs 144
session

JSP object 157
scope in JSP 158

session timeout property, for JSP targets 255
setProperty, JSP tag 150
Source view

about 36
edit 45
format 43

special symbols, inserting 58
SSL (Secure Sockets Layer), Web application client

263
standard tags in JSPs 145, 149
style sheets

about 69
removing elements 85

styles
adding 51
cascading style sheets 70
changing 51, 80
defining for elements 81
inline 50

system options 10, 39
System Tree

Components page 96
drag and drop from 47
inserting attributes from 49
Language page 47

Index

282 PowerBuilder

T
tables 61
taglib directive, JSP 153
Taglib property, for JSP targets 259
title, page property 42
Tomcat, JSP deployment 146
toolbars 8
tracing, 4GL Web pages 272
troubleshooting

4GL Web pages 270
JSP targets 273

U
undo changes 52
URLs 117
useBean, JSP tag 149

V
variables

EAServer login 185
page and session 180

video, adding to Web page 96
view

Page 33, 63
Preview 37
Source 36

W
warning, ActiveX controls 98
Web application, JSP security constraints 261
Web DataWindow

benefits of DTC 217
classes 223
creating a DataWindow object 223
design-time control (DTC) 218
editing 233
environment 216
implementation 213
links to other pages 241
page parameters 238

presentation 234
wizard 40

Web pages
adding 4GL capability 175
adding Web DataWindow 218
creating dynamic 121
managing data 128
page navigation 201
parameters and variables 128
passing parameters 129
see also 4GL Web pages 176
specifying target pages 203
templates 121
title 42
types 121
wizard 40

Web services
custom tags 166
troubleshooting 273
using the wizard 161

Web Target object model 2, 223
Web targets

building 244
creating 18
deployment 243
introduction 3
running 270

web.xml file, JSP targets 252
welcome file list property, for JSP targets 258
wizards

4GL JSP Page 40, 173
JSP Web Service Proxy 161
JSP Web Target 146
Quick Web/JSP Page 40
Table 61
Web/JSP DataWindow Page 40
Web/JSP Page 40

	Working with Web and JSP Targets
	About This Book
	CHAPTER 1 Working with Web Targets
	About Web targets
	About the Web target object model
	What kinds of applications can you develop?
	Do you need to know Java or HTML?
	Advantages of the Web Target development environment

	Using the Web Target development environment
	About the editors
	Tools for editing
	Toolbars
	System Tree
	Wizards for HTML elements
	Design-time controls

	System options and editor preferences

	Working in an integrated Web delivery environment

	CHAPTER 2 Developing Web Applications
	Setting up Web targets
	Creating a Web target
	Adding deployment configurations
	Importing files for an existing Web site
	Defining connection profiles

	Working with files in a Web target
	Types of files
	Adding content
	Using the System Tree

	Creating Web pages
	Adding content and style to your Web pages
	Building and deploying Web targets

	CHAPTER 3 Working with HTML Pages
	HTML editor views
	Page view
	Source view
	Preview view
	Choosing a view to work in
	Switching between views

	Opening the HTML editor and setting options
	Opening the HTML editor
	Creating a new document
	Starting the editor with an existing document

	Saving your work and closing the editor
	Giving your page a title
	Formatting HTML source display

	Basic editing in Page and Source views
	Using the PowerBuilder menu
	Formatting tips
	Using the System Tree
	Inserting an element from the System Tree
	Inserting an attribute for an element from the System Tree

	Properties for HTML elements
	Displaying element properties in Page view
	Displaying element properties in Source view
	Using the Inline Styles tab
	Using the Advanced tab

	Undo and Redo
	Finding and changing text
	Using the Script editor

	Correspondences of common elements
	Headings and paragraphs
	Lists
	Ordered and unordered lists in Page view
	Definition lists in Page view
	Lists in Source view

	Character formatting
	Inserting special symbols
	Links and anchors
	More complex formatting
	Forms
	Tables
	Other formatting

	Absolute positioning
	About absolute positioning
	What you can do
	Elements that can be absolutely positioned
	Using style sheets for absolute positioning

	Toggling between static and absolute positioning
	Setting absolute positioning options
	Manipulating an absolutely positioned element

	CHAPTER 4 Working with Style Sheets and Framesets
	About style sheets
	Working with styles
	Syntax for style attributes and selectors
	Working with IDs and classes

	About the Web Target style and style sheet editors
	The Style Sheet editor tab page interface
	Integration with other Web target editors
	HTML editor
	Script editor

	Basic editing with the style sheet editors
	Creating an external style sheet
	Importing an existing style sheet
	Linking an external style sheet to an HTML page
	Embedding style definitions in an HTML page
	Opening an existing style sheet
	Using the Inline Styles editor
	Adding selectors for HTML elements, classes, and IDs
	Global Style Sheet editor restrictions
	Defining styles for HTML element selectors
	Defining styles for ID Selectors
	Defining styles for class selectors

	Removing items from a style sheet

	Editing frames and framesets
	About the Frameset editor
	Creating a new frameset document
	Modifying a frameset
	Modifying frame properties

	CHAPTER 5 Working with Images, Other Media, and Components
	Images and image maps
	Inserting images
	Setting height and width attributes for images
	Converting the image to a hyperlink

	Creating image maps
	Creating a client-side image map
	Creating a server-side image map

	Multimedia
	Components
	Viewing available components
	Inserting a component
	Design-time controls
	Viewing and editing DTC properties
	Working with the generated HTML

	The Java class path
	Class path values
	Using the class path

	The custom tag library search path

	CHAPTER 6 Writing Scripts
	About scripts
	Editing scripts
	Working in the HTML editor
	Working in the standalone Web Script editor
	Using the Clip window
	Where and when to save scripts

	Scripting languages
	Types of scripts
	Inline event handlers
	Client scripts
	Server scripts
	Scripts in external files
	Other scripts

	Objects in an HTML document
	IDs for HTML objects
	HTML objects in the Script toolbar

	Procedures for editing scripts
	Choosing an object or event for scripting
	Assigning an ID to an object in the document
	Creating a new script
	Writing the code
	System Tree
	InstaCode
	Code in external files

	Finding and changing code
	Setting default formats for scripts in the Script editor

	Techniques and tips for creating scripts
	Position of scripts
	Balanced HTML that the editor can understand

	URLs in scripts

	CHAPTER 7 Working with Application Servers and Transaction Servers
	Integrating with application servers
	Working with server scripts
	Using the Web Target object model
	Accessing database content from your Web target
	Managing page data
	About page parameters and variables
	Using page parameters in server scripts
	Using session variables in server scripts
	Samples for retrieving and displaying data

	Integrating with EAServer
	Accessing components

	CHAPTER 8 Working with JSP Targets
	About JavaServer Pages
	How JavaServer Pages work
	What a JSP contains
	Application logic in JSPs

	JSP Web Target wizard
	Specifying a server type
	Custom command line deployment

	JSP page authoring
	JSP actions
	Inserting an action
	Adding applets and JavaBeans

	Directives
	Inserting a directive

	JSP scripting elements
	Inserting a scripting element
	Implicit objects
	Scopes

	Custom tags
	Error handling

	JSP Web services
	Using the JSP Web Service Proxy wizard
	Files added by the wizard and files required by the server
	Using the UDDI browser in the wizard

	SOAP processing in JSP targets
	Adding a custom tag for Web services

	JSP Web Target object model
	Custom tag library for the Web DataWindow

	CHAPTER 9 Developing 4GL JSP Pages
	About 4GL JSP pages
	Developing pages
	Creating a new 4GL JSP page
	Enabling 4GL mode in an existing page
	Adding content to 4GL JSP pages

	Using parameters and variables
	Setting up page parameters
	Setting parameter bindings on the linking page
	Setting up page and session variables

	Accessing EAServer components
	About EAServer integration
	Working with EAServer components
	Setting up EAServer login variables

	Adding controls
	Binding controls to properties of EAServer components
	Binding controls to page data
	Disabling server scripting for a control

	Writing server scripts
	Responding to events on your page
	Adding scripts to 4GL JSP pages
	Writing scripts to access EAServer components

	How page request processing works
	Disabling 4GL mode

	CHAPTER 10 Setting Up Page Navigation
	About page navigation
	Managing client hyperlinks
	Managing client form submission
	Managing server redirection

	CHAPTER 11 Using the Web DataWindow Design-Time Control
	About the Sybase Web DataWindow DTC
	Web DataWindow support
	Server-side environment
	Benefits of using the Web DataWindow DTC

	Adding a DataWindow to a Web page
	Creating a page that has a Web DataWindow DTC
	What you see in Page view
	What you see in Source view
	What you see in a non-4GL Web page
	What you see in a 4GL Web page
	Using the Web Target object model

	Setting Web DataWindow DTC properties
	Selecting the source for a DataWindow object
	Selecting a database profile
	Controlling the behavior of the DTC
	Setting the bind type and values for retrieval arguments
	Defining links
	Selecting a Web DataWindow generator

	Editing existing Web DataWindow DTC properties
	DataWindow presentation styles and data sources
	Binding data to DataWindow retrieval arguments
	Constants
	Control Values
	JavaScript Expressions
	Page Parameters
	Page Variables

	Defining hyperlinks on objects in a DataWindow

	CHAPTER 12 Building and Deploying Web Targets
	About building and deploying Web targets
	Building Web targets
	The deployment process
	Working with server types
	Deploying to ASP
	Deploying using the Basic deployment controller

	Setting up a deployment configuration
	Editing a Web site deployment configuration
	Editing a JSP deployment configuration
	General deployment options
	JSP deployment options
	JSP options
	Context Params
	Filters
	Listeners
	Servlets
	Mime Mapping
	Welcome Files
	Error Mapping
	Tag Libraries
	Resource References
	Security
	Environment
	EJBs

	Enterprise Portal deployment options
	Deploying a Web target
	Running a Web target
	Troubleshooting 4GL JSP pages
	Displaying runtime errors
	Displaying trace messages

	Troubleshooting JSP targets
	Problems deploying and running JSPs
	Troubleshooting JSP Web services
	Additional resources for JSPs and Web services

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

