
Application Techniques

PowerBuilder®

10.5

DOCUMENT ID: DC37774-01-1050-01

LAST REVISED: March 2006

Copyright © 1991-2006 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication,
Adaptive Server Everywhere, Adaptive Warehouse, Afaria, Answers Anywhere, Anywhere Studio, Application Manager, AppModeler,
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Translator, APT-Library, AvantGo Mobile Delivery, AvantGo Mobile
Inspection, AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon
Application Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker,
ClearConnect, Client-Library, Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench, DataArchitect, Database
Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Developers Workbench, DirectConnect,
DirectConnect Anywhere, Distribution Director, e-ADK, E-Anywhere, e-Biz Impact, e-Biz Integrator, E-Whatever, EC Gateway,
ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise
Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work
Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager,
GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information
Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, M2M Anywhere, Mach Desktop, Mail
Anywhere Studio, Mainframe Connect, Maintenance Express, Manage Anywhere Studio, M-Business Anywhere, M-Business Channel,
M-Business Network, M-Business Suite, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, mFolio, Mirror
Activator, MySupport, Net-Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL
Access Module, OmniSQL Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open Client/Server Interfaces,
Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library,
Pharma Anywhere, PocketBuilder, Pocket PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation
Class Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage,
PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst,
QAnywhere, Rapport, RemoteWare, RepConnector, Replication Agent, Replication Driver, Replication Server, Replication Server
Manager, Replication Toolkit, Report-Execute, Report Workbench, Resource Manager, RFID Anywhere, RW-DisplayLib, RW-Library,
Sales Anywhere, SDF, Search Anywhere, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners,
smart.parts, smart.script, SOA Anywhere, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug,
SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL
Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, S.W.I.F.T.
Message Format Libraries, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase IQ,
Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber
Financial, SyberAssist, SybFlex, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, TradeForce,
Transact-SQL, Translation Toolkit, UltraLite, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for
UniCode, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, Watcom,
Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-
Library, XA-Server, XcelleNet, and XP Server are trademarks of Sybase, Inc. 10/05

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

Application Techniques iii

About This Book ... xix

PART 1 SAMPLE APPLICATIONS

CHAPTER 1 Using Sample Applications.. 3
About the sample applications ... 3

Samples on the Web ... 3
Samples on the CD ... 4

Installing the sample applications .. 4
Opening the sample applications ... 5
Using the Code Examples application.. 5

Browsing the examples ... 6
Finding examples .. 6
Running and examining examples .. 7

PART 2 LANGUAGE TECHNIQUES

CHAPTER 2 Selected Object-Oriented Programming Topics 11
Terminology review .. 11
PowerBuilder techniques ... 13
Other techniques.. 17

CHAPTER 3 Selected PowerScript Topics... 23
Dot notation.. 23
Constant declarations .. 27
Controlling access for instance variables....................................... 28
Resolving naming conflicts... 29
Return values from ancestor scripts... 30
Types of arguments for functions and events 32
Ancestor and descendent variables ... 33
Optimizing expressions for DataWindow and external objects 35

Contents

iv PowerBuilder

Exception handling in PowerBuilder... 36
Basics of exception handling... 36
Objects for exception handling support 37
Handling exceptions .. 38
Creating user-defined exception types.................................... 40
Adding flexibility and facilitating object reuse 42
Using the SystemError and Error events................................. 44

Garbage collection and memory management 45
Configuring memory management .. 46

Efficient compiling and performance .. 48
Reading and writing text or binary files .. 48

CHAPTER 4 Getting Information About PowerBuilder Class Definitions...... 51
Overview of class definition information... 51

Terminology... 52
Who uses PowerBuilder class definitions................................ 54

Examining a class definition... 54
Getting a class definition object... 55
Getting detailed information about the class 55
Getting information about a class’s scripts.............................. 58
Getting information about variables... 60

PART 3 USER INTERFACE TECHNIQUES

CHAPTER 5 Building an MDI Application ... 65
About MDI .. 65
Building an MDI frame window... 68
Using sheets .. 68
Providing MicroHelp ... 70
Using toolbars in MDI applications... 71

Customizing toolbar behavior.. 71
Saving and restoring toolbar settings 72

Sizing the client area.. 77
About keyboard support in MDI applications.................................. 79

CHAPTER 6 Managing Window Instances.. 81
About window instances... 81
Declaring instances of windows ... 82
Using window arrays .. 84
Referencing entities in descendants .. 86

Contents

Application Techniques v

CHAPTER 7 Using Tab Controls in a Window... 89
About Tab controls ... 89
Defining and managing tab pages ... 90
Customizing the Tab control .. 93
Using Tab controls in scripts .. 96

Referring to tab pages in scripts.. 96
Referring to controls on tab pages .. 98
Opening, closing, and hiding tab pages 99
Keeping track of tab pages.. 100
Creating tab pages only when needed.................................. 101
Events for the parts of the Tab control 102

CHAPTER 8 Using TreeView Controls ... 105
About TreeView controls .. 105
Populating TreeViews .. 108

Functions for inserting items ... 109
Inserting items at the root level ... 111
Inserting items below the root level 111

Managing TreeView items.. 114
Deleting items.. 115
Renaming items .. 116
Moving items using drag and drop .. 117
Sorting items ... 120

Managing TreeView pictures.. 122
Pictures for items... 122
Setting up picture lists ... 123
Using overlay pictures ... 124

Using DataWindow information to populate a TreeView.............. 125

CHAPTER 9 Using Lists in a Window... 129
About presenting lists... 129
Using lists... 130
Using drop-down lists... 135
Using ListView controls .. 137

Using report view... 142

CHAPTER 10 Using Drag and Drop in a Window .. 145
About drag and drop .. 145
Drag-and-drop properties, events, and functions......................... 146
Identifying the dragged control ... 148

Contents

vi PowerBuilder

CHAPTER 11 Providing Online Help for an Application.................................. 149
Creating Help files.. 149
Providing online Help for developers ... 151
Providing online Help for users .. 153

PART 4 DATA ACCESS TECHNIQUES

CHAPTER 12 Using Transaction Objects ... 157
About Transaction objects.. 157

Description of Transaction object properties 158
Transaction object properties and supported PowerBuilder

database interfaces .. 160
Working with Transaction objects .. 162

Transaction basics .. 162
The default Transaction object .. 163
Assigning values to the Transaction object 164
Reading values from an external file 165
Connecting to the database .. 166
Using the Preview tab to connect in a PowerBuilder

application .. 166
Disconnecting from the database.. 167
Defining Transaction objects for multiple database

connections .. 167
Error handling after a SQL statement.................................... 170
Pooling database transactions .. 171

Using Transaction objects to call stored procedures 172
Step 1: define the standard class user object 174
Step 2: declare the stored procedure as an external function 175
Step 3: save the user object.. 177
Step 4: specify the default global variable type for SQLCA... 177
Step 5: code your application to use the user object............. 178

Supported DBMS features when calling stored procedures 180

CHAPTER 13 Using MobiLink Synchronization ... 183
About MobiLink synchronization .. 183
Working with PowerBuilder synchronization objects.................... 187

Trying out the MobiLink Synchronization for ASA wizard...... 187
What gets generated ... 189
Using the synchronization objects in your application........... 190
Using the synchronization options window............................ 193

Contents

Application Techniques vii

Runtime requirements for synchronization on remote
machines .. 195

Preparing to use the wizard... 198
Preparing consolidated databases... 198

Connection events... 199
Table events.. 200
Working with scripts and users in Sybase Central 202

Creating remote databases.. 205
Creating and modifying publications 205
Creating MobiLink users.. 208
Adding subscriptions ... 209

Synchronization techniques ... 211

CHAPTER 14 Using PowerBuilder XML Services ... 213
About XML and PowerBuilder .. 213
About PBDOM.. 214
PBDOM object hierarchy.. 215
PBDOM node objects... 216

PBDOM_OBJECT ... 216
PBDOM_DOCUMENT .. 219
PBDOM_DOCTYPE.. 219
PBDOM_ELEMENT .. 220
PBDOM_ATTRIBUTE ... 222
PBDOM_ENTITYREFERENCE .. 226
PBDOM_CHARACTERDATA ... 226
PBDOM_TEXT .. 227
PBDOM_CDATA ... 229
PBDOM_COMMENT... 230
PBDOM_PROCESSINGINSTRUCTION............................... 231

Adding pbdom105.pbx to your application 231
Using PBDOM.. 233

Validating the XML .. 233
Creating an XML document from XML 234
Creating an XML document from scratch.............................. 235
Accessing node data ... 237
Manipulating the node-tree hierarchy.................................... 238

Handling PBDOM exceptions... 239
XML namespaces .. 240

Setting the name and namespace of a
PBDOM_ATTRIBUTE .. 242

Contents

viii PowerBuilder

CHAPTER 15 Manipulating Graphs ... 247
Using graphs .. 247

Working with graph controls in code 248
Populating a graph with data.. 249
Modifying graph properties... 251

How parts of a graph are represented................................... 251
Referencing parts of a graph... 252

Accessing data properties.. 253
Getting information about the data .. 253
Saving graph data ... 254
Modifying colors, fill patterns, and other data........................ 254

Using point and click .. 255

CHAPTER 16 Implementing Rich Text .. 257
Using rich text in an application ... 257

Sources of rich text.. 258
Using a RichText DataWindow object.. 258
Using a RichTextEdit control .. 261

Giving the user control .. 261
Text for the control .. 262
Formatting of rich text.. 270
Input fields ... 270
Using database data ... 272
Cursor position in the RichTextEdit control 273
Preview and printing.. 274

Rich text and the user .. 276

CHAPTER 17 Piping Data Between Data Sources ... 279
About data pipelines... 279
Building the objects you need .. 281

Building a Pipeline object .. 281
Building a supporting user object .. 284
Building a window.. 285

Performing some initial housekeeping ... 287
Starting the pipeline ... 290

Monitoring pipeline progress ... 292
Canceling pipeline execution... 294
Committing updates to the database..................................... 295

Handling row errors.. 296
Repairing error rows.. 298
Abandoning error rows .. 299

Performing some final housekeeping... 300

Contents

Application Techniques ix

PART 5 PROGRAM ACCESS TECHNIQUES

CHAPTER 18 Using DDE in an Application.. 305
About DDE ... 305
DDE functions and events.. 306

CHAPTER 19 Using OLE in an Application.. 309
OLE support in PowerBuilder... 309
OLE controls in a window... 310
OLE controls and insertable objects .. 312

Setting up the OLE control .. 312
Linking versus embedding... 316
Offsite or in-place activation .. 317
Menus for in-place activation... 318
Modifying an object in an OLE control................................... 320

OLE custom controls.. 325
Setting up the custom control .. 325
Programming the ActiveX control .. 326

Programmable OLE Objects .. 328
OLEObject object type .. 328
Assignments among OLEControl, OLECustomControl, and

OLEObject datatypes ... 331
Automation scenario.. 332

OLE objects in scripts .. 338
The automation interface... 338
Automation and the Any datatype ... 345
OLEObjects for efficiency.. 346
Handling errors.. 346
Creating hot links... 350
Setting the language for OLE objects and controls 351
Low-level access to the OLE object 352
OLE objects in DataWindow objects 352

OLE information in the Browser ... 355
Advanced ways to manipulate OLE objects................................. 358

Structure of an OLE storage.. 358
Object types for storages and streams.................................. 359
Opening and saving storages.. 360
Opening streams ... 366
Strategies for using storages... 369

Contents

x PowerBuilder

CHAPTER 20 PowerBuilder Runtime Automation Server 371
Using the runtime automation server ... 372

Uses for runtime automation ... 373
Three methods .. 373

Using a user object as an automation server............................... 376
Creating a class user object to be a server 376
Building the object’s runtime library....................................... 377
Registering the object.. 377
Writing client code that accesses the user object 379

Using PowerBuilder as an automation server 380
Creating the user objects you will access 380
Building runtime libraries ... 381
Writing client code that accesses PowerBuilder and user

objects .. 382
Creating and using a named server ... 384
More about user objects and the registry..................................... 386

What are all the identifiers for?.. 386
Where information about your object is stored...................... 387
Creating registry information ... 389

Deploying an application that uses the automation server........... 393
Multiple versions and updates... 394

Runtime automation server reference.. 394
PowerBuilder.Application server object.. 395
CreateObject function .. 397
GenerateGUID function.. 399
GenerateRegFile function .. 401
GenerateTypeLib function.. 404
Exception codes... 408
Sample registry update file... 409

CHAPTER 21 Building a Mail-Enabled Application.. 411
About MAPI .. 411
Using MAPI .. 412

CHAPTER 22 Using External Functions and Other Processing Extensions. 413
Using external functions... 413

Declaring external functions .. 414
Sample declarations.. 415
Passing arguments.. 416
Calling external functions on UNIX.. 419

Using utility functions to manage information............................... 420
Sending Windows messages ... 421

Contents

Application Techniques xi

The Message object... 423
Message object properties .. 423

Context information .. 425
Context information service... 426
Context keyword service ... 429
CORBACurrent service ... 431
Error logging service ... 431
Internet service.. 431
Secure Sockets Layer service... 434
Transaction server service .. 435

PART 6 DEVELOPING DISTRIBUTED APPLICATIONS

CHAPTER 23 Distributed Application Development with PowerBuilder....... 439
Distributed application architecture .. 439
Server support.. 440

CHAPTER 24 Building an EAServer Component .. 445
About building an EAServer component 445

About using the wizards .. 446
About the development process.. 446
Creating an EAServer profile... 447

Working with shared and service components............................. 448
About shared components .. 448
About service components .. 449
Threading issues and component types................................ 450
Using the EAServer Thread Manager 453

Providing support for instance pooling ... 453
Providing support for transactions.. 457
Accessing a database from an EAServer component.................. 461

Using connection caching ... 462
Performing retrieval operations ... 466
Performing updates ... 467
Passing result sets .. 473

Defining the component interface .. 475
Implementing an existing interface... 478
Invoking another server component’s methods 480
Accessing component properties ... 482
Exposing an NVO as a Web service .. 486
Testing and debugging the component.. 487

Live editing .. 488

Contents

xii PowerBuilder

Remote debugging .. 490
Putting messages into the EAServer log............................... 492

Printing data ... 493
Printing on the Solaris operating system............................... 493
Printing to PDF .. 497

Deploying a component to EAServer ... 498

CHAPTER 25 Building an EAServer Client ... 501
About building an EAServer client.. 501

About using the wizards .. 502
About the development process.. 502

Connecting to EAServer... 502
Writing the code by hand... 503
Using the wizard to create a Connection object 505

Generating EAServer proxy objects... 506
Invoking component methods .. 508

Invoking a component method .. 508
Invoking an EJB component method..................................... 510
Destroying instances ... 513

Using the JaguarORB object.. 513
Instantiation using String_To_Object 514
Instantiation using the naming service API 517

Client- and component-demarcated transactions 518
Requesting a message back from the server............................... 522

Example .. 522
Handling errors... 525

Handling CORBA exceptions .. 527
Scripting the Error event.. 529
Scripting the SystemError event.. 530

Deploying the client application.. 530

CHAPTER 26 Using SSL in PowerBuilder clients .. 531
Using secure connections with EAServer 531
SSL connections in PowerBuilder .. 533

SSL properties... 533
ORB properties.. 536

Establishing a secure connection... 536
Using SSL callbacks .. 539

Getting session information... 540
Implementing the SSLCallback object................................... 541
Specifying the SSLCallback object.. 542

Retrieving session security information.. 543

Contents

Application Techniques xiii

CHAPTER 27 Building a COM or COM+ Component 545
About building COM and COM+ components 545

About using the wizards .. 546
About the development process.. 547

About the Component Object Model .. 548
About PowerBuilder COM servers .. 548
Comparing automation servers and PowerBuilder COM
servers... 548

Defining the component interface .. 550
Methods and datatypes ... 551
Restrictions on coding ... 552
Recording errors in a log file ... 554

Accessing a database from a COM component........................... 554
Passing result sets .. 555

Providing support for transactions.. 558
Invoking another server component’s methods 560
Security issues ... 561
Building COM/COM+ components in the Project painter 562

Registering components automatically.................................. 563
Deploying components to COM+ .. 564
Choosing a custom or dual interface..................................... 564
Setting up the embedded PBD.. 564

How the PowerBuilder COM object executes 565
Memory allocation ... 565

Deploying a PowerBuilder COM server 566
Using a PowerBuilder COM server with a COM-enabled

application .. 566
Accessing PowerBuilder COM servers from clients..................... 567

Visual Basic as client... 567
C++ as client ... 568
Using PowerBuilder COM servers and objects with DCOM.. 571

CHAPTER 28 Building a COM or COM+ Client .. 575
About building a COM or COM+ client ... 575
Connecting to a COM server.. 576
Interacting with the COM component... 577
Controlling transactions from a client ... 578

Contents

xiv PowerBuilder

PART 7 DEVELOPING WEB APPLICATIONS

CHAPTER 29 Building an EJB client... 583
About building an EJB client .. 583
Adding pbejbclient105.pbx to your application............................. 585
Generating EJB proxy objects.. 586

Using an EJB Proxy project... 586
Using the ejb2pb105 tool... 589
Viewing the generated proxies .. 590
Datatype mappings ... 592

Creating a Java VM.. 593
Connecting to the server .. 596
Invoking component methods .. 597
Exception handling... 602
Client-managed transactions ... 603
Debugging the client .. 605

CHAPTER 30 Web Application Development with PowerBuilder................... 607
Building Web applications .. 607
Web services.. 608
Web targets.. 608
JSP targets... 609
Web DataWindow .. 609
DataWindow Web control for ActiveX .. 611
DataWindow plug-in ... 611
PowerBuilder window plug-in ... 612
PowerBuilder window ActiveX.. 612

CHAPTER 31 Building a Web Services Client .. 615
About Web services ... 615

About building a Web services client..................................... 616
Choosing a Web service engine.. 617
Assigning firewall settings to access a Web service 618

Importing objects from an extension file....................................... 619
Generating Web service proxy objects .. 620
Connecting to a SOAP server .. 626
Invoking the Web service method .. 628
Exception handling... 628
Using the UDDI Inquiry API.. 629

Contents

Application Techniques xv

CHAPTER 32 Using the DataWindow Plug-in.. 631
About the DataWindow plug-in... 631

How the DataWindow plug-in works...................................... 632
Installing and configuring the DataWindow plug-in 633
Developing and deploying a DataWindow plug-in................. 634

Saving a Powersoft report (PSR) ... 635
Creating an HTML page... 636

Sample page ... 636
Setting up the Web server.. 637
Setting up users’ workstations ... 638

CHAPTER 33 Using the PowerBuilder Window Plug-in.................................. 641
About the PowerBuilder window plug-in....................................... 641

What kinds of applications make good plug-ins? 643
How the PowerBuilder window plug-in works........................ 644

Installing and configuring the PowerBuilder window plug-ins 646
Using the secure PowerBuilder window plug-in 647
Developing and deploying a PowerBuilder window plug-in

application .. 648
Creating the PowerBuilder application ... 649

Design choices for plug-in applications 650
Defining the starting window in the Window painter.............. 653
Testing the application in PowerBuilder 654
Building the dynamic libraries.. 654

Creating an HTML page... 656
Attributes of the Embed element ... 656
Sample page ... 658
Embed element with additional attributes.............................. 659

Setting up the server .. 659
Setting up users’ workstations ... 660

Required components ... 661
Viewing the Web page and plug-in application 661

CHAPTER 34 Using the PowerBuilder Window ActiveX................................. 663
About the PowerBuilder window ActiveX 663

Kinds of applications that work with the PowerBuilder
window ActiveX .. 664

How the PowerBuilder window ActiveX works 664
Installing and configuring the PowerBuilder window ActiveX 665
Developing and deploying a PowerBuilder window ActiveX

application .. 666
Creating the PowerBuilder application ... 667

Designing the application .. 668

Contents

xvi PowerBuilder

Defining the starting window in the Window painter.............. 670
Testing the application in PowerBuilder 671

Creating an HTML page... 674
Attributes of the Object element .. 674
Basic page... 676
Client-side scripting ... 677

Events for the PowerBuilder window ActiveX 685
Setting up the server .. 686
Setting up users’ workstations ... 687

Viewing the Web page and PowerBuilder window ActiveX
application .. 688

PART 8 GENERAL TECHNIQUES

CHAPTER 35 Internationalizing an Application ... 691
Developing international applications... 691
Using Unicode.. 691

About Unicode... 692
Unicode support in PowerBuilder .. 693

Internationalizing the user interface ... 697
Localizing the product .. 697

About the Translation Toolkit... 699

CHAPTER 36 Building Accessible Applications .. 701
Understanding accessibility challenges 701
Accessibility requirements for software and Web applications 703
Creating accessible software applications with PowerBuilder 705
About VPATs.. 709
Testing product accessibility .. 710

CHAPTER 37 Printing from an Application .. 711
Printing functions.. 711
Printing basics.. 713
Printing a job .. 713
Using tabs .. 714
Stopping a print job .. 715
Advanced printing techniques .. 716

Contents

Application Techniques xvii

CHAPTER 38 Managing Initialization Files and the Windows Registry 719
About preferences and default settings.. 719
Managing information in initialization files.................................... 720
Managing information in the Windows registry 721

CHAPTER 39 Building InfoMaker Styles and Actions..................................... 723
About form styles ... 723
Naming the DataWindow controls in a form style 726
Building and using a form style .. 727
Modifying an existing style ... 728

Identifying the window as the basis of a style 729
Building a style from scratch .. 730
Completing the style... 730

Working with the central DataWindow controls 731
Adding controls.. 732
Defining actions... 732
Using menus ... 733
Writing scripts.. 734
Adding other capabilities ... 734

Using the style.. 734
Building a form with the custom form style............................ 735
Managing the use of form styles ... 736

PART 9 DEPLOYMENT TECHNIQUES

CHAPTER 40 Packaging an Application for Deployment............................... 741
About deploying applications ... 741
Creating an executable version of your application 742

Compiler basics... 742
Learning what can go in the package.................................... 743
Creating a PowerBuilder resource file................................... 748
Choosing a packaging model .. 750
Implementing your packaging model..................................... 753
Testing the executable application .. 754

Delivering your application to end users 755
Installation checklist .. 755
Starting the deployed application .. 758

CHAPTER 41 Deploying Applications and Components................................ 759
Deploying applications, components, and supporting files 760
PowerBuilder Runtime Packager ... 763
PowerBuilder runtime files ... 766

Contents

xviii PowerBuilder

Database connections.. 768
Native database drivers... 769
ODBC database drivers and supporting files 770
OLE DB database providers.. 781
ADO.NET database interface.. 783
JDBC database interface .. 783

Java support... 784
PowerBuilder extensions.. 787
PDF and XSL-FO export .. 787

Using the GNU Ghostscript distiller....................................... 788
Using the Apache FO processor ... 789

DataWindow Web control for ActiveX .. 790
Plug-ins and PowerBuilder window ActiveX controls 791
PowerBuilder components on EAServer...................................... 792
PowerBuilder COM servers.. 795
PowerBuilder automation servers .. 796

Creating registry information for OLE automation objects..... 797
Web DataWindow on EAServer ... 797
Web DataWindow on COM+ or IIS .. 798

Index ... 801

Application Techniques xix

About This Book

Audience You should read this book if you are involved in any phase of a
client/server, distributed, or Web application development project that
uses PowerBuilder®.

How to use this book This how-to book guides you through programming techniques used to
build and deploy PowerBuilder applications and components. It does this
by equipping you with collections of techniques for implementing many
common application features and advice for choosing those techniques
best suited to your requirements.

PowerBuilder is accompanied by sample applications that illustrate some
of the issues, features, and techniques you will read about. Examine the
components of these applications in PowerBuilder, read the comments in
the code, and experiment with real, working examples of what you are
trying to learn.

For where to find the sample applications, see Chapter 1, “Using Sample
Applications.”

Related documents For a description of all the books in the PowerBuilder documentation set,
see the preface of PowerBuilder Getting Started.

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase
Product Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation
guides in PDF format, and may also contain other documents or
updated information not included on the SyBooks CD. It is included
with your software. To read or print documents on the Getting Started
CD, you need Adobe Acrobat Reader, which you can download at no
charge from the Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access
the manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or
print the PDF files, you need Adobe Acrobat Reader.

xx PowerBuilder

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://www.sybase.com/support/manuals/.

Conventions The formatting conventions used in this manual are:

Formatting example Indicates

Retrieve and Update When used in descriptive text, this font indicates:

• Command, function, and method names

• Keywords such as true, false, and null

• Datatypes such as integer and char

• Database column names such as emp_id and
f_name

• User-defined objects such as dw_emp or
w_main

variable or file name When used in descriptive text and syntax
descriptions, oblique font indicates:

• Variables, such as myCounter

• Parts of input text requiring substitution, such as
pblname.pbd

• File and path names

File>Save Menu names and menu items are displayed in plain
text. The greater than symbol (>) shows you how
to navigate menu selections. For example,
File>Save indicates “select Save from the File
menu.”

dw_1.Update() Monospace font indicates:

• Information that you enter in a dialog box or on
a command line

• Sample script fragments

• Sample output fragments

 About This Book

Application Techniques xxi

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

xxii PowerBuilder

P A R T 1 Sample Applications

This part introduces the sample applications provided with
PowerBuilder and explains how you use them to learn
programming techniques.

Application Techniques 3

C H A P T E R 1 Using Sample Applications

About this chapter This chapter describes how to use PowerBuilder sample applications.

Contents

About the sample applications
PowerBuilder provides sample applications with source code so you can
learn and reuse the techniques used in the samples. There are two kinds of
samples:

• Samples that you can download from the Web

• Samples you can install from the CD

Samples on the Web
The latest PowerBuilder sample applications and utilities are on the
Sybase CodeXchange Web site in the PowerBuilder Samples and Utilities
project at http://powerbuilder.codeXchange.sybase.com/. There is a link to
this page on the Windows Start menu at Program
Files>Sybase>PowerBuilder 10.5>Sybase CodeXchange. If you have not
logged in to MySybase, you must log in on the Sybase Universal Login
page to access CodeXchange. If you do not have a MySybase account, you
can sign up using the link on this page. MySybase is a free service that
provides a personalized portal into the Sybase Web site.

Topic Page

About the sample applications 3

Installing the sample applications 4

Opening the sample applications 5

Using the Code Examples application 5

Installing the sample applications

4 PowerBuilder

These samples are contributed by Sybase employees and users and are updated
frequently. They include standalone applications that illustrate specific
features of PowerBuilder, including new features such as using Web services,
creating EJB clients, and writing visual and nonvisual extensions using the
PowerBuilder Native Interface. Most samples include a readme document that
explains which features a sample demonstrates and how to download and
use it.

Samples on the CD
There are two samples on the CD that you can install when you install
PowerBuilder.

Code Examples The PowerBuilder Code Examples application contains many examples you
can use to learn a range of coding techniques. The examples are specifically
designed to show you how to use different coding techniques with both old and
new PowerBuilder features.

Web DataWindow To develop an application that uses Web DataWindow® technology, you can
use the generic server component that is preinstalled in EAServer and provided
as a DLL for use with the Microsoft Component Object Model (COM). You
can also create your own HTML generator server component, using the sample
Web DataWindow PBL as a model. For more information about the Web
DataWindow, see the DataWindow Programmer’s Guide.

Installing the sample applications
To install the samples from the CD, select the Custom setup type in the
PowerBuilder installation program and select Code Examples from the list of
components. To install the Code Examples application, select Example
Application. To install the Web DataWindow PBL, select Web DataWindow.

Both samples are installed in the Code Examples subdirectory in your
PowerBuilder 10.5 directory. The Code Examples application uses a sample
Adaptive Server Anywhere database called the EAS Demo DB, which is
installed in the Sybase\Shared\PowerBuilder directory. If you cannot find the
Code Examples directory or the EASDEMO105.DB file, the sample
applications and the database may not have been installed.

CHAPTER 1 Using Sample Applications

Application Techniques 5

Opening the sample applications
To open a sample application, you need to create a workspace for the
application and then add the target for that application to your workspace.

If there is no target file for an application, you can still add it to your
workspace. Select Existing Application from the Target tab of the New dialog
box. In the wizard that opens, navigate to the PowerBuilder 10.5.0\Code
Examples folder, expand the folder and PBL that contains the application you
want to examine, and select the application.

The next section contains a procedure that steps you through opening and
running the Code Examples application.

Using the Code Examples application
You run the Code Examples application from the development environment.

❖ To run the Code Examples application:

1 Select File>New from the menu bar, select Workspace from the
Workspace tab, and click OK.

2 Navigate to the PowerBuilder 10.5.0\Code Examples\Example App folder,
type a name for the workspace, and click Save.

3 Select Add Target from the pop-up menu for the workspace you just
created, navigate to the PowerBuilder 10.5.0\Code Examples\Example
App folder, select the PB Examples target file, and click Open.

If you expand the target, you will see that the PBL that contains the
application and all its supporting PBLs have been added to the workspace.

4 Click the Run button on the PowerBar.

Using the Code Examples application

6 PowerBuilder

Browsing the examples
When the Code Examples application opens, the left pane contains an
expandable tree view listing the categories of examples available. Some
examples appear in more than one category. For example, the Business Class
example is listed under Inheritance and User Objects. If you are looking for
examples showing how to work with a specific feature, such as DataStores or
DataWindows, expand that category and look at the example names.

When you select an example in the left pane, a description of the example and
the techniques it demonstrates displays on the right:

Finding examples
If you are looking for ways to work with a specific PowerBuilder object class
or feature, you can use the categories in the Examples pane and the descriptions
to locate examples. If you are looking for examples using a specific event,
function, or user-defined object, use the Search pane.

CHAPTER 1 Using Sample Applications

Application Techniques 7

❖ To search for a function, event, or object:

1 Click the Search tab in the Code Examples main window.

2 Select a radio button in the Search On group box.

3 Select the item you want in the drop-down list and click Perform Search.

The names of all the examples that use the function, event, or object you
searched for display:

Running and examining examples
Once you have located an example that performs some processing you want to
learn about, you can run it to examine how it works and look at the code (and
copy it if you want to).

Running an example To run the highlighted example, double-click it or click Run!. You can get Help
on how to use the example and what it does by clicking the Help button on the
example’s main window.

Using the Code Examples application

8 PowerBuilder

Examining the code To see all the objects used in an example, click the Related Objects tab on the
right pane and click the plus signs to expand items:

Double-click the icon for a script or function to examine it.

Using examples in the
development
environment

Running the Code Examples application and looking at the code for an
example gives you a lot of information, but if you open objects in the examples
in the development environment, you can examine them in more depth.

For example, you can open any object in a painter, examine the inheritance
hierarchy in the Browser, and step through an example in the Debugger. You
can even copy objects to your own application in the Library painter or copy
code fragments to the Script view.

The libraries in the Code Examples application are organized by object type.
For example, pbexamd1.pbl and pbexamd2.pbl contain DataWindow objects.
This makes it easy to find the objects that are referenced as examples later in
this book. If you expand the sample libraries in the List view in the Library
painter, the comments tell you what each object is used for.

P A R T 2 Language Techniques

This part presents a collection of programming techniques
you can use to take advantage of PowerBuilder object-
oriented features and PowerScript® language elements,
including the ClassDefinition object.

Application Techniques 11

C H A P T E R 2 Selected Object-Oriented
Programming Topics

About this chapter This chapter describes how to implement selected object-oriented
programming techniques in PowerBuilder.

Contents

Terminology review
Classes, properties, and
methods

In object-oriented programming, you create reusable classes to perform
application processing. These classes include properties and methods
that define the class’s behavior. To perform application processing, you
create instances of these classes. PowerBuilder implements these
concepts as follows:

• Classes PowerBuilder objects (such as windows, menus, window
controls, and user objects)

• Properties Object variables and instance variables

• Methods Events and functions

The remaining discussions in this chapter use this PowerBuilder
terminology.

Fundamental principles Object-oriented programming tools support three fundamental principles:
inheritance, encapsulation, and polymorphism.

Inheritance Objects can be derived from existing objects, with access to
their visual component, data, and code. Inheritance saves coding time,
maximizes code reuse, and enhances consistency. A descendent object is
also called a subclass.

Topic Page

Terminology review 11

PowerBuilder techniques 13

Other techniques 17

Terminology review

12 PowerBuilder

Encapsulation An object contains its own data and code, allowing outside
access as appropriate. This principle is also called information hiding.
PowerBuilder enables and supports encapsulation by giving you tools that can
enforce it, such as access and scope. However, PowerBuilder itself does not
require or automatically enforce encapsulation.

Polymorphism Functions with the same name behave differently, depending
on the referenced object. Polymorphism enables you to provide a consistent
interface throughout the application and within all objects.

Visual objects Many current applications make heavy use of object-oriented features for
visual objects such as windows, menus, and visual user objects. This allows an
application to present a consistent, unified look and feel.

Nonvisual objects To fully benefit from PowerBuilder’s object-oriented capabilities, consider
implementing class user objects, also known as nonvisual user objects:

Standard class user objects Inherit their definitions from built-in
PowerBuilder system objects, such as Transaction, Message, or Error. The
nvo_transaction Transaction object in the Code Examples sample application is
an example of a subclassed standard class user object. Creating customized
standard class user objects allows you to provide powerful extensions to
built-in PowerBuilder system objects.

Custom class user objects Inherit their definitions from the PowerBuilder
NonVisualObject class. Custom class user objects encapsulate data and code.
This type of class user object allows you to define an object class from scratch.
The u_business_object user object in the Code Examples sample application is
an example of a custom class user object. To make the most of PowerBuilder’s
object-oriented capabilities, you must use custom class user objects. Typical
uses include:

• Global variable container The custom class user object contains
variables and functions for use across your application. You encapsulate
these variables as appropriate for your application, allowing access
directly or through object functions.

• Service object The custom class user object contains functions and
variables that are useful either in a specific context (such as a
DataWindow) or globally (such as a collection of string-handling
functions).

CHAPTER 2 Selected Object-Oriented Programming Topics

Application Techniques 13

• Business rules The custom class user object contains functions and
variables that implement business rules. You can either create one object
for all business rules or create multiple objects for related groups of
business rules.

• Distributed computing The custom class user object contains functions
that run on a server or cluster of servers.

For more information, see Part 6, “Distributed Application Techniques.”

PowerBuilder techniques
PowerBuilder provides full support for inheritance, encapsulation, and
polymorphism in both visual and nonvisual objects.

Creating reusable objects
In most cases, the person developing reusable objects is not the same person
using the objects in applications. This discussion describes defining and
creating reusable objects. It does not address usage.

Implementing
inheritance

PowerBuilder makes it easy to create descendent objects. You implement
inheritance in PowerBuilder by using a painter to inherit from a specified
ancestor object.

For examples of inheritance in visual objects, see the w_employee window and
u_employee_object in the Code Examples sample application.

Example of ancestor service object One example of using inheritance in
custom class user objects is creating an ancestor service object that performs
basic services and several descendent service objects. These descendent
objects perform specialized services, as well as having access to the ancestor’s
services:

PowerBuilder techniques

14 PowerBuilder

Figure 2-1: Ancestor service object

Example of virtual function in ancestor object Another example of using
inheritance in custom class user objects is creating an ancestor object
containing functions for all platforms and then creating descendent objects that
perform platform-specific functions. In this case, the ancestor object contains
a virtual function (uf_change_dir in this example) so that developers can
create descendent objects using the ancestor’s datatype.

Figure 2-2: Virtual function in ancestor object

For more on virtual functions, see “Other techniques” on page 17.

Implementing
encapsulation

Encapsulation allows you to insulate your object’s data, restricting access by
declaring instance variables as private or protected. You then write object
functions to provide selective access to the instance variables.

One approach One approach to encapsulating processing and data is as
follows:

• Define instance variables as public, private, or protected, depending on the
desired degree of outside access. To ensure complete encapsulation, define
instance variables as either private or protected.

• Define object functions to perform processing and provide access to the
object’s data.

CHAPTER 2 Selected Object-Oriented Programming Topics

Application Techniques 15

Table 2-1: Defining object functions

Another approach Another approach to encapsulating processing and data
is to provide a single entry point, in which the developer specifies the action to
be performed:

• Define instance variables as private or protected, depending on the desired
degree of outside access

• Define private or protected object functions to perform processing

• Define a single public function whose arguments indicate the type of
processing to perform

Figure 2-3: Defining a public function for encapsulation

For an example, see the uo_sales_order user object in the Code Examples
sample application.

Distributed components
When you generate an EAServer or COM/COM+ component in the Project
painter, public functions are available in the interface of the generated
component and you can choose to make public instance variables available.
Private and protected functions and variables are never exposed in the interface
of the generated component.

For more information, see Part 6, "Distributed Application Techniques."

To do this Provide this function Example

Perform processing uf_do_operation uf_do_retrieve (which retrieves
rows from the database)

Modify instance
variables

uf_set_variablename uf_set_style (which modifies
the is_style string variable)

Read instance
variables

uf_get_variablename uf_get_style (which returns the
is_style string variable)

(Optional) Read
boolean instance
variables

uf_is_variablename uf_is_protected (which returns
the ib_protected boolean
variable)

PowerBuilder techniques

16 PowerBuilder

Implementing
polymorphism

Polymorphism refers to a programming language's ability to process objects
differently depending on their datatype or class. Polymorphism means that
functions with the same name behave differently depending on the referenced
object. Although there is some discussion over an exact definition for
polymorphism, many people find it helpful to think of it as follows:

Operational polymorphism Separate, unrelated objects define functions
with the same name. Each function performs the appropriate processing for its
object type:

Figure 2-4: Operational polymorphism

For an example, see the u_external_functions user object and its descendants in
the Code Examples sample application.

Inclusional polymorphism Various objects in an inheritance chain define
functions with the same name.

With inclusional polymorphism PowerBuilder determines which version of a
function to execute, based on where the current object fits in the inheritance
hierarchy. When the object is a descendant, PowerBuilder executes the
descendent version of the function, overriding the ancestor version:

Figure 2-5: Inclusional polymorphism

For an example, see the u_employee_object user object in the Code Examples
sample application.

CHAPTER 2 Selected Object-Oriented Programming Topics

Application Techniques 17

Other techniques
PowerBuilder allows you to implement a wide variety of object-oriented
techniques. This section discusses selected techniques and relates them to
PowerBuilder.

Using function
overloading

In function overloading, the descendent function (or an identically named
function in the same object) has different arguments or argument datatypes.
PowerBuilder determines which version of a function to execute, based on the
arguments and argument datatypes specified in the function call:

Figure 2-6: Function overloading

Global functions
Global functions cannot be overloaded.

Dynamic versus static
lookup

Dynamic lookup In certain situations, such as when insulating your
application from cross-platform dependencies, you create separate descendent
objects, each intended for a particular situation. Your application calls the
platform-dependent functions dynamically:

Figure 2-7: Dynamic lookup

Other techniques

18 PowerBuilder

Instantiate the appropriate object at runtime, as shown in the following code
example:

// This code works with both dynamic and
// static lookup.
// Assume these instance variables
u_platform iuo_platform
Environment ienv_env
...
GetEnvironment(ienv_env)
choose case ienv_env.ostype

case windows!
iuo_platform = CREATE u_platform_win

case windowsnt!
iuo_platform = CREATE u_platform_win

case else
iuo_platform = CREATE u_platform_unix

end choose

Although dynamic lookup provides flexibility, it also slows performance.

Static lookup To ensure fast performance, static lookup is a better option.
However, PowerBuilder enables object access using the reference variable’s
datatype (not the datatype specified in a CREATE statement).

Figure 2-8: Static lookup

When using static lookup, you must define default implementations for
functions in the ancestor. These ancestor functions return an error value (for
example, -1) and are overridden in at least one of the descendent objects.

CHAPTER 2 Selected Object-Oriented Programming Topics

Application Techniques 19

Figure 2-9: Ancestor functions overridden in descendent functions

By defining default implementations for functions in the ancestor object, you
get platform independence as well as the performance benefit of static lookup.

Using delegation Delegation occurs when objects offload processing to other objects.

Aggregate relationship In an aggregate relationship (sometimes called a
whole-part relationship), an object (called an owner object) associates itself
with a service object designed specifically for that object type.

For example, you might create a service object that handles extended row
selection in DataWindow objects. In this case, your DataWindow objects
contain code in the Clicked event to call the row selection object.

❖ To use objects in an aggregate relationship:

1 Create a service object (u_sort_dw in this example).

2 Create an instance variable (also called a reference variable) in the owner
(a DataWindow control in this example):

u_sort_dw iuo_sort

3 Add code in the owner object to create the service object:

iuo_sort = CREATE u_sort_dw

4 Add code to the owner’s system events or user events to call service object
events or functions. This example contains the code you might place in a
ue_sort user event in the DataWindow control:

IF IsValid(iuo_sort) THEN
Return iuo_sort.uf_sort()

ELSE
Return -1

END IF

Other techniques

20 PowerBuilder

5 Add code to call the owner object’s user events. For example, you might
create a CommandButton or Edit>Sort menu item that calls the ue_sort
user event on the DataWindow control.

6 Add code to the owner object’s Destructor event to destroy the service
object:

IF IsValid(iuo_sort) THEN
DESTROY iuo_sort

END IF

Associative relationship In an associative relationship, an object associates
itself with a service to perform a specific type of processing.

For example, you might create a string-handling service that can be enabled by
any of your application’s objects.

The steps you use to implement objects in an associative relationship are the
same as for aggregate relationships.

Using user objects as
structures

When you enable a user object’s AutoInstantiate property, PowerBuilder
instantiates the user object along with the object, event, or function in which it
is declared. You can also declare instance variables for a user object. By
combining these two capabilities, you create user objects that function as
structures. The advantages of creating this type of user object are that you can:

• Create descendent objects and extend them.

• Create functions to access the structure all at once.

• Use access modifiers to limit access to certain instance variables.

❖ To create a user object to be used as a structure:

1 Create the user object, defining instance variables only.

2 Enable the user object’s AutoInstantiate property by checking
AutoInstantiate on the General property page.

3 Declare the user object as a variable in objects, functions, or events as
appropriate.

PowerBuilder creates the user object when the object, event, or function is
created and destroys it when the object is destroyed or the event or
function ends.

CHAPTER 2 Selected Object-Oriented Programming Topics

Application Techniques 21

Subclassing
DataStores

Many applications use a DataWindow visual user object instead of the standard
DataWindow window control. This allows you to standardize error checking
and other, application-specific DataWindow behavior. The u_dwstandard
DataWindow visual user object found in the tutorial library TUTOR_PB.PBL
provides an example of such an object.

Since DataStores function as nonvisual DataWindow controls, many of the
same application and consistency requirements apply to DataStores as to
DataWindow controls. Consider creating a DataStore standard class user object
to implement error checking and application-specific behavior for DataStores.

Other techniques

22 PowerBuilder

Application Techniques 23

C H A P T E R 3 Selected PowerScript Topics

About this chapter This chapter describes how to use elements of the PowerScript language
in an application.

Contents

Dot notation
Dot notation lets you qualify the item you are referring to—instance
variable, property, event, or function—with the object that owns it.

Dot notation is for objects. You do not use dot notation for global variables
and functions, because they are independent of any object. You do not use
dot notation for shared variables either, because they belong to an object
class, not an object instance.

Qualifying a reference Dot notation names an object variable as a qualifier to the item you want
to access:

objectvariable.item

The object variable name is a qualifier that identifies the owner of the
property or other item.

Topic Page

Dot notation 23

Constant declarations 27

Controlling access for instance variables 28

Resolving naming conflicts 29

Return values from ancestor scripts 30

Types of arguments for functions and events 32

Ancestor and descendent variables 33

Optimizing expressions for DataWindow and external objects 35

Exception handling in PowerBuilder 36

Garbage collection and memory management 45

Efficient compiling and performance 48

Reading and writing text or binary files 48

Dot notation

24 PowerBuilder

Adding a parent qualifier To fully identify an object, you can use additional
dot qualifiers to name the parent of an object, and its parent, and so on:

parent.objectvariable.item

A parent object contains the child object. It is not an ancestor-descendent
relationship. For example, a window is a control’s parent. A Tab control is the
parent of the tab pages it contains. A Menu object is the parent of the Menu
objects that are the items on that menu.

Many parent levels You can use parent qualifiers up to the level of the
application. You typically need qualifiers only up to the window level.

For example, if you want to call the Retrieve function for a DataWindow
control on a tab page, you might qualify the name like this:

w_choice.tab_alpha.tabpage_a.dw_names.Retrieve()

Menu objects often need several qualifiers. Suppose a window w_main has a
menu object m_mymenu, and m_mymenu has a File menu with an Open item.
You can trigger the Open item’s Selected event like this:

w_main.m_mymenu.m_file.m_open.EVENT Selected()

As you can see, qualifying a name gets complex, particularly for menus and tab
pages in a Tab control.

How many qualifiers? You need to specify as many qualifiers as are
required to identify the object, function, event, or property.

A parent object knows about the objects it contains. In a window script, you do
not need to qualify the names of the window’s controls. In scripts for the
controls, you can also refer to other controls in the window without a qualifier.

For example, if the window w_main contains a DataWindow control dw_data
and a CommandButton cb_close, a script for the CommandButton can refer to
the DataWindow control without a qualifier:

dw_data.AcceptText()
dw_data.Update()

If a script in another window or a user object refers to the DataWindow control,
the DataWindow control needs to be qualified with the window name:

w_main.dw_data.AcceptText()

CHAPTER 3 Selected PowerScript Topics

Application Techniques 25

Referencing objects There are three ways to qualify an element of an object in the object’s own
scripts:

• Unqualified:

li_index = SelectItem(5)

An unqualified name is unclear and might result in ambiguities if there are
local or global variables and functions with the same name.

• Qualified with the object’s name:

li_index = lb_choices.SelectItem(5)

Using the object name in the object’s own script is unnecessarily specific.

• Qualified with a generic reference to the object:

li_index = This.SelectItem(5)

The pronoun This shows that the item belongs to the owning object.

This pronoun In a script for the object, you can use the pronoun This as a
generic reference to the owning object:

This.property

This.function

Although the property or function could stand alone in a script without a
qualifier, someone looking at the script might not recognize the property or
function as belonging to an object. A script that uses This is still valid if you
rename the object. The script can be reused with less editing.

You can also use This by itself as a reference to the current object. For example,
suppose you want to pass a DataWindow control to a function in another user
object:

uo_data.uf_retrieve(This)

This example in a script for a DataWindow control sets an instance variable of
type DataWindow so that other functions know the most recently used
DataWindow control:

idw_currentdw = This

Parent pronoun The pronoun Parent refers to the parent of an object. When
you use Parent and you rename the parent object or reuse the script in other
contexts, it is still valid.

Dot notation

26 PowerBuilder

For example, in a DataWindow control script, suppose you want to call the
Resize function for the window. The DataWindow control also has a Resize
function, so you must qualify it:

// Two ways to call the window function
w_main.Resize(400, 400)
Parent.Resize(400, 400)

// Three ways to call the control's function
Resize(400, 400)
dw_data.Resize(400, 400)
This.Resize(400, 400)

GetParent function The Parent pronoun works only within dot notation. If
you want to get a reference to the parent of an object, use the GetParent
function. You might want to get a reference to the parent of an object other than
the one that owns the script, or you might want to save the reference in a
variable:

window w_save
w_save = dw_data.GetParent()

For example, in another CommandButton’s Clicked event script, suppose you
wanted to pass a reference to the control’s parent window to a function defined
in a user object. Use GetParent in the function call:

uo_winmgmt.uf_resize(This.GetParent(), 400, 600)

ParentWindow property and function Other tools for getting the parent of
an object include:

• ParentWindow property – used in a menu script to refer to the window
that is the parent of the menu

• ParentWindow function – used in any script to get a reference to the
window that is the parent of a particular window

For more about these pronouns and functions, see the PowerScript Reference.

Objects in a container
object

Dot notation also allows you to reach inside an object to the objects it contains.
To refer to an object inside a container, use the Object property in the dot
notation. The structure of the object in the container determines how many
levels are accessible:

control.Object.objectname.property

control.Object.objectname.Object.qualifier.qualifier.property

CHAPTER 3 Selected PowerScript Topics

Application Techniques 27

Objects that you can access using the Object property are:

• DataWindow objects in DataWindow controls

• External OLE objects in OLE controls

These expressions refer to properties of the DataWindow object inside a
DataWindow control:

dw_data.Object.emp_lname.Border
dw_data.Object.nestedrpt[1].Object.salary.Border

No compiler checking For objects inside the container, the compiler cannot
be sure that the dot notation is valid. For example, the DataWindow object is
not bound to the control and can be changed at any time. Therefore, the names
and properties after the Object property are checked for validity during
execution only. Incorrect references cause an execution error.

For more information For more information about runtime checking, see
“Optimizing expressions for DataWindow and external objects” on page 35.

For more information about dot notation for properties and data of
DataWindow objects and handling errors, see the DataWindow Reference.

For more information about OLE objects and dot notation for OLE automation,
see Chapter 19, “Using OLE in an Application.”

Constant declarations
To declare a constant, add the keyword CONSTANT to a standard variable
declaration:

CONSTANT { access } datatype constname = value

Only a datatype that accepts an assignment in its declaration can be a constant.
For this reason, blobs cannot be constants.

Even though identifiers in PowerScript are not case sensitive, the declarations
shown here use uppercase as a convention for constant names:

CONSTANT integer GI_CENTURY_YEARS = 100
CONSTANT string IS_ASCENDING = "a"

Advantages of
constants

If you try to assign a value to the constant anywhere other than in the
declaration, you get a compiler error. A constant is a way of assuring that the
declaration is used the way you intend.

Controlling access for instance variables

28 PowerBuilder

Constants are also efficient. Because the value is established during
compilation, the compiled code uses the value itself, rather than referring to a
variable that holds the value.

Controlling access for instance variables
Instance variables have access settings that provide control over how other
objects’ scripts access them.

You can specify that a variable is:

• Public Accessible to any other object

• Protected Accessible only in scripts for the object and its descendants

• Private Accessible in scripts for the object only

For example:

public integer ii_currentvalue
CONSTANT public integer WARPFACTOR = 1.2
protected string is_starship

// Private values used in internal calculations
private integer ii_maxrpm
private integer ii_minrpm

You can further qualify access to public and protected variables with the
modifiers PRIVATEREAD, PRIVATEWRITE, PROTECTEDREAD, or
PROTECTEDWRITE:

public privatewrite ii_averagerpm

Private variables for
encapsulation

One use of access settings is to keep other scripts from changing a variable
when they should not. You can use PRIVATE or PUBLIC PRIVATEWRITE to
keep the variable from being changed directly. You might write public
functions to provide validation before changing the variable.

Private variables allow you to encapsulate an object’s functionality. This
technique means that an object’s data and code are part of the object itself and
the object determines the interface it presents to other objects.

If you generate a component, such as an EAServer or COM component, from
a custom class user object, you can choose to expose its instance variables in
the component’s interface, but private and protected instance variables are
never exposed.

CHAPTER 3 Selected PowerScript Topics

Application Techniques 29

For more information For more about access settings, see the chapter about declarations in the
PowerScript Reference.

For more about encapsulation, see Chapter 2, “Selected Object-Oriented
Programming Topics.”

Resolving naming conflicts
There are two areas in which name conflicts occur:

• Variables that are defined within different scopes can have the same name.
For example, a global variable can have the same name as a local or
instance variable. The compiler warns you of these conflicts, but you do
not have to change the names.

• A descendent object has functions and events that are inherited from the
ancestor and have the same names.

If you need to refer to a hidden variable or an ancestor’s event or function, you
can use dot notation qualifiers or the scope operator.

Hidden instance
variables

If an instance variable has the same name as a local, shared, or global variable,
qualify the instance variable with its object’s name:

objectname.instancevariable

If a local variable and an instance variable of a window are both named
birthdate, then qualify the instance variable:

w_main.birthdate

If a window script defines a local variable x, the name conflicts with the X
property of the window. Use a qualifier for the X property. This statement
compares the two:

IF x > w_main.X THEN

Hidden global
variables

If a global variable has the same name as a local or shared variable, you can
access the global variable with the scope operator (::) as follows:

::globalvariable

This expression compares a local variable with a global variable, both named
total:

IF total < ::total THEN ...

Return values from ancestor scripts

30 PowerBuilder

Use prefixes to avoid naming conflicts
If your naming conventions include prefixes that identify the scope of the
variable, then variables of different scopes always have different names and
there are no conflicts.

For more information about the search order that determines how name
conflicts are resolved, see the chapters about declarations and calling functions
and events in the PowerScript Reference.

Overridden functions
and events

When you change the script for a function that is inherited, you override the
ancestor version of the function. For events, you can choose to override or
extend the ancestor event script in the painter.

You can use the scope operator to call the ancestor version of an overridden
function or event. The ancestor class name, not a variable, precedes the colons:

result = w_ancestor:: FUNCTION of_func(arg1, arg2)

You can use the Super pronoun instead of naming an ancestor class. Super
refers to the object’s immediate ancestor:

result = Super:: EVENT ue_process()

In good object-oriented design, you would not call ancestor scripts for other
objects. It is best to restrict this type of call to the current object’s immediate
ancestor using Super.

For how to capture the return value of an ancestor script, see "Return values
from ancestor scripts" next.

Overloaded functions When you have several functions of the same name for the same object, the
function name is considered to be overloaded. PowerBuilder determines which
version of the function to call by comparing the signatures of the function
definitions with the signature of the function call. The signature includes the
function name, argument list, and return value.

Return values from ancestor scripts
If you want to perform some processing in an event in a descendent object, but
that processing depends on the return value of the ancestor event script, you
can use a local variable called AncestorReturnValue that is automatically
declared and assigned the return value of the ancestor event.

CHAPTER 3 Selected PowerScript Topics

Application Techniques 31

The first time the compiler encounters a CALL statement that calls the ancestor
event of a script, the compiler implicitly generates code that declares the
AncestorReturnValue variable and assigns to it the return value of the ancestor
event.

The datatype of the AncestorReturnValue variable is always the same as the
datatype defined for the return value of the event. The arguments passed to the
call come from the arguments that are passed to the event in the descendent
object.

Extending event
scripts

The AncestorReturnValue variable is always available in extended event
scripts. When you extend an event script, PowerBuilder generates the
following syntax and inserts it at the beginning of the event script:

CALL SUPER::event_name

You see the statement only if you export the syntax of the object.

Overriding event
scripts

The AncestorReturnValue variable is available only when you override an
event script after you call the ancestor event using the CALL syntax explicitly:

CALL SUPER::event_name

or

CALL ancestor_name::event_name

The compiler does not differentiate between the keyword SUPER and the name
of the ancestor. The keyword is replaced with the name of the ancestor before
the script is compiled.

The AncestorReturnValue variable is declared and a value assigned only when
you use the CALL event syntax. It is not declared if you use the new event
syntax:

ancestor_name::EVENT event_name ()

Example You can put code like the following in an extended event script:

IF AncestorReturnValue = 1 THEN
 // execute some code
ELSE
 // execute some other code
END IF

You can use the same code in a script that overrides its ancestor event script,
but you must insert a CALL statement before you use the AncestorReturnValue
variable:

// execute code that does some preliminary processing
CALL SUPER::ue_myevent

Types of arguments for functions and events

32 PowerBuilder

IF AncestorReturnValue = 1 THEN
…

Types of arguments for functions and events
When you define a function or user event, you specify its arguments, their
datatypes, and how they are passed.

There are three ways to pass an argument:

• By value Is the default

PowerBuilder passes a copy of a by-value argument. Any changes affect
the copy, and the original value is unaffected.

• By reference Tells PowerBuilder to pass a pointer to the passed variable

The function script can change the value of the variable because the
argument points back to the original variable. An argument passed by
reference must be a variable, not a literal or constant, so that it can be
changed.

• Read-only Passes the argument by value without making a copy of the
data

Read-only provides a performance advantage for some datatypes because
it does not create a copy of the data, as with by value. Datatypes for which
read-only provides a performance advantage are String, Blob, Date, Time,
and DateTime.

For other datatypes, read-only provides documentation for other
developers by indicating something about the purpose of the argument.

Matching argument
types when overriding
functions

If you define a function in a descendant that overrides an ancestor function, the
function signatures must match in every way: the function name, return value,
argument datatypes, and argument passing methods must be the same.

For example, this function declaration has two long arguments passed by value
and one passed by reference:

uf_calc(long a_1, long a_2, ref long a_3) &
returns integer

If the overriding function does not match, then when you call the function,
PowerBuilder calculates which function matches more closely and calls that
one, which might give unexpected results.

CHAPTER 3 Selected PowerScript Topics

Application Techniques 33

Ancestor and descendent variables
All objects in PowerBuilder are descendants of PowerBuilder system
objects—the objects you see listed on the System page in the Browser.

Therefore, whenever you declare an object instance, you are declaring a
descendant. You decide how specific you want your declarations to be.

As specific as
possible

If you define a user object class named uo_empdata, you can declare a variable
whose type is uo_empdata to hold the user object reference:

uo_empdata uo_emp1
uo_emp1 = CREATE uo_empdata

You can refer to the variables and functions that are part of the definition of
uo_empdata because the type of uo_emp1 is uo_empdata.

When the application
requires flexibility

Suppose the user object you want to create depends on the user’s choices. You
can declare a user object variable whose type is UserObject or an ancestor class
for the user object. Then you can specify the object class you want to instantiate
in a string variable and use it with CREATE:

uo_empdata uo_emp1
string ls_objname
ls_objname = ... // Establish the user object to open
uo_emp1 = CREATE USING ls_objname

This more general approach limits your access to the object’s variables and
functions. The compiler knows only the properties and functions of the
ancestor class uo_empdata (or the system class UserObject if that is what you
declared). It does not know which object you will actually create and cannot
allow references to properties defined on that unknown object.

Abstract ancestor object In order to address properties and functions of the
descendants you plan to instantiate, you can define the ancestor object class to
include the properties and functions that you will implement in the
descendants. In the ancestor, the functions do not need code other than a return
value—they exist so that the compiler can recognize the function names. When
you declare a variable of the ancestor class, you can reference the functions.
During execution, you can instantiate the variable with a descendant, where
that descendant implements the functions as appropriate:

uo_empdata uo_emp1
string ls_objname
// Establish which descendant of uo_empdata to open
ls_objname = ...
uo_emp1 = CREATE USING ls_objname

Ancestor and descendent variables

34 PowerBuilder

// Function is declared in the ancestor class
result = uo_emp1.uf_special()

This technique is described in more detail in “Dynamic versus static lookup”
on page 17.

Dynamic function calls Another way to handle functions that are not
defined for the declared class is to use dynamic function calls.

When you use the DYNAMIC keyword in a function call, the compiler does not
check whether the function call is valid. The checking happens during
execution when the variable has been instantiated with the appropriate object:

// Function not declared in the ancestor class
result = uo_emp1.DYNAMIC uf_special()

Performance and errors
You should avoid using the dynamic capabilities of PowerBuilder when your
application design does not require them. Runtime evaluation means that work
the compiler usually does must be done at runtime, making the application
slower when dynamic calls are used often or used within a large loop. Skipping
compiler checking also means that errors that might be caught by the compiler
are not found until the user is executing the program.

Dynamic object
selection for windows
and visual user
objects

A window or visual user object is opened with a function call instead of the
CREATE statement. With the Open and OpenUserObject functions, you can
specify the class of the window or object to be opened, making it possible to
open a descendant different from the declaration’s object type.

This example displays a user object of the type specified in the string s_u_name
and stores the reference to the user object in the variable u_to_open. Variable
u_to_open is of type DragObject, which is the ancestor of all user objects. It
can hold a reference to any user object:

DragObject u_to_open
string s_u_name
s_u_name = sle_user.Text
w_info.OpenUserObject(u_to_open, s_u_name, 100, 200)

For a window, comparable code looks like this. The actual window opened
could be the class w_data_entry or any of its descendants:

w_data_entry w_data
string s_window_name
s_window_name = sle_win.Text
Open(w_data, s_window_name)

CHAPTER 3 Selected PowerScript Topics

Application Techniques 35

Optimizing expressions for DataWindow and external
objects
No compiler validation
for container objects

When you use dot notation to refer to a DataWindow object in a DataWindow
control or DataStore, the compiler does not check the validity of the
expression:

dw_data.Object.column.property

Everything you specify after the Object property passes the compiler and is
checked during execution.

The same applies to external OLE objects. No checking occurs until execution:

ole_1.Object.qualifier.qualifier.property.Value

Establishing partial
references

Because of the runtime syntax checking, using many expressions like these can
impact performance. To improve efficiency when you refer repeatedly to the
same DataWindow component object or external object, you can define a
variable of the appropriate type and assign a partial reference to the variable.
The script evaluates most of the reference only once and reuses it.

The datatype of a DataWindow component object is DWObject:

DWObject dwo_column
dwo_column = dw_data.Object.column
dwo_column.SlideLeft = ...
dwo_column.SlideUp = ...

The datatype of a partially resolved automation expression is OLEObject:

OLEObject ole_wordbasic
ole_wordbasic = ole_1.Object.application.wordbasic
ole_wordbasic.propertyname1 = value
ole_wordbasic.propertyname2 = value

Handling errors The Error and (for automation) ExternalException events are triggered when
errors occur in evaluating the DataWindow and OLE expressions. If you write
a script for these events, you can catch an error before it triggers the
SystemError event. These events allow you to ignore an error or substitute an
appropriate value. However, you must be careful to avoid setting up conditions
that cause another error. You can also use try-catch blocks to handle exceptions
as described in "Exception handling in PowerBuilder" next.

For information For information about DataWindow data expressions and property expressions
and DWObject variables, see the DataWindow Reference. For information
about using OLEObject variables in automation, see Chapter 19, “Using OLE
in an Application.”

Exception handling in PowerBuilder

36 PowerBuilder

Exception handling in PowerBuilder
When a runtime error occurs in a PowerBuilder application, unless that error is
trapped, a single application event (SystemError) fires to handle the error no
matter where in the application the error happened. Although some errors can
be handled in the system error event, catching the error closer to its source
increases the likelihood of recovery from the error condition.

You can use exception-handling classes and syntax to handle context-sensitive
errors in PowerBuilder applications. This means that you can deal with errors
close to their source by embedding error-handling code anywhere in your
application. Well-designed exception-handling code can give application users
a better chance to recover from error conditions and run the application without
interruption.

Exception handling allows you to design an application that can recover from
exceptional conditions and continue execution. Any exceptions that you do not
catch are handled by the runtime system and can result in the termination of the
application.

PowerBuilder clients can catch exceptions thrown from EAServer components
and recover from them. Components developed with PowerBuilder can also
define and throw their own exception types, making them more consistent with
other EAServer component types like Java.

Exception handling can be found in such object-oriented languages as Java and
C++. The implementation for PowerBuilder is similar to the implementation of
exception handling in Java. In PowerBuilder, the TRY, CATCH, FINALLY,
THROW, and THROWS reserved words are used for exception handling. There
are also several PowerBuilder objects that descend from the Throwable object.

Basics of exception handling
Exceptions are objects that are thrown in the event of some exceptional (or
unexpected) condition or error and are used to describe the condition or error
encountered. Standard errors, such as null object references and division by
zero, are typically thrown by the runtime system. These types of errors could
occur anywhere in an application and you can include catch clauses in any
executable script to try to recover from these errors.

CHAPTER 3 Selected PowerScript Topics

Application Techniques 37

User-defined
exceptions

There are also exceptional conditions that do not immediately result in runtime
errors. These exceptions typically occur during execution of a function or a
user-event script. To signal these exceptions, you create user objects that
inherit from the PowerScript Exception class. You can associate a user-defined
exception with a function or user event in the prototype for the method.

For example, a user-defined exception might be created to indicate that a file
cannot be found. You could declare this exception in the prototype for a
function that is supposed to open the file. To catch this condition, you must
instantiate the user-defined exception object and then throw the exception
instance in the method script.

Objects for exception handling support
Several system objects support exception handling within PowerBuilder.

Throwable object type The object type Throwable is the root datatype for all user-defined exception
and system error types. Two other system object types, RuntimeError and
Exception, derive from Throwable.

RuntimeError and its
descendants

PowerBuilder runtime errors are represented in the RuntimeError object type.
For more robust error-handling capabilities, the RuntimeError type has its own
system-defined descendants; but the RuntimeError type contains all
information required for dealing with PowerBuilder runtime errors.

One of the descendants of RuntimeError is the NullObjectError type that is
thrown by the system whenever a null object reference is encountered. This
allows you to handle null-object-reference errors explicitly without having to
differentiate them from other runtime errors that might occur.

Error types that derive from RuntimeError are typically used by the system to
indicate runtime errors. RuntimeErrors can be caught in a try-catch block, but
it is not necessary to declare where such an error condition might occur.
(PowerBuilder does that for you, since a system error can happen anywhere
anytime the application is running.) It is also not a requirement to catch these
types of errors.

Exception object type The system object Exception also derives from Throwable and is typically
used as an ancestor object for user-defined exception types. It is the root class
for all checked exceptions. Checked exceptions are user-defined exceptions
that must be caught in a try-catch block when thrown, or that must be declared
in the prototype of a method when thrown outside of a try-catch block.

Exception handling in PowerBuilder

38 PowerBuilder

The PowerScript compiler checks the local syntax where you throw checked
exceptions to make sure you either declare or catch these exception types.
Descendants of RuntimeError are not checked by the compiler, even if they are
user defined or if they are thrown in a script rather than by the runtime system.

Handling exceptions
Whether an exception is thrown by the runtime system or by a THROW
statement in an application script, you handle the exception by catching it. This
is done by surrounding the set of application logic that throws the exception
with code that indicates how the exception is to be dealt with.

TRY-CATCH-FINALLY
block

To handle an exception in PowerScript, you must include some set of your
application logic inside a try-catch block. A try-catch block begins with a TRY
clause and ends with the END TRY statement. It must also contain either a
CATCH clause or a FINALLY clause. A try-catch block normally contains a
FINALLY clause for error condition cleanup. In between the TRY and FINALLY
clauses you can add any number of CATCH clauses.

CATCH clauses are not obligatory, but if you do include them you must follow
each CATCH statement with a variable declaration. In addition to following all
of the usual rules for local variable declarations inside a script, the variable
being defined must derive from the Throwable system type.

You can add a TRY-CATCH-FINALLY, TRY-CATCH, or TRY-FINALLY block
using the Script view Paste Special feature for PowerScript statements. If you
select the Statement Templates check box on the AutoScript tab of the Design
Options dialog box, you can also use the AutoScript feature to insert these
block structures.

Example Example catching a system error This is an example of a TRY-CATCH-
FINALLY block that catches a system error when an arccosine argument, entered
by the application user (in a SingleLineEdit) is not in the required range. If you
do not catch this error, the application goes to the system error event, and
eventually terminates:

Double ld_num
ld_num = Double (sle_1.text)
TRY

sle_2.text = string (acos (ld_num))
CATCH (runtimeerror er)

MessageBox("Runtime Error", er.GetMessage())
FINALLY

// Add cleanup code here

CHAPTER 3 Selected PowerScript Topics

Application Techniques 39

of_cleanup()
Return

END TRY
MessageBox("After", "We are finished.")

The system runtime error message might be confusing to the end user, so for
production purposes, it would be better to catch a user-defined exception—see
the example in “Creating user-defined exception types” on page 40—and set
the message to something more understandable.

The TRY reserved word signals the start of a block of statements to be executed
and can include more than one CATCH clause. If the execution of code in the
TRY block causes an exception to be thrown, then the exception is handled by
the first CATCH clause whose variable can be assigned the value of the
exception thrown. The variable declaration after a CATCH statement indicates
the type of exception being handled (a system runtime error, in this case).

CATCH order It is important to order your CATCH clauses in such a way that one clause does
not hide another. This would occur if the first CATCH clause catches an
exception of type Exception and a subsequent CATCH clause catches a
descendant of Exception. Since they are processed in order, any exception
thrown that is a descendant of Exception would be handled by the first CATCH
clause and never by the second. The PowerScript compiler can detect this
condition and signals an error if found.

If an exception is not dealt with in any of the CATCH clauses, it is thrown up
the call stack for handling by other exception handlers (nested try-catch blocks)
or by the system error event. But before the exception is thrown up the stack,
the FINALLY clause is executed.

FINALLY clause The FINALLY clause is generally used to clean up after execution of a TRY or
CATCH clause. The code in the FINALLY clause is guaranteed to execute if any
portion of the try-catch block is executed, regardless of how the code in the
try-catch block completes.

If no exceptions occur, the TRY clause completes, followed by the execution of
the statements contained in the FINALLY clause. Then execution continues on
the line following the END TRY statement.

In cases where there are no CATCH clauses but only a FINALLY clause, the code
in the FINALLY clause is executed even if a return is encountered or an
exception is thrown in the TRY clause.

Exception handling in PowerBuilder

40 PowerBuilder

If an exception occurs within the context of the TRY clause and an applicable
CATCH clause exists, the CATCH clause is executed, followed by the FINALLY
clause. But even if no CATCH clause is applicable to the exception thrown, the
FINALLY clause still executes before the exception is thrown up the call stack.

If an exception or a return is encountered within a CATCH clause, the FINALLY
clause is executed before execution is transferred to the new location.

Creating user-defined exception types
You can create your own user-defined exception types from standard class user
objects that inherit from Exception or RuntimeError or that inherit from an
existing user object deriving from Exception or RuntimeError.

Inherit from Exception
object type

Normally, user-defined exception types should inherit from the Exception type
or a descendant, since the RuntimeError type is used to indicate system errors.
These user-defined objects are no different from any other nonvisual user
object in the system. They can contain events, functions, and instance
variables.

This is useful, for example, in cases where a specific condition, such as the
failure of a business rule, might cause application logic to fail. If you create a
user-defined exception type to describe such a condition and then catch and
handle the exception appropriately, you can prevent a runtime error.

Throwing exceptions Exceptions can be thrown by the runtime engine to indicate an error condition.
If you want to signal a potential exception condition manually, you must use
the THROW statement.

Typically, the THROW statement is used in conjunction with some user-defined
exception type. Here is a simple example of the use of the THROW statement:

Exception le_ex
le_ex = create Exception
Throw le_ex
MessageBox ("Hmm", "We would never get here if" &

+ "the exception variable was not instantiated")

In this example, the code throws the instance of the exception le_ex. The
variable following the THROW reserved word must point to a valid instance of
the exception object that derives from Throwable. If you attempt to throw an
uninstantiated Exception variable, a NullObjectError is thrown instead,
indicating a null object reference in this routine. That could only complicate the
error handling for your application.

CHAPTER 3 Selected PowerScript Topics

Application Techniques 41

Declaring exceptions
thrown from functions

If you signal an exception with the THROW statement inside a method script—
and do not surround the statement with a try-catch block that can deal with that
type of exception—you must also declare the exception as an exception type
(or as a descendant of an exception type) thrown by that method. However, you
do not need to declare that a method can throw runtime errors, since
PowerBuilder does that for you.

The prototype window in the Script view of most PowerBuilder painters allows
you to declare what user-defined exceptions, if any, can be thrown by a
function or a user-defined event. You can drag and drop exception types from
the System Tree or a Library painter view to the Throws box in the prototype
window, or you can type in a comma-separated list of the exception types that
the method can throw.

Example Example catching a user-defined exception This code displays a
user-defined error when an arccosine argument, entered by the application user,
is not in the required range. The try-catch block calls a method, wf_acos, that
catches the system error and sets and throws the user-defined error:

TRY
wf_acos()

CATCH (uo_exception u_ex)
MessageBox("Out of Range", u_ex.GetMessage())

END TRY

This code in the wf_acos method catches the system error and sets and throws
the user-defined error:

uo_exception lu_error
Double ld_num
ld_num = Double (sle_1.text)
TRY

sle_2.text = string (acos (ld_num))
CATCH (runtimeerror er)

lu_error = Create uo_exception
lu_error.SetMessage("Value must be between -1" &

+ "and 1")
Throw lu_error

END TRY

Integration with
EAServer

If you declare exceptions on a method of a user object and deploy the user
object as a component to EAServer, the exceptions are translated to IDL
(CORBA) as part of the method prototype. This means that PowerBuilder
components in EAServer can be defined to throw exceptions that can be
handled by any type of EAServer client application.

Exception handling in PowerBuilder

42 PowerBuilder

Other benefits for EAServer applications Another benefit for component
development is that you can handle runtime errors in the component. If you do
not handle an error, it is automatically translated into an exception and the
component stops executing.

PowerBuilder client applications that use EAServer components can handle
exceptions thrown by any type of EAServer component. If a Java EAServer
component has a method on it that is defined to throw an exception and a
PowerBuilder proxy is created to use that component, the method on the
PowerBuilder proxy is also declared to throw a user-defined exception. The
definition of the user-defined exception is created automatically at the time of
the PowerBuilder proxy creation.

For more information about error handling in EAServer clients, see “Handling
errors” on page 525.

IDL restrictions Deployment of components to EAServer imposes
restrictions on the way you can use exception handling within PowerBuilder.
Only the public instance variables defined on the exception type are actually
translated to IDL. This is because IDL exceptions cannot have methods
declared on them. Therefore if the exception type has methods defined on it,
those methods can be called within the execution of the component but cannot
be called by client applications that catch the exception thrown.

You must keep this restriction in mind when designing exception objects for
distributed applications, exposing all exception information as public instance
variables instead of through accessor methods on an exception object.

Two other interface restrictions also apply to exception types of a user object
that is deployed as an EAServer component. Instance variables of exceptions
on the user object methods cannot have object datatypes. Null data is supported
only for instance variables with simple datatypes; if instance variables are
structures or arrays, null values for individual elements are not maintained.

Adding flexibility and facilitating object reuse
You can use exception handling to add flexibility to your PowerBuilder
applications, and to help in the separation of business rules from presentation
logic. For example, business rules can be stored in a non-visual object (nvo)
that has:

• An instance variable to hold a reference to the presentation object:

powerobject my_presenter

CHAPTER 3 Selected PowerScript Topics

Application Techniques 43

• A function that registers the presentation object

The registration function could use the following syntax:

SetObject (string my_purpose, powerobject myobject)

• Code to call a dynamic function implemented by the presentation object,
with minimal assumptions about how the data is displayed

The dynamic function call should be enclosed in a try-catch block, such as:

TRY
my_presenter.Dynamic nf_displayScreen(" ")

CATCH (Throwable lth_exception)
Throw lth_exception

END TRY

This try-catch block catches all system and user-defined errors from the
presentation object and throws them back up the calling chain (to the
object that called the nvo). In the above example, the thrown object in the
CATCH statement is an object of type Throwable, but you could also
instantiate and throw a user exception object:

uo_exception luo_exception

TRY
my_presenter.Dynamic nf_displayScreen(" ")

CATCH (Throwable lth_exception)
luo_exception = Create uo_exception
luo_exception.SetMessage & +
(lth_exception.GetMessage())
Throw luo_exception

END TRY

Code for data processing could be added to the presentation object, to the
business rules nvo, or to processing objects called by the nvo. The exact design
depends on your business objectives, but this code should also be surrounded
by try-catch blocks. The actions to take and the error messages to report (in
case of code processing failure) should be as specific as possible in the
try-catch blocks that surround the processing code.

There are significant advantages to this type of approach, since the business
nvo can be reused more easily, and it can be accessed by objects that display
the same business data in many different ways. The addition of exception
handling makes this approach much more robust, giving the application user a
chance to recover from an error condition.

Exception handling in PowerBuilder

44 PowerBuilder

Using the SystemError and Error events
Error event If a runtime error occurs, an error structure that describes the error is created.

If the error occurs in the context of a connection to a remote server (such as
EAServer) then the Error event on the Connection, JaguarORB, DataWindow,
or OLE control object is triggered, with the information in the error structure
as arguments.

The error can be handled in this Error event by use of a special reference
argument that allows the error to be ignored. If the error does not occur in the
context described above, or if the error in that context is not dealt with, then the
error structure information is used to populate the global error variable and the
SystemError event on the Application object is triggered.

SystemError event In the SystemError event, unexpected error conditions can be dealt with in a
limited way. In general, it is not a good idea to continue running the application
after the SystemError event is triggered. However, error-handling code can and
should be added to this event. Typically you could use the SystemError event
to save data before the application terminates and to perform last-minute
cleanup (such as closing files or database connections).

Precedence of
exception handlers
and events

If you write code in the Error event, then that code is executed first in the event
of a thrown exception.

If the exception is not thrown in any of the described contexts or the object’s
Error event does not handle the exception or you do not code the Error event,
then the exception is handled by any active exception handlers (CATCH
clauses) that are applicable to that type of exception. Information from the
exception class is copied to the global error variable and the SystemError event
on the Application object is fired only if there are no exception handlers to
handle the exception.

Error handling for new
applications

For new PowerBuilder applications, the recommended approach for handling
errors is to use a try-catch block instead of coding the Error event on
Connection, DataWindow, or OLE control objects. You should still have a
SystemError event coded in your Application object to handle any uncaught
exceptions. The SystemError event essentially becomes a global exception
handler for a PowerBuilder application.

CHAPTER 3 Selected PowerScript Topics

Application Techniques 45

Garbage collection and memory management
The PowerBuilder garbage collection mechanism checks memory
automatically for unreferenced and orphaned objects and removes any it finds,
thus taking care of most memory leaks. You can use garbage collection to
destroy objects instead of explicitly destroying them using the DESTROY
statement. This lets you avoid runtime errors that occur when you destroy an
object that was being used by another process or had been passed by reference
to a posted event or function.

When garbage
collection occurs

Garbage collection occurs:

• When a reference is removed from an object A reference to an object
is any variable whose value is the object. When the variable goes out of
scope, or when it is assigned a different value, PowerBuilder removes a
reference to the object, counts the remaining references, and destroys the
object if no references remain.

Posting events and functions
When you post an event or function and pass an object reference,
PowerBuilder adds an internal reference to the object to prevent its
memory from being reclaimed by the garbage collector between the time
of the post and the actual execution of the event or function. This reference
is removed when the event or function is executed.

• When the garbage collection interval is exceeded When
PowerBuilder completes the execution of a system-triggered event, it
makes a garbage collection pass if the set interval between garbage
collection passes has been exceeded. The default interval is 0.5 seconds.
The garbage collection pass removes any objects and classes that cannot
be referenced, including those containing circular references (otherwise
unreferenced objects that reference each other).

Exceptions to garbage
collection

There are a few objects that are prevented from being collected:

• Visual objects Any object that is visible on your screen is not collected
because when the object is created and displayed on your screen, an
internal reference is added to the object. When any visual object is closed,
it is explicitly destroyed.

• Timing objects Any Timing object that is currently running is not
collected because the Start function for a Timing object adds an internal
reference. The Stop function removes the reference.

Garbage collection and memory management

46 PowerBuilder

• Shared objects Registered shared objects are not collected because the
SharedObjectRegister function adds an internal reference.
SharedObjectUnregister removes the internal reference.

Controlling when
garbage collection
occurs

Garbage collection occurs automatically in PowerBuilder, but you can use
functions to force immediate garbage collection or to change the interval
between reference count checks. Three functions have been added to let you
control when garbage collection occurs: GarbageCollect,
GarbageCollectGetTimeLimit, and GarbageCollectSetTimeLimit.

For information about these functions, see the PowerScript Reference. For an
example illustrating their use, see the Code Examples sample application,
described in Chapter 1, “Using Sample Applications.”

Performance
concerns

You can use tracing and profiling to examine the effect of changing the garbage
collection interval on performance.

For information about tracing and profiling, see the PowerBuilder User’s
Guide.

Configuring memory management
You can set the PB_POOL_THRESHOLD environment variable to specify the
threshold at which the PowerBuilder memory manager switches to a different
memory allocation strategy.

When most windows, DataWindows, DataStores, or other PowerBuilder
objects are destroyed or reclaimed by the garbage collector, the PowerBuilder
heap manager returns the memory allocated for each object to a global memory
pool and records its availability on a global free list. The freed memory is not
returned to the operating system. When a new object is created, PowerBuilder
allocates blocks of memory from the global memory pool (if sufficient memory
is available in the global free list) or from the operating system (if it is not) to
a memory pool for the object.

When the memory required by an object exceeds 256KB, PowerBuilder uses a
different strategy. It allocates subsequent memory requirements from the
operating system in large blocks, and returns the physical memory to the
operating system when the object is destroyed. It retains the virtual memory to
reduce fragmentation of the virtual address space.

CHAPTER 3 Selected PowerScript Topics

Application Techniques 47

For most applications and components, the threshold of 256KB at which
PowerBuilder switches to the “large blocks” strategy works well and reduces
the memory required by an application when it is working at its peak level of
activity. However, if you want to keep the overall physical memory usage of
your application as low as possible, you can try setting a lower threshold.

The advantage of setting a low threshold is that the size of the global memory
pool is reduced. The application does not retain a lot of memory when it is
inactive. The disadvantage is that large blocks of memory are allocated for
objects that require more memory than the threshold value, so that when the
application is running at its peak of activity, it might use more virtual memory
than it would with the default threshold.

Setting a low threshold can be beneficial for long-running client applications
that use many short-lived objects, where the client application’s memory usage
varies from low (when idle) to high (when active). For multithreaded
applications, such as servers, a higher threshold usually results in lower virtual
memory utilization.

Logging heap
manager output

You can record diagnostic ouput from the PowerBuilder heap manager in a file
to help you troubleshoot memory allocation issues in your application. The
PB_HEAP_LOGFILENAME environment variable specifies the name and
location of the file.

If you specify a file name but not a directory, the file is saved in the same
directory as the PowerBuilder executable, or, for a PowerBuilder component
running on EAServer, to the EAServer bin directory.

If you specify a directory that does not exist, the file is not created, or, for a
PowerBuilder component running on EAServer, output is written to the
EAServer log file (Jaguar.log).

By default, the log file is overwritten when you restart PowerBuilder or
EAServer. If you want diagnostic output to be appended to the file, set
PB_HEAP_LOGFILE_OVERWRITE to false.

You can set the variables in a batch file that launches the application, or as
system or user environment variables on the computer or server on which the
application or component runs.

For more information about tuning memory management in PowerBuilder and
EAServer, see the technical document EAServer/PowerBuilder Memory Tuning
and Troubleshooting at http://www.sybase.com/detail?id=1027319.

Efficient compiling and performance

48 PowerBuilder

Efficient compiling and performance
The way you write functions and define variables affects your productivity and
your application’s performance.

Short scripts for faster
compiling

If you plan to build machine code dynamic libraries for your deployed
application, keep scripts for functions and events short. Longer scripts take
longer to compile. Break the scripts up so that instead of one long script, you
have a script that makes calls to several other functions. Consider defining
functions in user objects so that other objects can call the same functions.

Local variables for
faster performance

The scope of variables affects performance. When you have a choice, use local
variables, which provide the fastest performance. Global variables have the
biggest negative impact on performance.

Reading and writing text or binary files
You use PowerScript text file functions to read and write text in line mode or
text mode, or to read and write binary files in stream mode:

• In line mode, you can read a file a line at a time until either a carriage return
or line feed (CR/LF) or the end-of-file (EOF) is encountered. When
writing to the file after the specified string is written, PowerScript appends
a CR/LF.

• In stream mode, you can read the entire contents of the file, including any
CR/LFs. When writing to the file, you must write out the specified blob
(but not append a CR/LF).

• In text mode, you can read the entire contents of the file, including any
CR/LFs. When writing to the file, you must write out the specified string
(but not append a CR/LF).

Reading a file into a MultiLineEdit
You can use stream mode to read an entire file into a MultiLineEdit, and then
write it out after it has been modified.

CHAPTER 3 Selected PowerScript Topics

Application Techniques 49

Understanding the
position pointer

When PowerBuilder opens a file, it assigns the file a unique integer and sets the
position pointer for the file to the position you specify—the beginning, after the
byte-order mark, if any, or end of the file. You use the integer to identify the
file when you want to read the file, write to it, or close it. The position pointer
defines where the next read or write will begin. PowerBuilder advances the
pointer automatically after each read or write.

You can also set the position pointer with the FileSeek or FileSeek64 function.

File functions These are the built-in PowerScript functions that manipulate files:

Table 3-1: PowerScript functions that manipulate files

Encoding The last argument in the FileOpen function lets you create an ANSI, UTF-8,
UTF-16LE (Little Endian), or UTF16-BE (Big Endian) file.

The encoding argument, like all arguments of the FileOpen function except the
file name, is optional. You need only specify it if you want to create a new text
file with Unicode encoding. If the filename argument refers to a file that does
not exist, the FileOpen function creates the file and sets the character encoding
specified in the encoding argument.

By default, if the file does not exist and the encoding argument is not specified,
PowerBuilder opens a file with ANSI encoding. This ensures compatibility
with earlier versions of PowerBuilder.

Function
Datatype
returned Action

FileClose Integer Closes the specified file

FileDelete Boolean Deletes the specified file

FileEncoding Encoding
enumerated type

Returns the encoding used in the file

FileExists Boolean Determines whether the specified file exists

FileLength Long Obtains the length of a file with a file size of 2GB
or less

FileLength64 LongLong Obtains the length of a file of any size

FileOpen Integer Opens the specified file

FileRead Integer Reads from the specified file (deprecated)

FileReadEx Long Reads from the specified file

FileSeek Long Seeks to a position in a file with a file size of
2GB or less

FileSeek64 LongLong Seeks to a position in a file of any size

FileWrite Integer Writes to the specified file (deprecated)

FileWriteEx Long Writes to the specified file

Reading and writing text or binary files

50 PowerBuilder

The FileRead and FileWrite functions cannot read more than 32,766 bytes at a
time. The FileReadEx and FileWriteEx functions can write an unlimited number
of bytes at a time.

Application Techniques 51

C H A P T E R 4 Getting Information About
PowerBuilder Class Definitions

About this chapter This chapter explains what class definition information is and how it is
used, and presents some sample code. Developers of tools and object
frameworks can use class definition information for tasks such as
producing reports or defining objects with similar characteristics. You do
not need to use class definition information if you are building typical
business applications.

Contents

Overview of class definition information
A ClassDefinition object is a PowerBuilder object that provides
information about the class of another PowerBuilder object. You can
examine a class in a PowerBuilder library or the class of an instantiated
object. By examining the properties of its ClassDefinition object, you can
get details about how a class fits in the PowerBuilder object hierarchy.

From the ClassDefinition object, you can discover:

• The variables, functions, and events defined for the class

• The class’s ancestor

• The class’s parent

• The class’s children (nested classes)

Topic Page

Overview of class definition information 51

Examining a class definition 54

Overview of class definition information

52 PowerBuilder

Related objects
The ClassDefinition object is a member of a hierarchy of objects, including the
TypeDefinition, VariableDefinition, and ScriptDefinition objects, that provide
information about datatypes or about the variables, properties, functions, and
event scripts associated with a class definition.

For more information, see the Browser or Objects and Controls.

Definitions for instantiated objects For each object instance, a
ClassDefinition property makes available a ClassDefinition object to describe
its definition. The ClassDefinition object does not provide information about
the object instance, such as the values of its variables. You get that information
by addressing the instance directly.

Definitions for objects in libraries An object does not have to be
instantiated to get class information. For an object in a PowerBuilder library,
you can call the FindClassDefinition function to get its ClassDefinition object.

Performance Class definition objects may seem to add a lot of overhead, but
the overhead is incurred only when you refer to the ClassDefinition object. The
ClassDefinition object is instantiated only when you call FindClassDefinition or
access the ClassDefinition property of a PowerBuilder object. Likewise, for
properties of the ClassDefinition object that are themselves ClassDefinition or
VariableDefinition objects, the objects are instantiated only when you refer to
those properties.

Terminology
The class information includes information about the relationships between
objects. These definitions will help you understand what the information
means.

object instance A realization of an object. The instance exists in memory and has values
assigned to its properties and variables. Object instances exist only when you
run an application.

class A definition of an object, containing the source code for creating an object
instance. When you use PowerBuilder painters and save an object in a PBL,
you are creating class definitions for objects. When you run your application,
the class is the datatype of object instances based on that class. In
PowerBuilder, the term object usually refers to an instance of the object. It
sometimes refers to an object’s class.

CHAPTER 4 Getting Information About PowerBuilder Class Definitions

Application Techniques 53

system class A class defined by PowerBuilder. An object you define in a painter is a
descendant of a system class, even when you do not explicitly choose to use
inheritance for the object you define.

parent The object that contains the current object or is connected to the object in a way
other than inheritance. This table lists classes of objects and the classes that can
be the parents of those objects:

Table 4-1: Classes of objects and their parents

child A class that is contained within another parent class. Also called a nested class.
For the types of objects that have a parent and child relationship, see parent.

ancestor A class from whose definition another object is inherited. See also descendant.

descendant An object that is inherited from another object and that incorporates the
specifics of that object: its properties, functions, events, and variables. The
descendant can use these values or override them with new definitions. All
objects you define in painters and store in libraries are descendants of
PowerBuilder system classes.

inheritance hierarchy An object and all its ancestors.

collapsed hierarchy A view of an object class definition that includes information from all the
ancestors in the object’s inheritance tree, not just items defined at the current
level of inheritance.

scalar A simple datatype that is not an object or an array. For example, Integer,
Boolean, Date, Any, and String.

Object Parent

Window The window that opened the window.

A window might not have a parent. The parent is
determined during execution and is not part of the
class definition.

Menu item The menu item on the prior level in the menu.

The item on the menu bar is the parent of all the items
on the associated drop-down menu.

Control on a window The window.

Control on user object The user object.

TabPage The Tab control in which the TabPage is defined or in
which it was opened.

ListViewItem or
TreeViewItem

The ListView or TreeView control.

Visual user object The window or user object on which the user object is
placed.

Examining a class definition

54 PowerBuilder

instance variable and
property

Built-in properties of PowerBuilder system objects are called properties, but
they are treated as instance variables in the class definition information.

Who uses PowerBuilder class definitions
Most business applications do not need to use class definition information.
Code that uses class definition information is written by groups that write class
libraries, application frameworks, and productivity tools.

Although your application might not include any code that uses class definition
information, tools that you use for design, documentation, and class libraries
will. These tools examine class definitions for your objects so that they can
analyze your application and provide feedback to you.

Scenarios Class information might be used when developing:

• A custom object browser

• A tool that needs to know the objects of an application and their
relationships

The purpose might be to document the application or to provide a logical
way to select and work with the objects.

• A CASE tool that deconstructs PowerBuilder objects, allows the user to
redesign them, and reconstructs them

To do the reconstruction, the CASE tool needs both class definition
information and a knowledge of PowerBuilder object source code syntax.

• A class library in which objects need to determine the class associated with
an instantiated object, or a script needs to know the ancestor of an object
in order to make assumptions about available methods and variables

Examining a class definition
This section illustrates how to access a class definition object and how to
examine its properties to get information about the class, its scripts, and its
variables.

CHAPTER 4 Getting Information About PowerBuilder Class Definitions

Application Techniques 55

Getting a class definition object
To work with class information, you need a class definition object. There are
two ways to get a ClassDefinition object containing class definition
information.

For an instantiated
object in your
application

Use its ClassDefinition property.

For example, in a script for a button, this code gets the class definition for the
parent window:

ClassDefinition cd_windef
cd_windef = Parent.ClassDefinition

For an object stored in
a PBL

Call FindClassDefinition.

For example, in a script for a button, this code gets the class definition for the
window named w_genapp_frame from a library on the application’s library list:

ClassDefinition cd_windef
cd_windef = FindClassDefinition("w_genapp_frame")

Getting detailed information about the class
This section has code fragments illustrating how to get information from a
ClassDefinition object called cd_windef.

For examples of assigning a value to cd_windef, see “Getting a class definition
object.”

Library The LibraryName property reports the name of the library a class has been
loaded from:

s = cd_windef.LibraryName

Ancestor The Ancestor property reports the name of the class from which this class is
inherited. All objects are inherited from PowerBuilder system objects, so the
Ancestor property can hold a ClassDefinition object for a PowerBuilder class.
The Ancestor property contains a null object reference when the
ClassDefinition is for PowerObject, which is the top of the inheritance
hierarchy.

This example gets a ClassDefinition object for the ancestor of the class
represented by cd_windef:

ClassDefinition cd_ancestorwindef
cd_ancestorwindef = cd_windef.Ancestor

Examining a class definition

56 PowerBuilder

This example gets the ancestor name. Note that this code would cause an error
if cd_windef held the definition of PowerObject, because the Ancestor property
would be NULL:

ls_name = cd_windef.Ancestor.Name

Use the IsValid function to test that the object is not NULL.

This example walks back up the inheritance hierarchy for the window
w_genapp_frame and displays a list of its ancestors in a MultiLineEdit:

string s, lineend
ClassDefinition cd
lineend = "~r~n"

cd = cd_windef
s = "Ancestor tree:" + lineend

DO WHILE IsValid(cd)
s = s + cd.Name + lineend
cd = cd.Ancestor

LOOP

mle_1.Text = s

The list might look like this:

Ancestor tree:
w_genapp_frame
window
graphicobject
powerobject

Parent The ParentClass property of the ClassDefinition object reports the parent (its
container) specified in the object’s definition:

ClassDefinition cd_parentwindef
cd_parentwindef = cd_windef.ParentClass

If the class has no parent, ParentClass is a null object reference. This example
tests that ParentClass is a valid object before checking its Name property:

IF IsValid(cd_windef.ParentClass) THEN
ls_name = cd_windef.ParentClass.Name

END IF

CHAPTER 4 Getting Information About PowerBuilder Class Definitions

Application Techniques 57

Nested or child
classes

The ClassDefinition object’s NestedClassList array holds the classes the object
contains.

NestedClassList array includes ancestors and descendants
The NestedClassList array can include classes of ancestor objects. For
example, a CommandButton defined on an ancestor window and modified in a
descendent window appears twice in the array for the descendent window, once
for the window and once for its ancestor.

This script produces a list of the controls and structures defined for the window
represented in cd_windef.

string s, lineend
integer li
lineend = "~r~n"

s = s + "Nested classes:" + lineend

FOR li = 1 to UpperBound(cd_windef.NestedClassList)
s = s + cd_windef.NestedClassList[li].Name &

+ lineend
NEXT
mle_1.Text = s

This script searches the NestedClassList array in the ClassDefinition object
cd_windef to find a nested DropDownListBox control:

integer li
ClassDefinition nested_cd

FOR li = 1 to UpperBound(cd_windef.NestedClassList)
IF cd_windef.NestedClassList[li].DataTypeOf &

= "dropdownlistbox" THEN
nested_cd = cd_windef.NestedClassList[li]
EXIT

END IF
NEXT

Class definitions for object instances as distinct from object references
Getting a ClassDefinition object for an instantiated object, such as an ancestor
or nested object, does not give you a reference to instances of the parent or
child classes. Use standard PowerBuilder programming techniques to get and
store references to your instantiated objects.

Examining a class definition

58 PowerBuilder

Getting information about a class’s scripts
This section has code fragments illustrating how to get script information from
a ClassDefinition object called cd_windef.

For examples of assigning a value to cd_windef, see “Getting a class definition
object” on page 55.

List of scripts The ScriptList array holds ScriptDefinition objects for all the functions and
events defined for a class. If a function is overloaded, it will appear in the array
more than once with different argument lists. If a function or event has code at
more than one level in the hierarchy, it will appear in the array for each coded
version.

This example loops through the ScriptList array and builds a list of script
names. All objects have a few standard functions, such as ClassName and
PostEvent, because all objects are inherited from PowerObject:

string s, lineend
integer li
ScriptDefinition sd
lineend = "~r~n"

FOR li = 1 to UpperBound(cd_windef.ScriptList)
sd = cd_windef.ScriptList[li]
s = s + sd.Name + " " + lineend

NEXT
mle_1.Text = s

This example amplifies on the previous one and accesses various properties in
the ScriptDefinition object. It reports whether the script is a function or event,
whether it is scripted locally, what its return datatype and arguments are, and
how the arguments are passed:

string s, lineend
integer li, lis, li_bound
ScriptDefinition sd
lineend = "~r~n"
FOR li = 1 to UpperBound(cd_windef.ScriptList)

sd = cd_windef.ScriptList[li]
s = s + sd.Name + " "

CHOOSE CASE sd.Kind
CASE ScriptEvent!

// Events have three relevant properties
// regarding where code is defined
s = s + "Event, "

CHAPTER 4 Getting Information About PowerBuilder Class Definitions

Application Techniques 59

IF sd.IsScripted = TRUE then
s = s + "scripted, "

END If
IF sd.IsLocallyScripted = TRUE THEN

s = s + "local, "
END IF
IF sd.IsLocallyDefined = TRUE THEN

s = s + "local def,"
END IF

CASE ScriptFunction!
// Functions have one relevant property
// regarding where code is defined
s = s + "Function, "
IF sd.IsLocallyScripted = TRUE THEN

s = s + "local, "
END IF

END CHOOSE

s = s + "returns " + &
 sd.ReturnType.DataTypeOf + "; "
s = s + "Args: "

li_bound = UpperBound(sd.ArgumentList)
IF li_bound = 0 THEN s = s + "None"

FOR lis = 1 to li_bound
CHOOSE CASE sd.ArgumentList[lis]. &

CallingConvention
CASE ByReferenceArgument!
s = s + "REF "
CASE ByValueArgument!
s = s + "VAL "
CASE ReadOnlyArgument!
s = s + "READONLY "
CASE ELSE
s = s + "BUILTIN "

END CHOOSE

s = s + sd.ArgumentList[lis].Name + ", "
NEXT

s = s + lineend
NEXT
mle_1.text = s

Examining a class definition

60 PowerBuilder

Where the code is in the inheritance hierarchy You can check the
IsLocallyScripted property to find out whether a script has code at the class’s
own level in the inheritance hierarchy. By walking back up the inheritance
hierarchy using the Ancestor property, you can find out where the code is for a
script.

This example looks at the scripts for the class associated with the
ClassDefinition cd_windef, and if a script’s code is defined at this level, the
script’s name is added to a drop-down list. It also saves the script’s position in
the ScriptList array in the instance variable ii_localscript_idx. The
DropDownListBox is not sorted, so the positions in the list and the array stay
in sync:

integer li_pos, li

FOR li = 1 to UpperBound(cd_windef.ScriptList)
IF cd_windef.ScriptList[li].IsLocallyScripted &

= TRUE
THEN

li_pos = ddlb_localscripts.AddItem(&
cd_windef.ScriptList[li].Name)

ii_localscript_idx[li_pos] = li
END IF

NEXT

Matching function
signatures

When a class has overloaded functions, you can call FindMatchingFunction to
find out what function is called for a particular argument list.

For an example, see FindMatchingFunction in the PowerScript Reference.

Getting information about variables
This section has code fragments illustrating how to get information about
variables from a ClassDefinition object called cd_windef. For examples of
assigning a value to cd_windef, see “Getting a class definition object” on page
55.

List of variables Variables associated with a class are listed in the
VariableList array of the ClassDefinition object. When you examine that array,
you find not only variables you have defined explicitly but also PowerBuilder
object properties and nested objects, which are instance variables.

CHAPTER 4 Getting Information About PowerBuilder Class Definitions

Application Techniques 61

This example loops through the VariableList array and builds a list of variable
names. PowerBuilder properties appear first, followed by nested objects and
your own instance and shared variables:

string s, lineend
integer li
VariableDefinition vard
lineend = "~r~n"

FOR li = 1 to UpperBound(cd_windef.VariableList)
vard = cd_windef.VariableList[li]
s = s + vard.Name + lineend

NEXT
mle_1.Text = s

Details about
variables

This example looks at the properties of each variable in the VariableList array
and reports its datatype, cardinality, and whether it is global, shared, or
instance. It also checks whether an instance variable overrides an ancestor
declaration:

string s
integer li
VariableDefinition vard
lineend = "~r~n"

FOR li = 1 to UpperBound(cd_windef.VariableList)
vard = cd_windef.VariableList[li]
s = s + vard.Name + ", "
s = s + vard.TypeInfo.DataTypeOf

CHOOSE CASE vard.Cardinality.Cardinality
CASE ScalarType!

s = s + ", scalar"
CASE UnboundedArray!, BoundedArray!

s = s + ", array"
END CHOOSE

CHOOSE CASE vard.Kind
CASE VariableGlobal!

s = s + ", global"
CASE VariableShared!

s = s + ", shared"
CASE VariableInstance!

s = s + ", instance"
IF vard.OverridesAncestorValue = TRUE THEN

s = s + ", override"
END IF

Examining a class definition

62 PowerBuilder

END CHOOSE
s = s + lineend

NEXT
mle_1.text = s

P A R T 3 User Interface Techniques

This part presents a collection of techniques you can use
to implement user interface features in the applications
you develop with PowerBuilder. It includes building an MDI
application, using drag and drop in a window, and
providing online Help for an application.

Application Techniques 65

C H A P T E R 5 Building an MDI Application

About this chapter This chapter describes how to build a Multiple Document Interface (MDI)
application in PowerBuilder.

Contents

About MDI
Multiple Document Interface (MDI) is an application style you can use
to open multiple windows (called sheets) in a single window and move
among the sheets. To build an MDI application, you define a window
whose type is MDI Frame and open other windows as sheets within the
frame.

Most large-scale Windows applications are MDI applications. For
example, PowerBuilder is an MDI application: the PowerBuilder window
is the frame and the painters are the sheets.

If you expect your users to want to open several windows and easily move
from window to window, you should make your application an MDI
application.

Topic Page

About MDI 65

Building an MDI frame window 68

Using sheets 68

Providing MicroHelp 70

Using toolbars in MDI applications 71

Sizing the client area 77

About keyboard support in MDI applications 79

About MDI

66 PowerBuilder

Using the Template Application feature
When you create a new application, you can select the Template Application
Start wizard and then choose to create an SDI or MDI application. If you select
MDI application, PowerBuilder generates the shell of an MDI application that
includes an MDI frame (complete with window functions that do such things
as open or close a sheet), a sheet manager object and several sheets, an About
dialog box, menus, toolbars, and scripts.

MDI frame windows An MDI frame window is a window with several parts: a menu bar, a frame, a
client area, sheets, and (usually) a status area, which can display MicroHelp (a
short description of the current menu item or current activity).

The frame The MDI frame is the outside area of the MDI window that contains the client
area. There are two types of MDI frames:

• Standard

• Custom

CHAPTER 5 Building an MDI Application

Application Techniques 67

Standard frames A standard MDI frame window has a menu bar and
(usually) a status area for displaying MicroHelp. The client area is empty,
except when sheets are open. Sheets can have their own menus, or they can
inherit their menus from the MDI frame. Menu bars in MDI applications
always display in the frame, never in a sheet. The menu bar typically has an
item that lists all open sheets and lets the user tile, cascade, or layer the open
sheets.

Custom frames Like a standard frame, a custom frame window usually has
a menu bar and a status area. The difference between standard and custom
frames is in the client area: in standard frames, the client area contains only
open sheets; in custom frames, the client area contains the open sheets as well
as other objects, such as buttons and StaticText. For example, you might want
to add a set of buttons with some explanatory text in the client area.

Client area In a standard frame window, PowerBuilder sizes the client area automatically
and the open sheets display within the client area. In custom frame windows
containing objects in the client area, you must size the client area yourself. If
you do not size the client area, the sheets will open, but may not be visible.

The MDI_1 control When you build an MDI frame window, PowerBuilder
creates a control named MDI_1, which it uses to identify the client area of the
frame window. In standard frames, PowerBuilder manages MDI_1
automatically. In custom frames, you write a script for the frame’s Resize event
to size MDI_1 appropriately.

Displaying information about MDI_1
You can see the properties and functions for MDI_1 in the Browser. Create a
window of type MDI and select the Window tab in the Browser. Select the MDI
frame window and select Expand All from the pop-up menu. MDI_1 is listed as
a window control, and you can examine its properties, functions, and so forth
in the right pane of the Browser.

MDI sheets Sheets are windows that can be opened in the client area of an MDI frame. You
can use any type of window except an MDI frame as a sheet in an MDI
application. To open a sheet, use either the OpenSheet or OpenSheetWithParm
function.

Toolbars Often you want to provide a toolbar for users of an MDI application. You can
have PowerBuilder automatically create and manage a toolbar that is based on
the current menu, or you can create your own custom toolbar (generally as a
user object) and size the client area yourself.

Building an MDI frame window

68 PowerBuilder

For information on providing a toolbar, see the chapter on menus and toolbars
in the User’s Guide. For more information on sizing the client area, see “Sizing
the client area” on page 77.

Building an MDI frame window
When you create a new window in PowerBuilder, its default window type is
Main. Select mdi! or mdihelp! on the General property page to change the
window to an MDI frame window.

Using menus When you change the window type to MDI, you must associate a menu with
the frame. Menus usually provide a way to open sheets in the frame and to close
the frame if the user has closed all the sheets.

About menus and sheets
A sheet can have its own menu but is not required to. When a sheet without a
menu is opened, it uses the frame’s menu.

Using sheets
In an MDI frame window, users can open windows (sheets) to perform
activities. For example, in an electronic mail application, an MDI frame might
have sheets that users open to create and send messages and read and reply to
messages. All sheets can be open at the same time and the user can move
among the sheets, performing different activities in each sheet.

About menus and sheets
A sheet can have its own menu but is not required to. When a sheet without a
menu is opened, it uses the frame’s menu.

Opening sheets To open a sheet in the client area of an MDI frame, use the OpenSheet function
in a script for an event in a menu item, an event in another sheet, or an event in
any object in the frame.

For more information about OpenSheet, see the PowerScript Reference.

CHAPTER 5 Building an MDI Application

Application Techniques 69

Opening instances of windows
Typically in an MDI application, you allow users to open more than one
instance of a particular window type. For example, in an order entry
application, users can probably look at several different orders at the same
time. Each of these orders displays in a separate window (sheet).

Listing open sheets When you open a sheet in the client area, you can display the title of the
window (sheet) in a list at the end of a drop-down menu. This menu lists two
open sheets:

❖ To list open sheets in a drop-down menu:

• Specify the number of the menu bar item in which you want the open
sheets listed when you call the OpenSheet function. Typically you list the
open sheets in the Windows menu. In a menu bar with four items in the
order File, Edit, Windows, and Help, you specify the Windows menu with
the number 3.

If more than nine sheets are open at one time, only nine sheets are listed in the
menu and More Windows displays in the tenth position. To display the rest of
the sheets in the list, click More Windows.

Arranging sheets After you open sheets in an MDI frame, you can change the way they are
arranged in the frame with the ArrangeSheets function.

Providing MicroHelp

70 PowerBuilder

To allow arrangement of sheets
To allow the user to arrange the sheets, create a menu item (typically on a menu
bar item named Window) and use the ArrangeSheets function to arrange the
sheets when the user selects a menu item.

Maximizing sheets If sheets opened in an MDI window have a control menu, users can maximize
the sheets. When the active sheet is maximized:

• If another sheet becomes the active sheet, that sheet is maximized (the
sheet inherits the state of the previous sheet).

• If a new sheet is opened, the current sheet is restored to its previous size
and the new sheet is opened in its original size.

Closing sheets Active sheet To close the active window (sheet), users can press CTRL+F4.
You can write a script for a menu item that closes the parent window of the
menu (make sure the menu is associated with the sheet, not the frame.) For
example:

Close(ParentWindow)

All sheets To close all sheets and exit the application, users can press
ALT+F4. You can write a script to keep track of the open sheets in an array and
then use a loop structure to close them.

Providing MicroHelp
MDI provides a MicroHelp facility that you can use to display information to
the user in the status area at the bottom of the frame. For example, when the
user selects a menu item, the MicroHelp facility displays a description of the
selected item in the status area.

You can define MicroHelp for menu items and for controls in custom frame
windows.

Providing MicroHelp
for menu items

You specify the text for the MicroHelp associated with a menu item on the
General property page in the Menu painter. To change the text of the
MicroHelp in a script for a menu item, use the SetMicroHelp function.

CHAPTER 5 Building an MDI Application

Application Techniques 71

Providing MicroHelp
for controls

You can associate MicroHelp with a control in a custom frame window by
using the control’s Tag property. For example, say you have added a Print
button to the client area. To display MicroHelp for the button, write a script for
the button’s GetFocus event that sets the Tag property to the desired text and
then uses SetMicroHelp to display the text. For example:

cb_print.Tag="Prints information about current job"
w_genapp_frame.SetMicroHelp(This.Tag)

You can also set a control’s Tag property in the control’s property sheet.

In the LoseFocus event, you should restore the MicroHelp:

w_genapp_frame.SetMicroHelp("Ready")

Using toolbars in MDI applications
This section describes some techniques you can use to customize the behavior
of your toolbars and save and restore toolbar settings. For information about
how to define and use menus and toolbars, see the User’s Guide.

Customizing toolbar behavior
Disabling toolbar
buttons

To disable a toolbar button, you need to disable the menu item with which it is
associated. Disabling the menu item disables the toolbar button automatically.

To disable a menu item, you need to set the Enabled property of the menu item:

m_test.m_file.m_new.Enabled = FALSE

Hiding toolbar buttons To hide a menu item, you set the Visible property of the item:

m_test.m_file.m_open.Visible = FALSE

Hiding a menu item does not cause its toolbar button to disappear or be
disabled. To hide a toolbar button, you need to set the ToolbarItemVisible
property of the menu item:

m_test.m_file.m_open.ToolBarItemVisible = FALSE

Hiding a menu item does not cause the toolbar buttons for the drop-down or
cascading menu items at the next level to disappear or be disabled. You need
to hide or disable these buttons individually.

Using toolbars in MDI applications

72 PowerBuilder

Setting the current
item in a drop-down
toolbar

When a user clicks on a toolbar button in a drop-down toolbar, PowerBuilder
makes the selected button the current item. This makes it easy for the user to
perform a particular toolbar action repeatedly. You can also make a particular
button the current item programmatically by setting the CurrentItem property
of the MenuCascade object. For example, to set the current item to the toolbar
button for the New option on the File menu, you could execute this line in a
script:

m_test.m_file.currentitem = m_test.m_file.m_new

In order for this to work, you would need to specify MenuCascade as the object
type for the File menu in the Menu painter.

Testing for whether a
toolbar is moved

Whenever a toolbar moves in an MDI frame window, PowerBuilder triggers
the ToolBarMoved event for the window. In the script for this event, you can
test to see which toolbar has moved and perform some processing. When the
user moves the FrameBar or SheetBar, the ToolbarMoved event is triggered
and the Message.WordParm and Message.LongParm properties are populated
with values that indicate which toolbar was moved:

Table 5-1: Values of Message.WordParm and Message.LongParm
properties

Saving and restoring toolbar settings
You can save and restore the current toolbar settings using functions that
retrieve information about your toolbar settings, and you can modify these
settings.

GetToolbar and GetToolbarPos allow you to retrieve the current toolbar settings.
SetToolbar and SetToolbarPos allow you to change the toolbar settings. The
syntax you use for the GetToolbarPos and SetToolbarPos functions varies
depending on whether the toolbar you are working with is floating or docked.

Floating toolbars The position of a floating toolbar is determined by its x and y coordinates. The
size of a floating toolbar is determined by its width and height.

Property Value Meaning

Message.WordParm 0 FrameBar moved

1 SheetBar moved

Message.LongParm 0 Moved to left

1 Moved to top

2 Moved to right

3 Moved to bottom

4 Set to floating

CHAPTER 5 Building an MDI Application

Application Techniques 73

When you code the GetToolbarPos and SetToolbarPos functions for a floating
toolbar, you need to include arguments for the x and y coordinates and the
width and height.

Docked toolbars The position of a docked toolbar is determined by its docking row and its offset
from the beginning of the docking row. For toolbars at the top or bottom, the
offset for a docked toolbar is measured from the left edge. For toolbars at the
left or right, the offset is measured from the top.

By default, the docking row for a toolbar is the same as its bar index. If you
align the toolbar with a different border in the window, its docking row may
change depending on where you place it.

When you code the GetToolbarPos and SetToolbarPos functions for a docked
toolbar, you need to include arguments for the docking row and the offset.

Example The example below shows how to use a custom class user object to manage
toolbar settings. The user object has two functions, one for saving the current
settings and the other for restoring the settings later on. Because the logic
required to save and restore the settings is handled in the user object (instead
of in the window itself), this logic can easily be used with any window.

The sample code shown below supports both fixed and floating toolbars.

Script for the window’s Open event When the window opens, the
following script restores the toolbar settings from an initialization file. To
restore the settings, it creates a custom class user object called u_toolbar and
calls the Restore function:

// Create the toolbar NVO
u_toolbar = create u_toolbar
// Restore the toolbar positions
u_toolbar.Restore(this,"toolbar.ini", this.ClassName
())

Script for the window’s Close event When the window closes, the
following script saves the toolbar settings by calling the Save function. Once
the settings have been saved, it destroys the user object:

// Save the toolbar
stateu_toolbar.Save(this, "toolbar.ini", ClassName())
// Destroy the toolbar NVOdestroy u_toolbar

Script for the Save function The Save function has three arguments:

• Win – provides the window reference

• File – provides the name of the file where the settings should be saved

• Section – identifies the section where the settings should be saved

Using toolbars in MDI applications

74 PowerBuilder

The Save function uses the GetToolbar and GetToolbarPos functions to retrieve
the current toolbar settings. To write the settings to the initialization file, it uses
the SetProfileString function.

The Save function can handle multiple toolbars for a single menu. It uses the
bar index to keep track of information for each toolbar:

// Store the toolbar settings for the passed window
integer index, row, offset, x, y, w, h
boolean visible
string visstring, alignstring, title
toolbaralignment alignmentFOR index = 1 to 16

// Try to get the attributes for the bar.
IF win.GetToolbar(index, visible, alignment, &

title)= 1 THEN
// Convert visible to a string
CHOOSE CASE visible
CASE true

visstring = "true"
CASE false

visstring = "false"
END CHOOSE// Convert alignment to a string

CHOOSE CASE alignment
CASE AlignAtLeft!

alignstring = "left"
CASE AlignAtTop!

alignstring = "top"
CASE AlignAtRight!

alignstring = "right"
CASE AlignAtBottom!

alignstring = "bottom"
CASE Floating!

alignstring = "floating"
END CHOOSE

// Save the basic attributes
SetProfileString(file, section + &

String(index), "visible", visstring)
SetProfileString(file, section + &

String(index), "alignment", alignstring)
SetProfileString(file, section + &

String(index), "title", title)

// Save the fixed position
win.GetToolbarPos(index, row, offset)

CHAPTER 5 Building an MDI Application

Application Techniques 75

SetProfileString(file, section + &
String(index), "row", String(row))

SetProfileString(file, section + &
String(index), "offset", String(offset))

// Save the floating position
win.GetToolbarPos(index, x, y, w, h)
SetProfileString(file, section + &

String(index), "x", String(x))
SetProfileString(file, section + &

String(index), "y", String(y))
SetProfileString(file, section + &

String(index), "w", String(w))

SetProfileString(file, section + &
String(index), "h", String(h))

END IF
NEXT

Script for the Restore function The Restore function has the same three
arguments as the Save function. It uses the ProfileString function to retrieve
toolbar settings from the initialization file. Once the settings have been
retrieved, it uses the SetToolbar and SetToolbarPos functions to restore the
toolbar settings.

Like the Save function, the Restore function can handle multiple toolbars for a
single menu. It uses the bar index to keep track of information for each toolbar:

// Restore toolbar settings for the passed window

integer index, row, offset, x, y, w, h
boolean visible
string visstring, alignstring, title
toolbaralignment alignment

FOR index = 1 to 16
// Try to get the attributes for the bar.
IF win.GetToolbar(index, visible, alignment, &

title)= 1 THEN
// Try to get the attributes from the .ini
// file
visstring = ProfileString(file, section + &

String(index), "visible", "")
IF visstring > "" THEN

// Get all of the attributes
alignstring = ProfileString(file, section + &
String(index), "alignment", "left")

Using toolbars in MDI applications

76 PowerBuilder

title = ProfileString(file, section + &
String(index), "title", "(Untitled)")

row = Integer(ProfileString(file, section + &
String(index), "row", "1"))

offset = Integer(ProfileString(file, &
section + String(index), "offset", "0"))

x = Integer(ProfileString(file, section + &
String(index), "x", "0"))

y = Integer(ProfileString(file, section + &
String(index), "y", "0"))

w = Integer(ProfileString(file, section + &
String(index), "w", "0"))

h = Integer(ProfileString(file, section + &
String(index), "h", "0"))

// Convert visstring to a boolean
CHOOSE CASE visstring
CASE "true"

visible = true
CASE "false"

visible = false
END CHOOSE

// Convert alignstring to toolbaralignment
CHOOSE CASE alignstring
CASE "left"

alignment = AlignAtLeft!
CASE "top"

alignment = AlignAtTop!
CASE "right"

alignment = AlignAtRight!
CASE "bottom"

alignment = AlignAtBottom!
CASE "floating"

alignment = Floating!
END CHOOSE

// Set the new position
win.SetToolbar(index, visible, alignment, title)
win.SetToolbarPos(index, row, offset, false)
win.SetToolbarPos(index, x, y, w, h)

END IF
END IF

NEXT

CHAPTER 5 Building an MDI Application

Application Techniques 77

Sizing the client area
PowerBuilder sizes the client area in a standard MDI frame window
automatically and displays open sheets unclipped within the client area. It also
sizes the client area automatically if you have defined a toolbar based on menu
items, as described in the preceding section.

However, in a custom MDI frame window—where the client area contains
controls in addition to open sheets—PowerBuilder does not size the client area;
you must size it. If you do not size the client area, the sheets open but may not
be visible and are clipped if they exceed the size of the client area.

If you plan to use an MDI toolbar with a custom MDI frame, make sure the
controls you place in the frame’s client area are far enough away from the client
area’s borders so that the toolbar does not obscure them when displayed.

Scrollbars display when a sheet is clipped
If you selected HScrollBar and VScrollBar when defining the window, the
scrollbars display when a sheet is clipped. This means not all the information
in the sheet is displayed. The user can then scroll to display the information.

When you create a custom MDI frame window, PowerBuilder creates a control
named MDI_1 to identify the client area of the frame. If you have enabled
AutoScript, MDI_1 displays in the list of objects in the AutoScript pop-up
window when you create a script for the frame.

❖ To size or resize the client area when the frame is opened or resized:

• Write a script for the frame’s Open or Resize event that:

• Determines the size of the frame

• Sizes the client area (MDI_1) appropriately

Sizing the client area

78 PowerBuilder

For example, the following script sizes the client area for the frame
w_genapp_frame. The frame has a series of buttons running across the frame
just below the menu, and MicroHelp at the bottom:

int li_width, li_height

//Get the width and height of the frame's workspace.
//
//Note that if the frame displays any MDI toolbars,
//those toolbars take away from the size of the
//workspace as returned by the WorkSpaceWidth and
//WorkSpaceHeight functions. Later, you see how to
//to adjust for this.
//
li_width = w_genapp_frame.WorkSpaceWidth()

li_height = w_genapp_frame.WorkSpaceHeight()

//Next, determine the desired height of the client
//area by doing the following:
//
// 1) Subtract from the WorkSpaceHeight value: the
// height of your control and the Y coordinate of
// the control (which is the distance between the
// top of the frame's workspace -- as if no
// toolbars were there -- and the top of your
// control).
//
// 2) Then subtract: the height of the frame's
// MicroHelp bar (if present)
//
// 3) Then add back: the height of any toolbars that
// are displayed (to adjust for the fact that the
// original WorkSpaceHeight value we started with
// is off by this amount). The total toolbar

CHAPTER 5 Building an MDI Application

Application Techniques 79

// height is equal to the Y coordinate returned
// by the WorkspaceY function.

li_height = li_height - (cb_print.y + cb_print.height)

li_height = li_height - MDI_1.MicroHelpHeight

li_height = li_height + WorkspaceY()

//Now, move the client area to begin just below your
//control in the workspace.

mdi_1.Move (WorkspaceX (), cb_print.y + &
cb_print.height)

//Finally, resize the client area based on the width
//and height you calculated earlier.

mdi_1.Resize (li_width, li_height)

About MicroHelpHeight
MicroHelpHeight is a property of MDI_1 that PowerBuilder sets when you
select a window type for your MDI window. If you select MDI Frame, there is
no MicroHelp and MicroHelpHeight is 0; if you select MDI Frame with
MicroHelp, MicroHelpHeight is the height of the MicroHelp.

About keyboard support in MDI applications
PowerBuilder MDI applications automatically support arrow keys and shortcut
keys.

Arrow keys In an MDI frame, how the pointer moves when the user presses an arrow key
depends on where focus is when the key is pressed:

About keyboard support in MDI applications

80 PowerBuilder

Table 5-2: Arrow key focus changes

Shortcut keys PowerBuilder automatically assigns two shortcut keys to every MDI frame:

Table 5-3: MDI frame shortcut keys

Key If focus is in Focus moves to

Left The menu bar The menu item to the left of the item
that has focus

The first menu bar item The control menu of the active sheet

The control menu of the active
sheet

The control menu of the frame

The control menu of the frame The last menu item

Right The menu bar The menu item to the right of the item
that has focus

The last menu bar item The control menu of the frame

The control menu of the frame The control menu of the active sheet

The control menu of the active
sheet

The first item in the menu bar

Down A drop-down or cascading menu The menu item below the current
item

The last menu item in the
drop-down or cascading menu

The first item in the menu

Up A drop-down or cascading menu The menu item above the current
item

The first menu item in a drop-down
or cascading menu

The last item in the menu

Key Use to

Ctrl+F4 Close the active sheet and make the previous sheet active. The previous
sheet is the sheet that was active immediately before the sheet that was
closed.

Ctrl+F6 Make the previous sheet the active sheet.

Application Techniques 81

C H A P T E R 6 Managing Window Instances

About this chapter This chapter describes how to manage several instances of the same
window.

Contents

About window instances
When you build an application, you may want to display several windows
that are identical in structure but have different data values.

For example, you may have a w_employee window and want to display
information for two or more employees at the same time by opening
multiple copies (instances) of the w_employee window.

You can do that, but you need to understand how PowerBuilder stores
window definitions.

How PowerBuilder stores
window definitions

When you save a window, PowerBuilder actually generates two entities in
the library:

• A new datatype The name of the datatype is the same as the name
of the window.

For example, when you save a window named w_employee,
PowerBuilder internally creates a datatype named w_employee.

• A new global variable of the new datatype The name of the
global variable is the same as the name of the window.

For example, when you save the w_employee window, you are also
implicitly defining a global variable named w_employee of type
w_employee.

Topic Page

About window instances 81

Declaring instances of windows 82

Using window arrays 84

Referencing entities in descendants 86

Declaring instances of windows

82 PowerBuilder

It is as if you had made the following declaration:

Figure 6-1: Variable declaration

By duplicating the name of the datatype and variable, PowerBuilder allows
new users to access windows easily through their variables while ignoring the
concept of datatype.

What happens when
you open a window

To open a window, you use the Open function, such as:

Open(w_employee)

This actually creates an instance of the datatype w_employee and assigns it a
reference to the global variable, also named w_employee.

As you have probably noticed, when you open a window that is already open,
PowerBuilder simply activates the existing window; it does not open a new
window. For example, consider this script for a CommandButton’s Clicked
event:

Open(w_employee)

No matter how many times this button is clicked, there is still only one window
w_employee. It is pointed to by the global variable w_employee.

To open multiple instances of a window, you declare variables of the window’s
type.

Declaring instances of windows
Because a window is actually a datatype, you can declare variables of that
datatype, just as you can declare integers, strings, and so on. You can then refer
to those variables in code.

For example:

w_employee mywin

declares a variable named mywin of type w_employee.

CHAPTER 6 Managing Window Instances

Application Techniques 83

Limitation of using variables
When you declare a window instance, you cannot reference it from another
window. For example, if there are three windows open, you cannot explicitly
refer to the first one from the second or third. There is no global handle for
windows opened using reference variables. To maintain references to window
instances using a script, see “Using window arrays” on page 84.

Opening an instance To open a window instance, you refer to the window variable in the Open
function:

w_employee mywin
Open(mywin)

Here the Open function determines that the datatype of the variable mywin is
w_employee. It then creates an instance of w_employee and assigns a reference
to the mywin variable.

If you code the above script for the Clicked event for a CommandButton, each
time the button is clicked, a new instance of w_employee is created. In other
words, a new window is opened each time the button is clicked.

By creating variables whose datatype is the name of a window, you can open
multiple instances of a window. This is easy and straightforward.
PowerBuilder manages the windows for you—for example, freeing memory
when you close the windows.

Closing an instance A common way to close the instances of a window is to put a CommandButton
in the window with this script for the Clicked event:

Close(Parent)

This script closes the parent of the button (the window in which the button
displays). Continuing the example above, if you put a CommandButton in
w_employee, the script closes the current instance of w_employee. If you click
the CommandButton in the mywin instance of w_employee, mywin closes.

Using window arrays

84 PowerBuilder

Using window arrays
To create an array of windows, declare an array of the datatype of the window.
For example, the following statement declares an array named myarray, which
contains five instances of the window w_employee:

w_employee myarray[5]

You can also create unbounded arrays of windows if the number of windows
to be opened is not known at compile time.

Opening an instance
using an array

To open an instance of a window in an array, use the Open function and pass it
the array index. Continuing the example above, the following statements open
the first and second instances of the window w_employee:

Open(myarray[1]) // Opens the first instance
// of the window w_employee.

Open(myarray[2]) // Opens the second instance.

Moving first instance opened
The statements in this example open the second instance of the window at the
same screen location as the first instance. Therefore, you should call the Move
function in the script to relocate the first instance before the second Open
function call.

Manipulating arrays Using arrays of windows, you can manipulate particular instances by using the
array index. For example, the following statement hides the second window in
the array:

myarray[2].Hide()

You can also reference controls in windows by using the array index, such as:

myarray[2].st_count.text = "2"

Opening many windows
When you open or close a large number of instances of a window, you may
want to use a FOR...NEXT control structure in the main window to open or close
the instances. For example:

w_employee myarray[5]
for i = 1 to 5

Open(myarray[i])
next

CHAPTER 6 Managing Window Instances

Application Techniques 85

Creating mixed arrays In the previous example, all windows in the array are the same type. You can
also create arrays of mixed type. Before you can understand this technique, you
need to know one more thing about window inheritance: all windows you
define are actually descendants of the built-in datatype window.

Suppose you have a window w_employee that is defined from scratch, and
w_customer that inherits from w_employee. The complete inheritance
hierarchy is the following:

Figure 6-2: Window inheritance hierarchy

The system-defined object named window is the ancestor of all windows you
define in PowerBuilder. The built-in object named window defines properties
that are used in all windows (such as X, Y, and Title).

If you declare a variable of type window, you can reference any type of window
in the application. This is because all user-defined windows are a kind of
window.

The following code creates an array of three windows. The array is named
newarray. The array can reference any type of window, because all user-defined
windows are derived from the window datatype:

window newarray[3]
string win[3]
int iwin[1] = "w_employee"
win[2] = "w_customer"
win[3] = "w_sales"

for i = 1 to 3
Open(newarray[i], win[i])

next

The code uses this form of the Open function:

Open (windowVariable, windowType)

where windowVariable is a variable of type window (or a descendant of
window) and windowType is a string that specifies the type of window.

Referencing entities in descendants

86 PowerBuilder

The preceding code opens three windows: an instance of w_employee, an
instance of w_customer, and an instance of w_sales.

Using arrays versus
reference variables

Table 6-1 shows when you use reference variables and when you use arrays to
manipulate window instances.

Table 6-1: Arrays as opposed to reference variables

Suppose you use w_employee to provide or modify data for individual
employees. You may want to prevent a second instance of w_employee opening
for the same employee, or to determine for which employees an instance of
w_employee is open. To do this kind of management, you must use an array. If
you do not need to manage specific window instances, use reference variables
instead to take advantage of their ease of use.

Referencing entities in descendants
When you declare a variable whose datatype is a kind of object, such as a
window, you can use the variable to reference any entity defined in the object,
but not in one of its descendants. Consider the following code:

w_customer mycust

Open(mycust)
// The following statement is legal if
// w_customer window has a st_name control.
mycust.st_name.text = "Joe"

mycust is declared as a variable of type w_customer (mycust is a w_customer
window). If w_customer contains a StaticText control named st_name, then the
last statement shown above is legal.

Item Advantages Disadvantages

Arrays You can refer to
particular instances.

Arrays are more difficult to use. For example,
if the user closes the second window in an
array, then wants to open a new window, your
code must determine whether to add a window
to the end of the array (thereby using more
memory than needed) or find an empty slot in
the existing array for the new window.

Reference
variables

Easy to use—
PowerBuilder manages
them automatically.

You cannot manipulate particular instances of
windows created using reference variables.

CHAPTER 6 Managing Window Instances

Application Techniques 87

However, consider the following case:

window newwin
string winname = "w_customer"
Open(newwin, winname)
// Illegal because objects of type Window
// do not have a StaticText control st_name
newwin.st_name.text = "Joe"

Here, newwin is defined as a variable of type window. PowerBuilder rejects the
above code because the compiler uses what is called strong type checking: the
PowerBuilder compiler does not allow you to reference any entity for an object
that is not explicitly part of the variable’s compile-time datatype.

Because objects of type window do not contain a st_name control, the
statement is not allowed. You would need to do one of the following:

• Change the declaration of newwin to be a w_customer (or an ancestor
window that also contains a st_name control), such as:

w_customer newwin
string winname = "w_customer"

Open(newwin, winname)
// Legal now
newwin.st_name.text = "Joe"

• Define another variable, of type w_customer, and assign it to newwin, such
as:

window newwin
w_customer custwin
stringwinname = "w_customer"

Open(newwin, winname)
custwin = newwin
// Legal now
custwin.st_name.text = "Joe"

Referencing entities in descendants

88 PowerBuilder

Application Techniques 89

C H A P T E R 7 Using Tab Controls in a Window

About this chapter This chapter describes how to use Tab controls in your application.

Contents

About Tab controls
A Tab control is a container for tab pages that display other controls. One
page at a time fills the display area of the Tab control. Each page has a tab
like an index card divider. The user can click the tab to switch among the
pages:

The Tab control allows you to present many pieces of information in an
organized way. You add, resize, and move Tab controls just as you do any
control. The PowerBuilder User’s Guide describes how to add controls to
a window or custom visual user object.

Topic Page

About Tab controls 89

Defining and managing tab pages 90

Customizing the Tab control 93

Using Tab controls in scripts 96

Defining and managing tab pages

90 PowerBuilder

Tab terms You need to know these definitions:

Tab control A control that you place in a window or user object that contains
tab pages. Part of the area in the Tab control is for the tabs associated with the
tab pages. Any space that is left is occupied by the tab pages themselves.

Tab page A user object that contains other controls and is one of several
pages within a Tab control. All the tab pages in a Tab control occupy the same
area of the control and only one is visible at a time. The active tab page covers
the other tab pages.

You can define tab pages right in the Tab control or you can define them in the
User Object painter and insert them into the Tab control, either in the painter
or during execution.

Tab The visual handle for a tab page. The tab displays a label for the tab page.
When a tab page is hidden, the user clicks its tab to bring it to the front and
make the tab page active.

Defining and managing tab pages
A tab page is a user object.

Two methods There are different ways to approach tab page definition. You can define:

• An embedded tab page In the painter, insert tab pages in the Tab
control and add controls to those pages. An embedded tab page is of class
UserObject, but is not reusable.

• An independent user object In the User Object painter, create a custom
visual user object and add the controls that will display on the tab page.
You can use the user object as a tab page in a Tab control, either in the
painter or by calling OpenTab in a script. A tab page defined as an
independent user object is reusable.

You can mix and match the two methods—one Tab control can contain both
embedded tab pages and independent user objects.

Creating tab pages When you create a new Tab control, it has one embedded tab page. You can use
that tab page or you can delete it.

❖ To create a new tab page within the Tab control:

1 Right-click in the tab area of the Tab control. Do not click a tab page.

CHAPTER 7 Using Tab Controls in a Window

Application Techniques 91

2 Select Insert TabPage from the pop-up menu.

3 Add controls to the new page.

❖ To define a tab page independent of a Tab control:

1 Select Custom Visual on the Object tab in the New dialog box.

2 In the User Object painter, size the user object to match the size of the
display area of the Tab control in which you will use it.

3 Add the controls that will appear on the tab page to the user object and
write scripts for their events.

4 On the user object’s property sheet, click the TabPage tab and fill in
information to be used by the tab page.

❖ To add a tab page that exists as an independent user object to a Tab
control:

1 Right-click in the tab area of the Tab control. Do not click a tab page.

2 Select Insert User Object from the pop-up menu.

3 Select a user object.

The tab page is inherited from the user object you select. You can set tab
page properties and write scripts for the inherited user object just as you
do for tab pages defined within the Tab control.

Editing the controls on the tab page user object
You cannot edit the content of the user object within the Tab control. If you
want to edit or write scripts for the controls, close the window or user
object containing the Tab control and go back to the User Object painter
to make changes.

Managing tab pages You can view, reorder, and delete the tab pages on a Tab control.

❖ To view a different tab page:

• Click the page’s tab.

The tab page comes to the front and becomes the active tab page. The tabs
are rearranged according to the Tab position setting you have chosen.

❖ To reorder the tabs within a Tab control:

1 Click the Page Order tab on the Tab control’s property sheet.

2 Drag the names of the tab pages to the desired order.

Defining and managing tab pages

92 PowerBuilder

❖ To delete a tab page from a Tab control:

1 Click the page’s tab.

2 Right-click the tab page and select Cut or Clear from the pop-up menu.

Selecting tab controls and tab pages
As you click on various areas within a tab control, you will notice the
Properties view changing to show the properties of the tab control itself, one of
the tab pages, or a control on a tab page. Before you select an item such as Cut
from the pop-up menu, make sure that you have selected the right object.

Clicking anywhere in the tab area of a tab control selects the tab control. When
you click the tab for a specific page, that tab page becomes active, but the
selected object is still the tab control. To select the tab page, click its tab to
make it active and then click anywhere on the background of the page except
on the tab itself.

Controls on tab pages The real purpose of a Tab control is to display other controls on its pages. You
can think of the tab page as a miniature window. You add controls to it just as
you do to a window.

When you are working on a Tab control, you can add controls only to a tab page
created within the Tab control.

Adding controls to an independent user object tab page
To add controls to an independent user object tab page, open it in the User
Object painter.

❖ To add a control to an embedded tab page:

• Choose a control from the toolbar or the Insert menu and click the tab
page, just as you do to add a control to a window.

When you click inside the tab page, the tab page becomes the control’s
parent.

❖ To move a control from one tab page to another:

• Cut or copy the control and paste it on the destination tab page.

The source and destination tab pages must both be embedded tab pages, not
independent user objects.

CHAPTER 7 Using Tab Controls in a Window

Application Techniques 93

❖ To move a control between a tab page and the window containing the
Tab control:

• Cut or copy the control and paste it on the destination window or tab page.

You cannot drag the control out of the Tab control onto the window.

Moving the control between a tab page and the window changes the control’s
parent, which affects scripts that refer to the control.

Customizing the Tab control
The Tab control has settings for controlling the position and appearance of the
tabs. Each tab can have its own label, picture, and background color.

All tabs share the same font settings, which you set on the Tab control’s Font
property page.

Pop-up menus and
property sheets for
Tab controls and tab
pages

A Tab control has several elements, each with its own pop-up menu and
property sheet. To open the property sheet, double-click or select Properties on
the pop-up menu.

Where you click determines what element you access.

Table 7-1: Accessing Tab control elements

To access the pop-up menu
or property sheet for a Do this

Tab control Right-click or double-click in the tab area of the
Tab control.

Tab page Click the tab to make the tab page active, then
right-click or double-click somewhere in the tab
page but not on a control on the page.

Control on a tab page Click the tab to make the tab page active and
right-click or double-click the control.

Customizing the Tab control

94 PowerBuilder

Position and size of
tabs

The General tab in the Tab control’s property sheet has several settings for
controlling the position and size of the tabs. For example:

Table 7-2: Controlling size and position of tabs

Fixed Width and Ragged Right
When Fixed Width is checked, the tabs are all the same size. This is different
from turning Ragged Right off, which stretches the tabs to fill the edge of the
Tab control, like justified text. The effect is the same if all the tab labels are
short, but if you have a mix of long and short labels, justified labels can be
different sizes unless Fixed Width is on.

This figure illustrates the effect of combining some of these settings. Tab
Position is Top:

To change Change the value for

The side(s) of the Tab control on which the tabs
appear

Tab Position

The size of the tabs relative to the size of the Tab
control

Ragged Right, MultiLine,
Fixed Width

The orientation of the text relative to the side of the
Tab control (use this setting with caution—only
TrueType fonts support perpendicular text)

Perpendicular Text

CHAPTER 7 Using Tab Controls in a Window

Application Techniques 95

This sample Tab control is set up like an address book. It has tabs that flip
between the left and right sides. With the Bold Selected Text setting on and the
changing tab positions, it is easy to see which tab is selected:

Tab labels You can change the appearance of the tab using the property sheets of both the
Tab control and the Tab page.

Table 7-3: Changing the appearance of a tab

If you are working in the User Object painter on an object you will use as a tab
page, you can make the same settings on the TabPage page of the user object’s
property sheet that you can make in the tab page’s property sheet.

This example has a picture and text assigned to each tab page. Each tab has a
different background color. The Show Picture and Show Text settings are both
on:

Property
sheet

Property
page Setting Affects

Tab control General PictureOnRight,
ShowPicture,
ShowText

All tabs in the control

Tab page General Text,
BackColor

The label on the tab and the
background color of the tab
page

Tab page TabPage PictureName,
TabTextColor,
TabBackColor,
PictureMaskColor

The color of the text and
picture on the tab and the
background color of the tab
itself (not the tab page)

Using Tab controls in scripts

96 PowerBuilder

Changing tab
appearance in scripts

All these settings in the painter have equivalent properties that you can set in a
script, allowing you to change the appearance of the Tab control dynamically
during execution.

Using Tab controls in scripts
This section provides examples of tabs in scripts:

• Referring to tab pages in scripts

• Referring to controls on tab pages

• Opening, closing, and hiding tab pages

• Keeping track of tab pages

• Creating tab pages only when needed

• Events for the parts of the Tab control

Referring to tab pages in scripts
Dot notation allows you to refer to individual tab pages and controls on those
tab pages:

• The window or user object containing the Tab control is its parent:

window.tabcontrol

• The Tab control is the parent of the tab pages contained in it:

window.tabcontrol.tabpageuo

• The tab page is the parent of the control contained in it:

window.tabcontrol.tabpageuo.controlonpage

For example, this statement refers to the PowerTips property of the Tab control
tab_1 within the window w_display:

w_display.tab_1.PowerTips = TRUE

This example sets the PowerTipText property of tab page tabpage_1:

w_display.tab_1.tabpage_1.PowerTipText = &
"Font settings"

CHAPTER 7 Using Tab Controls in a Window

Application Techniques 97

This example enables the CommandButton cb_OK on the tab page
tabpage_doit:

w_display.tab_1.tabpage_doit.cb_OK.Enabled = TRUE

Generic coding You can use the Parent pronoun and GetParent function to make a script more
general.

Parent pronoun In a script for any tab page, you can use the Parent pronoun
to refer to the Tab control:

Parent.SelectTab(This)

GetParent function If you are in an event script for a tab page, you can call
the GetParent function to get a reference to the tab page’s parent, which is the
Tab control, and assign the reference to a variable of type Tab.

In an event script for a user object that is used as a tab page, you can use code
like the following to save a reference to the parent Tab control in an instance
variable.

This is the declaration of the instance variable. It can hold a reference to any
Tab control:

tab itab_settings

This code saves a reference to the tab page’s parent in the instance variable:

// Get a reference to the Tab control
// "This" refers to the tab page user object
itab_settings = This.GetParent()

In event scripts for controls on the tab page, you can use GetParent twice to
refer to the tab page user object and its Tab control:

tab tab_mytab
userobject tabpage_generic

tabpage_generic = This.GetParent()
tab_mytab = tabpage_generic.GetParent()

tabpage_generic.PowerTipText = &
"Important property page"

tab_mytab.PowerTips = TRUE

tab_mytab.SelectTab(tabpage_generic)

Generic variables for controls have limitations The type of these
variables is the basic PowerBuilder object type—a variable of type Tab has no
knowledge of the tab pages in a specific Tab control and a variable of type
UserObject has no knowledge of the controls on the tab page.

Using Tab controls in scripts

98 PowerBuilder

In this script for a tab page event, a local variable is assigned a reference to the
parent Tab control. You cannot refer to specific pages in the Tab control
because tab_settings does not know about them. You can call Tab control
functions and refer to Tab control properties:

tab tab_settings
tab_settings = This.GetParent()
tab_settings.SelectTab(This)

User object variables If the tab page is an independent user object, you can
define a variable whose type is that specific user object. You can now refer to
controls defined on the user object, which is the ancestor of the tab page in the
control.

In this script for a Tab control’s event, the index argument refers to a tab page
and is used to get a reference to a user object from the Control property array.
The example assumes that all the tab pages are derived from the same user
object uo_emprpt_page:

uo_emprpt_page tabpage_current
tabpage_current = This.Control[index]
tabpage_current.dw_emp.Retrieve &

(tabpage_current.st_name.Text)

The Tab control’s Control property
The Control property array contains references to all the tab pages in the
control, including both embedded and independent user objects. New tab pages
are added to the array when you insert them in the painter and when you open
them in a script.

Referring to controls on tab pages
If you are referring to a control on a tab page in another window, you must fully
qualify the control’s name up to the window level.

The following example shows a fully qualified reference to a static text control:

w_activity_manager.tab_fyi.tabpage_today. &
st_currlogon_time.Text = ls_current_logon_time

CHAPTER 7 Using Tab Controls in a Window

Application Techniques 99

This example from the PowerBuilder Code Examples sets the size of a
DataWindow control on the tab page to match the size of another DataWindow
control in the window. Because all the tab pages were inserted in the painter,
the Control property array corresponds with the tab page index. All the pages
are based on the same user object u_tab_dir:

u_tab_dir luo_Tab
luo_Tab = This.Control[newindex]
luo_Tab.dw_dir.Height = dw_list.Height
luo_Tab.dw_dir.Width = dw_list.Width

In scripts and functions for the tab page user object, the user object knows
about its own controls. You do not need to qualify references to the controls.
This example in a function for the u_tab_dir user object retrieves data for the
dw_dir DataWindow control:

IF NOT ib_Retrieved THEN
dw_dir.SetTransObject(SQLCA)
dw_dir.Retrieve(as_Parm)
ib_Retrieved = TRUE

END IF

RETURN dw_dir.RowCount()

Opening, closing, and hiding tab pages
You can open tab pages in a script. You can close tab pages that you opened,
but you cannot close tab pages that were inserted in the painter. You can hide
any tab page.

This example opens a tab page of type tabpage_listbox and stores the object
reference in an instance variable i_tabpage. The value 0 specifies that the tab
page becomes the last page in the Tab control. You need to save the reference
for closing the tab later.

This is the instance variable declaration for the tab page’s object reference:

userobject i_tabpage

This code opens the tab page:

li_rtn = tab_1.OpenTab &
(i_tabpage, "tabpage_listbox", 0)

This statement closes the tab page:

tab_1.CloseTab(i_tabpage)

Using Tab controls in scripts

100 PowerBuilder

Keeping track of tab pages
To refer to the controls on a tab page, you need the user object reference, not
just the index of the tab page. You can use the tab page’s Control property array
to get references to all your tab pages.

Control property for
tab pages

The Control property of the Tab control is an array with a reference to each tab
page defined in the painter and each tab page added in a script. The index
values that are passed to events match the array elements of the Control
property.

You can get an object reference for the selected tab using the SelectedTab
property:

userobject luo_tabpage
luo_tabpage = tab_1.Control[tab_1.SelectedTab]

In an event for the Tab control, like SelectionChanged, you can use the index
value passed to the event to get a reference from the Control property array:

userobject tabpage_generic
tabpage_generic = This.Control[newindex]

Adding a new tab
page

When you call OpenTab, the control property array grows by one element. The
new element is a reference to the newly opened tab page. For example, the
following statement adds a new tab in the second position in the Tab control:

tab_1.OpenTab(uo_newtab, 2)

The second element in the control array for tab_1 now refers to uo_newtab, and
the index into the control array for all subsequent tab pages becomes one
greater.

Closing a tab page When you call CloseTab, the size of the array is reduced by one and the
reference to the user object or page is destroyed. If the closed tab was not the
last element in the array, the index for all subsequent tab pages is reduced by
one.

Moving a tab page The MoveTab function changes the order of the pages in a Tab control and also
reorders the elements in the control array to match the new tab order.

Control property array for user objects
The Control property array for controls in a user object works in the same way.

CHAPTER 7 Using Tab Controls in a Window

Application Techniques 101

Creating tab pages only when needed
The user might never look at all the tab pages in your Tab control. You can
avoid the overhead of creating graphical representations of the controls on all
the tab pages by checking Create on Demand on the Tab control’s General
property page or setting the CreateOnDemand property to TRUE.

The controls on all the tab pages in a Tab control are always instantiated when
the Tab control is created. However, when Create on Demand is checked, the
Constructor event for controls on tab pages is not triggered and graphical
representations of the controls are not created until the user views the tab page.

Constructor events on the selected tab page
Constructor events for controls on the selected tab page are always triggered
when the Tab control is created.

Tradeoffs for Create
on Demand

A window will open more quickly if the creation of graphical representations
is delayed for tab pages with many controls. However, scripts cannot refer to a
control on a tab page until the control’s Constructor event has run and a
graphical representation of the control has been created. When Create on
Demand is checked, scripts cannot reference controls on tab pages that the user
has not viewed.

Whether a tab page
has been created

You can check whether a tab page has been created with the PageCreated
function. Then, if it has not been created, you can trigger the constructor event
for the tab page using the CreatePage function:

IF tab_1.tabpage_3.PageCreated() = FALSE THEN
tab_1.tabpage_3.CreatePage()

END IF

You can check whether a control on a tab page has been created by checking
whether the control’s handle is nonzero. If so, the control has been created.

IF Handle(tab_1.tabpage_3.dw_list) > 0 THEN ...

Changing
CreateOnDemand
during execution

If you change the CreateOnDemand property to FALSE in a script, graphical
representations of any tab pages that have not been created are created
immediately.

It does not do any good to change CreateOnDemand to TRUE during execution,
because graphical representations of all the tab pages have already been
created.

Using Tab controls in scripts

102 PowerBuilder

Creating tab pages
dynamically

If CreateOnDemand is FALSE, you can set the label for a dynamically created
tab page in its Constructor event, using the argument to OpenTabWithParm
that is passed to the Message object. If CreateOnDemand is TRUE, you need to
set the label when the tab page is instantiated, because the Constructor event is
not triggered until the tab is selected. The following script in a user event that
is posted from a window’s open event opens five tab pages and sets the label
for each tab as it is instantiated:

int li_ctr
string is_title
THIS.setredraw(false)

FOR li_ctr = 1 to 5
is_title = "Tab#" + string(li_ctr)
tab_test.opentabwithparm(iuo_tabpage[li_ctr], &

is_title, 0)
iuo_tabpage[li_ctr].text = is_title //set tab label
NEXT

THIS.setredraw(true)
RETURN 1

Events for the parts of the Tab control
With so many overlapping pieces in a Tab control, you need to know where to
code scripts for events.

Table 7-4: Coding scripts for Tab control events

For example, if the user drags to a tab and you want to do something to the tab
page associated with the tab, you need to code the DragDrop event for the Tab
control, not the tab page.

Examples This code in the DragDrop event of the tab_1 control selects the tab page when
the user drops something onto its tab. The index of the tab that is the drop target
is an argument for the DragDrop event:

This.SelectTab(index)

To respond to actions in the Write a script for events belonging to

Tab area of the Tab control, including
clicks or drag actions on tabs

The Tab control

Tab page (but not the tab) The tab page (for embedded tab pages) or
the user object (for independent tab pages)

Control on a tab page That control

CHAPTER 7 Using Tab Controls in a Window

Application Techniques 103

The following code in the DragDrop event for the Tab control lets the user drag
DataWindow information to a tab and then inserts the dragged information in
a list on the tab page associated with the tab.

A user object of type tabpage_listbox that contains a ListBox control, lb_list, has
been defined in the User Object painter. The Tab control contains several
independent tab pages of type tabpage_listbox.

You can use the index argument for the DragDrop event to get a tab page
reference from the Tab control’s Control property array. The user object
reference lets the script access the controls on the tab page.

The Parent pronoun in this script for the Tab control refers to the window:

long ll_row
string ls_name
tabpage_listbox luo_tabpage

IF TypeOf(source) = DataWindow! THEN
l_row = Parent.dw_2.GetRow()
ls_name = Parent.dw_2.Object.lname.Primary[ll_row]

// Get a reference from the Control property array
luo_tabpage = This.Control[index]

// Make the tab page the selected tab page
This.SelectTab(index)

// Insert the dragged information
luo_tabpage.lb_list.InsertItem(ls_name, 0)

END IF

If the tab page has not been created
If the CreateOnDemand property for the Tab control is TRUE, the Constructor
events for a tab page and its controls are not triggered until the tab page is
selected. In the previous example, making the tab page the selected tab page
triggers the Constructor events. You could also use the CreatePage function to
trigger them:

IF luo_tabpage.PageCreated() = FALSE THEN &
luo_tabpage.CreatePage()

Using Tab controls in scripts

104 PowerBuilder

Application Techniques 105

C H A P T E R 8 Using TreeView Controls

About this chapter This chapter describes how to use TreeView controls to present
hierarchical information in an expandable list.

Contents

About TreeView controls
TreeView controls provide a way to represent hierarchical relationships
within a list. The TreeView provides a standard interface for expanding
and collapsing branches of a hierarchy:

Topic Page

About TreeView controls 105

Populating TreeViews 108

Managing TreeView items 114

Managing TreeView pictures 122

Using DataWindow information to populate a TreeView 125

About TreeView controls

106 PowerBuilder

When to use a
TreeView

You use TreeViews in windows and custom visual user objects. Choose a
TreeView instead of a ListBox or ListView when your information is more
complex than a list of similar items and when levels of information have a
one-to-many relationship. Choose a TreeView instead of a DataWindow
control when your user will want to expand and collapse the list using the
standard TreeView interface.

Hierarchy of items Although items in a TreeView can be a single, flat list like the report view of a
ListView, you tap the power of a TreeView when items have a one-to-many
relationship two or more levels deep. For example, your list might have one or
several parent categories with child items within each category. Or the list
might have several levels of subcategories before getting to the end of a branch
in the hierarchy:

Root
Category 1

Subcategory 1a
Detail
Detail

Subcategory 1b
Detail
Detail

Category 2
Subcategory 2a

Detail

Number of levels in
each branch

You do not have to have the same number of levels in every branch of the
hierarchy if your data requires more levels of categorization in some branches.
However, programming for the TreeView is simpler if the items at a particular
level are the same type of item, rather than subcategories in some branches and
detail items in others.

For example, in scripts you might test the level of an item to determine
appropriate actions. You can call the SetLevelPictures function to set pictures
for all the items at a particular level.

Content sources for a
TreeView

For most of the list types in PowerBuilder, you can add items in the painter or
in a script, but for a TreeView, you have to write a script. Generally, you will
populate the first level (the root level) of the TreeView when its window opens.
When the user wants to view a branch, a script for the TreeView’s ItemPopulate
event can add items at the next levels.

The data for items can be hard-coded in the script, but it is more likely that you
will use the user’s own input or a database for the TreeView’s content. Because
of the one-to-many relationship of an item to its child items, you might use
several tables in a database to populate the TreeView.

CHAPTER 8 Using TreeView Controls

Application Techniques 107

For an example using DataStores, see “Using DataWindow information to
populate a TreeView” on page 125.

Pictures for items Pictures are associated with individual items in a TreeView. You identify
pictures you want to use in the control’s picture lists and then associate the
index of the picture with an item. Generally, pictures are not unique for each
item. Pictures provide a way to categorize or mark items within a level. To help
the user understand the data, you might:

• Use a different picture for each level

• Use several pictures within a level to identify different types of items

• Use pictures on some levels only

• Change the picture after the user clicks on an item

Pictures are not required You do not have to use pictures if they do not
convey useful information to the user. Item labels and the levels of the
hierarchy may provide all the information the user needs.

Appearance of the
TreeView

You can control the appearance of the TreeView by setting property values.
Properties that affect the overall appearance are shown in Table 8-1.

Table 8-1: TreeView properties

For more information about these properties, see Objects and Controls.

Properties Effect when set

HasButtons Puts + and - buttons before items that have children, showing
the user whether the item is expanded or collapsed

HasLines and
LinesAtRoot

Display lines connecting items within a branch and connecting
items at the root level

Checkboxes Replaces the state image with checked and unchecked check
boxes

TrackSelect Changes the appearance of an item as the mouse moves over it

FullRowSelect Highlights the entire row of a selected item

SingleExpand Expands the selected item and collapses the previously
selected item automatically

Indent Sets the amount an item is indented

Font properties Specifies the font for all the labels

Various picture
properties

Controls the pictures and their size

LayoutRTL and
RightToLeft

Display elements and characters in the control from right to left

Populating TreeViews

108 PowerBuilder

User interaction Basic TreeView functionality allows users to edit labels, delete items, expand
and collapse branches, and sort alphabetically, without any scripting on your
part. For example, the user can click a second time on a selected item to edit it,
or press the Delete key to delete an item. If you do not want to allow these
actions, properties let you disable them.

You can customize any of these basic actions by writing scripts. Events
associated with the basic actions let you provide validation or prevent an action
from completing. You can also implement other features such as adding items,
dragging items, and performing customized sorting.

Using custom events In PowerBuilder 7 and later releases, PowerBuilder uses Microsoft controls for
ListView and Treeview controls. The events that fire when the right mouse
button is clicked are different from earlier releases.

When you release the right mouse button, the pbm_rbuttonup event does not
fire. The stock RightClicked! event for a TreeView control,
pbm_tvnrclickedevent, fires when the button is released.

When you click the right mouse button on an unselected TreeView item, focus
returns to the previously selected TreeView item when you release the button.
To select the new item, insert this code in the pbm_tvnrclickedevent script
before any code that acts on the selected item:

this.SelectItem(handle)

When you right double-click, only the pbm_rbuttondblclk event fires. In
previous releases, both the pbm_rbuttondblclk and pbm_tvnrdoubleclick
events fired.

Populating TreeViews
You must write a script to add items to a TreeView. You cannot add items in the
painter as with other list controls. Although you can populate all the levels of
the TreeView at once, TreeView events allow you to populate only branches
the user looks at, which saves unnecessary processing.

Typically, you populate the first level of the TreeView when the control is
displayed. This code might be in a window’s Open event, a user event triggered
from the Open event, or the TreeView’s Constructor event. Then a script for the
control’s ItemPopulate event would insert an item’s children when the user
chooses to expand it.

CHAPTER 8 Using TreeView Controls

Application Techniques 109

The ItemPopulate event is triggered when the user clicks on an item’s plus
button or double-clicks the item, but only if the item’s Children property is
TRUE. Therefore, when you insert an item that will have children, you must set
its Children property to TRUE so that it can be populated with child items when
the user expands it.

You are not restricted to adding items in the ItemPopulate event. For example,
you might let the user insert items by dragging from a ListBox or filling in a
text box.

Functions for inserting items
There are several functions for adding items to a TreeView control, as shown
in Table 8-2.

Table 8-2: Functions for adding items to TreeView control

For all the InsertItem functions, the SortType property can also affect the
position of the added item.

There are two ways to supply information about the item you add, depending
on the item properties that need to be set.

Method 1: specifying
the label and picture
index only

You can add an item by supplying the picture index and label. All the other
properties of the item will have default values. You can set additional
properties later as needed, using the item’s handle.

Example This example inserts a new item after the currently selected item on
the same level as that item. First it gets the handles of the currently selected
item and its parent, and then it inserts an item labeled Hindemith after the
currently selected item. The item’s picture index is 2:

long ll_tvi, ll_tvparent

ll_tvi = tv_list.FindItem(CurrentTreeItem!, 0)
ll_tvparent = tv_list.FindItem(ParentTreeItem!, &

ll_tvi)

This function Adds an item here

InsertItem After a sibling item for the specified parent.

If no siblings exist, you must use one of the other insertion
functions.

InsertItemFirst First child of the parent item.

InsertItemLast Last child of the parent item.

InsertItemSort As a child of the parent item in alphabetic order, if possible.

Populating TreeViews

110 PowerBuilder

tv_list.InsertItem(ll_tvparent, ll_tvi, &
"Hindemith", 2)

Method 2: setting item
properties in a
TreeViewItem
structure

You can add items by supplying a TreeViewItem structure with properties set
to specific values. The only required property is a label. Properties you might
set are shown in Table 8-3.

Table 8-3: TreeViewItem properties

Example This example sets all these properties in a TreeViewItem structure
before adding the item to the TreeView control. The item is inserted as a child
of the current item:

treeviewitem tvi
long h_item = 0, h_parent = 0

h_parent = tv_1.FindItem(CurrentTreeItem!, 0)
tvi.Label = "Choral"
tvi.PictureIndex = 1
tvi.SelectedPictureIndex = 2
tvi.Children = true
tvi.StatePictureIndex = 0
h_item = tv_1.InsertItemSort(h_parent, tvi)

For more information about inserting items into a TreeView control, see the
PowerScript Reference.

Property Value

Label The text that is displayed for the item.

PictureIndex A value from the regular picture list.

SelectedPictureIndex A value from the regular picture list, specifying a picture
that is displayed only when the item is selected. If 0, no
picture is displayed for the item when selected.

StatePictureIndex A value from the State picture list. The picture is displayed
to the left of the regular picture.

Children Must be TRUE if you want double-clicking to trigger the
ItemPopulate event. That event script can insert child items.

Data An optional value of any datatype that you want to associate
with the item. You might use the value to control sorting or
to make a database query.

CHAPTER 8 Using TreeView Controls

Application Techniques 111

Inserting items at the root level
The very first item you insert does not have any sibling for specifying a relative
position, so you cannot use the InsertItem function—you must use
InsertItemFirst or InsertItemLast. For an item inserted at the root level, you
specify 0 as its parent.

This sample code is in a user event triggered from the Open event of the
window containing the TreeView. It assumes two instance variable arrays:

• A string array called item_label that contains labels for all the items that
will be inserted at the root level (here composer names)

• An integer array that has values for the Data property (the century for each
composer); the century value is for user-defined sorting:

int ct
long h_item = 0
treeviewitem tvi

FOR ct = 1 TO UpperBound(item_label)
tvi.Label = item_label[ct]
tvi.Data = item_data[ct]
tvi.PictureIndex = 1
tvi.SelectedPictureIndex = 2
tvi.Children = TRUE
tvi.StatePictureIndex = 0
tvi.DropHighlighted = TRUE
h_item = tv_1.InsertItemSort(0, tvi)

NEXT

After inserting all the items, this code scrolls the TreeView back to the top and
makes the first item current:

// Scroll back to top
h_item = tv_1.FindItem(RootTreeItem!, 0)
tv_1.SetFirstVisible(h_item)
tv_1.SelectItem(h_item)

Inserting items below the root level
The first time a user tries to expand an item to see its children, PowerBuilder
triggers the ItemPopulate event if and only if the value of the item’s Children
property is TRUE. In the ItemPopulate event, you can add child items for the
item being expanded.

Populating TreeViews

112 PowerBuilder

Parent item’s Children property
If the ItemPopulate event does not occur when you expect, make sure the
Children property for the expanding item is TRUE. It should be set to TRUE for
any item that will have children.

Inserting items not restricted to the ItemPopulate event The
ItemPopulate event helps you design an efficient program. It will not populate
an item that the user never looks at. However, you do not have to wait until the
user wants to view an item’s children. You can add children in any script, just
as you added items at the root level.

For example, you might fully populate a small TreeView when its window
opens and use the ExpandAll function to display its items fully expanded.

Has an item been populated? You can check an item’s ExpandedOnce
property to find out if the user has looked at the item’s children. If the user is
currently looking at an item’s children, the Expanded property is also TRUE.

Example This TreeView lists composers and their music organized into
categories. The script for its ItemPopulate event checks whether the item being
expanded is at level 1 (a composer) or level 2 (a category). Level 3 items are
not expandable.

For a level 1 item, the script adds three standard categories. For a level 2 item,
it adds pieces of music to the category being expanded, in this pattern:

Mozart
Orchestral

Symphony No. 33
Overture to the Magic Flute

Chamber
Quintet in Eb for Horn and Strings
Eine Kleine Nachtmusik

Vocal
Don Giovanni
Idomeneo

This is the script for ItemPopulate:

TreeViewItem tvi_current, tvi_child, tvi_root
long hdl_root
Integer ct
string categ[]

// The current item is the parent for the new
itemsThis.GetItem(handle, tvi_current)

CHAPTER 8 Using TreeView Controls

Application Techniques 113

IF tvi_current.Level = 1 THEN
// Populate level 2 with some standard categories
categ[1] = "Orchestral"
categ[2] = "Chamber"
categ[3] = "Vocal"

tvi_child.StatePictureIndex = 0
tvi_child.PictureIndex = 3
tvi_child.SelectedPictureIndex = 4
tvi_child.OverlayPictureIndex = 0
tvi_child.Children = TRUE

FOR ct = 1 to UpperBound(categ)
tvi_child.Label = categ[ct]
This.InsertItemLast(handle, tvi_child)

NEXT
END IF

// Populate level 3 with music titles
IF tvi_current.Level = 2 THEN

// Get parent of current item - it's the root of
// this branch and is part of the key for choosing
// the children

hdl_root = This.FindItem(ParentTreeItem!, handle)
This.GetItem(hdl_root, tvi_root)

FOR ct = 1 to 4
// This statement constructs a label -
// it is more realistic to look up data in a
// table or database or accept user input
This.InsertItemLast(handle, &
tvi_root.Label + " Music " &
+ tvi_current.Label + String(ct), 3)

NEXT
END IF

Managing TreeView items

114 PowerBuilder

Managing TreeView items
An item in a TreeView is a TreeViewItem structure. The preceding section
described how to set the item’s properties in the structure and then insert it into
the TreeView.

This code declares a TreeViewItem structure and sets several properties:

TreeViewItem tvi_defined

tvi_defined.Label = "Symphony No. 3 Eroica"
tvi_defined.StatePictureIndex = 0
tvi_defined.PictureIndex = 3
tvi_defined.SelectedPictureIndex = 4
tvi_defined.OverlayPictureIndex = 0
tvi_defined.Children = TRUE

For information about Picture properties, see “Managing TreeView pictures”
on page 122.

When you insert an item, the inserting function returns a handle to that item.
The TreeViewItem structure is copied to the TreeView control, and you no
longer have access to the item’s properties:

itemhandle = This.InsertItemLast(parenthandle, &
tvi_defined)

Procedure for items:
get, change, and set

If you want to change the properties of an item in the TreeView, you:

1 Get the item, which assigns it to a TreeViewItem structure.

2 Make the changes, by setting TreeViewItem properties.

3 Set the item, which copies it back into the TreeView.

When you work with items that have been inserted in the TreeView, you work
with item handles. Most TreeView events pass one or two handles as
arguments. The handles identify the items the user is interacting with.

This code for the Clicked event uses the handle of the clicked item to copy it
into a TreeViewItem structure whose property values you can change:

treeviewitem tvi
This.GetItem(handle, tvi)
tvi.OverlayPictureIndex = 1
This.SetItem(handle, tvi)

CHAPTER 8 Using TreeView Controls

Application Techniques 115

Important
Remember to call the SetItem function after you change an item’s property
value. Otherwise, nothing happens in the TreeView.

Items and the
hierarchy

You can use item handles with the FindItem function to navigate the TreeView
and uncover its structure. The item’s properties tell you what its level is, but not
which item is its parent. The FindItem function does:

long h_parent
h_parent = This.FindItem(ParentTreeItem!, handle)

You can use FindItem to find the children of an item or to navigate through
visible items regardless of level.

For more information, see the FindItem function in the PowerScript Reference.

Enabling TreeView
functionality in scripts

By setting TreeView properties, you can enable or disable user actions like
deleting or renaming items without writing any scripts. You can also enable
these actions by calling functions. You can:

• Delete items

• Rename items

• Move items using drag and drop

• Sort items

Deleting items
To allow the user to delete items, enable the TreeView’s DeleteItems property.
When the user presses the Delete key, the selected item is deleted and the
DeleteItem event is triggered. Any children are deleted too.

If you want more control over deleting, such as allowing deleting of detail
items only, you can call the DeleteItem function instead of setting the property.
The function also triggers the DeleteItem event.

Example This script is for a TreeView user event. Its event ID is pbm_keydown and it is
triggered by key presses when the TreeView has focus. The script checks
whether the Delete key is pressed and whether the selected item is at the detail
level. If both are TRUE, it deletes the item.

Managing TreeView items

116 PowerBuilder

The value of the TreeView’s DeleteItems property is FALSE. Otherwise, the
user could delete any item, despite this code:

TreeViewItem tvi
long h_item

IF KeyDown(KeyDelete!) = TRUE THEN
h_item = This.FindItem(CurrentTreeItem!, 0)
This.GetItem(h_item, tvi)
IF tvi.Level = 3 THEN

This.DeleteItem(h_item
) END IF
END IF
RETURN 0

Renaming items
If you enable the TreeView’s EditLabels property, the user can edit an item
label by clicking twice on the text.

Events There are two events associated with editing labels.

The BeginLabelEdit event occurs after the second click when the EditLabels
property is set or when the EditLabel function is called. You can disallow
editing with a return value of 1.

This script for BeginLabelEdit prevents changes to labels of level 2 items:

TreeViewItem tvi
This.GetItem(handle, tvi)
IF tvi.Level = 2 THEN

RETURN 1
ELSE

RETURN 0
END IF

The EndLabelEdit event occurs when the user finishes editing by pressing
ENTER, clicking on another item, or clicking in the text entry area of another
control. A script you write for the EndLabelEdit event might validate the user’s
changes—for example, it could invoke a spelling checker.

EditLabel function For control over label editing, the BeginLabelEdit event can prohibit editing of
a label, as shown above. Or you can set the EditLabels property to FALSE and
call the EditLabel function when you want to allow a label to be edited.

CHAPTER 8 Using TreeView Controls

Application Techniques 117

When you call the EditLabel function, the BeginLabelEdit event occurs when
editing begins and the EndLabelEdit event occurs when the user presses enter
or the user clicks another item.

This code for a CommandButton puts the current item into editing mode:

long h_tvi
h_tvi = tv_1.findItem(CurrentTreeItem!, 0)
tv_1.EditLabel(h_tvi)

Moving items using drag and drop
At the window level, PowerBuilder provides functions and properties for
dragging controls onto other controls. Within the TreeView, you can also let the
user drag items onto other items. Users might drag items to sort them, move
them to another branch, or put child items under a parent.

When you implement drag and drop as a way to move items, you decide
whether the dragged item becomes a sibling or child of the target, whether the
dragged item is moved or copied, and whether its children get moved with it.

There are several properties and events that you need to coordinate to
implement drag and drop for items, as shown in Table 8-4.

Table 8-4: Drag-and-drop properties and events

Example The key to a successful drag-and-drop implementation is in the details. This
section illustrates one way of moving items. In the example, the dragged item
becomes a sibling of the drop target, inserted after it. All children of the item
are moved with it and the original item is deleted.

Property or event Setting or purpose

DragAuto property TRUE or FALSE

If FALSE, you must call the Drag function in the BeginDrag
event.

DisableDragDrop
property

FALSE

DragIcon property An appropriate icon
or
None!, which means the user drags an image of the item

BeginDrag event Script for saving the handle of the dragged item and
optionally preventing particular items from being dragged

DragWithin event Script for highlighting drop targets

DragDrop event Script for implementing the result of the drag operation

Managing TreeView items

118 PowerBuilder

A function called recursively moves the children, regardless of the number of
levels. To prevent an endless loop, an item cannot become a child of itself. This
means a drop target that is a child of the dragged item is not allowed.

BeginDrag event The script saves the handle of the dragged item in an
instance variable:

ll_dragged_tvi_handle = handle

If you want to prevent some items from being dragged—such as items at a
particular level—that code goes here too:

TreeViewItem tvi
This.GetItem(handle, tvi)
IF tvi.Level = 3 THEN This.Drag(Cancel!)

DragWithin event The script highlights the item under the cursor so the user
can see each potential drop target. If only some items are drop targets, your
script should check an item’s characteristics before highlighting it. In this
example, you could check whether an item is a parent of the dragged item and
highlight it only if it is not:

TreeViewItem tvi
This.GetItem(handle, tvi)
tvi.DropHighlighted = TRUE
This.SetItem(handle, tvi)

DragDrop event This script does all the work. It checks whether the item can
be inserted at the selected location and inserts the dragged item in its new
position—a sibling after the drop target. Then it calls a function that moves the
children of the dragged item too:

TreeViewItem tvi_src, tvi_child
long h_parent, h_gparent, h_moved, h_child
integer rtn

// Get TreeViewItem for dragged item
This.GetItem(ll_dragged_tvi_handle, tvi_src)
// Don't allow moving an item into its own branch,
// that is, a child of itself
h_gparent = This.FindItem(ParentTreeItem!, handle)

DO WHILE h_gparent <> -1
IF h_gparent = ll_dragged_tvi_handle THEN

MessageBox("No Drag", &
"Can't make an item a child of itself.")
RETURN 0

END IF

CHAPTER 8 Using TreeView Controls

Application Techniques 119

h_gparent=This.FindItem(ParentTreeItem!, h_gparent)
LOOP

// Get item parent for inserting
h_parent = This.FindItem(ParentTreeItem!, handle)

// Use 0 if no parent because target is at level 1
IF h_parent = -1 THEN h_parent = 0

// Insert item after drop target
h_moved = This.InsertItem(h_parent, handle, tvi_src)
IF h_moved = -1 THEN

MessageBox("No Dragging", "Could not move item.")
RETURN 0

ELSE
// Args: old parent, new parent
rtn = uf_movechildren(ll_dragged_tvi_handle, &

h_moved)

/ If all children are successfully moved,
// delete original item
IF rtn = 0 THEN

This.DeleteItem(ll_dragged_tvi_handle)
END IF

END IF

The DragDrop event script shown above calls the function uf_movechildren.
The function calls itself recursively so that all the levels of children below the
dragged item are moved:

// Function: uf_movechildren
// Arguments:
// oldparent - Handle of item whose children are
// being moved. Initially, the dragged item in its
// original position
//
// newparent - Handle of item to whom children are
// being moved. Initially, the dragged item in its
// new position.

long h_child, h_movedchild
TreeViewItem tvi

// Return -1 if any Insert action fails

// Are there any children?

Managing TreeView items

120 PowerBuilder

h_child = tv_2.FindItem(ChildTreeItem!, oldparent)
IF h_child <> -1 THEN

tv_2.GetItem(h_child, tvi)
h_movedchild = tv_2.InsertItemLast(newparent, tvi)
IF h_movedchild = -1 THEN RETURN -1

// Move the children of the child that was found
uf_movechildren(h_child, h_movedchild)

// Check for more children at the original level
h_child = tv_2.FindItem(NextTreeItem!, h_child)
DO WHILE h_child <> -1

tv_2.GetItem(h_child, tvi)
h_movedchild= tv_2.InsertItemLast(newparent,tvi)
IF h_movedchild = -1 THEN RETURN -1
uf_movechildren(h_child, h_movedchild)

// Any more children at original level?
h_child = tv_2.FindItem(NextTreeItem!, h_child)

LOOP
END IF
RETURN 0 // Success, all children moved

Sorting items
A TreeView can sort items automatically, or you can control sorting manually.
Manual sorting can be alphabetic by label text, or you can implement a
user-defined sort to define your own criteria. The SortType property controls
the way items are sorted. Its values are of the enumerated datatype grSortType.

Automatic alphabetic sorting To enable sorting by the text label, set the
SortType property to Ascending! or Descending!. Inserted items are sorted
automatically.

Manual alphabetic sorting For more control over sorting, you can set
SortType to Unsorted! and sort by calling the functions in Table 8-5.

Table 8-5: TreeView sorting functions

If users will drag items to organize the list, you should disable sorting.

Use this function To do this

InsertItemSort Insert an item at the correct alphabetic position, if possible

Sort Sort the immediate children of an item

SortAll Sort the whole branch below an item

CHAPTER 8 Using TreeView Controls

Application Techniques 121

Sorting by other criteria To sort items by criteria other than their labels,
implement a user-defined sort by setting the SortType property to
UserDefinedSort! and writing a script for the Sort event. The script specifies
how to sort items.

PowerBuilder triggers the Sort event for each pair of items it tries to reorder.
The Sort script returns a value reporting which item is greater than the other.
The script can have different rules for sorting based on the type of item. For
example, level 2 items can be sorted differently from level 3. The TreeView is
sorted whenever you insert an item.

Example of Sort event This sample script for the Sort event sorts the first level by the value of the Data
property and other levels alphabetically by their labels. The first level displays
composers chronologically, and the Data property contains an integer
identifying a composer’s century:

//Return values
//-1 Handle1 is less than handle2
// 0 Handle1 is equal to handle2
// 1 Handle1 is greater than handle2

TreeViewItem tvi1, tvi2

This.GetItem(handle1, tvi1)
This.GetItem(handle2, tvi2)

IF tvi1.Level = 1 THEN
// Compare century values stored in Data property
IF tvi1.data > tvi2.Data THEN

RETURN 1
ELSEIF tvi1.data = tvi2.Data THEN

RETURN 0
ELSE

RETURN -1
END IF
ELSE
// Sort other levels in alpha order
IF tvi1.Label > tvi2.Label THEN

RETURN 1
ELSEIF tvi1.Label = tvi2.Label THEN

RETURN 0
ELSE

RETURN -1
END IF

END IF

Managing TreeView pictures

122 PowerBuilder

Managing TreeView pictures
PowerBuilder stores TreeView images in three image lists:

• Picture list (called the regular picture list here)

• State picture list

• Overlay picture list

You add pictures to these lists and associate them with items in the TreeView.

Pictures for items
There are several ways to use pictures in a TreeView. You associate a picture
in one of the picture lists with an item by setting one of the item’s picture
properties, described in Table 8-6.

Table 8-6: TreeView picture properties

Property Purpose

PictureIndex The primary picture associated with the item is displayed
just to the left of the item’s label.

StatePictureIndex A state picture is displayed to the left of the regular picture.
The item moves to the right to make room for the state
picture. If the Checkboxes property is TRUE, the state
picture is replaced by a pair of check boxes.

Because a state picture takes up room, items without state
pictures will not align with items that have pictures. So that
all items have a state picture and stay aligned, you could use
a blank state picture for items that do not have a state to be
displayed.

A use for state pictures might be to display a check mark
beside items the user has chosen.

OverlayPictureIndex An overlay picture is displayed on top of an item’s regular
picture.

You set up the overlay picture list in a script by designating
a picture in the regular picture list for the overlay picture
list.

An overlay picture is the same size as a regular picture, but
it often uses a small portion of the image space so that it only
partially covers the regular picture. A typical use of overlay
pictures is the arrow marking shortcut items in the Windows
Explorer.

CHAPTER 8 Using TreeView Controls

Application Techniques 123

How to set pictures You can change the pictures for all items at a particular
level with the SetLevelPictures function, or you can set the picture properties
for an individual item.

If you do not want pictures Your TreeView does not have to use pictures for
items. If an item’s picture indexes are 0, no pictures are displayed. However,
the TreeView always leaves room for the regular picture. You can set the
PictureWidth property to 0 to eliminate that space:

tv_2.DeletePictures()
tv_2.PictureWidth = 0

Setting up picture lists
You can add pictures to the regular and state picture lists in the painter or during
execution. During execution, you can assign pictures in the regular picture list
to the overlay list.

Mask color The mask color is a color used in the picture that becomes transparent when the
picture is displayed. Usually you should pick the picture’s background color so
that the picture blends with the color of the TreeView.

Before you add a picture, in the painter or in a script, you can set the mask color
to a color appropriate for that picture. This statement sets the mask color to
white, which is right for a picture with a white background:

tv_1.PictureMaskColor = RGB(255, 255, 255)

Each picture can have its own mask color. A picture uses the color that is in
effect when the picture is inserted. To change a picture’s mask color, you have
to delete the picture and add it again.

Image size In the painter you can change the image size at any time by setting the Height
and Width properties on each picture tab. All the pictures in the list are scaled
to the specified size.

SelectedPictureIndex A picture from the regular picture list that is displayed
instead of the regular picture when the item is the current
item. When the user selects another item, the first item gets
its regular picture and the new item displays its selected
picture.

If you do not want a different picture when an item is
current, set SelectedPictureIndex to the same value as
PictureIndex.

Property Purpose

Managing TreeView pictures

124 PowerBuilder

During execution, you can change the image size for a picture list only when
that list is empty. The DeletePictures and DeleteStatePictures functions let you
clear the lists.

Example This sample code illustrates how to change properties and add pictures to the
regular picture list during execution. Use similar code for state pictures:

tv_list.DeletePictures()
tv_list.PictureHeight = 32
tv_list.PictureWidth = 32

tv_list.PictureMaskColor = RGB(255,255,255)
tv_list.AddPicture("c:\apps_pb\kelly.bmp")
tv_list.PictureMaskColor = RGB(255,0,0)
tv_list.AddPicture("Custom078!")
tv_list.PictureMaskColor = RGB(128,128,128)
tv_list.AddPicture("Custom044!")

Deleting pictures and
how it affects existing
items

Deleting pictures from the picture lists can have an unintended effect on item
pictures being displayed. When you delete pictures, the remaining pictures in
the list are shifted to remove gaps in the list. The remaining pictures get a
different index value. This means items that use these indexes get new images.

Deleting pictures from the regular picture list also affects the overlay list, since
the overlay list is not a separate list but points to the regular pictures.

To avoid unintentional changes to item pictures, it is best to avoid deleting
pictures after you have begun using picture indexes for items.

Using overlay pictures
The pictures in the overlay list come from the regular picture list. First you
must add pictures to the regular list, either in the painter or during execution.
Then during execution you specify pictures for the overlay picture list. After
that you can assign an overlay picture to items, individually or with the
SetLevelPictures function.

This code adds a picture to the regular picture list and then assigns it to the
overlay list:

integer idx
idx = tv_1.AddPicture("Custom085!")
IF tv_1.SetOverlayPicture(1, idx) <> 1 THEN

sle_get.Text = "Setting overlay picture failed"
END IF

CHAPTER 8 Using TreeView Controls

Application Techniques 125

This code for the Clicked event turns the overlay picture on or off each time the
user clicks an item:

treeviewitem tvi
This.GetItem(handle, tvi)
IF tvi.OverlayPictureIndex = 0 THEN

tvi.OverlayPictureIndex = 1
ELSE

tvi.OverlayPictureIndex = 0
END IF
This.SetItem(handle, tvi)

Using DataWindow information to populate a TreeView
A useful implementation of the TreeView control is to populate it with
information that you retrieve from a DataWindow. To do this your application
must:

• Declare and instantiate a DataStore and assign a DataWindow object

• Retrieve information as needed

• Use the retrieved information to populate the TreeView

• Destroy the DataStore instance when you have finished

Because a TreeView can display different types of information at different
levels, you will probably define additional DataWindows, one for each level.
Those DataWindows usually refer to different but related tables. When an item
is expanded, the item becomes a retrieval argument for getting child items.

Populating the first
level

This example populates a TreeView with a list of composers. The second level
of the TreeView displays music by each composer. In the database there are
two tables: composer names and music titles (with composer name as a foreign
key).

This example declares two DataStore instance variables for the window
containing the TreeView control:

datastore ids_data, ids_info

This example uses the TreeView control’s Constructor event to:

• Instantiate the DataStore

• Associate it with a DataWindow and retrieve information

Using DataWindow information to populate a TreeView

126 PowerBuilder

• Use the retrieved data to populate the root level of the TreeView:

//Constructor event for tv_1
treeviewitem tvi1, tvi2
long ll_lev1, ll_lev2, ll_rowcount, ll_row

//Create instance variable datastore
ids_data = CREATE datastore
ids_data.DataObject = "d_composers"
ids_data.SetTransObject(SQLCA)
ll_rowcount = ids_data.Retrieve()

//Create the first level of the TreeView
tvi1.PictureIndex = 1
tvi1.Children = TRUE
//Populate the TreeView with
//data retrieved from the datastore
FOR ll_row = 1 to ll_rowcount

tvi1.Label = ids_data.GetItemString(ll_row, &
'name')
This.InsertItemLast(0, tvi1)

NEXT

Populating the second
level

When the user expands a root level item, the ItemPopulate event occurs. This
script for the event:

• Instantiates a second DataStore

Its DataWindow uses the composer name as a retrieval argument for the
music titles table.

• Inserts music titles as child items for the selected composer

The handle argument of ItemPopulate will be the parent of the new items:

//ItemPopulate event for tv_1
TreeViewItem tvi1, tvi2
long ll_row, ll_rowcount

//Create instance variable datastore
ids_info = CREATE datastore
ids_info.DataObject = "d_music"
ids_info.SetTransObject(SQLCA)

//Use the label of the item being populated
// as the retrieval argument
This.GetItem(handle, tvi1)
ll_rowcount = ids_info.Retrieve(tvi1.Label)

CHAPTER 8 Using TreeView Controls

Application Techniques 127

//Use information retrieved from the database
//to populate the expanded item
FOR ll_row = 1 to ll_rowcount

This.InsertItemLast(handle, &
ids_info.GetItemString(ll_row, &
music_title'), 2)

LOOP

Destroying DataStore
instances

When the window containing the TreeView control closes, this example
destroys the DataStore instances:

//Close event for w_treeview
DESTROY ids_data
DESTROY ids_info

Using DataWindow information to populate a TreeView

128 PowerBuilder

Application Techniques 129

C H A P T E R 9 Using Lists in a Window

About this chapter This chapter describes how to use lists to present information in an
application.

Contents

About presenting lists
You can choose a variety of ways to present lists in your application:

• ListBoxes and PictureListBoxes display available choices that can be
used for invoking an action or viewing and displaying data.

• DropDownListBoxes and DropDownPictureListBoxes also display
available choices to the user. However, you can make them editable
to the user. DropDownListBoxes are text-only lists;
DropDownPictureListBoxes display a picture associated with each
item.

• ListView controls present lists in a combination of graphics and text.
You can allow the user to add, delete, edit, and rearrange ListView
items, or you can use them to invoke an action.

Topic Page

About presenting lists 129

Using lists 130

Using drop-down lists 135

Using ListView controls 137

Using lists

130 PowerBuilder

TreeView controls
TreeView controls also combine graphics and text in lists. The difference is that
TreeView controls show the hierarchical relationship among the TreeView
items. As with ListView controls, you can allow the user to add, delete, edit,
and rearrange TreeView items. You can also use them to invoke actions.

For more information on TreeViews, see Chapter 8, “Using TreeView
Controls.”

Using lists
You can use lists to present information to the user in simple lists with
scrollbars. You can present this information with text and pictures (in a
PictureListBox) or with text alone (using a ListBox).

Depending on how you design your application, the user can select one or more
list items to perform an action based on the list selection.

You add ListBox and PictureListBox controls to windows in the same way you
add other controls: select ListBox or PictureListBox from the Insert>Control
menu and click the window.

Adding items to list
controls

In the painter Use the Item property page for the control to add new items.

❖ To add items to a ListBox or PictureListBox:

1 Select the Items tab in the Properties view for the control.

2 Enter the name of the items for the ListBox. For a PictureListBox, also
enter a picture index number to associate the item with a picture.

For instructions on adding pictures to a PictureListBox, see “Adding
pictures to PictureListBox controls” on page 131.

In a script Use the AddItem and InsertItem functions to dynamically add
items to a ListBox or PictureListBox at runtime. AddItem adds items to the end
of the list. However, if the list is sorted, the item will then be moved to its
position in the sort order. Use InsertItem if you want to specify where in the list
the item will be inserted.

CHAPTER 9 Using Lists in a Window

Application Techniques 131

Table 9-1: Using the InsertItem and AddItem functions

For example, this script adds items to a ListBox:

This.AddItem ("Vaporware")
This.InsertItem ("Software",2)
This.InsertItem ("Hardware",2)
This.InsertItem ("Paperware",2)

This script adds items and images to a PictureListBox:

This.AddItem ("Monitor",2)
This.AddItem ("Modem", 3)
This.AddItem ("Printer",4)
This.InsertItem ("Scanner",5,1)

Using the Sort property
You can set the control’s sort property to TRUE or check the Sorted check box
on the General property page to ensure that the items in the list are always
arranged in ascending alphabetical order.

Adding pictures to
PictureListBox
controls

In the painter Use the Pictures and Items property pages for the control to
add pictures.

❖ To add pictures to a PictureListBox:

1 Select the Pictures tab in the Properties view for the control.

2 Select an image from the stock image list, or use the Browse button to
select a bitmap, cursor, or icon image.

3 Select a color from the PictureMaskColor drop-down menu for the image.

The color selected for the picture mask will appear transparent in the
PictureListBox.

4 Select a picture height and width.

This will control the size of the images in the PictureListBox.

Function You supply

InsertItem Item name

Position in which the item will be inserted

Picture index (for a PictureListBox)

AddItem Item name

Picture index (for a PictureListBox)

Using lists

132 PowerBuilder

Dynamically changing image size
You can use a script to change the image size at runtime by setting the
PictureHeight and PictureWidth properties before you add any pictures
when you create a PictureListBox.

For more information about PictureHeight and PictureWidth, see the
PowerScript Reference.

5 Repeat the procedure for the number of images you plan to use in your
PictureListBox.

6 Select the Items tab and change the Picture Index for each item to the
appropriate number.

In a script Use the AddPicture function to dynamically add pictures to a
PictureListBox at runtime. For example, the script below sets the size of the
picture, adds a BMP file to the PictureListBox, and adds an item to the control:

This.PictureHeight = 75
This.PictureWidth = 75
This.AddPicture ("c:\ArtGal\bmps\butterfly.bmp")
This.AddItem("Aine Minogue",8)

Deleting pictures from
picture list controls

Use the DeletePicture and DeletePictures functions to delete pictures from
either a PictureListBox or a DropDownPictureListBox.

When you use the DeletePicture function, you must supply the picture index of
the picture you want to delete.

For example:

This.DeletePicture (1)

deletes the first Picture from the control, and

This.DeletePictures ()

deletes all the pictures in a control.

CHAPTER 9 Using Lists in a Window

Application Techniques 133

Example The following window contains a ListBox control and a
PictureListBox. The ListBox control contains four items, and the
PictureListBox has one:

When the user double-clicks an item in the ListBox, a script executes to:

• Delete all the items in the PictureListBox

• Add new items to the PictureListBox that are related to the ListBox item
that was double-clicked

This is the script used in the ListBox DoubleClicked event:

int li_count
//Find out the number of items
//in the PictureListBox
li_count = plb_1.totalItems()

// Find out which item was double-clicked
// Then:
// * Delete all the items in the PictureListBox
// * Add the items associated with the
// double-clicked item

Using lists

134 PowerBuilder

CHOOSE CASE index
CASE 1

DO WHILE plb_1.totalitems() > 0
plb_1.DeleteItem(plb_1.totalitems())
LOOP
plb_1.AddItem("Monitor",2)
plb_1.AddItem("Modem",3)
plb_1.AddItem("Printer",4)
plb_1.InsertItem("Scanner",5,1)

CASE 2
DO WHILE plb_1.totalitems() > 0
plb_1.DeleteItem(plb_1.totalitems())
LOOP
plb_1.InsertItem("GreenBar",6,1)
plb_1.InsertItem("LetterHead",7,1)
plb_1.InsertItem("Copy",8,1)
plb_1.InsertItem("50 lb.",9,1)

CASE 3
DO WHILE plb_1.totalitems() > 0
plb_1.DeleteItem(plb_1.totalitems())
LOOP
plb_1.InsertItem("SpreadIt!",10,1)
plb_1.InsertItem("WriteOn!",11,1)
plb_1.InsertItem("WebMaker!",12,1)
plb_1.InsertItem("Chessaholic",13,1)

CASE 4
DO WHILE plb_1.totalitems() > 0
plb_1.DeleteItem(plb_1.totalitems())
LOOP
plb_1.InsertItem("AlnaWarehouse",14,1)
plb_1.InsertItem("AlnaInfo",15,1)
plb_1.InsertItem("Info9000",16,1)
plb_1.InsertItem("AlnaThink",17,1)

END CHOOSE

CHAPTER 9 Using Lists in a Window

Application Techniques 135

Using drop-down lists
Drop-down lists are another way to present simple lists of information to the
user. You can present your lists with just text (in a DropDownListBox) or with
text and pictures (in a DropDownPictureListBox). You add DropDownListBox
and DropDownPictureListBox controls to windows in the same way you add
other controls: select DropDownListBox or DropDownPictureListBox from
the Insert>Control menu and click the window.

Adding items to drop-
down list controls

In the painter Use the Items property page for the control to add items.

❖ To add items to a DropDownListBox or DropDownPictureListBox:

1 Select the Items tab in the Properties view for the control.

2 Enter the name of the items for the ListBox. For a PictureListBox, also
enter a picture index number to associate the item with a picture.

For how to add pictures to a DropDownPictureListBox, see “Adding
pictures to DropDownPicture ListBox controls” on page 136.

In a script Use the AddItem and InsertItem functions to dynamically add
items to a DropDownListBox or DropDownPictureListBox at runtime.

AddItem adds items to the end of the list. However, if the list is sorted, the item
will then be moved to its position in the sort order. Use InsertItem if you want
to specify where in the list the item will be inserted.

Table 9-2: Using the InsertItem and AddItem functions

This example inserts three items into a DropDownPictureListBox in the first,
second, and third positions:

This.InsertItem ("Atropos", 2, 1)
This.InsertItem ("Clotho", 2, 2)
This.InsertItem ("Lachesis", 2, 3)

This example adds two items to a DropDownPictureListBox:

this.AddItem ("Plasma", 2)
this.AddItem ("Platelet", 2)

Function You supply

InsertItem Item name
Picture index (for a DropDownPictureListBox)
Position in which the item will be inserted

AddItem Item name
Picture index (for a DropDownPictureListBox)

Using drop-down lists

136 PowerBuilder

Using the Sort property
You can set the control’s sort property to TRUE to ensure that the items in the
list are always arranged in ascending sort order.

Adding pictures to
DropDownPicture
ListBox controls

In the painter Use the Pictures and Items property pages for the control to
add pictures.

❖ To add pictures to a DropDownPictureListBox:

1 Select the Pictures tab in the Properties view for the control.

2 Select an image from the stock image list, or use the Browse button to
select a bitmap, cursor, or icon image.

3 Select a color from the PictureMaskColor drop-down menu for the image.

The color selected for the picture mask will appear transparent in the
DropDownPictureListBox.

4 Select a picture height and width for your image.

This will control the size of the image in the DropDownPictureListBox.

Dynamically changing image size
The image size can be changed at runtime by setting the PictureHeight and
PictureWidth properties before you add any pictures when you create a
DropDownPictureListBox. For more information about PictureHeight and
PictureWidth, see the PowerScript Reference.

5 Repeat the procedure for the number of images you plan to use in your
DropDownPictureListBox.

6 Select the Items tab and change the Picture Index for each item to the
appropriate number.

In a script Use the AddPicture function to dynamically add pictures to a
PictureListBox at runtime. For instance, this example adds two BMP files to
the PictureListBox:

This.AddPicture ("c:\images\justify.bmp")
This.AddPicture ("c:\images\center.bmp")

Deleting pictures from
DropDownPicture
ListBox controls

For instructions on deleting pictures from DropDownPictureListBox controls,
see “Deleting pictures from picture list controls” on page 132.

CHAPTER 9 Using Lists in a Window

Application Techniques 137

Using ListView controls
A ListView control allows you to display items and icons in a variety of
arrangements. You can display large icon or small icon freeform lists, or you
can display a vertical static list. You can also display additional information
about each list item by associating additional columns with each list item:

ListView controls consist of ListView items, which are stored in an array. Each
ListView item consists of a:

• Label The name of the ListView item

• Index The position of the ListView item in the control

• Picture index The number that associates the ListView item with an
image

Depending on the style of the presentation, an item could be associated
with a large picture index and a small picture index.

• Overlay picture index The number that associates the ListView item
with an overlay picture

• State picture index The number that associates the ListView item with
a state picture

For more information about ListView items, picture indexes, and presentation
style, see the PowerBuilder User’s Guide.

Creating ListView
controls

You add ListView controls to windows in the same way you add other controls:
select ListView from the Insert>Control menu and click the window.

Adding ListView items In the painter Use the Items property page for the control to add items.

Using ListView controls

138 PowerBuilder

❖ To add items to a ListView:

1 Select the Items tab in the Properties view for the control.

2 Enter a name and a picture index number for each of the items you want
to add to the ListView.

Note Setting the picture index for the first item to zero clears all the
settings on the tab page.

For more information about adding pictures to a ListView control, see
“Adding pictures to ListView controls” on page 139.

In a script Use the AddItem and InsertItem functions to add items to a
ListView dynamically at runtime. There are two levels of information you
supply when you add items to a ListView using AddItem or InsertItem.

You can add an item by supplying the picture index and label, as this example
shows:

lv_1.AddItem ("Item 1", 1)

or you can insert an item by supplying the item’s position in the ListView, label,
and picture index:

lv_1.InsertItem (1,"Item 2", 2)

You can add items by supplying the ListView item itself. This example in the
ListView’s DragDrop event inserts the dragged object into the ListView:

listviewitem lvi
This.GetItem(index, lvi)
lvi.label = "Test"
lvi.pictureindex = 1
This.AddItem (lvi)

You can insert an item by supplying the ListView position and ListView item:

listviewitem l_lvi
//Obtain the information for the
//second listviewitem
lv_list.GetItem(2, l_lvi)
//Change the item label to Entropy
//Insert the second item into the fifth position
lv_list.InsertItem (5, l_lvi)
lv_list.DeleteItem(2)

CHAPTER 9 Using Lists in a Window

Application Techniques 139

Adding pictures to
ListView controls

PowerBuilder stores ListView images in four image lists:

• Small picture index

• Large picture index

• State picture index

• Overlay picture index

You can associate a ListView item with these images when you create a
ListView in the painter or use the AddItem and InsertItem at runtime.

However, before you can associate pictures with ListView items, they must be
added to the ListView control.

In the painter Use the Pictures and Items property pages for the control to
add pictures.

❖ To add pictures to a ListView control:

1 Select the Large Picture, Small Picture, or State tab in the Properties view
for the control.

Overlay images
You can add overlay images only to a ListView control in a script.

2 Select an image from the stock image list, or use the Browse button to
select a bitmap, cursor, or icon image.

3 Select a color from the PictureMaskColor drop-down menu for the image.

The color selected for the picture mask appears transparent in the
ListView.

4 Select a picture height and width for your image.

This controls the size of the image in the ListView.

Dynamically changing image size
The image size can be changed at runtime by setting the PictureHeight and
PictureWidth properties before you add any pictures when you create a
ListView. For more information about PictureHeight and PictureWidth,
see the PowerScript Reference.

Using ListView controls

140 PowerBuilder

5 Repeat the procedure for the:

• Number of image types (large, small, and state) you plan to use in
your ListView

• Number of images for each type you plan to use in your ListView

In a script Use the functions in Table 9-3 to add pictures to a ListView
image.

Table 9-3: Functions that add pictures to a ListView image

Adding large and small pictures This example sets the height and width for
large and small pictures and adds three images to the large picture image list
and the small picture image list:

//Set large picture height and width
lv_1.LargePictureHeight=32
lv_1.LargePictureWidth=32

//Add large pictures
lv_1.AddLargePicture("c:\ArtGal\bmps\celtic.bmp")
lv_1.AddLargePicture("c:\ArtGal\bmps\list.ico")
lv_1.AddLargePicture("Custom044!")

//Set small picture height and width
lv_1.SmallPictureHeight=16
lv_1.SmallPictureWidth=16

//Add small pictures
lv_1.AddSmallPicture("c:\ArtGal\bmps\celtic.bmp")
lv_1.AddSmallPicture("c:\ArtGal\bmps\list.ico")
lv_1.AddSmallPicture("Custom044!")

//Add items to the ListView
lv_1.AddItem("Item 1", 1)
lv_1.AddItem("Item 2", 1)
lv_1.AddItem("Item 3", 1)

Function Adds a picture to this list

AddLargePicture Large image

AddSmallPicture Small image

AddStatePicture State image

CHAPTER 9 Using Lists in a Window

Application Techniques 141

Adding overlay pictures Use the SetOverLayPicture function to use a large
picture or small picture as an overlay for an item. This example adds a large
picture to a ListView, and then uses it for an overlay picture for a ListView
item:

listviewitem lvi_1
int li_index

//Add a large picture to a ListView
li_index = lv_list.AddLargePicture &

("c:\ArtGal\bmps\dil2.ico")

//Set the overlay picture to the
//large picture just added
lv_list.SetOverlayPicture (3, li_index)

//Use the overlay picture with a ListViewItem
lv_list.GetItem(lv_list.SelectedIndex (), lvi_1)
lvi_1.OverlayPictureIndex = 3
lv_list.SetItem(lv_list.SelectedIndex (), lvi_1)

Adding state pictures This example uses an item’s state picture index
property to set the state picture for the selected ListView item:

listviewitem lvi_1

lv_list.GetItem(lv_list.SelectedIndex (), lvi_1)
lvi_1.StatePictureIndex = 2
lv_list.SetItem(lv_list.SelectedIndex (), lvi_1)

Deleting ListView
items and pictures

You can delete items from a ListView one at a time with the DeleteItem
function, or you can use the DeleteItems function to purge all the items in a
ListView. Similarly, you can delete pictures one at a time with the
DeleteLargePicture, DeleteSmallPicture, and DeleteStatePicture functions, or
purge all pictures of a specific type by using the DeleteLargePictures,
DeleteSmallPictures, and DeleteStatePictures functions.

This example deletes one item and all the small pictures from a ListView:

int li_index
li_index = This.SelectedIndex()
This.DeleteItem (li_index)
This.DeleteSmallPictures ()

Hot tracking and one-
or two-click activation

Hot tracking changes the appearance of items in the Listview control as the
mouse moves over them and, if the mouse pauses, selects the item under the
cursor automatically. You can enable hot tracking by setting the TrackSelect
property to TRUE.

Using ListView controls

142 PowerBuilder

Setting either OneClickActivate or TwoClickActivate to TRUE also enables
hot tracking. When OneClickActivate is TRUE, you can specify that either
selected or unselected items are underlined by setting the UnderlineHot or
UnderlineCold properties. All these properties can be set on the control’s
general properties page or in a script.

The settings for OneClickActivate and TwoClickActivate shown in Table 9-4
affect when the ItemActivate event is fired.

Table 9-4: OneClickActivate and TwoClickActivate settings

Using custom events In PowerBuilder 7 and later releases, PowerBuilder uses Microsoft controls for
ListView and Treeview controls, and the events that fire when the right mouse
button is clicked are different than in earlier releases. These are the events that
fire when the right mouse button is clicked in a ListView control:

Table 9-5: ListView control events fired by right mouse button

Using report view
ListView report view requires more information than the large icon, small icon,
and list view. To enable report view in a ListView control, you must write a
script that establishes columns with the AddColumn and SetColumn functions,
and then populate the columns using the SetItem function.

OneClickActivate TwoClickActivate ItemActivate is fired when you

TRUE TRUE or FALSE Click any item

FALSE TRUE Click a selected item

FALSE FALSE Double-click any item

Location Action Events fired

On an item in
the ListView

Press right mouse
button

pbm_rbuttondown

Release right
mouse button

pbm_lvnrclicked (stock RightClicked! event)

pbm_contextmenu

On white space
in the ListView

Press right mouse
button

pbm_rbuttondown

pbm_lvnrclicked (stock RightClicked! event)

pbm_contextmenu

Release right
mouse button

pbm_rbuttonup

pbm_contextmenu

CHAPTER 9 Using Lists in a Window

Application Techniques 143

Populating columns Use AddColumn to create columns in a ListView. When you use the AddColumn
function, you specify the:

• Column label The name that will display in the column header

• Column alignment Whether the text will be left-aligned, right-aligned,
or centered

• Column size The width of the column in PowerBuilder units

This example creates three columns in a ListView:

This.AddColumn("Name", Left!, 1000)
This.AddColumn("Size", Left!, 400)
This.AddColumn("Date", Left!, 300)

Setting columns Use SetColumn to set the column number, name, alignment, and size:

This.SetColumn (1, "Composition", Left!, 860)
This.SetColumn (2, "Album", Left!, 610)
This.SetColumn (3, "Artist", Left!, 710")

Setting column items Use SetItem to populate the columns of a ListView:

This.SetItem (1, 1, "St.Thomas")
This.SetItem (1, 2, "Saxophone Colossus")
This.SetItem (1, 3, "Sonny Rollins")
This.SetItem (2, 1, "So What")
This.SetItem (2, 2, "Kind of Blue")
This.SetItem (2, 3, "Miles Davis")
This.SetItem (3, 1, "Good-bye, Porkpie Hat")
This.SetItem (3, 2, "Mingus-ah-um")
This.SetItem (3, 3, "Charles Mingus")

For more information about adding columns to a ListView control, see the
PowerScript Reference.

Using ListView controls

144 PowerBuilder

Application Techniques 145

C H A P T E R 1 0 Using Drag and Drop in a
Window

About this chapter This chapter describes how to make applications graphical by dragging
and dropping controls.

Contents

About drag and drop
Drag and drop allows users to initiate activities by dragging a control and
dropping it on another control. It provides a simple way to make
applications graphical and easy to use. For example, in a manufacturing
application you might allow the user to pick parts from a bin for an
assembly by dragging a picture of the part and dropping it in the picture
of the finished assembly.

Drag and drop involves at least two controls: the control that is being
dragged (the drag control) and the control to which it is being dragged
(the target). In PowerBuilder, all controls except drawing objects (lines,
ovals, rectangles, and rounded rectangles) can be dragged.

Automatic drag mode When a control is being dragged, it is in drag mode. You can define a
control so that PowerBuilder puts it automatically in drag mode whenever
a Clicked event occurs in the control, or you can write a script to put a
control into drag mode when an event occurs in the window or the
application.

Topic Page

About drag and drop 145

Drag-and-drop properties, events, and functions 146

Identifying the dragged control 148

Drag-and-drop properties, events, and functions

146 PowerBuilder

Drag icons When you define the style for a draggable object in the Window painter, you
can specify a drag icon for the control. The drag icon displays when the control
is dragged over a valid drop area (an area in which the control can be dropped).
If you do not specify a drag icon, a rectangle the size of the control displays.

Drag events Window objects and all controls except drawing objects have events that occur
when they are the drag target. When a dragged control is within the target or
dropped on the target, these events can trigger scripts. The scripts determine the
activity that is performed when the drag control enters, is within, leaves, or is
dropped on the target.

Drag-and-drop properties, events, and functions
Drag-and-drop
properties

Each PowerBuilder control has two drag-and-drop properties:

• DragAuto

• DragIcon

The DragAuto property DragAuto is a boolean property.

Table 10-1: DragAuto property values

❖ To specify automatic drag mode for a control in the Window painter:

1 Select the Other property page in the Properties view for the control.

2 Check the Drag Auto check box.

The DragIcon property Use the DragIcon property to specify the icon you
want displayed when the control is in drag mode. The DragIcon property is a
stock icon or a string identifying the file that contains the icon (the ICO file).
The default icon is a box the size of the control.

When the user drags a control, the icon displays when the control is over an
area in which the user can drop it (a valid drop area). When the control is over
an area that is not a valid drop area (such as a window scroll bar), the No-Drop
icon displays.

Value Meaning

TRUE When the object is clicked, the control is placed automatically in drag
mode

FALSE When the object is clicked, the control is not placed automatically in
drag mode; you have to put the object in drag mode manually by using
the Drag function in a script

CHAPTER 10 Using Drag and Drop in a Window

Application Techniques 147

❖ To specify a drag icon:

1 Select the Other property page in the Properties view for the control.

2 Choose the icon you want to use from the list of stock icons or use the
Browse button to select an ICO file and click OK.

Creating icons
To create icons, use a drawing application that can save files in the Microsoft
Windows ICO format.

Drag-and-drop events There are six drag-and-drop events.

Table 10-2: Drag-and-drop events

Drag-and-drop
functions

Each PowerBuilder control has two functions you can use to write scripts for
drag-and-drop events.

Table 10-3: Drag-and-drop event functions

For more information about these events and functions, see the PowerScript
Reference.

Event Occurs

BeginDrag When the user presses the left mouse button in a ListView or
TreeView control and begins dragging

BeginRightDrag When the user presses the right mouse button in a ListView or
TreeView control and begins dragging

DragDrop When the hot spot of a drag icon (usually its center) is over a
target (a PowerBuilder control or window to which you drag a
control) and the mouse button is released

DragEnter When the hot spot of a drag icon enters the boundaries of a
target

DragLeave When the hot spot of a drag icon leaves the boundaries of a
target

DragWithin When the hot spot of a drag icon moves within the boundaries
of a target

Function Action

Drag Starts or ends the dragging of a control

DraggedObject Returns the control being dragged

Identifying the dragged control

148 PowerBuilder

Identifying the dragged control
To identify the type of control that was dropped, use the source argument of the
DragDrop event.

This script for the DragDrop event in a picture declares two variables, then
determines the type of object that was dropped:

CommandButton lcb_button
StaticText lst_info

IF source.TypeOf() = CommandButton! THEN
lcb_button = source
lcb_button.Text = "You dropped a Button!"

ELSEIF source.TypeOf() = StaticText! THEN
lst_info = source
lst_info.Text = "You dropped the text!"

END IF

Using CHOOSE CASE
If your window has a large number of controls that can be dropped, use a
CHOOSE CASE statement.

Application Techniques 149

C H A P T E R 1 1 Providing Online Help for an
Application

About this chapter This chapter describes how to provide online Help for other PowerBuilder
developers and for end users on Windows.

Contents

Creating Help files
About Help authoring tools There are many authoring tools and related products available for creating

online Help files on Windows. All of the authoring tools for RTF-based
Help files use the Microsoft Help compiler to compile a set of source files
into a finished Help file.

What to include The source files for any Help system typically include:

• Topic files (RTF), which contain the text of your Help system as well
as footnote codes and commands that serve to identify the topics and
provide navigation and other features

• Graphics files, typically bitmaps (BMP), which are associated with
specific topics

• A project file (HPJ), which does not become part of the finished Help
system but contains instructions for the compiler, some of which can
affect the appearance and functionality of the Help windows you
specify

Topic Page

Creating Help files 149

Providing online Help for developers 151

Providing online Help for users 153

Creating Help files

150 PowerBuilder

• A contents file (CNT), which is not compiled into the finished Help file but
is deployed along with the Help file as part of the overall Help system

The contents file provides the entries that populate the Contents tab of the
Help Topics dialog box and other information that can affect the overall
behavior of the Help system.

How to proceed If you are using one of the full-featured Help authoring tools, you can follow
its instructions for creating the necessary source files and compiling them.

If you are using the Microsoft Help Workshop that comes with the Microsoft
SDK, you can use the tool to create your project file and contents file and to
compile the finished Help file. However, you will need to author your Help
topics directly in Microsoft Word. The online Help for the Microsoft Help
Workshop provides much information on Help authoring, including
instructions on how to use the various footnote codes recognized by the Help
compiler, the WinHelp macros, and the WinHelp API.

Sample project file For your convenience, the text of a sample project file is provided in one of the
topics of the PBUSR105.HLP file that is installed with PowerBuilder. To
access it:

1 Open PowerBuilder Help and click the User button.

2 Navigate to the Sample Help Project File topic from the Contents tab in
the Help Topics dialog box, under User-defined Help.

3 Copy the Help topic to the Windows clipboard.

4 Open a text editor such as Notepad and paste the clipboard text into a blank
document.

5 Save the document in text format as PBUSR105.HPJ.

You need to edit your project file to reflect the details of your Help
development environment, such as source file names and directory path names.
You can do this in a text editor, or open the project file in Help Workshop or
another Help authoring tool and edit it there.

CHAPTER 11 Providing Online Help for an Application

Application Techniques 151

Providing online Help for developers
Two ways to provide
Help

There are two ways to integrate online Help for your user-defined functions,
user events, and user objects into the PowerBuilder development environment:

• The User button In the PowerBuilder main Help window, the User
button is hard-coded to launch a file named PBUSR10.50.HLP:

• Context-sensitive Help For user-defined functions, context-sensitive
help can be displayed when you select the function name in the Script view
(or place the cursor in the function name) and press Shift + F1.

How context-sensitive
Help for user-defined
functions works

When you select the name of a function or place the cursor in the function name
in the Script view and press Shift + F1:

1 PowerBuilder looks for the standard prefix (the default is uf_) in the
function name.

2 If the standard prefix is found, PowerBuilder looks for the Help topic in
the Help file containing your user-defined function Help topics (instead of
looking in PBHLP10.50.HLP, its own main Help file). The default file
name for Help on user-defined functions is PBUSR10.50.HLP.

PowerBuilder determines the name of the Help file to look in by reading
the UserHelpFile variable in PB.INI. For information on changing the
value of this variable, see “Advanced procedures” on page 152.

3 If PowerBuilder finds the variable, it looks in the specified Help file for
the name of the selected function. If there is no UserHelpFile variable in
PB.INI, PowerBuilder looks for the keyword in the PBUSR10.50.HLP file
in the PowerBuilder Help directory.

Simplest approach If you work within the PowerBuilder defaults, you must:

• Compile all of your online Help for your user-defined functions, user
events, and user objects into a single file named PBUSR10.50.HLP

You can optionally provide a contents file, which must be named
PBUSR10.50.CNT.

• Prefix the name of each user-defined function you create with uf_ (for
example, uf_calculate)

Providing online Help for developers

152 PowerBuilder

Basic procedures Here are details on how to build online Help into the PowerBuilder
environment.

❖ To launch online Help for PowerBuilder developers from the User
button:

1 Create your online Help file using Microsoft Word and the Microsoft Help
Workshop or other Help authoring tool.

2 Rename the PBUSR10.50.HLP and PBUSR10.50.CNT files that were
installed with PowerBuilder. Be sure to rename the original
PBUSR10.50.CNT file even if you do not provide your own contents file.

3 Save the compiled Help file and optional contents file in your
PowerBuilder Help directory. Make sure your Help file is named
PBUSR10.50.HLP and your contents file is named PBUSR10.50.CNT.

Your Help file will display when you click the User button.

❖ To create context-sensitive Help for user-defined functions:

1 When you create a user-defined function, give the name of the function a
standard prefix. The default prefix is uf_ (for example, uf_calculate).

2 For each user-defined function Help topic, assign a search keyword (a K
footnote entry) identical to the function name.

For example, in the Help topic for the user-defined function uf_CutBait,
create a keyword footnote uf_CutBait. PowerBuilder uses the keyword to
locate the correct topic to display in the Help window.

3 Compile the Help file and save it in the PowerBuilder Help directory.

Advanced procedures You can specify a different file name for context-sensitive Help by changing
the value of the UserHelpFile variable in your PB.INI file. To use the variable,
your Help file must be in the PowerBuilder Help directory.

❖ To specify a different file name for context-sensitive Help:

1 Open your PB.INI file in a text editor.

2 In the [PB] section, add a UserHelpFile variable, specifying the name of
the Help file that contains your context-sensitive topics. The format of the
variable is:

UserHelpFile = helpfile.hlp

Specify only the file name. A full path name designation will not be
recognized.

CHAPTER 11 Providing Online Help for an Application

Application Techniques 153

You can prefix your user-defined functions with a standard prefix other than the
default uf_ prefix. You define the prefix you want to use by entering the
UserHelpPrefix variable in your PB.INI file.

❖ To use a different prefix for user-defined functions:

1 Open your PB.INI file in a text editor.

2 In the [PB] section, add a UserHelpPrefix variable, specifying the value of
your prefix. Use this format:

UserHelpPrefix = yourprefix_

The prefix you provide must end with the underscore character.

Providing online Help for users
Two ways to call Help
from an application

PowerBuilder provides two principal ways of calling an online Help file from
a PowerBuilder application:

• Use the ShowHelp and ShowPopupHelp PowerScript functions in your
application scripts to call Help topics.

• Declare the WinHelp API as an external function and use the WinHelp
function in your application scripts to call Help topics.

Using ShowHelp ShowHelp is simpler to implement than the WinHelp API. You can use the
ShowHelp PowerScript function to search for Help topics by Help context ID,
by keyword, and by accessing the Help file Contents topic (the topic defined in
the project file as the Help Contents topic). ShowHelp can also be used with
compiled HTML (.chm) files.

ShowPopupHelp displays pop-up help for a control. Typically, you use
ShowPopupHelp in the Help event of a response window with the Context Help
property enabled. Events relating to movement of the cursor over a control or
to the dragging of a control or object are also logical places for a
ShowPopupHelp call.

For more information on the ShowHelp and ShowPopupHelp functions as well
as the Help event, see the PowerScript Reference.

Using the WinHelp
API

Declaring and using the WinHelp API allows access to the full range of
WinHelp functions, many of which are not available in ShowHelp. For
example, using the WinHelp function, you can easily specify a window type or
window name in which to present a Help topic.

Providing online Help for users

154 PowerBuilder

❖ To declare the WinHelp API as an external function:

1 Select Declare>Global External Functions from the menu bar of any
painter that accesses the Script view.

2 Enter the function declaration in the text box and click OK.

This example declares the WinHelp API:

FUNCTION boolean WinHelpA(long hWndMain, &
string lpszHelp, long uCommand, &
long dwData) &

LIBRARY "USER32.DLL"

For more information about the WinHelp API, see the online Help for the
Microsoft Help Workshop or the documentation for your Help authoring tool.
For more information about declaring and using global external functions, see
the PowerScript Reference and “Using external functions” on page 413.

P A R T 4 Data Access Techniques

This part presents a collection of techniques you can use
to implement data access features in the applications you
develop with PowerBuilder. It includes using Transaction
objects, XML processing, graphs, rich text, and piping of
data between data sources. The use of DataWindow
objects and DataStores for data access is described in the
DataWindow Programmer’s Guide.

Application Techniques 157

C H A P T E R 1 2 Using Transaction Objects

About this chapter This chapter describes Transaction objects and how to use them in
PowerBuilder applications.

Contents

About Transaction objects
In a PowerBuilder database connection, a Transaction object is a special
nonvisual object that functions as the communications area between a
PowerBuilder application and the database. The Transaction object
specifies the parameters that PowerBuilder uses to connect to a database.
You must establish the Transaction object before you can access the
database from your application, as shown in Figure 12-1:

Figure 12-1: Transaction object to access database

Communicating with the
database

In order for a PowerBuilder application to display and manipulate data,
the application must communicate with the database in which the data
resides.

Topic Page

About Transaction objects 157

Working with Transaction objects 162

Using Transaction objects to call stored procedures 172

Supported DBMS features when calling stored procedures 180

About Transaction objects

158 PowerBuilder

❖ To communicate with the database from your PowerBuilder application:

1 Assign the appropriate values to the Transaction object.

2 Connect to the database.

3 Assign the Transaction object to the DataWindow control.

4 Perform the database processing.

5 Disconnect from the database.

For information about setting the Transaction object for a DataWindow control
and using the DataWindow to retrieve and update data, see the DataWindow
Programmer’s Guide.

Default Transaction
object

When you start executing an application, PowerBuilder creates a global default
Transaction object named SQLCA (SQL Communications Area). You can use
this default Transaction object in your application or define additional
Transaction objects if your application has multiple database connections.

Transaction object
properties

Each Transaction object has 15 properties, of which:

• Ten are used to connect to the database.

• Five are used to receive status information from the database about the
success or failure of each database operation. (These error-checking
properties all begin with SQL.)

Description of Transaction object properties
Table 12-1 describes each Transaction object property. For each of the ten
connection properties, it also lists the equivalent field in the Database Profile
Setup dialog box that you complete to create a database profile in the
PowerBuilder development environment.

Transaction object properties for your PowerBuilder database interface
For the Transaction object properties that apply to your PowerBuilder database
interface, see “Transaction object properties and supported PowerBuilder
database interfaces” on page 160.

For information about the values you should supply for each connection
property, see the section for your PowerBuilder database interface in
Connecting to Your Database.

CHAPTER 12 Using Transaction Objects

Application Techniques 159

Table 12-1: Transaction object properties

Property Datatype Description
In a database
profile

DBMS String The DBMS identifier for your connection. For a complete list
of the identifiers for the supported database interfaces, see the
online Help.

DBMS

Database String The name of the database to which you are connecting. Database Name

UserID String The name or ID of the user who connects to the database. User ID

DBPass String The password used to connect to the database. Password

Lock String For those DBMSs that support the use of lock values and
isolation levels, the isolation level to use when you connect to
the database. For information about the lock values you can set
for your DBMS, see the description of the Lock DBParm
parameter in the online Help.

Isolation Level

LogID String The name or ID of the user who logs in to the database server. Login ID

LogPass String The password used to log in to the database server. Login Password

ServerName String The name of the server on which the database resides. Server Name

AutoCommit Boolean For those DBMSs that support it, specifies whether
PowerBuilder issues SQL statements outside or inside the
scope of a transaction. Values you can set are:

• True PowerBuilder issues SQL statements outside the
scope of a transaction; that is, the statements are not part of
a logical unit of work (LUW). If the SQL statement
succeeds, the DBMS updates the database immediately as if
a COMMIT statement had been issued.

• False (Default) PowerBuilder issues SQL statements
inside the scope of a transaction. PowerBuilder issues a
BEGIN TRANSACTION statement at the start of the
connection. In addition, PowerBuilder issues another
BEGIN TRANSACTION statement after each COMMIT or
ROLLBACK statement is issued.

For more information, see the AutoCommit description in the
online Help.

AutoCommit
Mode

DBParm String Contains DBMS-specific connection parameters that support
particular DBMS features. For a description of each DBParm
parameter that PowerBuilder supports, see the chapter on
setting additional connection parameters in Connecting to Your
Database.

DBPARM

SQLReturnData String Contains DBMS-specific information. For example, after you
connect to an Informix database and execute an embedded
SQL INSERT statement, SQLReturnData contains the serial
number of the inserted row.

—

About Transaction objects

160 PowerBuilder

Transaction object properties and supported PowerBuilder
database interfaces

The Transaction object properties required to connect to the database are
different for each PowerBuilder database interface. Except for
SQLReturnData, the properties that return status information about the success
or failure of a SQL statement apply to all PowerBuilder database interfaces.

Table 12-2 lists each supported PowerBuilder database interface and the
Transaction object properties you can use with that interface.

Table 12-2: PowerBuilder database interfaces

SQLCode Long The success or failure code of the most recent SQL operation.
For details, see “Error handling after a SQL statement” on
page 170.

—

SQLNRows Long The number of rows affected by the most recent SQL
operation. The database vendor supplies this number, so the
meaning may be different for each DBMS.

—

SQLDBCode Long The database vendor’s error code. For details, see “Error
handling after a SQL statement” on page 170.

—

SQLErrText String The text of the database vendor’s error message corresponding
to the error code. For details, see “Error handling after a SQL
statement” on page 170.

—

Property Datatype Description
In a database
profile

Database interface Transaction object properties

Informix DBMS
UserID
DBPass
Database
ServerName
DBParm
Lock

AutoCommit
SQLReturnData
SQLCode
SQLNRows
SQLDBCode
SQLErrText

JDBC DBMS
LogID
LogPass
DBParm
Lock

AutoCommit
SQLCode
SQLNRows
SQLDBCode
SQLErrText

CHAPTER 12 Using Transaction Objects

Application Techniques 161

UserID is optional for ODBC. (Be careful specifying the UserID property; it overrides the
connection’s UserName property returned by the ODBC SQLGetInfo call.)

+ PowerBuilder uses the LogID and LogPass properties only if your ODBC driver does not
support the SQL driver CONNECT call.

Microsoft SQL Server DBMS
Database
ServerName
LogID
LogPass
DBParm
Lock

AutoCommit
SQLCode
SQLNRows
SQLDBCode
SQLErrText

ODBC DBMS
#UserID
+LogID
+LogPass
DBParm
Lock

AutoCommit
SQLReturnData
SQLCode
SQLNRows
SQLDBCode
SQLErrText

OLE DB DBMS
LogID
LogPass
DBParm

AutoCommit
SQLCode
SQLNRows
SQLDBCode
SQLErrText

Oracle DBMS
ServerName
LogID
LogPass
DBParm

SQLReturnData
SQLCode
SQLNRows
SQLDBCode
SQLErrText

Sybase DirectConnect DBMS
Database
ServerName
LogID
LogPass
DBParm
Lock

AutoCommit
SQLCode
SQLNRows
SQLDBCode
SQLErrText

Sybase Adaptive
Server Enterprise

DBMS
Database
ServerName
LogID
LogPass
DBParm
Lock

AutoCommit
SQLCode
SQLNRows
SQLDBCode
SQLErrText

Database interface Transaction object properties

Working with Transaction objects

162 PowerBuilder

Working with Transaction objects
PowerBuilder uses a basic concept of database transaction processing called
logical unit of work (LUW). LUW is synonymous with transaction. A
transaction is a set of one or more SQL statements that forms an LUW. Within
a transaction, all SQL statements must succeed or fail as one logical entity.

There are four PowerScript transaction management statements:

• COMMIT

• CONNECT

• DISCONNECT

• ROLLBACK

Transaction basics
CONNECT and
DISCONNECT

A successful CONNECT starts a transaction, and a DISCONNECT terminates
the transaction. All SQL statements that execute between the CONNECT and
the DISCONNECT occur within the transaction.

Before you issue a CONNECT statement, the Transaction object must exist and
you must assign values to all Transaction object properties required to connect
to your DBMS.

COMMIT and
ROLLBACK

When a COMMIT executes, all changes to the database since the start of the
current transaction (or since the last COMMIT or ROLLBACK) are made
permanent, and a new transaction is started. When a ROLLBACK executes, all
changes since the start of the current transaction are undone and a new
transaction is started.

When a transactional component is deployed to EAServer or COM+, you can
use the TransactionServer context object to control transactions. See
“Transaction server deployment” on page 163.

AutoCommit setting You can issue a COMMIT or ROLLBACK only if the AutoCommit property of
the Transaction object is set to False (the default) and you have not already
started a transaction using embedded SQL.

For more about AutoCommit, see “Description of Transaction object
properties” on page 158.

CHAPTER 12 Using Transaction Objects

Application Techniques 163

Automatic COMMIT when disconnected
When a transaction is disconnected, PowerBuilder issues a COMMIT statement.

Transaction pooling To optimize database processing, you can code your PowerBuilder application
to take advantage of transaction pooling.

For information, see “Pooling database transactions” on page 171.

Transaction server
deployment

Components that you develop in PowerBuilder can participate in EAServer or
COM+ transactions. You can mark components to indicate that they will
provide transaction support. When a component provides transaction support,
the transaction server ensures that the component’s database operations
execute as part of a transaction and that the database changes performed by the
participating components are all committed or rolled back. By defining
components to use transactions, you can ensure that all work performed by
components that participate in a transaction occurs as intended.

PowerBuilder provides a transaction service context object called
TransactionServer that gives you access to the transaction state primitives that
influence whether the transaction server commits or aborts the current
transaction. COM+ clients can also use the OleTxnObject object to control
transactions. If you use the TransactionServer context object and set the
UseContextObject DBParm parameter to Yes, COMMIT and ROLLBACK
statements called in the Transaction object will result in a database error.

By default, the TransactionServer context object is not used. Instead you can
use COMMIT and ROLLBACK statements to manage transactions. In this case,
COMMIT is interpreted as a SetComplete function and ROLLBACK is interpreted
as a SetAbort function.

For information, see “Providing support for transactions” on page 457 (for
EAServer) and “Providing support for transactions” on page 558 (for COM+).

The default Transaction object
SQLCA Since most applications communicate with only one database, PowerBuilder

provides a global default Transaction object called SQLCA (SQL
Communications Area).

PowerBuilder creates the Transaction object before the application’s Open
event script executes. You can use PowerScript dot notation to reference the
Transaction object in any script in your application.

Working with Transaction objects

164 PowerBuilder

You can create additional Transaction objects as you need them (such as when
you are using multiple database connections at the same time). But in most
cases, SQLCA is the only Transaction object you need.

Example This simple example uses the default Transaction object SQLCA to connect to
and disconnect from an ODBC data source named Sample:

// Set the default Transaction object properties.
SQLCA.DBMS="ODBC"
SQLCA.DBParm="ConnectString='DSN=Sample'"
// Connect to the database.
CONNECT USING SQLCA;
IF SQLCA.SQLCode < 0 THEN &

MessageBox("Connect Error", SQLCA.SQLErrText,&
Exclamation!)

...
// Disconnect from the database.
DISCONNECT USING SQLCA;
IF SQLCA.SQLCode < 0 THEN &

MessageBox("Disconnect Error", SQLCA.SQLErrText,&
Exclamation!)

Semicolons are SQL statement terminators
When you use embedded SQL in a PowerBuilder script, all SQL statements
must be terminated with a semicolon (;). You do not use a continuation
character for multiline SQL statements.

Assigning values to the Transaction object
Before you can use a default (SQLCA) or nondefault (user-defined)
Transaction object, you must assign values to the Transaction object
connection properties. To assign the values, use PowerScript dot notation.

Example The following PowerScript statements assign values to the properties of
SQLCA required to connect to a Sybase Adaptive Server Enterprise database
through the PowerBuilder Adaptive Server Enterprise database interface:

sqlca.DBMS="SYC"
sqlca.database="testdb"
sqlca.LogId="CKent"
sqlca.LogPass="superman"
sqlca.ServerName="Dill"

CHAPTER 12 Using Transaction Objects

Application Techniques 165

Reading values from an external file
Using external files Often you want to set the Transaction object values from an external file. For

example, you might want to retrieve values from your PowerBuilder
initialization file when you are developing the application or from an
application-specific initialization file when you distribute the application.

ProfileString function You can use the PowerScript ProfileString function to retrieve values from a
text file that is structured into sections containing variable assignments, like a
Windows INI file. The PowerBuilder initialization file is such a file, consisting
of several sections including PB, Application, and Database:

[PB]
variables and their values
...
[Application]
variables and their values
...
[Database]
variables and their values
...

The ProfileString function has this syntax:

ProfileString (file, section, key, default)

Example This script reads values from an initialization file to set the Transaction object
to connect to a database. Conditional code sets the variable startupfile to the
appropriate value for each platform:

sqlca.DBMS = ProfileString(startupfile, "database",&
"dbms", "")

sqlca.database = ProfileString(startupfile,&
"database", "database", "")

sqlca.userid = ProfileString(startupfile, "database",&
"userid", "")

sqlca.dbpass = ProfileString(startupfile, "database",&
"dbpass", "")

sqlca.logid = ProfileString(startupfile, "database",&
"logid", "")

sqlca.logpass = ProfileString(startupfile, "database",&
"LogPassWord","")

sqlca.servername = ProfileString(startupfile,&
"database", "servername","")

sqlca.dbparm = ProfileString(startupfile, "database",&
"dbparm", "")

Working with Transaction objects

166 PowerBuilder

Connecting to the database
Once you establish the connection parameters by assigning values to the
Transaction object properties, you can connect to the database using the SQL
CONNECT statement:

// Transaction object values have been set.
CONNECT;

Because CONNECT is a SQL statement—not a PowerScript statement—you
need to terminate it with a semicolon.

If you are using a Transaction object other than SQLCA, you must include the
USING TransactionObject clause in the SQL syntax:

CONNECT USING TransactionObject;

For example:

CONNECT USING ASETrans;

Using the Preview tab to connect in a PowerBuilder application
The Preview tab page in the Database Profile Setup dialog box makes it easy
to generate accurate PowerScript connection syntax in the development
environment for use in your PowerBuilder application script.

As you complete the Database Profile Setup dialog box, the correct
PowerScript connection syntax for each selected option is generated on the
Preview tab. PowerBuilder assigns the corresponding DBParm parameter or
SQLCA property name to each option and inserts quotation marks, commas,
semicolons, and other characters where needed. You can copy the syntax you
want from the Preview tab directly into your script.

❖ To use the Preview tab to connect in a PowerBuilder application:

1 In the Database Profile Setup dialog box for your connection, supply
values for basic options (on the Connection tab) and additional DBParm
parameters and SQLCA properties (on the other tabbed pages) as required
by your database interface.

For information about connection parameters for your interface and the
values you should supply, click Help.

2 Click Apply to save your settings without closing the Database Profile
Setup dialog box.

CHAPTER 12 Using Transaction Objects

Application Techniques 167

3 Click the Preview tab.

The correct PowerScript connection syntax for each selected option
displays in the Database Connection Syntax box on the Preview tab.

4 Select one or more lines of text in the Database Connection Syntax box
and click Copy.

PowerBuilder copies the selected text to the clipboard. You can then paste
this syntax into your script, modifying the default Transaction object name
(SQLCA) if necessary.

5 Click OK.

Disconnecting from the database
When your database processing is completed, you disconnect from the
database using the SQL DISCONNECT statement:

DISCONNECT;

If you are using a Transaction object other than SQLCA, you must include the
USING TransactionObject clause in the SQL syntax:

DISCONNECT USING TransactionObject;

For example:

DISCONNECT USING ASETrans;

Automatic COMMIT when disconnected
When a transaction is disconnected, PowerBuilder issues a COMMIT statement
by default.

Defining Transaction objects for multiple database connections
Use one Transaction
object per connection

To perform operations in multiple databases at the same time, you need to use
multiple Transaction objects, one for each database connection. You must
declare and create the additional Transaction objects before referencing them,
and you must destroy these Transaction objects when they are no longer
needed.

Working with Transaction objects

168 PowerBuilder

Caution
PowerBuilder creates and destroys SQLCA automatically. Do not attempt to
create or destroy it.

Creating the
nondefault
Transaction object

To create a Transaction object other than SQLCA, you first declare a variable
of type transaction:

transaction TransactionObjectName

You then instantiate the object:

TransactionObjectName = CREATE transaction

For example, to create a Transaction object named DBTrans, code:

transaction DBTrans
DBTrans = CREATE transaction
// You can now assign property values to DBTrans.
DBTrans.DBMS = "ODBC"
...

Assigning property
values

When you assign values to properties of a Transaction object that you declare
and create in a PowerBuilder script, you must assign the values one property at
a time, like this:

// This code produces correct results.
transaction ASETrans
ASETrans = CREATE TRANSACTION
ASETrans.DBMS = "Sybase"
ASETrans.Database = "Personnel"

You cannot assign values by setting the nondefault Transaction object equal to
SQLCA, like this:

// This code produces incorrect results.
transaction ASETrans
ASETrans = CREATE TRANSACTION
ASETrans = SQLCA // ERROR!

Specifying the
Transaction object in
SQL statements

When a database statement requires a Transaction object, PowerBuilder
assumes the Transaction object is SQLCA unless you specify otherwise. These
CONNECT statements are equivalent:

CONNECT;
CONNECT USING SQLCA;

However, when you use a Transaction object other than SQLCA, you must
specify the Transaction object in the SQL statements in Table 12-3 with the
USING TransactionObject clause.

CHAPTER 12 Using Transaction Objects

Application Techniques 169

Table 12-3: SQL statements that require USING TransactionObject

❖ To specify a user-defined Transaction object in SQL statements:

• Add the following clause to the end of any of the SQL statements in the
preceding list:

USING TransactionObject

For example, this statement uses a Transaction object named ASETrans to
connect to the database:

CONNECT USING ASETrans;

Always code the Transaction object
Although specifying the USING TransactionObject clause in SQL statements is
optional when you use SQLCA and required when you define your own
Transaction object, it is good practice to code it for any Transaction object,
including SQLCA. This avoids confusion and ensures that you supply USING
TransactionObject when it is required.

Example The following statements use the default Transaction object (SQLCA) to
communicate with an Adaptive Server Anywhere database and a nondefault
Transaction object named ASETrans to communicate with an Adaptive Server
Enterprise database:

// Set the default Transaction object properties.
SQLCA.DBMS = "ODBC"
SQLCA.DBParm = "ConnectString='DSN=Sample'"
// Connect to the Adaptive Server Anywhere database.
CONNECT USING SQLCA;
// Declare the ASE Transaction object.
transaction ASETrans
// Create the ASE Transaction object.
ASETrans = CREATE TRANSACTION
// Set the ASE Transaction object properties.
ASETrans.DBMS = "Sybase"
ASETrans.Database = "Personnel"

COMMIT INSERT

CONNECT PREPARE (dynamic SQL)

DELETE ROLLBACK

DECLARE Cursor SELECT

DECLARE Procedure SELECTBLOB

DISCONNECT UPDATEBLOB

EXECUTE (dynamic SQL) UPDATE

Working with Transaction objects

170 PowerBuilder

ASETrans.LogID = "JPL"
ASETrans.LogPass = "JPLPASS"
ASETrans.ServerName = "SERVER2"

// Connect to the ASE database.
CONNECT USING ASETrans;
// Insert a row into the Adaptive Server Anywhere
// database.
INSERT INTO CUSTOMER
VALUES ('CUST789', 'BOSTON')
USING SQLCA;
// Insert a row into the ASE database.
INSERT INTO EMPLOYEE
VALUES ("Peter Smith", "New York")
USING ASETrans;

// Disconnect from the Adaptive Server Anywhere
// database.
DISCONNECT USING SQLCA;
// Disconnect from the ASE database.
DISCONNECT USING ASETrans;
// Destroy the ASE Transaction object.
DESTROY ASETrans

Using error checking
An actual script would include error checking after the CONNECT, INSERT,
and DISCONNECT statements.

For details, see "Error handling after a SQL statement" next.

Error handling after a SQL statement
When to check for
errors

You should always test the success or failure code (the SQLCode property of
the Transaction object) after issuing one of the following statements in a script:

• Transaction management statement (such as CONNECT, COMMIT, and
DISCONNECT)

• Embedded or dynamic SQL

CHAPTER 12 Using Transaction Objects

Application Techniques 171

Not in DataWindows
Do not do this type of error checking following a retrieval or update made in a
DataWindow.

For information about handling errors in DataWindows, see the DataWindow
Programmer’s Guide.

SQLCode return
values

Table 12-4 shows the SQLCode return values.

Table 12-4: SQLCode return values

Using SQLErrText and
SQLDBCode

The string SQLErrText in the Transaction object contains the database
vendor-supplied error message. The long named SQLDBCode in the
Transaction object contains the database vendor-supplied status code. You can
reference these variables in your script.

Example To display a message box containing the DBMS error number and
message if the connection fails, code the following:

CONNECT USING SQLCA;
IF SQLCA.SQLCode = -1 THEN

MessageBox("SQL error " + String(SQLCA.SQLDBCode),&
SQLCA.SQLErrText)

END IF

Pooling database transactions
Transaction pooling To optimize database processing, an application can pool database

transactions. Transaction pooling maximizes database throughput while
controlling the number of database connections that can be open at one time.
When you establish a transaction pool, an application can reuse connections
made to the same data source.

How it works When an application connects to a database without using transaction pooling,
PowerBuilder physically terminates each database transaction for which a
DISCONNECT statement is issued.

Value Meaning

0 Success

100 Fetched row not found

-1 Error (the statement failed)

Use SQLErrText or SQLDBCode to obtain the details.

Using Transaction objects to call stored procedures

172 PowerBuilder

When transaction pooling is in effect, PowerBuilder logically terminates the
database connections and commits any database changes, but does not
physically remove them. Instead, the database connections are kept open in the
transaction pool so that they can be reused for other database operations.

When to use it Transaction pooling can enhance the performance of an application that
services a high volume of short transactions to the same data source.

How to use it To establish a transaction pool, you use the SetTransPool function. You can
code SetTransPool anywhere in your application, as long as it is executed
before the application connects to the database. A logical place to execute
SetTransPool is in the application Open event.

Example This statement specifies that up to 16 database connections will be supported
through this application, and that 12 connections will be kept open once
successfully connected. When the maximum number of connections has been
reached, each subsequent connection request will wait for up to 10 seconds for
a connection in the pool to become available. After 10 seconds, the application
will return an error:

myapp.SetTransPool (12,16,10)

For more information For more information about the SetTransPool function, see the PowerScript
Reference.

Using Transaction objects to call stored procedures
SQLCA is a built-in global variable of type transaction that is used in all
PowerBuilder applications. In your application, you can define a specialized
version of SQLCA that performs certain processing or calculations on your
data.

If your database supports stored procedures, you might already have defined
remote stored procedures to perform these operations. You can use the remote
procedure call (RPC) technique to define a customized version of the
Transaction object that calls these database stored procedures in your
application.

CHAPTER 12 Using Transaction Objects

Application Techniques 173

Result sets
You cannot use the RPC technique to access result sets returned by stored
procedures. If the stored procedure returns one or more result sets,
PowerBuilder ignores the values and returns the output parameters and return
value. If your stored procedure returns a result set, you can use the embedded
SQL DECLARE Procedure statement to call it.

For information about the DECLARE Procedure statement, see the chapter on
SQL statements in the PowerScript Reference.

Overview of the RPC
procedure

To call database stored procedures from within your PowerBuilder application,
you can use the remote procedure call technique and PowerScript dot notation
(object.function) to define a customized version of the Transaction object that
calls the stored procedures.

❖ To call database stored procedures in your application:

1 From the Objects tab in the New dialog box, define a standard class user
object inherited from the built-in Transaction object.

2 In the Script view in the User Object painter, use the RPCFUNC keyword
to declare the stored procedure as an external function or subroutine for the
user object.

3 Save the user object.

4 In the Application painter, specify the user object you defined as the
default global variable type for SQLCA.

5 Code your PowerBuilder application to use the user object.

For instructions on using the User Object and Application painters and the
Script view in PowerBuilder, see the PowerBuilder User’s Guide.

Understanding the
example

u_trans_database user object The following sections give step-by-step
instructions for using a Transaction object to call stored procedures in your
application. The example shows how to define and use a standard class user
object named u_trans_database.

The u_trans_database user object is a descendant of (inherited from) the
built-in Transaction object SQLCA. A descendant is an object that inherits
functionality (properties, variables, functions, and event scripts) from an
ancestor object. A descendent object is also called a subclass.

Using Transaction objects to call stored procedures

174 PowerBuilder

GIVE_RAISE stored procedure The u_trans_database user object calls an
Oracle database stored procedure named GIVE_RAISE that calculates a five
percent raise on the current salary. Here is the Oracle syntax to create the
GIVE_RAISE stored procedure:

SQL terminator character
The syntax shown here for creating an Oracle stored procedure assumes that
the SQL statement terminator character is ` (backquote).

// Create GIVE_RAISE function for Oracle
// SQL terminator character is ` (backquote).
CREATE OR REPLACE FUNCTION give_raise
(salary IN OUT NUMBER)
return NUMBER
IS rv NUMBER;
BEGIN

salary := salary * 1.05;
rv := salary;
return rv;

END; `
// Save changes.
COMMIT WORK`
// Check for errors.
SELECT * FROM all_errors`

Step 1: define the standard class user object

❖ To define the standard class user object:

1 Start PowerBuilder.

2 Connect to a database that supports stored procedures.

The rest of this procedure assumes you are connected to an Oracle
database that contains remote stored procedures on the database server.

For instructions on connecting to an Oracle database in PowerBuilder and
using Oracle stored procedures, see Connecting to Your Database.

3 Click the New button in the PowerBar, or select File>New from the menu
bar.

The New dialog box displays.

CHAPTER 12 Using Transaction Objects

Application Techniques 175

4 On the Object tab, select the Standard Class icon and click OK to define a
new standard class user object.

The Select Standard Class Type dialog box displays:

5 Select transaction as the built-in system type that you want your user
object to inherit from, and click OK.

The User Object painter workspace displays so that you can assign
properties (instance variables) and functions to your user object:

Step 2: declare the stored procedure as an external function
FUNCTION or
SUBROUTINE
declaration

You can declare a non-result-set database stored procedure as an external
function or external subroutine in a PowerBuilder application. If the stored
procedure has a return value, declare it as a function (using the FUNCTION
keyword). If the stored procedure returns nothing or returns VOID, declare it as
a subroutine (using the SUBROUTINE keyword).

RPCFUNC and ALIAS
FOR keywords

You must use the RPCFUNC keyword in the function or subroutine declaration
to indicate that this is a remote procedure call (RPC) for a database stored
procedure rather than for an external function in a dynamic library. Optionally,
you can use the ALIAS FOR "spname" expression to supply the name of the
stored procedure as it appears in the database if this name differs from the one
you want to use in your script.

For complete information about the syntax for declaring stored procedures as
remote procedure calls, see the chapter on calling functions and events in the
PowerScript Reference.

❖ To declare stored procedures as external functions for the user object:

1 In the Script view in the User Object painter, select [Declare] from the first
list and Local External Functions from the second list.

Using Transaction objects to call stored procedures

176 PowerBuilder

2 Place your cursor in the Declare Local External Functions view. From the
pop-up menu or the Edit menu, select Paste Special>SQL>Remote Stored
Procedures.

PowerBuilder loads the stored procedures from your database and displays
the Remote Stored Procedures dialog box. It lists the names of stored
procedures in the current database.

3 Select the names of one or more stored procedures that you want to declare
as functions for the user object, and click OK.

PowerBuilder retrieves the stored procedure declarations from the
database and pastes each declaration into the view.

For example, here is the declaration that displays on one line when you
select sp_addlanguage:

function long sp_addlanguage()
RPCFUNC ALIAS FOR "dbo.sp_addlanguage"

4 Edit the stored procedure declaration as needed for your application.

Use either of the following syntax formats to declare the database remote
procedure call (RPC) as an external function or external subroutine (for
details about the syntax, see the PowerScript Reference):

FUNCTION rtndatatype functionname ({ { REF } datatype1 arg1, ...,
{ REF } datatypen argn }) RPCFUNC { ALIAS FOR "spname" }

SUBROUTINE functionname ({ { REF } datatype1 arg1 , ...,
{ REF } datatypen argn }) RPCFUNC { ALIAS FOR "spname" }

Here is the edited RPC function declaration for sp_addlanguage:

FUNCTION long sp_addlanguage()
RPCFUNC ALIAS FOR "addlanguage_proc"

CHAPTER 12 Using Transaction Objects

Application Techniques 177

Step 3: save the user object

❖ To save the user object:

1 In the User Object painter, click the Save button, or select File>Save from
the menu bar.

The Save User Object dialog box displays.

2 Specify the name of the user object, comments that describe its purpose,
and the library in which to save the user object.

3 Click OK to save the user object.

PowerBuilder saves the user object with the name you specified in the
selected library.

Step 4: specify the default global variable type for SQLCA
In the Application painter, you must specify the user object you defined as the
default global variable type for SQLCA. When you execute your application,
this tells PowerBuilder to use your standard class user object instead of the
built-in system Transaction object.

Using your own Transaction object instead of SQLCA
This procedure assumes that your application uses the default Transaction
object SQLCA, but you can also declare and create an instance of your own
Transaction object and then write code that calls the user object as a property
of your Transaction object. For instructions, see the chapter on working with
user objects in the PowerBuilder User’s Guide.

❖ To specify the default global variable type for SQLCA:

1 Click the Open button in the PowerBar, or select File>Open from the menu
bar.

The Open dialog box displays.

2 Select Applications from the Object Type drop-down list. Choose the
application where you want to use your new user object and click OK.

The Application painter workspace displays.

Using Transaction objects to call stored procedures

178 PowerBuilder

3 Select the General tab in the Properties view. Click the Additional
Properties button.

The Additional Properties dialog box displays.

4 Click the Variable Types tab to display the Variable Types property page.

5 In the SQLCA box, specify the name of the standard class user object you
defined in Steps 1 through 3:

6 Click OK or Apply.

When you execute your application, PowerBuilder will use the specified
standard class user object instead of the built-in system object type it
inherits from.

Step 5: code your application to use the user object
What you have done so far In the previous steps, you defined the
GIVE_RAISE remote stored procedure as an external function for the
u_trans_database standard class user object. You then specified
u_trans_database as the default global variable type for SQLCA. These steps
give your PowerBuilder application access to the properties and functions
encapsulated in the user object.

CHAPTER 12 Using Transaction Objects

Application Techniques 179

What you do now You now need to write code that uses the user object to
perform the necessary processing.

In your application script, you can use PowerScript dot notation to call the
stored procedure functions you defined for the user object, just as you do when
using SQLCA for all other PowerBuilder objects. The dot notation syntax is:

object.function (arguments)

For example, you can call the GIVE_RAISE stored procedure with code similar
to the following:

SQLCA.give_raise(salary)

❖ To code your application to use the user object:

1 Open the object or control for which you want to write a script.

2 Select the event for which you want to write the script.

For instructions on using the Script view, see the PowerBuilder User’s
Guide.

3 Write code that uses the user object to do the necessary processing for your
application.

Here is a simple code example that connects to an Oracle database, calls
the GIVE_RAISE stored procedure to calculate the raise, displays a
message box with the new salary, and disconnects from the database:

// Set Transaction object connection properties.
SQLCA.DBMS="OR7"
SQLCA.LogID="scott"
SQLCA.LogPass="xxyyzz"
SQLCA.ServerName="@t:oracle:testdb"
SQLCA.DBParm="sqlcache=24,pbdbms=1"

// Connect to the Oracle database.
CONNECT USING SQLCA ;

// Check for errors.
IF SQLCA.sqlcode <> 0 THEN

MessageBox ("Connect Error",SQLCA.SQLErrText)
return

END IF

// Set 20,000 as the current salary.
DOUBLE val = 20000
DOUBLE rv

Supported DBMS features when calling stored procedures

180 PowerBuilder

// Call the GIVE_RAISE stored procedure to
// calculate the raise.
// Use dot notation to call the stored procedure
rv = SQLCA.give_raise(val)

// Display a message box with the new salary.
MessageBox("The new salary is",string(rv))

// Disconnect from the Oracle database.
DISCONNECT USING SQLCA;

4 Compile the script to save your changes.

Using error checking
An actual script would include error checking after the CONNECT statement,
DISCONNECT statement, and call to the GIVE_RAISE procedure. For details,
see “Error handling after a SQL statement” on page 170.

Supported DBMS features when calling stored
procedures

When you define and use a custom Transaction object to call remote stored
procedures in your application, the features supported depend on the DBMS to
which your application connects.

The following sections describe the supported features for some of the DBMSs
that you can access in PowerBuilder. Read the section for your DBMS to
determine what you can and cannot do when using the RPC technique in a
PowerBuilder application.

Result sets
You cannot use the remote procedure call technique to access result sets
returned by stored procedures. If the stored procedure returns one or more
result sets, PowerBuilder ignores the values and returns the output parameters
and return value.

If your stored procedure returns a result set, you can use the embedded SQL
DECLARE Procedure statement to call it. For information about the DECLARE
Procedure statement, see the chapter on SQL statements in the PowerScript
Reference.

CHAPTER 12 Using Transaction Objects

Application Techniques 181

Informix If your application connects to an Informix database, you can use simple
nonarray datatypes. You cannot use binary large objects (blobs).

ODBC If your application connects to an ODBC data source, you can use the
following ODBC features if the back-end driver supports them. (For
information, see the documentation for your ODBC driver.)

• IN, OUT, and IN OUT parameters, as shown in Table 12-5.

Table 12-5: ODBC IN, OUT, and IN OUT parameters

• Blobs as parameters. You can use blobs that are up to 32,512 bytes long.

• Integer return codes.

Oracle If your application connects to an Oracle database, you can use the following
Oracle PL/SQL features:

• IN, OUT, and IN OUT parameters, as shown in Table 12-6.

Table 12-6: Oracle IN, OUT, and IN OUT parameters

• Blobs as parameters. You can use blobs that are up to 32,512 bytes long.

• PL/SQL tables as parameters. You can use PowerScript arrays.

• Function return codes.

Parameter What happens

IN An IN variable is passed by value and indicates a value being
passed to the procedure.

OUT An OUT variable is passed by reference and indicates that the
procedure can modify the PowerScript variable that was passed.
Use the PowerScript REF keyword for this parameter type.

IN OUT An IN OUT variable is passed by reference and indicates that the
procedure can reference the passed value and can modify the
PowerScript variable. Use the PowerScript REF keyword for this
parameter type.

Parameter What happens

IN An IN variable is passed by value and indicates a value being
passed to the procedure.

OUT An OUT variable is passed by reference and indicates that the
procedure can modify the PowerScript variable that was passed.
Use the PowerScript REF keyword for this parameter type.

IN OUT An IN OUT variable is passed by reference and indicates that the
procedure can reference the passed value and can modify the
PowerScript variable. Use the PowerScript REF keyword for this
parameter type.

Supported DBMS features when calling stored procedures

182 PowerBuilder

Microsoft SQL Server
or Sybase Adaptive
Server Enterprise

If your application connects to a Microsoft SQL Server or Sybase Adaptive
Server Enterprise database, you can use the following Transact-SQL features:

• IN, OUT, and IN OUT parameters, as shown in Table 12-7.

Table 12-7: Adaptive Server Enterprise and Microsoft SQL Server IN,
OUT, and IN OUT parameters

• Blobs as parameters. You can use blobs that are up to 32,512 bytes long.

• Integer return codes.

Adaptive Server
Anywhere

If your application connects to an Adaptive Server Anywhere database, you
can use the following Adaptive Server Anywhere features:

• IN, OUT, and IN OUT parameters, as shown in Table 12-8.

Table 12-8: Adaptive Server Anywhere IN, OUT, and IN OUT parameters

• Blobs as parameters. You can use blobs that are up to 32,512 bytes long.

Parameter What happens

IN An IN variable is passed by value and indicates a value being
passed to the procedure.

OUT An OUT variable is passed by reference and indicates that the
procedure can modify the PowerScript variable that was passed.
Use the PowerScript REF keyword for this parameter type.

IN OUT An IN OUT variable is passed by reference and indicates that the
procedure can reference the passed value and can modify the
PowerScript variable. Use the PowerScript REF keyword for this
parameter type.

Parameter What happens

IN An IN variable is passed by value and indicates a value being
passed to the procedure.

OUT An OUT variable is passed by reference and indicates that the
procedure can modify the PowerScript variable that was passed.
Use the PowerScript REF keyword for this parameter type.

IN OUT An IN OUT variable is passed by reference and indicates that the
procedure can reference the passed value and can modify the
PowerScript variable. Use the PowerScript REF keyword for this
parameter type.

Application Techniques 183

C H A P T E R 1 3 Using MobiLink Synchronization

About this chapter The PowerBuilder MobiLink Synchronization for ASA wizard creates
objects that make it easy for you to control database synchronization from
a PowerBuilder application. This chapter provides an introduction to
MobiLink synchronization. It also describes how to prepare to use the
wizard, and how to use the objects created by the wizard.

Contents

About MobiLink synchronization
MobiLink is a session-based synchronization system that allows two-way
synchronization between a main database, called the consolidated
database, and many remote databases.

Detailed information about MobiLink synchronization is provided in the
MobiLink Synchronization User’s Guide and the Mobilink
Synchronization Reference. These books are available in the SQL
Anywhere Studio compiled help file, which is installed by default when
you install Sybase Adaptive Server Anywhere (ASA). Information is also
available on the PowerBuilder Technical Library CD and the Sybase
Product Manuals Web site at http://sybooks.sybase.com/awg0900e.html.

If you are already familiar with MobiLink, go to “Working with
PowerBuilder synchronization objects” on page 187 to learn about
PowerBuilder integration with MobiLink.

This section introduces some MobiLink terms and concepts.

Topic Page

About MobiLink synchronization 183

Working with PowerBuilder synchronization objects 187

Preparing consolidated databases 198

Creating remote databases 205

Synchronization techniques 211

About MobiLink synchronization

184 PowerBuilder

Data movement and
synchronization

Data movement occurs when shared data is distributed over multiple databases
on multiple nodes and changes to data in one database are applied to the
corresponding data in other databases. Data can be moved using replication or
synchronization.

Data replication moves all transactions from one database to another, whereas
data synchronization moves only the net result of transactions. Both techniques
get their information by scanning transaction log files, but synchronization
uses only updated log file segments instead of the full log file, making data
movement much faster and more efficient.

With synchronization, data is available locally and can be modified without a
connection to a server. MobiLink synchronization uses a loose consistency
model, which means that all changes are synchronized with each site over time
in a consistent manner, but different sites might have different copies of data at
any instant. Only successful transactions are synchronized.

Consolidated and
remote databases

The consolidated database, which can be any ODBC-compliant database, such
as ASA, Sybase Adaptive Server Enterprise, Oracle, IBM DB2 UDB, or
Microsoft SQL Server, holds the master copy of all the data.

The remote database contains a subset of the consolidated data. Although
MobiLink can synchronize ASA and UltraLite databases, for PowerBuilder 10
applications, remote databases must be ASA databases.

The MobiLink
synchronization server

The MobiLink synchronization server, dbmlsrv9, manages the synchronization
process and provides the interface between remote databases and the
consolidated database server. All communication between the MobiLink
synchronization server and the consolidated database occurs through an ODBC
connection.The consolidated database and synchronization server often reside
on the same machine, but that is not a requirement.

The MobiLink server must be running before a synchronization process is
launched.

As you build and test PowerBuilder applications, you can start the server from
the Utilities folder in the Objects view in the Database painter. For more
information, see the chapter on managing databases in the PowerBuilder
User’s Guide. For information about starting the server from the command
line, see “dbmlsrv9” in the index of the SQL Anywhere Studio online books.

CHAPTER 13 Using MobiLink Synchronization

Application Techniques 185

MobiLink hierarchy MobiLink typically uses a hierarchical configuration. The nodes in the
hierarchy can reside on servers, desktop computers, and handheld or embedded
devices. A simple hierarchy might consist of a consolidated database on a
server and multiple remote databases on mobile devices. A more complex
hierarchy might contain multiple levels in which some sites act as both remote
and consolidated databases. For PowerBuilder applications, any consolidated
database that also acts as a remote database must be an ASA database.

For example, suppose remote sites A1, A2, and A3 synchronize with a
consolidated database A on a local server, and remote sites B1, B2, and B3
synchronize with a consolidated database B on another local server. A and B in
turn act as remote sites and synchronize with a consolidated database C on a
master server. C can be any ODBC-compliant database, but A and B must both
be ASA databases.

Figure 13-1: MobiLink hierarchy

Synchronization
scripts

MobiLink synchronization is an event-driven process. When a MobiLink client
initiates a synchronization, a number of synchronization events occur inside
the MobiLink server. When an event occurs, MobiLink looks for a script to
match the synchronization event. If you want the MobiLink server to take an
action, you must provide a script for the event.

About MobiLink synchronization

186 PowerBuilder

You can write synchronization scripts for connection-level events and for
events for each table in the remote database. You save these scripts in the
consolidated database.

You can write scripts using SQL, Java, or .NET. For more information about
event scripts and writing them in the MobiLink Synchronization plug-in in
Sybase Central, see “Preparing consolidated databases” on page 198.

The MobiLink
synchronization client

ASA clients at remote sites initiate synchronization by running a
command-line utility called dbmlsync. This utility synchronizes one or more
subscriptions in a remote database with the MobiLink synchronization server.
Subscriptions are described in “Publications, articles, users, and
subscriptions” next. For more information about the dbmlsync utility and its
options, see “dbmlsync utility” in the index of the SQL Anywhere online books.

In PowerBuilder, synchronization objects that you create with the MobiLink
Synchronization for ASA wizard manage the dbmlsync process. For more
information, see “Working with PowerBuilder synchronization objects” on
page 187.

Publications, articles,
users, and
subscriptions

A publication is a database object on the remote database that identifies tables
and columns to be synchronized. Each publication can contain one or more
articles. An article is a database object that represents a whole table, or a subset
of the columns and rows in a table.

A user is a database object in the remote database describing a unique
synchronization client. There is one MobiLink user name for each remote
database in the MobiLink system. The ml_user MobiLink system table, located
in the consolidated database, holds a list of MobiLink user names. These names
are used for authentication.

A subscription associates a user with one or more publications. It specifies the
synchronization protocol (such as TCP/IP, HTTP, or HTTPS), address (such as
myserver.acmetools.com), and additional optional connection and extended
options.

Users, publications, and subscriptions are created in the remote database. You
can create them in Sybase Central with the ASA plug-in (not the MobiLink
Synchronization plug-in). For information about creating users, publications,
and subscriptions, see “Creating remote databases” on page 205.

CHAPTER 13 Using MobiLink Synchronization

Application Techniques 187

The synchronization
process

Dbmlsync connects to the remote database using TCP/IP, HTTP, or HTTPS, and
prepares a stream of data (the upload stream) to be uploaded to the consolidated
database. Dbmlsync uses information contained in the transaction log of the
remote database to build the upload stream. The upload stream contains the
MobiLink user name and password, the version of synchronization scripts to
use, the last synchronization timestamp, the schema of tables and columns in
the publication, and the net result of all inserts, updates, and deletes since the
last synchronization.

After building the upload stream, dbmlsync uses information stored in the
specified publication and subscription to connect to the MobiLink
synchronization server and to exchange data.

When the MobiLink synchronization server receives data, it updates the
consolidated database, then builds a download stream that contains all relevant
changes and sends it back to the remote site. At the end of each successful
synchronization, the consolidated and remote databases are consistent. Either
a whole transaction is synchronized, or none of it is synchronized. This ensures
transactional integrity at each database.

Working with PowerBuilder synchronization objects
When you run the MobiLink Synchronization for ASA wizard from the
Database page in the New dialog box, the wizard generates objects that let you
initiate and control MobiLink synchronization requests from a PowerBuilder
application. These objects let you obtain feedback during the synchronization
process, code PowerScript events at specific points during synchronization,
and cancel the process programmatically.

Trying out the MobiLink Synchronization for ASA wizard
This section describes how to try out the MobiLink Synchronization for ASA
wizard in a sample application. To get started, create a new workspace and a
template application. You do not need to create a SQL database connection, but
you do need to create a project.

Working with PowerBuilder synchronization objects

188 PowerBuilder

Before you use the wizard to generate objects for the application, you need to
set up a remote database and add at least one publication, user, and subscription
to it, and create a PowerBuilder database profile for the remote database. To
test the synchronization objects from your application, you need to set up a
consolidated database. You can create your own databases, as described in
“Preparing consolidated databases” on page 198 and “Creating remote
databases” on page 205.

To test the synchronization objects, complete the following steps:

1 Run the wizard.

2 Call synchronization objects from your application.

3 Deploy the application and database files.

4 Start the MobiLink server.

5 Run the application.

Run the wizard The wizard prompts you for a database profile and a publication. Continue
through the wizard, selecting default values, and click Finish to generate the
synchronization objects.

For help using the wizard, see the chapter on managing databases in the User’s
Guide, or place the mouse pointer in any wizard field and press F1.

Call synchronization
objects from your
application

Open a menu for your application in the Menu painter and add two submenu
items to the File menu, called Synchronize and Sync Options. Add the following
code to the Clicked event of the Synchronize menu item (appname is the name
of your application):

s_appname_sync_parms s_opt
gf_appname_sync(s_opt)

Add the following code to the Clicked event of the Sync Options menu item:

gf_appname_configure_sync()

Deploy the application
and database files

Use the Project painter to deploy the application to the desktop and copy this
to all machines that will be connecting remotely to the MobiLink server. You
need to copy the remote database to all end-user machines, and either register
the database as an ODBC database or include connection parameters in a data
source name (DSN) file.

For information on additional files and registry entries required on end-user
machines, see “Runtime requirements for synchronization on remote
machines” on page 195.

CHAPTER 13 Using MobiLink Synchronization

Application Techniques 189

Start the MobiLink
server

Select MobiLink Synchronization Server from the Utilities folder in the
Database painter. In the dialog box, select the Automatic Addition of Users
check box. This ensures that the MobiLink name created in the remote database
is recognized by the consolidated database. Click OK to start the server.

Run the application Run the application on the remote machine and select the File>Synchronize
and File>Sync Options menu items to test their operation.

The next section describes all the objects generated by the wizard.

What gets generated
The wizard generates two sets of objects.

Objects that initiate
and monitor
synchronization

The first set of objects lets the end user initiate and monitor synchronization:

• nvo_appname_sync – a custom class user object that controls the
MobiLink client (appname is the name of your application)

• gf_appname_sync – a global function that instantiates the user object and
calls a function to launch a synchronization request

• s_appname_sync_parms – a structure that holds the MobiLink user’s name
and password, and the remote database user and password

• w_appname_sync – a status window that reports the progress of the
synchronization process

In the wizard, you can choose whether the application uses the status window.
The alternatives are to display the standard MobiLink dbmlsync log window or
to display no status window. The generated status window has the advantage
of including an OK button that lets the user view the status before dismissing
the window, and a Cancel button that lets the user cancel synchronization
before it completes. You can also customize the window to fit your
application’s needs.

Objects that modify
synchronization
options

The second set of objects is generated only if you select Prompt User for
Password and Runtime Changes in the wizard. It lets the end user change
synchronization options before initiating synchronization:

• w_appname_sync_options – an options window that lets the end user
modify the MobiLink user name and password, the host name and port of
the MobiLink server, and other options for dbmlsync, and choose how to
display status

Working with PowerBuilder synchronization objects

190 PowerBuilder

• gf_appname_configure_sync – a global function that opens the options
window and, if the user clicked OK, calls gf_appname_sync to initiate
synchronization

Most applications that use the options window provide two menu items or
command buttons to launch synchronization: one to open the options window
so that users can set up or modify dbmlsync options before requesting a
synchronization, and one to request a synchronization with the preset options.

Using the synchronization objects in your application
Before you use the generated objects, you should examine them in the
PowerBuilder painters to understand how they interact. Many of the function
and event scripts contain comments that describe their purpose.

All the source code is provided so that you have total control over how your
application manages synchronization. You can use the objects as they are,
modify them, or use them as templates for your own objects.

Instance variables in
the user object

The nvo_appname_sync user object contains instance variables that represent
specific dbmlsync arguments, including the publication name, the MobiLink
server host name and port, and the user name and password for a connection to
the remote database.

When you run the wizard, the values that you specify for these instance
variables are set as default values in the script for the constructor event of the
user object. They are also set in the Windows registry on the development
computer in
HKEY_CURRENT_USER\Software\Sybase\PowerBuilder\10.5\appname
\MobiLink, where appname is the name of your application.

At runtime, the constructor event script gets the values of the instance variables
from the registry on the remote machine. If they cannot be obtained from the
registry, or if you override the registry settings, the default value supplied in the
script is used instead and is written to the registry.

You can change the default values in the event script, and you can let the user
change the registry values at runtime by providing a menu item that opens the
w_appname_sync_options window.

The user object’s uf_runsync and uf_runsync_with_window functions use the
instance variables as arguments when they launch a dbmlsync process.

CHAPTER 13 Using MobiLink Synchronization

Application Techniques 191

Launching dbmlsync To enable the user to launch a synchronization process, code a button or menu
event script to call the gf_appname_sync global function. This function creates
an instance of the nvo_appname_sync user object, and the user object’s
constructor event script sets the appname\MobiLink key in the registry of the
remote machine.

If you specified in the wizard that the status window should display, the global
function opens the status window, whose ue_postopen event calls the
uf_runsync_with_window function; otherwise, the global function calls the
uf_runsync function. Both uf_runsync functions launch dbmlsync as an external
process using a special function in the PowerBuilder VM.

Supplying a MobiLink
user name and
password

The global function takes a structure for its only argument. You can pass in the
s_appname_sync structure generated by the wizard. The generated structure
argument includes four variables with string datatypes (one each for MobiLink
and remote database user names and passwords) and a fifth variable that takes
a long datatype for a return code. The structure object that is generated by the
wizard does not set default values for these variables, so you generally need to
provide them.

If you assign valid values to the structure that you pass as an argument, the
global function sets the value of the MobiLink server and remote database
instance variables to the values supplied. For example, you could code a menu
item to open a response window with single-line edit boxes, and pass the
user-supplied values to the function in the script for an OK button:

s_appname_sync_parms s_opt
s_opt.is_mluser = sle_mlusr.text
s_opt.is_mlpass = sle_mlpwd.text
s_opt.is_dbuser = sle_dbusr.text
s_opt.is_dbpass = sle_dbpwd.text
if gf_appname_sync(s_opt)<>0 then

MessageBox("Error", "MobiLink Error")
end if

If you pass a structure with null values or empty strings to the global function,
the uf_runsync functions of the nvo_appname_sync user object look for
MobiLink and database user name and password values stored in the registry.
The options window (described in “Using the synchronization options
window” on page 193) provides a mechanism to store these values in the
registry the first time a user starts a synchronization. Subsequent
synchronizations can be started without the user having to reenter the
information, however, the options window can still be used to override and
reset the registry values.

Working with PowerBuilder synchronization objects

192 PowerBuilder

Retrieving data after
synchronization

After synchronizing, you would typically test for synchronization errors, then
retrieve data from the newly synchronized database. For example:

if gf_myapp_sync(s_opt) <> 0 then
MessageBox("Error", "MobiLink error")

else
dw_1.Retrieve()

end if

Capturing dbmlsync
messages

The PowerBuilder VM traps messages from the dbmlsync process and triggers
events in the user object as the synchronization process runs.

These events are triggered before synchronization begins as the upload stream
is prepared:

ue_begin_logscan (long rescan_log)
ue_progress_info (long progress_index, long progress_max)
ue_end_logscan ()

These events correspond to events on the synchronization server, as described
in “Connection events” on page 199:

ue_begin_sync (string user_name, string pub_names)
ue_connect_MobiLink ()
ue_begin_upload ()
ue_end_upload ()
ue_begin_download ()
ue_end_download (long upsert_rows, long delete_rows)
ue_disconnect_MobiLink()
ue_end_sync (long status_code)

These events are triggered after ue_end_upload and before ue_begin_download:

ue_wait_for_upload_ack ()
ue_upload_ack (long upload_status)

These events are triggered when various messages are sent by the server:

ue_error_msg (string error_msg)
ue_warning_msg (string warning_msg)
ue_file_msg (string file_msg)
ue_display_msg (string display_msg)

CHAPTER 13 Using MobiLink Synchronization

Application Techniques 193

The default event scripts created by the wizard trigger corresponding events in
the optional status window, if it exists. The window events write the status to
the multiline edit control in the status window. Some window events also
update a static text control that displays the phase of the synchronization
operation that is currently running (log scan, upload, or download) and control
a horizontal progress bar showing what percentage of the operation has
completed.

You can also add code to the user object or window events that will execute at
the point in the synchronization process when the corresponding MobiLink
events are triggered. The dbmlsync process sends the event messages to the
controlling PowerBuilder application and waits until PowerBuilder event
processing is completed before continuing.

Cancelling
synchronization

The Cancel button on the status window calls the uf_cancelsync user object
function to cancel the synchronization process. If your application does not use
the status window, you can call this function in an event script elsewhere in
your application.

Using the synchronization options window
To use the w_appname_sync_options window in your application, code a menu
item or button clicked event to call the gf_appname_configure_sync function.
This function creates an instance of the s_appname_sync_parms structure and
passes it to the options window.

The window’s Open event creates an instance of the nvo_appname_sync user
object, and its ue_postopen event retrieves values from the registry to populate
the text boxes in the window—unless you have chosen to override registry
settings. The user can verify or modify options in the window and click either
OK or Cancel.

If the user clicks OK, the gf_appname_configure_sync function calls
gf_appname_sync to launch synchronization using the MobiLink and remote
database user names and passwords that are returned from the window. The
user’s changes are also written to the registry.

The Close event of the window calls the wf_try_saving window function. If the
user clicks OK, the wf_savesettings window function is launched. If the user
clicks Cancel, no changes are made to the registry.

The options window has four pages: Subscriptions, Connection, MobiLink
Server, and Settings.

Working with PowerBuilder synchronization objects

194 PowerBuilder

Subscriptions page When you used the MobiLink wizard, you selected one or more publications
from the list of available publications. The selected publications display on the
Subscriptions page, but cannot be edited at runtime.

Each remote user can supply a MobiLink synchronization user name on this
page. The name must be associated in a subscription with the publications
displayed on the page. If the application is always used by the same MobiLink
user, this information never needs to be supplied again. The name is saved in
the registry and used by default every time synchronization is launched from
the application on this device.

If the user checks the Remember Password check box, the password is
encrypted and saved in the registry. The uf_encrypt_pw and uf_decrypt_pw
functions use a simple algorithm to ensure that the password does not display
without encryption in the registry. You can replace this algorithm with a more
sophisticated encryption technique.

Connection page Remote users can supply a DSN file name on this page to pass all the
arguments needed to connect to a remote database.

If a DSN file is not used, or if the DSN file does not include a user name and
password, each remote user can supply a remote database user name on the
Connection page of the options window. The name is saved in the registry and
used by default every time synchronization is launched from the application on
this device.

Users can also include additional connection string arguments for the remote
database by entering that information in the Additional text box on the
Connection page. The following syntax should be used for additional
parameters and values:

param1=value1;param2=value2;paramN=valueN

If the user checks the Remember Password check box, the password is
encrypted and saved in the registry. The uf_encrypt_pw and uf_decrypt_pw
functions use a simple algorithm to ensure that the database password does not
display without encryption in the registry. You can replace this algorithm with
a more sophisticated encryption technique.

MobiLink Server page When you create a subscription, you specify a protocol, host, port, and other
connection options. For ease of testing, the default protocol is TCP/IP and the
default host is localhost. The default port is 2439 for TCP/IP, 80 for HTTP, and
443 for HTTPS.

You might need to change these defaults when you are testing, and your users
might need to change them when your application is in use if the server is
moved to another host or the port changes.

CHAPTER 13 Using MobiLink Synchronization

Application Techniques 195

If the user does not make any changes on this page, dbmlsync uses the values
you entered in the wizard, if any. If you did not enter values in the wizard,
dbmlsync uses the values in the subscription.

For more information about subscriptions, see “Adding subscriptions” on page
209.

Settings page The Settings page displays logging options, and any other dbmlsync options
you specified in the wizard. It also shows the three display options available to
the user. This page lets the user change any of these options.

Extended options
Extended options are added to the dbmlsync command line with the -e switch.
You do not need to type the -e switch in the text box.

Modifying generated
objects

If you want to give the user access to some dbmlsync options available in the
options window, but not all of them, modify the window to suit your needs or
use it as a template for your own options window. At a minimum, you probably
need to provide a way for each user to enter a MobiLink user name and
password and a remote database user name and password.

If you want the user to be able to save options without launching dbmlsync, you
could comment out the lines in gf_appname_configure_sync that call
gf_appname_sync, or add a third button called Save Only that contains the
same code as the OK button, but returns a non-zero value.

Runtime requirements for synchronization on remote machines
Support files required
on remote machine

If you do not install PowerBuilder or ASA on remote machines, you must copy
the files listed in Table 13-1 to use MobiLink synchronization with a
PowerBuilder application. These files must be copied to the system path on the
remote machine or the directory where you copy your PowerBuilder
applications.

Table 13-1: Required runtime files on system path of remote machine

Required files Description

PBVM105.DLL, PBDWE105.DLL,
PBSHR105.DLL, PBODB105.DLL,
PBODB105.INI, LIBJCC.DLL,
LIBJUTILS.DLL

PowerBuilder files that you can copy from
the Shared\PowerBuilder directory of the
development machine.

Working with PowerBuilder synchronization objects

196 PowerBuilder

Registry requirements
for a remote machine

If you install ASA on all remote machines that you use with MobiLink
synchronization, the required registry entries are assigned automatically. If you
copy ASA and MobiLink files to a remote machine, you must create the
HKEY_CURRENT_USER\SOFTWARE\Sybase\Adaptive Server Anywhere\9.0
registry key and add a “Location” string value that points to the parent
directory of the win32 subdirectory where you copied ASA and MobiLink
files. (The code in the uf_runsync function of the nvo_appname_sync user
object appends “\win32\dbmlsync.exe” to the path that you assign to this
registry value.)

Objects generated by the MobiLink Synchronization wizard also require
registry entries to define the ODBC data source for a remote ASA connection.
Table 13-2 lists the required registry entries. You can create a REG file that
installs these registry entries.

Table 13-2: Required registry entries on remote machine

ATL71.DLL, GDIPLUS.DLL,
MSVCP71.DLL, MSVCR71.DLL

Microsoft files that ship with PowerBuilder.
For restrictions on distributing these files
with client applications, see the
PowerBuilder Release Bulletin.

DBENG9.EXE, DBMLSYNC.EXE,
DBSERV9.DLL, DBTOOL9.DLL,
DBODBC9.DLL, DBMLSOCK.DLL,
DBLIB9.DLL, DBGEN9.DLL,
DBCON9.DLL, DBCTRS.DLL

ASA and MobiLink files that you can copy
from the Sybase\SQL Anywhere 9\win32
directory of the development machine. You
should copy these files to a “win32”
subdirectory of the location where you copy
the PowerBuilder application and
supporting runtime files.

Required files Description

Registry key
Name of string value and data
to assign it

HKEY_LOCAL_MACHINE\SOFTWARE\
ODBC\ODBCINST.INI\Adaptive Server
Anywhere 9.0

Driver = full path to DBODBC9.DLL
Setup = full path to DBODBC9.DLL

HKEY_LOCAL_MACHINE\SOFTWARE\
ODBC\ODBCINST.INI\ODBC Drivers

Adaptive Server Anywhere 9.0 =
“Installed”

CHAPTER 13 Using MobiLink Synchronization

Application Techniques 197

Using a file DSN
instead of a registry
DSN

You can change the uf_runsync function of the nvo_appname_sync user object
generated by the MobiLink Synchronization wizard to use a file data source
name (DSN) file instead of a registry DSN. To do this, you must change “dsn=”
to “filedsn=” in the following line of code:

connect_string = " -c ~"dsn=" + is_desktop_dsn

If you are using a file DSN, you must change this line to:

connect_string = " -c ~"filedsn=" + is_desktop_dsn

For MobiLink synchronization using a file DSN, the is_desktop_dsn instance
variable in the nvo_appname_sync user object must include the full path to the
file DSN. The following is an example of the contents of a valid file DSN:

[ODBC]
DRIVER=Adaptive Server Anywhere 9.0
UID=dba
Password=sql
Compress=NO
DisableMultiRowFetch=NO
Debug=NO
Integrated=No
AutoStop=YES
Start=dbeng9 -c 8M
EngineName=SalesDB_Remote
DBN=SalesDB_Remote
DatabaseFile=C:\PB10apps\salesdb\salesdb_remote.db

HKEY_LOCAL_MACHINE\SOFTWARE\
ODBC\ODBC.INI\ODBC Data Sources

dataSourceName = “Adaptive Server
Anywhere 9.0”

HKEY_LOCAL_MACHINE\SOFTWARE\
ODBC\ODBC.INI\dataSourceName

Driver = full path to DBODBC9.DLL
Userid = user name for remote
database Password = password for
remote database
DatabaseName =
remoteDatabaseName DatabaseFile
= full path to remote database
ServerName =
remoteDatabaseName Start =
“dbeng9 -c 8M”
CommLinks = “shmem”

Registry key
Name of string value and data
to assign it

Preparing consolidated databases

198 PowerBuilder

Preparing to use the wizard
The previous sections described how to try out the wizard in a test application
and how to use the objects generated by the wizard. Before you use the wizard
in a production application, you need to complete the following tasks:

• Set up a consolidated database and write synchronization scripts as
described in “Preparing consolidated databases” on page 198

• Create a remote database on the desktop and set up one or more
publications, users, and subscriptions as described in “Creating remote
databases” on page 205

• Register the database with the ODBC manager on all remote machines, or
create a file DSN for the remote database, as described in Connecting to
Your Database in the PowerBuilder online Help and in “Using a file DSN
instead of a registry DSN” on page 197

• Make sure all remote machines have the required supporting files, as
described in “Runtime requirements for synchronization on remote
machines” on page 195

• (Optional) Create a database connection profile for the remote database, as
described in Connecting to Your Database in the PowerBuilder online
Help. This allows the wizard to retrieve a list of publications in the remote
database for which MobiLink subscriptions have been entered

Preparing consolidated databases
Whether you are designing a new database or preparing an existing one to be
used as a MobiLink consolidated database, you must install the MobiLink
system tables in that database. SQL Anywhere provides setup scripts for
Sybase Adaptive Server Enterprise, Oracle 8 and 9, Microsoft SQL Server, and
IBM DB2. A setup script is not required for ASA databases.

MobiLink system tables store information for MobiLink users, tables, scripts,
and script versions in the consolidated database. You will probably not directly
access these tables, but you alter them when you perform actions such as
adding synchronization scripts.

CHAPTER 13 Using MobiLink Synchronization

Application Techniques 199

ODBC connections
and drivers

To carry out synchronization, the MobiLink synchronization server needs an
ODBC connection to the consolidated database. You must have an ODBC
driver for your server and you must create an ODBC data source for the
database on the machine on which your MobiLink synchronization server is
running. For a list of supported drivers, see Recommended ODBC Drivers for
9.0.0 MobiLink at http://www.sybase.com/detail?id=1025763.

Writing
synchronization
scripts

There are two types of events that occur during synchronization and for which
you need to write synchronization scripts:

• Connection events that perform global tasks required during every
synchronization

• Table events that are associated with a specific table and perform tasks
related to modifying data in that table

Connection events
At the connection level, the sequence of major events is as follows:

begin_connection
begin_synchronization

begin_upload
end_upload
prepare_for_download
begin_download
end_download

end_synchronization
end_connection

When a synchronization request occurs, the begin_connection event is fired.
When all synchronization requests for the current script version have been
completed, the end_connection event is fired. Typically you place initialization
and cleanup code in the scripts for these events, such as variable declaration
and database cleanup.

Apart from begin_connection and end_connection, all of these events take the
MobiLink user name stored in the ml_user table in the consolidated database as
a parameter. You can use parameters in your scripts by placing question marks
where the parameter value should be substituted.

To make scripts in ASA databases easier to read, you might declare a variable
in the begin_connection script, then set it to the value of ml_username in the
begin_synchronization script.

Preparing consolidated databases

200 PowerBuilder

For example, in begin_connection:

CREATE VARIABLE @sync_user VARCHAR(128);

In begin_synchronization:

SET @sync_user = ?

The begin_synchronization and end_synchronization events are fired before and
after changes are applied to the remote and consolidated databases.

The begin_upload event marks the beginning of the upload transaction.
Applicable inserts and updates to the consolidated database are performed for
all remote tables, then rows are deleted as applicable for all remote tables. After
end_upload, upload changes are committed.

If you do not want to delete rows from the consolidated database, do not write
scripts for the upload_delete event, or use the STOP SYNCHRONIZATION
DELETE statement in your PowerScript code. For more information, see
“Deleting rows from the remote database only” on page 212.

The begin_download event marks the beginning of the download transaction.
Applicable deletes are performed for all remote tables, and then rows are added
as applicable for all remote tables in the download_cursor. After end_download,
download changes are committed. These events have the date of the last
download as a parameter.

Other connection-level events can also occur, such as handle_error,
report_error, and synchronization_statistics. For a complete list of events and
examples of their use, see the chapter on synchronization events in the
MobiLink Synchronization User’s Guide.

Table events
Many of the connection events that occur between the begin_synchronization
and end_synchronization events, such as begin_download and end_upload, also
have table equivalents. These and other overall table events might be used for
tasks such as creating an intermediate table to hold changes or printing
information to a log file.

You can also script table events that apply to each row in the table. For
row-level events, the order of the columns in your scripts must match the order
in which they appear in the CREATE TABLE statement in the remote database,
and the column names in the scripts must refer to the column names in the
consolidated database.

CHAPTER 13 Using MobiLink Synchronization

Application Techniques 201

Generating default
scripts

Although there are several row-level events, most tables need scripts for three
upload events (for INSERT, UPDATE, and DELETE) and one download event.
To speed up the task of creating these four scripts for every table, you can
generate scripts for them automatically by starting the MobiLink
synchronization server with the -za switch and setting the SendColumnNames
extended option for dbmlsync.

Read-only remote databases
If the remote database is read-only—that is, you never want to upload any
data—you should not implement the upload scripts. You can use the -ze switch
to generate sample scripts, and use the download samples as templates for your
download scripts.

❖ To generate synchronization scripts automatically in PowerBuilder:

1 Select the Automatic Script Generation check box in the MobiLink
Synchronize Server Options dialog box and click OK to start the server.

You can open this dialog box from the Utilities folder in the Database
painter or the Database Profiles dialog box.

2 In your application, enter SendColumnNames=ON in the Extended text box
on the Settings page of the w_appname_sync_options window.

You must have at least one publication, user, and subscription defined in
the remote database. If you have more than one publication or user, you
must use the -n and/or -u switches to specify which subscription you want
to work with.

If there are existing scripts in the consolidated database, MobiLink does
nothing. If there are no existing scripts, MobiLink generates them for all
tables specified in the publication. The scripts control the upload and
download of data to and from your client and consolidated databases.

If the column names on the remote and consolidated database differ, the
generated scripts must be modified to match the names on the consolidated
database.

You can also generate synchronization scripts from a command prompt. Start
the server using the -za switch, then run dbmlsync and set the
SendColumnNames extended option to on. For example:

dbmlsrv8 -c "dsn=masterdb" -za
dbmlsync -c "dsn=remotedb" -e SendColumnNames=ON

Preparing consolidated databases

202 PowerBuilder

Generated scripts Table 13-3 shows the scripts that are generated for a table named emp with the
columns emp_id, emp_name, and dept_id. The primary key is emp_id.

Table 13-3: Sample default scripts generated by dbmlsrv9 -za

The scripts generated for downloading data perform “snapshot”
synchronization. A complete image of the table is downloaded to the remote
database. Typically you need to edit these scripts to limit the data transferred.
For more information, see “Limiting data downloads” on page 211.

Before modifying any scripts, you should test the synchronization process to
make sure that the generated scripts behave as expected. Performing a test after
each modification will help you narrow down errors.

Working with scripts and users in Sybase Central
You can view and modify existing scripts and write new ones in the MobiLink
Synchronization plug-in in Sybase Central. These procedures describe how to
connect to the plug-in and write scripts, and how to add a user to the
consolidated database.

❖ To connect to a consolidated database in Sybase Central:

1 Start Sybase Central, select Tools>Connect from the menu bar, select
MobiLink Synchronization from the New Connection dialog box, and
click OK.

2 On the Identification page in the Connect dialog box, select ODBC
DataSource Name, browse to select the DSN of the consolidated database,
and click OK.

When you expand the node for a consolidated database in the MobiLink
Synchronization plug-in, you see five folders: Tables, Connection Scripts,
Synchronized Tables, Users, and Versions. All the procedures in this section
begin by opening one of these folders.

Script name Script

upload_insert INSERT INTO emp (emp_id, emp_name, dept_id)
VALUES (?,?,?)

upload_update UPDATE emp SET emp_name = ?, dept_id = ?
WHERE emp_id=?

upload_delete DELETE FROM emp
WHERE emp_id=?

download_cursor SELECT emp_id, emp_name, dept_id FROM emp

CHAPTER 13 Using MobiLink Synchronization

Application Techniques 203

Script versions Scripts are organized into groups called script versions. By specifying a
particular version, MobiLink clients can select which set of synchronization
scripts is used to process the upload stream and prepare the download stream.
If you want to define different versions for scripts, you must add a script
version to the consolidated database before you add scripts for it.

If you create two different versions, make sure that you have scripts for all
required events in both versions.

❖ To add a script version:

1 Select the Versions folder and double-click Add Version.

2 In the Add a New Script Version dialog box, provide a name for the
version and optionally a description, and click Finish.

Sybase Central creates the new version and gives it a unique integer
identifier.

Adding scripts Scripts added for connection events are executed for every synchronization.
Scripts added for table events are executed when a specific table has been
modified. You must specify that a table is synchronized before you can add
scripts for it.

❖ To add a synchronized table to a consolidated database:

1 Select the Tables folder and double-click DBA.

2 Right-click the table you want to add to the list of synchronized tables and
select Add to Synchronized Tables from its pop-up menu.

❖ To add a script to a synchronized table:

1 Select the Synchronized Tables folder, select the table for which you want
to add a script, and double-click Add Table Script.

2 From the first drop-down list, select the version for which you want to add
a script.

3 From the second drop-down list, select the event for which you want to
add a script.

Events that already have a script do not appear in the drop-down list.

4 From the third drop-down list, select the language in which you want to
write a script.

5 Make sure the Edit the Script of the New Event Immediately check box is
selected and click Finish.

Preparing consolidated databases

204 PowerBuilder

6 Type your script in the editor that displays, then save and close the file.

For example, if you want to remove rows that have been shipped from the
Order table in a remote database, you can place the following SELECT
statement in the download_delete_cursor event, where order_id is the
primary key column. The first parameter to this event is the last_download
timestamp. It is used here to supply the value for a last_modified column:

SELECT order_id
FROM Order

WHERE status = 'Shipped'
AND last_modified >= ?

For more information about using the download_delete_cursor event, see
the section on handling deletes in the MobiLink Synchronization User’s
Guide.

❖ To add a connection-level script:

1 Select the Connection Scripts folder and double-click Add Connection
Script.

2 Follow steps 2 to 6 in the previous procedure.

Modifying scripts To modify an existing script, navigate to the script in Sybase Central as
described in the preceding procedures, then double-click the Edit icon to the
left of the version name.

Adding users You can add users directly to the ml_user table in the consolidated database,
then provide the user names and optional passwords to your users. To add a
user, select the Users folder, double-click Add User, and complete the Add
User wizard.

You also have to add at least one user name to each remote database, as
described in “Creating MobiLink users” on page 208.

CHAPTER 13 Using MobiLink Synchronization

Application Techniques 205

Creating remote databases
Any ASA database can be converted for use as a remote database in a
MobiLink installation. You can also create a new ASA remote database that
uses all or part of the schema of the consolidated ASA database.

You create the database on your desktop using the Sybase Central Adaptive
Server Anywhere plug-in, the Create ASA Database utility in the Database
painter, or another tool. If your database uses an English character set, use the
1252 Latin1 collation sequence.

To use a database as a remote database for MobiLink synchronization, you
need to create at least one publication and MobiLink user, then add a
subscription to the publication for the user. See “Creating and modifying
publications” on page 205, “Creating MobiLink users” on page 208, and
“Adding subscriptions” on page 209.

Remote database
schemas

Tables in a remote database need not be identical to those in the consolidated
database, but you can often simplify your design by using a table structure in
the remote database that is a subset of the one in the consolidated database.
Using this method ensures that every table in the remote database exists in the
consolidated database. Corresponding tables have the same structure and
foreign key relationships as those in the consolidated database.

Tables in the consolidated database frequently contain extra columns that are
not synchronized. Extra columns can even aid synchronization. For example, a
timestamp column can identify new or updated rows in the consolidated
database. In other cases, extra columns or tables in the consolidated database
might hold information that is not required at remote sites.

For more information about the relationship between consolidated and remote
databases, see the MobiLink Synchronization User’s Guide.

Creating and modifying publications
You create publications using Sybase Central or the SQL CREATE
PUBLICATION statement. In Sybase Central, all publications and articles
appear in the Publications folder. This section describes how to create
publications in Sybase Central. For information about creating and modifying
publications using SQL, see the MobiLink Synchronization User’s Guide.

Creating remote databases

206 PowerBuilder

Connecting to Sybase
Central

You use the Adaptive Server Anywhere plug-in in Sybase Central, not the
MobiLink Synchronization plug-in, to work with MobiLink clients and remote
databases. The Adaptive Server Anywhere plug-in has a MobiLink
Synchronization Client folder where you perform all actions related to remote
databases. For information on starting Sybase Central from the PowerBuilder
design time environment, see the User’s Guide.

You must have DBA authority to create or modify publications, MobiLink
users, and subscriptions.

❖ To connect to Sybase Central to work with MobiLink Synchronization
clients:

1 Start Sybase Central, select Tools>Connect from the Sybase Central menu
bar, select Adaptive Server Anywhere from the New Connection dialog
box, and click OK.

2 On the Identification page in the Connect dialog box, enter DBA as the
user name and SQL as the password, select the ODBC DataSource Name
radio button, browse to select the remote database, and click OK.

3 In the Adaptive Server Anywhere plug-in, expand the node for the remote
database and open the MobiLink Synchronization Client folder.

Publishing all the rows
and columns in a table

The simplest publication you can create is a single article that consists of all
rows and columns of one or more tables. The tables must already exist.

❖ To publish one or more entire tables in Sybase Central:

1 Connect to Sybase Central as described in “Connecting to Sybase
Central” on page 206.

2 Open the Publications folder and double-click Add Publication.

3 Type a name for the new publication and click Next.

4 On the Tables page, select a table from the list of Matching Tables and
click Add.

The table appears in the list of Selected Tables on the right.

5 Optionally, add more tables. The order of the tables is not important.

6 Click Finish.

CHAPTER 13 Using MobiLink Synchronization

Application Techniques 207

Publishing only some
columns in a table

You can create a publication that contains all the rows but only some of the
columns of a table.

❖ To publish only some columns in a table in Sybase Central:

1 Follow the first four steps of the procedure in “Publishing all the rows and
columns in a table” on page 206.

2 On the Columns page, double-click the table's icon to expand the list of
available columns, select each column you want to publish, and click Add.

The selected columns appear on the right.

3 Click Finish.

Publishing only some
rows in a table

You can create a publication that contains some or all of the columns in a table,
but only some of the rows. You do so by writing a search condition that
matches only the rows you want to publish.

In MobiLink, you can use the WHERE clause to exclude the same set of rows
from all subscriptions to a publication. All subscribers to the publication
upload any changes to the rows that satisfy the search condition.

❖ To create a publication using a WHERE clause in Sybase Central:

1 Follow the first four steps of the procedure in “Publishing all the rows and
columns in a table” on page 206.

2 On the Where page, select the table and type the search condition in the
lower box.

Optionally, you can use the Insert dialog box to help you format the search
condition.

3 Click Finish.

Adding articles You can add articles to existing publications.

❖ To add articles in Sybase Central:

1 Connect to Sybase Central and open the MobiLink Synchronization Client
folder as described in “Connecting to Sybase Central” on page 206.

2 Open the Publications folder and double-click the name of the publication
to which you want to add an article.

3 Double-click Add Article.

4 In the Article Creation wizard, select a table and click Next.

5 If you want only some columns to be synchronized, select the Selected
Columns radio button and select the columns.

Creating remote databases

208 PowerBuilder

6 If you want to add a WHERE clause, click Next and enter the clause.

7 Click Finish.

Modifying and
removing publications
and articles

You can modify or drop existing publications in Sybase Central by navigating
to the location of the publication and selecting Properties or Delete from its
pop-up menu. You can modify and remove articles in the same way.

Publications can be modified only by the DBA or the publication's owner. You
must have DBA authority to drop a publication. If you drop a publication, all
subscriptions to that publication are automatically deleted as well.

Avoid altering publications in a running MobiLink setup
Altering publications in a running MobiLink setup is likely to cause replication
errors and can lead to loss of data unless carried out with care.

Creating MobiLink users
MobiLink users are not the same as database users. Each type of user resides
in a different namespace. MobiLink user IDs can match the names of database
users, but there is no requirement that they match.

❖ To add a MobiLink user to a remote database in Sybase Central:

1 Connect to Sybase Central and open the MobiLink Synchronization Client
folder as described in “Connecting to Sybase Central” on page 206.

2 Open the MobiLink Users folder and double-click Add MobiLink User.

3 Enter a name for the MobiLink user.

The name is supplied to the MobiLink synchronization server during
synchronization. In production databases, each user name is usually added
to the consolidated database, then provided to the individual user.

4 Click Finish.

❖ To configure MobiLink user properties in Sybase Central:

1 Connect to Sybase Central and open the MobiLink Synchronization Client
folder as described in “Connecting to Sybase Central” on page 206.

2 Open the MobiLink Users folder, right-click the MobiLink user, and select
Properties from the pop-up menu.

3 Change the properties as needed.

CHAPTER 13 Using MobiLink Synchronization

Application Techniques 209

❖ To drop a MobiLink user in Sybase Central:

1 Connect to Sybase Central and open the MobiLink Synchronization Client
folder as described in “Connecting to Sybase Central” on page 206.

2 Open the MobiLink Users folder, right-click the MobiLink user, and select
Delete from the pop-up menu.

Dropping MobiLink users
You must drop all subscriptions for a MobiLink user before you drop the user
from a remote database.

Adding MobiLink
users to the
consolidated database

The consolidated database contains a table called ml_user that is used to
authenticate the names of MobiLink users when a synchronization is requested.
When you add a user to a remote database, you need to be sure that the user is
also added to the ml_user table.

You can add users automatically by selecting the Automatic Addition of Users
check box in the MobiLink Synchronization Server Options dialog box and
then starting the server. You open this dialog box from the Utilities folder in the
Database painter or Database Profiles dialog box. You can also start the server
from a command prompt, passing it the -zu+ switch.

Any users defined in the remote database are added to the ml_user table in the
consolidated database, as long as the script for the authenticate_user
connection event is undefined. Typically the -zu+ switch is not used in a
production environment. Names are usually added to the ml_user table in the
consolidated database, then added to each of the remote databases. Each user
is given a unique name and optional password.

Adding subscriptions
A synchronization subscription links a particular MobiLink user with a
publication. It can also carry other information needed for synchronization. For
example, you can specify the address of the MobiLink server and other
connection options. Values for a specific subscription override those set for
individual MobiLink users.

Overriding options in the wizard
You can override the MobiLink server name and port set for the subscription
and user in the MobiLink Synchronization for ASA wizard.

Creating remote databases

210 PowerBuilder

Synchronization subscriptions are required in MobiLink ASA remote
databases. Server logic is implemented through synchronization scripts, stored
in the MobiLink system tables in the consolidated database.

A single ASA database can synchronize with more than one MobiLink
synchronization server. To allow synchronization with multiple servers, create
different subscriptions for each server.

❖ To add a subscription for a MobiLink user in Sybase Central:

1 Connect to Sybase Central and open the MobiLink Synchronization Client
folder as described in “Connecting to Sybase Central” on page 206.

2 Open the MobiLink Users folder, right-click the user for whom you want
to add a subscription, and select Properties from the pop-up menu.

3 On the Subscriptions page, click the Subscribe button.

4 Select the Publication for which you want to add a subscription and click
OK.

❖ To modify a subscription in Sybase Central:

1 Connect to Sybase Central and open the MobiLink Synchronization Client
folder as described in “Connecting to Sybase Central” on page 206.

2 Open the MobiLink Users folder, right-click the MobiLink user, and select
Properties from the pop-up menu.

3 On the Subscriptions page, select the subscription you want to change and
click Advanced.

4 Change the properties as needed.

❖ To delete a synchronization subscription in Sybase Central:

1 Connect to Sybase Central and open the MobiLink Synchronization Client
folder as described in “Connecting to Sybase Central” on page 206.

2 Open the MobiLink Users folder, right-click the MobiLink user, and select
Properties from the pop-up menu.

3 On the Subscriptions page, select the subscription you want to delete and
click Unsubscribe.

CHAPTER 13 Using MobiLink Synchronization

Application Techniques 211

Synchronization techniques
This section highlights some issues that you need to consider when designing
an application that uses MobiLink synchronization. For more information
about all these issues, see the chapter on synchronization techniques in the
MobiLink Synchronization User’s Guide.

Limiting data
downloads

One of the major goals of synchronization is to increase the speed and
efficiency of data movement by restricting the amount of data moved. To limit
the data transferred by the download_cursor script, you can partition data based
on its timestamp, the MobiLink user name, or both.

Timestamp partitioning One way to limit downloads to data changed since
the last download is to add a last_modified column to each table in the
consolidated database (or, if the table itself cannot be changed, to a shadow
table that holds the primary key and that is joined to the original table in the
download_cursor script). The last_modified column need only be added to the
consolidated database.

In ASA, you can use built-in DEFAULT TIMESTAMP datatypes for this column.
In other DBMSs, you need to provide an update trigger to set the timestamp of
the last_modified column.

The timestamp is generated on the consolidated database and downloaded
unmodified to the remote database during synchronization; the time zone of the
remote database does not affect it.

User-based partitioning The download_cursor script has two parameters:
last_download, of datatype datetime, and ml_username, of type varchar(128).
You can use these parameters to restrict the download not only to rows that
have changed since the last synchronization, but also to rows that belong to the
current user.

In this sample download_cursor script, only those rows are downloaded that
have been modified since the last synchronization, and that apply to the sales
representative whose ID matches the MobiLink user ID:

SELECT order_id, cust_id, order_date
FROM Sales_Order

WHERE last_modified >= ?
AND sales_rep = ?

For this to work correctly, the MobiLink user ID must match the sales_rep ID.
If this is not the case, you might need to join a table that associates these two
IDs.

Synchronization techniques

212 PowerBuilder

Primary key
uniqueness

In a conventional client/server environment where clients are always
connected, referential integrity is directly imposed. In a mobile environment,
you must ensure that primary keys are unique and that they are never updated.
There are several techniques for achieving this, such as using primary key
pools.

Handling conflicts You need to handle conflicts that arise when, for example, two remote users
update the same rows but synchronize at different intervals, so that the latest
synchronization might not be the latest update. MobiLink provides
mechanisms to detect and resolve conflicts.

Deleting rows from the
remote database only

By default, when a user starts a synchronization, the net result of all the
changes made to the database since the last synchronization is uploaded to the
consolidated database. However, sometimes a remote user deletes certain rows
from the remote database to recapture space, perhaps because the data is old or
a customer has transferred to another sales agent. Usually, those deleted rows
should not be deleted from the consolidated database.

One way to handle this is to use the command STOP SYNCHRONIZATION
DELETE in a script in your PowerBuilder application to hide the SQL DELETE
statements that follow it from the transaction log. None of the subsequent
DELETE operations on the connection will be synchronized until the START
SYNCHRONIZATION DELETE statement is executed.

For example, you might provide a menu item called Delete Local where the
code that handles the delete is wrapped, as in this example:

STOP SYNCHRONIZATION DELETE;
// call code to perform delete operation
START SYNCHRONIZATION DELETE;
COMMIT;

There are other approaches to handling deletes. For more information, see the
chapter on synchronization techniques in the MobiLink Synchronization User’s
Guide.

Application Techniques 213

C H A P T E R 1 4 Using PowerBuilder XML
Services

About this chapter This chapter presents an overview of XML services in PowerBuilder. It
describes the PowerBuilder Document Object Model (PBDOM), and
describes how to use it in a PowerBuilder application.

Contents

About XML and PowerBuilder
PowerBuilder provides several features that enable you to work with the
Extensible Markup Language (XML). You can:

• Export the data in a DataWindow object to XML, and import data in
an XML document or string into a DataWindow object

• Determine whether an XML document or string is well-formed or
conforms to a schema or DTD using the XMLParseFile and
XMLParseString PowerScript functions

• Build applications and components that can produce and process
XML documents

For an overview of XML and information about the export and import
capabilities in the DataWindow, see the chapter on exporting and
importing XML in the PowerBuilder User’s Guide.

Topic Page

About XML and PowerBuilder 213

About PBDOM 214

PBDOM object hierarchy 215

PBDOM node objects 216

Adding pbdom105.pbx to your application 231

Using PBDOM 233

Handling PBDOM exceptions 239

XML namespaces 240

About PBDOM

214 PowerBuilder

For information about the XML parsing functions, see their descriptions in the
online Help.

This chapter describes how you can produce and process XML documents
using the PowerBuilder Document Object Model.

About PBDOM
PBDOM is the PowerBuilder implementation of the Document Object Model
(DOM), a programming interface defining the means by which XML
documents can be accessed and manipulated.

Although PBDOM is not an implementation of the World Wide Web
Consortium (W3C) DOM API, it is very similar. The PBDOM PowerBuilder
API can be used for reading, writing, and manipulating standard-format XML
from within PowerScript code. PBDOM portrays an XML document as a
collection of interconnected objects and provides intuitive methods indicating
the use and functionality of each object.

PBDOM is also similar to JDOM, which is a Java-based document object
model for XML files.

For information on the W3C DOM and JDOM objects and hierarchies, refer to
their respective specifications. The W3C DOM specification is available at
http://www.w3.org/DOM/. The JDOM specification, or a link to it, is available at
http://www.jdom.org/docs/.

With PBDOM, your applications can parse existing XML documents and
extract the information contained as part of a business process or in response
to an external request. Applications can also produce XML documents that
conform to the type or schema required by other applications, processes, or
systems. Existing XML documents can be read and modified by manipulating
or transforming the PBDOM tree of objects instead of having to edit XML
strings directly.

You can also build components that can produce or process XML documents
for use in multitier applications or as part of a Web service.

Node trees PBDOM interacts with XML documents according to a tree-view model
consisting of parent and child nodes. A document element represents the
top-level node of an XML document. Each child node of the document element
has one or many child nodes that represent the branches of the tree. Nodes in
the tree are accessible through PBDOM class methods.

CHAPTER 14 Using PowerBuilder XML Services

Application Techniques 215

XML parser The PBDOM XML parser is used to load and parse an XML document, and
also to generate XML documents based on user-specified DOM nodes.

PBDOM provides all the methods you need to traverse the node tree, access the
nodes and attribute values (if any), insert and delete nodes, and convert the
node tree to an XML document so that it can be used by other systems.

PBDOM object hierarchy
The following figure shows the PBDOM object hierarchy:

Figure 14-1: The PBDOM object hierarchy

PBDOM_OBJECT
and its descendants

The base class for PBDOM objects that represent XML nodes,
PBDOM_OBJECT, inherits from the PowerBuilder NonVisualObject class.
Each of the node types is represented by a PBDOM class whose methods you
use to access objects in a PBDOM node tree. PBDOM_OBJECT and its
descendants are described in "PBDOM node objects" next. You can also find
some information about XML node types in the chapter on exporting and
importing XML data in the PowerBuilder User’s Guide.

PBDOM_BUILDER The PBDOM_BUILDER class also inherits from NonVisualObject. It serves
as a factory class that creates a PBDOM_DOCUMENT from various XML
input sources including a string, a file, and a DataStore.

Building a PBDOM_DOCUMENT from scratch
To build a PBDOM_DOCUMENT without a source that contains existing
XML, use the PBDOM_DOCUMENT NewDocument methods.

PBDOM node objects

216 PowerBuilder

PBDOM_EXCEPTION The PBDOM_EXCEPTION class inherits from the PowerBuilder Exception
class. It extends the Exception class with a method that returns a predefined
exception code when an exception is raised in a PBDOM application. For more
information about this class, see “Handling PBDOM exceptions” on page 239.

PBDOM node objects
This section describes the PBDOM_OBJECT class and all of the classes that
descend from it:

• PBDOM_OBJECT

• PBDOM_DOCUMENT

• PBDOM_DOCTYPE

• PBDOM_ELEMENT

• PBDOM_ATTRIBUTE

• PBDOM_ENTITYREFERENCE

• PBDOM_CHARACTERDATA

• PBDOM_TEXT

• PBDOM_CDATA

• PBDOM_COMMENT

• PBDOM_PROCESSINGINSTRUCTION

For detailed descriptions of PBDOM class methods, see the PowerBuilder
Extension Reference.

PBDOM_OBJECT
The PBDOM_OBJECT class represents any node in an XML node tree and
serves as the base class for specialized PBDOM classes that represent specific
node types. The DOM class that corresponds to PBDOM_OBJECT is the Node
object. PBDOM_OBJECT contains all the basic features required by derived
classes. A node can be an element node, a document node, or any of the node
types listed above that derive from PBDOM_OBJECT.

CHAPTER 14 Using PowerBuilder XML Services

Application Techniques 217

Methods The PBDOM_OBJECT base class has the following methods:

• AddContent, GetContent, InsertContent, RemoveContent, and SetContent to
allow you to manipulate the children of the PBDOM_OBJECT

• Clone to allow you to make shallow or deep clones of the
PBDOM_OBJECT

• Detach to detach the PBDOM_OBJECT from its parent

• Equals to test for equality with another PBDOM_OBJECT

• GetName and SetName to get and set the name of the PBDOM_OBJECT

• GetObjectClass and GetObjectClassString to identify the class of the
PBDOM_OBJECT

• GetOwnerDocumentObject to identify the owner PBDOM_DOCUMENT
of the current PBDOM_OBJECT

• GetParentObject and SetParentObject to get and set the parent of the
PBDOM_OBJECT

• GetText, GetTextNormalize, and GetTextTrim to obtain the text data of the
PBDOM_OBJECT

• HasChildren to determine whether the PBDOM_OBJECT has any children

• IsAncestorObjectOf to determine whether the PBDOM_OBJECT is the
ancestor of another PBDOM_OBJECT

PBDOM_OBJECT
inheritance

The PBDOM_OBJECT class is similar to a virtual class in C++ in that it is not
expected to be directly instantiated and used. For example, although a
PBDOM_OBJECT can be created using the PowerScript CREATE statement,
its methods cannot be used directly:

PBDOM_OBJECT pbdom_obj
pbdom_obj = CREATE PBDOM_OBJECT
pbdom_obj.SetName("VIRTUAL_PBDOM_OBJ") //exception!

The third line of code above throws an exception because it attempts to directly
access the SetName method for the base class PBDOM_OBJECT. A similar
implementation is valid, however, when the SetName method is accessed from
a derived class, such as PBDOM_ELEMENT:

PBDOM_OBJECT pbdom_obj
pbdom_obj = CREATE PBDOM_ELEMENT
pbdom_obj.SetName ("VIRTUAL_PBDOM_OBJ")

PBDOM node objects

218 PowerBuilder

Using the base
PBDOM_OBJECT as
a placeholder

The PBDOM_OBJECT class can be used as a placeholder for an object of a
derived class:

PBDOM_DOCUMENT pbdom_doc
PBDOM_OBJECT pbdom_obj

pbdom_doc = CREATE PBDOM_DOCUMENT
pbdom_doc.NewDocument ("", "", &

"Root_Element_From_Doc_1", "", "")
pbdom_obj = pbdom_doc.GetRootElement
pbdom_obj.SetName &

("Root_Element_From_Doc_1_Now_Changed")

The instantiated PBDOM_OBJECT pbdom_obj is assigned to a
PBDOM_DOCUMENT object, which holds the return value of the
GetRootElement method. Here, pbdom_obj holds a reference to a
PBDOM_ELEMENT and can be operated on legally like any object of a class
derived from PBDOM_OBJECT.

Standalone objects A PBDOM_OBJECT can be created as a self-contained object independent of
any document or parent PBDOM_OBJECT. Such a PBDOM_OBJECT is
known as a standalone object. For example:

PBDOM_ELEMENT pbdom_elem_1
pbdom_elem_1 = Create PBDOM_ELEMENT
pbdom_elem_1.SetName("pbdom_elem_1")

pbdom_elem_1 is instantiated in the derived class PBDOM_ELEMENT using
the Create keyword. The SetName method can then be invoked from the
pbdom_elem_1 object, which is a standalone object not contained within any
document.

Standalone objects can perform any legal PBDOM operations, but standalone
status does not give the object any special advantages or disadvantages.

Parent-owned and
document-owned
objects

A PBDOM_OBJECT can be assigned a parent by appending it to another
standalone PBDOM_OBJECT, as in the following example:

PBDOM_ELEMENT pbdom_elem_1
PBDOM_ELEMENT pbdom_elem_2

pbdom_elem_1 = Create PBDOM_ELEMENT
pbdom_elem_2 = Create PBDOM_ELEMENT

pbdom_elem_1.SetName("pbdom_elem_1")
pbdom_elem_2.SetName("pbdom_elem_2")
pbdom_elem_1.AddContent(pbdom_elem_2)

CHAPTER 14 Using PowerBuilder XML Services

Application Techniques 219

Two PBDOM_ELEMENT objects, pbdom_elem_1 and pbdom_elem_2, are
instantiated. The pbdom_elem_2 object is appended as a child object of
pbdom_elem_1 using the AddContent method.

In this example, neither pbdom_elem_1 nor pbdom_elem_2 is owned by any
document, and the pbdom_elem_1 object is still standalone. If pbdom_elem_1
were assigned to a parent PBDOM_OBJECT owned by a document,
pbdom_elem_1 would cease to be a standalone object.

PBDOM_DOCUMENT
The PBDOM_DOCUMENT class derives from PBDOM_OBJECT and
represents an XML DOM document. The PBDOM_DOCUMENT methods
allow access to the root element, processing instructions, and other
document-level information.

Methods In addition to the methods inherited from PBDOM_OBJECT, the
PBDOM_DOCUMENT class has the following methods:

• DetachRootElement, GetRootElement, HasRootElement, and
SetRootElement to manipulate the root element of the
PBDOM_DOCUMENT

• GetDocType and SetDocType to get and set the DOCTYPE declaration of
the XML document

• NewDocument to build a new PBDOM_DOCUMENT from scratch

• SaveDocument to save the content of the DOM tree in the
PBDOM_DOCUMENT to a file

PBDOM_DOCTYPE
The PBDOM_DOCTYPE class represents the document type declaration
object of an XML DOM document. The PBDOM_DOCTYPE methods allow
access to the root element name, the internal subset, and the system and public
IDs.

Methods In addition to the methods inherited from PBDOM_OBJECT, the
PBDOM_DOCTYPE class has the following methods:

• GetPublicID, SetPublicID, GetSystemID, and SetSystemID to get and set the
public and system IDs of an externally-referenced ID declared in the
PBDOM_DOCTYPE

PBDOM node objects

220 PowerBuilder

• GetInternalSubset and SetInternalSubset to get and set the internal subset
data of the PBDOM_DOCTYPE

PBDOM_ELEMENT
The PBDOM_ELEMENT represents an XML element modeled in
PowerScript. The PBDOM_ELEMENT methods allow access to element
attributes, children, and text.

Methods In addition to the methods inherited from PBDOM_OBJECT, the
PBDOM_ELEMENT class has the following methods:

• AddNamespaceDeclaration and RemoveNamespaceDeclaration to add
namespace declarations to and remove them from the
PBDOM_ELEMENT

• GetAttribute, GetAttributes, GetAttributeValue, HasAttributes,
RemoveAttribute, SetAttribute, and SetAttributes to manipulate the
attributes of the PBDOM_ELEMENT

• GetChildElement, GetChildElements, HasChildElements,
RemoveChildElement, and RemoveChildElements to manipulate the
children of the PBDOM_ELEMENT

• GetNamespacePrefix and GetNamespaceURI to get the prefix and URI of
the namespace associated with the PBDOM_ELEMENT

• GetQualifiedName to get the full name of the PBDOM_ELEMENT
including the prefix (if any)

• SetDocument to set a PBDOM_DOCUMENT as the parent of the
PBDOM_ELEMENT

• SetNamespace to set the namespace of the PBDOM_ELEMENT

• SetText to set the text content of the PBDOM_ELEMENT

The relationship
between
PBDOM_ELEMENT
and
PBDOM_ATTRIBUTE

In PBDOM, an XML element's attributes are not its children. They are
properties of elements rather than having a separate identity from the elements
they are associated with.

Consider the following simple XML document :

<root attr="value1">
<child attr_1="value1" attr_2="value2"/>

</root>

CHAPTER 14 Using PowerBuilder XML Services

Application Techniques 221

The equivalent PBDOM tree is shown in Figure 14-2:

Figure 14-2: Relationship between PBDOM_ELEMENTs and
PBDOM_ATTRIBUTEs

The solid line joining root with child represents a parent-child relationship. The
dashed lines represent a "property-of" relationship between an attribute and its
owner element.

The PBDOM_ELEMENT content management methods do not apply to
PBDOM_ATTRIBUTE objects. There are separate get, set, and remove
methods for attributes.

Because they are not children of their owner elements, PBDOM does not
consider attributes as part of the overall PBDOM document tree, but they are
linked to it through their owner elements.

An attribute can contain child objects (XML text and entity reference nodes),
so an attribute forms a subtree of its own.

Because an element's attributes are not considered its children, they have no
sibling relationship among themselves as child objects do. In the sample XML
document and in Figure 14-2, attr_1 and attr_2 are not siblings. The order of
appearance of attributes inside its owner element has no significance.

Attribute setting and
creation

In PBDOM, an XML element's attribute is set using the PBDOM_ELEMENT
SetAttribute and SetAttributes methods. These methods always attempt to create
new attributes for the PBDOM_ELEMENT and attempt to replace existing
attributes with the same name and namespace URI.

If the PBDOM_ELEMENT already contains an existing attribute with the
same name and namespace URI, these methods first remove the existing
attribute and then insert a new attribute into the PBDOM_ELEMENT. Calling
the SetAttribute method can cause a PBDOM_ATTRIBUTE (representing an
existing attribute of the PBDOM_ELEMENT) to become detached from its
owner PBDOM_ELEMENT.

PBDOM node objects

222 PowerBuilder

For example, consider the following element:

<an_element an_attr="some_value"/>

If a PBDOM_ELEMENT object pbdom_an_elem represents the element
an_element and the following statement is issued, the method first attempts to
create a new attribute for the an_element element:

pbdom_an_elem.SetAttribute("an_attr",
"some_other_value")

Then, because an_element already contains an attribute with the name an_attr,
the attribute is removed. If there is an existing PBDOM_ATTRIBUTE object
that represents the original an_attr attribute, this PBDOM_ATTRIBUTE is
detached from its owner element (an_element).

For more information about attributes and namespaces, see “XML
namespaces” on page 240.

PBDOM_ATTRIBUTE
The PBDOM_ATTRIBUTE class represents an XML attribute modeled in
PowerScript. The PBDOM_ATTRIBUTE methods allow access to element
attributes and namespace information.

Methods In addition to the methods inherited from PBDOM_OBJECT, the
PBDOM_ATTRIBUTE class has the following methods:

• GetBooleanValue, SetBooleanValue, GetDateValue, SetDateValue,
GetDateTimeValue, SetDateTimeValue, GetDoubleValue, SetDoubleValue,
GetIntValue, SetIntValue, GetLongValue, SetLongValue, GetRealValue,
SetRealValue, GetTimeValue, SetTimeValue, GetUIntValue, SetUintValue,
GetULongValue,and SetULongValue to get and set the value of the
PBDOM_ATTRIBUTE as the specified datatype

• GetNamespacePrefix and GetNamespaceURI to get the prefix and URI of
the namespace associated with the PBDOM_ATTRIBUTE

• GetOwnerElementObject and SetOwnerElementObject to get and set the
owner PBDOM_ELEMENT of the PBDOM_ATTRIBUTE

• GetQualifiedName to get the full name of the PBDOM_ATTRIBUTE
including the prefix, if any

• SetNamespace to set the namespace of the PBDOM_ATTRIBUTE

• SetText to set the text content of the PBDOM_ATTRIBUTE

CHAPTER 14 Using PowerBuilder XML Services

Application Techniques 223

Child
PBDOM_OBJECTs

A PBDOM_ATTRIBUTE contains a subtree of child PBDOM_OBJECTs. The
child objects can be a combination of PBDOM_TEXT and
PBDOM_ENTITYREFERENCE objects.

The following example produces a PBDOM_ELEMENT named elem that
contains a PBDOM_ATTRIBUTE named attr:

PBDOM_ATTRIBUTE pbdom_attr
PBDOM_TEXT pbdom_txt
PBDOM_ENTITYREFERENCE pbdom_er
PBDOM_ELEMENT pbdom_elem

pbdom_elem = Create PBDOM_ELEMENT
pbdom_elem.SetName ("elem")

pbdom_attr = Create PBDOM_ATTRIBUTE
pbdom_attr.SetName("attr")
pbdom_attr.SetText("Part 1 ")

pbdom_txt = Create PBDOM_TEXT
pbdom_txt.SetText (" End.")

pbdom_er = Create PBDOM_ENTITYREFERENCE
pbdom_er.SetName("ER")

pbdom_attr.AddContent(pbdom_er)
pbdom_attr.AddContent(pbdom_txt)

pbdom_elem.SetAttribute(pbdom_attr)

The element tag in the XML looks like this:

<elem attr="Part 1 &ER; End.">

PBDOM node objects

224 PowerBuilder

In Figure 14-3, the arrows indicate a parent-child relationship between the
PBDOM_ATTRIBUTE and the other PBDOM_OBJECTs:

Figure 14-3: PBDOM_ATTRIBUTE subtree example

The Default
PBDOM_TEXT child

A PBDOM_ATTRIBUTE generally always contains at least one
PBDOM_TEXT child that might contain an empty string. This is the case
unless the RemoveContent method has been called to remove all contents of the
PBDOM_ATTRIBUTE.

The following examples show how a PBDOM_TEXT object with an empty
string can become the child of a PBDOM_ATTRIBUTE.

Example 1 The following example uses the PBDOM_ELEMENT
SetAttribute method. The name of the PBDOM_ATTRIBUTE is set to attr but
the text value is an empty string. The PBDOM_ATTRIBUTE will have one
child PBDOM_TEXT that will contain an empty string:

PBDOM_DOCUMENT pbdom_doc
PBDOM_ATTRIBUTE pbdom_attr
PBDOM_OBJECT pbdom_obj_array[]

try

pbdom_doc = Create PBDOM_DOCUMENT
pbdom_doc.NewDocument("root")

// Note that the name of the attribute is set to
// "attr" and its text value is the empty string ""
pbdom_doc.GetRootElement().SetAttribute("attr", "")

pbdom_attr = &
pbdom_doc.GetRootElement().GetAttribute("attr")

MessageBox ("HasChildren", &
string(pbdom_attr.HasChildren()))

CHAPTER 14 Using PowerBuilder XML Services

Application Techniques 225

catch(PBDOM_EXCEPTION pbdom_except)
MessageBox ("PBDOM_EXCEPTION", &

pbdom_except.GetMessage())
end try

When you use the SaveDocument method to render pbdom_doc as XML, it
looks like this:

<root attr="" />

Example 2 The following example creates a PBDOM_ATTRIBUTE and sets
its name to attr. No text value is set, but a PBDOM_TEXT object is
automatically created and attached to the PBDOM_ATTRIBUTE. This is the
default behavior for every PBDOM_ATTRIBUTE created in this way:

PBDOM_DOCUMENT pbdom_doc
PBDOM_ATTRIBUTE pbdom_attr

try
pbdom_doc = Create PBDOM_DOCUMENT
pbdom_doc.NewDocument("root")

// Create a PBDOM_ATTRIBUTE and set its name to "attr"
pbdom_attr = Create PBDOM_ATTRIBUTE
pbdom_attr.SetName("attr")

pbdom_doc.GetRootElement().SetAttribute(pbdom_attr)

MessageBox ("HasChildren", &
string(pbdom_attr.HasChildren()))

catch(PBDOM_EXCEPTION pbdom_except)
MessageBox ("PBDOM_EXCEPTION", &

pbdom_except.GetMessage())
end try

When you call the SetText method (or any of the other Set* methods except
SetNamespace), the default PBDOM_TEXT is replaced by a new
PBDOM_TEXT. If you call the SetContent method, you can replace the default
PBDOM_TEXT by a combination of PBDOM_TEXT and
PBDOM_ENTITYREFERENCE objects.

PBDOM node objects

226 PowerBuilder

PBDOM_ENTITYREFERENCE
The PBDOM_ENTITYREFERENCE class defines behavior for an XML
entity reference node. It is a simple class intended primarily to help you insert
entity references within element nodes as well as attribute nodes.

When the PBDOM_BUILDER class parses an XML document and builds up
the DOM tree, it completely expands entities as they are encountered in the
DTD. Therefore, immediately after a PBDOM_DOCUMENT object is built
using any of the PBDOM_BUILDER build methods, there are no entity
reference nodes in the resulting document tree.

A PBDOM_ENTITYREFERENCE object can be created at any time and
inserted into any document whether or not there is any corresponding DOM
entity node representing the referenced entity in the document.

Methods The PBDOM_ENTITYREFERENCE class has only methods that are inherited
from PBDOM_OBJECT.

PBDOM_CHARACTERDATA
The PBDOM_CHARACTERDATA class derives from PBDOM_OBJECT
and represents character-based content (not markup) within an XML
document. The PBDOM_CHARACTERDATA class extends
PBDOM_OBJECT with methods specifically designed for manipulating
character data.

Methods In addition to the methods inherited from PBDOM_OBJECT, the
PBDOM_CHARACTERDATA class has the following methods:

• Append to append a text string or the text data of a
PBDOM_CHARACTERDATA object to the text in the current object

• SetText to set the text content of the PBDOM_CHARACTERDATA object

Parent of three
classes

The PBDOM_CHARACTERDATA class is the parent class of three other
PBDOM classes:

• PBDOM_TEXT

• PBDOM_CDATA

• PBDOM_COMMENT

CHAPTER 14 Using PowerBuilder XML Services

Application Techniques 227

The PBDOM_CHARACTERDATA class, like its parent class
PBDOM_OBJECT, is a "virtual" class (similar to a virtual C++ class) in that it
is not expected to be directly instantiated and used. For example, creating a
PBDOM_CHARACTERDATA with the CREATE statement is legal in
PowerScript, but operating on it directly by calling its SetText method is not.
The last line in this code raises an exception:

PBDOM_CHARACTERDATA pbdom_chrdata
pbdom_chrdata = CREATE PBDOM_CHARACTERDATA

pbdom_chrdata.SetText("character string") //exception!

In this example, pbdom_chrdata is declared as a
PBDOM_CHARACTERDATA but is instantiated as a PBDOM_TEXT.
Calling SetText on pbdom_chrdata is equivalent to calling the PBDOM_TEXT
SetText method:

PBDOM_CHARACTERDATA pbdom_chrdata
pbdom_chrdata = CREATE PBDOM_TEXT

pbdom_chrdata.SetText("character string")

PBDOM_TEXT
The PBDOM_TEXT class derives from PBDOM_CHARACTERDATA and
represents a DOM text node in an XML document.

Methods The PBDOM_TEXT class has no methods that are not inherited from
PBDOM_OBJECT or PBDOM_CHARACTERDATA.

Using PBDOM_TEXT
objects

PBDOM_TEXT objects are commonly used to represent the textual content of
a PBDOM_ELEMENT or a PBDOM_ATTRIBUTE. Although
PBDOM_TEXT objects are not delimited by angle brackets, they are objects
and do not form the value of a parent PBDOM_ELEMENT.

A PBDOM_TEXT object represented in graphical form in a PBDOM tree is a
leaf node and contains no child objects. For example, Figure 14-4 represents
the following PBDOM_ELEMENT:

<parent_element>some text</parent_element>

PBDOM node objects

228 PowerBuilder

Figure 14-4: PBDOM_TEXT parent-child relationship

The arrow indicates a parent-child relationship.

Occurrence of
PBDOM_TEXTs

When an XML document is first parsed, if there is no markup inside an
element's content, the text within the element is represented as a single
PBDOM_TEXT object. This PBDOM_TEXT object is the only child of the
element. If there is markup, it is parsed into a list of PBDOM_ELEMENT
objects and PBDOM_TEXT objects that form the list of children of the
element.

For example, parsing the following XML produces one PBDOM_ELEMENT
that represents <element_1> and one PBDOM_TEXT that represents the
textual content Some Text:

<root>
<element_1>Some Text</element_1>

</root>

The <element_1> PBDOM_ELEMENT has the PBDOM_TEXT object as
its only child.

Consider this document:

<root>
<element_1>
Some Text

<element_1_1>Sub Element Text</element_1_1>
More Text
<element_1_2/>

Yet More Text
</element_1>

</root>

CHAPTER 14 Using PowerBuilder XML Services

Application Techniques 229

Parsing this XML produces a PBDOM_ELEMENT that represents
<element_1> and its five children:

• A PBDOM_TEXT representing Some Text

• A PBDOM_ELEMENT representing <element_1_1/>

• A PBDOM_TEXT representing More Text

• A PBDOM_ELEMENT representing <element_1_2/>

• A PBDOM_TEXT representing Yet More Text

Adjacent
PBDOM_TEXT
objects

You can create adjacent PBDOM_TEXT objects that represent the contents of
a given element without any intervening markup. For example, suppose you
start with this document:

<root>
<element_1>Some Text</element_1>

</root>

Calling AddContent("More Text") on the element_1 PBDOM_ELEMENT
produces the following result:

<root>
<element_1>Some TextMore Text</element_1>

</root>

There are now two PBDOM_TEXT objects representing "Some Text" and
"More Text" that are adjacent to each other. There is nothing between them, and
there is no way to represent the separation between them.

Persistence of
PBDOM_TEXT
objects

The separation of adjacent PBDOM_TEXT objects does not usually persist
between DOM editing sessions. When the document produced by adding
"More Text" shown in the preceding example is reopened and reparsed, only
one PBDOM_TEXT object represents "Some TextMore Text".

PBDOM_CDATA
The PBDOM_CDATA class derives from PBDOM_TEXT and represents an
XML DOM CDATA section.

Methods The PBDOM_CDATA class has no methods that are not inherited from
PBDOM_OBJECT or PBDOM_CHARACTERDATA.

PBDOM node objects

230 PowerBuilder

Using CDATA objects You can think of a PBDOM_CDATA object as an extended PBDOM_TEXT
object. A PBDOM_CDATA object is used to hold text that can contain
characters that are prohibited in XML, such as < and &. Their primary purpose
is to allow you to include these special characters inside a large block of text
without using entity references.

This example contains a PBDOM_CDATA object:

<some_text>
<![CDATA[(x < y) & (y < z) => x < z]]>
</some_text>

To express the same textual content as a PBDOM_TEXT object, you would
need to write this:

<some_text>
(x < y) & (y < z) => x < z
</some_text>

Although the PBDOM_CDATA class is derived from PBDOM_TEXT, a
PBDOM_CDATA object cannot always be inserted where a PBDOM_TEXT
can be inserted. For example, a PBDOM_TEXT object can be added as a child
of a PBDOM_ATTRIBUTE, but a PBDOM_CDATA object cannot.

PBDOM_COMMENT
The PBDOM_COMMENT class represents a DOM comment node within an
XML document. The PBDOM_COMMENT class is derived from the
PBDOM_CHARACTERDATA class.

Methods The PBDOM_COMMENT class has no methods that are not inherited from
PBDOM_OBJECT or PBDOM_CHARACTERDATA.

Using comments Comments are useful for annotating parts of an XML document with
user-readable information.

When a document is parsed, any comments found within the document persist
in memory as part of the DOM tree. A PBDOM_COMMENT created at
runtime also becomes part of the DOM tree.

An XML comment does not usually form part of the content model of a
document. The presence or absence of comments has no effect on a document's
validity, and there is no requirement that comments be declared in a DTD.

CHAPTER 14 Using PowerBuilder XML Services

Application Techniques 231

PBDOM_PROCESSINGINSTRUCTION
The PBDOM_PROCESSINGINSTRUCTION class represents an XML
processing instruction (PI). The PBDOM_PROCESSINGINSTRUCTION
methods allow access to the processing instruction target and its data. The data
can be accessed as a string or, where appropriate, as name/value pairs.

The actual processing instruction of a PI is a string. This is so even if the
instruction is cut up into separate name="value" pairs. PBDOM, however,
does support such a PI format. If the PI data does contain these pairs, as is
commonly the case, then PBDOM_PROCESSINGINSTRUCTION parses
them into an internal list of name/value pairs.

Methods In addition to the methods inherited from PBDOM_OBJECT, the
PBDOM_PROCESSINGINSTRUCTION class has the following methods:

• GetData and SetData to get and set the raw data of the
PBDOM_PROCESSINGINSTRUCTION object

• GetNames to get a list of names taken from the part of the
PBDOM_PROCESSINGINSTRUCTION data that is separated into
name="value" pairs

• GetValue, RemoveValue, and SetValue to get, remove, and set the value of
a specified name/value pair in the
PBDOM_PROCESSINGINSTRUCTION object

• GetTarget to get the target of a PBDOM_PROCESSINGINSTRUCTION.
For example, the target of the XML declaration, which is a special
processing instruction, is the string xml.

Adding pbdom105.pbx to your application
The PBDOM classes are implemented in a DLL file with the suffix PBX (for
PowerBuilder extension). The simplest way to add the PBDOM classes to a
PowerBuilder target is to import the object descriptions in the pbdom105.pbx
PBX file into a library in the PowerBuilder System Tree. You can also the add
pbdom105.pbd file, which acts as a wrapper for the classes, to the target’s
library search path.

Adding pbdom105.pbx to your application

232 PowerBuilder

The pbdom105.pbx and pbdom105.pbd files are placed in the
Shared\PowerBuilder directory when you install PowerBuilder. When you are
building a PBDOM application, you do not need to copy pbdom105.pbx to
another location, but you do need to deploy it with the application in a directory
in the application’s search path.

❖ To import the descriptions in an extension into a library:

1 In the System Tree, expand the target in which you want to use the
extension, right-click a library, and select Import PB Extension from the
pop-up menu.

2 Navigate to the location of the PBX file and click Open.

Each class in the PBX displays in the System Tree so that you can expand
it, view its properties, events, and methods, and drag and drop to add them
to your scripts.

CHAPTER 14 Using PowerBuilder XML Services

Application Techniques 233

After you import pbdom105.pbx, the PBDOM objects display in the System
Tree:

Using PBDOM
This section describes how to accomplish basic tasks using PBDOM classes
and methods. To check for complete code samples that you can download and
test, select Programs>Sybase>PowerBuilder 10.5>PB 10 Code Samples from
the Windows Start menu.

Validating the XML
Before you try to build a document from a file or string, you can test whether
the XML is well formed or, optionally, whether it conforms to a DTD or
Schema using the XMLParseFile or XMLParseString PowerScript functions. For
example, this code tests whether the XML in a file is well formed:

long ll_ret
ll_ret = XMLParseFile("c:\temp\mydoc.xml", ValNever!)

Using PBDOM

234 PowerBuilder

By default, these functions display a message box if errors occur. You can also
provide a parsingerrors string argument to handle them yourself. For more
information about these functions, see their descriptions in the PowerScript
Reference or the online Help.

Creating an XML document from XML
The PBDOM_BUILDER class provides three methods for creating a
PBDOM_DOCUMENT from an existing XML source. It also provides the
GetParseErrors method to get a list of any parsing errors that occur.

Using BuildFromString The following example uses an XML string and the PBDOM_BUILDER class
to create a PBDOM_DOCUMENT. First the objects are declared:

PBDOM_BUILDER pbdom_builder_new
PBDOM_DOCUMENT pbdom_doc

The objects are then instantiated using the constructor and the
PBDOM_BUILDER BuildFromString method:

pbdombuilder_new = Create PBDOM_Builder
pbdom_doc = pbdombuilder_new.BuildFromString(Xml_doc)

XML can also be loaded directly into a string variable, as in the following
example:

string Xml_str
Xml_str = "<?xml version="1.0" ?>"
Xml_str += "<WHITEPAPER>"
Xml_str += "<TITLE>Document Title</TITLE>"
Xml_str += "<AUTHOR>Author Name</AUTHOR>"
Xml_str += "<PARAGRAPH>Document text.</PARAGRAPH>"
Xml_str += "</WHITEPAPER>"

Using BuildFromFile You can create an XML file using the BuildFromFile method and a string
containing the path to a file from which to create a PBDOM_DOCUMENT:

PBDOM_BUILDER pbdombuilder_new
PBDOM_DOCUMENT pbdom_doc
pbdombuilder_new = Create PBDOM_Builder
pbdom_doc = pbdombuilder_new.BuildFromFile &

("c:\pbdom_doc_1.xml")

Using
BuildFromDataStore

The following PowerScript code fragment demonstrates how to use the
BuildFromDataStore method with a referenced DataStore object.

PBDOM_Builder pbdom_bldr
pbdom_document pbdom_doc

CHAPTER 14 Using PowerBuilder XML Services

Application Techniques 235

datastore ds

ds = Create datastore
ds.DataObject = "d_customer"
ds.SetTransObject (SQLCA)
ds.Retrieve

pbdom_doc = pbdom_bldr.BuildFromDataStore(ds)

Using GetParseErrors After a call to any of the Build methods, you can obtain a list of parsing and
validating errors encountered by the Build methods with the GetParseErrors
method:

PBDOM_Builder pbdom_bldr
pbdom_document pbdom_doc
string strParseErrors[]
BOOLEAN bRetTemp = FALSE

pbdom_buildr = Create PBDOM_BUILDER
pbdom_doc = pbdom_buildr.BuildFromFile("D:\temp.xml")
bRetTemp = pbdom_buildr.GetParseErrors(strParseErrors)
if bRetTemp = true then

for l = 1 to UpperBound(strParseErrors)
MessageBox ("Parse Error", strParseErrors[l])

next
end if

Parsing errors
If parsing errors are found and GetParseErrors returns true, a complete
PBDOM node tree that can be inspected might still be created.

Creating an XML document from scratch
You can create an XML document in a script using the appropriate
PBDOM_OBJECT subclasses and methods. The following code uses the
PBDOM_ELEMENT and PBDOM_DOCUMENT classes and some of their
methods to create a simple XML document.

First, the objects are declared and instantiated:

PBDOM_ELEMENT pbdom_elem_1
PBDOM_ELEMENT pbdom_elem_2
PBDOM_ELEMENT pbdom_elem_3
PBDOM_ELEMENT pbdom_elem_root
PBDOM_DOCUMENT pbdom_doc1

Using PBDOM

236 PowerBuilder

pbdom_elem_1 = Create PBDOM_ELEMENT
pbdom_elem_2 = Create PBDOM_ELEMENT
pbdom_elem_3 = Create PBDOM_ELEMENT

The instantiated objects are assigned names. Note that the
PBDOM_DOCUMENT object pbdom_doc1 is not named:

pbdom_elem_1.SetName("pbdom_elem_1")
pbdom_elem_2.SetName("pbdom_elem_2")
pbdom_elem_3.SetName("pbdom_elem_3")

The objects are arranged into a node tree using the AddContent method. The
AddContent method adds the referenced object as a child node under the object
from which AddContent is invoked:

pbdom_elem_1.AddContent(pbdom_elem_2)
pbdom_elem_2.AddContent(pbdom_elem_3)

Use the NewDocument method to create a new XML document. The parameter
value supplied to the NewDocument method becomes the name of the root
element. This name is then accessed from the PBDOM_DOCUMENT object
pbdom_doc1 and assigned to the PBDOM_ELEMENT object
pbdom_elem_root using the GetRootElement method:

pbdom_doc1.NewDocument("Root_Element_From_Doc_1")
pbdom_elem_root = pbdom_doc1.GetRootElement()

The ELEMENT object pbdom_elem_1 and all its child nodes are placed in the
new XML document node tree under the root element using the AddContent
method. Note that as the ancestor node pbdom_elem_1 is placed in the node
tree, all its child nodes move as well:

pbdom_elem_root.AddContent(pbdom_elem_1)

The XML document created looks like this:

<!DOCTYPE Root_Element_From_Doc_1>
<Root_Element_From_Doc_1>

<pbdom_elem_1>
<pbdom_elem_2>

<pbdom_elem_3/>
</pbdom_elem_2>

</pbdom_elem_1>
</Root_Element_From_Doc_1>

CHAPTER 14 Using PowerBuilder XML Services

Application Techniques 237

Accessing node data
An XML document can be read by accessing the elements of its node tree using
the appropriate PBDOM_OBJECT subclasses and methods. The following
code uses an array, the PBDOM_OBJECT, and its descendant class
PBDOM_DOCUMENT, and the GetContent and GetRootElement methods of
the PBDOM_DOCUMENT class to access node data on an XML document.

A PBDOM_DOCUMENT object named pbdom_doc contains the following
XML document:

<Root>
<Element_1>

<Element_1_1/>
<Element_1_2/>
<Element_1_3/>

</Element_1>
<Element_2/>
<Element_3/>

</Root>

The following code declares an array to hold the elements returned from the
GetContent method, which reads the PBDOM_DOCUMENT object named
pbdom_doc:

PBDOM_OBJECT pbdom_obj_array[]
...
pbdom_doc.GetContent(ref pbdom_obj_array)

The pbdom_obj_array array now contains one value representing the root
element of pbdom_doc: <Root>.

To access the other nodes in pbdom_doc, the GetRootElement method is used
with the GetContent method.

pbdom_doc.GetRootElement().GetContent &
(ref pbdom_obj_array)

The pbdom_obj_array array now contains three values corresponding to the
three child nodes of the root element of pbdom_doc: <Element_1>,
<Element_2>, and <Element_3>.

PBDOM provides other methods for accessing data, including InsertContent,
AddContent, RemoveContent, and SetContent.

Changing node
content with arrays

You can use the AddContent method to change node content:

pbdom_obj_array[3].AddContent("This is Element 3.")

Using PBDOM

238 PowerBuilder

This line of code changes the node tree as follows:

<Root>
<Element_1>

<Element_1_1/>
<Element_1_2/>
<Element_1_3/>

</Element_1>
<Element_2/>
<Element_3>This is Element 3.</Element_3>

</Root>

Arrays and object references
When you use a method such as the GetContent method of the
PBDOM_DOCUMENT class to return an array of PBDOM_OBJECT
references, the references are to instantiated PBDOM objects. If you modify
any of these objects through its array item, the changes are permanent and are
reflected in any other arrays that hold the same object reference.

Manipulating the node-tree hierarchy
You can restructure an XML node tree by rearranging its nodes. One means of
manipulating nodes involves detaching a child node from its parent node. This
can be accomplished with the Detach method, as in the following example.

The root element of a PBDOM_DOCUMENT object named pbdom_doc is
obtained using the GetRootElement method:

pbdom_obj = pbdom_doc.GetRootElement()

The root element is detached from the PBDOM_DOCUMENT object, which
is the parent node of the root element:

pbdom_obj.Detach()

PBDOM provides the SetParentObject method to make an object a child of
another object.

Checking for parent
node

The GetParentObject method can be used to determine whether an element has
a parent object, as in the following example:

pbdom_parent_obj = pbdom_obj.GetParentObject()
if not IsValid(pbdom_parent_obj) then

MessageBox ("Invalid", "Root Element has no Parent")
end if

CHAPTER 14 Using PowerBuilder XML Services

Application Techniques 239

If the object on which GetParentObject is called has no parent object, the
function returns NULL.

PBDOM provides similar methods that return information about an element’s
place in an XML node tree. These methods include HasChildren, which returns
a boolean indicating whether an object has child objects, and
IsAncestorObjectOf, which indicates whether an object is the ancestor of
another object.

Handling PBDOM exceptions
PBDOM defines an exception class, PBDOM_EXCEPTION, derived from the
standard PowerBuilder Exception class. The standard Text property of the
Exception class can be used to obtain more detail on the nature of the exception
being thrown. The class extends the PowerBuilder Exception class with one
method, GetExceptionCode, that returns the unique code that identifies the
exception being thrown.

For a list of exception codes, see the PowerBuilder Extension Reference or the
topic PBDOM exceptions in the online Help.

PBDOM is a PowerBuilder extension, built using PBNI. The extension itself
might throw a PBXRuntimeError exception. In the following example, the
try-catch block checks first for a PBDOM exception, then for a
PBXRuntimeError.

The example builds a PBDOM_DOCUMENT from a passed-in file name and
uses a user-defined function called ProcessData to handle the DOM nodes.
Process data could be a recursive function that extracts information from the
DOM elements for further processing:

Long ll_ret

ll_ret = XMLParseFile(filename, ValNever!)
if ll_ret < 0 then return

PBDOM_Builder domBuilder

TRY
domBuilder = CREATE PBDOM_Builder
PBDOM_Document domDoc
PBDOM_Element root
domDoc = domBuilder.BuildFromFile(filename)

XML namespaces

240 PowerBuilder

IF IsValid(domDoc) THEN
IF domDoc.HasChildren() THEN

PBDOM_Object data[]
IF domDoc.GetContent(data) THEN

Long ll_index, ll_count
ll_count = UpperBound(data)
FOR ll_index = 1 TO ll_count

ProcessData(data[ll_index], 0)
NEXT

END IF
END IF

END IF

CATCH (PBDOM_Exception pbde)
MessageBox("PBDOM Exception", pbde.getMessage())

CATCH (PBXRuntimeError re)
MessageBox("PBNI Exception", re.getMessage())

END TRY

XML namespaces
XML namespaces provide a way to create globally unique names to distinguish
between elements and attributes with the same name but of different
terminologies. For example, in an XML invoice document for a bookstore, the
name "date" could be used by accounting for the date of the order and by order
fulfillment for the date of publication.

An XML namespace is identified by a Uniform Resource Identifier (URI), a
short string that uniquely identifies resources on the Web. The elements and
attributes in each namespace can be uniquely identified by prefixing the
element or attribute name (the local name) with the URI of the namespace.

Associating a prefix
with a namespace

You declare an XML namespace using xmlns as part of a namespace
declaration attribute. With the namespace declaration attribute, you can
associate a prefix with the namespace.

For example, the following namespace declaration attribute declares the
http://www.pre.com namespace and associates the prefix pre with this
namespace:

xmlns:pre="http://www.pre.com"

CHAPTER 14 Using PowerBuilder XML Services

Application Techniques 241

Default XML
namespace

If an XML namespace declaration does not specify a prefix, the namespace
becomes a default XML namespace. For example, the following element,
digicom, declares the namespace http://www.digital_software.com:

<digicom xmlns="http://www.digital_software.com" />

The namespace http://www.digital_software.com is the in-scope default
namespace for the element digicom and any child elements that digicom might
contain. The child elements of digicom will automatically be in this namespace.

The NONAMESPACE
declaration

The following namespace declaration is known as the NONAMESPACE
declaration:

xmlns=""

The containing element and its child elements are declared to be in no
namespace. An element that is in the NONAMESPACE namespace has its
namespace prefix and URI set to empty strings.

Initial state When a PBDOM_ELEMENT or a PBDOM_ATTRIBUTE is first created, it
has no name, and the namespace information is by default set to the
NONAMESPACE namespace (that is, its namespace prefix and URI are both
empty strings). The SetName method is used to set the local name and the
SetNamespace method is used to set the namespace prefix and URI.

The name is required
The name is a required property of a PBDOM_ELEMENT and
PBDOM_ATTRIBUTE, but the namespace information is not.

Retrieving from a
parsed document

If a PBDOM_ELEMENT or PBDOM_ATTRIBUTE is retrieved
programmatically from a parsed document, then its name and namespace
information are inherited from the Element or Attribute contained in the parsed
document. However, even after parsing, the name and namespace information
of the PBDOM_ELEMENT and PBDOM_ATTRIBUTE can be further
modified with the SetName and SetNamespace methods.

The name and namespace information are stored separately internally.
Changing the name of a PBDOM_ELEMENT or PBDOM_ATTRIBUTE does
not affect its namespace information, and changing its namespace information
has no effect on its name.

XML namespaces

242 PowerBuilder

Setting the name and namespace of a PBDOM_ATTRIBUTE
The W3C "Namespaces in XML" specification (in section 5.3) places
restrictions on setting the name and namespace of a PBDOM_ATTRIBUTE.
No tag can contain two attributes with identical names, or with qualified names
that have the same local name and have prefixes that are bound to identical
namespace names.

The specification provides the following examples of illegal and legal
attributes:

<!-- http://www.w3.org is bound to n1 and n2 -->
<x xmlns:n1="http://www.w3.org"

xmlns:n2="http://www.w3.org" >
<bad a="1" a="2" />
<bad n1:a="1" n2:a="2" />

</x>

<!-- http://www.w3.org is bound to n1 and is the default
-->
<x xmlns:n1="http://www.w3.org"

xmlns="http://www.w3.org" >
<good a="1" b="2" />
<good a="1" n1:a="2" />

</x>

In the first example, <bad a="1" a="2" /> violates the rule that no tag can
contain two attributes with identical names. In the second tag, the attributes
have the same local name but different prefixes, so that their names are
different. However, their prefixes point to the same namespace URI,
http://www.w3.org, so it is illegal to place them inside the same owner element.

PBDOM scenarios The following scenarios illustrate how PBDOM conforms to these
requirements.

• When the PBDOM_ATTRIBUTE SetName method is invoked:

If the PBDOM_ATTRIBUTE pbdom_attr1 has an owner
PBDOM_ELEMENT that contains an existing PBDOM_ATTRIBUTE
with the same name that is to be set for pbdom_attr1 and has the same
namespace URI as pbdom_attr1, the EXCEPTION_INVALID_NAME
exception is thrown.

CHAPTER 14 Using PowerBuilder XML Services

Application Techniques 243

• When the PBDOM_ATTRIBUTE SetNamespace method is invoked:

If the PBDOM_ATTRIBUTE pbdom_attr1 has an owner
PBDOM_ELEMENT that contains an existing PBDOM_ATTRIBUTE
with the same name as pbdom_attr1 and the same namespace URI that is
to be set for pbdom_attr1, the EXCEPTION_INVALID_NAME exception
is thrown.

• When the PBDOM_ELEMENT SetAttribute(pbdom_attribute
pbdom_attribute_ref) method is invoked:

If the PBDOM_ELEMENT already contains an attribute that has the same
name and namespace URI as the input PBDOM_ATTRIBUTE, the
existing attribute is replaced by the input PBDOM_ATTRIBUTE. The
existing attribute is thus removed (detached) from the owner element.

• When the PBDOM_ELEMENT SetAttributes(pbdom_attribute
pbdom_attribute_array[]) method is invoked:

If any two PBDOM_ATTRIBUTE objects in the array have the same
name and namespace URI, the EXCEPTION_INVALID_NAME
exception is thrown. If there is no name or namespace conflict within the
array, all the existing attributes of the PBDOM_ELEMENT are replaced
by the PBDOM_ATTRIBUTE objects in the array.

Note
All the above scenarios apply to PBDOM_ATTRIBUTE objects that are
contained in the NONAMESPACE namespace.

• When the PBDOM_ELEMENT SetAttribute(string strName, string
strValue) method is invoked:

A new PBDOM_ATTRIBUTE with the specified name and value is
created and set into the PBDOM_ELEMENT. If the PBDOM_ELEMENT
already contains an attribute that has the same name and that is contained
within the NONAMESPACE namespace, it is removed (detached) from
the PBDOM_ELEMENT.

XML namespaces

244 PowerBuilder

• When the PBDOM_ELEMENT SetAttribute(string strName, string
strValue, string strNamespacePrefix, string strNamespaceUri, boolean
bVerifyNamespace) method is invoked:

A new PBDOM_ATTRIBUTE with the specified name, value, and
namespace information is created and set into the PBDOM_ELEMENT. If
the PBDOM_ELEMENT already contains a PBDOM_ATTRIBUTE that
has the same name and namespace URI as the input namespace URI, it is
removed (detached) from the PBDOM_ELEMENT.

Example The following example demonstrates the impact of setting a
PBDOM_ATTRIBUTE for a PBDOM_ELEMENT where the
PBDOM_ELEMENT already contains an attribute of the same name and
namespace URI as the input PBDOM_ATTRIBUTE.

The example creates a PBDOM_DOCUMENT based on the following
document:

<root xmlns:pre1="http://www.pre.com"
xmlns:pre2="http://www.pre.com">

<child1 pre1:a="123"/>
</root>

Then it creates a PBDOM_ATTRIBUTE object and set its name to a and its
prefix and URI to pre2 and http://www.pre.com. The bVerifyNamespace
argument is set to FALSE because this PBDOM_ATTRIBUTE has not been
assigned an owner PBDOM_ELEMENT yet, so that the verification for a
predeclared namespace would fail. The text value is set to 456.

The child1 element already contains an attribute named a that belongs to the
namespace http://www.pre.com, as indicated by the prefix pre1. The new
PBDOM_ATTRIBUTE uses the prefix pre2, but it represents the same
namespace URI, so setting the new PBDOM_ATTRIBUTE to child1
successfully replaces the existing pre1:a with the new PBDOM_ATTRIBUTE
pre2:a.

PBDOM_BUILDER pbdom_buildr
PBDOM_DOCUMENT pbdom_doc
PBDOM_ATTRIBUTE pbdom_attr

string strXML = "<root
xmlns:pre1=~"http://www.pre.com~"
xmlns:pre2=~"http://www.pre.com~"><child1
pre1:a=~"123~"/></root>"

CHAPTER 14 Using PowerBuilder XML Services

Application Techniques 245

try

pbdom_buildr = Create PBDOM_BUILDER
pbdom_doc = pbdom_buildr.BuildFromString (strXML)

// Create a PBDOM_ATTRIBUTE and set its properties
pbdom_attr = Create PBDOM_ATTRIBUTE
pbdom_attr.SetName ("a")
pbdom_attr.SetNamespace ("pre2", &

"http://www.pre.com", false)
pbdom_attr.SetText("456")

// Attempt to obtain the child1 element and
// set the new attribute to it
pbdom_doc.GetRootElement(). &

GetChildElement("child1").SetAttribute(pbdom_attr)

pbdom_doc.SaveDocument &
("pbdom_elem_set_attribute_1.xml")

catch (PBDOM_EXCEPTION except)
MessageBox ("PBDOM_EXCEPTION", except.GetMessage())

end try

The XML output from SaveDocument looks like the following :

<root xmlns:pre1="http://www.pre.com"
xmlns:pre2="http://www.pre.com">

<child1 pre2:a="456"/>
</root>

XML namespaces

246 PowerBuilder

Application Techniques 247

C H A P T E R 1 5 Manipulating Graphs

About this chapter This chapter describes how to write code that allows you to access and
change a graph in your application at runtime.

Contents

Using graphs
In PowerBuilder, there are two ways to display graphs:

• In a DataWindow, using data retrieved from the DataWindow data
source

• In a graph control in a window or user object, using data supplied by
your application code

This chapter discusses the graph control and describes how your
application code can supply data for the graph and manipulate its
appearance.

For information about graphs in DataWindows, see the DataWindow
Programmer’s Guide and the DataWindow Reference.

To learn about designing graphs and setting graph properties in the
painters, see the PowerBuilder User’s Guide.

Topic Page

Using graphs 247

Populating a graph with data 249

Modifying graph properties 251

Accessing data properties 253

Using point and click 255

Using graphs

248 PowerBuilder

Working with graph controls in code
Graph controls in a window can be enabled or disabled, visible or invisible, and
can be used in drag and drop. You can also write code that uses events of graph
controls and additional graph functions.

Properties of graph
controls

You can access (and optionally modify) a graph by addressing its properties in
code at runtime. There are two kinds of graph properties:

• Properties of the graph definition itself These properties are initially
set in the painter when you create a graph. They include a graph’s type,
title, axis labels, whether axes have major divisions, and so on.

• Properties of the data These properties are relevant only at runtime,
when data has been loaded into the graph. They include the number of
series in a graph (series are created at runtime), colors of bars or columns
for a series, whether the series is an overlay, text that identifies the
categories (categories are created at runtime), and so on.

Events of graph
controls

Graph controls have the events listed in Table 15-1.

Table 15-1: Graph control events

So, for example, you can write a script that is invoked when a user clicks a
graph or drags an object on a graph (as long as the graph is enabled).

Functions for graph
controls

You use the PowerScript graph functions in Table 15-2 to manipulate data in a
graph.

Table 15-2: PowerScript graph functions

Clicked DragLeave

Constructor DragWithin

Destructor GetFocus

DoubleClicked LoseFocus

DragDrop Other

DragEnter RButtonDown

Function Action

AddCategory Adds a category

AddData Adds a data point

AddSeries Adds a series

DeleteCategory Deletes a category

DeleteData Deletes a data point

DeleteSeries Deletes a series

ImportClipboard Copies data from the clipboard to a graph

ImportFile Copies the data in a text file to a graph

CHAPTER 15 Manipulating Graphs

Application Techniques 249

Populating a graph with data
This section shows how you can populate an empty graph with data.

Using AddSeries You use AddSeries to create a series. AddSeries has this syntax:

graphName.AddSeries (seriesName)

AddSeries returns an integer that identifies the series that was created. The first
series is numbered 1, the second is 2, and so on. Typically you use this number
as the first argument in other graph functions that manipulate the series.

So to create a series named Stellar, code:

int SNum
SNum = gr_1.AddSeries("Stellar")

Using AddData You use AddData to add data points to a specified series. AddData has this
syntax:

graphName.AddData (seriesNumber, value, categoryLabel)

The first argument to AddData is the number assigned by PowerBuilder to the
series. So to add two data points to the Stellar series, whose number is stored
by the variable SNum (as shown above), code:

gr_1.AddData(SNum, 12, "Q1") // Category is Q1
gr_1.AddData(SNum, 14, "Q2") // Category is Q2

Getting a series number
You can use the FindSeries function to determine the number PowerBuilder has
assigned to a series. FindSeries returns the series number. This is useful when
you write general-purpose functions to manipulate graphs.

ImportString Copies the contents of a string to a graph

InsertCategory Inserts a category before another category

InsertData Inserts a data point before another data point in a series

InsertSeries Inserts a series before another series

ModifyData Changes the value of a data point

Reset Resets the graph’s data

Function Action

Populating a graph with data

250 PowerBuilder

An example Say you want to graph quarterly printer sales. Here is a script that populates the
graph with data:

gr_1.Reset(All!) // Resets the graph.
// Create first series and populate with data.

int SNum
SNum = gr_1.AddSeries("Stellar")
gr_1.AddData(SNum, 12, "Q1") // Category is Q1.
gr_1.AddData(SNum, 14, "Q2") // Category is Q2.
gr_1.Adddata(SNum, 18, "Q3") // Category is Q3.
gr_1.AddData(SNum, 25, "Q4") // Category is Q4.
// Create second series and populate with data.
SNum = gr_1.AddSeries("Cosmic")

// Use the same categories as for series 1 so the data
// appears next to the series 1 data.
gr_1.AddData(SNum, 18, "Q1")
gr_1.AddData(SNum, 24, "Q2")
gr_1.Adddata(SNum, 38, "Q3")
gr_1.AddData(SNum, 45, "Q4")

// Create third series and populate with data.
SNum = gr_1.AddSeries("Galactic")
gr_1.AddData(SNum, 44, "Q1")
gr_1.AddData(SNum, 44, "Q2")
gr_1.Adddata(SNum, 58, "Q3")
gr_1.AddData(SNum, 65, "Q4")

Here is the resulting graph:

You can add, modify, and delete data in a graph in a window through graph
functions anytime during execution.

For more information For complete information about each graph function, see the PowerScript
Reference.

CHAPTER 15 Manipulating Graphs

Application Techniques 251

Modifying graph properties
When you define a graph in the Window or User Object painter, you specify its
behavior and appearance. For example, you might define a graph as a column
graph with a certain title, divide its Value axis into four major divisions, and so
on. Each of these entries corresponds to a property of a graph. For example, all
graphs have an enumerated attribute GraphType, which specifies the type of
graph.

When dynamically changing the graph type
If you change the graph type, be sure to change other properties as needed to
define the new graph properly.

You can change these graph properties at runtime by assigning values to the
graph’s properties in scripts. For example, to change the type of the graph
gr_emp to Column, you could code:

gr_emp.GraphType = ColGraph!

To change the title of the graph at runtime, you could code:

gr_emp.Title = "New title"

How parts of a graph are represented
Graphs consist of parts: a title, a legend, and axes. Each of these parts has a set
of display properties. These display properties are themselves stored as
properties in a subobject (structure) of Graph called grDispAttr.

For example, graphs have a Title property, which specifies the title’s text.
Graphs also have a property TitleDispAttr, of type grDispAttr, which itself
contains properties that specify all the characteristics of the title text, such as
the font, size, whether the text is italicized, and so on.

Similarly, graphs have axes, each of which also has a set of properties. These
properties are stored in a subobject (structure) of Graph called grAxis. For
example, graphs have a property Values of type grAxis, which contains
properties that specify the Value axis’s properties, such as whether to use
autoscaling of values, the number of major and minor divisions, the axis label,
and so on.

Modifying graph properties

252 PowerBuilder

Here is a representation of the properties of a graph:

Graph
int Height
int Depth
grGraphType GraphType
boolean Border
string Title
…

grDispAttr TitleDispAttr, LegendDispAttr, PieDispAttr
string FaceName
int TextSize
boolean Italic
…

grAxis Values, Category, Series
boolean AutoScale
int MajorDivisions
int MinorDivisions
string Label
…

Referencing parts of a graph
You use dot notation to reference these display properties. For example, one of
the properties of a graph’s title is whether the text is italicized or not. That
information is stored in the boolean Italic property in the TitleDispAttr
property of the graph.

For example, to italicize title of graph gr_emp, code:

gr_emp.TitleDispAttr.Italic = TRUE

Similarly, to turn on autoscaling of a graph’s Values axis, code:

gr_emp.Values.Autoscale = TRUE

To change the label text for the Values axis, code:

gr_emp.Values.Label = "New label"

To change the alignment of the label text in the Values axis, code:

gr_emp.Values.LabelDispAttr.Alignment = Left!

For a complete list of graph properties, see Objects and Controls or use the
Browser.

For more about the Browser, see the PowerBuilder User’s Guide.

CHAPTER 15 Manipulating Graphs

Application Techniques 253

Accessing data properties
To access properties related to a graph’s data during execution, you use
PowerScript graph functions. The graph functions related to data fall into
several categories:

• Functions that provide information about a graph’s data

• Functions that save data from a graph

• Functions that change the color, fill patterns, and other visual properties of
data

How to use the
functions

To call functions for a graph in a graph control, use the following syntax:

graphControlName.FunctionName (Arguments)

For example, to get a count of the categories in the window graph gr_printer,
code:

Ccount = gr_printer.CategoryCount()

Different syntax for graphs in DataWindows
The syntax for the same functions is more complex when the graph is in a
DataWindow, like this:

DataWindowName.FunctionName ("graphName", otherArguments…)

For more information, see the DataWindow Programmer’s Guide.

Getting information about the data
The PowerScript functions in Table 15-3 allow you to get information about
data in a graph at runtime.

Table 15-3: PowerScript functions for information at runtime

Function Information provided

CategoryCount The number of categories in a graph

CategoryName The name of a category, given its number

DataCount The number of data points in a series

FindCategory The number of a category, given its name

FindSeries The number of a series, given its name

GetData The value of a data point, given its series and position
(superseded by GetDataValue, which is more flexible)

GetDataPieExplode The percentage by which a pie slice is exploded

Accessing data properties

254 PowerBuilder

Saving graph data
The PowerScript functions in Table 15-4 allow you to save data from the graph.

Table 15-4: PowerScript functions for saving graph data

Modifying colors, fill patterns, and other data
The PowerScript functions in Table 15-5 allow you to modify the appearance
of data in a graph.

Table 15-5: PowerScript functions for changing appearance of data

GetDataStyle The color, fill pattern, or other visual property of a specified
data point

GetDataValue The value of a data point, given its series and position

GetSeriesStyle The color, fill pattern, or other visual property of a specified
series

ObjectAtPointer The graph element over which the mouse was positioned
when it was clicked

SeriesCount The number of series in a graph

SeriesName The name of a series, given its number

Function Information provided

Function Action

Clipboard Copies a bitmap image of the specified graph to the
clipboard

SaveAs Saves the data in the underlying graph to the clipboard or to
a file in one of a number of formats

Function Action

ResetDataColors Resets the color for a specific data point

SetDataPieExplode Explodes a slice in a pie graph

SetDataStyle Sets the color, fill pattern, or other visual property for a
specific data point

SetSeriesStyle Sets the color, fill pattern, or other visual property for a
series

CHAPTER 15 Manipulating Graphs

Application Techniques 255

Using point and click
Users can click graphs during execution. PowerScript provides a function
called ObjectAtPointer that stores information about what was clicked. You can
use this function in a number of ways in Clicked scripts. For example, you can
provide the user with the ability to point and click on a data value in a graph
and see information about the value in a message box. This section shows you
how.

Clicked events and
graphs

To cause actions when a user clicks a graph, you write a Clicked script for the
graph control. The control must be enabled. Otherwise, the Clicked event does
not occur.

Using ObjectAtPointer ObjectAtPointer has the following syntax.

graphName.ObjectAtPointer (seriesNumber, dataNumber)

You should call ObjectAtPointer in the first statement of a Clicked script.

When called, ObjectAtPointer does three things:

• It returns the kind of object clicked on as a grObjectType enumerated
value. For example, if the user clicks on a data point, ObjectAtPointer
returns TypeData!. If the user clicks on the graph’s title, ObjectAtPointer
returns TypeTitle!.

For a complete list of the enumerated values of grObjectType, open the
Browser and click the Enumerated tab.

• It stores the number of the series the pointer was over in the variable
seriesNumber, which is an argument passed by reference.

• It stores the number of the data point in the variable dataNumber, also an
argument passed by reference.

After you have the series and data point numbers, you can use other graph
functions to get or provide information. For example, you might want to report
to the user the value of the clicked data point.

Example Assume there is a graph gr_sale in a window. The following script for its
Clicked event displays a message box:

• If the user clicks on a series (that is, if ObjectAtPointer returns
TypeSeries!), the message box shows the name of the series clicked on.
The script uses the function SeriesName to get the series name, given the
series number stored by ObjectAtPointer.

Using point and click

256 PowerBuilder

• If the user clicks on a data point (that is, if ObjectAtPointer returns
TypeData!), the message box lists the name of the series and the value
clicked on. The script uses GetData to get the data’s value, given the data’s
series and data point number:

int SeriesNum, DataNum
double Value
grObjectType ObjectType
string SeriesName, ValueAsString

// The following function stores the series number
// clicked on in SeriesNum and stores the number
// of the data point clicked on in DataNum.
ObjectType = &

gr_sale.ObjectAtPointer (SeriesNum, DataNum)

IF ObjectType = TypeSeries! THEN
SeriesName = gr_sale.SeriesName (SeriesNum)
MessageBox("Graph", &

"You clicked on the series " + SeriesName)

ELSEIF ObjectType = TypeData! THEN
Value = gr_sale. GetData (SeriesNum, DataNum)
ValueAsString = String(Value)
MessageBox("Graph", &

gr_sale. SeriesName (SeriesNum) + &
" value is " + ValueAsString)

END IF

Application Techniques 257

C H A P T E R 1 6 Implementing Rich Text

About this chapter This chapter explains how to use rich text in an application, either in a
RichText DataWindow object or in a RichTextEdit control.

Contents

Before you begin This chapter assumes you know how to create RichText DataWindow
objects and RichTextEdit controls, as described in the PowerBuilder
User’s Guide.

Using rich text in an application
Rich text format (RTF) is a standard for specifying formatting instructions
and document content in a single ASCII document. An editor that supports
rich text format interprets the formatting instructions and displays the text
with formatting.

In an application, you may want to:

• Provide a window for preparing rich text documents

Although not a full-fledged word processor, the RichTextEdit control
allows the user to apply formatting to paragraphs, words, and
characters.

• Create a mail-merge application

You or the user can set up boilerplate text with input fields associated
with database data.

Topic Page

Using rich text in an application 257

Using a RichText DataWindow object 258

Using a RichTextEdit control 261

Rich text and the user 276

Using a RichText DataWindow object

258 PowerBuilder

• Display reports with formatted text

A RichText DataWindow object is designed for viewing data, rather than
entering data. It does not have the edit styles of other DataWindow
presentation styles.

• Store rich text as a string in a database and display it in a RichTextEdit
control

Sources of rich text
Any word processor You can prepare rich text in any word processor that can save or export rich text

format.

Input fields in
PowerBuilder only

Although many word processors support some kinds of fields, the fields are
usually incompatible with other rich text interpreters. If you want to specify
input fields for a PowerBuilder application, you will have to insert them using
the PowerBuilder RichTextEdit control.

Rich text in the
database

Since rich text is represented by ASCII characters, you can also store rich text
in a string database column or string variable. You can retrieve rich text from
a string database column and use the PasteRTF function to display the text with
formatting in a RichTextEdit control.

Using a RichText DataWindow object
This section discusses:

• How scrolling differs from other DataWindow styles

• Problems you may encounter with default values for new rows

• What happens when the user makes changes

Scrolling In a RichText DataWindow object, the rich text can consist of more than one
page. A row of data can be associated with several pages, making a row larger
than a page. In other DataWindow styles, a page consists of one or more than
one row—a page is larger than a row.

CHAPTER 16 Implementing Rich Text

Application Techniques 259

For a RichText DataWindow object, the scrolling functions behave differently
because of this different meaning for a page:

• ScrollNextRow and ScrollPriorRow still scroll from row to row so that
another row’s data is displayed within the document template.

• ScrollNextPage and ScrollPriorPage scroll among pages of the document
rather than pages of rows.

Page flow As you scroll, the pages appear to flow from one row to the next.
Scrolling to the next page when you are on the last page of the document takes
you to the first page for the next row. The user gets the effect of scrolling
through many instances of the document.

New rows: default
data and validation
rules

Input fields are invisible when they have no value. Before data is retrieved,
PowerBuilder displays question marks (??) in fields to make them visible. For
new rows, PowerBuilder assigns an initial value based on the datatype.

If you have specified an initial value for the column, PowerBuilder uses that
value; if no value is specified, PowerBuilder uses spaces for string columns or
zero for numeric columns.

Possible validation errors If the default initial value provided by
PowerBuilder does not satisfy the validation rule, the user gets a validation
error as soon as the new row is inserted. To avoid this, you should specify
initial values that meet your validation criteria.

When the user makes
changes

Display only When you check Display Only on the General property page
for the Rich Text Object, the user cannot make any changes to the data or the
rich text.

If you leave the pop-up menu enabled, the user can turn off the display-only
setting and make the DataWindow object editable.

Input fields In an editable DataWindow object, users change the value of a
column input field by displaying the input field’s property sheet and editing the
Data Value text box. For a computed field input field, the Data Value text box
is read-only.

You can let the user display input field names instead of data. You might do this
if you were providing an editing environment in which users were developing
their own RichText DataWindow object. However, the RichTextEdit control is
better suited to a task like this, because you have more scripting control over
the user’s options.

Rich text If users edit the text or formatting, they are changing the document
template. The changes are seen for every row.

Using a RichText DataWindow object

260 PowerBuilder

The changes apply to that session only, unless you take extra steps to save the
changes and restore them.

To save the changes, you can write a script that uses the CopyRTF function to
get all the text, including the named input fields but not the row data, and save
the contents of that string in a file or database. Whenever users view the
RichText DataWindow object, you can restore their latest version or let them
return to the original definition of the DataWindow object’s text.

Functions for RichText
DataWindow objects

The DataWindow control has many functions.

Functions that behave the same DataWindow control functions that
operate on data, such as Update or Retrieve, have the same behavior for all
types of DataWindow objects.

When the object in the control is a RichText DataWindow object, some of the
functions do not apply or they behave differently.

Functions that do not apply Some functions are not applicable when the
object is a RichText DataWindow object. The following functions return an
error or have no effect:

• Functions for graph and crosstab DataWindow objects

• Functions for grouping: GroupCalc, FindGroupChange

• Functions for code tables: GetValue, SetValue

• Functions for selecting rows: SelectRow, SetRowFocusIndicator,
GetSelectedRow

• Functions that affect column and detail band appearance: SetBorderStyle,
SetDetailHeight

• ObjectAtPointer

• OLEActivate

Functions that behave differently Some functions have different behavior
when the object is a RichText DataWindow object:

• Functions for the clipboard: Copy, Clear, and so on

• Functions for editable text (they apply to the edit control in other
DataWindow styles): LineCount, Position, SelectText, and so on

• Find and FindNext (the arguments you specify for Find determine whether
you want the general DataWindow Find function or the RichText version)

• Scrolling

CHAPTER 16 Implementing Rich Text

Application Techniques 261

Using a RichTextEdit control
A RichTextEdit control in a window or user object lets the user view or edit
formatted text. Functions allow you to manipulate the contents of the control
by inserting text, getting the selected text, managing input fields, and setting
properties for all or some of the contents.

You define RichTextEdit controls in the Window painter or the User Object
painter.

Giving the user control
In the Window or User Object painter, on the Document page of the
RichTextEdit control’s property sheet, you can enable or disable the features in
Table 16-1.

Table 16-1: RichTextEdit control features

You can also specify a name for the document that is displayed in the print
queue. The document name has nothing to do with a text file you might insert
in the control.

Features Details

Editing bars A toolbar for text formatting, a ruler bar, and a status bar.

Pop-up menu Provides access to the InsertFile and clipboard
commands, as well as the property sheet.

Display of nonprinting
characters

Carriage returns, tabs, and spaces.

Display of fields Whether fields are visible at all, or whether the field name
or data displays. You can also change the background
color for fields.

Wordwrap Affects newly entered text only.

If the user enters new text in an existing paragraph, word
wrap is triggered when the text reaches the right edge of
the control. To get existing text to wrap within the
display, the user can tweak the size of the control (if it is
resizable).

Print margins Print margins can be set relative to the default page size.

Using a RichTextEdit control

262 PowerBuilder

Users can change the
available tools

When users display the property sheet for the rich text document, they can
change the tools that are available to them, which you might not want. For
example, they might:

• Remove the display-only setting so that they can begin editing a document
you set up as protected

• Turn off the tool, ruler, or status bars

• View input fields’ names instead of data

• Disable the pop-up menu so that they cannot restore tools they turn off

You might want to guard against some of these possibilities. You can reset the
property values for these settings in a script. For example, this statement
restores the pop-up menu when triggered in an event script:

rte_1.PopMenu = TRUE

Undoing changes The user can press Ctrl+Z to undo a change. You can also program a button or
menu item that calls the Undo function.

If Undo is called repeatedly, it continues to undo changes to a maximum of 50
changes. The script can check whether there are changes that can be undone
(meaning the maximum depth has not been reached) by calling the CanUndo
function:

IF rte_1.CanUndo() THEN
rte_1.Undo()

ELSE
MessageBox("Stop", "Nothing to undo.")

END IF

Text for the control
In the Window painter, you do not enter text in the control. Instead, in your
application you can programmatically insert text or let the user enter text using
the editing tools.

CHAPTER 16 Implementing Rich Text

Application Techniques 263

Setting a default font
The Font tab page in the Properties view for a RichTextEdit control lets you set
default font characteristics for the control. When the control first displays at
runtime, and you include the toolbar with a RichTextEdit control, the toolbar
indicates the default font characteristics that you selected on the Font tab page
at design time. Although the application user can change fonts at runtime, or
you can use PowerScript to change the font style, you can set the default font
at design time only.

Inserting text From a file If you have prepared a text file for your application, you can
insert it with the InsertDocument function. The file can be rich text or ASCII:

li_rtn = rte_1.InsertDocument &
("c:\mydir\contacts.rtf", FALSE, FileTypeRichText!)

The boolean clearflag argument lets you specify whether to insert the file into
existing text or replace it. If you want to include headers and footers from a
document that you insert, you must replace the existing text by setting the
clearflag argument to TRUE. (The InsertFile command on the runtime pop-up
menu is equivalent to the InsertDocument function with the clearflag argument
set to FALSE.)

From a database If you have saved rich text as a string in a database, you
can use a DataStore to retrieve the text.

After retrieving data, paste the string into the RichTextEdit control:

ls_desc = dw_1.Object.prod_desc.Primary[1]
rte_1.PasteRTF(ls_desc)

Rich text and the clipboard
The CopyRTF and PasteRTF functions let you get rich text with formatting
instructions and store it in a string. If you use the clipboard by means of the
Copy, Cut, and Paste functions, you get the text only—the formatting is lost.

Example of saving
rich text in a database

Suppose you have a database table that records tech support calls. Various
fields record each call’s date, support engineer, and customer. Another field
stores notes about the call. You can let the user record notes with bold and italic
formatting for emphasis by storing rich text instead of plain text.

The window for editing call information includes these controls:

• A DataWindow control that retrieves all the data and displays everything
except the call notes

Using a RichTextEdit control

264 PowerBuilder

• A RichTextEdit control that displays the call notes

• A button for updating the database

RowFocusChanged event As row focus changes, the notes for the current
row are pasted into the RichTextEdit control. The RowFocusChanged event
has this script:

string ls_richtext

// Get the string from the call_notes column
ls_richtext = dw_1.Object.call_notes[currentrow]

// Prevent flicker
rte_1.SetRedraw(FALSE)

// Replace the old text with text for the current row
rte_1.SelectTextAll()
rte_1.Clear()
rte_1.PasteRTF(ls_richtext)
rte_1.SetRedraw(TRUE)

LoseFocus event When the user makes changes, the changes are transferred
to the DataWindow control. It is assumed that the user will click on the button
or the DataWindow control when the user is through editing, triggering the
LoseFocus event, which has this script:

string ls_richtext
long l_currow
GraphicObject l_control

// Check whether RichTextEdit still has focus
// If so, don't transfer the text
l_control = GetFocus()

IF TypeOf(l_control) = RichTextEdit! THEN RETURN 0

// Prevent flicker
rte_1.SetRedraw(FALSE)

// Store all the text in string ls_richtext
ls_richtext = rte_1.CopyRTF()

// Assign the rich text to the call_notes column
// in the current row
l_currow = dw_1.GetRow()
dw_1.Object.call_notes[l_currow] = ls_richtext
rte_1.SetRedraw(TRUE)

CHAPTER 16 Implementing Rich Text

Application Techniques 265

LoseFocus and the toolbars
A LoseFocus event occurs for the RichTextEdit control even when the user
clicks a RichTextEdit toolbar. Technically, this is because the toolbars are in
their own windows. However, the RichTextEdit control still has focus, which
you can check with the GetFocus function.

Saving rich text in a
file

You can save the rich text in the control, with the input field definitions, with
the SaveDocument function. You have the choice of rich text format (RTF) or
ASCII:

rte_1.SaveDocument("c:\...\contacts.rtf", &
FileTypeRichText!)

SaveDocument does not save the data in the input fields. It saves the document
template.

Does the file exist? If the file exists, calling SaveDocument triggers the
FileExists event. In the event script, you might ask users if they want to
overwrite the file.

To cancel the saving process, specify a return code of 1 in the event script.

Are there changes that need saving? The Modified property indicates
whether any changes have been made to the contents of the control. It indicates
that the contents are in an unsaved state. When the first change occurs,
PowerBuilder triggers the Modified event and sets the Modified property to
TRUE. Calling SaveDocument sets Modified to FALSE, indicating that the
document is clean.

Opening a file triggers the Modified event and sets the property because the
control’s contents changed. Usually, though, what you really want to know is
whether the contents of the control still correspond to the contents of the file.
Therefore, in the script that opens the file, you can set the Modified property to
FALSE yourself. Then when the user begins editing, the Modified event is
triggered again and the property is reset to TRUE.

Using a RichTextEdit control

266 PowerBuilder

Opening and saving files: an example

This example consists of several scripts that handle opening and saving files.
Users can open existing files and save changes. They can also save the contents
to another file. If users save the file they opened, saving proceeds without
interrupting the user. If users save to a file name that exists, but is not the file
they opened, they are asked whether to overwrite the file:

The example includes instance variable declarations, scripts, functions, and
events.

Instance variable
declarations

ib_saveas A flag for the FileExists event. When FALSE, the user is saving to
the file that was opened, so overwriting is expected:

boolean ib_saveas=FALSE

is_filename The current file name for the contents, initially set to "Untitled":

string is_filename

Open Document script This script opens a file chosen by the user. Since opening a file triggers the
Modified event and sets the Modified property, the script resets Modified to
FALSE. The Checked property of the Modified check box is set to FALSE too:

integer li_answer, li_result
string ls_name, ls_path

li_answer = GetFileOpenName("Open File", ls_path, &
ls_name, "rtf", &
"Rich Text(*.RTF),*.RTF, Text files(*.TXT),*.TXT")

CHAPTER 16 Implementing Rich Text

Application Techniques 267

IF li_answer = 1 THEN
// User did not cancel
li_result = rte_1.InsertDocument(ls_path, TRUE)

IF li_result = 1 THEN // Document open successful
// Save and display file name
is_filename = ls_path
st_filename.Text = is_filename

// Save and display modified status
rte_1.Modified = FALSE

cbx_modified.Checked = rte_1.Modified
ELSE

MessageBox("Error", "File not opened.")
END IF

END IF
RETURN 0

Scripts that save the
document

The user might choose to save the document to the same name or to a new
name. These scripts could be assigned to menu items as well as buttons. The
Save button script checks whether the instance variable is_filename holds a
valid name. If so, it passes that file name to the of_save function. If not, it
triggers the SaveAs button’s script instead:

integer li_result
string ls_name

// If not associated with file, get file name
IF is_filename = "Untitled" THEN

cb_saveas.EVENT Clicked()

ELSE
li_result = Parent.of_save(is_filename)

END IF
RETURN 0

The SaveAs script sets the instance variable ib_saveas so that the FileExists
event, if triggered, knows to ask about overwriting the file. It calls
of_getfilename to prompt for a file name before passing that file name to the
of_save function.

integer li_result
string ls_name

Using a RichTextEdit control

268 PowerBuilder

ib_saveas = TRUE

ls_name = Parent.of_getfilename()
// If the user canceled or an error occurred, abort
IF ls_name = "" THEN RETURN -1

li_result = Parent.of_save(ls_name)

ib_saveas = FALSE
RETURN 0

Functions for saving
and getting a file
name

of_save function This function accepts a file name argument and saves the
document. It updates the file name instance variable with the new name and
sets the check box to correspond with the Modified property, which is
automatically set to FALSE after you call SaveDocument successfully:

integer li_result

MessageBox("File name", as_name)

// Don't need a file type because the extension
// will trigger the correct type of save
li_result = rte_1.SaveDocument(as_name)

IF li_result = -1 THEN
MessageBox("Warning", "File not saved.")
RETURN -1

ELSE
// File saved successfully
is_filename = as_name
st_filename.Text = is_filename
cbx_modified.Checked = rte_1.Modified
RETURN 1

END IF

of_getfilename function The function prompts the user for a name and
returns the file name the user selects. It is called when a file name has not yet
been specified or when the user chooses Save As. It returns a file name:

integer li_answer
string ls_name, ls_path

li_answer = GetFileSaveName("Document Name", ls_path, &
ls_name, "rtf", &
"Rich Text(*.RTF),*.RTF,Text files(*.TXT),*.TXT")

IF li_answer = 1 THEN
// Return specified file name

CHAPTER 16 Implementing Rich Text

Application Techniques 269

RETURN ls_path
ELSE

RETURN ""
END IF

Events for saving and
closing

FileExists event When the user has selected a file name and the file already
exists, this script warns the user and allows the save to be canceled. The event
occurs when SaveDocument tries to save a file and it already exists. The script
checks whether ib_saveas is TRUE and, if so, asks if the user wants to proceed
with overwriting the existing file:

integer li_answer

// If user asked to Save to same file,
// don't prompt for overwriting
IF ib_saveas = FALSE THEN RETURN 0

li_answer = MessageBox("FileExists", &
filename + " already exists. Overwrite?", &
Exclamation!, YesNo!)

// Returning a non-zero value cancels save
IF li_answer = 2 THEN RETURN 1

Modified event This script sets a check box so the user can see that changes
have not been saved. The Modified property is set automatically when the
event occurs. The event is triggered when the first change is made to the
contents of the control:

cbx_modified.Checked = TRUE

CloseQuery event This script for the window’s CloseQuery event checks
whether the control has unsaved changes and asks whether to save the
document before the window closes:

integer li_answer

// Are there unsaved changes? No, then return.
IF rte_1.Modified = FALSE THEN RETURN 0

// Ask user whether to save
li_answer = MessageBox("Document not saved", &

"Do you want to save " + is_filename + "?", &
Exclamation!, YesNo!)

IF li_answer = 1 THEN
// User says save. Trigger Save button script.
cb_save.EVENT Clicked()

Using a RichTextEdit control

270 PowerBuilder

END IF
RETURN 0

Formatting of rich text
In a RichText control, there are several user-addressable objects:

• The whole document

• Selected text and paragraphs

• Input fields

• Pictures

The user can make selections, use the toolbars, and display the property sheets
for these objects.

Input fields get values either because the user or you specify a value or because
you have called DataSource to associate the control with a DataWindow object
or DataStore.

Input fields
An input field is a named value. You name it and you determine what it means
by setting its value. The value is associated with the input field name. You can
have several fields with the same name and they all display the same value. If
the user edits one of them, they all change.

In this sample text, an input field for the customer’s name is repeated
throughout:

Hello {customer}!
We know that you, {customer}, will be excited about our new deal. Please
call soon, {customer}, and save money now.

In a script, you can set the value of the customer field:

rte_1.InputFieldChangeData("customer", "Mary")

Then the text would look like this:

Hello Mary!
We know that you, Mary, will be excited about our new deal. Please call
soon, Mary, and save money now.

The user can also set the value. There are two methods:

CHAPTER 16 Implementing Rich Text

Application Techniques 271

• Selecting it and typing a new value

• Displaying the Input Field property sheet and editing the Data Value text
box

Inserting input fields in a script The InputFieldInsert function inserts a field
at the insertion point:

rtn = rte_1.InputFieldInsert("datafield")

In a rich text editing application, you might want the user to insert input fields.
The user needs a way to specify the input field name.

In this example, the user selects a name from a ListBox containing possible
input field names. The script inserts an input field at the insertion point using
the selected name:

string ls_field
integer rtn

ls_field = lb_fields.SelectedItem()
IF ls_field <> "" THEN

rtn = rte_1.InputFieldInsert(ls_field)
IF rtn = -1 THEN
MessageBox("Error", "Cannot insert field.")
END IF

ELSE
MessageBox("No Selection", &

"Please select an input field name.")
END IF

Input fields for dates
and page numbers

To display a date or a page number in a printed document, you define an input
field and set the input field’s value.

❖ To include today’s date in the opening of a letter, you might:

1 Create an input field in the text. Name it anything you want.

2 In the script that opens the window or some other script, set the value of
the input field to the current date.

For example, if the body of the letter included an input field called TODAY, you
would write a script like the following to set it:

integer li_rtn
li_rtn = rte_1.InputFieldChangeData("today", &

String(Today()))

For information about setting page number values when printing, see “Preview
and printing” on page 274.

Using a RichTextEdit control

272 PowerBuilder

Using database data
You can make a connection between a RichTextEdit control and a DataWindow
control or DataStore object. When an input field in the RichTextEdit control
has the same name as a column or computed column in the DataWindow
object, it displays the associated data.

Whether or not the RichTextEdit control has a data source, there is always only
one copy of the rich text content. While editing, you might visualize the
RichTextEdit contents as a template into which row after row of data can be
inserted. While scrolling from row to row, you might think of many instances
of the document in which the text is fixed but the input field data changes.

To share data between a DataWindow object or DataStore, use the DataSource
function:

rte_1.DataSource(ds_empdata)

Example of sharing
data

If the DataWindow object associated with the DataStore ds_empdata has the
four columns emp_id, emp_lname, emp_fname, and state, the RichTextEdit
content might include text and input fields like this:

Sample letter with columns from the employee table
ID: {emp_id}

Dear {emp_fname} {emp_lname}:

We are opening a new plant in Mexico. If you would like to transfer from
{state} to Mexico, the company will cover all expenses.

Navigating rows and
pages

For the RichTextEdit control, navigation keys let the user move among the
pages of the document. However, you must provide scrolling controls so that
the user can move from row to row.

You should provide Prior Row and Next Row buttons. The scripts for the
buttons are simple. For Next Row:

rte_1.ScrollNextRow()

For Prior Row:

rte_1.ScrollPriorRow()

If you also provide page buttons, then when the user is on the last page of the
document for one row, scrolling to the next page moves to the first page for the
next row:

rte_1.ScrollNextPage()

CHAPTER 16 Implementing Rich Text

Application Techniques 273

Cursor position in the RichTextEdit control
Functions provide several ways to find out what is selected and to select text in
the RichTextEdit control.

Where is the insertion
point or what is
selected?

The text always contains an insertion point and it can contain a selection, which
is shown as highlighted text. When there is a selection, the position of the
insertion point can be at the start or the end of the selection, depending on how
the selection is made. If the user drags from beginning to end, the insertion
point is at the end. If the user drags from end to beginning, the insertion point
is at the beginning.

The Position function provides information about the selection and the
insertion point.

For more information, see Position in the PowerScript Reference.

Changing the cursor
image

The Pointer page of the Rich Text Object property sheet has a list box with
stock pointers that can be used to indicate cursor position in a RichTextEdit
control or RichText DataWindow. Users can change the cursor image at
runtime by selecting one of these pointers and clicking OK in the Rich Text
Object property sheet.

Selecting text
programmatically

There are several functions that select portions of the text relative to the
position of the insertion point:

• SelectTextWord

• SelectTextLine

• SelectTextAll

A more general text selection function is SelectText. You specify the line and
character number of the start and end of the selection.

Passing values to SelectText Because values obtained with Position
provide more information than simply a selection range, you cannot pass the
values directly to SelectText. In particular, zero is not a valid character position
when selecting text, although it is meaningful in describing the selection.

For more information, see Position in the PowerScript Reference.

For an example of selecting words one by one for the purposes of spell
checking, see the SelectTextWord function in the PowerScript Reference.

Using a RichTextEdit control

274 PowerBuilder

Tab order, focus, and
the selection

Tab order For a window or user object, you include the RichTextEdit control
in the tab order of controls. However, after the user tabs to the RichTextEdit
control, pressing the TAB key inserts tabs into the text. The user cannot tab out
to other controls. Keep this in mind when you design the tab order for a
window.

Focus and the selection When the user tabs to the RichTextEdit control, the
control gets focus and the current insertion point or selection is maintained. If
the user clicks the RichTextEdit control to set focus, the insertion point moves
to the place the user clicks.

LoseFocus event When the user clicks on a RichTextEdit toolbar, a
LoseFocus event occurs. However, the RichTextEdit control still has focus.
You can check whether the control has lost focus with the GetFocus function.

Preview and printing
The user can preview the layout and print the contents of the RichTextEdit
control. In preview mode, users see a view of the document reduced so that it
fits inside the control. If the control is small, the preview is tiny.

There are two ways to enter preview mode:

• The user can press CTRL+F2 to switch between editing and preview mode

• You can call the Preview function in a script:

rte_1.Preview(TRUE)

CHAPTER 16 Implementing Rich Text

Application Techniques 275

Adjusting the print
margins

A user can adjust the margins of the preview mode by opening the property
sheet for the RichTextEdit control to the Print Specifications tab and modifying
the left, right, top, or bottom margins. Adjusting the margins in the Rich Text
Object dialog box also affects the display of the RichTextEdit control content
in standard view.

Printing If the RichTextEdit is using DataWindow object data, you can limit the number
of rows printed by setting the Print.Page.Range property for the DataWindow
control. Its value is a string that lists the page numbers that you want to print.
A dash indicates a range.

Example of a page range Suppose your RichTextEdit control has a data
source in the control dw_source. Your rich text document is three pages and
you want to print the information for rows 2 and 5. You can set the page range
property before you print:

dw_source.Object.DataWindow.Print.Page.Range = &
"4-6,13-15"

You can also filter or discard rows so that they are not printed.

For more information, see the SetFilter, Filter, RowsMove, and RowsDiscard
functions in the PowerScript Reference and the Print DataWindow object
property in the DataWindow Reference.

Rich text and the user

276 PowerBuilder

Setting the page
number

To print page numbers, you can use an input field in the header or footer.
Although the page number field can be a string or numeric expression, when
you insert the page number field in a header or footer, you must use it as a string
expression only. For example, if you use page()*2 for an input field in the
header or footer, the control or report is likely to display an incorrect result for
the value of the numeric expression. However, the following string expression
should display the correct page number and page count:

'Page ' + page() + ' of ' + pageCount())

Inserting footer text
programmatically

This sample code sets the insertion point in the footer and inserts two blank
lines, text, and two input fields:

rte_1.SelectText(1, 1, 0, 0, Footer!)
rte_1.ReplaceText("~r~n~r~nRow ")
rte_1.InputFieldInsert("row")
rte_1.ReplaceText(" Page ")
rte_1.InputFieldInsert("page")
rte_1.SetAlignment(Center!)

Rich text and the user
All the editing tools described throughout this chapter and in the chapter on
working with rich text in the PowerBuilder User’s Guide can be made available
to your users.

What users can do Users can:

• Use the toolbars for text formatting

• Use the pop-up menu, which includes using the clipboard and opening
other rich text and ASCII files

• Edit the contents of input fields

• Turn the editing tools on and off

What you can make
available to users in
your code

You can program an application to allow users to:

• Insert and delete input fields

• Insert pictures

• Switch to header and footer editing

• Preview the document for printing

CHAPTER 16 Implementing Rich Text

Application Techniques 277

If a RichTextEdit control shares data with a DataWindow object or DataStore,
you can program:

• Scrolling from row to row (you do not need to program page-to-page
scrolling, although you can)

• Updating the database with changes made in input fields

The best way for you to prepare rich text for use in your application is to
become a user yourself and edit the text in an application designed for the
purpose. During execution, all the tools for text preparation are available.

What the user sees The default view is the body text. You can also show header and footer text and
a print preview.

Header and footer text For either a RichText DataWindow object or the
RichTextEdit control, you can call the ShowHeadFoot function in a menu or
button script. To display the header editing panel, you can call:

dw_1.ShowHeadFoot(TRUE)

To display the footer editing panel, you must call:

dw_1.ShowHeadFoot(TRUE, FALSE)

In the overloaded function ShowHeadFoot, the second argument defaults to
TRUE if a value is not provided. Call the function again to return to normal
view.

dw_1.ShowHeadFoot(FALSE)

The document as it would be printed The user can press CTRL+F2 to
switch preview mode on and off. You can also control preview mode
programmatically.

For a RichTextEdit control, call the Preview function:

rte_1.Preview(TRUE)

For a RichText DataWindow object, set the Preview property:

dw_1.Object.DataWindow.Print.Preview = TRUE

Text elements and
formatting

The user can specify formatting for:

• Selected text

• Paragraphs

• Pictures

• The whole rich text document

Rich text and the user

278 PowerBuilder

❖ To display the property sheet for an object, the user can:

1 Select the object. For example:

• Drag or use editing keys to select text

• Click on a picture

• Set an insertion point (nothing selected) for the rich text document

2 Right-click in the workspace and select Properties from the pop-up menu.

❖ To make settings for the paragraphs in the selection:

• Double-click on the ruler bar
or
Type Ctrl+Shift+S.

Modifying input fields Unless you have made the rich text object display only, the user can modify the
values of input fields.

❖ To modify the value of an input field:

1 Click the input field to select it.

2 Right-click in the workspace and choose Properties from the pop-up
menu.

The Input Field Object property sheet displays.

3 On the Input Field page, edit the Data Value text box.

Text formatting for input fields There are several ways to select the input
field and apply text formatting. When the input field is selected, the Font page
of the property sheet and the toolbar affect the text. When the input field is part
of a text selection, changes affect all the text, including the input field.

The user cannot apply formatting to individual characters or words within the
field. When the user selects the input field, the entire field is selected.

Inserting and deleting input fields You write scripts that let the user insert
and delete input fields. The user can also copy and paste existing input fields.
All copies of an input field display the same data.

Formatting keys and
toolbars

When the toolbar is visible, users can use its buttons to format text in preview
mode, or they can use designated keystrokes to format text in the RichTextEdit
control.

For a list of keystrokes for formatting rich text, see the chapter on working with
rich text in the PowerBuilder User’s Guide.

Application Techniques 279

C H A P T E R 1 7 Piping Data Between Data
Sources

About this chapter This chapter tells you how you can use a Pipeline object in your
application to pipe data from one or more source tables to a new or
existing destination table.

Contents

Sample applications This chapter uses a simple order entry application to illustrate the use of a
data pipeline. To see working examples using data pipelines, look at the
examples in the Data Pipeline category in the Code Examples sample
application.

For information on how to use the sample applications, see Chapter 1,
“Using Sample Applications.”

About data pipelines
PowerBuilder provides a feature called the data pipeline that you can use
to migrate data between database tables. This feature makes it possible to
copy rows from one or more source tables to a new or existing destination
table—either within a database, or across databases, or even across
DBMSs.

Topic Page

About data pipelines 279

Building the objects you need 281

Performing some initial housekeeping 287

Starting the pipeline 290

Handling row errors 296

Performing some final housekeeping 300

About data pipelines

280 PowerBuilder

Two ways to use data
pipelines

You can take advantage of data pipelines in two different ways:

• As a utility service for developers

While working in the PowerBuilder development environment, you might
occasionally want to migrate data for logistical reasons (such as to create
a small test table from a large production table). In this case, you can use
the Data Pipeline painter interactively to perform the migration
immediately.

For more information on using the Data Pipeline painter this way, see the
PowerBuilder User’s Guide.

• To implement data migration capabilities in an application

If you are building an application whose requirements call for migrating
data between tables, you can design an appropriate data pipeline in the
Data Pipeline painter, save it, and then enable users to execute it from
within the application.

This technique can be useful in many different situations, such as: when
you want the application to download local copies of tables from a
database server to a remote user, or when you want it to roll up data from
individual transaction tables to a master transaction table.

Walking through the
basic steps

If you determine that you need to use a data pipeline in your application, you
must determine what steps this involves. At the most general level, there are
five basic steps that you typically have to perform.

❖ To pipe data in an application:

1 Build the objects you need.

2 Perform some initial housekeeping.

3 Start the pipeline.

4 Handle row errors.

5 Perform some final housekeeping.

The remainder of this chapter gives you the details of each step.

CHAPTER 17 Piping Data Between Data Sources

Application Techniques 281

Building the objects you need
To implement data piping in an application, you need to build a few different
objects:

• A Pipeline object

• A supporting user object

• A window

Building a Pipeline object
You must build a Pipeline object to specify the data definition and access
aspects of the pipeline that you want your application to execute. Use the Data
Pipeline painter in PowerBuilder to create this object and define the
characteristics you want it to have.

Characteristics to
define

Among the characteristics you can define in the Data Pipeline painter are:

• The source tables to access and the data to retrieve from them (you can
also access database stored procedures as the data source)

• The destination table to which you want that data piped

• The piping operation to perform (create, replace, refresh, append, or
update)

• The frequency of commits during the piping operation (after every n rows
are piped, or after all rows are piped, or not at all—if you plan to code your
own commit logic)

• The number of errors to allow before the piping operation is terminated

• Whether or not to pipe extended attributes to the destination database
(from the PowerBuilder repository in the source database)

For full details on using the Data Pipeline painter to build your Pipeline object,
see the PowerBuilder User’s Guide.

Example Here is an example of how you would use the Data Pipeline painter to define a
Pipeline object named pipe_sales_extract1 (one of two Pipeline objects
employed by the w_sales_extract window in a sample order entry application).

Building the objects you need

282 PowerBuilder

The source data to pipe This Pipeline object joins two tables (Sales_rep
and Sales_summary) from the company’s sales database to provide the source
data to be piped. It retrieves just the rows from a particular quarter of the year
(which the application must specify by supplying a value for the retrieval
argument named quarter):

Notice that this Pipeline object also indicates specific columns to be piped from
each source table (srep_id, srep_lname, and srep_fname from the Sales_rep
table, as well as ssum_quarter and ssum_rep_team from the Sales_summary
table). In addition, it defines a computed column to be calculated and piped.
This computed column subtracts the ssum_rep_quota column of the
Sales_summary table from the ssum_rep_actual column:

CHAPTER 17 Piping Data Between Data Sources

Application Techniques 283

How to pipe the data The details of how pipe_sales_extract1 is to pipe its
source data are specified here:

Notice that this Pipeline object is defined to create a new destination table
named Quarterly_extract. A little later you will learn how the application
specifies the destination database in which to put this table (as well as how it
specifies the source database in which to look for the source tables).

Also notice that:

• A commit will be performed only after all appropriate rows have been
piped (which means that if the pipeline’s execution is terminated early, all
changes to the Quarterly_extract table will be rolled back).

• No error limit is to be imposed by the application, so any number of rows
can be in error without causing the pipeline’s execution to terminate early.

• No extended attributes are to be piped to the destination database.

• The primary key of the Quarterly_extract table is to consist of the srep_id
column and the ssum_quarter column.

• The computed column that the application is to create in the
Quarterly_extract table is to be named computed_net.

Building the objects you need

284 PowerBuilder

Building a supporting user object
So far you have seen how your Pipeline object defines the details of the data
and access for a pipeline, but a Pipeline object does not include the logistical
supports—properties, events, and functions—that an application requires to
handle pipeline execution and control.

About the Pipeline
system object

To provide these logistical supports, you must build an appropriate user object
inherited from the PowerBuilder Pipeline system object. Table 17-1 shows
some of the system object’s properties, events, and functions that enable your
application to manage a Pipeline object at runtime.

Table 17-1: Pipeline system object properties, events, and functions

A little later in this chapter you will learn how to use most of these properties,
events, and functions in your application.

❖ To build the supporting user object for a pipeline:

1 Select Standard Class from the PB Object tab of the New dialog box.

The Select Standard Class Type dialog box displays, prompting you to
specify the name of the PowerBuilder system object (class) from which
you want to inherit your new user object:

2 Select pipeline and click OK.

Properties Events Functions

DataObject

RowsRead

RowsWritten

RowsInError

Syntax

PipeStart

PipeMeter

PipeEnd

Start

Repair

Cancel

CHAPTER 17 Piping Data Between Data Sources

Application Techniques 285

3 Make any changes you want to the user object (although none are
required). This might involve coding events, functions, or variables for use
in your application.

To learn about one particularly useful specialization you can make to your
user object, see “Monitoring pipeline progress” on page 292.

Planning ahead for reuse
As you work on your user object, keep in mind that it can be reused in the
future to support any other pipelines you want to execute. It is not
automatically tied in any way to a particular Pipeline object you have built
in the Data Pipeline painter.

To take advantage of this flexibility, make sure that the events, functions,
and variables you code in the user object are generic enough to
accommodate any Pipeline object.

4 Save the user object.

For more information on working with the User Object painter, see the
PowerBuilder User’s Guide.

Building a window
One other object you need when piping data in your application is a window.
You use this window to provide a user interface to the pipeline, enabling people
to interact with it in one or more ways. These include:

• Starting the pipeline’s execution

• Displaying and repairing any errors that occur

• Canceling the pipeline’s execution if necessary

Required features for
your window

When you build your window, you must include a DataWindow control that the
pipeline itself can use to display error rows (that is, rows it cannot pipe to the
destination table for some reason). You do not have to associate a DataWindow
object with this DataWindow control—the pipeline provides one of its own at
runtime.

To learn how to work with this DataWindow control in your application, see
“Starting the pipeline” on page 290 and “Handling row errors” on page 296.

Building the objects you need

286 PowerBuilder

Optional features for
your window

Other than including the required DataWindow control, you can design the
window as you like. You will typically want to include various other controls,
such as:

• CommandButton or PictureButton controls to let the user initiate actions
(such as starting, repairing, or canceling the pipeline)

• StaticText controls to display pipeline status information

• Additional DataWindow controls to display the contents of the source
and/or destination tables

If you need assistance with building a window, see the PowerBuilder User’s
Guide.

Example The following window handles the user-interface aspect of the data piping in
the order entry application. This window is named w_sales_extract:

Several of the controls in this window are used to implement particular
pipeline-related capabilities. Table 17-2 provides more information about
them.

CHAPTER 17 Piping Data Between Data Sources

Application Techniques 287

Table 17-2: Window controls to implement pipeline capabilities

Performing some initial housekeeping
Now that you have the basic objects you need, you are ready to start writing
code to make your pipeline work in the application. To begin, you must take
care of some setup chores that will prepare the application to handle pipeline
execution.

Control type Control name Purpose

RadioButton rb_create Selects pipe_sales_extract1 as the
Pipeline object to execute

rb_insert Selects pipe_sales_extract2 as the
Pipeline object to execute

CommandButton cb_write Starts execution of the selected pipeline

cb_stop Cancels pipeline execution or applying of
row repairs

cb_applyfixes Applies row repairs made by the user (in
the dw_pipe_errors DataWindow control)
to the destination table

cb_forgofixes Clears all error rows from the
dw_pipe_errors DataWindow control (for
use when the user decides not to make
repairs)

DataWindow dw_review_extract Displays the current contents of the
destination table (Quarterly_extract)

dw_pipe_errors (Required) Used by the pipeline itself to
automatically display the PowerBuilder
pipeline-error DataWindow (which lists
rows that cannot be piped due to some
error)

StaticText st_status_read Displays the count of rows that the
pipeline reads from the source tables

st_status_written Displays the count of rows that the
pipeline writes to the destination table or
places in dw_pipe_errors

st_status_error Displays the count of rows that the
pipeline places in dw_pipe_errors
(because they are in error)

Performing some initial housekeeping

288 PowerBuilder

❖ To get the application ready for pipeline execution:

1 Connect to the source and destination databases for the pipeline.

To do this, write the usual connection code in an appropriate script. Just
make sure you use one Transaction object when connecting to the source
database and a different Transaction object when connecting to the
destination database (even if it is the same database).

For details on connecting to a database, see Chapter 12, “Using
Transaction Objects.”

2 Create an instance of your supporting user object (so that the application
can use its properties, events, and functions).

To do this, first declare a variable whose type is that user object. Then, in
an appropriate script, code the CREATE statement to create an instance of
the user object and assign it to that variable.

3 Specify the particular Pipeline object you want to use.

To do this, code an Assignment statement in an appropriate script; assign a
string containing the name of the desired Pipeline object to the DataObject
property of your user-object instance.

For more information on coding the CREATE and Assignment statements, see
the PowerScript Reference.

Example The following sample code takes care of these pipeline setup chores in the
order entry application.

Connecting to the source and destination database In this case, the
company’s sales database (ABNCSALE.DB) is used as both the source and the
destination database. To establish the necessary connections to the sales
database, write code in a user event named uevent_pipe_setup (which is posted
from the Open event of the w_sales_extract window).

The following code establishes the source database connection:

// Create a new instance of the Transaction object
// and store it in itrans_source (a variable
// declared earlier of type transaction).
itrans_source = CREATE transaction

// Next, assign values to the properties of the
// itrans_source Transaction object.
...

// Now connect to the source database.
CONNECT USING itrans_source;

CHAPTER 17 Piping Data Between Data Sources

Application Techniques 289

The following code establishes the destination database connection:

// Create a new instance of the Transaction object
// and store it in itrans_destination (a variable
// declared earlier of type transaction).

itrans_destination = CREATE transaction

// Next, assign values to the properties of the
// itrans_destination Transaction object.
...
// Now connect to the destination database.

CONNECT USING itrans_destination;

Setting USERID for native drivers
When you execute a pipeline in the Pipeline painter, if you are using a native
driver, PowerBuilder automatically qualifies table names with the owner of the
table. When you execute a pipeline in an application, if you are using a native
driver, you must set the USERID property in the Transaction object so that the
table name is properly qualified.

Failing to set the USERID property in the Transaction object for the destination
database causes pipeline execution errors. If the source database uses a native
driver, extended attributes are not piped if USERID is not set.

Creating an instance of the user object Earlier you learned how to
develop a supporting user object named u_sales_pipe_logistics. To use
u_sales_pipe_logistics in the application, first declare a variable of its type:

// This is an instance variable for the
// w_sales_extract window.

u_sales_pipe_logistics iuo_pipe_logistics

Then write code in the uevent_pipe_setup user event to create an instance of
u_sales_pipe_logistics and store this instance in the variable iuo_pipe_logistics:

iuo_pipe_logistics = CREATE u_sales_pipe_logistics

Specifying the Pipeline object to use The application uses one of two
different Pipeline objects, depending on the kind of piping operation the user
wants to perform:

• pipe_sales_extract1 (which you saw in detail earlier) creates a new
Quarterly_extract table (and assumes that this table does not currently
exist)

Starting the pipeline

290 PowerBuilder

• pipe_sales_extract2 inserts rows into the Quarterly_extract table (and
assumes that this table does currently exist)

To choose a Pipeline object and prepare to use it, write the following code in
the Clicked event of the cb_write CommandButton (which users click when
they want to start piping):

// Look at which radio button is checked in the
// w_sales_extract window. Then assign the matching
// Pipeline object to iuo_pipe_logistics.

IF rb_create.checked = true THEN
 iuo_pipe_logistics.dataobject =

"pipe_sales_extract1"
ELSE
 iuo_pipe_logistics.dataobject =

"pipe_sales_extract2"
END IF

This code appears at the beginning of the script, before the code that starts the
chosen pipeline.

Deploying Pipeline objects for an application
Because an application must always reference its Pipeline objects dynamically
at runtime (through string variables), you must package these objects in one or
more dynamic libraries when deploying the application. You cannot include
Pipeline objects in an executable (EXE) file.

For more information on deployment, see Part 9, “Deployment Techniques.”

Starting the pipeline
With the setup chores taken care of, you can now start the execution of your
pipeline.

❖ To start pipeline execution:

1 Code the Start function in an appropriate script. In this function, you
specify:

• The Transaction object for the source database

• The Transaction object for the destination database

CHAPTER 17 Piping Data Between Data Sources

Application Techniques 291

• The DataWindow control in which you want the Start function to
display any error rows

The Start function automatically associates the PowerBuilder
pipeline-error DataWindow object with your DataWindow control
when needed.

• Values for retrieval arguments you have defined in the Pipeline object

If you omit these values, the Start function prompts the user for them
automatically at runtime.

2 Test the result of the Start function.

For more information on coding the Start function, see the PowerScript
Reference.

Example The following sample code starts pipeline execution in the order entry
application.

Calling the Start function When users want to start their selected pipeline,
they click the cb_write CommandButton in the w_sales_extract window:

This executes the Clicked event of cb_write, which contains the Start function:

// Now start piping.
integer li_start_result
li_start_result = iuo_pipe_logistics.Start &

(itrans_source,itrans_destination,dw_pipe_errors)

Notice that the user did not supply a value for the pipeline’s retrieval argument
(quarter). As a consequence, the Start function prompts the user for it:

Starting the pipeline

292 PowerBuilder

Testing the result The next few lines of code in the Clicked event of cb_write
check the Start function’s return value. This lets the application know whether
it succeeded or not (and if not, what went wrong):

CHOOSE CASE li_start_result

CASE -3
Beep (1)
MessageBox("Piping Error", &

"Quarterly_Extract table already exists ...
RETURN

CASE -4
Beep (1)
MessageBox("Piping Error", &

"Quarterly_Extract table does not exist ...
RETURN
...

END CHOOSE

Monitoring pipeline progress
Testing the Start function’s return value is not the only way to monitor the status
of pipeline execution. Another technique you can use is to retrieve statistics
that your supporting user object keeps concerning the number of rows
processed. They provide a live count of:

• The rows read by the pipeline from the source tables

• The rows written by the pipeline to the destination table or to the error
DataWindow control

• The rows in error that the pipeline has written to the error DataWindow
control (but not to the destination table)

By retrieving these statistics from the supporting user object, you can
dynamically display them in the window and enable users to watch the
pipeline’s progress.

❖ To display pipeline row statistics:

1 Open your supporting user object in the User Object painter.

The User Object painter workspace displays, enabling you to edit your
user object.

CHAPTER 17 Piping Data Between Data Sources

Application Techniques 293

2 Declare three instance variables of type StaticText:

statictext ist_status_read, ist_status_written, &
ist_status_error

You will use these instance variables later to hold three StaticText controls
from your window. This will enable the user object to manipulate those
controls directly and make them dynamically display the various pipeline
row statistics.

3 In the user object’s PipeMeter event script, code statements to assign the
values of properties inherited from the pipeline system object to the Text
property of your three StaticText instance variables.

ist_status_read.text = string(RowsRead)
ist_status_written.text = string(RowsWritten)
ist_status_error.text = string(RowsInError)

4 Save your changes to the user object, then close the User Object painter.

5 Open your window in the Window painter.

6 Insert three StaticText controls in the window:

One to display the RowsRead value
One to display the RowsWritten value
One to display the RowsInError value

7 Edit the window’s Open event script (or some other script that executes
right after the window opens).

In it, code statements to assign the three StaticText controls (which you
just inserted in the window) to the three corresponding StaticText instance
variables you declared earlier in the user object. This enables the user
object to manipulate these controls directly.

In the sample order entry application, this logic is in a user event named
uevent_pipe_setup (which is posted from the Open event of the
w_sales_extract window):

iuo_pipe_logistics.ist_status_read =
st_status_read

Starting the pipeline

294 PowerBuilder

iuo_pipe_logistics.ist_status_written = &
st_status_written

iuo_pipe_logistics.ist_status_error = &
st_status_error

8 Save your changes to the window. Then close the Window painter.

When you start a pipeline in the w_sales_extract window of the order entry
application, the user object’s PipeMeter event triggers and executes its
code to display pipeline row statistics in the three StaticText controls:

Canceling pipeline execution
In many cases you will want to provide users (or the application itself) with the
ability to stop execution of a pipeline while it is in progress. For instance, you
may want to give users a way out if they start the pipeline by mistake or if
execution is taking longer than desired (maybe because many rows are
involved).

❖ To cancel pipeline execution:

1 Code the Cancel function in an appropriate script

Make sure that either the user or your application can execute this function
(if appropriate) once the pipeline has started. When Cancel is executed, it
stops the piping of any more rows after that moment.

CHAPTER 17 Piping Data Between Data Sources

Application Techniques 295

Rows that have already been piped up to that moment may or may not be
committed to the destination table, depending on the Commit property you
specified when building your Pipeline object in the Data Pipeline painter.
You will learn more about committing in the next section.

2 Test the result of the Cancel function

For more information on coding the Cancel function, see the PowerScript
Reference.

Example The following example uses a command button to let users cancel pipeline
execution in the order entry application.

Providing a CommandButton When creating the w_sales_extract window,
include a CommandButton control named cb_stop. Then write code in a few of
the application’s scripts to enable this CommandButton when pipeline
execution starts and to disable it when the piping is done.

Calling the Cancel function Next write a script for the Clicked event of
cb_stop. This script calls the Cancel function and tests whether or not it worked
properly:

IF iuo_pipe_logistics.Cancel() = 1 THEN
Beep (1)
MessageBox("Operation Status", &
"Piping stopped (by your request).")

ELSE
Beep (1)
MessageBox("Operation Status", &
"Error when trying to stop piping.", &
Exclamation!)

END IF

Together, these features let a user of the application click the cb_stop
CommandButton to cancel a pipeline that is currently executing.

Committing updates to the database
When a Pipeline object executes, it commits updates to the destination table
according to your specifications in the Data Pipeline painter. You do not need
to write any COMMIT statements in your application’s scripts (unless you
specified the value None for the Pipeline object’s Commit property).

Handling row errors

296 PowerBuilder

Example For instance, both of the Pipeline objects in the order entry application
(pipe_sales_extract1 and pipe_sales_extract2) are defined in the Data Pipeline
painter to commit all rows. As a result, the Start function (or the Repair
function) will pipe every appropriate row and then issue a commit.

You might want instead to define a Pipeline object that periodically issues
commits as rows are being piped, such as after every 10 or 100 rows.

If the Cancel function
is called

A related topic is what happens with committing if your application calls the
Cancel function to stop a pipeline that is currently executing. In this case too,
the Commit property in the Data Pipeline painter determines what to do, as
shown in Table 17-3.

Table 17-3: Commit property values

This is the same commit/rollback behavior that occurs when a pipeline reaches
its Max Errors limit (which is also specified in the Data Pipeline painter).

For more information on controlling commits and rollbacks for a Pipeline
object, see the PowerBuilder User’s Guide.

Handling row errors
When a pipeline executes, it may be unable to write particular rows to the
destination table. For instance, this could happen with a row that has the same
primary key as a row already in the destination table.

Using the pipeline-
error DataWindow

To help you handle such error rows, the pipeline places them in the
DataWindow control you painted in your window and specified in the Start
function. It does this by automatically associating its own special DataWindow
object (the PowerBuilder pipeline-error DataWindow) with your DataWindow
control.

If your Commit value is Then Cancel does this

All Rolls back every row that was piped by the current
Start function (or Repair function)

A particular number of rows
(such as 1, 10, or 100)

Commits every row that was piped up to the
moment of cancellation

CHAPTER 17 Piping Data Between Data Sources

Application Techniques 297

Consider what happens in the order entry application. When a pipeline
executes in the w_sales_extract window, the Start function places all error rows
in the dw_pipe_errors DataWindow control. It includes an error message
column to identify the problem with each row:

Making the error messages shorter
If the pipeline’s destination Transaction object points to an ODBC data source,
you can set its DBParm MsgTerse parameter to make the error messages in the
DataWindow shorter. Specifically, if you type:

MsgTerse = 'Yes'

then the SQLSTATE error number does not display.

For more information on the MsgTerse DBParm, see the online Help.

Deciding what to do
with error rows

Once there are error rows in your DataWindow control, you need to decide
what to do with them. Your alternatives include:

• Repairing some or all of those rows

• Abandoning some or all of those rows

Handling row errors

298 PowerBuilder

Repairing error rows
In many situations it is appropriate to try fixing error rows so that they can be
applied to the destination table. Making these fixes typically involves
modifying one or more of their column values so that the destination table will
accept them. You can do this in a couple of different ways:

• By letting the user edit one or more of the rows in the error DataWindow
control (the easy way for you, because it does not require any coding
work)

• By executing script code in your application that edits one or more of the
rows in the error DataWindow control for the user

In either case, the next step is to apply the modified rows from this
DataWindow control to the destination table.

❖ To apply row repairs to the destination table:

1 Code the Repair function in an appropriate script. In this function, specify
the Transaction object for the destination database.

2 Test the result of the Repair function.

For more information on coding the Repair function, see the PowerScript
Reference.

Example In the following example, users can edit the contents of the dw_pipe_errors
DataWindow control to fix error rows that appear. They can then apply those
modified rows to the destination table.

Providing a CommandButton When painting the w_sales_extract window,
include a CommandButton control named cb_applyfixes. Then write code in a
few of the application’s scripts to enable this CommandButton when
dw_pipe_errors contains error rows and to disable it when no error rows appear.

Calling the Repair function Next write a script for the Clicked event of
cb_applyfixes. This script calls the Repair function and tests whether or not it
worked properly:

IF iuo_pipe_logistics.Repair(itrans_destination) &
<> 1 THEN
Beep (1)
MessageBox("Operation Status", "Error when &
trying to apply fixes.", Exclamation!)

END IF

CHAPTER 17 Piping Data Between Data Sources

Application Techniques 299

Together, these features let a user of the application click the cb_applyfixes
CommandButton to try updating the destination table with one or more
corrected rows from dw_pipe_errors.

Canceling row repairs Earlier in this chapter you learned how to let users (or the application itself)
stop writing rows to the destination table during the initial execution of a
pipeline. If appropriate, you can use the same technique while row repairs are
being applied.

For details, see “Canceling pipeline execution” on page 294.

Committing row
repairs

The Repair function commits (or rolls back) database updates in the same way
the Start function does.

For details, see “Committing updates to the database” on page 295.

Handling rows that still
are not repaired

Sometimes after the Repair function has executed, there may still be error rows
left in the error DataWindow control. This may be because these rows:

• Were modified by the user or application but still have errors

• Were not modified by the user or application

• Were never written to the destination table because the Cancel function
was called (or were rolled back from the destination table following the
cancellation)

At this point, the user or application can try again to modify these rows and
then apply them to the destination table with the Repair function. There is also
the alternative of abandoning one or more of these rows. You will learn about
that technique next.

Abandoning error rows
In some cases, you may want to enable users or your application to completely
discard one or more error rows from the error DataWindow control. This can
be useful for dealing with error rows that it is not desirable to repair.

Table 17-4 shows some techniques you can use for abandoning such error
rows.

Table 17-4: Abandoning error rows

If you want to abandon Use

All error rows in the error DataWindow control The Reset function

One or more particular error rows in the error
DataWindow control

The RowsDiscard function

Performing some final housekeeping

300 PowerBuilder

For more information on coding these functions, see the PowerScript
Reference.

Example In the following example, users can choose to abandon all error rows in the
dw_pipe_errors DataWindow control.

Providing a CommandButton When painting the w_sales_extract window,
include a CommandButton control named cb_forgofixes. Write code in a few of
the application’s scripts to enable this CommandButton when dw_pipe_errors
contains error rows and to disable it when no error rows appear.

Calling the Reset function Next write a script for the Clicked event of
cb_forgofixes. This script calls the Reset function:

dw_pipe_errors.Reset()

Together, these features let a user of the application click the cb_forgofixes
CommandButton to discard all error rows from dw_pipe_errors.

Performing some final housekeeping
When your application has finished processing pipelines, you need to make
sure it takes care of a few cleanup chores. These chores basically involve
releasing the resources you obtained at the beginning to support pipeline
execution.

Garbage collection
You should avoid using the DESTROY statement to clean up resources unless
you are sure that the objects you are destroying are not used elsewhere.
PowerBuilder’s garbage collection mechanism automatically removes
unreferenced objects. For more information, see “Garbage collection and
memory management” on page 45.

❖ To clean up when you have finished using pipelines:

1 Destroy the instance that you created of your supporting user object.

To do this, code the DESTROY statement in an appropriate script and
specify the name of the variable that contains that user-object instance.

CHAPTER 17 Piping Data Between Data Sources

Application Techniques 301

2 Disconnect from the pipeline’s source and destination databases.

To do this, code two DISCONNECT statements in an appropriate script. In
one, specify the name of the variable that contains your source
transaction-object instance. In the other, specify the name of the variable
that contains your destination transaction-object instance.

Then test the result of each DISCONNECT statement.

3 Destroy your source transaction-object instance and your destination
transaction-object instance.

To do this, code two DESTROY statements in an appropriate script. In one,
specify the name of the variable that contains your source
transaction-object instance. In the other, specify the name of the variable
that contains your destination transaction-object instance.

For more information on coding the DESTROY and DISCONNECT statements,
see the PowerScript Reference.

Example The following code in the Close event of the w_sales_extract window takes
care of these cleanup chores.

Destroying the user-object instance At the beginning of the Close event
script, code the following statement to destroy the instance of the user object
u_sales_pipe_logistics (which is stored in the iuo_pipe_logistics variable):

DESTROY iuo_pipe_logistics

Disconnecting from the source database Next, code these statements to
disconnect from the source database, test the result of the disconnection, and
destroy the source transaction-object instance (which is stored in the
itrans_source variable):

DISCONNECT USING itrans_source;

// Check result of DISCONNECT statement.
IF itrans_source.SQLCode = -1 THEN

Beep (1)
MessageBox("Database Connection Error", &
"Problem when disconnecting from the source " &
+ "database. Please call technical support. " &
+ "~n~r~n~rDetails follow: " + &
String(itrans_source.SQLDBCode) + " " + &
itrans_source.SQLErrText, Exclamation!)

END IF

DESTROY itrans_source

Performing some final housekeeping

302 PowerBuilder

Disconnecting from the destination database Finally, code these
statements to disconnect from the destination database, test the result of the
disconnection, and destroy their destination transaction-object instance (which
is stored in the itrans_destination variable):

DISCONNECT USING itrans_destination;

// Check result of DISCONNECT statement.
IF itrans_destination.SQLCode = -1 THEN

Beep (1)
MessageBox("Database Connection Error", &
"Problem when disconnecting from " + &
"the destination (Sales) database. " + &
"Please call technical support." + &
"~n~r~n~rDetails follow: " + &
String(itrans_destination.SQLDBCode) + " " + &

itrans_destination.SQLErrText, Exclamation!)
END IF

DESTROY itrans_destination

P A R T 5 Program Access
Techniques

This part presents a collection of techniques you can use
to implement program access features in the applications
you develop with PowerBuilder. It includes using DDE in
an application, using OLE in an application, building a
mail-enabled application, and adding other processing
extensions.

Application Techniques 305

C H A P T E R 1 8 Using DDE in an Application

About this chapter This chapter describes how PowerBuilder supports DDE.

Contents

About DDE
Dynamic Data Exchange (DDE) makes it possible for two Windows
applications to communicate with each other by sending and receiving
commands and data. Using DDE, the applications can share data, execute
commands remotely, and check error conditions.

PowerBuilder supports DDE by providing PowerScript events and
functions that enable a PowerBuilder application to send messages to
other DDE-supporting applications and to respond to DDE requests from
other DDE applications.

Clients and servers A DDE-supporting application can act as either a client or a server.

About the terminology
Used in connection with DDE, these terms are not related to client/server
architecture, in which a PC or workstation client communicates with a
database server.

A client application makes requests of another DDE-supporting
application (called the server). The requests can be commands (such as
open, close, or save) or requests for data.

A server application is the opposite of a client application. It responds to
requests from another DDE-supporting application (called the client). As
with client applications, the requests can be commands or requests for
specific data.

Topic Page

About DDE 305

DDE functions and events 306

DDE functions and events

306 PowerBuilder

A PowerBuilder application can function as a DDE client or as a DDE server.

In PowerBuilder, DDE clients and servers call built-in functions and process
events. DDE events occur when a command or data is sent from a client to a
server (or from a server to a client).

DDE functions and events
The following tables list the DDE functions and events separated into those
functions and events used by DDE clients and those used by DDE servers. For
more information on DDE support, see the PowerScript Reference.

Return values
Every DDE function returns an integer.

DDE client Table 18-1: DDE client functions

Function Action

CloseChannel Closes a channel to a DDE server application that was opened
using OpenChannel.

ExecRemote Asks a DDE server application to execute a command.

GetDataDDE Obtains the new data from a hot-linked DDE server
application and moves it into a specified string.

GetDataDDEOrigin Determines the origin of data that has arrived from a hot-
linked DDE server application.

GetRemote Asks a DDE server application for data. This function has two
formats: one that uses a channel and one that does not.

OpenChannel Opens a DDE channel to a specified DDE server application.

RespondRemote Indicates to the DDE server application whether the
command or data received from the DDE application was
acceptable to the DDE client.

SetRemote Asks a DDE server application to set an item such as a cell in
a worksheet or a variable to a specific value. This function has
two formats: one that uses a DDE channel and one that does
not.

StartHotLink Initiates a hot link to a DDE server application so that
PowerBuilder is immediately notified of specific data
changes in the DDE server application.

StopHotLink Ends a hot link with a DDE server application.

CHAPTER 18 Using DDE in an Application

Application Techniques 307

Table 18-2: DDE client event

DDE server Table 18-3: DDE server functions

Table 18-4: DDE server events

Event Occurs when

HotLinkAlarm A DDE server application has sent new (changed) data.

Function Action

GetCommandDDE Obtains the command sent by a DDE client application

GetCommandDDEOrigin Determines the origin of a command from a DDE client

GetDataDDE Gets data that a DDE client application has sent and
moves it into a specified string

GetDataDDEOrigin Determines the origin of data that has arrived from a
hot-linked DDE client application

RespondRemote Indicates to the sending DDE client application whether
the command or data received from the DDE
application was acceptable to the DDE server

SetDataDDE Sends specified data to a DDE client application

StartServerDDE Causes a PowerBuilder application to begin acting as a
DDE server

StopServerDDE Causes a PowerBuilder application to stop acting as a
DDE server

Event Occurs when

RemoteExec A DDE client application has sent a command

RemoteHotLinkStart A DDE client application wants to start a hot link

RemoteHotLinkStop A DDE client application wants to end a hot link

RemoteRequest A DDE client application has requested data

RemoteSend A DDE client application has sent data

DDE functions and events

308 PowerBuilder

Application Techniques 309

C H A P T E R 1 9 Using OLE in an Application

About this chapter This chapter describes several ways of implementing OLE in your
PowerBuilder applications.

Contents

OLE support in PowerBuilder
OLE, originally an acronym for Object Linking and Embedding, is a
facility that allows Windows programs to share data and program
functionality. PowerBuilder OLE controls are containers that can call
upon OLE server applications to display and manipulate OLE objects.

OLE control The OLE control in the Window painter allows you to link or embed
components from several applications in a window. For most servers, you
can also control the server application using functions and properties
defined by that server.

In PowerBuilder, the OLE control is a container for an OLE object. The
user can activate the control and edit the object using functionality
supplied by the server application. You can also automate OLE
interactions by programmatically activating the object and sending
commands to the server. OLE servers might be either DLLs or separate
EXE files. They could be running on a different computer.

Topic Page

OLE support in PowerBuilder 309

OLE controls in a window 310

OLE controls and insertable objects 312

OLE custom controls 325

Programmable OLE Objects 328

OLE objects in scripts 338

OLE information in the Browser 355

Advanced ways to manipulate OLE objects 358

OLE controls in a window

310 PowerBuilder

You can use PowerScript automation on an OLE control that is visible in a
window, or use it invisibly on an object whose reference is stored in an
OLEObject variable. The OLEObject datatype lets you create an OLE object
without having an OLE container visible in a window.

OLECustomControl A second control, OLECustomControl, is a container for an ActiveX control
(also called an OLE custom control or OCX control). ActiveX controls are
DLLs (sometimes with the extension OCX) that always run in the same process
as the application that contains them.

Managing OLE
objects

You can manage OLE objects by storing them in variables and saving them in
files. There are two object types for this purpose: OLEStorage and OLEStream.
Most applications will not require these objects, but if you need to do
something complicated (such as combining several OLE objects into a single
data structure), you can use these objects and their associated functions.

Other areas of OLE
support

For information about OLE objects in a DataWindow object, see the
PowerBuilder User’s Guide.

For information about PowerBuilder as a COM or OLE server, see Chapter 27,
“Building a COM or COM+ Component,” and Chapter 20, “PowerBuilder
Runtime Automation Server.”

OLE controls in a window
You can add OLE objects and ActiveX controls to a window or user object. To
do so, you use one of the PowerBuilder OLE controls, which acts as an OLE
container. This section explains how you select the control you want by
choosing whether it holds an OLE object (also called an insertable object) or
an ActiveX control:

• An insertable OLE object is a document associated with a server
application. The object can be activated and the server provides
commands and toolbars for modifying the object.

• An ActiveX control or OLE custom control is itself a server that
processes user actions according to scripts you program in PowerBuilder.
You can write scripts for ActiveX control events and for events of the
PowerBuilder container. Those scripts call functions and set properties
that belong to the ActiveX control. When appropriate, the ActiveX control
can present its own visual interface for user interaction.

CHAPTER 19 Using OLE in an Application

Application Techniques 311

ActiveX controls range from simple visual displays (such as a meter or a
gauge) to single activities that are customizable (spellchecking words or
phrases) to working environments (image acquisition with annotation and
editing).

OLE control container
features

All OLE control containers support a set of required interfaces. PowerBuilder
provides some additional support:

• Extended control An OLE control can determine and modify its
location at runtime using its extended control properties. PowerBuilder
supports the X (Left), Y (Top), Width, and Height properties, all of which
are measured in PowerBuilder units. The control writer can access these
properties using the IDispatch-based interface returned from the
GetExtendedControl method on the IOleControlSite interface.

• Window as OLE container PowerBuilder implements the
IOleContainer class at the window level, so that all OLE controls on a
window are siblings and can obtain information about each other. The
control writer can access this information using the OLE EnumObjects
method. Information about siblings is useful when the controls are part of
a suite of controls. Unlike other controls, the OLE controls on a window
are stored in a flat hierarchy.

OLE objects and controls only
Only OLE objects and controls are visible to this object enumerator. You
cannot use this technique to manipulate other controls on the window.

• Message reflection If a control container does not support message
reflection, a reflector window is created when an OLE control sends a
message to its parent. The reflector window reflects the message back to
the control so that the control can process the message itself. If the
container supports message reflection, the need for a reflector window,
and the associated runtime overhead, is eliminated. PowerBuilder OLE
control containers perform message reflection for a specific set of
messages.

Defining the control This procedure describes how to create an OLE control and select its contents.

❖ To place an OLE control in a window or user object:

1 Open the window or user object that will contain the OLE control.

2 Select Insert>Control>OLE from the menu bar.

PowerBuilder displays the Insert Object dialog box. There are three tabs
to choose from.

OLE controls and insertable objects

312 PowerBuilder

3 Choose a server application or a specific object for the control (which
embeds or links an object in the control), select a custom control, or leave
the control empty for now:

• To create and embed a new object, click the Create New tab. After you
have chosen a server application, click OK.

• To choose an existing object for the control, click the Create From File
tab. After you have specified the file, click OK.

• To insert a custom control (ActiveX control), click the Insert Control
tab. After you have chosen an ActiveX control, click OK.

• To leave the control empty, click Cancel.

If you click Cancel, the control becomes an OLE control rather than
an OLE custom control, and you can choose to link or embed an OLE
object in it at any time; you cannot insert an ActiveX control later.

4 Click where you want the control.

If you inserted an object, PowerBuilder opens the server application so
you can view and edit the object. ActiveX controls cannot be opened.

If you want to insert an object that belongs to an OLE server application that is
not in the list, see the server documentation to find out how to install it.

For more information about using the Insert Object dialog box, see the section
on inserting OLE objects in DataWindow objects in the PowerBuilder User’s
Guide.

OLE controls and insertable objects
The OLE control contains an insertable OLE object. You can change the object
in the control in the painter or in a script. You specify what is allowed in the
control by setting PowerBuilder properties.

Setting up the OLE control
When you create an OLE control and insert an object, PowerBuilder activates
the server application to allow you to modify the object. After you deactivate
it (by clicking outside the object’s borders in the Layout view), you can use the
control’s property sheets to set up the control.

CHAPTER 19 Using OLE in an Application

Application Techniques 313

❖ To specify the control’s appearance and behavior:

1 Double-click the control, or select Properties from the control’s pop-up
menu.

2 In the Properties view, give the control a name that is relevant to your
application.

You will use this name in scripts. The default name is ole_ followed by a
number.

3 Specify a value for Display Name for use by the OLE server. The OLE
server can use this name in window title bars.

4 Specify the control’s appearance and behavior by choosing appropriate
settings in the Properties view.

In addition to the standard Visible, Enabled, Focus Rectangle, and Border
properties, which are available for most controls, there are several options
that control the object’s interaction with the server:

Option Meaning

Activation How the user activates the control.

Options are:

• Double Click – When the user double-clicks the control, the
server application is activated.

• Get Focus – When the user clicks or tabs to the control, the
server is activated. If you also write a script for the
GetFocus event, do not call MessageBox or any function
that results in a change in focus.

• Manual – The control can be activated only
programmatically with the Activate function.

The control can always be activated programmatically,
regardless of the Activation setting.

Display Type What the control displays.

Options are:

• Contents – Display a representation of the object, reduced
to fit within the control.

• Icon – Display the icon associated with the data. This is
usually an icon provided by the server application.

• ActiveX document – Display as an ActiveX document.
ActiveX documents fill the space of the container and have
access to all the features of the server application.

OLE controls and insertable objects

314 PowerBuilder

Activating the object in the painter

The object in the OLE control needs to be activated so that the server
application can manipulate it. For the user, double-clicking is the default
method for activating the object. You can choose other methods by setting the
control’s Activation property, as described in the preceding table. During
development, you activate the object in the Window painter.

❖ To activate an OLE object in the Window painter:

1 Select Open from the control’s pop-up menu.

If the control is empty, Open is unavailable. You must select Insert to
assign an object to the control first.

Contents What the user can insert in the control at runtime.

Options are:

• Any – The user can insert either a linked or embedded
object.

• Embedded – The user can insert an embedded object.

• Linked – The user can insert a linked object.

Setting Contents changes the value of the ContentsAllowed
property.

Link Update When the object in the control is linked, the method for
updating link information.

Options are:

• Automatic – If the link is broken and PowerBuilder cannot
find the linked file, it displays a dialog box in which the
user can specify the file.

• Manual – If the link is broken, the object cannot be
activated. You can re-establish the link in a script using the
LinkTo or UpdateLinksDialog function.

Setting Link Update changes the value of the
LinkUpdateOptions property.

Size Mode How the object is displayed in the container.

Options are:

• Clip – The object’s image displays full size. If it is larger
than the OLE control, it is clipped by the control’s borders.

• Stretch – The object’s image is resized to fit into and fill the
OLE control (default).

Option Meaning

CHAPTER 19 Using OLE in an Application

Application Techniques 315

PowerBuilder invokes the server application and activates the object
offsite.

2 Use the server application to modify the object.

3 When you have finished, deactivate the object by clicking outside its
hatched border.

You can also choose Exit or Return on the server’s File menu, if available.

Changing the object in the control

In the painter, you can change or remove the object in the control.

❖ To delete the object in the control:

• Select Delete from the control’s pop-up menu.

The control is now empty and cannot be activated. Do not select Clear—
it deletes the control from the window.

❖ To insert a different object in the control:

1 Select Insert from the control’s pop-up menu.

PowerBuilder displays the Insert Object dialog box.

2 Select Create New and select a server application, or select Create from
File and specify a file, as you did when you defined the control.

3 Click OK.

During execution You can insert a different object in the control by calling the InsertObject,
InsertFile, InsertClass, or LinkTo function. You can delete the object in the
control by calling Cut or Clear.

How the user interacts with the control

When the window containing the OLE control opens, the data is displayed
using the information stored with the control in the PBL (or PBD or EXE file
if the application has been built).

When the object is activated, either because the user double-clicks or tabs to it
or because a script calls Activate, PowerBuilder starts the server application and
enables in-place editing if possible. If not, it enables offsite editing.

OLE controls and insertable objects

316 PowerBuilder

As the user changes the object, the data in the control is kept up to date with
the changes. This is obvious when the object is being edited in place, but it is
also true for offsite editing. Because some server applications update the object
periodically, rather than continually, the user might see only periodic changes
to the contents of the control. Most servers also do a final update automatically
when you end the offsite editing session. However, to be safe, the user should
select the server’s Update command before ending the offsite editing session.

Linking versus embedding
An OLE object can be linked or embedded in your application. The method
you choose depends on how you want to maintain the data.

Embedding data The data for an embedded object is stored in your application. During
development, it is stored in your application’s PBL. When you build your
application, it is stored in the EXE or PBD file. This data is a template or a
starting point for the user. Although the user can edit the data during a session,
the changes cannot be saved because the embedded object is stored as part of
your application.

Embedding is suitable for data that will not change (such as the body of a form
letter) or as a starting point for data that will be changed and stored elsewhere.

To save the data at runtime, you can use the SaveAs and Open functions to save
the user’s data to a file or OLE storage.

Linking data When you link an object, your application contains a reference to the data, not
the data itself. The application also stores an image of the data for display
purposes. The server application handles the actual data, which is usually saved
in a file. Other applications can maintain links to the same data. If any
application changes the data, the changes appear in all the documents that have
links to it.

Linking is useful for two reasons:

• More than one application can access the data.

• The server manages the saving of the data, which is useful even if your
PowerBuilder application is the only one using the data.

CHAPTER 19 Using OLE in an Application

Application Techniques 317

Maintaining link information The server, not PowerBuilder, maintains the
link information. Information in the OLE object tells PowerBuilder what server
to start and what data file and item within the file to use. From then on, the
server services the data: updating it, saving it back to the data file, updating
information about the item (for example, remembering that you inserted a row
in the middle of the range of linked rows).

Fixing a broken link Because the server maintains the link, you can move
and manipulate an OLE object within your application without worrying about
whether it is embedded or linked.

If the link is broken because the file has been moved, renamed, or deleted, the
Update setting of the control determines how the problem is handled. When
Update is set to Automatic, PowerBuilder displays a dialog box that prompts
the user to find the file. You can call the UpdateLinksDialog function in a script
to display the same dialog box. You can establish a link in a script without
involving the user by calling the LinkTo function.

PowerBuilder displays a control with a linked object with the same shading
that is used for an open object.

Offsite or in-place activation
During execution, when a user activates the object in the OLE control,
PowerBuilder tries to activate an embedded object in place, meaning that the
user interacts with the object inside the PowerBuilder window. The menus
provided by the server application are merged with the PowerBuilder
application’s menus. You can control how the menus are merged in the Menu
painter (see “Menus for in-place activation” on page 318).

When the control is active in place, it has a wide hatched border:

OLE controls and insertable objects

318 PowerBuilder

Offsite activation means that the server application opens and the object
becomes an open document in the server’s window. All the server’s menus are
available. The control itself is displayed with shading, indicating that the object
is open in the server application.

Limits to in-place activation
The server’s capabilities determine whether PowerBuilder can activate the
object in place. OLE 1.0 objects cannot be activated in place. In addition, the
OLE 2.0 standards specify that linked objects are activated offsite, not in place.

From the Window painter, the object is always activated offsite.

Changing the default
behavior

You can change the default behavior in a script by calling the Activate function
and choosing whether to activate an object in place or offsite. If you set the
control’s Activation setting to Manual, you can write a script that calls the
Activate function for the DoubleClicked event (or some other event):

ole_1.Activate(Offsite!)

When the control will not activate
You cannot activate an empty control (a control that does not have an OLE
object assigned to it). If you want the user to choose the OLE object, you can
write a script that calls the InsertObject function.

If the object in the control is linked and the linked file is missing, the user
cannot activate the control. If the Update property is set to Automatic,
PowerBuilder displays a dialog box so that the user can find the file.

If the Update property is set to Manual, a script can call the UpdateLinksDialog
function to display the dialog box, or call LinkTo to replace the contents with
another file.

Menus for in-place activation
When an object is activated in place, menus for its server application are
merged with the menus in your PowerBuilder application. The Menu Merge
Option settings in the Menu painter let you control how the menus of the two
applications are merged. The values are standard menu names, as well as the
choices Merge and Exclude.

CHAPTER 19 Using OLE in an Application

Application Techniques 319

❖ To control what happens to a menu in your application when an OLE
object is activated:

1 Open the menu in the Menu painter.

2 Select a menu item that appears on the menu bar. Menu Merge Option
settings apply only to items on the menu bar, not items on drop-down
menus.

3 On the Style property page, choose the appropriate Menu Merge Option
setting. Table 19-1 lists these settings.

Table 19-1: Menu Merge Option settings

4 Repeat steps 2 and 3 for each item on the menu bar.

Standard assignments
for standard menus

In general, you should assign the File, Edit, Window, and Help Menu Merge
options to the File, Edit, Window, and Help menus. Because the actual menu
names might be different in an international application, you use the Menu
Merge Option settings to make the correct associations.

Resulting menu bar
for activated object

The effect of the Menu Merge Option settings is that the menu bar displays the
container’s File and Window menus and the server’s Edit and Help menus. Any
menus that you label as Merge are included in the menu bar at the appropriate
place. The menu bar also includes other menus that the server has decided are
appropriate.

You can
choose Meaning

Source of menu in
resulting menu bar

File The menu from the container application
(your PowerBuilder application) that will
be leftmost on the menu bar. The server’s
File menu never displays.

Container

Edit The menu identified as Edit never
displays. The server’s Edit menu
displays.

Server

Window The menu from the container application
that has the list of open sheets. The
server’s Window menu never displays.

Container

Help The menu identified as Help never
displays. The server’s Help menu
displays.

Server

Merge The menu will be displayed after the first
menu of the server application.

Container

Exclude The menu will be removed while the
object is active.

OLE controls and insertable objects

320 PowerBuilder

Modifying an object in an OLE control
When an OLE object is displayed in the OLE control, the user can interact with
that object and the application that created it (the server). You can also program
scripts that do the same things the user might do. This section describes how to:

• Activate the OLE object and send general commands to the server

• Change and save the object in the control

• Find out when data or properties have changed by means of events

For information about automation for the control, see “OLE objects in scripts”
on page 338.

Activating the OLE object

Generally, the OLE control is set so that the user can activate the object by
double-clicking. You can also call the Activate function to activate the object in
a script. If the control’s Activation property is set to Manual, you have to call
Activate to start a server editing session:

ole_1.Activate(InPlace!)

You can initiate general OLE actions by calling the DoVerb function. A verb is
an integer value that specifies an action to be performed. The server determines
what each integer value means. The default action, specified as 0, is usually
Edit, which also activates the object.

For example, if ole_1 contains a Microsoft Excel spreadsheet, the following
statement activates the object for editing:

ole_1.DoVerb(0)

Check the server’s documentation to see what verbs it supports. OLE verbs are
a relatively limited means of working with objects; automation provides a more
flexible interface. OLE 1.0 servers support verbs but not automation.

Changing the object in an OLE control

PowerBuilder provides several functions for changing the object in an OLE
control. The function you choose depends on whether you want the user to
choose an object and whether the object should be linked or embedded, as
shown in Table 19-2.

CHAPTER 19 Using OLE in an Application

Application Techniques 321

Table 19-2: Functions for changing object in OLE control

Figure 19-1 illustrates the behavior of the three functions that do not allow a
choice of linking or embedding.

Figure 19-1: Functions that do not allow a choice of linking or
embedding

You can also assign OLE object data stored in a blob to the ObjectData
property of the OLE control:

blob myblob
... // Code to assign OLE data to the blob
ole_1.ObjectData = myblob

When you want to Choose this function

Let the user choose an object and, if the control’s
Contents property is set to Any, whether to link or embed
it.

InsertObject

Create a new object for a specified server and embed it in
the control.

InsertClass

Embed a copy of an existing object in the control. InsertFile

Link to an existing object in the control. LinkTo

Open an existing object from a file or storage.
Information in the file determines whether the object is
linked or embedded.

Open

OLE controls and insertable objects

322 PowerBuilder

The Contents property of the control specifies whether the control accepts
embedded and/or linked objects. It determines whether the user can choose to
link or embed in the InsertObject dialog box. It also controls what the functions
can do. If you call a function that chooses a method that the Contents property
does not allow, the function will fail.

OLE information in the
Browser

Use the Browser to find out the registered names of the OLE server
applications installed on your system. You can use any of the names listed in
the Browser as the argument for the InsertClass function, as well as the
ConnectToObject and ConnectToNewObject functions (see “Programmable
OLE Objects” on page 328).

For more information about OLE and the Browser, see “OLE information in
the Browser” on page 355.

Using the clipboard Using the Cut, Copy, and Paste functions in menu scripts lets you provide
clipboard functionality for your user. Calling Cut or Copy for the OLE control
puts the OLE object it contains on the clipboard. The user can also choose Cut
or Copy in the server application to place data on the clipboard. (Of course, you
can use these functions in any script, not just those associated with menus.)

There are several Paste functions that can insert an object in the OLE control.
The difference is whether the pasted object is linked or embedded.

Table 19-3: Paste functions

If you have a general Paste function, you can use code like the following to
invoke PasteSpecial (or PasteLink) when the target of the paste operation is the
OLE control:

graphicobject lg_obj
datawindow ldw_dw
olecontrol lole_ctl

// Get the object with the focus
lg_obj = GetFocus()

// Insert clipboard data based on object type
CHOOSE CASE TypeOf(lg_obj)

CASE DataWindow!
ldw_dw = lg_obj

When you want to Choose this function

Embed the object on the clipboard in the control Paste

Paste and link the object on the clipboard PasteLink

Allow the user to choose whether to embed or link the
pasted object

PasteSpecial

CHAPTER 19 Using OLE in an Application

Application Techniques 323

ldw_dw.Paste()
...
CASE OLEControl!
lole_ctl = lg_obj
lole_ctl.PasteSpecial()

END CHOOSE

Saving an embedded
object

If you embed an OLE object when you are designing a window, PowerBuilder
saves the object in the library with the OLE control. However, when you embed
an object during execution, that object cannot be saved with the control
because the application’s executable and libraries are read-only. If you need to
save the object, you save the data in a file or in the database.

For example, the following script uses SaveAs to save the object in a file. It
prompts the user for a file name and saves the object in the control as an OLE
data file, not as native data of the server application. You can also write a script
to open the file in the control in another session:

string myf
ilename, mypathname
integer result
GetFileSaveName("Select File", mypathname, &

myfilename, "OLE", &
"OLE Files (*.OLE),*.OLE")

result = ole_1.SaveAs(myfilename)

When you save OLE data in a file, you will generally not be able to open that
data directly in the server application. However, you can open the object in
PowerBuilder and activate the server application.

When you embed an object in a control, the actual data is stored as a blob in
the control’s ObjectData property. If you want to save an embedded object in a
database for later retrieval, you can save it as a blob. To transfer data between
a blob variable and the control, assign the blob to the control’s ObjectData
property or vice versa:

blob myblob
myblob = ole_1.ObjectData

You can use the embedded SQL statement UPDATEBLOB to put the blob data
in the database (see the PowerScript Reference).

You can also use SaveAs and Save to store OLE objects in PowerBuilder’s
OLEStorage variables (see “Opening and saving storages” on page 360).

OLE controls and insertable objects

324 PowerBuilder

When the user saves a linked object in the server, the link information is not
affected and you do not need to save the open object. However, if the user
renames the object or affects the range of a linked item, you need to call the
Save function to save the link information.

Events for the OLE control

There are several events that let PowerBuilder know when actions take place
in the server application that affect the OLE object.

Events for data Events that have to do with data are:

• DataChange The data has been changed

• Rename The object has been renamed

• Save, SaveObject The data has been saved

• ViewChange The user has changed the view of the data

When these events occur, the changes are reflected automatically in the
control. If you need to perform additional processing when the object is
renamed, saved, or changed, you can write the appropriate scripts.

Because of the architecture of OLE, you often cannot interact with the OLE
object within these events. Trying to do so can generate a runtime error. A
common workaround is to use the PostEvent function to post the event to an
asynchronous event handler. You do not need to post the SaveObject event,
which is useful if you want to save the data in the object to a file whenever the
server application saves the object.

Events for properties If the server supports property notifications, then when values for properties of
the server change, the PropertyRequestEdit and PropertyChanged events will
occur. You can write scripts that cancel changes, save old values, or read new
values.

For more information about property notification, see “Creating hot links” on
page 350.

CHAPTER 19 Using OLE in an Application

Application Techniques 325

OLE custom controls
The OLE control button in the Controls menu gives you the option of inserting
an object or a custom control in an OLE container. When you select an OLE
custom control (ActiveX control), you fix the container’s type and contents.
You cannot choose later to insert an object and you cannot select a different
custom control.

Each ActiveX control has its own properties, events, and functions. Preventing
the ActiveX control from being changed helps avoid errors later in scripts that
address the properties and methods of a particular ActiveX control.

Setting up the custom control
The PowerBuilder custom control container has properties that apply to any
ActiveX control. The ActiveX control itself has its own properties. This section
describes the purpose of each type of property and how to set them.

PowerBuilder
properties

For OLE custom controls, PowerBuilder properties have two purposes:

• To specify appearance and behavior of the container, as you do for any
control

You can specify position, pointer, and drag-and-drop settings, as well as
the standard settings on the General property page (Visible, Enabled, and
so on).

• To provide default information that the ActiveX control can use

Font information and the display name are called ambient properties in
OLE terminology. PowerBuilder does not display text for the ActiveX
control, so it does not use these properties directly. If the ActiveX control
is programmed to recognize ambient properties, it can use the values
PowerBuilder provides when it displays text or needs a name to display in
a title bar.

❖ To modify the PowerBuilder properties for the custom control:

1 Double-click the control, or select Properties from the control’s pop-up
menu.

The OLE Custom Control property sheet displays.

2 Give the control a name that is relevant to your application. You will use
this name in scripts. The default name is ole_ followed by a number.

OLE custom controls

326 PowerBuilder

3 Specify values for other properties on the General property page and other
pages as appropriate.

4 Click OK when you are done.

Documenting the control
Put information about the ActiveX control you are using in a comment for the
window or in the control’s Tag property. Later, if another developer works with
your window and does not have the ActiveX control installed, that developer
can easily find out what ActiveX control the window was designed to use.

ActiveX control
properties

An ActiveX control usually has its own properties and its own property sheet
for setting property values. These properties control the appearance and
behavior of the ActiveX control, not the PowerBuilder container.

❖ To set property values for the ActiveX control in the control:

1 Select OLE Control Properties from the control’s pop-up menu or from the
General property page.

2 Specify values for the properties and click OK when done.

The OLE control property sheet might present only a subset of the properties
of the ActiveX control. You can set other properties in a script.

For more information about the ActiveX control’s properties, see the
documentation for the ActiveX control.

Programming the ActiveX control
You make an ActiveX control do its job by programming it in scripts, setting
its properties, and calling its functions. Depending on the interface provided by
the ActiveX control developer, a single function call might trigger a whole
series of activities or individual property settings, and function calls may let
you control every aspect of its actions.

An ActiveX control is always active—it does not contain an object that needs
to be opened or activated. The user does not double-click and start an OLE
server. However, you can program the DoubleClicked or any other event to call
a function that starts ActiveX control processing.

Setting properties in
scripts

Programming an ActiveX control is the same as programming automation for
insertable objects. You use the container’s Object property to address the
properties and functions of the ActiveX control.

CHAPTER 19 Using OLE in an Application

Application Techniques 327

This syntax accesses a property value. You can use it wherever you use an
expression. Its datatype is Any. When the expression is evaluated, its value has
the datatype of the control property:

olecontrol.Object.ocxproperty

This syntax calls a function. You can capture its return value in a variable of
the appropriate datatype:

{ value } = olecontrol.Object.ocxfunction ({ argumentlist })

Errors when
accessing properties

The PowerBuilder compiler does not know the correct syntax for accessing
properties and functions of an ActiveX control, so it does not check any syntax
after the Object property. This provides the flexibility you need to program any
ActiveX control. But it also leaves an application open to runtime errors if the
properties and functions are misnamed or missing.

PowerBuilder provides two events (ExternalException and Error) for handling
OLE errors. If the ActiveX control defines a stock error event, the
PowerBuilder OLE control container has an additional event, ocx_event.
These events allow you to intercept and handle errors without invoking the
SystemError event and terminating the application. You can also use a
TRY-CATCH exception handler.

For more information, see “Handling errors” on page 346.

Using events of the
ActiveX control

An ActiveX control has its own set of events, which PowerBuilder merges with
the events for the custom control container. The ActiveX control events appear
in the Event List view with the PowerBuilder events. You write scripts for
ActiveX control events in PowerScript and use the Object property to refer to
ActiveX control properties and methods, just as you do for PowerBuilder event
scripts.

The only difference between ActiveX control events and PowerBuilder events
is where to find documentation about when the events get triggered. The
ActiveX control provider supplies the documentation for its events, properties,
and functions.

The PowerBuilder Browser provides lists of the properties and methods of the
ActiveX control. For more information, see “OLE information in the Browser”
on page 355.

Programmable OLE Objects

328 PowerBuilder

New versions of the ActiveX control
If you install an updated version of an ActiveX control and it has new events,
the event list in the Window painter does not add the new events. To use the
new events, you have to delete and recreate the control, along with the scripts
for existing events. If you do not want to use the new events, you can leave the
control as is—it will use the updated ActiveX control with the pre-existing
events.

Programmable OLE Objects
You do not need to place an OLE control on a window to manipulate an OLE
object in a script. If the object does not need to be visible in your PowerBuilder
application, you can create an OLE object independent of a control, connect to
the server application, and call functions and set properties for that object. The
server application executes the functions and changes the object’s properties,
which changes the OLE object.

For some applications, you can specify whether the application is visible. If it
is visible, the user can activate the application and manipulate the object using
the commands and tools of the server application.

OLEObject object type
PowerBuilder’s OLEObject object type is designed for automation.
OLEObject is a dynamic object type, which means that the compiler will
accept any property names, function names, and parameter lists for the object.
PowerBuilder does not have to know whether the properties and functions are
valid. This allows you to call methods and set properties for the object that are
known to the server application that created the object. If the functions or
properties do not exist during execution, you will get runtime errors.

Using an OLEObject variable involves these steps:

1 Declare the variable and instantiate it.

2 Connect to the OLE object.

CHAPTER 19 Using OLE in an Application

Application Techniques 329

3 Manipulate the object as appropriate using the OLE server’s properties
and functions.

4 Disconnect from the OLE object and destroy the variable.

These steps are described next.

Declaring an
OLEObject variable

You need to declare an OLEObject variable and allocate memory for it:

OLEObject myoleobject
myoleobject = CREATE OLEObject

The Object property of the OLE container controls (OLEControl or
OLECustomControl) has a datatype of OLEObject.

Connecting to the
server

You establish a connection between the OLEObject object and an OLE server
with one of the ConnectToObject functions. Connecting to an object starts the
appropriate server:

Table 19-4: ConnectToObject functions

After you establish a connection, you can use the server’s command set for
automation to manipulate the object (see “OLE objects in scripts” on page
338).

You do not need to include application qualifiers for the commands. You
already specified those qualifiers as the application’s class when you connected
to the server. For example, the following commands create an OLEObject
variable, connect to Microsoft Word ’s OLE interface (word.application), open
a document and display information about it, insert some text, save the edited
document, and shut down the server:

OLEObject o1

When you want to Choose this function

Create a new object for an OLE server that you
specify. Its purpose is similar to InsertClass for a
control.

ConnectToNewObject

Create a new OLE object in the specified remote
server application if security on the server allows it
and associate the new object with a PowerBuilder
OLEObject variable.

ConnectToNewRemoteObject

Open an existing OLE object from a file. If you do
not specify an OLE class, PowerBuilder uses the
file’s extension to determine what server to start.

ConnectToObject

Associate an OLE object with a PowerBuilder
OLEObject variable and start the remote server
application.

ConnectToRemoteObject

Programmable OLE Objects

330 PowerBuilder

string s1
o1 = CREATE oleobject

o1.ConnectToNewObject("word.application")
o1.documents.open("c:\temp\temp.doc")

// Make the object visible and display the
// MS Word user name and file name
o1.Application.Visible = True
s1 = o1.UserName
MessageBox("MS Word User Name", s1)
s1 = o1.ActiveDocument.Name
MessageBox("MS Word Document Name", s1)

//Insert some text in a new paragraph
o1.Selection.TypeParagraph()
o1.Selection.typetext("Insert this text")
o1.Selection.TypeParagraph()

// Insert text at the first bookmark
o1.ActiveDocument.Bookmarks[1].Select
o1.Selection.typetext("Hail!")

// Insert text at the bookmark named End
o1.ActiveDocument.Bookmarks.item("End").Select
o1.Selection.typetext("Farewell!")

// Save the document and shut down the server
o1.ActiveDocument.Save()
o1.quit()
RETURN

For earlier versions of Microsoft Word, use word.basic instead of
word.application. The following commands connect to the Microsoft Word 7.0
OLE interface (word.basic), open a document, go to a bookmark location, and
insert the specified text:

myoleobject.ConnectToNewObject("word.basic")
myoleobject.fileopen("c:\temp\letter1.doc")
myoleobject.editgoto("NameAddress")
myoleobject.Insert("Text to insert")

Do not include word.application or word.basic (the class in
ConnectToNewObject) as a qualifier:

// Incorrect command qualifier
myoleobject.word.basic.editgoto("NameAddress")

CHAPTER 19 Using OLE in an Application

Application Techniques 331

Microsoft Word 7.0 implementation
For an OLEObject variable, word.basic is the class name of Word 7.0 as a
server application. For an object in a control, you must use the qualifier
application.wordbasic to tell Word how to traverse its object hierarchy and
access its wordbasic object.

Shutting down and
disconnecting from
the server

After your application has finished with the automation, you might need to tell
the server explicitly to shut down. You can also disconnect from the server and
release the memory for the object:

myoleobject.Quit()
rtncode = myoleobject.DisconnectObject()
DESTROY myoleobject

You can rely on garbage collection to destroy the OLEObject variable.
Destroying the variable automatically disconnects from the server.

It is preferable to use garbage collection to destroy objects, but if you want to
release the memory used by the variable immediately and you know that it is
not being used by another part of the application, you can explicitly disconnect
and destroy the OLEObject variable, as shown in the code above.

For more information, see “Garbage collection and memory management” on
page 45.

Assignments among OLEControl, OLECustomControl, and
OLEObject datatypes

You cannot assign an OLE control (object type OLEControl) or ActiveX
control (object type OLECustomControl) to an OLEObject.

If the vendor of the control exposes a programmatic identifier (in the form
vendor.application), you can specify this identifier in the ConnectToNewObject
function to connect to the programmable interface without the visual control.
For an ActiveX control with events, this technique makes the events
unavailable. ActiveX controls are not meant to be used this way and would not
be useful in most cases.

You can assign the Object property of an OLE control to an OLEObject
variable or use it as an OLEObject in a function.

Programmable OLE Objects

332 PowerBuilder

For example, if you have an OLEControl ole_1 and an OLECustomControl
ole_2 in a window and you have declared this variable:

OLEObject oleobj_automate

then you can make these assignments:

oleobj_automate = ole_1.Object
oleobj_automate = ole_2.Object

You cannot assign an OLEObject to the Object property of an OLE control
because it is read-only. You cannot make this assignment:

ole_1.Object = oleobj_automate //Error!

Events for
OLEObjects

You can implement events for an OLEObject by creating a user object that is a
descendant of OLEObject. The SetAutomationPointer PowerScript function
assigns an OLE automation pointer to the descendant so that it can use OLE
automation.

Suppose oleobjectchild is a descendant of OLEObject that implements events
such as the ExternalException and Error events. The following code creates an
OLEObject and an instance of oleobjectchild, which is a user object that is a
descendant of OLEObject, connects to Excel, then assigns the automation
pointer to the oleobjectchild:

OLEObject ole1
oleobjectchild oleChild

ole1 = CREATE OLEObject
ole1.ConnectToNewObject("Excel.Application")

oleChild = CREATE oleobjectchild
oleChild.SetAutomationPointer(ole1)

You can now use olechild for automation.

Automation scenario
The steps involved in automation can be included in a single script or be the
actions of several controls in a window. If you want the user to participate in
the automation, you might:

• Declare an OLE object as an instance variable of a window

• Instantiate the variable and connect to the server in the window’s Open
event

CHAPTER 19 Using OLE in an Application

Application Techniques 333

• Send commands to the server in response to the user’s choices and
specifications in lists or edit boxes

• Disconnect and destroy the object in the window’s Close event

If the automation does not involve the user, all the work can be done in a single
script.

Example: generating form letters using OLE

This example takes names and addresses from a DataWindow object and letter
body from a MultiLineEdit and creates and prints letters in Microsoft Word
using VBA scripting.

❖ To set up the form letter example:

1 Create a Word document called CONTACT.DOC with four bookmarks and
save the file in your PowerBuilder directory.

These are the bookmarks:

• name1 – for the name in the return address

• name2 – for the name in the salutation

• address1 – for the street, city, state, and zip in the return address

• body – for the body of the letter

The letter should have the following content:

Multimedia Promotions, Inc.
1234 Technology Drive
Westboro, Massachusetts
January 12, 2003

[bookmark name1]
[bookmark address1]

Dear [bookmark name2]:
[bookmark body]

Sincerely,
Harry Mogul
President

You could enhance the letter with a company and a signature logo. The
important items are the names and placement of the bookmarks.

Programmable OLE Objects

334 PowerBuilder

2 In PowerBuilder, define a DataWindow object called d_maillist that has the
following columns:

id
first_name
last_name
street
city
state
zip

You can turn on Prompt for Criteria in the DataWindow object so the user
can specify the customers who will receive the letters.

3 Define a window that includes a DataWindow control called dw_mail, a
MultiLineEdit called mle_body, and a CommandButton or PictureButton:

4 Assign the DataWindow object d_maillist to the DataWindow control
dw_mail.

5 Write a script for the window’s Open event that connects to the database
and retrieves data for the DataWindow object. The following code
connects to an Adaptive Server Anywhere database. (When the window is
part of a larger application, the connection is typically done by the
application Open script.)

/**
Set up the Transaction object from the INI file
**/
SQLCA.DBMS=ProfileString("myapp.ini", &

"Database", "DBMS", " ")

CHAPTER 19 Using OLE in an Application

Application Techniques 335

SQLCA.DbParm=ProfileString("myapp.ini", &
"Database", "DbParm", " ")

/**
Connect to the database and test whether the
connect succeeded
**/
CONNECT USING SQLCA;
IF SQLCA.SQLCode <> 0 THEN

MessageBox("Connect Failed", "Cannot connect" &
+ "to database. " + SQLCA.SQLErrText)

RETURN
END IF
/**
Set the Transaction object for the DataWindow
control and retrieve data
**/
dw_mail.SetTransObject(SQLCA)
dw_mail.Retrieve()

6 Write the script for the Generate Letters button (the script is shown below).

The script does all the work, performing the following tasks:

• Creates the OLEObject variable

• Connects to the server (word.application)

• For each row in the DataWindow object, generates a letter

To do so, it uses VBA statements to perform the tasks in Table 19-5.

Table 19-5: Script tasks

• Disconnects from the server

• Destroys the OLEObject variable

7 Write a script for the Close button. All it needs is one command:

Close(Parent)

VBA statements Task

open Opens the document with the bookmarks

goto and typetext Extracts the name and address information from
a row in the DataWindow object and inserts it
into the appropriate places in the letter

goto and typetext Inserts the text the user types in mle_body into
the letter

printout Prints the letter

close Closes the letter document without saving it

Programmable OLE Objects

336 PowerBuilder

Script for generating
form letters

The following script generates and prints the form letters:

OLEObject contact_ltr
integer result, n
string ls_name, ls_addr
/***
Allocate memory for the OLEObject variable
***/
contact_ltr = CREATE oleObject
/***
Connect to the server and check for errors
***/
result = &

contact_ltr.ConnectToNewObject("word.application")
IF result <> 0 THEN

DESTROY contact_ltr
MessageBox("OLE Error", &

"Unable to connect to Microsoft Word. " &
+ "Code: " &
+ String(result))
RETURN

END IF
/***
For each row in the DataWindow, send customer
data to Word and print a letter
***/
FOR n = 1 to dw_mail.RowCount()
/**

Open the document that has been prepared with
bookmarks

**/
contact_ltr.documents.open("c:\pbdocs\contact.doc")

/**
Build a string of the first and last name and
insert it into Word at the name1 and name2
bookmarks

**/
ls_name = dw_mail.GetItemString(n, "first_name")&
+ " " + dw_mail.GetItemString(n, "last_name")
contact_ltr.Selection.goto("name1")
contact_ltr.Selection.typetext(ls_name)
contact_ltr.Selection.goto("name2")
contact_ltr.Selection.typetext(ls_name)

/**
Build a string of the address and insert it into
Word at the address1 bookmark

**/

CHAPTER 19 Using OLE in an Application

Application Techniques 337

ls_addr = dw_mail.GetItemString(n, "street") &
+ "~r~n" &
+ dw_mail.GetItemString(n, "city") &
+ ", " &
+ dw_mail.GetItemString(n, "state") &
+ " " &
+ dw_mail.GetItemString(n, "zip")

contact_ltr.Selection.goto("address1")
contact_ltr.Selection.typetext(ls_addr)

/**
Insert the letter text at the body bookmark

***/
contact_ltr.Selection.goto("body")
contact_ltr.Selection.typetext(mle_body.Text)

/**
Print the letter

**/
contact_ltr.Application.printout()

/**
Close the document without saving

**/
contact_ltr.Documents.close
contact_ltr.quit()

NEXT
/***
Disconnect from the server and release the memory for
the OLEObject variable
***/
contact_ltr.DisconnectObject()
DESTROY contact_ltr

Running the example To run the example, write a script for the Application object that opens the
window or use the Run/Preview button on the PowerBar.

When the application opens the window, the user can specify retrieval criteria
to select the customers who will receive letters. After entering text in the
MultiLineEdit for the letter body, the user can click on the Generate Letters
button to print letters for the listed customers.

OLE objects in scripts

338 PowerBuilder

OLE objects in scripts
This chapter has described the three ways to use OLE in a window or user
object. You have learned about:

• Inserting an object in an OLE control

• Placing an ActiveX control in an OLE custom control

• Declaring an OLEObject variable and connecting to an OLE object

In scripts, you can manipulate these objects by means of OLE automation,
getting and setting properties, and calling functions that are defined by the OLE
server. There are examples of automation commands in the preceding sections.
This section provides more information about the automation interface in
PowerBuilder.

The automation interface
In PowerBuilder, an OLEObject is your interface to an OLE server or ActiveX
control. When you declare an OLEObject variable and connect to a server, you
can use dot notation for that variable and send instructions to the server. The
instruction might be a property whose value you want to get or set, or a function
you want to call.

The general automation syntax for an OLEObject is:

oleobjectvar.serverinstruction

For OLE controls in a window, your interface to the server or ActiveX control
is the control’s Object property, which has a datatype of OLEObject.

The general automation syntax for an OLE control is:

olecontrol.Object.serverinstruction

Compiling scripts that include commands to the OLE server
When you compile scripts that apply methods to an OLEObject (including a
control’s Object property), PowerBuilder does not check the syntax of the rest
of the command, because it does not know the server’s command set. You must
ensure that the syntax is correct to avoid errors during execution.

Make sure you give your applications a test run to ensure that your commands
to the server application are correct.

CHAPTER 19 Using OLE in an Application

Application Techniques 339

What does the server
support?

A server’s command set includes properties and methods (functions and
events).

OLE server applications publish the command set they support for automation.
Check your server application’s documentation for information.

For custom controls and programmable OLE objects, you can see a list of
properties and methods in the PowerBuilder Browser. For more information
about OLE information in the Browser, see “OLE information in the Browser”
on page 355.

Setting properties

You access server properties for an OLE control through its Object property
using the following syntax:

olecontrolname.Object.{ serverqualifiers.}propertyname

If the OLE object is complex, there could be nested objects or properties within
the object that serve as qualifiers for the property name.

For example, the following commands for an Excel spreadsheet object activate
the object and set the value property of several cells:

double value
ole_1.Activate(InPlace!)
ole_1.Object.cells[1,1].value = 55
ole_1.Object.cells[2,2].value = 66
ole_1.Object.cells[3,3].value = 77
ole_1.Object.cells[4,4].value = 88

For an Excel 95 spreadsheet, enclose the cells’ row and column arguments in
parentheses instead of square brackets. For example:

ole_1.Object.cells(1,1).value = 55

For properties of an OLEObject variable, the server qualifiers and property
name follow the variable name:

oleobjectvar.{ serverqualifiers.}propertyname

The qualifiers you need to specify depend on how you connect to the object.
For more information, see “Qualifying server commands” on page 343.

OLE objects in scripts

340 PowerBuilder

Calling functions

You can call server functions for an OLE control through its Object property
using the following syntax:

olecontrolname.Object.{ serverqualifiers.}functionname ({ arguments })

If the OLE object is complex, there could be nested properties or objects within
the object that serve as qualifiers for the function name.

Required parentheses
PowerScript considers all commands to the server either property settings or
functions. For statements and functions to be distinguished from property
settings, they must be followed by parentheses surrounding the parameters. If
there are no parameters, specify empty parentheses.

Arguments and return
values and their
datatypes

PowerBuilder converts OLE data to and from compatible PowerBuilder
datatypes. The datatypes of values you specify for arguments must be
compatible with the datatypes expected by the server, but they do not need to
be an exact match.

When the function returns a value, you can assign the value to a PowerBuilder
variable of a compatible datatype.

Passing arguments by
reference

If an OLE server expects an argument to be passed by reference so that it can
pass a value back to your script, include the keyword REF just before the
argument. This is similar to the use of REF in an external function declaration:

olecontrol.Object.functionname (REF argname)

In these generic examples, the server can change the values of ls_string and
li_return because they are passed by reference:

string ls_string
integer li_return
ole_1.Object.testfunc(REF ls_string, REF li_return)

This example illustrates the same function call using an OLEObject variable.

OLEObject ole_obj
ole_obj = CREATE OLEObject
ole_obj.ConnectToNewObject("servername")
ole_obj.testfunc(REF ls_string, REF li_return)

CHAPTER 19 Using OLE in an Application

Application Techniques 341

Setting the timeout period
Calls from a PowerBuilder client to a server time out after five minutes. You
can use the SetAutomationTimeout PowerScript function to change the default
timeout period if you expect a specific OLE request to take longer.

Word and automation Microsoft Word 6.0 and 7.0 support automation with a command set similar to
the WordBasic macro language. The command set includes both statements
and functions and uses named parameters. Later versions of Microsoft Word
use Visual Basic for Applications (VBA), which consists of a hierarchy of
objects that expose a specific set of methods and properties.

WordBasic statements WordBasic has both statements and functions. Some
of them have the same name. WordBasic syntax differentiates between
statements and functions calls, but PowerBuilder does not.

To specify that you want to call a statement, you can include AsStatement! (a
value of the OLEFunctionCallType enumerated datatype) as an argument. Using
AsStatement! is the only way to call WordBasic statements that have the same
name as a function. Even when the statement name does not conflict with a
function name, specifying AsStatement! is more efficient:

olecontrol.Object.application.wordbasic.statementname
 (argumentlist, AsStatement!)

For example, the following code calls the AppMinimize statement:

ole_1.Object.application.wordbasic. &
AppMinimize("",1,AsStatement!)

Named parameters PowerBuilder does not support named parameters that
both WordBasic and Visual Basic use. In the parentheses, specify the parameter
values without the parameter names.

For example, the following statements insert text at a bookmark in a Word 6.0
or 7.0 document:

ole_1.Activate(InPlace!)
Clipboard(mle_nameandaddress.Text)
ole_1.Object.application.wordbasic.&

fileopen("c:\msoffice\winword\doc1.doc")
ole_1.Object.application.wordbasic.&

editgoto("NameandAddress", AsStatement!)
ole_1.Object.application.wordbasic.&

editpaste(1, AsStatement!)

OLE objects in scripts

342 PowerBuilder

The last two commands in a WordBasic macro would look like this, where
Destination is the named parameter:

EditGoto.Destination = "NameandAddress"
EditPaste

In a PowerBuilder script, you would use this syntax to insert text in a Word 97
or later document:

ole_1.Object.Selection.TypeText("insert this text")

In the corresponding Visual Basic statement, the named parameter Text
contains the string to be inserted:

Selection.TypeText Text:="insert this text"

Automation is not macro programming
You cannot send commands to the server application that declare variables or
control the flow of execution (for example, IF THEN). Automation executes
one command at a time independently of any other commands. Use
PowerScript’s conditional and looping statements to control program flow.

Example of Word automation To illustrate how to combine PowerScript
with server commands, the following script counts the number of bookmarks
in a Microsoft Word OLE object and displays their names:

integer i, count
string bookmarklist, curr_bookmark
ole_1.Activate(InPlace!)

count = ole_1.Object.Bookmarks.Count
bookmarklist = "Bookmarks = " + String(count) + "~n"

FOR i = 1 to count
curr_bookmark = ole_1.Object.Bookmarks[i].Name
bookmarklist = bookmarklist + curr_bookmark + "~n"

END FOR

MessageBox("BookMarks", bookmarklist)

CHAPTER 19 Using OLE in an Application

Application Techniques 343

Word automation tip
You can check that you are using the correct syntax for Word automation with
the Word macro editor. Turn on macro recording in Word, perform the steps
you want to automate manually, then turn off macro recording. You can then
type Alt+F11 to open the macro editor and see the syntax that was built.
Remember that PowerBuilder uses square brackets for array indexes.

Example of Word 6.0 and 7.0 automation The following script counts the
number of bookmarks in a Microsoft Word 6.0 or 7.0 OLE object and displays
their names:

integer i, count
string bookmarklist, curr_bookmark
ole_1.Activate(InPlace!)

// Get the number of bookmarks
count = ole_1.Object. &

 application.wordbasic.countbookmarks
bookmarklist = "Bookmarks = " + String(count) + "~n"

// Get the name of each bookmark
FOR i = 1 to count

curr_bookmark = ole_1.Object. &
application.wordbasic.bookmarkname(i)
bookmarklist = bookmarklist + curr_bookmark +

"~n"
END FOR

MessageBox("BookMarks", bookmarklist)

Qualifying server commands

Whether to qualify the server command with the name of the application
depends on the server and how the object is connected. Each server implements
its own version of an object hierarchy, which needs to be reflected in the
command syntax. For example, the Microsoft Excel object hierarchy is shown
in Figure 19-2.

OLE objects in scripts

344 PowerBuilder

Figure 19-2: Microsoft Excel object hierarchy

When the server is Excel, the following commands appear to mean the same
thing but can have different effects (for an Excel 95 spreadsheet, the cells’ row
and column arguments are in parentheses instead of square brackets):

ole_1.Object.application.cells[1,2].value = 55

ole_1.Object.cells[1,2].value = 55

The first statement changes a cell in the active document. It moves up Excel’s
object hierarchy to the Application object and back down to an open sheet. It
does not matter whether it is the same one in the PowerBuilder control. If the
user switches to Excel and activates a different sheet, the script changes that
one instead. You should avoid this syntax.

The second statement affects only the document in the PowerBuilder control.
However, it will cause a runtime error if the document has not been activated.
It is the safer syntax to use, because there is no danger of affecting the wrong
data.

Microsoft Word 6.0 and 7.0 implement the application hierarchy differently
and require the qualifier application.wordbasic when you are manipulating an
object in a control. (You must activate the object.) For example:

ole_1.Object.application.wordbasic.bookmarkname(i)

Later versions of Microsoft Word do not require a qualifier, but it is valid to
specify one. You can use any of the following syntaxes:

ole_1.Object.Bookmarks.[i].Name
ole_1.Object.Bookmarks.item(i).Name

ole_1.Object.application.ActiveDocument. &
Bookmarks.[i].Name

CHAPTER 19 Using OLE in an Application

Application Techniques 345

When you are working with PowerBuilder’s OLEObject, rather than an object
in a control, you omit the application qualifiers in the commands because you
have already specified them when you connected to the object. (For more about
the OLEObject object type, see “Programmable OLE Objects” on page 328.)

Automation and the Any datatype
Because PowerBuilder knows nothing about the commands and functions of
the server application, it also knows nothing about the datatypes of returned
information when it compiles a program. Expressions that access properties
and call functions have a datatype of Any. You can assign the expression to an
Any variable, which avoids datatype conversion errors.

During execution, when data is assigned to the variable, it temporarily takes the
datatype of the value. You can use the ClassName function to determine the
datatype of the Any variable and make appropriate assignments. If you make an
incompatible assignment with mismatched datatypes, you will get a runtime
error.

Do not use the Any datatype unnecessarily
If you know the datatype of data returned by a server automation function, do
not use the Any datatype. You can assign returned data directly to a variable of
the correct type.

The following sample code retrieves a value from Excel and assigns it to the
appropriate PowerBuilder variable, depending on the value’s datatype. (For an
Excel 95 spreadsheet, the row and column arguments for cells are in
parentheses instead of square brackets.)

string stringval
double dblval
date dateval
any anyval

anyval = myoleobject.application.cells[1,1].value
CHOOSE CASE ClassName(anyval)

CASE "string"
stringval = anyval

CASE "double"
dblval = anyval

CASE "datetime"
dateval = Date(anyval)

END CHOOSE

OLE objects in scripts

346 PowerBuilder

OLEObjects for efficiency
When your automation command refers to a deeply nested object with multiple
server qualifiers, it takes time to negotiate the object’s hierarchy and resolve
the object reference. If you refer to the same part of the object hierarchy
repeatedly, then for efficiency you can assign that part of the object reference
to an OLEObject variable. The reference is resolved once and reused.

Instead of coding repeatedly for different properties:

ole_1.Object.application.wordbasic.propertyname

you can define an OLEObject variable to handle all the qualifiers:

OLEObject ole_wordbasic
ole_wordbasic = ole_1.Object.application.wordbasic
ole_wordbasic.propertyname1 = value
ole_wordbasic.propertyname2 = value

Example: resolving an
object reference

This example uses an OLEObject variable to refer to a Microsoft Word object.
Because it is referred to repeatedly in a FOR loop, the resolved OLEObject
makes the code more efficient. The example destroys the OLEObject variable
when it is done with it:

integer li_i, li_count
string ls_curr_bookmark
OLEObject ole_wb

ole_1.Activate(InPlace!)
ole_wb = ole_1.Object.application.wordbasic

// Get the number of bookmarks
li_count = ole_wb.countbookmarks
// Get the name of each bookmark
FOR li_i = 1 to count

ls_curr_bookmark = ole_wb.bookmarkname(i)
... // code to save the bookmark name in a list

END FOR

Handling errors
Statements in scripts that refer to the OLE server’s properties are not checked
in the compiler because PowerBuilder does not know what syntax the server
expects. Because the compiler cannot catch errors, runtime errors can occur
when you specify property or function names and arguments the OLE server
does not recognize.

CHAPTER 19 Using OLE in an Application

Application Techniques 347

Chain of error events When an error occurs that is generated by a call to an OLE server,
PowerBuilder follows this sequence of events:

1 If the error was generated by an ActiveX control that has defined a stock
error event, the ocx_error event for the PowerBuilder OLE control is
triggered.

2 Otherwise, the ExternalException event for the OLE object occurs.

3 If the ExternalException event has no script or its action argument is set to
ExceptionFail! (the default), the Error event for the OLE object occurs.

4 If the Error event has no script or its action argument is set to ExceptionFail!
(the default), any active exception handler for a RuntimeError or its
descendants is invoked.

5 If no exception handler exists, or if the existing exception handlers do not
handle the exception, the SystemError event for the Application object
occurs.

6 If the SystemError has no script, an application runtime error occurs and
the application is terminated.

You can handle the error in any of these events or in a script using a
TRY-CATCH block. However, it is not a good idea to continue processing after
the SystemError event occurs.

For more information about exception handling, see “Handling exceptions” on
page 38.

Events for OLE errors PowerBuilder OLE objects and controls all have two events for error handling:

• ExternalException Triggered when the OLE server or control throws an
exception or fires an error event (if there is no ocx_error event).
Information provided by the server can help diagnose the error.

• Error Triggered when the exception or error event is not handled.
PowerBuilder error information is available in the script.

If the OLE control defines a stock error event, the PowerBuilder OLE control
container has an additional event:

• ocx_error Triggered when the OLE server fires an error event.
Information provided by the server can help diagnose the error.

The creator of an OLE control can generate the stock error event for the control
using the Microsoft Foundation Classes (MFC) Class Wizard. The arguments
for the ocx_error event in PowerBuilder map to the arguments defined for the
stock error event.

OLE objects in scripts

348 PowerBuilder

Responding to the
error

If the PowerBuilder OLE control has an ocx_error event script, you can get
information about the error from the event’s arguments and take appropriate
action. One of the arguments of ocx_error is the boolean CancelDisplay. You
can set CancelDisplay to TRUE to cancel the display of any MFC error
message. You can also supply a different description for the error.

In either the ExternalException or Error event script, you set the Action
argument to an ExceptionAction enumerated value. What you choose depends
on what you know about the error and how well the application will handle
missing information.

Table 19-6: ExceptionAction enumerated values

ExceptionAction
value Effect

ExceptionFail! Fail as if the event had no script. Failing triggers the next error
event in the order of event handling.

ExceptionIgnore! Ignore the error and return as if no error occurred.

Caution
If you are getting a property value or expecting a return value
from a function, a second error can occur during the
assignment because of mismatched datatypes.

ExceptionRetry! Send the command to the OLE server again (useful if the OLE
server was not ready).

Caution
If you keep retrying and the failure is caused by an incorrect
name or argument, you will set your program into an endless
loop. You can set up a counter to limit the number of retries.

ExceptionSubstitute
ReturnValue!

Use the value specified in the ReturnValue argument instead
of the value returned by the OLE server (if any) and ignore the
error condition.

You can set up an acceptable return value in an instance
variable before you address the OLE server and assign it to the
ReturnValue argument in the event script. The datatype of
ReturnValue is Any, which accommodates all possible
datatypes.

With a valid substitute value, this choice is a safe one if you
want to continue the application after the error occurs.

CHAPTER 19 Using OLE in an Application

Application Techniques 349

Example:
ExternalException
event

The ExternalException event, like the ocx_error event, provides error
information from the OLE server that can be useful when you are debugging
your application.

Suppose your window has two instance variables: one for specifying the
exception action and another of type Any for storing a potential substitute
value. Before accessing the OLE property, a script sets the instance variables
to appropriate values:

ie_action = ExceptionSubstituteReturnValue!
ia_substitute = 0
li_currentsetting = ole_1.Object.Value

If the command fails, a script for the ExternalException event displays the Help
topic named by the OLE server, if any. It substitutes the return value you
prepared and returns. The assignment of the substitute value to
li_currentsetting works correctly because their datatypes are compatible:

string ls_context

// Command line switch for WinHelp numeric context ID
ls_context = "-n " + String(helpcontext)
IF Len(HelpFile) > 0 THEN

Run("winhelp.exe " + ls_context + " " + HelpFile)
END IF

Action = ExceptionSubstituteReturnValue!
ReturnValue = ia_substitute

Because the event script must serve for every automation command for the
control, you would need to set the instance variables to appropriate values
before each automation command.

Error event The Error event provides information about the PowerBuilder context for the
error. You can find out the PowerBuilder error number and message, as well as
the object, script, and line number of the error. This information is useful when
debugging your application.

The same principles discussed in the ExceptionAction value table for setting
the Action and ReturnValue arguments apply to the Error event, as well as
ExternalException.

For more information about the events for error handling, see the PowerScript
Reference.

OLE objects in scripts

350 PowerBuilder

Creating hot links
Some OLE servers support property change notifications. This means that
when a property is about to be changed and again after it has been changed, the
server notifies the client, passing information about the change. These
messages trigger the events PropertyRequestEdit and PropertyChanged.

PropertyRequestEdit
event

When a property is about to change, PowerBuilder triggers the
PropertyRequestEdit event. In that event’s script you can:

• Find out the name of the property being changed by looking at the
PropertyName argument.

• Obtain the old property value and save it

The property still has its old value, so you can use the standard syntax to
access the value.

• Cancel the change by changing the value of the CancelChange argument
to TRUE

PropertyChanged
event

When a property has changed, PowerBuilder triggers the PropertyChanged
event. In that event’s script, you can:

• Find out the name of the property being changed by looking at the
PropertyName argument

• Obtain the new property value

The value has already changed, so you cannot cancel the change.

Using the
PropertyName
argument

Because the PropertyName argument is a string, you cannot use it in dot
notation to get the value of the property:

value = This.Object.PropertyName // Will not work

Instead, use CHOOSE CASE or IF statements for the property names that need
special handling.

For example, in the PropertyChanged event, this code checks for three specific
properties and gets their new value when they are the property that changed.
The value is assigned to a variable of the appropriate datatype:

integer li_index, li_minvalue
long ll_color

CHOOSE CASE Lower(PropertyName)
CASE "value"
li_index = ole_1.Object.Value
CASE "minvalue"
li_minvalue = ole_1.Object.MinValue

CHAPTER 19 Using OLE in an Application

Application Techniques 351

CASE "backgroundcolor"
ll_color = ole_1.Object.BackgroundColor
CASE ELSE
... // Other processing

END CHOOSE

If a larger change
occurred

In some cases the value of the PropertyName argument is an empty string ("").
This means a more general change has occurred—for example, a change that
affects several properties.

If notification is not
supported

If the OLE server does not support property change notification, then the
PropertyRequestEdit and PropertyChanged events are never triggered, and
scripts you write for them will not run. Check your OLE server documentation
to see if notification is supported.

If notifications are not supported and your application needs to know about a
new property value, you might write your own function that checks the
property periodically.

For more information about the PropertyRequestEdit and PropertyChanged
events, see the PowerScript Reference.

Setting the language for OLE objects and controls
When you write automation commands, you generally use commands that
match the locale for your computer. If your locale and your users’ locale will
differ, you can specify the language you have used for automation with the
SetAutomationLocale function.

You can call SetAutomationLocale for OLE controls, custom controls, and
OLEObjects, and you can specify a different locale for each automation object
in your application.

For example, if you are developing your application in Germany and will
deploy it all over Europe, you can specify the automation language is German.
Use this syntax for an OLE control called ole_1:

ole_1.Object.SetAutomationLocale(LanguageGerman!)

Use this syntax for an OLEObject called oleobj_report:

oleobj_report.SetAutomationlocale(LanguageGerman!)

The users of your application must have the German automation interface for
the OLE server application.

OLE objects in scripts

352 PowerBuilder

What languages do your users’ computers support?
When your users install an OLE server application (particularly an OLE
application from Microsoft), they get an automation interface in their native
language and in English. It might not be appropriate for you to write
automation commands in your native language if your users have a different
language.

For more information, see the SetAutomationLocale function in the
PowerScript Reference.

Low-level access to the OLE object
If you need low-level access to OLE through a C or C++ DLL that you call
from PowerBuilder, you can use these functions:

• GetNativePointer (for OLEControl and OLECustomControl)

• GetAutomationNativePointer (for OLEObject)

When you have finished, you must use these functions to free the pointer:

• ReleaseNativePointer (for OLEControl and OLECustomControl)

• ReleaseAutomationNativePointer (for OLEObject)

For more information, see the PowerScript Reference.

OLE objects in DataWindow objects
The preceding sections discuss the automation interface to OLE controls and
OLE objects. You can also use scripts to change settings for an OLE object
embedded in a DataWindow object, and you can address properties of the
external OLE object.

This section describes how to use the Object property in dot notation to set
DataWindow properties and issue automation commands for OLE objects in
DataWindow objects.

Naming the OLE
object

To use dot notation for the OLE object, give the object a name. You specify the
name on the General page in the object’s property sheet.

CHAPTER 19 Using OLE in an Application

Application Techniques 353

Setting properties You set properties of the OLE container object just as you do for any object in
the DataWindow object. The Object property of the control is an interface to
the objects within the DataWindow object.

For example, this statement sets the Pointer property of the object ole_word:

dw_1.Object.ole_word.Pointer = "Cross!"

It is important to remember that the compiler does not check syntax after the
Object property. Incorrect property references cause runtime errors.

For more information about setting properties, handling errors, and the list of
properties for the OLE DWObject, see the DataWindow Reference.

OLE objects and the Modify function
You cannot create an OLE object in a DataWindow object dynamically using
the CREATE keyword of the Modify function. The binary data for the OLE
object is not compatible with Modify syntax.

Functions and
properties

There are four functions you can call for the OLE DWObject. They have the
same effect as for the OLE control. They are:

• Activate

• Copy

• DoVerb

• UpdateLinksDialog

To call the functions, you use the Object property of the DataWindow control,
just as you do for DataWindow object properties:

dw_1.Object.ole_word.Activate(InPlace!)

Four properties that apply to OLE controls in a window also apply to the OLE
DWObject.

Table 19-7: Properties that apply to OLE controls and DWObject

Property datatype Description

ClassLongName String (Read-only) The long name for the server
application associated with the OLE DWObject.

ClassShortName String (Read-only) The short name for the server
application associated with the OLE DWObject.

OLE objects in scripts

354 PowerBuilder

Automation You can send commands to the OLE server using dot notation. The syntax
involves two Object properties:

• The Object property of the DataWindow control. Gives you access to
DataWindow objects, including the OLE container DWObject

• The Object property of the OLE DWObject. Gives you access to the
automation object

The syntax is:

dwcontrol.Object.oledwobject.Object.{ serverqualifiers. }serverinstruction

For example, this statement uses the WordBasic Insert function to add a report
title to the beginning of the table of data in the Word document:

dw_1.Object.ole_word.Object.application.wordbasic.&
Insert("Report Title " + String(Today()))

OLE columns in an application

OLE columns in a DataWindow object enable you to store, retrieve, and
modify blob data in a database. To use an OLE column in an application, place
a DataWindow control in a window and associate it with the DataWindow
object.

For users of SQL Server
If you are using a SQL Server database, you must turn off transaction
processing to use OLE. In the Transaction object used by the DataWindow
control, set AutoCommit to TRUE.

For how to create an OLE column in a DataWindow object, see the
PowerBuilder User’s Guide.

LinkItem String (Read-only) The entire link name of the item to
which the object is linked.

For example, if the object is linked to
C:\FILENAME.XLS!A1:B2, then LinkItem would
contain C:\FILENAME.XLS!A1:B2.

ObjectData Blob If the object is embedded, the object itself is stored
as a blob in the ObjectData property.

If the object is linked, this property contains the
link information and the cached image (for
display).

Property datatype Description

CHAPTER 19 Using OLE in an Application

Application Techniques 355

Activating an OLE
server application

Users can interact with the blob exactly as you did in preview in the
DataWindow painter: they can double-click a blob to invoke the server
application, then view and edit the blob. You can also use the OLEActivate
function in a script to invoke the server application. Calling OLEActivate
simulates double-clicking a specified blob.

The OLEActivate function has this syntax:

dwcontrol.OLEActivate (row, columnnameornumber, verb)

Specifying the verb When using OLEActivate, you need to know the action to pass to the OLE
server application. (Windows calls these actions verbs.) Typically, you want to
edit the document, which for most servers means you specify 0 as the verb.

To obtain the verbs supported by a particular OLE server application, use the
advanced interface of the Windows Registry Editor utility (run REGEDT32 /V).

For information about Registry Editor, see the Windows online Help file
REGEDT32.HLP.

Example For example, you might want to use OLEActivate in a Clicked script for a button
to allow users to use OLE without their having to know they can double-click
the blob’s icon.

The following statement invokes the OLE server application for the OLE
column in the current row of the DataWindow control dw_1 (assuming that the
second column in the DataWindow object is an OLE column):

dw_1.OLEActivate(dw_1.GetRow(), 2, 0)

For more information For more information about using OLE in a DataWindow object, see the
PowerBuilder User’s Guide.

OLE information in the Browser
The system stores information about the OLE server applications and OLE
custom controls installed on your computer in the registry.

PowerBuilder reads the registry and displays the registration information for
all registered OLE servers and custom controls.

❖ To view the OLE information:

1 Click the Browser button on the PowerBar.

2 Click the OLE tab in the Browser.

OLE information in the Browser

356 PowerBuilder

There are three categories of OLE object, as shown in Table 19-8.

Table 19-8: OLE object categories

When you expand each of these categories, you see the individual OLE servers
that are installed. Each OLE server can also be expanded. The information
provided depends on the category.

Class information All the categories provide class information about the OLE server. You see a
list of registry keys. Some of the keys are meaningful in their own right and
some have values. The values, or simply the presence or absence of keys, tell
you how to find the OLE server and what it supports.

Table 19-9 lists some typical keys and what they mean.

Table 19-9: OLE registry keys

OLE object category Description

Insertable objects OLE servers that can link or embed objects in OLE
containers. OLE servers that support insertable objects
must have a visual component.

Custom controls ActiveX controls that can be included in an OLE
container. ActiveX controls can also be insertable objects.
If so, they will appear on both lists.

Programmable objects OLE servers to which you can send automation
instructions. A programmable object might not have a
visual aspect, which means it supports only automation
and cannot support insertable objects.

Registry key Value

GUID The global unique identifier for the OLE server.

TypeLib - GUID The global unique identifier for the type library for an
ActiveX control.

ProgID A string that identifies the OLE server or ActiveX
control. It usually includes a version number.

VersionIndependentProgID A string that identifies the OLE server or ActiveX
control, but does not include a version number.

InprocServer32 The name of the file for the 32-bit version of an
ActiveX control.

ToolboxBitmap32 The name of a bitmap file for the 32-bit ActiveX
control that can be used to represent the ActiveX
control in toolbars or toolboxes of a development
environment.

DefaultIcon The name of an icon file or executable containing an
icon to be used for an insertable icon that is being
displayed as an icon.

CHAPTER 19 Using OLE in an Application

Application Techniques 357

In addition to registry information, the Browser displays the properties and
methods of ActiveX controls and programmable objects. To provide the
information, PowerBuilder uses the registry information to query the ActiveX
control for its properties and methods. The information includes arguments and
datatypes.

Browser as script-
writing tool

Take advantage of the Browser when writing scripts. You can find property and
function names and paste them into your scripts. The Browser provides the full
syntax for accessing that property.

❖ To paste OLE information into a script:

1 Open the Browser.

2 Click the OLE tab.

3 Expand the list to find what you want. For example, find the ActiveX
control you want and expand the list further to find a property.

4 Highlight the property and select Copy from the pop-up menu.

5 Position the insertion point in the Script view and select Paste from the
pop-up menu.

The Browser inserts syntax like this into your script:

OLECustomControl.Object.NeedlePosition

After you change OLECustomControl to the actual name of your control,
your script correctly accesses the NeedlePosition property.

What the Browser pastes into your script depends on what you have selected.
If you select an object (a level above its properties in the hierarchy),
PowerBuilder pastes the object’s ProgID. You can use the ProgID in the
ConnectToNewObject function.

For more information about automation and the registry, see Chapter 20,
“PowerBuilder Runtime Automation Server.”

Version The version number of the OLE server or ActiveX
control.

Insertable No value – specifies that the entry is an OLE server
that supports insertable object.

Control No value – specifies that the entry is an ActiveX
control.

Verb No value – specifies that the entry accepts verbs as
commands.

Registry key Value

Advanced ways to manipulate OLE objects

358 PowerBuilder

Advanced ways to manipulate OLE objects
In addition to OLE objects in controls and objects for automation,
PowerBuilder provides an interface to the underpinnings of OLE data storage.

OLE data is stored in objects called streams, which live in objects called
storages. Streams and storages are analogous to the files and directories of a
file system. By opening, reading, writing, saving, and deleting streams and
storages, you can create, combine, and delete your OLE objects. PowerBuilder
provides access to storages and streams with the OLEStorage and OLEStream
object types.

When you define OLE controls and OLEObject variables, you have full access
to the functionality of server applications and automation, which already
provide you with much of OLE’s power. You might never need to use
PowerBuilder’s storage and stream objects unless you want to construct
complex combinations of stored data.

Storage files from other applications
This section discusses OLE storage files that a PowerBuilder application has
built. Other PowerBuilder applications will be able to open the objects in a
storage file built by PowerBuilder. Although Excel, Word, and other server
applications store their native data in OLE storages, these files have their own
special formats, and it is not advisable to open them directly as storage files.
Instead, you should always insert them in a control (InsertFile) or connect to
them for automation (ConnectToObject).

Structure of an OLE storage
An OLE storage is a repository of OLE data. A storage is like the directory
structure on a disk. It can be an OLE object and can contain other OLE objects,
each contained within the storage, or within a substorage within the storage.
The substorages can be separate OLE objects—unrelated pieces like the files
in a directory—or they can form a larger OLE object, such as a document that
includes pictures as shown in Figure 19-3.

CHAPTER 19 Using OLE in an Application

Application Techniques 359

Figure 19-3: OLE storage structure

A storage or substorage that contains an OLE object has identifying
information that tags it as belonging to a particular server application. Below
that level, the individual parts should be manipulated only by that server
application. You can open a storage that is a server’s object to extract an object
within the storage, but you should not change the storage.

A storage that is an OLE object has presentation information for the object.
OLE does not need to start the server in order to display the object, because a
rendering is part of the storage.

A storage might not contain an OLE object—it might exist simply to contain
other storages. In this case, you cannot open the storage in a control (because
there would be no object to insert).

Object types for storages and streams
PowerBuilder has two object types that are the equivalent of the storages and
streams stored in OLE files. They are:

• OLEStorage

• OLEStream

These objects are class user objects, like a Transaction or Message object. You
declare a variable, instantiate it, and open the storage. When you are through
with the storage, you close it and destroy the variable, releasing the OLE server
and the memory allocated for the variable.

Opening a storage associates an OLEStorage variable with a file on disk, which
can be a temporary file for the current session or an existing file that already
contains an OLE object. If the file does not exist, PowerBuilder creates it.

Advanced ways to manipulate OLE objects

360 PowerBuilder

You can put OLE objects in a storage with the SaveAs function. You can
establish a connection between an OLE control in a window and a storage by
calling the Open function for the OLE control.

A stream is not an OLE object and cannot be opened in a control. However,
streams allow you to put your own information in a storage file. You can open
a stream within a storage or substorage and read and write data to the stream,
just as you might to a file.

Performance tip
Storages provide an efficient means of displaying OLE data. When you insert
a file created by a server application into a control, OLE has to start the server
application to display the object. When you open an object in an OLE storage,
there is no overhead for starting the server—OLE uses the stored presentation
information to display the object. There is no need to start the server if the user
never activates the object.

Opening and saving storages
PowerBuilder provides several functions for managing storages. The most
important are Open, Save, and SaveAs.

Using the Open
function

When you want to access OLE data in a file, call the Open function. Depending
on the structure of the storage file, you might need to call Open more than once.

This code opens the root storage in the file into the control. For this syntax of
Open, the root storage must be an OLE object, rather than a container that only
holds other storages. (Always check the return code to see if an OLE function
succeeded.)

result = ole_1.Open("MYFILE.OLE")

If you want to open a substorage in the file into the control, you have to call
Open twice: once to open the file into an OLEStorage variable, and a second
time to open the substorage into the control. stg_data is an OLEStorage
variable that has been declared and instantiated using CREATE:

result = stg_data.Open("MYFILE.OLE")
result = ole_1.Open(stg_data, "mysubstorage")

CHAPTER 19 Using OLE in an Application

Application Techniques 361

Using the Save
function

If the user activates the object in the control and edits it, then the server saves
changes to the data in memory and sends a DataChange event to your
PowerBuilder application. Then your application needs to call Save to make
the changes in the storage file:

result = ole_1.Save()
IF result = 0 THEN result = stg_data.Save()

Using the SaveAs
function

You can save an object in a control to another storage variable or file with the
SaveAs function. The following code opens a storage file into a control, then
opens another storage file, opens a substorage within that file, and saves the
original object in the control as a substorage nested at a third level:

OLEStorage stg_data, stg_subdata
stg_data = CREATE OLEStorage
stg_subdata = CREATE OLEStorage
ole_1.Open("FILE_A.OLE")
stg_data.Open("FILE_B.OLE")
stg_subdata.Open("subdata", stgReadWrite!, &

stgExclusive!, stg_data)
ole_1.SaveAs(stg_subdata, "subsubdata")

The diagram illustrates how to open the nested storages so that you can perform
the SaveAs. If any of the files or storages do not exist, Open and SaveAs create
them. Note that if you call Save for the control before you call SaveAs, the
control’s object is saved in FILE_A. After calling SaveAs, subsequent calls to
Save save the object in subsubdata in FILE_B.

Figure 19-4: Nested OLE storages

The following example shows a simpler way to create a sublevel without
creating a storage at the third level. You do not need to nest storages at the third
level, nor do you need to open the substorage to save to it:

OLEStorage stg_data, stg_subdata

Advanced ways to manipulate OLE objects

362 PowerBuilder

stg_data = CREATE OLEStorage
stg_subdata = CREATE OLEStorage
ole_1.Open("FILE_A.OLE")
stg_data.Open("FILE_B.OLE")
ole_1.SaveAs(stg_data, "subdata")

Getting information about storage members

When a storage is open, you can use one of the Member functions to get
information about the substorages and streams in that storage and change them.

Table 19-10: OLE storage Member functions

This code checks whether the storage subdata exists in stg_data before it opens
it. (The code assumes that stg_data and stg_subdata have been declared and
instantiated.)

boolean lb_exists
result = stg_data.MemberExists("subdata", lb_exists)
IF result = 0 AND lb_exists THEN

result = stg_subdata.Open(stg_data, "subdata")
END IF

To use MemberExists with the storage member IOle10Native, use the following
construction:

ole_storage.memberexists(char(1) + 'Ole10Native', &
lb_boolean)

The char(1) is required because the “I” in IOle10Native is not an I, as you see
if you look at the storage with a utility such as Microsoft's DocFile Viewer.

You need to use a similar construction to open the stream. For example:

ole_stream.open(ole_storage, char(1) + 'Ole10Native', &
StgReadWrite!, StgExclusive!)

Function Result

MemberExists Checks to see if the specified member exists in a storage.

Members can be either storages or streams. Names of
members must be unique—you cannot have a storage and a
stream with the same name. A member can exist but be empty.

MemberDelete Deletes a member from a storage.

MemberRename Renames a member in a storage.

CHAPTER 19 Using OLE in an Application

Application Techniques 363

Example: building a storage

Suppose you have several drawings of products and you want to display the
appropriate image for each product record in a DataWindow object. The
database record has an identifier for its drawing. In an application, you could
call InsertFile using the identifier as the file name. However, calling the server
application to display the picture is relatively slow.

Instead you could create a storage file that holds all the drawings, as shown in
the diagram. Your application could open the appropriate substorage when you
want to display an image.

Figure 19-5: OLE storage file

The advantage of using a storage file like this one (as opposed to inserting files
from the server application into the control) is both speed and the convenience
of having all the pictures in a single file. Opening the pictures from a storage
file is fast, because a single file is open and the server application does not need
to start up to display each picture.

OLE objects in the storage
Although this example illustrates a storage file that holds drawings only, the
storages in a file do not have to belong to the same server application. Your
storage file can include objects from any OLE server application, according to
your application’s needs.

This example is a utility application for building the storage file. The utility
application is a single window that includes a DataWindow object and an OLE
control.

The DataWindow object, called dw_prodid, has a single column of product
identifiers. You should set up the database table so that the identifiers
correspond to the file names of the product drawings. The OLE control, called
ole_product, displays the drawings.

Advanced ways to manipulate OLE objects

364 PowerBuilder

List of scripts for the
example

The example has three main scripts:

• The window’s Open event script instantiates the storage variable, opens
the storage file, and retrieves data for the DataWindow object. (Note that
the application’s Open event connects to the database.)

• The RowFocusChanged event of the DataWindow object opens the
drawing and saves it in the storage file.

• The window’s Close event script saves the storage file and destroys the
variable.

Add controls to the
window

First, add the dw_prodid and ole_product controls to the window.

Application Open
event script

In the application’s Open event, connect to the database and open the window.

Instance variable Declare an OLEStorage variable as an instance variable of the window:

OLEStorage stg_prod_pic

Window Open event
script

The following code in the window’s Open event instantiates an OLEStorage
variable and opens the file PICTURES.OLE in that variable:

integer result
stg_prod_pic = CREATE OLEStorage
result = stg_prod_pic.Open("PICTURES.OLE")
dw_prod.SetTransObject(SQLCA)
dw_prod.Retrieve()

Retrieve triggers the RowFocusChanged event
It is important that the code for creating the storage variable and opening the
storage file comes before Retrieve. Retrieve triggers the RowFocusChanged
event, and the RowFocusChanged event refers to the OLEStorage variable, so
the storage must be open before you call Retrieve.

RowFocusChanged
event script

The InsertFile function displays the drawing in the OLE control. This code in
the RowFocusChanged event gets an identifier from the prod_id column in a
DataWindow object and uses that to build the drawing’s file name before
calling InsertFile. The code then saves the displayed drawing in the storage:

integer result
string prodid
//Get the product identifier from the DataWindow.
prodid = this.Object.prod_id[currentrow]

// Use the id to build the file name. Insert the
// file's object in the control.

CHAPTER 19 Using OLE in an Application

Application Techniques 365

result = ole_product.InsertFile(&
GetCurrentDirectory() + "\" + prodid + ".gif")

// Save the OLE object to the storage. Use the
// same identifier to name the storage.
result = ole_product.SaveAs(stg_prod_pic, prodid)

Close event script This code in the window’s Close event saves the storage, releases the OLE
storage from the server, and releases the memory used by the OLEStorage
variable:

integer result
result = stg_prod_pic.Save()
DESTROY stg_prod_pic

Check the return values
Be sure to check the return values when calling OLE functions. Otherwise,
your application will not know if the operation succeeded. The sample code
returns if a function fails, but you can display a diagnostic message instead.

Running the utility
application

After you have set up the database table with the identifiers of the product
pictures and created a drawing for each product identifier, run the application.
As you scroll through the DataWindow object, the application opens each file
and saves the OLE object in the storage.

Using the storage file To use the images in an application, you can include the prod_id column in a
DataWindow object and use the identifier to open the storage within the
PICTURES.OLE file. The following code displays the drawing for the current
row in the OLE control ole_product (typically, this code would be divided
between several events, as it was in the sample utility application above):

OLEStorage stg_prod_pic
//Instantiate the storage variable and open the file
stg_prod_pic = CREATE OLEStorage
result = stg_prod_pic.Open("PICTURES.OLE")

// Get the storage name from the DataWindow
// This assumes it has been added to the DataWindow's
// rowfocuschanging event
prodid = this.Object.prod_id[newrow]

//Open the picture into the control
result = ole_product.Open(stg_prod_pic, prodid)

The application would also include code to close the open storages and destroy
the storage variable.

Advanced ways to manipulate OLE objects

366 PowerBuilder

Opening streams
Streams contain the raw data of an OLE object. You would not want to alter a
stream created by a server application. However, you can add your own
streams to storage files. These streams can store information about the
storages. You can write streams that provide labels for each storage or write a
stream that lists the members of the storage.

To access a stream in an OLE storage file, you define a stream variable and
instantiate it. Then you open a stream from a storage that has already been
opened. Opening a stream establishes a connection between the stream variable
and the stream data within a storage.

The following code declares and creates OLEStorage and OLEStream
variables, opens the storage, and then opens the stream:

integer result
OLEStorage stg_pic
OLEStream stm_pic_label
/***
Allocate memory for the storage and stream variables
***/
stg_pic = CREATE OLEStorage
stm_pic_label = CREATE OLEStream
/***
Open the storage and check the return value
***/
result = stg_prod_pic.Open("picfile.ole")
IF result <> 0 THEN RETURN
/***
Open the stream and check the return value
***/
result = stm_pic_label.Open(stg_prod_pic, &

"pic_label", stgReadWrite!)
IF result <> 0 THEN RETURN

PowerBuilder has several stream functions for opening and closing a stream
and for reading and writing information to and from the stream.

Table 19-11: Stream functions

Function Result

Open Opens a stream into the specified OLEStream variable. You must
have already opened the storage that contains the stream.

Length Obtains the length of the stream in bytes.

Seek Positions the read/write pointer within the stream. The next read or
write operation takes place at the pointer.

CHAPTER 19 Using OLE in an Application

Application Techniques 367

Example: writing and
reading streams

This example displays a picture of a product in the OLE control ole_product
when the DataWindow object dw_product displays that product’s inventory
data. It uses the file constructed with the utility application described in the
earlier example (see “Example: building a storage” on page 363). The pictures
are stored in an OLE storage file, and the name of each picture’s storage is also
the product identifier in a database table. This example adds label information
for each picture, stored in streams whose names are the product ID plus the
suffix _lbl.

Figure 19-6 shows the structure of the file.

Figure 19-6: OLE storage file structure

The example has three scripts:

• The window’s Open event script opens the storage file and retrieves data
for the DataWindow object. (Note that the application’s Open event
connects to the database.)

Read Reads data from the stream beginning at the read/write pointer.

Write Writes data to the stream beginning at the read/write pointer.

If the pointer is not at the end, Write overwrites existing data. If the
data being written is longer than the current length of the stream, the
stream’s length is extended.

Close Closes the stream, breaking the connection between it and the
OLEStream variable.

Function Result

Advanced ways to manipulate OLE objects

368 PowerBuilder

• The RowFocusChanged event of the DataWindow object displays the
picture. It also opens a stream with a label for the picture and displays that
label in a StaticText. The name of the stream is the product identifier plus
the suffix _lbl.

If the label is empty (its length is zero), the script writes a label. To keep
things simple, the data being written is the same as the stream name. (Of
course, you would probably write the labels when you build the file and
read them when you display it. For the sake of illustration, reading and
writing the stream are both shown here.)

• The window’s Close event script saves the storage file and destroys the
variable.

The OLEStorage variable stg_prod_pic is an instance variable of the window:

OLEStorage stg_prod_pic

The script for the window’s Open event is:

integer result
stg_prod_pic = CREATE OLEStorage
result = stg_prod_pic.Open(is_ole_file)

The script for the RowFocusChanged event of dw_prod is:

integer result
string prodid, labelid, ls_data
long ll_stmlength
OLEStream stm_pic_label
/***
Create the OLEStream variable.
***/
stm_pic_label = CREATE OLEStream
/***
Get the product id from the DataWindow.
***/
this.Object.prod_id[currentrow]
/***
Open the picture in the storage file into the
control. The name of the storage is the product id.
***/
result = ole_prod.Open(stg_prod_pic, prodid)
IF result <> 0 THEN RETURN
/***
Construct the name of the product label stream and
open the stream.
***/

CHAPTER 19 Using OLE in an Application

Application Techniques 369

labelid = prodid + "_lbl"
result = stm_pic_label.Open(stg_prod_pic, &

labelid, stgReadWrite!)
IF result <> 0 THEN RETURN
/***
Get the length of the stream. If there is data
(length > 0), read it. If not, write a label.
***/
result = stm_pic_label.Length(ll_stmlength)
IF ll_stmlength > 0 THEN

result = stm_pic_label.Read(ls_data)
IF result <> 0 THEN RETURN
// Display the stream data in st_label
st_label.Text = ls_data

ELSE
result = stm_pic_label.Write(labelid)
IF result < 0 THEN RETURN
// Display the written data in st_label
st_label.Text = labelid

END IF
/**
Close the stream and release the variable's memory.
***/
result = stm_pic_label.Close()
DESTROY stm_pic_label

The script for the window’s Close event is:

integer result
result = stg_prod_pic.Save()
DESTROY stg_prod_pic

Strategies for using storages
Storing data in a storage is not like storing data in a database. A storage file
does not enforce any particular data organization; you can organize each
storage any way you want. You can design a hierarchical system with nested
storages, or you can simply put several substorages at the root level of a storage
file to keep them together for easy deployment and backup. The storages in a
single file can be from the different OLE server applications.

If your DBMS does not support a blob datatype or if your database
administrator does not want large blob objects in a database log, you can use
storages as an alternative way of storing OLE data.

Advanced ways to manipulate OLE objects

370 PowerBuilder

It is up to you to keep track of the structure of a storage. You can write a stream
at the root level that lists the member names of the storages and streams in a
storage file. You can also write streams that contain labels or database keys as
a way of documenting the storage.

Application Techniques 371

C H A P T E R 2 0 PowerBuilder Runtime
Automation Server

About this chapter This chapter describes how to access PowerBuilder class user objects by
means of automation. A PowerBuilder object is the OLE server;
PowerBuilder or any other OLE-enabled development tool can be the
client application, accessing the methods and properties of the
PowerBuilder object.

Contents Topic Page

Using the runtime automation server 372

Using a user object as an automation server 376

Using PowerBuilder as an automation server 380

Creating and using a named server 384

More about user objects and the registry 386

Deploying an application that uses the automation server 393

Runtime automation server reference 394

PowerBuilder.Application server object 395

CreateObject function 397

GenerateGUID function 399

GenerateRegFile function 401

GenerateTypeLib function 404

Exception codes 408

Sample registry update file 409

Using the runtime automation server

372 PowerBuilder

Using the runtime automation server

Use PowerBuilder COM servers
This chapter focuses on the use of the PowerBuilder runtime automation
server. PowerBuilder COM/COM+ server generation is the preferred
technique for building COM-compliant servers. The PowerBuilder automation
server technology might be discontinued in a future release.

For information about generating PowerBuilder COM objects from custom
class user objects, see Chapter 27, “Building a COM or COM+ Component.”

Chapter 19, “Using OLE in an Application,” explains how PowerBuilder
provides containers for OLE objects and custom controls and how you can use
automation to program those objects. The functionality for those objects is
provided by server applications. The programming tells a server application
how to manipulate its data.

What the automation
server is

The PowerBuilder automation server is an OLE server for programmable
objects—rather than insertable, visible objects. It provides access to class user
objects (nonvisual user objects) that you have defined in a PowerBuilder
library. You can initiate a server session, create one or more objects, and send
commands to those objects using automation syntax.

The class user object can create instances of other objects, and the server can
pass references to these objects to the client.

Figure 20-1: Server passes class user object references to client

Client applications Any client application that supports automation and programmable objects can
access the PowerBuilder automation server. You can create your client
application in any COM-compliant tool such as PowerBuilder, Visual C++, or
Visual Basic.

CHAPTER 20 PowerBuilder Runtime Automation Server

Application Techniques 373

Runtime overhead Each time you connect to a server, you invoke an instance of the PowerBuilder
runtime environment. However, this is not a huge penalty—each runtime
shares the definition of the system classes in the client’s runtime session.

User class definitions are not shared. Therefore, if you create the same large
objects in each of several runtime sessions, memory usage for an object is
multiplied by the number of sessions in which you create it. You could make
your application more memory-efficient by reorganizing the application and
creating the objects in a single session.

Uses for runtime automation
Any user object that encapsulates functionality and provides information can
be a useful automation server. The information you want to access must be
stored in public instance variables or available as return values or reference
arguments of functions.

Examples of an automation server include:

• A user object that creates a DataStore and includes functions that report
statistics on the retrieved data

• A user object that defines business rules, such as functions that validate
data

Three methods
There are three ways to access PowerBuilder user objects. You can access:

• A PowerBuilder class user object that you have defined and registered

• PowerBuilder itself as the server, after which you can create any object
whose definition is in the libraries you have specified

• A named server that allows you to use a name appropriate for your
business while giving you access to the PowerBuilder server

A user object as
automation server

You can define a class user object and register it in the registry. When you use
your client’s functions for accessing an external object, you have access to the
user object’s properties and functions. (Automation accesses the object’s
instance variables as properties.)

The advantages of a registered user object as an automation server include:

Using the runtime automation server

374 PowerBuilder

• Browsable information about the object in the registry, making it easy for
others to program the object

• Simpler client code for accessing the object

• Restriction of client access to classes you publish in the registry, return
from function calls, or declare as instance variables of the user object

Figure 20-2: Interaction of class user object as server with client

For you to access an independent user object, it must be installed as an
independent entity in the registry. You connect to it by means of an OLEObject
variable and use automation to access it. The object invokes a PowerBuilder
runtime session to support it.

When you access the object in your runtime session, you create a single
instance of the object, and PowerBuilder invokes a runtime session to support
it. For each registered object you create, you incur the overhead of additional
runtime sessions.

The steps you take to register and use a user object are described in “Using a
user object as an automation server” on page 376.

PowerBuilder as
automation server

When you install PowerBuilder, an entry is added to the registry for
PowerBuilder.Application, a general-purpose PowerBuilder automation
server. You can create instances of any number of class user objects and access
their properties and methods. (Automation accesses the object’s instance
variables as properties.)

CHAPTER 20 PowerBuilder Runtime Automation Server

Application Techniques 375

The advantages of using PowerBuilder.Application include:

• Access to more than one object without invoking the overhead of more
than one PowerBuilder runtime environment.

• Direct access to all system and private classes available in the library list.
These classes can be instantiated using the CreateObject function of
PowerBuilder.Application.

When you connect to PowerBuilder.Application, you specify the libraries that
you will access. You can instantiate any number of user objects whose
definitions reside in those libraries, as well as system classes.

Each object you create in the client exists as an independent OLEObject in the
client, and you can address each one using automation. If the client passes a
server object reference back to another server object in the same runtime
session, PowerBuilder recognizes the PowerBuilder datatype of the object.
This allows the two objects to interact in the server session, rather than being
limited to automation commands from the client.

Figure 20-3: Objects interacting in a server session

The steps you take to set up and use PowerBuilder.Application are described in
“Using PowerBuilder as an automation server” on page 380.

Named automation
server

For business reasons, you might want to avoid references to
PowerBuilder.Application, but still have access to the additional functionality
it provides—for example, the efficiency of instantiating more than one object
in a server session.

Using a user object as an automation server

376 PowerBuilder

You can create an entry in the registry that serves as a second pointer to
PowerBuilder.Application, allowing you to give the server a name appropriate
for your business.

The steps involved in setting up a named server are described in “Creating and
using a named server” on page 384.

Using a user object as an automation server
Accessing a registered user object as an automation server involves these steps:

1 Create the object you will access.

2 Build the object’s runtime library.

3 Register the object.

4 Write code in the client that connects to and uses the object.

Creating a class user object to be a server
How you define user objects for an automation server depends mainly on your
application design. The object must be a custom class user object. You define
instance variables and functions for the object. The object can declare and
instantiate other objects for its own use.

No references to visual objects
The class user object you use as an automation server cannot contain any
references to visual objects such as message boxes or windows.

Objects on the client You can pass your object references to other objects in the client application.
Those references are of type OLEObject, and your object can use automation
syntax to access properties and methods of the object. (Automation accesses
the object’s instance variables as properties.)

Testing the user object Before you try accessing your user object as a server, test its design and
functions in a simpler environment. You can build an application for testing the
user object locally.

CHAPTER 20 PowerBuilder Runtime Automation Server

Application Techniques 377

Building the object’s runtime library
After you have defined your object, use the Library painter to build a dynamic
library (PBD) or compiled library (DLL). The reasons for choosing either type
(Pcode or compiled machine code) are the same as for building any
PowerBuilder application.

For more information, see “Compiler basics” on page 742.

You might want to use the Library painter to reorganize libraries so that your
object and any other objects it instantiates are in a library by themselves.
Otherwise, your library will be bigger than it needs to be.

Here is a quick overview of what you need to do to build your library in the
Library painter:

1 In the Library painter, select the library name.

2 Select Library>Build Runtime Library.

3 Check or clear the Machine Code check box to correspond to your
decision about PBDs versus DLLs.

Other options in the dialog box are not essential to this process. For
information about them, click the Help button or see the PowerBuilder
User’s Guide.

4 Click OK to build the library.

5 Move the library to the directory you want it to be registered in.

Registering the object
To use your object, you have to register it in the registry. You can also create a
type library that provides information to registry browser applications about
your object’s properties and functions.

For more information, see “More about user objects and the registry” on page
386.

The Automation Server project wizard makes registering and creating type
libraries easy.

❖ To create registry information and register your object:

1 Select the Automation Server wizard from the Project tab in the New
dialog box.

Using a user object as an automation server

378 PowerBuilder

2 Complete all the pages in the wizard.

Use Table 20-1 to help you.

Table 20-1: Automation Server wizard pages

3 Select File>Open from the menu bar and select the project created by the
wizard, or double-click the Build Project item on the ToDo list.

4 Select Design>Build Project from the menu bar in the Project painter to
generate the registry and type library files.

5 Run the registry file to add information to the registry.

For more information about the registry and writing your own registration tool,
see “Creating registry information” on page 389.

Page What to specify

Select
component

Select the object you want to use as an automation server.
You can select only one object. For when to specify
PowerBuilder.Application, see “Creating and using a
named server” on page 384.

Specify Program
Identifier

Specify an identifier for the object such as
Mycompany.Myapp. Do not supply a version number.
PowerBuilder constructs a version-dependent entry using
the version number you specify on another screen. The
identifier can contain up to 39 characters, must not contain
any punctuation apart from the period between vendor and
application, and must not start with a digit.

Specify Registry
File and Object
GUID

If the GUID text box is empty, click Generate to generate a
new globally unique identifier (GUID). The new GUID will
be the class identifier (CLSID) for your object. If you
specified an existing programmatic identifier, the GUID will
be filled in. You can create a new GUID if you do not want
to reuse the existing one. For information about reusing
GUIDs, see “Multiple versions and updates” on page 394.

The registry update file is a text file containing information
for updating the registry. Typically it has the same name as
the library, and the extension REG.

Create Type
Library File

You need to create a type library only if you want OLE
browsers to display information about the properties and
methods of your object.

Specify Build
Options

Check the machine code DLL check box if you built a DLL
instead of a PBD file.

CHAPTER 20 PowerBuilder Runtime Automation Server

Application Techniques 379

Writing client code that accesses the user object
The client code for accessing a registered user object is simpler than the code
for accessing PowerBuilder.Application. The library list and machine code
properties are already determined and stored in the registry. All you need to do
is connect to the object and use automation to access its properties and
methods.

PowerBuilder as client To establish a server automation session with your user object, you need code
for these steps.

1 Declare an OLEObject variable for your user object:

OLEObject ole_analyze

2 Connect to your object using its programmatic identifier (ProgID) and
check that the connection was established. A status of 0 indicates success:

ole_analyze = CREATE OLEObject
li_status = ole_analyze.ConnectToNewObject &

("MyCompany.Analyze")
IF li_status < 0 THEN

MessageBox("No Server", &
"Can't connect to MyCompany.Analyze.")

RETURN
END IF

3 Access functions or properties of the object using automation syntax:

ld_avg = ole_analyze.uof_average()
ole_analyze.Projection = TRUE
li_status = ole_analyze.uof_RTFreport(REF ls_rpt)

If you want to handle errors in the OLEObject ExternalException and Error
events, use a user object inherited from OLEObject instead of declaring an
OLEObject variable:

1 Open the User Object painter and create a standard class user object
inherited from OLEObject.

2 Write scripts for the Error and ExternalException events.

3 Use the name of the new class instead of OLEObject in the declaration:

uo_oleobject ole_analyze

Visual Basic as client Similar code in Visual Basic connects to your registered object.

1 Declare an object variable for your user object:

Dim ole_analyze As Object

Using PowerBuilder as an automation server

380 PowerBuilder

2 Connect to your object using its programmatic identifier (ProgID) and
check that the connection was established:

Set ole_analyze = CreateObject("MyCompany.Analyze")
If ole_analyze Is Nothing Then

REM Handle the error
End If

3 Access functions or properties of the object using automation syntax:

ld_avg = ole_analyze.uof_average()
ole_analyze.Projection = TRUE
li_status = ole_analyze.uof_RTFreport(REF ls_rpt)

Using PowerBuilder as an automation server
Using PowerBuilder.Application as an automation server involves these steps:

1 Define the objects you will access.

2 Build the runtime libraries for those objects.

3 Write code in the client that connects to PowerBuilder, creates the objects,
and accesses their methods and properties.

Creating the user objects you will access
How you define user objects for an automation server depends mainly on your
application design. The object must be a custom class user object. You define
instance variables and functions for the object. The object can declare and
instantiate other objects for its own use.

Objects created using
automation

When the client instantiates multiple objects in the same server runtime
session, you can pass references to those objects, enabling the objects to work
together.

You can make a PowerBuilder object you create from the client aware of
another by passing it that reference. When the objects exist in the same session,
PowerBuilder accepts the OLE object reference and also recognizes the
underlying PowerBuilder object datatype. This reference gives access to the
first object’s properties and methods just as in any PowerBuilder application.

CHAPTER 20 PowerBuilder Runtime Automation Server

Application Techniques 381

Keeping this technique in mind, you can define functions for the user object
that accept object references passed from the client, assign them to the correct
variable type, and treat the references as instantiated PowerBuilder objects,
which they are.

Building runtime libraries
After you have defined your objects, use the Library painter to build
PowerBuilder dynamic libraries (PBDs) or compiled libraries (DLLs). All the
libraries accessed in the same PowerBuilder.Application session must be the
same type. The reasons for choosing either type, Pcode or compiled machine
code, are the same as for building any PowerBuilder application.

Here is a quick overview of what you need to do to build each library in the
Library painter.

1 In the Library painter, select the library name.

2 Select Library>Build Runtime Library.

3 Check or clear the Machine Code check box to correspond to your
decision about PBDs versus DLLs.

Other options in the dialog box are not essential to this process. For
information about them, click the Help button or see the PowerBuilder
User’s Guide.

4 Click OK to build the library.

5 Repeat steps 1 to 4 for each library specified in the LibraryList property of
PowerBuilder.Application.

6 Put the resulting PBDs or DLLs in the desired directory. The client
application will specify the paths so that the server can locate them.

For more information about building an application in the Project painter, see
the PowerBuilder User’s Guide.

Using PowerBuilder as an automation server

382 PowerBuilder

Writing client code that accesses PowerBuilder and user objects
A client application that wants to establish a PowerBuilder.Application session
needs code to:

• Connect to the server

• Set properties for the server

• Instantiate objects

• Access those objects

All the steps of the process should be accompanied by error checking because
there are any number of reasons why server sessions can fail.

The following steps with code examples illustrate how to do it. The first set of
steps shows client code for PowerBuilder. A Visual Basic example follows.

PowerBuilder as a
client

To establish a server automation session with PowerBuilder.Application and
access objects, you need code for each of these steps:

1 Declare one OLEObject variable for PowerBuilder.Application. Declare
additional OLEObject variables for each object you will create.

OLEObject ole_pba, ole_analyze

If you want to handle errors in the OLEObject ExternalException and
Error events, use a user object inherited from OLEObject instead.

2 Start the automation server and check that the connection was established.
A status of 0 indicates success.

ole_pba = CREATE OLEObject
li_status = ole_pba.ConnectToNewObject &

("PowerBuilder.Application")
IF li_status < 0 THEN

MessageBox("No Server", &
"Can't connect to PowerBuilder.Application.")

RETURN
END IF

3 Set the properties of PowerBuilder.Application, establishing the libraries
you will access. You cannot change these property values after you create
objects.

ole_pba.LibraryList = &
"c:\pbobjs\myobj\serv1.dll;c:\pbobjs\myobj\serv2

.dll"
ole_pba.MachineCode = TRUE

CHAPTER 20 PowerBuilder Runtime Automation Server

Application Techniques 383

4 Create the first object you want to use and check for success. Specify the
object’s name as defined in the library:

ole_analyze = ole_pba.CreateObject("uo_analyze")
IF IsNull(ole_analyze) THEN

MessageBox("No Object", &
"Can't create object uo_analyze.")

RETURN
END IF

5 Access functions or properties of the object using automation syntax.
(These properties and methods are hypothetical.)

ld_avg = ole_analyze.uof_average()
ole_analyze.Projection = TRUE
li_status = ole_analyze.uof_RTFReport(REF ls_rpt)

6 Disconnect from PowerBuilder.Application and destroy the objects when
you are done. (Exiting your application also accomplishes this.)

DESTROY ole_analyze
ole_pba.DisconnectObject()
DESTROY ole_pba

Visual Basic version This example shows typical Visual Basic client code for establishing a server
automation session with PowerBuilder.Application. The steps are similar to
those for PowerBuilder above.

1 Declare an object variable for the PowerBuilder.Application. Declare
additional object variables for each object you will create.

Dim ole_pba As Object
Dim ole_analyze As Object

2 Start the automation server and check that the connection was established.
A status of 0 indicates success.

Set ole_pba = CreateObject_
("PowerBuilder.Application")

If ole_pba Is Nothing Then
REM Handle the error

End If

3 Set the properties of PowerBuilder.Application, establishing the libraries
you will access. You cannot change these property values after you create
objects.

ole_pba.LibraryList = _
"c:\pb\myobj\serv1.dll;c:\pb\myobj\serv2.dll"

ole_pba.MachineCode = TRUE

Creating and using a named server

384 PowerBuilder

4 Create the first object you want to use and check for success. You specify
the object’s name as defined in the library:

Set ole_analyze = ole_pba.CreateObject _
("uo_analyze")

If ole_analyze Is Nothing Then
REM Handle the error

End If

5 Access functions or properties of the object using automation syntax.
(These properties and methods are hypothetical.)

ld_avg = ole_analyze.uof_average()
ole_analyze.Projection = TRUE
li_status = ole_analyze.uof_RTFreport(REF ls_rpt)

6 Destroy the objects. (Exiting the application also accomplishes this.)

Set ole_analyze = Nothing
Set ole_pba = Nothing

For complete information about PowerBuilder.Application functions and
properties, see “Runtime automation server reference” on page 394.

Creating and using a named server
Using your own named server involves these steps:

1 Define the objects you will access.

2 Build the runtime libraries for those objects.

3 Register your server in the registry.

4 Write code in the client that connects to your server, creates objects, and
accesses their methods and properties.

Creating the user
objects you will
access

Defining user objects for use in a named server is the same as for
PowerBuilder.Application.

For information, see “Creating the user objects you will access” on page 380.

Building runtime
libraries

Building runtime libraries for use in a named server is the same as for
PowerBuilder.Application.

For information, see “Building runtime libraries” on page 381.

CHAPTER 20 PowerBuilder Runtime Automation Server

Application Techniques 385

Registering the server You can use the Automation Server project wizard to register your server, as
described in “Registering the object” on page 377.

To register your server rather than a single user object, select
PowerBuilder.Application as the component. Proceed as described in
“Registering the object” on page 377 and install the registry update file in the
registry. You do not need to create a type library file for a named server.

Writing client code
that accesses the
server and user
objects

A client application that wants to establish a session with your named server
needs code to:

• Connect to the server

• Instantiate objects

• Access those objects

The following steps with code examples illustrate how to do it. The examples
are client code for PowerBuilder. All the steps of the process should be
accompanied by error checking because there are any number of reasons why
server sessions can fail.

1 Declare one OLEObject variable for your server. Declare additional
OLEObject variables for each object you will create:

OLEObject ole_server, ole_analyze

If you want to handle errors in the OLEObject ExternalException and
Error events, use a user object inherited from OLEObject instead.

2 Start the automation server and check that the connection was established.
A status of 0 indicates success:

ole_server = CREATE OLEObject
li_status = ole_server.ConnectToNewObject &

("MyCompany.MyServer")
IF li_status < 0 THEN

MessageBox("No Server", &
"Can't connect to the server.")

RETURN
END IF

3 Create the first object you want to use and check for success. Specify the
object’s name as defined in the library:

ole_analyze = &
ole_server.CreateObject("uo_analyze")

More about user objects and the registry

386 PowerBuilder

IF IsNull(ole_analyze) THEN
MessageBox("No Object", &

"Cannot create object uo_analyze.")
RETURN

END IF

4 Access functions or properties of the object using automation syntax.
(These properties and methods are hypothetical.)

ld_avg = ole_analyze.uof_average()
ole_analyze.Projection = TRUE
li_status = ole_analyze.uof_RTFReport(REF ls_rpt)

5 Disconnect from the server and destroy the objects when you are done.
(Exiting your application also accomplishes this.)

DESTROY ole_analyze
ole_server.DisconnectObject()
DESTROY ole_server

More about user objects and the registry
The registry stores information required by a program for it to access a
registered object. The information is stored in the registration database. To
update the registry, the Registry Editor reads registry update files (REG) and
inserts the information in the database.

What are all the identifiers for?
GUIDs and CLSIDs A globally unique identifier (GUID) is a 128-bit integer that is virtually

guaranteed to be unique. You can generate your own using the
PowerBuilder.Application GenerateGUID function. The formula is based on
the time of day, the date, and a unique number contained in your network card.
If you do not have a network card, you can request GUIDs from Microsoft in
sets of 256.

GUIDs are used as class identifiers (CLSID) to uniquely identify each object
and type library. The CLSID enables a program to be sure of the interface that
it is interacting with.

CHAPTER 20 PowerBuilder Runtime Automation Server

Application Techniques 387

ProgIDs Programmatic identifiers (ProgID) are unique only in the local environment.
They may contain up to 39 characters, must not contain any punctuation
(except for the period), and must not start with a digit. They have two forms:

• Version-independent Does not include a version number

applicationname.objectname

For example, MyApp.Application or MyApp.AnalysisUserObject

• Version-dependent Includes a version number

applicationname.objectname.versionnumber

For example, MyApp.Application.1 or MyApp.AnalysisUserObject.1

You should establish consistent naming conventions for your applications and
objects so that others can see the relationships among your objects.

Other programmers use the ProgID to connect to objects that you register. If
they specify the version-independent ID, the registry redirects them to the
current version.

When you use the PowerBuilder.Application function GenerateRegFile, you
supply a version-independent ProgID and PowerBuilder constructs the
version-dependent entry using the version number you specify.

Where information about your object is stored
Information about a registered object is stored in the registry in three or four
places. There is a section for a:

• CLSID

• Version-dependent ProgID

• Version-independent ProgID

• Type Library (optional)

All this cross-referencing ensures that an object’s information can be found no
matter what the program starts with.

Keys and their
subtrees

The PowerBuilder.Application functions update the tree
HKEY_CLASSES_ROOT. The other keys in the registry reflect this
information for a particular context.

Subkeys Information for each entry is stored in subkeys, which are a level below the
entry subkey. Some subkeys have values, such as a file name. Others have
meaning just because they are there, such as NotInsertable.

More about user objects and the registry

388 PowerBuilder

Each entry and its associated subkeys is described below.

ProgID The list of registered ProgIDs appears in the registry under this key:

My Computer\HKEY_LOCAL_MACHINE\SOFTWARE\CLASSES

Both version-dependent and version-independent ProgIDs appear. The ProgID
is a cross-reference to the object’s CLSID.

Table 20-2: ProgID subkeys

CLSID Under the CLASSES key is a subkey CLSID that lists all the registered CLSIDs.
Each CLSID records all the information about the registered object:

My Computer\HKEY_LOCAL_MACHINE\SOFTWARE\CLASSES\CLSID

Table 20-3: CLSID subkey contents

Subkey Value

\CLASSES\ProgID Description of object

\CLASSES\ProgID\CLSID The object’s CLSID

\CLASSES\ProgID\CurVer (for the version-
independent entry only)

The version-dependent ProgID

\CLASSES\ProgID\NotInsertable Empty string

Subkey Value

\CLASSES\CLSID\{guid} The GUID for the object.

\CLASSES\CLSID\{guid}\InProcServer32 The path and file name for the
PowerBuilder runtime DLL.

\CLASSES\CLSID\{guid}\NotInsertable ""

\CLASSES\CLSID\{guid}\PowerBuilder Not set. Subkeys store information
about the object’s environment (see
below).

\CLASSES\CLSID\{guid}\Programmable ""

\CLASSES\CLSID\{guid}\ProgID The ProgID you specified with the
current version number.

\CLASSES\CLSID\{guid}\TypeLib The CLSID for the type library.

\CLASSES\CLSID\{guid}\
VersionIndependentProgID

The ProgID you specified without a
version number.

CHAPTER 20 PowerBuilder Runtime Automation Server

Application Techniques 389

Table 20-4: PowerBuilder subkey contents

TypeLib Under the CLASSES key is another subkey for TypeLib.

My Computer\HKEY_LOCAL_MACHINE\SOFTWARE\CLASSES
TypeLib

Table 20-5: TypeLib subkey contents

Creating registry information
A client application uses the registry to find the information required to access
your user object. The registry includes information about where to find the files
for the PowerBuilder runtime environment and the libraries. It can also contain
a pointer to a type library file that documents the properties and methods of the
object. When the type library is registered, it lets the user examine the object
in an OLE browser. (Instance variables of the object appear as properties in the
OLE browser.)

PowerBuilder subkey under
\CLASSES\CLSID Value

{guid}\PowerBuilder\BinaryType The type of code in the library, either
compiled machine code (MCODE)
or Pcode

{guid}\PowerBuilder\LibraryList The name of the library that contains
the object

{guid}\PowerBuilder\ClassName The object’s name in the library

Subkey Value

\CLASSES\TypeLib\{guid} The GUID for the type library.

\CLASSES\TypeLib\{guid}\VersionNum The version number of the type library.

A tree of subkeys is below the version
number, allowing entries for type
libraries in several languages.

VersionNum\LanguageID\Win32
specifies the path and name of type
library file for 32-bit Windows
operating systems.

\CLASSES\TypeLib\{guid}\FLAGS 0

\CLASSES\TypeLib\{guid}\HELPDIR The directory where a Help file is
located.

More about user objects and the registry

390 PowerBuilder

PowerBuilder.Application provides facilities for generating the necessary
registry information. To add your object to the registry, you need a registry
update file, which contains information to be added to the system’s registration
database. The type library is optional—you need it if you want others to be able
to inspect your object’s properties and methods in an OLE browser.

To use these functions, you must run a client application that connects to
PowerBuilder.Application. (You can run the client application in the
development environment.)

Functions for generating registry information include:

• GenerateGUID Gets a valid globally unique identifier to serve as the
CLSID of your object and its type library

• GenerateRegFile Uses the properties of PowerBuilder.Application and
other values to generate a registry update file that the Registry Editor
(REGEDT32.EXE) can use

• GenerateTypeLib Uses the information in the object to generate a type
library and updates the registry file with information about the type library

You can use these functions yourself, as shown in the example below, or you
can use an installation application that provides tools for creating registry
information, such as InstallShield.

Deploying and the registry
The registry file that you create on your computer can be used to register your
object on your own computer. The path information for files (the object library
and the type library) is specific to your machine and is probably not applicable
to other machines. To deploy your object, you need to modify the registry
update files according to the directories the user specifies for installation, or
call functions for modifying the registry itself.

See “Deploying an application that uses the automation server” on page 393.

Sample script for
generating registry
information

This script takes information from several SingleLineEdit controls and a
CheckBox and builds a registry update file and a type library. The script
hard-codes version information, but you can use edit boxes to obtain version
information too.

The SingleLineEdits and CheckBox used in the following example are shown
in Table 20-6.

CHAPTER 20 PowerBuilder Runtime Automation Server

Application Techniques 391

Table 20-6: SingleLineEdits and CheckBox examples

This program generates a registry update file and type library.

oleObject ole_pb
string ls_reg_guid, ls_tlb_guid
long ll_result, ll_res2

// Connect to the PowerBuilder.Application server
ole_pb = CREATE oleObject
ll_result = ole_pb.ConnectToNewObject &

("PowerBuilder.Application")
IF ll_result < 0 THEN

MessageBox("Can't Connect", &
"Error connection to PowerBuilder.Application")

RETURN
END IF

// Set properties for the server session, which
// will become the values for the registered object
ole_pb.LibraryList = sle_library.Text
ole_pb.MachineCode = cbx_machinecode.Checked

// Get GUIDs for the object and type library
ll_result = ole_pb.GenerateGUID(REF ls_reg_guid)
ll_res2 = ole_pb.GenerateGUID(REF ls_tlb_guid)

IF ll_result < 0 THEN
MessageBox("Can't Get GUID", &

"Generating GUID for Reg file failed.")
RETURN

ELSEIF ll_res2 < 0 THEN
MessageBox("Can't Get GUID", &

"Generating GUID for TypeLib file failed.")
RETURN

END IF

Object for input Data provided

sle_object The name of the object in the PowerBuilder library

sle_progid A programmatic identifier you supply

sle_desc A description of your object, which is displayed in the registry

sle_regfile The name of the registry update file you want to generate

sle_typelibfile The name of the type library file you want to generate

sle_library The name of the PowerBuilder library containing the object

cbx_machinecode Whether the library uses compiled code or Pcode

More about user objects and the registry

392 PowerBuilder

// Use info from user to generate registry update file
// Arguments for GenerateRegFile:
// valid GUID
// Name of uo in PB library
// ProgID as in registry
// Major version, Minor version
// Description
// Name of reg file
ll_result = ole_pb.GenerateRegFile(&

ls_reg_guid, &
sle_object.Text, &
sle_progid.Text, &
1, 0, &
sle_desc.Text, &
sle_RegFile.Text)

IF ll_result < 0 THEN
MessageBox("Can't generate RegFile", &

"result code is " + String(ll_result))
RETURN

END IF

// Use information that matches the registry update
// file to generate the type library
// Arguments for GenerateTypeLib:
//
// GUID in Reg file
// Name of uo in PB library
// Prog ID as in Reg file
// Locale, Major version, Minor version
// Description
// Help context, Help file
// GUID for TypeLib
// Name of typelib file
// Name of reg file
ll_result = ole_pb.GenerateTypeLib(&

ls_reg_guid, &
sle_object.Text, &
sle_progid.Text, &
0, 1, 0, &
sle_desc.Text, &
0, "", &
ls_tlb_guid, &

CHAPTER 20 PowerBuilder Runtime Automation Server

Application Techniques 393

sle_typelibfile.text, &
sle_regfile.text)

IF ll_result < 0 THEN
MessageBox("Can't generate TypeLib File", &

"result code is " + String(ll_result))
RETURN

END IF

Deploying an application that uses the automation
server

When deploying your objects, you need to coordinate registry entries with the
locations of all the files.

PowerBuilder runtime
files

For both PowerBuilder.Application and a registered user object as a server, you
need to deploy the PowerBuilder runtime environment on each user’s machine.

For information about PowerBuilder deployment and required files, see Part 9,
“Deployment Techniques.”

Instead of the PowerBuilder executable, the registry looks for the
PowerBuilder virtual machine DLL, PBVM105.DLL, to start the runtime
environment. When you deploy, the path for this file is recorded in the registry.
Users should not move the file to another directory—the registry entry would
be made invalid.

Object library and type
library

The registry records the location of the library containing your object and the
location of the type library.

Therefore, when you generate a registry update file on your own computer,
path information reflects the file location on your machine. When you deploy,
you can:

• Customize the registry update file (it is an editable text file)

• Make changes to the registry after it has been updated

You do this programmatically using functions in PowerBuilder or the
Windows SDK, or manually with the Registry Editor.

Runtime automation server reference

394 PowerBuilder

Multiple versions and updates
When you distribute a new version of an object, you can reuse the GUID that
was the CLSID for the previous version, or you can assign a new GUID. Your
choice should depend on the degree of compatibility between the versions.

Table 20-7: CLSID options

If you assign a new GUID so that the old object remains available to existing
applications, you need a new ProgID too. If the existing application refers to
the version-independent ProgID and you use the same ProgID for the new
version, the old application will connect to the new object anyway.

When you design your server object, you need to think about its future
development and design current applications accordingly.

Runtime automation server reference
This section describes the PowerBuilder.Application runtime automation
server and its properties and functions:

• PowerBuilder.Application server object

• CreateObject function

• GenerateGUID function

• GenerateRegFile function

• GenerateTypeLib function

• Exception codes

• Sample registry update file

Option for the CLSID Conditions

Reuse the GUID The interface for the object is the same and existing
applications can access the same properties and
functions that were in the old version

Assign a new GUID The interface has changed and existing applications
will fail if they access the new version

CHAPTER 20 PowerBuilder Runtime Automation Server

Application Techniques 395

PowerBuilder.Application server object
Description PowerBuilder.Application is an automation server. The OLE client that starts

the automation server can be PowerBuilder or some other client that supports
automation and automation object types.

Accessing objects by means of the server You can access PowerBuilder
objects using automation by:

1 Connecting an OLEObject (or the equivalent object type in other client
applications) to PowerBuilder.Application, which starts PowerBuilder as
a server application.

2 Setting properties of PowerBuilder.Application to specify the
PowerBuilder libraries you want to access.

3 Calling functions that create class user objects (nonvisual) in those
libraries and assigning those objects to additional OLEObject variables.

4 Accessing the properties and functions of the user objects using
automation syntax.

Programmable object in the registry PowerBuilder.Application is not a
class in the PowerBuilder system object hierarchy. It is a programmable object
registered in the Windows registry. To see it in the Browser, click the OLE tab
and expand the Programmable Objects category.

PowerBuilder.Application server object

396 PowerBuilder

Properties Table 20-8: Properties of PowerBuilder.Application

Functions Table 20-9: Functions of PowerBuilder.Application

Property Datatype Description

LibraryList String A list of file names separated by semicolons
that are the DLLs or PBDs containing the
objects you will access in your
PowerBuilder.Application session.

All the libraries should have the same
executable type, either compiled machine code
or Pcode. Setting LibraryList is effective only
before you create any object instances. After
the first object is instantiated, changes are
ignored.

MachineCode Boolean Specifies whether the objects you will
instantiate are generated with machine code or
Pcode.

Values are:

• TRUE – (Default) The library was compiled
with machine code. The default file name
extension is DLL.

• FALSE – The library was compiled with
Pcode. The default file name extension is
PBD.

Setting MachineCode is effective only before
you create any object instances. After the first
object is instantiated, changes are ignored.

Function
Datatype
returned Description

CreateObject OLEObject Creates an instance of a class user object in an
OLE server session. An object reference is
returned to the client session so that the client
can access its properties and functions by
means of automation syntax.

GenerateGUID Long Generates a globally unique identifier and puts
the string representation of the identifier in a
string variable passed by reference.

A network card is required for this function to
succeed.

CHAPTER 20 PowerBuilder Runtime Automation Server

Application Techniques 397

CreateObject function
Description Creates an instance of a PowerBuilder class in a PowerBuilder.Application

OLE server session.

Applies to PowerBuilder.Application (automation server)

Syntax { automationobject.} CreateObject (classname)

Return value OLEObject. Returns a reference to the instantiated object, which is valid for
automation. If the object could not be created, CreateObject returns NULL.

Usage If the OLE client is Visual Basic, you can test for the keyword nothing to see if
CreateObject succeeded.

If the object’s executable type does not correspond to the value of the
MachineCode property, then CreateObject returns NULL. All the objects
created for one PowerBuilder.Application session must have the same
executable type (either Pcode or compiled machine code). When you create
more than one object in a single PowerBuilder.Application session, those
objects can be passed as function arguments or returned as results.

GenerateRegFile Long Generates a file that contains instructions for
updating the registry with information about a
PowerBuilder object that you want to deploy as
an independent automation server.

GenerateTypeLib Long Generates a type library file with browsing
information about a PowerBuilder object that
you want to deploy as an independent
automation server.

Function
Datatype
returned Description

Argument Description

automationobject When PowerBuilder is the OLE client, the name of the
OLEObject instantiated with the PowerBuilder.Application
automation server. For other clients, use syntax appropriate
for calling a function belonging to an automation object.

classname A string specifying the name of the class you want to create.
The class must be defined in one of the libraries specified in
the PowerBuilder.Application LibraryList property.

CreateObject function

398 PowerBuilder

You do not need to use the CREATE statement for the OLEObject variable
before calling the CreateObject function.

Examples This example is a PowerBuilder script that starts the PowerBuilder.Application
server and creates an object that is contained in MYLIBRARY.DLL. If the object
is created successfully, the script calls the function uf_calc, which returns a
Long as a status code and passes back the result of the calculation in the
variable ld_result:

OLEObject PBObject, PBNVObject
long ll_status
double ld_result

PBObject = CREATE OLEObject
ll_status = PBObject.ConnectToNewObject &

("PowerBuilder.Application")
IF ll_status = 0 THEN

// Handle the error
ELSE

PBObject.LibraryList = "c:\myappl\mylibrary.dll"
PBObject.MachineCode = TRUE

PBNVObject = CREATE OLEObject

PBNVObject = &
PBObject.CreateObject("nvo_myobject")

IF IsNull(PBNVObject) THEN
// Handle the error
ELSE
ll_status = PBNVObject.uf_calc &

(12, 14, REF result)
END IF
DESTROY PBNVObject
PBObject.DisconnectObject()

END IF

DESTROY PBObject

This example is a Visual Basic script that does the same tasks as the
PowerBuilder script above:

Dim PBObject as object
Dim PBNVObject as object
Dim status as long
Dim result as double

CHAPTER 20 PowerBuilder Runtime Automation Server

Application Techniques 399

Set PBObject = _
CreateObject("PowerBuilder.Application")

If PBObject is nothing then
REM handle the error

Else
PBObject.LibraryList = “c:\myappl\mylibrary.dll”
Set PBNVObject = _
PBObject.CreateObject(“nvo_myobject”)
If PBNVObject is nothing then
REM handle the error
Else
status = PBNVObject.uf_calc(12, 14, REF result)
Set PBNVObject = nothing
End if

Set PBObject = nothing
End if

See also ConnectToNewObject

GenerateGUID function
Description Creates a globally unique identifier (GUID) that can be used as a class ID

(CLSID) when you register an object and its type library in the Windows
registry. Both the object and its type library have a GUID.

Applies to PowerBuilder.Application (automation server)

Syntax { automationobject.} GenerateGUID (REF guidvariable)

Argument Description

automationobject When PowerBuilder is the OLE client, the name of the
OLEObject instantiated with the PowerBuilder.Application
automation server. For other clients, use syntax appropriate
for calling a function belonging to an automation object.

REF guidvariable A string variable, passed by reference, that will hold the string
representation of the GUID generated by the function.

Because GenerateGUID is called as an automation function
whose prototype is not checked by the compiler, you must
specify REF to pass guidvariable by reference.

GenerateGUID function

400 PowerBuilder

Return value Long. Returns a status code indicating whether an error occurred. Values are:

0 A GUID was generated successfully.

-1 Unable to load the DLL for calling GenerateGUID.

-2 No network card was found, so a GUID could not be generated.

-3 Creating a GUID failed.

-9 Unknown error.

Usage GenerateGUID requires:

• RPCRT4.DLL, in which it calls the function UuidCreate. The DLL must be
present on your path.

• A network card. The function uses the identification information for your
network card to generate a unique value.

If you do not meet these conditions, you can contact Microsoft to obtain
GUIDs.

A GUID is a long hexadecimal number that can be represented as a string in
the format (8-4-4-4-12 digits):

{xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx}

The GUID is used in the Windows registry to identify each program entity.
Both the object being registered and its type library have a GUID.

You cannot perform automation against a PowerBuilder object until the
program object is defined in the registry. GenerateGUID is a tool to help you
create the necessary registry information. When you generate a GUID, you
pass the GUID to the functions GenerateRegFile and GenerateTypeLib to create
registry update files. You use those update files on each user’s machine to
install your object in its registry.

Each time you create a new GUID for your object and update the registry, a
new registry entry is created. If you use the same GUID in your registry update
file, the old registry entry is replaced with the new one.

When you deploy an update to your object, you can generate new update files
with the same GUID. Existing applications can successfully access the newly
updated object as long as its interface (its properties and function signatures)
remains compatible. However, if you changed the interface for your object, you
should use a new GUID for the update. Existing applications can continue to
use the old object and new applications can use the new one, taking advantage
of changed and new functionality.

CHAPTER 20 PowerBuilder Runtime Automation Server

Application Techniques 401

For how to use a PowerBuilder wizard to register objects, see “Registering the
object” on page 377.

Examples This example establishes a PowerBuilder.Application server session and
generates a GUID:

oleObject PBObject
string ls_GUID
long ll_result

PBObject = CREATE oleObject

result = PBObject.ConnectToNewObject &
("PowerBuilder.Application")

IF result < 0 THEN
// handle the error

ELSE
ll_result = PBObject.GenerateGUID(REF ls_GUID)

END IF

See also GenerateRegFile
GenerateTypeLib

GenerateRegFile function
Description Creates a file with registry update instructions for deploying a PowerBuilder

object as an automation server.

Applies to PowerBuilder.Application (automation server)

Syntax { automationobject.} GenerateRegFile (guid, classname, progid,
majorversion, minorversion, description, outputfilename)

Argument Description

automationobject When PowerBuilder is the OLE client, the name of the
OLEObject instantiated with the PowerBuilder.Application
automation server. For other clients, use syntax appropriate for
calling a function belonging to an automation object.

GenerateRegFile function

402 PowerBuilder

Return value Long. Returns a status code indicating whether an error occurred. Values are:

0 The registry update file was generated successfully.

-1 Memory allocation error.

-2 No output file name was provided.

-3 Unable to open the output file.

-9 Unknown error.

Usage Before you call GenerateRegFile, you must start a PowerBuilder.Application
session and set the LibraryList and MachineCode properties to the value that
the server object will use. You also need a GUID to serve as the object’s class
identifier (CLSID). For information about the format of a GUID, see the
GenerateGUID function on page 399.

After you create a registry update file, you can also generate a type library file
for the object, which provides browsing information for your server object. See
the GenerateTypeLib function on page 404.

guid A string whose value is the globally unique identifier (GUID)
you want to use for the object

You can specify a GUID that you:

• Generated with a call to GenerateGUID

• Generated earlier and are reusing (because this object
replaces an earlier version)

• Received from Microsoft

classname A string whose value is the name of the class user object that will
be the automation server. The object must be in one of the
libraries specified in the LibraryList property.

progid A string whose value is the programmatic identifier that people
will use to connect to your server.

majorversion An integer whose value you want to use for the major version
number of your server object.

minorversion An integer whose value you want to use for the minor version
number of your server object.

description A string whose value is a description of your server object. The
description will be displayed in the Registry Editor and other
OLE browsers.

outputfilename A string whose value is the name of the file the
GenerateRegFile will create. The default file name extension
recognized by the registry is REG.

Argument Description

CHAPTER 20 PowerBuilder Runtime Automation Server

Application Techniques 403

The default extension for a registry update file is REG. You can install the
object in the registry by double-clicking on the update file. Information is
installed in the registry about the object, including the location of its DLL and
the location of its type library file, if any. For how to use a PowerBuilder tool
to register objects, see “Registering the object” on page 377.

Examples This example calls GenerateRegFile. (Do not use this GUID in your own
applications.)

long ll_result
ll_result = GenerateRegFile(&

"{12345678-1234-1234-1234-123456789012}", &
"uo_salary_formulas", "MyCompany.SalaryFormulas",

&
1, 0, &
"PowerBuilder functions for calculating salaries", &
"c:\pbds\bizrules.reg")

This example establishes a PowerBuilder.Application server session and sets
all the values necessary for generating a registry update file.

oleObject PBObject
string ls_GUID
long ll_result

PBObj = CREATE oleObject

result = &
PBObj.ConnectToNewObject("PowerBuilder.Application")

IF result < 0 THEN
// Handle the error

ELSE
PBObject.LibraryList = "c:\myappl\mylibrary.pbd"
PBObject.MachineCode = FALSE

ll_result = PBObject.GenerateGUID(REF ls_GUID)
IF ll_result < 0 THEN

// Handle the error
ELSE
ll_result = PBObject.GenerateRegFile(ls_GUID, &

"uo_myserverobject", "MyCompany.Object",
&

1, 0, "My object's description", &
"c:\myappl\object.reg")

GenerateTypeLib function

404 PowerBuilder

IF ll_result < 0 THEN
// Handle the error

ELSE
// Generate Type Library

END IF
END IF

END IF

See also GenerateGUID
GenerateTypeLib

GenerateTypeLib function
Description Creates a file with type library information for a PowerBuilder object you are

deploying as an automation server.

Access PowerBuilder.Application (automation server)

Syntax { automationobject.} GenerateTypeLib (classguid, classname, progid,
localeid, majorversion, minorversion, description, helpcontext,
helpfile, typelibguid, typelibfilename, registryfilename)

Argument Description

automationobject When PowerBuilder is the OLE client, the name of the
OLEObject instantiated with the PowerBuilder.Application
automation server. For other clients, use syntax appropriate
for calling a function belonging to an automation object.

classguid A String whose value is the globally unique identifier (GUID)
that you used for the object when you generated its registry
file

classname A String whose value is the name of the object in the
PowerBuilder library for which type information will be
generated.

classname should be the same name you specified when you
generated the registry file.

progid A String whose value is the programmatic identifier that
people will use to connect to your server.

progid should be the same value you specified when you
generated the registry file.

CHAPTER 20 PowerBuilder Runtime Automation Server

Application Techniques 405

Return value Long. Returns a status code indicating whether an error occurred. Values are:

0 The registry update file was generated successfully.

2 No output file name was provided.

3 Cannot create the type library.

4 Invalid name or error setting name.

5 Invalid locale identifier or error setting the locale identifier.

6 Error converting the TypeLib GUID to a CLSID.

7 Invalid GUID or error setting GUID.

7 Error setting description.

9 Error setting version.

10 Error setting Help context.

localeid A Long whose value is the locale identifier (LCID) for the
language of your object. Values for specific languages are
defined in Microsoft documentation.

You can also specify a value of the PowerBuilder enumerated
datatype LanguageID.

majorversion An Integer whose value you specified for the major version
number of your server object.

minorversion An Integer whose value you specified for the minor version
number of your server object.

description A String whose value you specified as the description of your
server object.

helpcontext A Long whose value is the context ID for a Help topic in
helpfile. Specify 0 to display the Help file’s contents page.

helpfile A String whose value is the name of a Help file containing
Help topics for your server object.

typelibguid A String whose value will be the globally unique identifier
(GUID) for the TypeLib information in the registry.

typelibfilename A String whose value is the name of the file GenerateTypeLib
will create. The default file name extension recognized by the
registry is TLB.

registryfilename A String whose value is the name of the registry update file
generated for this object with GenerateRegFile.

If you just want to generate a type library, specify an empty
string for registryfilename.

Argument Description

GenerateTypeLib function

406 PowerBuilder

11 Error setting Help file name.

14 Class not found in the libraries specified in LibraryList.

18 Error converting ClassName GUID to CLSID.

30 Error loading standard type library (OLE is not installed correctly).

31 Error getting IUnknown type information (OLE is not installed correctly).

32 Error getting IDispatch type information (OLE is not installed correctly).

36 Error opening the registry update file associated with this type library.

Usage The type library is optional. You need it only if you want OLE browsers to
display information about the properties and methods of your object.

If you want to register your type library, then a valid registry update file must
exist for the object before you create the Type Library file. The process of
creating the Type Library adds information to the registry update file.

To generate the registry update file, see the GenerateRegFile function on page
401.

The values you specify for the arguments of GenerateTypeLib must match the
values in the associated registry update file that has already been created.
Otherwise, you will create a TypeLib entry in the registry that is not associated
with any object.

Before you call GenerateTypeLib, you must start a PowerBuilder.Application
session and set the LibraryList and MachineCode properties to the values for
the server object. You also need two GUIDs, the GUID used for the object’s
CLSID (specified when you created the registry update file) and a GUID for
the type library itself. For information about the format of a GUID, see the
GenerateGUID function on page 399.

After you generate the registry update and type library files, you can register
the object in the registry on your system or on other systems.

When you register your object in the registry, it stores information about the
locations of the library file and the type library file. The path you specified for
the LibraryList property specifies its location or must be in the path. The type
library file should be in its intended directory when you register the object.

Examples This example calls GenerateTypeLib. (Do not use this GUID in your own
applications.)

long ll_result
ll_result = GenerateTypeLib(&

"{12345678-1234-1234-1234-123456789012}", &
"uo_salary_formulas", "MyCompany.SalaryFormulas", &

CHAPTER 20 PowerBuilder Runtime Automation Server

Application Techniques 407

0, 1, 0, &
"PowerBuilder functions for calculating salaries", &
0, "c:\pbds\bizrules.hlp", &
"{12345679-1234-1234-1234-123456789012}", &
"c:\pbds\bizrules.tlb", "c:\pbds\bizrules.reg")

This example establishes a PowerBuilder.Application server session and sets
all the values necessary for generating a registry update file:

oleObject PBObject
string ls_GUID, ls_typelibGUID
long ll_result

PBObject = CREATE oleObject

result = PBObject.ConnectToNewObject &
("PowerBuilder.Application")

IF result < 0 THEN
// Handle the error
RETURN -1

END IF

PBObject.LibraryList = "c:\myappl\mylibrary.pbd"
PBObject.MachineCode = FALSE

// GUID for object's CLSID
ll_result = PBObject.GenerateGUID(REF ls_GUID)
IF ll_result < 0 THEN

// Handle the error
RETURN -1

END IF

// GUID for object's Type Library
ll_result = PBObject.GenerateGUID(REF ls_typelibGUID)
IF ll_result < 0 THEN

// Handle the error
RETURN -1

END IF

// Generate registry update file
ll_result = PBObject.GenerateRegFile(ls_GUID, &

"uo_myserverobject", "MyCompany.Object", &
1, 0, "My object's description", &
"c:\myappl\object.reg")

IF ll_result < 0 THEN
/ Handle the error

Exception codes

408 PowerBuilder

RETURN -1
END IF

// Generate Type Library
ll_result = PBObject.GenerateTypeLib(ls_GUID, &

uo_myserverobject", "MyCompany.Object", 0,
1, 0, &

"My object's description", 0, $
"c:\myappl\myhelp.hlp", ls_typelibGUID, &
"c:\myappl\object.tlb", "c:\myappl\object.reg")

IF ll_result < 0 THEN
// Handle the error
RETURN -1

END IF

See also GenerateGUID
GenerateRegFile

Exception codes
Automation clients accessing a PowerBuilder server may generate OLE
exceptions under certain circumstances. When user actions cause an exception,
PowerBuilder populates the EXCEPINFO structure passed by the caller with
an exception code identifying the type of exception. For a PowerBuilder client,
the exception information is passed as arguments to the ExternalException
event.

Client applications might receive these exception codes from the PowerBuilder
automation server:

Table 20-10: PowerBuilder automation server exception codes

Code Meaning

1001 Memory allocation failure.

1002 Requested Object is not in the library list.

1003 Object create failed.

1004 Binary format does not match version or is out of date.

1005 Property accessed as an array is not an array.

1006 Unexpected error executing script.

1007 No method was found matching the requested name and argument types.

1008 Unable to convert variant argument type.

CHAPTER 20 PowerBuilder Runtime Automation Server

Application Techniques 409

Sample registry update file
This sample registry file has registration information for a class user object
named uo_salarydata.

REGEDIT4
;;;;;;;;;;;;;;;;
;
; Registry entries for MyCompany.SalaryData
;
; CLSID = {E022EF01-6789-11CF-92BF-00805F9236E9}
;
; PowerBuilder Generated Registry File
;;;;;;;;;;;;;;;;
; Version independent entries:
[HKEY_CLASSES_ROOT\MyCompany.SalaryData]
@="DataStore with functions returning salary statistics"
[HKEY_CLASSES_ROOT\MyCompany.SalaryData\CLSID]
@="{E022EF01-6789-11CF-92BF-00805F9236E9}"
[HKEY_CLASSES_ROOT\MyCompany.SalaryData\CurVer]
@="MyCompany.SalaryData.1"
[HKEY_CLASSES_ROOT\MyCompany.SalaryData\NotInsertable"
@=""

; Version specific entries:
[HKEY_CLASSES_ROOT\AppID\{E022EF01-6789-11CF-92BF-00805F9236E9}]
@="DataStore with functions returning salary statistics"
[HKEY_CLASSES_ROOT\MyCompany.SalaryData.1]
@="DataStore with functions returning salary statistics"
[HKEY_CLASSES_ROOT\MyCompany.SalaryData.1\CLSID]
@="{E022EF01-6789-11CF-92BF-00805F9236E9}"
[HKEY_CLASSES_ROOT\MyCompany.SalaryData.1\NotInsertable]
@=""

; CLSID entries:
[HKEY_CLASSES_ROOT\CLSID\{E022EF01-6789-11CF-92BF-
00805F9236E9}]
@="DataStore with functions returning salary statistics"
"AppID"="{E022EF01-6789-11CF-92BF-00805F9236E9}"
[HKEY_CLASSES_ROOT\CLSID\{E022EF01-6789-11CF-92BF-0805F9236E9}\ProgID]
@="MyCompany.SalaryData.1"
[HKEY_CLASSES_ROOT\CLSID\{E022EF01-6789-11CF-92BF-
00805F9236E9}\VersionIndependentProgID]
@="MyCompany.SalaryData"
[HKEY_CLASSES_ROOT\CLSID\{E022EF01-6789-11CF-92BF-
00805F9236E9}\InProcServer32]
@="pbVM105.dll"

Sample registry update file

410 PowerBuilder

"ThreadingModel"="Apartment"
[HKEY_CLASSES_ROOT\CLSID\{E022EF01-6789-11CF-
92BF 00805F9236E9}\NotInsertable]
@=""
[HKEY_CLASSES_ROOT\CLSID\{E022EF01-6789-11CF-92BF-00805F9236E9}\Programmable]
@=""
[HKEY_CLASSES_ROOT\CLSID\{E022EF01-6789-11CF-92BF-
00805F9236E9}\PowerBuilder\ClassName]
@="uo_salarydata"
[HKEY_CLASSES_ROOT\CLSID\{E022EF01-6789-11CF-92BF-
00805F9236E9}\PowerBuilder\LibraryList]
@="D:\\pbserver.pbd"
[HKEY_CLASSES_ROOT\CLSID\{E022EF01-6789-11CF-92BF-
00805F9236E9}\PowerBuilder\BinaryType]
@="PCODE"
; Type Library Registration entries:
[HKEY_CLASSES_ROOT\CLSID\{E022EF01-6789-11CF-92BF-00805F9236E9}\TypeLib]
@="{E022EF02-6789-11CF-92BF-00805F9236E9}"
[HKEY_CLASSES_ROOT\TypeLib\{E022EF02-6789-11CF-92BF-00805F9236E9}\1.0]
@="Type Library for DataStore with functions returning salary statistics"
[HKEY_CLASSES_ROOT\TypeLib\{E022EF02-6789-11CF-92BF-
00805F9236E9}\1.0\9\Win32]
@="D:\\pbserver.tlb"

Application Techniques 411

C H A P T E R 2 1 Building a Mail-Enabled
Application

About this chapter This chapter describes how to use the messaging application program
interface (MAPI) with PowerBuilder applications to send and receive
electronic mail.

Contents

About MAPI
PowerBuilder supports MAPI (messaging application program interface),
so you can enable your applications to send and receive messages using
any MAPI-compliant electronic mail system.

For example, your PowerBuilder applications can:

• Send mail with the results of an analysis performed in the application

• Send mail when a particular action is taken by the user

• Send mail requesting information

• Receive mail containing information needed by the application’s user

How MAPI support is
implemented

To support MAPI, PowerBuilder provides the items listed in Table 21-1.

Table 21-1: PowerBuilder MAPI support

Topic Page

About MAPI 411

Using MAPI 412

Item Name

A mail-related system object MailSession

Mail-related structures MailFileDescription
MailMessage
MailRecipient

Using MAPI

412 PowerBuilder

Using MAPI
To use MAPI, you create a MailSession object, then use the MailSession
functions to manage it.

For example:

MailSession PBmail
PBmail = CREATE MailSession

PBmail.MailLogon(...)
... // Manage the session: send messages,
... // receive messages, and so on.
PBmail.MailLogoff()

DESTROY PBmail

You can use the Browser to get details about the attributes and functions of the
MailSession system object, the attributes of the mail-related structures, and the
valid values of the mail-related enumerated datatypes.

For information about using the Browser, see the PowerBuilder User’s Guide.
For complete information about the MailSession functions, see the
PowerScript Reference. For complete information about MAPI, see the
documentation for your MAPI-compliant mail application.

Object-level functions for the
MailSession object

MailAddress
MailDeleteMessage
MailGetMessages
MailHandle
MailLogoff
MailLogon
MailReadMessage
MailRecipientDetails
MailResolveRecipient
MailSaveMessage
MailSend

Enumerated datatypes MailFileType
MailLogonOption
MailReadOption
MailRecipientType
MailReturnCode

Item Name

Application Techniques 413

C H A P T E R 2 2 Using External Functions and
Other Processing Extensions

About this chapter This chapter describes how to use external functions and other processing
extensions in PowerBuilder.

Contents

Using external functions
External functions are functions that are written in languages other than
PowerScript and stored in dynamic libraries. External functions are stored
in dynamic link libraries (DLLs).

You can use external functions written in any language that supports the
standard calling sequence for 32-bit platforms.

If you are calling functions in libraries that you have written yourself,
remember that you need to export the functions. Depending on your
compiler, you can do this in the function prototype or in a linker definition
(DEF) file.

Use _stdcall convention C and C++ compilers typically support several calling conventions,
including _cdecl (the default calling convention for C programs), _stdcall
(the standard convention for Windows API calls), _fastcall, and thiscall.
PowerBuilder, like many other Windows development tools, requires
external functions to be exported using the WINAPI (_stdcall) format.
Attempting to use a different calling convention can cause an application
crash.

Topic Page

Using external functions 413

Using utility functions to manage information 420

Sending Windows messages 421

The Message object 423

Context information 425

Using external functions

414 PowerBuilder

When you create your own C or C++ DLLs containing functions to be used in
PowerBuilder, make sure that they use the standard convention for Windows
API calls. For example, if you are using a DEF file to export function
definitions, you can declare the function like this:

LONG WINAPI myFunc()
{
...
};

Using PBNI
You can also call external functions in PowerBuilder extensions. PowerBuilder
extensions are built using the PowerBuilder Native Interface (PBNI). For more
information about building PowerBuilder extensions, see the PowerBuilder
Native Interface Programmer’s Guide and Reference. For more information
about using PowerBuilder extensions, see the PowerBuilder Extension
Reference.

Declaring external functions
Before you can use an external function in a script, you must declare it.

Two types You can declare two types of external functions:

• Global external functions, which are available anywhere in the
application

• Local external functions, which are defined for a particular type of
window, menu, or user object

These functions are part of the object’s definition and can always be used
in scripts for the object itself. You can also choose to make these functions
accessible to other scripts as well.

Datatypes for external
function arguments

When you declare an external function, the datatypes of the arguments must
correspond with the datatypes as declared in the function’s source definition.

For a comparison of datatypes in external functions and datatypes in
PowerBuilder, see the section on declaring and calling external functions in the
PowerScript Reference.

❖ To declare an external function:

1 If you are declaring a local external function, open the object for which
you want to declare it.

CHAPTER 22 Using External Functions and Other Processing Extensions

Application Techniques 415

2 In the Script view, select Declare in the first drop-down list and either
Global External Functions or Local External Functions from the second
list.

3 Enter the function declaration in the Script view.

For the syntax to use, see the PowerScript Reference or the examples
below.

4 Save the object.

PowerBuilder compiles the declaration. If there are syntax errors, an error
window opens, and you must correct the errors before PowerBuilder can
save the declaration.

Modifying existing functions
You can also modify existing external function declarations in the Script view.

Sample declarations
Suppose you have created a C dynamic library, SIMPLE.DLL, that contains a
function called SimpleFunc that accepts two parameters: a character string and
a structure. The following statement declares the function in PowerBuilder,
passing the arguments by reference:

FUNCTION int SimpleFunc(REF string lastname, &
REF my_str pbstr) LIBRARY "simple.dll"

By default, PowerBuilder handles string arguments and return values as if they
have Unicode encoding. If SimpleFunc passes ANSI strings as arguments, you
must use this syntax to declare it:

FUNCTION int SimpleFunc(REF string lastname, &
REF my_str pbstr) LIBRARY "simple.dll" &
ALIAS FOR "SimpleFunc;ansi"

Declaring Windows
API functions

The Windows API includes over a thousand functions that you can call from
PowerBuilder. The following examples show sample declarations for functions
in the 32-bit Windows API libraries KERNEL32.DLL, GDI32.DLL, and
USER32.DLL.

Using external functions

416 PowerBuilder

Windows API calls
Some 32-bit function names end with A (for ANSI) or W (for wide). Use wide
function names in PowerBuilder.

For a complete list of Windows API functions, see the Microsoft Windows
SDK documentation. For examples of PowerBuilder declaration syntax and
scripts, search for Windows API calls in the Technical Documents section of the
Sybase Web site at www.sybase.com/support/techdocs/.

The following statements declare a function that gets the handle of any window
that is called by name, and a function that releases the open object handle:

FUNCTION ulong FindWindowW(ulong classname, &
string windowname) LIBRARY "User32.dll"

FUNCTION boolean CloseHandle(ulong w_handle) &
LIBRARY "Kernel32.dll"

The following statement declares a function that draws a pie chart based on the
coordinates received:

FUNCTION boolean Pie(ulong hwnd,long x1,long y1, &
long x2,long y2,long x3,long y3,long x4, &
long y4) LIBRARY "Gdi32.dll"

The following statement declares an external C function named IsZoomed:

FUNCTION boolean IsZoomed(Ulong handle) &
LIBRARY "User32.DLL"

A script that uses IsZoomed is included as an example in “Using utility
functions to manage information” on page 420.

For more information about these functions, see the Microsoft documentation
in the MSDN Library at http://msdn.microsoft.com/library/default.asp.

Passing arguments
In PowerBuilder, you can define external functions that expect arguments to be
passed by reference or by value. When you pass an argument by reference, the
external function receives a pointer to the argument and can change the
contents of the argument and return the changed contents to PowerBuilder.
When you pass the argument by value, the external function receives a copy of
the argument and can change the contents of the copy of the argument. The
changes affect only the local copy; the contents of the original argument are
unchanged.

CHAPTER 22 Using External Functions and Other Processing Extensions

Application Techniques 417

The syntax for an argument that is passed by reference is:

REF datatype arg

The syntax for an argument that is passed by value is:

datatype arg

Passing numeric datatypes

The following statement declares the external function TEMP in PowerBuilder.
This function returns an integer and expects an integer argument to be passed
by reference:

FUNCTION int TEMP(ref int degree) LIBRARY
"LibName.DLL"

The same statement in C would be:

int _stdcall TEMP(int * degree)

Since the argument is passed by reference, the function can change the contents
of the argument, and changes made to the argument within the function will
directly affect the value of the original variable in PowerBuilder. For example,
the C statement *degree = 75 would change the argument named degree to
75 and return 75 to PowerBuilder.

The following statement declares the external function TEMP2 in
PowerBuilder. This function returns an Integer and expects an Integer argument
to be passed by value:

FUNCTION int TEMP2(int degree) LIBRARY "LibName.DLL"

The same statement in C would be:

int _stdcall TEMP2(int degree)

Since the argument is passed by value, the function can change the contents of
the argument. All changes are made to the local copy of the argument; the
variable in PowerBuilder is not affected.

Passing strings

PowerBuilder assumes all string arguments and returned values use Unicode
encoding. If a function uses strings with ANSI encoding, you need to add an
ALIAS FOR clause to the function declaration and add a semicolon followed
by the ansi keyword. For example:

FUNCTION string NAME(string CODE) LIBRARY
"LibName.DLL" ALIAS FOR "NAME;ansi"

Using external functions

418 PowerBuilder

Passing by value The following statement declares the external C function
NAME in PowerBuilder. This function expects a String argument with Unicode
encoding to be passed by value:

FUNCTION string NAME(string CODE) LIBRARY
"LibName.DLL"

The same statement in C would point to a buffer containing the String:

char * _stdcall NAME(char * CODE)

Since the String is passed by value, the C function can change the contents of
its local copy of CODE, but the original variable in PowerBuilder is not
affected.

Passing by reference PowerBuilder has access only to its own memory.
Therefore, an external function cannot return to PowerBuilder a pointer to a
string. (It cannot return a memory address.)

When you pass a string to an external function, either by value or by reference,
PowerBuilder passes a pointer to the string. If you pass by value, any changes
the function makes to the string are not accessible to PowerBuilder. If you pass
by reference, they are.

The following statement declares the external C function NAME2 in
PowerBuilder. This function returns a String and expects a String argument to
be passed by reference:

FUNCTION string NAME2(ref string CODE) &
LIBRARY "LibName.DLL"

In C, the statement would be the same as when the argument is passed by value,
shown above:

char * _stdcall NAME2(char * CODE)

The String argument is passed by reference, and the C function can change the
contents of the argument and the original variable in PowerBuilder. For
example, Strcpy(CODE,STUMP) would change the contents of CODE to
STUMP and change the variable in the calling PowerBuilder script to the
contents of variable STUMP.

If the function NAME2 in the preceding example takes a user ID and replaces it
with the user’s name, the PowerScript string variable CODE must be long
enough to hold the returned value. To ensure that this is true, declare the String
and then use the Space function to fill the String with blanks equal to the
maximum number of characters you expect the function to return.

CHAPTER 22 Using External Functions and Other Processing Extensions

Application Techniques 419

If the maximum number of characters allowed for a user’s name is 40 and the
ID is always five characters, you would fill the String CODE with 35 blanks
before calling the external function:

String CODE
CODE = ID + Space(35)
. . .
NAME2(CODE)

For information about the Space function, see the PowerScript Reference.

Passing chars to C functions Char variables passed to external C functions
are converted to the C char type before passing. Arrays of Char variables are
converted to the equivalent C array of char variables.

An array of Char variables embedded in a structure produces an embedded
array in the C structure. This is different from an embedded String, which
results in an embedded pointer to a string in the C structure.

Recommendation
Whenever possible, pass String variables back to PowerBuilder as a return
value from the function.

Calling external functions on UNIX
In PowerBuilder custom class user objects that you plan to deploy as EAServer
components on a UNIX platform, you can call external functions in shared
libraries compiled on the operating system where the server is running. You
cannot call external functions in libraries that make Windows API calls or rely
on graphical processing.

You use the standard PowerScript syntax to declare functions that reside in
UNIX shared libraries. For example, this statement declares the function
getcwd in the standard C library on Solaris:

FUNCTION string getcwd(REF string buff, &
unsigned int size) LIBRARY "/usr/lib/libc.so"

You call the function from a script in your application in the way you call any
other function. In this example, the space function allocates enough space to
hold the directory name returned by getcwd:

string ls_return, ls_directory
ls_directory = space(100)
. . .

Using utility functions to manage information

420 PowerBuilder

ls_return = getcwd(ls_directory, 100)

Updating the load library path
On UNIX, when your component calls an external function, it must be able to
find the shared library in which that function resides. To ensure this, you must
update the library path environment variable to include the directory where that
shared library is stored.

Using utility functions to manage information
The utility functions provide a way to obtain and pass Windows information to
external functions and can be used as arguments in the PowerScript Send
function. Table 22-1 describes the PowerScript utility functions.

Five utility functions Table 22-1: Utility functions

Examples This script uses the external function IsZoomed to test whether the current
window is maximized. It uses the Handle function to pass a window handle to
IsZoomed. It then displays the result in a SingleLineEdit named sle_output:

boolean Maxed
Maxed = IsZoomed(Handle(parent))

Function Return value Purpose

Handle UnsignedInt Returns the handle to a specified object.

IntHigh UnsignedInt Returns the high word of the specified Long value.

IntHigh is used to decode Windows values returned by
external functions or the LongParm attribute of the
Message object.

IntLow UnsignedInt Returns the low word of the specified Long value.

IntLow is used to decode Windows values returned by
external functions or the LongParm attribute of the
Message object.

Long Long Combines the low word and high word into a Long.

The Long function is used to pass values to external
functions.

LongLong LongLong Combines the low word and high word into a
LongLong.

The LongLong function is used to pass values to
external functions.

CHAPTER 22 Using External Functions and Other Processing Extensions

Application Techniques 421

if Maxed then sle_output.Text = "Is maxed"
if not Maxed then sle_output.Text = "Is normal"

This script passes the handle of a window object to the external function
FlashWindow to change the title bar of a window to inactive and then active:

// Declare loop counter and handle to window object
int nLoop
uint hWnd
// Get the handle to the PowerBuilder window.
hWnd = handle(This)
// Make the title bar inactive.
FlashWindow (hWnd, TRUE)
//Wait ...
For nLoop = 1 to 300
Next
// Return the title bar to its active color.
FlashWindow (hWnd, FALSE)

Sending Windows messages
To send Windows messages to a window that you created in PowerBuilder or
to an external window (such as a window you created using an external
function), use the Post or Send function. To trigger a PowerBuilder event, use
the EVENT syntax or the TriggerEvent or PostEvent function.

Using Post and Send You usually use the Post and Send functions to trigger Windows events that are
not PowerBuilder-defined events. You can include these functions in a script
for the window in which the event will be triggered or in any script in the
application.

Post is asynchronous: the message is posted to the message queue for the
window or control. Send is synchronous: the window or control receives the
message immediately.

As of PowerBuilder 6.0, all events posted by PowerBuilder are processed by a
separate queue from the Windows system queue. PowerBuilder posted
messages are processed before Windows posted messages.

Sending Windows messages

422 PowerBuilder

Obtaining the window’s handle
To obtain the handle of the window, use the Handle function. To combine two
integers to form the Long value of the message, use the Long function. Handle
and Long are utility functions, which are discussed later in this chapter.

Triggering
PowerBuilder events

To trigger a PowerBuilder event, you can use the techniques listed in Table 22-
2.

Table 22-2: Triggering PowerBuilder events

All three methods bypass the messaging queue and are easier to code than the
Send and Post functions.

Example All three statements shown below click the CommandButton
cb_OK and are in scripts for the window that contains cb_OK.

The Send function uses the Handle utility function to obtain the handle of the
window that contains cb_OK, then uses the Long function to combine the
handle of cb_OK with 0 (BN_CLICK) to form a Long that identifies the object
and the event:

Send(Handle(Parent),273,0,Long(Handle(cb_OK),0))
cb_OK.TriggerEvent(Clicked!)
cb_OK.EVENT Clicked()

The TriggerEvent function identifies the object in which the event will be
triggered and then uses the enumerated datatype Clicked! to specify the clicked
event.

The dot notation uses the EVENT keyword to trigger the Clicked event.
TRIGGER is the default when you call an event. If you were posting the clicked
event, you would use the POST keyword:

Cb_OK.EVENT POST Clicked()

Technique Description

TriggerEvent function A synchronous function that triggers the event
immediately in the window or control

PostEvent function An asynchronous function: the event is posted to the
event queue for the window or control

Event call syntax A method of calling events directly for a control using dot
notation

CHAPTER 22 Using External Functions and Other Processing Extensions

Application Techniques 423

The Message object
The Message object is a predefined PowerBuilder global object (like the
default Transaction object SQLCA and the Error object) that is used in scripts
to process Microsoft Windows events that are not PowerBuilder-defined
events.

When a Microsoft Windows event occurs that is not a PowerBuilder-defined
event, PowerBuilder populates the Message object with information about the
event.

Other uses of the
Message object

The Message object is also used:

• To communicate parameters between windows when you open and close
them

For more information, see the descriptions of OpenWithParm,
OpenSheetWithParm, and CloseWithReturn in the PowerScript Reference.

• To pass information to an event if optional parameters were used in
TriggerEvent or PostEvent

For more information, see the PowerScript Reference.

Customizing the
Message object

You can customize the global Message object used in your application by
defining a standard class user object inherited from the built-in Message object.
In the user object, you can add additional properties (instance variables) and
functions. You then populate the user-defined properties and call the functions
as needed in your application.

For more information about defining standard class user objects, see the
PowerBuilder User’s Guide.

Message object properties
The first four properties of the Message object correspond to the first four
properties of the Microsoft Windows message structure.

Table 22-3: Message object properties

Property Datatype Use

Handle Integer The handle of the window or control.

Number Integer The number that identifies the event (this
number comes from Windows).

The Message object

424 PowerBuilder

Use the values in the Message object in the event script that caused the
Message object to be populated. For example, suppose the FileExists event
contains the following script. OpenWithParm displays a response window that
asks the user if it is OK to overwrite the file. The return value from FileExists
determines whether the file is saved:

OpenWithParm(w_question, &
"The specified file already exists. " + &
"Do you want to overwrite it?")

IF Message.StringParm = "Yes" THEN
RETURN 0 // File is saved

ELSE
RETURN -1 // Saving is canceled

END IF

For information on Microsoft message numbers and parameters, see the
Microsoft Software Developer’s Kit (SDK) documentation.

WordParm UnsignedInt The word parameter for the event (this
parameter comes from Windows). The
parameter’s value and meaning are determined
by the event.

LongParm Long The long parameter for the event (this number
comes from Windows). The parameter’s value
and meaning are determined by the event.

DoubleParm Double A numeric or numeric variable.

StringParm String A string or string variable.

PowerObjectParm PowerObject Any PowerBuilder object type including
structures.

Processed Boolean A boolean value set in the script for the
user-defined event:

• TRUE—The script processed the event. Do
not call the default window Proc
(DefWindowProc) after the event has been
processed.

• FALSE—(Default) Call DefWindowProc
after the event has been processed.

ReturnValue Long The value you want returned to Windows when
Message.Processed is TRUE.

When Message.Processed is FALSE, this
attribute is ignored.

Property Datatype Use

CHAPTER 22 Using External Functions and Other Processing Extensions

Application Techniques 425

Context information
The PowerBuilder context feature allows applications to access certain host
(non-PowerBuilder) services. This is a PowerBuilder implementation of
functionality similar to the COM QueryInterface. PowerBuilder provides
access to the following host services:

• Context information service

• Context keyword service

• CORBACurrent service

• Error logging service

• Internet service

• Secure Sockets Layer service

• Transaction server service

PowerBuilder creates service objects appropriate for the current execution
context (native PowerBuilder, PowerBuilder window plug-in, PowerBuilder
window ActiveX, transaction server). This allows your application to take full
advantage of the execution environment. For example, in a PowerBuilder
window plug-in, your application can access parameters specified in the
Embed element. Additionally, when running the PowerBuilder window
ActiveX under Internet Explorer, your application can access the ActiveX
automation server, which allows your program to access and control the
Internet browser.

The context feature uses seven PowerBuilder service objects:
ContextInformation, ContextKeyword, CORBACurrent, ErrorLogging, Inet,
SSLServiceProvider, and TransactionServer; it also uses the InternetResult
object. (The context feature is sometimes called the Context object, but it is not
a PowerBuilder system object.)

For more information about these objects, see Objects and Controls or the
PowerBuilder Browser.

Enabling a service Before you use a service, you instantiate it by calling the GetContextService
function. When you call this function, PowerBuilder returns a reference to the
instantiated service. Use this reference in dot notation when calling the
service’s functions.

❖ To enable a service:

1 Establish an instance variable of the appropriate type:

ContextInformation icxinfo_base

Context information

426 PowerBuilder

ContextKeyword icxk_base
CORBACurrent corbcurr_base
ErrorLogging erl_base
Inet iinet_base
SSLServiceProvider sslsp_base
TransactionServer ts_base

2 Instantiate the instance variable by calling the GetContextService function:

this.GetContextService("ContextInformation", &
icxinfo_base)

this.GetContextService("ContextKeyword", icxk_base)
this.GetContextService("CORBACurrent", &

corbcurr_base)
this.GetContextService("ErrorLogging", erl_base)
this.GetContextService("Internet", iinet_base)
this.GetContextService("SSLServiceProvider", &

sslsp_base)
this.GetContextService("TransactionServer",ts_base)

Using a CREATE
statement

You can instantiate a service object with a PowerScript CREATE statement.
However, this always creates an object for the default context (native
PowerBuilder execution environment), regardless of where the application is
running.

Context information service
You use the context information service to obtain information about an
application’s execution context. The service provides current version
information, as well as whether the application is running in the PowerBuilder
execution environment and whether as a PowerBuilder window plug-in or a
PowerBuilder window ActiveX. Using this information, you can modify
display characteristics and application behavior. For example, you might hide
a Close command button when running as a plug-in or ActiveX.

Additionally, when running in the PowerBuilder window ActiveX under
Internet Explorer, the context information service can return a reference to an
ActiveX automation server object. Your application can use this reference to
call functions that control the Web browser.

Accessing context
information

Using the context information service, you can access the information in Table
22-4.

CHAPTER 22 Using External Functions and Other Processing Extensions

Application Techniques 427

Table 22-4: Context information

Using the ClassName
function

You can also use the ClassName function to determine the context of the object.
The return value of the ClassName function differs by context. For example,
for the Window plug-in the return value is plugincontextinformation, and for the
Window ActiveX it is rtxcontextinformation.

You can use this information for many purposes, including:

• Modifying application appearance based on execution context For
example, you might hide a Close button when running in the PowerBuilder
window plug-in and PowerBuilder window ActiveX. In a plug-in or
ActiveX, closing the window results in a blank space in the HTML page.

• Verifying that the context supports the current version For example,
if your application requires features or fixes from Version 10.5.0.1, you
can use the context information service to check the version in the current
execution context.

❖ To access context information:

1 Declare an instance or global variable of type ContextInformation:

ContextInformation icxinfo_base

Item Use this function Comment

Full context
name

GetName Value returned depends on the context:

• Default: PowerBuilder Runtime

• Window plug-in: PowerBuilder
window Plugin

• Window ActiveX: PowerBuilder
window ActiveX

Abbreviated
context name

GetShortName Value returned depends on the context:

• Default: PBRUN

• Window plug-in: PBWinPlugin

• Window ActiveX: PBRTX

Company name GetCompanyName Returns Sybase, Inc.

Version GetVersionName Returns the full version number (for
example, 10.5.0.1)

Major version GetMajorVersion Returns the major version number (for
example, 10.5)

Minor version GetMinorVersion Returns the minor version number (for
example, 0)

Fix version GetFixesVersion Returns the fix version number (for
example, 1)

Context information

428 PowerBuilder

2 Create the context information service by calling the GetContextService
function:

this.GetContextService("ContextInformation", &
icxinfo_base)

3 Call context information service functions as necessary.

This example calls the GetShortName function to determine the current
context and the GetVersionName function to determine the current version:

String ls_name
String ls_version
Constant String ls_currver = "7.0.01"
icxinfo_base.GetShortName(ls_name)
IF ls_name <> "PBRun" THEN
 cb_close.visible = FALSE
END IF
icxinfo_base.GetVersionName(ls_version)
IF ls_version <> ls_currver THEN
 MessageBox("Error", &
 "Must be at Version " + ls_currver)
END IF

Accessing the ActiveX
automation server

If you are running the PowerBuilder window ActiveX in Internet Explorer
Version 3.0 or later, your application can call the context information service’s
GetHostObject function to obtain a reference to an ActiveX automation server
object (the hosting object). Specifically, if you pass an uninstantiated
OLEObject variable to GetHostObject, it returns a reference to the
IWebBrowserApp automation server.

Your application can call and access IWebBrowserApp methods and
properties, which allow you to access and control certain aspects of browser
behavior, including:

• Go back

• Go forward

• Go home

• Refresh

• Navigate to a specified Web page

• Exit the browser

For more information on the IWebBrowserApp interface, its methods, and its
properties, see the Internet Explorer documentation or the Microsoft Web site.

CHAPTER 22 Using External Functions and Other Processing Extensions

Application Techniques 429

❖ To access the ActiveX automation server:

1 Declare instance or global variables of type ContextInformation and
OLEObject:

ContextInformation icxinfo_base
OLEObject iole_browser

2 Create the context information service by calling the GetContextService
function:

GetContextService("ContextInformation", &
icxinfo_base)

3 Establish a reference to the ActiveX automation server by calling the
GetHostObject function:

Integer li_rtrn
li_rtrn = icxinfo_base.GetHostObject(iole_browser)
IF li_rtrn = 1 THEN

sle_host.Text = "GetHostObject succeeded"
ELSE

sle_host.Text = "GetHostObject failed"
END IF

4 Call IWebBrowserApp functions as necessary. This example calls the
Navigate function to open the default Web browser displaying the Sybase
home page:

IF IsValid(iole_browser) THEN
 iole_browser.Navigate &
 ("http://www.sybase.com", 0, 0, 0)
END IF

Context keyword service
Use the context keyword service to access environment information for the
current context. In the default environment, this service returns host
workstation environment variables. In the PowerBuilder window plug-in, this
service allows you to access parameters specified in the plug-in’s Embed
element. When running within EAServer, you can use the keyword service to
get component property values.

For information about using the context keyword service in EAServer, see
“Accessing component properties” on page 482.

Accessing
environment variables

When running in the PowerBuilder execution environment (the default
context), you use this service to return environment variables.

Context information

430 PowerBuilder

❖ To access environment variables:

1 Declare an instance or global variable of type ContextKeyword. Also
declare an unbounded array of type String to contain returned values:

ContextKeyword icxk_base
String is_values[]

2 Create the context information service by calling the GetContextService
function:

this.GetContextService("ContextKeyword", icxk_base)

3 Call the GetContextKeywords function to access the environment variable
you want. This example calls the GetContextKeywords function to
determine the current application Path:

icxk_base.GetContextKeywords("Path", is_values)

4 Extract values from the returned array as necessary. When accessing
environment variables, the array should always have a single element:

MessageBox("Path", "Path is: " + is_values[1])

Accessing Embed
element parameters

The Embed element can contain additional, user-specified, parameters.
Additionally, the Embed element allows more than one value for each
parameter.

When running in the PowerBuilder window plug-in context, you use this
service to access parameters specified in the Embed element. If the specified
parameter is not found, the service tries to match the specified parameter with
an environment variable.

❖ To access Embed element parameters:

1 Declare an instance or global variable of type ContextKeyword. Also
declare an unbounded array of type String to contain returned values:

ContextKeyword icxk_base
String is_values[]

2 Create the context information service by calling the GetContextService
function:

GetContextService("ContextKeyword", icxk_base)

3 Call the GetContextKeywords function. This example calls the
GetContextKeywords function to access values for the user-specified
parameter, VALID:

icxk_base.GetContextKeywords("VALID", is_values)

CHAPTER 22 Using External Functions and Other Processing Extensions

Application Techniques 431

4 Extract values from the returned array as necessary. This example displays
parameters in a list:

Integer li_count
FOR li_count = 1 to UpperBound(is_values)

lb_parms.AddItem(is_values[li_count])
NEXT

CORBACurrent service
Client applications and EAServer components marked as OTS style can create,
control, and obtain information about EAServer transactions using functions of
the CORBACurrent context service object. The CORBACurrent object
provides most of the methods defined for the CORBA Current interface.

For more information, see “Client- and component-demarcated transactions”
on page 518.

Error logging service
To record errors generated by PowerBuilder objects running in a transaction
server to a log file, create an instance of the ErrorLogging service object and
invoke its log method. For example:

ErrorLogging erlinfo_base
this.GetContextService("ErrorLogging", &

erlinfo_base)
erlinfo_base.log("Write this string to log")

The errors are recorded in the EAServer log if the component is running in
EAServer, and in the Windows system application log if the component is
running in COM+.

Internet service
Use the Internet service to:

• Display a Web page in the default browser (HyperLinkToURL function,
which starts the default browser with the specified URL)

• Access the HTML for a specified page (GetURL function, which performs
an HTTP Get)

Context information

432 PowerBuilder

• Send data to a CGI, ISAPI, or NSAPI program (PostURL function, which
performs an HTTP Post)

Hyperlinking to a URL You call the Internet service’s HyperLinkToURL function to start the default
browser with a specified URL.

❖ To hyperlink to a URL:

1 Declare an instance or global variable of type Inet:

Inet iinet_base

2 Create the Internet service by calling the GetContextService function:

THIS.GetContextService("Inet", iinet_base)

3 Call the HyperLinkToURL function, passing the URL of the page to display
when the browser starts:

iinet_base.HyperlinkToURL &
("http://www.sybase.com")

Getting a URL You call the Internet service’s GetURL function to perform an HTTP Get,
returning raw HTML for a specified URL. This function returns the raw HTML
using the InternetResult object.

❖ To perform an HTTP Get:

1 Declare an instance or global variable of type Inet. Also declare an
instance or global variable using the descendent InternetResult object as
the datatype (n_ir_msgbox in this example):

Inet iinet_base
n_ir_msgbox iir_msgbox

2 Create the Internet service by calling the GetContextService function:

THIS.GetContextService("Internet", iinet_base)

3 Create an instance of the descendent InternetResult object:

iir_msgbox = CREATE n_ir_msgbox

4 Call the GetURL function, passing the URL of the page to be returned and
a reference to the instance of the descendent InternetResult object:

iinet_base.GetURL &
("http://www.sybase.com", iir_msgbox)

When the GetURL function completes, it calls the InternetData function
defined in the descendent InternetResult object, passing the HTML for the
specified URL.

CHAPTER 22 Using External Functions and Other Processing Extensions

Application Techniques 433

Posting to a URL You call the Internet service’s PostURL function to perform an HTTP Post,
sending data to a CGI, ISAPI, or NSAPI program. This function returns the raw
HTML using the InternetResult object.

❖ To perform an HTTP Post:

1 Declare an instance or global variable of type Inet. Also declare an
instance or global variable using the descendent InternetResult object as
the datatype (n_ir_msgbox in this example):

Inet iinet_base
n_ir_msgbox iir_msgbox

2 Create the Internet service by calling the GetContextService function:

THIS.GetContextService("Internet", iinet_base)

3 Create an instance of the descendent InternetResult object:

iir_msgbox = CREATE n_ir_msgbox

4 Establish the arguments to the PostURL function:

Blob lblb_args
String ls_headers
String ls_url
Long ll_length
ls_url = "http://coltrane.sybase.com/"
ls_url += "cgi-bin/pbcgi80.exe/"
ls_url += "myapp/n_cst_html/f_test?"
lblb_args = Blob("")
ll_length = Len(lblb_args)
ls_headers = "Content-Length: " &

+ String(ll_length) + "~n~n"

5 Call the PostURL function, passing the URL of the routine to be executed,
the arguments, the header, an optional server port specification, and a
reference to the instance of the descendent InternetResult object:

iinet_base.PostURL &
(ls_url, lblb_args, ls_headers, 8080, iir_msgbox)

When the PostURL function completes, it calls the InternetData function
defined in the descendent InternetResult object, passing the HTML
returned by the specified routine.

Context information

434 PowerBuilder

Using the
InternetResult object

The GetURL and PostURL functions both receive data in an InternetResult
object. This object acts as a buffer, receiving and caching the asynchronous
data as it is returned by means of the Internet. When all data is received, the
InternetResult object calls its InternetData function, which you override to
process the data as appropriate.

Implement in descendants of InternetResult
You implement this feature by creating standard class user objects of type
InternetResult. In each of these descendent user objects, define an InternetData
function to process the passed HTML as appropriate.

❖ To implement a descendent InternetResult object:

1 Create a standard class user object of type InternetResult.

2 Declare a new user object function as follows:

• Name InternetData

• Access Public

• Returns Integer

• Argument name Data, passed by value

• Argument datatype Blob

3 Add code to the InternetData function that processes the returned HTML
as appropriate. This example simply displays the HTML in a
MessageBox:

MessageBox("Returned HTML", &
String(data, EncodingANSI!))

Return 1

Secure Sockets Layer service
PowerBuilder allows you to establish Secure Sockets Layer (SSL) connections
to EAServer. The SSL protocol allows connections to be secured using
public-key encryption and authentication algorithms that are based on digital
certificates. SSL is a "wrapper" protocol: packets for another protocol are
secured by embedding them inside SSL packets. For example, HTTPS is HTTP
secured by embedding each HTTP packet within an SSL packet. Likewise,
IIOPS is IIOP embedded within SSL.

CHAPTER 22 Using External Functions and Other Processing Extensions

Application Techniques 435

You use an instance of the SSLServiceProvider object to establish the
connection from the client to the server. For more information, see the
PowerScript Reference and Chapter 26, “Using SSL in PowerBuilder clients.”

Transaction server service
Use the transaction server service to access information about the context of an
object running in a transaction server such as EAServer or COM+. You can use
the TransactionServer object to influence transaction behavior
programmatically, and to access the methods of another component on the
transaction server.

For more information, see Chapter 24, “Building an EAServer Component”
and Chapter 27, “Building a COM or COM+ Component.”

Context information

436 PowerBuilder

P A R T 6 Developing Distributed
Applications

This part describes tools and techniques for building
distributed applications with PowerBuilder.

PowerBuilder Enterprise edition only
The tools for building multitier applications available with
PowerBuilder are supported in the Enterprise edition only.

Application Techniques 439

C H A P T E R 2 3 Distributed Application
Development with PowerBuilder

About this chapter This chapter gives an overview of distributed application development
with PowerBuilder.

PowerBuilder Enterprise edition only
Distributed application development is supported in the Enterprise edition
only.

Contents

Distributed application architecture
Distributed application development, also called multitier development,
offers a natural way to separate the user interface components of an
application from the business logic that the application requires. By
centralizing business logic on a middle-tier server, you can reduce the
workload on the client and control access to sensitive information.

In a distributed application, the client and server work together to perform
tasks for the business user. The client handles all interactions with the user
while the middle-tier server provides background services to the client.
Typically, the middle-tier server performs most of the processing and
database access. To invoke the services of the server, the client calls a
method (or function) associated with a component (or object) that resides
on the server.

Topic Page

Distributed application architecture 439

Server support 440

Server support

440 PowerBuilder

Partitioned
applications

Client-side logic for enterprise applications must be as small and efficient as
possible to conserve network bandwidth. To accomplish this goal, applications
are partitioned into three parts: presentation, business logic, and database
access. The database resides on the bottom tier of the enterprise system to
maintain and secure the organization's information assets. The business logic
resides in the middle tier or server. The presentation is on the user's desktop, or
top tier, or is dynamically downloaded to the user's desktop.

The server is then responsible for executing and securing the vast majority of
a corporation's business logic. This makes it a critical component in the
network-centric architecture. The client communicates with the server, calling
middle-tier components that perform business logic.

Web application
architecture

A Web application is a variation of the distributed architecture where the client
is hosted in a Web browser. PowerBuilder provides several technologies for
building Web applications, including Web targets and the Web DataWindow,
both of which provide a thin client solution. The architecture of your
application varies depending on which technologies you decide to use.

For more information, see Chapter 30, “Web Application Development with
PowerBuilder.”

Server support
PowerBuilder developers can build clients that invoke the services of Sybase
EAServer and COM+ servers, and build components (or objects) that execute
business logic inside each of these servers.

PowerBuilder also provides support for building clients for Enterprise
JavaBeans components (EJBs) running on any J2EE-compliant server.

EAServer PowerBuilder and EAServer are fully integrated. A PowerBuilder application
can act as a client to any EAServer component. In addition, EAServer can
contain PowerBuilder custom class user (nonvisual) objects that execute as
middle-tier components.

EAServer hosts the PowerBuilder virtual machine natively. This means that
EAServer can communicate directly with PowerBuilder nonvisual user
objects, and vice versa. EAServer components developed in PowerBuilder can
take full advantage of the ease of use and flexibility of PowerScript and the
richness of PowerBuilder’s system objects.

CHAPTER 23 Distributed Application Development with PowerBuilder

Application Techniques 441

Components developed in PowerBuilder can exploit features such as
transactions, interoperability, and instance pooling. As shown in Figure 23-1,
any type of client can access any type of component running in EAServer,
regardless of the language used to develop the component.

Figure 23-1: Clients and components in EAServer

For more information, see Chapter 24, “Building an EAServer Component”
and Chapter 25, “Building an EAServer Client.”

COM+ A PowerBuilder application can act as a client to a COM server. The server can
be built using PowerBuilder or any other COM-compliant application
development tool and it can run locally, on a remote computer as an in-process
server, or in COM+, as shown in Figure 23-2.

Server support

442 PowerBuilder

Figure 23-2: PowerBuilder clients for COM components

You can develop a custom class user object containing business logic in
PowerBuilder and then package the object as a COM object. A PowerBuilder
COM server can include one or more PowerBuilder custom class user objects.
You code the user objects in the User Object painter and then build the server
in the Project painter. You can also deploy the COM server directly to a local
COM+ server or create a COM+ package from the Project painter.

For more information, see Chapter 27, “Building a COM or COM+
Component” and Chapter 28, “Building a COM or COM+ Client.”

J2EE servers J2EE, the Java 2 Platform, Enterprise Edition, is the official Java framework
for enterprise application development. A J2EE application is composed of
separate components that are installed on different computers in a multitiered
system. Figure 23-3 shows three tiers in this system: the client tier, middle tier,
and Enterprise Information Systems (EIS) tier. The middle tier is sometimes
considered to be made up of two separate tiers: the Web tier and the business
tier.

CHAPTER 23 Distributed Application Development with PowerBuilder

Application Techniques 443

Figure 23-3: J2EE client, middle, and EIS tiers

Client components, such as application clients and applets, run on computers
in the client tier. Web components, such as Java servlets and JavaServer Pages
(JSP) components, run on J2EE servers in the Web tier. Enterprise JavaBeans
(EJB) components are business components and run on J2EE servers in the
business tier. The EIS tier is made up of servers running relational database
management systems, enterprise resource planning applications, mainframe
transaction processing, and other legacy information systems.

In PowerBuilder, you can build client applications that use the services of EJB
components running on any J2EE-compliant server. For more information, see
Chapter 29, “Building an EJB client.”

Server support

444 PowerBuilder

Application Techniques 445

C H A P T E R 2 4 Building an EAServer
Component

About this chapter This chapter explains how to use PowerBuilder to build an EAServer
component.

Contents

About building an EAServer component
PowerBuilder provides tools for developing custom class (nonvisual) user
objects and deploying them as EAServer components. You can deploy
these components to an EAServer host running on the Windows, Sun
Solaris, Hewlett-Packard HP-UX, and IBM AIX operating systems. See
“Deploying a component to EAServer” on page 498.

Topic Page

About building an EAServer component 445

Working with shared and service components 448

Providing support for instance pooling 453

Providing support for transactions 457

Accessing a database from an EAServer component 461

Defining the component interface 475

Implementing an existing interface 478

Invoking another server component’s methods 480

Accessing component properties 482

Exposing an NVO as a Web service 486

Testing and debugging the component 487

Printing data 493

Deploying a component to EAServer 498

About building an EAServer component

446 PowerBuilder

Limitations on UNIX
If you plan to deploy components to a UNIX server, you should be aware that
the PowerBuilder runtime libraries on UNIX platforms do not support
graphical operations or calls to the Windows application programming
interface.

About using the wizards
PowerBuilder provides several wizards to facilitate the development and
deployment of EAServer components:

• Target wizard Creates a new application, a new custom class user
object, and a new project

• Object wizard Creates a new custom class user object in an existing
application and a new project

• Project wizard Creates a project you use to generate an EAServer
component from an existing custom class user object

About the development process
Steps for building
EAServer components

To build and deploy an EAServer component from a custom class user object,
complete the following steps:

1 Use the EAServer Component Target Wizard to create a new user object
in a new application. Alternatively, if you are working in an existing
application, you can use the EAServer Component Object wizard to create
the object. These wizards also allow you to enter information exposing the
new user object as a Web service.

2 Add functions, events, and instance variables to the generated user object
in the User Object painter.

3 Test and debug the object.

4 Deploy the object to EAServer.

To test or deploy an EAServer component that you developed in PowerBuilder,
create a project object and build the project. You can create a project object
from the Target, Object, or Project wizard.

CHAPTER 24 Building an EAServer Component

Application Techniques 447

To deploy a component, open the project in the Project painter, optionally
modify the project settings, and build the project. When you do this, the
EAServer component generator deploys the component interface and the
PowerBuilder implementation of that interface to the target server.

For testing purposes, you can use live editing to build the project automatically
from the User Object painter. This removes the need to build the project from
the Project painter. When live editing is enabled in the User Object painter,
PowerBuilder builds the project for an EAServer component each time you
save the user object. For more information on live editing, see “Testing and
debugging the component” on page 487.

To-Do List When you create a new user object by using the EAServer Target or Object
wizard, you can optionally create a To-Do List. If you check the Generate
To-Do List box on the last page of the wizard, the wizard adds tasks to the
To-Do List to remind you to complete all phases of development.

Creating an EAServer profile
An EAServer profile is a named set of parameters stored in your system
registry that defines a connection to a particular EAServer host. Before you use
a wizard to create a component, you should create a profile for the server where
the component will be deployed.

The EAServer Profiles dialog box lists your defined EAServer profiles. You
create, edit, delete, and test EAServer profiles from this dialog box.

❖ To create an EAServer profile:

1 Click the EAServer Profile button in the PowerBar.

The EAServer Profiles dialog box displays, listing your configured
EAServer profiles.

Working with shared and service components

448 PowerBuilder

2 Select Add.

The Edit EAServer Profile dialog box displays.

3 Type the profile name, server name, port number, login name, and
password (if required).

4 (Optional) Select Test to verify the connection.

5 Click OK to save your changes and close the dialog box.

The EAServer Profiles dialog box displays, with the new profile name
listed. The EAServer profile values are saved in the registry in
HKEY_CURRENT_USER/Software/Sybase/PowerBuilder/105/
JaguarServerProfiles.

Working with shared and service components
When you create an EAServer component in PowerBuilder, the wizard offers
you a choice of creating a standard, shared, or service component.

About shared components
How EAServer
manages program
variable space

The EAServer architecture is component-oriented. Each component maintains
its own state. When a single client instantiates several PowerBuilder objects on
the server, EAServer maintains program variable space for the objects
separately. Each PowerBuilder user object running in EAServer has its own
copy of the global and shared variables. The PowerBuilder objects share no
common state. They can communicate only through methods, EAServer
shared components, server files, and databases.

To allow clients to share state information, EAServer provides support for
shared components. Shared components allow multiple clients to share the
same component instance.

Marking a component as shared in a PowerBuilder wizard is equivalent to
marking it as shared on the Instances page of the Component Properties dialog
box in EAServer Manager. Only a single instance of the component can be
instantiated in EAServer.

Clients (and other server components) access a shared component as if it were
any other kind of component.

CHAPTER 24 Building an EAServer Component

Application Techniques 449

Benefits of using
EAServer shared
components

Shared components allow you to:

• Provide convenient access to common data that would otherwise need to
be retrieved separately by each client connection

• Reduce the number of database accesses, allowing the database server to
be available for other processing

EAServer shared
components versus
PowerBuilder shared
objects

EAServer shared components offer many of the same benefits as PowerBuilder
shared objects. PowerBuilder components that you deploy to EAServer can act
as clients to EAServer shared components, as well as to PowerBuilder shared
objects. EAServer shared components can also be accessed by components and
clients that are not implemented in PowerBuilder.

However, EAServer does not treat PowerBuilder shared objects as if they were
EAServer shared components. Therefore, the functions used to manipulate
PowerBuilder shared objects (SharedObjectRegister, SharedObjectGet, and so
forth) do not work with EAServer shared components. If you try to call one of
these functions inside a PowerBuilder component running in EAServer, the
request will fail.

About service components
A service component performs background processing for EAServer clients
and other EAServer components. EAServer loads service components at server
start-up time.

When you mark a component as a service component in one of the
PowerBuilder wizards, PowerBuilder installs the component as a service in
EAServer at deployment time. This is equivalent to adding the component to
the list of services for the server by modifying its
com.sybase.EAServer.server.services property.

Shared or not shared When you create a service component, the wizard marks the component as
shared. If you want more than one instance of a service component, you can
change that setting in the Project painter. Select the number of instances you
want in the Create Instances spin control on the Components page of the
EAServer Component Generator property sheet in the Project painter. Notice
that when you change the number of instances to a number greater than one,
the Concurrency and Automatic Demarcation/Deactivation are checked. This
is to ensure that the component does not encounter threading issues in
EAServer. For more information, see "Threading issues and component types"
next.

Working with shared and service components

450 PowerBuilder

Functions for service
components

The PowerBuilder wizards include three additional functions for a service
component. These functions are defined in the CTSServices::GenericServices
interface and allow you to control the behavior of background processes
associated with the service:

• Start EAServer calls the Start function after the service component has
been loaded. You can add logic to this function to perform start-up
initialization for the service.

• Run EAServer calls the Run function after the first invocation of the Start
function returns. The Run function allows you to perform repetitive tasks
as a background process. The Run function must periodically suspend its
own execution by calling the JagSleep C function. The JagSleep function
frees the CPU to perform other tasks. To use the JagSleep function, declare
an external function for JagSleep in PowerBuilder. Here is the syntax to
use for the function declaration:

subroutine JagSleep (Long seconds) LIBRARY
"libjdispatch.dll"

• Stop This function allows you to stop the execution of the background
process coded in the Run function. You can implement a service-manager
client for your service that calls Stop, Start, and Run so that the service can
be restarted without restarting EAServer. The script for the Stop function
can also clean up any resources that were allocated in the Start function.

Threading issues and component types
Each instance of a PowerBuilder component executes in its own session, and
each session can support only one thread of execution. Therefore a single
PowerBuilder component instance cannot simultaneously execute multiple
client requests. However, multiple instances of the same component can each
execute a separate client request. When you create a component, PowerBuilder
sets default values for several properties that affect the way threads are handled
in EAServer.

Using the Thread Manager
You can also use the EAServer Thread Manager to develop more robust
services. See “Using the EAServer Thread Manager” on page 453.

CHAPTER 24 Building an EAServer Component

Application Techniques 451

Concurrency property The Concurrency property determines whether multiple instances of a
component can be created to handle multiple client requests. Checking the
Concurrency check box in the wizard or the Project painter sets the
com.sybase.jaguar.component.thread.safe property to TRUE.

Standard components For standard components, you can improve
performance by allowing multiple instances of a component to handle client
requests. The default setting for the concurrency property for standard
components is checked, but you can change the setting if you want only one
instance of a given component.

Shared components For shared components, only one instance of the
component should be active at any time and therefore only one thread can be
executed. The Concurrency check box is disabled and not checked for shared
components.

Service components Although service components are usually treated as
shared components, you can choose to create more than one instance of a
service component to improve performance and scalability. There are three
options on the Components page that interact for service components:
Concurrency, Automatic Demarcation/Deactivation, and Create Instances (the
Create Instances option can be changed only for service components).

When you change the Create Instances option to 2 or more, the Concurrency
check box and the Automatic Demarcation/Deactivation check box become
checked. Multiple instances of the service component can be created if
necessary, and are deactivated after each method call. If you clear the
Automatic Demarcation/Deactivation check box, so that you need to explicitly
deactivate component instances, the Create Instances check box is reset to 1
and the Concurrency check box is cleared.

bind.thread, sharing,
and tx_vote properties

There are three other component properties that affect the handling of threads
in EAServer: sharing, tx_vote, and bind.thread.

Bind Object property not used
An additional property, bind.object, enables client threads to execute in a single
instance but also supports creation of multiple instances. This property cannot
be used for PowerBuilder components and is always set to FALSE.

When the bind.thread property is set to TRUE, a method on a component
instance must execute on the same thread that created the instance. This
property must be set to TRUE if you are using live editing to build your
component. It should be set to FALSE for components that are deployed to
UNIX servers to improve scalability.

Working with shared and service components

452 PowerBuilder

The sharing property identifies whether or not the component is shared. It is
set to FALSE when you select Standard in the wizard and to TRUE when you
select Shared or Service. The only way this property can be changed in
PowerBuilder is by changing the Create Instances setting on the Components
tab page for service components in the Project painter. If either the sharing or
thread.safe property is set to TRUE, the other must be set to FALSE.

A component that can remain active between consecutive method invocations
is called a stateful component. A component that is deactivated after each
method call and that supports instance pooling is said to be a stateless
component. Typically, an application built with stateless components offers the
greatest scalability. The tx_vote property determines whether the component is
deactivated after every method call. It is set to FALSE (stateless) if you check
the Automatic demarcation/deactivation check box in the wizard or select more
than one instance on the Component page in the Project painter; otherwise it is
set to TRUE (stateful). You can have only one instance of a stateful service
object.

Table 24-1 summarizes the default setting for each type of component and
shows which can be changed.

Table 24-1: Thread-handling properties

If you deploy a service component for which bind.thread, thread.safe, and
sharing are set to TRUE, EAServer disables the thread.safe property
automatically at runtime.

Component bind.thread sharing thread.safe tx_vote

Standard FALSE,
mutable

FALSE,
immutable

TRUE,
mutable

FALSE, mutable

Shared FALSE,
mutable

TRUE,
immutable

FALSE,
immutable

FALSE, mutable

Service
(single
instance)

FALSE,
mutable

TRUE,
immutable

FALSE,
mutable

FALSE, mutable

Service
(multiple
instances)

FALSE,
mutable

FALSE,
immutable

TRUE,
mutable

FALSE, mutable

If changed to
TRUE, number of
instances is set to
1, sharing to
TRUE, and
thread.safe to
FALSE.

CHAPTER 24 Building an EAServer Component

Application Techniques 453

Using the EAServer Thread Manager
The Thread Manager is a built-in EAServer component that allows you to run
EAServer component instances in threads that execute independently of client
method invocations. You can use threads spawned by the Thread Manager to
perform any processing that must occur asynchronously with respect to user
interaction.

For example, you might have a component method that begins a lengthy file
indexing operation. The method could call the Thread Manager to start the
processing in a new thread, then return immediately.

Since each instance of a PowerBuilder component executes in its own session,
and each session can support only one thread of execution, you cannot develop
a service that can be stopped or refreshed without using the Thread Manager.
In the service’s start or run method, spawn threads that do the service’s
processing. In the service’s stop method, call the Thread Manager stop method
to halt the threads.

For a more complete description of the Thread Manager, see the EAServer
Programmer’s Guide.

Providing support for instance pooling
Benefits of instance
pooling

EAServer components can optionally support instance pooling. Instance
pooling allows EAServer clients to reuse component instances. By eliminating
the resource drain caused by repeated allocation of component instances,
instance pooling improves the overall performance of EAServer.

Specifying pooling
options in the wizards

When you create an EAServer component using one of the PowerBuilder
wizards, you have the option to specify one of the pooling options for the
component shown in Table 24-2.

Providing support for instance pooling

454 PowerBuilder

Table 24-2: EAServer component pooling options

Controlling the state of
a pooled instance

When you create an EAServer component that supports instance pooling, that
component may need to reset its state after each client has finished using the
pooled instance.

To allow you to control the state of a component, EAServer triggers one or
more of the events shown in Table 24-3 during the lifecycle of the component.

Table 24-3: Component state events

When the component’s pooling option is set to Supported (the pooling property
is set to TRUE), you may need to script the Activate and Deactivate events to
reset the state of the pooled component. This is necessary if the component
maintains state in an instance, shared, or global variable.

When the component’s pooling option is set to Not Supported (the pooling
property is set to FALSE), you can optionally script the CanBePooled event to
specify whether a particular component instance should be pooled. If you script
the CanBePooled event, you may also need to script the Activate and
Deactivate events to reset the state of the pooled component. If you do not
script the CanBePooled event, the component instance is not pooled.

Pooling option Description

Supported The component is always pooled after each client use. When
this option is selected, the CanBePooled event is not triggered
for the component.

This option has the effect of setting the component’s pooling
property to TRUE. If the Automatic Demarcation/Deactivation
setting for the component is enabled, instances are pooled after
each method invocation. If the setting is disabled, instances are
pooled when the component calls the SetComplete (or SetAbort)
method of the TransactionServer context object.

Not supported By default, the component is not pooled after each client use.
However, you can override the default behavior by scripting the
CanBePooled event. In the CanBePooled event, you can specify
programmatically whether a particular component instance
should be pooled. If you script the CanBePooled event, this
event is triggered after each client use.

This option has the effect of setting the component’s pooling
property to FALSE.

Event PBM code

Activate PBM_COMPONENT_ACTIVATE

CanBePooled PBM_COMPONENT_CANBEPOOLED

Deactivate PBM_COMPONENT_DEACTIVATE

CHAPTER 24 Building an EAServer Component

Application Techniques 455

The EAServer Component Target and Object wizards automatically include
the Activate and Deactivate events to a custom class user object that will be
deployed as an EAServer component. If you want to script the CanBePooled
event, you need to add this event yourself. If you do this, be sure to map the
event to the correct PBM code.

Constructor and Destructor are fired once
When instance pooling is in effect, the Constructor and Destructor events are
fired only once for the component. The Constructor and Destructor events are
not fired each time a new client uses the component instance. Therefore, to
reset the state of a component instance that is pooled, add logic to the Activate
and Deactivate events, not the Constructor and Destructor events.

Maximum and
minimum pool sizes

Instance pooling can decrease client response time, but can also increase
memory usage in the server. You can configure the maximum and minimum
pool size to constrain the memory used to maintain an instance pool by setting
options on the Resources tab page in EAServer Manager. For example, a
heavily used component should have higher minimum and maximum pool
sizes than a less commonly used component.

EAServer does not preallocate instances for the pool. The pool size grows as
additional instances are required to satisfy client requests, up to the maximum
specified size (if a maximum size is specified). Once the minimum pool size is
reached, the size will not shrink below this size. To release idle pooled
instances, EAServer has a garbage collector thread that runs periodically. Each
time it runs, the garbage collector removes one idle instance from the pool,
unless the minimum pool size has been reached.

If you configure a minimum pool size, configure a maximum size that is
slightly larger. The difference between the maximum and minimum size
provides a damping factor that prevents repeated instance allocation and
deallocation if the actual pool size hovers near the minimum size.

You can set environment variables to configure the way memory is managed in
PowerBuilder and EAServer. For more information, see “Configuring memory
management” on page 46 and the technical document EAServer/PowerBuilder
Memory Tuning and Troubleshooting at
http://www.sybase.com/detail?id=1027319.

Providing support for instance pooling

456 PowerBuilder

The lifecycle of a
component

To understand how instance pooling works, you need to understand the
lifecycle of a component instance. This is what happens during the component
lifecycle:

1 The component is typically instantiated on the first method invocation.
When this occurs on a component developed in PowerBuilder, EAServer
creates a new PowerBuilder session for the component to run in.

2 The PowerBuilder session creates the instance of the PowerBuilder
nonvisual object that represents the EAServer component. Creating the
object causes the Constructor event to be fired.

3 After the object has been instantiated, EAServer triggers the Activate
event on the nonvisual object to notify the object that it is about to be used
by a new client. At this point, the component must ensure that its state is
ready for execution.

4 EAServer then executes the method called by the client on the component.

5 When the component indicates that its work is complete, EAServer
triggers the Deactivate event to allow the component to clean up its state.
If the Automatic Demarcation/Deactivation setting for the component is
enabled, the Deactivate event is triggered automatically after each method
invocation. If the setting is disabled, the Deactivate event is triggered
when the component calls the SetComplete (or SetAbort) method of the
TransactionServer context object.

6 If you have selected the Not Supported pooling option (or set the
component’s pooling property to FALSE) and also scripted the
CanBePooled event, EAServer triggers this event to ask the component
whether it is able to be pooled at this time. The CanBePooled event allows
the component instance to selectively enable or refuse pooling.

The return value of the CanBePooled event determines whether the
component instance is pooled. A return value of 1 enables pooling; a
return value of 0 disables pooling. If the CanBePooled event has not been
scripted, then by default the instance is not pooled.

What happens when the pooling property is enabled
When you select the Supported pooling option (or set the component’s
pooling property to TRUE), component instances are always pooled and
the CanBePooled event is never triggered.

7 If an instance is not pooled after deactivation, EAServer triggers the
Destructor event. Then it destroys the PowerBuilder object and
terminates the runtime session.

CHAPTER 24 Building an EAServer Component

Application Techniques 457

Providing support for transactions
Benefits of EAServer’s
transaction support

EAServer components that you develop in PowerBuilder can participate in
EAServer transactions. An EAServer transaction is a transaction whose
boundaries and outcome are determined by EAServer. You can mark
components to indicate that they will provide transaction support. When a
component provides transaction support, EAServer ensures that the
component’s database operations execute as part of a transaction.

Multiple EAServer components can participate in a single EAServer
transaction; EAServer ensures that database changes performed by the
participating components are all committed or rolled back. By defining
components to use EAServer transactions, you can ensure that all work
performed by components that participate in a transaction occurs as intended.

Indicating how the
component will
support transactions

Each EAServer component has a transaction attribute that indicates how the
component participates in EAServer transactions. When you develop an
EAServer component in PowerBuilder, you can specify the transaction
attribute in the wizards. Table 24-4 lists the options.

Table 24-4: Transaction attribute options

Transaction type Description

Not supported The component never executes as part of a transaction. If
the component is activated by another component that is
executing within a transaction, the new instance’s work is
performed outside the existing transaction.

Supports Transaction The component can execute in the context of an EAServer
transaction, but a transaction is not required to execute the
component’s methods. If the component is instantiated
directly by a client, EAServer does not begin a transaction.
If component A is instantiated by component B and
component B is executing within a transaction, component
A executes in the same transaction.

Requires Transaction The component always executes in a transaction. When the
component is instantiated directly by a client, a new
transaction begins. If component A is activated by
component B and B is executing within a transaction, A
executes within the same transaction; if B is not executing
in a transaction, A executes in a new transaction.

Requires New
Transaction

Whenever the component is instantiated, a new transaction
begins. If component A is activated by component B, and
B is executing within a transaction, then A begins a new
transaction that is unaffected by the outcome of B’s
transaction; if B is not executing in a transaction, A
executes in a new transaction.

Providing support for transactions

458 PowerBuilder

Using the transaction
service context object

Component methods can call EAServer’s transaction state primitives to
influence whether EAServer commits or aborts the current transaction. To give
you access to EAServer’s transaction state primitives, PowerBuilder provides
a transaction service context object called TransactionServer.

To use the TransactionServer context object, set the UseContextObject
DBParm parameter to Yes. This tells PowerBuilder that you will be using the
methods of the TransactionServer object rather than COMMIT and ROLLBACK
to indicate whether the component has completed its work for the current
transaction.

Before you can use the transaction context service, declare a variable of type
TransactionServer and call the GetContextService function to create an instance
of the service.

Example In the Activate (or Constructor) event for a component, you can call
GetContextService to instantiate the TransactionServer service:

// Instance variable:
// TransactionServer ts

Integer li_rc
li_rc = this.GetContextService("TransactionServer", &

ts)
IF li_rc <> 1 THEN

// handle the error
END IF

In one of the component methods, you can then update the database and call
SetComplete if the update succeeds or SetAbort if it fails:

//Instance variable:
//DataStore ids_datastore

Mandatory Methods can be invoked only by a client that has an
outstanding transaction. Calling this component when
there is no outstanding transaction generates a runtime
error.

OTS Style The component can manage transactions. It can inherit a
client’s transaction. If called without a transaction, the
component can explicitly begin, commit, and roll back
transactions using an instance of the CORBACurrent
context service object.

Never Methods cannot be invoked when there is an outstanding
transaction. Calling this component when there is an
outstanding transaction generates a runtime error.

Transaction type Description

CHAPTER 24 Building an EAServer Component

Application Techniques 459

long ll_rv
...
...
ll_rv = ids_datastore.Update()
IF ll_rv = 1 THEN

ts.SetComplete()
ELSE

ts.SetAbort()
END IF

The TransactionServer interface provides the methods in Table 24-5 to allow
you to access EAServer’s transaction primitives.

Table 24-5: TransactionServer methods

Automatic
Demarcation/
Deactivation

If you want a component to be automatically deactivated after each method
invocation, you can enable Automatic Demarcation/Deactivation for the
component. This sets the component’s tx_vote property to FALSE. When
Automatic Demarcation/Deactivation is enabled, you do not need to make
explicit calls to SetComplete to cause deactivation because SetComplete is
assumed by default. To roll back the transaction, you can call SetAbort.

Method Description

DisableCommit Indicates that the current transaction cannot be committed
because the component’s work has not been completed. The
instance remains active after the current method returns.

EnableCommit Indicates that the component should not be deactivated after
the current method invocation; allows the current
transaction to be committed if the component instance is
deactivated.

IsInTransaction Determines whether the current method is executing in a
transaction.

IsTransactionAborted Determines whether the current transaction has been
aborted.

SetAbort Indicates that the component cannot complete its work for
the current transaction and that the transaction should be
rolled back. The component instance will be deactivated
when the method returns.

SetComplete Indicates that the component has completed its work in the
current transaction and that, as far as it is concerned, the
transaction can be committed and the component instance
can be deactivated.

Providing support for transactions

460 PowerBuilder

If you do not want the component to be automatically deactivated after each
method invocation, disable the Automatic Demarcation/Deactivation setting
for the component. This sets the component’s tx_vote property to TRUE. When
you disable Automatic Demarcation/Deactivation, EAServer waits for
notification before completing transactions; therefore, be sure to deactivate
programmatically by making an explicit call to SetComplete (or SetAbort).

COMMIT and
ROLLBACK

You have the option to disable the TransactionServer context object and use the
COMMIT and ROLLBACK statements instead to specify the EAServer
transaction state for a component. This capability is provided to allow you to
migrate PowerBuilder 6 objects to EAServer without modifying the code. To
disable the TransactionServer context object, set the UseContextObject
DBParm parameter to No. When you do this, COMMIT is equivalent to
SetComplete and ROLLBACK is equivalent to SetAbort.

COMMIT and ROLLBACK in nontransactional components
In nontransactional components that disable the TransactionServer context
object, COMMIT does not invoke SetComplete and ROLLBACK does not invoke
SetAbort. For example, if you specify Not Supported as the transaction type,
disable Automatic Demarcation/Deactivation (set tx_vote to TRUE), and set
the UseContextObject parameter to No, the PowerBuilder virtual machine does
not issue a SetComplete when you execute a COMMIT (or a SetAbort when you
execute a ROLLBACK). In this case, EAServer never releases the component
because it is waiting for a call to SetComplete or SetAbort.

If you disable Automatic Demarcation/Deactivation for a component that
performs no database access whatsoever, then you must use the
TransactionServer object to call SetComplete (or SetAbort) to deactivate the
component. Otherwise, the component will never be deactivated.

Transaction handling
and runtime errors

You can control the behavior of EAServer when an internal exception occurs
in the PBVM or a PowerBuilder component raises a runtime exception. To do
so, set the PBOnFatalError or PBRollbackOnRTError environment variables
in a batch file or as a system environment variable on the server on which the
component runs.

CHAPTER 24 Building an EAServer Component

Application Techniques 461

Table 24-6: Environment variables for handling exceptions

Transactions and the
component lifecycle

EAServer’s transaction model and the component lifecycle are tightly
integrated. Component instances that participate in a transaction are never
deactivated until the transaction ends or until the component indicates that its
contribution to the transaction is over (its work is done and ready for commit
or its work must be rolled back). An instance’s time in the active state
corresponds exactly to the beginning and end of its participation in a
transaction.

For more information, see the EAServer documentation.

Accessing a database from an EAServer component
Database connectivity You can access a database from an EAServer component. If you want to take

advantage of EAServer’s support for connection pooling and transaction
management, you need to use one of the database interfaces supported by
EAServer to connect to your database. For more information about EAServer
database connections for components developed in PowerBuilder, see
Connecting to Your Database.

Variable Description

PBOnFatalError Specifies whether EAServer should continue, shut down, or restart when an internal
exception occurs in the PBVM. The default behavior is that EAServer shuts down.
An unhandled internal exception raised by a PowerBuilder component running in
EAServer can cause the PBVM to become unstable, resulting in unpredictable
behavior.

Values are:

• continue – EAServer continues to run, and the
CORBA_TRANSACTION_ROLLEDBACK exception is thrown

• restart – EAServer restarts automatically

• shutdown – EAServer shuts down automatically (default)

PBRollbackOnRTError Specifies how a transaction is handled when a runtime exception is raised by a
PowerBuilder component running in EAServer. By default, the transaction is rolled
back and the exception is thrown back to the client.

Values are:

• n, no, or false – the transaction is committed before the exception is thrown back
to the client

• y, yes, or true – the transaction is rolled back before the exception is thrown back
to the client (default)

Accessing a database from an EAServer component

462 PowerBuilder

Using DataStores EAServer components developed in PowerBuilder can use DataStores to
interact with the database. DataStores are nonvisual DataWindow controls.
DataStores act just like DataWindow controls except that they do not have
visual attributes.

DataStores can be useful in a distributed application: they give you the ability
to perform database processing on a remote server instead of on each client
machine.

RichText presentation style is not supported
A server component cannot contain a DataStore that has a DataWindow object
that uses the RichText presentation style. Rich text processing is not supported
in distributed applications.

Sharing data between
the server and the
client

If you want to provide a visual interface to the data retrieved on the server,
include a window in the client that has a DataWindow control. Whenever data
is retrieved on the server, refresh the DataWindow control to show the result
set for the DataStore on the server. Similarly, whenever the user makes
modifications to the data on the client, refresh the contents of the DataStore on
the server to reflect the current state of the DataWindow control on the client.

To share data between a client and a server, synchronize the server DataStore
and the client DataWindow control programmatically. If you want your
application to handle database updates, this involves moving the DataWindow
data buffers and status flags back and forth between the client and the server.

For more information about synchronizing a server DataStore with a client
DataWindow, see “Performing updates” on page 467.

ShareData function is not supported in distributed applications
You cannot use the ShareData function to share data between a DataWindow
control on a client and a DataStore on a server.

Using connection caching
Benefits of connection
caching

To optimize database processing, EAServer provides support for connection
caching. Connection caching allows EAServer components to share pools of
preallocated connections to a remote database server, avoiding the overhead
imposed when each instance of a component creates a separate connection. By
establishing a connection cache, a server can reuse connections made to the
same data source.

CHAPTER 24 Building an EAServer Component

Application Techniques 463

How it works Ordinarily, when a PowerBuilder application connects to a database,
PowerBuilder physically terminates each database connection for which a
DISCONNECT statement is issued. By contrast, when a PowerBuilder
component uses an EAServer connection cache, EAServer logically terminates
the database connection but does not physically remove the connection.
Instead, the database connection is kept open in the connection cache so that it
can be reused for other database operations.

Do not disconnect in destructor event
EAServer releases all connection handles to the cache when a transaction is
completed or when the component is deactivated. If you place a DISCONNECT
statement in the destructor event, which is triggered after the deactivate event,
the connection has already been logically terminated and the DISCONNECT
causes a physical termination. DISCONNECT statements can be placed in the
deactivate event.

All connections in a cache must share a common user name, password, server
name, and connectivity library.

Accessing a cache by
user

If you want to retrieve a connection from the cache that uses a specified set of
user name, password, server, and connectivity library values, you do not need
to modify your database access code to enable it to use the cache. You simply
need to create a new cache in EAServer Manager that has the database
connection properties (user name, password, server name, and connectivity
library) required by the component. At runtime, when the component tries to
connect to the database, EAServer automatically returns a connection from the
cache that matches the connection values requested by the component.

Accessing a cache by
name

If you want to retrieve a connection from a cache by specifying the cache name,
set the CacheName DBParm to identify the cache you want to use. Accessing
a cache by name allows you to change the user name, password, or server in
EAServer Manager without requiring corresponding changes to your
component source code.

Enabling cache-by-name access
To access a cache by name, select the Enable Cache-By-Name Access option
for the cache in EAServer Manager. By default, this option is not selected.

To enable cache-by-name access, you need jagadmin rights.

Accessing a database from an EAServer component

464 PowerBuilder

This code for a PowerBuilder component shows how to access a cache by
name:

SQLCA.DBMS = "ODBC"
SQLCA.Database = "EAS Demo DB"
SQLCA.AutoCommit = FALSE
SQLCA.DBParm = "ConnectString='DSN=EAS Demo DB;

UID=dba;PWD=sql',CacheName='mycache'"

Cache names are case-sensitive
Cache names are case-sensitive; therefore, make sure the case of the cache
name you specify in your script matches the case used for the name in
EAServer.

Retrieving a
connection by proxy

Regardless of whether you access a cache by user or name, you can retrieve a
connection by proxy. Retrieving a connection by proxy means that you can
assume the identity and privileges of another user by providing an alternative
login name.

This feature can be used with any database that recognizes the SQL command
set session authorization. In order for user A to use the ProxyUserName
DBParm to assume the identity of another user B, user A must have permission
to execute this statement. For example, for ASA, user A must have DBA
authority, and for ASE, user A must have been granted permission to execute
set session authorization by a System Security Officer.

For more information about the PowerBuilder database interfaces that support
proxy connections, see Connecting to Your Database.

To use proxy connections, set the ProxyUserName DBParm to identify the
alternative login name. This example shows how to retrieve a connection by
proxy:

SQLCA.DBMS = "ODBC"
SQLCA.DBParm = "CacheName='MyEAServerCache',

UseContextObject='Yes',ProxyUserName='pikachu'"

Before you can use a connection by proxy
Set-proxy support must be enabled in the cache properties file before
components can take advantage of it. EAServer Manager does not
automatically create an individual cache properties file when you create a
cache, so you must create this file manually. Name the file cachename.props
and put it in the EAServer\Repository\ConnCache directory. Once you have
created the cache properties file, add the following line:

com.sybase.jaguar.conncache.ssa=true

CHAPTER 24 Building an EAServer Component

Application Techniques 465

For this setting to take effect, you must refresh EAServer. For more
information on managing connection caches, see the EAServer System
Administration Guide.

You must also set up your database server to recognize and give privileges to
the alternative login name defined in the ProxyUserName DBParm.

What happens when
all connections are in
use

You can control what happens if all connections in a cache are in use. To do
this, set the GetConnectionOption DBParm to one of the following values:

By default, PowerBuilder uses JAG_CM_FORCE.

What happens when a
connection is released

You can also control what happens when a connection is released. To do this,
set the ReleaseConnectionOption DBParm to one of the following values:

By default, PowerBuilder uses JAG_CM_UNUSED.

EAServer connection
caches for Unicode
support

The following EAServer native connection caches support Unicode
connections for PowerBuilder components:

• OCI_9U – Oracle9i Unicode Cache

• ODBCU – ODBC Unicode Cache

These connection cache types accept Unicode connection parameters and then
send a request to the database driver to open a Unicode connection to the
database. With a Unicode connection, PowerBuilder components can
communicate with the database using Unicode.

Value Description

JAG_CM_NOWAIT Causes the attempt to connect to fail with an error if no
connection can be returned.

JAG_CM_WAIT Causes the component to wait until a connection becomes
available.

JAG_CM_FORCE Allocates and opens a new connection. The new
connection is not cached and is destroyed when it is no
longer needed.

Value Description

JAG_CM_DROP Closes and deallocates the connection. If the connection
came from a cache, a new connection is created in its place.
Use JAG_CM_DROP to destroy a connection when errors
have made it unusable.

JAG_CM_UNUSED If the connection was taken from a cache, it is placed back
in the cache. A connection created outside of a cache is
closed and destroyed.

Accessing a database from an EAServer component

466 PowerBuilder

If you are using the Oracle9i native interface (O90) to access an Oracle9i
database in a PowerBuilder component in EAServer, use the database driver
type OCI_9U for the connection cache. If you do not, access will fail.

For an ODBC connection cache, use the database driver type ODBCU to
access multiple-language data in an ASA Unicode database or DBCS data in
an ASA DBCS database and set the database parameter ODBCU_CONLIB
to 1. For example:

SQLCA.DBParm = "CacheName='EASDemo_u',
UseContextObject='Yes',ODBCU_CONLIB=1"

Performing retrieval operations
To use a DataStore to perform retrieval operations, you first need to create an
instance of the DataStore object in a script and assign the DataWindow object
to the DataStore. Then set the Transaction object for the DataStore. Once these
setup steps have been performed, you can retrieve data into the DataStore, print
the contents of the DataStore, or perform other processing against a retrieved
result set.

Example: passing an array by reference
Description This example demonstrates the use of a DataStore to retrieve data in a server

component. The server component uo_customers has a function called
retrieve_custlist. retrieve_custlist generates an instance of the DataStore
ds_datastore and then uses this DataStore to retrieve all of the rows in the
Customer table. Once the data has been retrieved, retrieve_custlist passes the
data back to the client application.

Function declaration The retrieve_custlist function has an argument called customers, which is
defined as an array based on the structure st_custlist. The structure st_custlist
has the same layout as d_custlist, the DataWindow object used to access the
database. The return value for retrieve_custlist, which is used to return the
number of rows retrieved, is of type Long.

Here is the signature of the retrieve_custlist function:

retrieve_custlist(REF st_custlist customers []) returns long

CHAPTER 24 Building an EAServer Component

Application Techniques 467

Script Here is the script for the retrieve_custlist function:

datastore ds_datastore
long ll_rowcount

ds_datastore = create datastore
ds_datastore.dataobject = "d_custlist"
ds_datastore.SetTransObject (SQLCA)

IF ds_datastore.Retrieve() <> -1 THEN
ll_rowcount = ds_datastore.RowCount()

END IF

customers = ds_datastore.object.data
destroy ds_datastore

return ll_rowcount

At the conclusion of processing, the function retrieve_custlist destroys the
DataStore and returns the number of rows retrieved back to the client.

Performing updates
DataWindow
synchronization

In a conventional client/server application, where database updates are
initiated by a single application running on a client machine, PowerBuilder can
manage DataWindow state information for you automatically. In a distributed
application, the situation is somewhat different. Because application
components are partitioned between the client and the server, you need to write
logic to ensure that the data buffers and status flags for the DataWindow
control on the client are synchronized with those for the DataStore on the
server.

PowerBuilder provides four functions for synchronizing DataWindows and
DataStores in a distributed application:

• GetFullState

• SetFullState

• GetChanges

• SetChanges

Although these functions are most useful in distributed applications, they can
also be used in nondistributed applications where multiple DataWindows (or
DataStores) must be synchronized.

Accessing a database from an EAServer component

468 PowerBuilder

Moving DataWindow
buffers and status
flags

To synchronize a DataWindow control on the client with a DataStore on the
server, move the DataWindow data buffers and status flags back and forth
between the client and the server whenever changes occur. The procedures for
doing this are essentially the same whether the source of the changes resides on
the client or the server.

To apply complete state information from one DataWindow (or DataStore) to
another, you need to:

1 Invoke the GetFullState function to capture the current state of the source
DataWindow.

2 Invoke the SetFullState function to apply the state of the source
DataWindow to the target.

To apply changes from one DataWindow (or DataStore) to another, you need
to:

1 Invoke the GetChanges function to capture changes from the source
DataWindow.

2 Invoke the SetChanges function to apply changes from the source
DataWindow to the target.

SetChanges can be applied to an empty DataWindow
You can call SetChanges to apply changes to an empty DataWindow (or
DataStore). The target DataWindow does not need to contain a result set from
a previous retrieval operation. However, the DataWindow must have access to
the DataWindow definition. This means that you need to assign the
DataWindow object to the target DataWindow before calling SetChanges.

DataWindow state is
stored in blobs

When you call GetFullState or GetChanges, PowerBuilder returns
DataWindow state information in a Blob. The Blob returned from GetFullState
provides everything required to recreate the DataWindow, including the data
buffers, status flags, and complete DataWindow specification. The Blob
returned from GetChanges provides data buffers and status flags for changed
and deleted rows only.

Synchronizing after
Update

By default, the Update function resets the update flags after a successful
update. Therefore, when you call the Update function on the server, the status
flags are automatically reset for the server DataStore. However, the update
flags for the corresponding client DataWindow control are not reset. Therefore,
if the Update function on the server DataStore succeeds, call ResetUpdate on
the client DataWindow to reset the flags.

CHAPTER 24 Building an EAServer Component

Application Techniques 469

One source, one
target

You can synchronize a single source DataWindow (or DataStore) with a single
target DataWindow (or DataStore). Do not try to synchronize a single source
with multiple targets, or vice versa.

Typical usage scenario

Suppose the server has a component that uses a DataStore called DS_1. This
DataStore is the source of data for a target DataWindow called DW_1 on the
client. In the Activate event, the component connects to the database, creates a
DataStore, and assigns the DataWindow object to the DataStore.

In one of its methods, the server component issues a Retrieve function for
DS_1, calls GetFullState on DS_1, and then passes the resulting Blob to the
client. Because the component’s Automatic Demarcation/Deactivation setting
is disabled, it also calls SetComplete before the method returns to cause the
component instance to be deactivated.

If Automatic Demarcation/Deactivation were enabled
If the Automatic Demarcation/Deactivation setting were enabled for the
component, it would not need to call SetComplete after the retrieval because
the component instance would automatically be deactivated when the method
finished execution.

Once the client has the DataWindow Blob, it calls SetFullState to apply the state
information from the Blob to DW_1. At this point, the user can insert new rows
in DW_1 and change or delete some of the existing rows. When the user makes
an update request, the client calls GetChanges and invokes another component
method that passes the resulting Blob back to the server. The component
method then calls SetChanges to apply the changes from DW_1 to DS_1. After
synchronizing DS_1 with DW_1, the server component updates the database
and calls SetComplete or SetAbort to indicate whether the update was
successful.

If the update was successful, the client calls ResetUpdate to reset the status
flags on the client DataWindow.

Accessing a database from an EAServer component

470 PowerBuilder

Figure 24-1: Update processing example

After the completion of the first update operation, the client and server can pass
change Blob results (rather than complete state information) back and forth to
handle subsequent updates. From this point on, the update process is an
iterative cycle that begins with Step 7 and concludes with Step 14.

Example

The following example shows how you might synchronize DataWindows
between a PowerBuilder client and an EAServer component. This example
uses a stateless component.

CHAPTER 24 Building an EAServer Component

Application Techniques 471

Client window
definition

Suppose the client has a window called w_employee that has buttons that allow
the user to retrieve and update data. The Retrieve button on the client window
has the following script:

// Global variable:
// connection myconnect
// Instance variable:
// uo_employee iuo_employee

blob lblb_data
long ll_rv

myconnect.CreateInstance(iuo_employee)
iuo_employee.RetrieveData(lblb_data)

ll_rv = dw_employee.SetFullState(lblb_data)

if ll_rv = -1 then
MessageBox("Error", "SetFullState call failed!")

end if

The Update button on the client window has the following script:

blob lblb_data
long ll_rv

ll_rv = dw_employee.GetChanges(lblb_data)

if ll_rv = -1 then
MessageBox("Error", "GetChanges call failed!")

else
if iuo_employee.UpdateData(lblb_data) = 1 then &

dw_employee.ResetUpdate()
end if

Server object
definition

The server has an object called uo_employee that has the following functions:

• RetrieveData

• UpdateData

Instance variables The uo_employee object has these instance variables:

protected TransactionServer ts
protected DataStore ids_datastore

Accessing a database from an EAServer component

472 PowerBuilder

Activate The Activate event for the uo_employee object instantiates the
TransactionServer service. In addition, it connects to the database and creates
the DataStore that will be used to access the database:

this.GetContextService("TransactionServer", ts)
SQLCA.DBMS="ODBC"
SQLCA.DBParm="ConnectString=

'DSN=EAS Demo DB;UID=dba;PWD=sql',
UseContextObject='Yes'"

CONNECT USING SQLCA;
IF SQLCA.SQLCode < 0 THEN

//Handle the error
END IF
ids_datastore = CREATE datastore
ids_datastore.dataobject = "d_emplist"
ids_datastore.SetTransObject (SQLCA)

Script for the
RetrieveData function

The RetrieveData function takes an argument called ablb_data, which is a Blob
passed by reference. The function returns a Long value.

Here is the script for the RetrieveData function:

long ll_rv
ids_datastore.Retrieve()
ll_rv = ids_datastore.GetFullState(ablb_data)
ts.SetComplete()
return ll_rv

Script for the
UpdateData function

The UpdateData function takes an argument called ablb_data, which is a Blob
passed by reference. The function returns a Long value.

Here is the script for the UpdateData function:

long ll_rv
if ids_datastore.SetChanges(ablb_data) = 1 then

ll_rv = ids_datastore.Update()
end if
if ll_rv = 1 then

ts.SetComplete()
else

ts.SetAbort()
end if
return ll_rv

Deactivate The Deactivate event for the uo_employee object destroys the DataStore and
disconnects from the database:

DESTROY ids_datastore
DISCONNECT USING SQLCA;

CHAPTER 24 Building an EAServer Component

Application Techniques 473

Passing result sets
PowerBuilder provides two system objects to handle getting result sets from
components running in EAServer and returning result sets from PowerBuilder
user objects running as EAServer components. These system objects,
ResultSet and ResultSets, are designed to simplify the conversion of
transaction server result sets to and from DataStore objects and do not contain
any state information. They are not designed to be used for database updates.
You use the CreateFrom and GenerateResultSet functions on the DataStore
object to convert the result sets stored in these objects to and from DataStore
objects.

About GenerateResultSet
GenerateResultSet has an alternative syntax used for returning a Tabular Data
Stream result set when using MASP (Method as Stored Procedure) with
EAServer. For more information, see the DataWindow Reference.

Component methods that return result sets use the TabularResults module.
Single result sets are returned as TabularResults::ResultSet structures. Multiple
result sets are returned as a sequence of ResultSet structures using the
TabularResults::ResultSets datatype.

Accessing result sets
in EAServer
components from
PowerBuilder clients

When you generate an EAServer proxy object in PowerBuilder for an
EAServer component method that returns TabularResults::ResultSet, the
method on the proxy object returns a PowerBuilder ResultSet object. Methods
that return multiple result sets return a PowerBuilder ResultSets object.

Viewing proxies in the Browser
You can view the properties and methods of EAServer proxy objects on the
Proxy tab in the PowerBuilder Browser.

For example, the Sybase Virtual University sample SVUBookstore component
has several methods that return a TabularResults::ResultSet value. When you
create an EAServer proxy object for the component, this is how the GetMajors
method displays as a PowerBuilder user object function in the Browser:

SVUBookStore.GetMajors () returns ResultSet

You can access the result set from a PowerBuilder client by creating an instance
of the component, calling the method, and then using the result set to populate
a DataStore object with the CreateFrom function.

Accessing a database from an EAServer component

474 PowerBuilder

This example creates an instance of the SVUBookstore component and calls
the GetMajors method:

SVUBookstore lcst_mybookstore
resultset lrs_resultset
datastore ds_local
integer li_rc

// myconnect is a Connection object
li_rc = myconnect.CreateInstance(lcst_mybookstore)
IF li_rc <> 0 THEN

MessageBox("Create Instance", string(li_rc))
myconnect.DisconnectServer()
RETURN

END IF

lrs_resultset = lcst_mybookstore.GetMajors()
ds_local = CREATE datastore
ds_local.CreateFrom(lrs_resultset)

Returning result sets
from EAServer
components

To pass or return result sets from a PowerBuilder user object that will be
deployed to EAServer, set the datatype of a function’s argument or return value
to ResultSet (for a single result set) or ResultSets (for multiple result sets).
When the user object is deployed as an EAServer component, the ResultSet
and ResultSets return values are represented in the IDL interface of the
component as TabularResults::ResultSet and TabularResults::ResultSets
datatypes.

In this example, a DataStore object is created and data is retrieved into it, and
then the GenerateResultSet function is used to create a result set that can be
returned to a client:

datastore ds_datastore
resultset lrs_resultset
integer li_rc

ds_datastore = create datastore
ds_datastore.dataobject = "d_empdata"
ds_datastore.SetTransObject (SQLCA)
IF ds_datastore.Retrieve() = -1 THEN

// report error and return
END IF
li_rc = ds_datastore.generateresultset(lrs_resultset)
IF li_rc <> 1 THEN

// report error and return
END IF
return lrs_resultset

CHAPTER 24 Building an EAServer Component

Application Techniques 475

Defining the component interface
How the interface is
specified

EAServer stores all component interfaces in CORBA Interface Definition
Language (IDL) modules. IDL is defined by the Object Management Group
as a standard language for defining component interfaces. When you deploy a
PowerBuilder custom class user object as an EAServer component, the
methods (functions and events) and instance variables defined for the object
are added to the component interface. You do not need to write IDL for the
interface, because the EAServer component generator writes the IDL for you.

What gets included in
the interface

The EAServer component generator includes all public functions declared for
the user object in the component interface. Depending on the build options you
specify for the component, the generator may also include accessor methods
for the public instance variables and also expose user events as methods.

Method names and
method overloading

Although IDL does not provide support for method overloading, you can
nonetheless deploy PowerBuilder custom class user objects to EAServer that
have overloaded methods. To work around the IDL restriction, the component
generator appends two underscores (__) and a unique suffix to the method
name that will be overloaded. If you look at the IDL generated for a
PowerBuilder object, you therefore see suffixes appended to methods that were
overloaded in PowerBuilder.

When you generate stubs or proxy objects for components that have
overloaded methods, EAServer strips off the IDL suffix so that the client can
access the method by using its correct name.

For more information about IDL, see the EAServer documentation.

Do not use two consecutive underscores in your method names
Because EAServer treats two underscores (__) as a reserved delimiter, you
should not use two consecutive underscores in a function name in a custom
class user object that you plan to deploy as an EAServer component.

Datatypes You can use the following datatypes in the interface of a user object that you
deploy as an EAServer component:

• Standard datatypes (except for the Any datatype)

• Structures

• Custom class (nonvisual) user objects that have been deployed as
EAServer components

Defining the component interface

476 PowerBuilder

These datatypes can be used for public instance variables as well as for the
arguments and return values of public methods. Private and protected instance
variables and methods can use all datatypes supported by PowerBuilder.

The Any datatype is not supported in the public interface of a component. In
addition, with the exception of the ResultSet and ResultSets objects, the
component interface cannot include built-in PowerBuilder system objects (for
example, the Transaction or DataStore object). The component interface also
cannot include visual objects (such as windows or menus).

Component methods can pass arrays of standard datatypes and arrays of
structures, and they can use custom class user objects to pass arrays.

For a list of datatypes used in EAServer, their CORBA IDL equivalents, and
the PowerBuilder datatypes to which they map, see the PowerScript Reference
or the online Help.

Passing by reference You can pass arguments to component methods by reference. However, the
behavior is somewhat different in a distributed application than in a
nondistributed application.

When you pass by reference, the variable is actually copied to the server before
the method is executed and then copied back when the method completes
execution. This behavior is usually transparent to the application, but in some
situations it can affect the outcome of processing.

For example, suppose you define a method called increment_values that takes
two arguments called x and y, both of which are passed by reference. The script
for the method increments x and y as shown below:

x = x + 1
y = y + 1

The client uses the following code to call the method:

int z
z = 1
increment_values(z,z)

In a nondistributed application, the value of z after the method completed
execution would be 3 (because the local invocation passes a pointer to z, and z
is incremented twice). In a distributed application, the value of z would be 2
(because the remote invocation passes two copies of z, which are incremented
separately).

Passing a read-only
value

When you pass a read-only value, the behavior is similar to passing by value,
except that the data cannot be modified. A copy of the data is passed across the
wire to the server.

CHAPTER 24 Building an EAServer Component

Application Techniques 477

Passing objects Objects created within EAServer components can be passed back to clients, but
these objects must be installed EAServer components. If you try to pass back
a PowerBuilder object that is not an EAServer component, you will get a
runtime error. To use a component that was passed back from the server, the
client must have the corresponding EAServer proxy (for a PowerBuilder
client) or stub (for a non-PowerBuilder client).

A client application cannot pass a PowerBuilder object reference to EAServer.
Therefore, you cannot use a PowerBuilder object reference to push messages
from the server back to a PowerBuilder client. However, you can simulate this
behavior by using a shared object on the client to communicate with EAServer.

To simulate server push, the client uses the SharedObjectRegister and
SharedObjectGet functions to create a shared object. Once the object has been
created, the client can post a method to the shared object, passing it a callback
object that should be notified when processing has finished on the server. The
method on the shared object makes a synchronous call to the EAServer
component method that performs processing. Since the shared object is
running in a separate thread on the client, the client application can proceed
with other work while the process is running on the server.

Providing support for
NULL values

PowerBuilder allows you to specify whether the methods of an EAServer
component can accept NULL values as function arguments or return types. To
provide support for NULL values in the component interface, check the Support
NULL Values check box in the property sheet for the project used to generate
the EAServer component. If this box is not checked, clients cannot pass NULL
values in any argument and the server cannot set any argument to NULL or
return a NULL value.

If you allow null values in the prototype for a component method,
PowerBuilder appends a "_N" suffix to the method name in the EAServer
proxy that you generate from the Project painter. To call this method, you must
create an instance of the proxy, rather than an instance of the NVO, and you
must reference the method with the "_N" suffix. For example, if of_gen is the
name of a method in the NVO, and you create an EAServer proxy that allows
null return values, you must instantiate the proxy and call of_gen_N to use this
method.

EAServer validation If you are designing a custom class user object that you plan to deploy as an
EAServer component, you can have PowerBuilder warn you when you use
code elements that are not valid in EAServer. EAServer validation checks
public instance variables and public functions for system types, visual types,
structures, and any variables.

Implementing an existing interface

478 PowerBuilder

EAServer validation is on by default if you created the user object using an
EAServer wizard. To check, select the Design menu in the User Object painter
and make sure EAServer Validation is checked. When you save the object, the
Output window lists warnings such as the following:

---------- Compiler: Information messages
Information C0197: Component Validation
Warning C0198: illegal Jaguar type: 'window' return
type for function: 'of_badfunc'
Warning C0198: illegal Jaguar type: 'any' return
type for function: 'of_badfunc'

Validation is associated with the object you are editing, not with the User
Object painter. When you reopen an object, it has the same validation state as
when you closed it.

Throwing exceptions When you declare an exception on a function of a user object deployed to
EAServer, the exceptions are translated to CORBA IDL as part of the method
prototype. The exceptions can be handled by any type of EAServer client
application or calling component. For more information, see “Exception
handling in PowerBuilder” on page 36.

Implementing an existing interface
You can create PowerBuilder implementations of existing interfaces using the
EAServer Component Wizard on the Target or PB Object tab in the New dialog
box. A typical use of this feature is to create an implementation of a standard
API, such as the protocols for online banking and securities trading that are
provided as CORBA IDL templates with Financial Fusion.

Selecting an interface On the Specify Interface Implementation page in the wizard, select Implement
an Existing EAServer Remote Interface, then select the EAServer profile for
the server that contains the IDL interface you want to implement. You can
select only one interface from the list that displays when you expand the list of
packages in the wizard.

For PowerBuilder components, the interface name is usually the same as the
component name, but the list of interfaces does not map directly to the list of
components on the server. The list includes all IDL modules of type interface.
In EAServer Manager, you can see these modules in the right pane when you
click a package name in the IDL folder in the left pane.

CHAPTER 24 Building an EAServer Component

Application Techniques 479

Setting options in the
wizard

Once you have selected the interface to implement, you can enter the EAServer
name for the component. The name of the PowerBuilder custom class user
object cannot be changed—it is always the same as the name of the remote
interface. You can set most other options, such as package name, instance
pooling, and so forth, as if you were creating a new interface.

If you are building a PowerBuilder implementation of a standard API, you will
usually use the component name of the remote component, but you should not
use the same package name.

Since the interface of the remote component cannot be changed, options that
would change method signatures, such as supporting NULL values for
arguments, cannot be set in the wizard.

Editing the user object
in the painter

In the custom class user object created by the wizard, public attributes of the
remote interface are represented as public instance variables, and public
methods as public functions. The scripts for functions contain return statements
so that they do not produce compilation errors, but you need to provide a script
to implement each function. If the remote interface includes other
dependencies, such as structures, the wizard creates them in the same PBL as
the user object.

You can edit the user object just as you would any other custom class user
object—the User Object painter does not impose any restrictions. However,
you should not make any changes that affect its interface. You should not delete
any instance variables and functions that correspond to attributes and methods
in the existing interface or change their mode from public to private or
protected. Functions cannot be overloaded and the return value or arguments
cannot be NULL values.

Deploying the
component to
EAServer

The project created by the wizard contains information about the interface from
which the wizard built the component. When you run the project,
PowerBuilder checks that:

• All public attributes and methods in the existing IDL interface are defined
as public instance variables and functions in the user object.

• No methods defined in the IDL interface are overloaded in the user object.

If one of these checks fails, the component is deployed but a warning displays
in the Project painter and the Output window.

Using a different
project

These checks are performed only if the component is deployed using the
project that was created when the component was created. If you create a new
project or add the component to another project, no checks are performed when
you run the project.

Invoking another server component’s methods

480 PowerBuilder

When you deploy using the project created with the component, the new
implementation always uses the existing IDL on the server. You should be
cautious if you use a different project, because you will be able to deploy the
component to the original package and overwrite the existing IDL without
seeing any warnings about changes in the interface.

Generating proxies
When you generate a proxy for an object that implements an existing interface
and uses the existing IDL on the server, the proxy is based on the existing IDL.
As a result, if you select the Prepend EAServer Package Name to Object Name
option, the name prepended to the object name will be the name of the IDL
module, not the new package name.

Invoking another server component’s methods
EAServer allows the methods of one server component to call methods of
another server component. The other server component does not need to be
another PowerBuilder component; it can be implemented in any language
supported by EAServer.

Accessing a
component in the
current server

To access methods of another EAServer component in the current server, you
can use the Connection object to communicate with the component, just as you
would from a PowerBuilder client. Alternatively, you can use the transaction
service context object that PowerBuilder provides called TransactionServer.
The TransactionServer interface provides a method called CreateInstance that
allows you to access other components that are available locally.
CreateInstance uses the same user and password information that applies to the
component from which it is called.

Before you can use the transaction context service, declare a variable of type
TransactionServer and call the GetContextService function to create an instance
of the service. You must use a proxy object for your intercomponent calls.
Without a proxy object, the TransactionServer object cannot obtain the correct
method names of the component you are calling.

For information on creating a proxy object for EAServer components, see
“Generating EAServer proxy objects” on page 506.

CHAPTER 24 Building an EAServer Component

Application Techniques 481

Example In the Activate event for a component, you can call
GetContextService to instantiate the TransactionServer service:

// Instance variable:
// TransactionServer ts

Integer rc
rc = this.GetContextService("TransactionServer", ts)
IF rc <> 1 THEN

// handle the error
END IF

In one of the component methods, you can then call CreateInstance to
instantiate the second component and call one of its methods. Your application
should include a proxy for the second component:

// Instance variable for the second component:
// nvo_comp2 mycomp2
Integer rc
rc = ts.CreateInstance(mycomp2, "mypackage/nvo_comp2")
IF rc <> 0 THEN

// handle the error
ELSE

mycomp2.method1()
END IF

Accessing a
component in a
different server

The procedure for accessing a server component on a different server is
essentially the same as the procedure for accessing a server component from a
PowerBuilder client. To access an EAServer component on a different server,
create a Connection object, set properties for the Connection object, and call
ConnectToServer.

Accessing an EJB
component

A PowerBuilder component can access an EJB component using the Lookup
method of either the Connection or TransactionServer objects. The Lookup
method on the TransactionServer object has an optional third argument you can
use to specify the name of the home interface. You use this argument only if
the home interface name does not follow typical naming conventions.

Example This script instantiates the Cart component and invokes several
component methods. In this example, the second argument to the Lookup
method specifies the component name as well as the EAServer package name:

//Instance variable:
//Connection myconnect

CartHome MyCartHome // EJB's home interface
Cart MyShoppingCart // EJB's remote interface
TransactionServer ts

Accessing component properties

482 PowerBuilder

long ll_result

This.GetContextService("TransactionServer", ts)

//Get the home interface
ll_result = &
ts.Lookup(MyCartHome, "Shopping/Cart")

//Get a reference to Cart component's business logic
MyShoppingCart = MyCartHome.Create()

//Use the shopping cart
MyShoppingCart.AddItem(66)
MyShoppingCart.Purchase()

For information about accessing EJB components from PowerBuilder clients,
see “Invoking an EJB component method” on page 510.

Component-
demarcated
transactions

EAServer components marked as OTS style can create, control, and obtain
information about EAServer transactions using functions of the
CORBACurrent context service object. The CORBACurrent object provides
most of the methods defined for the CORBA Current interface.

For more information, see “Client- and component-demarcated transactions”
on page 518.

Accessing component properties
ContextKeyword
service object

You can use the ContextKeyword service object to get component property
values. To retrieve property values, you call the GetContextKeywords function.

Before you can use the ContextKeyword service object, create a reference to
the object by calling the GetContextService function, using ContextKeyword as
the service name.

EAServer properties
for PowerBuilder

This table lists component properties that pertain to PowerBuilder custom class
user objects running as EAServer components. Component properties are
prefixed with the string com.sybase.jaguar.component. The values of all
component properties are displayed on the All Properties tab of the Component
Properties dialog box in EAServer Manager. Some properties also map to items
on other tabs in this dialog box as shown in Table 24-7.

CHAPTER 24 Building an EAServer Component

Application Techniques 483

Table 24-7: EAServer component properties for PowerBuilder
components

Property Description
Where
displayed

auto.failover Enables client proxies for the component to transfer to alternative servers
when a server becomes unavailable.

This property cannot be enabled unless you have enabled automatic
demarcation/deactivation.

Automatic failover requires that your application use a cluster of servers,
so that redundant servers are available to run the application’s components.
The cluster must include at least one name server and clients must resolve
proxy references using naming services. See "Load Balancing, Failover,
and Component Availability" in the EAServer System Administration
Guide for more information.

Transactions
(Automatic
Failover)

bind.thread Indicates whether the component instance must always be invoked on the
creating thread.

Valid values are TRUE and FALSE. This property must be set to TRUE for
live editing but should be set to FALSE otherwise to improve scalability.

Instances (Bind
Thread)

code.set Specifies the name of the coded character set used by the component.

By default, the component uses the server’s coded character set (specified
on the General tab in the Server Properties window). For European or
Asian languages, you may need to set this property to a value such as iso_1
or big5.

All Properties

interfaces Identifies the interfaces that the component implements.

This is a comma-separated list of IDL interface names, each of which takes
the form: module::interface.

All Properties

minpool When instance pooling is enabled, specifies the minimum number of
instances that can be pooled.

To release idle pooled instances, EAServer has a garbage collector thread
that runs periodically. Each time it runs, the garbage collector removes one
idle instance from the pool, unless the minimum pool size has been
reached. The default is 0.

Resources

maxpool When instance pooling is enabled, specifies the maximum number of
instances that can be pooled.

If the maximum pool size is reached, EAServer destroys excess instances
after deactivation. The default is 0, which means no maximum pool size is
in effect.

Resources

name Specifies the name of the component.

The value must take the form: package/component

General
(component part
only)

pb.appname Specifies the name of the PowerBuilder application. General

pb.class Specifies the name of the PowerBuilder custom class user object. General

Accessing component properties

484 PowerBuilder

pb.cookie Provides a number used to construct the path for the library list.

The path takes this form:
Repository\Component\package\component\Ccookie

All Properties

pb.debug Indicates whether you can debug the component in the PowerBuilder
debugger.

All Properties

pb.librarylist Specifies the PowerBuilder library list.

When a library name has a prepended dollar sign ($), EAServer assumes
that its location is relative to the EAServer Repository directory. When a
library name does not have a prepended dollar sign, EAServer assumes the
name specifies an absolute path.

General

pb.live_edit Specifies whether you can build the project from the User Object painter
instead of the Project painter.

See “Live editing” on page 488.

All Properties

pb.trace Specifies trace options for logging activity against the component
(currently disabled).

All Properties

pb.version Specifies the version of PowerBuilder in which the component was built. All Properties

pooling Indicates whether the component is pooled.

When the pooling property is set to TRUE, the component is always pooled
and the CanBePooled event is never triggered. When the pooling property
is set to FALSE, the CanBePooled event is triggered, allowing selective
refusal of pooling.

If the tx_vote property is set to FALSE, the component is pooled after each
method; otherwise, it is pooled at the end of the transaction.

Instances

sharing Indicates whether this is a shared component.

When the sharing property is set to TRUE, all clients share a single
component instance. Pooling options do not apply to shared components.

To make a shared component a service, add it to the list of services
specified for the com.EAServer.server.services property.

Instances

state When using automatic persistence, specifies the name of an IDL type.

For PowerBuilder, the named type is a user-defined structure that must
encapsulate all data to be persisted. When you select Automatic Persistent
State, enter the name of the structure in the State text box on the
Persistence tab page, and click OK, default values are supplied for other
properties on the page. Stateful failover is supported for PowerBuilder
components when using automatic persistence. For more information, see
the chapter on managing persistent component state in the EAServer
Programmer’s Guide.

Persistence

Property Description
Where
displayed

CHAPTER 24 Building an EAServer Component

Application Techniques 485

state.gs The names of methods in the state structure that get and set the state
datatype, specified as a 2-item comma-separated list.

The default is: getState, setState

Persistence (State
Methods)

stateless Applies only to EJB session Beans and non-EJB components that use the
control interface CtsComponents::ObjectControl.

 Setting this property has the same effect as setting the tx_vote property to
FALSE, but it also disables the activate and deactivate events. Do not set
this property if you want to specify that a component is stateless. Instead,
set pooling to TRUE and tx_vote to FALSE.

Instances

storage Specifies the name of a component that reads and writes component state
information from a remote database server.

Required when using automatic persistence, or when using component-
managed persistence with an implementation that delegates to EAServer’s
built-in storage component. The default is:
CtsComponents/JdbcStorage

Also specifies the connection cache and table used by the storage
component.

Persistence
(Storage
Component,
Connection
Cache, Table)

thread.safe Indicates whether multiple invocations can be processed simultaneously.

For more information see “Concurrency property” on page 451.

Instances
(Concurrency)

timeout Specifies how long an active component instance can remain idle between
method calls before being automatically deactivated.

Resources
(Instance
Timeout)

tx_outcome Determines whether a CORBA::TRANSACTION_ROLLEDBACK
exception is thrown to the client when a transaction is rolled back.

The allowable settings are:

• always The default. The server sends the exception to the client when
a transaction is rolled back.

• failed EAServer does not send the exception to the client when a
transaction is rolled back. If you use this setting, you can code your
components to raise a different exception with a descriptive message
after calling the RollbackWork transaction primitive.

With the failed setting in effect, EAServer may still throw a CORBA
system exception if unable to commit a transaction at your component’s
request.

You can set this property to failed if you require that no exceptions be sent
to the client for rolled-back transactions or that an alternative exception be
sent. This setting is useful if you require that the client be able to retrieve
output parameters after a transaction is rolled back: if an exception is
thrown, the output parameters are not available.

All Properties

Property Description
Where
displayed

Exposing an NVO as a Web service

486 PowerBuilder

Exposing an NVO as a Web service
The EAServer Component wizard includes a page that allows you to expose
the component that the wizard generates as a Web service.

The Expose Component as Web Service page of the wizard has a check box and
three text box fields for setting and listing the generated component as a Web
service in EAServer 5.0. These fields are describe in Table 24-8. They are
disabled until you select the Expose This Component As Web Service check
box.

tx_timeout Specifies the maximum duration of an EAServer transaction.

EAServer checks for timeouts after each method returns.

Resources
(Transaction
Timeout)

tx_type Indicates whether the component participates in EAServer transactions
and in what way.

Valid values are:

• not_supported

• supports

• requires

• requires_new

• mandatory

• user-managed

• never

Transactions

tx_vote Indicates whether the component supports automatic demarcation and
deactivation.

When tx_vote is set to TRUE, the component must control transaction state
and component deactivation by explicitly calling methods of the
TransactionServer service object.

When tx_vote is set to FALSE, EAServer automatically deactivates the
component after each method invocation. You do not need to make explicit
calls to SetComplete to cause deactivation because SetComplete is
assumed by default. To override the default state, you can call SetAbort.

Transactions
(when the
Automatic
Demarcation/
Deactivation
check box is
checked, the value
of this property is
FALSE)

type Specifies the type of component.

For PowerBuilder objects, EAServer sets this property to pb.

General

Property Description
Where
displayed

CHAPTER 24 Building an EAServer Component

Application Techniques 487

Table 24-8: Properties of a component exposed as a Web service

The Expose This Component As Web Service check box and the three text box
fields are also listed on the Advanced tab of the Properties dialog box for an
EAServer component. This allows you to set these properties without using the
wizard or to modify these properties after completing the wizard.

If you reference a structure object in an EAServer component that you deploy
as a Web service, the structure object is automatically rendered as a custom
datatype.

The following limitation currently applies to components exposed as Web
services in EAServer: If the PowerBuilder component has a function that
passes a character datatype by reference, the component cannot be exposed as
a Web service in EAServer 5. An error message such as: “Can't find prefix for
'http://DefaultNamespace'.” displays.

Testing and debugging the component
This section describes three techniques you can use to test your component:

• Live editing

• Remote debugging

• Putting messages into the EAServer log

Troubleshooting EAServer components
For more information about troubleshooting components, see the EAServer
Troubleshooting Guide.

Property Description

Web Application The name of the Web application to which you deploy the
component. If the Web application you enter does not exist in
EAServer, the application is created before you deploy the
component. If no application is specified, the component is
deployed to the “ws” default Web application in EAServer.

Service The service name you want to use for the component when it is
exposed as a Web service. If you do not specify a service name,
the service name defaults to packageName_componentName.

HTTP Port The port you use for Web services in EAServer. If you do not
specify a port, the default value 8080 is used.

Testing and debugging the component

488 PowerBuilder

Live editing
To test or debug a component, you can use a feature of PowerBuilder called
live editing that allows you to build the project automatically from the User
Object painter. When live editing is enabled, PowerBuilder builds the project
for an EAServer component each time you save the corresponding user object.
The generator does not deploy PBDs to EAServer, but instead tells EAServer
how to access the PBLs that contain the required object definition(s).

Service components
You cannot use live editing to test a component that you have set up as a service
component. Service components are always in use when the server is running,
so the changes that you make in the User Object painter cannot be saved.

How to enable live
editing

To enable live editing for a user object, you need to:

1 Create a project that includes the user object for which you want to
generate an EAServer component.

You can use an existing PBL that allows for deployment to EAServer, or
alternatively, you create a new project and use this just for testing
purposes.

2 Optionally modify the live editing library list for the project.

When you are testing a component with a server that resides on a remote
machine, you need to tell EAServer where to find the PBLs. To do this,
you modify the library list on the Advanced page of the component’s
property sheet in the Project painter, shown below:

The library list you specify must contain fully qualified paths that use
Universal Naming Convention (UNC) names. UNC names take the form:
\\servername\sharename\path\file

By default, the live editing library list is based on the application library
list. You do not need to modify the live editing library list if your server is
local.

CHAPTER 24 Building an EAServer Component

Application Techniques 489

3 Specify the project that will be used to generate the component in the User
object painter.

Enter the project name in the EAServer Project field, which is located on
the General property page of the user object property sheet shown below.

The project name you specify must meet these requirements:

• It must be an EAServer component project.

• It must include the user object that you currently have open in the
User Object painter.

• The library list for the project must match the current application
library list.

How to generate the
component

To generate an EAServer component from the User Object painter, select
File>Save.

What happens when
you generate the
component

When you build a project from the User Object painter, PowerBuilder performs
these operations:

• Generates CORBA IDL that describes the nonvisual object you saved

The IDL is in turn used to build stubs and skeletons. The names of the IDL
file, the stubs, and the skeletons are based on the name of the object.

The component generator stores the new IDL in the Repository
subdirectory of the EAServer installation directory.

• Generates a PROPS file that describes the properties of the EAServer
component

The PROPS file is stored in the following subdirectory of the EAServer
installation directory: Repository\Component\package-name

PowerBuilder builds the component just as it would at deployment time, except
that it does not generate PBDs for the component. In addition, it sets the
pb.live_edit property to TRUE and assigns the library list you specified for live
editing to the pb.librarylist property.

If the project build results in errors, PowerBuilder displays the error messages
in the Output window.

Testing and debugging the component

490 PowerBuilder

If instance pooling is enabled for the user object, the generator disables pooling
for the current build. Pooling is not supported with live editing because
PowerBuilder cannot save the user object if the PBL that contains the user
object is locked by EAServer.

Remote debugging
When you are building a PowerBuilder custom class user object as an
EAServer component, you can use the PowerBuilder debugger to debug the
EAServer component. You can debug the component whether you use the live
editing feature in the User Object painter or deploy the component to EAServer
from the Project painter.

For more information about live editing, see “Live editing” on page 488.

Getting ready to
debug a component

Before you begin debugging a remote component, check that your
configuration meets the following requirements:

• You are using the same version of the application and PBLs as were used
to develop the deployed component. If you want to debug several
deployed components in the same session, they must all have been built
using the same versions of the PBLs, the same application name, and the
same library list.

• The Supports Remote Debugging check box on the Components
properties page in the Project painter is checked. You can also set the
debugging option by checking the Supports Remote Debugging check box
in the Project wizard.

• You have a client application that exercises the methods and properties in
the deployed components. This can be a compiled executable built with
any compatible development tool or a PowerBuilder application running
in another PowerBuilder session.

Starting the debugger To begin debugging, open the target that contains the deployed components.
Click the Start Remote Debugging button in the PainterBar and complete the
wizard. You can select only components that were generated in PowerBuilder
with remote debugging support turned on. Remote debugging support is a
security setting that does not add any debugging information to the component.
You turn remote debugging support on when you are testing a component, then
turn it off when you deploy the component to a user’s site to prevent users from
stepping into and examining your code.

CHAPTER 24 Building an EAServer Component

Application Techniques 491

Set breakpoints as you would when debugging a local application, then start the
client application that invokes the remote components (if it is not already
running).

Differences from local
debugging

You will notice two major differences between debugging local and remote
applications:

• When you start the debugger, it does not minimize.

• The new Instances view shows each instance of the components you are
debugging. For each instance, it shows the component and package names,
an instance number, and its current state: running, idle, or stopped. If there
is more than one instance, a yellow arrow indicates which one is currently
being debugged.

Unsupported features
The Objects In Memory view, expression evaluation, and changing variable
values are not supported.

About states The instances view shows the state of each instance of each component:

• Idle The component is idle or in the instance pool.

• Running The component is currently executing code.

• Stopped The component is stopped at a breakpoint waiting for a
debugger action.

When an instance is destroyed, it is removed from the Instances view.

Multiple instances Multiple component instances can be stopped at the same time, but actions you
take in the debugger act only on the first instance that hits a breakpoint. This
instance is indicated by a yellow arrow in the Instances view. The current
instance changes to the next instance in the queue when the method completes
or when you click Continue.

You can also change context from one instance to another by double-clicking
the new instance in the Instances view. You might want to do this if you step
over a call to another component instance and the Instances view shows that
the called instance stopped.

Testing and debugging the component

492 PowerBuilder

Putting messages into the EAServer log
To record errors generated by PowerBuilder objects running in EAServer to the
EAServer log, create an instance of the ErrorLogging service context object
and invoke its log method. For example:

ErrorLogging inv_el
this.GetContextService("ErrorLogging", inv_el)
inv_el.log("Write this string to log")

You can use the ErrorLogging service to provide detailed information about the
context of a system or runtime error on the server. This information is useful to
system administrators and developers in resolving problems.

While you are developing components, you can use the ErrorLogging service
to trace the execution of your component. For example, you can write a
message to the log when you enter and exit functions. The message can identify
the name of the component, whether it is entering or exiting a function, and
which function it is in.

Automatic recording of exception information
Information about the exception type and location of an exception caused by a
PowerBuilder component running on the server is recorded automatically in
the server log. It is no longer necessary to invoke the error logging service to
obtain minimal information about these exceptions.

When you use the XSL-FO technique to generate a PDF file, detailed
informational and warning messages are sent to the log. You can suppress these
messages by setting the PB_FOP_SUPPRESSLOG environment variable to 1.

CHAPTER 24 Building an EAServer Component

Application Techniques 493

Printing data
You can use a DataStore to print data on a remote server if the server is running
on Windows or Solaris.

Platform note
The following example would not work on HP-UX or AIX. On these
platforms, EAServer uses a windows-free version of the PowerBuilder runtime
environment that does not provide support for graphical operations such as
printing. Printing using DataStore print functions is currently supported only
on Solaris. However, DataStore objects can be printed on all UNIX platforms
using the SaveAs function with the PDF SaveAsType.

For more information, see “Printing to PDF” on page 497.

In this example, the server component uo_employees has a function called
print_employees. print_employees generates an instance of the DataStore
ds_datastore, and then prints the contents of this DataStore.

Here is the signature of the print_employees function:

print_employees() returns integer

Here is the script for the print_employees function:

datastore ds_datastore
int li_rc
ds_datastore = create datastore
ds_datastore.dataobject = "d_empdata"
ds_datastore.SetTransObject (SQLCA)
ds_datastore.Retrieve()
li_rc = ds_datastore.Print()
return li_rc

Printing on the Solaris operating system
On Solaris, you can print directly to a PostScript or PCL5 file. You do not need
to make any code changes to print reports on Solaris instead of Windows—you
can use the same properties, functions, and events as in Windows.

To print DataStores, use the DataStore Print method or
PrintDataWindow(PrintJobName, DataStoreName). If you link a DataStore to a
DataWindow and print the DataWindow object on Solaris, the printed output
has the fonts and layouts defined in the DataWindow object.

Printing data

494 PowerBuilder

Blank spaces
A blank space is not supported in a print job on Solaris, so the PBVM
substitutes a hyphen for each blank space in a print job name before sending it
to a printer.

Using fonts The fonts used in printing are those provided in the dwprinter/fontmetrics
directory. AFM and TFM files are ASCII formatted files that contain
information about specific PostScript (AFM) and PCL (TFM) fonts. Each
PostScript and PCL font has a corresponding font metric file.

The print mechanism reads AFM and TFM files to acquire font metric
information. This includes such things as character widths, baseline location,
ascender size, descender size, underline stroke width, and underline position.
It then translates this metric information into the formats expected by Xlib
APIs such as XTextWidth.

The best approach is to select fonts that are available on both Windows and
Solaris when you design the DataWindow. However, each platform has its own
font-rendering engine, so you might notice differences in the sizes of fonts
between Windows to Solaris. You should test the printed output on Solaris
early in the development process.

Limitations Support for printing DataWindow objects is based on the Wind/U product from
Bristol Technology. The Wind/U GDI library and Xprinter library have the
following limitations:

• No support for multibyte character sets (MBCS) or Unicode

• Xprinter is not thread safe, therefore print jobs are serialized

Setting up a printer

To set up a printer to print DataWindow objects, you must add access to the
printer, set up the dwprint.ini configuration file, and create an XPPATH
environment variable.

Adding access to the
printer

As the root user, add access to the printer on Solaris using the Solaris admintool
utility. For more information, see the Solaris documentation.

Setting up dwprint.ini The dwprint.ini file in the $EAServer/bin directory is the configuration file for
DataWindow printing. It closely follows the Microsoft Windows approach to
printer configuration. As a result, it includes [windows], [devices], and [ports]
sections where you must provide appropriate entries for your printers.

CHAPTER 24 Building an EAServer Component

Application Techniques 495

You usually do not need to modify other sections in this file. However, some
problems can be resolved by adding or changing other sections. For example,
you can try adding an entry like the following to the [intl] section to change a
date format:

[intl]
sShortDate=m/d/yyyy //Set the year to 4 digit.

The entries in dwprint.ini are based on entries in the .WindU file. For more
information about setting up this file, see the Wind/U User’s Guide at
http://www.bristol.com/support/windu/wu_ug/ch13.htm

Specifying ports Each line in the [ports] section of dwprint.ini contains a user-defined port name
and an associated command that is used to spool the output file. For example,
the command to send a print job to a printer called myprinter connected directly
to your system is:

lp -s -d myprinter -t$XPDOCNAME

$XPDOCNAME represents the name of the output file sent to the printer. The
-s option suppresses the display of messages sent from lp in the EAServer
Server console.

The following is an example of the [ports] section of the dwprint.ini file with
two ports defined for remote printers called prnt1 and prnt2, one for a local
printer, and an entry for printing to a file. The name of the output file is
enclosed in quotes. This enables file names with multiple words to be used. The
quotes must be escaped for remote servers because rsh strips them out:

[ports]
colorpr1=rsh prntsvr lp -s -d prnt1 -t\"$XPDOCNAME\"
colorpr2=rsh prntsvr lp -s -d prnt2 -t\"$XPDOCNAME\"
LOCAL=lp -d myprinter -t"$XPDOCNAME"
FILE: =

Matching a printer
type to a defined port

The [devices] section contains a list of all currently configured printers. Each
line contains a user-defined alias for the printer and three arguments: the printer
model, the printer mode (PCL4, PCL5, or PostScript), and one or more ports
to which the printer is connected.

The printer model is the name of the printer description file (PPD) used by the
printer. PPD files are installed in the dwprinter/ppds directory in your PBVM
installation. The text file filename_map.txt in that directory maps the name of
the file that contains the printer description to the type of printer. For example,
these are the mappings for the color_lj model used in the rest of the examples:

color_lj.pcl:"HP Color LaserJet PCL Cartridge"
color_lj.ps:“HP Color LaserJet PS"

Printing data

496 PowerBuilder

The printer model and mode are separated by a space. The mode and port are
separated by a comma. For example, for the first device specified in the
following [devices] section, the alias is HP Color LaserJet PS, the model is
color_lj, the mode is PostScript, and two ports are specified: FILE: and colorpr1.

[devices]
HP Color LaserJet PS=color_lj PostScript,FILE:,colorpr1
HP Color LaserJet PS=color_lj PCL5,colorpr2
HP Color LaserJet PS=color_lj PostScript,LOCAL
HP LaserJet PS=NULL PostScript,FILE:
HP LaserJet PCL=NULL PCL,FILE:

Specifying a default
printer

The [windows] section contains default printer information. Like the ports
specification, each device line has three arguments: the name of the PPD file,
the driver, and the port, but in the [windows] section they are all separated by
commas.

The following example shows a default entry for printing to a file (when the
printer file description is set to NULL) as well as two other entries. The
semicolon at the beginning of two of the lines is a comment character, so the
current default printer is the HP Color LaserJet printer on the port colorpr1.

[windows]
device=color_lj,PostScript,colorpr1
;device=color_lj,PostScript,colorpr2
;device=NULL,PostScript,FILE:

Setting printer options The dwprint.ini file must contain a configuration section for each model you
have defined in the [windows], [devices], and [ports] sections. The
configuration section provides default setup information for the printer,
including the number of copies, orientation, page size, and DPI.

For example, for the color_lj printer used in the preceding examples, add
configuration sections like this:

[color_lj,PostScript]
Filename=jaguar.ps
Scale=1.00
Copies=1
Orientation=Portrait
PageSize=Letter
DPI=300

[color_lj,PCL5]
Filename=jaguar.pcl
Scale=1.00
Copies=1
Orientation=Portrait

CHAPTER 24 Building an EAServer Component

Application Techniques 497

PageSize=Letter
DPI=300

Setting the XPPATH
environment variable

Before you start a print job, set the XPPATH environment variable. The
XPPATH variable must contain the path to a directory that includes printer
description files and printer-specific font mapping files. This information is
installed in the dwprinter directory in your PBVM installation.

For a C shell, set the path as follows:

setenv XPPATH $EAServer/dwprinter

For a Korn shell or a Bourne shell, set the path as follows:

XPPATH = $EAServer/dwprinter;export XPPATH

Printing to PDF
You can use two techniques to save the data in a DataStore to PDF: Using the
GNU Ghostscript distiller, and using the ability to process data using XSL
Formatting Objects (XSL-FO). You can save the DataWindow object’s data to
XSL-FO or PDF, and print using Java printing.

Using the GNU
Ghostscript distiller

To use the GNU Ghostscript distiller, you must make sure that Ghostscript files
and the default PostScript printer driver and related files are installed on the
server in the same directory as the PowerBuilder runtime files. The Ghostscript
method is not supported on UNIX.

Using XSL-FO To use XSL-FO, the Apache XSL Formatting Objects processor (FOP) must be
installed on the server in the same directory as the PowerBuilder runtime files,
and the following JAR files must be in the classpath:

fop-0.20.4\build\fop.jar
fop-0.20.4\lib\batik.jar
fop-0.20.4\lib\xalan-2.3.1.jar
fop-0.20.4\lib\xercesImpl-2.1.0.jar
fop-0.20.4\lib\xml-apis.jar
fop-0.20.4\lib\avalon-framework-cvs-20020315.jar

You can add these files to the CLASSPATH environment variable or to
User_setenv.bat or Serverstart.bat.

When you use XSL-FO with EAServer to produce a PDF file, detailed
informational and warning messages are written to the Jaguar log. To suppress
all these messages, set the PB_FOP_SUPPRESSLOG environment variable
to 1.

Deploying a component to EAServer

498 PowerBuilder

For more information, see the chapter on enhancing DataWindow objects in the
PowerBuilder User’s Guide.

Deploying a component to EAServer
PowerBuilder VM
must be available on
the server

You can deploy components to EAServer hosts running Windows and UNIX.
The version of the PowerBuilder VM on the development computer must also
be available on the server. To find out which versions of EAServer and the
PowerBuilder VM are available on each UNIX platform, contact your sales
representative or check the Sybase Web site at www.sybase.com.

The PowerBuilder VM includes PBVM105.DLL, PBJAG105.DLL,
PBDWE105.DLL, and other PowerBuilder files required at runtime. On UNIX,
the shared libraries are called libpbvm105x.ext, libdwe105x.ext, and so forth,
where ext is the shared library extension for each UNIX platform. EAServer
uses a version of the PowerBuilder runtime files, identified by the x at the end
of the file name, that does not provide support for Windows API calls or
graphical operations, including printing.

Consuming a .NET Web service from a PowerBuilder NVO
If you call a .NET Web service from a PowerBuilder component running in
EAServer, you must deploy the Sybase.PowerBuilder.WebService.Runtime.dll,
Sybase.PowerBuilder.WebService.RuntimeRemoteLoader.dll and the
dynamically generated .NET assembly to the EAServer bin directory.

EAServer supports multiple versions of the PowerBuilder VM on the same
server. Components built with different versions of PowerBuilder can coexist
on the same server as long as the required version of the PowerBuilder VM is
available on the server.

When you deploy a component from PowerBuilder 10 to EAServer, the
component is associated with the version of the PowerBuilder VM that you are
using. In EAServer Manager, the com.sybase.jaguar.component.pb.version
property is set to 105 on the All Properties tab page of the component’s
property sheet.

If you do not use the PowerBuilder development environment to deploy a
PowerBuilder component to EAServer, you can specify the correct version of
the VM for the component on its property sheet in EAServer Manager.

CHAPTER 24 Building an EAServer Component

Application Techniques 499

If you deploy a PowerBuilder component to a server that does not have the
version of the PowerBuilder VM used in the development environment, the
deployed component cannot be instantiated.

About deploying
EAServer components

To deploy a component to EAServer, create a new project and build the project.
The new project lists the objects that will be included and specifies the name
of the output library that will contain the generated components.

Making DataWindow definitions available
If your scripts reference DataWindow objects dynamically, you must check the
Include Unreferenced Objects in Consolidated PBD box in the wizard or
painter to make the DataWindow definitions available to the component.

How to deploy the
component

To deploy a component to EAServer, open the project created by the wizard
and select Design>Build Project.

What happens when
you deploy to
EAServer

When you deploy components to EAServer, the component generator performs
these operations:

• Generates CORBA IDL that describes the nonvisual objects you selected
for deployment

The IDL is in turn used to build stubs and skeletons. The names of the IDL
file, the stubs, and the skeletons are based upon the name of the object.

The component generator stores the new IDL in the Repository
subdirectory of the EAServer installation directory.

• Generates a PROPS file that describes the properties of the EAServer
component

The PROPS file is stored in the following subdirectory of the EAServer
installation directory: Repository\Component\package-name.

• Generates one or more PBD files for the deployed component

The PBD files are stored in the following subdirectory of the EAServer
installation directory:
Repository\Component\package\component\Ccookie

where cookie represents the number for this generation of the build. If the
library name is not qualified (no path is specified), the component
generator prepends a dollar sign ($) to the name. By default, EAServer
uses the most recent version of the component.

Deploying a component to EAServer

500 PowerBuilder

Cleaning up the
EAServer repository

You can reclaim disk space by removing directories you no longer need, using
a service component called CookieMonster that can be downloaded from the
Sybase Web site at www.sybase.com or using the following procedure.

❖ To delete unwanted directories and PBD files:

1 Delete all directories except the most recent.

2 Rename the remaining directory to C1.

3 Set the value of the pb.cookie property to 1 on the All Properties tab page
of the property sheet for the component in EAServer Manager.

4 Restart EAServer.

Changing the
component’s codeset

Any EAServer component deployed by PowerBuilder automatically uses the
code set of the server. If you want your component to use a different code set,
set the component’s com.sybase.jaguar.component.code.set property to an
appropriate value. You can do this in the Component Properties dialog box in
EAServer Manager. Select the All Properties tab, add the
com.sybase.jaguar.component.code.set property, and specify an appropriate
value such as big5 or iso_1.

If EAServer was started using the utf-8 codeset and your component returns a
string containing the Euro and/or British pound symbol, set the code.set
property to cp1252.

Application Techniques 501

C H A P T E R 2 5 Building an EAServer Client

About this chapter This chapter explains how to build a PowerBuilder client that accesses an
EAServer component. For information about secure connections, see
Chapter 26, “Using SSL in PowerBuilder clients.”

Contents

About building an EAServer client
A PowerBuilder application can act as a client to an EAServer component.
To access a method associated with a component on the server, the
PowerBuilder client needs to connect to the server, instantiate the
component, and invoke the component method.

In general, you use an instance of a Connection object to connect to
EAServer. If you want to create a CORBA-compatible client, you can use
the JaguarORB object to establish the connection to the server. By using
the JaguarORB object, a PowerBuilder client can access EAServer in the
same way that a C++ client would.

You can use the techniques described in this chapter to build clients for
EJB components running in EAServer. For information about building a
client for EJB components on EAServer and other J2EE-compliant
servers, see Chapter 29, “Building an EJB client.”

Topic Page

About building an EAServer client 501

Connecting to EAServer 502

Generating EAServer proxy objects 506

Invoking component methods 508

Using the JaguarORB object 513

Client- and component-demarcated transactions 518

Requesting a message back from the server 522

Handling errors 525

Deploying the client application 530

Connecting to EAServer

502 PowerBuilder

About using the wizards
PowerBuilder provides two wizards to facilitate the development of EAServer
clients:

• Connection Object wizard Adds code required to connect to the server

• EAServer Proxy wizard Helps you create projects for building proxy
objects for the EAServer components you want to access from the client

About the development process
Steps for building an
EAServer client

To build and deploy an EAServer client, you need to complete the following
steps:

1 Use the EAServer Connection Object Wizard to create a standard class
user object inherited from the Connection object. You can then use this
object in a script to establish a connection.

If you use the Template Application Start Wizard to create the client
application, you can create the Connection object in that wizard.

2 Use the EAServer Proxy Wizard to create a project for building proxy
objects. Then generate the proxy objects.

3 Create the windows, menus, and scripts required to implement the user
interface.

4 Write the code required to create the EAServer component instance and
call one or more component methods from the client.

5 Test and debug the client.

6 Deploy the application.

Connecting to EAServer
Using the Connection
object

The simplest way to connect to EAServer is to use the capabilities of the
Connection object, a nonvisual object that handles communications with the
server. You can write all the code to connect to the server by hand, or you can
use the Connection Object wizard to get started.

CHAPTER 25 Building an EAServer Client

Application Techniques 503

Writing the code by hand
Declaring the
connection variable

The Connection object is not a built-in global object. You need to declare a
global or instance variable of type connection.

Establishing a
connection

To establish a connection to the server, you need to execute the PowerScript
statements required to perform these operations:

1 Use the Create statement to instantiate the Connection object.

2 Set properties for the Connection object.

3 Invoke the ConnectToServer function to establish a connection to the
server.

4 Check for errors.

You can perform these operations in a single script or in several scripts, but
they must be performed in the order shown.

Example The following script instantiates the myconnect Connection object
and sets the connection properties to identify the communications driver for
EAServer, the host name and port number of the server, and the default
package. Then the script invokes the ConnectToServer function to establish a
connection to the server and checks for errors:

// Global variable:
// connection myconnect
long ll_rc
myconnect = create connection
myconnect.driver = "jaguar"
myconnect.location = "Jagserver1:9000"
myconnect.application = "PB_pkg_1"
myconnect.userID = "bjones"
myconnect.password = "mypass"
ll_rc = myconnect.ConnectToServer()
IF ll_rc <> 0 THEN

MessageBox("Connection failed", ll_rc)
END IF

Setting the
Connection object
properties

Table 25-1 provides some guidelines for setting Connection object properties
when you are communicating with EAServer.

Connecting to EAServer

504 PowerBuilder

Table 25-1: Connection object properties for EAServer

Establishing multiple
connections

PowerBuilder allows you to instantiate multiple Connection objects. This
makes it possible for you to establish multiple connections in a single client
application. For example, you could instantiate two separate Connection
objects to connect a client to two different servers.

Setting options

When you connect to EAServer using either the Connection object or the
JaguarORB object, you are using the EAServer C++ client ORB. You can set
its properties in the Options string of the Connection object or using
JaguarORB’s Init function.

Property
name Description Examples

Application The default package to be used
for EAServer components

"PB_pkg_1"

Driver The name of the EAServer
driver.

"jaguar"

Location The host name and port
number for the server,
separated by a colon.

The Location property can
also specify a fully qualified
URL that uses one of the
following formats:

iiop://host:port
iiops://host:port
http://host:port
https://host:port

To take advantage of
EAServer’s load balancing
and failover support, you can
also specify a semicolon-
separated list of server
locations.

"Jagserver:9000"

"iiop://srv1:9000"

"iiops://srv3:9001"

"http://srv5:1080"

"iiop://s1:9000;iiop://s2:9000"

Password The EAServer password. "mypass"

UserID The EAServer user ID. "bjones"

Options One or more EAServer ORB
property settings.

"ORBLogFile='jaglog.log'"

CHAPTER 25 Building an EAServer Client

Application Techniques 505

Using a different code
set

To connect to an EAServer component that handles double-byte characters,
make sure the component is using the correct code set. The code set can be
changed in the Component Properties dialog box in EAServer Manager. You
must also set your PowerBuilder client’s code set to use the component. To do
so, set the Options property of the Connection object. For example, if you want
to handle Korean characters in the eucksc code set, use the following script for
a Connection object called myConnection:

myConnection.Options = "ORBCodeSet='eucksc'"

If EAServer was started using the utf-8 codeset and you are calling a Java or
PowerBuilder component that returns a string containing the Euro and/or
British pound symbol, set the ORBCodeSet property to cp1252. For example:

myConnection.Options = "ORBCodeSet='cp1252'"

Troubleshooting
connections

When a connection fails, you can obtain more information about the failure in
a log file by enabling the ORBLogIIOP option and specifying a value for the
ORBLogFile option. If you want to set multiple options, they must be set in the
same statement. Separate the options with commas:

myConnection.Options = &
"ORBLogIIOP='TRUE', ORBLogFile='d:\temp\ORBLog.txt'"

For a complete list of options, see the online Help for the Connection object or
the EAServer documentation.

Using the wizard to create a Connection object
When you select EAServer as the connection type in the Connection Object
wizard, PowerBuilder creates a standard class user object inherited from the
Connection object. You supply the Connection object properties in the wizard
and specify whether connection information will be provided in the registry, an
INI file, or a script. The Connection Object wizard gets information about the
server you want to connect to from the EAServer profiles you have set up. For
how to create an EAServer profile, see “Creating an EAServer profile” on page
447.

The Constructor event of the Connection object calls a function,
of_getconnectioninfo, that gets the stored connection information from the
source you specified.

Generating EAServer proxy objects

506 PowerBuilder

Once you have used the Connection Object wizard to create a Connection
object, you need to execute the PowerScript statements required to perform
these operations:

1 Use the Create statement to instantiate the Connection object.

2 Invoke the ConnectToServer function to establish a connection to the
server.

3 (Optional) Check for errors.

You do not need to set properties for the Connection object, but you can modify
them in the of_getconnectioninfo function. You can also set options for the
Connection object in its constructor event, for example:

this.options = "ORBHttp='TRUE'"

Example The following script instantiates the myconnect instance of the
n_myclient_connect object created by the wizard, invokes the ConnectToServer
function to establish a connection to the server, and checks for errors:

long ll_rc
myconnect = create n_myclient_connect
ll_rc = myconnect.ConnectToServer()
IF ll_rc <> 0 THEN

MessageBox("Connection failed", ll_rc)
END IF

Establishing multiple
connections

You can establish multiple connections in a single client application. If you
want to connect a client to two different servers, run the Connection Object
wizard again to create a new user object with different connection properties.

Generating EAServer proxy objects
About EAServer proxy
objects

Each EAServer component has a corresponding proxy object in the client
application. To access an EAServer component, you need to communicate
through the EAServer proxy.

An EJB component has two corresponding proxy objects in the client
application—one for the home interface and one for the remote interface. For
example, an EJB component named Cart produces two proxies, CartHome and
Cart. To access an EJB component, you need to communicate through these
two proxies.

CHAPTER 25 Building an EAServer Client

Application Techniques 507

Before you can generate proxy objects for an EAServer client, you need to
create a new project. The new project lists the objects that will be included and
specifies the name of the output library that will contain the generated proxy
objects.

Using the EAServer
Proxy wizard

The EAServer Proxy wizard helps create projects for building EAServer proxy
objects. It allows you to connect to EAServer and select the components you
want to be able to access from the client. Once you have created the project,
you can then use the Project painter to modify your project settings and build
the proxy library.

Building EJB clients
To build an EJB client that can use the services of an EJB component on
EAServer and other J2EE-compliant servers, you can use the EJB Client Proxy
wizard. For more information, see Chapter 29, “Building an EJB client.”

Reserved words in
method names

When you generate a proxy for an EAServer component that was not created
in PowerBuilder, the names of any methods that use a PowerBuilder reserved
word are changed. The proxy generator automatically adds an underscore (_)
prefix to these methods. For example, if the component has a method with the
name destroy, the method in the proxy will be _destroy.

Using arrays with a
TO clause

When you generate a proxy for a PowerBuilder component containing an array
that uses a TO clause, the proxy object represents the range as a single value
because CORBA IDL does not support the TO clause. For example, Int ar1[5
TO 10] is represented as Int ar1[6], with [6] representing the number of
array elements. Client applications must declare the array using a single value
instead of a range.

Prepending module
names

You can choose to prepend the name of the IDL module that defines the
component to the name of the proxy object created, which makes it easier to
identify proxy objects with similar names. For example, if you select the
SessionInfo component in the CTSSecurity module and check the Prepend
EAServer Package Name to Object Name option in the wizard or Project
painter, the proxy object will be named ctssecurity_sessioninfo. For
some EAServer system modules, currently CtsComponents and XDT, the
module name is always prepended to objects to avoid naming conflicts.

The package name and the name of the IDL module are often the same, but they
can be different, and it is always the name of the IDL module that is prepended.

Invoking component methods

508 PowerBuilder

Excluding exceptions Many EAServer components throw exceptions that you can handle in your
client application. If you want to use the proxy you are generating with an
existing client application that does not handle exceptions, or if you do not
want to declare the exceptions in the client you are building, you can choose to
exclude exceptions from the generated proxy, either in the wizard or in the
Project painter. See “Handling errors” on page 525 for more information about
handling errors in clients.

Datatype mappings All EAServer component interfaces are defined in standard CORBA IDL. For
a list of datatypes used in EAServer, their CORBA IDL equivalents, and the
PowerBuilder datatypes to which they map, see the PowerScript Reference or
the online Help.

Invoking component methods
Once a connection to EAServer has been established and a proxy object or
objects created, the client application can begin using the server components.

Invoking a component method
To invoke a method on most component types, you need to execute the
PowerScript statements required to perform these operations:

1 Use the CreateInstance method to create an instance of the component.

2 Invoke the method.

You use a different technique to invoke EJB component methods. See
“Invoking an EJB component method” on page 510.

Example 1 This script instantiates a component on the server and invokes a
component method. In this example, the CreateInstance method does not
specify a package; therefore, EAServer uses the default package specified in
the Application property of the Connection object:

// Global variable:
// connection myconnect

uo_customer iuo_customer
string ls_custid
long ll_rc

CHAPTER 25 Building an EAServer Client

Application Techniques 509

ls_custid = Trim(sle_custid.text)
ll_rc = myconnect.CreateInstance(iuo_customer)
if ll_rc <> 0 then

MessageBox("CreateInstance failed", ll_rc)
return 999

end if
if iuo_customer.retrieve_balance(ls_custid) != 1 then

MessageBox("Error", "Retrieve failed!")
end if

Example 2 This script instantiates a component on the server and assigns the
object reference to a variable whose datatype is an ancestor of the class for the
component. The second argument to the CreateInstance function specifies the
class name for the component as well as the EAServer package name:

// Global variable:
// connection myconnect

uo_person lnv_object
string ls_custid
long ll_rc

ls_custid = Trim(sle_custid.text)
ll_rc = myconnect.CreateInstance(lnv_object, &

"PB_pkg_1/uo_customer")
if ll_rc <> 0 then

MessageBox("CreateInstance failed", ll_rc)
return 999
end if
if iuo_customer.retrieve_balance(ls_custid) != 1 then

MessageBox("Error", "Retrieve failed!")
end if

Invoking a local instance
By default, the TransactionServer CreateInstance method invokes the
EAServer name service to create proxies. Proxies for remote components
might be returned by the name service rather than an instance that is running
locally. To guarantee that a locally installed instance is used, specify the
component name as “local:package/component”, where package is the
package name and component is the component name. The call fails if the
component is not installed in the same server.

Invoking component methods

510 PowerBuilder

Invoking an EJB component method
To invoke an EJB component method, you need to execute the PowerScript
statements required to perform these operations:

1 Use the Lookup function to access the component’s home interface.

2 Invoke the method on the interface to create or find an instance of the
component and get a reference to the component’s remote interface.

3 Invoke the business methods on the remote interface.

Does not apply to EJBConnection methods
This section applies to client applications that use an EAServer proxy object
and PowerScript functions. For information about invoking EJB methods in
client applications that use an EJB client proxy and EJBConnection methods,
see Chapter 29, “Building an EJB client.”

Specifying the home
interface name

PowerBuilder provides an optional third argument to the Lookup function to
specify the name of the home interface. EJB components have a property in
EAServer called com.sybase.jaguar.component.home.ids. You do not need to
specify the third argument to the Lookup function if the home.ids property
looks like this:

IDL:PackageName/ComponentNameHome:1.0

For example:

IDL:vacation/TripFinderHome:1.0

In most cases, however, the home.ids property uses the java package naming
scheme and you should use the third argument to make sure that the EJB home
interface can be located. The string that you specify for this argument must
match the component’s com.sybase.jaguar.component.home.ids property
without the leading IDL: and trailing :1.0.

For example, suppose the home.ids property is this:

IDL:com/myproj/myejbs/TripFindHome:1.0

Your Lookup function call should look like this::

myconn.lookup(myTripFindHome,"MyEJBs/TripFindHome", &
"com/myproj/myejbs/TripFinderHome")

Alternatively, you can use the fully-qualified Java class name of the home
interface specified in dot notation. For example:

ts.lookup(MyCartHome, "MyEJBs/TripFindHome", &
"com.myproj.myejbs.TripFinderHome")

CHAPTER 25 Building an EAServer Client

Application Techniques 511

Lookup is case sensitive
Lookup in EAServer is case sensitive. Make sure that the case in the string you
specify for the arguments to the Lookup function matches the case in the
home.ids property.

Creating or finding an
instance of an EJB

EAServer supports three types of EJBs—session beans, entity beans, and
message-driven beans.

A session bean is created in response to a client request. A client usually has
exclusive use of the session bean for the duration of that client session.

An entity bean represents persistent information stored in a database. A client
uses an entity bean concurrently with other clients. Since an entity bean persists
beyond the lifetime of the client, you must use a primary key class name to
identify or find a preexisting component, if the bean has already been created.

A message-driven bean is similar to a stateless session bean, but it responds
only to JMS messages and has no direct client interface.

The following examples assume that an EJB component that provides
e-commerce shopping cart functionality is running on EAServer. This
component is called Cart and is included in a package called Shopping.

Example 1 This script instantiates the Cart component and invokes several
component methods. In this example, the second argument to the Lookup
method specifies the component name as well as the EAServer package name:

//Instance variable:
//Connection myconnect

CartHome MyCartHome // EJB's home interface
Cart MyShoppingCart // EJB's remote interface
long ll_result

//Get the home interface
ll_result = &
myconnect.Lookup(MyCartHome, "Shopping/Cart", &

"com.sybase.shopping.Cart")

//Get a reference to Cart component's business logic
TRY

MyShoppingCart = MyCartHome.Create()
CATCH (ctscomponents_createexception ce)

MessageBox("Create exception", ce.getmessage())
// handle exception

END TRY

Invoking component methods

512 PowerBuilder

//Use the shopping cart
MyShoppingCart.AddItem(66)
MyShoppingCart.Purchase()

Example 2 If the Cart EJB component is defined as an entity bean, then the
script must use the findByPrimaryKey method to find and reference a preexisting
or persistent component if one exists:

//Instance variable:
//Connection myconnect

CartHome MyCartHome // EJB's home interface
Cart MyCart // EJB's remote interface
long ll_result

//Get the home interface
ll_result = &
myconnect.Lookup(MyCartHome, "Shopping/Cart", &

"com.sybase.shopping.Cart")

//Get a reference to Cart from a previous session
TRY

MyCart = MyCartHome.findByPrimaryKey("MYkey")
CATCH (ctscomponents_finderexception fe)

MessageBox("Finder exception", &
fe.getmessage())

// handle exception
END TRY
//Use the shopping cart
MyCart.AddItem(66)
MyCart.Purchase()

Restrictions PowerBuilder clients to EJB objects act as CORBA clients, which means that
they do not have the full capabilities of Java clients. Java clients can use
methods inherited from the javax.ejb.EJBObject interface.

For example, a Java client can obtain a handle for a remote interface instance.
The handle is a binary encoding of the session state between the client and the
bean. The client can obtain a handle, save it to disk or mail it to another
location, then reestablish the session at a later time. PowerBuilder clients can
obtain similar functionality using the Object_To_String and String_To_Object
functions of the JaguarORB object.

CHAPTER 25 Building an EAServer Client

Application Techniques 513

Handling exceptions The remote interface of an EJB component can indicate errors or warnings.
Standard exceptions thrown by the EJB component are mapped to CORBA
system exceptions. The EJB component can also throw user exceptions. For
information about handling exceptions thrown by EAServer components, see
“Handling errors” on page 525.

For information about calling an EJB component from a PowerBuilder
component in EAServer, see “Accessing an EJB component” on page 481.

Destroying instances
Destroying the proxy
object instance

After you have finished using an EAServer component, you can explicitly
destroy the EAServer proxy object by using the DESTROY statement, or you
can let PowerBuilder’s garbage collection facility clear the object out of
memory for you automatically. In either case, the destruction of the client-side
proxy object has no effect on the lifecycle of the server component. Destruction
of the server component is handled by EAServer.

Deactivating the
component instance

If the Automatic Demarcation/Deactivation setting is disabled for a
component, and you close the client application while the component is still
bound to the client (the component did not call SetComplete or SetAbort), the
component is not deactivated. To ensure that the component instance is
deactivated, you can do one of the following things:

• In the Close event of the client application, invoke a method of the server
component that deactivates the component (by calling SetComplete or
SetAbort).

• Set the Timeout property for the component to a value other than 0. If the
component’s Timeout property is set to 0, the component will never time
out.

Using the JaguarORB object
To create a CORBA-compatible client, you can use the JaguarORB object
instead of the Connection object to establish the connection to the server. The
JaguarORB object allows you to access EAServer from PowerBuilder clients
in the same way as C++ clients.

Two techniques The JaguarORB object supports two techniques for accessing component
interfaces, using its String_To_Object and Resolve_Initial_References functions.

Using the JaguarORB object

514 PowerBuilder

Using the String_To_Object function works in the same way that the
ConnectToServer and CreateInstance functions on the Connection object do
internally. The String_To_Object function allows you to instantiate a proxy
instance by passing a string argument that describes how to connect to the
server that hosts the component. The disadvantage of this approach is that you
lose the benefits of server address abstraction that are provided by using the
naming service API explicitly.

If you want to use the EAServer naming service API, you can use the
Resolve_Initial_References function to obtain the initial naming context.
However, this technique is not recommended because it requires use of a
deprecated SessionManager::Factory create method. Most PowerBuilder
clients do not need to use the CORBA naming service explicitly. Instead, they
can rely on the name resolution that is performed automatically when they
create EAServer component instances using the CreateInstance and Lookup
functions of the Connection object.

About the naming
service

The EAServer naming service is an implementation of the CORBA
CosNaming component, which is a collection of interfaces that provide support
for object binding and lookup. For more information about the CosNaming
module, see the EAServer interface repository documentation. The interface
repository documentation can be viewed in a Web browser by connecting to
your server with the URL http://yourhost:yourport/ir/ where yourhost is the
server’s host name and yourport is the HTTP port number.

Instantiation using String_To_Object
Obtaining proxies for
SessionManager
interfaces

To instantiate a proxy without explicitly using the CORBA Naming Service,
you use the String_To_Object function of the JaguarORB object in conjunction
with interfaces defined in the SessionManager module. Before using the
Manager, Session, and Factory interfaces, you need to use the EAServer Proxy
wizard to create a proxy library project for the SessionManager module, build
the project, and include the generated proxy library in the library list for the
client target.

CHAPTER 25 Building an EAServer Client

Application Techniques 515

Identifying the server You use the SessionManager::Manager interface to interact with the server.
You can identify the server using its Interoperable Object Reference (IOR) or
its URL. The IOR string encodes the server’s host address and the port at which
the server accepts IIOP requests. Each time a server is started, it writes a
hex-encoded IOR string with standard encoding to two files for each listener,
one containing the IOR string by itself, and the other containing the IOR as part
of an HTML PARAM definition that can be inserted into an APPLET tag. The
files reside in the HTML subdirectory of the EAServer directory. You can code
the client to obtain the IOR string from one of these files.

Creating an
authenticated session

After initializing the ORB and obtaining the IOR or URL of the server, use the
String_To_Object function to convert the string to a CORBA object reference
that you can convert to a reference to the Manager interface using the _Narrow
function. Then use the createSession method of the Manager interface to create
an authenticated session between the client application and the server.

Creating a reference
to the component’s
interface

Use the session’s lookup method to return a factory for proxy object references
to the component you want to call. Then call the create method of the Factory
object to obtain proxies for the component. The create method returns a
CORBA object reference that you can convert into a reference to the
component’s interface using the _Narrow function.

A component’s default name is the package name and the component name,
separated by a slash, as in calculator/calc. However, you can specify a different
name with the component’s com.sybase.jaguar.component.naming property.
For example, you can specify a logical name, such as
USA/MyCompany/FinanceServer/Payroll. For more information on
configuring the naming service, see the section on naming services in the
EAServer System Administration Guide.

Examples In this example, the first argument to the String_To_Object function includes the
URLs for two servers in a cluster:

// PowerBuilder objects
JaguarORB my_JaguarORB
CORBAObject my_corbaobj
n_bank_acct my_acct

// Proxy objects
Manager my_manager
Session my_session
Factory my_factory

long ll_return
my_JaguarORB = CREATE JaguarORB

Using the JaguarORB object

516 PowerBuilder

// Initialize the ORB
ll_return = my_JaguarORB.init("ORBRetryCount=3,

ORBRetryDelay=1000")

// Convert a URL string to an object reference
ll_return = my_JaguarORB.String_To_Object

(''iiop://JagOne:9000;iiop://JagTwo:9000'',
my_corbaobj)

// Narrow the object reference to the Manager interface
ll_return = my_corbaobj._narrow(my_manager,

"SessionManager/Manager")

// Create a session object reference
my_session = my_manager.createSession("jagadmin", "")

// Create a Factory for proxy object references to
// the remote interface
my_corbaobj = my_session.lookup("Bank/n_bank_acct ")
my_corbaobj._narrow(my_Factory,

"SessionManager/Factory")

// Obtain a proxy, narrow it to the remote
// interface, and call a method
my_corbaobj = my_Factory.create()
my_corbaobj._narrow(my_acct, "Bank/n_bank_acct")
my_acct.withdraw(1000.0)

In this example, the component is an EJB component. The home interface
effectively performs the same role for the EJB that the factory interface does
for a CORBA component:

JaguarORB my_orb
CORBAObject my_corbaobj
Manager my_mgr
Session my_session
CartHome my_cartHome
Cart my_cart

my_orb = CREATE JaguarORB
my_orb.init("ORBLogFile='c:\temp\orblog'")
my_orb.String_to_Object("iiop://svr1:9000", &

my_corbaObj)
my_corbaObj._narrow(my_mgr, "SessionManager/Manager")
my_Session = my_mgr.createSession("jagadmin", "")
my_corbaObj = my_session.lookup("Cart")
my_corbaObj._narrow(my_CartHome, "shopping/CartHome")

CHAPTER 25 Building an EAServer Client

Application Techniques 517

my_corbaObj = my_CartHome.create()
my_Cart.addItem()

Using a Connection object
You can use the Lookup function on the Connection object to obtain a reference
to the home interface of an EJB component. See “Invoking an EJB component
method” on page 510.

Instantiation using the naming service API
Obtaining proxies for
CosNaming and
SessionManager
interfaces

To instantiate a proxy using the CORBA naming service API, you need to
generate proxies for the naming service interface and include these proxies in
the library list for the client. Use the EAServer Proxy wizard to create a proxy
project for the CosNaming module, build the project to create a proxy library,
and add the proxy library to the client target’s library list. You also need a proxy
for the SessionManager module.

Getting an initial
naming context

After initializing the ORB, call the Resolve_Initial_References function to
obtain an initial naming context and use _Narrow to convert it to a reference to
the CORBA naming context interface. You must identify the CosNaming
package by including omg.orb in the class name as shown in the example
below.

Resolving the naming
context

You need to resolve the naming context to obtain a reference to a Factory object
for the component and then narrow that reference to the
SessionManager::Factory interface. The resolve method takes a name
parameter, which is a sequence of NameComponent structures. Each
NameComponent structure has an id attribute that identifies the component and
a kind attribute that can be used to describe the component. In the example
below, the name has only one component.

Creating a reference
to the component’s
interface

Call the create method of the Factory object to obtain proxies for the
component. The create method returns a CORBA object reference that you can
convert into a reference to the component’s interface using the _Narrow
function.

Example The NamingContext and NameComponent types used in the example are
proxies imported from the CosNaming package in EAServer, and the Factory
type is imported from the SessionManager package:

CORBAObject my_corbaobj
JaguarORB my_orb
NamingContext my_nc

Client- and component-demarcated transactions

518 PowerBuilder

NameComponent the_name[]
Factory my_Factory
n_jagcomp my_jagcomp

my_orb = CREATE JaguarORB
// Enclose the name of the URL in single quotes
my_orb.init("ORBNameServiceURL='iiop://server1:9000'")

my_orb.Resolve_Initial_References("NameService", &
my_corbaobj)

my_corbaobj._narrow(my_nc, &
"omg.org/CosNaming/NamingContext")

the_name[1].id = "mypackage/n_jagcomp"
the_name[1].kind = ""

my_corbaobj = my_nc.resolve(the_name)
my_corbaobj._narrow(my_Factory, &

"SessionManager/Factory")
my_corbaobj = my_Factory.create("jagadmin","")
my_corbaobj._narrow(my_jagcomp,

"mypackage/n_jagcomp")

my_jagcomp.getdata()

Client- and component-demarcated transactions
Client applications and EAServer components marked as OTS style can create,
control, and obtain information about EAServer transactions using functions of
the CORBACurrent context service object. The CORBACurrent object
provides most of the methods defined for the CORBA Current interface.

Two-phase commit Components in a client- or component-demarcated transaction must be running
on a server that is using the OTS/XA transaction coordinator. This transaction
coordinator supports the two-phase commit protocol, which uses detailed
records from all participants to protect against system failures. In the prepare
phase, the transaction coordinator obtains a guarantee from every participant in
the transaction that it can be committed and writes a prepare record to the log.
In the commit phase, the coordinator notifies all participants, resources are
released, the transaction is committed, and a commit record is written to the
log.

CHAPTER 25 Building an EAServer Client

Application Techniques 519

Components using two-phase commit must connect to a database using a
PowerBuilder database interface that is XA-compliant. On Windows NT, you
can use Oracle O73 and O84 interfaces with Oracle 8.0.x (not 8.1.x), or the
JDB interface for JDBC used with Sun’s JRE 1.2 and jConnect 5.2. If the
component is running on a UNIX host, you can also use the Sybase Adaptive
Server Enterprise CT-LIB interface (SYJ).

An OTS/XA transaction coordinator uses XA resources instead of connection
caches to manage transactions. For more information about creating and
managing XA resources, see the EAServer System Administration Guide.

Marking components
as OTS style

To create an EAServer component that can manage transactions, check the
OTS Style box in the EAServer Project wizard or the Project painter. You can
also select OTS Style on the Transaction tab of the property sheet for the
component in EAServer Manager after you have deployed the component.

Initializing the
CORBACurrent object

Before you can invoke the functions of the CORBACurrent context service
object, you need to create an instance of the object using the GetContextService
function, and then initialize it using the Init function.

For transactions managed by an OTS style component, call the Init function
with no arguments:

GetContextService("CORBACurrent", myCorbCurr)
myCorbCurr.Init()

For client-demarcated transactions, you must call the Init function with an
argument: either an instance of the Connection object with which you have
already established a connection, or a URL that identifies a valid EAServer
host.

Because the Connection object is more portable, using it is the preferred
technique.

myCorbCurr.Init(myconnect)
// OR
myCorbCurr.Init("iiop://localhost:9000")

Beginning and ending
transactions

You begin a client- or component-demarcated transaction by calling the
BeginTransaction function and end it by calling CommitTransaction or
RollbackTransaction. Components you instantiate to participate in the
transaction must support transactions.

// Instance variables:
// CORBACurrent corbcurr
// Connection myconnect

Client- and component-demarcated transactions

520 PowerBuilder

int li_rc
long ll_rc
boolean lb_rc, lb_success

ll_rc = myconnect.CreateInstance(mycomponent)
li_rc = this.GetContextService("CORBACurrent", &

corbcurr)
IF li_rc <> 1 THEN

// handle error
RETURN

END IF

li_rc = corbcurr.Init(myconnect)
IF li_rc <> 0 THEN

// handle error
RETURN

END IF

lb_rc = corbcurr.BeginTransaction()
// perform some processing on the server and
// test for success
...
IF lb_success THEN

corbcurr.CommitTransaction()
ELSE

corbcurr.RollbackTransaction()
END IF

No nested transactions
You cannot begin a second transaction until the first transaction has been
committed or rolled back.

If a component is marked as OTS style, EAServer does not start a transaction
when the component is instantiated. EAServer expects the component to start
a transaction by calling the BeginTransaction function on an instance of a
CORBACurrent object.

Do not call SetComplete
A component should not begin a transaction and then call SetComplete before
committing or rolling back the transaction. The transaction will be orphaned
until it either times out or is picked up by another transaction.

CHAPTER 25 Building an EAServer Client

Application Techniques 521

Getting information
about the transaction

CORBACurrent provides two functions for obtaining information about the
transaction: GetStatus and GetTransactionName. GetStatus returns an Integer
that indicates whether the transaction is active, has been marked for rollback,
is in the prepare phase or commit phase, or has been committed or rolled back.
GetTransactionName returns a String that identifies the current transaction. It is
intended for use in debugging.

Suspending and
resuming a
transaction

A calling thread can suspend a transaction while the thread performs some
non-transactional processing and then resume it. SuspendTransaction returns a
handle to the transaction that can be passed to the ResumeTransaction function.
ResumeTransaction can be called from a different thread in the same execution
context. In this example, the transaction is reassociated with the same thread:

long ll_rc
unsignedlong ll_handle
...
ll_rc = corbcurr.BeginTransaction()
// do some transactional work
ll_handle = corbcurr.SuspendTransaction()
// do some non-transactional work
corbcurr.ResumeTransaction(ll_handle)
// do some more transactional work

Setting a timeout
period for transactions

A calling thread can specify a timeout period after which a transaction will be
rolled back. This example sets the timeout period to three minutes (180
seconds):

integer li_rc

li_rc = this.GetContextService("CORBACurrent", &
corbcurr)

IF li_rc <> 1 THEN
// handle error and return

END IF
li_rc = corbcurr.Init()
IF li_rc <> 1 THEN

// handle error and return
END IF
corbcurr.SetTimeout(180)
corbcurr.BeginTransaction()

Requesting a message back from the server

522 PowerBuilder

Requesting a message back from the server
Simulating server
push

A client application cannot pass a PowerBuilder object reference to EAServer.
Therefore, you cannot use a PowerBuilder object reference to push messages
from the server back to a PowerBuilder client. However, you can simulate this
behavior by using a shared object on the client to communicate with EAServer.
This technique can be thought of as client pull, because the shared object on
the client pulls data back from the server.

How it works To simulate server push, the client uses the SharedObjectRegister and
SharedObjectGet functions to create a shared object. Once the object has been
created, the main thread on the client makes an asynchronous call to a method
on the shared object, passing it a callback object that should be notified when
processing has finished on the server. The method on the shared object makes
a synchronous call to the EAServer component method that performs
processing. Since the shared object is running in a separate thread on the client,
the main thread on the client can proceed with other work while the process is
running on the server.

Asynchronous processing in EAServer
In this example, POST is used to make an asynchronous call to a method on a
shared object on the client. Using POST is not supported in the context of calls
to EAServer components. For information about asynchronous processing in
EAServer, see the EAServer documentation for the ThreadManager and
MessageService modules.

Example
This example shows how you might use a shared object to make an
asynchronous request against an EAServer component method and return data
to a client application window.

Client application window

The client application has a window called w_employee that displays employee
data in a DataWindow control. When the user clicks the Retrieve button in the
window, the client creates a shared object that communicates with EAServer.
In addition, it creates an instance of a user object that is used to handle
callbacks from the shared object.

CHAPTER 25 Building an EAServer Client

Application Techniques 523

Instance variables The w_employee window has these instance variables defined:

uo_sharedobject iuo_sharedobject
uo_callback iuo_callback

Retrieve button The Retrieve button creates the shared object that will communicate with
EAServer. In addition, it creates an instance of the user object that will be used
to handle callbacks from the shared object. To allow the callback object to
notify the window of the completion of processing, the script calls a function
called PassObject on the callback object, passing it a reference to the window.
Finally, it makes an asynchronous call to the RetrieveData function on the
shared object, passing it a reference to the callback object.

The Retrieve button has the following script:

long ll_rv

SharedObjectRegister("uo_sharedobject","myshare")
SharedObjectGet("myshare",iuo_sharedobject)

iuo_callback = CREATE uo_callback
iuo_callback.passobject (parent)

iuo_sharedobject.post retrievedata(iuo_callback)

SetDW function The SetDW function applies the contents of the DataWindow Blob returned
from the EAServer component to a DataWindow control in the window. The
SetDW function takes the argument ablb_data, which is of type Blob, and
returns a Long value. The function has the following script:

long ll_rv

ll_rv = dw_employee.SetFullState(ablb_data)
if ll_rv = -1 then

MessageBox("Error", "SetFullState call failed!")
end if

return ll_rv

EAServer component

The EAServer component is a PowerBuilder user object called uo_employee.
The uo_employee object has a function called RetrieveData that uses a
DataStore to retrieve employee rows from the database.

Requesting a message back from the server

524 PowerBuilder

Instance variables The uo_employee object has these instance variables defined:

protected TransactionServer txnsrv
protected DataStore ids_datastore

RetrieveData function The RetrieveData function takes the argument ablb_data, which is of type Blob,
and returns a Long value. The function has the following script:

long ll_rv
ll_rv = ids_datastore.Retrieve()
ll_rv = ids_datastore.GetFullState(ablb_data)
txnsrv.SetComplete()
return ll_rv

Shared object definition

The client application uses a shared object called uo_sharedobject to
communicate with the EAServer component. The shared object has a single
function called RetrieveData.

Instance variables The uo_sharedobject object has these instance variables defined:

uo_employee iuo_employee
n_jagclnt_connect myconnect

Constructor event The Constructor event uses a custom Connection object called
n_jagclnt_connect to connect to the server. Then it creates an instance of the
EAServer component:

long ll_rc, ll_rv
myconnect = create n_jagclnt_connect
ll_rc = myconnect.ConnectToServer()
ll_rv = myconnect.CreateInstance(iuo_employee, &

"uo_employee")

RetrieveData function The RetrieveData function makes a synchronous call to the RetrieveData
function on the EAServer component. When the function completes
processing, it calls the Notify function on the callback object, passing it the
DataWindow Blob returned from the server component.

The RetrieveData function takes an argument called auo_callback, which is of
type uo_callback:

blob lblb_data
long ll_rv
ll_rv = iuo_employee.retrievedata(lblb_data)
auo_callback.notify(lblb_data)
return ll_rv

CHAPTER 25 Building an EAServer Client

Application Techniques 525

Callback object definition

When the EAServer component has finished processing, the shared object
notifies a user object called uo_callback, which in turn notifies the w_employee
window. The uo_callback object has two functions, Notify and PassObject.

Notify function The Notify function calls a function called SetDW on the w_employee window,
passing it the DataWindow Blob returned from the server component. The
Notify function takes the argument ablb_data, which is of type Blob, and returns
a Long value. The function has the following script:

long ll_rv
ll_rv = iw_employee.setdw(ablb_data)
if ll_rv = -1 then

MessageBox("Error", "SetDW call failed!")
end if
return ll_rv

PassObject function The PassObject function caches a reference to the w_employee window in the
iw_employee instance variable. The function takes the argument aw_employee,
which is of type w_employee, and returns a Long value:

iw_employee = aw_employee
return 1

Handling errors
PowerBuilder provides three layers of error handling that can be used by
clients connecting to EAServer:

• A mechanism, using try/catch/finally blocks, for handling exceptions
thrown by components running in EAServer

All system and runtime errors are converted into objects that descend from
the type RuntimeError.

• The Error event on the Connection and JaguarORB objects to handle
errors that occur in the context of an EAServer connection

• The SystemError event on the Application object to handle errors that
have not been trapped by any other mechanism

PowerBuilder records information about errors in a built-in Error structure.
This structure is used by the Error and SystemError events.

Handling errors

526 PowerBuilder

What the client can do A client application can handle communications errors in a number of ways.
For example, if a client connects to a server and tries to invoke a method for an
object that does not exist, the client can disconnect from the server, connect to
a different server, and retry the operation. Alternatively, the client can display
a message to the user and give the user the opportunity to control what happens
next.

When an error occurs, if the client connects to a new server to retry the
operation, it must instantiate the remote object on the new server before
invoking a method of the remote object.

Where errors are
handled

This is the sequence in which PowerBuilder executes error-handling code in an
EAServer client:

1 If an error occurs in the context of the Connection or JaguarORB object,
and the Error event of that object has a script associated with it,
PowerBuilder executes the event script, if any.

2 If any one of the following is true, any active exception handler for a
RuntimeError or its descendants is invoked:

• The Error event is not scripted

• The action argument of the Error event is set to ExceptionFail!

• The error does not occur in the context of the Connection or
JaguarORB object

3 If no exception handler exists, or if the existing exception handlers do not
handle the exception, the SystemError event on the Application object is
executed. If the SystemError event has no script, an application error
occurs and the application is terminated.

System exception
handler

PowerBuilder has a system exception handler that tries to catch fatal system
errors. It helps prevent the server from terminating because of problems with
individual client connections. Whenever a fatal error occurs in a client
connection, PowerBuilder tries to terminate the client connection without
bringing down the server or interfering with other client connections. Once the
problem has been detected, the system exception handler triggers a
SystemError event in the Application object, just as it would for any other
runtime error on the client.

Context-sensitive
error handling

Using the try/catch mechanism lets you handle errors where they occur,
making it less likely that an error thrown by a component results in a fatal error
in the client application. Scripting the Error event of the Connection object is
less precise and, unless the action argument of the Error event is set to
ExceptionFail!, bypasses any try/catch exception handlers.

CHAPTER 25 Building an EAServer Client

Application Techniques 527

You should therefore leave the Error event unscripted and add try/catch blocks
to your code to achieve the most effective error handling. You can use the
GetMessage function to retrieve the exception’s error message.

For more information about exceptions, see “Exception handling in
PowerBuilder” on page 36.

Because your error-handling code might not trap all the errors that occur, you
should always script the SystemError event of the Application object.

Handling CORBA exceptions
CORBA provides a standard way for components to indicate errors or
warnings. CORBA supports two types of exceptions:

• System exceptions

• User-defined exceptions

A system exception is one of a standard set of errors raised by the server. These
exceptions are defined in the CORBA specification.

A user-defined exception is an error or warning defined in the component’s
IDL. A user exception is a new datatype that describes a set of data elements
that are returned to the client when the exception is raised.

System exceptions In PowerBuilder, CORBA system exceptions are mapped to a set of objects
that inherit from the RuntimeError object. To see a list of these exceptions,
select CORBASystemException on the System tab in the PowerBuilder
Browser, select ShowHierarchy from the pop-up menu, and expand the
Treeview item.

The names of the CORBASystemException objects in PowerBuilder map to
the names of CORBA system exceptions as defined in the CORBA/IIOP
Specification with underscore characters omitted. For example, the
PowerBuilder CORBACommFailure exception maps to the
CORBA_COMM_FAILURE exception. For detailed information about
CORBA exceptions, see the CORBA/IIOP Specification, which can be
downloaded from the OMG Web site at www.omg.org.

You might want to provide error handling for the following exceptions when
you invoke methods on a component:

TRY
... // invoke methods
CATCH (corbacommfailure cf)

Handling errors

528 PowerBuilder

... // A component aborted the EAServer transaction,
// or the transaction timed out. Retry the
// transaction if desired.

CATCH (corbatransactionrolledback tr)
... // possibly retry the transaction
CATCH (corbaobjectnotexist one)
... // Received when trying to instantiate

// a component that does not exist. Also
// received when invoking a method if the
// object reference has expired
// (this can happen if the component
// is stateful and is configured with
// a finite Instance Timeout property).
// Create a new proxy instance if desired.}

CATCH (corbanopermission np)
... // tell the user they are not authorized
CATCH (corbasystemexception se)
... // report the error but don't bother retrying
FINALLY

// put cleanup code here
END TRY

User-defined
exceptions

User-defined exceptions are mapped to the CORBAUserException object,
which inherits from the Exception object. PowerBuilder clients can handle
exceptions thrown by any component type.

If an EAServer component has a method on it that is defined to throw an
exception, that method on the PowerBuilder proxy object is also declared to
throw a user-defined exception. The definition of the user-defined exception is
created when you create the component proxy.

CORBA does not support exception hierarchies
Exception hierarchies are not supported in the CORBA IDL. As a result, when
you generate proxies for a server component that has an inherited exception,
the generated proxies all inherit directly from CORBAUserException.

All Create, Remove, and FindByPrimaryKey methods on EJB components
throw the EJB CreateException, RemoveException, and FinderException
exceptions. These exceptions are represented by IDL exceptions with the same
name in the CtsComponents package in EAServer.

CHAPTER 25 Building an EAServer Client

Application Techniques 529

Scripting the Error event
What you do To handle errors in the Error event of the Connection object, you create a user

object that customizes the definition of the object. Once you have created the
custom Connection object, you can refer to it anywhere in your scripts where
you use a Connection object. If you use the JaguarORB event, you can script
its Error event in the same way.

The Connection Object wizard creates a custom Connection object for you. See
“Using the wizard to create a Connection object” on page 505.

Arguments to the
Error event

The Error event of the custom Connection object has several arguments that
provide information about the condition that caused the error. For example,
these arguments provide the error number and error text, as well as the name
of the object that caused the error and the full text of the script where the error
occurred.

In addition to the arguments that provide error information, the Error event has
an argument that lets you specify what action to take. To specify the action, you
assign one of four enumerated values (ExceptionFail!, ExceptionRetry!,
ExceptionIgnore!, or ExceptionSubstituteReturnValue!) to the Action argument
of the Error event.

Example In this example, the Error event script informs the user of the condition that
caused the communications error and gives the user the opportunity to control
what happens next. Depending on the user’s input, the client application fails,
retries the operation, or ignores the error and continues processing:

int li_choice
li_choice = MessageBox("Connection error " + &

string(ErrorNumber), ErrorText, &
Question!,AbortRetryIgnore!)

CHOOSE CASE li_choice
CASE 1

Action = ExceptionFail!
CASE 2

Action = ExceptionRetry!
CASE 3

Action = ExceptionIgnore!
END CHOOSE

Deploying the client application

530 PowerBuilder

Scripting the SystemError event
What you do In the SystemError event of the Application object, you can write a script to tell

PowerBuilder to halt application execution or ignore the error.

Example In this example, the SystemError event script displays a message informing the
user of the condition that caused the communications error and gives the user
the opportunity to control what happens next. Depending on the user’s input,
the client application halts execution or ignores the error and continues
processing:

string ls_logline = "SYSTEM ERROR: "
ls_logline += String(error.number) + " " + error.text
ls_logline += " occurred at line " + &

String(error.line) + " "
ls_logline += " in event " + error.objectevent
ls_logline += " of object " + error.object

if Messagebox("System Error", ls_logline + &
"~r~n~r~nDo you want to stop the program?", &
Question!, YesNo!) = 1 then
HALT CLOSE

end if

Deploying the client application
The procedure for deploying a client application in a distributed computing
environment is more or less the same as the procedure for deploying any other
PowerBuilder application. You have two basic ways to package your client
application:

• As a standalone executable (EXE) file that contains all the objects in the
application

• As an executable file and one or more dynamic libraries

You might also need to provide some additional resources that your application
uses, such as bitmaps and icons. You can provide resources in your executable
and/or dynamic libraries, or you can distribute them separately.

For complete instructions on creating an executable version of your
application, see the PowerBuilder User’s Guide. For information about the files
you need to deploy with your application, see Chapter 41, “Deploying
Applications and Components.”

Application Techniques 531

C H A P T E R 2 6 Using SSL in PowerBuilder
clients

PowerBuilder clients can use the Secure Sockets Layer (SSL) to connect
to EAServer. Among other security features, SSL provides
certificate-based authentication of the server, optional certificate-based
authentication of the client, and optional encryption of data transmitted
over the network.

Contents

Using secure connections with EAServer
The SSL protocol allows connections to be secured using public-key
encryption and authentication algorithms that are based on digital
certificates. SSL is a wrapper protocol: packets for another protocol are
secured by embedding them inside SSL packets. For example, HTTPS is
HTTP secured by embedding each HTTP packet within an SSL packet.
Similarly, IIOPS is IIOP embedded within SSL.

EAServer’s built-in SSL driver supports dynamic negotiation, cached and
shared sessions, and authorization for client and server using X.509
Digital Certificate support.

For an overview of security in EAServer and more information about
EAServer and SSL, see the EAServer Security Administration and
Programming Guide.

Topic Page

Using secure connections with EAServer 531

SSL connections in PowerBuilder 533

Establishing a secure connection 536

Using SSL callbacks 539

Retrieving session security information 543

Using secure connections with EAServer

532 PowerBuilder

For more information about the SSL protocol, see the documentation for
security on the Netscape DevEdge Web site at http://developer.netscape.com/.

Quality of protection The quality of protection (QOP) for EAServer packages, components, and
methods can be set in EAServer Manager. QOP establishes a minimum level
of encryption and authentication that a client must meet before it can access a
component’s business logic. For example, to set the quality of protection for a
component, add the com.sybase.jaguar.component.qop property on the All
Properties page of the component’s property sheet and set it to a security
characteristic provided with EAServer, such as sybpks_intl.

For a description of configuring QOP on the server and a list of security
characteristics provided with EAServer, see the EAServer Security
Administration and Programming Guide. This chapter describes configuring
QOP on the client.

SSL certificate-based
authentication

In EAServer Manager, you can configure a secure IIOP or HTTP port by
configuring a listener and associating a security profile with the listener. The
profile designates a security certificate to be sent to clients to verify that the
connection ends at the intended server, as well as other security settings.

PowerBuilder clients need a public key infrastructure (PKI) system to manage
digital certificates. You can use Security Manager, which manages the
EAServer certificate database, or you can use Entrust/Entelligence, available
separately from Entrust Technologies (http://www.entrust.com).

For more information about PKI and configuring secure ports and
authentication options, see the EAServer Security Administration and
Programming Guide.

Client installation
requirements

EAServer provides several sets of client runtime files. Because SSL support in
PowerBuilder clients is provided through the C++ client ORB, you should
install the SSL and C++ runtime files on the computer on which PowerBuilder
SSL clients will run. The installation includes the client-side security database,
SSL support libraries, and the client-side Security Manager. You also need to
configure the client installation to load the client libraries when you run your
application. See the Installation Guide for more information.

CHAPTER 26 Using SSL in PowerBuilder clients

Application Techniques 533

SSL connections in PowerBuilder
PowerBuilder provides two system objects for use with secure connections:

• SSLServiceProvider service object The SSLServiceProvider object is
an implementation of the EAServer CtsSecurity::SSLServiceProvider
interface. For more information about this interface, you can view the
EAServer interface repository documentation in a Web browser by
connecting to your server at http://hostname:portnumber/ir.

You use the GetGlobalProperty and SetGlobalProperty functions of the
SSLServiceProvider object to configure global SSL properties. For a
description of the global properties you can set and/or get, see “SSL
properties” on page 533.

You can also set SSL properties at the connection level by specifying them
in an options string for the Connection or JaguarORB object. Interactive
applications typically use the SSLServiceProvider object in conjunction
with the SSLCallback object. Applications that run without user
interaction typically configure SSL settings at the connection level. For
information about setting properties at the connection level, see “ORB
properties” on page 536.

• SSLCallback object To enable EAServer to request additional
information from the client using a callback method, you can implement
your own logic for the callback methods in an instance of the
SSLCallBack object. The SSLCallback object is an implementation of the
EAServer CtsSecurity::SSLCallback interface.

SSL properties
Table 26-1 lists the properties that can be set or retrieved using
SetGlobalProperty or GetGlobalProperty. For any SSL connection, you must set
the qop (quality of protection) property and, unless you implement a callback
to obtain it, you must also set the pin property. You also need to connect to a
server address that can support your chosen level of security, as described in
“Secure server addresses” on page 535.

Setting global properties in a PowerBuilder session
When you run a client application in PowerBuilder, you can set global
properties only once during the PowerBuilder session. You will need to restart
PowerBuilder each time you test the code that sets global SSL properties.

SSL connections in PowerBuilder

534 PowerBuilder

If some properties are not set or are set incorrectly, an SSL callback method is
invoked. If you do not specify an instance of the SSLCallback object, the
default callback implementation aborts the connection attempt.

Table 26-1: List of SSL properties

Property Description Get Set

callbackImpl Instance of the SSLCallback object. For more information, see
“Using SSL callbacks” on page 539.

Yes Yes

certificateLabel The client certificate to use if the connection requires mutual
authentication. The label is a simple name that identifies an X.509
certificate/private key in a PKCS #11 token.

Required for mutual authentication. If not set and the connection
requires mutual authentication, invokes the getCertificateLabel
callback method, passing an array of available certificate names as
an input parameter.

Yes Yes

qop The name of a security characteristic to use. Required for SSL. See
“Choosing a security characteristic” on page 535 for more
information.

Yes Yes

cacheSize The size of the SSL session ID cache. Default is 100. Yes Yes

SessLingerTime The number of seconds that a session ID entry is kept in the cache
after the last connection that used it is terminated. Default is 28800
seconds (8 hours).

Yes Yes

SessShareCount The number of concurrent SSL sessions that can use the same
session ID. Default is 10.

Yes Yes

pin The PKCS #11 token PIN.

This is required for logging in to a PKCS #11 token for client
authentication and for retrieving trust information. Required for
SSL.

If not set, set to any, or set incorrectly, the getPin callback method is
invoked.

No Yes

availableQop A list of available security characteristics. The qop property can be
set only to values that appear in this list.

Yes No

availableQopDesc A list of descriptions for the available security characteristics, in the
same order as listed in the value of the availableQop property.

Yes No

availableVersions A list of SSL protocol versions supported by the SSL runtime
engine.

Yes No

entrustReady TRUE if Entrust PKI software is available on the client, FALSE
otherwise.

Yes No

entrustIniFile The path name for the Entrust INI file that provides information on
how to access Entrust. Required when the useEntrustid property is
set to true.

If not set, the getCredentialAttribute callback method is invoked.

Yes Yes

CHAPTER 26 Using SSL in PowerBuilder clients

Application Techniques 535

Choosing a security
characteristic

To use SSL, you must specify the name of an available security characteristic
for the qop property. The characteristic describes the CipherSuites the client
uses when negotiating an SSL connection. When connecting, the client sends
the list of CipherSuites that it uses to the server, and the server selects a
CipherSuite from that list. The server chooses the first CipherSuite in the list
that it can use. If the server cannot use any of the available CipherSuites, the
connection fails.

The EAServer Security Administration and Programming Guide describes the
security characteristics that are provided with EAServer. You can retrieve a list
of characteristics available on the server and their descriptions by retrieving the
availableQop and availableQopDesc properties with GetGlobalProperty.

Secure server
addresses

You can connect only to a server listener that uses a security level that is
equivalent to or greater than the level requested in the qop setting. If you use
JaguarORB.string_to_object to instantiate a proxy for the
SessionManager::Manager interface, the listener specified by the server
address must use a security profile that matches the client’s qop setting.

entrustUserProfile The full path to the file containing an Entrust user profile. Optional
when the Entrust single-login feature is available, required
otherwise.

If not set, the getCredentialAttribute callback method is invoked.

Yes Yes

useEntrustID Whether to use the Entrust ID or the Sybase PKCS #11 token for
authentication. This is a boolean property.

If this property is set to FALSE, Sybase PKCS #11 token properties
are valid and Entrust-specific properties are ignored. If this property
is set to TRUE, Entrust-specific properties are valid and Sybase
PKCS #11 token properties are ignored.

Yes Yes

entrustPassword The password for logging in to Entrust with the specified user
profile. Optional when the Entrust single-login feature is available,
required otherwise.

If the password is required but not set or set incorrectly, the getPin
callback method is invoked.

No Yes

Property Description Get Set

Establishing a secure connection

536 PowerBuilder

ORB properties
When you connect to EAServer using either the Connection object or the
JaguarORB object, you are using the EAServer C++ client ORB. You can set
its properties in the Options string of the Connection object or using
JaguarORB’s Init function. These are the ORB properties that apply specifically
to secure connections:

• ORBqop

• ORBcertificateLabel

• ORBpin

• ORBuseEntrustID

• ORBentrustPassword

• ORBentrustIniFile

• ORBentrustUserProfile

The meaning of each of these properties is the same as that of the
corresponding SSL property, but the value affects only the connection that is
being established and not the entire session. Set ORBqop to sybpks_none to
prevent any use of SSL on a connection. This setting is useful if you have set
the QOP globally for all ORBs using the SSLServiceProvider object, and you
want to override the QOP for a single connection.

For a complete list of ORB properties, see the Help for the Connection object.

This example sets the ORBqop property to sybpks_simple and specifies a log
file:

myconnect.options = "ORBqop='sybpks_simple', " &
+ "ORBLogFile='C:\tmp\log.txt'"

Establishing a secure connection
To establish a secure connection to EAServer, follow these steps:

1 Create an instance of the SSLServiceProvider object.

2 Optionally use the GetGlobalProperty function to obtain security
information from the server.

3 Set properties required by the server using the SetGlobalProperty function.

CHAPTER 26 Using SSL in PowerBuilder clients

Application Techniques 537

4 Connect to the server using the ConnectToServer function of the
Connection object.

Creating an instance
of
SSLServiceProvider

This code creates an instance of the SSLServiceProvider object:

SSLServiceProvider sp
GetContextService("SSLServiceProvider", sp)

Getting information
from the server

Use GetGlobalProperty to obtain information about the security characteristics
of the server. This example gets information about supported CipherSuites
from the availableQop property, and displays the information in a drop-down
list:

int i, rc
string ls_values[]

rc = sp.GetGlobalProperty("availableQop", ls_values)

IF rc <> 0 THEN
MessageBox("Get Qop Failed", "rc = " + string(rc))
RETURN

END IF

FOR i = 1 to UpperBound(ls_values)
ddlb_1.AddItem(ls_values[i])

NEXT
RETURN

Setting global
properties

Before you connect to the server, you must set required global properties. This
code sets qop to the value sybpks_intl and pin to the value sybase:

int rc

rc = sp.SetGlobalProperty("qop", "sybpks_intl")
IF rc <> 0 THEN

MessageBox("Setting QOP Failed", &
"rc = " + string(rc))

ELSE
MessageBox("Set SSL QOP Property", "succeeded")

END IF
rc = sp.SetGlobalProperty("pin", "sybase")
IF rc <> 0 THEN

MessageBox("Setting PIN Failed", &
"rc = " + string(rc))

ELSE
MessageBox("Set SSL PIN Property", "succeeded")

END IF

Establishing a secure connection

538 PowerBuilder

Most of the properties set using SetGlobalProperty can be set only once for the
lifetime of the client executable. The properties remain in effect when the client
disconnects from or reconnects to the server.

Restarting PowerBuilder
When you run a client application in PowerBuilder, you can set global
properties only once during the PowerBuilder session. You will need to restart
PowerBuilder each time you test the code that sets global SSL properties.

If you want to use an instance of the SSLCallback object to obtain user input
interactively, you need to set the global property CallBackImpl. See “Using
SSL callbacks” on page 539.

Connecting to the
server

When you begin a secure session, the client and server exchange messages in
the SSL handshake process. The client provides information that the server
needs in order to communicate with the server, then the server must always
authenticate itself to the client before the process can continue. If the server
requires client authentication, the client must be authenticated before the
process can continue. When the required authentication is complete, the client
and server create symmetric keys that will be used for encryption, decryption,
and tamper detection in the SSL session. To catch any exceptions that are raised
during this process, you should enclose the ConnectToServer call in a try-catch
block.

When you establish a secure connection, use iiops instead of iiop in the
location property of the connection object. The server typically listens for
secure connections on ports 9001 or 9002. This example uses a Connection
object, g_connect, that has been declared as a global variable. The example
uses the options property of the Connection object to specify a different
CypherSuite for this connection:

long l_rc
g_connect.userid = sle_user.text
g_connect.password = sle_password.text
g_connect.driver = "jaguar"
g_connect.application = "myserverpkg"
g_connect.location = "iiops://myserver:9001"
g_connect.options = "ORBqop='sybpks_simple'"

TRY
l_rc = g_connect.ConnectToServer()

CATCH (userabortedexception uae)
MessageBox("UserAbortedException Caught", &

"ConnectToServer caught: " + uae.getMessage())
l_rc = 999

CHAPTER 26 Using SSL in PowerBuilder clients

Application Techniques 539

CATCH (CORBASystemException cse)
MessageBox("CORBASystemException Caught", &

"ConnectToServer caught: " + cse.getMessage())
l_rc = 998

END TRY
IF l_rc <> 0 THEN

MessageBox("Error", "Connection Failed - code: " &
+ string(l_rc))

MessageBox("Error Info", "ErrorCode= " &
+ string(g_connect.ErrCode) + "~nErrText= " &
+ g_connect.ErrText)

ELSE
MessageBox("OK", "Connection Established")

END IF

Troubleshooting
connections

When a secure connection fails, the error message that displays is the same as
for insecure connections. It does not provide any additional information about
the reason for failure. To obtain more information in a log file, you can enable
the ORBLogIIOP option and specify a value for the ORBLogFile option. In the
example above, you would replace the g_connect.options statement with
something like this:

g_connect.options = "ORBqop='sybpks_simple'" + &
"ORBLogIIOP='TRUE', ORBLogFile='d:\temp\ORBLog.txt'"

Alternatively, you can set the JAG_LOGFILE environment variable to specify
the log file in which initialization errors are recorded.

Using SSL callbacks
The SSLCallback object handles SSL requests for additional authentication
information from a server to a client application. The C++ ORB invokes
callback methods when a required setting, such as a pin, has not been specified,
or when the value specified is invalid.

The callback can respond to exceptional conditions, such as server certificates
that have expired. When using mutual authentication, the callback
getCertificateLabel method allows you to present a list of available certificates
to the user. Using a callback can also simplify handling of retry logic when the
user enters an invalid certificate or password.

Using SSL callbacks

540 PowerBuilder

To use the SSL callback mechanism, you need to follow these steps:

1 Create proxy objects for the CTS Security module in EAServer to obtain
SSL session information.

2 Create a standard custom class user object inherited from the SSLCallback
object and implement the callback functions you need.

3 Set the global SSL property CallBackImpl to the name of your
SSLCallback object and connect to the server.

Getting session information
SSL callback functions all have access to the SSL session information. You
should use this information to provide the user of the client application with
information needed to supply the required authentication information.

To make the SSL session information available to the callback functions, create
an EAServer proxy for the CTSSecurity module.

❖ To create a proxy for the CTSSecurity module:

1 Select the EAServer Proxy wizard from the Project page in the New dialog
box and select your client application target from the Target drop-down
list.

2 Connect to any EAServer host and select the CTSSecurity module.

The CTSSecurity module is a standard module that is available on all
servers.

3 Complete the wizard and build the project.

Among the proxy objects you will see in the System Tree is the
Sessioninfo object that is passed to all the SSLCallback functions.

CHAPTER 26 Using SSL in PowerBuilder clients

Application Techniques 541

Implementing the SSLCallback object
There are four callback functions.

Table 26-2: SSL callback functions

Each of these functions is implemented by the SSLCallback class and has a
default implementation. You need to implement any function for which you
want to use the callback. For sample implementations of each function, see the
PowerScript Reference or the online Help.

❖ To implement the SSLCallBack class:

1 Select Standard Class from the PBObject page of the New dialog box.

2 Select SSLCallback in the Select Standard Class Type dialog box and click
OK.

Function When it is called

GetCertificateLabel Called when the client application has not set a certificate
label for client authentication and the server has requested
client authentication.

GetCredentialAttribute Called when the client application has not set credential
attributes.

These attributes are used when the client application has
set the UseEntrustId property using the
SSLServiceProvider object. GetCredentialAttribute is
useful only if you are using Entrust IDs. For more
information about Entrust and PKCS 11 tokens, see the
EAServer Security Administration and Programming
Guide.

GetPin Called if the PKCS11 token is not logged in and the PIN
has not been set as a property of the SSLServiceProvider
object. It can also be called if the login session has timed
out.

TrustVerify Called when the server’s internal SSL trust verification
check fails to verify the server’s certificate chain or when
the pin to log in to the Sybase PKCS11 token was not
supplied or is incorrect.

TrustVerify can be invoked when you are using any SSL
protocol, because server authentication is a required step in
the SSL handshake process. The user can choose whether
to override the internal check and proceed with the SSL
connection.

Using SSL callbacks

542 PowerBuilder

3 Code a callback function to provide the user with information about the
session and prompt the user to return the required authentication
information.

4 Repeat step 3 for any other callback functions you want to implement.

Default
implementations

If you do not provide an implementation, or if your implementation returns an
empty string, the default implementation of the callback is used.

For both GetCertificateLabel and GetCredentialAttribute, the argument list
includes an array of string values that are valid return values for the callback.
The default implementation of these callbacks throws an exception if the array
is empty, and returns the first value in the array if it exists. As a result, the
connection process continues if the first value in the array is acceptable to the
server, but fails if the value is unacceptable.

For TrustVerify, the default implementation rejects the current connection.

Handling exceptions Your implementation of GetPin, GetCertificateLabel, and GetCredentialAttribute
should allow users to cancel the connection if they are unable to provide the
requested information. You can do this by throwing an exception in your
implementation of the function and catching it in a try-catch block that
surrounds the call to ConnectToServer. Exceptions thrown in any of the
callback functions raise the CTSSecurity::UserAbortedException exception.
You should add any exceptions that can be thrown by the function to the throws
clause of the function’s prototype.

Specifying the SSLCallback object
Before you connect to the server, specify the name of your SSLCallback object
in the CallbackImpl property of SSLServiceProvider:

SSLServiceProvider sp
int rc

getcontextservice("SSLServiceProvider", sp)
rc = sp.setglobalproperty("CallbackImpl", &

"uo_sslcallback")
IF rc <> 0 THEN

MessageBox("Set CallbackImpl Failed", "rc= " + &
string(rc))

RETURN
END IF
MessageBox("Set CallbackImpl Property", "succeeded")
RETURN

CHAPTER 26 Using SSL in PowerBuilder clients

Application Techniques 543

To make sure that the executable version of your client application can
reference your callback object, you need to declare a variable of its type in your
application, for example:

uo_sslcallback iuo_sslcb

This is because the callback object is referenced only by its string name so that
it is technically an unreferenced object and is not included in the executable
file. Your code does not need to use the declared variable.

Retrieving session security information
The CtsSecurity.SSLSession and CtsSecurity.SSLSessionInfo classes allow a
client application to determine whether SSL is used on connections from a
proxy to the server, and if so, to retrieve the SSL session settings and display
them to the user. For a list of the properties for which you can retrieve values,
see the EAServer interface repository documentation for SessionInfo in a Web
browser by connecting to your server at
http://hostname:portnumber/ir/CtsSecurity__SSLSessionInfo.html.

long rc
string stmp

CTSSecurity_sslSessionInfo mySessionInfo
rc = thesessioninfo._narrow(mySessionInfo, &

"SessionInfo")
MessageBox(str_header, "Narrow: rc=" + string(rc))

sTmp = "Properties"
sTmp = "~nVersion: "
stmp += mySessionInfo.getProperty("Version")
sTmp = "~nHost: "
stmp += mySessionInfo.getProperty("host")

stmp += "~nport: "
stmp += mySessionInfo.getProperty("port")
stmp += "~nciphersuite: "
stmp += mySessionInfo.getProperty("ciphersuite")
stmp += "~nCertificateLabel: "
stmp += mySessionInfo.getProperty("certificateLabel"
)
stmp += "~nUserData: "
stmp += mySessionInfo.getProperty("UserData")

Retrieving session security information

544 PowerBuilder

stmp += "~ntokenName: "
stmp += mySessionInfo.getProperty("tokenName")
stmp += "~nuseEntrustID: "
stmp + = mySessionInfo.getProperty("useEntrustID")
MessageBox(str_header, stmp)

Application Techniques 545

C H A P T E R 2 7 Building a COM or COM+
Component

About this chapter This chapter explains how to use PowerBuilder to build a COM or COM+
component.

Contents

About building COM and COM+ components
You can develop a custom class user object containing business logic in
PowerBuilder and then package the object as a COM server or COM+
application.

On platforms that support COM+, such as Windows 2000 and Windows
XP, you can build COM+ applications and deploy them to COM+.

The rest of this chapter uses the term COM components to refer to
components that support COM and COM+.

Topic Page

About building COM and COM+ components 545

About the Component Object Model 548

Defining the component interface 550

Accessing a database from a COM component 554

Providing support for transactions 558

Invoking another server component’s methods 560

Security issues 561

Building COM/COM+ components in the Project painter 562

How the PowerBuilder COM object executes 565

Deploying a PowerBuilder COM server 566

Accessing PowerBuilder COM servers from clients 567

About building COM and COM+ components

546 PowerBuilder

A PowerBuilder COM application can include one or more PowerBuilder
custom class user objects. You code the user objects in the User Object painter
and then build the server in the Project painter. You can also deploy the
application directly to a local COM+ server or create a COM+ Microsoft
Installer package from the Project painter.

Once you have generated and deployed a PowerBuilder COM application,
users can call methods on the PowerBuilder objects it contains from
COM-enabled client applications built with tools such as PowerBuilder, Visual
Basic, and C++ compilers.

About using the wizards
PowerBuilder provides several wizards to facilitate the development and
deployment of COM components:

• Target wizard Creates a new application, a new custom class user
object, and a new project

• Object wizard Creates a new custom class user object in an existing
application and creates a new project

• Project wizard Creates a project you use to build a COM server and
optionally a COM+ package from one or more existing custom class user
objects

When you create a new user object using a COM/COM+ Target or Object
wizard:

• The object has two new events: Activate and Deactivate.

• The object has COM validation support enabled.

• If you checked the box on the last page of the wizard, the wizard adds
items to a To-Do List to remind you to complete all phases of
development.

When to use the
wizards

New objects If you plan to build a server containing a single new custom
class user object, use the Target or Object wizard to take advantage of these
features.

If you plan to build a server containing multiple new custom class user objects,
using the Target or Object wizards will give you a separate project for each
object, so you will need to add all the objects to one of the projects and discard
the other projects.

CHAPTER 27 Building a COM or COM+ Component

Application Techniques 547

Alternatively, you can create new custom class user objects without using the
Target or Object wizards and then create the project later using the Project
wizard or the Project painter.

You can enable COM validation and add the Activate and Deactivate events as
user-defined events in the User Object painter. For more information, see
“COM validation” on page 553.

Existing objects If you have one or more custom class user objects that you
want to deploy as COM servers, make sure that they meet the requirements
described in “Defining the component interface” on page 550 and the
subsequent sections. As for new user objects, you can enable COM validation
and add the Activate and Deactivate events as user-defined events in the User
Object painter. When you are ready to build the server, you can use the Project
wizard to set up the project.

About the development process
To build and deploy a PowerBuilder COM server from one or more custom
class user objects, you need to complete the following steps:

1 Create a new custom class user object or open an existing user object.

If you use a Target or Object wizard, you also create a project object that
you use to build and deploy the new object.

2 Code the user object in the User Object painter.

See “Defining the component interface” on page 550.

3 Optionally, create and code additional user objects in the same application.

4 If you did not use a wizard to create the user object(s), create a project
using the COM/COM+ Component Project wizard or the Project painter.

See “Building COM/COM+ components in the Project painter” on page
562.

5 Open the project, modify the list of selected objects and their properties if
necessary, and build the project.

6 Deploy the server.

See “Deploying a PowerBuilder COM server” on page 566.

About the Component Object Model

548 PowerBuilder

About the Component Object Model
The Microsoft Component Object Model (COM) defines a standard way for
software components to supply services to each other. Any PowerBuilder
custom class user object can be used as a COM object by providing it with a
runtime environment, a registry entry, and optionally a type library. Clients
built with COM-compliant tools such as PowerBuilder and Visual Basic can
make use of the business logic in the COM object by creating an instance of the
object and calling the methods exposed in its interface. Depending on the
interfaces it supports, the COM object may also be available to Java and C++
clients.

COM+ enhances COM by handling more resource management tasks and
providing thread pooling, object pooling, and just-in-time object activation.

About PowerBuilder COM servers
PowerBuilder creates a single PowerBuilder COM server that contains a
PowerBuilder COM object for every custom class user object you select when
you build the project.

COM specifies how objects are created and destroyed, how their interfaces are
exposed, and how their methods are invoked. PowerBuilder COM servers
follow the COM specification; this means that from a client perspective, the
fact that a PowerBuilder COM object interacts with a custom class user object
(through the PowerBuilder virtual machine) is transparent.

Comparing automation servers and PowerBuilder COM servers
PowerBuilder provides two ways to generate COM objects: in PowerBuilder
COM servers or automation servers. Both are accessible from wizards and
from the Project painter. PowerBuilder COM servers offer many more features
than automation servers.

PowerBuilder COM servers PowerBuilder COM servers can contain more
than one custom class user object. After you code the user objects, you use the
Project painter to generate a single self-registering DLL for all the objects. You
can also deploy the server directly to COM+ if it is running on the build
computer, or create a COM+ package. PowerBuilder COM objects in a COM
server can share runtime sessions, and references can be passed between
objects created from the same COM client.

CHAPTER 27 Building a COM or COM+ Component

Application Techniques 549

The COM server also contains an embedded PowerBuilder dynamic library
(PBD) file that contains compiled versions of all the custom class user objects
you selected and any dependent objects, as well as registry and type library
information.

Automation servers Automation servers built from a PowerBuilder custom
class user object contain only one object. After you code the user object, you
build a runtime library from the PBL that contains it, and then use the Project
painter to create a registry file and optional type library file. When you deploy
the automation server, you customize the registry file for the user’s computer
and then run the file to register the automation server.

You deploy the PowerBuilder virtual machine with an automation server or a
PowerBuilder COM server, along with any other PowerBuilder runtime files
the server requires.

Dispatch, dual, and
custom interfaces

Automation servers use a dispatch interface (also called dispinterface) that
allows users to invoke methods on the server using the Invoke method of a
standard COM interface called IDispatch.

COM servers can use custom or dual interfaces, which provide better
performance than dispatch-based interfaces. A custom interface provides
access to methods on the server through a virtual table (also called VTBL or
vtable) that contains pointers to methods in the server’s interface. A dual
interface enables the client to invoke methods using IDispatch::Invoke or a
virtual table.

For more information, see “Choosing a custom or dual interface” on page 564.

Summary of
differences between
servers

Table 27-1 summarizes the differences between PowerBuilder automation
servers and PowerBuilder COM servers using dual or custom interfaces:

Table 27-1: Comparison of automation servers and COM servers

Feature

Automation
server
(dispatch
interface)

COM server
(dual
interface)

COM server
(custom
interface)

In-process server support Yes* Yes Yes

Generated IDL files No Yes Yes

C++ client support No Yes Yes

Java client support Yes Yes No

PowerBuilder client support Yes Yes No

Visual Basic 4 client support Yes Yes No

Visual Basic 5 custom interface
support

No No Yes

Defining the component interface

550 PowerBuilder

* In-process server is the PowerBuilder execution DLL (PBVM105.DLL)
Requires use of surrogate host to house the PowerBuilder execution DLL

Defining the component interface
When you build a PowerBuilder custom class user object as a COM
component, the functions and optionally the instance variables defined for the
object appear in the component interface. PowerBuilder generates an IDL file
that defines a COM class and a single interface for each custom class user
object contained in the server, as well as a type library name and an associated
ID for the PowerBuilder COM server.

Support for PowerBuilder
structures as instance variables
and method argument types

No No No

Support for all C language
datatypes

No No No

Support for an embedded type
library

No Yes Yes

Self-registering servers No Yes Yes

Support for DCOM # Yes Yes Yes

Support for EAServer Yes Yes No

Support for COM+ No Yes Yes

Requires separate proxy/stub
DLLs

No No No

Requires PowerBuilder runtime
DLLs (minimally
PBVM105.DLL and its
dependencies)

Yes Yes Yes

Requires deployment of
application runtime libraries built
in Library painter

Yes No No

Feature

Automation
server
(dispatch
interface)

COM server
(dual
interface)

COM server
(custom
interface)

CHAPTER 27 Building a COM or COM+ Component

Application Techniques 551

Methods and datatypes
Functions Each PowerBuilder COM object supports a single interface that exposes a

method for each user-defined public function in the custom class user object.

The function’s return value is represented by an additional retval argument. For
example, if an object has these user object functions:

f_addtwo (long al_num1, long al_num2) returns long
f_getinfo (REF string as_name, REF integer ai_age,

REF character ac_gender) returns integer

These member functions are generated in the IDL file:

HRESULT f_addtwo([in] long al_num1,
[in] long al_num2, [out, retval] long * retval);

HRESULT f_getinfo([in, out] BSTR * as_name,
[in, out] short * ai_age, [in, out] unsigned
char * ac_gender, [out, retval] short * retval);

Instance variables Since COM objects never expose their data, public instance variables in the
custom class user object can be represented in the COM object as interface
methods for getting and setting the variable value. To specify that variable
accessor methods will be exposed in the interface, you can use the Project
wizard or the Objects property page in the Project painter.

 If the public variable is writable, the put method will be exposed. For private
and protected variables and variables declared as privateread or protectedread
and privatewrite or protectedwrite, no methods are generated. If the variable is
publicly readable, the get method will be exposed. For example, if an object
has these instance variables:

public string is_name
private integer ii_a
public privatewrite string is_label
constant real lr_pi = 3.14159265

These are the methods that are generated in the IDL file:

[id(4), propget] HRESULT is_name([out,retval]
BSTR *is_name);

[id(4), propput] HRESULT is_name([in]
BSTR is_name);

[id(1), propget] HRESULT is_label([out,retval]
BSTR *is_label);

[id(6), propget] HRESULT lr_pi([out,retval]
float * lr_pi);

Datatype mappings PowerBuilder datatypes map to COM datatypes as shown in Table 27-2.

Defining the component interface

552 PowerBuilder

Table 27-2: PowerBuilder and COM datatype mapping

* Custom class user objects must be created within the same client in the same COM apartment
(that is, in the same thread)

Restrictions on coding
There are some elements that you cannot use in your code when you plan to
deploy a user object as a COM component.

No overloaded
functions

COM does not support overloaded functions in an interface to a COM object.
Each function in the user object (and its ancestors) must have a unique name.
PowerBuilder COM objects have a single interface, and multiple functions
with the same name but different signatures would require multiple interfaces.

PowerBuilder datatype COM datatype (variants)

Boolean Variant_BOOL

Character Unsigned char

Integer Short

UnsignedInteger Unsigned short

Long Long

UnsignedLong Unsigned long

Real Float

Double Double

Decimal Double

String BSTR

Date DATE

Time DATE

DateTime DATE

Blob SAFEARRAY (Unsigned char)

Arrays (PowerBuilder datatype) SAFEARRAY (COM datatype)

ResultSet LPDISPATCH

Custom class user objects* LPDISPATCH

Any Not supported

Global structures Not supported

OLEObjects Not supported

CHAPTER 27 Building a COM or COM+ Component

Application Techniques 553

How ancestor
variables and
ancestor functions are
represented

When you generate a PowerBuilder COM object from a descendent user
object, the public instance variables and functions of both the ancestor and the
descendant are represented in the COM object. The fact that some of the
component methods were derived from the ancestor object is transparent.
Because of the restriction on overloaded functions described above, functions
in descendent objects can override functions in the ancestor, but they cannot
overload them.

Datatypes for
arguments and return
values

The methods associated with a nonvisual object that you deploy as a COM
object can take arguments that use the following datatypes:

• Standard OLE automation datatypes

• Custom class (nonvisual) user objects

COM component methods cannot take arguments or return values that use
PowerBuilder structures or the Any datatype. Functions defined on a
PowerBuilder nonvisual object that take an Any variable as an argument or
return an Any variable can be called from code that is local to that object;
however, these functions cannot be accessed by clients or other COM
components.

The arguments to a component method cannot include visual objects (such as
windows or menus) or most system types (such as the Transaction object or the
DataStore object). The only system type supported is the ResultSet object.

The return value of a component method can be of any standard datatype. The
return value can also be a custom class (nonvisual) user object.

COM validation If you are designing a custom class user object that you plan to deploy as a
COM component, you can have PowerBuilder warn you when you use code
elements that are not valid in COM.

COM validation checks for overloaded functions and checks public instance
variables and public functions for system types, visual types, structures, and
Any variables.

In the User Object painter, make sure the Design>COM Validation menu item
is checked. When you save the object, the Output window lists warnings such
as the following:

Information C0197: Component Validation
Warning C0198: illegal COM type: 'any' arg type for
function: 'of_badfunc'
Warning C0198: illegal COM type: 'window' arg type for
function: 'of_badfunc'

Accessing a database from a COM component

554 PowerBuilder

Validation is associated with the object you are editing, not with the User
Object painter. When you reopen an object, it has the same validation state as
when you closed it. New COM objects are created with COM validation
checked.

Recording errors in a log file
To record errors generated by COM objects running in COM+ to the Windows
system application log, create an instance of the ErrorLogging service context
object and invoke its log method. For example:

ErrorLogging el
this.GetContextService("ErrorLogging", el)
el.log("Write this string to log")

Automatic recording of exception information
Information about the exception type and location of an exception caused by a
PowerBuilder component running on the server is recorded automatically in
the server log. It is no longer necessary to invoke the error logging service to
obtain minimal information about these exceptions.

Accessing a database from a COM component
To take advantage of COM+ support for transaction management, you need to
use one of the database interfaces supported by COM+ to connect to your
database. For more information about database connections for components
developed in PowerBuilder, see Connecting to Your Database.

COM components developed in PowerBuilder can use DataStores to interact
with the database. DataStores are nonvisual DataWindow controls that act just
like DataWindow controls except that they do not have visual attributes. They
can be useful in a distributed application: they give you the ability to perform
database processing on a remote server instead of on each client computer.

For more information about using DataStores for database access in a
transaction server environment, see “Using DataStores” on page 462.

CHAPTER 27 Building a COM or COM+ Component

Application Techniques 555

Passing result sets
PowerBuilder provides three system objects to handle getting result sets from
components running in transaction server environments and returning result
sets from PowerBuilder user objects running as transaction server components.
These system objects, ResultSet, ResultSets, and ADOResultSet, are designed
to simplify the conversion of transaction server result sets to and from
DataStore objects and do not contain any state information. They are not
designed to be used for database updates. You can use ADOResultSet only with
COM components.

COM+ uses ActiveX Data Objects (ADO) RecordSet objects to return result
sets. An ADO Recordset object consists of records (rows) and fields (columns)
and represents the set of records in a database table.

ADO Recordsets and
PowerBuilder system
objects

In PowerBuilder you use functions on the PowerBuilder ADOResultSet
system object to get and set data that is passed in an ADO Recordset.
PowerBuilder clients use OLEObjects to handle ADO Recordsets. You use the
CreateFrom and GenerateResultSet functions on the DataStore object to
convert the result sets stored in ResultSet objects to and from DataStore
objects.

About GenerateResultSet
GenerateResultSet has an alternative syntax used for returning result sets when
using MASP (Method as Stored Procedure) with EAServer.

Table 27-3 summarizes how these objects interact.

Table 27-3: Result set objects

Use a variable
of this type In this way

ResultSet As the return value of a method (function) defined for a COM
component. The data is marshaled as an ADO Recordset.

OLEObject To hold the ADO Recordset returned from a method on a COM
component that returns a ResultSet. The OLEObject can be
manipulated using ADO Recordset functions such as MoveFirst.

Accessing a database from a COM component

556 PowerBuilder

Accessing result sets
in COM components
from PowerBuilder
clients

When a PowerBuilder client calls a COM component method that returns an
ADO Recordset, the data returned is stored in an OLEObject object. You can
manipulate the data in the ADO Recordset using Recordset functions, as
described in "Using ADO Recordsets in PowerBuilder" next.

To use the data stored in the OLEObject object to populate a DataStore object,
create an ADOResultSet object and then call its SetRecordSet function to
populate it with data stored in the OLEObject object.

The data in the ADOResultSet object can be used to populate a DataStore
object using the CreateFrom DataStore function:

OLEObject loo_mycomponent
OLEObject loo_ADOrecordset
ADOresultset lrs_ADOresultset
datastore ds_local
integer li_rc
loo_mycomponent = CREATE OLEObject

li_rc = loo_mycomponent.ConnectToNewObject("PB.Test")
if li_rc <> 0 then

MessageBox("Connect Failed", string(li_rc))
Return

end if

// Use an OLEObject to hold ADO Recordset
// returned from method on COM component
loo_ADOrecordset = loo_mycomponent.GetTestResult()

// Create an ADOResultSet and get its data

ADOResultSet Use SetResultSet to populate an ADOResultSet object with data
from a ResultSet object.

Use SetRecordSet to populate an ADOResultSet object with data
from an OLEObject that holds an ADO Recordset.

Use GetRecordSet to populate an OLEObject with data from an
ADOResultSet. The OLEObject can be manipulated using ADO
Recordset functions such as MoveFirst.

DataStore Use CreateFrom to create a DataStore from an object of type
ResultSet or ADOResultSet.

Use GenerateResultSet to generate a ResultSet object from a
DataStore object in a method on a transaction server. The
ResultSet object can be returned to a client.

Use a variable
of this type In this way

CHAPTER 27 Building a COM or COM+ Component

Application Techniques 557

// from OLEObject holding passed ADO Recordset
lrs_ADOresultset = CREATE ADOResultSet
lrs_ADOresultset.SetRecordSet(loo_ADOrecordset)

// Use CreateFrom to populate DataStore
// from ADOResultSet object
ds_local = CREATE datastore
ds_local.createfrom(lrs_ADOresultset)

Using ADO
Recordsets in
PowerBuilder

If you want to manipulate an ADO Recordset in PowerBuilder using ADO
Recordset methods such as MoveFirst or MoveNext, you can use the
SetResultSet and GetRecordSet functions. Use SetResultSet to populate a new
ADOResultSet object with data from a ResultSet object, then use
GetRecordSet to return the ADO Recordset.

This example generates a result set in a ResultSet object from an existing
DataStore object. The ResultSet object is used to populate a new
ADOResultSet object. The GetRecordSet function on the ADOResultSet
object is used to return an ADO Recordset as an OLEObject that can be used
with ADO Recordset methods.

ResultSet lrs_resultset
ADOresultset lrs_ADOresultset
OLEObject loo_ADOrecordset

// Generate a result set from an existing DataStore
ds_source.GenerateResultSet(lrs_resultset)

// Create a new ADOResultSet object and populate it
// from the generated result set
lrs_ADOresultset = CREATE ADOResultSet
lrs_ADOResultset.SetResultSet(lrs_resultset)
// Pass the data in the ADOResultSet object

// to an OLEObject you can use as an ADO Recordset
loo_ADOrecordset = CREATE OLEObject
lrs_ADOResultset.GetRecordSet(loo_ADOrecordset)

// Call native ADO Recordset methods on the OLEObject
loo_ADOrecordset.MoveFirst()

Returning result sets
from COM and COM+
components

To pass or return result sets from a PowerBuilder user object that will be
deployed to COM or COM+, set the datatype of a function’s argument or return
value to ResultSet. When the GenerateResultSet function is called to create a
result set from a DataStore object in COM or COM+, the result set is marshaled
and returned to the client as an ADO Recordset.

Providing support for transactions

558 PowerBuilder

In this example, a DataStore object is created and data is retrieved into it, and
then the GenerateResultSet function is used to create a result set that can be
returned to a client:

datastore ds_datastoreresultset lrs_resultset
integer li_rc

ds_datastore = create datastore
ds_datastore.dataobject = "d_empdata"
ds_datastore.SetTransObject (SQLCA)
IF ds_datastore.Retrieve() = -1 THEN

// report error and return
END IF

li_rc = ds_datastore.generateresultset(lrs_resultset)
IF li_rc <> 1 THEN

// report error and return
END IF
return lrs_resultset

Providing support for transactions
If a component supports transactions, COM+ ensures that the component’s
database operations execute as part of a transaction.

Using the transaction
service context object

PowerBuilder components running in COM+ can use a transaction context
service to control transactions. A PowerBuilder COM object creates a context
object that enables the component to take advantage of Microsoft DTC
support. The TransactionServer object enables a COM object running in
COM+ to access the context associated with the object, giving it tighter control
of transactions and activation. It also provides some control of the security
context.

For more information about the TransactionServer object and its methods, see
Objects and Controls and the PowerScript Reference.

Before you can use the transaction context service, you need to declare a
variable of type TransactionServer and call the GetContextService function to
create an instance of the service:

TransactionServer txninfo_base
this.GetContextService("TransactionServer", &

txninfo_base)

CHAPTER 27 Building a COM or COM+ Component

Application Techniques 559

To access information about the component’s transaction context and control
the transaction, call methods on the instance of the TransactionServer object—
for example:

IF txninfo_base.IsInTransaction() THEN
txninfo_base.DisableCommit()

END IF
...
txninfo_base.SetComplete()

When you no longer need the reference to the service, you should destroy it:

DESTROY txninfo_base

Behavior of COMMIT
and ROLLBACK

When a PowerBuilder component is running in COM+, the TransactionServer
interface is used to control transactions when the UseContextObject DBParm
parameter is set to Yes. When the UseContextObject DBParm parameter is set
to Yes, COMMIT and ROLLBACK statements result in a database error. The
transaction remains active until SetComplete or SetAbort is issued using an
instance of the TransactionServer context object.

Migrating PowerBuilder 6 components
Components built with PowerBuilder 6 relied on the PowerBuilder database
driver to issue SetComplete or SetAbort calls to COM+. If you are migrating
these components to the current version of PowerBuilder, modify your code to
use the TransactionServer interface. Alternatively, you can set the
UseContextObject DBParm to No. In this case, COMMIT is equivalent to
SetComplete and ROLLBACK is equivalent to SetAbort. This approach is
recommended only when you want to migrate PowerBuilder 6 objects without
modifying the code.

Specifying whether a
component supports
transactions

Each COM+ component has a transaction property that indicates how the
component participates in transactions. PowerBuilder COM objects create a
new context object when the component transaction property in COM+ is set
to Requires a new transaction. A PowerBuilder COM object whose component
transaction property is set to Requires a transaction or Supports transactions
either inherits a transaction from an existing object or creates a new
transaction.

You set this property in the COM/COM+ Project wizard or the Project painter.
Table 27-4 describes the values you can set.

Invoking another server component’s methods

560 PowerBuilder

Table 27-4: Component transaction property values

For more information about how transactions work, see the Microsoft COM+
documentation in the MSDN Library at
http://msdn.microsoft.com/library/default.asp.

Invoking another server component’s methods
COM+ allows the methods of one server component to call methods of another.
The other server component does not need to be another PowerBuilder
component; it can be implemented in any language supported by COM+.

Using an OLEObject
object

To access methods of another component, declare a variable of type
OLEObject and call the ConnectToNewObject function to connect to the
component, just as you would when calling the component from a client.
ConnectToNewObject inherits the server object’s transaction context
automatically.

Transaction type Description

Not supported The component never executes as part of a transaction. If
the component is activated by another component that is
executing within a transaction, the new instance’s work is
performed outside the existing transaction.

Supports Transaction The component can execute in the context of a COM+
transaction, but a connection is not required to execute the
component’s methods. If the component is instantiated
directly by a client, COM+ does not begin a transaction. If
component A is instantiated by component B and
component B is executing within a transaction, component
A executes in the same transaction.

Requires Transaction The component always executes in a transaction. When the
component is instantiated directly by a client, a new
transaction begins. If component A is activated by
component B, and B is executing within a transaction, A
executes within the same transaction; if B is not executing
in a transaction, A executes in a new transaction.

Requires New
Transaction

Whenever the component is instantiated, a new transaction
begins. If component A is activated by component B, and
B is executing within a transaction, then A begins a new
transaction that is unaffected by the outcome of B’s
transaction; if B is not executing in a transaction, A
executes in a new transaction.

CHAPTER 27 Building a COM or COM+ Component

Application Techniques 561

Using a
TransactionServer
object

To access methods of another component in the current server, you can also use
the transaction service context object that PowerBuilder provides called
TransactionServer. The TransactionServer interface provides a method called
CreateInstance that allows you to access other components that are available
locally. CreateInstance uses the same user and password information that
applies to the component from which it is called.

Security issues
When you develop a component for deployment to COM+, you can define
roles that determine which users or groups of users are authorized to perform
specific transactions. Then when you deploy the component, you assign roles
to specific users in the COM+ Component Services tool.

Enabling authorization
in the Project painter
or wizard

When you create a COM/COM+ project using a wizard, you can instruct
COM+ to check the security credentials of any client that calls the component.
In the Project painter, you can specify checking at both the component and
package level on the COM+ Component and COM+ Package property pages.

To ensure that security is enabled, add a role to the COM application in the
Microsoft Management Console, add users to the role, and grant the role to the
component.

Programmatic security PowerBuilder provides functions on the transaction service object that you can
use in the component to determine programmatically whether the caller is
authorized to call a specific method. IsSecurityEnabled determines whether
security is enabled for the component. IsCallerInRole determines whether the
client process or server process calling a method on the component is in a role
that is authorized to call it.

Impersonation IsCallerInRole looks at the role of the direct caller of the current method. If a
client calls a method on a component, and that method accesses a database, the
access rights to the database are determined by the security context of the
component, not the client. PowerBuilder provides additional functions on the
transaction service object to enable the component to assume the security
context of the client before performing an operation that the client may not be
authorized to perform. ImpersonateClient assumes the security context of the
client, IsImpersonating determines whether the component is running in its
client’s security context, and RevertToSelf restores the component’s security
context.

Building COM/COM+ components in the Project painter

562 PowerBuilder

Building COM/COM+ components in the Project painter
You build PowerBuilder COM servers in the Project painter.

If you did not create a project when you created the user object, you can use the
COM/COM+ Project wizard to create one. You can also set up a project to
build a COM component directly in the Project painter by selecting the
COM/COM+ Component icon on the Projects tab.

If you have already created a COM/COM+ project for one or more of the
objects you want to build into a COM server, you can modify it in the Project
painter, adding additional objects if necessary.

The Project painter workspace is a read-only display that shows the options
you selected in the wizard or in the Select Objects and Properties dialog boxes
in the painter. When you build a PowerBuilder COM server, the workspace
also displays an object inspection report and the status of each phase of the
build process.

❖ To define and build a PowerBuilder COM server project:

1 Select COM/COM+ Component Wizard from the Projects tab in the New
dialog box.

2 Specify project properties including the project’s name and location.

3 Select one or more objects that you want to build into a server.

4 Specify the properties of each object and optional COM+ deployment
options and click Finish.

For help specifying properties, see the context-sensitive Help in the wizard
or the following topics:

Property For information see

Interface options “Choosing a custom or dual interface” on page
564 and “Instance variables” on page 551

Build options “Setting up the embedded PBD” on page 564

Registering components “Registering components automatically” on page
563

COM+ deployment and
package options

 “Deploying components to COM+” on page 564

COM+ transaction settings “Specifying whether a component supports
transactions” on page 559

COM+ security “Security issues” on page 561

CHAPTER 27 Building a COM or COM+ Component

Application Techniques 563

5 Select File>Open and select the project you just created to open the Project
painter.

You can verify that the correct objects are selected by selecting
Edit>Select Objects from the menu bar.

6 Select Edit>Properties to verify and optionally modify the properties you
set in the wizard.

Some advanced COM+ package properties can be set only in the Project
painter.

7 Click the Build button in the Project painter to build the PowerBuilder
COM server.

The build process creates an IDL file and a PowerBuilder COM server
(DLL) containing a PowerBuilder COM object for each user object you
selected. If you specified deployment to COM+ and it is installed and
running on the computer where you are generating the component, the
component is deployed directly to the server, and additional deployment
files can be created.

The PowerBuilder COM server also contains an embedded PBD file that
contains the custom class user objects and any additional objects they
reference, and an embedded type library.

Building a project after calling an object
When you call a COM object in the development environment, the COM object
stays in memory until you exit PowerBuilder, because it is hosted in the same
process as PowerBuilder. If you make a change to the object after calling it and
try to regenerate it in the Project painter, you receive compile and link errors.
Before you build the project, shut down and restart PowerBuilder to free the
object from memory.

Registering components automatically
In the Project wizard or Project painter, you can choose to register all generated
PowerBuilder COM objects automatically when a build is successful. This
makes it easy to test the component on your computer. To avoid making
unnecessary registry entries on your computer, select this option only when
you are ready to test the PowerBuilder COM server.

Building COM/COM+ components in the Project painter

564 PowerBuilder

Deploying components to COM+
You can deploy components to COM+ automatically when a build is
successful. You can also export the application to a Microsoft Windows
Installer (MSI) file that you can use to import the package into a COM+ server
on another computer, and export an application proxy as an MSI file that can
be installed on a client computer so that it can access the COM+ server
remotely. For more information about deploying COM+ components, see the
Microsoft COM+ documentation in the MSDN Library at
http://msdn.microsoft.com/library/default.asp.

Choosing a custom or dual interface
When you generate a PowerBuilder COM object, you must choose whether to
expose a custom interface or a dual interface to clients. In PowerBuilder COM
objects, both interface types are currently restricted to the use of standard OLE
automation datatypes.

Custom interfaces Custom interfaces provide access to server object virtual function tables
(VTBL), offering higher performance than dispatch-based interfaces and a
cleaner usage model than dual interfaces. Consider using a custom interface if
the intended client is in a compiled language such as C++ or if you want to take
advantage of the support for custom interfaces in a tool such as Visual Basic.

PowerBuilder COM objects that use custom interfaces use the standard
marshaling provided by COM.

Dual interfaces Dual interfaces allow programmers to call methods in the COM object through
virtual function tables as well as through the dispatch interface. They support
a wide range of clients and give fast access to methods.

Setting up the embedded PBD
The COM server contains an embedded PowerBuilder dynamic library (PBD)
file that contains compiled versions of all the custom class user objects you
selected plus any dependent objects. You can include additional, unreferenced
objects in the PBD by selecting the library that contains the objects on the
Library properties page. All the objects in selected libraries are included in the
PBD.

CHAPTER 27 Building a COM or COM+ Component

Application Techniques 565

You can specify the name of a PowerBuilder Resource (PBR) file associated
with the library. A PBR file is a text file that lists dynamically assigned
resources such as bitmaps. For more information, see “About resources” on
page 746.

How the PowerBuilder COM object executes
To establish an instance of a PowerBuilder COM object, the PowerBuilder
virtual machine (PBVM105.DLL) loads the custom class object from the PBD
embedded in the COM server DLL and creates the proper session and instance
information. When a client invokes a PowerBuilder COM object method, the
method calls back into the PowerBuilder virtual machine to execute the
appropriate PowerScript code.

PowerBuilder COM servers use the COM single-threaded apartment (STA)
model. Runtime sessions can be shared by objects created on the same thread.
When a client requests an instance of a PowerBuilder COM object, the
PowerBuilder COM server establishes a runtime session and creates an
instance of the custom class user object within that runtime session. When the
server receives a new request for an instance of a COM object from the same
thread, it instantiates the object using the existing runtime session.

In all cases, separate clients use distinct PowerBuilder virtual machine
sessions.

Memory allocation
The first time any client requests an instance of a PowerBuilder COM object
from a PowerBuilder COM server, the server loads the PowerBuilder virtual
machine, allocates a block of memory, and starts a runtime session. About
4MB of memory is allocated for the PowerBuilder virtual machine, cached
memory, and the runtime session.

Subsequent requests do not require any additional memory allocation if the
objects can share the same runtime session.

Deploying a PowerBuilder COM server

566 PowerBuilder

If a subsequent request requires a PowerBuilder COM object to be created in a
different COM apartment (usually because the request was made from a
different client or thread), the object is instantiated in a new runtime session.
Each new session requires only about 200K of memory; it shares the instance
of the PowerBuilder virtual machine and the cached memory.

Deploying a PowerBuilder COM server
Once you have generated a PowerBuilder COM server, you can use
COM-enabled client applications to create the PowerBuilder COM objects and
access their methods. You can use the server with any COM-enabled
application or deploy it as a package to COM+.

Using a PowerBuilder COM server with a COM-enabled application

❖ To use a PowerBuilder COM server with a COM-enabled application:

1 Deploy the PowerBuilder COM server to the user’s computer.

2 Deploy the PowerBuilder virtual machine (PBVM105.DLL) and any other
required modules (such as PBCOMRT105.DLL, PBDWE105.DLL, or any
required database software) to the computer containing the PowerBuilder
COM server.

3 Register the PowerBuilder COM server on the user’s computer.

4 Write a client application that calls PB object functions in the
PowerBuilder COM server.

See “Accessing PowerBuilder COM servers from clients” on page 567.

Registering PowerBuilder COM servers When you deploy a PowerBuilder
COM server, you need to add information to the registry to enable COM to
create instances of the server’s objects. PowerBuilder COM servers are
self-registering—you do not need to create a separate registration file. To
register a PowerBuilder COM server, use the REGSVR32 utility. For example:

regsvr32.exe path_to_server\mycomserver.dll

CHAPTER 27 Building a COM or COM+ Component

Application Techniques 567

If you want to access the server from a remote client, you need to make an
additional change to the registry and you may need to configure the client for
remote access to the server. For more information, see “Using PowerBuilder
COM servers and objects with DCOM” on page 571.

Registering automatically for testing
For testing purposes, you can check the box on the General property page that
registers the server on the development computer automatically when it has
been generated. To avoid making unnecessary registry entries on your
computer, check this box only when you are ready to test the PowerBuilder
COM server.

Accessing PowerBuilder COM servers from clients
You can access the methods on a PowerBuilder COM component from clients
built with any COM-compliant tool. For COM+, the client must have
Microsoft Windows Installer. The COM server must be registered on the client
machine, or the COM+ application proxy file must be installed.

For how to access PB COM servers from a remote client, see “Using
PowerBuilder COM servers and objects with DCOM” on page 571.

The following examples show how you access a PowerBuilder COM object
from Visual Basic or C++. They use a PowerBuilder COM object that was
generated from a user object called ccuo_employee and has the Program ID
PB105.employee.

For information about building PowerBuilder clients and an example using the
same COM object, see Chapter 28, “Building a COM or COM+ Client.”

Visual Basic as client
In Visual Basic, you can connect to the registered object using its program ID
(late binding). In Visual Basic 5 or later, you can also use its class name (early
binding).

Accessing PowerBuilder COM servers from clients

568 PowerBuilder

❖ To access a PowerBuilder COM object in Visual Basic:

1 Do one of the following:

• Declare an object and connect to it using its program ID:

Dim EmpObj As Object
Set EmpObj = CreateObject("PB105.employee")

• Add a reference to the generated type library for the PowerBuilder
COM object to your project, then declare an instance of the object
using its class name (in Visual Basic 5 or later):

Dim EmpObj As New CoEmployee

2 Check that the connection was established:

Dim response
If EmpObj Is Nothing Then
response = MsgBox("Creating Employee Object",

vbOKOnly, "Error")
End If

3 Access functions or properties of the object:

Dim units, time as Long
Dim DoubleReturn as Double
Dim StringReturn As String

DoubleReturn = EmpObj.f_calcdayavg units, time
StringReturn = EmpObj.f_teststring
EmpObj.ll_hours = 37

4 Destroy the object:

Set EmpObj = Nothing

C++ as client
In C++, you use COM library functions to create an instance of a PowerBuilder
COM object. You also need to use C/C++ definitions of the PowerBuilder
COM objects when you build the client. The Microsoft IDL (MIDL) compiler
generates these definitions from the IDL file created by the PowerBuilder
COM generator.

For example, using the IDL file generated for the Employee PowerBuilder
COM object:

midl.exe employee.idl

CHAPTER 27 Building a COM or COM+ Component

Application Techniques 569

The MIDL compiler generates a header file (employee.h) containing
definitions of the interfaces of all the objects in the IDL file and a C file
(employee_i.c) that defines the CLSIDs and Interface IDs (IIDs) associated
with the object.

Additional files
The MIDL compiler also generates proxy/stub code (in employee_p.c and
dlldata.c), but you do not need to use the proxy/stub code to build the C++
client executable or access the PowerBuilder COM object.

Building a client To build a C++ client executable that can access methods
in a PowerBuilder COM object, you create a C++ source file that includes the
generated header file, compile both the C++ client source file and the C file
generated by the MIDL compiler, then link the resulting object files to create
the executable.

For the Employee example:

1 Create a C++ source file called client.cpp (shown below).

2 Compile client.cpp.

3 Compile employee_i.c.

4 Link client.obj and employee_i.obj to create an executable—for example,
employee_ecl.exe.

Employee.h The following code fragments from the employee.h header file
generated by the MIDL compiler show the definitions to be used by C++
clients:

typedef interface DIEmployee DIEmployee;
EXTERN_C const IID IID_DIEmployee;

interface DECLSPEC_UUID("A2F59F71-D5FB-11D1-92B9-
00A0247712F1")

DIEmployee : public IDispatch
{
public:
virtual /* [id] */ HRESULT STDMETHODCALLTYPE

 f_calcdayavg(
/* [in] */ long units,
/* [in] */ long time,
/* [retval][out] */ double __RPC_FAR
*retval) = 0;

virtual /* [id] */ HRESULT

Accessing PowerBuilder COM servers from clients

570 PowerBuilder

STDMETHODCALLTYPE f_teststring(
/* [retval][out] */ BSTR __RPC_FAR
 *retval) = 0;

};

EXTERN_C const CLSID CLSID_CoEmployee;

Client.cpp The following sample client file uses the MIDL-generated
C/C++ definitions of PowerBuilder COM objects. For further information on
the COM API calls shown in client.cpp, see the Microsoft Software
Development Kit documentation.

#include <windows.h>
// employee.h I(from MIDL.EXE)
#include "employee.h"

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE,
LPSTR, int)
{

HRESULT hr;
DIEmployee *pDIEmployee = 0;

// Initialize COM
CoInitialize(0);

hr = CoCreateInstance(CLSID_CoEmployee,NULL,
 CLSCTX_INPROC_SERVER, IID_DIEmployee,
(void **)&pDIEmployee);

if (FAILED(hr))
ErrorMessage("CoCreateInstance", hr);

// variables for methods
long units, time;
double dReturn;
BSTR strReturn = NULL;

// call methods
hr = pDIEmployee->f_calcdayavg(units,

 time,&dReturn);
if (FAILED(hr))
ErrorMessage("f_calcdayavg",hr);

hr = pDIEmployee->f_teststring(&strReturn);
if (FAILED(hr))
ErrorMessage("f_teststring",hr);

// release the interface ptr

CHAPTER 27 Building a COM or COM+ Component

Application Techniques 571

pDIEmployee->Release();

CoFreeUnusedLibraries();
// all done!

CoUninitialize();
return 0;

}

Using PowerBuilder COM servers and objects with DCOM
A PowerBuilder COM object can be activated from remote clients using
DCOM. The object must be activated in a server process on the designated host
computer. Out-of-process servers (EXE files) create a server process, but
in-process servers (DLL files) must be hosted in a surrogate process.

COM provides a general-purpose surrogate host (DLLHOST.EXE) that can be
used to host PowerBuilder COM server DLLs. Marking PowerBuilder COM
servers to use a surrogate host is the primary step in enabling remote client
access to your PowerBuilder COM objects. You can use the DCOM
configuration utility (DCOMCNFG.EXE) to change values for location,
security, and identity, but in most cases the defaults are adequate. For more
information, see the online Help for the DCOMCNFG utility.

Enabling
PowerBuilder COM
servers to use a
surrogate host

There are two ways to enable PowerBuilder COM servers to use a surrogate:

• Use the registry editor (REGEDIT32.EXE) to edit the PowerBuilder COM
server’s AppID registry entry.

• Use the OLE/COM Object Viewer (OLEVIEW.EXE) provided with
Microsoft Visual C++ 5.0 or greater.

Using OLEVIEW is the preferred approach, because manually editing your
computer’s registry may render all or parts of your computer’s configuration
inoperable.

❖ To enable a COM server to use a surrogate process using the registry
editor:

1 Open the project used to generate the server and copy the PowerBuilder
COM server’s AppID value from the General property page.

2 Run REGEDIT.EXE, find the server’s AppID key in My
Computer\HKEY_CLASSES_ROOT\AppID, and select it.

3 Select Edit>New>String Value from the menu bar.

Accessing PowerBuilder COM servers from clients

572 PowerBuilder

4 Enter the name DllSurrogate and leave the data field empty.

An empty data field tells COM to use the default surrogate host
(DLLHOST.EXE). The AppID value keys should look like this:

❖ To enable a COM server to use a surrogate process using the OLE/COM
Object Viewer:

1 Run OLEVIEW.EXE.

2 Expand the Automation Objects in the list view and select an object in
your PowerBuilder COM server.

3 Select an object associated with your PowerBuilder COM server.

4 Select the Implementation tab.

5 Select the Inproc Server tab and check the Use Surrogate Process check
box.

Configuring client
computers to activate
remote PowerBuilder
COM objects

To activate a remote component, a client application must pass the object’s
class identifier (CLSID) in the activation request to the remote host.

Some clients, such as those built with PowerBuilder 10.5 or C++, can use the
object’s CLSID in the method call when they create an instance of a remote
object. These client applications do not require any client-side configuration.

Most clients reference an object by its name (ProgID) rather than its CLSID. In
these cases the client computer’s registry must contain the information
necessary to map a ProgID to a CLSID in order to make the remote activation
request. You can use either of two methods to add the required registry
information to the client computer:

• Register the PowerBuilder COM server on each client computer that
requires remote access.

To use this method, you must be able to locate the appropriate version of
PBVMn0.DLL.

• On the host where the PowerBuilder COM server is registered, export the
required registry information into .REG files using REGEDIT.EXE, then
copy and import these files into the registry of each client computer that
requires remote access.

Name Data

(Default) PowerBuilder 10.5 generated server: servername.dll

DllSurrogate ""

CHAPTER 27 Building a COM or COM+ Component

Application Techniques 573

For each PowerBuilder COM object, export the following registry keys:

HKEY_CLASSES_ROOT\PB105.objectname
HKEY_CLASSES_ROOT\PB105.objectname.version_number
HKEY_CLASSES_ROOT\CLSID\{objects_clsid}

You may also need the following registry keys for the PowerBuilder COM
server:

HKEY_CLASSES_ROOT\TypeLib\{comserver_typelib_id}
HKEY_CLASSES_ROOT\AppID\{comserver_application_id}

Connecting to remote
objects using
PowerBuilder

PowerBuilder clients can use the ConnectToNewRemoteObject function to
activate remote objects, as shown in this code fragment:

OLEObject remobj
remobj = CREATE OLEObject
remobj.ConnectToNewRemoteObject("myremotehostname", &

"PB105.employee")

You can also use the remote object’s CLSID string in the classname parameter:

remobj.ConnectToNewRemoteObject("myremotehostname", &
"clsid:0EA53FED-646A-11D2-BF8E-00C04F795006")

The use of the object’s CLSID as the classname parameter eliminates the need
for any client-side configuration.

Connecting to remote
objects using C++

C++ clients that use header files created from the generated PowerBuilder
COM server IDL file can use the remote object’s CLSID in the activation
request:

COSERVERINFO ServerInfo;
MULTI_QI mqi[1];
OLECHAR wszHostName[MAXFILE];
LPTSTR pszHost=NULL;

memset(&ServerInfo,0,sizeof(ServerInfo));
pszHost =GetUserRequestedHostName();
mbstowcs(wszHostName,pszHost,MAXFILE);

ServerInfo.pwszName = wszHostName;
mqi[0].pIID = &IID_Iemployee;
mqi[0].pItf = NULL;
mqi[0].hr = S_OK;

// Create employee object on the desired server
hr = CoCreateInstanceEx(CLSID_Employee,NULL,

CLSCTX_REMOTE_SERVER,&ServerInfo,1,mqi);

Accessing PowerBuilder COM servers from clients

574 PowerBuilder

Application Techniques 575

C H A P T E R 2 8 Building a COM or COM+ Client

About this chapter This chapter explains how to build a PowerBuilder client that accesses a
COM or COM+ server component.

Contents

About building a COM or COM+ client
A PowerBuilder application can act as a client to a COM server. The
server can be built using PowerBuilder or any other COM-compliant
application development tool and it can run locally, on a remote computer
as an in-process server, or in COM+.

You can use the Template Application start wizard to help you build COM
and COM+ clients.

Configuring a client
computer to access a
remote component

When a COM component is running on a remote computer, the client
computer needs to be able to access its methods transparently. To do this,
the client needs a local proxy DLL for the server and it needs registry
entries that identify the remote server. The client computer must be
running Windows 2000 or Windows XP.

If the component is installed in COM+, the COM+ Component Services
tool can create a Microsoft Windows Installer (MSI) file that installs an
application proxy on the client computer.

If the server is not installed in COM+, the client and proxy files must be
copied to the client and the server must be configured to run in a surrogate
process. For more information, see “Using PowerBuilder COM servers
and objects with DCOM” on page 571.

Topic Page

About building a COM or COM+ client 575

Connecting to a COM server 576

Interacting with the COM component 577

Controlling transactions from a client 578

Connecting to a COM server

576 PowerBuilder

Remote server name written to registry
If the COM server is moved to a different computer, the registry entries on the
client must be updated.

Connecting to a COM server
To access a method associated with a component in the COM server, the
PowerBuilder client connects to the component using its programmatic
identifier (ProgID) or its class identifier (CLSID).

You can use a tool such as OLEVIEW or the OLE tab in the PowerBuilder
Browser to view the Program ID or CLSID and methods of registered
PowerBuilder COM objects.

To establish a connection to the COM server, you need to execute the
PowerScript statements required to perform these operations:

1 Declare a variable of type OLEObject and use the Create statement to
instantiate it.

2 Connect to the object using its Program ID or CLSID.

3 Check that the connection was established.

Example The following script instantiates the EmpObj OLEObject object,
connects to the PowerBuilder COM object PBcom.Employee, and checks for
errors:

OLEObject EmpObj
Integer li_rc
EmpObj = CREATE OLEObject
li_rc = EmpObj.ConnectToNewObject("PBcom.employee")
IF li_rc < 0 THEN

DESTROY EmpObj
MessageBox("Connecting to COM Object Failed", &

"Error: " + String(li_rc))
Return
END IF

CHAPTER 28 Building a COM or COM+ Client

Application Techniques 577

Interacting with the COM component
Invoking component
methods

Once a connection to a COM component has been established, the client
application can begin using the component methods.

Use the REF keyword for output parameters
You must use the REF keyword when you call a method on a COM object that
has an output parameter. For example: of_add(arg1, arg2, REF sum)

Example Using the EmpObj object created in the previous example, this
example calls two methods on the component, then disconnects and destroys
the instance:

Long units, time
Double avg, ld_retn
String ls_retn

ld_retn = EmpObj.f_calcdayavg(units, time, REF avg)
ls_retn = EmpObj.f_teststring()

EmpObj.DisconnectObject()
DESTROY EmpObj

Passing result sets PowerBuilder provides three system objects to handle getting result sets from
components running in transaction server environments and returning result
sets from PowerBuilder user objects running as transaction server components.
These system objects (ResultSet, ResultSets, and ADOResultSet) are designed
to simplify the conversion of transaction server result sets to and from
DataStore objects and do not contain any state information.

For more information, see “Passing result sets” on page 555.

Handling runtime
errors

Runtime error information from custom class user objects executing as OLE
automation objects, COM objects, or COM+ components is reported to the
container holding the object as exceptions (or, for automation objects, as
exceptions or facility errors). Calls to the PowerBuilder SignalError function
are also reported to the container. To handle runtime errors generated by
PowerBuilder objects, code the ExternalException event of the OLE client.

For more information about handling runtime errors in OLE or COM objects,
see “Handling errors” on page 346.

Controlling transactions from a client

578 PowerBuilder

Controlling transactions from a client
PowerBuilder clients can exercise explicit control of a transaction on a COM+
server by using a variable of type OleTxnObject instead of OLEObject to
connect to the COM object.

Requires COM+ installation
The ConnectToNewObject call on an OleTxnObject fails if COM+ is not
installed on the client computer.

The OleTxnObject object, derived from the OLEObject object, provides two
additional functions (SetComplete and SetAbort) that enable the client to
participate in transaction control. When the client calls SetComplete, the
transaction is committed if no other participant in the transaction has called
SetAbort or otherwise failed. If the client calls SetAbort, the transaction is
always aborted.

Example In this example, the clicked event on a button creates a variable of
type OleTxnObject, connects to a PowerBuilder COM object on a server, and
calls some methods on the object. When all the methods have returned, the
client calls SetComplete and disconnects from the object.

integer li_rc
OleTxnObject lotxn_obj

lotxn_obj = CREATE OleTxnObject
li_rc = lotxn_obj.ConnectToNewObject("pbcom.n_test")
IF li_rc <> 0 THEN

Messagebox("Connect Error", string(li_rc))
HALT

END IF

lotxn_obj.f_dowork()
lotxn_obj.f_domorework()

lotxn_obj.SetComplete()
lotxn_obj.DisconnectObject()

This f_dowork function on the PowerBuilder COM object on the server creates
an instance of the transaction context service and calls its DisableCommit
method to prevent the transaction from committing prematurely between
method calls. After completing some work, the function calls SetAbort if the
work was not successfully completed and SetComplete if it was.

TransactionServer txninfo_one
integer li_rc

CHAPTER 28 Building a COM or COM+ Client

Application Techniques 579

li_rc = GetContextService("TransactionServer", &
txninfo_one)

txninfo_one.DisableCommit()

// do some work and return a return code
IF li_rc <> 0 THEN

txninfo_one.SetAbort()
return -1

ELSE
txninfo_one.SetComplete()
return 1

END IF

The SetComplete call on the client commits the transaction if all of the methods
in the transaction called SetComplete or EnableCommit.

Controlling transactions from a client

580 PowerBuilder

P A R T 7 Developing Web
Applications

This part presents tools and techniques for developing
Web applications with PowerBuilder.

Application Techniques 583

C H A P T E R 2 9 Building an EJB client

About this chapter This chapter describes how to build a PowerBuilder client for an
Enterprise JavaBeans component running on a J2EE-compliant
application server. Reference information for the objects described in this
chapter is in the PowerBuilder Extension Reference and in the online
Help.

Contents

About building an EJB client
A PowerBuilder application can act as a client to an EJB 1.1 or 2.0
component running on an application server that is J2EE compliant. This
capability relies on PowerBuilder extension files provided by Sybase.

PowerBuilder extension files are developed using the PowerBuilder
Native Interface (PBNI). You do not need to know anything about PBNI
to create EJB clients, but you can read more about PowerBuilder
extensions in the PowerBuilder Extension Reference, and about PBNI in
the PowerBuilder Native Interface Programmer’s Guide and Reference.

Topic Page

About building an EJB client 583

Adding pbejbclient105.pbx to your application 585

Generating EJB proxy objects 586

Creating a Java VM 593

Connecting to the server 596

Invoking component methods 597

Exception handling 602

Client-managed transactions 603

Debugging the client 605

About building an EJB client

584 PowerBuilder

EJB clients for EAServer
If you are developing EJB clients for EAServer, you can use the techniques
described in this chapter, or you can create a client that uses the PowerBuilder
Connection object and EAServer proxy objects.

The EJB client extension is a wrapper for Java, and therefore provides more
flexibility in communicating with EJBs. For example, an EJB client can
manipulate a Java class returned from an EJB method call through its proxy.

The PowerBuilder Connection object has a smaller footprint (and thus is easier
to deploy) because it does not require a JRE to be installed on the computer
where the client resides. Connectivity to the server is also faster with the
connection object, because there is no delay while a JRE loads.

For more information about building an EJB client for an EJB component
running on EAServer using the PowerBuilder connection object, see Chapter
25, “Building an EAServer Client.”

pbejbclient105.pbx
and
pbejbclient105.pbd

To connect to the server and communicate with the EJB component, clients use
a set of classes implemented in a DLL file with the suffix PBX,
pbejbclient105.pbx. To use the classes in this PBX file, you must import the
definitions in it into a library in the client application. You can also add the
pbejbclient105.pbd file, which acts as a wrapper for the PBX file, to the target’s
library earch path.

About EJB proxy
objects

The PowerBuilder client uses local proxy objects for the EJB component to
delegate calls to methods on the remote EJB component. At a minimum, each
EJB component is represented in the client application by a proxy for the home
interface and a proxy for the remote interface. For example, an EJB component
named Cart has two proxies, CartHome and Cart, each containing only the
signatures of the public methods of those interfaces.

Additional proxies are also generated for exceptions and ancillary classes used
by the home and remote interfaces. For more information, see “Generating
EJB proxy objects” on page 586.

Overview of the
process

To build an EJB client, you need to complete the following steps:

1 Create a workspace and a PowerScript target.

2 Add pbejbclient105.pbx to the application.

3 Create a project for building proxy objects.

4 Build the project to generate the proxy objects.

CHAPTER 29 Building an EJB client

Application Techniques 585

5 Create the windows required to implement the user interface of the client
application.

6 Instantiate a Java VM.

7 Establish a connection to the server and look up the EJB.

8 Create an instance of the EJB component and call component methods
from the client.

9 Test and debug the client.

Adding pbejbclient105.pbx to your application
The simplest way to add the PBEJBClient classes to a PowerBuilder target is
to import the object descriptions in the pbejbclient105.pbx PBX file into a
library in the PowerBuilder System Tree

The pbejbclient105.pbx and pbejbclient105.pbd files are installed in the
Shared/PowerBuilder directory when you install PowerBuilder. When you
create an EJB client application, you do not need to copy pbejbclient105.pbx
to another location, but you do need to deploy it with the client executable in a
directory in the application’s search path.

❖ To import the descriptions in an extension into a library:

1 In the System Tree, expand the target in which you want to use the
extension, right-click a library, and select Import PB Extension from the
pop-up menu.

2 Navigate to the location of the PBX file and click Open.

Each class in the PBX displays in the System Tree so that you can expand
it, view its properties, events, and methods, and drag and drop to add them
to your scripts.

After you import pbejbclient105.pbx, the following objects display in the
System Tree:

Object Description

EJBConnection Used to connect to an EJB server and locate an EJB.

EJBTransaction Maps to the javax.transaction.UserTransaction interface.
Used to control transactions from the EJB client.

JavaVM Used to create an instance of the Java VM.

Generating EJB proxy objects

586 PowerBuilder

Generating EJB proxy objects
To generate EJB proxy objects, you need to create an EJB Client Proxy project.
You can do this in the Project painter or with a wizard.

Using an EJB Proxy project
To create a new EJB Client Proxy project, select either of the following from
the Projects page of the New dialog box:

• EJB Client Proxy icon

• EJB Client Proxy Wizard icon

EJB Client Proxy icon The EJB Client Proxy icon opens the Project painter for EJB proxies so you can
create a project, specify options, and build the proxy library.

❖ To create an EJB Client Proxy project in the Project painter:

1 Double-click the EJB Client Proxy icon on the Projects page of the New
dialog box.

2 To specify the EJB, select Edit>Select Objects and enter the fully qualified
name of the component’s remote interface in the text box, for example
com.sybase.jaguar.sample.svu.SVULogin or portfolio.MarketMaker.

3 Enter the path of the directory or JAR file that contains the EJB’s stubs in
the Classpath box and click OK.

If the stub files are in a directory and the fully qualified name of the EJB
is packagename.beanname, enter the directory that contains
packagename.

4 To specify the PBL where the proxy objects should be stored, select
Edit>Properties and browse to the location of a library in the target’s
library list.

You can specify an optional prefix that is added to the beginning of each
generated proxy name. Adding a prefix makes it easier to identify the
proxies associated with a specific EJB and can be used to avoid conflicts
between class names and PowerBuilder reserved words. The prefix is not
added to the name of proxies that are not specific to this EJB, such as the
proxies for exceptions, stream objects, and ejbhome, ejbobject,
ejbmetadata, handle, and homehandle.

CHAPTER 29 Building an EJB client

Application Techniques 587

5 Close the dialog box and select File>Save to save the project.

The new project lists the EJB component for which a proxy will be generated
and specifies the name of the output library that will contain the generated
proxy objects.

EJB Client Proxy
Wizard icon

The EJB Client Proxy Wizard helps you create the project.

❖ To create an EJB Client Proxy project using the wizard:

1 Double-click the EJB Client Proxy Wizard icon on the Projects page of the
New dialog box and click Next on the first page of the wizard.

2 Select a library in which to store the project object and click Next.

3 Specify a name and optional description for the project and click Next.

4 As shown, enter the fully qualified name of the component’s remote
interface in the text box, for example cocoPortfolio.Portfolio:

The component’s home interface name is entered automatically using the
standard naming convention, although the wizard lets you modify this
name if necessary.

5 Browse to select the JAR file that contains the EJB’s stubs or the directory
that contains the stub package.

Generating EJB proxy objects

588 PowerBuilder

If the stub files are in a directory and the fully qualified name of the EJB
is packagename.beanname, enter the directory that contains
packagename.

6 Specify an optional prefix that is added to the beginning of each generated
proxy name and click Next.

Adding a prefix makes it easier to identify the proxies associated with a
specific EJB and can be used to avoid conflicts between class names and
PowerBuilder reserved words. The prefix is not added to the name of
proxies that are not specific to this EJB, such as the proxies for exceptions,
supporting classes, and EJBHome, EJBObject, EJBMetaData, Handle,
and HomeHandle.

7 Browse to select an existing library and click Next and Finish.

The proxy objects are generated and stored in this library, which must be
added to the target’s library list.

After the wizard has created the project, you can use the Project painter to
modify your project settings.

Building proxies Whether you create the EJB Proxy project using the wizard or the painter, the
final step is to build the proxy objects. To do so, click the Build icon on the
painter bar or select Design>Deploy Project from the menu bar.

Proxy generation requires javap.exe
PowerBuilder uses the javap.exe utility to generate proxy objects. This
executable must be in your system path. By default, EJB client development
uses the Sun JDK 1.4 installed with PowerBuilder. The path and classpath
required by the Java VM are added to the path and classpath used in the current
session automatically.

If you want to use a different JDK installation, select Tools>System Options,
then click Set JDK Location on the Java page of the System Options dialog
box. For WebSphere, the path to the IBM JDK installation can be used instead.

In addition to the proxies for the home and remote interfaces of the EJB,
proxies are also generated for any Java classes referenced by the EJB, for
ancestor classes, for any exceptions that can be thrown by the EJB and its
supporting classes, and for the following interfaces:

Object Description

EJBHome Proxy for the javax.ejb.EJBHome interface, the base class for
all EJB home interfaces.

CHAPTER 29 Building an EJB client

Application Techniques 589

For more information about these interfaces, see the documentation for the
javax.ejb package at http://java.sun.com/j2ee/sdk_1.3/techdocs/api/index.html.

The project also generates a structure that stores the mapping of Java classes to
proxy names. This structure is used internally and should not be modified.

Using the ejb2pb105 tool
You can also use the ejb2pb105 command-line tool to generate proxies. The
tool generates:

• Proxies (.srx files) for the home and remote interfaces of the EJB you
specify and for the classes on which the EJB depends.

• A PowerBuilder structure object named ejbname_ejb_pb_mapping.srs,
where ejbname is the name of the EJB. This structure hosts the mapping
table between the Java class name and the PowerBuilder proxy name.

• A text file called ejbproxies.txt or, if errors occur, ejbproxies.err.

These files are generated in the directory in which you invoke the command.
The syntax is:

ejb2pb105 [-classpath pathlist] EJBName [EJBHomeName][prefix]

If the pathlist argument contains spaces, for example D:\Program Files, the
pathlist must be enclosed in quotes. EJBName is the fully qualified remote
interface class name. If you use the standard naming convention for the home
interface, then including an argument for the fully qualified home interface
name, EJBHomeName, is optional. If you specify the optional prefix, it is
added to the beginning of the generated proxy name.

EJBMetaData Proxy for the javax.ejb.EJBMetaData interface. Allows a client
to obtain the EJB’s home interface and the class objects for its
home and remote interfaces and primary key class (for entity
beans), and to determine whether the bean is a session or
stateless session object.

EJBObject Proxy for the javax.ejb.EJBObject interface, the base class for
all EJB remote interfaces.

Handle Proxy for the javax.ejb.Handle interface. Used to provide a
robust persistent reference to an EJB.

HomeHandle Proxy for the javax.ejb.HomeHandle interface. Used to provide
a robust persistent reference to a home object.

Object Description

Generating EJB proxy objects

590 PowerBuilder

For example, the following statements generate proxies for the Portfolio class
in the package cocoPortfolio on EAServer. The proxies for the home and
remote interfaces of the Portfolio class have the prefix pf_, and the generated
files are written to the directory D:\work\proxies:

cd D:\work\proxies
ejb2pb105 -classpath "D:\Program
Files\Sybase\EAServer\html\classes"
cocoPortfolio.Portfolio pf_

The home and remote classes for the EJB and any dependent classes must be
in the class path that you specify.

After generating the proxies, you import them into your target by selecting the
library that contains the client, selecting Import from its pop-up menu, and
selecting the .srx files from the dialog box that displays. The order in which you
import .srx files is significant—you cannot import proxies that depend on other
classes until you have imported the proxies for the dependent classes.

Viewing the generated proxies
The generated proxies display in the System Tree. You can expand the proxy
nodes to display the signatures of the methods on the home and remote
interfaces for the EJB component, as well as on all the other objects for which
proxies were generated.

CHAPTER 29 Building an EJB client

Application Techniques 591

Conflicts with
reserved words

If the name of a component method conflicts with a PowerBuilder reserved
word, the string _j is appended to the method name in the proxy so that the
methods can be imported into PowerBuilder. For example, the Java Iterator
class has a Next method, which conflicts with the PowerBuilder reserved word
NEXT. In the proxy, the method is named next_j.

Generating EJB proxy objects

592 PowerBuilder

Datatype mappings
The EJB Proxy generator maps datatypes between Java and PowerBuilder as
shown in the following table:

Different precision for
double

A PowerBuilder double has 15 digits of precision (1.79769313486231E+308)
and a Java double has 17 digits (1.7976931348623157e+308). For EJB client
applications, the precision of a double is limited to the PowerBuilder range
(2.2250738585073E-308 to 1.79769313486231E+308).

Arrays of arrays Unlike Java, PowerBuilder does not support unbounded multidimensional
arrays. If a Java method takes an array of arrays as a parameter, the
corresponding PowerBuilder proxy method takes a parameter of type Any. To
call the method in PowerBuilder, declare a PowerBuilder array with the same
dimensions as the Java array, and pass the array as the parameter.

Java type PowerBuilder type

short Integer

int Long

long LongLong

float Real

double Double

byte Int

char (16-bit unsigned) Char

java.lang.String String

boolean Boolean

java.util.Date Datetime

Array of primitive type Parameters: Array of primitive type
Return values: Any

Array of java.lang.String or
java.util.Date objects

Parameters: Array of String or DateTime
Return values: Any

Array of arrays Any

Java class arguments or return
values

PowerBuilder proxies of Java classes

Other Any

CHAPTER 29 Building an EJB client

Application Techniques 593

Creating a Java VM
Before calling an EJB component, you need to create a Java VM using the
CreateJavaVM method of the JavaVM class. The first argument is a string that
specifies a classpath to be added to the beginning of the classpath used by the
Java VM.

A Java VM might already be loaded
The classpath argument is ignored if the Java VM is already running.

The second argument to createJavaVM is a boolean that specifies whether
debug information is written to a text file. See “Debugging the client” on page
605.

The JavaVM class has other methods that you can use when you create a Java
VM:

• The CreateJavaInstance method creates an instance of the Java object from
a proxy name.

• The IsJavaVMLoaded method determines whether the Java VM is already
loaded. Use this method before calling CreateJavaVM if you want to
enable or disable some features of your application depending on whether
the Java VM has already been loaded. This will ensure that the classpath
argument passed to CreateJavaVM is ignored.

• The GetJavaVMVersion method determines which version of the Java VM
is running.

• The GetJavaClasspath method determines the runtime classpath of the
Java VM.

The JavaVM that you create using CreateJavaVM should be a global or instance
variable for the client application and should not be destroyed explicitly.

The Java VM
classpath in the
development
environment

When PowerBuilder starts a Java VM, the Java VM uses internal path and
classpath information to ensure that required Java classes are always available.

In the development environment, you can check whether the JVM is running
and, if so, which classpath it is using, on the Java page of the System Options
dialog box. The classpath is constructed by concatenating these paths:

• A classpath added programmatically when the Java VM is started. For
example, the classpath you pass to the CreateJavaVM method.

Creating a Java VM

594 PowerBuilder

• The PowerBuilder runtime static registry classpath. This path is built into
the pbjvm105.dll and contains classes required at runtime for EJB clients
and other PowerBuilder features that use a Java VM.

• The PowerBuilder system classpath. This path resides in a Windows
registry key installed when you install PowerBuilder. It contains classes
required at design time for Java-related PowerBuilder features such as JSP
targets and JDBC connectivity.

• The PowerBuilder user classpath. This is the path that you specify on the
Java page of the System Options dialog box.

• The system CLASSPATH environment variable.

• The current directory.

The runtime Java VM
classpath

At runtime, you can use the GetJavaClasspath method to determine what
classpath the Java VM is using. The Java VM uses the following classpath at
runtime:

• A classpath added programmatically when the Java VM is started

• The PowerBuilder runtime static registry classpath

• The system CLASSPATH environment variable

• The current directory

For more information about the Java classpath at runtime, see “Java support”
on page 784.

Classes required by
servers

The classpath contains the classes required by EJB clients for EAServer 4.2. If
you are using a different J2EE server, you need to add additional classes
required by the application server to the system CLASSPATH. For example:

• For WebLogic, weblogic.jar. This file is installed in wlserver6.1\lib or
weblogic700\server\lib on the server.

• For WebSphere, JAR files installed on the server in
websphere\appserver\lib.

For detailed information about the files required on the client by each
application server, see the documentation for the server.

Examples This example demonstrates the creation of an instance of the Java VM that
specifies the html\classes folder in an EAServer installation as a class path:

// global variables javavm g_jvm,
// boolean gb_jvm_started
boolean isdebug
string classpath

CHAPTER 29 Building an EJB client

Application Techniques 595

if NOT gb_jvm_started then
//create JAVAVM
g_jvm = create javavm

// The Java package for the EJB is in the
// EAServer html/classes folder

classpath = &
"D:\Program Files\Sybase\EAServer\html\classes;"

isdebug = true
choose case g_jvm.createJavaVM(classpath, isdebug)
case 0

gb_jvm_started = true
case -1

MessageBox("Error", "Failed to load JavaVM")
case -2

MessageBox("Error", "Failed to load EJBLocator")
end choose

end if

This additional code can be added to the previous example to create a record of
the Java VM version and classpath used:

integer li_FileNum
string ls_classpath, ls_version, ls_string

li_FileNum = FileOpen("C:\temp\PBJavaVM.log", &
LineMode!, Write!, LockWrite!, Append!)

ls_classpath = i_jvm.getjavaclasspath()
ls_version = i_jvm.getjavavmversion()
ls_string = String(Today()) + " " + String(Now())
ls_string += " Java VM Version: " + ls_version
ls_string += " ~r~n" + ls_classpath + "~r~n"

FileWrite(li_FileNum, ls_string)
FileClose(li_filenum)

Connecting to the server

596 PowerBuilder

Connecting to the server
The EJBConnection class is used to connect to an EJB server and locate an
EJB. It has four methods: ConnectToServer, DisconnectServer, Lookup, and
GetEJBTransaction.

To establish a connection to the server, you need to execute the PowerScript
statements required to perform these operations:

1 Declare an instance of the EJBConnection class.

2 Set properties for the EJBConnection object.

3 Use the CREATE statement to instantiate the EJBConnection object.

4 Invoke the ConnectToServer method to establish a connection to the server.

5 Check for errors.

Class path
requirements

To connect to the application server and create an EJB object, the system
CLASSPATH environment variable or the classpath argument of
createJavaVM must contain the location of the EJB stub files, either a directory
or a JAR file. The application server you are using might also require that some
classes or JAR files be available on the client computer and added to the class
path. For more information, see “The Java VM classpath in the development
environment” on page 593.

Setting the initial
context

The string used to establish the initial context depends on the EJB server. The
following table shows sample string values. See the documentation for your
server for more information.

Example The following script shows a connection to EAServer. It sets connection
properties to create an initial context, to identify the host name and port number
of the server, and to identify the user ID and password.

IIOPS
IIOPS connections are not currently supported.

Server INITIAL_CONTEXT_FACTORY value

EAServer com.sybase.ejb.InitialContextFactory

WebLogic weblogic.jndi.WLInitialContextFactory

WebSphere com.ibm.websphere.naming.WsnInitialContextFactory

CHAPTER 29 Building an EJB client

Application Techniques 597

Then, the script creates an instance of the EJBConnection object, invokes the
ConnectToServer method to establish a connection to the server, and checks for
errors:

ejbconnection conn
string properties[]

properties[1]="javax.naming.Context.INITIAL_CONTEXT_FACTORY=
com.sybase.ejb.InitialContextFactory"
properties[2]="javax.naming.Context.PROVIDER_URL=iiop://myejbserver:9000"
properties[3]="javax.naming.Context.SECURITY_PRINCIPAL=jagadmin"
properties[4]="javax.naming.Context.SECURITY_CREDENTIALS="

conn = CREATE ejbconnection
TRY
conn.connectToServer(properties)

CATCH (exception e)
MessageBox("exception", e.getmessage())

END TRY

Disconnecting from
the server

When your application has finished using the EJB server, it should disconnect
from the server:

conn.disconnectserver()

Invoking component methods
After a connection to the server has been established and a proxy object or
objects created, the client application can begin using the EJB components. To
invoke an EJB component method, you need to execute the PowerScript
statements required to perform these operations:

1 Use the lookup method of EJBConnection to access the component’s home
interface.

2 Invoke the create or findByPrimaryKey method on the home interface to
create or find an instance of the component and get a reference to the
component’s remote interface.

3 Invoke the business methods on the remote interface.

This procedure relies on the pbejbclient105.jar file, which is included in the
Java VM classpath automatically at design time and runtime by the
pbjvm105.dll.

Invoking component methods

598 PowerBuilder

Using the lookup
method

The lookup method takes three string arguments: the name of the proxy for the
home interface, the JNDI name of the EJB component, and the fully qualified
home interface name of the EJB component.

The home interface name is the fully qualified class name of the EJB home
interface. For example, if the class’s location relative to the Java naming
context is ejbsample, the home interface name is ejbsample.HelloEJBHome.

The following example shows the invocation of the lookup method for
HelloEJB on WebLogic.

HelloEJBHome homeobj

homeobj = conn.lookup("HelloEJBHome",
"ejbsample.HelloEJB", "ejbsample.HelloEJBHome")

Lookup is case sensitive
Lookup in EJB servers is case sensitive. Make sure that the case in the string
you specify for the arguments to the lookup method matches the case on the
server.

Creating or finding an
instance of an EJB

A session bean is created in response to a client request. A client usually has
exclusive use of the session bean for the duration of that client session. An
entity bean represents persistent information stored in a database. A client uses
an entity bean concurrently with other clients. Since an entity bean persists
beyond the lifetime of the client, you must use a primary key class name to find
an instance of the entity bean if one exists or create a new instance if it does not.

For a session bean, you use the proxy object’s create method to create the
instance of the EJB. The create method can throw CreateException and
RemoteException. Assuming that you have obtained a reference to the home
interface in homeobj, create is used in the same way on all EJB servers:

HelloEJB beanobj
try

beanobj = homeobj.create()
catch (remoteexception re)

MessageBox("Remote exception", re.getmessage())
catch (createexception ce)

MessageBox("Create exception", ce.getmessage())
end try

CHAPTER 29 Building an EJB client

Application Techniques 599

For an entity bean, you provide a primary key. The FindByPrimaryKey method
can throw FinderException and RemoteException. In this example, the key is the
ID of a specific customer that is passed as an argument to the function:

try
beanobj = homeobj.findByPrimaryKey(customerID)

catch (remoteexception re)
MessageBox("Remote exception", re.getmessage())

catch (finderexception fe)
MessageBox("Finder exception", fe.getmessage())

end try

Invoking EJB
component methods

When the bean instance has been created or found, you can invoke its methods.
For example:

string msg
msg = beanobj.displaymessage()

Creating an instance
of a Java class

If the bean has a method that accepts a Java class as an argument, you use the
CreateJavaInstance method of the JavaVM object to create it. For example, if
the primary key in a call to the findByPrimaryKey method is a Java class, you
would use the CreateJavaInstance method to create that class, and then use a
PowerBuilder proxy to communicate with it.

In this example, the create method accepts a Java Integer class argument.
PowerBuilder creates a proxy called java_integer (the prefix java_ is required
to prevent a conflict with the PowerBuilder integer type). The call to
CreateJavaInstance sets the value of that variable so you can call the EJB create
method:

CustomerRemoteHome homeobj
CustomerRemote beanobj
java_integer jint_a

try
homeobj = conn.lookup("CustomerRemoteHome", &
"custpkg/Customer", "custpkg.CustomerRemoteHome")

catch (Exception e)
MessageBox("Exception in Lookup", e.getMessage())
return

end try

try
g_jvm.createJavaInstance(jint_a, "java_integer")
jint_a.java_integer("8")
beanobj = homeobj.create(jint_a, sle_name.text)

Invoking component methods

600 PowerBuilder

catch (RemoteException re)
MessageBox("Remote Exception", re.getMessage())
return

catch (CreateException ce)
MessageBox("Create Exception", ce.getMessage())
return

catch (Throwable t)
MessageBox(" Other Exception", t.getMessage())

end try

MessageBox("Info", &
"This record has been successfully saved " &
+ "~r~ninto the database")

Downcasting return
values

When Java code returns a common Java object that needs to be downcast for
use in Java programming, the Java method always sets the return value as
Java.lang.Object. In a PowerBuilder EJB client proxy, java.lang.Object is
mapped to the any datatype. At runtime, PowerBuilder gets the correct Java
object and indexes the generated mapping structure to get the PowerBuilder
proxy name. The any value is set as this proxy object. If the returned Java
object can map to a PowerBuilder standard datatype, the any value is set as the
PowerBuilder standard datatype.

Suppose the remote interface includes the method:

 java.lang.Object account::getPrimaryKey()

and the home interface includes the method:

account accounthome::findByPrimaryKey(java.lang.String)

The return value java.lang.Object is really a java.lang.String at runtime.
PowerBuilder automatically downcasts the return value to the PowerBuilder
string datatype:

any nid
try

account beanobj
homeobj = conn.lookup("AccountHome", &

ejb20-containerManaged-AccountHome, &
examples.ejb20.basic.containerManaged.AccountHome)

beanobj = homeobj.create("101", 0, "savings")
nid = beanobj.getPrimaryKey()
accounts = homeobj.findByPrimaryKey(string(nid))

catch (exception e)
messagebox("exception", e.getmessage())

end try

CHAPTER 29 Building an EJB client

Application Techniques 601

Dynamic casting There are two scenarios in which a Java object returned from a call to an EJB
method can be represented by a proxy that does not provide the methods you
need:

• If the class of a Java object returned from an EJB method call is
dynamically generated, PowerBuilder uses a proxy for the first interface
implemented by the Java class.

• The prototype of an EJB method that actually returns someclass can be
defined to return a class that someclass extends or implements. For
example, a method that actually returns an object of type java.util.ArrayList
can be defined to return java.util.Collection.java.util.ArrayList, which
inherits from java.util.AbstractList, which inherits from
java.util.AbstractCollection, which implements java.util.Collection. In this
case, PowerBuilder uses a proxy for java.util.Collection.

The DynamicCast method allows you to cast the returned proxy object to a
proxy for the interface you require, or for the actual class of the object returned
at runtime so that the methods of that object can be used.

You can obtain the actual class of the object using the GetActualClass method.
You can also use the DynamicCast method with the GetSuperClass method,
which returns the immediate parent of the Java class, and the GetInterfaces
method, which writes a list of interfaces implemented by the class to an array
of strings.

For example, given the following class:

public class java.util.LinkedList extends java.util.AbstractSequentialList
implements java.util.List, java.lang.Cloneable, java.io.Serializable

GetActualClass returns java.util.LinkedList, GetSuperClass returns
java.util.AbstractSequentialList, and GetInterfaces returns 3 and writes three
strings to the referenced string array: java.util.List, java.lang.Cloneable, and
java.io.Serializable.

Java collection
classes

EJB proxy generation generates Java common collection classes such as
Enumeration, Iterator, Vector, and so forth. PowerBuilder can manipulate these
collection classes in the same way as a Java client.

For example, suppose the home interface includes the following method with
the return value java.util.Enumeration:

Enumeration accounthome:: findNullAccounts ()

Exception handling

602 PowerBuilder

The following code shows how a PowerBuilder EJB client can manipulate the
enumeration class through the PowerBuilder proxy:

Enumeration enum
try

enum = homeobj.findNullAccounts()
if (not enum.hasMoreElements()) then
msg = "No accounts found with a null account type"
end if

catch (exception e)
messagebox("exception", e.getmessage())

end try

Exception handling
Errors that occur in the execution of a method of an EJB component are
mapped to exception proxies and thrown to the calling script. The methods of
all the classes in pbejbclient105.pbx can also throw exceptions when, for
example, connection to the server fails or the component cannot be located or
created.

Building EJB proxy projects generates the proxies for the home and remote
interfaces, proxies for any Java classes referenced by the EJB, proxies for
ancestor classes, and proxies for any exceptions that can be thrown by the EJB
and its supporting classes. The following exception proxies are among those
that may display in the System Tree:

Catching exceptions A client application can handle communications errors in a number of ways.
For example, if a client connects to a server and tries to invoke a method for an
object that does not exist, the client can disconnect from the server, connect to
a different server, or retry the operation. Alternatively, the client can display a
message to the user and give the user the opportunity to control what happens
next.

Proxy name Java object name

createexception javax.ejb.CreateException

ejbexception javax.ejb.EJBException

finderexception javax.ejb.FinderException

remoteexception java.rmi.RemoteException

removeexception javax.ejb.RemoveException

CHAPTER 29 Building an EJB client

Application Techniques 603

When an error occurs, if the client connects to a new server to retry the
operation, it must instantiate the remote object on the new server before
invoking a method of the remote object.

In the following example, the script simply displays a message box when a
specific exception occurs:

// function char getChar() throws RemoteException
try

conn.connectToServer(properties)
mappinghome = conn.lookup("pbEjbMappingHome",
"pbEjbTest/pbEjbMappingBeanSL",
"pbejb.pbEjbMappingHome")
mapping = mappinghome.create()
ret = mapping.getChar()
messagebox("char from EJB", ret)

catch (remoteexception re)
messagebox("remoteexception", re.GetMessage())

catch (createexception ce)
messagebox("createexception", ce.GetMessage())

end try

Unhandled exceptions If no exception handler exists, or if the existing exception handlers do not
handle the exception, the SystemError event on the Application object is
executed. If the SystemError event has no script, an application error occurs
and the application is terminated.

Client-managed transactions
EJB client applications can control transactions on the server using the
EJBTransaction object. This object has methods that enable the client to begin,
commit, or roll back a transaction. The client can also get the status of a
transaction, change its timeout value, or modify the transaction so that it cannot
be committed.

The EJBTransaction methods map directly to the methods of the
javax.transaction.UserTransaction interface, which is documented in the JTA
Specification on the Sun Java Web site at http://java.sun.com/products/jta.

Client-managed transactions

604 PowerBuilder

Beginning and ending
transactions

Clients can obtain access to the methods of the EJBTransaction class by calling
the getEJBTransaction method of the EJBConnection class:

ejbconnection conn
ejbtransaction trans
string properties[]

conn = create ejbconnection
TRY

conn.connectToServer(properties)
trans = conn.getEJBTransaction()

CATCH (exception e)
messagebox("exception", e.getmessage())

END TRY

If an EJBTransaction instance is obtained successfully, you use its begin
method to start the transaction and its commit or rollback methods to end it:

TRY
// Start the transaction
trans.begin()
// Create a component and call methods to be executed
// within the transaction
...
// Commit the transaction
trans.commit();

CATCH (exception e)
messagebox("exception", e1.getmessage())
trans.rollback()

END TRY

Getting information
about the transaction

GetStatus returns an integer that indicates whether the transaction is active, has
been marked for rollback, is in the prepare phase or commit phase, or has been
committed or rolled back.

Setting a timeout
period for transactions

A calling thread can specify a timeout period after which a transaction will be
rolled back. This example sets the timeout period to 3 minutes (180 seconds):

trans.SetTimeout(180)
trans.Begin()

CHAPTER 29 Building an EJB client

Application Techniques 605

Debugging the client
The createJavaVM method of the JavaVM class takes a boolean value as a
second argument. If this second argument is "true", execution information,
including class loads, are logged to the file vm.out in the directory where the
application resides:

// global variable: JavaVM g_jvm
string classpath
boolean isdebug

classpath = "d:\tests\ejbsample;"
isdebug = true
g_jvm.createJavaVM(classpath, isdebug)

Debugging the client

606 PowerBuilder

Application Techniques 607

C H A P T E R 3 0 Web Application Development
with PowerBuilder

About this chapter This chapter provides an overview of the techniques you can use to
develop Web applications with PowerBuilder.

Contents

Building Web applications
PowerBuilder provides several tools that you can use to build Web
applications. This section provides a brief overview of these tools and
points to where you can find more information.

Web Deployment Kit
The PowerBuilder Web Deployment Kit is a utility that allows browser-
based access to existing PowerBuilder two-tier client/server applications.
For more information, see the Sybase web site at www.sybase.com.

Topic Page

Building Web applications 607

Web services 608

Web targets 608

JSP targets 609

Web DataWindow 609

DataWindow Web control for ActiveX 611

DataWindow plug-in 611

PowerBuilder window plug-in 612

PowerBuilder window ActiveX 612

Web services

608 PowerBuilder

Web services
Web services are loosely defined as the use of Internet technologies to make
distributed software components talk to each other without human
intervention. The software components might perform such business logic as
getting a stock quote, searching the inventory of a catalog on the Internet, or
integrating the reservation services for an airline and a car rental agency. You
can reach across the Internet and use preexisting components, instead of having
to write them for your application.

A PowerBuilder application can act as a client consuming a Web service that
is accessed through the Internet. Through use of SOAP and WSDL, a
collection of functions published remotely as a single entity can become part
of your PowerBuilder application. A Web service accepts and responds to
requests sent by applications or other Web services. You can also use Web
services in a JSP target.

For more information about Web services, see Chapter 31, “Building a Web
Services Client,” and the manual Working with Web and JSP Targets.

Web targets
A Web target is a collection of files and components used to create a Web site.
Web targets can deliver dynamic, interactive content by integrating database
data, scripting for client- and server-side events, and calling methods on
components stored on middle-tier servers.

You can build standard HTML pages or complex Web pages that can include
client- and server-side scripting, Web DataWindows, EAServer components
(including Enterprise JavaBeans), and ActiveX components.

The Web Target object model supports server-side programming for multiple
application servers so that you can deploy Web targets to multiple servers. To
provide dynamic content for your Web applications, you can create scripts in
JavaScript or any ECMA-compliant script (DynaScript, VBScript, JScript, and
others).

4GL extensions to the Web Target object model are specific for applications
that you deploy to EAServer. They provide server-side event processing and
generate server-side code automatically from selections you make in the Web
target user interface.

CHAPTER 30 Web Application Development with PowerBuilder

Application Techniques 609

For more information about Web targets, see Working with Web and JSP
Targets.

JSP targets
JavaServer Pages (JSP) technology provides a quick, easy way to create Web
pages with both static and dynamic content. JSPs are text-based documents that
contain static markup, usually in HTML or XML, as well as Java content in the
form of scripts and/or calls to Java components. JSPs extend the Java Servlet
API and have access to all Java APIs and components.

You can use JSPs in many ways in Web-based applications. As part of the J2EE
application model, JSPs typically run on a Web server in the middle tier,
responding to HTTP requests from clients, and invoking the business methods
of Enterprise JavaBeans (EJB) components on a transaction server.

JSP pages built with PowerBuilder support version 1.2 of the JavaServer Pages
specification, version 2.3 of the Java Servlet specification, and JDK 1.3 and
later. PowerBuilder also supports custom tag libraries that use the JSP 1.2
format. You can choose to deploy a JSP target as a Web application to
EAServer, Apache Tomcat, or any JSP 1.2 server for which you can configure
command line deployment capabilities.

For more information about Web targets, see Working with Web and JSP
Targets.

Web DataWindow
The Web DataWindow is a thin-client DataWindow implementation for Web
applications. It provides most of the data manipulation, presentation, and
scripting capabilities of the PowerBuilder DataWindow without requiring any
PowerBuilder DLLs on the client.

The Web DataWindow uses the services of several software components that
can run on separate computers:

• Web DataWindow server component running in an application or
transaction server

• Dynamic page server

Web DataWindow

610 PowerBuilder

• Web server

• Web browser

• Database

The server component is a nonvisual user object that uses a DataStore to handle
retrieval and updates and generate HTML. You can use the generic component
provided with PowerBuilder or a custom component.

There are several ways you can take advantage of the capabilities of the Web
DataWindow:

• Web DataWindow design-time control In a Web target, you can use the
Web DataWindow design-time control to generate server-side scripts that
access the Web DataWindow component. This is the easiest way to use the
Web DataWindow.

• Hand coding against the Web Target object model In a Web target,
you can write server-side scripts that use the Web Target object model to
access the Web DataWindow component. The Web Target object model
provides a set of predefined objects and methods that simplify coding
against the Web DataWindow component.

• Hand coding against the Web DataWindow component itself You
can write server-side scripts that access the Web DataWindow component
directly.

• Writing your own HTML generator Using a sample PBL provided with
PowerBuilder as a starting point, you can create your own HTML
generator that provides the methods you need for your application.

For more information about the Web DataWindow, see the DataWindow
Programmer’s Guide.

CHAPTER 30 Web Application Development with PowerBuilder

Application Techniques 611

DataWindow Web control for ActiveX
The DataWindow Web control for ActiveX is a fully interactive DataWindow
control for use with Internet Explorer. It implements all the features of the
PowerBuilder DataWindow except rich text.

The DataWindow Web control for ActiveX supports data retrieval with
retrieval arguments and data update. You can use edit styles, display formats,
and validation rules. Most of the PowerBuilder methods for manipulating the
DataWindow are available. Several functions that involve file system
interactions are not supported, allowing the Web ActiveX to be in the safely
scriptable category of ActiveX controls.

Included with the DataWindow Web control is the DataWindow Transaction
Object control for making database connections that can be shared by several
DataWindow Web controls.

The Web ActiveX is provided as a CAB file, which allows the client browser
to install and register the control. When the user downloads a Web page that
refers to the CAB file, the browser also downloads the CAB file if necessary,
unpacks it, and registers the control.

For more information about the DataWindow Web control for ActiveX, see the
DataWindow Programmer’s Guide.

DataWindow plug-in
The DataWindow plug-in displays Powersoft reports (PSRs) that have already
been generated and stored on the Web server. Because the PSR files have
already been generated, database access is not necessary. The plug-in supports
only read-only access—users can view, print, and save the reports, but they
cannot modify them.

The plug-in works with any browser that supports Netscape plug-ins, including
Netscape Navigator. (Microsoft Internet Explorer 5.5 Service Pack 2 and later
versions do not support Netscape plug-ins.) Only the DataWindow plug-in
DLL is required on the client browser.

For more information, see Chapter 32, “Using the DataWindow Plug-in.”

PowerBuilder window plug-in

612 PowerBuilder

PowerBuilder window plug-in
The PowerBuilder window plug-in runs a PowerBuilder application that
displays a PowerBuilder window in an HTML page on a client workstation. It
works with any browser that supports Netscape plug-ins, including Netscape
Navigator (Microsoft Internet Explorer 5.5 Service Pack 2 and later versions
do not support Netscape plug-ins). A secure version of the plug-in ensures that
PowerBuilder applications downloaded over the Internet will not damage a
client system or access information on a client workstation.

An application in the PowerBuilder window plug-in can execute most
PowerBuilder functionality as long as the application begins with a child
window. The application can run any PowerBuilder windows, display
information, accept data input, and update databases. Database access is
initiated on the client workstation using the client’s connections.

A major disadvantage of the plug-in is that it requires a fat client—the browser
client requires the PowerBuilder runtime DLLs or shared libraries and the
PowerBuilder window plug-in DLL or shared library.

For more information, see Chapter 33, “Using the PowerBuilder Window
Plug-in.”

PowerBuilder window ActiveX
The PowerBuilder window ActiveX lets you provide a graphical interface
inside HTML pages when using a Web browser that supports ActiveX. It
provides all the capabilities of the window and DataWindow plug-ins, plus the
ability to use JavaScript or VBScript to access a subset of a PowerBuilder child
window’s events and functions. It includes methods you can call to invoke
functions and events in the child window contained in the window ActiveX
control.

An application in the PowerBuilder window ActiveX can execute most
PowerBuilder functionality as long as the application begins with a child
window. The application can run any PowerBuilder windows, display
information, accept data input, and update databases. Database access is
initiated on the client workstation using the client’s connections.

CHAPTER 30 Web Application Development with PowerBuilder

Application Techniques 613

Like the window plug-in, the major disadvantage of the window ActiveX is
that it requires a fat client—the browser client requires the PowerBuilder
runtime DLLs and the PowerBuilder window ActiveX.

For more information, see Chapter 34, “Using the PowerBuilder Window
ActiveX.”

PowerBuilder window ActiveX

614 PowerBuilder

Application Techniques 615

C H A P T E R 3 1 Building a Web Services Client

About this chapter This chapter describes how to use Web services in a PowerBuilder
application. Reference information for the objects described in this
chapter is in the PowerBuilder Extension Reference and in the online
Help.

Contents

About Web services
Web services allow you to use preexisting components (available on the
Internet or on a local network) instead of writing new business logic to
perform common tasks invoked by the applications that you develop. Web
services originated when the Simple Object Access Protocol (SOAP) was
introduced. SOAP leverages Extensible Markup Language (XML) and
usually employs Hypertext Transfer Protocol (HTTP) as the transport.
Invoking Web services through SOAP requires serialization and
deserialization of datatypes, and the building and parsing of SOAP
messages.

Part of the value of Web services comes from the Web Services
Description Language (WSDL), which enables a service to be self-
describing. WSDL defines an XML grammar for describing Web services
as collections of communication endpoints capable of exchanging
messages. WSDL service definitions provide documentation for
distributed systems and serve as a recipe for automating the details
involved in applications communication.

Topic Page

About Web services 615

Importing objects from an extension file 619

Generating Web service proxy objects 620

Connecting to a SOAP server 626

Invoking the Web service method 628

Exception handling 628

Using the UDDI Inquiry API 629

About Web services

616 PowerBuilder

Web services that are described in WSDL files can be registered on a Universal
Description, Discovery, and Integration (UDDI) Web site. You can search
UDDI registry sites from PowerBuilder at design time and find the services
you need for your application.

With SOAP, WSDL, and UDDI, using third-party components is easier
because interfaces between applications become standardized across disparate
platforms.

PowerBuilder supports the following Web services standards:

• SOAP 1.1 or later

• WSDL 1.1 or later

• HTTP or HTTPS

You can access Web services from a PowerScript target or a JSP target. For
information on accessing Web services in JSP applications that you create with
PowerBuilder, see the chapter on JSP targets in the Working with JSP Targets
book or the JSP page authoring topic in the online Help.

Producing a Web service
PowerBuilder provides tools for developing custom class (nonvisual) user
objects and deploying them as EAServer components and exposing them as
Web services. You can deploy a component to an EAServer host running on
Windows and UNIX operating systems. For more information, see Chapter 24,
“Building an EAServer Component.”

About building a Web services client
A PowerBuilder application can act as a client consuming a Web service that
is accessed through the Internet. Using SOAP and WSDL, a collection of
functions published remotely as a single entity can become part of your
PowerBuilder application. A Web service accepts and responds to requests sent
by applications or other Web services.

Invoking Web services through SOAP requires serialization and
deserialization of data types, and the building and parsing of XML-based
SOAP messages. Using objects from an extension file or dynamic library that
installs with PowerBuilder, the Web services client proxy performs these tasks
for you—thereby eliminating the need to have extensive knowledge of the
SOAP specification and schema, the XML Schema specification, or the WSDL
specification and schema.

CHAPTER 31 Building a Web Services Client

Application Techniques 617

Choosing a Web service engine
PowerBuilder lets you choose between the .NET Web service engine and the
EasySoap Web service engine to construct SOAP requests and parse the SOAP
messages returned from a Web service.

Using the .NET Web service engine
Generating a .NET
assembly

The .NET Web service engine supports the latest Web service standards. To use
this engine, you must have the wsdl.exe Web service tool on the development
machine. This tool is required to parse WSDL files and generate C# code for a
.NET assembly. The wsdl.exe file installs with the .NET SDK. It is not required
on deployment machines, although deployment machines must have the .NET
Framework to consume a Web service that depends on the .NET Web service
engine.

If you select the .NET Web service engine in the Web Service Proxy wizard,
the wizard generates a .NET assembly (DLL) in addition to a proxy object. To
use the Web service at runtime, you must deploy the wizard-generated DLL
along with your application.

You can also select the .NET Web service engine in the Project painter for a
new Web service proxy. If you select the .NET Web service engine on the Web
Service tab of the Properties dialog box for the Web Service Proxy Generator,
PowerBuilder attempts to generate an assembly DLL after you click Apply or
OK. You cannot use the Properties dialog box to change the Web service engine
for a proxy that you already generated with the Web Service Proxy wizard.

Naming the DLL You can name the DLL generated by the Web Service Proxy wizard or by the
Project painter in the Proxy Assembly Name text box. You do not need to
include the DLL extension. The name of the wizard-generated assembly is
Web_service.DLL, where Web_service is the name you provide in the Proxy
Assembly Name field. If you do not provide a name, the assembly takes the
name of the Web service to be consumed by the DLL. The assembly is
generated in the current target directory.

Deploying the DLL You must deploy the DLL created for your Web service project to the directory
where you deploy the client executable. You must also copy the
Sybase.PowerBuilder.WebService.Runtime.dll and the
Sybase.PowerBuilder.WebService.RuntimeRemoteLoader.dll system
assemblies to this directory.

.

About Web services

618 PowerBuilder

Extension objects Although you use the same SOAP connection and exception-handling objects
for the .NET Web service engine as for the EasySoap Web service engine, the
objects that reference the .NET Web service engine require a different
extension file or library.

The methods available on the SoapConnection object depend on which
extension file or library you are using and on which Web service engine you
are using. The methods for a .NET Web service engine allows you to include
security information in the SOAP client header.

For more information, see “Importing objects from an extension file.”

Using the EasySoap Web service engine

If you decide not to use the .NET SOAP engine, PowerBuilder uses the
EasySoap Web service engine. Earlier releases of PowerBuilder supported the
EasySoap Web service engine only. Unlike the .NET Web service engine, the
EasySoap engine does not support the XML-type array datatype or header
sections in SOAP message envelopes. The EasySoap Web service engine is
retained for backward compatibility and for use with targets deployed to UNIX
machines.

You set the Web service engine that you want to use on the first page of the Web
Service Proxy Wizard or on the Web Service tab of the Property sheet for a Web
service project. The Use .NET Engine check box is selected by default for new
Web service projects. You must clear the check box if you are developing a
Web service application that you intend to deploy to UNIX machines.

Assigning firewall settings to access a Web service
When you add a Web service at design time and your development machine is
behind a firewall, you must assign proxy server settings to connect to the
Internet.

Table 31-1 displays the design-time proxy server settings that you can enter on
the Firewall Settings page of the PowerBuilder System Options dialog box. To
enter runtime proxy server settings, you must use the SoapConnection
SetProxyServer or the SetProxyServerOptions methods.

For information about the SetProxyServer or the SetProxyServerOptions
methods, see the PowerBuilder Extension Reference in the online Help.

CHAPTER 31 Building a Web Services Client

Application Techniques 619

Table 31-1: Design-time firewall settings

PowerBuilder uses the values you enter for the proxy server settings only if you
also select the Use Above Values as System Defaults check box on the Firewall
Setting page. The type of engine you select for consuming a Web service can
also affect the settings that PowerBuilder uses to connect to the Internet at
design time.

.NET Web service engine If the development machine is located behind a
firewall but you do not select the Use Above Values as System Defaults check
box, PowerBuilder attempts to connect to the Internet using settings entered in
the Internet Options dialog box of the Internet Explorer browser. The selections
you make on the Firewall Setting page have no effect if the development
machine is not located behind a firewall.

EasySoap Web service engine If you do not select the Use Above Values as
System Defaults check box, PowerBuilder assumes that the development
machine is not behind a firewall and makes no attempt to use settings from the
Internet Options dialog box of the Internet Explorer browser. If you select the
Use Above Values as System Defaults check box, but the development
machine is not located behind a firewall, the Web service invocation can fail.

Importing objects from an extension file
Invoking Web services through SOAP requires serialization and
deserialization of data types, and the building and parsing of XML-based
SOAP messages.

The pbwsclient105.pbx file contains objects for the .NET Web service engine
that enable you to perform these tasks without extensive knowledge of the
SOAP specification and schema, the XML Schema specification, or the WSDL
specification and schema. You can use these objects after you import the
extension file into a PowerBuilder Web service application.

Firewall setting Description

Proxy host Name of the proxy server that you use to access Web
pages

Port The port used for connecting to the proxy server

User name User name for accessing the proxy server

Password Password for the user accessing the proxy server

Generating Web service proxy objects

620 PowerBuilder

If you use the EasySoap Web service engine, you can import the
pbsoapclient105.pbx file or the pbwsclient105.pbx file into your PowerBuilder
applications. However, the pbwsclient105.pbx file requires the .NET 2.0
Framework on design-time and runtime machines, even if you are not using the
.NET Web service engine. Both extension files contain the same objects, and
you use these objects and their methods in similar ways.

Using a PBD file
In earlier releases of PowerBuilder, instead of importing an extension file, you
needed to add a PBD file to the application library list. Although this is no
longer necessary, the setup program installs PBD files (containing the same
SoapConnection and SoapException objects as the extension files) in the
Sybase\Shared\PowerBuilder directory. You can use the pbwsclient105.pbd or
the pbsoapclient105.pbd instead of importing object definitions from the
pbwsclient105.pbx or pbsoapclient105.pbx file.

To add definitions from a PowerBuilder extension file to an application library,
right-click the library in the System Tree and select Import PB Extensions from
the pop-up menu. Browse to the Sybase\Shared\PowerBuilder directory and
select the extension file that you want to use.

After you import the PBWSClient105.pbx or the PBSoapClient105.pbx file to
your application, the following objects display in the System Tree:

When you create a Web service client application, you must deploy the
extension file that you use along with the client executable to a directory in the
application’s search path. You can use the Runtime Packager tool to
automatically include the extension files required by your Web service
applications.

Generating Web service proxy objects
Creating a Web
service proxy object

To create a new Web service proxy, select the Web Service Proxy Wizard icon
from the Projects page in the New dialog box. The Web Service Proxy Wizard
helps you create the proxy so you can use the Web service in PowerScript. If
you select the EasySoap Web service engine, one proxy is created for each port.

Object Description

soapconnection Used to connect to a SOAP server

soapexception Used to catch exceptions thrown from soapconnection

CHAPTER 31 Building a Web Services Client

Application Techniques 621

In the wizard you specify:

• Which Web service engine you want to use

• Which WSDL file you want to access

• Which service within the WSDL file you want to select

• Which port or ports you want to use (EasySoap engine only)

• What prefix you want to append to a port name (EasySoap) and include in
the proxy name (EasySoap and .NET engines)

• Which PowerBuilder library you want to deploy the proxy to

You can also select the Web Service Proxy icon from the Projects page in the
New dialog box. The Web Service Proxy icon opens the Project painter for
Web services so that you can create a project, specify options, and build the
proxy library. The new project lists the Web service (and, for the EasySoap
engine, the ports for which proxies will be generated) and specifies the name
of the output library that will contain the generated proxy objects.

Whether you create the Web service project through the wizard or in the
painter, the final step is to build the proxy objects by clicking the Build icon on
the painter bar or selecting Design>Deploy project from the menu bar.

Circular references
Generation of a Web service proxy from a WSDL file that contains a circular
reference is not supported in PowerBuilder. An example of such a “circular
reference” is a structure that includes itself as a child class member.

Using the UDDI
browser in the wizard

PowerBuilder provides live access to Universal Description, Discovery, and
Integration (UDDI) registries for both PowerScript and JSP targets. The UDDI
service is an industry-wide effort to bring a common standard for business-to-
business integration. It defines a set of standard interfaces for accessing a
database of Web services.

The UDDI browser is incorporated in the Web Service Proxy wizard as well as
in the JSP Web Service Proxy wizard. You open UDDI search pages by
clicking the Search From UDDI button on the Select WSDL File page of these
wizards or on the Web Service page of the properties dialog box for a Web
Service Proxy Generator project. The UDDI Search page has search fields and
options listed in Table 31-2.

Generating Web service proxy objects

622 PowerBuilder

Table 31-2: UDDI search fields and options

The next wizard page in the UDDI search depends on whether you are
searching a key word in business names or service names:

• For a business name search The Select Business wizard page returns
a list of business names and descriptions that meet your search criteria.
After you select a business name and click Next, a list of service names is
returned on the Select Service wizard page, along with a service
description and WSDL file name for each service listed.

• For a service name search The Select Service wizard page returns a
list of service names along with a business name, service description, and
WSDL file name for each service listed.

After you select a service on the Select Service page of a wizard, the UDDI
search is complete and you continue your selections on the remaining pages of
the wizard.

Search field or option Description

UDDI profile Editable drop-down list for the name of a UDDI
operator. You can associate a UDDI profile with a query
URL. The drop-down list allows you to select
predefined profiles for the Microsoft and IBM public
UDDI registries.

Query URL Text box that displays the URL for the Web service
registry in which you want to find a Web service. If you
selected a predefined profile in the UDDI Profile
drop-down list, the URL associated with that profile
displays in the text box. You can also enter a query URL
and associate the URL with a profile name by clicking
the Save Profile button.

Search For Text box for entering the key word you want to use in a
UDDI search.

In Drop-down list for “Service Names” (default) or
“Business Names.”

Exact Match Check box option. If selected, limits search to the
current value in the Search For drop-down list.

Case Sensitive Check box option. If selected, limits the search to the
capitalization used by the current value in the Search
For drop-down list.

Sort Radio button option. Sorts search results in ascending or
descending order.

Maximum Rows Spin button option. Limits the number of search results
returned to the number that you enter in this spin button
control.

CHAPTER 31 Building a Web Services Client

Application Techniques 623

The Web Service page of the properties dialog box for a Web Service proxy
object displays the WSDL file selection that you made in the Web Service
Proxy wizard. It also allows you to modify that search through a UDDI search
wizard that contains the same search options and search result lists as the UDDI
search pages in the Web Service Proxy wizard.

Generated proxies The generated proxies display in the System Tree. You can expand the proxy
nodes to display the signatures of the methods.

Aliases for XML
methods

PowerBuilder is not case sensitive, whereas XML, SOAP, C#, and .NET are.
To ensure that PowerScript code can call XML methods correctly, each method
in the proxy uses an alias. The string that follows alias for contains the name
and the signature of the corresponding XML or SOAP method in case-sensitive
mode.

For example:

function real getquote(string ticker) alias for
getQuote(xsd:string symbol)#
return xsd:float StockPrice@urn:xmethods-delayed-
quotes@SoapAction

Generating Web service proxy objects

624 PowerBuilder

Datatype mappings
for EasySoap Web
service engine

The Web service proxy generator maps datatypes between XML and
PowerBuilder if you use the EasySoap Web engine, and between XML, C#,
.NET, and PowerBuilder if you use the .NET Web service engine. All XML
data types are based on schemas from the World Wide Web Consortium Web site
at http://www.w3.org/1999/XMLSchema and at
http://www.w3.org/2001/XMLSchema.

Table 31-3 shows the datatype mappings between XML and PowerScript. If
you use the .NET Web service engine, datatypes are converted to C#, then to
.NET datatypes. (Table 31-4 and Table 31-5 show datatype mappings used
with the .NET Web service engine.)

Table 31-3: Datatype mappings between XML and PowerBuilder

XML Type
PowerScript
Type

boolean boolean

byte (-128 to 127) or short int

unsignedByte (0 to 255) or unsignedShort uint

int long

unsignedInt ulong

long (-9223372036854775808 to 9223372036854775807),
unsignedLong (0 to 9223372036854775807),
integer (-9223372036854775808 to 9223372036854775807),
nonNegativeInteger (0 to 9223372036854775807),
negativeInteger (-1 to -9223372036854775808),
nonPositiveInteger (0 to -9223372036854775808), or
positiveInteger (1 to 9223372036854775807)

longlong

decimal (-999999999999999999 to 999999999999999999) decimal

float real

double double

gYear, gYearMonth, gMonthDay, gDay, anyURI, QName,
NOTATION, string, normalizedSting, token, or datatypes derived
from token

About normalizedString, token, and derived datatypes
A normalized string does not contain carriage return, line feed, or
tab characters. A token is similar to similar to a normalizedString,
but does not contain leading or trailing spaces or an internal
sequence of two or more spaces. Datatypes that derive from token
include language, Name, NCName, NMTOKEN, NMTOKENS,
ID, IDREF, IDREFS, ENTITY, ENTITIES.

string

CHAPTER 31 Building a Web Services Client

Application Techniques 625

Datatype mappings
for .NET Web service
engine

When you use the .NET Web Service engine, PowerBuilder converts the XML
from WSDL files to C# code and compiles it in a .NET assembly. Table 31-4
displays datatype mappings for these conversions.

Table 31-4: Datatype mappings for the .NET Web service engine

Table 31-5 displays the datatype mapping between C# datatypes and
PowerBuilder.

date date

time time

dateTime datetime

base64, base64Binary, or hexBinary blob

XML Type
PowerScript
Type

XML type C# type .NET type

int int System.Int32

unsignedInt uint System.UInt32

boolean bool System.Boolean

unsignedByte Byte System.Byte

short short System.Int16

unsignedShort ushort System.UInt16

long long System.Int64

unsignedLong ulong System.UInt64

Decimal Decimal System.Decimal

Float Float System.Float

Double Double System.Double

Datetime, Date, and Time System.DateTime System.DateTime

hexBinary and hex64Binary Byte [] System.Byte []

nonNegativeInteger,
negativeInteger,
nonPositiveInteger,
positiveInteger, gYear, gMonth,
gMonthDay, gDay, duration,
anyURI, QName, NOTATION,
normalizedString, token,
language, NMTOKEN,
NMTOKENS, Name,
NCName,ID, IDREF, IDREFS,
ENTITY, ENTITIES, and String

String System.String

AnyType Object System.Object

Connecting to a SOAP server

626 PowerBuilder

Table 31-5: Datatype mappings between C# and PowerBuilder

Arrays of arrays Unlike XML, PowerBuilder can support only unbounded one-dimensional
arrays. If an array in a WSDL file is bounded and one-dimensional,
PowerBuilder automatically converts it to an unbounded array. If an array in a
WSDL file is multidimensional, the return type is invalid and cannot be used.

In function prototypes, PowerBuilder displays an array type as a PowerBuilder
any type. You must declare an array of the appropriate type to hold the return
value.

Connecting to a SOAP server
You use the SoapConnection object to connect to the SOAP server that hosts
the Web service that you want to access. The SetOptions method on a
SoapConnection object lets you set options such as the user ID and password
for an HTTPS connection. For .NET Web services, you can also use
authentication methods such as SetBasicAuthentication, SetCertificateFile and
UseWindowsAuthentication.

C# type PowerScript type

byte byte

sbyte int

short int

int long

long longlong

ushort uint

uint ulong

ulong longlong

float real

double double

object any

char uint

string string

decimal decimal

bool boolean

System.DateTime datetime

CHAPTER 31 Building a Web Services Client

Application Techniques 627

Using multiple Web services in the same application
If you connect to multiple Web services that have different authentication
requirements, you must instantiate multiple SoapConnection objects and set
the appropriate values in the SetOptions method or in the other authentication
methods of each connection object.

You use the CreateInstance method to create the client proxy instance to access
the Web service.

For more information on SoapConnection object methods, see the
PowerBuilder Extension Reference in the online Help.

Example The following script creates a connection to a Web service on a SOAP server
using the EasySoap Web service engine. It sets the connection properties using
an endpoint defined in the CreateInstance method. If the endpoint is not
defined in the CreateInstance method, a default URL stored in the proxy would
be used. The script uses the SetSoapLogFile method to specify a log file. It
displays a return value in a message box.

SoapConnection conn // Define SoapConnection
syb_currencyexchangeport proxy_obj // Declare proxy
long rVal, lLog
real amount

//Define endpoint. You can omit it, if you want to use
//the default endpoint inside proxy
string str_endpoint

str_endpoint = "http://services.xmethods.net:80/soap"
conn = create SoapConnection //Instantiated connection

lLog = conn.SetSoapLogFile ("C:\mySoapLog.log")
// Set trace file to record soap interchange data,
// if string is "", disables the feature

rVal = Conn.CreateInstance(proxy_obj, &
"syb_currencyexchangeport", str_endpoint)

// Create proxy object
try

amount = proxy_obj.getrate("us","japan")
// Invoke service
messagebox("Current Exchange Rate", "One US Dollar"&
+ " is equal to " + string(amount) + " Japanese Yen")

catch (SoapException e)

Invoking the Web service method

628 PowerBuilder

messagebox ("Error", "Cannot invoke Web service")
// error handling

end try
destroy conn

Invoking the Web service method
SoapConnection is used to create the Soap_proxy object with connection
options that you set using SoapConnection object methods. Once a proxy
object for a Web service is created, the client application can begin accessing
the Web service. To invoke a Web service method, the proxy object must
contain the following information:

• End point of service, obtained from a WSDL file

• Name space definition used in the SOAP method call

• Any structure definition, when applicable

• An instance variable for each returned structure array, since all returned
arrays are any

• One or more SOAP methods and corresponding alias strings

Exception handling
Errors that occur in the execution of a method of a Web service are converted
to SoapException objects and thrown to the calling script. The methods of the
SoapConnection object in PBWSClient105.pbx and PBSoapClient105.pbx can
also throw SoapException objects when, for example, connection to the server
fails, or the Web service cannot be located or created.

Catching exceptions A client application can handle communications errors in a number of ways.
For example, if a client connects to a server and tries to invoke a method for an
object that does not exist, the client can disconnect from the server, connect to
a different server, or retry the operation. Alternatively, the client can display a
message to the user and give the user the opportunity to control what happens
next.

CHAPTER 31 Building a Web Services Client

Application Techniques 629

When an error occurs, if the client connects to a new server to retry the
operation, it must instantiate the remote object on the new server before
invoking a method of the remote object.

Unhandled exceptions If no exception handler exists, or if the existing exception handlers do not
handle the exception, the SystemError event on the Application object is
executed. If the SystemError event has no script, an application error occurs
and the application is terminated.

Using the UDDI Inquiry API
The UDDIProxy PowerBuilder extension class enables you to search UDDI
registries for a Web service that you want to access. For a description of this
extension class and its methods, see the PowerBuilder Extension Reference or
the online Help.

Example code The following is example code using all the methods in the UDDIProxy class.
It searches an IBM UDDI registry by service name (Weather) and business
name (IBM), using the same search options (case sensitivity and a maximum
of 5 rows returned):

uddiproxy proxy
int ret
proxy = create uddiproxy
ret = proxy.setinquiryurl

(“http:/www-3.ibm.com/services/uddi/inquiryapi”)
ret = proxy.setoption (false, true, 0, 5)
int count, count2
string businessName[], businessDescription[]
string businessKey []
string servicename[], servicedescription[]
string servicekey [], wsdl []
ret = proxy.findService(“Weather”,count,serviceName, &

serviceDescription, serviceKey, businessName, wsdl)
int i, j
FOR i = 1 TO count

messagebox(servicename[i], &
servicedescription[i]+servicekey[i]+wsdl[i])

NEXT

proxy.findbusiness(“IBM”, count, businessName, &
businessDescription, businessKey)

FOR i = 1 TO count

Using the UDDI Inquiry API

630 PowerBuilder

messagebox(businessName[i], &
businessDescription[i] + businessKey[i])

proxy.getbusinessdetail (businessKey [i], count2, &
servicename, servicedescription, servicekey, wsdl)

FOR j = 1 TO count2
messagebox(servicename[j], &
servicedescription[j]+servicekey[j]+wsdl[j])

NEXT
NEXT
destroy proxy

Troubleshooting UDDI
API calls

You can turn on logging to track down any failures on method calls to the
UDDIProxy object. The PowerBuilder Java service class path must include the
log4j.properties configuration file to turn on logging. The following is an
example of a log configuration file for a UDDI search:

#log4j.debug=true
#log all level
#log4j.rootCategory=DEBUG, lf5
#only log com.sybase.powerbuilder.uddi
log4j.category.com.sybase.powerbuilder.uddi=DEBUG,

dest2, lf5
#dest1
#log4j.appender.dest1=org.apache.log4j.ConsoleAppender
#log4j.appender.dest1.layout=

org.apache.log4j.PatternLayout
#log4j.appender.dest1.layout.ConversionPattern=

%-5p: %-5r: %-5c: %l: %m%n
#dest2
log4j.appender.dest2=org.apache.log4j.FileAppender
log4j.appender.dest2.layout=

org.apache.log4j.PatternLayout
log4j.appender.dest2.layout.ConversionPattern=

%-5p: %l: %m%n
log4j.appender.dest2.File=c:/mylog.txt
#lf5
log4j.appender.lf5=

org.apache.log4j.RollingFileAppender
log4j.appender.lf5.File=c:/mylog.lf5
log4j.appender.lf5.layout=

org.apache.log4j.PatternLayout
log4j.appender.lf5.layout.ConversionPattern=

[slf5s.start]%d{DATE}[slf5s.DATE]%n\
%p[slf5s.PRIORITY]%n%x[slf5s.NDC]
%n%t[slf5s.THREAD]%n\%c[slf5s.CATEGORY]
%n%l[slf5s.LOCATION]%n%m[slf5s.MESSAGE]%n%n

log4j.appender.lf5.MaxFileSize=500KB

Application Techniques 631

C H A P T E R 3 2 Using the DataWindow Plug-in

About this chapter This chapter describes how to plan and deploy a Powersoft report (PSR)
in a Web page using the DataWindow plug-in.

Contents

Before you begin This chapter assumes that you are familiar with HTML and URLs and
how a Web browser obtains pages from a Web server, and that you have
access to a Web server.

About the DataWindow plug-in
The DataWindow plug-in lets you display a Powersoft report (PSR) on a
Web page viewed in a browser that supports Netscape plug-ins.

A PSR file contains a report definition (source and object) as well as the
data contained in the report when the PSR file was created. Because its
data is saved with it, a PSR file does not require a database connection, but
the data is static and cannot be refreshed.

Supported browsers The DataWindow plug-in requires use of a Web browser that supports
Netscape plug-ins, such as the Netscape browser and Microsoft Internet
Explorer versions 3 through 5.5 Service Pack 1.

Microsoft Internet Explorer 5.5 Service Pack 2 and later versions do not
support Netscape plug-ins. If you are using the Enterprise or Professional
edition of PowerBuilder, you can use the DataWindow Web control for
ActiveX to display a PSR in Internet Explorer. For more information, see
the DataWindow Programmer’s Guide.

Topic Page

About the DataWindow plug-in 631

Saving a Powersoft report (PSR) 635

Creating an HTML page 636

Setting up the Web server 637

Setting up users’ workstations 638

About the DataWindow plug-in

632 PowerBuilder

Security There are no security issues for the DataWindow plug-in. It does not run any
local applications and it does not write local files unless the user explicitly
chooses to save the report locally.

The DataWindow plug-in displays PSR files only. PSR files are read-only, so
there is no need for a secure version of the DataWindow plug-in.

Restrictions The PSR cannot use the RichText presentation style.

How the DataWindow plug-in works
The DataWindow plug-in displays a PSR with its data and formatting as it was
previewed and saved from the Report painter, DataWindow painter,
DataWindow control, or DataStore. The PSR displays all the formatting in the
DataWindow or report object, including rotated text, colored text, shading, or
edit styles like check boxes or radio buttons.

The data is a report—there is no data entry or database access.

A pop-up menu in the Web browser lets the client print the report or save it in
several formats. If clients save the report as a local PSR file, they can view it
in InfoMaker, which has more tools for searching, filtering, and sorting the
data.

The DataWindow plug-in implements the Netscape plug-in API and requires a
browser that supports this API (for information, see “Supported browsers” on
page 631).

Client-server
interactions, in detail

Table 32-1 describes in detail what happens between the client and server when
the user views an HTML document containing a DataWindow plug-in.

Table 32-1: Client-server transactions for the DataWindow plug-in

Step What the client does How the server responds

1 The Web browser requests the
HTML document from the server

The server sends a header identifying
the document’s MIME type
(text/html)

2 The browser receives the MIME
type and prepares to receive an
HTML document

The server sends the HTML
document

3 The browser receives the HTML
document and displays it

—

4 The browser recognizes the Embed
element, reserves space for the
plug-in on the page, and requests
the PSR file from the server

The server sends a header identifying
the PSR’s MIME type
(application/data window)

CHAPTER 32 Using the DataWindow Plug-in

Application Techniques 633

Requirements Each client that will browse pages containing DataWindow plug-ins needs the
DataWindow plug-in DLL installed on the local machine.

Name and location The name of the DataWindow plug-in DLL is NPDWE105.DLL. PowerBuilder
installs it in the PowerBuilder 10.5\Internet Tools\Plugins directory.

Installing and configuring the DataWindow plug-in
The DataWindow plug-in is not installed on your computer if you select the
Typical setup type when you install PowerBuilder. You can install the plug-in
by running a custom installation of PowerBuilder and checking the Web
Plugins box on the Select Components page. Click the Change button on that
page to select the plug-ins and controls you want to install. This section
describes setup tasks that you may need to perform after installing the plug-in.

Installation location The DataWindow plug-in is installed in the PowerBuilder 10.5\Internet
Tools\Plugins directory. The PowerBuilder installation program might also
install a copy of the plug-in in your Web browser’s Plugins directory if you
have Netscape installed.

If you have no browser installed or the installation program did not find the
browser, you need to install the Netscape Web browser and then copy or move
the plug-ins to your browser’s Plugins directory. Current versions of Microsoft
Internet Explorer do not support plug-ins.

5 The browser receives the MIME
type and prepares to receive a PSR
file

The server sends the PSR file

6 The Web browser receives the PSR
file

—

7 The browser searches its Plugins
directory for the DLL that
corresponds to the MIME type
(application/data window)

—

8 The Web browser loads the plug-in
DLL and displays the PSR file

—

Step What the client does How the server responds

About the DataWindow plug-in

634 PowerBuilder

Developing and deploying a DataWindow plug-in
What you do There are four main tasks involved in displaying a PSR in the DataWindow

plug-in.

❖ To display a PSR in the DataWindow plug-in:

1 Save a PSR file.

2 Create an HTML page that embeds the DataWindow plug-in.

3 Configure the Web server by registering the appropriate content type
(MIME type) and copying the HTML page and PSR files to appropriate
directories.

4 On all client workstations, install the DataWindow plug-in DLL.

Resulting components When everything is set up, the various computers will have the components
listed in Table 32-2.

Table 32-2: Server and client configuration for DataWindow plug-in

What’s next The rest of this chapter describes the four steps for displaying a PSR in the
DataWindow plug-in:

• Saving a Powersoft report (PSR)

• Creating an HTML page

• Setting up the Web server

• Setting up users’ workstations

Computer Component

Server MIME type application/data window registered for the file
extension PSR

HTML page with an Embed element for the PSR

PSR file

Client DataWindow plug-in DLL in the browser’s Plugins directory and
supporting DLLs

CHAPTER 32 Using the DataWindow Plug-in

Application Techniques 635

Saving a Powersoft report (PSR)
Creating a PSR file There are several ways in which you or a user can create a PSR file.

❖ To create a PSR file:

• In the PowerBuilder DataWindow painter or InfoMaker Report painter, do
one of the following:

• Select File>Save As File. In the Select a File Name dialog, specify a
location for the file, a file name, and Powersoft Report as the file type.

• Select File>Save Rows As. In the Save As dialog box, specify a
location for the file, a file name, and Powersoft Report as the type.

Resources for the
PSR

A DataWindow or report object can display bitmap objects and custom
pointers. These external resources must be made available on the client
workstation. They are not automatically downloaded from the server.

Paths for external resources must be valid on the client workstation. In the
DataWindow or Report painter, you can edit paths so that they specify
directories relative to the current directory instead of absolute paths that are
unlikely to exist on the user’s computer.

In an intranet environment, you can store external resources on a network drive
that is accessible to all users. In Windows environments, you can use a network
path to name the network drive instead of using a mapped drive letter.

OLE objects and
custom controls

OLE servers and custom controls must be installed and registered on each
client workstation.

Restrictions You cannot use a PSR file in the DataWindow plug-in whose original
DataWindow or report had the RichText presentation style.

What’s next After saving a PSR file, you need to create the HTML page that displays it.

Creating an HTML page

636 PowerBuilder

Creating an HTML page
You include a Powersoft report (PSR) on a Web page with the Embed element.
Element attributes specify the space allocated for the report and the report file
name.

A sample Embed element might look like this:

<EMBED src=April_sales.psr WIDTH=370 HEIGHT=320>

Attributes of the
Embed element

The Embed element is part of the HTML specification for plug-ins. For the
DataWindow plug-in, you specify only standard HTML attributes.

HTML attributes HTML attributes name the file to be downloaded to the
client and the space reserved for the plug-in on the Web page.

Table 32-3: HTML attributes for the DataWindow plug-in

Sample page
Here is HTML code that includes the DataWindow plug-in in a sample page.
Note the use of the Embed element to specify a PSR file.

Opening element <HTML>

Document heading <HEAD>
<TITLE>On Leave report</TITLE>
</HEAD>
<BODY>

H1 heading <H1>On Leave report</H1>

Embed element in a
paragraph

<P><EMBED src=DWB_att_crossout.psr WIDTH=680 HEIGHT =
350></P>

Closing elements </BODY>
</HTML>

HTML attribute Value

SRC A URL identifying the object to be downloaded.

When the browser processes the Embed element, it requests
the resource from the server and finds the DLL in its Plugins
directory that handles the content type.

For a DataWindow plug-in, the object is a PSR file.

WIDTH The width of the viewing window in pixels.

HEIGHT The height of the viewing window in pixels.

CHAPTER 32 Using the DataWindow Plug-in

Application Techniques 637

Setting up the Web server
Setting up the Web server involves:

1 Specifying the MIME type

2 Putting the files on the server

Specifying the MIME
type

Using the appropriate software for your Web server, register the MIME type for
the DataWindow plug-in. For PowerBuilder 10.5, the MIME type is:

application/datawindow10.5

The file extension associated with the MIME type is PSR.

Your server documentation might use the term content type instead of MIME
type.

Putting the files on the
server

You must copy the PSR and HTML files to appropriate directories on your
server.

Table 32-4: PSR and HTML file locations on server

About URLs The URLs you specify in your HTML page are logical paths as
defined by the Web server. For example, the system path for your PSR might
be:

C:\WEBSITE\HTDOCS\PB\DWB_ATT_CROSSOUT.PSR

If htdocs is defined as the server’s documents directory, the logical path for the
URL would be relative to the documents directory:

pb/dwb_att_crossout.psr

Files Location What you do

HTML page The HTML documents
directory or subdirectory

Copy the HTML page to the
directory specified in any
URLs that link to the page.

PSR file named in the
SRC attribute of the
Embed element

The HTML documents
directory or some other
directory as appropriate

Copy the PSR file to the
directory you specified in the
Embed element attribute.

Setting up users’ workstations

638 PowerBuilder

Setting up users’ workstations
After saving the PSR, creating an HTML page, and setting up the server, you
need to make sure client workstations are set up to view the page containing
the DataWindow plug-in.

Users who will view a Web page that includes a DataWindow plug-in need
supporting software installed on their client workstations. They also need a
connection to the Web server.

Required components Each client workstation needs the components in Table 32-5 to view a Web
page containing a DataWindow plug-in.

Table 32-5: Client requirements to view DataWindow plug-in

Viewing the Web page
and the PSR

While viewing a PSR in the DataWindow plug-in, the user can:

• Navigate through the data in the PSR using scroll bars

Component Procedure

An Internet or
intranet
connection

Available within your corporation or from an Internet service
provider.

A Web browser
that supports
Netscape plug-
ins

Available from the browser vendor. Examples are:

• Netscape Navigator Version 3.x or later.

• Microsoft Internet Explorer Version 3.x through 5.5 Service
Pack 1. Internet Explorer 5.5 Service Pack 2 and later versions
do not support plug-ins.

DataWindow
plug-in DLL

If it is not there already, copy the NPDWE105.DLL file from the
Internet Tools\Plugins directory to the browser’s Plugins
directory.

Supporting
DLLs

If it is not there already, copy the PBSHR105.DLL file from the
Shared\PowerBuilder directory to the browser’s Plugins
directory. If they are not already available on the client
workstation, install the following Microsoft runtime files in the
client’s Windows system directory: MSVCR71.DLL,
MSVCP71.DLL, and ATL71.DLL.

Other files If the original DataWindow object or report included bitmap
objects or custom pointers from external files, you need to copy
those files to the client workstation. The path on the client
workstation must correspond to the path saved in the PSR.

If the original included OLE objects or custom controls, you must
install and register the OLE server or custom control on the client
workstation. The path for an OLE object must be valid on the
client.

CHAPTER 32 Using the DataWindow Plug-in

Application Techniques 639

• Change values in rows and columns if the source of the PSR was an
editable DataWindow object (but because there is no database connection,
data cannot be updated in a database)

• Right-click on the PSR to display a pop-up menu for saving, printing, and
navigating

InfoMaker users who save the report from the Web page as a local PSR file can
open that PSR file in InfoMaker to search, filter, and sort the data.

Setting up users’ workstations

640 PowerBuilder

Application Techniques 641

C H A P T E R 3 3 Using the PowerBuilder Window
Plug-in

About this chapter This chapter describes how to develop, test, and deploy a PowerBuilder
application that is displayed as a plug-in application in a Web page.

Contents

Before you begin This chapter assumes you are familiar with HTML and URLs and how a
Web browser obtains pages from a Web server, and that you have access
to a Web server.

About the PowerBuilder window plug-in
The PowerBuilder window plug-in lets you display a PowerBuilder child
window on a Web page viewed in a browser that supports Netscape
plug-ins.

Internet Explorer
Microsoft Internet Explorer 5.5 Service Pack 2 and later versions do not
support Netscape plug-ins. As a result, the PowerBuilder window plug-in
cannot be used to display PSR reports on those browsers.

Topic Page

About the PowerBuilder window plug-in 641

Installing and configuring the PowerBuilder window plug-ins 646

Using the secure PowerBuilder window plug-in 647

Developing and deploying a PowerBuilder window plug-in
application

648

Creating the PowerBuilder application 649

Creating an HTML page 656

Setting up the server 659

Setting up users’ workstations 660

About the PowerBuilder window plug-in

642 PowerBuilder

Features The PowerBuilder child window can include all the familiar controls, including
DataWindows, OLE objects, ActiveX (OCX) controls, and tree controls. You
can also open other (pop-up or response) windows from the child window.

As the user interacts with controls in the child and other windows, scripts for
the controls’ events are executed just as they are in standalone PowerBuilder
applications. Database access by the plug-in application occurs locally using
the client’s defined database connections.

The objects in the application can be contained in one or more PowerBuilder
Dynamic Libraries (PBDs).

Standard and secure
versions

There are two versions of the PowerBuilder window plug-in: standard and
secure.

Standard PowerBuilder window plug-in The standard PowerBuilder
window plug-in displays a PowerBuilder child window in an HTML page. The
standard window plug-in is implemented by NPPBA105.DLL.

CHAPTER 33 Using the PowerBuilder Window Plug-in

Application Techniques 643

Secure PowerBuilder window plug-in The secure PowerBuilder window
plug-in is a secure version of the standard window plug-in. Using the secure
version ensures that PowerBuilder applications downloaded over the Internet
do not damage a client system or access information on a client workstation.
The secure window plug-in is implemented by NPPBS105.DLL.

For considerations to keep in mind when using the secure version of the
PowerBuilder window plug-in, see “Using the secure PowerBuilder window
plug-in” on page 647.

Supported browsers The PowerBuilder window plug-in requires use of a browser that supports
Netscape plug-ins, such as Netscape Navigator Version 3.x or later. Microsoft
Internet Explorer 5.5 Service Pack 2 and later versions do not support Netscape
plug-ins.

Security The standard PowerBuilder window plug-in is a nonsecure application,
meaning that it can access local files and run local applications. These types of
processing are often undesirable in an uncontrolled Web environment but
might be perfectly acceptable on a corporate intranet where access is
controlled.

If security is important at your site, consider using the secure version of the
PowerBuilder window plug-in to build your application.

Some events always execute in secure mode
As of PowerBuilder 7, the application Open event and some of the Constructor
events for controls execute in secure mode even when you use the standard
window plug-in. If your application logic depends on the ability to perform a
nonsecure activity in these events, such as opening a file for writing, post an
event message to yourself. These are processed once the plug-in returns to
standard mode.

For more about the secure PowerBuilder window plug-in, see “Using the
secure PowerBuilder window plug-in” on page 647.

What kinds of applications make good plug-ins?
HTML forms provide some user interaction by means of a limited user
interface. The PowerBuilder window plug-in takes you beyond HTML. You
can present a fully developed application window with a rich user interface
design to a Web page. You can access data sources defined on the client
workstation.

About the PowerBuilder window plug-in

644 PowerBuilder

Examples Your application might be:

• A data analysis window with master and detail DataWindows

• A user interface design that lets the user make choices using TreeView,
ListView, and PictureListBox controls

• A data entry form that processes data on a server

• A data entry form that uses the client’s defined database connection (either
network or local) to process the data on the client machine

• A window that uses PowerBuilder’s OLEControl control to display an
ActiveX control

How the PowerBuilder window plug-in works
The PowerBuilder window plug-in displays a PowerBuilder child window
inside a fixed space reserved on the Web page. The user can interact with the
controls on the page, and the PowerBuilder scripts for the window and its
controls can execute any PowerBuilder code. When the user switches to
another Web page, the PowerBuilder window is closed and the PowerBuilder
DLLs are unloaded from memory.

You include the plug-in on an HTML page using the HTML Embed element.
The Embed element names one or more PBDs that contain PowerBuilder
objects and the name of the child window object that is displayed on the page.

The PowerBuilder window plug-in implements the Netscape plug-in API and
requires a browser that supports this API (for information, see “Supported
browsers” on page 643.)

Client-server
interactions, in detail

Table 33-1 describes in detail what happens between the client and server when
the user views an HTML document with a PowerBuilder window plug-in:

Table 33-1: Client/server interaction for the Window plug-in

Step What the client does How the server responds

1 The Web browser requests the
HTML document from the server

The server sends a header identifying
the document’s MIME type (text/html)

2 The browser receives the MIME
type and prepares to receive an
HTML document

The server sends the HTML document

3 The browser receives the HTML
document and displays it

—

CHAPTER 33 Using the PowerBuilder Window Plug-in

Application Techniques 645

Requirements The PowerBuilder window plug-in uses the PowerBuilder runtime DLLs as
well as the plug-in DLL to provide a full range of PowerBuilder functionality.

4 The browser recognizes the
Embed element, reserves space
for the plug-in on the page, and
requests the PBD file from the
server

The server sends a header identifying
the PBD’s MIME type, which can be
one of the following:

• Standard window plug-in
application/vnd.powerbuilder10.5

• Secure window plug-in
application/vnd.powerbuilder10.5-s

5 The browser receives the MIME
type and prepares to receive a
PBD file

The server sends the PBD file

6 The browser receives the PBD
file

—

7 The browser searches its Plugins
directory for the DLL that
corresponds to the MIME type
(see server step 4)

—

8 The browser loads the plug-in
DLL

—

9 The plug-in looks for and loads
the PowerBuilder deployment
DLLs

—

10 If the Embed element includes
LIBRARY attributes, then the
client requests the specified PBD
files

The server sends a header identifying
the PBD’s MIME type (see server step
4)

11 The browser receives the MIME
type and prepares to receive
additional PBD files

The server sends the PBD file

12 PowerBuilder displays the child
window specified in the Embed
element

—

13 The child window executes its
Open script

—

14 If a script calls the
CommandParm function,
PowerBuilder queries the
browser for the value of the
COMMANDPARM attribute in
the Embed element

—

Step What the client does How the server responds

Installing and configuring the PowerBuilder window plug-ins

646 PowerBuilder

Each client that will browse pages containing PowerBuilder window plug-ins
needs supporting software installed on the local machine:

• PowerBuilder runtime DLLs

• Window plug-in DLL, placed in the Web browser’s Plugins directory

The PowerBuilder window plug-in is especially useful in an intranet
application where you have control over the setup of client machines.

For details about setting up client machines on each supported platform, see
“Setting up users’ workstations” on page 660.

Name The name of the PowerBuilder window plug-in DLL depends on whether you
are using the standard or secure version:

Table 33-2: PowerBuilder window plug-in DLLs

Installing and configuring the PowerBuilder window
plug-ins

The PowerBuilder window plug-ins are not installed on your computer if you
select the Typical setup type when you install PowerBuilder. You can install the
plug-ins by running a custom installation of PowerBuilder and checking the
Web Plugins box on the Select Components page. Click the Change button on
that page to select the plug-ins and controls you want to install.

This section describes setup tasks that you may need to perform after installing
the plug-ins.

Installation location The PowerBuilder window plug-in DLLs are installed in the PowerBuilder
10.5\Internet Tools\Plugins directory. The PowerBuilder installation program
may also install a copy of the plug-ins in your Web browser’s Plugins directory
if you have Netscape installed.

If you have no browser installed or the installation program did not find the
browser, you need to install Netscape and then copy or move the plug-ins to the
browser’s Plugins directory.

Component Name

Standard PowerBuilder window plug-in NPPBA105.DLL

Secure PowerBuilder window plug-in NPPBS105.DLL

CHAPTER 33 Using the PowerBuilder Window Plug-in

Application Techniques 647

PowerBuilder
deployment DLLs

The PowerBuilder window plug-in must know the location of the
PowerBuilder runtime DLLs (PBVM105.DLL, PBDWE105.DLL and so forth).
If the Setup program finds your browser, it will make the appropriate registry
modifications, but if it cannot find your browser, you must make the
modifications. You can do this in one of two ways:

• Add the directory for the PowerBuilder runtime DLLs to the application
path key for the browser’s executable in the Windows registry

• Add the directory for the PowerBuilder runtime DLLs to the system path

Using the secure PowerBuilder window plug-in
How to use it You follow the same basic steps to develop and deploy applications using the

secure PowerBuilder window plug-in as you do when using the standard
PowerBuilder window plug-in. (These steps are described in “Developing and
deploying a PowerBuilder window plug-in application” on page 648.)

The only difference is that the secure PowerBuilder window plug-in uses a
special version of the standard window plug-in DLL. The secure version of the
window plug-in is NPPBS105.DLL.

Restricted
functionality

Using the secure PowerBuilder window plug-in severely restricts the
PowerBuilder application running on the client workstation, denying access to
the client system except for printing. For this reason, using the secure window
plug-in might not be appropriate in all situations.

The types of activities listed in Table 33-3 are restricted when you use the
secure PowerBuilder window plug-in.

Table 33-3: Secure window plug-in restrictions

Activity Restriction

External functions Calling an external function causes an execution error

Certain PowerScript
functions

Calling a restricted PowerScript function causes an
execution error

Database connection Calling PowerScript functions that result in database
access causes an execution error

Internet access Applications that use the secure PowerBuilder window
plug-in can establish an Internet connection only to the
current Web server

E-mail Calling PowerScript Mail functions causes an execution
error

Developing and deploying a PowerBuilder window plug-in application

648 PowerBuilder

Developing and deploying a PowerBuilder window
plug-in application
Basic steps There are four main tasks involved in developing a plug-in application.

❖ To create and deploy a PowerBuilder window plug-in application:

1 Create, test, and build the PowerBuilder application.

2 Create an HTML page that embeds your PowerBuilder application
window.

3 Configure the Web server by registering the appropriate content type
(MIME type) and copying the HTML page and PBD files for the
application to appropriate directories.

4 On all client workstations, install the standard or secure PowerBuilder
window plug-in DLL and the PowerBuilder deployment DLLs.

Resulting components When everything is set up, the various computers have the components in
Table 33-4.

OLE Calling PowerScript OLE functions causes an execution
error

Dynamic Data Exchange
(DDE)

Calling PowerScript DDE functions causes an execution
error

Activity Restriction

CHAPTER 33 Using the PowerBuilder Window Plug-in

Application Techniques 649

Table 33-4: Server and client configuration for PowerBuilder window
plug-in

What’s next The rest of this chapter describes the four steps for creating and deploying a
PowerBuilder window plug-in application:

• Creating the PowerBuilder application

• Creating an HTML page

• Setting up the server

• Setting up users’ workstations

Creating the PowerBuilder application
The starting point of your PowerBuilder window plug-in application is a child
window displayed in a Web page. In the window you can include controls and
write scripts for events. Your scripts can open other windows, read and write
files, and run other programs on the client machine.

Computer Component

Server MIME type registered.

For instructions, see “Specifying the MIME type” on page 659.

HTML page with an Embed element for the PBD.

One or more PBDs containing your Application objects.

Client PowerBuilder window plug-in DLL in the browser’s Plugins
directory.

PowerBuilder deployment DLLs installed using the Deployment
Kit for your platform.

Directory for the PowerBuilder deployment DLLs listed in the
system path.

Any additional software required by the plug-in application, such
as database connection software or OLE servers and custom
controls.

Creating the PowerBuilder application

650 PowerBuilder

Design choices for plug-in applications
The application you design for use as a plug-in can be much the same as other
PowerBuilder applications you develop, but there are some restrictions and
considerations to keep in mind in the following areas:

• Window management

• Objects

• Scripts and variables

• Data access

• External files

Window management Initial child window Your initial window needs to be a child window that
lives in the browser frame.

You can:

• Include a title bar on the child window (but you should not use a control
menu, maximize box, or minimize box on that window)

• Open pop-up and response windows from the child window (but not main
or MDI windows)

You cannot:

• Have a menu for the child window

• Open another child window from the initial window

Closing windows When the client browses to another Web page, the child
window on the current Web page is closed, but other windows remain open
unless your application closes them. You must close them in the child
window’s Close or CloseQuery events.

Do not try to stop the child window from being closed in the CloseQuery event
by setting a return value. You cannot prevent the browser from changing to
another page and removing the window from view. If the user returns to the
page, another instance of your application is started.

Objects Objects in your PBDs Your plug-in application has access to all objects in
the PBDs. This includes functions, structures, and user objects.

System objects Your plug-in application has access to system objects that
PowerBuilder instantiates, such as the SQLCA Transaction object and the
Message object.

CHAPTER 33 Using the PowerBuilder Window Plug-in

Application Techniques 651

Application object You can use the optional APPLICATION attribute of the
Embed element to specify the name of your PBD’s Application object. This
gives your plug-in application access to the Application object’s Open and
Close events.

If you do not specify the APPLICATION attribute:

• Your plug-in application does not have access to the Application object,
and thus events like SystemError and Idle are not available. You cannot
treat variables and functions defined in an Application object as global.

• Any scripts in the Application object are used only during testing within
PowerBuilder. You cannot do any application setup in the Application
object’s scripts.

For information about specifying the APPLICATION attribute, see “Attributes
of the Embed element” on page 656.

Scripts and variables Global variables If you use the APPLICATION attribute of the Embed
element to specify your PBD’s Application object, your plug-in application has
access to global variables and global functions used in the application.

If you do not specify the APPLICATION attribute, the plug-in application
cannot use global variables. You must define all variables as instance, shared,
or local.

For information about specifying the APPLICATION attribute, see “Attributes
of the Embed element” on page 656.

Referencing the initial window You cannot reference the initial child
window by name in your scripts, because PowerBuilder does not create a
variable to hold the instance of it. (By contrast, when you instantiate a window
yourself by coding the Open function, you always place the instance in a
variable that you can then reference.)

Thus, the following code produces an error at runtime (because the window
variable w_mychild does not exist):

// This code produces a runtime error:
w_mychild.title = "The initial window"

But you can code:

// In the child window itself:
this.title = "The initial window"
// or
title = "The initial window"

Creating the PowerBuilder application

652 PowerBuilder

// In controls of the child window:
parent.title = "The initial window"

Scripts for application setup All application setup must be done in the
child window, including connecting to the DBMS. The first scriptable events
to occur are the constructors for the controls in the window. Then the Open
event for the window occurs.

The Activate event does not occur for a child window; do not put application
setup code there.

Data access If your application accesses a DBMS, each client must have a connection to the
data source. The connection must be defined on the client’s machine, not the
server. The data source might be a local or a network DBMS.

For information about how to connect to a DBMS from the client machine, see
Connecting to Your Database.

The constructor events for controls occur before the Open event of the window.
If you connect to the DBMS in the window’s Open event, the constructor
events cannot get data. You can get data for controls in the window’s Open
event, or you can post events from the constructor events or the window’s Open
event.

Paths for external
resources

Paths you specify for files must be valid on the client workstation.

If your application uses images as external files, the images must be available
at the path specified in the PowerBuilder object. Instead of using external files,
you can build image resources into PBDs, as described in “Building the
dynamic libraries” on page 654.

If your application reads or writes local files, the path for those files must be
valid on each client’s machine.

If a path refers to a network drive by mapped drive letter, all clients must use
the same drive letter that the application uses. As an alternative, specify the
server name in the path instead.

For example, both of these paths are valid when o: is mapped to
\\marketing\drive, but the second path, which uses a server name, is more likely
to remain valid.

O:\pbapps\connect.bmp
\\marketing\drive\pbapps\connect.bmp

CHAPTER 33 Using the PowerBuilder Window Plug-in

Application Techniques 653

Defining the starting window in the Window painter
You use the Window painter to create the starting window, as you do for any
window you create in PowerBuilder.

❖ To create your application’s starting (or only) window:

1 Create a new window object in PowerBuilder.

2 On the window’s General tab of the Properties view, set the window type
to child.

3 Add other controls as needed.

4 Write scripts for events of the window and controls.

❖ To convert an existing application to run as a plug-in:

1 Change the type of the opening window to child.

2 If you do not plan to specify the APPLICATION attribute of the Embed
element, do both of the following:

• Remove references to global variables.

• Move application setup code from the application’s Open event or
MDI frame events to the child window’s Open event.

For information about specifying the APPLICATION attribute, see
“Attributes of the Embed element” on page 656.

3 Depending on the application’s design, you may need to redesign how it
opens other windows.

About child windows Child windows cannot have menus. They are never considered the active
window—and therefore the Activate event is never triggered. They can have
title bars and can be minimized, maximized, and resized. In the plug-in
environment, the child window is always restricted to the space allotted by the
WIDTH and HEIGHT attributes specified on the Web page, as follows:

• Maximizing causes the window to fill the space allotted by the WIDTH
and HEIGHT attributes.

• Minimizing displays the window’s icon and title at the bottom of the
plug-in’s allotted space.

• If the child window is resizable, the user can drag the borders to make the
window smaller (but not larger) than the allotted space.

As a result, it is not useful to allow minimizing, maximizing, or resizing of the
child window.

Creating the PowerBuilder application

654 PowerBuilder

Testing the application in PowerBuilder
Before you try your application in a client browser, you can test it in
PowerBuilder by defining a main window that opens the child window.

❖ To test your PowerBuilder window plug-in application:

1 Create a new window object whose type is main (the default).

2 Write a script for the Open event that opens the plug-in’s starting child
window:

Open(w_child)

3 For convenience, you can set appropriate window sizes in the Window
painter:

• Make the main window large enough to display the child

• Position the child window in the upper-left corner (use the Position
fields in the Other tab of the Properties view)

4 Run the test window by clicking the Preview button or selecting
File>Run/Preview.

Debugging in PowerBuilder
To use the PowerBuilder debugger, you need to run an application instead of a
single window. Define an Application object with a script that opens the main
window. Then you can use the Run or Debug command to test the application.

Building the dynamic libraries
The User’s Guide describes how to build dynamic runtime libraries (PBDs).
The procedure is the same for a plug-in application. This section highlights the
choices you need to make for building a PBD for a plug-in application.

Remember that in the Web environment, file size is important.

Organizing objects in
PBLs

Before you build your application, you should use the System Tree or Library
painter to organize the objects your application uses in PBLs, which are the
sources for the plug-in application’s PBDs. The following suggestions can help
you optimize the resulting libraries:

• To minimize file size, include only objects the application uses; remove
any objects that are not needed.

CHAPTER 33 Using the PowerBuilder Window Plug-in

Application Techniques 655

• Include any objects that are dynamically created, such as DataWindow
objects used in DataStores or assigned dynamically to DataWindow
controls.

• Include ancestor objects.

Using PowerBuilder
resource (PBR) files

Several controls can use external files for images. These include
PictureListBox, TreeView, Picture, and PictureButton controls, pointers, and
bitmap objects in DataWindow objects. If your application uses external files
for the images, it is unlikely that the client has the same images on the same
system path.

Instead of finding some way to install the pictures on client machines, you can
use one or more PowerBuilder resource (PBR) files so that the images are built
into the PBDs. The resulting PBDs are larger but self contained.

Because you are building a dynamic runtime library, not an executable, you do
not need to include DataWindow objects in the PBR file. All PowerBuilder
objects in the source PBL are included in the resulting PBD.

Images and other resources on a network
Instead of building the files into the PBD, you can put the files in a generally
accessible network directory, but the path to the files must be identical to the
path named in the PowerBuilder objects. This means that in the Windows
environment, each client must use the same drive letter to map the network
drive, or you can specify the server name in the path.

❖ To define a PBR file:

1 Open the PowerBuilder File Editor (Shift+F6) or some other text editor
and create a new file with the extension PBR. (You can add the File Editor
icon to the toolbar.)

2 List each image or other resource on its own line. List the path and file
name exactly as it is named in the object property sheet or script.

Shortcut
Look at the object’s Properties view and use Ctrl+C to copy the file name
to the clipboard, then paste it into the editor.

3 Save the file.

If your application includes several PBLs, each with objects using their own
resources, you should create a PBR file for each PBL. The PBR file will list file
names for resources that are used in one PBL.

Creating an HTML page

656 PowerBuilder

Building the PBDs Build your runtime libraries (PBDs) in the Project or Library painter as
described in the User’s Guide. Keep in mind:

• Deselect Machine code. Your plug-in application must have PBDs, not
machine code DLLs.

• Specify a PBR file for each PBD. If the objects in the PBL use resources
that you have listed in a PBR file, put the PBR name in the Resource File
Name text box.

For instructions on defining a PBR file and building your runtime libraries
(PBDs), see the chapter on creating an executable in the User’s Guide.

Creating an HTML page
After creating and building the PowerBuilder PBDs for your plug-in
application, you need to create the HTML page that displays it.

You include a PowerBuilder window on a Web page with the Embed element.
Element attributes specify the space allocated for the window, the name of the
PBD, and the name of the child window in the PBD.

A sample Embed element might look like this:

<EMBED SRC=plugin_tree.pbd WIDTH=370 HEIGHT=320
WINDOW=w_emp_by_dept>

Attributes of the Embed element
The Embed element is part of the HTML specification for plug-ins. It defines
several standard attributes, and PowerBuilder defines additional attributes.

HTML attributes HTML attributes name the file to be downloaded to the client and the space
reserved for the plug-in on the Web page.

CHAPTER 33 Using the PowerBuilder Window Plug-in

Application Techniques 657

Table 33-5: HTML Embed element attributes

The WIDTH and HEIGHT attributes define the maximum width and height of
the child window. If the child window is resizable, the user can make it smaller
than the specified size, but not larger.

PowerBuilder
attributes

The PowerBuilder attributes for the Embed element let you identify the
window object that starts your application, additional libraries, parameters to
pass to the application, and the name of your Application object.

Table 33-6: PowerBuilder Embed element attributes

HTML attribute Value

SRC A URL identifying the object to be downloaded.

When the browser processes the Embed element, it requests the
resource from the server and finds the DLL that handles the
content type in its Plugins directory.

For a PowerBuilder window plug-in, the object is a PBD
containing the child window that starts the application.

WIDTH The width of the viewing window in pixels.

HEIGHT The height of the viewing window in pixels.

PowerBuilder attribute Value

WINDOW The class name of the child window in the PBD.

LIBRARY
(optional)

A URL specifying an additional PBD that contains
objects that your application needs. You must specify
the full URL for the PBD, rather than a relative one.

You can specify more than one LIBRARY attribute.
Specify a LIBRARY attribute for each additional PBD
your application needs. Do not specify a LIBRARY
attribute for the file specified for SRC.

For an example of HTML code that uses the LIBRARY
attribute, see “Embed element with additional
attributes” on page 659.

COMMANDPARM
(optional)

A string that you want to pass to your window. To
access this string from within your window, call the
CommandParm function.

For an example of HTML code that uses the
COMMANDPARM attribute, see “Embed element
with additional attributes” on page 659.

Creating an HTML page

658 PowerBuilder

Sample page
Here is HTML code that includes the PowerBuilder window plug-in showing
a window with master and detail DataWindow controls. Note the use of the
Embed element to specify the PowerBuilder window plug-in.

Opening element <HTML>

Document head <HEAD>
<TITLE>Master-Detail window</TITLE>
</HEAD>
<BODY>

A small image

H1 heading <H1>Master-detail in a PB window plug-in</H1>

Horizontal rule <P><HR></P>

Paragraph <P>This window accesses the PB demo database to display
a list of departments. When the user clicks a department
row, the second DataWindow displays the employees in
that department.</P>

Embed element in a
paragraph

<P><EMBED SRC=plugin_tree.pbd WIDTH=370 HEIGHT=320
WINDOW=w_emp_by_dept>
</P>

Link to site’s home
page

Back to Home
Page

APPLICATION
(optional)

The name of the Application object in the PBD.

This gives your plug-in application access to the
Application object’s Open and Close events, as well as
to global variables and global functions used in the
application.

When you use the APPLICATION attribute, the
Application object’s Open and Close events execute by
default, and cannot be overridden. Make sure the
Application object’s Open event does not open the
child window specified by the WINDOW attribute. If it
does, your application will fail.

For an example of HTML code that uses the
APPLICATION attribute, see “Embed element with
additional attributes” on page 659.

PowerBuilder attribute Value

CHAPTER 33 Using the PowerBuilder Window Plug-in

Application Techniques 659

Closing elements </BODY>
</HTML>

Embed element with additional attributes
If your plug-in application uses additional libraries, a COMMANDPARM
string, and the APPLICATION attribute to provide access to the PBD’s
Application object, the Embed element might look like this:

<EMBED SRC=plugin_tree.pbd WIDTH=370 HEIGHT=320
WINDOW=w_emp_by_dept
LIBRARY=http://www.mycompany.com/pb/extra1.pbd
LIBRARY=http://www.mycompany.com/pb/extra2.pbd
COMMANDPARM="Eastern region"
APPLICATION=plugin_tree>

Setting up the server
After defining the HTML page that displays your plug-in application, you need
to set up the Web server.

Specifying the MIME
type

Using the appropriate software for your Web server, register the MIME type
for the PowerBuilder window plug-in. Table 33-7 shows the MIME types you
can use.

Table 33-7: PowerBuilder window plug-in MIME types

The file extension associated with the MIME type is PBD.

Your server documentation might use the term content type instead of MIME
type.

Putting the files on the
server

You need to copy PowerBuilder libraries and the HTML file to appropriate
directories on your server.

For this plug-in Register this MIME type

Standard PowerBuilder
window plug-in

application/vnd.powerbuilder10.5

Secure PowerBuilder
window plug-in

application/vnd.powerbuilder10.5-s

Setting up users’ workstations

660 PowerBuilder

Table 33-8: PBD and HTML file locations on server

About URLs The URLs you specify in your HTML page are logical paths as
defined by the Web server. On Windows, for example, the system path for your
PBD might be:

C:\WEBSITE\HTDOCS\PB\PLUGIN_APP.PBD

If htdocs is defined as the server’s documents directory, you can use the
following relative path when specifying the SRC attribute of the Embed
element. This path is relative to the documents directory:

pb/plugin_app.pbd

For the LIBRARY attribute, do not specify a relative URL for the PBD. You
must specify a full URL. For example:

http://www.mycompany.com/pb/plugin_app.pbd

Setting up users’ workstations
After building the plug-in application, creating its HTML page, and setting up
the server, you need to make sure client workstations are set up to view the
plug-in application.

To view a Web page that includes a PowerBuilder window plug-in application,
users need supporting software installed on their client workstations. They also
need a connection to the Web server.

Files Location What you do

HTML page The HTML documents
directory

Copy the HTML page to the
directory specified in any
URLs that link to the page

PBD files named in
the SRC and
LIBRARY attributes
of the Embed element

The HTML documents
directory or some other
directory as appropriate

Copy the PBD files to the
directories you specified in the
Embed element attributes

CHAPTER 33 Using the PowerBuilder Window Plug-in

Application Techniques 661

Required components
Each client workstation needs the components in Table 33-9 to view a Web
page containing a PowerBuilder window plug-in application.

Table 33-9: Client requirements to view PowerBuilder window plug-in

Viewing the Web page and plug-in application
When the required software is installed, the user can view the Web page with
the plug-in application.

Component Details

An Internet or intranet
connection

Available within your corporation or from an Internet
service provider.

A Web browser that
supports Netscape
plug-ins

Available from the browser vendor. Examples are:

• Netscape Navigator Version 3.x or later.

• Microsoft Internet Explorer Version 3.x through 5.5
Service Pack 1. Internet Explorer 5.5 Service Pack 2
and later versions do not support plug-ins.

PowerBuilder
deployment DLLs

Install the PowerBuilder runtime DLLs as described in
“PowerBuilder runtime files” on page 766.

The PowerBuilder runtime DLLs belong in the
application directory or in a directory on the system
path. The PowerBuilder window plug-in DLL must
know the location of the PowerBuilder runtime DLLs.
To accomplish this, you can add the directory for the
PowerBuilder deployment DLLs to the system path, or
you can add the directory to the application path key for
the browser (in the Windows registry).

Standard or secure
PowerBuilder window
plug-in DLL

If it is not there already, copy the NPPBA1050.DLL file
(standard) or NPPBS1050.DLL file (secure) from the
Internet Tools\Plugins directory to the browser’s
Plugins directory.

Other files If you did not include image resources in the PBDs, copy
them to the paths specified in the object properties if
they are not there already.

If the plug-in application connects to a database, set up
client software for the DBMS. For how to connect to a
DBMS from the client machine, see Connecting to Your
Database.

Setting up users’ workstations

662 PowerBuilder

When the user navigates to the URL of the Web page:

• The text on the page displays with a reserved space for the PowerBuilder
window

• The client downloads the PBDs from the server

• The browser displays the child window within the Web page

• The user interacts with controls in the window and scripts for events
execute

• The user navigates away from the page, which closes the window and
causes the PowerBuilder DLLs to be unloaded from memory

Application Techniques 663

C H A P T E R 3 4 Using the PowerBuilder Window
ActiveX

About this chapter This chapter describes how to use the PowerBuilder window ActiveX.

Contents

About the PowerBuilder window ActiveX
The PowerBuilder window ActiveX lets you display a PowerBuilder child
window on Web pages viewed in a browser that supports ActiveX.

Features The PowerBuilder window can include all the familiar controls, including
DataWindows, OLE objects, OCX (ActiveX) controls, and TreeView
controls. You can also open other (pop-up or response) windows from the
child window.

As the user interacts with controls in the windows, scripts for the controls’
events are executed just as they are in standalone PowerBuilder
applications. Additionally, you can call PowerBuilder functions and react
to PowerBuilder events by coding VB Script or JavaScript within the
HTML page.

Database access by the PowerBuilder window ActiveX application occurs
using the client’s locally defined database connections.

The objects in the application can be contained in one or more
PowerBuilder Dynamic Libraries (PBDs).

Topic Page

About the PowerBuilder window ActiveX 663

Creating the PowerBuilder application 667

Creating an HTML page 674

Events for the PowerBuilder window ActiveX 685

Setting up the server 686

Setting up users’ workstations 687

About the PowerBuilder window ActiveX

664 PowerBuilder

Supported browsers The PowerBuilder window ActiveX requires use of a browser that supports
ActiveX, such as Microsoft Internet Explorer.

Kinds of applications that work with the PowerBuilder window
ActiveX

HTML forms provide some user interaction by means of a limited user
interface. The PowerBuilder window ActiveX takes you beyond HTML. You
can present a fully developed application window with a rich user interface
design to a Web page. You can access data sources defined on the client
workstation.

Examples Your application might be:

• A data analysis window with master and detail DataWindows

• A user interface design that lets the user make choices using TreeView,
ListView, and PictureListBox controls

• A data entry form that processes data on a server

• A data entry form that uses the client’s defined database connection (either
network or local) to process the data on the client machine

• A window that uses PowerBuilder’s OLEControl control to display an
ActiveX control

How the PowerBuilder window ActiveX works
The PowerBuilder window ActiveX displays a PowerBuilder child window
inside a fixed space reserved on the Web page. The user can interact with the
controls on the page, and the PowerBuilder scripts for the window and its
controls can execute any PowerBuilder code. When the user switches to
another Web page, the PowerBuilder window is closed and the PowerBuilder
DLLs are unloaded from memory.

The PowerBuilder window ActiveX is included on an HTML page using the
HTML Object element. It names one or more PBDs that contain PowerBuilder
objects, the name of the child window object that is displayed on the page, and
(optionally) the PowerBuilder Application object.

CHAPTER 34 Using the PowerBuilder Window ActiveX

Application Techniques 665

Security Unsecured applications can access local files and can run local applications.
These types of processing are often undesirable in an uncontrolled Web
environment but may be perfectly acceptable on a corporate intranet where
access is controlled. There are two versions of the PowerBuilder window
ActiveX: one secure (PBRXS105.OCX) and the other unsecure
(PBRX105.OCX). The secure version is extremely restricted, with no access to
the client workstation.

Some events always execute in secure mode
As of PowerBuilder 7, the application Open event and some of the Constructor
events for controls execute in secure mode even when you use the unsecure
version of the window ActiveX. If your application logic depends on the ability
to perform an activity that is not secure in these events, such as opening a file
for writing, post an event message to the application or control. This is
processed once the window ActiveX returns to standard mode.

Requirements The PowerBuilder window ActiveX uses the PowerBuilder virtual machine as
well as the ActiveX itself to provide a full range of PowerBuilder functionality.

Each client that is used to browse pages with the PowerBuilder window
ActiveX needs supporting software installed on the local machine:

• PowerBuilder virtual machine (PBVM105.DLL and supporting files)

• PowerBuilder window ActiveX

The PowerBuilder window ActiveX is especially useful in an intranet
application where you have control over the setup of client machines.

Installing and configuring the PowerBuilder window ActiveX
The PowerBuilder window ActiveX controls are not installed on your
computer if you select the Typical setup type when you install PowerBuilder.
You can install the ActiveX controls by running a custom installation of
PowerBuilder and checking the Web Plugins box on the Select Components
page. Click the Change button on that page to select the plug-ins and controls
you want to install.

This section describes setup tasks that you may need to perform after installing
the window ActiveX.

Installation location The PowerBuilder window ActiveX files (both the secure and unsecure
versions) are installed in the system directory of your operating system, for
example C:\Windows\System32.

About the PowerBuilder window ActiveX

666 PowerBuilder

Register the ActiveX For you to use the PowerBuilder window ActiveX for development, it must be
registered on your machine. You can check to see if it is registered by using the
PowerBuilder Browser. Open the Browser, select the OLE tab, and expand the
OLE Custom Controls item. If the ActiveX is registered, it is listed as the
PowerBuilder Window Control or PowerBuilder Secure Window Control in
the tree view. Expand the Class Information node to verify that the current
version of the control is registered.

If the ActiveX is not registered on your machine, you can register it from
within PowerBuilder or by using the MS-DOS regsvr32 command.

❖ To register the ActiveX within PowerBuilder:

1 From within PowerBuilder, open a new or existing application, then open
a new or existing window.

2 Select Insert>Control>OLE from the menu.

The Insert Object dialog displays.

3 Select the Insert Control tab and click the Register New button.

The Browse dialog displays.

4 Browse to the location of the OCX in the System directory, select either
PBRX105.OCX or PBRXS105.OCX, and click Open.

If the OCX fails to register, you receive an error message.

❖ To register the ActiveX using the MS-DOS regsvr32 command:

• Run the MS-DOS regsvr32.exe command with the complete path to the
OCX as an argument. For example:

regsvr32.exe C:\Windows\System32\pbrx105.ocx

Developing and deploying a PowerBuilder window ActiveX
application

There are four main tasks involved in developing a PowerBuilder window
ActiveX application.

❖ To create and deploy a PowerBuilder window ActiveX application:

1 Create, test, and build the PowerBuilder application.

2 Create an HTML page that includes your PowerBuilder application
window.

CHAPTER 34 Using the PowerBuilder Window ActiveX

Application Techniques 667

3 Configure the Web server by copying the HTML page and PBD files for
the application to appropriate directories.

4 On all client workstations, install and register the PowerBuilder window
ActiveX control and install the PowerBuilder runtime DLLs.

Resulting components When everything is set up, the various computers have the components listed
in Table 34-1.

Table 34-1: Server and client configuration for PowerBuilder window
ActiveX application

Creating the PowerBuilder application
The starting point of your PowerBuilder window ActiveX application is a child
window, which is displayed within a Web page. In the window, you can include
controls and write scripts for events. Your scripts can open other windows, read
and write files, and run other programs on the client machine.

Computer Component

Server HTML page with an Object element for the window (or report) and
PBD

PowerBuilder window ActiveX installed and registered (optional)

One or more PBDs containing your child windows and other
PowerBuilder objects

Client PowerBuilder window ActiveX installed and registered

PowerBuilder runtime DLLs installed as described in Chapter 41,
“Deploying Applications and Components.”

Directory for the PowerBuilder runtime DLLs listed in the system path

Microsoft DLLS:

MFC42.DLL
MSVCRT.DLL
URL.DLL
URLMON.DLL

Any additional software required by the PowerBuilder window
ActiveX application, such as database connection software or OLE
servers and ActiveX controls

Creating the PowerBuilder application

668 PowerBuilder

Designing the application
The application you design for use with the PowerBuilder window ActiveX
can be much the same as other PowerBuilder applications you develop;
however, there are some restrictions and considerations to keep in mind. This
section discusses:

• Window management

• Scripts and variables

• Data access

• External files

Window management Initial child window Your initial window needs to be a child window that
lives in the browser frame.

You cannot:

• Have a menu for the child window

• Open another child window from the initial window

You can:

• Include a title bar on the child window (but you should not use a control
menu, maximize box, or minimize box on that window)

• Open pop-up and response windows from the child window (but not main
or MDI windows)

Closing windows When the client browses to another Web page, the child
window on the current Web page is closed, but other windows remain open
unless your application closes them. You must close them in the child
window’s Close or CloseQuery events.

Do not try to stop the child window from being closed in the CloseQuery event
by setting a return value. You cannot prevent the browser from changing to
another page and removing the window from view. If the user returns to the
page, another instance of your application is started.

Objects Objects in your PBDs Your PowerBuilder window ActiveX application has
access to all objects in the PBDs. This includes functions, structures, and user
objects.

System objects Your PowerBuilder window ActiveX application has access
to system objects that PowerBuilder instantiates, such as the SQLCA
Transaction object and the Message object.

CHAPTER 34 Using the PowerBuilder Window ActiveX

Application Techniques 669

Application object Your PowerBuilder window ActiveX application can
access global variables, which are properties of the Application object.

PowerBuilder requires that you have a current Application object during
development, but only the application Open event and global variables are used
in your application. Any other scripts in the Application object are used only
during testing within PowerBuilder.

Scripts and variables Scripts for application setup If you specify the PBAPPLICATION
parameter in the HTML, the PowerBuilder window ActiveX executes the
application Open event before opening the child window. You can use this
event to establish a database connection and initialize global variables.

The HTML specifies the window to open
Do not open windows from within the application Open event.

If you do not specify the PBAPPLICATION parameter in the HTML, all
application setup must be done in the child window, including connecting to
the DBMS. The first scriptable events to occur are the constructors for the
controls in the window, and then the Open event for the window occurs.

Note that the Activate event does not occur for a child window, so do not do
application setup there.

Global variables The PowerBuilder window ActiveX application can access
global variables.

Referencing the initial window You cannot reference the initial child
window by name in your scripts because PowerBuilder does not create a
variable to hold the instance of it. (By contrast, when you instantiate a window
yourself by coding the Open function, you always place the instance in a
variable that you can then reference.)

As a result, the following code produces an error at runtime (because the
window variable w_mychild does not exist):

// This code produces a runtime error:
w_mychild.title = "The initial window"

But you can code:

// In the child window itself:
this.title = "The initial window"
// or
title = "The initial window"

Creating the PowerBuilder application

670 PowerBuilder

// In controls of the child window:
parent.title = "The initial window"

Data access If your application accesses a DBMS, each client must have a connection to the
data source. The connection must be defined on the client’s machine, not the
server. The data source can be a local or a network DBMS.

For information about how to connect to a DBMS from the client machine, see
Connecting to Your Database.

Remember that the Constructor events for controls occur before the Open event
of the window. That means that if you connect to the DBMS in the window’s
Open event, the Constructor events cannot get data. You can get data for
controls in the window’s Open event, or you can post events from the
Constructor events or the window’s Open event.

Paths for external
resources

Paths you specify for files must be valid on the client workstation.

If your application uses images as external files, the images must be available
at the path specified in the PowerBuilder object. Instead of using external files,
you can build image resources into PBDs.

If your application reads or writes local files, the path for those files must be
valid on each client’s machine.

In Windows environments, if a path refers to a network drive by mapped drive
letter, all clients must use the same drive letter that the application uses. As an
alternative, specify the server name in the path instead.

For example, both of these paths are valid when O: is mapped to
\\marketing\drive. However, the second path that uses a server name is more
likely to remain valid:

O:\pbapps\connect.bmp
\\marketing\drive\pbapps\connect.bmp

Defining the starting window in the Window painter
You create the starting window for your application in PowerBuilder.

❖ To create your application’s starting window:

1 Create a new window object in PowerBuilder.

2 On the window’s General tab of the Properties view, set the window type
to Child.

CHAPTER 34 Using the PowerBuilder Window ActiveX

Application Techniques 671

3 Add other controls as desired.

4 Write scripts for events of the window and controls.

❖ To convert an existing application to run as a PowerBuilder window
ActiveX:

1 Change the type of the opening window to child.

2 Move application setup code from the application’s Open event or MDI
frame events to the child window’s Open event.

Depending on the application’s design, you may need to redesign how it opens
other windows.

About child windows Child windows cannot have menus. They are never considered the active
window; therefore, the Activate event is never triggered. They can have title
bars and can be minimizable, maximizable, and resizable. However, in the
PowerBuilder window ActiveX environment, the child window is always
restricted to the space allotted by the WIDTH and HEIGHT attributes specified
on the Web page:

• Maximizing causes the window to fill the space allotted by the WIDTH
and HEIGHT attributes.

• Minimizing displays the window’s icon and title at the bottom of the
ActiveX control’s allotted space.

• If the child window is resizable, the user can drag the borders to make the
window smaller (but not larger) than the allotted space.

As a result, it is not useful to allow minimizing, maximizing, or resizing of the
child window.

Testing the application in PowerBuilder
Before you try your application in a client browser, you can test it in
PowerBuilder by defining a main window that opens the child window.

❖ To test your PowerBuilder window ActiveX application:

1 In PowerBuilder, create a new window object whose type is main (the
default).

2 Write a script for the Open event that opens the child window:

Open(w_child)

Creating the PowerBuilder application

672 PowerBuilder

3 For convenience, you can set appropriate window sizes in the Window
painter:

• Make the main window large enough to display the child

• Position the child window in the upper-left corner (you set the
position on the Position tab of the property sheet)

4 Run the test window by clicking the Run Window icon.

Debugging in PowerBuilder
To use the PowerBuilder debugger, you need to run an application instead of a
single window. Define an Application object with a script that opens the main
window. Then you can use the Run or Debug commands to test the application.

Organizing objects in
PBLs

In the Web environment, file size is important. Clients are downloading your
application each time they run it (unless it happens to be cached because they
ran it recently).

Before you build your application, use the Library painter to organize the
objects your application uses in PBLs, which are the sources for the
PowerBuilder window ActiveX application’s PBDs. To minimize file size,
include only objects the application uses. Remove any objects that are not
needed. You must:

• Include any objects that are dynamically created, such as DataWindows
used in DataStores or assigned dynamically to DataWindow controls and
Proxy objects

• Include ancestor objects

Using PowerBuilder
resource (PBR) files

Several controls can use external files for images. These include
PictureListBox, TreeView, Picture, and PictureButton controls, pointers, and
bitmap objects in DataWindow objects. If your application uses external files
for the images, it is unlikely that the client has the same images on the same
system path.

Instead of finding some way to install the pictures on client machines, you can
use one or more PowerBuilder resource (PBR) files so that the images are built
into the PBDs. The resulting PBDs are larger but self-contained.

Because you are building a PBD, not an executable, you do not need to include
DataWindow objects in the resource file. All PowerBuilder objects in the
source PBL are included in the resulting PBD.

CHAPTER 34 Using the PowerBuilder Window ActiveX

Application Techniques 673

Images and other resources on a network
Instead of building the files into the PBD, you can put the files in a generally
accessible network directory, but the path to the files must be identical to the
path named in the PowerBuilder objects. In the Windows environment, this
means each client must use the same drive letter to map the network drive (or
you can specify the server name in the path).

❖ To define a PBR file:

1 Open the File Editor (Shift+F6) or some other text editor and create a new
file with the extension PBR.

2 List each image or other resource on its own line. List the path and file
name exactly as they are shown in the object’s Properties view or script.

Shortcut
Look at the object’s Properties view and use Ctrl+C to copy the file name
to the clipboard. Then paste it into the editor.

3 Save the file.

If your application includes several PBLs, each with objects using their own
resources, you should create a PBR file for each PBL. The PBR file lists file
names for resources that are used in one PBL.

Building the PBDs Build your dynamic libraries (PBDs) using the System Tree or the Project or
Library painter. Do the following:

• Deselect Machine code Your PowerBuilder window ActiveX
application must have PBDs, not machine code DLLs.

• Specify a PBR file for each PBD If the objects in the PBL use
resources that you have listed in a PBR file, put the PBR name in the
Resource File Name text box.

For instructions on defining a PBR file and building your dynamic libraries
(PBDs), see the chapter on creating executables in the User’s Guide.

Creating an HTML page

674 PowerBuilder

Creating an HTML page
After creating and building the PowerBuilder PBDs for your PowerBuilder
window ActiveX application, you need to create the HTML page that displays
it.

To include a PowerBuilder window on a Web page, you use the Object element.
Element attributes specify the class ID for the PowerBuilder window ActiveX,
the space allocated for the window, the name of the PBD, the name of the child
window in the PBD, the library list, and the version of PowerBuilder.

A sample Object element might be:

<OBJECT NAME="PBRX1" WIDTH=225 HEIGHT=83
CLASSID="CLSID:AAAA1304-A5A5-1000-8000-080009AC61A9">
<PARAM NAME="_Version" VALUE="65536"></PARAM>
<PARAM NAME="_ExtentX" VALUE="5962"></PARAM>
<PARAM NAME="_ExtentY" VALUE="2164"></PARAM>
<PARAM NAME="_StockProps" VALUE="0"></PARAM>
<PARAM NAME="PBWindow" VALUE="w_helloworld"></PARAM>
<PARAM NAME="LibList"
VALUE="http://www.company.com/rknnt.pbd;"></PARAM>
<PARAM NAME="PBApplication" VALUE="hello"></PARAM>
<PARAM NAME="PBVersion" VALUE="100"></PARAM>
</OBJECT>

Attributes of the Object element
The Object element is part of the HTML specification for ActiveX controls. It
defines several standard attributes, and PowerBuilder defines additional
attributes.

HTML attributes HTML attributes specify the class ID, the name, and the space reserved for the
PowerBuilder window ActiveX on the Web page.

CHAPTER 34 Using the PowerBuilder Window ActiveX

Application Techniques 675

Table 34-2: HTML attributes of Object element

The WIDTH and HEIGHT attributes define the maximum width and height of
the child window. If the child window is resizable, the user can make it smaller
than the specified size, but not larger.

Param elements To specify properties for the PowerBuilder window ActiveX, include Param
elements. Param elements let you identify the window object that starts your
application, the Application object, additional libraries, and additional
parameters to pass to the PowerBuilder window ActiveX. Table 34-3 lists the
PowerBuilder-specific Param elements.

Table 34-3: PowerBuilder window ActiveX Param elements

HTML attribute Value

NAME Name of the object when referenced in code or when
submitted as part of a form.

CLASSID The class ID of the registered ActiveX control.

The syntax is:

CLSID:class_id
To find the class ID value of the registered ActiveX control,
you can use the PowerBuilder Browser’s OLE tab. Expand
the OLE Custom Controls item, then expand the
PowerBuilder Window Control or Secure Window Control
item. The class ID is the value of the GUID item of the Class
Information branch.

CODEBASE A URL identifying the location of the OCX or CAB file to be
downloaded if the client machine does not contain the
PowerBuilder window ActiveX.

The client machine must still have the PowerBuilder virtual
machine and any other required DLLs on the system path.

WIDTH The width of the viewing window in pixels.

HEIGHT The height of the viewing window in pixels.

Property Value

PBWINDOW The class name of the child window in the PBD.

LIBLIST A list of PowerBuilder dynamic libraries (PBD files)
required by the application. Separate multiple entries
with a semicolon.

PBAPPLICATION
(optional)

The PowerBuilder Application object.

PBVERSION The version of the PowerBuilder DLLs (for example,
105).

Creating an HTML page

676 PowerBuilder

Coding the Object element
To minimize coding errors, use an ActiveX-aware HTML editor (such as the
Web targets HTML editor, the ActiveX Control Pad, or Front Page) when
coding an Object element and its parameters.

Basic page
This sample page includes the PowerBuilder window ActiveX:

DISPLAYERRORS
(optional)

Boolean indicating whether to display execution errors.

COMMANDPARM
(optional)

A string you want to pass to your window. To access this
string from within your window, call the CommandParm
function.

Property Value

CHAPTER 34 Using the PowerBuilder Window ActiveX

Application Techniques 677

Here is the HTML code that produces this page (note the use of the Object
element to specify the PowerBuilder window ActiveX):

<HTML>
<HEAD>
<TITLE>Employee List</TITLE>
</HEAD>
<BODY>
<H1>PowerBuilder window ActiveX</H1>
<P>
<OBJECT ID="PBRX1" NAME="PBRX1" WIDTH=357 HEIGHT=269
CLASSID="CLSID:AAAA1304-A5A5-1000-8000-080009AC61A9">
<PARAM NAME="_Version" VALUE="65536">
<PARAM NAME="_ExtentX" VALUE="9440">
<PARAM NAME="_ExtentY" VALUE="7112">
<PARAM NAME="_StockProps" VALUE="0">
<PARAM NAME="PBWindow" VALUE="w_emplist">
<PARAM NAME="LibList"
VALUE="http://www.company.com/rknnt.pbd;">
<PARAM NAME="PBApplication" VALUE="rknnt">
<PARAM NAME="PBVersion" VALUE="105">
</OBJECT>
</BODY>
</HTML>

Client-side scripting
You can interact with the window displayed in a PowerBuilder window
ActiveX by adding JavaScript or VBScript to the HTML page. You can:

• Code event handlers that respond to events that occur in the window

• Call PowerScript functions to obtain pointer information, print, set redraw,
or set a timer

• Call the InvokePBFunction function to invoke a user-defined window
function

• Call the TriggerPBEvent function to trigger a user event on the window

Viewing ActiveX properties, events, and functions
When the window ActiveX is registered on your machine, you can use the
PowerBuilder Browser’s OLE tab to see the list of window ActiveX properties,
events, and functions.

Creating an HTML page

678 PowerBuilder

Coding event handlers Your HTML page can contain JavaScript or VBScript event handlers for the
PowerBuilder window ActiveX.

Coding example assumptions
The following code examples assume that the HTML page includes a Form,
named buttonForm, which contains several Input elements: passedFlags,
passedXPos, and passedYPos.

❖ To code JavaScript event handlers for the PowerBuilder window
ActiveX:

1 Insert the PowerBuilder window ActiveX into the HTML page, specifying
all necessary properties:

<OBJECT NAME="PBRX1" WIDTH=225 HEIGHT=83
CLASSID="CLSID:AAAA1304-A5A5-1000-8000-
080009AC61A9">
<PARAM NAME="_Version" VALUE="65536">
<PARAM NAME="_ExtentX" VALUE="5962">
<PARAM NAME="_ExtentY" VALUE="2164">
<PARAM NAME="_StockProps" VALUE="0">
<PARAM NAME="PBWindow" VALUE="w_helloworld">
<PARAM NAME="LibList"
VALUE="http://www.company.com/rknnt.pbd;">
<PARAM NAME="PBApplication" VALUE="rknnt">
<PARAM NAME="PBVersion" VALUE="105">
</OBJECT>

2 Within the heading of the HTML page, code a function to be called when
the event occurs.

The following sample function simply displays the arguments to the
Clicked event.

function wasClicked(flags, xpos, ypos) {
 document.buttonForm.passedFlags.value = flags;
 document.buttonForm.passedXPos.value = xpos;
 document.buttonForm.passedYPos.value = ypos;
}

3 Within the body of the HTML page, code an event handler that calls the
function when the event occurs:

<SCRIPT LANGUAGE="JavaScript" FOR="PBRX1"
Event="Clicked(flags, xpos, ypos)">
<!--
wasClicked(flags, xpos, ypos);

CHAPTER 34 Using the PowerBuilder Window ActiveX

Application Techniques 679

-->
</SCRIPT>

Coding style
Alternatively, you can omit the function call, placing all code within the
event handler, as shown next.

❖ To code VBScript event handlers for the PowerBuilder window ActiveX:

1 Insert the PowerBuilder window ActiveX into the HTML page, specifying
all necessary properties:

<OBJECT NAME="PBRX1" WIDTH=225 HEIGHT=83
CLASSID="CLSID:AAAA1304-A5A5-1000-8000-
080009AC61A9">
<PARAM NAME="_Version" VALUE="65536">
<PARAM NAME="_ExtentX" VALUE="5962">
<PARAM NAME="_ExtentY" VALUE="2164">
<PARAM NAME="_StockProps" VALUE="0">
<PARAM NAME="PBWindow" VALUE="w_helloworld">
<PARAM NAME="LibList"
VALUE="http://www.company.com/rknnt.pbd;">
<PARAM NAME="PBApplication" VALUE="rknnt">
<PARAM NAME="PBVersion" VALUE="105">
</OBJECT>

2 Within the body of the HTML page, code an event handler that processes
the event.

This sample function simply displays the arguments to the Clicked event:

<SCRIPT LANGUAGE="VBScript">
<!--
Sub PBRX1_Clicked(flags, xpos, ypos)
 document.buttonForm.passedFlags.value = flags
 document.buttonForm.passedXPos.value = xpos
 document.buttonForm.passedYPos.value = ypos
end sub
-->
</SCRIPT>

Calling PowerScript
functions

The PowerBuilder window ActiveX allows you to call certain PowerScript
functions on the window displayed in the Active control:

• PointerX Returns the distance from the left edge of the window to the
pointer.

• PointerY Returns the distance from the top of the window to the pointer.

Creating an HTML page

680 PowerBuilder

• Print Prints the window.

• SetRedraw Turns on or off automatic redrawing of the window after
every change.

• Timer Causes the window’s Timer event to occur repeatedly at the
specified interval.

For more information on these functions, see the PowerScript Reference.

As with all ActiveX controls, the PowerBuilder window ActiveX provides an
AboutBox function, which you can call to see information about the control.

Coding example assumptions
The following coding examples assume that you have written scripts to be
invoked by the PowerBuilder window’s Timer event.

❖ To use JavaScript to call a PowerScript function:

1 Code a function to call the PowerScript function.

This example calls the PowerScript Timer function:
<SCRIPT LANGUAGE="JavaScript">
<!--
var cumSeconds = 0;
function setPBTimer(f) {
var li_return
var li_interval
li_interval = parseInt(f.timerInterval.value);
li_return = PBRX1.Timer(li_interval);
if (li_return != 1) {
 alert("Set Timer failed");
}
}
//-->
/SCRIPT

2 Code a function, anchor, or button that calls the function.

This example uses a button on a form to call the function defined above,
which resets the timer interval:

<FORM NAME="clockForm">
<P>Timer Interval:
<INPUT TYPE=Text NAME="timerInterval" Size="5">
<P><INPUT TYPE=BUTTON VALUE="Set Timer"
ONCLICK="setPBTimer(this.form)">
</FORM>

CHAPTER 34 Using the PowerBuilder Window ActiveX

Application Techniques 681

❖ To use VBScript to call a PowerScript function:

1 Code a function to call the PowerScript function. This example calls the
PowerScript Timer function:

<SCRIPT LANGUAGE="VBScript">
<!--
dim cumSeconds
cumSeconds = 0
Sub pbSetTime()
 dim li_return
 dim li_interval
 li_interval = clockForm.timerInterval.value
 li_return = pbrx1.Timer(li_interval)
 if li_return 1 THEN
 msgBox "Set Timer failed"
 end if
 end sub
//-->
</SCRIPT>

2 Code a function, anchor, or button that calls the function.

This example uses a button on a form to call the function defined above,
which resets the timer interval:

<FORM NAME="clockForm">
<P>Timer Interval:
<INPUT TYPE=Text NAME="timerInterval" Size="5">
<HR>
<P>Mirror of PB Time:
<INPUT TYPE=Text NAME="pbTime" Size="8">
<HR>
<P>INPUT TYPE=BUTTON VALUE="Set Timer" onClick="call
pbSetTime()">
</FORM>

Calling user-defined
functions

The PowerBuilder window ActiveX provides the InvokePBFunction function,
which you can use to call a user-defined window function.

VBScript and JavaScript differ
If your user-defined functions contain arguments and you are using JavaScript,
you must use SetArgElement to specify the arguments; you cannot specify the
arguments explicitly in the InvokePBFunction function.

Creating an HTML page

682 PowerBuilder

❖ To code JavaScript that invokes a user-defined function:

1 Define window functions as needed.

The following example assumes that in the PowerBuilder window, you
have defined the function of_arg that takes a string as a parameter.

2 Code a JavaScript function that calls the InvokePBFunction function,
specifying the user-defined function to invoke.

This example initializes arguments and calls the of_args window function:

function invokeFunc(f) {
 var retcd;
 var rc;
 var numargs;
 var theFunc;
 var theArg;
 retcd = 0;
 numargs = 1;
 theArg = f.textToPB.value;
 PBRX1.SetArgElement(1, theArg);
 theFunc = "of_args";
 retcd = PBRX1.InvokePBFunction(theFunc, numargs);
 rc = parseInt(PBRX1.GetLastReturn());
 if (rc != 1) {
 alert("Error. Empty string.");
 }
 PBRX1.ResetArgElements();
}

3 Code a function, anchor, or form button that invokes your JavaScript
function. For example:

<FORM>
<P>Copy this text to PowerBuilder:
<INPUT TYPE=Text NAME="textToPB" SIZE="20">
<P><INPUT TYPE=BUTTON VALUE="Invoke Func"
ONCLICK="invokeFunc(this.Form)">
</FORM>

Defining arguments in JavaScript
When coding in JavaScript, define function and event arguments by calling the
SetArgElement function.

CHAPTER 34 Using the PowerBuilder Window ActiveX

Application Techniques 683

❖ To code VBScript that invokes a user-defined function:

1 Define window functions as needed.

The following example assumes that in the PowerBuilder window you
have defined the function of_arg that takes a string as a parameter.

2 Code a VBScript function that calls the InvokePBFunction function,
specifying the user-defined function to invoke.

This example initializes arguments and calls the of_args window function:

Sub invokeFunction()
 Dim retcd
 Dim myForm
 Dim args(1)
 Dim rc
 Dim numargs
 Dim theFunc
 Dim rcfromfunc
 retcd = 0
 numargs = 1
 rc = 0
 theFunc = "of_args"
 Set myForm = Document.buttonForm
 args(0) = buttonForm.textToPB.value
 retcd = PBRX1.InvokePBFunction(theFunc,
 numargs, args)
 rc = PBRX1.GetLastReturn()
 if rc 1 then
 msgbox "Error. Empty string."
 end if
 PBRX1.ResetArgElements()
end sub

3 Code a function, anchor, or form button whose click invokes your
VBScript function. For example:

<FORM NAME="buttonForm">
<P><INPUT TYPE=Text NAME="textToPB" SIZE="20">
<P><INPUT TYPE=BUTTON VALUE="Invoke Function"
ONCLICK="call invokeFunction()">
</FORM>

Creating an HTML page

684 PowerBuilder

Calling user events The PowerBuilder window ActiveX provides the TriggerPBEvent function,
which you can use to call a user event on the window.

❖ To code JavaScript that triggers a user event:

1 Define user events on the window as needed.

The following example assumes that in the PowerBuilder window you
have defined the user event ue_args that takes a string as an argument.

2 Code a function to call the user event. This example initializes arguments
and calls the ue_args window event:

function triggerEvent(f) {
 var retcd;
 var rc;
 var numargs;
 var theEvent;
 var theArg;
 retcd = 0;
 numargs = 1;
 theArg = f.textToPB.value;
 PBRX1.SetArgElement(1, theArg);
 theEvent = "ue_args";
 retcd = PBRX1.TriggerPBEvent(theEvent, numargs);
 rc = parseInt(PBRX1.GetLastReturn());
 if (rc != 1) {
 alert("Error. Empty string.");
 }
 PBRX1.ResetArgElements();
}

3 Code a function, anchor, or form button that calls the TriggerPBEvent
function. For example:

<FORM>
<P><INPUT TYPE=Text NAME="textToPB" SIZE="20">
<P><INPUT TYPE=BUTTON VALUE="Trigger Event"
ONCLICK="triggerEvent(this.Form)">
</FORM>

❖ To code VBScript that triggers a user event:

1 Define user events on the window, as needed.

The following example assumes that in the PowerBuilder window you
have defined the user event ue_args that takes a string as an argument.

CHAPTER 34 Using the PowerBuilder Window ActiveX

Application Techniques 685

2 Code a function to call the user event. This example initializes arguments
and calls the ue_args window function:

Sub TrigEvent()
 Dim retcd
 Dim myForm
 Dim args(1)
 Dim rc
 Dim numargs
 Dim theEvent
 retcd = 0
 numargs = 1
 rc = 0
 theEvent = "ue_args"
 Set myForm = Document.buttonForm
 args(0) = buttonForm.textToPB.value
 retcd = PBRX1.TriggerPBEvent(theEvent,
 numargs, args)
 rc = PBRX1.GetLastReturn()
 if rc 1 then
 msgbox "Error. Empty string."
 end if
 PBRX1.ResetArgElements()
end sub

3 Code a function, anchor, or form button whose click invokes your
VBScript function. For example:

<FORM NAME="buttonForm">
<P><INPUT TYPE=Text NAME="textToPB" SIZE="20">
<P><INPUT TYPE=BUTTON VALUE="Trigger Event"
ONCLICK="call TrigEvent()">
</FORM>

Events for the PowerBuilder window ActiveX
The PowerBuilder window ActiveX can respond to certain events occurring
within the child window. These are outbound events, which execute first within
the PowerBuilder window and then in the PowerBuilder window ActiveX. You
can add JavaScript or VB Script code that responds to these events. The events
are listed in Table 34-4.

Setting up the server

686 PowerBuilder

Table 34-4: PowerBuilder window ActiveX events

Setting up the server
Setting up the server involves placing files on the server.

You need to copy PowerBuilder libraries, the PowerBuilder window ActiveX
module, and the HTML file to appropriate directories on your server.

Event Occurs

Activate Just before the window becomes active

Clicked When the user clicks in an unoccupied area of the window (any
area with no visible, enabled object)

Close When the window is closed

Deactivate When the window becomes inactive

DoubleClicked When the user double-clicks in an unoccupied area of the window
(any area with no visible, enabled object)

Hide Just before the window is hidden

Key When the user presses a key and the insertion point is not in a line
edit

MouseDown When the user presses the left mouse button in an unoccupied area
of the window (any area with no visible, enabled object)

PBMouseMove When the pointer is moved within the window

PBMouseUp When the user releases the left mouse button in an unoccupied area
of the window (any area with no visible, enabled object)

RButtonDown When the user presses the right mouse button in an unoccupied
area of the window (any area with no visible, enabled object)

Resize When the user or a script opens or resizes a window

Show When a script executes the Show function for this window (the
event occurs just before the window is displayed)

SystemKey When the insertion point is not in a line edit and the user presses
Alt or Alt plus another key

Timer When a specified number of seconds elapses after the Timer
function has been called

CHAPTER 34 Using the PowerBuilder Window ActiveX

Application Techniques 687

Table 34-5: PBD and HTML file locations on server

Setting up users’ workstations
Users who need to view a Web page that includes a PowerBuilder window
ActiveX require supporting software installed on their client workstations and
a connection to the Web server.

Table 34-6: Client requirements to view PowerBuilder window ActiveX

Files Location

HTML page The HTML documents directory. Copy the HTML page
to the directory specified in any URLs that link to the
page.

PBD files named in the
LibList attributes of the
Param element

A directory named in the application path for the Web
server application or any directory on the system path.

PowerBuilder window
ActiveX module

The HTML documents directory or some other
directory as specified in the Object element’s
CODEBASE attribute.

Component Details

An Internet or intranet
connection

Available within your corporation or from an Internet
service provider.

A Web browser that
supports ActiveX

Available from the browser vendor, for example Microsoft
Internet Explorer.

PowerBuilder runtime
DLLs

Install the runtime files as described in “PowerBuilder
runtime files” on page 766.

The PowerBuilder runtime DLLs belong in the application
directory or in a directory on the system path. The
PowerBuilder window ActiveX must be able to access the
PowerBuilder virtual machine (and any other required
runtime DLLs). To accomplish this, you can add the
directory for the PowerBuilder runtime DLLs to the system
path, or you can place the runtime DLLs in the
Windows\System32 directory.

Setting up users’ workstations

688 PowerBuilder

Viewing the Web page and PowerBuilder window ActiveX
application

When the required software is installed, the user can view the Web page with
the PowerBuilder window ActiveX application.

When the user navigates to the URL of the Web page:

• The text on the page displays with a reserved space for the PowerBuilder
window

• The client downloads the PBDs from the server

• The browser displays the child window within the Web page

• The user interacts with controls in the window and scripts for events
execute

• The user navigates away from the page, which closes the window and
causes the PowerBuilder DLLs or shared libraries to be unloaded from
memory

PowerBuilder window
ActiveX module

Copy the file PBRX105.OCX to the client workstation and
register it. Alternatively, you can add the CODEBASE
attribute to the Object element, which causes the browser to
download and register it when the page is loaded.

Other files If you did not include image resources in the PBDs, copy
them to the paths specified in the object properties if they
are not there already.

If the PowerBuilder window ActiveX application connects
to a database, set up client software for the DBMS. For how
to connect to a DBMS from the client machine, see
Connecting to Your Database.

Component Details

P A R T 8 General Techniques

This part describes techniques for handling
internationalization, printing, accessibility requirements,
and the Windows registry. It explains how to build styles
and actions for use in InfoMaker.

Application Techniques 691

C H A P T E R 3 5 Internationalizing an Application

About this chapter This chapter describes some of the issues that arise when you develop and
deploy applications for multiple languages.

Contents

Developing international applications
When you develop an application for deployment in multiple languages,
you can take advantage of the Unicode support built into PowerBuilder.
You also need to focus on two phases of the development process:

• The first is the internationalization phase, when you deal with
design issues before you begin coding the application.

• The second is the localization phase, which starts once the
development phase of an internationalized application is complete,
when you deal with the translation and deployment of your
application you enter the.

Using Unicode
Unicode is a character encoding scheme that enables text display for most
of the world’s languages. Support for Unicode characters is built into
PowerBuilder. This means that you can display characters from multiple
languages on the same page of your application, create a flexible user
interface suitable for deployment to different countries, and process data
in multiple languages.

Topic Page

Developing international applications 691

Using Unicode 691

Internationalizing the user interface 697

Localizing the product 697

Using Unicode

692 PowerBuilder

About Unicode
Before Unicode was developed, there were many different encoding systems,
many of which conflicted with each other. For example, the same number
could represent different characters in different encoding systems. Unicode
provides a unique number for each character in all supported written
languages. For languages that can be written in several scripts, Unicode
provides a unique number for each character in each supported script.

For more information about the supported languages and scripts, see the
Unicode Web site at http://www.unicode.org/onlinedat/languages-scripts.html.

Encoding forms There are three Unicode encoding forms: UTF-8, UTF-16, and UTF-32.
Originally UTF stood for Unicode Transformation Format. The acronym is
used now in the names of these encoding forms, which map from a character
set definition to the actual code units that represent the data, and to the
encoding schemes, which are encoding forms with a specific byte serialization.

• UTF-8 uses an unsigned byte sequence of one to four bytes to represent
each Unicode character.

• UTF-16 uses one or two unsigned 16-bit code units, depending on the
range of the scalar value of the character, to represent each Unicode
character.

• UTF-32 uses a single unsigned 32-bit code unit to represent each Unicode
character.

Encoding schemes An encoding scheme specifies how the bytes in an encoding form are
serialized. When you manipulate files, convert blobs and strings, and save
DataWindow data in PowerBuilder, you can choose to use ANSI encoding, or
one of three Unicode encoding schemes:

• UTF-8 serializes a UTF-8 code unit sequence in exactly the same order as
the code unit sequence itself.

• UTF-16BE serializes a UTF-16 code unit sequence as a byte sequence in
big-endian format.

• UTF-16LE serializes a UTF-16 code unit sequence as a byte sequence in
little-endian format.

UTF-8 is frequently used in Web requests and responses. The big-endian
format, where the most significant value in the byte sequence is stored at the
lowest storage address, is typically used on UNIX systems. The little-endian
format, where the least significant value in the sequence is stored first, is used
on Windows.

CHAPTER 35 Internationalizing an Application

Application Techniques 693

Unicode support in PowerBuilder
PowerBuilder uses UTF-16LE encoding internally. The source code in PBLs is
encoded in UTF-16LE, any text entered in an application is automatically
converted to Unicode, and the string and character PowerScript datatypes hold
Unicode data only. Any ANSI or DBCS characters assigned to these datatypes
are converted internally to Unicode encoding.

Support for Unicode
databases

Most PowerBuilder database interfaces support both ANSI and Unicode
databases.

A Unicode database is a database whose character set is set to a Unicode
format, such as UTF-8 or UTF-16. All data in the database is in Unicode
format, and any data saved to the database must be converted to Unicode data
implicitly or explicitly.

A database that uses ANSI (or DBCS) as its character set can use special
datatypes to store Unicode data. These datatypes are NChar, NVarChar, and
NVarChar2. Columns with one of these datatypes can store Unicode data, but
data saved to such a column must be converted to Unicode explicitly.

For more specific information about each interface, see Connecting to Your
Database.

String functions PowerBuilder string functions, such as Fill, Len, Mid, and Pos, take characters
instead of bytes as parameters or return values and return the same results in all
environments. These functions have a “wide” version (such as FillW) that is
obsolete and will be removed in a future version of PowerBuilder because it
produces the same results as the standard version of the function. Some of these
functions also have an ANSI version (such as FillA). This version is provided
for backwards compatibility for users in DBCS environments who used the
standard version of the string function in previous versions of PowerBuilder to
return bytes instead of characters.

You can use the GetEnvironment function to determine the character set used in
the environment:

environment env
getenvironment(env)

choose case env.charset
case charsetdbcs!

// DBCS processing
...

case charsetunicode!
// Unicode processing
...

Using Unicode

694 PowerBuilder

case charsetansi!
// ANSI processing
...

case else
// Other processing
...

end choose

Encoding enumeration Several functions, including Blob, BlobEdit, FileEncoding, FileOpen, SaveAs,
and String, have an optional encoding parameter. These functions let you work
with blobs and files with ANSI, UTF-8, UTF-16LE, and UTF-16BE encoding.
If you do not specify this parameter, the default encoding used for SaveAs and
FileOpen is ANSI. For other functions, the default is UTF-16LE.

The following examples illustrate how to open different kinds of files using
FileOpen:

// Read an ANSI File
Integer li_FileNum
String s_rec
li_FileNum = FileOpen("Employee.txt")
// or:
// li_FileNum = FileOpen("Emplyee.txt", &
// LineMode!, Read!)
FileRead(li_FileNum, s_rec)

// Read a Unicode File
Integer li_FileNum
String s_rec
li_FileNum = FileOpen("EmployeeU.txt", LineMode!, &

Read!, EncodingUTF16LE!)
FileRead(li_FileNum, s_rec)

// Read a Binary File
Integer li_FileNum
blob bal_rec
li_FileNum = FileOpen("Employee.imp", Stream Mode!, &

Read!)
FileRead(li_FileNum, bal_rec)

Initialization files The SetProfileString function can write to initialization files with ANSI or
UTF16-LE encoding on Windows systems, and ANSI or UTF16-BE encoding
on UNIX systems. The ProfileInt and ProfileString PowerScript functions and
DataWindow expression functions can read files with these encoding schemes.

CHAPTER 35 Internationalizing an Application

Application Techniques 695

Exporting and
importing source

The Export Library Entry dialog box lets you select the type of encoding for an
exported file. The choices are ANSI/DBCS, which lets you import the file into
PowerBuilder 9 or earlier, HEXASCII, UTF8, or Unicode LE.

The HEXASCII export format is used for source-controlled files. Unicode
strings are represented by hexadecimal/ASCII strings in the exported file,
which has the letters HA at the beginning of the header to identify it as a file
that might contain such strings. You cannot import HEXASCII files into
PowerBuilder 9 or earlier.

If you import an exported file from PowerBuilder 9 or earlier, the source code
in the file is converted to Unicode before the object is added to the PBL.

External functions When you call an external function that returns an ANSI string or has an ANSI
string argument, you must use an ALIAS clause in the external function
declaration and add ;ansi to the function name. For example:

FUNCTION int MessageBox(int handle, string content,
string title, int showtype)
LIBRARY "user32.dll" ALIAS FOR "MessageBoxA;ansi"

The following declaration is for the “wide” version of the function, which uses
Unicode strings:

FUNCTION int MessageBox(int handle, string content,
string title, int showtype)
LIBRARY "user32.dll" ALIAS FOR "MessageBoxW"

If you are migrating an application from PowerBuilder 9 or earlier,
PowerBuilder replaces function declarations that use ANSI strings with the
correct syntax automatically.

Setting fonts for
multiple language
support

The default font in the System Options and Design Options dialog boxes is
Tahoma.

Setting the font in the System Options dialog box to Tahoma ensures that
multiple languages display correctly in the Layout and Properties views in the
Window, User Object, and Menu painters and in the wizards.

If the font on the Editor Font page in the Design Options dialog box is not set
to Tahoma, multiple languages cannot be displayed in Script views, the File
and Source editors, the ISQL view in the DataBase painter, and the Debug
window.

Using Unicode

696 PowerBuilder

You can select a different font for printing on the Printer Font tab page of the
Design Options dialog box for Script views, the File and Source editors, and
the ISQL view in the DataBase painter. If the printer font is set to Tahoma and
the Tahoma font is not installed on the printer, PowerBuilder downloads the
entire font set to the printer when it encounters a multilanguage character. If
you need to print multilanguage characters, specify a printer font that is
installed on your printer.

To support multiple languages in DataWindow objects, set the font in every
column and text control to Tahoma.

The default font for print functions is the system font. Use the PrintDefineFont
and PrintSetFont functions to specify a font that is available on users’ printers
and supports multiple languages.

PBNI The PowerBuilder Native Interface is Unicode based. PBNI extensions must be
compiled using the _UNICODE preprocessor directive in your C++
development environment.

Your extension’s code must use TCHAR, LPTSTR, or LPCTSTR instead of char,
char*, and const char* to ensure that it works correctly in a Unicode
environment. Alternatively, you can use the MultiByteToWideChar function to
map character strings to Unicode strings. For more information about enabling
Unicode in your application, see the documentation for your C++ development
environment.

Unicode enabling for
Web services

In a PowerScript target, the PBNI extension classes instantiated by Web service
client applications use Unicode for all internal processing. However, calls to
component methods are converted to ANSI for processing by EasySoap, and
data returned from these calls is converted to Unicode.

In a JSP target, the authoring tool (HTML editor) is Unicode-enabled so you
can input text in multiple languages on a single page. When you type in the
editor, the text is saved in UTF-16LE encoding. However, JSP files with other
encoding schemes can still be imported in the editor. Text with these encodings
is automatically converted to UTF-16LE.

XML string encoding The XML parser cannot parse a string that uses an eight-bit character code such
as windows-1253. For example, a string with the following declaration cannot
be parsed:

string ls_xml
ls_xml += '<?xml version="1.0" encoding="windows-
1253"?>'

You must use a Unicode encoding value such as UTF16-LE.

CHAPTER 35 Internationalizing an Application

Application Techniques 697

Internationalizing the user interface
When you build an application for international deployment, there are two user
interface design issues you should consider:

• The physical design of the user interface

• The cultural standards of your application’s audience

Physical design The physical design of the user interface should include:

• Windows and objects with the flexibility to accommodate expanded string
lengths required when the text in menu items, lists, and labels is translated

For example, you could inherit a window from an English language
ancestor window, and change the language for a localized deployment.
Generally, you can accommodate the text for most languages if you allow
for a menu item, list, or label size that is 1.3 times the length of an English
text string.

• Windows that can be easily used in RightToLeft versions of Windows

Cultural awareness The cultural design of your user interface requires you to be cognizant of what
is and is not acceptable or meaningful to your audience.

For example, an icon of a hand displaying an open palm might mean stop in
one culture but indicate an unacceptable gesture in another. Similarly, although
the color yellow signifies caution in some cultures, in other cultures it signifies
happiness and prosperity.

Localizing the product
PowerBuilder provides resources for international developers that include
localized runtime files and the Translation Toolkit. The localized files become
available after the general release of a new version of PowerBuilder.

Localized runtime files Localized runtime files are provided for French, German, Italian, Spanish,
Dutch, Danish, Norwegian, and Swedish. You can install localized runtime
files in the development environment or on the user’s machine. If you install
them on the development machine, you can use them for testing purposes.

Localizing the product

698 PowerBuilder

The localized PowerBuilder runtime files handle language-specific data at
runtime. They are required to display standard dialog boxes and user interface
elements, such as day and month names in spin controls, in the local language.
They also provide the following features:

• DayName function manipulation The DayName function returns a
name in the language of the runtime files available on the machine where
the application is run.

• DateTime manipulation When you use the String function to format a
date and the month is displayed as text (for example, the display format
includes “mmm”), the month is in the language of the runtime files
available when the application is run.

• Error messages PowerBuilder error messages are translated into the
language of the runtime files.

Localized PFC
libraries

The PFC is now available on the Sybase CodeXchange Web site in the PFC
project at http://pfc.codeXchange.sybase.com/.

In order to convert an English language PFC-based application to another
language such as Spanish, you need multiple components. You need to test the
application on a computer running the localized version of the operating
system with appropriate regional settings. You must also obtain or build
localized PFC libraries and install the localized PowerBuilder runtime files.
When you deploy the application, you must deploy it to a computer running a
localized version of the operating system, and you must deploy the localized
runtime files.

You can translate the PFC libraries with the Translation Toolkit. Localized PFC
libraries are the same as the original PFC libraries except that strings that occur
in windows, menus, DataWindow objects, dialog boxes, and other user
interface elements, and in runtime error messages, are translated into the local
language. These include, for example, day and month names in the Calendar
service. All services remain otherwise the same. In a Spanish PFC application,
error messages displayed by the PFC are in Spanish, month names in the
Calendar service are in Spanish, column headers in DataWindow objects and
Menu items are in Spanish, and so on.

The Translation Toolkit adds a string in the format %LANGUAGE% to the
comment associated with every object that contains a translated string. For
example, if you look at a PFC library that has been translated into Spanish in
the List view in the Library painter, you will notice the string %SPANISH% at the
beginning of the comment for many objects.

CHAPTER 35 Internationalizing an Application

Application Techniques 699

The dictionaries used to translate the PFC libraries into each language are
provided with the Translation Toolkit. You can use the dictionaries to translate
the rest of your application into a local language using the Translation Toolkit,
and you can view the dictionary in a text editor to see which strings have been
translated.

The localized PFC libraries work in coordination with the localized runtime
files, regional settings, and the localized operating system.

Regional settings PowerBuilder always uses the system's regional settings, set in the Windows
Control Panel, to determine formats for the Date and Year functions, as well as
date formats to be used by the SaveAs function. The use of these regional
settings is independent of the use of PowerBuilder localized runtime files or
PFC libraries.

The regional settings are also used to determine behavior when using Format
and Edit masks. For more information, see the section on defining display
formats in the User’s Guide.

Localized operating
system

The localized operating system is required for references to System objects,
such as icons and buttons, that are referenced using enumerated types in
PowerBuilder, such as OKCancel!, YesNo!, Information!, and Error!. These
enumerated types rely on API calls to the local operating system, which passes
back the appropriate button, icon or symbol for the local language. For
example, if you use the OKCancel! argument in a MessageBox function, the
buttons that display on the message box are labeled OK and Cancel if the
application is not running on a localized operating system.

About the Translation Toolkit
The Translation Toolkit is a set of tools designed to help you translate
PowerBuilder applications into other languages. It includes a standalone
translator tool that is used by the person or group translating the text of the
application.

When you use the Toolkit to create a project, a copy of each of your
application's source libraries is created for each project. The application's
original source libraries are not changed.

How the Toolkit works You work with the phrases (one or more words of text) in an application. These
phrases are in the application’s object properties, controls, and scripts.

Localizing the product

700 PowerBuilder

You use the tools to:

• Extract phrases from the project libraries

• Present the phrases for translation

• Substitute translated phrases for the original phrases in the project libraries

Using the translated project libraries, you use PowerBuilder to build the
translated application.

For more information, see the online Help for the Translation Toolkit.

Application Techniques 701

C H A P T E R 3 6 Building Accessible Applications

About this chapter This chapter provides information about guidelines and requirements for
making applications accessible to users with disabilities. It explains what
features PowerBuilder offers to support the creation of accessible
applications, and it includes pointers to additional sources of information.

Contents

Understanding accessibility challenges
When designing and developing software applications and Web pages that
you want to make accessible to people with disabilities, there are four
general types of impairments you need to consider:

• Visual

• Hearing

• Mobility

• Cognitive or learning

Visual impairments Application users who are blind require text equivalents for all graphic
images and videos available to the sighted user. The text needs to convey
content that is conceptually equivalent to the information provided in
graphical form, so that assistive technologies such as screen and braille
readers can make the information fully accessible. All user interface (UI)
elements must have text or menu equivalents, and blind users need
keyboard equivalents for entering input that a sighted user would enter
with a mouse.

Topic Page

Understanding accessibility challenges 701

Accessibility requirements for software and Web applications 703

Creating accessible software applications with PowerBuilder 705

About VPATs 709

Testing product accessibility 710

Understanding accessibility challenges

702 PowerBuilder

To accommodate users who are color blind, you should avoid using color as the
sole means of conveying information. Using fill patterns in addition to colors
in graphs and other images is one strategy for supplementing information
conveyed by color. Auditory cues can serve as an alternative way of presenting
warnings or other content signaled by color only.

By enabling high contrast support, you can allow color-blind users and users
with low vision to adjust default system colors and fonts to make areas of a
window or Web page easier to distinguish. Users with low vision also use
hardware or software magnifiers to enlarge the pixels on a display, and they
depend on alternate text to get some of the information presented in images.

Hearing impairments Users who are deaf or hard of hearing require visual representations of auditory
information. You might need to provide alternate visual cues in your
application for audible warnings, for example. Blinking text is one alternative,
though the blink rate must be within a certain range to avoid causing problems
for users with seizure disorders. Audio tracks require transcripts, and videos
might require closed captioning.

Technology to assist with hearing impairments includes voice recognition
products that can convert auditory information to text or sign language.
Important also are TTY/TDD modems that connect computers with telephones
and convert typed ASCII text output to Baudot code, which is what deaf
individuals commonly use to communicate over the telephone.

Limited mobility Users with limited mobility often have difficulty handling hardware and media,
but input is typically their biggest challenge. Depending on the disability,
mobility-impaired users might need to use voice recognition or an on-screen
keyboard with an electronic switch, tracking ball, or joy stick. They might enter
input at a slower pace, which means that timers and response times should be
adjustable. Systems with built-in intelligence can provide cues to cut down the
amount of input required. For Windows applications, the FilterKeys feature is
available to slow the keyboard repeat rate, and the Windows StickyKeys
feature allows users to enter multiple keystrokes such as Ctrl/Alt/Delete as key
sequences.

CHAPTER 36 Building Accessible Applications

Application Techniques 703

Cognitive impairments Reading difficulties, an inability to process visual or auditory information,
problems with text input, and short-term memory problems can all affect a
user’s access to the content of software and Web applications. Use of clear,
simple language, enforcement of consistent design, and presentation of the
same information in redundant format, such as both audio and video, can all
help users with cognitive impairments to access information. Providing
adjustable response times is important to those whose comprehension is slower
than normal. Making content available to screen readers to reinforce visual
representation is another strategy for aiding comprehension of people with
cognitive impairments.

General suggestions For Web display, it is important to use elements for all markup instead of
manipulating text features such as font size directly. Visual appearance should
not be the only indicator of function for text elements. Element markup allows
assistive technologies such as screen readers to announce text elements such as
headings by their function.

Good design for accessibility benefits not only those with disabilities, but users
in general. By enforcing a consistent interface design, using simple language,
ensuring ease of navigation, and providing the same information in a variety of
ways, you can make your applications more usable for everyone.

For more information For general information about making Web sites accessible, see the World Wide
Web Consortium Web site at http://www.w3.org/ and the Utah State University
WebAim Web site at http://www.webaim.org.

For information on how your users can adjust various browsers for better
legibility, and for ways to accommodate vision impairments in general, see the
Lighthouse International Web site at http://www.lighthouse.org/.

Accessibility requirements for software and Web
applications

Organizations that want to make their applications accessible to the disabled
might have to comply with several sets of slightly different regulations and
guidelines, depending on the countries in which their products will be sold or
used.

Accessibility requirements for software and Web applications

704 PowerBuilder

Section 508 Section 508, enacted in 1998, is an extension of the U.S. Government’s
Rehabilitation Act. Section 508 requires that all electronic and information
technology that U.S. Government agencies develop, procure, maintain, and use
must be accessible to members of the general public who have disabilities.
Many individual states in the U.S. have adopted these requirements as well.
Organizations that offer software applications for sale to the U.S. Federal
government and many state governments, as well as companies that use or sell
accessibility aids, must comply with these regulations to ensure that their
products qualify for purchase.

WCAG 1.0 The Section 508 guidelines are based on the accessibility guidelines published
in May 1999 by the World Wide Web Consortium. These are known as the Web
Content Accessibility Guidelines (WCAG) version 1.0. The WCAG 1.0 is the
common basis for most accessibility guidelines and the standard for
government enforcement of regulations in many countries today. These
guidelines have three priority levels. Priority 1 deals with features essential for
access to Web content; Priority 2 defines practices that make Web sites more
usable and comprehensible in general, and especially to those using
accessibility tools; Priority 3 describes enhanced usability features that make
use of the newest technology.

Section 508 includes most of the Priority 1 WCAG recommendations, several
from Priorities 2 and 3, and also a few other requirements that are not in the
WCAG. The WCAG recommends that organizations strive to meet the Priority
1 and 2 guidelines.

French legislation The French government has also enacted legislation requiring Web
accessibility for those with disabilities and published criteria for conformance
called AccessiWeb. AccessiWeb includes three levels, Bronze, Silver, and
Gold, that correspond roughly to the three priority levels of the WCAG, but
AccessiWeb promotes many level 2 and 3 requirements to higher levels and
includes more detail than some of the WCAG recommendations.

U.K. legislation The United Kingdom has passed legislation called the Disability
Discrimination Act that requires Web sites targeting British residents to be
accessible to those with disabilities. Enforcement of the U.K. law currently is
based on the WCAG 1.0 Priority 1 and 2 guidelines.

Other countries Many other countries have enacted legislation requiring government or
general-use Web sites to be accessible to the disabled. Several of these
countries explicitly require compliance with Priorities 1 and 2 of the WCAG
1.0, but a few require only Priority 1 compliance. Many other countries without
legislated requirements use the WCAG standards in practice.

CHAPTER 36 Building Accessible Applications

Application Techniques 705

WCAG 2.0 The WCAG standards are currently being updated with the intention that they
will become a universally accepted set of international guidelines for Web
accessibility. WCAG 2.0 will focus on general principles that set out the
characteristics Web sites must have to be accessible to users with disabilities.
Separate documents will spell out the technical requirements so that these can
be updated easily as technology changes without requiring updates to the
general principles.

For more information For information about the accessibility requirements of the U.S. Federal
Government for software applications and Web sites, see the Guide to the
Section 508 Standards for Electronic and Information Technology Accessibility
Standards at http://www.access-board.gov/sec508/guide/ and the standard at
http://www.access-board.gov/sec508/508standards.htm.

For the generally accepted international recommendations for Web
accessibility, see the WCAG guidelines at http://www.w3.org/TR/WCAG10/. For
the new guidelines under development, see the WCAG 2.0 guidelines at
http://www.w3.org/TR/WCAG20/.

For the Web accessibility criteria adopted by the French government, see the
AccessiWeb criteria at
http://www.accessiweb.org/fr/Label_Accessibilite/criteres_accessiweb/92_access
iweb_lineaire/.

Creating accessible software applications with
PowerBuilder
MSAA standard PowerBuilder provides the infrastructure and properties needed to build

accessibility features into your Windows and Web applications. Its features
allow applications to conform generally to Microsoft Active Accessibility
(MSAA) Version 2. MSAA is a Windows standard that defines the way
accessibility aids obtain information about user interface elements and the way
programs expose information to the aids.

Creating accessible software applications with PowerBuilder

706 PowerBuilder

PowerBuilder standard controls support all required Microsoft Active
Accessibility properties as listed in the following table:

Table 36-1: MSAA properties and PowerBuilder support

Microsoft Active
Accessibility property PowerBuilder property support

Name objectname.AccessibleName

Some controls support the Name setting through the
Text or Title property. For all controls, Name is
customizable through the AccessibleName property.

Role objectname.AccessibleRole

Customizable through the AccessibleRole property.

State Default Active Accessibility support

Location Default Active Accessibility support

Parent Default Active Accessibility support

ChildCount Default Active Accessibility support

Keyboard Shortcut Default Active Accessibility support for “&” access
key of the Text property

Also, PowerBuilder Accelerator property setting if
applicable to the control.

DefaultAction Default Active Accessibility support

(For example, a selected check box has a default action
of uncheck.)

Value Default Active Accessibility support

(For example, a selected check box has the value
checked.)

Children Default Active Accessibility support

(For example, items in a list box.)

Focus Default Active Accessibility support

Selection Default Active Accessibility support

Description objectname.AccessibleDescription

Customizable through the AccessibleDescription
property.

Help Not supported

HelpTopic Not supported

CHAPTER 36 Building Accessible Applications

Application Techniques 707

Visual controls For PowerBuilder visual controls that inherit from DragObject, you can
manipulate the IAccessible Name, Role, and Description properties of each
control by using PowerBuilder dot notation or the Other page in the Properties
view of the painters. You can also manipulate the IAccessible property
KeyboardShortcut using PowerBuilder properties wherever the ampersand in
text property and accelerator property are supported. Other IAccessible
properties are set automatically using Active Accessibility default support.
(For example, location is automatically updated with absolute screen
coordinates for Windows controls at runtime.)

The following table lists PowerBuilder visual controls that inherit from
DragObject and their default accessible roles:

Table 36-2: PowerBuilder visual controls and their default roles

PowerBuilder visual controls AccessibleRole enumerated value

Animation animationrole!

CheckBox checkbuttonrole!

CommandButton pushbuttonrole!

DataWindow clientrole!

DropDownListBox comboboxrole!

DropDownPictureListBox comboboxrole!

EditMask textrole!

Graph diagramrole!

GroupBox groupingrole!

HProgressBar, VProgressBar progressbarrole!

HScrollBar, VScrollBar scrollbarrole!

HTrackBar, VTrackBar sliderrole!

ListBox listrole!

ListView listrole!

MonthCalendar clientrole!

MultiLineEdit textrole!

Picture graphicrole!

PictureButton pushbuttonrole!

PictureHyperLink linkrole!

PictureListBox listrole!

RadioButton radiobuttonrole!

RichTextEdit clientrole!

SingleLineEdit textrole!

StaticHyperLink linkrole!

StaticText statictextrole!

Creating accessible software applications with PowerBuilder

708 PowerBuilder

The OLEControl control is set to pushbuttonrole! by default. You need to set
this role depending on content.

DataWindow control PowerBuilder implements the MSAA standard for the DataWindow custom
control and its children.

The AccessibleName and AccessibleDescription properties take string values.
The AccessibleRole property takes the value of the AccessibleRole
enumerated variable.

There are some limitations regarding accessibility support in the DataWindow:

• For the navigation function accNavigate, spatial navigation (navigation by
keyboard based on screen location) is not supported. Logical navigation,
where keyboard navigation follows a logical tab sequence, is supported
only for columns in the detail band. Columns that have a tab value set to 0
so that users cannot update them cannot be accessed from the keyboard.

• The Label, N-Up, OLE 2.0, and RichText DataWindow styles are not
supported.

• Support for OLE objects, OLE database columns, and nested reports in
DataWindows is limited.

PowerBuilder cannot provide accessibility for control content. This must be
provided by the control vendor.

Examples The following statements set the IAccessible properties for a command button
in a Window:

cb_1.accessiblename = "Delete"
cb_1.accessibledescription = "Deletes selected text"
cb_1.accessiblerole = pushbuttonrole!

The following statement sets the AccessibleName property of a button in a
DataWindow object:

dw_1.Object.b_1.accessiblename = "Update"

The following statements set the AccessibleRole property for a button in a
DataWindow object to 43 (the number associated with PushButtonRole!) and
return the property to a string variable:

string ls_data

Tab control clientrole!

Tab page clientrole!

TreeView outlinerole!

PowerBuilder visual controls AccessibleRole enumerated value

CHAPTER 36 Building Accessible Applications

Application Techniques 709

dw_1.Object.b_1.AccessibleRole = 43
ls_data = dw_1.Describe("b_1.AccessibleRole")

Deployment When you deploy an accessible application, you must deploy the pbacc105.dll
file.

For more information For more information, see the Microsoft general accessibility Web site at
http://www.microsoft.com/enable and the MSDN library site at
http://msdn.microsoft.com/library/default.asp?url=/nhp/default.asp?contentid=28
000544. Also helpful is the WebAim Web site at http://www.webaim.org.

About VPATs
A Voluntary Product Accessibility Template (VPAT) is a table designed to help
U.S. Federal officials make preliminary assessments of accessibility
compliance for products offered to the government for sale. A VPAT lists the
criteria for compliance with accessibility requirements for various types of
products and provides columns where you can indicate and comment on how
your product meets them.

VPATs are available for software applications and operating systems,
Web-based Internet information and applications, and other types of products.
Even if you do not need to fill out a VPAT, reviewing the template for your type
of product can give you a clearer understanding of the requirements of Section
508 for software and Web applications.

For more information To view the various VPATs, see the Information Technology Industry Council
Web site at http://www.itic.org/policy/vpat.html.

To see samples of completed VPATs for IT products, see the Sybase
accessibility site at http://www.sybase.com/accessibility.

Testing product accessibility

710 PowerBuilder

Testing product accessibility
The MSAA 2.0 Software Development Kit (SDK) includes several tools for
verifying the MSAA compliance of your application. They include
AccExplorer, Accessible Event Watcher, and Object Inspector. These tools are
available on the

Microsoft Web site at http://msdn.microsoft.com/library/default.asp?url=/downloads/list/accessibility.asp.

To test the user experience of your application for those with disabilities
directly, you can use various methods. For example, try using a text-only
browser; enter input using only the keyboard; use the application with a screen
reader such as JAWS, Window-Eyes, Hal, or Supernova.

Several commercial applications are also available for testing Web sites for
compliance with Section 508 and the WCAG 1.0.

For more information For a checklist for testing WCAG 1.0 compliance, see the appendix to the
WCAG 1.0 on the W3C Web site at http://www.w3.org/TR/1999/WAI-
WEBCONTENT-19990505/full-checklist. The W3C Web site also lists and
evaluates tools for testing accessibility.

Application Techniques 711

C H A P T E R 3 7 Printing from an Application

About this chapter This chapter describes how to use predefined functions to create printed
lists and reports.

Contents

Printing functions
PowerScript provides predefined functions that you can use to generate
simple and complex lists and reports. Using only three functions, you can
create a tabular report in your printer’s default font. Using additional
functions, you can create a report with multiple text fonts, character sizes,
and styles, as well as lines and pictures.

Table 37-1 lists the functions for printing.

Table 37-1: PowerScript printing functions

Topic Page

Printing functions 711

Printing basics 713

Printing a job 713

Using tabs 714

Stopping a print job 715

Advanced printing techniques 716

Function Description

Print There are five Print function formats. You can specify
a tab in all but two formats, and in one you can specify
two tabs.

PrintBitMap Prints the specified bitmap.

PrintCancel Cancels the specified print job.

PrintClose Sends the current page of a print job to the printer (or
spooler) and closes the print job.

PrintDataWindow Prints the specified DataWindow as a print job.

PrintDefineFont Defines one of the eight fonts available for a print job.

Printing functions

712 PowerBuilder

For more information about printing functions, see the PowerScript Reference.

PrintGetPrinter Gets the current printer name.

PrintGetPrinters Gets the list of available printers.

PrintLine Prints a line of a specified thickness at a specified
location.

PrintOpen Starts the print job and assigns it a print job number.

PrintOval Prints an oval (or circle) of a specified size at a
specified location.

PrintPage Causes the current page to print and sets up a new
blank page.

PrintRect Prints a rectangle of a specified size at a specified
location.

PrintRoundRect Prints a round rectangle of a specified size at a
specified location.

PrintScreen Prints the screen image as part of a print job.

PrintSend Sends a specified string directly to the printer.

PrintSetFont Sets the current font to one of the defined fonts for the
current job.

PrintSetPrinter Sets the printer to use for the next print function call.
This function does not affect open jobs.

PrintSetSpacing Sets a spacing factor to determine the space between
lines.

PrintSetup Calls the printer Setup dialog box and stores the user’s
responses in the print driver.

PrintSetupPrinter Displays the printer setup dialog box.

PrintText Prints the specified text string at a specified location.

PrintWidth Returns the width (in thousandths of an inch) of the
specified string in the current font of the current print
job.

PrintX Returns the x value of the print cursor.

PrintY Returns the y value of the print cursor.

Function Description

CHAPTER 37 Printing from an Application

Application Techniques 713

Printing basics
All printing is defined in terms of the print area. The print area is the physical
page size less any margins. For example, if the page size is 8.5 inches by 11
inches, and the top, bottom, and side margins are all a half-inch, the print area
is 7.5 inches by 10 inches.

Measurements All measurements in the print area are in thousandths of an inch. For example,
if the print area is 7.5 inches by 10 inches, then:

The upper-left corner is 0,0
The upper-right corner is 7500,0
The lower-left corner is 0,10000
The lower-right corner is 7500,10000

Print cursor When printing, PowerBuilder uses a print cursor to keep track of the print
location. The print cursor stores the coordinates of the upper-left corner of the
location at which printing begins. PowerBuilder updates the print cursor
(including tab position if required) after each print operation except
PrintBitmap, PrintLine, PrintRectangle, or PrintRoundRect. To position text,
objects, lines, and pictures when you are creating complex reports, specify the
cursor position as part of each print function call.

Printing a job
PrintOpen must be the first function call in every print job. The PrintOpen
function defines a new blank page in memory, specifies that all printing be
done in the printer’s default font, and returns an integer. The integer is the print
job number that is used to identify the job in all other function calls.

PrintOpen is followed by calls to one or more other printing functions, and then
the job is ended with a PrintClose (or PrintCancel) call. The functions you call
between the PrintOpen call and the PrintClose call can be simple print functions
that print a string with or without tabs, or more complex functions that add lines
and objects to the report or even include a picture in the report.

Printing titles
To print a title at the top of each page, keep count of the number of lines printed,
and when the count reaches a certain number (such as 50), call the PrintPage
function, reset the counter, and print the title.

Using tabs

714 PowerBuilder

Here is a simple print request:

Int PrintJobNumber
// Start the print job and set PrintJobNumber to
// the integer returned by PrintOpen.
PrintJobNumber = PrintOpen()
// Print the string Atlanta.
Print(PrintJobNumber,"Atlanta")
// Close the job.
PrintClose(PrintJobNumber)

Using tabs
The Print function has several formats. The format shown in the previous
example prints a string starting at the left edge of the print area and then prints
a new line. In other formats of the Print function, you can use tabbing to specify
the print cursor position before or after printing, or both.

Specifying tab values Tab values are specified in thousandths of an inch and are relative to the left
edge of the print area. If a tab value precedes the string in the Print call and no
tab value follows the string, PowerBuilder tabs, prints, then starts a new line.
If a tab value follows the string, PowerBuilder tabs after printing and does not
start a new line; it waits for the next statement.

In these examples, Job is the integer print job number.

This statement tabs one inch from the left edge of the print area, prints Atlanta,
and starts a new line:

Print(Job,1000,"Atlanta")

This statement prints Boston at the current print position, tabs three inches
from the left edge of the print area, and waits for the next statement:

Print(Job,"Boston",3000)

This statement tabs one inch from the edge of the print area, prints Boston, tabs
three inches from the left edge of the print area, and waits for the next
statement:

Print(Job,1000,"Boston",3000)

CHAPTER 37 Printing from an Application

Application Techniques 715

Tabbing and the print
cursor

When PowerBuilder tabs, it sets the x coordinate of the print cursor to a larger
print cursor value (a specified value or the current cursor position). Therefore,
if the specified value is less than the current x coordinate of the print cursor, the
cursor does not move.

The first Print statement shown below tabs one inch from the left edge of the
print area and prints Sybase, but it does not move to the next tab. (0.5 inches
from the left edge of the print area is less than the current cursor position.)
Since a tab was specified as the last argument, the first Print statement does not
start a new line even though the tab was ignored. The next Print statement prints
Inc. immediately after the e in Sybase (Sybase Inc.) and then starts a new
line:

Print(Job,1000,"Sybase",500)
Print(Job," Inc.")

Stopping a print job
There are two ways to stop a print job. The normal way is to close the job by
calling the PrintClose function at the end of the print job. The other way is to
cancel the job by calling PrintCancel.

Using PrintClose PrintClose sends the current page to the printer or spooler, closes the print job,
and activates the window from which the printing started. After you execute a
PrintClose function call, any function calls that refer to the job number fail.

Using PrintCancel PrintCancel ends the print job and deletes any output that has not been printed.
The PrintCancel function provides a way for the user to cancel printing before
the process is complete. A common way to use PrintCancel is to define a global
variable and then check the variable periodically while processing the print job.

Assume StopPrint is a boolean global variable. The following statements check
the StopPrint global variable and cancel the job when the value of StopPrint is
TRUE:

IntJobNbr
JobNbr = PrintOpen()
//Set the initial value of the global variable.
StopPrint = FALSE
//Perform some print processing.

Advanced printing techniques

716 PowerBuilder

Do While ...
.
.
.
// Test the global variable.
// Cancel the print job if the variable is TRUE.
// Stop executing the script.

If StopPrint then
PrintCancel(JobNbr)
Return
End If

Loop

Advanced printing techniques
Creating complex reports in PowerBuilder requires the use of additional
functions but is relatively easy. You can use PowerScript functions to define
fonts for a job, specify fonts and line spacing, place objects on a page, and
specify exactly where you want the text or object to be placed.

Defining and setting
fonts

The examples so far have used the default font for the printer. However, you
can define as many as eight fonts for each print job and then switch among
them during the job.

In addition, you can redefine the fonts as often as you want during the print job.
This allows you to use as many fonts as you have available on your printer
during a print job. Since there is a slight performance penalty for redefining
fonts, you should define the fonts after the PrintOpen call and leave them
unchanged for the duration of the print job.

To define a font, set an integer variable to the value returned by a call to the
PrintDefineFont function and then use the PrintSetFont function to change the
font in the job.

Example Assume that JobNum is the integer print job number and that the
current printer has a font named Helv. The following statements define
Helv18BU as the Helv font, 18 point bold and underlined. The definition is
stored as font 2 for JobNum. The company name is printed in font 2:

IntJob, Helv18BU
JobNum = PrintOpen()
Helv18BU = PrintDefineFont(JobNum,2,"Helv",250,700, &

Variable!,Swiss!,FALSE,TRUE)

CHAPTER 37 Printing from an Application

Application Techniques 717

PrintSetFont(JobNum,2)
Print(JobNum,"Sybase, Inc.")

For more information about PrintDefineFont and PrintSetFont, see the
PowerScript Reference.

Setting line spacing PowerBuilder takes care of line spacing automatically when you use the Print
function. For example, after you print in an 18-point font and start a new line,
PowerBuilder adds 1.2 times the character height to the Y coordinate of the
print cursor.

The spacing factor 1.2 is not fixed. You can use the PrintSetSpacing function to
control the amount of space between lines.

Examples This statement results in tight single-line spacing. (Depending on
the font and the printer, the bottoms of the lowest characters may touch the tops
of the tallest characters):

PrintSetSpacing(JobNum,1)

This statement causes one-and-a-half-line spacing:

PrintSetSpacing(JobNum,1.5)

This statement causes double spacing:

PrintSetSpacing(JobNum,2)

Printing drawing
objects

You can use the following drawing objects in a print job.

• Lines

• Rectangles

• Round rectangles

• Ovals

• Pictures

When you place drawing objects in a print job, place the objects first and then
add the text. For example, you should draw a rectangle inside the print area and
then add lines and text inside the rectangle. Although the objects appear as
outlines, they are actually filled (contain white space); if you place an object
over text or another object, it hides the text or object.

Be careful: PowerBuilder does not check to make sure that you have placed all
the text and objects within the print area. PowerBuilder simply does not print
anything that is outside the print area.

Advanced printing techniques

718 PowerBuilder

Example These statements draw a 1-inch by 3-inch rectangle and then print
the company address in the rectangle. The rectangle is at the top of the page
and centered:

IntJob
JobNum = PrintOpen()
PrintRect(JobNum,2500,0,3000,1000,40)
Print(JobNum,2525,"")

Print(JobNum,2525,"25 Mountain Road")
Print(JobNum,2525,"Milton, MA 02186")
PrintClose(JobNum)

Application Techniques 719

C H A P T E R 3 8 Managing Initialization Files and
the Windows Registry

About this chapter This chapter describes how to manage preferences and default settings for
PowerBuilder applications.

Contents

About preferences and default settings
Many PowerBuilder applications store user preferences and default
settings across sessions. For example, many applications keep track of
settings that control the appearance and behavior of the application, or
store default parameters for connecting to the database. PowerBuilder
applications can manage this kind of information in initialization files or
in the Windows registry.

Database connection
parameters

Often you need to set the values of the Transaction object from an external
file. For example, you might want to retrieve values from your
PowerBuilder initialization file when you are developing the application
or from an application-specific initialization file when you distribute the
application.

For information about database connection parameters in an initialization
file, see “Reading values from an external file” on page 165.

For an example of how to save and restore database connection
parameters in the Windows registry, see “Managing information in the
Windows registry” on page 721.

Topic Page

About preferences and default settings 719

Managing information in initialization files 720

Managing information in the Windows registry 721

Managing information in initialization files

720 PowerBuilder

Toolbar settings PowerBuilder provides some functions you can use to retrieve information
about your toolbar settings and also modify these settings. By using these
functions, you can save and restore the current toolbar settings.

For more information, see “Saving and restoring toolbar settings” on page 72.

Other settings you
may want to save

In addition to the database connection parameters and toolbar settings, you
may want to store a variety of other application-specific settings. For example,
you might want to keep track of user preferences for colors, fonts, and other
display settings.

Managing information in initialization files
Functions for
accessing initialization
files

PowerBuilder provides several functions you can use to manage application
settings in initialization files.

Table 38-1: PowerBuilder initialization file functions

For complete information about these functions, see the PowerScript
Reference.

For how to use the ProfileString functions with the registry, see “Functions for
accessing initialization files” on page 720.

The format of APP.INI The examples below manage application information in a profile file called
APP.INI. This file keeps track of user preferences that control the appearance
of the application. It has a Preferences section that stores four color settings:

[Preferences]
WindowColor=Silver
BorderColor=Red
BackColor=Black
TextColor=White

Reading values The following script retrieves color settings from the APP.INI file:

wincolor = ProfileString("app.ini", "Preferences", "WindowColor", "")
brdcolor = ProfileString("app.ini", "Preferences", "BorderColor", "")
bckcolor = ProfileString("app.ini", "Preferences", "BackColor", "")
txtcolor = ProfileString("app.ini", "Preferences", "TextColor", "")

Function Description

ProfileInt Obtains the integer value of a setting in a profile file

ProfileString Obtains the string value of a setting in a profile file

SetProfileString Writes a value in a profile file

CHAPTER 38 Managing Initialization Files and the Windows Registry

Application Techniques 721

Setting values The following script stores color settings in the APP.INI file:

SetProfileString("app.ini", "Preferences", "WindowColor", wincolor)
SetProfileString("app.ini", "Preferences", "BorderColor", brdcolor)
SetProfileString("app.ini", "Preferences", "BackColor", bckcolor)
SetProfileString("app.ini", "Preferences", "TextColor", txtcolor)

Managing information in the Windows registry
Functions for
accessing the
Registry

PowerBuilder provides several functions you can use to manage application
settings in the Windows registry.

Table 38-2: PowerBuilder registry setting functions

For the complete information for these functions, see the PowerScript
Reference.

Overriding
initialization files

You can use the ProfileString functions to obtain information from the registry
instead of from an initialization file. Create a new key called
INIFILEMAPPING at the following location:

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion

To override the WIN.INI file, create a subkey in INIFILEMAPPING called
WIN.INI with the following value:

#usr:software\microsoft\windows\currentversion\extensions

The examples that follow use the registry to keep track of database connection
parameters. The connection parameters are maintained in the registry in the
MyCo\MyApp\database branch under HKEY_CURRENT_USER\Software.

Function Description

RegistryDelete Deletes a key or a value in a key in the Windows registry.

RegistryGet Gets a value from the Windows registry.

RegistryKeys Obtains a list of the keys that are child items (subkeys) one level
below a key in the Windows registry.

RegistrySet Sets the value for a key and value name in the Windows registry.
If the key or value name does not exist, RegistrySet creates a new
key or value name.

RegistryValues Obtains a list of named values associated with a key.

Managing information in the Windows registry

722 PowerBuilder

Reading values from
the registry

The following script retrieves values for the default Transaction object from
the registry.

RegistryGet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"dbms", sqlca.DBMS)

RegistryGet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"database", sqlca.database)

RegistryGet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"userid", sqlca.userid)

RegistryGet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"dbpass", sqlca.dbpass)

RegistryGet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"logid", sqlca.logid)

RegistryGet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"logpass", sqlca.logpass)

RegistryGet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
“servername", sqlca.servername)

RegistryGet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"dbparm", sqlca.dbparm)

Setting values in the
registry

The following script stores the values for the Transaction object in the registry:

RegistrySet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"dbms", sqlca.DBMS)

RegistrySet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"database", sqlca.database)

RegistrySet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"userid", sqlca.userid)

RegistrySet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"dbpass", sqlca.dbpass)

RegistrySet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"logid", sqlca.logid)

RegistrySet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"logpass", sqlca.logpass)

RegistrySet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"servername", sqlca.servername)

RegistrySet("HKEY_CURRENT_USER\Software\MyCo\MyApp\database", &
"dbparm", sqlca.dbparm)

Application Techniques 723

C H A P T E R 3 9 Building InfoMaker Styles and
Actions

About this chapter This chapter explains how to build styles in PowerBuilder and provide
them to InfoMaker users.

Contents

About form styles
InfoMaker comes with built-in form styles with which users can build
sophisticated forms. You can create your own form styles in PowerBuilder
and provide them to InfoMaker users. With these custom form styles, you
can enforce certain standards in your forms and provide extra
functionality to your InfoMaker users. For example, you might want to:

• Include your organization’s logo in each form

You can do this by creating custom form styles that have the logo in
place.

• Reconfigure the toolbar that is provided with the built-in form styles

You can do this by modifying a built-in form style and saving it as a
custom form style.

• Use drag and drop in forms

• Include picture buttons, edit controls, and other controls in forms

Topic Page

About form styles 723

Naming the DataWindow controls in a form style 726

Building and using a form style 727

Modifying an existing style 728

Building a style from scratch 730

Completing the style 730

Using the style 734

About form styles

724 PowerBuilder

Almost anything you can do in a PowerBuilder window you can do in a custom
form style.

What a form style is InfoMaker users use forms to maintain data. Users can view, add, delete, and
update data in a form. Each form is based on a form style, which specifies:

• The way the data is presented (for example, in a freeform, grid, or
master/detail presentation)

• The menu and toolbar that are available when users run a form

• Actions that users can attach to command buttons in the form

How form styles are
constructed

You build form styles in PowerBuilder. A form style consists of:

• A window

• A menu

Figure 39-1: PowerBuilder form style

About the window The window serves as the foundation of the form. It
contains one or more DataWindow controls with special names. It is these
DataWindow controls that are the heart of the form style. The user views and
changes data in the form through the special DataWindow controls.

This chapter refers to the special DataWindow controls as the central
DataWindow controls. You must name the central DataWindow controls
using one of a set of supported names.

In addition to the central DataWindow controls, the window can contain any
other controls that you can place in a window in PowerBuilder (such as
CommandButtons, RadioButtons, user objects, and pictures).

About the menu When users run forms, they can pick items off a menu. You
build the menu in the Menu painter and associate it with the window that the
form style is based on.

When building the menu, you can specify which menu items should display in
a toolbar when a form is run. The toolbar works like all PowerBuilder toolbars.

About actions Form styles contain actions that users can attach to command
buttons in the form and that you can call in scripts.

Each public window function you define in the window for the form style is
available as an action to users of the form style.

CHAPTER 39 Building InfoMaker Styles and Actions

Application Techniques 725

Looking at an
example

For example, the built-in form style Freeform consists of:

• A window named w_pbstyle_freeform

• A menu named m_pbstyle_freeform

About w_pbstyle_freeform The window w_pbstyle_freeform contains a
DataWindow control named dw_freeform and contains no other controls.

The PowerBuilder window defines many window-level functions:

Each of these window functions is available as an action in InfoMaker to users
of the Freeform form style:

About m_pbstyle_freeform The menu named m_pbstyle_freeform provides
the menu items and toolbar items available to users when they run forms based
on the Freeform style.

Naming the DataWindow controls in a form style

726 PowerBuilder

For example, m_pbstyle_freeform contains the item Specify Criteria on the
Rows menu; the item also displays on the toolbar:

When InfoMaker users run the form, they can select Specify Criteria to enter
selection criteria that are used in retrieving rows in the form.

Naming the DataWindow controls in a form style
Each form style you define contains one or more central DataWindow controls
that are based on DataWindow controls in one of the built-in InfoMaker form
styles.

The best way to understand the behavior of these DataWindow controls is to
build forms in InfoMaker using each of the built-in styles. Then, when you
want to build a form style, choose the DataWindow controls from the built-in
style that matches the type of presentation you want in your form style.

For example, to create a basic freeform data entry form, base it on dw_freeform,
the DataWindow control found in w_pbstyle_freeform.

When building your form style, you must assign one of the following names to
the central DataWindow controls:

• dw_freeform

• dw_grid

• dw_master_12many

CHAPTER 39 Building InfoMaker Styles and Actions

Application Techniques 727

• dw_detail_12many

• dw_master_many21

• dw_detail_many21

Valid combinations You must use one of the four combinations of
DataWindow controls in Table 39-1in a form style.

Table 39-1: PowerBuilder DataWindow controls

Building and using a form style
❖ To build and use a form style:

1 Do one of the following:

• Copy the window and menu from an existing form style to act as your
starting point

• Begin from scratch by creating a new window and placing in it one or
two DataWindow controls that have the supported names

2 Save the window with a special comment that indicates that the window
serves as the basis for a form style.

3 Enhance the form style by adding controls to the window, modifying the
menu, defining window functions to serve as actions, and so on.

4 Copy all objects used in the form style (such as windows, user objects, and
menus) to a library that will be defined as a style library for InfoMaker
users.

Use these DataWindow
control names To base your form style on this built-in style

dw_freeform only Freeform.

dw_grid and dw_freeform Grid.

dw_grid is the central DataWindow control;
dw_freeform shares the result set and serves as the
background, allowing users to place computed
fields anywhere in the form.

dw_master_12many and
dw_detail_12many

Master Detail/One-To-Many.

dw_master_many21 and
dw_detail_many21

Master Detail/Many-To-One.

Modifying an existing style

728 PowerBuilder

5 Add the style library to the search path for InfoMaker users.

When InfoMaker users create a new form, the form style you defined
displays in the New Form dialog box. Users can select the style to build a
form based on the style you built.

The rest of this chapter describes these steps.

Modifying an existing style
The easiest way to get started building form styles is to copy an existing form
style and work with it. By examining its structure and making small changes,
you can quickly understand how form styles work.

❖ To begin by modifying an existing form style:

1 Open the Library painter in PowerBuilder.

2 Copy the window and menu that serve as the foundation for a form style
to a library that is on your application’s library search path.

Starting from a built-in form style
The windows and menus that serve as the basis for the built-in form styles
are in IMSTYLE105.PBL, which is shipped with InfoMaker and installed
in the InfoMaker 10.5 directory. You can make a copy of this PBL and use
it as the basis of your own form styles.

3 Open the window in the Window painter and select File>Save As from the
menu bar to save it with a new name.

4 Give the window a new name.

You can use any name you want, except that names of windows that define
form styles must be unique across all style libraries that are used by an
InfoMaker user.

5 Define a special comment for the window (for instructions, see
“Identifying the window as the basis of a style” on page 729).

6 Click OK to save the window.

7 Open the menu in the Menu painter and select File>Save As from the
menu bar to save it with a new name.

CHAPTER 39 Building InfoMaker Styles and Actions

Application Techniques 729

8 Provide a new name and an optional comment, then click OK to save the
menu.

You do not need to provide a comment for the menu, but it is a good idea
to identify it as being used in the form style you are building.

9 Enhance the form style (for instructions, see “Completing the style” on
page 730).

Identifying the window as the basis of a style
In order for InfoMaker to recognize that a window in a library serves as the
basis for a form style, you must specify a comment for the window that starts
with the text Style:

Style: text that describes the style

The text that follows Style: is the text that displays below the icon for the form
style in the New Form dialog box in InfoMaker.

For example, if you save a w_pbstyle_freeform window with the comment
Style: Maintain corporate data in a style library, InfoMaker users see
this when they create a new form:

You can specify the comment either when first saving the window or in the
Library painter.

For more information about designing windows, see the PowerBuilder User’s
Guide.

Building a style from scratch

730 PowerBuilder

Building a style from scratch
Once you understand how form styles work, you can build one from scratch.

❖ To build a form style from scratch:

1 Create a new window.

2 Place a DataWindow control in the window.

3 In the Properties view for the control, name the control using one of the
special names.

For the list of special names, see “Naming the DataWindow controls in a
form style” on page 726.

4 Change properties for the control as desired.

For example, you can add vertical and horizontal scrollbars.

Do not associate the control with a DataWindow object
InfoMaker users specify the data for the control when they create a new
form.

5 If the form style you are building uses two DataWindow controls, place
another DataWindow control in the window and name it to conform with
the valid combinations.

For the list of valid combinations, see “Naming the DataWindow controls
in a form style” on page 726.

6 Save the window and specify a comment for it.

For instructions, see “Identifying the window as the basis of a style” on
page 729.

Completing the style
To complete your form style, enhance the window and menu to provide the
processing you want. For example, you can:

• Work with the central DataWindow control

• Add controls to the window

• Define actions (functions that appear as actions in your form style)

CHAPTER 39 Building InfoMaker Styles and Actions

Application Techniques 731

• Modify the menu and its associated toolbar

• Write scripts for the window, its controls, and menu items

• Add other capabilities, such as drag and drop, to the window

Working with the central DataWindow controls
The DataWindow controls with special names are the heart of a form. It is in
these controls that users manipulate the data in the form.

You need to understand:

• How the freeform DataWindow is sized in the form

• How to retrieve data into the control in the form

How the freeform
DataWindow is sized

All form styles you build contain a freeform DataWindow (as do all the built-in
styles). Regardless of what size you specify for the freeform DataWindow
control in the Window painter in PowerBuilder, the freeform DataWindow fills
the entire form in the Form painter in InfoMaker. InfoMaker enlarges the
freeform DataWindow so that users can place data (such as computed fields)
anywhere in the form.

This means that a window background color that you specify in PowerBuilder
is ignored in the form.

Retrieving rows into
the central
DataWindow control

When an InfoMaker user runs a form, InfoMaker automatically populates the
SQLCA Transaction object with the correct values, so you do not have to do
that in a script. To retrieve rows into the central DataWindow control, all you
have to do is set the Transaction object for the control and then retrieve rows.

For example, to retrieve data into the control named dw_freeform, code:

dw_freeform.SetTransObject(SQLCA)
dw_freeform.Retrieve()

You would code this in the window’s Open event to present the data to the user
when the form opens.

For more information about Transaction objects, see Chapter 12, “Using
Transaction Objects.”

Completing the style

732 PowerBuilder

Adding controls
All windows serving as the basis for a form style have at least one DataWindow
control. In addition, you can add any other controls that you can add to standard
PowerBuilder windows, such as command buttons, user objects, text, edit
boxes, pictures, and drawing objects.

Users of the form can move the controls you place in the window, but they
cannot delete them.

Users can also add controls to the form in the Form painter. They make
CommandButtons and PictureButtons work by associating actions with them.
Actions are described next.

Defining actions
Often users want to add buttons (CommandButtons or PictureButtons) to a
form created using a custom form style. When you create the form style, you
specify what the added buttons can do by defining actions for the form style.
When users place a button, they select the desired action from a list:

Actions are implemented as public window-level functions.

❖ To define an action:

1 In the Script view in the Window painter, select Insert>Function from the
menu bar.

2 Define the window-level function (for how, see the PowerBuilder User’s
Guide).

If you want the window function to be available to a form user as an action,
be sure to define the function as public. Function arguments you define are
used as parameters of the action. Each public window function you define
is listed as an action in the Select Action dialog box in the Form painter.

CHAPTER 39 Building InfoMaker Styles and Actions

Application Techniques 733

Defining functions not available as actions
If you want to define and use window functions that are not available as
actions in forms, define them as private.

Using menus
You specify the menu and toolbar that display when users run a form by
defining a menu in the Menu painter and associating it with the window that
serves as the basis for your form style.

Each menu item in the menu you define displays when a form is run. In
addition, InfoMaker adds Window and Help menus to allow users to
manipulate windows and get online Help when running a form in the
InfoMaker environment.

Providing online Help
You can define a Help item in the menu bar, then define menu items that
display in the Help drop-down menu. The Help items do not display when
users run a form within InfoMaker, but they do display when a form is run from
an executable. For more information about InfoMaker executable files, see the
InfoMaker User’s Guide.

Item in a toolbar As with MDI applications, you can specify that a menu item should display as
an item in a toolbar when the form is run.

Scripting You use the same scripting techniques for menus used in forms as you do for
menus used in standard windows. Typically you communicate between a
window and its menu by defining user events for the window, then triggering
them from the menu using the menu object’s ParentWindow property to refer
to the form window; this technique is used in the built-in form styles.

For more information For more information about using menus and user events, see the
PowerBuilder User’s Guide.

For more information about associating toolbars with menus, see Chapter 5,
“Building an MDI Application.”

Using the style

734 PowerBuilder

Writing scripts
You write scripts for the window, its controls, and Menu objects the same way
you write them for standard windows and menus. When working with
DataWindow controls, remember that you do not have to set the properties of
the SQLCA Transaction object—InfoMaker does that automatically when
users run a form.

You can define global user-defined functions and structures to support the
scripts you code, but note that since InfoMaker does not have an application
object, form styles cannot use global variables or global external function
declarations.

Adding other capabilities
You can make forms as sophisticated as you want. For example, you can
implement drag and drop features, and mail-enable your form.

For complete information about the features you can build into a window, see
the PowerBuilder User’s Guide.

Using the style
Once you complete a form style (or at least have a version that you want to
test), you can put it to use.

❖ To make a style available to InfoMaker users:

1 Make sure the window and menu that define the form style are in a library
that is accessible to InfoMaker users (the style library).

2 Add any other PowerBuilder objects that you use in the form style (such
as windows, user objects, global user-defined functions, and global
structures) to the same library.

3 Add the style library to the path for an InfoMaker user.

For more information, see the InfoMaker User’s Guide.

CHAPTER 39 Building InfoMaker Styles and Actions

Application Techniques 735

Building a form with the custom form style
When an InfoMaker user using the style library creates a new form, all custom
form styles display in the Form Style box in the New Form dialog box:

Custom styles display with a generic icon.

InfoMaker users simply select a data source and a custom style to start building
a form based on your form style. You should provide documentation to users
of your form styles.

Understanding
inheritance

When users build a form, they are working with a window that is a descendant
of the window that you built for the form style. That is, the form style window
you built in PowerBuilder is the ancestor, and the form window used in
InfoMaker is the descendant. This means that if you change the form style, the
changes are picked up the next time users work with a form using that style.

For example, you can add controls to the form style and have the controls
display automatically when users later open existing forms using the style.

Caution
Be careful: do not make changes that invalidate forms already built using the
style.

Using the style

736 PowerBuilder

Managing the use of form styles
You can store style libraries on the network to make them readily available to
all InfoMaker users. You do this with a shared initialization file on a network:
you place an InfoMaker initialization file that references the shared style
libraries out on the network, then set up InfoMaker users so that they can access
the initialization file.

❖ To make style libraries available throughout your organization:

1 Place the style libraries on the network in a directory accessible to
InfoMaker users.

2 Open InfoMaker, go to the Library painter, and make sure all style libraries
are listed in the search path.

3 Close InfoMaker.

4 Copy your InfoMaker initialization file to a directory on the network that
is accessible to all InfoMaker users.

This is the shared initialization file. It records all the style libraries in the
StyleLib variable in the [Application] section.

5 Set up InfoMaker users so that they can access the shared initialization
file.

Each InfoMaker user needs to specify the location of the shared
initialization file in InfoMaker.

For more information, see "Specifying the location of the shared
InfoMaker initialization file in InfoMaker" next.

Specifying the location
of the shared
InfoMaker initialization
file in InfoMaker

Once the shared initialization file has been defined in a user’s InfoMaker
initialization file, the user’s style library search path consists of the style
libraries defined in the user’s local InfoMaker initialization file plus all style
libraries defined in the shared initialization file. When the user creates a new
form, the form styles defined in all the style libraries display in the New Form
dialog box.

Each InfoMaker user needs to tell InfoMaker where to find the shared
initialization file.

❖ To specify the location of a shared InfoMaker initialization file:

1 Select Tools>System Options from the InfoMaker menu bar.

2 On the General property page, enter the path for the shared InfoMaker
initialization file.

CHAPTER 39 Building InfoMaker Styles and Actions

Application Techniques 737

3 Click OK.

InfoMaker saves the path for InfoMaker initialization in the registry.

Preventing the use of
built-in styles

You might not want the built-in form styles to be available to InfoMaker users.
That is, you might want all forms to be based on one of your organization’s
user-defined styles. You can ensure this by suppressing the display of the
built-in styles in the New Form dialog box.

❖ To suppress the display of built-in styles:

1 Set up a shared initialization file on the network as described in the
preceding section.

2 Add this line to the [Window] section of the shared initialization file:

ShowStandardStyles = 0

With this line specified in the shared initialization file, users can choose only
from user-defined form styles when creating a new form. (Note that a
ShowStandardStyles line in a user’s local InfoMaker initialization file is
ignored by InfoMaker.)

Using the style

738 PowerBuilder

P A R T 9 Deployment Techniques

This part explains how to package your application for
deployment and what files you need to deploy.

Application Techniques 741

C H A P T E R 4 0 Packaging an Application for
Deployment

About this chapter This chapter tells you how to prepare a completed executable application
for deployment to users.

Contents

About deploying applications
PowerBuilder lets you develop and deploy applications for many
application architectures.

Traditional client/server
applications

The primary focus of this chapter is on building an executable file and
packaging a single- or two-tier application for deployment. The chapter
helps you decide whether to use compiled code or pseudocode, whether to
use dynamic libraries (PBDs or DLLs) and how to organize them, and
whether to deploy resources such as bitmaps and icons separately or use a
PowerBuilder Resource file (PBR).

Internet and distributed
applications

When you build a client in a multitier application, you need to make many
of the same choices as you do for a traditional client/server application. If
you are building EAServer or COM components or using the
PowerBuilder window plug-in or the PowerBuilder window ActiveX, you
need to know about PowerBuilder dynamic libraries (PBDs) and PBRs,
described in “Learning what can go in the package” on page 743.

For more information For detailed information about the files you need to deploy with
client/server, multitier, and Web applications, see Chapter 41, “Deploying
Applications and Components.”

Topic Page

About deploying applications 741

Creating an executable version of your application 742

Delivering your application to end users 755

Creating an executable version of your application

742 PowerBuilder

Creating an executable version of your application
The next few sections tell you more about the packaging process and provide
information to help you make choices about the resulting application. They
cover:

• Compiler basics

• What can go in the package

• How to choose a packaging model

• How to implement your packaging model

• How to test the executable application you create

Compiler basics
When you plan an application, one of the fundamental topics to think about is
the compiler format in which you want that application generated.
PowerBuilder offers two alternatives: Pcode and machine code.

Pcode Pcode (short for pseudocode) is an interpreted language that is supported on all
PowerBuilder platforms. This is the same format that PowerBuilder uses in
libraries (PBL files) to store individual objects in an executable state.
Advantages of Pcode include its size, reliability, and portability.

Machine code PowerBuilder generates and compiles code to create a machine code
executable or dynamic library. The key advantage of machine code is speed of
execution.

PowerBuilder DLLs cannot be called
PowerBuilder machine code DLLs cannot be called from other applications.

Deciding which one to
use

Here are some guidelines to help you decide whether Pcode or machine code
is right for your project:

• Speed If your application does intensive script processing, you might
want to consider using machine code. It will perform better than Pcode if
your code makes heavy use of looping constructs, floating point or integer
arithmetic, or function calls. If your application does not have these
characteristics, machine code does not perform noticeably better than
Pcode. If you think your application might benefit from the use of machine
code, perform some benchmark testing to find out.

CHAPTER 40 Packaging an Application for Deployment

Application Techniques 743

Pcode is faster to generate than machine code. Even if you plan to
distribute your application using machine code, you might want to use
Pcode when you want to quickly create an executable version of an
application for testing.

• Size The files generated for Pcode are smaller than those generated for
machine code. If your application is to be deployed on computers where
file size is a major issue, or if you deploy it using a Web download or file
transfer, then you might decide to give up the speed of machine code and
choose Pcode instead.

Learning what can go in the package
No matter which compiler format you pick, an application that you create in
PowerBuilder can consist of one or more of the following pieces:

• An executable file

• Dynamic libraries

• Resources

To decide which of these pieces are required for your particular project, you
need to know something about them.

About the executable
file

If you are building a single- or two-tier application that you will distribute to
users as an executable file, rather than as a server component or a Web
application, you always create an executable (EXE) file.

At minimum, the executable file contains code that enables your application to
run as a native application on its target platform. That means, for example, that
when users want to start your application, they can double-click the executable
file’s icon on their desktop.

What else can go in the executable file Depending on the packaging
model you choose for your application, the executable file also contains one or
more of the following:

• Compiled versions of objects from your application’s libraries

You can choose to put all of your objects in the executable file so that you
have only one file to deliver, or you can choose to split your application
into one executable file and one or more dynamic libraries. For more
information, see “About dynamic libraries” on page 744.

Creating an executable version of your application

744 PowerBuilder

• An execution library list that the PowerBuilder execution system uses to
find objects and resources in any dynamic libraries you have packaged for
the application

• Resources that your application uses (such as bitmaps)

Figure 40-1: Executable file contents

About dynamic
libraries

As an alternative to putting your entire application in one large executable file,
you can deliver some (or even all) of its objects in one or more dynamic
libraries. The way PowerBuilder implements dynamic libraries depends on the
compiler format you choose.

Table 40-1: PowerBuilder dynamic libraries

As with an executable file, only compiled versions of objects (and not their
sources) go into dynamic libraries.

If you are generating Your dynamic libraries will be

Machine code DLL files (dynamic link libraries).

Machine-code dynamic libraries are given the extension
.dll. These dynamic libraries are like any other standard
shared libraries in your operating environment. The only
caveat is that they are not intended to be called from
external programs.

Pcode PBD files (PowerBuilder dynamic libraries).

These dynamic libraries are similar to DLLs in that they
are linked to your application at runtime. They are not
interchangeable with DLLs, however, because they have
a different internal format.

You cannot mix the two different kinds of dynamic
libraries (DLLs and PBDs) in one application.

CHAPTER 40 Packaging an Application for Deployment

Application Techniques 745

Figure 40-2: Compiled objects in dynamic libraries

What else can go in dynamic libraries Unlike your executable file,
dynamic libraries do not include any start-up code. They cannot be executed
independently. Instead, they are accessed as an application executes when it
cannot find the objects it requires in the executable file.

Dynamic libraries can include resources such as bitmaps. You might want to
put any resources needed by a dynamic library’s objects in its DLL or PBD file.
This makes the dynamic library a self-contained unit that can easily be reused.
If performance is your main concern, however, be aware that resources are
loaded faster at runtime when they are in the executable file.

Figure 40-3: Resources in dynamic libraries

Why use them Table 40-2 lists several reasons why you might want to use
dynamic libraries.

Creating an executable version of your application

746 PowerBuilder

Table 40-2: Reasons to use dynamic libraries

Organizing them Once you decide to use a dynamic library, you need to tell
PowerBuilder which library (PBL file) to create it from. PowerBuilder then
places compiled versions of all objects from that PBL file into the DLL or PBD
file.

If your application uses only some of those objects, you might not want the
dynamic library to include the superfluous ones, which only make the file
larger. The solution is to:

1 Create a new PBL file and copy only the objects you want into it.

2 Use this new PBL file as the source of your dynamic library.

About resources In addition to PowerBuilder objects such as windows and menus, applications
also use various resources. Examples of resources include:

• Bitmaps that you might display in Picture or PictureButton controls

• Custom pointers that you might assign to windows

When you use resources, you need to deliver them as part of the application
along with your PowerBuilder objects.

Reason Details

Modularity They let you break up your application into smaller, more modular
files that are easier to manage.

Maintainability They enable you to deliver application components separately. To
provide users with a bug fix, you can often give them the particular
dynamic library that was affected.

Reusability They make it possible for multiple applications to reuse the same
components because dynamic libraries can be shared among
applications as well as among users.

Flexibility They enable you to provide your application with objects that it
references only dynamically at runtime (such as a window object
referenced only through a string variable).

You cannot put such objects in your executable file (unless they are
DataWindow objects).

Efficiency They can help a large application use memory efficiently because:

• PowerBuilder does not load an entire dynamic library into
memory at once. Instead, it loads individual objects from the
dynamic library only when needed.

• Your executable file can remain small, making it faster to load
and less obtrusive.

CHAPTER 40 Packaging an Application for Deployment

Application Techniques 747

What kinds there are A PowerBuilder application can employ several
different kinds of resources. Table 40-3 lists resources according to the specific
objects in which they might be needed.

Table 40-3: PowerBuilder objects and resources

Delivering them When deciding how to package the resources that need to
accompany your application, you can choose from the following approaches:

• Include them in the executable file.

Whenever you create an executable file, PowerBuilder automatically
examines the objects it places in that file to see if they explicitly reference
any resources (icons, pictures, pointers). It then copies all such resources
right into the executable file.

PowerBuilder does not automatically copy in resources that are
dynamically referenced (through string variables). To get such resources
into the executable file, you must use a resource (PBR) file. This is simply
a text file in which you list existing ICO, BMP, GIF, JPEG, RLE, WMF,
and CUR files.

Once you have a PBR file, you can tell PowerBuilder to read from it when
creating the executable file to determine which additional resources to
copy in. (This might even include resources used by the objects in your
dynamic libraries, if you decide to put most or all resources in the
executable file for performance reasons.)

• Include them in dynamic libraries.

You might often need to include resources directly in one or more dynamic
libraries, but PowerBuilder does not automatically copy any resources into
a dynamic library that you create even if they are explicitly referenced by
objects in that file. You need to produce a PBR file that tells PowerBuilder
which resources you want in this particular DLL or PBD file.

These objects Can use these kinds of resources

Window objects and user
objects

Icons (ICO files)

Pictures (BMP, GIF, JPEG, RLE, and WMF files)

Pointers (CUR files)

DataWindow objects Pictures (BMP, GIF, JPEG, RLE, and WMF files)

Menu objects (when in an
MDI application)

Pictures (BMP, GIF, JPEG, RLE, and WMF files)

Creating an executable version of your application

748 PowerBuilder

Use a different PBR file for each dynamic library in which you want to
include resources. (When appropriate, you can even use this approach to
generate a dynamic library that contains only resources and no objects.
Simply start with an empty PBL file as the source.)

• Deliver them as separate files.

This means that when you deploy the application, you give users various
image files in addition to the application’s executable file and any dynamic
libraries. As long as you do not mind delivering a lot of files, this can be
useful if you expect to revise some of them in the future.

Keep in mind that this is not the fastest approach at runtime, because it
requires more searching. Whenever your application needs a resource, it
searches the executable file and then the dynamic libraries. If the resource
is not found, the application searches for a separate file.

Make sure that your application can find where these separate files are
stored, otherwise it cannot display the corresponding resources.

You can use one of these approaches or any combination of them when
packaging a particular application.

Using a PBR file to include a dynamically referenced DataWindow object
You might occasionally want to include a dynamically referenced
DataWindow object (one that your application knows about only through a
string variable) in the executable file you are creating. To do that, you must list
its name in a PBR file along with the names of the resources you want
PowerBuilder to copy into that executable file.

You do not need to do this when creating a dynamic library, because
PowerBuilder automatically includes every DataWindow object from the
source library (PBL file) in your new DLL or PBD file.

Creating a PowerBuilder resource file
A PBR file is an ASCII text file in which you list resource names (such as BMP,
CUR, ICO, RLE, and WMF files) and DataWindow objects. To create a PBR
file, use a text editor. List the name of each resource, one resource on each line,
then save the list as a file with the extension PBR. Here is a sample PBR file:

ct_graph.ico
document.ico
codes.ico

CHAPTER 40 Packaging an Application for Deployment

Application Techniques 749

button.bmp
next1.bmp
prior1.bmp

❖ To create and use a PowerBuilder resource file:

1 Using a text editor, create a text file that lists all resource files referenced
dynamically in your application (see below for information about creating
the file).

When creating a resource file for a dynamic library, list all resources used
by the dynamic library, not just those assigned dynamically in a script.

2 Specify the resource files in the Project painter. The executable file can
have a resource file attached to it, as can each of the dynamic libraries.

When PowerBuilder builds the project, it includes all resources specified
in the PBR file in the executable file or dynamic library. You no longer
have to distribute your dynamically assigned resources separately; they
are in the application.

Naming resources If the resource file is in the current directory, you can simply list the file, such
as:

FROWN.BMP

If the resource file is in a different directory, include the path to the file, such as:

C:\BITMAPS\FROWN.BMP

Paths in PBR files and scripts must match exactly
The file name specified in the PBR file must exactly match the way the
resource is referenced in scripts.

If the reference in a script uses a path, you must specify the same path in the
PBR file. If the resource file is not qualified with a path in the script, it must
not be qualified in the PBR file.

For example, if the script reads:

p_logo.PictureName = "FROWN.BMP"

then the PBR file must read:

FROWN.BMP

Creating an executable version of your application

750 PowerBuilder

If the PBR file says something like:

C:\MYAPP\FROWN.BMP

and the script does not specify the path, PowerBuilder cannot find the resource
at runtime. That is because PowerBuilder does a simple string comparison at
runtime. In the preceding example, when PowerBuilder executes the script, it
looks for the object identified by the string FROWN.BMP in the executable file.
It cannot find it, because the resource is identified in the executable file as
C:\MYAPP\FROWN.BMP.

In this case, the picture does not display at runtime; the control is empty in the
window.

Including
DataWindows objects
in a PBR file

To include a DataWindow object in the list, enter the name of the library (with
extension PBL) followed by the DataWindow object name enclosed in
parentheses. For example:

sales.pbl(d_emplist)

If the DataWindow library is not in the directory that is current when the
executable is built, fully qualify the reference in the PBR file. For example:

c:\myapp\sales.pbl(d_emplist)

Choosing a packaging model
As indicated in the previous section, you have many options for packaging an
executable version of an application. Here are several of the most common
packaging models you might consider.

A standalone
executable file

In this model, you include everything (all objects and resources) in the
executable file, so that there is just one file to deliver.

Illustration Figure 40-4 shows a sample of what this model can look like.

Figure 40-4: Standalone executable model

CHAPTER 40 Packaging an Application for Deployment

Application Techniques 751

Use This model is good for small, simple applications—especially those that
are likely not to need a lot of maintenance. For such projects, this model
ensures the best performance and the easiest delivery.

An executable file and
external resources

In this model, you include all objects and most resources in the executable file,
but you deliver separate files for particular resources.

Illustration Figure 40-5 shows a sample of what this model can look like.

Figure 40-5: Executable with external resources model

Use This model is also for small, simple applications, but it differs from the
preceding model in that it facilitates maintenance of resources that are subject
to change. In other words, it lets you give users revised copies of specific
resources without forcing you to deliver a revised copy of the executable file.

You can also use this model to deal with resources that must be shared by other
applications or that are large and infrequently needed.

An executable file and
dynamic libraries

In this model, you split up your application into an executable file and one or
more dynamic library files (DLLs or PBDs). When doing so, you can organize
your objects and resources in various ways. Table 40-4 shows some of these
techniques.

Table 40-4: Object and resource organization with dynamic libraries

To organize You can

Objects Place them all in dynamic libraries so that there are none in the
executable file, which facilitates maintenance, or

Place a few of the most frequently accessed ones in the executable
file to optimize access to them and place all the rest in dynamic
libraries.

Resources Place most or all of them in dynamic libraries along with the objects
that use them, which facilitates reuse, or

Place most or all of them in the executable file to optimize access to
them.

Creating an executable version of your application

752 PowerBuilder

Illustration Figure 40-6 shows a sample of what this model can look like.

Figure 40-6: Executable with dynamic libraries model

Use This model is good for most substantial projects because it gives you
flexibility in organizing and maintaining your applications.

For instance, it enables you to make revisions to a particular part of an
application in one dynamic library. However, you must always rebuild the
entire application and deliver all the dynamic libraries to customers whenever
you make a revision to any library.

An executable file,
dynamic libraries, and
external resources

This model is just like the preceding one except that you deliver separate files
for particular resources (instead of including all of them in your executable file
and dynamic libraries).

Illustration Figure 40-7 shows a sample of what this model can look like.

CHAPTER 40 Packaging an Application for Deployment

Application Techniques 753

Figure 40-7: Executable with dynamic libraries and external resources
model

Use This model is good for substantial applications, particularly those that
call for flexibility in handling certain resources. Such flexibility may be needed
if a resource:

• Might have to be revised

• Must be shared by other applications

• Is large and infrequently used

Implementing your packaging model
When you have decided which is the appropriate packaging model for your
application, you can use the packaging facilities in PowerBuilder to implement
it. For the most part, this involves working in the Project painter. You can use
the Project painter to build components, proxy libraries, and HTML files as
well as executable applications.

Using the Project
painter for executable
applications

The Project painter for executable applications orchestrates all aspects of the
packaging job by enabling you to:

• Specify the executable file to create

• Specify any dynamic libraries (DLL or PBD files) to create

Creating an executable version of your application

754 PowerBuilder

• Specify the resources you want included in the executable file or in each
particular dynamic library (by using appropriate PBR files that indicate
where to get those resources)

• Choose machine code or Pcode as the compiler format to generate

With machine code, you can also specify a variety of code generation
options (such as optimization, trace information, and error context
information).

• Choose build options, including whether you want the Project painter to
do a full or incremental rebuild of your application’s objects when
generating the executable application

• Save all of these specifications as a project object that you can use
whenever necessary to rebuild the whole package

For more information on using the Project painter, see the PowerBuilder User’s
Guide.

Building individual
dynamic libraries

When you make revisions to an existing application, your changes might not
affect all its dynamic libraries. You can rebuild individual dynamic libraries
from the pop-up menu in the System Tree or the Library painter.

If changes are isolated and do not affect inherited objects in other PBLs, you
might be able to distribute individual PBDs to your users to provide an upgrade
or bug fix. However, Sybase recommends that you always perform a full
rebuild and distribute the executable file and all the application’s dynamic
libraries whenever you revise an application.

Testing the executable application
Once you create the executable version of your application, test how it runs
before proceeding with delivery. You may have already executed the
application many times within the PowerBuilder development environment,
but it is still very important to run the executable version as an independent
application—just the way end users will.

CHAPTER 40 Packaging an Application for Deployment

Application Techniques 755

To do this, you:

1 Leave PowerBuilder and go to your operating system environment.

2 Make sure that the PowerBuilder runtime libraries are accessible to the
application.

You can do this by verifying that the location of the PowerBuilder virtual
machine and other runtime files is in your PATH environment variable, or
you can create a registry entry for the application that specifies the path.

3 Run the application’s executable file as you run any native application.

Tracing the
application’s
execution

To help you track down problems, PowerBuilder provides tracing and
profiling facilities that you can use in the development environment and when
running the executable version of an application. Even if your application’s
executable is problem free, you might consider using this facility to generate
an audit trail of its operation. For more information on tracing execution, see
the PowerBuilder User’s Guide.

Delivering your application to end users
When you deliver the executable version of your application to users, you need
to install all of the various files and programs in the right places, such as on
their computers or on the network.

Automating the
deployment process

If you want to automate the deployment process, you might want to use a
software distribution application such as InstallShield. Such applications
typically install all the executables, resource files, data sources, and
configuration files your users need to run your application. They also update
the users’ initialization files and registry.

Installation checklist
You can use the following checklist to make sure you install everything that is
needed. For easy reading, the checklist is divided into:

• Installing environmental pieces

• Installing application pieces

Delivering your application to end users

756 PowerBuilder

Installing
environmental pieces Checklist item Details

Install the PowerBuilder
runtime DLLs.

You should install all of these DLL files (which
contain the PowerBuilder execution system) locally
on each user computer. They are needed to run
PowerBuilder applications independently (outside the
development environment). This applies to
applications generated in machine code as well as
those generated in Pcode.

For details on installing the runtime DLLs, see
“PowerBuilder runtime files” on page 766.

Handling maintenance releases If you are using a
maintenance release of PowerBuilder in your
development environment, make sure you provide
users with the runtime DLLs from that maintenance
release.

Install the database
interface(s).

You should install on each user computer any database
interfaces required by the application, such as the
ODBC interface and other native database interfaces.

For details on installing any database interfaces you
need, see Chapter 41, “Deploying Applications and
Components.” For more information about database
interfaces, see Connecting to Your Database.

Configure any ODBC
drivers you install.

If you install the ODBC interface (and one or more
ODBC drivers) on user computers, you must also
configure the ODBC drivers. This involves defining
the specific data sources to be accessed through each
driver.

For details on configuring ODBC drivers, see
Connecting to Your Database.

Set up network access if
needed.

If the application needs to access any server databases
or any other network services, make sure each user
computer is properly connected.

Configure the operating
(windowing) system.

A particular application might require some special
adjustments to the operating or windowing system for
performance or other reasons. If that is the case with
your application, be sure to make those adjustments to
each user computer.

CHAPTER 40 Packaging an Application for Deployment

Application Techniques 757

Installing application
pieces Checklist item Details

Copy the executable
application.

Make copies of the files that make up your executable
application and install them on each user computer.
These files can include:

• The executable (EXE) file

• Any dynamic libraries (DLL or PBD files)

• Any files for resources you are delivering
separately (such as ICO, BMP, GIF, JPEG, RLE,
WMF, or CUR files)

Handling maintenance releases If you plan to revise
these files on a regular basis, you might want to
automate the process of copying the latest versions of
them from a server on your network to each user
computer.

You might consider building this logic right into your
application. You might also make it copy updates of
the PowerBuilder runtime DLLs to a user’s computer.

Copy any additional files. Make copies of any additional files that the
application uses and install them on each user
computer. These files often include:

• Initialization (INI) files

• Help (HLP) files

• Possibly various others such as text or sound files

 In some cases, you might want to install particular
files on a server instead of locally, depending on their
use.

Copy any local databases to
be accessed.

If the application needs to access a local database,
copy the files that comprise that database and install
them on each user computer.

Make sure that you also install the appropriate
database interface and configure it properly if you
have not already done so.

Install any other programs
to be accessed.

If the application needs to access any external
programs, install each one in an appropriate
location—either on every user computer or on a
server.

Also, perform any configuration required to make
those programs work properly. For example, you
might need to register ActiveX controls. For more
information, see “Deploying ActiveX controls” on
page 763.

Delivering your application to end users

758 PowerBuilder

Starting the deployed application
Users can run your application just as they run other Windows applications. For
example, they can double-click the executable file in Explorer or create an
application shortcut on the desktop and double-click the shortcut.

If users create a shortcut, the Target text box on the Shortcut properties page
should specify the path to the executable, and the Start In text box should
specify the location of the runtime DLLs.

Ensure that the application
can find the files it needs.

Make sure you install the various files that your
application uses on paths where it can find them:

• If the application refers to a file by a specific path,
then install the file on that path.

• If the application refers to a file by name only, then
install the file on some path that the application is
able to search—typically the current one.

Update the system registry
with values for the
application.

If you rely on the Windows registry to manage certain
information needed by the application, such as the
application path, be sure to update the registry with
such values.

Set up the application’s
icon.

To enable users to start the application, use the
windowing system on each user computer to display
the executable file’s icon where you want.

Alternatively, users can also start the application in
any other manner provided for native applications
under their windowing system.

Checklist item Details

Application Techniques 759

C H A P T E R 4 1 Deploying Applications and
Components

About this chapter This chapter provides the information required to deploy applications and
components to users’ computers and servers. It describes a tool you can
use to package PowerBuilder runtime files, and lists the files you need to
deploy with various kinds of targets.

These lists of files sometimes need to be updated, as, for example, when
new database interfaces become available. For information about such
changes, see the Release Bulletin for the version of PowerBuilder you are
using.

For information about deploying Web targets, see Working with Web and
JSP Targets.

Contents Topic Page

Deploying applications, components, and supporting files 760

PowerBuilder Runtime Packager 763

PowerBuilder runtime files 766

Database connections 768

Java support 784

PowerBuilder extensions 787

PDF and XSL-FO export 787

DataWindow Web control for ActiveX 790

Plug-ins and PowerBuilder window ActiveX controls 791

PowerBuilder components on EAServer 792

PowerBuilder COM servers 795

PowerBuilder automation servers 796

Web DataWindow on EAServer 797

Web DataWindow on COM+ or IIS 798

Deploying applications, components, and supporting files

760 PowerBuilder

Deploying applications, components, and supporting
files

Regardless of the type of application you are deploying, you must include any
supporting files such as dynamic libraries, resources like BMP and ICO files,
online Help files, and initialization files. Each application type requires a
different set of supporting files.

Planning for
deployment

Chapter 40, “Packaging an Application for Deployment,” helps you make
decisions about deploying a PowerBuilder executable application, such as
whether to use dynamic libraries, Pcode or machine code, and resource files. It
also provides a checklist to make sure you install all the required pieces.

If you are deploying a Web application or a transaction server component, you
will find the information about PowerBuilder dynamic libraries (PBDs) and
PowerBuilder resource files (PBRs) in that chapter helpful. You should also
read the documentation for the component or plug-in elsewhere in this book or
in the DataWindow Programmer’s Guide.

Table 41-1: Component and plug-in documentation

Finding information in
this chapter

This chapter is intended to help you write installation programs using a
third-party software package that creates installation configurations. It tells
you which files each computer needs, where you can find the files, where they
should be installed, and what registry settings need to be made. PowerBuilder
also provides a tool, described in “PowerBuilder Runtime Packager” on page
763, to help you package the files your application needs.

Use Table 41-2 to locate information about the specific files you need to deploy
with your application.

Application type Where to find information

EAServer components “Deploying a component to EAServer” on
page 498

COM components “Deploying a PowerBuilder COM server”
on page 566

DataWindow plug-in applications Chapter 32, “Using the DataWindow
Plug-in”

PowerBuilder window plug-in Chapter 33, “Using the PowerBuilder
Window Plug-in”

PowerBuilder window ActiveX Chapter 34, “Using the PowerBuilder
Window ActiveX”

Web DataWindow and DataWindow
Web control for ActiveX

DataWindow Programmer’s Guide

CHAPTER 41 Deploying Applications and Components

Application Techniques 761

Table 41-2: PowerBuilder files required for deployment

Installed and
deployment paths

The Installed path listed after some of the tables in this chapter is the location
where files are installed when you install PowerBuilder and select the default
installation location. When you build an installation program for your
application, you can copy files from this location to your staging area.

The Deployment path tells you where these files can be installed on the
computer on which you install your application or component.

Scenario See these sections

All PowerBuilder client
applications

“PowerBuilder runtime files” on page 766

PowerBuilder client application
accessing data on a database
server

 “Database connections” on page 768

PowerBuilder clients for EJBs,
SOAP Web services, and XML
services

“PowerBuilder extensions” on page 787

PowerBuilder clients that save
data in PDF or XSL-FO format

“PDF and XSL-FO export” on page 787

Web application using the
DataWindow Web control for
ActiveX

“DataWindow Web control for ActiveX” on
page 790

Web application using
PowerBuilder plug-ins or the
window ActiveX

“Plug-ins and PowerBuilder window ActiveX
controls” on page 791

EAServer component created in
PowerBuilder

“PowerBuilder components on EAServer” on
page 792

COM component created in
PowerBuilder

“PowerBuilder COM servers” on page 795

Web application using Web
DataWindow with EAServer

“Files required on the transaction server” on
page 797

“Files required on the dynamic page server” on
page 798

Web application using Web
DataWindow with ASP and
COM+ or IIS

“Files required on the COM+ or IIS server” on
page 798

“Files required on the ASP server” on page 799

Deploying applications, components, and supporting files

762 PowerBuilder

App Path registry key Some tables are followed by a list of the Registry entries your installation
program needs to make so that your application or component can find the files
it needs. When an application runs on Windows, it looks for supporting files in
these locations and in this order:

1 The directory where the executable file is installed.

2 The Windows system and Windows directories (for example, in
C:\WINDOWS\SYSTEM32, C:\WINDOWS\SYSTEM, and
C:\WINDOWS).

3 In an application path that can be specified in the registry.

4 In the system path.

You do not need to specify an application path, but it is recommended.

Specifying an
application path

To specify the path the application uses to locate supporting files, your
installation program should create an App Path key for your application in this
registry location:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\
CurrentVersion\App Paths

Set the data value of the (Default) string value to the directory where the
application is installed and create a new string value called Path that specifies
the location of shared files. The following example shows a typical registry
entry for an application called MYAPP.EXE that uses Adaptive Server
Anywhere. The registry key is enclosed in square brackets and is followed by
string values for the key in the format "Name"="Value":

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\
CurrentVersion\App Paths\myapp.exe]

"Default"="C:\Program Files\myapps\MYAPP.EXE"
"Path"="C:\Program Files\myapps;C:\Program Files\

sybase\shared\PowerBuilder;c:\program files\sybase\
SQL Anywhere 8\win32\;"

CHAPTER 41 Deploying Applications and Components

Application Techniques 763

About REG files
Registry update files that have a .REG extension can be used to import
information into the registry. The format used in registry key examples in this
chapter is similar to the format used in registry update files, but these examples
are not intended to be used as update files. The path names in data value strings
in registry update files typically use a pair of backslashes instead of a single
backslash, and the "Default" string value is represented by the at sign (@).

Use the examples to help determine which registry keys your installation
program should add or update.

Deploying ActiveX
controls

If your application uses ActiveX controls, OLE controls, or OCX controls, you
must:

• Deploy the control files with your application

• Make sure each control is registered

• Make sure required files are in the target computer’s system directory

If your application uses a control that is not self registering, your setup program
needs to register it manually on each user’s computer. To find out whether a
control is self registering, see the documentation provided with the control.
Depending on the development and deployment platforms and the controls you
are deploying, you might need to copy additional DLLs or license files to the
Windows system directories on the target computer.

PowerBuilder Runtime Packager
The PowerBuilder Runtime Packager is a tool that packages the PowerBuilder
files an application needs at runtime into a Microsoft Windows Installer (MSI)
package file. Windows Installer is an installation and configuration service that
is installed with more recent Microsoft Windows operating systems.

You must have Microsoft Windows Installer on your system in order to run the
RuntimePackager successfully. Microsoft provides a redistributable package
for installation and upgrade on Windows 2000. The Installer is always
available on Windows XP and Windows 2003.

PowerBuilder Runtime Packager

764 PowerBuilder

To get more information and to obtain the latest version of Windows Installer,
see Windows Installer in the MSDN Library at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/msi/setup/windows_installer_start_page.asp.

The Runtime Packager is intended for use with client applications installed on
Windows systems. It does not package the files required if your application
exports data as PDF, or if it uses the DataWindow Web control for ActiveX or
a plug-in. Make sure that you read the sections referenced in Table 41-2 on
page 761 that apply to your application before using the Runtime Packager.

❖ To use the PowerBuilder Runtime Packager:

1 Select Programs>Sybase>PowerBuilder 10.5>PowerBuilder Runtime
Packager from the Windows Start menu or launch the pbpack105
executable file in your Shared\PowerBuilder directory.

2 Select a location for the generated MSI file.

CHAPTER 41 Deploying Applications and Components

Application Techniques 765

3 Select the database interfaces your application requires.

The DLLs for the database interfaces you select are added to the package.
For ODBC, the pbodb105.ini file is also added. For JDBC, the
pbjdbc12105.jar and pbjvm105.dll files are also added. The Java Runtime
Environment (JRE) is not added. For more information, see “JDBC
database interface” on page 783.

Other ODBC or OLE DB files your application may require, such as
DataDirect drivers, are not added. For information about deploying these
files, see “ODBC database drivers and supporting files” on page 770 and
“OLE DB database providers” on page 781.

4 If your application uses DataWindow XML export or import or XML Web
DataWindows, check the XML support check box.

The Runtime Packager adds PBXerces105.DLL, xerces-c_2_6.dll, and
xerces-depdom_2_6.dll to the package

5 If your application uses the XML services provided by the PowerBuilder
Document Object Model, if it is an EJB or SOAP Web services client, or
if it uses a rich text control or DataWindow, select the appropriate check
boxes.

The Runtime Packager adds the DLLs, PBXs, and JAR files required to
the package. The Runtime Packager adds required files for both the
EasySoap and .NET Web service engines when you select the SOAP
Client for Web Service check box. For more information about required
files for these services, see “PowerBuilder extensions” on page 787.

6 Click Create.

The Runtime Packager creates an MSI file that includes the files required
by the components you selected, as well as the following PowerBuilder
runtime DLLs:

libjcc.dll
libjutils.dll
pbacc105.dll
pbdwe105.dll
pbdwr105.dll
pbdwr105.pbd
pbjag105.dll
pbjvm105.dll
pbshr105.dll
pbtra105.dll
pbvm105.dll

PowerBuilder runtime files

766 PowerBuilder

The MSI file is a compressed file that can be executed directly on any
Windows platform. It registers any self-registering DLLs, adds the
installation destination path to the Windows Registry, sets the system
PATH environment variable, and adds information to the Registry for the
Install/Uninstall page in the Windows Control Panel. It can also be used in
some third-party installation software packages.

PowerBuilder runtime files

Database connectivity
Files required for database connectivity are listed separately in “Database
connections” on page 768.

Core runtime files Table 41-3 lists the core PowerBuilder runtime files.

Table 41-3: Core PowerBuilder runtime files

Microsoft files When you deploy the core PowerBuilder runtime files, you must also deploy
the msvcr71.dll and msvcp71.dll Microsoft Visual C++ runtime libraries if they
are not present on the user’s computer. The PowerBuilder runtime files have a
runtime dependency on these files.

Microsoft Windows GDI+ is the subsystem of the Windows XP operating
system or Windows Server 2003 that implements enhanced graphic
capabilities for screens and printers. The PowerBuilder runtime files have a
runtime dependency on these files. If you deploy your PowerBuilder
application to the Windows 2000 platform, you must make sure that gdiplus.dll
is available on the target computer.

The Microsoft .NET Active Template Library (ATL) module, atl71.dll, is
included in PowerBuilder 10.5 to support Ink controls. If your application uses
Ink controls, you must make sure that the atl71.dll is available on the target
computer.

Name Required for

PBVM105.DLL All.

PBSHR105.DLL All. PBVM105.DLL has dependencies on this file.

LIBJCC.DLL All. PBVM105.DLL has dependencies on this file.

LIBJUTILS.DLL All. LIBJCC.DLL has dependencies on this file.

PBDWE105.DLL DataWindows and DataStores.

CHAPTER 41 Deploying Applications and Components

Application Techniques 767

For information about obtaining and redistributing these Microsoft files, see
the latest PowerBuilder release bulletin at http://sybooks.sybase.com/pb.html.

Additional runtime
files

Table 41-4 lists additional runtime files that your application might not require.
For example, PBVM105.DLL is required for all deployed applications, but
PBRTC105.DLL and its associated runtime files are required only if your
application uses Rich Text controls or RichText DataWindow objects.

For more information about deploying applications that use the
PBJVM105.DLL for Java support, see “Java support” on page 784.

Table 41-4: Additional PowerBuilder runtime files

Installed path \Program Files\Sybase\Shared\PowerBuilder or for most of
the required rich text files, \Program Files\Sybase\Shared\PowerBuilder\RTC.

Deployment path Same directory as the application, in a directory on the
system path, or in the App Path registry key.

Registry entries See “App Path registry key” on page 762.

Name Required for

PBACC105.DLL Accessibility support (Section 508)

PBDWR105.DLL,
PBDWE105.PBD

Web DataWindow support

PBXerces105.DLL,
xerces-c_2_6.dll,
xerces-depdom_2_6.dll

XML Web DataWindow support and XML support for
DataWindows and DataStores

PBJVM105.DLL Java support

PBRTC105.DLL,
tp11.dll, tp11_bmp.flt,
tp11_css.dll, tp11_doc.dll,
tp11_gif.flt, tp11_htm.dll,
tp11_ic.dll, tp11_ic.ini,
tp11_jpg.flt, tp11_obj.dll,
tp11_pdf.dll, tp11_png.flt,
tp11_rtf.dll, tp11_tif.flt,
tp11_tls.dll, tp11_wmf.flt,
tp11_wnd.dll, tp4ole11.ocx

Rich Text support

PBLAB105.INI Label DataWindow presentation-style predefined
formats

PBTRA105.DLL,
PBTRS105.DLL

Database connection tracing

Database connections

768 PowerBuilder

Localized runtime files Localized runtime files are provided for French, German, Italian, Spanish,
Dutch, Danish, Norwegian, and Swedish. These files are usually available
shortly after the general release of a new version of PowerBuilder. The
localized runtime files let you deploy PowerBuilder applications with standard
runtime dialog boxes in the local language. They handle language-specific data
when the application runs.

For more information, see “Localizing the product” on page 697.

Database connections
If you are deploying an executable or component that accesses a database, your
users need access to the DBMS and to the database your application uses.

Where to install database connectivity files
You do not need to deploy database connectivity files with a client application
that relies on a middle-tier component on another computer to perform
database transactions. Database connectivity files must be deployed on the
computer that interacts with the database server.

You need to:

• If necessary, install the DBMS runtime (client) files in the application
directory or in a directory on the system path

If your application uses a standalone Adaptive Server Anywhere database,
you can install the Adaptive Server Anywhere Runtime Edition files on
the user’s computer. For more information, see “Adaptive Server
Anywhere files” on page 778. Otherwise follow the instructions and
licensing rules specified by the vendor.

• Make sure each user has access to the database the application uses

If your application uses a local database, install the database and any
associated files, such as a log file, on the user’s computer.

If your application uses a server database, make sure the user’s computer
is set up to access the database. This may be the task of a database
administrator.

• Install any database interfaces your application uses on the user’s
computer

CHAPTER 41 Deploying Applications and Components

Application Techniques 769

• If your application uses the ODBC interface, configure the ODBC
database drivers and data sources, as described in “Configuring ODBC
data sources and drivers” on page 780

For more information about database drivers and interfaces, see:

• "Native database drivers" next

• “ODBC database drivers and supporting files” on page 770

• “OLE DB database providers” on page 781

• “ADO.NET database interface” on page 783

• “JDBC database interface” on page 783

Native database drivers
Table 41-5 lists the native database drivers supplied with PowerBuilder. If an
application or component uses the database specified, the file is required on the
computer. The first two characters of the native database file name are PB, the
next three characters identify the database, and the last two identify the version
of PowerBuilder.

Table 41-5: PowerBuilder native database drivers

Installed path \Program Files\Sybase\Shared\PowerBuilder

Deployment path Same directory as the application, in a directory on the
system path, or in the App Path registry key.

Registry entries See “App Path registry key” on page 762.

Name Required for

PBIN9105.DLL INFORMIX I-Net 9

PBO84105.DLL Oracle 8.0.x and Oracle8i 8.1.x

PBO90105.DLL Oracle9i

PBO10105.DLL Oracle 10g

PBDIR105.DLL Sybase DirectConnect

PBSYC105.DLL Sybase Adaptive Server Enterprise CT-LIB

PBSYJ105.DLL Sybase Adaptive Server Enterprise CT-LIB for EAServer
deployment only

Database connections

770 PowerBuilder

Notes When you deploy a PowerBuilder custom class user object to
EAServer, you need to use the SYJ database interface rather than SYC to
connect to an Adaptive Server Enterprise database. You cannot use SYJ in the
PowerBuilder development environment, but you can use the SYJ Database
Profile Setup dialog box to set the appropriate connection parameters. You can
then copy the syntax from the Preview tab into the script for your Transaction
object.

ODBC database drivers and supporting files
This section lists files that are required for all ODBC database connections
from PowerBuilder or InfoMaker applications, as well as files required for a
specific database interface or DBMS.

PowerBuilder ODBC
interface files

The following PowerBuilder ODBC interface files are required if your
application uses ODBC:

Table 41-6: PowerBuilder ODBC interface files

Installed path \Program Files\Sybase\Shared\PowerBuilder

Deployment path Same directory as the application, in a directory on the
system path, or in the App Path registry key.

Registry entries See “App Path registry key” on page 762.

Notes The INI and DLL files must be in the same directory. If you have
modified the PBODB105 initialization file, make sure you deploy the modified
version.

Microsoft ODBC files Table 41-7 lists the Microsoft ODBC files that are required if your application
uses ODBC.

Name Description

PBODB105.DLL PowerBuilder ODBC interface

PBODB105.INI PowerBuilder ODBC initialization file

CHAPTER 41 Deploying Applications and Components

Application Techniques 771

Table 41-7: Microsoft ODBC files

Installed path Windows system directory.

Deployment path Windows system directory.

Registry entries None.

Notes The Microsoft ODBC Driver Manager (ODBC32.DLL) and
supporting files are usually already installed in the user’s Windows system
directory. You can use the redistributable MDAC_TYP.EXE setup file in the
Support directory on the CD to update users’ systems if necessary.

PB DataDirect ODBC
drivers and supporting
files

The PB DataDirect ODBC files in Table 41-8 are required if you use the
database interface specified. For each database interface, the table shows
required registry entries. In the string values, replace %SHARED% with the
path to the directory where the drivers are installed.

Optional Help files
Help files need only be deployed if you expect users to perform database
administration tasks. The help files are in HTML format and are installed in the
Help subdirectory of the DataDirect directory. The names of the Help files for
each driver begin with the letter R and include the name of the database
interface. For example, the files for Adaptive Server are named Rase.html,
Rase2.html, and so forth.

Name Description

DS16GT.DLL
DS32GT.DLL
ODBC32.DLL
ODBC32GT.DLL
ODBCAD32.EXE
ODBCCP32.CPL
ODBCCP32.DLL
ODBCCR32.DLL
ODBCINST.CNT
ODBCINST.HLP
ODBCINT.DLL
ODBCTRAC.DLL

Microsoft ODBC driver manager, DLLs, and Help files

Database connections

772 PowerBuilder

Table 41-8: PowerBuilder DataDirect ODBC files

Name Driver and registry entry:

IVPB.LIC
PBBAS21*.DLL
PBUTL21*.DLL
PBTRN21.dll

All PB DataDirect OEM 5.1 drivers. Registry entry:

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\ODBC
Translators]
"OEM to ANSI"="Installed"

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\OEM to ANSI]
"Translator"="%SHARED%\\DataDirectODBC\\PBtrn21.dll"
"Setup"="%SHARED%\\DataDirectODBC\\PBtrn21.dll"

PBBTR21.DLL
PBBTR21R.DLL
PBBTR21S.DLL
PBFLT21.DLL
PBFLT21R.DLL

PB DataDirect OEM 5.1 Btrieve. Registry entry:

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\ODBC Drivers]
"PB DataDirect OEM 5.1 Btrieve (*.dta)"="Installed"

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\PB DataDirect
OEM 5.1 Btrieve (*.dta)]
"UsageCount"="1"
"Driver"="%SHARED%\\DataDirectODBC\\PBBTR21.DLL"
"Setup"="%SHARED%\\DataDirectODBC\\PBBTR21S.DLL"
"APILevel"="1"
"ConnectFunctions"="YYY"
"DriverODBCVer"="3.51"
"FileUsage"="1"
"FileExtns"="*.dta"
"SQLLevel"="0"
"CPTimeout"="60"

*.UCT
PBDB221.DLL
PBDB221R.DLL
PBDB221S.DLL
APPC21IV.DLL
BIND21IV.DLL
CLRT21IV.DLL
COSI21IV.DLL
DRDA21IV.DLL
LIBUNIC.DLL
MEMR21IV.DLL
PROT21IV.DLL
SOCK21IV.DLL
XCPG21IV.DLL
XDB2DB2.ERR
XDB2DRDA.ERR
XDBMF.ERR
XDBNET.ERR
XDBRES.ERR

PB DataDirect OEM 5.1 DB2 Wire Protocol. Registry entry:

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\ODBC Drivers]
"PB DataDirect OEM 5.1 DB2 Wire Protocol"="Installed"

 [HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\PB DataDirect
OEM 5.1 DB2 Wire Protocol]
"UsageCount"="1"
"Driver"="%SHARED%\\DataDirectODBC\\PBDB221.DLL"
"Setup"="%SHARED%\\DataDirectODBC\\PBDB221S.DLL"
"APILevel"="1"
"ConnectFunctions"="YYY"
"DriverODBCVer"="03.51"
"FileUsage"="0"
"SQLLevel"="1"
"CPTimeout"="60"

CHAPTER 41 Deploying Applications and Components

Application Techniques 773

PBDBF21.DLL
PBDBF21R.DLL
PBFLT21.DLL
PBFLT21R.DLL

PB DataDirect OEM 5.1 dBASE. Registry entry:

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\ODBC Drivers]
"PB DataDirect OEM 5.1 dBASEFile (*.dbf)"="Installed"

 [HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\PB DataDirect
OEM 5.1 dBASEFile (*.dbf)]
"UsageCount"="1"
"Driver"="%SHARED%\\DataDirectODBC\\PBDBF21.DLL"
"Setup"="%SHARED%\\DataDirectODBC\\PBDBF21.DLL"
"APILevel"="1"
"ConnectFunctions"="YYY"
"DriverODBCVer"="3.51"
"FileUsage"="1"
"FileExtns"="*.dbf"
"SQLLevel"="0"
"CPTimeout"="60"

PBXLWB21.DLL
PBXLWB21R.DLL
PBFLT21.DLL
PBFLT21R.DLL

PB DataDirect OEM 5.1 Excel Workbook. Registry entry:

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\ODBC Drivers]
"PB DataDirect OEM 5.1 ExcelWorkbook (*.xls)"="Installed"

 [HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\PB DataDirect
OEM 5.1 ExcelWorkbook (*.xls)]
"UsageCount"="1"
"Driver"="%SHARED%\\DataDirectODBC\\PBXLWB21.DLL"
"Setup"="%SHARED%\\DataDirectODBC\\PBXLWB21.DLL"
"APILevel"="1"
"ConnectFunctions"="YYY"
"DriverODBCVer"="3.51"
"FileUsage"="2"
"FileExtns"="*.xls"
"SQLLevel"="0"
"CPTimeout"="60"

Name Driver and registry entry:

Database connections

774 PowerBuilder

PBINF21.DLL
PBINF21R.DLL
PBINF21S.DLL
PBINFDTC21.DLL

PB DataDirect OEM 5.1 Informix. Registry entry:

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\ODBC Drivers]
"PB DataDirect OEM 5.1 INFORMIX"="Installed"

 [HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\PB DataDirect
OEM 5.1 INFORMIX]
"UsageCount"="1"
"Driver"="%SHARED%\\DataDirectODBC\\PBINF21.DLL"
"Setup"="%SHARED%\\DataDirectODBC\\PBINF21S.DLL"
"APILevel"="1"
"ConnectFunctions"="YYY"
"DriverODBCVer"="3.51"
"FileUsage"="0"
"SQLLevel"="1"
"CPTimeout"="60"

PBIFCL21.DLL
PBIFCL21R.DLL
PBIFCL21S.DLL

PB DataDirect OEM 5.1 Informix Wire Protocol. Registry entry:

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\ODBC Drivers]
"PB DataDirect OEM 5.1 INFORMIX Wire Protocol"="Installed"

 [HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\PB DataDirect
OEM 5.1 INFORMIX Wire Protocol]
"UsageCount"="1"
"Driver"="%SHARED%\\DataDirectODBC\\PBIFCL21.DLL"
"Setup"="%SHARED%\\DataDirectODBC\\PBIFCL21S.DLL"
"APILevel"="1"
"ConnectFunctions"="YYY"
"DriverODBCVer"="3.51"
"FileUsage"="0"
"SQLLevel"="1"
"CPTimeout"="60"

PBOR821.DLL
PBOR821R.DLL
PBOR821S.DLL
PBOR8DTC21.DLL

PB DataDirect OEM 5.1 Oracle. Registry entry:

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\ODBC Drivers]
"PB DataDirect OEM 5.1 Oracle"="Installed"

 [HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\PB DataDirect
OEM 5.1 Oracle]
"UsageCount"="1"
"Driver"="%SHARED%\\DataDirectODBC\\PBOR821.DLL"
"Setup"="%SHARED%\\DataDirectODBC\\PBOR821S.DLL"
"APILevel"="1"
"ConnectFunctions"="YYY"
"DriverODBCVer"="3.51"
"FileUsage"="0"
"SQLLevel"="1"
"CPTimeout"="60"

Name Driver and registry entry:

CHAPTER 41 Deploying Applications and Components

Application Techniques 775

PBORA21.DLL
PBORA21R.DLL
PBORA21S.DLL

PB DataDirect OEM 5.1 Oracle Wire Protocol. Registry entry:

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\ODBC Drivers]
"PB DataDirect OEM 5.1 Oracle Wire Protocol"="Installed"

 [HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\PB DataDirect
OEM 5.1 Oracle Wire Protocol]
"UsageCount"="1"
"Driver"="%SHARED%\\DataDirectODBC\\PBORA21.DLL"
"Setup"="%SHARED%\\DataDirectODBC\\PBORA21S.DLL"
"APILevel"="1"
"ConnectFunctions"="YYY"
"DriverODBCVer"="3.51"
"FileUsage"="0"
"SQLLevel"="1"
"CPTimeout"="60"

PBIDP21.DLL
PBIDP21R.DLL
PBIDP21S.DLL
PBFLT21.DLL
PBFLT21R.DLL

PB DataDirect OEM 5.1 Paradox. Registry entry:

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\ODBC Drivers]
"PB DataDirect OEM 5.1 ParadoxFile (*.db)"="Installed"

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\PB DataDirect
OEM 5.1 ParadoxFile (*.db)]
"UsageCount"="1"
"Driver"="%SHARED%\\DataDirectODBC\\PBIDP21.DLL"
"Setup"="%SHARED%\\DataDirectODBC\\PBIDP21S.DLL"
"APILevel"="1"
"ConnectFunctions"="YYY"
"DriverODBCVer"="3.51"
"FileUsage"="1"
"FileExtns"="*.db"
"SQLLevel"="0"
"CPTimeout"="60"

Name Driver and registry entry:

Database connections

776 PowerBuilder

PBPRO921.DLL
PBPRO921R.DLL
PBPRO921S.DLL

PB DataDirect OEM 5.1 Progress 9. Registry entry:

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\ODBC Drivers]
"PB DataDirect OEM 5.1 PROGRESS 9"="Installed"

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\PB DataDirect
OEM 5.1 PROGRESS 9]
"UsageCount"="1"
"Driver"="%SHARED%\\DataDirectODBC\\PBPRO921.DLL"
"Setup"="%SHARED%\\DataDirectODBC\\PBPRO921S.DLL"
"APILevel"="1"
"ConnectFunctions"="YYN"
"DriverODBCVer"="3.51"
"FileUsage"="0"
"SQLLevel"="0"
"CPTimeout"="60"

PBGUP21.DLL
PBGUP21R.DLL
PBGUP21S.DLL

PB DataDirect OEM 5.1 SQLBase. Registry entry:

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\ODBC Drivers]
"PB DataDirect OEM 5.1 SQLBase"="Installed"

 [HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\PB DataDirect
OEM 5.1 SQLBase]
"UsageCount"="1"
"Driver"="%SHARED%\\DataDirectODBC\\PBGUP21.DLL"
"Setup"="%SHARED%\\DataDirectODBC\\PBGUP21S.DLL"
"APILevel"="1"
"ConnectFunctions"="YYY"
"DriverODBCVer"="3.51"
"FileUsage"="0"
"SQLLevel"="1"
"CPTimeout"="60"

PBSS621.DLL
PBSS621R.DLL
PBSS621S.DLL

PB DataDirect OEM 5.1 SQL Server 6.5. Registry entry:

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\ODBC Drivers]
"PB DataDirect OEM 5.1 SQL Server 6.5"="Installed"

 [HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\PB DataDirect
OEM 5.1 SQL Server 6.5]
"UsageCount"="1"
"Driver"="%SHARED%\\DataDirectODBC\\PBSS621.DLL"
"Setup"="%SHARED%\\DataDirectODBC\\PBSS621S.DLL"
"APILevel"="1"
"ConnectFunctions"="YYY"
"DriverODBCVer"="3.51"
"FileUsage"="0"
"SQLLevel"="1"
"CPTimeout"="60"

Name Driver and registry entry:

CHAPTER 41 Deploying Applications and Components

Application Techniques 777

PBMSSS21.DLL
PBMSSS21R.DLL
PBMSSS21S.DLL
DBNETLIB.DLL
SQLSRV32.DLL
SQLSRV32.RLL
SQLUNIRL.DLL

PB DataDirect OEM 5.1 SQL Server Wire Protocol. Registry entry:

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\ODBC Drivers]
"PB DataDirect OEM 5.1 SQL Server Wire Protocol"="Installed"

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\PB DataDirect
OEM 5.1 SQL Server Wire Protocol]
"UsageCount"="1"
"Driver"="%SHARED%\\DataDirectODBC\\PBMSSS21.DLL"
"Setup"="%SHARED%\\DataDirectODBC\\PBMSSS21S.DLL"
"APILevel"="1"
"ConnectFunctions"="YYY"
"DriverODBCVer"="3.51"
"FileUsage"="0"
"SQLLevel"="1"
"CPTimeout"="60"

PBASE21.DLL
PBASE21R.DLL
PBASE21S.DLL
PBASE21.HLP
PBASE21.CNT

PB DataDirect OEM 5.1 Sybase Adaptive Server Enterprise Wire Protocol. Registry entry:

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\ODBC Drivers]
"PB DataDirect OEM 5.1 Sybase ASE Wire Protocol" = "Installed"

 [HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\PB DataDirect
OEM 5.1 Sybase ASE Wire Protocol]
"UsageCount"="1"
"Driver"="%SHARED%\\DataDirectODBC\\PBASE21.DLL"
"Setup"="%SHARED%\\DataDirectODBC\\PBASE21S.DLL"
"APILevel"="1"
"ConnectFunctions"="YYY"
"DriverODBCVer"="3.51"
"FileUsage"="0"
"SQLLevel"="0"
"UsageCount"="1"
"CPTimeout"="60"

Name Driver and registry entry:

Database connections

778 PowerBuilder

Installed path \Program Files\Sybase\Shared\DataDirect

Deployment path Same directory as the application, in a directory on the
system path, or in the App Path registry key.

Registry entries See table, and also “App Path registry key” on page 762
and “Configuring ODBC data sources and drivers” on page 780.

Adaptive Server
Anywhere files

If your PowerBuilder application uses an Adaptive Server Anywhere database,
you need to deploy the Adaptive Server Anywhere DBMS as well as Adaptive
Server Anywhere’s ODBC database drivers. If your application uses a
standalone database, you can deploy the Adaptive Server Anywhere Desktop
Runtime System to users’ computers without incurring additional license fees.
The runtime system allows the user to retrieve and modify data in the database,
but does not allow modifications to the database schema. It does not support
transaction logs, stored procedures, or triggers.

Restrictions
PowerBuilder includes Adaptive Server Anywhere for use during the
development process. However, this product cannot be deployed royalty-free
to your users.

If your application requires the data definition language (DDL), a transaction
log, stored procedures, or triggers, see your Sybase sales representative.

For more information about deploying Adaptive Server Anywhere databases
and applications, see the Adaptive Server Anywhere User’s Guide.

PBTXT21.DLL
PBTXT21R.DLL
PBFLT21.DLL
PBFLT21R.DLL

PB DataDirect OEM 5.1 Text File. Registry entry:

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\ODBC Drivers]
"PB DataDirect OEM 5.1 TextFile (*.*)"="Installed"

 [HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\PB DataDirect
OEM 5.1 TextFile (*.*)]
"UsageCount"="1"
"Driver"="%SHARED%\\DataDirectODBC\\PBTXT21.DLL"
"Setup"="%SHARED%\\DataDirectODBC\\PBTXT21.DLL"
"APILevel"="1"
"ConnectFunctions"="YYY"
"DriverODBCVer"="3.51"
"FileUsage"="1"
"FileExtns"="*.*"
"SQLLevel"="0"
"CPTimeout"="60"

Name Driver and registry entry:

CHAPTER 41 Deploying Applications and Components

Application Techniques 779

A full installation for the Adaptive Server Anywhere driver, runtime engine,
and supporting files is available in the Support directory on the CD. Table 41-
9 lists some of the files that are installed when you select Runtime Server in the
install program. You can also choose to install Help files, SQL Anywhere
5.0/6.0 compatibility DLLs, and InstallShield templates.

Table 41-9: Adaptive Server Anywhere files

Installed path \Program Files\Sybase\SQL Anywhere 9\win32

Deployment path Same directory as the application, in a directory on the
system path, or in the App Path registry key.

Registry entries See “App Path registry key” on page 762 and "Configuring
ODBC data sources and drivers" next.

Notes Supporting files should be installed in the same directory as
DBODB9.DLL. If you are not using the English string library, make sure you
deploy the appropriate version of the language-specific string library.

Name Description

DBODBC9.DLL ASA ODBC driver

DBBACKUP.EXE ASA backup utility

DBCON9.DLL Connection dialog box, required if you do not provide
your own dialog box and your end users are to create
their own data sources, if they need to enter user IDs and
passwords when connecting to the database, or if they
need to display the Connection dialog box for any other
purpose

DBISQLC.EXE Interactive SQL utility

DBLGEN9.DLL Language-specific string library (EN indicates the
English version)

DBLIB9.DLL Interface library

DBODTR9.DLL ODBC translator, required if your application relies on
OEM to ANSI character set conversion

DBTOOL9.DLL ASA database tools

DBUNLOAD.EXE ASA unload utility

DBVALID.EXE ASA validation utility

RTENG9.EXE Restricted runtime engine

DBCTRS9.DLL Performance utility

DBSERV9.DLL Server utility

Database connections

780 PowerBuilder

Configuring ODBC
data sources and
drivers

ODBC.INI To allow the user to connect to a particular data source, your
installation program must provide a definition for that data source in the
ODBC.INI key in the registry on the computer that accesses the data source, in
HKEY_CURRENT_USER for a user DSN or in HKEY_LOCAL_MACHINE for
a system DSN. The data source definition specifies the name and location of
the database driver as well as the command required to start the database
engine. The data source in the ODBC Data Sources key must also be listed in
ODBC.INI.

The following shows typical registry entries for a data source called MyApp
DB that uses Adaptive Server Anywhere. Registry keys are enclosed in square
brackets and are followed by string values for that key in the format
"Name"="Value":

[HKEY_CURRENT_USER\SOFTWARE\ODBC\ODBC.INI\MyApp DB]
"Driver"="C:\Program Files\Sybase\SQL Anywhere 9\

win32\dbodbc9.dll"
"Start"="c:\program files\sybase\SQL Anywhere 9\win32\

rteng9.exe -c9m"
"UID"="dba"
"PWD"="sql"
"Description"="Database for my application"
"DatabaseFile"="C:\Program Files\myapps\myapp.db"
"AutoStop"="Yes"

[HKEY_CURRENT_USER\SOFTWARE\ODBC\ODBC.INI\
ODBC Data Sources]

"MyApp DB"="Adaptive Server Anywhere 9.0"

ODBCINST.INI Your installation program needs to make two types of entry in
the ODBCINST.INI key in HKEY_LOCAL_MACHINE\SOFTWARE\ODBC
for each driver that your deployed application uses:

• Add a string value with the name of the driver and the data value
"Installed" to the ODBC DRIVERS key in ODBCINST.INI

• Add a new key for each driver to the ODBCINST.INI key with string
values for Driver and Setup

Some drivers require additional string values in ODBCINST.INI.

If the ODBC database driver files are not located in a directory on the system
path, you also need to add their location to the App Paths key for the executable
file.

If you are using ODBC drivers obtained from a vendor, you can use the driver’s
setup program to install the driver and create registry entries.

CHAPTER 41 Deploying Applications and Components

Application Techniques 781

The following shows typical registry entries for Adaptive Server Anywhere. A
registry key is enclosed in square brackets and is followed by string values for
the key in the format "Name"="Value":

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\
CurrentVersion\App Paths\myapp.exe]

"Default"="C:\Program Files\myapps\MYAPP.EXE"
"Path"="Program Files\sybase\shared\PowerBuilder;

c:\program files\sybase\SQL Anywhere 9\win32\;
c:\program files\sybase\shared\DataDirectODBC;"

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\
ODBC Drivers]

"Adaptive Server Anywhere 9.0"="Installed"
"PB DataDirect OEM 3.60 32-BIT Sybase"="Installed"

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\
Adaptive Server Anywhere 9.0]

"Driver"="c:\program files\sybase\SQL Anywhere 9\
win32\dbodbc9.dll"

"Setup"="c:\program files\sybase\SQL Anywhere 9\
win32\dbodbc9.dll"

For more information about the contents of the registry entries for ODBC
drivers and data sources, see Connecting to Your Database.

OLE DB database providers
If your application uses OLE DB to access data, you must install Microsoft’s
Data Access Components software on each user’s computer if it is not installed
already.

You can use the MDAC_TYP.EXE setup file in the Support directory on the CD
to update users’ computers. The Microsoft OLE DB providers, SQLOLEDB
and MSDASQL, are installed when you run MDAC_TYP.EXE.

The files listed in Table 41-10 are required if you use the PB DataDirect OLE
DB data provider specified. If your application uses an OLE DB data provider
from another vendor, you must still deploy PBOLE105.DLL as well as the files
specified by the vendor.

Optional Help files
Help (.HLP and .CNT) files need only be deployed if you expect users to
perform database administration tasks.

Database connections

782 PowerBuilder

Table 41-10: PowerBuilder DataDirect OLE DB files

Installed path Program Files\Sybase\Shared\DataDirectOLEDB

Deployment path Same directory as the application, in a directory on the
system path, or in the App Path registry key.

Registry entries Register PBADMINR.DLL, PBINF90R.DLL,
PBOR709R.DLL, PBOR890R.DLL, PBSYB09R.DLL, and PBXML09R.DLL as
shared DLLs. See also“App Path registry key” on page 762.

Name Required for

PBOLE105.DLL PowerBuilder OLE DB interface required for all OLE DB
connections

401COMUPD.EXE
IVODBC.LIC
PBADMIN.CNT
PBADMIN.EXE
PBADMIN.HLP
PBADMINR.DLL

License and help files and administration utilities required
for all PB DataDirect OEM 2.70 OLE DB data providers

PBINF09.CNT
PBINF09.DLL
PBINF09.HLP
PBINF09R.DLL

PB DataDirect OEM 2.70 9.x

PBOR709.CNT
PBOR709.DLL
PBOR709.HLP
PBOR709R.DLL

PB DataDirect OEM 2.70 Oracle 7

PBOR809.CNT
PBOR809.DLL
PBOR809.HLP
PBOR809R.DLL

PB DataDirect OEM 2.70 Oracle 8

PBSYB09.CNT
PBSYB09.DLL
PBSYB09.HLP
PBSYB09R.DLL

PB DataDirect OEM 2.70 Sybase Adaptive Server
Enterprise

PBXML09.CNT
PBXML09.DLL
PBXML09.HLP
PBXML09R.DLL

PB DataDirect OEM 2.70 XML

CHAPTER 41 Deploying Applications and Components

Application Techniques 783

ADO.NET database interface
The PowerBuilder ADO.NET interface supports the OLE DB, Microsoft SQL
Server .NET, Oracle ODP.NET, and Sybase ASE data providers. If you use
ADO.NET, you must deploy PBADO105.DLL, Sybase.PowerBuilder.Db.dll,
Sybase.PowerBuilder.DbExt.dll, and, for OLE DB, the OLE DB data provider.

The file PBADO105.DLL is a standard DLL file, and you can deploy it in the
same way as other PowerBuilder DLLs. However,
Sybase.PowerBuilder.Db.dll and Sybase.PowerBuilder.DbExt.dll are .NET
assemblies. You can use one of three techniques to deploy the files:

• Deploy Sybase.PowerBuilder.Db.dll and Sybase.PowerBuilder.DbExt.dll
in the same directory as the executable file that calls the ADO.NET driver.

• Use a .NET application configuration file to assign the path of
Sybase.PowerBuilder.Db.dll and Sybase.PowerBuilder.DbExt.dll. The file
contains configuration settings that the common language runtime (CLR)
reads as well as settings that the application reads. For an executable file,
the configuration file has the same name as the executable file with the
extension .config. The pb105.exe.config file in your PowerBuilder 10.5
directory is an example.

For more information about configuration files, see the Microsoft Visual
Studio SDK documentation.

• Add the Sybase.PowerBuilder.Db.dll and Sybase.PowerBuilder.DbExt.dll
assemblies to the Global Assembly Cache (GAC). Use this technique only
when an assembly must be shared by several applications. You can no
longer install an application using xcopy if one of the assemblies it uses is
in the GAC.

For more information about the GAC, see the section on the Global
Assembly Cache in the Microsoft Visual Studio SDK documentation.

JDBC database interface
The PowerBuilder JDB interface supports the Sun Java Runtime Environment
(JRE) versions 1.2 and later.

If your application or component uses JDBC connections, you must deploy the
JDB driver as well as the appropriate Java package for the Java VM you are
using. The Java virtual machine and a vendor-supplied JDBC-compliant driver,
such as Sybase jConnect® for JDBC, must also be installed and configured on
the computer that accesses the data source.

Java support

784 PowerBuilder

To specify which Java VM the driver should load, use the JavaVM DBParm.
You should use the same setting for this DBParm in the development and
deployment environments. See Connecting to Your Database for more
information.

For more information about the Java VM, see "Java support" next.

Table 41-11: PowerBuilder JDB files

Installed path \Program Files\Sybase\Shared\PowerBuilder

Deployment path Same directory as the application, in a directory on the
system path, or in the App Path registry key.

Registry entries Make sure the CLASSPATH environment variable includes
the PowerBuilder pbjdbc12105.jar file. For example:

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control
\Session Manager\Environment]

"CLASSPATH"="C:\Program Files\sybase\shared\
PowerBuilder\pbjdbc12105.jar;...

Notes See “PowerBuilder components on EAServer” on page 792 and “Web
DataWindow on EAServer” on page 797.

Java support
You must deploy the PowerBuilder pbjvm105.dll file with any applications or
components that use the Java Runtime Environment (JRE), and there must be
a JRE installed on the target computer. The JRE is required for JSP targets, EJB
clients, JDBC connections, and saving as PDF using XSL-FO. You can copy
the JRE installed with PowerBuilder to the same directory as the PowerBuilder
runtime files on the target computer, or use an existing JRE whose location is
defined in the user’s system PATH environment variable.

Name Description

PBJDB105.DLL PowerBuilder JDBC Driver (JDB) for JRE 1.2 or later

pbjdbc12105.jar Java package for PowerBuilder JDB driver and JRE 1.2 or
later

CHAPTER 41 Deploying Applications and Components

Application Techniques 785

Locating the Java VM When a PowerBuilder application requires a Java VM, the PowerBuilder
runtime searches for the jvm.dll file in a subdirectory of the directory where
pbjvm105.dll is installed on the user’s computer. The jvm.dll file is installed in
the JRE\bin\client directory of JDK 1.4 installations, and in the JRE\bin\classic
directory in JDK 1.2 and 1.3 installations.

PowerBuilder adds the location of jvm.dll to the beginning of the path currently
being used by the PowerBuilder application. This path is a copy of the path
defined in the user’s PATH system environment variable. PowerBuilder does
not modify the environment variable maintained in the Windows registry.

To locate the jvm.dll, PowerBuilder first determines where pbjvm105.dll is
installed. Suppose pbjvm105.dll is installed in
C:\Sybase\Shared\PowerBuilder. Then PowerBuilder uses this search
procedure to add the location of the jvm.dll to the path currently in use:

1 Search for the directory structure JRE\bin\client (for JDK 1.4) in
C:\Sybase\Shared\PowerBuilder\ and, if found, add it to the beginning of
the path.

2 If not found, search for the directory structure JDK14\JRE\bin\client in
C:\Sybase\Shared\PowerBuilder\ and, if found, add it to the beginning of
the path.

3 If not found, search for the directory structure JRE\bin\classic (for JDK
1.2 or 1.3) in C:\Sybase\Shared\PowerBuilder\ and, if found, add it to the
beginning of the path.

If none of these directory structures is found, PowerBuilder uses the first
jvm.dll whose location is defined in the user’s PATH environment variable. If
no jvm.dll is found, the Java VM does not start.

The runtime Java VM
classpath

When PowerBuilder starts a Java VM, the Java VM uses internal path and class
path information to ensure that required Java classes are always available. At
runtime, the Java VM uses a class path constructed by concatenating these
paths:

• The system JAVA_HOME environment variable.

• A class path added programmatically when the Java VM is started. For
example, EJB client applications can pass a class path to the
CreateJavaVM method.

Java support

786 PowerBuilder

• The PowerBuilder runtime static registry class path. This is a path built
into the pbjvm105.dll file that corresponds to the path in the Windows
Registry that is used when you are developing an application in
PowerBuilder. It contains classes required at runtime for features that use
a Java VM.

• The system CLASSPATH environment variable.

• The current directory.

Overriding the runtime
static registry
classpath

If necessary, you can override the JVM settings and properties defined for
runtime use in the static registry. PowerBuilder uses the following algorithm to
locate configuration information:

1 When the first request is made for a JVM, PowerBuilder looks for registry
entries for the configuration information and properties to be passed to the
function that creates the JVM.

2 If PowerBuilder finds a registry entry for the configuration information, it
uses it instead of the static registry. If it does not find a registry entry, it
uses the static registry.

3 If PowerBuilder finds a registry entry for custom properties to be passed
to the JVM, it uses those instead of the static registry. If it does not find a
registry entry, it uses the static registry entries.

To override the default settings, create a new key named PBRTConfig in the
HKEY_LOCAL_MACHINE\Software\Sybase\PowerBuilder\10.5\Java key,
then add either or both of the following subkeys: PBJVMconfig and
PBJVMprops.

To duplicate the static registry entries, add the same string values to these
subkeys that you see in the PBIDEConfig key, that is:

You can override either the configuration or properties entries or both. If you
make incorrect entries, PowerBuilder attempts to recover by defaulting to the
static registry. However, you should be cautious about making any changes
since you can cause incorrect behavior in the JVM if you do not configure it
correctly.

Subkey String value name String value data

PBJVMconfig Count 1

0 -verbose:jni,class

PBJVMprops java.compiler NONE

CHAPTER 41 Deploying Applications and Components

Application Techniques 787

PowerBuilder extensions
Several PowerBuilder extension files are provided with PowerBuilder 10.5. If
your application uses one of these extensions, you must deploy the files listed
in Table 41-12.

Table 41-12: Files required for PowerBuilder built-in extensions

In addition to the files listed in the table for EJB client, a Java Runtime
Environment (JRE) compatible with the JDK on the EJB server must be
available on the client and listed in the CLASSPATH. Sun JRE version 1.4 is
provided in the Support directory on the PowerBuilder CD.

For more information, see “Java support” on page 784.

Note
The JRE is not added to the MSI file created by the Runtime Packager when
you select EJB Client.

PDF and XSL-FO export
PowerBuilder can save the DataWindow’s data and presentation as a Portable
Document Format (PDF) file using two techniques. By default, PowerBuilder
saves as PDF using a distiller. PowerBuilder can also save to PDF or XSL
Formatting Objects (XSL-FO) format using the Apache XML Formatting
Objects processor.

Extension Files

PowerBuilder
Document Object
Model

pbdom105.pbx, PBXerces105.dll, xerces-c_2_6.dll,
xerces-depdom_2_6.dll

EJB client pbejbclient105.pbx, pbejbclient105.jar

SOAP client for
Web services

ExPat105.dll , libeay32.dll, ssleay32.dll,
xerces-c_2_6.dll, xerces-depdom_2_6.dll,
EasySoap105.DLL, pbnetwsruntime105.dll,
pbsoapclient105.pbx, pbwsclient105.pbx,
Sybase.PowerBuilder.WebService.Runtime.dll,
Sybase.PowerBuilder.WebService.RuntimeRemoteLoader.dll

PDF and XSL-FO export

788 PowerBuilder

Using the GNU Ghostscript distiller
In order for users to use the SaveAs method to save data as PDF with the
distiller, they must first download and install GNU Ghostscript on their
computers as described in the procedure that follows.

The use of GNU Ghostscript is subject to the terms and conditions of the GNU
General Public License (GPL). Users should be asked to read the GPL before
installing GNU Ghostscript on their computers. A copy of the GPL is available
on the GNU Project Web server at http://www.gnu.org/licenses/gpl.html.

❖ To install GNU Ghostscript:

1 Into a temporary directory on your computer, download the self-extracting
executable file for the version of GNU Ghostscript you want from one of
the sites listed on the Ghostscript Web site at http://www.ghostscript.com.

2 Run the executable file to install Ghostscript on your system.

The default installation directory is C:\gs. You can select a different
directory and/or choose to install shortcuts to the Ghostscript console and
readme file.

After installing Ghostscript, you should read the readme.htm file in the doc
subdirectory in the Ghostscript installation directory to find out more about
using Ghostscript and distributing it with your application.

Save Rows As fails
To save as PDF in the DataWindow painter, select File>Save Rows As and
select PDF as the Save As type. If you do not install GNU Ghostscript and use
the default export properties, PowerBuilder displays a pop-up window
notifying you that Save Rows As failed. If you install GNU Ghostscript and
then change the name of the directory where GNU Ghostscript is installed,
Save Rows As PDF fails silently.

Location of files When you save a DataWindow object as PDF using the distill method,
PowerBuilder searches in the following locations for an installation of GNU
Ghostscript:

• The Windows registry

• The relative path of the pbdwe105.dll file (typically
Sybase\Shared\PowerBuilder)

• The system PATH environment variable

CHAPTER 41 Deploying Applications and Components

Application Techniques 789

If GNU Ghostscript is installed using the Ghostscript executable file, the path
is added to the Windows registry.

If the Ghostscript files are in the relative path of the pbdwe105.dll file, they
must be installed in this directory structure:

dirname\pbdwe105.dll
dirname\gs\gsN.NN
dirname\gs\fonts

where dirname is the directory that contains the runtime DLLs and N.NN
represents the release version number for Ghostscript.

You might not need to distribute all the fonts provided in the distribution. For
information about fonts, see Fonts and font facilities supplied with Ghostscript at
http://www.ghostscript.com/doc/gnu/7.05/Fonts.htm.

You must also deploy the default PostScript printer driver and related files that
are installed in Sybase\Shared\PowerBuilder\drivers. These files can be copied
to or installed on users’ computers. They must be located in this directory
structure:

dirname\pbdwe105.dll
dirname\drivers

PostScript printer
profile

Each user’s computer must have a PostScript printer profile called Sybase
DataWindow PS. This profile is added to your development computer
automatically when you save a DataWindow’s rows to a PDF file in the
DataWindow painter.

Users can add the profile manually using the Windows Add Printer wizard. In
the wizard, click the Have Disk button and browse to the Adist5.inf file
installed in the Shared\PowerBuilder\drivers directory, or to another
PostScript driver file.

Using the Apache FO processor
If your application uses the Apache processor to save as PDF or XSL-FO, you
must deploy the fop-0.20.4 directory and the Java Runtime Environment (JRE)
with your application.

DataWindow Web control for ActiveX

790 PowerBuilder

They must be deployed in the same directory as the PowerBuilder runtime
files. For example, if you deploy your application and pbvm105.dll and the
other PowerBuilder runtime files in a directory called MyApplication, the
Apache processor and the JRE must be deployed in MyApplication/fop-0.20.4
and MyApplication/jre. However, you do not need to place a copy of the JRE
in this location if the full JDK is installed on the target computer and is in the
classpath.

The following JAR files must be in the user’s classpath:

fop-0.20.4\build\fop.jar
fop-0.20.4\lib\batik.jar
fop-0.20.4\lib\xalan-2.3.1.jar
fop-0.20.4\lib\xercesImpl-2.1.0.jar
fop-0.20.4\lib\xml-apis.jar
fop-0.20.4\lib\avalon-framework-cvs-20020315.jar

For more information about the JRE, see “Java support” on page 784.

On Windows DBCS platforms, you also need to deploy a file that supports
DBCS characters to the Windows font directory on the target computer, for
example, C:\WINDOWS\fonts. For more information about configuring fonts,
see the Apache Web site at http://xml.apache.org/fop/fonts.html.

DataWindow Web control for ActiveX
The following files must be deployed to your Web server if you are using the
DataWindow Web control for ActiveX.

Table 41-13: PowerBuilder file for DataWindow Web control for ActiveX

If the target system does not have a Sun JRE installed, the user must download
a JRE from the Sun Java Web site. To make the Web ActiveX and the
Transaction control available to the client browser, code the CODEBASE
attribute in the Object element in the deployed HTML page.

Name Required for

PSDWC105.CAB CAB file containing an Open Software Distribution
information file and DLLs for the Web ActiveX and the
Transaction control

PBJDBC12105.JAR JAR file containing required Java classes

CHAPTER 41 Deploying Applications and Components

Application Techniques 791

About the
CODEBASE attribute

The CODEBASE attribute identifies the location of a CAB or OCX file so that
a browser can download it, unpack it if it is a CAB file, and register it on the
user’s computer. A typical value for CODEBASE uses a relative URL to
identify the location of the CAB or OCX file followed by a # sign and a
four-part version number separated by commas. The version number is the
same as the version number of PowerBuilder. For example:

 CODEBASE="cabs/psdwc105.cab#10,0,0,5031"

Additional files may be required. For more information see “Deploying the
DataWindow Web control” in the PowerBuilder online books or the
DataWindow Programmer’s Guide.

Plug-ins and PowerBuilder window ActiveX controls
Plug-ins The files listed in Table 41-14 must be deployed to users’ computers if you are

using DataWindow or window plug-ins.

Table 41-14: PowerBuilder files for window and DataWindow plug-ins

Installed path \Program Files\Sybase\PowerBuilder 10.5\Internet
Tools\Plugins

Deployment path Browser plugins directory.

Notes All plug-ins require a browser that supports plug-ins. Microsoft
Internet Explore 5.5 Service Pack 2 and later versions do not support plug-ins.
Window plug-ins also require the PowerBuilder runtime DLLs on users’
computers. For more information, see Chapter 32, “Using the DataWindow
Plug-in,” and Chapter 33, “Using the PowerBuilder Window Plug-in.”

Window ActiveX
controls

The files listed in Table 41-15 must be made available on users’ computers if
you are using the PowerBuilder window ActiveX.

Name Required for

NPPBA105.DLL Standard window plug-in

NPPBS105.DLL Secure window plug-in

NPDWE105.DLL DataWindow plug-in

PowerBuilder components on EAServer

792 PowerBuilder

Table 41-15: PowerBuilder files for window ActiveX

Installed path Windows system directory.

Deployment path Windows system directory.

Registry entries The PowerBuilder window ActiveX controls can be made
available on the client computer by copying them to the computer and
registering them using the REGSVR32 utility. Alternatively, include the
CODEBASE attribute in the Object element in the HTML page on the Web
server. See “About the CODEBASE attribute” on page 791.

Notes PowerBuilder window ActiveX controls require a browser that
supports ActiveX controls. They also require that the PowerBuilder runtime
DLLs and the Microsoft files MFC42.DLL, MSVCRT.DLL, URL.DLL, and
URLMON.DLL be available on users’ computers. The Microsoft files are
usually already installed in the target computer’s Windows system directory. If
they are not installed, they can be downloaded as a CAB file from the
Microsoft Internet Explorer Components Gallery at
http://activex.microsoft.com/controls/vc/mfc42.cab.

For more information, see Chapter 34, “Using the PowerBuilder Window
ActiveX.”

PowerBuilder components on EAServer
To run PowerBuilder components in EAServer, the runtime libraries for the
version and build number of PowerBuilder in which the components were
developed must be available on the server. When you install a maintenance
release of PowerBuilder and deploy new or updated components to EAServer,
make sure that the PowerBuilder VM on the servers is also updated.

The files listed in Table 41-16 are required on the EAServer host on which
components generated in PowerBuilder will run. If PowerBuilder components
do not use a feature or database interface listed in the table, the file does not
need to be installed on the server. The PowerBuilder VM also requires the
EAServer LIBJCC file and its dependent files. In the UNIX column of the
table, ext represents the platform-specific extension for library names; for
example, on Solaris this file is libpbvm105x.so.

Name Required for

PBRX105.OCX Standard PowerBuilder window ActiveX

PBRXS105.OCX Secure PowerBuilder window ActiveX

CHAPTER 41 Deploying Applications and Components

Application Techniques 793

Table 41-16: PowerBuilder files required on EAServer host

Windows UNIX Description

PBVM105.DLL libpbvm105x.ext PowerBuilder virtual machine
(required for all
PowerBuilder components)

PBSHR105.DLL pbshr105.ext Required by PowerBuilder
virtual machine

PBDWE105.DLL libpbdwe105x.ext DataStore support

PBJAG105.DLL libpbjag105x.ext,
pbjag105.ext

PowerBuilder support in
EAServer

PBDWR105.PBD pbdwr105.pbd Web DataWindow support
(requires PBDWE)

htmldw.js htmldw.js Web DataWindow support

PBRTC105.DLL and
additional runtime files
listed in Table 41-4

— RichText support

PBXerces105.dll,
xerces-c_2_6.dll,
xerces-depdom_2_6.dll

libxerces105x.ext,
libxerces-c_2_1_0.ext

XML support

pbdom105.pbx libpbdom105x.ext PBDOM support

EasySoap105.dll,
ExPat105.dll,
libeay32.dll, ssleay32.dll,
pbsoapclient105.pbx,
pbwsclient105.pbx,
pbnetwsruntime105.dll,
xerces-c_2_6.dll,
xerces-depdom_2_6.dll,
Sybase.PowerBuilder.Web
Service.Runtime.dll,
Sybase.PowerBuilder.Web
Service.RuntimeRemoteLo
ader.dll

— SOAP clients for EasySoap
and .NET Web services (for
.NET Web services, the two
Sybase.PowerBuilder DLL
files must be deployed to the
EAServer\Bin directory)

PBO84105.DLL libpbo84105x.ext Oracle 8.0.x and Oracle8i
8.1.x database driver

PBO90105.DLL libpbo90105x.ext
(Solaris and Linux
only)

Oracle9i database driver

PBO10105.DLL libpbo10105x.ext
(Solaris and Linux
only)

Oracle 10g database driver

PBODB105.INI pbodb105.ini PowerBuilder ODBC
initialization file

PowerBuilder components on EAServer

794 PowerBuilder

On Windows You can use the PowerBuilder VM installer, available in the PBVM folder on
the CD, to install the files listed in Table 41-16. The PBVM setup program also
installs the PowerBuilder 10.5 version of the Web DataWindow server
component (HTMLGenerator105) and the PBDebugBroker10 component
required for remote debugging.

You can use other database drivers with EAServer components, but you must
use one of the drivers listed in the table above if you want to take advantage of
EAServer support for transaction management and instance pooling.

On UNIX If the files listed in Table 41-16 were not installed when you installed
EAServer, they might be available for your platform from the Sybase
Downloads site on the EBFs/Maintenance page at http://downloads.sybase.com/.

PowerBuilder components deployed to EAServer on a UNIX platform can
have neither graphical dependencies nor dependencies on the Windows
application programming interface. The shared libraries must be installed in
the EAServer lib directory on the UNIX server. The Java classes required for
the PowerBuilder JDBC driver must be installed in the EAServer
html/classes/com/sybase/powerbuilder/jdbc directory.

Connection caches on UNIX PowerBuilder components require the
database drivers listed inTable 41-16 in order to use connection caches. When
a PowerBuilder component uses a connection cache, the appropriate
PowerBuilder driver is loaded.

To create a connection cache for an Informix or DB2 database, you can use a
DataDirect ODBC driver that is included with EAServer. After creating an
ODBC data source using the file shown in Table 41-17, create an EAServer
connection cache to the ODBC data source.

PBODB105.DLL libpbodb105x.ext PowerBuilder ODBC
interface

PBSYJ105.DLL libpbsyj105x.ext Adaptive Server Enterprise
native database interface

PBJDB105.DLL libjdb105x.ext JDBC database driver for Sun
Java VM JRE 1.1 or later

— libpbwfr105.ext PowerBuilder UNIX
extension library

pbjdbc12105.jar pbjdbc12105.jar Java classes for PowerBuilder
JDBC drivers (required for
JRE 1.2 or later)

Windows UNIX Description

CHAPTER 41 Deploying Applications and Components

Application Techniques 795

Table 41-17: PowerBuilder DataDirect ODBC files for UNIX

PowerBuilder COM servers
In addition to the COM server file generated in PowerBuilder, the
PowerBuilder runtime files listed in Table 41-18 should be installed on the
computer on which the server will run if the component uses the feature listed
in the table.

Table 41-18: PowerBuilder files required on COM server host

Installed path \Program Files\Sybase\Shared\PowerBuilder

Deployment path In the same directory as the COM server or a directory on
the system path.

Registry entries The PowerBuilder COM server is self registering, which
means that you can use the REGSVR32 utility to register it on the computer on
which it will be used.

Notes For information about deploying PowerBuilder COM servers, see
“Deploying a PowerBuilder COM server” on page 566.

Name Database

PBinf914.ext Informix 7.x, 9.x by means of Informix-Client SDK 2.x

PBdb214.ext DB2 Universal Database (UDB)

Name Description

PBVM105.DLL PowerBuilder virtual machine (required for all
PowerBuilder components)

PBCOMRT105.DLL PowerBuilder COM runtime

PBSHR105.DLL Required by PBVM105.DLL

LIBJCC.DLL Required by PBVM105.DLL

LIBJUTILS.DLL Required by LIBJCC.DLL

PBDWE105.DLL Required if the component uses DataStores

PBRTC105.DLL and
additional runtime
files listed in Table
41-4

Required if the component uses Rich Text

PBODB105.INI PowerBuilder ODBC initialization file required for database
connectivity

PBODB105.DLL PowerBuilder ODBC interface required for database
connectivity

PowerBuilder automation servers

796 PowerBuilder

Database drivers
If your component connects to a database, you must also deploy the appropriate
database drivers. You can use any database driver with a COM component, but
you must use ODBC if you want to take advantage of COM+ support for
transaction management and connection pooling. If you require support for
connection pooling only, you can use any thread-safe ODBC driver. If you also
require support for transactions, you must use a driver that supports the
Microsoft Distributed Transaction Coordinator (DTC), such as the Microsoft
ODBC driver for Oracle or the Microsoft ODBC driver for SQL Server.

For more information about database drivers, see “Database connections” on
page 768.

PowerBuilder automation servers
To use a PowerBuilder automation server, you need to deploy the following
files:

• The PBD or DLL containing the implementation of the automation server

• The generated type library file if you chose to create one or, if you built a
named server, the PBAEN105.TLB file that provides type library
information for PowerBuilder.Application

• A copy of the registry update (.REG) file generated in the Project painter,
edited to reference the directory where you will deploy the PBD or DLL
and the type library file

• The PowerBuilder runtime and database connectivity files required by the
server as described in “PowerBuilder COM servers” on page 795

After deploying the files listed above, run the registry update file to register the
server on the target computer. For more information about using automation
servers, see “Deploying an application that uses the automation server” on
page 393.

CHAPTER 41 Deploying Applications and Components

Application Techniques 797

Creating registry information for OLE automation objects
If your application includes user objects that are used for OLE inbound
automation, you must update the user’s registry with information about the
server. The Automation Server Project wizard sets up a project that helps you
to generate a globally unique identifier (GUID), a registration (REG) file, and
a type library (TLB) file. The Automation Server project wizard is available on
the Project page of the New dialog box.

For more information, see “Deploying an application that uses the automation
server” on page 393.

Web DataWindow on EAServer
You can run the Web DataWindow server component on EAServer using JSP
as the page server. The component transaction server and the page server can
run on the same or on different computers.

Files required on the
transaction server

Two types of files are required on the transaction server:

• The PBLs or PBDs containing the definitions of your DataWindow objects

Make sure they are installed in a directory in the server’s path. If EAServer
is running as a service, they must be on the system path or the names of
the PBLs or PBDs must be fully qualified.

• PowerBuilder runtime files (including PBVM105.DLL, PBSHR105.DLL,
PBJAG105.DLL, and PBDWE105.DLL on Windows) and
PBDWR105.PBD, which contains the implementation of the DataWindow
HTMLGenerator105 component

On Windows, these files are installed by default when you select the
EAserver typical or custom install from the installation program. For more
information about required files, see “PowerBuilder components on
EAServer” on page 792.

You also need to create a connection cache for the database the component will
access. For more information, see the DataWindow Programmer’s Guide.

Web DataWindow on COM+ or IIS

798 PowerBuilder

Custom components
You can create a custom version of the DataWindow component and configure
its properties for more efficient reuse. For more information, see the
DataWindow Programmer’s Guide.

Files required on the
dynamic page server

To use JSP as the page server and connect to the EAServer component using
Java, you must have the following files on the JSP server computer:

HTML pages, templates, and scripts These are the files that you created for
your application. If you used a JSP target to generate these files, you can use
the built-in deployment controller to install them. For more information, see
Working with Web and JSP Targets.

EAServer client software for Java The files listed in Table 41-19 are
required on the JSP server.

Table 41-19: EAServer client files required on JSP server

Sun Java Development Kit (JDK) Any versions of the JDK that were
installed with EAServer are located in the Sybase\Shared\Sun directory. The
JDK that is installed with PowerBuilder is located in the
Sybase\Shared\PowerBuilder directory.

If you are using JDK 1.2 or 1.3, make sure that the JRE\bin\classic
subdirectory of the JDK is listed in the system PATH environment variable.

If you are using JDK 1.4, make sure that the JRE\bin\client subdirectory of the
JDK is listed in the system PATH environment variable.

Web DataWindow on COM+ or IIS
You can run the Web DataWindow server component on COM+ using ASP as
the page server. You can also run the Web DataWindow on a Microsoft IIS
application server.

Files required on the
COM+ or IIS server

Two types of files are required on the COM+ or IIS server:

• The PBLs or PBDs containing the definitions of your DataWindow
objects.

Name Description

easclient.jar Java class required for clients

easj2ee.jar Java class required for J2EE support

CHAPTER 41 Deploying Applications and Components

Application Techniques 799

Make sure that they are installed in a directory on the system path.

Use the system path and system DSNs
Because COM+ and IIS both run as system services, required files must
be available on the system path and data sources must be defined as system
DSNs. The user path and user DSNs are not referenced by the server.

• PowerBuilder runtime files and PBDWR105.DLL, which contains the
implementation of the DataWindow HTMLGenerator component.

Table 41-20: PowerBuilder files required on COM+ or IIS server

Installed path If PowerBuilder is not installed on the COM+ or IIS server
computer, these files must be installed in a directory on the system path on the
COM+ or IIS server. They can be obtained from the
Sybase\Shared\PowerBuilder directory on the computer on which
PowerBuilder is installed.

Registry entries If PBDWR105.DLL was copied from another computer, it
must be registered on the COM+ or IIS server.

Notes ODBC data sources must be defined as system DSNs. For more
information about configuring ODBC, see “Configuring ODBC data sources
and drivers” on page 780.

If COM+ is hosting the server component and running on a different computer
from IIS, you need to create a client install package and install it on the IIS
server.

Files required on the
ASP server

To use ASP as the page server and connect to the COM+ or IIS component
using ActiveX, the following files are required on the ASP server computer:

HTML pages, templates, and scripts These are the files that you created for
your application. If you used a Web target to generate these files, you can set
up a deployment configuration in PowerBuilder to deploy them to ASP. For
more information, see Working with Web and JSP Targets.

Name Description

PBVM105.DLL PowerBuilder virtual machine

PBSHR105.DLL Required by PBVM105.DLL

LIBJCC.DLL Required by PBVM105.DLL

LIBJUTILS.DLL Required by LIBJCC.DLL

PBDWE105.DLL DataWindow support

PBODB105.DLL PowerBuilder ODBC interface

PBODB105.INI PowerBuilder ODBC interface setup file

PBDWR105.DLL DataWindow HTMLGenerator component

Web DataWindow on COM+ or IIS

800 PowerBuilder

Application Techniques 801

Symbols
.NET Web service engine 617

A
accessibility

DataWindow support 708
DLL required for 767
features 701
testing 710

AccessibleRole enumerated values 707
AccessiWeb accessibility criteria 704
accessor methods, adding to COM object

interface 551
Activate event, in EAServer 454
Activate function 318, 320
ActiveX control

about 309, 310
active 326
appearance 325
automation 338
behavior 325
combined event list 327
deploying 763
events 327
native properties, events, and functions 325
Object property 338
programming 326
properties 325, 326
property sheet 325
window ActiveX 663

Adaptive Server Anywhere
and MobiLink synchronization 184
data source 778
features supported when calling stored

procedures 182
Adaptive Server Enterprise database interfaces,

Transaction object properties for 160

AddColumn function 143
AddData function 249
adding items

to a list box 130, 135
to a ListView 137, 138

adding pictures
to a list box 131, 132, 136
to a ListView 139, 140

AddItem function 130, 135, 138
AddLargePicture function 140
AddPicture function 132, 136
AddSeries function 249
AddSmallPicture function 140
AddStatePicture function 140, 141
ADO Recordsets in PowerBuilder 557
ADO.NET, deployment requirements 783
aggregate relationships 19
ALIAS FOR keywords

about 175
coding 176

alias, for XML methods 623
ambient properties 325
ancestor objects

about 33
calling functions and events 30
windows 85

AncestorReturnValue variable 30
Any datatype 345
APPLICATION attribute for Embed element 651,

657, 659
Application painter

Application property sheet, using Variable Types
property page 178

changing default global variable types in 177
application preferences, storing 719
application/datawindow MIME type 637
application/vnd.powerbuilder MIME type 659
application/vnd.powerbuilder-s MIME type 659
applications

calling database stored procedures 172

Index

Index

802 PowerBuilder

coding to use stored procedure user objects 178
deploying 741
localizing 691, 697
MDI 65
multilingual 691
pooling database transactions 171
reading Transaction object values from external

files 165
running 754
tracing execution of 755

applications, client
building 575
deploying 530

applications, server
building COM/COM+ components 562
building EAServer components 445

architecture, J2EE 442
arguments

OLE 340
passing in EAServer components 476
passing method 32

array management for tab pages 100
arrays

of arrays 626
of window instances 84
passing in EAServer components 476

associative relationships 20
asynchronous processing

with EAServer 522
AutoCommit Transaction object property

about 158
issuing COMMIT and ROLLBACK 162
listed by database interface 160

Automatic Demarcation/Deactivation setting 459
automatic failover component property 482
automation language 351
automation server

about 372
compared with PowerBuilder COM server 548

Automation Server wizard 377
automation, OLE 371

B
binary files, reading and writing 48

bind thread component property 482
bind.object component property 451
blobs

DataWindow synchronization 468
in OLE control 323

BMP files
delivering as resources 747
naming in resource files 749

Browser, OLE categories 355
business logic, about 439

C
CacheName DBParm 463
Cancel function 284, 294
chars, passing to C functions 419
Class ID, see CLSID 675
class user objects, OLE 359
classes, PBDOM

overview 215
ClassName function 345
Clicked events, and graphs 255
client applications

and automation 372, 379
building COM/COM+ 575
building EAServer 501
deploying 530
requirements for PowerBuilder servers 385
requirements for PowerBuilder.Application 382
synchronization 186

client areas
in MDI applications 67
sizing 77

client computers, configuring
for DataWindow plug-in 638
for deployment 756
for window ActiveX 687
for window plug-in 660

client-managed transactions 518
client-side scripting, for window ActiveX 677
clipboard, using in an application 322
CLSID

and registry 386
for PowerBuilder window ActiveX 674

Index

Application Techniques 803

code set
changing in EAServer Manager 500, 505
component property 482
used by EAServer client 505

CODEBASE attribute for Object element 674
cognitive impairments 703
colons (scope operator) 29
COM

datatypes 551
servers 548
servers and automation servers compared 548

COM clients
and result sets 556
building 575
configuring 575
connecting to server 576
controlling transactions from 578

COM components
building 545
building in Project painter 562
database access 554
development process 547
embedded PBD 564
memory allocation 565
registering 563
security issues 561
transaction support 558

COM+
clients, building 575
components, building 545
deploying to 564

COM/COM+ components, see COM
components 562

COMMANDPARM attribute
for Embed element 657, 659
for Object element 675

COMMIT statement
about 162
and AutoCommit setting 162
and UseContextObject 458
automatically issued on disconnect 163, 167
error handling 170
for nondefault Transaction objects 168
in COM components 559
in EAServer components 460

committing for data pipelines 281, 295

communications errors, handling 525
compiling

long scripts 48
OLE syntax not checked 338
options for 742

Component Object Model (see COM) 548
component-managed transactions 518
concurrency component property 451, 482
CONNECT statement

about 162
coding 166
error handling 170
for nondefault Transaction objects 168
USING TransactionObject clause 166

connecting
and Transaction object 166
to EAServer 503
to EJB server 596
to OLE objects 329
using multiple databases 167

connection caching
benefits of 462
using a proxy 464

Connection Object wizard 505
consolidated databases 184
constants 27
content types 644
context information 425
Context information service 425
controls

drag and drop 145
DropDownListBox 135
DropDownPictureListBox 132, 135, 136
ListBox 130
ListView 137, 139, 140, 141
on tab pages 93
PictureListBox 130, 131, 132
providing MicroHelp for 71
TreeView 105
type of 323

conventions xx
CORBAUserException object 528
create method 597
CreateInstance function 508, 510, 561
CreateInstance method, for Web service proxy 626
CreateJavaVM method 593

Index

804 PowerBuilder

CreateObject function 397
creating nondefault Transaction objects 168
CUR files

delivering as resources 747
naming in resource files 749

custom class user objects
as automation servers 372
as COM/COM+ components 546
as EAServer components 445
typical uses 12

custom frames
in MDI applications 67
sizing 77

D
data

adding in graph in windows 249
associating with graphs in windows 248
piping between data sources 279
saving in graphs 254
synchronizing 183

Data Pipeline painter
defining data pipelines in 280, 281
using interactively 280

data pipelines
about 279
canceling execution of 294
characteristics you specify for 281
committing updates 295
DataWindow control for handling errors 285,

291, 296
displaying row statistics for 292
error rows, abandoning 299
examples of 279
final housekeeping when executing 300
handling row errors 296
initial housekeeping when executing 287
monitoring execution of 292
providing a window to control 285
repairing error rows 298
specifying one to execute 288
starting execution of 290
supporting user object for 284, 288, 292, 300

suppressing SQLSTATE error numbers 297
using in applications 280
using in the PowerBuilder development

environment 280
data source

Adaptive Server Anywhere 778
deploying 778

database interfaces
configuring 756
installing 756
Transaction object properties for 160

database stored procedures
source for data pipelines 281

Database Transaction object property
about 158
listed by database interface 160

databases
accessing from COM components 554
accessing from EAServer components 461
calling stored procedures in applications 172
configuring 756
connecting to 166
connecting to multiple 167
destination for data pipelines 288, 301
disconnecting from 167
interfaces, Transaction object properties for 160
migrating tables between 279
pooling transactions 171
profiles, connection properties in 158
rich text 258
saving OLE data 323
source for data pipelines 288, 301

DataObject property for data pipelines 284, 288
DataStore objects

populating a TreeView 125
standard class user objects 21
using in EAServer components 462

datatypes
and COM/COM+ 551
and window definitions 81
Any 345
in EAServer 508
window 85
XML 624

DataWindow controls
for handling data pipeline errors 285, 291, 296

Index

Application Techniques 805

rich text and functions 260
sharing data 272

DataWindow expressions, optimizing 35
DataWindow functions

GetChanges 467
GetFullState 467
GetStateStatus 467
SetChanges 467
SetFullState 467

DataWindow objects
about 257
dot notation 26
including in resource files 750
using dynamic references 745, 748

DataWindow plug-in
about 631
browser-server interaction 632
client workstation software 638
creating PSRs 635
deployed components 634
developing 634
external resources 635
files on server 637
HTML document 632
OLE objects 635
requirements 633
Rich Text presentation style 635
security 632
Web server 637

DataWindow synchronization 467
DataWindow Web control for ActiveX 611
DataWindow, OLE

automation 352, 354
functions for OLE object 353

dbmlsrv9 184
dbmlsync

about 186
process 187

DBMS features supported when calling stored
procedures 180

DBMS Transaction object property
about 158
listed by database interface 160

DBParm MsgTerse parameter 297

DBParm Transaction object property
about 158
listed by database interface 160

DBPass Transaction object property
about 158
listed by database interface 160

DDE
about 305
client events and functions 307
client functions 306
server events and functions 307

Deactivate event, in EAServer 454
debugging

an executable 754
tracing execution 755

declarations
constants 27
external functions 414
Transaction objects 168

default global variable types 177
default Transaction object (SQLCA) 158, 163
delegation as object-oriented concept 19
DeleteLargePicture function 141
DeleteLargePictures function 141
DeletePicture function 132
DeleteSmallPictures function 141
DeleteStatePicture function 141
DeleteStatePictures function 141
deleting

list box pictures 132
ListView pictures 141

deploying
about 741
client application 530
EAServer components 499
OLE and registry 390, 393
with Runtime Packager 763

deployment DLLs, PowerBuilder 756
descendent objects

about 33
defining 173
referencing entities in 86

design, user interface 697
destination table for data pipelines 281
Disability Discrimination Act 704
DisableCommit method 459

Index

806 PowerBuilder

DISCONNECT statement
about 162
coding 167
error handling 170
for nondefault Transaction objects 168
USING TransactionObject clause 167
when pooling database transactions 171

disconnecting from databases 167
DISPLAYERRORS attribute for window ActiveX 675
distributed applications

architecture 439
database access in 462
DataStores in 462
error handling in 525
performing database updates in 467

DLL files
about 744
compared to PBD files 744
creating 753
examples of 750
executing functions from 413
including resources in 747
PowerBuilder deployment 756
testing 754

dot notation
about 23
PowerScript, using to call stored procedures 179

drag and drop
automatic drag mode 145
functions 147
identifying drag controls 148
properties 146
specifying icons 147
using 145

drawing objects, printing 717
DropDownListBox controls

about 135
adding items 135
example 133

DropDownPictureListBox controls
about 135
adding items 135
adding pictures 136
deleting pictures 132
example 133

dwprint.ini 494

dynamic function calls 34
dynamic libraries

about 744
for PowerBuilder window ActiveX 673
for PowerBuilder window plug-in 654

dynamic lookup 17
dynamic SQL, handling errors in 170
dynamically referenced

objects 745, 748
resources 747

E
EAServer

asynchronous requests 522
client pull 522
communications errors 525
component properties 482
connecting to 502
deploying components to 499
instance pooling 453
integration with PowerBuilder 440
log 492
PowerBuilder DLLs 498
shared components 448
transaction support 457
Unicode connection caches 465

EAServer clients
building 501
deploying 530

EAServer components
building 445
database updates in 467
debugging 490
interfaces for 475
invoking methods of 508
lifecycle of 456, 461
properties of 482

EAServer environment variables
PB_FOP_SUPPRESSLOG 497
PB_HEAP_LOGFILE_OVERWRITE 47
PB_HEAP_LOGFILENAME 47
PB_POOL_THRESHOLD 46
PBOnFatalError 460
PBRollbackOnRTError 460

Index

Application Techniques 807

EAServer profile, creating 447
EAServer Profiles dialog box, about 447
EAServer proxy objects

about 506
destruction of 513

EasySoap Web service engine 618
EJB clients

building 583
downcasting return values 600
dynamic casting 601
exception handling 602
Java collection classes 601

EJB components, invoking methods of 510, 597
EJB proxy objects

about 584
generating 584

EJBConnection object 585
EJBTransaction object 585
electronic mail system, accessing 411
Embed element 632, 636, 644, 656
embedded SQL, handling errors in 170
embedding OLE objects 323
EnableCommit method 459
encapsulation 14, 28
environment variables

PB_FOP_SUPPRESSLOG 497
PB_HEAP_LOGFILE_OVERWRITE 47
PB_HEAP_LOGFILENAME 47
PB_POOL_THRESHOLD 46
PBOnFatalError 460
PBRollbackOnRTError 460

Error event, scripting
for EAServer clients 529
for OLE servers 347

error handling
after SQL statements 170
OLE 346

error logging service
about 425
and COM+ 554
and EAServer 492

ErrorLogging object, see also error logging
service 425

errors
exception handling 36, 602

when executing data pipelines 281, 296
writing to EAServer server log 492
writing to log 425
writing to Windows log 554

Euro symbol, in EAServer component 500, 505
event handlers for PowerBuilder window ActiveX

JavaScript 678
VBScript 679

events
calling 422
calling ancestor 30
data pipeline 284
DDE 306
drag and drop 147
of graph controls 248
passing arguments 32
return value from ancestor 30
triggering 421, 422

examples, code 4
exceptions, handling 36

in EAServer clients 525
in EJB clients 602
in Web service methods 628

executable files
about 743
creating 753
examples of 750
including resources in 747
standalone 750
testing 754

executable version of an application
choosing a packaging model for 750
compile options for 742
implementing a packaging model for 753
testing 754
tracing 755
what goes in it 743

execution
accessing graphs 251
library list 743
of data pipelines 290
starting an application 754
trace facility 755

extended attributes, about 281
extension file

importing objects from 619

Index

808 PowerBuilder

pbsoapclient105.pbx 620
pbwsclient105.pbx 619

extensions
using in PowerBuilder 231

external files, reading Transaction object values from 165
external functions

declaring 414
in EAServer components 419
using 413
using to call database stored procedures 175

external resources
for DataWindow plug-ins 635
for window ActiveX 672
for window plug-ins 652

ExternalException event 347

F
file pointer 49
FileEncoding function 49
FileLength64 function 49
FileOpen function 49
FileReadEx function 50
files

DLL 744
executable 743
external, reading Transaction object values from 165
PBD 744
PBR 747
resource 746
rich text 263
runtime 766

FileSeek64 function 49
FileWriteEx function 50
FindSeries function 250
firewall settings 618
fonts, defining 716
FOR...NEXT statements, opening and closing window

instances 84
forms, creating styles 724
FUNCTION declaration

about 175
coding 176

function overloading 17

functions
calling ancestor 30
dynamic 34
graph 248
overriding 32
passing arguments 32

functions, external
about 414
declaring 414
passing arguments 416
using to call database stored procedures 175

functions, PowerScript
AddColumn 143
AddItem 130, 135, 138
AddLargePicture 140
AddPicture 132, 136
AddSmallPicture 140
AddStatePicture 140, 141
data pipeline 284
DDE 306
DeleteLargePicture 141
DeleteLargePictures 141
DeletePicture 132
DeleteSmallPicture 141
DeleteSmallPictures 141
DeleteStatePicture 141
DeleteStatePictures 141
drag and drop 147
file manipulation 48
InsertItem 109, 130, 135, 138
InsertItemFirst 109
InsertItemLast 109
InsertItemSort 109
MAPI 411
SetColumn 143
SetItem 143
SetOverlayPicture 141
utility 420

functions, user-defined
creating context-sensitive Help for 152
overloading 16
overriding 16

Index

Application Techniques 809

G
GAC (Global Assembly Cache) 783
garbage collection 45
GenerateGUID function 399
GenerateRegFile function 401
GenerateTypeLib function 404
generic coding techniques 97
GetChanges function 467
GetConnectionOption DBParm 465
GetFocus event, providing MicroHelp 71
GetFullState function 467
GetJavaClasspath method 593
GetJavaVMVersion method 593
GetParent function 26, 97
global external functions 414
global variable types, default 177
global variables

and windows 81
name conflicts 29

graph functions
data access 253
getting information about data 253, 255
modifying display of data 254
saving data 254

graphs
creating data points in windows 249
creating series in windows 249
data properties 253
getting information about 253, 255
internal representation 251
modifying display of data 254
modifying during execution 251
populating with data in windows 248
PowerScript functions 248
properties of 251
saving data 254

grAxis subobject of graphs 251
grDispAttr subobject of graphs 251
GUID, and registry 386
GUIDs 394, 399

H
handling errors after SQL statements 170
hearing impairments 702

HEIGHT attribute for Embed element 636, 656
Help

changing default prefix 153
creating for user-defined functions 152
providing for developers 151
renaming PBUSR105.HLP 152
specifying a new user Help file name 152
UserHelpFile 152
UserHelpPrefix 153

HKEY_CLASSES_ROOT 387
HotLinkAlarm DDE event 307
HTML

attributes 656
documents, DataWindow plug-in 632, 636
documents, window plug-in 644, 656
Embed element 636, 656
Object element 674
window ActiveX 674

I
IAccessible properties 707
ICO files

delivering as resources 747
naming in resource files 749
specifying drag icons 147

icons, deploying 747
ImpersonateClient method in COM+ 561
imstyle.pbl 724
inclusional polymorphism 16
indexes, in window arrays 84
InfoMaker styles, creating 724
INFORMIX database interfaces

features supported when calling stored
procedures 181

Transaction object properties for 160
inheritance

hierarchy 85
service objects 13
virtual functions in ancestor 14

initialization files
accessing 719
reading Transaction object values from 165

input fields
about 270

Index

810 PowerBuilder

editing 278
inserting in text 258
scripts 271

Insert Object dialog box 312
insertable OLE object 310
inserting OLE objects 320
InsertItem function 109, 130, 135, 138
InsertItemFirst function 109
InsertItemLast function 109
InsertItemSort function 109
installing international applications 697, 768
instance pooling 453
instance variables

access 28
name conflicts 29

instances, window
and reference variables 82
with arrays 84

instantiating Transaction objects 168
Interface Definition Language (IDL) 475
interfaces component property 482
international applications, designing 691
international applications, installing 768
Internet service 425
InvokePBFunction function

JavaScript 682
VBScript 683

IsCallerInRole method in COM+ 561
IsInTransaction method 459
IsJavaVMLoaded method 593
IsSecurityEnabled method in COM+ 561
IsTransactionAborted method 459

J
J2EE

architecture 442
J2EE server

connecting to 596
Java collection classes, and EJB client 601
Java VM, starting at runtime 784
JavaScript, with window ActiveX

arguments for user-defined functions 682
calling PowerScript functions 680
calling user events 684

calling user-defined functions 682
event handlers 678
InvokePBFunction function 682
TriggerPBEvent function 684

JavaVM object 585
JDBC database interfaces, Transaction object

properties for 160
jobs, print 713
JRE, required for deployment 784
JVM, starting at runtime 784

K
keyboard support in MDI applications 79
Keyword service 425

L
languages, and OLE automation 351
learning disabilities 703
LIBLIST attribute for window ActiveX 675
libraries, dynamic 744
LIBRARY attribute for Embed element 657, 659
Library painter, building automation objects 377, 381
library search path, use in executable application 743
LibraryList property 396
line mode 48
line spacing, setting 717
linking OLE objects 320, 323
ListBox controls

about 130
adding items 130
example 133

ListView controls
about 137
adding columns 143
adding items 137
adding pictures 139, 140
deleting pictures 141
image list 139
items 137
populating columns 143
report view 142
setting columns 143

Index

Application Techniques 811

ListView items
index 137
label 137
overlay picture index 137
picture index 137
state picture index 137

local external functions 414
localization 691
localized deployment files 697, 768
Lock Transaction object property

about 158
listed by database interface 160

log, EAServer 492
logical unit of work 162
LogID Transaction object property

about 158
listed by database interface 160

LogPass Transaction object property
about 158
listed by database interface 160

LUW (logical unit of work) 162

M
machine code 742
MachineCode property 396
mail merge, rich text example 272
mail system, accessing 411
mail-related objects and structures 411
MailSession object 411
maintenance of an application

delivering updated PowerBuilder runtime
DLLs 756

packaging resources to simplify 747
using dynamic libraries to simplify 745

MAPI
about 411
accessing from an application 411

MDI applications
building 65
keyboard support 79
providing MicroHelp 70
shortcut keys 80
using menus 68
using sheets 68

MDI frames
arranging sheets 69
opening sheets 68
providing MicroHelp for 70
sizing custom 77

MDI sheets
about 67
arranging 69
closing 70
listing open 69
maximizing 70
opening 68
providing MicroHelp for 70
using menus with 68

MDI_1 controls 67
memory management 45
menu items

providing MicroHelp for 70
Menu painter

providing MicroHelp 70
menus

in MDI applications 67, 68
merging 318
OLE 318

Message object
about 423
properties 423

MicroHelp, providing in MDI applications 70
MicroHelpHeight attribute 79
Microsoft Active Accessibility 705
Microsoft Active Accessibility properties 706
Microsoft Excel, OLE 339, 343
Microsoft SQL Server

calling stored procedures 182
Transaction object properties for 160

Microsoft Windows Installer, required for
Runtime Packager 763

Microsoft Word
form letters example 333
OLE 331, 341, 344

migrating tables within or between databases 279
MIME types

and DataWindow plug-in 632
and window plug-in 644
specifying for DataWindow plug-in 637
specifying for window plug-in 659

Index

812 PowerBuilder

MobiLink synchronization
about 183
articles 186, 207
clients 186
connection events 199
consolidated 184
consolidated databases 198
dbmlsrv9 184
dbmlsync 186, 187
handling deletes 212
hierarchy 185
options window 193
PowerBuilder objects for 187
publications 186, 205
remote 184
remote databases 205
required files for remote machines 195
scripts 185, 202
scripts, default 201
server 184
subscriptions 186, 209
table events 200
techniques 211
users 186, 208
wizard 187

mobility impairments 702
models for packaging applications

about 750
implementing 753
testing 754

MSAA 705
MSAA properties 706
MsgTerse parameter 297
MSI files (Microsoft Windows Installer) 763
multiple databases, accessing 167

N
name component property 482
Netscape plug-in API

and the DataWindow plug-in 632
and the PowerBuilder window plug-in 644

networks, setting up user access to 756
nondefault Transaction objects

about 167

assigning values to 168
creating 168
destroying 169
specifying in SQL statements 168

NPDWEnn.DLL file 633, 646
NPPBAnn.DLL file 633, 646
NPPBSnn.DLL file 633, 646

O
Object element, window ActiveX 674
Object property

about 35
dot notation 26

ObjectAtPointer function 255
object-oriented programming, terminology 11
objects

calling ancestor functions and events 30
delivering dynamically referenced ones 745, 748
in an executable file 743
in DLL files 744
in PBD files 744
instantiating descendants 33
name conflicts 29
OLE automation for PowerBuilder 372
pronouns for 25
referencing descendants of 86
selecting type during execution 33
shared 448

objects, proxy
generating 506
generating for EJB 584

OCI_9U connection cache 465
OCX, see ActiveX control 310
ocx_error event 347
ODBC interface

configuring 756
features supported when calling stored procedures

181
installing 756
Transaction object properties for 160

ODBCU connection cache 465
ODBCU_CONLIB database parameter 466
OLE

about 372

Index

Application Techniques 813

activating object 320
ambient properties 325
arguments by reference 340
automation 328
browser 355
columns in DataWindows 354
compiler checking 338
container applications 309
data files 323
deployment 390, 393
embedding 316
error handling 346
form letters example 333
functions for DataWindow object 353
hot links 350
in-place activation 317
insertable object 310
language for automation 351
link maintenance 316
linking 316
linking and embedding compared 316
low-level pointers 352
menus for in-place activation 318
named parameters 341
object 312
objects and assignment 331
offsite activation 318
parentheses 340
performance 346
PowerBuilder exception codes 408
programmable objects 372
property change notifications 350
registry 386
server applications 309, 312, 355, 372
server command qualifiers 329, 343
server memory allocation 342
server methods and properties 338
streams 366
untyped variable 345
verbs 320, 355

OLE automation
and Object property 352, 354
and OLEObject 328
example 333
scenario 332
syntax 338

OLE control
about 309
activating 320
activating object 313, 314
appearance 313
automation 338
behavior 313, 315
blobs 323
changing object 315, 320
Contents property 322
defining 311, 312
deleting object 315
display of object 313
embedding 314, 320
empty 312, 318
events 324
icon for object 313
inserting object 320
link broken 318
linking 314, 320, 323
menus 318
Object property 338
ObjectData property 323
off-site and in-place activation compared 317
property sheet 313
saving embedded data 323
server application 323
updating link 314
user interaction 315

OLE custom control, see also ActiveX control 309
OLE DB database interfaces, Transaction object

properties for 160
OLE objects, dot notation 26
OLEActivate function 355
OLEObject object

about 328
connecting 329
creating 329
disconnecting and destroying 331
inherited for error events 379

OLEStorage object 359
OLEStream object 359
OleTxnObject object 578
Open function 85
Open function, OLE 321
opening multiple instances of windows 81

Index

814 PowerBuilder

OpenSheet function 68
operating system, configuring 756
operational polymorphism 16
ORACLE database interfaces

features supported when calling stored procedures 181
Transaction object properties for 160
using stored procedures 174, 180

overloading user-defined functions
about 16, 17
not supported in COM 552

overriding user-defined functions 16, 32

P
packages, COM+ 564
packaging an application

choosing a model for 750
compile options for 742
for testing 754
implementing a model for 753
what goes in the executable version 743

Param element, window ActiveX 675
parent objects 23
Parent pronoun 25
parentheses and OLE automation 340
passing arguments

about 32
EAServer 476
OLE 340

pasting OLE objects 322
pb.appname component property 482
pb.class component property 482
pb.cookie component property 482
pb.debug component property 482
PB.INI file

reading Transaction object values from 165
UserHelpPrefix 153

pb.librarylist component property 482
pb.live_edit component property 482
PB_FOP_SUPPRESSLOG environment variable 497
PB_HEAP_LOGFILE_OVERWRITE environment

variable 47
PB_HEAP_LOGFILENAME environment variable 47
PB_POOL_THRESHOLD environment variable 46
PBAPPLICATION attribute for window ActiveX 675

PBD file extension for MIME type 659
PBD files

about 744
compared to DLL files 744
creating 753
examples of 750
for window ActiveX 673
for window plug-in 656
including resources in 747
testing 754

PBDOM classes, overview 215
pbejbclient105.pbd 584
pbejbclient105.pbx 584
pbjvm105.dll, location of 784
PBOnFatalError environment variables 460
PBR files 747

window ActiveX 672
window plug-in 655

PBRollbackOnRTError environment variable 460
PBRXnn.OCX

description 665
installation location 665
on client workstation 687

PBRXSnn.OCX
description 665
installation location 665
registering 666

pbsoapclient105.pbx 620
PBUSR0nn.HPJ file 150
PBWINDOW attribute for window ActiveX 675
pbwsclient105.pbx 620
PBX, importing 231, 619
Pcode, for an executable application 742
performance

about 28, 35, 346
faster compiling 48
how resource delivery model affects 745, 747
variable scope 48

PFC
localizing 698
open source project 698

picture height 131, 136, 139, 140
picture mask 131, 136, 139, 140
picture width 131, 136, 139, 140
PictureListBox controls

about 130

Index

Application Techniques 815

adding items 130, 131
deleting pictures 132
example 133

pictures
delivering as resources 747

PipeEnd event 284
pipeline objects

defining in the Data Pipeline painter 281
deploying 290
specifying one to execute 288

pipeline system object 284
pipeline-error DataWindow 296
PipeMeter event 284
PipeStart event 284
piping data between data sources 279
plug-ins, moving after installation 633, 646
point and click, in graphs 255
pointers, delivering as resources 747
polymorphism 16
pooling component property 482
pooling database transactions 171
position pointer 49
position, of windows 84
Post function 421
PostEvent function 422
pound symbol, in EAServer component 500, 505
PowerBuilder

execution system 743
pipeline-error DataWindow 296
runtime DLLs 756

PowerBuilder automation server
about 372
client applications 372
client code 379, 382, 385
CLSIDs 386
deployment 390, 393
error handling 379
exception codes 408
GUIDs 394
named server 375, 384
PowerBuilder.Application 374
programmable objects 372
programmatic identifiers 377, 379, 387
registering named server 385
registering user objects 373, 376, 377
registry 386

runtime library for objects 377, 381
runtime overhead 373
sample registry update file 409
type libraries 377, 389
unregistered user objects 380
uses 373
Visual Basic client 379, 383

PowerBuilder events, triggering 422
PowerBuilder initialization file, reading Transaction

object values from 165
PowerBuilder Runtime Packager 763
PowerBuilder secure window plug-in 607
PowerBuilder standard window plug-in 607
PowerBuilder units (PBUs) and extended control

properties 311
PowerBuilder window ActiveX 607
PowerBuilder.Application

about 374, 380, 395
CreateObject function 397
exception codes 408
functions 396
GenerateGUID function 399
GenerateRegFile function 401
GenerateTypeLib function 404
properties 396
renaming 375, 384
user objects 380

PowerScript dot notation, using to call stored
procedures 179

PowerScript functions
calling by means of JavaScript 680
calling by means of VBScript 681
window ActiveX 679

Powersoft database interfaces
features supported when calling stored

procedures 180
installing 756

Powersoft reports (PSRs) 631
print area 713
print cursor 713
PrintCancel function 715
PrintClose function 715
printing

about 711
advanced 716
DataStores in EAServer components 493

Index

816 PowerBuilder

drawing objects 717
functions 711
jobs 713
line spacing 717
measurements 713
on Solaris 493
on UNIX 493
print area 713
print cursor 713, 715
stopping 715
tabbing 714

PRIVATE access 28
profiles, database 158
ProfileString function

about 165, 720
coding 165

programmable object 372
programmatic identifiers 379, 387
project objects, creating 753
Project painter

building automation objects 377, 381
using to package applications for delivery 753

pronouns 25
properties

data pipeline 284
drag and drop 146

properties, Transaction object
about 158
assigning values to 164, 168
calling stored procedures 179
descriptions of 158
listed by database interface 160
reading values from external files 165

property change notifications 350
PropertyChanged event 350
PropertyRequestEdit event 350
PROTECTED access 28
proxy objects

generating 506
generating for Web services 620

proxy server 618
PSR file extension for MIME type 637
PSR files

creating 635
in DataWindow plug-in 631

PUBLIC access 28

publication 186, 205

Q
qualifying names 23

R
read-only, passing arguments 32
REF keyword 340
reference

passing arguments by 32, 340
passing arguments by in EAServer

components 476
referencing

objects dynamically 745, 748
resources dynamically 747

RegEdit utility, obtaining supported verbs 355
registry

about 386
class information 356
creating entry 389
creating update file 401
keys 387
location of files 393
sample update file 409
storing information in 719

RegistryGet function 722
RegistrySet function 722
REGSVR32.EXE 666
ReleaseConnectionOption DBParm 465
remote databases 184
remote procedure call technique

about 173
and stored procedure result sets 173, 180
coding your application 178
declaring the stored procedure as an external

function 175
defining the standard class user object 174
saving the user object 177
specifying the default global variable type for

SQLCA 177
supported DBMS features 180

Remote Stored Procedures dialog box 176

Index

Application Techniques 817

RemoteHotLinkStart DDE event 307
RemoteHotLinkStop DDE event 307
RemoteRequest DDE event 307
RemoteSend DDE event 307
Repair function 284, 298
resource files, creating 749
resources

about 746
delivering as separate files 748
dynamically referenced 747
examples of 750
for window ActiveX 672
for window plug-in 655
in an executable file 743, 747
in DLL files 745, 747
in PBD files 745, 747
naming in resource files 749
steps for packaging 753
testing 754

result sets
how PowerBuilder handles for stored

procedures 173, 180
passing in EAServer 473
passing in transaction server environments 555

return values from ancestor scripts 30
reusability, use of dynamic libraries to facilitate 745
RevertToSelf method in COM+ 561
rich text

about 257
database 263
DataWindow plug-in restrictions 635
date fields 271
implementing 257
input fields 258
mail merge example 272
objects and formatting 277
page numbers 271
preparing 258
selection 273
stored in database 258
toolbars 262
user interaction 276
uses 257
validation 259
word wrap 261

RichText presentation style
editing keys 278
new rows 259
scripts 260
scrolling 259
user interaction 259
validation errors 259

RichTextEdit controls
about 261
data source 272
date fields 271
editing keys 278
FileExists event 265
files 263, 265
focus 274
formatting 270
input fields 270
inserting text 262
insertion point 273
LoseFocus event 265, 274
mail merge example 272
Modified property and event 265
objects 270, 277
opening files, example 266
page numbers 271, 276
preview 274
printing 275
saving 265
saving, example 266
scrolling 272
selection 273
settings 261
tab order 274
text in database example 263
toolbars 262
undoing changes 262
word wrap 261

RLE files
delivering as resources 747
naming in resource files 749

ROLLBACK statement
about 162
and AutoCommit setting 162
and UseContextObject 458
for nondefault Transaction objects 168

rows, piping between tables 279

Index

818 PowerBuilder

RowsInError property for data pipelines 284, 292
RowsRead property for data pipelines 284, 292
RowsWritten property for data pipelines 284, 292
RPCFUNC keyword

about 175
coding 176

RTE presentation style 462
RTF 257
Run function 450
Runtime Packager 763

S
Save function, OLE 361
Save User Object dialog box 177
SaveAs function, OLE 323, 361
saving data in graphs 254
scope operator 29
scripts

activating OLE columns 355
adding list box items 130, 135
adding list box pictures 132, 136
adding listbox items 135
adding ListView columns 143
adding ListView items 138
adding ListView pictures 140
deleting ListView items 141
deleting ListView pictures 141
manipulating OLE objects 338
modifying graphs in 251
OLE automation 352
OLE information from browser 357
populating ListView columns 143
synchronization 186

search path for resources in resource files 750
Section 508 704
Secure Sockets Layer provider service 425
secure window ActiveX 665
secure window plug-in

about 642
using 647

security
DataWindow plug-in 632
window ActiveX 665
window plug-in 643

Select Standard Class Type dialog box 175
semicolons, as SQL statement terminators 164, 166
Send function 421
series, graph

adding data points in windows 249
creating in window 249
identifying in windows 250

server applications, OLE 309
server computers, configuring 756
server databases, configuring 756
server, MobiLink synchronization 184
ServerName Transaction object property

about 158
listed by database interface 160

service objects 425
SetAbort method 459
SetAutomationLocale function 351
SetChanges function 467
SetColumn function 143
SetComplete method 459
SetFullState function 467
SetItem function 143
SetMicroHelp function 70
SetOptions method, for Web service proxy 626
SetOverLayPicture function 141
SetProfileString function 721
SetTransPool function 172
shared components 448
shared objects, about 524
sharing component property 482
sharing data, with RichTextEdit controls 272
shortcut keys, in MDI applications 80
SOAP

case sensitivity 623
connecting to a server 626
exception handling 628

SOAPConnection object 620
SoapException object 620
Solaris printing, setting up 494
source tables for data pipelines 281
SQL Server, calling stored procedures 182
SQL statements

error handling 170
for transaction processing 162
specifying Transaction object in 168
terminating with semicolons 164, 166

Index

Application Techniques 819

SQLCA
about 158, 163
calling stored procedure as property of 179
creating and destroying prohibited 168
customizing to call stored procedures 172
error handling 170
properties, assigning values to 164
properties, descriptions of 158
properties, listed by database interface 160
setting in Application painter property sheet 178
specifying default global variable type for 177
user object inherited from 173, 178

SQLCode Transaction object property
about 158, 171
coding 171
listed by database interface 160

SQLDBCode Transaction object property
about 158, 171
coding 171
listed by database interface 160

SQLErrText Transaction object property
about 158, 171
coding 171
listed by database interface 160

SQLNRows Transaction object property
about 158
listed by database interface 160

SQLReturnData Transaction object property
about 158
listed by database interface 160

SQLSTATE error numbers, suppressing 297
SRC attribute for Embed element 636, 656
SSL

callbacks 539
connections with EAServer 531
properties 534
provider object 536
provider service 425

SSLCallback object, using 540
SSLServiceProvider object

creating an instance 536
using 533

standalone executable files 750
standard frames in MDI applications 67
Start function 284, 290, 450
state component property 482

stateless component property 482
statements in WordBasic (OLE) 341
static lookup 18
Stop function 450
storage component property 482
storages, OLE

about 358
building file 363
documenting structure 369
efficiency 360
example 363
members 362
saving 361
structure 358

stored procedures, calling in applications
about 172
basic steps 173
coding your application 178
declaring as external functions 175
defining the standard class user object 174
ORACLE example 180
ORACLE7 example 174
result sets, how PowerBuilder handles 173, 180
saving the user object 177
specifying the default global variable type for

SQLCA 177
supported DBMS features 180

stream mode 48
streams, OLE

about 358, 366
length 366
opening 366
read/write pointer 366
reading and writing 367

structure objects, using user objects as structures 20
SUBROUTINE declaration

about 175
coding 176

subroutines, using to call database stored
procedures 175

subscriptions
about 186
synchronization with multiple servers 210

Super pronoun 30
Sybase Adaptive Server Enterprise database interface,

Transaction object properties for 164

Index

820 PowerBuilder

Sybase DirectConnect database interfaces, Transaction
object properties for 160

Sybase EAServer profiles
EAServer Profiles dialog box 447

Sybase SQL Anywhere, features supported when calling
stored procedures 182

Sybase System 10 and System 11
calling stored procedures 182

synchronization See MobiLink synchronization
synchronization server 184
Syntax property for data pipelines 284
system exception handler 526
SystemError event, scripting 530

T
Tab controls

about 89
appearance 93
Control property array 100
CreateOnDemand property 101
defined 89
dot notation 96
events 102
managing tab pages 91
parent 96
property sheet 93
tab labels 95
tab positions 94
types of tab pages 90

tab pages
closing in script 99
controls in scripts 98
defined 89
deleting 91
embedded 90
events 102
independent user objects 90
object references 100
opening in script 99
parent 96
property sheet 93
reordering 91

tables
destination for data pipelines 281

migrating within or between databases 279
source for data pipelines 281

TabularResults, use with PowerBuilder 473
Tag attribute, providing MicroHelp 71
target controls, drag and drop 145
testing an application

executable version 754
tracing execution 755

text files
functions 48
reading and writing 48

This pronoun 25
thread safe component property 482
thread.safe property 451
timeout component property 482
toolbars, in MDI applications 67
tracing executable application 755
transaction context service 558
Transaction object

about 157
as built-in system type 175
assigning values to 164
default 158, 163
error handling 170
for multiple database connections 167
nondefault, assigning values to 168
nondefault, creating 168
nondefault, destroying 169
nondefault, specifying in SQL statements 168
reading values from external files 165
remote procedure call technique 172
specifying 169
SQLCA 158, 163
using to call stored procedures 172

Transaction object properties
about 158
assigning values to 164, 168
calling stored procedures 179
descriptions of 158
listed by database interface 160
reading values from external files 165

transaction pooling 171
transaction processing

about 162
controlling from COM clients 578
error handling 170

Index

Application Techniques 821

in EAServer 457
pooling database transactions 171
SQL statements for 162
support for COM+ 558

TransactionServer context object
in COM+ 558, 561
in EAServer 458, 480

TreeView controls
about 105
example 125

TriggerEvent function 422
triggering events 421, 422
TriggerPBEvent function

JavaScript 684
VBScript 684

tx_outcome component property 482
tx_timeout component property 482
tx_type component property 482
tx_vote component property 482
type component property 482
type libraries for OLE 377, 389, 404
typographical conventions xx

U
unbounded arrays, window 84
Unicode

EAServer connection caches 465
update status, in distributed applications 467
updates, in EAServer components 467
URLs

and DataWindow plug-in 637
and window plug-in 660

UseContextObject DBParm 458, 460
user events for window ActiveX

calling by means of JavaScript 684
calling by means of VBScript 684

User Help button 151
user interface, design for international

deployment 697
User Object painter

defining supporting user object for data
pipelines 292

using to define custom Transaction objects 174

user objects
about 89
as COM+ components 545
as EAServer components 445
automation server 373, 376
Control property array 100
for PowerBuilder.Application 380
OLE registry 386
registering for OLE 377
selecting type during execution 34
type libraries 377, 389, 404
using as structures 20
using to call database stored procedures 174
using to support data pipelines 288, 292, 300

user, MobiLink 186, 208
user-defined functions for window ActiveX

arguments in JavaScript 682
calling by means of JavaScript 682
calling by means of VBScript 683

UserID Transaction object property
about 158
listed by database interface 160

users of an application, configuring computers for 756
USING TransactionObject clause

about 168
in CONNECT statement 166
in DISCONNECT statement 167

utility functions 420

V
validation techniques, rich text 259
validation, of COM/COM+ components 553
validation, of EAServer components 477
value, passing arguments by 32

and EAServer 476
variable accessor methods, adding to COM object

interface 551
Variable Types property page in Application painter

property sheet 178
variables

declaring for Transaction objects 168
declaring, of window's type 82
default global 177
of type window 85

Index

822 PowerBuilder

performance impact 48
untyped 345

VBScript
calling PowerScript functions 681
calling user events 684
calling user-defined functions 683
event handlers, for window ActiveX 679
InvokePBFunction function 683
TriggerPBEvent function 684

Visual Basic OLE client 379, 383
visual impairments 701
Voluntary Product Accessibility Template See VPAT
VPAT 709

W
WCAG (Web Content Accessibility Guidelines) 704
Web applications, design of 643
Web browser

plug-in behavior 632, 644
plug-in compatibility 632, 644

Web Content Accessibility Guidelines See WCAG
Web server

DataWindow plug-in 637
window ActiveX 686

Web services
.NET engine 617
about 608
EasySoap engine 618
exception handling 628
exposing components as 486
invoking methods 628
PowerScript client 615
producing a service 616
proxy objects 620

WIDTH attribute for Embed element 636, 656
window ActiveX

about 663
application ideas 664
client workstation software 687
client-side scripting 677
CODEBASE attribute 674
converting existing application 671
database access 670
developing windows 667

event handlers 678
events 685
external resources 670
finding CLASSID value 674
HTML creation 674
installation location 665
Object element 674
Param element 675
PowerScript functions 679
registering 666
required DLLs 667
requirements 665
resource files for dynamic libraries 672
security 665
supported browsers 664
testing 671
user-defined functions 681
viewing 688
Web server 686

WINDOW attribute for Embed element 657, 659
Window painter, specifying drag mode for a

control 146
window plug-in

about 641
application design 650
application ideas 643
browser-server interaction 644
child window 653
client workstation software 660
converting existing application 653
database access 652
deployed components 648
developing 648
dynamic libraries 654
external resources 652
files on server 659
HTML document 644
objects 650
requirements 645
resource files for dynamic libraries 655
scripts 651
secure version 642, 647
security 643
standard version, about 642
supported browsers 643
testing 654

Index

Application Techniques 823

variables 651
viewing 661
window management 650

windows
and MDI applications 66, 67, 69
defined as datatypes 81
displaying 81
for controlling data pipelines 285
selecting type during execution 34

Windows events
processing 423
triggering 421

Windows messages, sending 420
wizards

COM/COM+ components 546
EAServer components 446
EAServer proxy objects 507
EJB proxy objects 587

WMF files
delivering as resources 747
naming in resource files 749

Word 97 automation 343
word processor for rich text 258
WordBasic statements 341
WSDL

about 615
selecting for Web service proxy 620

Index

824 PowerBuilder

	Application Techniques
	About This Book
	CHAPTER 1 Using Sample Applications
	About the sample applications
	Samples on the Web
	Samples on the CD

	Installing the sample applications
	Opening the sample applications
	Using the Code Examples application
	Browsing the examples
	Finding examples
	Running and examining examples

	CHAPTER 2 Selected Object-Oriented Programming Topics
	Terminology review
	PowerBuilder techniques
	Other techniques

	CHAPTER 3 Selected PowerScript Topics
	Dot notation
	Constant declarations
	Controlling access for instance variables
	Resolving naming conflicts
	Return values from ancestor scripts
	Types of arguments for functions and events
	Ancestor and descendent variables
	Optimizing expressions for DataWindow and external objects
	Exception handling in PowerBuilder
	Basics of exception handling
	Objects for exception handling support
	Handling exceptions
	Creating user-defined exception types
	Adding flexibility and facilitating object reuse
	Using the SystemError and Error events

	Garbage collection and memory management
	Configuring memory management

	Efficient compiling and performance
	Reading and writing text or binary files

	CHAPTER 4 Getting Information About PowerBuilder Class Definitions
	Overview of class definition information
	Terminology
	Who uses PowerBuilder class definitions

	Examining a class definition
	Getting a class definition object
	Getting detailed information about the class
	Getting information about a class’s scripts
	Getting information about variables

	CHAPTER 5 Building an MDI Application
	About MDI
	Building an MDI frame window
	Using sheets
	Providing MicroHelp
	Using toolbars in MDI applications
	Customizing toolbar behavior
	Saving and restoring toolbar settings

	Sizing the client area
	About keyboard support in MDI applications

	CHAPTER 6 Managing Window Instances
	About window instances
	Declaring instances of windows
	Using window arrays
	Referencing entities in descendants

	CHAPTER 7 Using Tab Controls in a Window
	About Tab controls
	Defining and managing tab pages
	Customizing the Tab control
	Using Tab controls in scripts
	Referring to tab pages in scripts
	Referring to controls on tab pages
	Opening, closing, and hiding tab pages
	Keeping track of tab pages
	Creating tab pages only when needed
	Events for the parts of the Tab control

	CHAPTER 8 Using TreeView Controls
	About TreeView controls
	Populating TreeViews
	Functions for inserting items
	Inserting items at the root level
	Inserting items below the root level

	Managing TreeView items
	Deleting items
	Renaming items
	Moving items using drag and drop
	Sorting items

	Managing TreeView pictures
	Pictures for items
	Setting up picture lists
	Using overlay pictures

	Using DataWindow information to populate a TreeView

	CHAPTER 9 Using Lists in a Window
	About presenting lists
	Using lists
	Using drop-down lists
	Using ListView controls
	Using report view

	CHAPTER 10 Using Drag and Drop in a Window
	About drag and drop
	Drag-and-drop properties, events, and functions
	Identifying the dragged control

	CHAPTER 11 Providing Online Help for an Application
	Creating Help files
	Providing online Help for developers
	Providing online Help for users

	CHAPTER 12 Using Transaction Objects
	About Transaction objects
	Description of Transaction object properties
	Transaction object properties and supported PowerBuilder database interfaces

	Working with Transaction objects
	Transaction basics
	The default Transaction object
	Assigning values to the Transaction object
	Reading values from an external file
	Connecting to the database
	Using the Preview tab to connect in a PowerBuilder application
	Disconnecting from the database
	Defining Transaction objects for multiple database connections
	Error handling after a SQL statement
	Pooling database transactions

	Using Transaction objects to call stored procedures
	Step 1: define the standard class user object
	Step 2: declare the stored procedure as an external function
	Step 3: save the user object
	Step 4: specify the default global variable type for SQLCA
	Step 5: code your application to use the user object

	Supported DBMS features when calling stored procedures

	CHAPTER 13 Using MobiLink Synchronization
	About MobiLink synchronization
	Working with PowerBuilder synchronization objects
	Trying out the MobiLink Synchronization for ASA wizard
	What gets generated
	Using the synchronization objects in your application
	Using the synchronization options window
	Runtime requirements for synchronization on remote machines
	Preparing to use the wizard

	Preparing consolidated databases
	Connection events
	Table events
	Working with scripts and users in Sybase Central

	Creating remote databases
	Creating and modifying publications
	Creating MobiLink users
	Adding subscriptions

	Synchronization techniques

	CHAPTER 14 Using PowerBuilder XML Services
	About XML and PowerBuilder
	About PBDOM
	PBDOM object hierarchy
	PBDOM node objects
	PBDOM_OBJECT
	PBDOM_DOCUMENT
	PBDOM_DOCTYPE
	PBDOM_ELEMENT
	PBDOM_ATTRIBUTE
	PBDOM_ENTITYREFERENCE
	PBDOM_CHARACTERDATA
	PBDOM_TEXT
	PBDOM_CDATA
	PBDOM_COMMENT
	PBDOM_PROCESSINGINSTRUCTION

	Adding pbdom105.pbx to your application
	Using PBDOM
	Validating the XML
	Creating an XML document from XML
	Creating an XML document from scratch
	Accessing node data
	Manipulating the node-tree hierarchy

	Handling PBDOM exceptions
	XML namespaces
	Setting the name and namespace of a PBDOM_ATTRIBUTE

	CHAPTER 15 Manipulating Graphs
	Using graphs
	Working with graph controls in code

	Populating a graph with data
	Modifying graph properties
	How parts of a graph are represented
	Referencing parts of a graph

	Accessing data properties
	Getting information about the data
	Saving graph data
	Modifying colors, fill patterns, and other data

	Using point and click

	CHAPTER 16 Implementing Rich Text
	Using rich text in an application
	Sources of rich text

	Using a RichText DataWindow object
	Using a RichTextEdit control
	Giving the user control
	Text for the control
	Opening and saving files: an example

	Formatting of rich text
	Input fields
	Using database data
	Cursor position in the RichTextEdit control
	Preview and printing

	Rich text and the user

	CHAPTER 17 Piping Data Between Data Sources
	About data pipelines
	Building the objects you need
	Building a Pipeline object
	Building a supporting user object
	Building a window

	Performing some initial housekeeping
	Starting the pipeline
	Monitoring pipeline progress
	Canceling pipeline execution
	Committing updates to the database

	Handling row errors
	Repairing error rows
	Abandoning error rows

	Performing some final housekeeping

	CHAPTER 18 Using DDE in an Application
	About DDE
	DDE functions and events

	CHAPTER 19 Using OLE in an Application
	OLE support in PowerBuilder
	OLE controls in a window
	OLE controls and insertable objects
	Setting up the OLE control
	Activating the object in the painter
	Changing the object in the control
	How the user interacts with the control

	Linking versus embedding
	Offsite or in-place activation
	Menus for in-place activation
	Modifying an object in an OLE control
	Activating the OLE object
	Changing the object in an OLE control
	Events for the OLE control

	OLE custom controls
	Setting up the custom control
	Programming the ActiveX control

	Programmable OLE Objects
	OLEObject object type
	Assignments among OLEControl, OLECustomControl, and OLEObject datatypes
	Automation scenario
	Example: generating form letters using OLE

	OLE objects in scripts
	The automation interface
	Setting properties
	Calling functions
	Qualifying server commands

	Automation and the Any datatype
	OLEObjects for efficiency
	Handling errors
	Creating hot links
	Setting the language for OLE objects and controls
	Low-level access to the OLE object
	OLE objects in DataWindow objects
	OLE columns in an application

	OLE information in the Browser
	Advanced ways to manipulate OLE objects
	Structure of an OLE storage
	Object types for storages and streams
	Opening and saving storages
	Getting information about storage members
	Example: building a storage

	Opening streams
	Strategies for using storages

	CHAPTER 20 PowerBuilder Runtime Automation Server
	Using the runtime automation server
	Uses for runtime automation
	Three methods

	Using a user object as an automation server
	Creating a class user object to be a server
	Building the object’s runtime library
	Registering the object
	Writing client code that accesses the user object

	Using PowerBuilder as an automation server
	Creating the user objects you will access
	Building runtime libraries
	Writing client code that accesses PowerBuilder and user objects

	Creating and using a named server
	More about user objects and the registry
	What are all the identifiers for?
	Where information about your object is stored
	Creating registry information

	Deploying an application that uses the automation server
	Multiple versions and updates

	Runtime automation server reference
	PowerBuilder.Application server object
	CreateObject function
	GenerateGUID function
	GenerateRegFile function
	GenerateTypeLib function
	Exception codes
	Sample registry update file

	CHAPTER 21 Building a Mail-Enabled Application
	About MAPI
	Using MAPI

	CHAPTER 22 Using External Functions and Other Processing Extensions
	Using external functions
	Declaring external functions
	Sample declarations
	Passing arguments
	Passing numeric datatypes
	Passing strings

	Calling external functions on UNIX

	Using utility functions to manage information
	Sending Windows messages
	The Message object
	Message object properties

	Context information
	Context information service
	Context keyword service
	CORBACurrent service
	Error logging service
	Internet service
	Secure Sockets Layer service
	Transaction server service

	CHAPTER 23 Distributed Application Development with PowerBuilder
	Distributed application architecture
	Server support

	CHAPTER 24 Building an EAServer Component
	About building an EAServer component
	About using the wizards
	About the development process
	Creating an EAServer profile

	Working with shared and service components
	About shared components
	About service components
	Threading issues and component types
	Using the EAServer Thread Manager

	Providing support for instance pooling
	Providing support for transactions
	Accessing a database from an EAServer component
	Using connection caching
	Performing retrieval operations
	Example: passing an array by reference

	Performing updates
	Typical usage scenario
	Example

	Passing result sets

	Defining the component interface
	Implementing an existing interface
	Invoking another server component’s methods
	Accessing component properties
	Exposing an NVO as a Web service
	Testing and debugging the component
	Live editing
	Remote debugging
	Putting messages into the EAServer log

	Printing data
	Printing on the Solaris operating system
	Setting up a printer

	Printing to PDF

	Deploying a component to EAServer

	CHAPTER 25 Building an EAServer Client
	About building an EAServer client
	About using the wizards
	About the development process

	Connecting to EAServer
	Writing the code by hand
	Setting options

	Using the wizard to create a Connection object

	Generating EAServer proxy objects
	Invoking component methods
	Invoking a component method
	Invoking an EJB component method
	Destroying instances

	Using the JaguarORB object
	Instantiation using String_To_Object
	Instantiation using the naming service API

	Client- and component-demarcated transactions
	Requesting a message back from the server
	Example
	Client application window
	EAServer component
	Shared object definition
	Callback object definition

	Handling errors
	Handling CORBA exceptions
	Scripting the Error event
	Scripting the SystemError event

	Deploying the client application

	CHAPTER 26 Using SSL in PowerBuilder clients
	Using secure connections with EAServer
	SSL connections in PowerBuilder
	SSL properties
	ORB properties

	Establishing a secure connection
	Using SSL callbacks
	Getting session information
	Implementing the SSLCallback object
	Specifying the SSLCallback object

	Retrieving session security information

	CHAPTER 27 Building a COM or COM+ Component
	About building COM and COM+ components
	About using the wizards
	About the development process

	About the Component Object Model
	About PowerBuilder COM servers
	Comparing automation servers and PowerBuilder COM servers

	Defining the component interface
	Methods and datatypes
	Restrictions on coding
	Recording errors in a log file

	Accessing a database from a COM component
	Passing result sets

	Providing support for transactions
	Invoking another server component’s methods
	Security issues
	Building COM/COM+ components in the Project painter
	Registering components automatically
	Deploying components to COM+
	Choosing a custom or dual interface
	Setting up the embedded PBD

	How the PowerBuilder COM object executes
	Memory allocation

	Deploying a PowerBuilder COM server
	Using a PowerBuilder COM server with a COM-enabled application

	Accessing PowerBuilder COM servers from clients
	Visual Basic as client
	C++ as client
	Using PowerBuilder COM servers and objects with DCOM

	CHAPTER 28 Building a COM or COM+ Client
	About building a COM or COM+ client
	Connecting to a COM server
	Interacting with the COM component
	Controlling transactions from a client

	CHAPTER 29 Building an EJB client
	About building an EJB client
	Adding pbejbclient105.pbx to your application
	Generating EJB proxy objects
	Using an EJB Proxy project
	Using the ejb2pb105 tool
	Viewing the generated proxies
	Datatype mappings

	Creating a Java VM
	Connecting to the server
	Invoking component methods
	Exception handling
	Client-managed transactions
	Debugging the client

	CHAPTER 30 Web Application Development with PowerBuilder
	Building Web applications
	Web services
	Web targets
	JSP targets
	Web DataWindow
	DataWindow Web control for ActiveX
	DataWindow plug-in
	PowerBuilder window plug-in
	PowerBuilder window ActiveX

	CHAPTER 31 Building a Web Services Client
	About Web services
	About building a Web services client
	Choosing a Web service engine
	Using the .NET Web service engine
	Using the EasySoap Web service engine

	Assigning firewall settings to access a Web service

	Importing objects from an extension file
	Generating Web service proxy objects
	Connecting to a SOAP server
	Invoking the Web service method
	Exception handling
	Using the UDDI Inquiry API

	CHAPTER 32 Using the DataWindow Plug-in
	About the DataWindow plug-in
	How the DataWindow plug-in works
	Installing and configuring the DataWindow plug-in
	Developing and deploying a DataWindow plug-in

	Saving a Powersoft report (PSR)
	Creating an HTML page
	Sample page

	Setting up the Web server
	Setting up users’ workstations

	CHAPTER 33 Using the PowerBuilder Window Plug-in
	About the PowerBuilder window plug-in
	What kinds of applications make good plug-ins?
	How the PowerBuilder window plug-in works

	Installing and configuring the PowerBuilder window plug-ins
	Using the secure PowerBuilder window plug-in
	Developing and deploying a PowerBuilder window plug-in application
	Creating the PowerBuilder application
	Design choices for plug-in applications
	Defining the starting window in the Window painter
	Testing the application in PowerBuilder
	Building the dynamic libraries

	Creating an HTML page
	Attributes of the Embed element
	Sample page
	Embed element with additional attributes

	Setting up the server
	Setting up users’ workstations
	Required components
	Viewing the Web page and plug-in application

	CHAPTER 34 Using the PowerBuilder Window ActiveX
	About the PowerBuilder window ActiveX
	Kinds of applications that work with the PowerBuilder window ActiveX
	How the PowerBuilder window ActiveX works
	Installing and configuring the PowerBuilder window ActiveX
	Developing and deploying a PowerBuilder window ActiveX application

	Creating the PowerBuilder application
	Designing the application
	Defining the starting window in the Window painter
	Testing the application in PowerBuilder

	Creating an HTML page
	Attributes of the Object element
	Basic page
	Client-side scripting

	Events for the PowerBuilder window ActiveX
	Setting up the server
	Setting up users’ workstations
	Viewing the Web page and PowerBuilder window ActiveX application

	CHAPTER 35 Internationalizing an Application
	Developing international applications
	Using Unicode
	About Unicode
	Unicode support in PowerBuilder

	Internationalizing the user interface
	Localizing the product
	About the Translation Toolkit

	CHAPTER 36 Building Accessible Applications
	Understanding accessibility challenges
	Accessibility requirements for software and Web applications
	Creating accessible software applications with PowerBuilder
	About VPATs
	Testing product accessibility

	CHAPTER 37 Printing from an Application
	Printing functions
	Printing basics
	Printing a job
	Using tabs
	Stopping a print job
	Advanced printing techniques

	CHAPTER 38 Managing Initialization Files and the Windows Registry
	About preferences and default settings
	Managing information in initialization files
	Managing information in the Windows registry

	CHAPTER 39 Building InfoMaker Styles and Actions
	About form styles
	Naming the DataWindow controls in a form style
	Building and using a form style
	Modifying an existing style
	Identifying the window as the basis of a style

	Building a style from scratch
	Completing the style
	Working with the central DataWindow controls
	Adding controls
	Defining actions
	Using menus
	Writing scripts
	Adding other capabilities

	Using the style
	Building a form with the custom form style
	Managing the use of form styles

	CHAPTER 40 Packaging an Application for Deployment
	About deploying applications
	Creating an executable version of your application
	Compiler basics
	Learning what can go in the package
	Creating a PowerBuilder resource file
	Choosing a packaging model
	Implementing your packaging model
	Testing the executable application

	Delivering your application to end users
	Installation checklist
	Starting the deployed application

	CHAPTER 41 Deploying Applications and Components
	Deploying applications, components, and supporting files
	PowerBuilder Runtime Packager
	PowerBuilder runtime files
	Database connections
	Native database drivers
	ODBC database drivers and supporting files
	OLE DB database providers
	ADO.NET database interface
	JDBC database interface

	Java support
	PowerBuilder extensions
	PDF and XSL-FO export
	Using the GNU Ghostscript distiller
	Using the Apache FO processor

	DataWindow Web control for ActiveX
	Plug-ins and PowerBuilder window ActiveX controls
	PowerBuilder components on EAServer
	PowerBuilder COM servers
	PowerBuilder automation servers
	Creating registry information for OLE automation objects

	Web DataWindow on EAServer
	Web DataWindow on COM+ or IIS

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

