
Performance and Tuning Guide

Adaptive Server Enterprise

 12.5



DOCUMENT ID: 33621-01-1250-04

LAST REVISED: October  2002

Copyright © 1989-2002 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes. 
Information in this document is  subject to change without notice. The software described herein is furnished under  a license agreement, 
and it may be used or copied only in accordance with the  terms of that agreement.

To order additional documents, U.S. and Canadian customers should call  Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer  Fulfillment via the above fax number. All other 
international customers should  contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled 
software release dates. No part of this publication may be reproduced, transmitted, or translated in any  form or by any means, electronic, 
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, 
Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server 
Enterprise Replication, Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, Anywhere Studio, Application 
Manager, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Translator, APT-Library, Backup 
Server, BizTracker, ClearConnect, Client-Library, Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench, 
DataArchitect, Database Analyzer, DataExpress, DataServer, DataWindow, DB-Library, dbQueue, Developers Workbench, Direct 
Connect Anywhere, DirectConnect, Distribution Director, e-ADK, E-Anywhere, e-Biz Integrator, E-Whatever, EC-GATEWAY, 
ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise 
Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work 
Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager, 
GlobalFIX, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, 
InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, MainframeConnect, Maintenance Express,  MDI Access Server, MDI Database 
Gateway, media.splash, MetaWorks, MySupport, Net-Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle, 
OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open 
Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute,  PC 
Net Library, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, 
PowerDimensions, PowerDynamo, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, 
Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst, Rapport, Report Workbench, 
Report-Execute, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Resource 
Manager, RW-DisplayLib, S-Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, 
smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL 
Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/
CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, S.W.I.F.T. Message Format Libraries, 
Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase MPP, Sybase SQL Desktop, Sybase 
SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial, SyberAssist, SyBooks, System 10, 
System 11, System XI (logo), SystemTools, Tabular Data Stream, TradeForce, Transact-SQL, Translation Toolkit, UNIBOM, Unilib, 
Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual Components, VisualSpeller, VisualWriter, VQL, 
WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server, 
Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server and XP Server are 
trademarks of Sybase, Inc. 07/02

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or  registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set  forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth  in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.



Contents

Performance & Tuning Guide iii

About This Book .......................................................................................................................  xxxi

CHAPTER 1 Overview ..........................................................................................  1
Good performance ...........................................................................  1

Response time ..........................................................................  1
Throughput ................................................................................  2
Designing for performance ........................................................  2

Tuning performance .........................................................................  2
Tuning levels .............................................................................  3

Identifying system limits ...................................................................  8
Setting tuning goals..........................................................................  8
Analyzing performance ....................................................................  8

Normal Forms..........................................................................  10
Locking ....................................................................................  10
Special Considerations............................................................  11

CHAPTER 2 Networks and Performance..........................................................  13
Introduction ....................................................................................  13
Potential performance problems ....................................................  13

Basic questions on network performance ...............................  14
Techniques summary ..............................................................  14
Using sp_sysmon while changing network configuration ........  15

How Adaptive Server uses the network .........................................  15
Changing network packet sizes .....................................................  15
Large versus default packet sizes for user connections.................  16

Number of packets is important...............................................  17
Evaluation tools with Adaptive Server .....................................  17
Evaluation tools outside of Adaptive Server............................  18
Server-based techniques for reducing network traffic .............  18

Impact of other server activities......................................................  19
Single user versus multiple users............................................  20

Improving network performance.....................................................  20
Isolate heavy network users....................................................  20



Contents

iv Adaptive Server Enterprise

Set tcp no delay on TCP networks ..........................................  21
Configure multiple network listeners .......................................  22

CHAPTER 3 Using Engines and CPUs.............................................................. 23
Background concepts.....................................................................  23

How Adaptive Server processes client requests .....................  24
Client task implementation ......................................................  25

Single-CPU process model ............................................................  26
Scheduling engines to the CPU ..............................................  26
Scheduling tasks to the engine ...............................................  28
Execution task scheduling.......................................................  29

Adaptive Server SMP process model ............................................  31
Scheduling engines to CPUs...................................................  32
Scheduling Adaptive Server tasks to engines .........................  32
Multiple network engines.........................................................  33
Task priorities and run queues ................................................  33
Processing scenario ................................................................  34

Housekeeper task improves CPU utilization ..................................  35
Side effects of the housekeeper task ......................................  35
Configuring the housekeeper task...........................................  35

Measuring CPU usage ...................................................................  37
Single-CPU machines .............................................................  37
Determining when to configure additional engines..................  38
Taking engines offline .............................................................  39

Enabling engine-to-CPU affinity .....................................................  39
Multiprocessor application design guidelines.................................  41

CHAPTER 4 Distributing Engine Resources .................................................... 43
Algorithm for successfully distributing engine resources ...............  43

Algorithm guidelines ................................................................  46
Environment analysis and planning.........................................  47
Performing benchmark tests ...................................................  49
Setting goals............................................................................  50
Results analysis and tuning.....................................................  50
Monitoring the environment over time .....................................  50

Manage preferred access to resources..........................................  51
Types of execution classes ............................................................  51

Predefined execution classes..................................................  52
User-Defined execution classes..............................................  52

Execution class attributes ..............................................................  53
Base priority ............................................................................  53
Time slice ................................................................................  54
Task-to-engine affinity .............................................................  54



Contents

Performance & Tuning Guide v

Setting execution class attributes...................................................  55
Assigning execution classes ...................................................  56
Engine groups and establishing task-to-engine affinity ...........  56
How execution class bindings affect scheduling .....................  58

Setting attributes for a session only ...............................................  60
Getting information.........................................................................  60
Rules for determining precedence and scope................................  61

Multiple execution objects and ECs ........................................  61
Resolving a precedence conflict..............................................  64
Examples: determining precedence ........................................  64

Example scenario using precedence rules ....................................  66
Planning ..................................................................................  67
Configuration ...........................................................................  68
Execution characteristics.........................................................  69

Considerations for Engine Resource Distribution ..........................  69
Client applications: OLTP and DSS ........................................  70
Adaptive Server logins: high-priority users..............................  71
Stored procedures: “hot spots”................................................  71

CHAPTER 5 Controlling Physical Data Placement..........................................  73
Object placement can improve performance .................................  73

Symptoms of poor object placement .......................................  74
Underlying problems ...............................................................  75
Using sp_sysmon while changing data placement..................  75

Terminology and concepts .............................................................  76
Guidelines for improving I/O performance .....................................  76

Spreading data across disks to avoid I/O contention ..............  77
Isolating server-wide I/O from database I/O............................  78
Keeping transaction logs on a separate disk...........................  78
Mirroring a device on a separate disk .....................................  79

Creating objects on segments........................................................  80
Using segments.......................................................................  81
Separating tables and indexes ................................................  82
Splitting large tables across devices .......................................  82
Moving text storage to a separate device................................  82

Partitioning tables for performance ................................................  83
User transparency ...................................................................  83
Partitioned tables and parallel query processing.....................  84
Improving insert performance with partitions...........................  85
Restrictions on partitioned tables ............................................  86
Partition-related configuration parameters ..............................  86
How Adaptive Server distributes partitions on devices ...........  86

Space planning for partitioned tables.............................................  87
Read-only tables .....................................................................  88



Contents

vi Adaptive Server Enterprise

Read-mostly tables..................................................................  88
Tables with random data modification.....................................  89

Commands for partitioning tables ..................................................  90
alter table...partition syntax .....................................................  90
alter table...unpartition Syntax.................................................  91
Changing the number of partitions ..........................................  91
Distributing data evenly across partitions................................  91
Using parallel bcp to copy data into partitions.........................  94
Getting information about partitions ........................................  95
Using bcp to correct partition balance .....................................  96
Checking data distribution on devices with sp_helpsegment ..  97
Updating partition statistics .....................................................  99

Steps for partitioning tables..........................................................  100
Backing up the database after partitioning tables .................  101
Table does not exist ..............................................................  101
Table exists elsewhere in the database ................................  102
Table exists on the segment .................................................  103

Special procedures for difficult situations.....................................  107
Clustered indexes on large tables .........................................  108
Alternative for clustered indexes ...........................................  109

Problems when devices for partitioned tables are full ..................  111
Adding disks when devices are full .......................................  112
Adding disks when devices are nearly full.............................  113

Maintenance issues and partitioned tables ..................................  114
Regular maintenance checks for partitioned tables ..............  114

CHAPTER 6 Database Design.......................................................................... 117
 Basic design................................................................................  117

Physical database design for Adaptive Server......................  118
Logical Page Sizes................................................................  118

Normalization ...............................................................................  119
Levels of normalization..........................................................  119
Benefits of normalization .......................................................  119
First Normal Form .................................................................  120
Second Normal Form ............................................................  121
Third Normal Form ................................................................  122

Denormalizing for performance....................................................  124
Risks......................................................................................  125
Denormalization input............................................................  126
 Techniques...........................................................................  127
Splitting tables .......................................................................  129
Managing denormalized data ................................................  131
Using triggers ........................................................................  132
Using application logic...........................................................  132



Contents

Performance & Tuning Guide vii

Batch reconciliation ...............................................................  133

CHAPTER 7 Data Storage................................................................................  135
Performance gains through query optimization............................  135

Query processing and page reads ........................................  136
Adaptive Server pages.................................................................  137

Page headers and page sizes...............................................  138
Varying logical page sizes.....................................................  138
Data and index pages ...........................................................  139
Large Object (LOB) Pages ....................................................  139
Extents ..................................................................................  140

Pages that manage space allocation ...........................................  141
Global allocation map pages .................................................  141
Allocation pages ....................................................................  142
Object allocation map pages .................................................  142
How OAM pages and allocation pages manage object storage 142
Page allocation keeps an object’s pages together ................  143
sysindexes table and data access.........................................  143

Space overheads .........................................................................  144
Number of columns and size.................................................  145
Number of rows per data page..............................................  149
Maximum numbers................................................................  150

Heaps of data: tables without clustered indexes..........................  151
Lock schemes and differences between heaps ....................  151
Select operations on heaps...................................................  152
Inserting data into an allpages-locked heap table .................  153
Inserting data into a data-only-locked heap table..................  154
Deleting data from a heap table ............................................  154
Updating data on a heap table ..............................................  155

How Adaptive Server performs I/O for heap operations ..............  157
Sequential prefetch, or large I/O ...........................................  157

Caches and object bindings .........................................................  158
Heaps, I/O, and cache strategies ..........................................  158
Select operations and caching ..............................................  160
Data modification and caching ..............................................  161

Asynchronous prefetch and I/O on heap tables ...........................  163
Heaps: pros and cons ..................................................................  164
Maintaining heaps ........................................................................  164

Methods.................................................................................  165
Transaction log: a special heap table...........................................  166

CHAPTER 8 Indexing for Performance ..........................................................  167
How indexes affect performance..................................................  167



Contents

viii Adaptive Server Enterprise

Detecting indexing problems........................................................  168
Symptoms of poor indexing...................................................  168

Fixing corrupted indexes ..............................................................  171
Repairing the system table index ..........................................  171

Index limits and requirements ......................................................  174
Choosing indexes.........................................................................  174

Index keys and logical keys...................................................  175
Guidelines for clustered indexes ...........................................  176
Choosing clustered indexes ..................................................  177
Candidates for nonclustered indexes ....................................  177
Other indexing guidelines......................................................  178
Choosing nonclustered indexes ............................................  179
Choosing composite indexes ................................................  180
Key order and performance in composite indexes ................  180
Advantages and disadvantages of composite indexes .........  182

Techniques for choosing indexes.................................................  183
Choosing an index for a range query ....................................  183
Adding a point query with different indexing requirements....  184

Index and statistics maintenance .................................................  186
Dropping indexes that hurt performance ...............................  186
Choosing space management properties for indexes ...........  186

Additional indexing tips ................................................................  187
Creating artificial columns .....................................................  187
Keeping index entries short and avoiding overhead .............  187
Dropping and rebuilding indexes...........................................  188

CHAPTER 9 How Indexes Work....................................................................... 189
Types of indexes ..........................................................................  190

Index pages...........................................................................  190
Index Size..............................................................................  192

Clustered indexes on allpages-locked tables...............................  192
Clustered indexes and select operations ..............................  193
Clustered indexes and insert operations ...............................  194
Page splitting on full data pages ...........................................  195
Page splitting on index pages ...............................................  197
Performance impacts of page splitting ..................................  197
Overflow pages .....................................................................  198
Clustered indexes and delete operations ..............................  199

Nonclustered indexes...................................................................  201
Leaf pages revisited ..............................................................  202
Nonclustered index structure.................................................  202
Nonclustered indexes and select operations.........................  204
Nonclustered index performance ..........................................  205
Nonclustered indexes and insert operations .........................  205



Contents

Performance & Tuning Guide ix

Nonclustered indexes and delete operations ........................  206
Clustered indexes on data-only-locked tables.......................  208

Index covering..............................................................................  208
Covering matching index scans ............................................  209
Covering nonmatching index scans ......................................  210

Indexes and caching ....................................................................  211
Using separate caches for data and index pages .................  212
Index trips through the cache ................................................  212

CHAPTER 10 Locking in Adaptive Server........................................................  215
How locking affects performance .................................................  216
Overview of locking ......................................................................  216
Granularity of locks and locking schemes....................................  218

Allpages locking ....................................................................  219
Datapages locking.................................................................  220
Datarows locking ...................................................................  221

Types of locks in Adaptive Server................................................  221
Page and row locks ...............................................................  222
Table locks ............................................................................  224
Demand locks........................................................................  225
Range locking for serializable reads .....................................  229
Latches..................................................................................  230

Lock compatibility and lock sufficiency.........................................  230
How isolation levels affect locking................................................  231

Isolation Level 0, read uncommitted......................................  232
Isolation Level 1, read committed..........................................  234
Isolation Level 2, repeatable read .........................................  235
Isolation Level 3, serializable reads ......................................  236
Adaptive Server default isolation level ..................................  238

Lock types and duration during query processing........................  238
Lock types during create index commands ...........................  241
Locking for select queries at isolation Level 1.......................  241
Table scans and isolation Levels 2 and 3 .............................  242
When update locks are not required .....................................  243
Locking during or processing ................................................  243
Skipping uncommitted inserts during selects ........................  244

Pseudo column-level locking........................................................  245
Select queries that do not reference the updated column.....  245
Using alternative predicates to skip nonqualifying rows........  246
Qualifying old and new values for uncommitted updates ......  248
Suggestions to reduce contention .........................................  249

CHAPTER 11 Using Locking Commands.........................................................  251



Contents

x Adaptive Server Enterprise

Specifying the locking scheme for a table....................................  251
Specifying a server-wide locking scheme .............................  251
Specifying a locking scheme with create table......................  252
Changing a locking scheme with alter table ..........................  253
Before and after changing locking schemes .........................  253
Expense of switching to or from allpages locking..................  255
Sort performance during alter table.......................................  256
Specifying a locking scheme with select into ........................  256

Controlling isolation levels............................................................  257
Setting isolation levels for a session .....................................  257
Syntax for query-level and table-level locking options ..........  258
Using holdlock, noholdlock, or shared...................................  258
Using the at isolation clause..................................................  259
Making locks more restrictive ................................................  260
Making locks less restrictive..................................................  261

Readpast locking..........................................................................  262
Cursors and locking .....................................................................  262

Using the shared keyword.....................................................  263
Additional locking commands.......................................................  265

lock table Command..............................................................  265
Lock timeouts ........................................................................  265

CHAPTER 12 Reporting on Locks ..................................................................... 267
Locking tools ................................................................................  267

Getting information about blocked processes .......................  267
Viewing locks.........................................................................  268
Viewing locks.........................................................................  270
Intrafamily blocking during network buffer merges................  271

Deadlocks and concurrency.........................................................  272
Server-side versus application-side deadlocks .....................  272
Server task deadlocks ...........................................................  273
Deadlocks and parallel queries .............................................  274
Printing deadlock information to the error log........................  275
Avoiding deadlocks ...............................................................  276

Identifying tables where concurrency is a problem ......................  278
Lock management reporting ........................................................  280

CHAPTER 13 Locking Configuration and Tuning ............................................ 281
Locking and performance.............................................................  281

Using sp_sysmon and sp_object_stats .................................  282
Reducing lock contention ......................................................  282
Additional locking guidelines .................................................  285

Configuring locks and lock promotion thresholds.........................  286



Contents

Performance & Tuning Guide xi

Configuring Adaptive Server’s lock limit ................................  286
Configuring the lock hashtable (Lock Manager)....................  289
Setting lock promotion thresholds .........................................  290

Choosing the locking scheme for a table .....................................  295
Analyzing existing applications..............................................  296
Choosing a locking scheme based on contention statistics ..  297
Monitoring and managing tables after conversion.................  298
Applications not likely to benefit from data-only locking ........  298

CHAPTER 14 Setting Space Management Properties.....................................  301
Reducing index maintenance.......................................................  301

Advantages of using fillfactor ................................................  302
Disadvantages of using fillfactor............................................  302
Setting fillfactor values ..........................................................  303
fillfactor examples..................................................................  304
Use of the sorted_data and fillfactor options .........................  307

Reducing row forwarding .............................................................  307
Default, minimum, and maximum values for exp_row_size ..  308
Specifying an expected row size with create table................  308
Adding or changing an expected row size.............................  309
Setting a default expected row size server-wide ...................  310
Displaying the expected row size for a table .........................  310
Choosing an expected row size for a table ...........................  310
Conversion of max_rows_per_page to exp_row_size...........  312
Monitoring and managing tables that use expected row size  312

Leaving space for forwarded rows and inserts.............................  313
Extent allocation operations and reservepagegap ................  313
Specifying a reserve page gap with create table...................  315
Specifying a reserve page gap with create index..................  316
Changing reservepagegap ....................................................  316
reservepagegap examples ....................................................  317
Choosing a value for reservepagegap ..................................  318
Monitoring reservepagegap settings .....................................  318
reservepagegap and sorted_data options to create index ....  319

Using max_rows_per_page on allpages-locked tables................  321
Reducing lock contention ......................................................  322
Indexes and max_rows_per_page ........................................  323
select into and max_rows_per_page.....................................  323
Applying max_rows_per_page to existing data.....................  323

CHAPTER 15 Memory Use and Performance ..................................................  325
How memory affects performance ...............................................  325
How much memory to configure ..................................................  326



Contents

xii Adaptive Server Enterprise

Caches in Adaptive Server...........................................................  329
Procedure cache ..........................................................................  330

Getting information about the procedure cache size.............  330
Procedure cache sizing .........................................................  331
Estimating stored procedure size ..........................................  332

Data cache ...................................................................................  332
Default cache at installation time...........................................  333
Page aging in data cache......................................................  333
Effect of data cache on retrievals ..........................................  334
Effect of data modifications on the cache..............................  335
Data cache performance .......................................................  336
Testing data cache performance...........................................  336

Configuring the data cache to improve performance ...................  337
Commands to configure named data caches........................  340
Tuning named caches ...........................................................  340
Cache configuration goals.....................................................  341
Gather data, plan, and then implement .................................  342
Evaluating cache needs ........................................................  343
Large I/O and performance ...................................................  344
Reducing spinlock contention with cache partitions ..............  346
Cache replacement strategies and policies...........................  346

Named data cache recommendations .........................................  348
Sizing caches for special objects, tempdb, and transaction logs .  

350
Basing data pool sizes on query plans and I/O .....................  354
Configuring buffer wash size .................................................  357
Overhead of pool configuration and binding objects .............  357

Maintaining data cache performance for large I/O .......................  359
Diagnosing excessive I/O Counts .........................................  359
Using sp_sysmon to check large I/O performance................  360

Speed of recovery ........................................................................  360
Tuning the recovery interval ..................................................  361
Effects of the housekeeper task on recovery time ................  362

Auditing and performance ............................................................  362
Sizing the audit queue...........................................................  362
Auditing performance guidelines ...........................................  363

CHAPTER 16 Determining Sizes of Tables and Indexes ................................. 365
Why object sizes are important to query tuning ...........................  365
Tools for determining the sizes of tables and indexes .................  366
Effects of data modifications on object sizes ...............................  367
Using optdiag to display object sizes ...........................................  367

Advantages of optdiag...........................................................  368
Disadvantages of optdiag......................................................  368



Contents

Performance & Tuning Guide xiii

Using sp_spaceused to display object size..................................  368
Advantages of sp_spaceused ...............................................  369
Disadvantages of sp_spaceused ..........................................  370

Using sp_estspace to estimate object size ..................................  370
Advantages of sp_estspace ..................................................  371
Disadvantages of sp_estspace .............................................  372

Using formulas to estimate object size.........................................  372
Factors that can affect storage size ......................................  372
Storage sizes for datatypes...................................................  373
Tables and indexes used in the formulas..............................  375
Calculating table and clustered index sizes for allpages-locked 

tables ..............................................................................  375
Calculating the sizes of data-only-locked tables ...................  381
Other factors affecting object size .........................................  386
Very small rows .....................................................................  388
LOB pages ............................................................................  388
Advantages of using formulas to estimate object size ..........  389
Disadvantages of using formulas to estimate object size......  389

CHAPTER 17 Maintenance Activities and Performance.................................  391
Running reorg on tables and indexes ..........................................  391
Creating and maintaining indexes................................................  392

Configuring Adaptive Server to speed sorting.......................  392
Dumping the database after creating an index......................  393
Creating an index on sorted data ..........................................  393
Maintaining index and column statistics ................................  394
Rebuilding indexes ................................................................  395

Creating or altering a database....................................................  396
Backup and recovery ...................................................................  398

Local backups .......................................................................  398
Remote backups ...................................................................  398
Online backups......................................................................  399
Using thresholds to prevent running out of log space ...........  399
Minimizing recovery time.......................................................  399
Recovery order......................................................................  399

Bulk copy......................................................................................  400
Parallel bulk copy ..................................................................  400
Batches and bulk copy ..........................................................  401
Slow bulk copy ......................................................................  401
Improving bulk copy performance .........................................  401
Replacing the data in a large table........................................  402
Adding large amounts of data to a table................................  402
Using partitions and multiple bulk copy processes................  402
Impacts on other users..........................................................  403



Contents

xiv Adaptive Server Enterprise

Database consistency checker ....................................................  403
Using dbcc tune (cleanup) ...........................................................  403
Using dbcc tune on spinlocks.......................................................  404

When not to use this command.............................................  404
Determining the space available for maintenance activities ........  404

Overview of space requirements...........................................  405
Tools for checking space usage and space available ...........  406
Estimating the effects of space management properties ......  408
If there is not enough space ..................................................  409

CHAPTER 18 tempdb Performance Issues....................................................... 411
How management of tempdb affects performance ......................  411

Main solution areas for tempdb performance........................  412
Types and uses of temporary tables ............................................  412

Truly temporary tables...........................................................  413
Regular user tables ...............................................................  413
Worktables ............................................................................  414

Initial allocation of tempdb............................................................  414
Sizing the tempdb ........................................................................  415
Placing tempdb ............................................................................  416
Dropping the master device from tempdb segments ...................  416

Using multiple disks for parallel query performance..............  417
Binding tempdb to its own cache .................................................  417

Commands for cache binding................................................  418
Temporary tables and locking ......................................................  418
Minimizing logging in tempdb.......................................................  419

 With select into .....................................................................  419
By using shorter rows............................................................  419

Optimizing temporary tables ........................................................  420
Creating indexes on temporary tables...................................  421
Creating nested procedures with temporary tables...............  422
Breaking tempdb uses into multiple procedures ...................  422

CHAPTER 19 Adaptive Server Optimizer.......................................................... 425
Definition ......................................................................................  425

Steps in query processing .....................................................  426
Working with the optimizer ....................................................  426

Object sizes are important to query tuning...................................  427
Query optimization .......................................................................  428
Factors examined during optimization .........................................  429
Preprocessing can add clauses for optimizing.............................  430

Converting clauses to search argument equivalents.............  430
Converting expressions into search arguments ....................  431



Contents

Performance & Tuning Guide xv

Search argument transitive closure.......................................  431
Join transitive closure............................................................  432
Predicate transformation and factoring .................................  433

Guidelines for creating search arguments ...................................  435
Search arguments and useful indexes.........................................  436

Search argument syntax .......................................................  436
How statistics are used for SARGS.......................................  438
Using statistics on multiple search arguments ......................  440
Default values for search arguments.....................................  441
SARGs using variables and parameters ...............................  442

Join syntax and join processing ...................................................  442
How joins are processed .......................................................  443
When statistics are not available for joins .............................  443
Density values and joins........................................................  444
Multiple column joins .............................................................  444
Search arguments and joins on a table.................................  444

Datatype mismatches and query optimization .............................  445
Overview of the datatype hierarchy and index issues ...........  446
Datatypes for parameters and variables used as SARGs.....  449
Compatible datatypes for join columns .................................  450
Suggestions on datatypes and comparisons.........................  451
Forcing a conversion to the other side of a join.....................  452

Splitting stored procedures to improve costing ............................  453
Basic units of costing ...................................................................  454

CHAPTER 20 Advanced Optimizing Tools.......................................................  455
Special optimizing techniques......................................................  455
Specifying optimizer choices........................................................  456
Specifying table order in joins ......................................................  457

Risks of using forceplan ........................................................  458
Things to try before using forceplan ......................................  458

Specifying the number of tables considered by the optimizer......  459
Specifying an index for a query....................................................  460

Risks......................................................................................  461
Things to try before specifying an index................................  461

Specifying I/O size in a query.......................................................  462
Index type and large I/O ........................................................  463
When prefetch specification is not followed ..........................  464
set prefetch on.......................................................................  465

Specifying the cache strategy ......................................................  465
In select, delete, and update statements...............................  466

Controlling large I/O and cache strategies ...................................  467
Getting information on cache strategies................................  467

Enabling and disabling merge joins .............................................  468



Contents

xvi Adaptive Server Enterprise

Enabling and disabling join transitive closure ..............................  468
Suggesting a degree of parallelism for a query............................  469

Query level parallel clause examples....................................  471
Concurrency optimization for small tables ...................................  471

Changing locking scheme .....................................................  472

CHAPTER 21  Query Tuning Tools.................................................................... 473
Overview ......................................................................................  473
How tools may interact .................................................................  475

Using showplan and noexec together ...................................  475
noexec and statistics io .........................................................  475

How tools relate to query processing ...........................................  476

CHAPTER 22 Access Methods and Query Costing for Single Tables ........... 477
Table scan cost ............................................................................  479

Cost of a scan on allpages-locked table................................  479
Cost of a scan on a data-only-locked tables .........................  480

From rows to pages .....................................................................  482
How cluster ratios affect large I/O estimates.........................  483

Evaluating the cost of index access .............................................  485
Query that returns a single row .............................................  485
Query that returns many rows ...............................................  485
Range queries with covering indexes....................................  488
Range queries with noncovering indexes..............................  489

Costing for queries using order by ...............................................  493
Prefix subset and sorts..........................................................  494
Key ordering and sorts ..........................................................  495
How the optimizer costs sort operations ...............................  497
Allpages-locked tables with clustered indexes ......................  497
Sorts when index covers the query .......................................  499
Sorts and noncovering indexes .............................................  500

Access Methods and Costing for or and in Clauses ....................  501
or syntax................................................................................  501
in (values_list) converts to or processing ..............................  501
Methods for processing or clauses........................................  502

How aggregates are optimized ....................................................  506
Combining max and min aggregates.....................................  507

How update operations are performed.........................................  508
Direct updates .......................................................................  508
Deferred updates...................................................................  511
Deferred index inserts ...........................................................  512
Restrictions on update modes through joins .........................  515
Optimizing updates................................................................  516



Contents

Performance & Tuning Guide xvii

Using sp_sysmon while tuning updates ................................  518

CHAPTER 23 Accessing Methods and Costing for Joins and Subqueries ..  521
Costing and optimizing joins ........................................................  521

Processing.............................................................................  522
Index density and joins..........................................................  522
Datatype mismatches and joins ............................................  523
Join permutations ..................................................................  523

Nested-loop joins .........................................................................  526
Cost formula ..........................................................................  528
How inner and outer tables are determined ..........................  528

Access methods and costing for sort-merge joins .......................  529
How a full-merge is performed ..............................................  531
How a right-merge or left-merge is performed ......................  532
How a sort-merge is performed.............................................  533
Mixed example ......................................................................  533
Costing for merge joins .........................................................  535
Costing for a full-merge with unique values ..........................  536
Example: allpages-locked tables with clustered indexes ......  536
Costing for a full-merge with duplicate values.......................  537
Costing sorts .........................................................................  538
When merge joins cannot be used........................................  539
Use of worker processes.......................................................  540
Recommendations for improved merge performance ...........  540

Enabling and disabling merge joins .............................................  541
At the server level..................................................................  542
At the session level ...............................................................  542

Reformatting strategy...................................................................  542
Subquery optimization..................................................................  543

Flattening in, any, and exists subqueries ..............................  544
Flattening expression subqueries..........................................  549
Materializing subquery results...............................................  549
Subquery introduced with an and clause ..............................  551
Subquery introduced with an or clause .................................  552
Subquery results caching ......................................................  552
Optimizing subqueries...........................................................  553

or clauses versus unions in joins .................................................  554

CHAPTER 24 Parallel Query Processing .........................................................  555
Types of queries that can benefit from parallel processing..........  556
Adaptive Server’s worker process model.....................................  557

Parallel query execution ........................................................  559
Returning results from parallel queries..................................  560



Contents

xviii Adaptive Server Enterprise

Types of parallel data access.......................................................  561
Hash-based table scans........................................................  562
Partition-based scans............................................................  563
Hash-based index scans .......................................................  563
Parallel processing for two tables in a join ............................  564
showplan messages..............................................................  565

Controlling the degree of parallelism............................................  566
Configuration parameters for controlling parallelism .............  567
Using set options to control parallelism for a session ...........  569
Controlling parallelism for a query.........................................  570
Worker process availability and query execution ..................  571
Other configuration parameters for parallel processing ........  572

Commands for working with partitioned tables ............................  572
Balancing resources and performance ........................................  575

CPU resources ......................................................................  575
Disk resources and I/O..........................................................  576
Tuning example: CPU and I/O saturation..............................  576

Guidelines for parallel query configuration...................................  576
Hardware guidelines..............................................................  577
Working with your performance goals and hardware guidelines..  

577
Examples of parallel query tuning .........................................  578
Guidelines for partitioning and parallel degree......................  579
Experimenting with data subsets...........................................  580

System level impacts ...................................................................  581
Locking issues.......................................................................  581
Device issues ........................................................................  582
Procedure cache effects........................................................  582

When parallel query results can differ..........................................  583
Queries that use set rowcount...............................................  583
Queries that set local variables .............................................  584
Achieving consistent results ..................................................  584

CHAPTER 25 Parallel Query Optimization........................................................ 585
What is parallel query optimization? ............................................  586

Optimizing for response time versus total work.....................  586
When is optimization performed?.................................................  586
Overhead costs ............................................................................  587

Factors that are not considered.............................................  587
Parallel access methods ..............................................................  588

Parallel partition scan ............................................................  589
Parallel clustered index partition scan (allpages-locked tables)...  

590
Parallel hash-based table scan .............................................  592



Contents

Performance & Tuning Guide xix

Parallel hash-based index scan ............................................  594
Parallel range-based scans...................................................  596
Additional parallel strategies .................................................  598

Summary of parallel access methods ..........................................  598
Selecting parallel access methods ........................................  599

Degree of parallelism for parallel queries.....................................  600
Upper limit .............................................................................  601
Optimized degree ..................................................................  601
Nested-loop joins...................................................................  604
Examples...............................................................................  607
Runtime adjustments to worker processes ...........................  609

Parallel query examples...............................................................  609
Single-table scans .................................................................  610
Multitable joins.......................................................................  612
Subqueries ............................................................................  615
Queries that require worktables ............................................  615
union queries.........................................................................  616
Queries with aggregates .......................................................  616
select into statements............................................................  616

Runtime adjustment of worker processes ....................................  617
How Adaptive Server adjusts a query plan ...........................  618
Evaluating the effect of runtime adjustments ........................  618
Recognizing and managing runtime adjustments .................  619
Reducing the likelihood of runtime adjustments....................  620
Checking runtime adjustments with sp_sysmon ...................  620

Diagnosing parallel performance problems..................................  621
Query does not run in parallel ...............................................  621
Parallel performance is not as good as expected .................  622
Calling technical support for diagnosis..................................  622

Resource limits for parallel queries ..............................................  623

CHAPTER 26 Parallel Sorting............................................................................  625
Commands that benefits from parallel sorting..............................  625
Requirements and resources overview........................................  626
Overview of the parallel sorting strategy ......................................  627

Creating a distribution map ...................................................  629
Dynamic range partitioning....................................................  629
Range sorting ........................................................................  630
Merging results......................................................................  630

Configuring resources for parallel sorting ....................................  630
Worker process requirements for parallel sorts.....................  631
Worker process requirements for select query sorts .............  634
Caches, sort buffers, and parallel sorts.................................  635
Disk requirements .................................................................  642



Contents

xx Adaptive Server Enterprise

Recovery considerations..............................................................  644
Tools for observing and tuning sort behavior ...............................  644

Using set sort_resources on..................................................  645
Using sp_sysmon to tune index creation .....................................  649

CHAPTER 27 Tuning Asynchronous Prefetch ................................................. 651
How asynchronous prefetch improves performance....................  651

Improving query performance by prefetching pages .............  652
Prefetching control mechanisms in a multiuser environment  653
Look-ahead set during recovery............................................  654
Look-ahead set during sequential scans...............................  654
Look-ahead set during nonclustered index access ...............  655
Look-ahead set during dbcc checks......................................  655
Look-ahead set minimum and maximum sizes .....................  656

When prefetch is automatically disabled......................................  657
Flooding pools .......................................................................  658
I/O system overloads.............................................................  658
Unnecessary reads ...............................................................  659

Tuning Goals for asynchronous prefetch .....................................  661
Commands for configuration .................................................  662

Other Adaptive Server performance features ..............................  662
Large I/O ...............................................................................  662
Fetch-and-discard (MRU) scans ...........................................  664
Parallel scans and large I/Os ................................................  664

Special settings for asynchronous prefetch limits ........................  665
Setting limits for recovery ......................................................  665
Setting limits for dbcc ............................................................  666

Maintenance activities for high prefetch performance..................  666
Eliminating kinks in heap tables ............................................  667
Eliminating kinks in clustered index tables ............................  667
Eliminating kinks in nonclustered indexes.............................  667

Performance monitoring and asynchronous prefetch ..................  667

CHAPTER 28 Cursors and Performance........................................................... 669
Definition ......................................................................................  669

Set-oriented versus row-oriented programming ....................  670
Example ................................................................................  671

Resources required at each stage ...............................................  672
Memory use and execute cursors .........................................  674

Cursor modes...............................................................................  675
Index use and requirements for cursors.......................................  675

Allpages-locked tables ..........................................................  675
Data-only-locked tables.........................................................  676



Contents

Performance & Tuning Guide xxi

Comparing performance with and without cursors.......................  677
Sample stored procedure without a cursor............................  677
Sample stored procedure with a cursor.................................  678
Cursor versus noncursor performance comparison ..............  679

Locking with read-only cursors.....................................................  680
Isolation levels and cursors..........................................................  682
Partitioned heap tables and cursors.............................................  682
Optimizing tips for cursors............................................................  683

Optimizing for cursor selects using a cursor .........................  683
Using union instead of or clauses or in lists ..........................  684
Declaring the cursor’s intent ..................................................  684
Specifying column names in the for update clause ...............  684
Using set cursor rows............................................................  685
Keeping cursors open across commits and rollbacks ...........  686
Opening multiple cursors on a single connection..................  686

CHAPTER 29 Introduction to Abstract Plans...................................................  687
Definition ......................................................................................  687
Managing abstract plans ..............................................................  688
Relationship between query text and query plans .......................  688

Limits of options for influencing query plans .........................  689
Full versus partial plans ...............................................................  689

Creating a partial plan ...........................................................  691
Abstract plan groups ....................................................................  691
How abstract plans are associated with queries ..........................  692

CHAPTER 30 Abstract Query Plan Guide ........................................................  693
Introduction ..................................................................................  693

Abstract plan language..........................................................  694
Identifying tables ...................................................................  696
Identifying indexes.................................................................  697
Specifying join order..............................................................  697
Specifying the join type .........................................................  701
Specifying partial plans and hints..........................................  702
Creating abstract plans for subqueries..................................  704
Abstract plans for materialized views ....................................  711
Abstract plans for queries containing aggregates .................  711
Specifying the reformatting strategy......................................  714
OR strategy limitation ............................................................  714
When the store operator is not specified...............................  714

Tips on writing abstract plans.......................................................  715
Comparing plans “before” and “after”...........................................  716

Effects of enabling server-wide capture mode ......................  716



Contents

xxii Adaptive Server Enterprise

Time and space to copy plans...............................................  717
Abstract plans for stored procedures ...........................................  718

Procedures and plan ownership............................................  718
Procedures with variable execution paths and optimization..  719

Ad Hoc queries and abstract plans ..............................................  719

CHAPTER 31 Creating and Using Abstract Plans............................................ 721
Using set commands to capture and associate plans..................  721

Enabling plan capture mode with set plan dump...................  722
Associating queries with stored plans ...................................  722
Using replace mode during plan capture...............................  723
Using dump, load, and replace modes simultaneously .........  724

set plan exists check option .........................................................  726
Using other set options with abstract plans..................................  726

Using showplan .....................................................................  727
Using noexec.........................................................................  727
Using forceplan .....................................................................  727

Server-wide abstract plan capture and association Modes..........  728
Creating plans using SQL ............................................................  728

Using create plan ..................................................................  729
Using the plan Clause ...........................................................  730

CHAPTER 32 Managing Abstract Plans with System Procedures ................. 733
System procedures for managing abstract plans.........................  733
Managing an abstract plan group.................................................  734

Creating a group....................................................................  734
Dropping a group...................................................................  735
Getting information about a group.........................................  735
Renaming a group.................................................................  738

Finding abstract plans ..................................................................  738
Managing individual abstract plans ..............................................  739

Viewing a plan .......................................................................  739
Copying a plan to another group ...........................................  740
Dropping an individual abstract plan .....................................  740
Comparing two abstract plans...............................................  741
Changing an existing plan .....................................................  742

Managing all plans in a group ......................................................  742
Copying all plans in a group ..................................................  742
Comparing all plans in a group..............................................  743
Dropping all abstract plans in a group...................................  745

Importing and exporting groups of plans......................................  746
Exporting plans to a user table..............................................  746
Importing plans from a user table..........................................  747



Contents

Performance & Tuning Guide xxiii

CHAPTER 33 Abstract Plan Language Reference...........................................  749
Keywords .....................................................................................  749
Operands .....................................................................................  749

Derived tables .......................................................................  750
Schema for examples ..................................................................  750
g_join............................................................................................  751
hints..............................................................................................  753
i_scan...........................................................................................  754
in ..................................................................................................  756
lru .................................................................................................  758
m_g_join.......................................................................................  759
mru ...............................................................................................  761
nested ..........................................................................................  761
nl_g_join.......................................................................................  763
parallel..........................................................................................  764
plan ..............................................................................................  765
prefetch ........................................................................................  767
prop ..............................................................................................  768
scan..............................................................................................  769
store .............................................................................................  770
subq .............................................................................................  772
t_scan...........................................................................................  775
table .............................................................................................  775
union ............................................................................................  777
view ..............................................................................................  778
work_t...........................................................................................  779

CHAPTER 34 Using Statistics to Improve Performance.................................  781
Importance of statistics ................................................................  781

Updating ................................................................................  782
Adding statistics for unindexed columns ...............................  782

update statistics commands.........................................................  783
Column statistics and statistics maintenance...............................  784
Creating and updating column statistics ......................................  785

When additional statistics may be useful ..............................  786
Adding statistics for a column with update statistics .............  786
Adding statistics for minor columns with update index statistics ..  

787
Adding statistics for all columns with update all statistics .....  787

Choosing step numbers for histograms .......................................  787
Disadvantages of too many steps .........................................  787
Choosing a step number .......................................................  788

Scan types, sort requirements, and locking .................................  788
Sorts for unindexed or non leading columns .........................  789



Contents

xxiv Adaptive Server Enterprise

Locking, scans, and sorts during update index statistics ......  789
Locking, scans and sorts during update all statistics ............  790
Using the with consumers clause..........................................  790
Reducing update statistics impact on concurrent processes  790

Using the delete statistics command............................................  791
When row counts may be inaccurate ...........................................  791

CHAPTER 35 Using the set statistics Commands ........................................... 793
Command syntax .........................................................................  793
Using simulated statistics.............................................................  794
Checking subquery cache performance.......................................  794
Checking compile and execute time ............................................  794

Converting ticks to milliseconds ............................................  795
Reporting physical and logical I/O statistics.................................  795

Total actual I/O cost value.....................................................  796
Statistics for writes ................................................................  797
Statistics for reads.................................................................  797
statistics io output for cursors................................................  798
Scan count ............................................................................  799
Relationship between physical and logical reads..................  801
statistics io and merge joins ..................................................  804

CHAPTER 36 Using set showplan ..................................................................... 805
Using ...........................................................................................  805
Basic showplan messages...........................................................  806

Query plan delimiter message...............................................  806
Step message .......................................................................  806
Query type message .............................................................  807
FROM TABLE message........................................................  807
TO TABLE message .............................................................  810
Update mode messages .......................................................  811
Optimized using messages ...................................................  814

showplan messages for query clauses ........................................  814
GROUP BY message............................................................  815
Selecting into a worktable .....................................................  816
Grouped aggregate message................................................  817
compute by message ............................................................  818
Ungrouped aggregate message............................................  819
messages for order by and distinct .......................................  822
Sorting messages..................................................................  824

Messages describing access methods, caching, and I/O cost.....  825
Auxiliary scan descriptors message ......................................  826
Nested iteration message......................................................  827



Contents

Performance & Tuning Guide xxv

Merge join messages ............................................................  828
Table scan message .............................................................  831
Clustered index message......................................................  831
Index name message ............................................................  832
Scan direction messages ......................................................  833
Positioning messages ...........................................................  834
Scanning messages ..............................................................  836
Index covering message .......................................................  836
Keys message.......................................................................  838
Matching index scans message ............................................  838
Dynamic index message (OR strategy).................................  839
Reformatting Message ..........................................................  841
Trigger Log Scan Message ...................................................  843
I/O Size Messages ................................................................  844
Cache strategy messages.....................................................  845
Total estimated I/O cost message.........................................  845

showplan messages for parallel queries ......................................  846
Executed in parallel messages..............................................  847

showplan messages for subqueries.............................................  851
Output for flattened or materialized subqueries ....................  852
Structure of subquery showplan output.................................  858
Subquery execution message ...............................................  858
Nesting level delimiter message............................................  859
Subquery plan start delimiter.................................................  859
Subquery plan end delimiter..................................................  859
Type of subquery...................................................................  859
Subquery predicates .............................................................  859
Internal subquery aggregates................................................  860
Existence join message.........................................................  864

CHAPTER 37 Statistics Tables and Displaying Statistics with optdiag........  867
System tables that store statistics................................................  867

systabstats table....................................................................  868
sysstatistics table ..................................................................  868

Viewing statistics with the optdiag utility ......................................  869
optdiag syntax .......................................................................  869
optdiag header information....................................................  870
Table statistics.......................................................................  871
Index statistics.......................................................................  874
Column statistics ...................................................................  878
Histogram displays ................................................................  883

Changing statistics with optdiag...................................................  889
Using the optdiag binary mode..............................................  890
Updating selectivities with optdiag input mode......................  891



Contents

xxvi Adaptive Server Enterprise

Editing histograms.................................................................  892
Using simulated statistics.............................................................  894

optdiag syntax for simulated statistics...................................  895
Simulated statistics output.....................................................  895
Requirements for loading and using simulated statistics ......  897
Dropping simulated statistics.................................................  899
Running queries with simulated statistics..............................  899

Character data containing quotation marks .................................  900
Effects of SQL commands on statistics........................................  900

How query processing affects systabstats ............................  902

CHAPTER 38 Tuning with dbcc traceon ........................................................... 905
Tuning with dbcc traceon(302).....................................................  905

dbcc traceon(310) .................................................................  906
Invoking the dbcc trace facility ..............................................  906
General tips for tuning with dbcc traceon(302)......................  907
Checking for join columns and search arguments ................  907
Determining how the optimizer estimates I/O costs ..............  908
Structure of dbcc traceon(302) output...................................  908

Table information block ................................................................  909
Identifying the table ...............................................................  910
Basic table data.....................................................................  910
Cluster ratio ...........................................................................  910
Partition information ..............................................................  910

Base cost block ............................................................................  911
Concurrency optimization message ......................................  911

Clause block.................................................................................  911
Search clause identification...................................................  912
Join clause identification .......................................................  913
Sort avert messages .............................................................  913

Column block ...............................................................................  914
Selectivities when statistics exist and values are known.......  915
When the optimizer uses default values................................  915
Out-of-range messages.........................................................  916
“Disjoint qualifications” message...........................................  917
Forcing messages .................................................................  918
Unique index messages ........................................................  918
Other messages in the column block ....................................  918

Index selection block....................................................................  919
Scan and filter selectivity values ...........................................  919
Other information in the index selection block.......................  921

Best access block ........................................................................  921
dbcc traceon(310) and final query plan costs ..............................  923

Flattened subquery join order message ................................  924



Contents

Performance & Tuning Guide xxvii

Worker process information ..................................................  924
Final plan information ............................................................  924

CHAPTER 39 Monitoring Performance with sp_sysmon................................  931
Using ............................................................................................  932

When to run...........................................................................  932
Invoking........................................................................................  933

Fixed time intervals ...............................................................  934
Using begin_sample and end_sample ..................................  934
Specifying report sections for output .....................................  935
Specifying the application detail parameter...........................  935
Redirecting output to a file.....................................................  936

How to use the reports .................................................................  936
Reading output ......................................................................  937
Interpreting the data ..............................................................  938

Sample interval and time reporting ..............................................  939
Kernel utilization...........................................................................  940

Sample output .......................................................................  940
Engine busy utilization...........................................................  941
CPU yields by engine ............................................................  943
Network checks .....................................................................  943
Disk I/O checks .....................................................................  945
Total disk I/O checks .............................................................  945

Worker process management ......................................................  946
Sample output .......................................................................  946
Worker process requests ......................................................  947
Worker process usage ..........................................................  948
Memory requests for worker processes ................................  948
Avg mem ever used by a WP................................................  948

Parallel query management .........................................................  949
Sample output .......................................................................  949
Parallel query usage..............................................................  950
Merge lock requests ..............................................................  951
Sort buffer waits ....................................................................  951

Task management .......................................................................  952
Sample output .......................................................................  952
Connections opened .............................................................  953
Task context switches by engine...........................................  953
Task context switches due to ................................................  953

Application management..............................................................  961
Requesting detailed application information..........................  961
Sample output .......................................................................  962
Application statistics summary (all applications) ...................  963
Per application or per application and login ..........................  966



Contents

xxviii Adaptive Server Enterprise

ESP management ........................................................................  967
Sample output .......................................................................  968

Housekeeper task activity ............................................................  968
Sample output .......................................................................  968
Buffer cache washes .............................................................  969
Garbage collections...............................................................  969
Statistics updates ..................................................................  969

Monitor access to executing SQL ................................................  969
Sample output .......................................................................  970

Transaction profile........................................................................  971
Sample output .......................................................................  971
Transaction summary............................................................  972
Transaction detail ..................................................................  974
Inserts....................................................................................  974
Updates and update detail sections ......................................  976
Deletes ..................................................................................  977

Transaction management ............................................................  978
Sample output .......................................................................  978
ULC flushes to transaction log ..............................................  979
Total ULC flushes..................................................................  981
ULC log records ....................................................................  981
Maximum ULC size ...............................................................  981
ULC semaphore requests .....................................................  982
Log semaphore requests.......................................................  982
Transaction log writes ...........................................................  984
Transaction log allocations....................................................  985
Avg # writes per log page......................................................  985

Index management ......................................................................  985
Sample output .......................................................................  985
Nonclustered maintenance....................................................  986
Page splits.............................................................................  989
Page shrinks..........................................................................  994
Index scans ...........................................................................  994

Metadata cache management......................................................  995
Sample output .......................................................................  995
Open object, index, and database usage..............................  996
Object and index spinlock contention....................................  997
Hash spinlock contention ......................................................  997

Lock management........................................................................  999
Sample output .......................................................................  999
Lock summary .....................................................................  1002
Lock detail ...........................................................................  1003
Table lock hashtable ...........................................................  1005
Deadlocks by lock type........................................................  1005



Contents

Performance & Tuning Guide xxix

Deadlock detection..............................................................  1006
Lock promotions ..................................................................  1007
Lock time-out information ....................................................  1008

Data cache management ...........................................................  1008
Sample output .....................................................................  1009
Cache statistics summary (all caches) ................................  1011
Cache management by cache.............................................  1017

Procedure cache management ..................................................  1024
Sample output .....................................................................  1024
Procedure requests .............................................................  1024
Procedure reads from disk ..................................................  1024
Procedure writes to disk ......................................................  1025
Procedure removals ............................................................  1025

Memory management ................................................................  1025
Sample output .....................................................................  1025
Pages allocated...................................................................  1026
Pages released ...................................................................  1026

Recovery management ..............................................................  1026
Sample output .....................................................................  1026
Checkpoints.........................................................................  1027
Average time per normal checkpoint...................................  1028
Average time per free checkpoint........................................  1028
Increasing the housekeeper batch limit...............................  1028

Disk I/O management ................................................................  1029
Sample output .....................................................................  1029
Maximum outstanding I/Os..................................................  1030
I/Os delayed by ...................................................................  1031
Requested and completed disk I/Os ...................................  1032
Device activity detail ............................................................  1033

Network I/O management ..........................................................  1034
Sample output .....................................................................  1035
Total network I/Os requests ................................................  1036
Network I/Os delayed ..........................................................  1037
Total TDS packets received ................................................  1037
Total bytes received ............................................................  1037
Average bytes received per packet .....................................  1037
Total TDS packets sent .......................................................  1038
Total bytes sent ...................................................................  1038
Average bytes sent per packet............................................  1038
Reducing packet overhead..................................................  1038

Index .........................................................................................................................................  1039



Performance & Tuning Guide xxx



Performance & Tuning Guide xxxi

About This Book

Audience This manual is intended for database administrators, database designers, 
developers and system administrators.

Note  You may want to use your own database for testing changes and 
queries. Take a snapshot of the database in question and set it up on a test 
machine.

How to use this book This manual would normally be used to fine tune, troubleshoot or improve 
the performance on Adaptive Server. The Performance and Tuning Guide  
is divided into three books:

• Volume 1 - Basics

• Volume 2 - Optimizing and Abstract Plans

• Volume 3 - Tools for Monitoring and Analyzing Performance

The following information is covered:

Volume 1- Basics

Chapter 1, “Overview,” describes the major components to be analyzed 
when addressing performance.

Chapter 2, “Networks and Performance,” provides a brief description of 
relational databases and good database design.

Chapter 3, “Using Engines and CPUs,”describes how client processes are 
scheduled on engines in Adaptive Server.

Chapter 4, “Distributing Engine Resources” describes how to assign 
execution precedence to specific applications.

Chapter 5, “Controlling Physical Data Placement” describes the uses of 
segments and partitions for controlling the physical placement of data on 
storage devices.

Chapter 6, “Database Design” provides a brief description of relational 
databases and good database design.



 

xxxii  Adaptive Server Enterprise

Chapter 7, “Data Storage” describes Adaptive Server page types, how data is 
stored on pages, and how queries on heap tables are executed.

Chapter 8, “Indexing for Performance” provides guidelines and examples for 
choosing indexes.

Chapter 9, “How Indexes Work” provides information on how indexes are 
used to resolve queries.

Chapter 10, “Locking in Adaptive Server” describes the types of locks that 
Adaptive Server uses and what types of locks are acquired during query 
processing.

Chapter 11, “Using Locking Commands” describes the commands that set 
locking schemes for tables and control isolation levels and other locking 
behavior during query processing.

Chapter 12, “Reporting on Locks” describes the system procedures that report 
on locks and lock contention.

Chapter 13, “Locking Configuration and Tuning” describes the impact of 
locking on performance and describes the tools to analyze locking problems 
and configure locking.

Chapter 14, “Setting Space Management Properties” describes how space 
management properties can be set for tables to improve performance and 
reduce the frequency of maintenance operations on tables and indexes.

Chapter 15, “Memory Use and Performance” describes how Adaptive Server 
uses memory for the procedure and data caches.

Chapter 16, “Determining Sizes of Tables and Indexes,” describes different 
methods for determining the current size of database objects and for estimating 
their future size.

Chapter 17, “Maintenance Activities and Performance” describes the impact 
of maintenance activities on performance, and how some activities, such as re-
creating indexes, can improve performance.

Chapter 18, “tempdb Performance Issues” stresses the importance of the 
temporary database , tempdb, and provides suggestions for improving its 
performance.

Volume 2 - Optimizing and Abstract Plans

Chapter 19, “Adaptive Server Optimizer” explains the process of query 
optimization, how statistics are applied to search arguments and joins for 
queries.



     About This Book

Performance & Tuning Guide xxxiii

Chapter 20, “Advanced Optimizing Tools” describes advanced tools for tuning 
query performance.

Chapter 21, “Query Tuning Tools” presents an overview of query tuning tools 
and describes how these tools can interact.

Chapter 22, “Access Methods and Query Costing for Single Tables” describes 
how Adaptive Server accesses tables in queries that only involve one table and 
how the costs are estimated for various access methods.

Chapter 23, “Accessing Methods and Costing for Joins and Subqueries” 
describes how Adaptive Server accesses tables during joins and subqueries, 
and how the costs are determined.

Chapter 24, “Parallel Query Processing” intoduces the concepts and resources 
required for parallel query processing.

Chapter 25, “Parallel Query Optimization” provides an indepth look at the 
optimization of parallel queries.

Chapter 26, “Parallel Sorting” describes the use of parallel sorting for queries 
and creating indexes.

Chapter 27, “Tuning Asynchronous Prefetch” describes how asynchronous 
prefetch improves performance for queries that perform large disk I/O.

Chapter 28, “Cursors and Performance” describes performance issues with 
cursors.

Chapter 29, “Introduction to Abstract Plans” provides an overview of abstract 
plans and how they can be used to solve query optimization problems.

Chapter 30, “Abstract Query Plan Guide” provides an introduction to writing 
abstract plans for specific types of queries and to using abstract plans to detect 
changes in query optimization due to configuration or system changes.

Chapter 31, “Creating and Using Abstract Plans” describes the commands that 
can be used to save and use abstract plans.

Chapter 32, “Managing Abstract Plans with System Procedures” describes the 
system procedures that manage abstract plans and abstract plan groups.

Chapter 33, “Abstract Plan Language Reference” describes the abstract plan 
language.

Volume 3 - Tools for Monitoring and Analyzing Performance

Chapter 34, “Using Statistics to Improve Performance” describes how to use 
the update statistics command to create and update statistics.



 

xxxiv  Adaptive Server Enterprise

Chapter 35, “Using the set statistics Commands” explains the commands that 
provide information about execution.

Chapter 36, “Using set showplan” provides examples of showplan messages.

Chapter 37, “Statistics Tables and Displaying Statistics with optdiag” 
describes the tables that store statistics and the output of the optdiag command 
that displays the statistics used by the query optimizer.

Chapter 38, “Tuning with dbcc traceon” explains how to use the dbcc traceon 
commands to analyze query optimization problems.

Chapter 39, “Monitoring Performance with sp_sysmon” describes how to use 
a system procedure that monitors Adaptive Server performance.

Index The full index for all three volumes is in the back of Volume 3- Tools for 
Monitoring and Analyzing Performance.

Related documents The following documents comprise the Sybase Adaptive Server Enterprise 
documentation:

• The release bulletin for your platform – contains last-minute information 
that was too late to be included in the books.

A more recent version of the release bulletin may be available on the 
World Wide Web. To check for critical product or document information 
that was added after the release of the product CD, use the Sybase 
Technical Library.

• The Installation Guide for your platform – describes installation, upgrade, 
and configuration procedures for all Adaptive Server and related Sybase 
products.

• Configuring Adaptive Server Enterprise for your platform – provides 
instructions for performing specific configuration tasks for Adaptive 
Server.

• What’s New in Adaptive Server Enterprise? – describes the new features 
in Adaptive Server version 12.5, the system changes added to support 
those features, and the changes that may affect your existing applications.

• Transact-SQL User’s Guide – documents Transact-SQL, Sybase’s 
enhanced version of the relational database language. This manual serves 
as a textbook for beginning users of the database management system. 
This manual also contains descriptions of the pubs2 and pubs3 sample 
databases.



     About This Book

Performance & Tuning Guide xxxv

• System Administration Guide – provides in-depth information about 
administering servers and databases. This manual includes instructions 
and guidelines for managing physical resources, security, user and system 
databases, and specifying character conversion, international language, 
and sort order settings.

• Reference Manual – contains detailed information about all Transact-SQL 
commands, functions, procedures, and datatypes. This manual also 
contains a list of the Transact-SQL reserved words and definitions of 
system tables.

• Performance and Tuning Guide – explains how to tune Adaptive Server 
for maximum performance. This manual includes information about 
database design issues that affect performance, query optimization, how to 
tune Adaptive Server for very large databases, disk and cache issues, and 
the effects of locking and cursors on performance.

• The Utility Guide – documents the Adaptive Server utility programs, such 
as isql and bcp, which are executed at the operating system level.

• The Quick Reference Guide – provides a comprehensive listing of the 
names and syntax for commands, functions, system procedures, extended 
system procedures, datatypes, and utilities in a pocket-sized book. 
Available only in print version.

• The System Tables Diagram – illustrates system tables and their entity 
relationships in a poster format. Available only in print version.

• Error Messages and Troubleshooting Guide – explains how to resolve 
frequently occurring error messages and describes solutions to system 
problems frequently encountered by users. 

• Component Integration Services User’s Guide – explains how to use the 
Adaptive Server Component Integration Services feature to connect 
remote Sybase and non-Sybase databases.

• Java in Adaptive Server Enterprise – describes how to install and use Java 
classes as datatypes, functions, and stored procedures in the Adaptive 
Server database.

• Using Sybase Failover in a High Availability System – provides 
instructions for using Sybase’s Failover to configure an Adaptive Server 
as a companion server in a high availability system.

• Using Adaptive Server Distributed Transaction Management Features – 
explains how to configure, use, and troubleshoot Adaptive Server DTM 
features in distributed transaction processing environments.



 

xxxvi  Adaptive Server Enterprise

• EJB Server User’s Guide – explains how to use EJB Server to deploy and 
execute Enterprise JavaBeans in Adaptive Server.

• XA Interface Integration Guide for CICS, Encina, and TUXEDO – 
provides instructions for using Sybase’s DTM XA interface with X/Open 
XA transaction managers.

• Glossary – defines technical terms used in the Adaptive Server 
documentation.

• Sybase jConnect for JDBC Programmer’s Reference – describes the 
jConnect for JDBC product and explains how to use it to access data stored 
in relational database management systems.

• Full-Text Search Specialty Data Store User’s Guide – describes how to use 
the Full-Text Search feature with Verity to search Adaptive Server 
Enterprise data.

• Historical Server User’s Guide –describes how to use Historical Server to 
obtain performance information for SQL Server and Adaptive Server.

• Monitor Server User’s Guide – describes how to use Monitor Server to 
obtain performance statistics from SQL Server and Adaptive Server.

• Monitor Client Library Programmer’s Guide – describes how to write 
Monitor Client Library applications that access Adaptive Server 
performance data.

Other sources of 
information

Use the Sybase Technical Library CD and the Technical Library Product 
Manuals Web site to learn more about your product:

• Technical Library CD contains product manuals and is included with your 
software. The DynaText browser (downloadable from Product Manuals at 
http://www.sybase.com/detail/1,3693,1010661,00.html) allows you to access 
technical information about your product in an easy-to-use format.

Refer to the Technical Library Installation Guide in your documentation 
package for instructions on installing and starting the Technical Library.

• Technical Library Product Manuals Web site is an HTML version of the 
Technical Library CD that you can access using a standard Web browser. 
In addition to product manuals, you will find links to the Technical 
Documents Web site (formerly known as Tech Info Library), the Solved 
Cases page, and Sybase/Powersoft newsgroups.

To access the Technical Library Product Manuals Web site, go to Product 
Manuals at http://www.sybase.com/support/manuals/.



     About This Book

Performance & Tuning Guide xxxvii

Sybase certifications 
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ For the latest information on product certifications 

1 Point your Web browser to Technical Documents at 
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

3 Select a product name from the product list.

4 Select the Certification Report filter, specify a time frame, and click Go.

5 Click a Certification Report title to display the report.

❖ For the latest information on EBFs and Updates

1 Point your Web browser to Technical Documents at 
http://www.sybase.com/support/techdocs/.

2 Select EBFs/Updates. Enter user name and password information, if 
prompted (for existing Web accounts) or create a new account (a free 
service).

3 Specify a time frame and click Go.

4 Select a product.

5 Click an EBF/Update title to display the report.

❖ To create a personalized view of the Sybase Web site (including support 
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create 
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at 
http://www.sybase.com/support/techdocs/

2 Click MySybase and create a MySybase profile.

Conventions This section describes conventions used in this manual.

Formatting SQL 
statements

SQL is a free-form language. There are no rules about the number of words you 
can put on a line or where you must break a line. However, for readability, all 
examples and syntax statements in this manual are formatted so that each 
clause of a statement begins on a new line. Clauses that have more than one part 
extend to additional lines, which are indented.

Font and syntax 
conventions

The font and syntax conventions used in this manual are shown in Table 1.0:



 

xxxviii  Adaptive Server Enterprise

Table 1: Font and syntax conventions in this manual

Element Example

Command names, command option names, utility 
names, utility flags, and other keywords are bold.

select
sp_configure

Database names, datatypes, file names and path 
names are in italics.

master database 

Variables, or words that stand for values that you 
fill in, are in italics.

select 

column_name
 
from 

table_name
 
where 

search_conditions
 

Parentheses are to be typed as part of the command. compute 

row_aggregate

 (

column_name

) 

Curly braces indicate that you must choose at least 
one of the enclosed options. Do not type the braces. 

{cash, check, credit}

 

Brackets mean choosing one or more of the 
enclosed options is optional. Do not type the 
brackets. 

[anchovies]

 

The vertical bar means you may select only one of 
the options shown. 

{die_on_your_feet | live_on_your_knees 
| live_on_your_feet}

 

The comma means you may choose as many of the 
options shown as you like, separating your choices 
with commas to be typed as part of the command.

[extra_cheese, avocados, sour_cream]

 

An ellipsis (...) means that you can repeat the last 
unit as many times as you like.

buy thing = price [cash | check | 
credit] 
 [, thing = price [cash | check | 
credit]]...

 

You must buy at least one thing and give its price. You 
may choose a method of payment: one of the items 
enclosed in square brackets. You may also choose to buy 
additional things: as many of them as you like. For each 
thing you buy, give its name, its price, and (optionally) a 
method of payment.



     About This Book

Performance & Tuning Guide xxxix

• Syntax statements (displaying the syntax and all options for a command) 
appear as follows:
sp_dropdevice [ device_name]

or, for a command with more options:

select column_name

from table_name

where search_conditions

In syntax statements, keywords (commands) are in normal font and identifiers 
are in lowercase: normal font for keywords, italics for user-supplied words.

• Examples of output from the computer appear as follows:

0736 New Age Books Boston MA

0877 Binnet & Hardley Washington DC

1389 Algodata Infosystems Berkeley CA

Case In this manual, most of the examples are in lowercase. However, you can 
disregard case when typing Transact-SQL keywords. For example, SELECT, 
Select, and select are the same. Note that Adaptive Server’s sensitivity to the 
case of database objects, such as table names, depends on the sort order 
installed on Adaptive Server. You can change case sensitivity for single-byte 
character sets by reconfiguring the Adaptive Server sort order. 

See in the System Administration Guide for more information.

Expressions Adaptive Server syntax statements use the following types of expressions:

Table 2: Types of expressions used in syntax statements

Usage Definition

expression Can include constants, literals, functions, column identifiers, variables, or 
parameters

logical expression An expression that returns TRUE, FALSE, or UNKNOWN

constant expression An expression that always returns the same value, such as “5+3” or “ABCDE”

float_expr Any floating-point expression or expression that implicitly converts to a floating 
value

integer_expr Any integer expression, or an expression that implicitly converts to an integer value

numeric_expr Any numeric expression that returns a single value

char_expr Any expression that returns a single character-type value

binary_expression An expression that returns a single binary or varbinary value



 

xl  Adaptive Server Enterprise

Examples Many of the examples in this manual are based on a database called pubtune. 
The database schema is the same as the pubs2 database, but the tables used in 
the examples have more rows: titles has 5000, authors has 5000, and titleauthor 
has 6250. Different indexes are generated to show different features for many 
examples, and these indexes are described in the text.

The pubtune database is not provided with Adaptive Server. Since most of the 
examples show the results of commands such as set showplan and set statistics 
io, running the queries in this manual on pubs2 tables will not produce the same 
I/O results, and in many cases, will not produce the same query plans as those 
shown here.

If you need help Each Sybase installation that has purchased a support contract has one or more 
designated people who are authorized to contact Sybase Technical Support. If 
you cannot resolve a problem using the manuals or online help, please have the 
designated person contact Sybase Technical Support or the Sybase subsidiary 
in your area.



Performance & Tuning Guide 1

C H A P T E R  1 Overview

This chapter is an introduction to enhancing database performance.

Good performance
Performance is the measure of efficiency for an application or multiple 
applications running in the same environment. Performance is usually 
measured in response time and throughput.

Response time
Response time is the time that a single task takes to complete. The 
response time can be shortened by:

• Reducing contention and wait times, particularly disk I/O wait times

• Using faster components

• Reducing the amount of time the resources are needed

In some cases, Adaptive Server is optimized to reduce initial response 
time, that is, the time it takes to return the first row to the user. 

This is especially useful in applications where a user may retrieve several 
rows with a query and then browse through them slowly with a front-end 
tool.

Topic Page
Good performance 1

Tuning performance 2

Identifying system limits 8

Setting tuning goals 8

Analyzing performance 8



Tuning performance 

2  Adaptive Server Enterprise

Throughput
Throughput refers to the volume of work completed in a fixed time period. 
There are two ways of thinking of throughput:

• As a single transaction, for example, 5 UpdateTitle transactions per 
minute, or

• As the entire Adaptive Server, for example, 50 or 500 server-wide 
transactions per minute 

Throughput is commonly measured in transactions per second (tps), but it can 
also be measured per minute, per hour, per day, and so on.

Designing for performance
Most of the gains in performance derive from good database design, thorough 
query analysis, and appropriate indexing. The largest performance gains can be 
realized by establishing a good database design and by learning to work with 
the Adaptive Server query optimizer as you develop your applications.

Other considerations, such as hardware and network analysis, can locate 
performance bottlenecks in your installation.

Tuning performance
Tuning is optimizing performance. A system model of Adaptive Server and its 
environment can be used to identify performance problems at each layer. 



CHAPTER 1    Overview

Performance & Tuning Guide 3

Figure 1-1: Adaptive Server system model

A major part of tuning is reducing the contention for system resources. As the 
number of users increases, contention for resources such as data and procedure 
caches, spinlocks on system resources, and the CPU(s) increases. The 
probability of locking data pages also increases.

Tuning levels
Adaptive Server and its environment and applications can be broken into 
components, or tuning layers, to isolate certain components of the system for 
analysis. In many cases, two or more layers must be tuned so that they work 
optimally together. 

In some cases, removing a resource bottleneck at one layer can reveal another 
problem area. On a more optimistic note, resolving one problem can sometimes 
alleviate other problems. 

For example, if physical I/O rates are high for queries, and you add more 
memory to speed response time and increase your cache hit ratio, you may ease 
problems with disk contention.

The following information is on the tuning layers for Adaptive Server.

Application code
Open Client

N
et

w
or

k 
in

te
rfa

ce
 

Response

Request
RPC

Data

Procedure

SQL compiler

Access manager

SQL executive

cache

Transaction Indexes

Data tables

System
procedures

cache

Shared memory

log



Tuning performance 

4  Adaptive Server Enterprise

Application layer

Most performance gains come from query tuning, based on good database 
design. This guide is devoted to an explanation of Adaptive Server internals 
with query processing techniques and tools to maintain high performance.

Issues at the application layer include the following:

• Decision Support System (DSS) and online transaction processing (OLTP) 
require different performance strategies.

• Transaction design can reduce performance, since long-running 
transactions hold locks, and reduce the access of other users to data.

• Relational integrity requires joins for data modification.

• Indexing to support selects increases time to modify data.

• Auditing for security purposes can limit performance.

Options to address these issues include:

• Using remote or replicated processing to move decision support off the 
OLTP machine

• Using stored procedures to reduce compilation time and network usage

• Using the minimum locking level that meets your application needs

Database layer

Applications share resources at the database layer, including disks, the 
transaction log, and data cache. 

One database may have 2^31 (2,147,483,648) logical pages. These logical 
pages are divided among the various devices, up to the limit available on each 
device.  Therefore, the maximum possible size of a database depends on the 
number and size of available devices.

The "overhead" is space reserved to the server, not available for

any user database.  It is:

• size of the master database,

• plus size of the model database,

•  plus size of tempdb

• (12.0 and beyond) plus size of sybsystemdb,

• plus 8k bytes for the server's configuration area.



CHAPTER 1    Overview

Performance & Tuning Guide 5

Issues at the database layer include:

• Developing a backup and recovery scheme

• Distributing data across devices

• Auditing affects performance; audit only what you need

• Scheduling maintenance activities that can slow performance and lock 
users out of tables

Options to address these issues include:

• Using transaction log thresholds to automate log dumps and avoid running 
out of space

• Using thresholds for space monitoring in data segments

• Using partitions to speed loading of data

• Placing objects on devices to avoid disk contention or to take advantage of 
I/O parallel.

• Caching for high availability of critical tables and indexes

Adaptive Server layer

At the server layer, there are many shared resources, including the data and 
procedure caches, locks, and CPUs.

Issues at the Adaptive Server layer are as follows:

• The application types to be supported: OLTP, DSS, or a mix. 

• The number of users to be supported can affect tuning decisions—as the 
number of users increases, contention for resources can shift. 

• Network loads.

• Replication Server® or other distributed processing can be an issue when 
the number of users and transaction rate reach high levels.

Options to address these issues include:

• Tuning memory (the most critical configuration parameter) and other 
parameters.

• Deciding on client vs. server processing—can some processing take place 
at the client side?

• Configuring cache sizes and I/O sizes.



Tuning performance 

6  Adaptive Server Enterprise

• Adding multiple CPUs.

• Scheduling batch jobs and reporting for off-hours.

• Reconfiguring certain parameters for shifting workload patterns.

• Determining whether it is possible to move DSS to another Adaptive 
Server. 

Devices layer

This layer is for the disk and controllers that store your data. Adaptive Server 
can manage up to 256 devices.

Issues at the devices layer include:

• You mirror the master device, the devices that hold the user database, or 
the database logs?

• How do you distribute system databases, user databases, and database logs 
across the devices?

• Do you need partitions for parallel query performance or high insert 
performance on heap tables?

Options to address these issues include:

• Using more medium-sized devices and controllers may provide better I/O 
throughput than a few large devices

• Distributing databases, tables, and indexes to create even I/O load across 
devices

• Using segments and partitions for I/O performance on large tables used in 
parallel queries

Network layer

This layer has the network or networks that connect users to Adaptive Server.

Virtually all users of Adaptive Server access their data via the network. Major 
issues with the network layer are:

• The amount of network traffic

• Network bottlenecks

• Network speed

Options to address these issues include:



CHAPTER 1    Overview

Performance & Tuning Guide 7

• Configuring packet sizes to match application needs

• Configuring subnets

• Isolating heavy network uses

• Moving to a higher-capacity network

• Configuring for multiple network engines

• Designing applications to limit the amount of network traffic required

Hardware layer

This layer concerns the CPUs available.

Issues at the hardware layer include:

• CPU throughput

• Disk access: controllers as well as disks

• Disk backup

• Memory usage

Options to address these issues include:

• Adding CPUs to match workload

• Configuring the housekeeper task to improve CPU utilization

• Following multiprocessor application design guidelines to reduce 
contention

• Configuring multiple data caches

Operating – system layer

Ideally, Adaptive Server is the only major application on a machine, and must 
share CPU, memory, and other resources only with the operating system, and 
other Sybase software such as Backup Server™ and Adaptive Server 
Monitor™.

At the operating system layer, the major issues are:

• The file systems available to Adaptive Server 

• Memory management – accurately estimating operating system overhead 
and other program memory use



Identifying system limits 

8  Adaptive Server Enterprise

• CPU availability and allocation to Adaptive Server

Options include:

• Network interface

• Choosing between files and raw partitions

• Increasing the memory size

• Moving client operations and batch processing to other machines

• Multiple CPU utilization for Adaptive Server

Identifying system limits
There are limits to maximum performance. The physical limits of the CPU, 
disk subsystems, and networks impose limits. Some of these can be overcome 
by adding memory, using faster disk drives, switching to higher bandwidth 
networks, and adding CPUs.

Given a set of components, any individual query has a minimum response time. 
Given a set of system limitations, the physical subsystems impose saturation 
points.

Setting tuning goals
For many systems, a performance specification developed early in the 
application life cycle sets out the expected response time for specific types of 
queries and the expected throughput for the system as a whole. 

Analyzing performance
When there are performance problems, you need to determine the sources of 
the problems and your goals in resolving them. The steps for analyzing 
performance problems are:



CHAPTER 1    Overview

Performance & Tuning Guide 9

1 Collect performance data to get baseline measurements. For example, you 
might use one or more of the following tools:

• Benchmark tests developed in-house or industry-standard third-party 
tests.

• sp_sysmon, a system procedure that monitors Adaptive Server 
performance and provides statistical output describing the behavior of 
your Adaptive Server system. 

See Performance and Tuning Guide: Tools for Performance Statistics 
for information on using sp_sysmon. 

• Adaptive Server Monitor provides graphical performance and tuning 
tools and object-level information on I/O and locks.

• Any other appropriate tools.

2 Analyze the data to understand the system and any performance problems. 
Create and answer a list of questions to analyze your Adaptive Server 
environment. The list might include questions such as:

• What are the symptoms of the problem? 

• What components of the system model affect the problem?

• Does the problem affect all users or only users of certain applications? 

• Is the problem intermittent or constant?

3 Define system requirements and performance goals:

• How often is this query executed? 

• What response time is required?

4 Define the Adaptive Server environment—know the configuration and 
limitations at all layers.

5 Analyze application design—examine tables, indexes, and transactions.

6 Formulate a hypothesis about possible causes of the performance problem 
and possible solutions, based on performance data.

7 Test the hypothesis by implementing the solutions from the last step:

• Adjust configuration parameters.

• Redesign tables.

• Add or redistribute memory resources.



Analyzing performance 

10  Adaptive Server Enterprise

8 Use the same tests used to collect baseline data in step 1 to determine the 
effects of tuning. Performance tuning is usually a repetitive process.

If the actions taken based on step 7 do not meet the performance 
requirements and goals set in step 3, or if adjustments made in one 
area cause new performance problems, repeat this analysis starting 
with step 2. You might need to reevaluate system requirements and 
performance goals.

9 If testing shows that your hypothesis is correct, implement the solution in 
your development environment.

Normal Forms
Usually, several techniques are used to reorganize a database to minimize and 
avoid inconsistency and redundancy, such as Normal Forms. 

Using the different levels of Normal Forms organizes the information in such 
a way that it promotes efficient maintenance, storage and updating. It 
simplifies query and update management, including the security and integrity 
of the database. However, such normalization usually creates a larger number 
of tables which may in turn increase the size of the database.

Database Administrators must decide the various techniques best suited their 
environment. 

Use the Adaptive Server Reference Manual as a guide in setting up databases.

Locking
Adaptive Server protects the tables, data pages, or data rows currently used by 
active transactions by locking them. Locking is needed in a multiuser 
environment, since several users may be working with the same data at the 
same time.

Locking affects performance when one process holds locks that prevent 
another process from accessing needed data. The process that is blocked by the 
lock sleeps until the lock is released. This is called lock contention.

A more serious locking impact on performance arises from deadlocks. A 
deadlock occurs when two user processes each have a lock on a separate page 
or table and each wants to acquire a lock on the same page or table held by the 
other process. The transaction with the least accumulated CPU time is killed 
and all of its work is rolled back.



CHAPTER 1    Overview

Performance & Tuning Guide 11

Understanding the types of locks in Adaptive Server can help you reduce lock 
contention and avoid or minimize deadlocks.

See the System Administration Guide for an introduction on locking.

Locking for performance is discussed in Chapter 13, “Locking Configuration 
and Tuning,”Chapter 11, “Using Locking Commands,” and Chapter 12, 
“Reporting on Locks.”

Special Considerations
Databases are allocated among the devices in fragments called "disk pieces", 
where each disk piece is represented by one entry in master.dbo.sysusages.  
Each disk piece:

• Represents a contiguous fragment of one device, up to the size of the 
device.

• Is an even multiple of 256 logical pages.

One device may be divided among many different databases.  Many fragments 
of one device may be apportioned to one single database as different disk 
pieces.

There is no practical limit on the number of disk pieces in one database, except 
that the Adaptive Server's configured memory must be large enough to 
accommodate its in-memory representation. 

Because disk pieces are multiples of 256 logical pages, portions of odd-sized 
devices may remain unused.  For example, if a device has 83 Mb and the server 
uses a 16k page size, 256 logical pages is 256 * 16k = 4 Mb.  The final 3 Mb 
of that device will not be used by any database because it's too small to make 
a group of 256 logical pages.

The master device sets aside its first 8k bytes as a configuration area.  Thus, to 
avoid any wasted space, a correctly-sized master device should be an even 
number of 256 logical pages *plus* 8 kb.



Analyzing performance 

12  Adaptive Server Enterprise



Performance & Tuning Guide 13

C H A P T E R  2 Networks and Performance

This chapter discusses the role that the network plays in performance of 
applications using Adaptive Server.

Introduction
Usually, the System Administrator is the first to recognize a problem on 
the network or in performance, including such things as:

• Process response times vary significantly for no apparent reason.

• Queries that return a large number of rows take longer than expected.

• Operating system processing slows down during normal Adaptive 
Server processing periods.

• Adaptive Server processing slows down during certain operating 
system processing periods.

• A particular client process seems to slow all other processes.

Potential performance problems
Some of the underlying problems that can be caused by networks are:

• Adaptive Server uses network services poorly.

Topic Page
Introduction 13

Potential performance problems 13

How Adaptive Server uses the network 15

Changing network packet sizes 15

Impact of other server activities 19

Improving network performance 20



Potential performance problems 

14  Adaptive Server Enterprise

• The physical limits of the network have been reached.

• Processes are retrieving unnecessary data values, increasing network 
traffic unnecessarily.

• Processes are opening and closing connections too often, increasing 
network load.

• Processes are frequently submitting the same SQL transaction, causing 
excessive and redundant network traffic.

• Adaptive Server does not have enough network memory.

• Adaptive Server’s network packet sizes are not big enough to handle the 
type of processing needed by certain clients.

Basic questions on network performance
When looking at problems that you think might be network-related, ask 
yourself these questions:

• Which processes usually retrieve a large amount of data?

• Are a large number of network errors occurring?

• What is the overall performance of the network?

• What is the mix of transactions being performed using SQL and stored 
procedures?

• Are a large number of processes using the two-phase commit protocol?

• Are replication services being performed on the network?

• How much of the network is being used by the operating system?

Techniques summary
Once you have gathered the data, you can take advantage of several techniques 
that should improve network performance. These techniques include:

• Using small packets for most database activity

• Using larger packet sizes for tasks that perform large data transfers

• Using stored procedures to reduce overall traffic

• Filtering data to avoid large transfers



CHAPTER 2    Networks and Performance

Performance & Tuning Guide 15

• Isolating heavy network users from ordinary users

• Using client control mechanisms for special cases

Using sp_sysmon while changing network configuration
Use sp_sysmon while making network configuration changes to observe the 
effects on performance. Use Adaptive Server Monitor to pinpoint network 
contention on a particular database object.

For more information about using sp_sysmon, see the Performance and Tuning 
Guide: Tools for Monitoring and Analyzing Performance book.

How Adaptive Server uses the network
All client/server communication occurs over a network via packets. Packets 
contain a header and routing information, as well as the data they carry.

Adaptive Server was one of the first database systems to be built on a network-
based client/server architecture. Clients initiate a connection to the server. The 
connection sends client requests and server responses. Applications can have 
as many connections open concurrently as they need to perform the required 
task. 

The protocol used between the client and server is known as the Tabular Data 
Stream™ (TDS), which forms the basis of communication for many Sybase 
products.

Changing network packet sizes
By default, all connections to Adaptive Server use a default packet size of 512 
bytes. This works well for clients sending short queries and receiving small 
result sets. However, some applications may benefit from an increased packet 
size.



Changing network packet sizes 

16  Adaptive Server Enterprise

Typically, OLTP sends and receives large numbers of packets that contain very 
little data. A typical insert statement or update statement may be only 100 or 
200 bytes. A data retrieval, even one that joins several tables, may bring back 
only one or two rows of data, and still not completely fill a packet. Applications 
using stored procedures and cursors also typically send and receive small 
packets.

Decision support applications often include large batches of Transact-SQL and 
return larger result sets.

In both OLTP and DSS environments, there may be special needs such as batch 
data loads or text processing that can benefit from larger packets.

The System Administration Guide describes how to change these configuration 
parameters:

• The default network packet size, if most of your applications are performing 
large reads and writes

• The max network packet size and additional network memory, which 
provides additional memory space for large packet connections

Only a System Administrator can change these configuration parameters.

Large versus default packet sizes for user connections
Adaptive Server reserves enough space for all configured user connections to 
log in at the default packet size. Large network packets cannot use that space. 
Connections that use the default network packet size always have three buffers 
reserved for the connection.

Connections that request large packet sizes acquire the space for their network 
I/O buffers from the additional network memory region. If there is not enough 
space in this region to allocate three buffers at the large packet size, 
connections use the default packet size instead.



CHAPTER 2    Networks and Performance

Performance & Tuning Guide 17

Number of packets is important
Generally, the number of packets being transferred is more important than the 
size of the packets. “Network” performance also includes the time needed by 
the CPU and operating system to process a network packet. This per-packet 
overhead affects performance the most. Larger packets reduce the overall 
overhead costs and achieve higher physical throughput, provided that you have 
enough data to be sent.

The following big transfer sources may benefit from large packet sizes:

• Bulk copy

• readtext and writetext commands

• select statements with large result sets

There is always a point at which increasing the packet size will not improve 
performance, and may in fact decrease performance, because the packets are 
not always full. Although there are analytical methods for predicting that point, 
it is more common to vary the size experimentally and plot the results. If you 
conduct such experiments over a period of time and conditions, you can 
determine a packet size that works well for a lot of processes. However, since 
the packet size can be customized for every connection, specific experiments 
for specific processes can be beneficial.

The results can be significantly different between applications. Bulk copy 
might work best at one packet size, while large image data retrievals might 
perform better at a different packet size.

If testing shows that some specific applications can achieve better performance 
with larger packet sizes, but that most applications send and receive small 
packets, clients need to request the larger packet size.

Evaluation tools with Adaptive Server
The sp_monitor system procedure reports on packet activity. This report shows 
only the packet-related output:

...
packets received packets sent packet err
---------------- ------------ ----------
10866(10580)     19991(19748) 0(0)
...

You can also use these global variables:



Changing network packet sizes 

18  Adaptive Server Enterprise

• @@pack_sent – Number of packets sent by Adaptive Server

• @@pack_received – Number of packets received

• @@packet_errors – Number of errors

These SQL statements show how the counters can be used:

select "before" = @@pack_sent
select * from titles
select "after" = @@pack_sent

Both sp_monitor and the global variables report all packet activity for all users 
since the last restart of Adaptive Server.

See the Performance and Tuning Guide: Tools for Performance Statistics book 
for more information about sp_monitor and these global variables.

Evaluation tools outside of Adaptive Server
Operating system commands also provide information about packet transfers. 
See the documentation for your operating system for more information about 
these commands.

Server-based techniques for reducing network traffic
Using stored procedures, views, and triggers can reduce network traffic. These 
Transact-SQL tools can store large chunks of code on the server so that only 
short commands need to be sent across the network. If your applications send 
large batches of Transact-SQL commands to Adaptive Server, converting them 
to use stored procedures can reduce network traffic. 

• Stored procedures

Applications that send large batches of Transact-SQL can place less load 
on the network if the SQL is converted to stored procedures. Views can 
also help reduce the amount of network traffic.

You may be able to reduce network overhead by turning off “doneinproc” 
packets.

For more information, see “Reducing packet overhead” on page 1036

• Ask for only the information you need



CHAPTER 2    Networks and Performance

Performance & Tuning Guide 19

Applications should request only the rows and columns they need, 
filtering as much data as possible at the server to reduce the number of 
packets that need to be sent. In many cases, this can also reduce the disk 
I/O load.

• Large transfers

Large transfers simultaneously decrease overall throughput and increase 
the average response time. If possible, large transfers should be done 
during off-hours. If large transfers are common, consider acquiring 
network hardware that is suitable for such transfers. Table 2-1 shows the 
characteristics of some network types.

Table 2-1: Network options

• Network overload

Overloaded networks are becoming increasingly common as more and 
more computers, printers, and peripherals are network equipped. Network 
managers rarely detect problems before database users start complaining 
to their System Administrator

Be prepared to provide local network managers with your predicted or 
actual network requirements when they are considering the adding 
resources. You should also keep an eye on the network and try to anticipate 
problems that result from newly added equipment or application 
requirements.

Impact of other server activities
You should be aware of the impact of other server activity and maintenance on 
network activity, especially:

• Two-phase commit protocol

• Replication processing

Type Characteristics

Token ring Token ring hardware responds better than Ethernet hardware 
during periods of heavy use.

Fiber optic Fiber-optic hardware provides very high bandwidth, but is 
usually too expensive to use throughout an entire network.

Separate 
network

A separate network can be used to handle network traffic 
between the highest volume workstations and Adaptive Server.



Improving network performance 

20  Adaptive Server Enterprise

• Backup processing

These activities, especially replication processing and the two-phase commit 
protocol, involve network communication. Systems that make extensive use of 
these activities may see network-related problems. Accordingly, these 
activities should be done only as necessary. Try to restrict backup activity to 
times when other network activity is low.

Single user versus multiple users
You must take the presence of other users into consideration before trying to 
solve a database problem, especially if those users are using the same network. 

Since most networks can transfer only one packet at a time, many users may be 
delayed while a large transfer is in progress. Such a delay may cause locks to 
be held longer, which causes even more delays. 

When response time is “abnormally” high, and normal tests indicate no 
problem, it could be due to other users on the same network. In such cases, ask 
the user when the process was being run, if the operating system was generally 
sluggish, if other users were doing large transfers, and so on.

In general, consider multiuser impacts, such as the delay caused by a long 
transaction, before digging more deeply into the database system to solve an 
abnormal response time problem. 

Improving network performance

Isolate heavy network users
Isolate heavy network users from ordinary network users by placing them on a 
separate network, as shown in Figure 2-1. 



CHAPTER 2    Networks and Performance

Performance & Tuning Guide 21

Figure 2-1: Isolating heavy network users

In the “Before” diagram, clients accessing two different Adaptive Servers use 
one network card. Clients accessing Servers A and B have to compete over the 
network and past the network card. 

In the “After” diagram, clients accessing Server A use one network card and 
clients accessing Server B use another.

Set tcp no delay on TCP networks
By default, the configuration parameter tcp no delay is set to “off,” meaning 
that the network performs packet batching. It briefly delays sending partial 
packets over the network. 

While this improves network performance in terminal-emulation 
environments, it can slow performance for Adaptive Server applications that 
send and receive small batches. To disable packet batching, a System 
Administrator can set the tcp no delay configuration parameter to 1.

Client accessing
Server A

Clients accessing
Server B

Before

After

A B

A B

Clients accessing
Server B

Client accessing
Server A

Single
network
card

Two
network
cards



Improving network performance 

22  Adaptive Server Enterprise

Configure multiple network listeners
Use two (or more) ports listening for a single Adaptive Server. Front-end 
software may be directed to any configured network ports by setting the 
DSQUERY environment variable.

Using multiple network ports spreads out the network load and eliminates or 
reduces network bottlenecks, thus increasing Adaptive Server throughput. 

See the Adaptive Server configuration guide for your platform for information 
on configuring multiple network listeners.



Performance & Tuning Guide 23

C H A P T E R  3 Using Engines and CPUs

Adaptive Server’s multithreaded architecture is designed for high 
performance in both uniprocessor and multiprocessor systems. This 
chapter describes how Adaptive Server uses engines and CPUs to fulfill 
client requests and manage internal operations. It introduces Adaptive 
Server’s use of CPU resources, describes the Adaptive Server Symmetric 
MultiProcessing (SMP) model, and illustrates task scheduling with a 
processing scenario.

This chapter also gives guidelines for multiprocessor application design 
and describes how to measure and tune CPU- and engine-related features. 

Background concepts
This section provides an overview of how Adaptive Server processes 
client requests. It also reviews threading and other related fundamentals.

Like an operating - system, a relational database must be able to respond 
to the requests of many concurrent users. Adaptive Server is based on a 
multithreaded, single-process architecture that allows it to manage 
thousands of client connections and multiple concurrent client requests 
without overburdening the operating - system.

Topic Page
Background concepts 23

Single-CPU process model 26

Adaptive Server SMP process model 31

Housekeeper task improves CPU utilization 35

Measuring CPU usage 37

Enabling engine-to-CPU affinity 39

Multiprocessor application design guidelines 41



Background concepts 

24  Adaptive Server Enterprise

In a system with multiple CPUs, you can enhance performance by configuring 
Adaptive Server to run using multiple Adaptive Server engines. Each engine is 
a single operating - system process that yields high performance when you 
configure one engine per CPU. 

All engines are peers that communicate through shared memory as they act 
upon common user databases and internal structures such as data caches and 
lock chains. Adaptive Server engines service client requests. They perform all 
database functions, including searching data caches, issuing disk I/O read and 
write requests, requesting and releasing locks, updating, and logging. 

Adaptive Server manages the way in which CPU resources are shared between 
the engines that process client requests. It also manages system services (such 
as database locking, disk I/O, and network I/O) that impact processing 
resources.

How Adaptive Server processes client requests
Adaptive Server creates a new client task for every new connection. It fulfills 
a client request as outlined in the following steps:

1 The client program establishes a network socket connection to Adaptive 
Server. 

2 Adaptive Server assigns a task from the pool of tasks, which are allocated 
at start-up time. The task is identified by the Adaptive Server process 
identifier, or spid, which is tracked in the sysprocesses system table.

3 Adaptive Server transfers the context of the client request, including 
information such as permissions and the current database, to the task.

4 Adaptive Server parses, optimizes, and compiles the request.

5 If parallel query execution is enabled, Adaptive Server allocates subtasks 
to help perform the parallel query execution. The subtasks are called 
worker processes, which are discussed in “Adaptive Server’s worker 
process model” on page 557. 

6 Adaptive Server executes the task. If the query was executed in parallel, 
the task merges the results of the subtasks.

7 The task returns the results to the client, using TDS packets.

For each new user connection, Adaptive Server allocates a private data storage 
area, a dedicated stack, and other internal data structures. 



CHAPTER 3    Using Engines and CPUs

Performance & Tuning Guide 25

It uses the stack to keep track of each client task’s state during processing, and 
it uses synchronization mechanisms such as queueing, locking, semaphores, 
and spinlocks to ensure that only one task at a time has access to any common, 
modifiable data structures. These mechanisms are necessary because Adaptive 
Server processes multiple queries concurrently. Without these mechanisms, if 
two or more queries were to access the same data, data integrity would be 
sacrificed.

The data structures require minimal memory resources and minimal system 
resources for context-switching overhead. Some of these data structures are 
connection-oriented and contain static information about the client. 

Other data structures are command-oriented. For example, when a client sends 
a command to Adaptive Server, the executable query plan is stored in an 
internal data structure.

Client task implementation
Adaptive Server client tasks are implemented as subprocesses, or “lightweight 
processes,” instead of operating - system processes, as subprocesses use only a 
small fraction of the resources that processes use. 

Multiple processes executing concurrently require more memory and CPU 
time than multiple subprocesses. Processes also require operating – system 
resources to switch context (time-share) from one process to the next. 

The use of subprocesses eliminates most of the overhead of paging, context 
switching, locking, and other operating - system functions associated with a 
one process-per-connection architecture. Subprocesses require no operating – 
system resources after they are launched, and they can share many system 
resources and structures.

Figure 3-1 illustrates the difference in system resources required by client 
connections implemented as processes and client connections implemented as 
subprocesses. Subprocesses exist and operate within a single instance of the 
executing program process and its address space in shared memory.



Single-CPU process model 

26  Adaptive Server Enterprise

Figure 3-1: Process versus subprocess architecture

To give Adaptive Server the maximum amount of processing power, run only 
essential non-Adaptive Server processes on the database machine.

Single-CPU process model
In a single-CPU system, Adaptive Server runs as a single process, sharing CPU 
time with other processes, as scheduled by the operating - system. This section 
is an overview of how an Adaptive Server system with a single CPU uses the 
CPU to process client requests. 

“Adaptive Server SMP process model” on page 31 expands on this discussion 
to show how an Adaptive Server system with multiple CPUs processes client 
requests.

Scheduling engines to the CPU
Figure 3-2 shows a run queue for a single-CPU environment in which process 
8 (proc 8) is running on the CPU and processes 6, 1, 7, and 4 are in the 
operating - system run queue waiting for CPU time. Process 7 is an Adaptive 
Server process; the others can be any operating - system process.

Client applications

Server process

Server process

Server process

 Process-based  Subprocess-based

Server process

Shared
memory

client implementation client implementation



CHAPTER 3    Using Engines and CPUs

Performance & Tuning Guide 27

Figure 3-2: Processes queued in the run queue for a single CPU

In a multitasking environment, multiple processes or subprocesses execute 
concurrently, alternately sharing CPU resources.

Figure 3-3 shows three subprocesses in a multitasking environment. The 
subprocesses are represented by the thick, dark arrows pointing down. The 
subprocesses share a single CPU by switching onto and off the engine over 
time. They are using CPU time when they are solid – near the arrowhead. They 
are in the run queue waiting to execute or sleeping while waiting for resources 
when they are represented by broken lines. 

Note that, at any one time, only one process is executing. The others sleep in 
various stages of progress.

Figure 3-3: Multithreaded processing

CPU

proc 8

Operating - system

Run queue

proc 6 proc 1 proc 7 proc 4

Subprocess 1 Subprocess 2 Subprocess 3

Time

Legend:
context switching

sleeping

 executing



Single-CPU process model 

28  Adaptive Server Enterprise

Scheduling tasks to the engine
Figure 3-4 shows tasks (or worker processes) queued up for an Adaptive 
Server engine in a single-CPU environment. This figure switches from 
Adaptive Server in the operating - system context (as shown in Figure 3-2 on 
page 27) to Adaptive Server internal task processing. Adaptive Server, not the 
operating - system, dynamically schedules client tasks from the run queue onto 
the engine. When the engine finishes processing one task, it executes the task 
at the head of the run queue.

After a task begins running on the engine, the engine continues processing it 
until one of the following events occurs:

• The task needs a resource such as a page that is locked by another task, or 
it needs to perform a slow job such as disk I/O or network I/O. The task is 
put to sleep, waiting for the resource.

• The task runs for a configurable period of time and reaches a yield point. 
Then the task relinquishes the engine, and the next process in the queue 
starts to run. “Scheduling client task processing time” on page 30 
discusses in more detail how this works.

When you execute sp_who on a single-CPU system with multiple active tasks, 
the sp_who output shows only a single task as “running”—it is the sp_who task 
itself. All other tasks in the run queue have the status “runnable.” The sp_who 
output also shows the cause for any sleeping tasks.

Figure 3-4 also shows the sleep queue with two sleeping tasks, as well as other 
objects in shared memory. Tasks are put to sleep while they are waiting for 
resources or for the results of a disk I/O operation.



CHAPTER 3    Using Engines and CPUs

Performance & Tuning Guide 29

Figure 3-4: Tasks queue up for the Adaptive Server engine

Execution task scheduling
The scheduler manages processing time for client tasks and internal 
housekeeping. 

Sleep queueRun queue Adaptive Server

 Disk I/O

Lock sleep

Data cache

Procedure

 
 

 cache
 

Index cache

 7task 7

 7task 4

 7task 3

 7task 8

 7task 2

 7task 6

Adaptive Server Engine

Operating- system

RUNNING

 7task 5

Shared memory

 Adaptive Server structures

Pending I/Os

D
I
S
K

N
E
T



Single-CPU process model 

30  Adaptive Server Enterprise

Scheduling client task processing time

The time slice configuration parameter prevents executing tasks from 
monopolizing engines during execution. The scheduler allows a task to execute 
on an Adaptive Server engine for a maximum amount of time that is equal to 
the time slice and cpu grace time values combined, using default times for time 
slice (100 milliseconds, 1/10 of a second, or equivalent to one clock tick) and 
cpu grace time (500 clock ticks, or 50 seconds).

Adaptive Server’s scheduler does not force tasks off an Adaptive Server 
engine. Tasks voluntarily relinquish the engine at a yield point, when the task 
does not hold a vital resource such as a spinlock.

Each time the task comes to a yield point, it checks to see if time slice has been 
exceeded. If it has not, the task continues to execute. If execution time does 
exceed time slice, the task voluntarily relinquishes the engine within the cpu 
grace time interval and the next task in the run queue begins executing. 

The default value for the time slice parameter is 100 clock milliseconds, and 
there is seldom any reason to change it. The default value for cpu grace time is 
500 clock ticks. If time slice is set too low, an engine may spend too much time 
switching between tasks, which tends to increase response time.

If time slice is set too high, CPU-intensive processes may monopolize the CPU, 
which can increase response time for short tasks. If your applications encounter 
time slice errors, adjust cpu grace time, not time slice. 

 See Chapter 4, “Distributing Engine Resources,” for more information.

Use sp_sysmon to determine how many times tasks yield voluntarily.

If you want to increase the amount of time that CPU-intensive applications run 
on an engine before yielding, you can assign execution attributes to specific 
logins, applications, or stored procedures.

If the task has to relinquish the engine before fulfilling the client request, it 
goes to the end of the run queue, unless there are no other tasks in the run 
queue. If no tasks are in the run queue when an executing task reaches a yield 
point during grace time, Adaptive Server grants the task another processing 
interval.

If no other tasks are in the run queue, and the engine still has CPU time, 
Adaptive Server continues to grant time slice intervals to the task until it 
completes. 



CHAPTER 3    Using Engines and CPUs

Performance & Tuning Guide 31

Normally, tasks relinquish the engine at yield points prior to completion of the 
cpu grace time interval. It is possible for a task not to encounter a yield point 
and to exceed the time slice interval.   When the cpu grace time ends, Adaptive 
Server terminates the task with a time slice error. If you receive a time slice 
error, try doubling the value of cpu grace time. If the problem persists, call 
Sybase Technical Support.

Maintaining CPU availability during idle time

When Adaptive Server has no tasks to run, it loops (holds the CPU), looking 
for executable tasks. The configuration parameter runnable process search 
count controls the number of times that Adaptive Server loops. 

With the default value of 2000, Adaptive Server loops 2000 times, looking for 
incoming client requests, completed disk I/Os, and new tasks in the run queue. 
If there is no activity for the duration of runnable process search count, 
Adaptive Server relinquishes the CPU to the operating - system.

The default for runnable process search count generally provides good 
response time, if the operating - system is not running clients other than 
Adaptive Server.

Use sp_sysmon to determine how runnable process search count affects 
Adaptive Server’s use of CPU cycles, engine yields to the operating - system, 
and blocking network checks. 

See Performance and Tuning Guide: Tools for Monitoring and Analyzing 
Performance on using the sp_sysmon.

Adaptive Server SMP process model
Adaptive Server’s Symmetric MultiProcessing (SMP) implementation extends 
the performance benefits of Adaptive Server’s multithreaded architecture to 
multiprocessor systems. In the SMP environment, multiple CPUs cooperate to 
perform work faster than a single processor can.

 SMP is intended for machines with the following features: 

• A symmetric multiprocessing operating - system 

• Shared memory over a common bus 

• Two to 128 processors 



Adaptive Server SMP process model 

32  Adaptive Server Enterprise

• Very high throughput 

Scheduling engines to CPUs
In a system with multiple CPUs, multiple processes can run concurrently. 
Figure 3-5 represents Adaptive Server engines as the nonshaded ovals waiting 
in the operating - system run queue for processing time on one of three CPUs. 
It shows two Adaptive Server engines, proc 3 and proc 8, being processed 
simultaneously.   

Figure 3-5: Processes queued in the OS run queue for multiple CPUs

The symmetric aspect of SMP is a lack of affinity between processes and 
CPUs—processes are not attached to a specific CPU. Without CPU affinity, the 
operating - system schedules engines to CPUs in the same way as it schedules 
non-Adaptive Server processes to CPUs. If an Adaptive Server engine does not 
find any runnable tasks, it can either relinquish the CPU to the operating - 
system or continue to look for a task to run by looping for the number of times 
set in the runnable process search count configuration parameter.

Scheduling Adaptive Server tasks to engines
Scheduling Adaptive Server tasks to engines in the SMP environment is similar 
to scheduling tasks in the single-CPU environment, as described in 
“Scheduling tasks to the engine” on page 28. The difference is that in the SMP 
environment:

• Each engine has a run queue. Tasks have soft affinities to engines. When 
a task runs on an engine, it creates an affinity to the engine. If a task yields 
the engine and then is queued again, it tends to be queued on the same 
engine’s run queue.

CPU

proc 8

CPU

proc 2

CPU

proc 3

Operating - system

Run queue

proc 6 proc 1 proc 7 proc 4



CHAPTER 3    Using Engines and CPUs

Performance & Tuning Guide 33

• Any engine can process the tasks in the global run queue (unless logical 
process management has been used to assign the task to a particular engine 
or set of engines).

Multiple network engines
Each Adaptive Server engine handles the network I/O for its connections. 
Engines are numbered sequentially, starting with engine 0. 

When a user logs in to Adaptive Server, the task is assigned in round-robin 
fashion to one of the engines that will serve as its network engine. This engine 
handles the login to establish packet size, language, character set, and other 
login settings. All network I/O for a task is managed by its network engine until 
the task logs out. 

Task priorities and run queues
At certain times, Adaptive Server increases the priority of some tasks, 
especially if they are holding an important resource or have had to wait for a 
resource. In addition, logical process management allows you to assign 
priorities to logins, procedures, or applications using sp_bindexeclass and 
related system procedures. 

See Chapter 4, “Distributing Engine Resources,” for more information on 
performance tuning and task priorities.

Each task has a priority assigned to it; the priority can change over the life of 
the task. When an engine looks for a task to run, it first scans its own high-
priority queue and then the high-priority global run queue. 

If there are no high-priority tasks, it looks for tasks at medium priority, then at 
low priority. If it finds no tasks to run on its own run queues or the global run 
queues, it can examine the run queues for another engine, and steal a task from 
another engine. This combination of priorities, local and global queues, and the 
ability to move tasks between engines when workload is uneven provides load 
balancing.

Tasks in the global or engine run queues are all in a runnable state. Output from 
sp_who lists tasks as “runnable” when the task is in any run queue.



Adaptive Server SMP process model 

34  Adaptive Server Enterprise

Processing scenario
The following steps describe how a task is scheduled in the SMP environment. 
The execution cycle for single-processor systems is very similar. A single-
processor system handles task switching, putting tasks to sleep while they wait 
for disk or network I/O, and checking queues in the same way.

1 Assigning a network engine during login

When a connection logs in to Adaptive Server, it is assigned to an engine 
that will manage its network I/O. This engine then handles the login. 

The engine assigns a task structure and establishes packet size, language, 
character set, and other login settings. A task sleeps while waiting for the 
client to send a request.

2 Checking for client requests

Another engine checks for incoming client requests once every clock tick.

When this engine finds a command (or query) from the connection for a 
task, it wakes up the task and places it on the end of its run queue. 

3 Fulfilling a client request

When a task becomes first in the queue, the engine parses, compiles, and 
begins executing the steps defined in the task’s query plan

4 Performing disk I/O

If the task needs to access a page locked by another user, it is put to sleep 
until the page is available. After such a wait, the task’s priority is 
increased, and it is placed in the global run queue so that any engine can 
run it

5 Performing network I/O

When the task needs to return results to the user, the engine on which it is 
executing issues the network I/O request, and puts the tasks to sleep on a 
network write. 

The engine checks once each clock tick to determine whether the network 
I/O has completed. When the I/O has completed, the task is placed on the 
run queue for the engine to which it is affiliated, or the global run queue.



CHAPTER 3    Using Engines and CPUs

Performance & Tuning Guide 35

Housekeeper task improves CPU utilization
When Adaptive Server has no user tasks to process, a housekeeper task 
automatically begins writing dirty buffers to disk and performing other 
maintenance tasks. Because these writes are done during the server’s idle 
cycles, they are known as free writes. They result in improved CPU utilization 
and a decreased need for buffer washing during transaction processing. They 
also reduce the number and duration of checkpoint spikes (times when the 
checkpoint process causes a short, sharp rise in disk writes). 

The housekeeper is the garbage collector. It cleans up data that was logically 
deleted and resets the rows so the tables have space again. 

Side effects of the housekeeper task
If the housekeeper task can flush all active buffer pools in all configured 
caches, it wakes up the checkpoint task. 

The checkpoint task determines whether it can checkpoint the database. If it 
can, it writes a checkpoint log record indicating that all dirty pages have been 
written to disk. The additional checkpoints that occur as a result of the 
housekeeper process may improve recovery speed for the database.

In applications that repeatedly update the same database page, the housekeeper 
task may initiate some database writes that are not necessary. Although these 
writes occur only during the server’s idle cycles, they may be unacceptable on 
systems with overloaded disks. 

Configuring the housekeeper task
System Administrators can use the housekeeper free write percent 
configuration parameter to control the side effects of the housekeeper task. 
This parameter specifies the maximum percentage by which the housekeeper 
task can increase database writes. Valid values range from 0 to 100.

By default, the housekeeper free write percent parameter is set to 1. This allows 
the housekeeper task to continue to wash buffers as long as the database writes 
do not increase by more than 1 percent. The work done by the housekeeper task 
at the default parameter setting results in improved performance and recovery 
speed on most systems. However, setting housekeeper free write percent too 
high can degrade performance. If you want to increase the value, increase by 
only 1 or 2 percent each time.



Housekeeper task improves CPU utilization 

36  Adaptive Server Enterprise

A dbcc tune option, deviochar, controls the size of batches that the housekeeper 
can write to disk at one time. 

See “Increasing the housekeeper batch limit” on page 1026.

Changing the percentage by which writes can be increased

Use sp_configure to change the percentage by which database writes can be 
increased as a result of the housekeeper process:

sp_configure "housekeeper free write percent", value

For example, issue the following command to stop the housekeeper task from 
working when the frequency of database writes reaches 2 percent above 
normal:

sp_configure "housekeeper free write percent", 2

Disabling the housekeeper task

You may want to disable the housekeeper task to establish a controlled 
environment in which only specified user tasks are running. To disable the 
housekeeper task, set the value of the housekeeper free write percent parameter 
to 0:

sp_configure "housekeeper free write percent", 0

 Warning!  In addition to buffer washing, the housekeeper periodically flushes 
statistics to system tables. These statistics are used for query optimization, and 
incorrect statistics can severely reduce query performance. Do not set the 
housekeeper free write percent to 0 on a system where data modification 
commands may be affecting the number of rows and pages in tables and 
indexes.

Allowing the housekeeper task to work continuously

To allow the housekeeper task to work whenever there are idle CPU cycles, 
regardless of the percentage of additional database writes, set the value of the 
housekeeper free write percent parameter to 100:

sp_configure "housekeeper free write percent", 100



CHAPTER 3    Using Engines and CPUs

Performance & Tuning Guide 37

The“Recovery management” on page 1024 section of sp_sysmon shows 
checkpoint information to help you determine the effectiveness of the 
housekeeper. 

Measuring CPU usage
This section describes how to measure CPU usage on machines with a single 
processor and on those with multiple processors.

Single-CPU machines
There is no correspondence between your operating - system’s reports on CPU 
usage and Adaptive Server’s internal “CPU busy” information. It is normal for 
an Adaptive Server to exhibit very high CPU usage while performing an I/O-
bound task.

A multithreaded database engine is not allowed to block on I/O. While the 
asynchronous disk I/O is being performed, Adaptive Server services other user 
tasks that are waiting to be processed. If there are no tasks to perform, it enters 
a busy-wait loop, waiting for completion of the asynchronous disk I/O. This 
low-priority busy-wait loop can result in very high CPU usage, but because of 
its low priority, it is harmless.

Using sp_monitor to measure CPU usage

Use sp_monitor to see the percentage of time Adaptive Server uses the CPU 
during an elapsed time interval:

last_run                   current_run                seconds
-------------------------- -------------------------- -----------
       Jul 28 1999 5:25PM        Jul 28 1999 5:31PM         360

cpu_busy                io_busy                idle     
----------------------- ---------------------- -----------------
5531(359)-99%           0(0)-0%                178302(0)-0%

packets_received        packets_sent           packet_errors
----------------------- ---------------------- ------------------
57650(3599)             60893(7252)            0(0)



Measuring CPU usage 

38  Adaptive Server Enterprise

total_read        total_write      total_errors    connections
----------------- ---------------- --------------- --------------
190284(14095)     160023(6396)     0(0)           178(1)

For more information about sp_monitor, see the Adaptive Server Reference 
Manual. 

Using sp_sysmon to measure CPU usage

sp_sysmon gives more detailed information than sp_monitor. The “Kernel 
Utilization” section of the sp_sysmon report displays how busy the engine was 
during the sample run. The percentage in this output is based on the time that 
CPU was allocated to Adaptive Server; it is not a percentage of the total sample 
interval.

The “CPU Yields by engine” section displays information about how often the 
engine yielded to the operating - system during the interval. 

See Chapter 39, “Monitoring Performance with sp_sysmon,” for more 
information about sp_sysmon.

Operating - system commands and CPU usage

Operating - system commands for displaying CPU usage are documented in the 
Adaptive Server installation and configuration guides.

If your operating - system tools show that CPU usage is more than 85 percent 
most of the time, consider using a multi-CPU environment or off-loading some 
work to another Adaptive Server.

Determining when to configure additional engines
When you are determining whether to add additional engines, the major factors 
to consider are the:

• Load on existing engines

• Contention for resources such as locks on tables, disks, and cache 
spinlocks

• Response time

If the load on existing engines is more than 80 percent, adding an engine should 
improve response time, unless contention for resources is high or the additional 
engine causes contention.



CHAPTER 3    Using Engines and CPUs

Performance & Tuning Guide 39

Before configuring more engines, use sp_sysmon to establish a baseline. Look 
at the sp_sysmon output for the following sections in Chapter 39, “Monitoring 
Performance with sp_sysmon.” 

In particular, study the lines or sections in the output that may reveal points of 
contention: 

• “Logical lock contention” on page 955.

• “Address lock contention” on page 956.

• “ULC semaphore requests” on page 982.

• “Log semaphore requests” on page 982.

• “Page splits” on page 987.

• “Lock summary” on page 1000.

• “Cache spinlock contention” on page 1015.

• “I/Os delayed by” on page 1028.

After increasing the number of engines, run sp_sysmon again under similar 
load conditions, and check the “Engine Busy Utilization” section in the report 
along with the possible points of contention listed above.

Taking engines offline
dbcc (engine) can be used to take engines offline. The syntax is: 

dbcc engine(offline, [enginenum])

dbcc engine(“online”)

If enginenum is not specified, the highest-numbered engine is taken offline. For 
more information, see the System Administration Guide.

Enabling engine-to-CPU affinity
By default, there is no affinity between CPUs and engines in Adaptive Server. 
You may see slight performance gains in high-throughput environments by 
establishing affinity of engines to CPUs.



Enabling engine-to-CPU affinity 

40  Adaptive Server Enterprise

Not all operating - systems support CPU affinity. The dbcc tune command is 
silently ignored on systems that do not support engine-to-CPU affinity. The 
dbcc tune command must be reissued each time Adaptive Server is restarted. 
Each time CPU affinity is turned on or off, Adaptive Server prints a message 
in the error log indicating the engine and CPU numbers affected:

Engine 1, cpu affinity set to cpu 4.
Engine 1, cpu affinity removed.

The syntax is: 

dbcc tune(cpuaffinity, start_cpu [, on | off])

start_cpu specifies the CPU to which engine 0 is to be bound. Engine 1 is 
bound to the CPU numbered (start_cpu + 1). The formula for determining the 
binding for engine n is:

((start_cpu + n) % number_of_cpus

CPU numbers range from 0 through the number of CPUs minus 1.

On a four-CPU machine (with CPUs numbered 0–3) and a four-engine 
Adaptive Server, this command: 

dbcc tune(cpuaffinity, 2, "on")

The command gives this result: 

On the same machine, with a three-engine Adaptive Server, the same command 
causes the following affinity:

In this example, CPU 1 is not used by Adaptive Server.

To disable CPU affinity, use -1 in place of start_cpu, and specify off for the 
setting:

dbcc tune(cpuaffinity, -1, "off") 

Engine CPU

0 2  (the start_cpu number specified)

1 3

2 0

3 1

Engine CPU

0 2

1 3

2 0



CHAPTER 3    Using Engines and CPUs

Performance & Tuning Guide 41

You can enable CPU affinity without changing the value of start_cpu by using 
-1 and on for the setting:

dbcc tune(cpuaffinity, -1, "on")

The default value for start_cpu is 1 if CPU affinity has not been previously set.

To specify a new value of start_cpu without changing the on/off setting, use:

dbcc tune (cpuaffinity, start_cpu)

If CPU affinity is currently enabled, and the new start_cpu is different from its 
previous value, Adaptive Server changes the affinity for each engine.

If CPU affinity is off, Adaptive Server notes the new start_cpu value, and the 
new affinity takes effect the next time CPU affinity is turned on.

To see the current value and whether affinity is enabled, use:

dbcc tune(cpuaffinity, -1) 

This command only prints current settings to the error log and does not change 
the affinity or the settings. 

Multiprocessor application design guidelines
If you are moving applications from a single-CPU environment to an SMP 
environment, this section offers some issues to consider. 

Increased throughput on multiprocessor Adaptive Servers makes it more likely 
that multiple processes may try to access a data page simultaneously. It is 
especially important to adhere to the principles of good database design to 
avoid contention. Following are some of the application design considerations 
that are especially important in an SMP environment.

• Multiple indexes

The increased throughput of SMP may result in increased lock contention 
when allpages-locked tables with multiple indexes are updated. Allow no 
more than two or three indexes on any table that will be updated often.

For information about the effects of index maintenance on performance, 
see “Index management” on page 984. 

• Managing disks



Multiprocessor application design guidelines 

42  Adaptive Server Enterprise

The additional processing power of SMP may increase demands on the 
disks. Therefore, it is best to spread data across multiple devices for 
heavily used databases. 

See “Disk I/O management” on page 1027 for information about 
sp_sysmon reports on disk utilization.

• Adjusting the fillfactor for create index commands

You may need to adjust the fillfactor in create index commands. Because of 
the added throughput with multiple processors, setting a lower fillfactor 
may temporarily reduce contention for the data and index pages.

• Transaction length

Transactions that include many statements or take a long time to run may 
result in increased lock contention. Keep transactions as short as possible, 
and avoid holding locks – especially exclusive or update locks – while 
waiting for user interaction

• Temporary tables

Temporary tables (tables in tempdb) do not cause contention, because they 
are associated with individual users and are not shared. However, if 
multiple user processes use tempdb for temporary objects, there can be 
some contention on the system tables in tempdb. 

See “Temporary tables and locking” on page 418 for information on ways 
to reduce contention. 



Performance & Tuning Guide 43

C H A P T E R  4 Distributing Engine Resources

This chapter explains how to assign execution attributes, how Adaptive 
Server interprets combinations of execution attributes, and how to help 
you predict the impact of various execution attribute assignments on the 
system. 

Understanding how Adaptive Server uses CPU resources is a prerequisite 
for understanding this chapter.

For more information, see Chapter 3, “Using Engines and CPUs.”

Algorithm for successfully distributing engine 
resources

This section gives an approach for successful tuning on the task level. 

The interactions among execution objects in an Adaptive Server 
environment are complex. Furthermore, every environment is different: 
Each involves its own mix of client applications, logins, and stored 
procedures and is characterized by the interdependencies between these 
entities.

Implementing execution precedence without having studied the 
environment and the possible implications can lead to unexpected (and 
negative) results.

Topic Page
Algorithm for successfully distributing engine resources 43

Manage preferred access to resources 51

Types of execution classes 51

Setting execution class attributes 55

Rules for determining precedence and scope 61

Example scenario using precedence rules 66

Considerations for Engine Resource Distribution 69



Algorithm for successfully distributing engine resources 

44  Adaptive Server Enterprise

For example, say you have identified a critical execution object and you want 
to raise its execution attributes to improve performance either permanently or 
on a per-session basis (“on the fly”). If this execution object accesses the same 
set of tables as one or more other execution objects, raising its execution 
priority can lead to performance degradation due to lock contention among 
tasks at different priority levels.

Because of the unique nature of every Adaptive Server environment, it is 
impossible to provide a detailed procedure for assigning execution precedence 
that makes sense for all systems. However, this section provides guidelines 
with a progression of steps to use and to discuss the issues commonly related 
to each step.

The steps involved with assigning execution attributes are illustrated in 
Figure 4-1. A discussion of the steps follows the figure.



CHAPTER 4    Distributing Engine Resources

Performance & Tuning Guide 45

Figure 4-1: Process for assigning execution precedence

Analyze the environment, perform

Understand concepts well enough
to predict possible consequences.

Assign performance attributes to 
establish an execution hierarchy.

Goals
accomplished

?

benchmark tests, and set goals.

Yes

No

Is 
performance
satisfactory

No

?

Yes

1

2

3

4

6

Does it 
makes sense to 

continue using resources
for tuning

End

No

Yes

?

5 Monitor and 

Start

analyze results.



Algorithm for successfully distributing engine resources 

46  Adaptive Server Enterprise

Algorithm guidelines
1 Study the Adaptive Server environment. 

See “Environment analysis and planning” on page 47 for details.

• Analyze the behavior of all execution objects and categorize them as 
well as possible.

• Understand interdependencies and interactions between execution 
objects.

• Perform benchmark tests to use as a baseline for comparison after 
establishing precedence. 

• Think about how to distribute processing in a multiprocessor 
environment.

• Identify the critical execution objects for which you will enhance 
performance.

• Identify the noncritical execution objects that can afford decreased 
performance.

• Establish a set of quantifiable performance goals for the execution 
objects identified in the last two items.

2 Understand the effects of using execution classes. 

See “Execution class attributes” on page 53 for details.

• Understand the basic concepts associated with execution class 
assignments.

• Decide whether you need to create one or more user defined-
execution classes.

• Understand the implications of different class level assignments—
how do assignments affect the environment in terms of performance 
gains, losses, and interdependencies?

3 Assign execution classes and any independent engine affinity attributes.

4 After making execution precedence assignments. analyze the running 
Adaptive Server environment. 

See “Results analysis and tuning” on page 50 for details.

• Run the benchmark tests you used in step 1 and compare the results.

• If the results are not what you expect, take a closer look at the 
interactions between execution objects, as outlined in step 1. 



CHAPTER 4    Distributing Engine Resources

Performance & Tuning Guide 47

• Investigate dependencies that you might have missed.

5 Fine tune the results by repeating steps 3 and 4 as many times as necessary.

6 Monitor the environment over time.

Environment analysis and planning
This section elaborates on step 1 of “Algorithm for successfully distributing 
engine resources” on page 43.

Environment analysis and planning involves the following actions:

• Analyzing the environment

• Performing benchmark tests to use as a baseline

• Setting performance goals

Analyzing

The degree to which your execution attribute assignments enhance an 
execution object’s performance is a function of the execution object’s 
characteristics and its interactions with other objects in the Adaptive Server 
environment. It is essential to study and understand the Adaptive Server 
environment in detail so that you can make decisions about how to achieve the 
performance goals you set. 

Where to start

Analysis involves these two phases:

• Phase 1 – analyze the behavior of each execution object.

• Phase 2 – use the results from the object analysis to make predictions 
about interactions between execution objects within the Adaptive Server 
system.

First, make a list containing every execution object that can run in the 
environment. Then, classify each execution object and its characteristics. 
Categorize the execution objects with respect to each other in terms of 
importance. For each, decide which one of the following applies:

• It is a highly critical execution object needing enhanced response time,

• It is an execution object of medium importance, or 



Algorithm for successfully distributing engine resources 

48  Adaptive Server Enterprise

• It is a noncritical execution object that can afford slower response time.

Example: phase 1 – execution object behavior

Typical classifications include intrusive/unintrusive, I/O-intensive, and CPU-
intensive. For example, identify each object as intrusive or unintrusive, I/O 
intensive or not, and CPU intensive or not. You will probably need to identify 
additional issues specific to the environment to gain useful insight.

Intrusive and unintrusive

Two or more execution objects running on the same Adaptive Server are 
intrusive when they use or access a common set of resources. 

If the applications in the Adaptive Server environment use different resources, 
they are unintrusive.

I/O-intensive and CPU-intensive execution objects

When an execution object is I/O intensive, it might help to give it EC1 
attributes and, at the same time, assign EC3 attributes to any compute-bound 
execution objects. This can help because an object performing I/O will not 
normally use an entire time quantum, and will give up the CPU before waiting 
for I/O to complete. 

Intrusive applications

Effect of 
assigning 
attributes

Assigning high execution attributes to intrusive applications might degrade performance.

Example Consider a situation in which a noncritical application is ready to release a resource, but 
becomes blocked when a highly-critical application starts executing. If a second critical 
application needs to use the blocked resource, then execution of this second critical 
application is also blocked

Unintrusive applications

Effect of 
assigning 
attributes

You can expect enhanced performance when you assign preferred execution attributes to 
an unintrusive application.

Example Simultaneous distinct operations on tables in different databases are unintrusive. Two 
operations are also unintrusive if one is compute bound and the other is I/O bound.



CHAPTER 4    Distributing Engine Resources

Performance & Tuning Guide 49

By giving preference to I/O-bound Adaptive Server tasks, Adaptive Server 
ensures that these tasks are runnable as soon as the I/O is finished. By letting 
the I/O take place first, the CPU should be able to accommodate both types of 
applications and logins.

Example: phase 2 – the environment as a whole

Follow up on phase 1, in which you identified the behavior of the execution 
objects, by thinking about how applications will interact. 

Typically, a single application behaves differently at different times; that is, it 
might be alternately intrusive and unintrusive, I/O bound, and CPU intensive. 
This makes it difficult to predict how applications will interact, but you can 
look for trends.

Organize the results of the analysis so that you understand as much as possible 
about each execution object with respect to the others. For example, you might 
create a table that identifies the objects and their behavior trends. 

Using Adaptive Server monitoring tools is one of the best ways to understand 
how execution objects affect the environment. 

Performing benchmark tests
Perform benchmark tests before assigning any execution attributes so that you 
have the results to use as a baseline after making adjustments.

Two tools that can help you understand system and application behavior are:

• Adaptive Server Monitor provides a comprehensive set of performance 
statistics. It offers graphical displays through which you can isolate 
performance problems. 

• sp_sysmon is a system procedure that monitors system performance for a 
specified time interval and then prints out an ASCII text-based report. 

For information on using  sp_sysmon see Performance and Tuning Guide: 
Tools for Monitoring and Analyzing Performance.   In particular, see 
“Application management” on page 961.



Algorithm for successfully distributing engine resources 

50  Adaptive Server Enterprise

Setting goals
Establish a set of quantifiable performance goals. These should be specific 
numbers based on the benchmark results and your expectations for improving 
performance. You can use these goals to direct you while assigning execution 
attributes. 

Results analysis and tuning
Here are some suggestions for analyzing the running Adaptive Server 
environment after you configure the execution hierarchy:

1 Run the same benchmark tests you ran before assigning the execution 
attributes, and compare the results to the baseline results. See 
“Environment analysis and planning” on page 47.

2 Ensure that there is good distribution across all the available engines using 
Adaptive Server Monitor or sp_sysmon. Check the “Kernel Utilization” 
section of the sp_sysmon report. 

Also see “Application management” on page 961.

3 If the results are not what you expected, take a closer look at the 
interactions between execution objects. 

As described in “Environment analysis and planning” on page 47, look for 
inappropriate assumptions and dependencies that you might have missed.

4 Make adjustments to the performance attributes.

5 Finetune the results by repeating these steps as many times as necessary.

Monitoring the environment over time
Adaptive Server has several stored procedures for example  sp_sysmon, 
optdiag, sp_spaceused, that are used to monitor performance and will give 
valid information on the status of the system.

See Performance and Tuning Guide: Tools for Monitoring and Analyzing 
Performance for information on monitoring the system.



CHAPTER 4    Distributing Engine Resources

Performance & Tuning Guide 51

Manage preferred access to resources
Most performance-tuning techniques give you control either at the system level 
or the specific query level. Adaptive Server also gives you control over the 
relative performance of simultaneously running tasks. 

Unless you have unlimited resources, the need for control at the task level is 
greater in parallel execution environments because there is more competition 
for limited resources.

You can use system procedures to assign execution attributes that indicate 
which tasks should be given preferred access to resources. The Logical Process 
Manager uses the execution attributes when it assigns priorities to tasks and 
tasks to engines. 

Execution attributes also affect how long a process can use an engine each time 
the process runs. In effect, assigning execution attributes lets you suggest to 
Adaptive Server how to distribute engine resources between client 
applications, logins, and stored procedures in a mixed workload environment.

Each client application or login can initiate many Adaptive Server tasks. In a 
single-application environment, you can distribute resources at the login and 
task levels to enhance performance for chosen connections or sessions. In a 
multiple-application environment, you can distribute resources to improve 
performance for selected applications and for chosen connections or sessions.

 Warning! Assign execution attributes with caution. 

Arbitrary changes in the execution attributes of one client application, login, or 
stored procedure can adversely affect the performance of others.

Types of execution classes
An execution class is a specific combination of execution attributes that specify 
values for task priority, time slice, and task-to-engine affinity. You can bind an 
execution class to one or more execution objects, which are client applications, 
logins, and stored procedures.

There are two types of execution classes – predefined and user-defined. 
Adaptive Server provides three predefined execution classes. You can create 
user-defined execution classes by combining execution attributes.



Types of execution classes 

52  Adaptive Server Enterprise

Predefined execution classes
Adaptive Server provides the following predefined execution classes:

• EC1 – has the most preferred attributes.

• EC2 – has average values of attributes.

• EC3 – has non-preferred values of attributes.

Objects associated with EC2 are given average preference for engine resources. 
If an execution object is associated with EC1, Adaptive Server considers it to 
be critical and tries to give it preferred access to engine resources. 

Any execution object associated with EC3 is considered to be least critical and 
does not receive engine resources until execution objects associated with EC1 
and EC2 are executed. By default, execution objects have EC2 attributes.

To change an execution object’s execution class from the EC2 default, use 
sp_bindexeclass, described in “Assigning execution classes” on page 56.

User-Defined execution classes
In addition to the predefined execution classes, you can define your own 
execution classes. Reasons for doing this include:

• EC1, EC2, and EC3 do not accommodate all combinations of attributes that 
might be useful.

• Associating execution objects with a particular group of engines would 
improve performance.

The system procedure sp_addexeclass creates a user-defined execution class 
with a name and attributes that you choose. For example, the following 
statement defines a new execution class called DS with a low– priority value 
and allows it to run on any engine:

sp_addexeclass DS, LOW, 0, ANYENGINE

You associate a user-defined execution class with an execution object using 
sp_bindexeclass just as you would with a predefined execution class. 



CHAPTER 4    Distributing Engine Resources

Performance & Tuning Guide 53

Execution class attributes
Each predefined or user-defined execution class is composed of a combination 
of three attributes: base priority, time slice, and an engine affinity. These 
attributes determine performance characteristics during execution.

The attributes for the predefined execution classes, EC1, EC2, and EC3, are 
fixed, as shown in Table 4-1. You specify the mix of attribute values for user-
defined execution classes when you create them, using  sp_addexeclass. 

Table 4-1: Fixed-attribute composition of predefined execution classes

See “Base priority” on page 53, “Time slice” on page 54 and “Task-to-engine 
affinity” on page 54 for more information.

By default, a task on Adaptive Server operates with the same attributes as EC2: 
its base priority is medium, its time slice is set to one tick, and it can run on any 
engine. 

Base priority
Base priority is the priority you assign to a task when you create it. The values 
are “high,” “medium,” and “low.” There is a run queue for each priority for 
each engine, and the global run queue also has a queue for each priority.

When an engine looks for a task to run, it first checks its own high-priority run 
queue, then the high-priority global run queue, then its own medium-priority 
run queue, and so on. The effect is that runnable tasks in the high-priority run 
queues are scheduled onto engines more quickly, than tasks in the other queues.

During execution, Adaptive Server can temporarily change a task’s priority if 
it needs to. It can be greater than or equal to, but never lower than, its base 
priority. 

When you create a user-defined execution class, you can assign the values 
high, medium or low to the task.

Execution class 
level

Base priority
attribute*

Time slice
attribute **

Engine affinity
attribute***

EC1 High Time slice > t None

EC2 Medium Time slice = t None

EC3 Low Time slice < t Engine with the highest 
engine ID number 



Execution class attributes 

54  Adaptive Server Enterprise

Time slice
Adaptive Server handles several processes concurrently by switching between 
them, allowing one process to run for a fixed period of time (a time slice) 
before it lets the next process run. 

As shown in Table 4-1 on page 53, the time slice attribute is different for each 
predefined execution class. EC1 has the longest time slice value, EC3 has the 
shortest time slice value, and EC2 has a time slice value that is between the 
values for EC1 and EC3. 

More precisely, the time period that each task is allowed to run is based on the 
value for the time slice configuration parameter, as described in “Scheduling 
client task processing time” on page 30. Using default values for configuration 
parameters, EC1 execution objects may run for double the time slice value; the 
time slice of an EC2 execution object is equivalent to the configured value; and 
an EC3 execution object yields at the first yield point it encounters, often not 
running for an entire time slice.

If tasks do not yield the engine for other reasons (such as needing to perform 
I/O or being blocked by a lock) the effect is that EC1 clients run longer and 
yield the engine fewer times over the life of a given task. EC3 execution objects 
run for very short periods of time when they have access to the engine, so they 
yield much more often over the life of the task. EC2 tasks fall between EC1 and 
EC3 in runtime and yields.

Currently, you cannot assign time slice values when you create user-defined 
execution classes with sp_addexeclass. Adaptive Server assigns the EC1, EC2, 
and EC3 time slice values for high, medium, and low priority tasks, 
respectively.

Task-to-engine affinity
In a multiengine environment, any available engine can process the next task 
in the global run queue. The engine affinity attribute lets you assign a task to 
an engine or to a group of engines. There are two ways to use task-to-engine 
affinity:

• Associate less critical execution objects with a defined group of engines to 
restrict the object to a subset of the total number of engines. This reduces 
processor availability for those objects. The more critical execution 
objects can execute on any Adaptive Server engine, so performance for 
them improves because they have the benefit of the resources that the less 
critical ones are deprived of.



CHAPTER 4    Distributing Engine Resources

Performance & Tuning Guide 55

• Associate more critical execution objects with a defined group of engines 
to which less critical objects do not have access. This ensures that the 
critical execution objects have access to a known amount of processing 
power.

EC1 and EC2 do not set engine affinity for the execution object; however, EC3 
sets affinity to the Adaptive Server engine with the highest engine number in 
the current configuration.

You can create engine groups with sp_addengine and bind execution objects to 
an engine group with sp_addexeclass. If you do not want to assign engine 
affinity for a user-defined execution class, using ANYENGINE as the engine 
group parameter allows the task to run on any engine.

Note  The engine affinity attribute is not used for stored procedures.

Setting execution class attributes
You implement and manage execution hierarchy for client applications, logins, 
and stored procedures using the five categories of system procedures listed in 
the following table.

Table 4-2: System procedures for managing execution object 
precedence

Category Description System procedures

User-defined execution 
class

Create and drop a user-defined class with 
custom attributes or change the attributes 
of an existing class.

• sp_addexeclass

• sp_dropexeclass

Execution class binding Bind and unbind predefined or user-
defined classes to client applications and 
logins.

• sp_bindexeclass

• sp_unbindexeclass

For the session only
(“on the fly”)

Set and clear attributes of an active session 
only.

• sp_setpsexe

• sp_clearpsexe

Engines Add engines to and drop engines from 
engine groups; create and drop engine 
groups.

• sp_addengine

• sp_dropengine

Reporting Report on engine group assignments, 
application bindings, execution class 
attributes.

• sp_showcontrolinfo

• sp_showexeclass

• sp_showpsexe



Setting execution class attributes 

56  Adaptive Server Enterprise

See the Adaptive Server Reference Manual for complete descriptions of the 
system procedures in Table 4-2.

Assigning execution classes
The following example illustrates how to assign preferred access to resources 
to an execution object by associating it with EC1. In this case, the execution 
object is a combination of application and login.

The syntax for the sp_bindexeclass is: 

sp_bindexeclass object_name, object_type,
scope, class_name

Suppose you decide that the “sa” login must get results from isql as fast as 
possible. You can tell Adaptive Server to give execution preference to login 
“sa” when it executes isql by issuing sp_bindexeclass with the preferred 
execution class EC1. For example:

sp_bindexeclass sa, LG, isql, EC1

This statement stipulates that whenever a login (LG) called “sa” executes the 
isql application, the “sa” login task executes with EC1 attributes. Adaptive 
Server improves response time for the “sa” login by:

• Placing it in a high-priority run queue, so it is assigned to an engine more 
quickly

• Allowing it to run for a longer period of time than the default value for 
time slice, so it accomplishes more work when it has access to the engine

Engine groups and establishing task-to-engine affinity
The following steps illustrate how you can use system procedures to create an 
engine group associated with a user-defined execution class and bind that 
execution class to user sessions. In this example, the server is used by technical 
support staff, who must respond as quickly as possible to customer needs, and 
by managers who are usually compiling reports, and can afford slower 
response time.

The example uses sp_addengine and sp_addexeclass.

You create engine groups and add engines to existing groups with 
sp_addengine. The syntax is: 



CHAPTER 4    Distributing Engine Resources

Performance & Tuning Guide 57

sp_addengine engine_number, engine_group

You set the attributes for user-defined execution classes using sp_addexeclass. 
The syntax is: 

sp_addexeclass class_name, base_priority,
                            time_slice, engine_group

The steps are:

1 Create an engine group using sp_addengine. This statement creates a 
group called DS_GROUP, consisting of engine 3:

sp_addengine 3, DS_GROUP

To expand the group so that it also includes engines 4 and 5, execute 
sp_addengine two more times for those engine numbers:

sp_addengine 4, DS_GROUP
sp_addengine 5, DS_GROUP

2 Create a user-defined execution class and associate it with the DS_GROUP 
engine group using sp_addexeclass. 

This statement defines a new execution class called DS with a priority 
value of “LOW” and associates it with the engine group DS_GROUP:

sp_addexeclass DS, LOW, 0, DS_GROUP

3 Bind the less critical execution objects to the new execution class using 
sp_bindexeclass.

For example, you can bind the manager logins, “mgr1”, “mgr2”, and 
“mgr3”, to the DS execution class using sp_bindexeclass three times:

sp_bindexeclass mgr1, LG, NULL, DS
sp_bindexeclass mgr2, LG, NULL, DS
sp_bindexeclass mgr3, LG, NULL, DS

The second parameter, “LG”, indicates that the first parameter is a login 
name. The third parameter, NULL, indicates that the association applies to 
any application that the login might be running. The fourth parameter, DS, 
indicates that the login is bound to the DS execution class.

The result of this example is that the technical support group (not bound to an 
engine group) is given access to more immediate processing resources than the 
managers.

Figure 4-2 illustrates the associations in this scenario:

• Logins “mgr1”, “mgr2”, and “mgr3” have affinity to the DS engine group 
consisting of engines 3, 4, and 5.



Setting execution class attributes 

58  Adaptive Server Enterprise

• Logins “ts1”, “ts2”, “ts3”, and “ts4” can use all six Adaptive Server 
engines.

Figure 4-2: An example of engine affinity

How execution class bindings affect scheduling
You can use logical process management to increase the priority of specific 
logins, of specific applications, or of specific logins executing specific 
applications. This example looks at:

• An order_entry application, an OLTP application critical to taking 
customer orders.

• A sales_report application, that can prepare various reports. Some 
managers run this application with default characteristics, but other 
managers run the report at lower priority.

• Other users, who are running various other applications at default 
priorities (no assignment of execution classes or priorities).

Execution class bindings

The following statement binds order_entry with EC1 attributes, giving higher 
priority to the tasks running it:

sp_bindexeclass order_entry, AP, NULL, EC1

Engine 2

mgr1

ts1 ts2 ts3 ts4

mgr2 mgr3

Engine 3 Engine 4 Engine 5Engine 1Engine 0

DS class, with affinity to DS_GROUP engines

Tasks without execution attributes can run on any engine



CHAPTER 4    Distributing Engine Resources

Performance & Tuning Guide 59

The following sp_bindexeclass statement specifies EC3 when “mgr” runs the 
sales_report application:

sp_bindexeclass mgr, LG, sales_report, EC3

This task can execute only when tasks with EC1 and EC2 attributes are idle or 
in a sleep state. 

Figure 4-3 shows four execution objects running tasks. Several users are 
running the order_entry and sales_report applications. Two other logins are 
active, “mgr” (logged in once using the sales_report application, and twice 
using isql) and “cs3” (not using the affected applications).

Figure 4-3: Execution objects and their tasks

When the “mgr” login uses isql (tasks 1 and 2), the task runs with default 
attributes. But when the “mgr” login uses sales_report, the task runs at EC3. 
Other managers running sales_report (tasks 6 and 7) run with the default 
attributes. All tasks running order_entry run at high priority, with EC1 attributes 
(tasks 3, 4 and 8). “cs3” runs with default attributes.

 Engine affinity can affect scheduling

Each execution class is associated with a different priority:

• Tasks assigned to EC1 are placed in a high-priority run queue.

• Tasks assigned to EC2 are placed in a medium-priority run queue.

• Tasks assigned to EC3 are place in a low-priority run queue.

1

6 7 8

2 3

5
sales_report

mgr

order_entry

4

9

cs3

H H

H DDD

D D

L

Priority:
H High
L Low
D Default



Setting execution class attributes 

60  Adaptive Server Enterprise

An engine looking for a task to run first looks in its own high-priority run 
queues, then in the high-priority global run queue. If there are no high-priority 
tasks, it checks for medium-priority tasks in its own run queue, then in the 
medium-priority global run queue, and finally for low-priority tasks.

What happens if a task has affinity to a particular engine? Assume that task 7 
in Figure 4-3 on page 59, a high-priority task in the global run queue, has a 
user-defined execution class with high priority and affinity to engine 2. Engine 
2 currently has high-priority tasks queued and is running another task.

If engine 1 has no high-priority tasks queued when it finishes processing task 
8 in Figure 4-3 on page 59, it checks the global run queue, but cannot process 
task 7 due to the engine binding. Engine 1 then checks its own medium-priority 
queue, and runs task 15.  Although a System Administrator assigned the 
preferred execution class EC1, engine affinity temporarily lowered task 7’s 
execution precedence to below that of a task with EC2. 

This effect might be highly undesirable or it might be what the performance 
tuner intended. You can assign engine affinity and execution classes in such a 
way that task priority is not what you intended. You can also make assignments 
in such a way that tasks with low priority might not ever run, or might wait for 
extremely long times – another reason to plan and test thoroughly when 
assigning execution classes and engine affinity.

Setting attributes for a session only
If you need to change any attribute value temporarily for an active session, you 
can do so using sp_setpsexe.

The change in attributes is valid only for the specified spid and is in effect only 
for the duration of the session, whether it ends naturally or is terminated. 
Setting attributes using sp_setpsexe neither alters the definition of the 
execution class for any other process nor does it apply to the next invocation of 
the active process on which you use it.

To clear attributes set for a session, use sp_clearpsexe.

Getting information
Adaptive Server stores the information about execution class assignments in 
the system tables sysattributes and sysprocesses and supports several system 
procedures for determining what assignments have been made.



CHAPTER 4    Distributing Engine Resources

Performance & Tuning Guide 61

You can use sp_showcontrolinfo to display information about the execution 
objects bound to execution classes, the Adaptive Server engines in an engine 
group, and session-level attribute bindings. If you do not specify parameters, 
sp_showcontrolinfo displays the complete set of bindings and the composition 
of all engine groups.

sp_showexeclass displays the attribute values of an execution class or all 
execution classes. 

You can also use sp_showpsexe to see the attributes of all running processes.

Rules for determining precedence and scope
Determining the ultimate execution hierarchy between two or more execution 
objects can be complicated. What happens when a combination of dependent 
execution objects with various execution attributes makes the execution order 
unclear? 

For example, an EC3 client application can invoke an EC1 stored procedure. 
Do both execution objects take EC3 attributes, EC1 attributes, or EC2 
attributes?

Understanding how Adaptive Server determines execution precedence is 
important for getting what you want out of your execution class assignments. 
Two fundamental rules, the precedence rule and the scope rule, can help you 
determine execution order.

Multiple execution objects and ECs
Adaptive Server uses precedence and scope rules to determine which 
specification, among multiple conflicting ones, to apply.

Use the rules in this order:

1 Use the precedence rule when the process involves multiple execution 
object types.

2 Use the scope rule when there are multiple execution class definitions for 
the same execution object.



Rules for determining precedence and scope 

62  Adaptive Server Enterprise

Precedence rule

The precedence rule sorts out execution precedence when an execution object 
belonging to one execution class invokes an execution object of another 
execution class.

The precedence rule states that the execution class of a stored procedure 
overrides that of a login, which, in turn, overrides that of a client application.

If a stored procedure has a more preferred execution class than that of the client 
application process invoking it, the precedence of the client process is 
temporarily raised to that of the stored procedure for the period of time during 
which the stored procedure runs. This also applies to nested stored procedures.

Note  Exception to the precedence rule: If an execution object invokes a stored 
procedure with a less preferred execution class than its own, the execution 
object’s priority is not temporarily lowered.

Precedence Rule 
Example

This example illustrates the use of the precedence rule. Suppose there is an EC2 
login, an EC3 client application, and an EC1 stored procedure. 

The login’s attributes override those of the client application, so the login is 
given preference for processing. If the stored procedure has a higher base 
priority than the login, the base priority of the Adaptive Server process 
executing the stored procedure goes up temporarily for the duration of the 
stored procedure’s execution. Figure 4-4 shows how the precedence rule is 
applied. 

Figure 4-4: Use of the precedence rule

What happens when a login with EC2 invokes a client application with EC1 and 
the client application calls a stored procedure with EC3? The stored procedure 
executes with the attributes of EC2 because the execution class of a login 
precedes that of a client application.

login
Stored Client

Application Procedure
EC2 EC1EC3

Stored procedure runs with EC2



CHAPTER 4    Distributing Engine Resources

Performance & Tuning Guide 63

Scope rule

In addition to specifying the execution attributes for an object, you can define 
its scope when you use sp_bindexeclass. The scope specifies the entities for 
which the execution class bindings will be effective. The syntax is: 

sp_bindexeclass object_name, object_type,
                            scope, class_name

For example, you can specify that an isql client application run with EC1 
attributes, but only when it is executed by an “sa” login. This statement sets the 
scope of the EC1 binding to the isql client application as the “sa” login:

sp_bindexeclass isql, AP, sa, EC1

Conversely, you can specify that the “sa” login run with EC1 attributes, but 
only when it executes the isql client application. In this case, the scope of the 
EC1 binding to the “sa” login is the isql client application:

sp_bindexeclass sa, LG, isql, EC1

The execution object’s execution attributes apply to all of its interactions if the 
scope is NULL. 

When a client application has no scope, the execution attributes bound to it 
apply to any login that invokes the client application. 

When a login has no scope, the attributes apply to the login for any process that 
the login invokes. 

The following command specifies that Transact-SQL applications execute 
with EC3 attributes for any login that invokes isql, unless the login is bound to 
a higher execution class:

sp_bindexeclass isql, AP, NULL, EC3

Combined with the bindings above that grant the “sa” user of isql EC1 
execution attributes, and using the precedence rule, an isql request from the 
“sa” login executes with EC1 attributes. Other processes servicing isql requests 
from non-“sa” logins execute with EC3 attributes.

The scope rule states that when a client application, login, or stored procedure 
is assigned multiple execution class levels, the one with the narrowest scope 
has precedence. Using the scope rule, you can get the same result if you use this 
command:

sp_bindexeclass isql, AP, sa, EC1



Rules for determining precedence and scope 

64  Adaptive Server Enterprise

Resolving a precedence conflict
Adaptive Server uses the following rules to resolve conflicting precedence 
when multiple execution objects and execution classes have the same scope.

• Execution objects not bound to a specific execution class are assigned 
these default values:

• An execution object for which an execution class is assigned has higher 
precedence than defaults. (An assigned EC3 has precedence over an 
unassigned EC2).

• If a client application and a login have different execution classes, the 
login has higher execution precedence than the client application (from the 
precedence rule).

• If a stored procedure and a client application or login have different 
execution classes, Adaptive Server uses the one with the higher execution 
class to derive the precedence when it executes the stored procedure (from 
the precedence rule).

• If there are multiple definitions for the same execution object, the one with 
a narrower scope has the highest priority (from the scope rule). For 
example, the first statement gives precedence to the “sa” login running isql 
over “sa” logins running any other task:

sp_bindexeclass sa, LG, isql, EC1
sp_bindexeclass sa, LG, NULL, EC2

Examples: determining precedence

Each row in Table 4-3 contains a combination of execution objects and their 
conflicting execution attributes. 

The “Execution Class Attributes” columns show execution class values 
assigned to a process application “AP” belonging to login “LG”. 

The remaining columns show how Adaptive Server resolves precedence. 

Entity type Attribute name Default value

Client application Execution class EC2

Login Execution class EC2

Stored procedure Execution class EC2



CHAPTER 4    Distributing Engine Resources

Performance & Tuning Guide 65

Table 4-3: Conflicting attribute values and Adaptive Server assigned 
values

To test your understanding of the rules of precedence and scope, cover the 
“Adaptive Server-Assigned Values” columns in Table 4-3, and predict the 
values in those columns. Following is a description of the scenario in the first 
row, to help get you started:

• Column 1 – certain client application, AP, is specified as EC1.

• Column 2 – particular login, “LG”, is specified as EC2.

• Column 3 – stored procedure, sp_ec, is specified as EC1.

At run time:

• Column 4 – task belonging to the login,” LG”, executing the client 
application AP, uses EC2 attributes because the class for a login precedes 
that of an application (precedence rule). 

• Column 5 – value of column 5 implies a medium base priority for the 
login.

• Column 6 – execution priority of the stored procedure sp_ec is raised to 
high from medium (because it is EC1). 

Execution class attributes Adaptive Server-assigned values

Application 
(AP) 

Login 
(LG)

Stored 
procedure 
(sp_ec) Application

Login 
base 
priority

Stored 
procedure 
base priority

EC1 EC2 EC1

(EC3)

EC2 Medium High

(Medium)

EC1 EC3 EC1

(EC2)

EC3 Low High

(Medium)

EC2 EC1 EC2

(EC3)

EC1 High High

(High)

EC2 EC3 EC1

(EC2)

EC3 Low High

(Medium)

EC3 EC1 EC2

(EC3)

EC1 High High

(High)

EC3 EC2 EC1

(EC3)

EC2 Medium High

(Medium)



Example scenario using precedence rules 

66  Adaptive Server Enterprise

If the stored procedure is assigned EC3 (as shown in parentheses in 
column 3), then the execution priority of the stored procedure is medium 
(as shown in parentheses in column 6) because Adaptive Server uses the 
highest execution priority of the client application or login and stored 
procedure.

Example scenario using precedence rules
This section presents an example that illustrates how Adaptive Server 
interprets the execution class attributes.

Figure 4-5 shows two client applications, OLTP and isql, and three Adaptive 
Server logins, “L1”, “sa”, and “L2”. 

sp_xyz is a stored procedure that both the OLTP application and the isql 
application need to execute.



CHAPTER 4    Distributing Engine Resources

Performance & Tuning Guide 67

Figure 4-5: Conflict resolution

The rest of this section describes one way to implement the steps discussed in 
Algorithm Guidelines.

Planning
The System Administrator performs the analysis described in steps 1 and 2 of 
the algorithm in “Algorithm for successfully distributing engine resources” on 
page 43 and decides on the following hierarchy plan:

• The OLTP application is an EC1 application and the isql application is an 
EC3 application.

sp_xyz

L1 SA L2

OLTP isql

Adaptive Server Environment



Example scenario using precedence rules 

68  Adaptive Server Enterprise

• Login “L1” can run different client applications at different times and has 
no special performance requirements.

• Login “L2” is a less critical user and should always run with low 
performance characteristics.

• Login “sa” must always run as a critical user.

• Stored procedure sp_xyz should always run with high performance 
characteristics. Because the isql client application can execute the stored 
procedure, giving sp_xyz a high-performance characteristics is an attempt 
to avoid a bottleneck in the path of the OLTP client application.

Table 4-1 summarizes the analysis and specifies the execution class to be 
assigned by the System Administrator. Notice that the tuning granularity gets 
finer as you descend the table. Applications have the greatest granularity, or the 
largest scope. The stored procedure has the finest granularity, or the narrowest 
scope.

Table 4-4: Example analysis of an Adaptive Server environment

Configuration
The System Administrator executes the following system procedures to assign 
execution classes (algorithm step 3):

sp_bindexeclass OLTP, AP, NULL, EC1
sp_bindexeclass ISQL, AP, NULL, EC3
sp_bindexeclass L2, LG, NULL, EC3
sp_bindexeclass sa, LG, NULL, EC1
sp_bindexeclass SP_XYZ, PR, sp_owner, EC1

Identifier Interactions and comments
Execution 
class

OLTP • Same tables as isql 

• Highly critical

EC1

isql • Same tables as OLTP 

• Low priority

EC3

L1 • No priority assignment None

sa • Highly critical EC1

L2 • Not critical EC3

sp_xyz • Avoid “hot spots” EC1



CHAPTER 4    Distributing Engine Resources

Performance & Tuning Guide 69

Execution characteristics
Following is a series of events that could take place in an Adaptive Server 
environment with the configuration described in this example:

1 A client logs in to Adaptive Server as “L1” using OLTP.

• Adaptive Server determines that OLTP is EC1.

• “L1”does not have an execution class, so Adaptive Server assigns the 
default class EC2. “L1”gets the characteristics defined by EC1 when 
it invokes OLTP. 

• If “L1”executes stored procedure sp_xyz, its priority remains 
unchanged while sp_xyz executes. During execution, “L1”has EC1 
attributes throughout.

2 A client logs in to Adaptive Server as “L1” using isql.

• Because isql is EC3, and the “L1”execution class is undefined, 
“L1”executes with EC3 characteristics. This means it runs at low 
priority and has affinity with the highest numbered engine (as long as 
there are multiple engines). 

• When “L1”executes sp_xyz, its priority is raised to high because the 
stored procedure is EC1.

3 A client logs in to Adaptive Server as “sa” using isql.

• Adaptive Server determines the execution classes for both isql and the 
“sa”, using the precedence rule. Adaptive Server runs the System 
Administrator’s instance of isql with EC1 attributes. When the System 
Administrator executes sp_xyz, the priority does not change.

4 A client logs in to Adaptive Server as “L2” using isql.

• Because both the application and login are EC3, there is no conflict. 
“L2” executes sp_xyz at high priority.

Considerations for Engine Resource Distribution
Making execution class assignments indiscriminately does not usually yield 
what you expect. Certain conditions yield better performance for each 
execution object type. Table 4-5 indicates when assigning an execution 
precedence might be advantageous for each type of execution object.



Considerations for Engine Resource Distribution 

70  Adaptive Server Enterprise

Table 4-5: When assigning execution precedence is useful

It is more effective to lower the execution class of less-critical execution 
objects than to raise the execution class of a highly critical execution object. 
The sections that follow give more specific consideration to improving 
performance for the different types of execution objects.

Client applications: OLTP and DSS
Assigning higher execution preference to client applications can be 
particularly useful when there is little contention for non-CPU resources 
among client applications. 

For example, if an OLTP application and a DSS application execute 
concurrently, you might be willing to sacrifice DSS application performance if 
that results in faster execution for the OLTP application. You can assign non-
preferred execution attributes to the DSS application so that it gets CPU time 
only after OLTP tasks are executed.

Unintrusive client applications

Inter-application lock contention is not a problem for an unintrusive 
application that uses or accesses tables that are not used by any other 
applications on the system. 

Assigning a preferred execution class to such an application ensures that 
whenever there is a runnable task from this application, it is first in the queue 
for CPU time.

I/O-bound client applications

If a highly-critical application is I/O bound and the other applications are 
compute bound, the compute-bound process can use the CPU for the full time 
quantum if it is not blocked for some other reason. 

Execution
object Description 

Client application There is little contention for non-CPU resources among client applications.

Adaptive Server login One login should have priority over other logins for CPU resources.

Stored procedure There are well-defined stored procedure “hot spots.”



CHAPTER 4    Distributing Engine Resources

Performance & Tuning Guide 71

An I/O-bound process, on the other hand, gives up the CPU each time it 
performs an I/O operation. Assigning a non-preferred execution class to the 
compute-bound application enables Adaptive Server to run the I/O-bound 
process sooner. 

Highly critical applications

If there are one or two critical execution objects among several noncritical 
ones, try setting engine affinity to a specific engine or group of engines for the 
less critical applications. This can result in better throughput for the highly 
critical applications. 

Adaptive Server logins: high-priority users
If you assign preferred execution attributes to a critical user and maintain 
default attributes for other users, Adaptive Server does what it can to execute 
all tasks associated with the high-priority user first.

Stored procedures: “hot spots”
Performance issues associated with stored procedures arise when a stored 
procedure is heavily used by one or more applications. When this happens, the 
stored procedure is characterized as a hot spot in the path of an application.

Usually, the execution priority of the applications executing the stored 
procedure is in the medium to low range, so assigning more preferred 
execution attributes to the stored procedure might improve performance for the 
application that calls it.



Considerations for Engine Resource Distribution 

72  Adaptive Server Enterprise



Performance & Tuning Guide 73

C H A P T E R  5 Controlling Physical Data 
Placement

This describes how controlling the location of tables and indexes can 
improve performance. 

Object placement can improve performance
Adaptive Server allows you to control the placement of databases, tables, 
and indexes across your physical storage devices. This can improve 
performance by equalizing the reads and writes to disk across many 
devices and controllers. For example, you can:

• Place a database‘s data segments on a specific device or devices, 
storing the database’s log on a separate physical device. This way, 
reads and writes to the database’s log do not interfere with data access

• Spread large, heavily used tables across several devices.

• Place specific tables or nonclustered indexes on specific devices. For 
example, you might place a table on a segment that spans several 
devices and its nonclustered indexes on a separate segment.

Topic Page
Object placement can improve performance 73

Terminology and concepts 76

Guidelines for improving I/O performance 76

Using serial mode 80

Creating objects on segments 80

Partitioning tables for performance 83

Space planning for partitioned tables 87

Commands for partitioning tables 90

Steps for partitioning tables 100

Special procedures for difficult situations 107

Maintenance issues and partitioned tables 114



Object placement can improve performance 

74  Adaptive Server Enterprise

• Place the text and image page chain for a table on a separate device from 
the table itself. The table stores a pointer to the actual data value in the 
separate database structure, so each access to a text or image column 
requires at least two I/Os.

• Distribute tables evenly across partitions on separate physical disks to 
provide optimum parallel query performance.

For multiuser systems and multi-CPU systems that perform a lot of disk I/O, 
pay special attention to physical and logical device issues and the distribution 
of I/O across devices:

• Plan balanced separation of objects across logical and physical devices.

• Use enough physical devices, including disk controllers, to ensure 
physical bandwidth.

• Use an increased number of logical devices to ensure minimal contention 
for internal I/O queues.

• Use a number of partitions that will allow parallel scans, to meet query 
performance goals.

• Make use of the ability of create database to perform parallel I/O on as 
many as six devices at a time, to gain a significant performance leap for 
creating multi gigabyte databases.

Symptoms of poor object placement
The following symptoms may indicate that your system could benefit from 
attention to object placement:

• Single-user performance is satisfactory, but response time increases 
significantly when multiple processes are executed.

• Access to a mirrored disk takes twice as long as access to an unmirrored 
disk. 

• Query performance degrades as system table activity increases.

• Maintenance activities seem to take a long time.

• Stored procedures seem to slow down as they create temporary tables.

• Insert performance is poor on heavily used tables.



CHAPTER 5    Controlling Physical Data Placement

Performance & Tuning Guide 75

• Queries that run in parallel perform poorly, due to an imbalance of data 
pages on partitions or devices, or they run in serial, due to extreme 
imbalance.

Underlying problems
If you are experiencing problems due to disk contention and other problems 
related to object placement, check for these underlying problems:

• Random-access (I/O for data and indexes) and serial-access (log I/O) 
processes are using the same disks.

• Database processes and operating system processes are using the same 
disks.

• Serial disk mirroring is being used because of functional requirements.

• Database maintenance activity (logging or auditing) is taking place on the 
same disks as data storage.

• tempdb activity is on the same disk as heavily used tables.

Using sp_sysmon while changing data placement
Use sp_sysmon to determine whether data placement across physical devices 
is causing performance problems. Check the entire sp_sysmon output during 
tuning to verify how the changes affect all performance categories. 

For more information about using sp_sysmon, see Chapter 39, “Monitoring 
Performance with sp_sysmon.” 

Pay special attention to the output associated with the discussions:

• I/O device contentions

• APL heap tables

• Last page locks on heaps

• Disk I.O management

Adaptive Server Monitor can also help pinpoint problems.



Terminology and concepts 

76  Adaptive Server Enterprise

Terminology and concepts
You should understand the following distinctions between logical or database 
devices and physical devices:

• The physical disk or physical device is the actual hardware that stores the 
data.

• A database device or logical device is a piece of a physical disk that has 
been initialized (with the disk init command) for use by Adaptive Server. 
A database device can be an operating system file, an entire disk, or a disk 
partition. 

See the Adaptive Server installation and configuration guides for 
information about specific operating system constraints on disk and file 
usage.

• A segment is a named collection of database devices used by a database. 
The database devices that make up a segment can be located on separate 
physical devices.

• A partition is block of storage for a table. Partitioning a table splits it so 
that multiple tasks can access it simultaneously. When partitioned tables 
are placed on segments with a matching number of devices, each partition 
starts on a separate database device. 

Use sp_helpdevice to get information about devices, sp_helpsegment to get 
information about segments, and sp_helpartition to get information about 
partitions.

Guidelines for improving I/O performance
The major guidelines for improving I/O performance in Adaptive Server are as 
follows:

• Spreading data across disks to avoid I/O contention.

• Isolating server-wide I/O from database I/O.

• Separating data storage and log storage for frequently updated databases.

• Keeping random disk I/O away from sequential disk I/O.

• Mirroring devices on separate physical disks.

• Partitioning tables to match the number of physical devices in a segment.



CHAPTER 5    Controlling Physical Data Placement

Performance & Tuning Guide 77

Spreading data across disks to avoid I/O contention
You can avoid bottlenecks by spreading data storage across multiple disks and 
multiple disk controllers:

• Put databases with critical performance requirements on separate devices. 
If possible, also use separate controllers from those used by other 
databases. Use segments as needed for critical tables and partitions as 
needed for parallel queries.

• Put heavily used tables on separate disks.

• Put frequently joined tables on separate disks.

• Use segments to place tables and indexes on their own disks.

Avoiding physical contention in parallel join queries

The example in Figure 5-1 illustrates a join of two partitioned tables, orders_tbl 
and stock_tbl. There are ten worker process available: orders_tbl has ten 
partitions on ten different physical devices and is the outer table in the join; 
stock_tbl is nonpartitioned. The worker processes will not have a problem with 
access contention on orders_tbl, but each worker process must scan stock_tbl. 
There could be a problem with physical I/O contention if the entire table does 
not fit into a cache. In the worst case, ten worker processes attempt to access 
the physical device on which stock_tbl resides. You can avoid physical I/O 
contention by creating a named cache that contains the entire table stock_tbl.

Another way to reduce or eliminate physical I/O contention is to partition both 
orders_tbl and stock_tbl and distribute those partitions on different physical 
devices. 

Figure 5-1: Joining tables on different physical devices

orders_tbl stock_tbl



Guidelines for improving I/O performance 

78  Adaptive Server Enterprise

Isolating server-wide I/O from database I/O
Place system databases with heavy I/O requirements on separate physical disks 
and controllers than your application databases.

Where to place tempdb

tempdb is automatically installed on the master device. If more space is needed, 
tempdb can be expanded to other devices. If tempdb is expected to be quite 
active, place it on a disk that is not used for other important database activity. 
Use the fastest disk available for tempdb. It is a heavily used database that 
affects all processes on the server.

On some UNIX systems, I/O to operating system files is significantly faster 
than I/O to raw devices. Since tempdb is always re-created, rather than 
recovered, after a shutdown, you may be able to improve performance by 
altering tempdb onto an operating system file instead of a raw device. You 
should test this on your own system.

See Chapter 18, “tempdb Performance Issues,” for more placement issues and 
performance tips for tempdb.

Where to place sybsecurity

If you use auditing on your Adaptive Server, the auditing system performs 
frequent I/O to the sysaudits table in the sybsecurity database. If your 
applications perform a significant amount of auditing, place sybsecurity on a 
disk that is not used for tables where fast response time is critical. Placing 
sybsecurity on its own device is optimal.

Also, use the threshold manager to monitor its free space to avoid suspending 
user transactions if the audit database fills up.

Keeping transaction logs on a separate disk
You can limit the size of the transaction logs by placing them on a separate 
segment, this keeps it from competing with other objects for disk space. 
Placing the log on a separate physical disk:

• Improves performance by reducing I/O contention 

• Ensures full recovery in the event of hard disk crashes on the data device 



CHAPTER 5    Controlling Physical Data Placement

Performance & Tuning Guide 79

• Speeds recovery, since simultaneous asynchronous prefetch requests can 
read ahead on both the log device and the data device without contention

Placing the transaction log on the same device as the data itself causes such a 
dangerous reliability problem that both create database and alter database 
require the use of the with override option to put the transaction log on the same 
device as the data itself. 

The log device can experience significant I/O on systems with heavy update 
activity. Adaptive Server writes log pages to disk when transactions commit 
and may need to read log pages into memory for deferred updates or 
transaction rollbacks.

If your log and data are on the same database devices, the extents allocated to 
store log pages are not contiguous; log extents and data extents are mixed. 
When the log is on its own device, the extents tend to be allocated sequentially, 
reducing disk head travel and seeks, thereby maintaining a higher I/O rate.

Also, if log and data are on separate devices, Adaptive Server buffers log 
records for each user in a user log cache, reducing contention for writing to the 
log page in memory. If log and data are on the same devices, user log cache 
buffering is disabled, which results in serious performance penalty on SMP 
systems.

If you have created a database without its log on a separate device, see the 
System Administration Guide.

Mirroring a device on a separate disk
If you mirror data, put the mirror on a separate physical disk Thanthe device 
that it mirrors. Disk hardware failure often results in whole physical disks 
being lost or unavailable. Mirroring on separate disks also minimizes the 
performance impact of mirroring. 

Device mirroring performance issues

Disk mirroring is a secure and high availability feature that allows Adaptive 
Server to duplicate the contents of an entire database device. 

See the System Administration Guide for more information on mirroring.

If you do not use mirroring, or use operating system mirroring, set the 
configuration parameter disable disk mirroring to 1. This may yield slight 
performance improvements.



Creating objects on segments 

80  Adaptive Server Enterprise

Mirroring can slow the time taken to complete disk writes, since writes go to 
both disks, either serially or simultaneously. Reads always come from the 
primary side. Disk mirroring has no effect on the time required to read data.

Mirrored devices use one of two modes for disk writes:

• Nonserial mode can require more time to complete a write than an 
unmirrored write requires. In nonserial mode, both writes are started at the 
same time, and Adaptive Server waits for both to complete. The time to 
complete nonserial writes is max(W1 ,W2) – the greater of the two I/O 
times.

• Serial mode increases the time required to write data even more than 
nonserial mode. Adaptive Server starts the first write and waits for it to 
complete before starting the second write. The time required is W1+W2 – 
the sum of the two I/O times.

Using serial mode

Despite its performance impact, serial mode is important for reliability. In fact, 
serial mode is the default, because it guards against failures that occur while a 
write is taking place. 

Since serial mode waits until the first write is complete before starting the 
second write, it is impossible for a single failure to affect both disks. Specifying 
nonserial mode improves performance, but you risk losing data if a failure 
occurs that affects both writes.

 Warning! Unless you are sure that your mirrored database system does not 
need to be absolutely reliable, do not use nonserial mode.

Creating objects on segments
A segment is a label that points to one or more database devices.

Each database can use up to 32 segments, including the 3 segments that are 
created by the system (system, log segment, and default) when a database is 
created. Segments label space on one or more logical devices. 



CHAPTER 5    Controlling Physical Data Placement

Performance & Tuning Guide 81

Tables and indexes are stored on segments. If no segment is named in the create 
table or create index statement, then the objects are stored on the  default 
segment for the database. Naming a segment in either of these commands 
creates the object on the segment. The sp_placeobject system procedure causes 
all future space allocations to take place on a specified segment, so tables can 
span multiple segments.

A System Administrator must initialize the device with disk init, and the disk 
must be allocated to the database by the System Administrator or the Database 
Owner with create database or alter database.

Once the devices are available to the database, the database owner or object 
owners can create segments and place objects on the devices.

If you create a user-defined segment, you can place tables or indexes on that 
segment with the create table or create index commands:

create table tableA(...) on seg1
create nonclustered index myix on tableB(...) 
      on seg2

By controlling the location of critical tables, you can arrange for these tables 
and indexes to be spread across disks. 

Using segments
Segments can improve throughput by:

• Splitting large tables across disks, including tables that are partitioned for 
parallel query performance

• Separating tables and their nonclustered indexes across disks

• Placing the text and image page chain on a separate disk from the table 
itself, where the pointers to the text values are stored

In addition, segments can control space usage, as follows:

• A table can never grow larger than its segment allocation; You can use 
segments to limit table size.

• Tables on other segments cannot impinge on the space allocated to objects 
on another segment.

• The threshold manager can monitor space usage.



Creating objects on segments 

82  Adaptive Server Enterprise

Separating tables and indexes
Use segments to isolate tables on one set of disks and nonclustered indexes on 
another set of disks. You cannot place a clustered index on a separate segment 
than its data pages. When you create a clustered index, using the on 
segment_name clause, the entire table is moved to the specified segment, and 
the clustered index tree is built there.

You can improve performance by placing nonclustered indexes on a separate 
segment. 

Splitting large tables across devices
Segments can span multiple devices, so they can be used to spread data across 
one or more disks. For large, extremely busy tables, this can help balance the 
I/O load. For parallel queries, creating segments that include multiple devices 
is essential for I/O parallelism during partitioned-based scans.

See the System Administration Guide for more information.

Moving text storage to a separate device
When a table includes a text, image, or Java off-row datatype, the table itself 
stores a pointer to the data value. The actual data is stored on a separate linked 
list of pages called a LOB (large object) chain. 

Writing or reading a LOB value requires at least two disk accesses, one to read 
or write the pointer and one for subsequent reads or writes for the data. If your 
application frequently reads or writes these values, you can improve 
performance by placing the LOB chain on a separate physical device. Isolate 
LOB chains on disks that are not busy with other application-related table or 
index access.

When you create a table with LOB columns, Adaptive Server creates a row in 
sysindexes for the object that stores the LOB data. The value in the name 
column is the table name prefixed with a “t”; the indid is always 255. Note that 
if you have multiple LOB columns in a single table, there is only one object 
used to store the data. By default, this object is placed on the same segment as 
the table.

You can use sp_placeobject to move all future allocations for the LOB columns 
to a separate segment. 



CHAPTER 5    Controlling Physical Data Placement

Performance & Tuning Guide 83

See the System Administraton Guide for more information.

Partitioning tables for performance
Partitioning a table can improve performance for several types of processes. 
The reasons for partitioning a table are:

• Partitioning allows parallel query processing to access each partition of the 
table. Each worker process in a partitioned-based scan reads a separate 
partition.

• Partitioning makes it possible to load a table in parallel with bulk copy.

For more information on parallel bcp, see the Utility Programs manual. 

• Partitioning makes it possible to distribute a table’s I/O over multiple 
database devices.

• Partitioning provides multiple insertion points for a heap table.

The tables you choose to partition depend on the performance issues you 
encounter and the performance goals for the queries on the tables. 

The following sections explain the commands needed to partition tables and to 
maintain partitioned tables, and outline the steps for different situations.

See “Guidelines for parallel query configuration” on page 576 for more 
information and examples of partitioning to meet specific performance goals.

User transparency
Adaptive Server’s management of partitioned tables is transparent to users and 
applications. Partitioned tables do not appear different from nonpartitioned 
tables when queried or viewed with most utilities. Exceptions are:

• If queries do not include order by or other commands that require a sort, 
data returned by a parallel query may not in the same order as data returned 
by serial queries.

• The dbcc checktable and dbcc checkdb commands list the number of data 
pages in each partition. 

See the System Administration Guide for information about dbcc. 



Partitioning tables for performance 

84  Adaptive Server Enterprise

• sp_helpartition lists information about a table’s partitions.

• showplan output displays messages indicating the number of worker 
processes uses for queries that are executed in parallel, and the statistics io 
“Scan count” shows the number of scans performed by worker processes.

• Parallel bulk copy allows you to copy to a particular partition of a heap 
table.

Partitioned tables and parallel query processing
Parallel query processing on partitioned tables can potentially produce 
dramatic improvements in query performance. Partitions increase 
simultaneous access by worker processes. When enough worker processes are 
available, and the value for the max parallel degree configuration parameter is 
set equal to or greater than the number of partitions, one worker process scans 
each of the table’s partitions.

When the partitions are distributed across physical disks, the reduced I/O 
contention further speeds parallel query processing and achieves a high level 
of parallelism.

The optimizer can choose to use parallel query processing for a query against 
a partitioned table when parallel query processing is enabled. The optimizer 
considers a parallel partition scan for a query when the base table for the query 
is partitioned, and it considers a parallel index scan for a useful index. 

See Chapter 25, “Parallel Query Optimization,” for more information on how 
parallel queries are optimized.

Distributing data across partitions

Creating a clustered index on a partitioned table redistributes the table’s data 
evenly over the partitions. Adaptive Server determines the index key ranges for 
each partition so that it can distribute the rows equally in the partition. Each 
partition is assigned at least one exclusive device if the number of devices in 
the segment is equal to or greater than the number of partitions. 

If you create the clustered index on an empty partitioned table, Adaptive Server 
prints a warning advising you to re-create the clustered index after loading data 
into the table, as all the data will be inserted into the first partition until you re-
create the clustered index.



CHAPTER 5    Controlling Physical Data Placement

Performance & Tuning Guide 85

If you partition a table that already has a clustered index, all pages in the table 
are assigned to the first partition. The alter table...partition command succeeds 
and prints a warning. You must drop and recreate the index to redistribute the 
data.

Improving insert performance with partitions
All insert commands on an allpages-locked heap table attempt to insert the 
rows on the last page of the table. If multiple users insert data simultaneously, 
each new insert transaction must wait for the previous transaction to complete 
in order to proceed.

Partitioning an allpages-locked heap table improves the performance of 
concurrent inserts by reducing contention for the last page of a page chain.

For data-only-locked tables, Adaptive Server stores one or more hints that 
point to a page where an insert was recently performed. Blocking during inserts 
on data-only-locked tables occurs only with high rates of inserts.

Partitioning data-only-locked heap tables increases the number of hints, and 
can help if inserts are blocking.

How partitions address page contention

When a transaction inserts data into a partitioned heap table, Adaptive Server 
randomly assigns the transaction to one of the table’s partitions. Concurrent 
inserts are less likely to block, since multiple last pages are available for 
inserts.

Selecting heap tables to partition

Allpages-locked heap tables that have large amounts of concurrent insert 
activity will benefit from partitioning. Insert rates must be very high before 
significant blocking takes place on data-only-locked tables. If you are not sure 
whether the tables in your database system might benefit from partitioning:

• Use sp_sysmon to look for last page locks on heap tables. 

See “Lock management” on page 997.

• Use sp_object_stats to report on lock contention. 

See “Identifying tables where concurrency is a problem” on page 278.



Partitioning tables for performance 

86  Adaptive Server Enterprise

Restrictions on partitioned tables
You cannot partition Adaptive Server system tables or tables that are already 
partitioned. Once you have partitioned a table, you cannot use any of the 
following Transact-SQL commands on the table until you unpartition it:

• sp_placeobject 

• truncate table 

• alter table table_name partition n 

See “alter table...unpartition Syntax” on page 91 for more information.

Partition-related configuration parameters
If you require a large number of partitions, you may want to change the default 
values for the partition groups and partition spinlock ratio configuration 
parameters.

See the System Administration Guide for more information.

How Adaptive Server distributes partitions on devices
When you issue an alter table...partition command, Adaptive Server creates the 
specified number of partitions in the table and distributes those partitions over 
the database devices in the table’s segment. Adaptive Server assigns partitions 
to devices so that they are distributed evenly across the devices in the segment.

Table 5-1 illustrates how Adaptive Server assigns 5 partitions to 3, 5, and 12 
devices, respectively.

Table 5-1: Assigning partitions to segments

Matching the number of partitions to the number of devices in the segment 
provides the best I/O performance for parallel queries.

Partition ID Device (D) Assignments for Segment With

3 Devices 5 Devices 12 Devices

Partition 1 D1 D1 D1, D6, D11

Partition 2 D2 D2 D2, D7, D12

Partition 3 D3 D3 D3, D8, D11

Partition 4 D1 D4 D4, D9, D12

Partition 5 D2 D5 D5, D10, D11



CHAPTER 5    Controlling Physical Data Placement

Performance & Tuning Guide 87

You can partition tables that use the text, image, or Java off-row data types. 
However, the columns themselves are not partitioned—they remain on a single 
page chain. 

RAID devices and partitioned tables

Table 5-1 and other statements in this chapter describe the Adaptive Server 
logical devices that map to a single physical device.

A striped RAID device may contain multiple physical disks, but it appears to 
Adaptive Server as a single logical device. For a striped RAID device, you can 
use multiple partitions on the single logical device and achieve good parallel 
query performance.

To determine the optimum number of partitions for your application mix, start 
with one partition for each device in the stripe set. Use your operating system 
utilities (vmstat, sar, and iostat on UNIX; Performance Monitor on Windows 
NT) to check utilization and latency.

To check maximum device throughput, use select count(*), using the (index 
table_name) clause to force a table scan if a nonclustered index exists. This 
command requires minimal CPU effort and creates very little contention for 
other resources.

Space planning for partitioned tables
When planning for partitioned tables, the two major issues are:

• Maintaining load balance across the disk for partition-based scan 
performance and for I/O parallelism

• Maintaining clustered indexes requires approximately 120% of the space 
occupied by the table to drop and re-create the index or to run reorg rebuild

How you make these decisions depends on:

• The availability of disk resources for storing tables

• The nature of your application mix

You need to estimate how often your partitioned tables need maintenance: 
some applications need frequent index re-creation to maintain balance, while 
others need little maintenance. 



Space planning for partitioned tables 

88  Adaptive Server Enterprise

For those applications that need frequent load balancing for performance, 
having space to re-create a clustered index or run reorg rebuild provides the 
speediest and easiest method. However, since creating clustered indexes 
requires copying the data pages, the space available on the segment must be 
equal to approximately 120% of the space occupied by the table. 

See “Determining the space available for maintenance activities” on page 404 
for more information.

The following descriptions of read-only, read-mostly, and random data 
modification provide a general picture of the issues involved in object 
placement and in maintaining partitioned tables. 

See “Steps for partitioning tables” on page 100 for more information about the 
specific tasks required during maintenance.

Read-only tables
Tables that are read only, or that are rarely changed, can completely fill the 
space available on a segment, and do not require maintenance. If a table does 
not require a clustered index, you can use parallel bulk copy to completely fill 
the space on the segment.

If a clustered index is needed, the table’s data pages can occupy up to 80% of 
the space in the segment. The clustered index tree requires about 20% of the 
space used by the table.

This size varies, depending on the length of the key. Loading the data into the 
table initially and creating the clustered index requires several steps, but once 
you have performed these steps, maintenance is minimal.

Read-mostly tables
The guidelines above for read-only tables also apply to read-mostly tables with 
very few inserts. The only exceptions are as follows:

• If there are inserts to the table, and the clustered index key does not 
balance new space allocations evenly across the partitions, the disks 
underlying some partitions may become full, and new extent allocations 
will be made to a different physical disk. This process is called extent 
stealing. 



CHAPTER 5    Controlling Physical Data Placement

Performance & Tuning Guide 89

In huge tables spread across many disks, a small percentage of allocations 
to other devices is not a problem. Extent stealing can be detected by using 
sp_helpsegment to check for devices that have no space available and by 
using sp_helpartition to check for partitions that have disproportionate 
numbers of pages.

If the imbalance in partition size leads to degradation in parallel query 
response times or optimization, you may want to balance the distribution 
by using one of the methods described in “Steps for partitioning tables” 
on page 100.

• If the table is a heap, the random nature of heap table inserts should keep 
partitions balanced. 

Take care with large bulk copy in operations. You can use parallel bulk 
copy to send rows to the partition with the smallest number of pages to 
balance the data across the partitions. See “Using bcp to correct partition 
balance” on page 96.

Tables with random data modification
Tables with clustered indexes that experience many inserts, updates, and 
deletes over time tend to lead to data pages that are approximately 70 to 75% 
full. This can lead to performance degradation in several ways: 

• More pages must be read to access a given number of rows, requiring 
additional I/O and wasting data cache space.

• On tables that use allpages locking, the performance of large I/O and 
asynchronous prefetch suffers because the page chain crosses extents and 
allocation units.

Buffers brought in by large I/O may be flushed from cache before all of 
the pages are read. The asynchronous prefetch look-ahead set size is 
reduced by cross-allocation unit hops while following the page chain.

Once the fragmentation starts to take its toll on application performance, you 
need to perform maintenance. If that requires dropping and re-creating the 
clustered index, you need 120% of the space occupied by the table. 

IF space is unavailable, maintenance becomes more complex and takes longer. 
The best, and often cheapest, solution is to add enough disk capacity to provide 
room for the index creation.



Commands for partitioning tables 

90  Adaptive Server Enterprise

Commands for partitioning tables
Creating and maintaining partitioned tables involves using a mix of the 
following types of commands:

• Commands to partition and unpartition the table

• Commands to drop and re-create clustered indexes to maintain data 
distribution on the partitions and/or on the underlying physical devices

• Parallel bulk copy commands to load data into specific partitions

• Commands to display information about data distribution on partitions and 
devices

• Commands to update partition statistics

This section presents the syntax and examples for the commands you use to 
create and maintain partitioned tables. 

For different scenarios that require different combinations of these commands, 
see “Steps for partitioning tables” on page 100.

Use the alter table command to partition and unpartition a table.

alter table...partition syntax
The syntax for using the partition clause to alter table is: 

alter table table_name partition n

where table_name is the name of the table and n is the number of partitions you 
are creating.

Any data that is in the table before you invoke alter table remains in the first 
partition. Partitioning a table does not move the table’s data – it will still 
occupy the same space on the physical devices.

If you are creating partitioned tables for parallel queries, you may need to 
redistribute the data, either by creating a clustered index or by copying the data 
out, truncating the table, and then copying the data back in.

You cannot include the alter table...partition command in a user-defined 
transaction.

The following command creates 10 partitions for a table named historytab:

alter table historytab partition 10



CHAPTER 5    Controlling Physical Data Placement

Performance & Tuning Guide 91

alter table...unpartition Syntax
Unpartitioning a table concatenates the table’s multiple partitions into a single 
partition. Unpartitioning a table does not change the location of the data.

The syntax for using the unpartition clause to alter table is: 

alter table table_name unpartition

For example, to unpartition a table named historytab, enter:

alter table historytab unpartition

Changing the number of partitions
To change the number of partitions in a table, first unpartition the table using 
alter table...unpartition. 

Then use alter table...partition, specifying the new number of partitions. This 
does not move the existing data in the table.

You cannot use the partition clause with a table that is already partitioned.

For example, if a table named historytab contains 10 partitions, and you want 
the table to have 20 partitions, enter these commands:

alter table historytab unpartition
alter table historytab partition 20

Distributing data evenly across partitions
Good parallel performance depends on a fairly even distribution of data on a 
table’s partitions. The two major methods to achieve this distribution are: 

• Creating a clustered index on a partitioned table. The data should already 
be in the table.

• Using parallel bulk copy, specifying the partitions where the data is to be 
loaded.

sp_helpartition tablename reports the number of pages on each partition in a 
table.



Commands for partitioning tables 

92  Adaptive Server Enterprise

Commands to create and drop clustered indexes

You can create a clustered index using the create clustered index command or 
by creating a primary or foreign key constraint with alter table...add constraint. 
The steps to drop and re-create it are slightly different, depending on which 
method you used to create the existing clustered index.

Creating a clustered index on a partitioned table requires a parallel sort. Set 
configuration parameters and set options as shown before you issue the 
command to create the index: 

• Set number of worker processes and max parallel degree to at least the 
number of partitions in the table, plus 1.

• Execute sp_dboption "select into/bulkcopy/pllsort", true, and run checkpoint 
in the database.

For more information on configuring Adaptive Server to allow parallel 
execution, see “Controlling the degree of parallelism” on page 566. 

See Chapter 26, “Parallel Sorting,” for additional information on parallel 
sorting.

If your queries do not use the clustered index, you can drop the index without 
affecting the distribution of data. Even if you do not plan to retain the clustered 
index, be sure to create it on a key that has a very high number of data values. 
For example, a column such as “sex”, which has only the values “M” and “F”, 
will not provide a good distribution of pages across partitions.

Creating an index using parallel sort is a minimally logged operation and is not 
recoverable. You should dump the database when the command completes.

Using reorg rebuild on data-only-locked tables

The reorg rebuild command copies data rows in data-only-locked tables to new 
data pages. If there is a clustered index, rows are copied in clustered key order.

Running reorg rebuild redistributes data evenly on partitions. The clustered 
index and any nonclustered indexes are rebuilt. To run reorg rebuild on the 
table, provide only the table name:

reorg rebuild titles

Using drop index and create clustered index

If the index on the table was created with create index:

1 Drop the index:



CHAPTER 5    Controlling Physical Data Placement

Performance & Tuning Guide 93

drop index huge_tab.cix

2 Create the clustered index, specifying the segment:

create clustered index cix 
    on huge_tab(key_col)
    on big_demo_seg

Using constraints and alter table

If the index on the table was created using a constraint, follow these steps to re-
create a clustered index:

1 Drop the constraint:

alter table huge_tab drop constraint prim_key

2 Re-create the constraint, thereby re-creating the index:

alter table huge_tab add constraint prim_key
    primary key clustered (key_col)
    on big_demo_seg

Special concerns for partitioned tables and clustered indexes

Creating a clustered index on a partitioned table is the only way to redistribute 
data on partitions without reloading the data by copying it out and back into the 
table.

When you are working with partitioned tables and clustered indexes, there are 
two special concerns:

• Remember that the data in a clustered index “follows” the index, and that 
if you do not specify a segment in create index or alter table, the default 
segment is used as the target segment.

• You can use the with sorted_data clause to avoid sorting and copying data 
while you are creating a clustered index. This saves time when the data is 
already in clustered key order. However, when you need to create a 
clustered index to load balance the data on partitions, do not use the 
sorted_data clause. 

See “Creating an index on sorted data” on page 393 for options.



Commands for partitioning tables 

94  Adaptive Server Enterprise

Using parallel bcp to copy data into partitions
Loading data into a partitioned table using parallel bcp lets you direct the data 
to a particular partition in the table.

• Before you run parallel bulk copy, the table should be located on the 
segment, and it should be partitioned.

• You should drop all indexes, so that you do not experience failures due to 
index deadlocks.

• Use alter table...disable trigger so that fast, minimally-logged bulk copy is 
used, instead of slow bulk copy, which is completely logged.

• You may also want to set the database option trunc log on chkpt to keep the 
log from filling up during large loads.

• You can use operating system commands to split the file into separate files, 
and then copy each file, or use the -F (first row) and -L (last row) 
command-line flags for bcp.

Whichever method you choose, be sure that the number of rows sent to each 
partition is approximately the same.

Here is an example using separate files:

bcp mydb..huge_tab:1 in bigfile1
bcp mydb..huge_tab:2 in bigfile2
...
bcp mydb..huge_tab:10 in bigfile10

This example uses the first row and last row command-line arguments on a 
single file:

bcp mydb..huge_tab:1 in bigfile -F1 -L100000 
bcp mydb..huge_tab:2 in bigfile -F100001 -L200000 
...
bcp mydb..huge_tab:10 in bigfile -F900001 -L1000000 

If you have space to split the file into multiple files, copying from separate files 
is much faster than using the first row and last row command-line arguments, 
since bcp needs to parse each line of the input file when using -F and -L. This 
parsing process can be very slow, almost negating the benefits from parallel 
copying.

Parallel copy and locks

Starting many current parallel bcp sessions may cause Adaptive Server to run 
out of locks.



CHAPTER 5    Controlling Physical Data Placement

Performance & Tuning Guide 95

When you copy in to a table, bcp acquires an exclusive intent lock on the table, 
and either page or row locks, depending on the locking scheme. If you are 
copying in very large tables, and especially if you are performing simultaneous 
copies into a partitioned table, this can require a very large number of locks.

To avoid running out of locks:

• Set the number of locks configuration parameter high enough, or 

• Use the -b batchsize bcp flag to copy smaller batches. If you do not use the 
-b flag, the entire copy operation is treated as a single batch.

For more information on bcp, see the Utility Programs manual. 

Getting information about partitions
sp_helpartition prints information about table partitions. For partitioned tables, 
it shows the number of data pages in the partition and summary information 
about data distribution. Issue sp_helpartition, giving the table name. This 
example shows data distribution immediately after creating a clustered index:

sp_helpartition sales
partitionid firstpage   controlpage ptn_data_pages 

 ----------- ----------- ----------- -------------- 
           1        6601        6600           2782 
           2       13673       13672           2588 
           3       21465       21464           2754 
           4       29153       29152           2746 
           5       36737       36736           2705 
           6       44425       44424           2732 
           7       52097       52096           2708 
           8       59865       59864           2755 
           9       67721       67720           2851 

(9 rows affected)
 Partitions  Average Pages Maximum Pages Minimum Pages Ratio (Max/Avg)      
 ----------- ------------- ------------- ------------- -----------------
           9          2735          2851          2588          1.042413

sp_helpartition shows how evenly data is distributed between partitions. The 
final column in the last row shows the ratio of the average column size to the 
maximum column size. This ratio is used to determine whether a query can be 
run in parallel. If the maximum is twice as large as the average, the optimizer 
does not choose a parallel plan.

Uneven distribution of data across partitions is called partition skew.



Commands for partitioning tables 

96  Adaptive Server Enterprise

If a table is not partitioned, sp_helpartition prints the message “Object is not 
partitioned.” When used without a table name, sp_helpartition prints the names 
of all user tables in the database and the number of partitions for each table. 
sp_help calls sp_helpartition when used with a table name.

Using bcp to correct partition balance
If you need to load additional data into a partitioned table that does not have 
clustered indexes, and sp_helpartition shows that some partitions contain many 
more pages than others, you can use the bulk copy session to help balance 
number of rows on each partition.

The following example shows that the table has only 487 pages on one 
partition, and 917 on another: 

partitionid firstpage   controlpage ptn_data_pages 
----------- ----------- ----------- -------------- 
          1      189825      189824            812 
          2      204601      204600            487 
          3      189689      189688            917 

(3 rows affected)
Partitions Average Pages Maximum Pages Minimum Pages Ratio (Max/Avg)      
---------- ------------- ------------- ------------- --------------- 
         3           738           917           487        1.242547 

The number of rows to add to each partition can be computed by:

• Determining the average number of rows that would be in each partition if 
they were evenly balanced, that is, the sum of the current rows and the 
rows to be added, divided by the number of partitions

• Estimating the current number of rows on each partition, and subtracting 
that from the target average

The formula can be summarized as:

Rows to add = (total_old_rows + total_new_rows)/#_of_partitions
    - rows_in_this_partition

This sample procedure uses values stored in systabstats and syspartitions to 
perform the calculations:

create procedure help_skew @object_name varchar(30), @newrows int
as
declare @rows int, @pages int, @rowsperpage int,
        @num_parts int



CHAPTER 5    Controlling Physical Data Placement

Performance & Tuning Guide 97

select @rows = rowcnt, @pages = pagecnt
    from systabstats
    where id = object_id(@object_name) and indid in (0,1)
select @rowsperpage = floor(@rows/@pages)
select @num_parts = count(*) from syspartitions 
    where id = object_id(@object_name)

select partitionid,  (@rows + @newrows)/@num_parts - 
    ptn_data_pgs(id, partitionid)*@rowsperpage as rows_to_add
    from syspartitions
    where id = object_id (@object_name)

Use this procedure to determine how many rows to add to each partition in the 
customer table, such as when 18,000 rows need to be copied in. The results are 
shown below the syntax.

help_skew customer, 18000
partitionid rows_to_add------------------ 
           1        5255 
           2        9155 
           3        3995

Note  If the partition skew is large, and the number of rows to be added is 
small, this procedure returns negative numbers for those rows that contain 
more than the average number of final rows. 

Query results are more accurate if you run update statistics and update partition 
statistics so that table and partition statistics are current.

With the results from help_skew, you can then split the file containing the data 
to be loaded into separate files of that length, or use the -F (first) and -L (last) 
flags to bcp. 

See “Using bcp to correct partition balance” on page 96.

Checking data distribution on devices with sp_helpsegment
At times, the number of data pages in a partition can be balanced, while the 
number of data pages on the devices in a segment becomes unbalanced.

You can check the free space on devices with sp_helpsegment. This portion of 
the sp_helpsegment report for the same table shown in the sp_helpartition 
example above shows that the distribution of pages on the devices remains 
balanced:



Commands for partitioning tables 

98  Adaptive Server Enterprise

device                 size            free_pages  
---------------------- --------------- ----------- 
pubtune_detail01       15.0MB          4480  
pubtune_detail02       15.0MB          4872  
pubtune_detail03       15.0MB          4760  
pubtune_detail04       15.0MB          4864  
pubtune_detail05       15.0MB          4696  
pubtune_detail06       15.0MB          4752  
pubtune_detail07       15.0MB          4752  
pubtune_detail08       15.0MB          4816  
pubtune_detail09       15.0MB          4928 

Effects of imbalance of data on segments and partitions

An imbalance of pages in partitions usually occurs when partitions have run 
out of space on the device, and extents have been allocated on another physical 
device. This is called extent stealing.

Extent stealing can take place when data is being inserted into the table with 
insert commands or bulk copy and while clustered indexes are being created.

The effects of an imbalance of pages in table partitions is:

• The partition statistics used by the optimizer are based on the statistics 
displayed by sp_helpartition.

As long as data distribution is balanced across the partitions, parallel query 
optimization will not be affected. The optimizer chooses a partition scan 
as long as the number of pages on the largest partition is less than twice 
the average number of pages per partition.

• I/O parallelism may be reduced, with additional I/Os to some of the 
physical devices where extent stealing placed data.

• Re-creating a clustered index may not produce the desired rebalancing 
across partitions when some partitions are nearly or completely full.

See “Problems when devices for partitioned tables are full” on page 111 
for more information.

Determining the number of pages in a partition

You can use the ptn_data_pgs function or the dbcc checktable and dbcc checkdb 
commands to determine the number of data pages in a table’s partitions. 

See the System Administration Guide for information about dbcc.



CHAPTER 5    Controlling Physical Data Placement

Performance & Tuning Guide 99

The ptn_data_pgs function returns the number of data pages on a partition. Its 
syntax is: 

ptn_data_pgs(object_id, partition_id)

This example prints the number of pages in each partition of the sales table:

select partitionid, 
ptn_data_pgs(object_id("sales"), partitionid) Pages
from syspartitions 
where id = object_id("sales")

For a complete description of ptn_data_pgs, see the Adaptive Server Reference 
Manual.

The value returned by ptn_data_pgs may be inaccurate. If you suspect that the 
value is incorrect, run update partition statistics, dbcc checktable, dbcc checkdb, 
or dbcc checkalloc first, and then use ptn_data_pgs.

Updating partition statistics
Adaptive Server keeps statistics about the distribution of pages within a 
partitioned table and uses these statistics when considering whether to use a 
parallel scan in query processing. When you partition a table, Adaptive Server 
stores information about the data pages in each partition in the control page. 

The statistics for a partitioned table may become inaccurate if any of the 
following occurs:

• The table is unpartitioned and then immediately repartitioned. 

• A large number of rows are deleted.

• A large number of rows are updated, and the updates are not in-place 
updates.

• A large number of rows are bulk copied into some of the partitions using 
parallel bulk copy.

• Inserts are frequently rolled back. 

If you suspect that query plans may be less than optimal due to incorrect 
statistics, run the update partition statistics command to update the information 
in the control page.

The update partition statistics command updates information about the number 
of pages in each partition for a partitioned table.

The update all statistics command also updates partition statistics.



Steps for partitioning tables 

100  Adaptive Server Enterprise

Re-creating the clustered index or running reorg rebuild automatically 
redistributes the data within partitions and updates the partition statistics. dbcc 
checktable, dbcc checkdb, and dbcc checkalloc also update partition statistics as 
they perform checks.

Syntax for update partition statistics

Its syntax is: 

update partition statistics table_name 
[partition_number]

Use sp_helpartition to see the partition numbers for a table.

For a complete description of update partition statistics, see the Adaptive Server 
Reference Manual.

Steps for partitioning tables
You should plan the number of devices for the table’s segment to balance I/O 
performance. For best performance, use dedicated physical disks, rather than 
portions of disks, as database devices, and make sure that no other objects share 
the devices with the partitioned table. 

See the System Administration Guide for guidelines for creating segments.

The steps to follow for partitioning a table depends on where the table is when 
you start. This section provides examples for the following situations:

• The table has not been created and populated yet.

• The table exists, but it is not on the database segment where you want the 
table to reside.



CHAPTER 5    Controlling Physical Data Placement

Performance & Tuning Guide 101

• The table exists on the segment where you want it to reside, and you want 
to redistribute the data to improve performance, or you want to add 
devices to the segment.

Note  The following sections provide procedures for a number of 
situations, including those in which severe space limitations in the 
database make partitioning and creating clustered indexes very difficult. 
These complex procedures are needed only in special cases. If you have 
ample room on your database devices, the process of partitioning and 
maintaining partitioned table performance requires only a few simple 
steps.

Backing up the database after partitioning tables
Using fast bulk copy and creating indexes in parallel both make minimally 
logged changes to the database, and require a full database dump.

If you change the segment mapping while you are working with partitioned 
tables, you should also dump the master database, since segment mapping 
information is stored in sysusages.

Table does not exist
To create a new partitioned table and load the data with bcp:

1 Create the table on the segment, using the on segment_name clause. For 
information on creating segments, see “Creating objects on segments” on 
page 80.

2 Partition the table, with one partition for each physical device in the 
segment.

 See “alter table...partition syntax” on page 90.

Note  If the input data file is not in clustered key order, and the table will 
occupy more than 40% of the space on the segment, and you need a 
clustered index.

See “Special procedures for difficult situations” on page 107.

3 Copy the data into the table using parallel bulk copy. 



Steps for partitioning tables 

102  Adaptive Server Enterprise

See “Using parallel bcp to copy data into partitions” on page 94 for 
examples using bcp.

4 If you do not need a clustered index, use sp_helpartition to verify that the 
data is distributed evenly on the partitions. 

See “Getting information about partitions” on page 95.

If you need a clustered index, the next step depends on whether the data is 
already in sorted order and whether the data is well balanced on your 
partitions.

If the input data file is in index key order and the distribution of data across 
the partitions is satisfactory, you can use the sorted_data option and the 
segment name when you create the index. This combination of options 
runs in serial, checking the order of the keys, and simultaneously building 
the index tree. It does not need to copy the data into key order, so it does 
not perform load balancing. If you do not need referential integrity 
constraints, you can use create index. 

See “Using drop index and create clustered index” on page 92. 

To create a clustered index with referential integrity constraints, use alter 
table...add constraint.

See “Using constraints and alter table” on page 93.

If your data was not in index key order when it was copied in, verify that 
there is enough room to create the clustered index while copying the data.

Use sp_spaceused to see the size of the table and sp_helpsegment to see 
the size of the segment. Creating a clustered index requires approximately 
120% of the space occupied by the table.

If there is not enough space, follow the steps in “If there is not enough 
space to re-create the clustered index” on page 105.

5 Create any nonclustered indexes.

6 Dump the database.

Table exists elsewhere in the database
If the table exists on the default segment or some other segment in the database, 
follow these steps to move the data to the partition and distribute it evenly:

1 If the table is already partitioned, but has a different number of partitions 
than the number of devices on the target segment, unpartition the table. 



CHAPTER 5    Controlling Physical Data Placement

Performance & Tuning Guide 103

See “alter table...unpartition Syntax” on page 91.

2 Partition the table, matching the number of devices on the target segment.

See “alter table...partition syntax” on page 90.

3 If a clustered index exists, drop the index. Depending on how your index 
was created, use either drop index or alter table...drop constraint.

See “Using drop index and create clustered index” on page 92 or alter 
table...drop constraint and “Using constraints and alter table” on page 93.

4 Create or re-create the clustered index with the on segment_name clause. 
When the segment name is different from the current segment where the 
table is stored, creating the clustered index performs a parallel sort and 
distributes the data evenly on the partitions as it copies the rows to match 
the index order. This step re-creates the nonclustered indexes on the table.

See “Distributing data evenly across partitions” on page 91.

5 If you do not need the clustered index, you can drop it.

6 Dump the database.

Table exists on the segment
If the table exists on the segment, you may need to:

• Redistribute the data by re-creating a clustered index or by using bulk 
copy, or

• Increase the number of devices in the segment.

Redistributing data

If you need to redistribute data on partitions, your choice of method depends 
on how much space the data occupies on the partition. If the space the table 
occupies is less than 40 to 45% of the space in the segment, you can create a 
clustered index to redistribute the data. 

If the table occupies more than 40 to 45% of the space on the segment, you 
need to bulk copy the data out, truncate the table, and copy the data in again. 
The steps you take depend on whether you need a clustered index and whether 
the data is already in clustered key order.

Use sp_helpsegment and sp_spaceused to see if there is room to create a 
clustered index on the segment. 



Steps for partitioning tables 

104  Adaptive Server Enterprise

If there is enough space to create or re-create the clustered index

If there is enough space, see “Distributing data evenly across partitions” on 
page 91 for the steps to follow. If you do not need the clustered index, you can 
drop it without affecting the data distribution.

Dump the database after creating the clustered index.

If there is not enough space on the segment, but space exists elsewhere on the server

If there is enough space for a copy of the table, you can copy the table to 
another location and then re-create the clustered index to copy the data back to 
the target segment.

The steps vary, depending on the location of the temporary storage space:

• On the default segment of the database or in tempdb

• On other segments in the database

Using the default segment or tempdb

1 Use select into to copy the table to the default segment or to tempdb. 

select * into temp_sales from sales

or

select * into tempdb..temp_sales from sales

2 Drop the original table.

3 Partition the copy of the table.

4 Create the clustered index on the segment where you want the table to 
reside.

5 Use sp_rename to change the table’s name back to the original name.

6 Dump the database.

Using space on another segment

If there is space available on another segment:

1 Create a clustered index, specifying the segment where the space exists. 
This moves the table to that location.

2 Drop the index.

3 Re-create the clustered index, specifying the segment where you want the 
data to reside.



CHAPTER 5    Controlling Physical Data Placement

Performance & Tuning Guide 105

4 Dump the database.

If there is not enough space to re-create the clustered index

If there is not enough space, and you need a to re-create a clustered index on 
the tables:

1 Copy out the data using bulk copy. 

2 Unpartition the table.

See “alter table...unpartition Syntax” on page 91.

3 Truncate the table with truncate table.

4 Drop the clustered index using drop index or alter table...drop constraint.

Then, drop nonclustered indexes, to avoid deadlocking during the parallel 
bulk copy sessions.

See “Distributing data evenly across partitions” on page 91. 

5 Repartition the table. 

See “alter table...partition syntax” on page 90. 

6 Copy the data into the table using parallel bulk copy. You must take care 
to copy the data to each segment in index key order, and specify the 
number of rows for each partition to get good distribution. 

See “Using parallel bcp to copy data into partitions” on page 94.

7 Re-create the index using the with sorted_data and on segment_name 
clauses. This command performs a serial scan of the table and builds the 
index tree, but does not copy the data.

Do not specify any of the clauses that require data copying (fillfactor, 
ignore_dup_row, and max_rows_per_page).

8 Re-create any nonclustered indexes.

9 Dump the database.

If there is not enough space, and no clustered index is required

If there is no clustered index, and you do not need to create one:

1 Copy the data out using bulk copy.

2 Unpartition the table. 

See “alter table...unpartition Syntax” on page 91.



Steps for partitioning tables 

106  Adaptive Server Enterprise

3 Truncate the table with truncate table.

4 Drop nonclustered indexes, to avoid deadlocking during the parallel bulk 
copy in sessions.

5 Repartition the table. 

See “alter table...partition syntax” on page 90. 

6 Copy the data in using parallel bulk copy. 

See “Using parallel bcp to copy data into partitions” on page 94.

7 Re-create any nonclustered indexes.

8 Dump the database.

If there is no clustered index, not enough space, and a clustered index is needed

To change index keys on the clustered index of a partitioned table, or if you 
want to create an index on a table that has been stored as a heap, performing an 
operating system level sort can speed the process.

Creating a clustered index requires 120% of the space used by the table to 
create a copy of the data and build the index tree.

If you have access to a sort utility at the operating system level:

1 Copy the data out using bulk copy.

2 Unpartition the table. 

See “alter table...unpartition Syntax” on page 91.

3 Truncate the table with truncate table.

4 Drop nonclustered indexes, to avoid deadlocking during the parallel bulk 
copy in sessions.

5 Repartition the table. 

See “alter table...partition syntax” on page 90. 

6 Perform an operating system sort on the file.

7 Copy the data in using parallel bulk copy. 

See “Using parallel bcp to copy data into partitions” on page 94.

8 Re-create the index using the sorted_data and on segment_name clauses. 
This command performs a serial scan of the table and builds the index tree, 
but does not copy the data.



CHAPTER 5    Controlling Physical Data Placement

Performance & Tuning Guide 107

Do not specify any of the clauses that require data copying (fillfactor, 
ignore_dup_row, and max_rows_per_page).

9 Re-create any nonclustered indexes.

10 Dump the database.

Adding devices to a segment

To add a device to a segment, follow these steps:

1 Use sp_helpsegment to check the amount of free space available on the 
devices in the segment with.

If space on any device is extremely low, see “Problems when devices for 
partitioned tables are full” on page 111.

You may need to copy the data out and back in again to get good data 
distribution.

2 Initialize each device with disk init, and make it available to the database 
with alter database.

3 Use sp_extendsegment segment_name, device_name to extend the 
segment to each device. Drop the default and system segment from each 
device.

4 Unpartition the table. 

See “alter table...unpartition Syntax” on page 91.

5 Repartition the table, specifying the new number of devices in the 
segment.

 See “alter table...partition syntax” on page 90. 

6 If a clustered index exists, drop and re-create it. Do not use the sorted_data 
option. 

See “Distributing data evenly across partitions” on page 91.

7 Dump the database.

Special procedures for difficult situations
These techniques are more complex than those presented earlier in the chapter. 



Special procedures for difficult situations 

108  Adaptive Server Enterprise

Clustered indexes on large tables
To create a clustered index on a table that will fill more than 40 to 45% of the 
segment, and the input data file is not in order by clustered index key, these 
steps yield good data distribution, as long as the data that you copy in during 
step 6 contains a representative sample of the data.

1 Copy the data out.

2 Unpartition the table. 

See “alter table...unpartition Syntax” on page 91.

3 Truncate the table.

4 Repartition the table. 

See “alter table...partition syntax” on page 90.

5 Drop the clustered index and any nonclustered indexes. Depending on 
how your index was created, use either drop index.

See “Using drop index and create clustered index” on page 92) or alter 
table...drop constraint and “Using constraints and alter table” on page 93.

6 Use parallel bulk copy to copy in enough data to fill approximately 40% 
of the segment. This must be a representative sample of the values in the 
key column(s) of the clustered index.

Copying in 40% of the data is much more likely to yield good results than 
smaller amounts of data, you can perform this portion of the bulk copy can 
be performed in parallel; you must use nonparallel bcp for the second buld 
copy operation.

See “Using parallel bcp to copy data into partitions” on page 94.

7 Create the clustered index on the segment, do not use the sorted_data 
clause.

8 Use nonparallel bcp, in a single session, to copy in the rest of the data. The 
clustered index directs the rows to the correct partitions.

9 Use sp_helppartition to check the distribution of data pages on partitions 
and sp_helpsegment to check the distribution of pages on the segment.

10 Create any nonclustered indexes.

11 Dump the database.



CHAPTER 5    Controlling Physical Data Placement

Performance & Tuning Guide 109

One drawback of this method is that once the clustered index exists, the second 
bulk copy operation can cause page splitting on the data pages, taking slightly 
more room in the database. However, once the clustered index exists, and all 
the data is loaded, future maintenance activities can use simpler and faster 
methods.

Alternative for clustered indexes
This set of steps may be useful when:

• The table data occupies more than 40 to 45% of the segment.

• The table data is not in clustered key order, and you need to create a 
clustered index.

• You do not get satisfactory results trying to load a representative sample 
of the data, as explained in “Clustered indexes on large tables” on page 
108.

This set of steps successfully distributes the data in almost all cases, but 
requires careful attention:

1 Find the minimum value for the key column for the clustered index:

select min(order_id) from orders

2 If the clustered index exists, drop it. Drop any nonclustered indexes. 

See “Using drop index and create clustered index” on page 92 or “Using 
constraints and alter table” on page 93.

3 Execute the command:

set sort_resources on

This command disables create index commands. Subsequent create index 
commands print information about how the sort will be performed, but do 
not create the index.

4 Issue the command to create the clustered index, and record the partition 
numbers and values in the output. This example shows the values for a 
table on four partitions:

create clustered index order_cix 
    on orders(order_id)
The Create Index is done using Parallel Sort
Sort buffer size: 1500
Parallel degree: 25



Special procedures for difficult situations 

110  Adaptive Server Enterprise

Number of output devices: 3
Number of producer threads: 4
Number of consumer threads: 4
The distribution map contains 3 element(s) for 4 
partitions.
Partition Element: 1
        
450977
Partition Element: 2
        
903269
Partition Element: 3
        
1356032
Number of sampled records: 2449

These values, together with the minimum value from step 1, are the key 
values that the sort uses as diameters when assigning rows to each 
partition.

5 Bulk copy the data out, using character mode.

6 Unpartition the table.

 See “alter table...unpartition Syntax” on page 91.

7 Truncate the table.

8 Repartition the table.

 See “alter table...partition syntax” on page 90.

9 In the resulting output data file, locate the minimum key value and each of 
the key values identified in step 4. Copy these values out to another file, 
and delete them from the output file.

10 Copy into the table, using parallel bulk copy to place them on the correct 
segment. For the values shown above, the file might contain:

1 Jones        ...
450977 Smith        ...
903269 Harris        ...
1356032 Wilder        ...

The bcp commands look like this:

bcp testdb..orders:1 in keyrows -F1 -L1
bcp testdb..orders:2 in keyrows -F2 -L2
bcp testdb..orders:3 in keyrows -F3 -L3



CHAPTER 5    Controlling Physical Data Placement

Performance & Tuning Guide 111

bcp testdb..orders:4 in keyrows -F4 -L4

At the end of this operation, you will have one row on the first page of each 
partition – the same row that creating the index would have allocated to 
that position.

11 Turn set sort_resources off, and create the clustered index on the segment, 
using the with sorted_data option.

Do not include any clauses that force the index creation to copy the data 
rows.

12 Use bulk copy to copy the data into the table.

Use a single, nonparallel session. You cannot specify a partition for bulk 
copy when the table has a clustered index, and running multiple sessions 
runs the risk of deadlocking.

The clustered index forces the pages to the correct partition.

13 Use sp_helpartition to check the balance of data pages on the partitions and 
sp_helpsegment to balance of pages on the segments.

14 Create any nonclustered indexes. 

15 Dump the database.

While this method can successfully make use of nearly all of the pages in a 
partition, it has some disadvantages:

• The entire table must be copied by a single, slow bulk copy

• The clustered index is likely to lead to page splitting on the data pages if 
the table uses allpages locking, so more space might be required.

Problems when devices for partitioned tables are full
Simply adding disks and re-creating indexes when partitions are full may not 
solve load-balancing problems. If a physical device that underlies a partition 
becomes completely full, the data-copy stage of re-creating an index cannot 
copy data to that physical device.

If a physical device is almost completely full, re-creating the clustered index 
does not always succeed in establishing a good load balance.



Problems when devices for partitioned tables are full 

112  Adaptive Server Enterprise

Adding disks when devices are full
The result of creating a clustered index when a physical device is completely 
full is that two partitions are created on one of the other physical devices. 
Figure 5-2 and Figure 5-3 show one such situation.

Devices 2 and 3 are completely full, as shown in Figure 5-2. 

Figure 5-2: A table with 3 partitions on 3 devices

Adding two devices, repartitioning the table to use five partitions, and dropping 
and re-creating the clustered index produces the following results:

Figure 5-3 shows these results. 

Figure 5-3: Devices and partitions after create index

Device 1 One partition, approximately 40% full.

Devices 2 and 3 Empty. These devices had no free space when create index 
started, so a partition for the copy of the index could not be 
created on the device.

Devices 4 and 5 Each device has two partitions, and each is 100% full.

Data

Empty

device1 device2 device3

device1 device2 device3 device4 device5

Data

Empty



CHAPTER 5    Controlling Physical Data Placement

Performance & Tuning Guide 113

The only solution, once a device becomes completely full, is to bulk copy the 
data out, truncate the table, and copy the data into the table again. 

Adding disks when devices are nearly full
If a device is nearly full, re-creating a clustered index does not balance data 
across devices. Instead, the device that is nearly full stores a small portion of 
the partition, and the other space allocations for the partition steals extents on 
other devices. Figure 5-4 shows a table with nearly full data devices. 

Figure 5-4: Partitions almost completely fill the devices

After adding devices and re-creating the clustered index, the result might be 
similar to the results shown in Figure 5-5. 

Figure 5-5: Extent stealing and unbalanced data distribution

Once the partitions on device2 and device3 use the small amount of space 
available, they start stealing extents from device4 and device5.

In this case, a second index re-creation step might lead to a more balanced 
distribution. However, if one of the devices is nearly filled by extent stealing, 
another index creation does not solve the problem.

Data

Empty

device1 device2 device3

Data

Empty

device1 device2 device3 device4 device5

Stolen
pages



Maintenance issues and partitioned tables 

114  Adaptive Server Enterprise

Using bulk copy to copy the data out and back in again is the only sure solution 
to this form of imbalance. 

To avoid situations such as these, monitor space usage on the devices, and add 
space early.

Maintenance issues and partitioned tables
Partitioned table maintenance activity requirements depend on the frequency 
and type of updates performed on the table.

Partitioned tables that require little maintenance include:

• Tables that are read-only or that experience very few updates. In the 
second case, only periodic checks for balance are required

• Tables where inserts are well-distributed across the partitions. Random 
inserts to partitioned heap tables and inserts that are evenly distributed due 
to a clustered index key that places rows on different partitions do not 
develop skewed distribution of pages.

If data modifications lead to space fragmentation and partially filled data 
pages, you may need to re-create the clustered index.

• Heap tables where inserts are performed by bulk copy. You can use 
parallel bulk copy to direct the new data to specific partitions to maintain 
load balancing.

Partitioned tables that require frequent monitoring and maintenance include 
tables with clustered indexes that tend to direct new rows to a subset of the 
partitions. An ascending key index is likely to require more frequent 
maintenance. 

Regular maintenance checks for partitioned tables
Routine monitoring for partitioned tables should include the following types of 
checks, in addition to routine database consistency checks: 

• Use sp_helpartition to check the balance on partitions.

If some partitions are significantly larger or smaller than the average, re-
create the clustered index to redistribute data.



CHAPTER 5    Controlling Physical Data Placement

Performance & Tuning Guide 115

• Use sp_helpsegment to check the balance of space on underlying disks.

• If you re-create the clustered index to redistribute data for parallel query 
performance, check for devices that are nearing 50% full.

Adding space before devices become too full avoids the complicated 
procedures described earlier in this chapter.

• Use sp_helpsegment to check the space available as free pages on each 
device, or sp_helpdb for free kilobytes.

In addition, run update partition statistics, if partitioned tables undergo the types 
of activities described in “Updating partition statistics” on page 99.

You might need to re-create the clustered index on partitioned tables because:

• Your index key tends to assign inserts to a subset of the partitions.

• Delete activity tends to remove data from a subset of the partitions, leading 
to I/O imbalance and partition-based scan imbalances.

• The table has many inserts, updates, and deletes, leading to many partially 
filled data pages. This condition leads to wasted space, both on disk and in 
the cache, and increases I/O because more pages need to read for many 
queries.



Maintenance issues and partitioned tables 

116  Adaptive Server Enterprise



Performance & Tuning Guide 117

C H A P T E R  6 Database Design

This covers some basic information on database design that database 
administrators and designers would find useful as a resource. It also 
covers the Normal Forms for database normalization and 
denormalization. 

There are some major database design concepts and other tips in moving 
from the logical database design to the physical design for Adaptive 
Server.

 Basic design
Database design is the process of moving from real-world business 
models and requirements to a database model that meets these 
requirements.

Normalization in a relational database, is an approach to structuring 
information in order to avoid redundancy and inconsistency and to 
promote efficient maintenance, storage, and updating. Several “rules” or 
levels of normalization are accepted, each a refinement of the preceding 
one.

Of these, three forms are commonly used: first normal, second normal, 
and third normal. First normal forms, the least structured, are groups of 
records in which each field (column) contains unique and nonrepeating 
information. Second and third normal forms break down first normal 
forms, separating them into different tables by defining successively finer 
interrelationships between fields.

For relational databases such as Adaptive Server, the standard design 
creates tables in Third Normal Form.

Topic Page
Basic design 117

Normalization 119

Denormalizing for performance 124



Basic design 

118  Adaptive Server Enterprise

When you translate an Entity-Relationship model in Third Normal Form 
(3NF) to a relational model:

• Relations become tables.

• Attributes become columns.

• Relationships become data references (primary and foreign key 
references).

Physical database design for Adaptive Server
Based on access requirements and constraints, implement your physical 
database design as follows:

• Denormalize where appropriate

• Partition tables where appropriate

• Group tables into databases where appropriate

• Determine use of segments

• Determine use of devices

• Implement referential integrity of constraints

Logical Page Sizes
In Adaptive Servers page size are variable. You have to exercise caution 
when setting the page sizes.

There are hazards in using larger devices on a 2Gb-limit platform. If you 
attempt to configure a logical device larger than 2Gb where Adaptive 
Server does not support large devices, you may experience the following 
problems:

• Data corruption on databases (some releases give no error message).

• Inability to dump or load data from the database



CHAPTER 6    Database Design

Performance & Tuning Guide 119

Normalization
When a table is normalized, the non-key columns depend on the key used.

From a relational model point of view, it is standard to have tables that are 
in Third Normal Form. Normalized physical design provides the greatest 
ease of maintenance, and databases in this form are clearly understood by 
developers.

However, a fully normalized design may not always yield the best 
performance. Sybase recommends that you design databases for Third 
Normal Form, however, if performance issues arise, you may have to 
denormalize to solve them.

Levels of normalization
Each level of normalization relies on the previous level. For example, to 
conform toSecond Normal Form, entities must be in first Normal Form. 

You may have to look closely at the tables within a database to verify if the 
database is normalized. You may have to change the way the 
normalization was done by going through a denormalization on given data 
before you can apply a different setup for normalization.

Use the following information to verify whether or not a database was 
normalized, and then use it to set up the Normal Forms you may want to 
use.

Benefits of normalization
Normalization produces smaller tables with smaller rows:

• More rows per page (less logical I/O)

• More rows per I/O (more efficient)

• More rows fit in cache (less physical I/O)

The benefits of normalization include:

• Searching, sorting, and creating indexes is faster, since tables are 
narrower, and more rows fit on a data page.

• You usually have more tables.



Normalization 

120  Adaptive Server Enterprise

You can have more clustered indexes (one per table), so you get more 
flexibility in tuning queries.

• Index searching is often faster, since indexes tend to be narrower and 
shorter.

• More tables allow better use of segments to control physical 
placement of data.

• You usually have fewer indexes per table, so data modification 
commands are faster.

• Fewer null values and less redundant data, making your database 
more compact.

• Triggers execute more quickly if you are not maintaining redundant 
data.

• Data modification anomalies are reduced.

• Normalization is conceptually cleaner and easier to maintain and 
change as your needs change.

While fully normalized databases require more joins, joins are generally 
very fast if indexes are available on the join columns.

Adaptive Server is optimized to keep higher levels of the index in cache, 
so each join performs only one or two physical I/Os for each matching 
row.

The cost of finding rows already in the data cache is extremely low.

First Normal Form
The rules for First Normal Form are:

• Every column must be atomic. It cannot be decomposed into two or 
more subcolumns.

• You cannot have multivalued columns or repeating groups.

• Each row and column position can have only one value.

The table in Figure 6-1 violates First Normal Form, since the dept_no 
column contains a repeating group:



CHAPTER 6    Database Design

Performance & Tuning Guide 121

Figure 6-1: A table that violates first Normal Form

Normalization creates two tables and moves dept_no to the second table: 

Figure 6-2: Correcting First Normal Form violations by creating two 
tables

Second Normal Form
For a table to be in Second Normal Form, every non-key field must depend 
on the entire primary key, not on part of a composite primary key. If a 
database has only single-field primary keys, it is automatically in Second 
Normal Form.

In Figure 6-3, the primary key is a composite key on emp_num and 
dept_no. But the value of dept_name depends only on dept_no, not on the 
entire primary key. 

Employee (emp_num, emp_lname, dept__no)

Employee

emp_num emp_lname dept_no

10052 Jones A10 C66

10101 Sims D60

Repeating 

Employee (emp_num, emp_lname)

Employee

emp_num emp_lname

10052 Jones

10101 Sims

Emp_dept

emp_num dept_no

10052 A10 

10052 C66

10101 D60

Emp_dept (emp_num, dept_no)



Normalization 

122  Adaptive Server Enterprise

Figure 6-3: A table that violates Second Normal Form

To normalize this table, move dept_name to a second table, as shown in 
Figure 6-4.

Figure 6-4: Correcting Second Normal Form violations by creating 
two tables

Third Normal Form
For a table to be in Third Normal Form, a non-key field cannot depend on 
another non-key field.

The table in Figure 6-5 violates Third Normal Form because the 
mgr_lname field depends on the mgr_emp_num field, which is not a key 
field.

Emp_dept

emp_num dept_no dept_name

10052 A10 accounting

10074 A10 accounting

10074 D60 development

Emp_dept (emp_num, dept_no, dept_name)
Depends on 
part of primary 

Primary key

Emp_dept

emp_num dept_no

10052 A10

10074 A10

10074 D60

Emp_dept (emp_num, dept_no)

Primary 

Dept

dept_no dept_name

A10 accounting

D60 development

Dept (dept_no, dept_name)

Primary 



CHAPTER 6    Database Design

Performance & Tuning Guide 123

Figure 6-5: A table that violates Third Normal Form

The solution is to split the Dept table into two tables, as shown in Figure 6-
6. In this case, the Employees table, already stores this information, so 
removing the mgr_lname field from Dept brings the table into Third 
Normal Form. 

Dept

dept_no dept_name mgr_emp_num mgr_lname

A10 accounting 10073 Johnson

D60 development 10089 White

M80 marketing 10035 Dumont

Dept (dept_no, dept_name, mgr_emp_num, mgr_lname)

Primary key

Depend on 
primary key

Depends on 
non-key 



Denormalizing for performance 

124  Adaptive Server Enterprise

Figure 6-6: Correcting Third Normal Form violations by creating 
two tables

Denormalizing for performance
Once you have normalized your database, you can run benchmark tests to 
verify performance. You may have to denormalize for specific queries 
and/or applications.

Denormalizing:

• Can be done with tables or columns

• Assumes prior normalization

• Requires a thorough knowledge of how the data is being used

You may want to denormalize if:

• All or nearly all of the most frequent queries require access to the full 
set of joined data.

Dept

dept_no dept_name mgr_emp_num

A10 accounting 10073

D60 development 10089

M80 marketing 10035

Dept (dept_no, dept_name, mgr_emp_num)

Primary 

Primary 

Employee (emp_num, emp_lname)

Employee

emp_num emp_lname

10073 Johnson

10089 White

10035 Dumont



CHAPTER 6    Database Design

Performance & Tuning Guide 125

• A majority of applications perform table scans when joining tables.

• Computational complexity of derived columns requires temporary 
tables or excessively complex queries.

Risks 
To denormalize you should have a thorough knowledge of the application. 
Additionally, you should denormalize only if performance issues indicate 
that it is needed.

For example, the ytd_sales column in the titles table of the pubs2 database 
is a denormalized column that is maintained by a trigger on the salesdetail 
table. You can obtain the same values using this query:

select title_id, sum(qty)
    from salesdetail
    group by title_id

Obtaining the summary values and the document title requires a join with 
the titles table:

select title, sum(qty)
    from titles t, salesdetail sd
    where t.title_id = sd.title_id
    group by title

If you run this query frequently, it makes sense to denormalize this table. 
But there is a price to pay: you must create an insert/update/delete trigger 
on the salesdetail table to maintain the aggregate values in the titles table.

Executing the trigger and performing the changes to titles adds processing 
cost to each data modification of the qty column value in salesdetail.

This situation is a good example of the tension between decision support 
applications, which frequently need summaries of large amounts of data, 
and transaction processing applications, which perform discrete data 
modifications.

Denormalization usually favors one form of processing at a cost to others.

Any form of denormalization has the potential for data integrity problems 
that you must document carefully and address in application design.



Denormalizing for performance 

126  Adaptive Server Enterprise

Disadvantages

Denormalization has these disadvantages:

• It usually speeds retrieval but can slow data modification.

• It is always application-specific and must be reevaluated if the 
application changes.

• It can increase the size of tables.

• In some instances, it simplifies coding; in others, it makes coding 
more complex.

Performance advantages

Denormalization can improve performance by:

• Minimizing the need for joins

• Reducing the number of foreign keys on tables

• Reducing the number of indexes, saving storage space, and reducing 
data modification time

• Precomputing aggregate values, that is, computing them at data 
modification time rather than at select time

• Reducing the number of tables (in some cases)

Denormalization input
When deciding whether to denormalize, you need to analyze the data 
access requirements of the applications in your environment and their 
actual performance characteristics.

Often, good indexing and other solutions solve many performance 
problems rather than denormalizing.

Some of the issues to examine when considering denormalization include:

• What are the critical transactions, and what is the expected response 
time?

• How often are the transactions executed?

• What tables or columns do the critical transactions use? How many 
rows do they access each time?



CHAPTER 6    Database Design

Performance & Tuning Guide 127

• What is the mix of transaction types: select, insert, update, and delete?

• What is the usual sort order?

• What are the concurrency expectations?

• How big are the most frequently accessed tables?

• Do any processes compute summaries?

• Where is the data physically located?

 Techniques
The most prevalent denormalization techniques are:

• Adding redundant columns

• Adding derived columns

• Collapsing tables

In addition, you can duplicate or split tables to improve performance. 
While these are not denormalization techniques, they achieve the same 
purposes and require the same safeguards.

Adding redundant columns

You can add redundant columns to eliminate frequent joins.

For example, if you are performing frequent joins on the titleauthor and 
authors tables to retrieve the author’s last name, you can add the au_lname 
column to titleauthor.

Adding redundant columns eliminates joins for many queries. The 
problems with this solution are that it:

• Requires maintenance of new columns. you must make changes to 
two tables, and possibly to many rows in one of the tables.

• Requires more disk space, since au_lname is duplicated.



Denormalizing for performance 

128  Adaptive Server Enterprise

Adding derived columns

Adding derived columns can eliminate some joins and reduce the time 
needed to produce aggregate values. The total_sales column in the titles 
table of the pubs2 database provides one example of a derived column 
used to reduce aggregate value processing time. 

The example in Figure 6-7 shows both benefits. Frequent joins are needed 
between the titleauthor and titles tables to provide the total advance for a 
particular book title.

Figure 6-7: Denormalizing by adding derived columns

You can create and maintain a derived data column in the titles table, 
eliminating both the join and the aggregate at runtime. This increases 
storage needs, and requires maintenance of the derived column whenever 
changes are made to the titles table. 

Collapsing tables

If most users need to see the full set of joined data from two tables, 
collapsing the two tables into one can improve performance by eliminating 
the join.

title_id      advance
titleauthor

title_id     title
 titles

select title, sum(advance)
from titleauthor ta, titles t
where ta.title_id = t.title_id
group by title_id

title_id      title         sum_adv
titles

select title, sum_adv from titles

title_id      advance
titleauthor

join columns



CHAPTER 6    Database Design

Performance & Tuning Guide 129

For example, users frequently need to see the author name, author ID, and 
the blurbs copy data at the same time. The solution is to collapse the two 
tables into one. The data from the two tables must be in a one-to-one 
relationship to collapse tables.

Collapsing the tables eliminates the join, but loses the conceptual 
separation of the data. If some users still need access to just the pairs of 
data from the two tables, this access can be restored by using queries that 
select only the needed columns or by using views.

Duplicating tables

If a group of users regularly needs only a subset of data, you can duplicate 
the critical table subset for that group.

Figure 6-8: Denormalizing by duplicating tables

The kind of split shown in Figure 6-8 minimizes contention, but requires 
that you manage redundancy. There may be issues of latency for the group 
of users who see only the copied data.

Splitting tables
Sometimes splitting normalized tables can improve performance. You can 
split tables in two ways: 

newauthors

au_id     copy
 blurbsnewauthors

au_id au_lname copy

au_id au_lname copy



Denormalizing for performance 

130  Adaptive Server Enterprise

• Horizontally, by placing rows in two separate tables, depending on 
data values in one or more columns

• Vertically, by placing the primary key and some columns in one table, 
and placing other columns and the primary key in another table

Keep in mind that splitting tables, either horizontally or vertically, adds 
complexity to your applications.

Horizontal splitting

Use horizontal splitting if:

• A table is large, and reducing its size reduces the number of index 
pages read in a query.

B-tree indexes, however, are generally very flat, and you can add 
large numbers of rows to a table with small index keys before the 
B-tree requires more levels.

An excessive number of index levels may be an issue with tables that 
have very large keys.

• The table split corresponds to a natural separation of the rows, such as 
different geographical sites or historical versus current data.

You might choose horizontal splitting if you have a table that stores 
huge amounts of rarely used historical data, and your applications 
have high performance needs for current data in the same table.

• Table splitting distributes data over the physical media, however, 
there are other ways to accomplish this goal.

Generally, horizontal splitting requires different table names in queries, 
depending on values in the tables. In most database applications this 
complexity usually far outweighs the advantages of table splitting .

As long as the index keys are short and indexes are used for queries on the 
table, doubling or tripling the number of rows in the table may increase the 
number of disk reads required for a query by only one index level. If many 
queries perform table scans, horizontal splitting may improve 
performance enough to be worth the extra maintenance effort.

Figure 6-9 shows how you might split the authors table to separate active 
and inactive authors: 



CHAPTER 6    Database Design

Performance & Tuning Guide 131

Figure 6-9: Horizontal partitioning of active and inactive data

Vertical splitting

Use vertical splitting if:

• Some columns are accessed more frequently than other columns.

• The table has wide rows, and splitting the table reduces the number of 
pages that need to be read.

Vertical table splitting makes even more sense when both of the above 
conditions are true. When a table contains very long columns that are 
accessed infrequently, placing them in a separate table can greatly speed 
the retrieval of the more frequently used columns. With shorter rows, more 
data rows fit on a data page, so for many queries, fewer pages can be 
accessed.

Managing denormalized data
Whatever denormalization techniques you use, you need to ensure data 
integrity by using:

• Triggers, which can update derived or duplicated data anytime the 
base data changes

active
Authors

inactive
active

active
inactive

Inactive_Authors

inactive

Active_Authors

Problem: Usually only
active records are accessed

Solution: Partition horizontally into active and inactive data



Denormalizing for performance 

132  Adaptive Server Enterprise

• Application logic, using transactions in each application that update 
denormalized data, to ensure that changes are atomic

• Batch reconciliation, run at appropriate intervals, to bring the 
denormalized data back into agreement

From an integrity point of view, triggers provide the best solution, 
although they can be costly in terms of performance.

Using triggers
In Figure 6-10, the sum_adv column in the titles table stores denormalized 
data. A trigger updates the sum_adv column whenever the advance 
column in titleauthor changes. 

Figure 6-10: Using triggers to maintain normalized data

Using application logic
If your application has to ensure data integrity, it must ensure that the 
inserts, deletes, or updates to both tables occur in a single transaction.

If you use application logic, be very sure that the data integrity 
requirements are well documented and well known to all application 
developers and to those who must maintain applications.

Note  Using application logic to manage denormalized data is risky. The 
same logic must be used and maintained in all applications that modify the 
data.

title_id    sum_adv
 titles

title_id       au_id       advance
titleauthor



CHAPTER 6    Database Design

Performance & Tuning Guide 133

Batch reconciliation
If 100 percent consistency is not required at all times, you can run a batch 
job or stored procedure during off-hours to reconcile duplicate or derived 
data.



Denormalizing for performance 

134  Adaptive Server Enterprise



Performance & Tuning Guide 135

C H A P T E R  7 Data Storage

This chapter explains how Adaptive Server stores data rows on pages and 
how those pages are used in select and data modification statements, when 
there are no indexes.

It lays the foundation for understanding how to improve Adaptive Server’s 
performance by creating indexes, tuning your queries, and addressing 
object storage issues.

Performance gains through query optimization
The Adaptive Server optimizer attempts to find the most efficient access 
path to your data for each table in the query, by estimating the cost of the 
physical I/O needed to access the data, and the number of times each page 
needs to be read while in the data cache. 

In most database applications, there are many tables in the database, and 
each table has one or more indexes. Depending on whether you have 
created indexes, and what kind of indexes you have created, the 
optimizer’s access method options include:

Topic Page
Performance gains through query optimization 135

Adaptive Server pages 137

Pages that manage space allocation 141

Space overheads 144

Heaps of data: tables without clustered indexes 151

How Adaptive Server performs I/O for heap operations 157

Caches and object bindings 158

Asynchronous prefetch and I/O on heap tables 163

Heaps: pros and cons 164

Maintaining heaps 164

Transaction log: a special heap table 166



Performance gains through query optimization 

136  Adaptive Server Enterprise

• A table scan – reading all the table’s data pages, sometimes hundreds 
or thousands of pages.

• Index access – using the index to find only the data pages needed, 
sometimes as few as three or four page reads in all.

• Index covering – using only a non clustered index to return data, 
without reading the actual data rows, requiring only a fraction of the 
page reads required for a table scan.

Having the proper set of indexes on your tables should allow most of your 
queries to access the data they need with a minimum number of page 
reads.

Query processing and page reads
Most of a query’s execution time is spent reading data pages from disk. 
Therefore, most of your performance improvement — more than 80%, 
according to many performance and tuning experts — comes from 
reducing the number of disk reads needed for each query. 

When a query performs a table scan, Adaptive Server reads every page in 
the table because no useful indexes are available to help it retrieve the data. 
The individual query may have poor response time, because disk reads 
take time. Queries that incur costly table scans also affect the performance 
of other queries on your server.

Table scans can increase the time other users have to wait for a response, 
since they consume system resources such as CPU time, disk I/O, and 
network capacity.

Table scans use a large number of disk reads (I/Os) for a given query. 
When you have become familiar with the access methods, tuning tools, the 
size and structure of your tables, and the queries in your applications, you 
should be able to estimate the number of I/O operations a given join or 
select operation will perform, given the indexes that are available.

If you know what the indexed columns on your tables are, along with the 
table and index sizes, you can often look at a query and predict its 
behavior. For different queries on the same table, you might be able to 
draw these conclusions:

• This point query returns a single row or a small number of rows that 
match the where clause condition.



CHAPTER 7    Data Storage

Performance & Tuning Guide 137

The condition in the where clause is indexed; it should perform two to 
four I/Os on the index and one more to read the correct data page.

• All columns in the select list and where clause for this query are 
included in a non clustered index. This query will probably perform a 
scan on the leaf level of the index, about 600 pages.

Adding an unindexed column to the select list, would force the query 
to scan the table, which would require 5000 disk reads.

• No useful indexes are available for this query; it is going to do a table 
scan, requiring at least 5000 disk reads.

This chapter describes how tables are stored, and how access to data rows 
takes place when indexes are not being used.

Chapter 9, “How Indexes Work,” describes access methods for indexes. 
Other chapters explain how to determine which access method is being 
used for a query, the size of the tables and indexes, and the amount of I/O 
a query performs. These chapters provide a basis for understanding how 
the optimizer models the cost of accessing the data for your queries.

Adaptive Server pages
The basic unit of storage for Adaptive Server is a page. Page sizes can be 
2K, 4K, 8K to 16K. The server’s page size is established when you first 
build the source. Once the server is build the this value cannot be changed. 
These types of pages store database objects:

• Data pages – store the data rows for a table.

• Index pages – store the index rows for all levels of an index.

• Large object (LOB) pages – store the data for text and image columns, 
and for Java off-row columns.

Adaptive Server may have to handle large volumes of data for a single 
query, DML operation, or command. For example, if you use a data-only-
locked (DOL) table with a char(2000) column, Adaptive Server must 
allocate memory to perform column copying while scanning the table. 
Increased memory requests during the life of a query or command means 
a potential reduction in throughput.



Adaptive Server pages 

138  Adaptive Server Enterprise

The size of Adaptive Server‘s logical pages (2K, 4K, 8K, or 16K) 
determines the server’s space allocation. Each allocation page, object 
allocation map (OAM) page, data page, index page, text page, and so on 
are built on a logical page. For example, if the logical page size of 
Adaptive Server is 8K, each of these page types are 8K in size. All of these 
pages consume the entire size specified by the size of the logical page. 
OAM pages have a greater number of OAM entries for larger logical pages 
(for example, 8K) than for smaller pages (2K).

Page headers and page sizes
All pages have a header that stores information such as the object ID that 
the page belongs to and other information used to manage space on the 
page. Table 7-1 shows the number of bytes of overhead and usable space 
on data and index pages. 

Table 7-1: Overhead and user data space on data and index pages

The rest of the page is available to store data and index rows.

For information on how text, image, and Java columns are stored, see 
“Large Object (LOB) Pages” on page 139.

Varying logical page sizes
The dataserver command allows you to create master devices and 
databases with logical pages of size 2K, 4K, 8K, or 16K. Larger logical 
pages allow you to create larger rows, which can improve your 
performance because Adaptive Server accesses more data each time it 
reads a page. For example, a 16K page can hold 8 times the amount of data 
as a 2K page, an 8K page holds 4 times as much data as a 2K page, and so 
on, for all the sizes for logical pages.

The logical page size is a server-wide setting; you cannot have databases 
with varying size logical pages within the same server. All tables are 
appropriately sized so that the row size is no greater than the current page 
size of the server. That is, rows cannot span multiple pages.

Locking Scheme Overhead Bytes for User Data

Allpages 32 2016

Data-only 46 2002



CHAPTER 7    Data Storage

Performance & Tuning Guide 139

See the Utilities Guide for specific information about using the dataserver 
command to build your master device. 

Data and index pages
Data pages and index pages on data-only-locked tables have a row offset 
table that stores pointers to the starting byte for each row on the page. Each 
pointer takes 2 bytes. 

Data and index rows are inserted on a page starting just after the page 
header, and fill in contiguously down the page. For all tables and indexes 
on data-only-locked tables, the row offset table begins at the last byte on 
the page, and grows upward.

The information stored for each row consists of the actual column data 
plus information such as the row number and the number of variable-
length and null columns in the row. Index pages for allpages-locked tables 
do not have a row offset table.

Rows cannot cross page boundaries, except for text, image, and Java off-
row columns. Each data row has at least 4 bytes of overhead; rows that 
contain variable-length data have additional overhead.

See Chapter 16, “Determining Sizes of Tables and Indexes,” for more 
information on data and index row sizes and overhead.

The row offset table stores pointers to the starting location for each data 
row on the page.

Large Object (LOB) Pages
text, image, and Java off-row columns (LOB columns) for a table are 
stored as a separate data structure, consisting of a set of pages. Each table 
with a text or image column has one of these structures. If a table has 
multiple LOB columns, it still has only one of these separate data 
structures. 

The table itself stores a 16-byte pointer to the first page of the value for the 
row. Additional pages for the value are linked by next and previous 
pointers. Each value is stored in its own, separate page chain. The first 
page stores the number of bytes in the text value. The last page in the chain 
for a value is terminated with a null next-page pointer.



Adaptive Server pages 

140  Adaptive Server Enterprise

Reading or writing a LOB value requires at least two page reads or writes: 

• One for the pointer

• One for the actual location of the text in the text object

Each LOB page stores up to 1800 bytes. Every non-null value uses at least 
one full page.

LOB structures are listed separately in sysindexes. The ID for the LOB 
structure is the same as the table’s ID. The index ID column is indid and is 
always 255, and the name is the table name, prefixed with the letter “t”.

Extents
Adaptive Server pages are always allocated to a table, index, or LOB 
structure. A block of 8 pages is called an extent. The size of an extent 
depends on the page size the server uses. The extent size on a 2K server is 
16K where on an 8K it is 64K, etc. The smallest amount of space that a 
table or index can occupy is 1 extent, or 8 pages. Extents are deallocated 
only when all the pages in an extent are empty.

The use of extents in Adaptive Server is transparent to the user except 
when examining reports on space usage.

For example, reports from sp_spaceused display the space allocated (the 
reserved column) and the space used by data and indexes. The unused 
column displays the amount of space in extents that are allocated to an 
object, but not yet used to store data.

sp_spaceused titles
name rowtotal reserved data index_size unused
------ -------- -------- ------- ---------- ------
titles 5000 1392 KB 1250 KB 94 KB 48 KB

In this report, the titles table and its indexes have 1392K reserved on 
various extents, including 48K (24 data pages) unallocated in those 
extents.



CHAPTER 7    Data Storage

Performance & Tuning Guide 141

Pages that manage space allocation
In addition to data, index, and LOB pages used for data storage, Adaptive 
Server uses other types of pages to manage storage, track space allocation, 
and locate database objects. The sysindexes table also stores pointers that 
are used during data access.

The pages that manage space allocation and the sysindexes pointers are 
used to:

• Speed the process of finding objects in the database

• Speed the process of allocating and deallocating space for objects.

• Provide a means for Adaptive Server to allocate additional space for 
an object that is near the space already used by the object. This helps 
performance by reducing disk-head travel.

The following types of pages track the disk space use by database objects:

• Global allocation map (GAM) pages contain allocation bitmaps for an 
entire database.

• Allocation pages track space usage and objects within groups of 256 
pages, or 1/2MB.

• Object allocation map (OAM) pages contain information about the 
extents used for an object. Each table and index has at least one OAM 
page that tracks where pages for the object are stored in the database.

• Control pages manage space allocation for partitioned tables. Each 
partition has one control page.

Global allocation map pages
Each database has a Global Allocation Map Pages (GAM). It stores a 
bitmap for all allocation units of a database, with 1 bit per allocation unit. 
When an allocation unit has no free extents available to store objects, its 
corresponding bit in the GAM is set to 1.

This mechanism expedites allocating new space for objects. Users cannot 
view the GAM page; it appears in the system catalogs as the sysgams 
table.



Pages that manage space allocation 

142  Adaptive Server Enterprise

Allocation pages
When you create a database or add space to a database, the space is divided 
into allocation units of 256 data pages. The first page in each allocation 
unit is the allocation page. Page 0 and all pages that are multiples of 256 
are allocation pages.

The allocation page tracks space in each extent on the allocation unit by 
recording the object ID and index ID for the object that is stored on the 
extent, and the number of used and free pages. The allocation page also 
stores the page ID for the table or index’s OAM page.

Object allocation map pages
Each table, index, and text chain has one or more Object Allocation Map 
(OAM) pages stored on pages allocated to the table or index. If a table has 
more than one OAM page, the pages are linked in a chain. OAM pages 
store pointers to the allocation units that contain pages for the object. 

The first page in the chain stores allocation hints, indicating which OAM 
page in the chain has information about allocation units with free space. 
This provides a fast way to allocate additional space for an object and to 
keep the new space close to pages already used by the object. 

How OAM pages and allocation pages manage object storage
Figure 7-1 shows how allocation units, extents, and objects are managed 
by OAM pages and allocation pages. 

• Two allocation units are shown, one starting at page 0 and one at page 
256. The first page of each is the allocation page.

• A table is stored on four extents, starting at pages 1 and 24 on the first 
allocation unit and pages 272 and 504 on the second unit.

• The first page of the table is the table’s OAM page. It points to the 
allocation page for each allocation unit where the object uses pages, 
so it points to pages 0 and 256.

• Allocation pages 0 and 256 store the table’s object ID and information 
about the extents and pages used on the extent. So, allocation page 0 
points to page 1 and 24 for the table, and allocation page 256 points 
to pages 272 and 504.



CHAPTER 7    Data Storage

Performance & Tuning Guide 143

Figure 7-1: OAM page and allocation page pointers

Page allocation keeps an object’s pages together
Adaptive Server tries to keep the page allocations close together for 
objects. In most cases:

• If there is an unallocated page in the current extent, that page is 
assigned to the object.

• If there is no free page in the current extent, but there is an unallocated 
page on another of the object’s extents, that extent is used.

• If all the object’s extents are full, but there are free extents on the 
allocation unit, the new extent is allocated in a unit already used by 
the object.

sysindexes table and data access
The sysindexes table stores information about indexed and unindexed 
tables. sysindexes has one row for each:

27 2824 25 26 29 30 31

750 1 2 3 4 6

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

248 249 250 251 252 253 254 255

283

511

279

..

274

256 257 258 259 260 261 262 263

264 265 266 267 268 269 270 271

272 273 275 276 277 278

280 281 282 284 285 286 287

.
504 505 506 507 508 509 510

Pages used by 

Other 

Allocation 

OAM 
Page
0
256

...



Space overheads 

144  Adaptive Server Enterprise

• Allpages-locked table, the indid column is 0 if the table does not have 
a clustered index, and 1 if the table does have a clustered index.

• Data-only-locked tables, the indid is always 0 for the table.

• Nonclustered index, and for each clustered index on a data-only-
locked table.

• Table with one or more LOB columns, the index ID is always 255 for 
the LOB structure.

Each row in sysindexes stores pointers to a table or index to speed access 
to objects. Table 7-2 shows how these pointers are used during data access.

Table 7-2: Use of sysindexes pointers in data access

Space overheads
Regardless of the logical page size it is configured for, Adaptive Server 
allocates space for objects (tables, indexes, text page chains) in extents, 
each of which is eight logical pages. That is, if a server is configured for 
2K logical pages, it allocates one extent, 16K, for each of these objects; if 
a server is configured for 16K logical pages, it allocates one extent, 128K, 
for each of these objects.

This is also true for system tables. If your server has many small tables, 
space consumption can be quite large if the server uses larger logical 
pages. 

Column Use for table access Use for index access

root If indid is 0 and the table is a partitioned 
allpages-locked table, root points to the 
last page of the heap.

Used to find the root page of the index 
tree.

first Points to the first data page in the page 
chain for allpages-locked tables.

Points to the first leaf-level page in a 
non clustered index or a clustered index 
on a data-only-locked table.

doampg Points to the first OAM page for the 
table.

ioampg Points to the first OAM page for an 
index.



CHAPTER 7    Data Storage

Performance & Tuning Guide 145

For example, for a server configured for 2K logical pages, systypes – with 
approximately 31 short rows, a clustered and a non-clustered index – 
reserves 3 extents, or 48K of memory. If you migrate the server to use 8K 
pages, the space reserved for systypes is still 3 extents, 192K of memory. 

For a server configured for 16K, systypes requires 384K of disk space. For 
small tables, the space unused in the last extent can become significant on 
servers using larger logical page sizes.

Databases are also affected by larger page sizes. Each database includes 
the system catalogs and their indexes. If you migrate from a smaller to 
larger logical page size, you must account for the amount of disk space 
each database requires.

Number of columns and size
The maximum number of columns you can create in a table is:

• 1024 for fixed-length columns in both all-pages-locked (APL) and 
data-only- locked (DOL) tables

• 254 for variable-length columns in an APL table 

• 1024 for variable-length columns in an DOL table

The maximum size of a column depends on:

• Whether the table includes any variable- or fixed-length columns.

• The logical page size of the database. For example, in a database with 
2K logical pages, the maximum size of a column in an APL table can 
be as large as a single row, about 1962 bytes, less the row format 
overheads. Similarly, for a 4K page, the maximum size of a column in 
a APL table can be as large as 4010 bytes, less the row format 
overheads. See Table 0-1 for more information.

• If you attempt to create a table with a fixed-length column that is 
greater than the limits of the logical page size, create table issues an 
error message.



Space overheads 

146  Adaptive Server Enterprise

Table 7-3: Maximum row and column length - APL & DOL

The maximum size of a fixed-length column in a DOL table with a 16K 
logical page size depends on whether the table contains variable-length 
columns. The maximum possible starting offset of a variable-length 
column is 8191. If the table has any variable-length columns, the sum of 
the fixed-length portion of the row, plus overheads, cannot exceed 8191 
bytes, and the maximum possible size of all the fixed-length columns is 
restricted to 8183 bytes, when the table contains any variable-length 
columns.

Variable-length columns in APL tables

APL tables that contain one variable-length column (for example, varchar, 
varbinary and so on) have the following minimum overhead for each row:

• Two bytes for the initial row overhead.

• Two bytes for the row length.

• Two bytes for the column-offset table at the end of the row. This is 
always n+1 bytes, where n is the number of variable-length columns 
in the row.

Locking scheme Page size
Maximum row 
length

Maximum column 
length

2K (2048 bytes) 1962 1960 bytes

4K (4096 bytes) 4010 4008 bytes

APL tables 8K (8192 bytes) 8106 8104 bytes

16K (16384 bytes) 16298 16296 bytes

2K (2048 bytes) 1964 1958 bytes

4K (4096 bytes) 4012 4006 bytes

DOL tables 8K (8192 bytes) 8108 8102 bytes

16K (16384 bytes) 16300 16294 bytes 
if table does not 
include any variable 
length columns

16K (16384 bytes) 16300 
(subject to a max start 
offset of varlen = 
8191)

8191-6-2 = 8183 bytes
if table includes at 
least on variable 
length column.*

* This size includes six bytes for the row overhead and two bytes for 
the row length field



CHAPTER 7    Data Storage

Performance & Tuning Guide 147

A single-column table has an overhead of at least six bytes, plus additional 
overhead for the adjust table. The maximum column size, after all the 
overhead is taken into consideration, is less than or equal to the column 
length + number of bytes for adjust table + six-byte overhead.

Table 7-4: Maximum size for variable-length columns in an APL 
table

Variable-length columns that exceed the logical page size

If your table uses 2K logical pages, you can create some variable-length 
columns whose total row-length exceeds the maximum row-length for a 
2K page size. This allows you to create tables where some, but not all, 
variable-length columns contain the maximum possible size. However, 
when you issue create table, you receive a warning message that says the 
resulting row size may exceed the maximum possible row size, and cause 
a future insert or update to fail.

For example, if you create a table that uses a 2K page size, and contains a 
variable-length column with a length of 1975 bytes, Adaptive Server 
creates the table but issues a warning message. However, an insert fails if 
you attempt to insert data that exceeds the maximum length of the row 
(1962 bytes).

Variable length columns in DOL tables

For a single, variable-length column in a DOL table, the minimum 
overhead for each row is:

• Six bytes for the initial row overhead.

• Two bytes for the row length.

• Two bytes for the column offset table at the end of the row. Each 
column offset entry is two bytes. There are n such entries, where n is 
the number of variable-length columns in the row.

The total overhead is 10 bytes. There is no adjust table for DOL rows. The 
actual variable-length column size is:

Page size
Maximum row 
length

Maximum column 
length

2K (2048 bytes) 1962 1948

4K (4096 bytes) 4010 3988

8K (8192 bytes) 8096 8058

16K (16384 bytes) 16298 16228



Space overheads 

148  Adaptive Server Enterprise

column length + 10 bytes overhead

Table 7-5: Maximum size for variable-length columns in an DOL 
table

DOL tables with variable-length columns must have an offset of less than 
8191 bytes for all inserts to succeed. For example, this insert fails because 
the offset totals more than 8191 bytes:

create table t1(

c1 int not null,

c2 varchar(5000) not null

c3 varchar(4000) not null

c4 varchar(10) not null

... more fixed length columns)

cvarlen varchar(nnn)) lock datarows

The offset for columns c2, c3, and c4 is 9010, so the entire insert fails.

Restrictions for converting locking schemes or using select into

The following restrictions apply whether you are using alter table to 
change a locking scheme or using select into to copy data into a new table.

For servers that use page sizes other than 16K pages, the maximum length 
of a variable length column in an APL table is less than that for a DOL 
table, so you can convert the locking scheme of an APL table with a 
maximum sized variable length column to DOL. Conversion of a DOL 
table containing at least one maximum sized variable length column to 
allpages modeis restricted. Adaptive Server raises an error message and 
the operation is aborted.

On servers that use 16K pages, APL tables can store substantially larger 
sized variable length columns than can be stored in DOL tables.You can 
convert tables from DOL to APL, but lock scheme conversion from APL 
to DOL is restricted. Adaptive Server raises an error message and the 
operation is aborted. 

Page size
Maximum row 
length

Maximum column 
length

2K (2048 bytes) 1964 1954

4K (4096 bytes) 4012 4002

8K (8192 bytes) 8108 7998

16K (16384 bytes) 16300 162290



CHAPTER 7    Data Storage

Performance & Tuning Guide 149

Note that these restrictions on lock scheme conversions occur only if there 
is data in the source table that goes beyond the limits of the target table. If 
this occurs, Adaptive Server raises an error message while transforming 
the row format from one locking scheme to the other. If the table is empty, 
no such data transformation is required, and the lock change operation 
succeeds. But, then, on a subsequent insert or update of the table, users 
might run into errors due to limitations on the column or row-size for the 
target schema of the altered table.

Organizing columns in DOL tables by size of variable-length columns

For DOL tables that use variable-length columns, arrange the columns so 
the longest columns are placed toward the end of the table definition. This 
allows you to create tables with much larger rows than if the large columns 
appear at the beginning of the table definition. For instance, in a 16K page 
server, the following table definition is acceptable:

create table t1 (

c1 int not null,

c2 varchar(1000) null,

c3 varchar(4000) null,

c4 varchar(9000) null) lock datarows

However, the following table definition typically is unacceptable for 
future inserts. The potential start offset for column c2 is greater than the 
8192-byte limit because of the proceeding 9000-byte c4 column:

create table t2 (

c1 int not null,

c4 varchar(9000) null,

c3 varchar(4000) null,

c2 varchar(1000) null) lock datarows

The table is created, but future inserts may fail.

Number of rows per data page
The number of rows allowed for a DOL data page is determined by:

• The page size.



Space overheads 

150  Adaptive Server Enterprise

• A 10 – byte overhead for the row ID, which specifies a row-
forwarding address.

Table 7-6 displays the maximum number of datarows that can fit on a DOL 
data page:

Table 7-6: Maximum number of data rows for a DOL data page

APL data pages can have a maximum of 256 rows. Because each page 
requires a one-byte row number specifier, large pages with short rows 
incur some unused space. 

For example, if Adaptive Server is configured with 8K logical pages and 
rows that are 25 bytes long, the page will have 1275 bytes of unused space, 
after accounting for the row-offset table, and the page header.

Maximum numbers 

Arguments for stored procedures

The maximum number of arguments for stored procedures is 2048. See the 
Transact - SQL User’s Guide for more information.

Retrieving data with enhanced limits

Adaptive Server version 12.5 and later can store data that has different 
limits than data stored in previous versions. Clients also must be able to 
handle the new limits the data can use. If you are using older versions of 
Open Client and Open Server, they cannot process the data if you:

• Upgrade to Adaptive Server version 12.5.

• Drop and re-create the tables with wide columns.

• Insert wide data.

See the Open Client section in this guide for more information.

Page Size Maximum number of rows

2K 166

4K 337

8K 678

16K 1361



CHAPTER 7    Data Storage

Performance & Tuning Guide 151

Heaps of data: tables without clustered indexes
If you create a table on Adaptive Server, but do not create a clustered 
index, the table is stored as a heap. The data rows are not stored in any 
particular order. This section describes how select, insert, delete, and 
update operations perform on heaps when there is no “useful” index to aid 
in retrieving data.

The phrase “no useful index” is important in describing the optimizer’s 
decision to perform a table scan. Sometimes, an index exists on the 
columns named in a where clause, but the optimizer determines that it 
would be more costly to use the index than to perform a table scan.

Other chapters in this book describe how the optimizer costs queries using 
indexes and how you can get more information about why the optimizer 
makes these choices.

Table scans are always used when you select all rows in a table. The only 
exception is when the query includes only columns that are keys in a 
nonclustered index.

For more information, see “Index covering” on page 208.

The following sections describe how Adaptive Server locates rows when 
a table has no useful index.

Lock schemes and differences between heaps
The data pages in an allpages-locked table are linked into a doubly-linked 
list of pages by pointers on each page. Pages in data-only-locked tables are 
not linked into a page chain.

In an allpages-locked table, each page stores a pointer to the next page in 
the chain and to the previous page in the chain. When new pages need to 
be inserted, the pointers on the two adjacent pages change to point to the 
new page. When Adaptive Server scans an allpages-locked table, it reads 
the pages in order, following these page pointers. 

Pages are also doubly-linked at each index level of allpages-locked tables, 
and the leaf level of indexes on data-only-locked tables. If an allpages-
locked table is partitioned, there is one page chain for each partition.



Heaps of data: tables without clustered indexes 

152  Adaptive Server Enterprise

Another difference between allpages-locked tables and data-only-locked 
tables is that data-only-locked tables use fixed row IDs. This means that 
row IDs (a combination of the page number and the row number on the 
page) do not change in a data-only-locked table during normal query 
processing.

Row IDs change only when one of the operations that require data-row 
copying is performed, for example, during reorg rebuild or while creating 
a clustered index.

For information on how fixed row IDs affect heap operations, see 
“Deleting from a data-only locked heap table” on page 155 and “Data-
only-locked heap tables” on page 156. 

Select operations on heaps
When you issue a select query on a heap, and there is no useful 
nonclustered index, Adaptive Server must scan every data page in the table 
to find every row that satisfies the conditions in the query. There may be 
one row, many rows, or no rows that match.

Allpages-locked heap tables

For allpages-locked tables, Adaptive Server reads the first column in 
sysindexes for the table, reads the first page into cache, and follows the 
next page pointers until it finds the last page of the table. 

Data-only locked heap tables

Since the pages of data-only-locked tables are not linked in a page chain, 
a select query on a heap table uses the table’s OAM and the allocation 
pages to locate all the rows in the table. The OAM page points to the 
allocation pages, which point to the extents and pages for the table.



CHAPTER 7    Data Storage

Performance & Tuning Guide 153

Inserting data into an allpages-locked heap table
When you insert data into an allpages-locked heap table, the data row is 
always added to the last page of the table. If there is no clustered index on 
a table, and the table is not partitioned, the sysindexes.root entry for the 
heap table stores a pointer to the last page of the heap to locate the page 
where the data needs to be inserted.

If the last page is full, a new page is allocated in the current extent and 
linked onto the chain. If the extent is full, Adaptive Server looks for empty 
pages on other extents being used by the table. If no pages are available, a 
new extent is allocated to the table.

Conflicts during heap inserts

One of the severe performance limits on heap tables that use allpages 
locking is that the page must be locked when the row is added, and that 
lock is held until the transaction completes. If many users are trying to 
insert into an allpages-locked heap table at the same time, each insert must 
wait for the preceding transaction to complete.

This problem of last-page conflicts on heaps is true for:

• Single row inserts using insert

• Multiple row inserts using select into or insert...select, or several insert 
statements in a batch

• Bulk copy into the table

Some workarounds for last-page conflicts on heaps include:

• Switching to datapages or datarows locking

• Creating a clustered index that directs the inserts to different pages

• Partitioning the table, which creates multiple insert points for the 
table, giving you multiple “last pages” in an allpages-locked table

Other guidelines that apply to all transactions where there may be lock 
conflicts include:

• Keeping transactions short

• Avoiding network activity and user interaction whenever possible, 
once a transaction acquires locks



Heaps of data: tables without clustered indexes 

154  Adaptive Server Enterprise

Inserting data into a data-only-locked heap table
When users insert data into a data-only-locked heap table, Adaptive Server 
tracks page numbers where the inserts have recently occurred, and keeps 
the page number as a hint for future tasks that need space. Subsequent 
inserts to the table are directed to one of these pages. If the page is full, 
Adaptive Server allocates a new page and replaces the old hint with the 
new page number.

Blocking while many users are simultaneously inserting data is much less 
likely to occur during inserts to data-only-locked heap tables. When 
blocking occurs, Adaptive Server allocates a small number of empty pages 
and directs new inserts to those pages using these newly allocated pages 
as hints.

For datarows-locked tables, blocking occurs only while the actual changes 
to the data page are being written; although row locks are held for the 
duration of the transaction, other rows can be inserted on the page. The 
row-level locks allow multiple transaction to hold locks on the page.

There may be slight blocking on data-only-locked tables, because 
Adaptive Server allows a small amount of blocking after many pages have 
just been allocated, so that the newly allocated pages are filled before 
additional pages are allocated.

If conflicts occur during heap inserts

Conflicts during inserts to heap tables are greatly reduced for data-only-
locked tables, but can still take place. If these conflicts slow inserts, some 
workarounds can be used, including:

• Switching to datarows locking, if the table uses datapages locking

• Using a clustered index to spread data inserts

• Partitioning the table, which provides additional hints and allows new 
pages to be allocated on each partition when blocking takes place

Deleting data from a heap table
When you delete rows from a heap table, and there is no useful index, 
Adaptive Server scans the data rows in the table to find the rows to delete. 
It has no way of knowing how many rows match the conditions in the 
query without examining every row.



CHAPTER 7    Data Storage

Performance & Tuning Guide 155

Deleting from an allpages-locked heap table

When a data row is deleted from a page in an allpages-locked table, the 
rows that follow it on the page move up so that the data on the page 
remains contiguous. 

Deleting from a data-only locked heap table

When you delete rows from a data-only-locked heap table, a table scan is 
required if there is no useful index. The OAM and allocation pages are 
used to locate the pages. 

The space on the page is not recovered immediately. Rows in data-only-
locked tables must maintain fixed row IDs, and need to be reinserted in the 
same place if the transaction is rolled back.

After a delete transaction completes, one of the following processes shifts 
rows on the page to make the space usage contiguous:

• The housekeeper process

• An insert that needs to find space on the page

• The reorg reclaim_space command

Deleting the last row on a page

If you delete the last row on a page, the page is deallocated. If other pages 
on the extent are still in use by the table, the page can be used again by the 
table when a page is needed.

If all other pages on the extent are empty, the entire extent is deallocated. 
It can be allocated to other objects in the database. The first data page for 
a table or an index is never deallocated.

Updating data on a heap table
Like other operations on heaps, an update that has no useful index on the 
columns in the where clause performs a table scan to locate the rows that 
need to be changed.

Allpages-locked heap tables

Updates on allpages-locked heap tables can be performed in several ways:



Heaps of data: tables without clustered indexes 

156  Adaptive Server Enterprise

• If the length of the row does not change, the updated row replaces the 
existing row, and no data moves on the page.

• If the length of the row changes, and there is enough free space on the 
page, the row remains in the same place on the page, but other rows 
move up or down to keep the rows contiguous on the page.

The row offset pointers at the end of the page are adjusted to point to 
the changed row locations.

• If the row does not fit on the page, the row is deleted from its current 
page, and the “new” row is inserted on the last page of the table.

This type of update can cause a conflict on the last page of the heap, 
just as inserts do. If there are any nonclustered indexes on the table, 
all index references to the row need to be updated.

Data-only-locked heap tables

One of the requirements for data-only-locked tables is that the row ID of 
a data row never changes (except during intentional rebuilds of the table). 
Therefore, updates to data-only-locked tables can be performed by the first 
two methods described above, as long as the row fits on the page.

But when a row in a data-only-locked table is updated so that it no longer 
fits on the page, a process called row forwarding performs the following 
steps:

• The row is inserted onto a different page, and 

• A pointer to the row ID on the new page is stored in the original 
location for the row.

Indexes do not need to be modified when rows are forwarded. All indexes 
still point to the original row ID.

If the row needs to be forwarded a second time, the original location is 
updated to point to the new page—the forwarded row is never more than 
one hop away from its original location.

Row forwarding increases concurrency during update operations because 
indexes do not have to be updated. It can slow data retrieval, however, 
because a task needs to read the page at the original location and then read 
the page where the forwarded data is stored. 

Forwarded rows can be cleared from a table using the reorg command.



CHAPTER 7    Data Storage

Performance & Tuning Guide 157

For more information on updates, see “How update operations are 
performed” on page 508.

How Adaptive Server performs I/O for heap operations
When a query needs a data page, Adaptive Server first checks to see if the 
page is available in a data cache. If the page is not available, then it must 
be read from disk. A newly installed Adaptive Server has a single data 
cache configured for 2K I/O. Each I/O operation reads or writes a single 
Adaptive Server data page. A System Administrator can:

• Configure multiple caches

• Bind tables, indexes, or text chains to the caches

• Configure data caches to perform I/O in page-sized multiples, up to 
eight data pages (one extent)

To use these caches most efficiently, and reduce I/O operations, the 
Adaptive Server optimizer can:

• Choose to prefetch up to eight data pages at a time

• Choose between different caching strategies

Sequential prefetch, or large I/O
Adaptive Server‘s data caches can be configured by a System 
Administrator to allow large I/Os. When a cache is configured to allow 
large I/Os, Adaptive Server can choose to prefetch data pages.

Caches have buffer pools that depend on the logical page sizes, allowing 
Adaptive Server to read up to an entire extent (eight data pages) in a single 
I/O operation.

Since much of the time required to perform I/O operations is taken up in 
seeking and positioning, reading eight pages in a 16K I/O performs nearly 
eight times as fast as a single-page, 2K I/O, so queries that table scan 
should perform much better using large I/O.



Caches and object bindings 

158  Adaptive Server Enterprise

When several pages are read into cache with a single I/O, they are treated 
as a unit: they age in cache together, and if any page in the unit has been 
changed while the buffer was in cache, all pages are written to disk as a 
unit.

For more information on configuring memory caches for large I/O, see 
Chapter 15, “Memory Use and Performance.”

Note  Reference to Large I/Os are on a 2K logical page size server. If you 
have an 8K page size server, the basic unit for the I/O is 8K. If you have a 
16K page size server, the basic unit for the I/O is 16K.

Caches and object bindings
A table can be bound to a specific cache. If a table is not bound to a specific 
cache, but its database is bound to a cache, all of its I/O takes place in that 
cache.

Otherwise, its I/O takes place in the default data cache. The default data 
cache can be configured for large I/O. If your applications include some 
heap tables, they will probably perform best when they use a cache 
configured for 16K I/O. 

Heaps, I/O, and cache strategies
Each Adaptive Server data cache is managed as an MRU/LRU (most 
recently used/least recently used) chain of buffers. As buffers age in the 
cache, they move from the MRU end toward the LRU end.

When changed pages in the cache pass a point called the wash marker, on 
the MRU/LRU chain, Adaptive Server initiates an asynchronous write on 
any pages that changed while they were in cache. This helps ensure that 
when the pages reach the LRU end of the cache, they are clean and can be 
reused.



CHAPTER 7    Data Storage

Performance & Tuning Guide 159

Overview of cache strategies

Adaptive Server has two major strategies for using its data cache 
efficiently: 

• LRU replacement strategy, usually used for pages that a query needs 
to access more than once or pages that must be updated

• MRU, or fetch-and-discard replacement strategy, used for pages that 
a query needs to read only once

LRU replacement strategy

LRU replacement strategy reads the data pages sequentially into the cache, 
replacing a “least recently used” buffer. The buffer is placed on the MRU 
end of the data buffer chain. It moves toward the LRU end as more pages 
are read into the cache.

Figure 7-2: LRU strategy takes a clean page from the LRU end of 
the cache

When LRU strategy is used

Adaptive Server uses LRU strategy for:

• Statements that modify data on pages

• Pages that are needed more than once by a single query

• OAM pages

• Most index pages

• Any query where LRU strategy is specified

Clean buffer

To disk

MRU

Wash marker

Clean page Dirty page

LRU



Caches and object bindings 

160  Adaptive Server Enterprise

MRU replacement strategy

MRU (fetch-and-discard) replacement strategy is used for table scanning 
on heaps. This strategy places pages into the cache just before the wash 
marker, as shown in Figure 7-3. 

Figure 7-3: MRU strategy places pages just before the wash marker

Fetch-and-discard is most often used for queries where a page is needed 
only once by the query. This includes:

• Most table scans in queries that do not use joins

• One or more tables in a join query

Placing the pages needed only once at the wash marker means that they do 
not push other pages out of the cache.

The fetch-and-discard strategy is used only on pages actually read from 
the disk for the query. If a page is already in cache due to earlier activity 
on the table, the page is placed at the MRU end of the cache.

Figure 7-4: Finding a needed page in cache

Select operations and caching
Under most conditions, single-table select operations on a heap use:

Clean page

MRU LRU

Wash marker

MRU LRUWash marker



CHAPTER 7    Data Storage

Performance & Tuning Guide 161

• The largest I/O available to the table and

• Fetch-and-discard (MRU) replacement strategy

For heaps, select operations performing large I/O can be very effective. 
Adaptive Server can read sequentially through all the extents in a table. 

Unless the heap is being scanned as the inner table of a nested-loop join, 
the data pages are needed only once for the query, so MRU replacement 
strategy reads and discards the pages from cache.

Note  Large I/O on allpages-locked heaps is effective only when the page 
chains are not fragmented.

See “Maintaining heaps” on page 164 for information on maintaining 
heaps.

Data modification and caching
Adaptive Server tries to minimize disk writes by keeping changed pages 
in cache. Many users can make changes to a data page while it resides in 
the cache. The changes are logged in the transaction log, but the changed 
data and index pages are not written to disk immediately.

Caching and inserts on heaps

For inserts to heap tables, the insert takes place:

• On the last page of a table that uses allpages locking 

• On a page that was recently used for a successful insert, on a table that 
uses data-only-locking

If an insert is the first row on a new page for the table, a clean data buffer 
is allocated to store the data page, as shown in Figure 7-5. This page starts 
to move down the MRU/LRU chain in the data cache as other processes 
read pages into memory.

If a second insert to the page takes place while the page is still in memory, 
the page is located in cache, and moves back to the top of the MRU/LRU 
chain.



Caches and object bindings 

162  Adaptive Server Enterprise

Figure 7-5: Inserts to a heap page in the data cache

The changed data page remains in cache until it reaches the LRU end of 
the chain of pages. The page may be changed or referenced many times 
while it is in the cache, but it is written to disk only when one of the 
following takes place:

• The page moves past the wash marker.

• A checkpoint or the housekeeper task writes it to disk.

“Data cache” on page 332 explains more about these processes.

Caching, update and delete operations on heaps

When you update or delete a row from a heap table, the effects on the data 
cache are similar to the process for inserts. If a page is already in the cache, 
the row is changed and then the whole buffer (a single page or more, 
depending on the I/O size) is placed on the MRU end of the chain.

If the page is not in cache, it is read from disk into cache and examined to 
determine whether the rows on the page match query clauses. Its 
placement on the MRU/LRU chain depends on whether data on the page 
needs to be changed:

• If data on the page needs to be changed, the buffer is placed on the 
MRU end. It remains in cache, where it can be updated repeatedly or 
read by other users before being flushed to disk.

MRU LRU

Clean page

First insert on a page takes a clean 
page from the LRU and puts it on the 

Second insert on a page finds the page in 
cache, and puts in back at the MRU

Wash marker



CHAPTER 7    Data Storage

Performance & Tuning Guide 163

• If data on the page does not need to be changed, the buffer is placed 
just before the wash marker in the cache.

Asynchronous prefetch and I/O on heap tables
Asynchronous prefetch helps speed the performance of queries that 
perform table scans. Any task that needs to perform a physical I/O 
relinquishes the server’s engine (CPU) while it waits for the I/O to 
complete.

If a table scan needs to read 1000 pages, and none of those pages are in 
cache, performing 2K I/O with no asynchronous prefetch means that the 
task would make 1000 loops, executing on the engine, and then sleeping 
to wait for I/O. Using 16K I/O would required only 125 such loops. 

Asynchronous prefetch can request all of the pages on an allocation unit 
that belong to a table when the task fetches the first page from the 
allocation unit. If the 1000-page table resides on just 4 allocation units, the 
task requires many fewer cycles through the execution and sleep loops.

Actual performance depends on cache size and other activity in the data 
cache.

For more information on asynchronous prefetching, see Chapter 27, 
“Tuning Asynchronous Prefetch.”

Type of I/O Loops Steps in each loop

2K I/O
no prefetch

1000 Request a page.
Sleep until the page has been read from disk.
Wait for a turn to run on the Adaptive Server engine 
(CPU).
Read the rows on the page.

16K I/O
no prefetch

125 Request an extent.
Sleep until the extent has been read from disk.
Wait for a turn to run on the Adaptive Server engine 
(CPU).
Read the rows on the 8 pages.

Prefetch 4 Request all the pages in an allocation unit.
Sleep until the first page has been read from disk.
Wait for a turn to run on the Adaptive Server engine 
(CPU).
Read all the rows on all the pages in cache.



Heaps: pros and cons 

164  Adaptive Server Enterprise

Heaps: pros and cons
Sequential disk access is efficient, especially with large I/O and 
asynchronous prefetch. However, the entire table must always be scanned 
to find any value, having a potentially large impact in the data cache and 
other queries.

Batch inserts can do efficient sequential I/O. However, there is a potential 
bottleneck on the last page if multiple processes try to insert data 
concurrently.

Heaps work well for small tables and tables where changes are infrequent, 
but they do not work well for most large tables for queries that need to 
return a subset of the rows.

Heaps can be useful for tables that: 

• Are fairly small and use only a few pages

• Do not require direct access to a single, random row

• Do not require ordering of result sets

Partitioned heaps are useful for tables with frequent, large volumes of 
batch inserts where the overhead of dropping and creating clustered 
indexes is unacceptable. With this exception, there are very few 
justifications for heap tables. Most applications perform better with 
clustered indexes on the tables. 

Maintaining heaps
Over time, I/O on heaps can become inefficient as storage becomes 
fragmented. Deletes and updates can result in:

• Many partially filled pages

• Inefficient large I/O, since extents may contain many empty pages

• Forwarded rows in data-only-locked tables



CHAPTER 7    Data Storage

Performance & Tuning Guide 165

Methods 
After deletes and updates have left empty space on pages or have left 
empty pages on extents, use one of the following techniques to reclaim 
space in heap tables:

• Use the reorg rebuild command (data-only-locked tables only).

• Create and then drop a clustered index.

• Use bcp (the bulk copy utility) and truncate table.

Using reorg rebuild to reclaim space

reorg rebuild copies all data rows to new pages and rebuilds any 
nonclustered indexes on the heap table. reorg rebuild can be used only on 
data-only-locked tables.

Reclaiming space by creating a clustered index

You can create and drop a clustered index on a heap table to reclaim space 
if updates and deletes have created many partially full pages in the table. 
To create a clustered index, you must have free space in the database of at 
least 120% of the table size.

See “Determining the space available for maintenance activities” on page 
404 for more information.

Reclaiming space using bcp

To reclaim space with bcp:

1 Copy the table out to a file using bcp.

2 Truncate the table with the truncate table command.

3 Copy the table back in again with bcp.

See “Steps for partitioning tables” on page 100 for procedures for working 
with partitioned tables.

For more information on bcp, see the Utility Guide manual for your 
platform.



Transaction log: a special heap table 

166  Adaptive Server Enterprise

Transaction log: a special heap table
Adaptive Server’s transaction log is a special heap table that stores 
information about data modifications in the database. The transaction log 
is always a heap table; each new transaction record is appended to the end 
of the log. The transaction log does not have any indexes.

Other chapters in this book describe ways to enhance the performance of 
the transaction log. The most important technique is to use the log on 
clause to create database to place your transaction log on a separate device 
from your data.

See the System Administration Guide for more information on creating 
databases.

Transaction log writes occur frequently. Do not let them contend with 
other I/O in the database, which usually happens at scattered locations on 
the data pages.

Place logs on separate physical devices from the data and index pages. 
Since the log is sequential, the disk head on the log device rarely needs to 
perform seeks, and you can maintain a high I/O rate to the log.

Besides recovery, these kinds of operations require reading the transaction 
log:

• Any data modification that is performed in deferred mode. 

• Triggers that contain references to the inserted and deleted tables. 
These tables are built from transaction log records when the tables are 
queried.

• Transaction rollbacks.

In most cases, the transaction log pages for these kinds of queries are still 
available in the data cache when Adaptive Server needs to read them, and 
disk I/O is not required. 



Performance & Tuning Guide 167

C H A P T E R  8 Indexing for Performance

This chapter introduces the basic query analysis tools that can help you 
choose appropriate indexes and discusses index selection criteria for point 
queries, range queries, and joins. 

How indexes affect performance
Carefully considered indexes, built on top of a good database design, are 
the foundation of a high-performance Adaptive Server installation. 
However, adding indexes without proper analysis can reduce the overall 
performance of your system. Insert, update, and delete operations can take 
longer when a large number of indexes need to be updated.

Analyze your application workload and create indexes as necessary to 
improve the performance of the most critical processes. 

The Adaptive Server query optimizer uses a probabilistic costing model. 
It analyzes the costs of possible query plans and chooses the plan that has 
the lowest estimated cost. Since much of the cost of executing a query 
consists of disk I/O, creating the correct indexes for your applications 
means that the optimizer can use indexes to:

• Avoid table scans when accessing data

Topic Page
How indexes affect performance 167

Symptoms of poor indexing 168

Detecting indexing problems 168

Fixing corrupted indexes 171

Index limits and requirements 174

Choosing indexes 174

Techniques for choosing indexes 183

Index and statistics maintenance 186

Additional indexing tips 187



Detecting indexing problems 

168  Adaptive Server Enterprise

• Target specific data pages that contain specific values in a point query

• Establish upper and lower bounds for reading data in a range query

• Avoid data page access completely, when an index covers a query 

• Use ordered data to avoid sorts or to favor merge joins over nested-
loop joins

In addition, you can create indexes to enforce the uniqueness of data and 
to randomize the storage location of inserts.

Detecting indexing problems
Some of the major indicationsof insufficient or incorrect indexing include:

• A select statement takes too long.

• A join between two or more tables takes an extremely long time.

• Select operations perform well, but data modification processes 
perform poorly.

• Point queries (for example, “where colvalue = 3”) perform well, but 
range queries (for example, “where colvalue > 3 and colvalue < 30”) 
perform poorly.

These underlying problems are described in the following sections.

Symptoms of poor indexing
A primary goal of improving performance with indexes is avoiding table 
scans. In a table scan, every page of the table must be read from disk.

A query searching for a unique value in a table that has 600 data pages 
requires 600 physical and logical reads. If an index points to the data value, 
the same query can be satisfied with 2 or 3 reads, a performance 
improvement of 200 to 300 percent.

On a system with a 12-ms. disk, this is a difference of several seconds 
compared to less than a second. Heavy disk I/O by a single query has a 
negative impact on overall throughput.



CHAPTER 8    Indexing for Performance

Performance & Tuning Guide 169

Lack of indexes is causing table scans

If select operations and joins take too long, it probably indicates that either 
an appropriate index does not exist or, it exists, but is not being used by the 
optimizer.

showplan output reports whether the table is being accessed via a table 
scan or index. If you think that an index should be used, but showplan 
reports a table scan, dbcc traceon(302) output can help you determine the 
reason. It displays the costing computations for all optimizing query 
clauses.

If there is no clause is included in dbcc traceon(302) output, there may be 
problems with the way the clause is written. If a clause that you think 
should limit the scan is included in dbcc traceon(302) output, look 
carefully at its costing, and that of the chosen plan reported with dbcc 
traceon(310).

Index is not selective enough

An index is selective if it helps the optimizer find a particular row or a set 
of rows. An index on a unique identifier such as a Social Security Number 
is highly selective, since it lets the optimizer pinpoint a single row. An 
index on a nonunique entry such as sex (M, F) is not very selective, and 
the optimizer would use such an index only in very special cases.

Index does not support range queries

Generally, clustered indexes and covering indexes provide good 
performance for range queries and for search arguments (SARG) that 
match many rows. Range queries that reference the keys of noncovering 
indexes use the index for ranges that return a limited number of rows.

As the number of rows the query returns increases, however, using a 
nonclustered index or a clustered index on a data-only-locked table can 
cost more than a table scan.

Too many indexes slow data modification

If data modification performance is poor, you may have too many 
indexes.While indexes favor select operations, they slow down data 
modifications.



Detecting indexing problems 

170  Adaptive Server Enterprise

Every insert or delete operation affects the leaf level, (and sometimes 
higher levels) of a clustered index on a data-only-locked table, and each 
nonclustered index, for any locking scheme.

Updates to clustered index keys on allpages-locked tables can move the 
rows to different pages, requiring an update of every nonclustered index. 
Analyze the requirements for each index and try to eliminate those that are 
unnecessary or rarely used.

Index entries are too large

Try to keep index entries as small as possible. You can create indexes with 
keys up to 600 bytes, but those indexes can store very few rows per index 
page, which increases the amount of disk I/O needed during queries. The 
index has more levels, and each level has more pages.

The following example uses values reported by sp_estspace to 
demonstrate how the number of index pages and leaf levels required 
increases with key size. It creates nonclustered indexes using 10-, 20, and 
40-character keys.

create table demotable (c10 char(10), 
c20 char(20), 
c40 char(40))

create index t10 on demotable(c10)
create index t20 on demotable(c20)
create index t40 on demotable(c40)
sp_estspace demotable, 500000

Table 8-1 shows the results. 

Table 8-1: Effects of key size on index size and levels

The output shows that the indexes for the 10-column and 20-column keys 
each have three levels, while the 40-column key requires a fourth level.

The number of pages required is more than 50 percent higher at each level.

Exception for wide data rows and wide index rows

Indexes with wide rows may be useful when:

Index, key size Leaf-level pages Index levels

t10, 10 bytes 4311 3

t20, 20 bytes 6946 3

t40, 40 bytes 12501 4



CHAPTER 8    Indexing for Performance

Performance & Tuning Guide 171

• The table has very wide rows, resulting in very few rows per data 
page.

• The set of queries run on the table provides logical choices for a 
covering index.

• Queries return a sufficiently large number of rows.

For example, if a table has very long rows, and only one row per page, a 
query that needs to return 100 rows needs to access 100 data pages. An 
index that covers this query, even with long index rows, can improve 
performance.

For example, if the index rows were 240 bytes, the index would store 8 
rows per page, and the query would need to access only 12 index pages.

Fixing corrupted indexes
If the index on one of your system tables has been corrupted, you can use 
the sp_fixindex system procedure to repair the index. For syntax 
information, see the entry for sp_fixindex in “System Procedures” in the 
Adaptive Server Reference Manual.

Repairing the system table index
Repairing a corrupted system table index requires the following steps:

❖ Repairing the system table index with sp_fixindex

1 Get the object_name, object_ID, and index_ID of the corrupted index. 
If you only have a page number and you need to find the object_name, 
see the Adaptive Server Troubleshooting and Error Messages Guide 
for instructions.

2 If the corrupted index is on a system table in the master database, put 
Adaptive Server in single-user mode. See the Adaptive Server 
Troubleshooting and Error Messages Guide for instructions.

3 If the corrupted index is on a system table in a user database, put the 
database in single-user mode and reconfigure to allow updates to 
system tables:

1> use master



Fixing corrupted indexes 

172  Adaptive Server Enterprise

2> go
1> sp_dboption database_name, "single user", true
2> go
1> sp_configure "allow updates", 1
2> go

4 Issue the sp_fixindex command:

1> use database_name
2> go

1> checkpoint
2> go

1> sp_fixindex database_name, object_name, 
index_ID
2> go

Note  You must possess sa_role permissions to run sp_fixindex.

5 Run dbcc checktable to verify that the corrupted index is now fixed.

6 Disallow updates to system tables:

1> use master
2> go

1> sp_configure "allow updates", 0
2> go

7 Turn off single-user mode:

1> sp_dboption database_name, "single user", 
false
2> go

1> use database_name
2> go

1> checkpoint
2> go

Repairing a nonclustered index

Running sp_fixindex to repair a nonclustered index on sysobjects requires 
several additional steps.



CHAPTER 8    Indexing for Performance

Performance & Tuning Guide 173

❖ Repairing a nonclustered index on sysobjects

1 Perform steps 1-3, as described in “Repairing the system table index 
with sp_fixindex,” above.

2 Issue the following Transact-SQL query:

1> use database_name
2> go

1> checkpoint
2> go

1> select sysstat from sysobjects
2> where id = 1
3> go

3 Save the original sysstat value.

4 Change the sysstat column to the value required by sp_fixindex:

1> update sysobjects
2> set sysstat = sysstat | 4096
3> where id = 1
4> go

5 Run sp_fixindex:

1> sp_fixindex database_name, sysobjects, 2
2> go

6 Restore the original sysstat value:

1> update sysobjects
2> set sysstat = sysstat_ORIGINAL
3> where id = object_ID
4> go

7 Run dbcc checktable to verify that the corrupted index is now fixed.

8 Disallow updates to system tables:

1> sp_configure "allow updates", 0
2> go

9 Turn off single-user mode:

1> sp_dboption database_name, "single user", 
false
2> go

1> use database_name
2> go



Index limits and requirements 

174  Adaptive Server Enterprise

1> checkpoint
2> go

Index limits and requirements
The following limits apply to indexes in Adaptive Server:

• You can create only one clustered index per table, since the data for a 
clustered index is ordered by index key.

• You can create a maximum of 249 nonclustered indexes per table.

• A key can be made up of as many as 31 columns. The maximum 
number of bytes per index key is 600. 

• When you create a clustered index, Adaptive Server requires empty 
free space to copy the rows in the table and allocate space for the 
clustered index pages. It also requires space to re-create any 
nonclustered indexes on the table.

The amount of space required can vary, depending on how full the 
table’s pages are when you begin and what space management 
properties are applied to the table and index pages.

See “Determining the space available for maintenance activities” on 
page 404 for more information.

• The referential integrity constraints unique and primary key create 
unique indexes to enforce their restrictions on the keys. By default, 
unique constraints create nonclustered indexes and primary key 
constraints create clustered indexes. 

Choosing indexes
When you are working with index selection you may want to ask these 
questions:

• What indexes are associated currently with a given table?

• What are the most important processes that make use of the table?



CHAPTER 8    Indexing for Performance

Performance & Tuning Guide 175

• What is the ratio of select operations to data modifications performed 
on the table?

• Has a clustered index been created for the table?

• Can the clustered index be replaced by a nonclustered index?

• Do any of the indexes cover one or more of the critical queries?

• Is a composite index required to enforce the uniqueness of a 
compound primary key?

• What indexes can be defined as unique?

• What are the major sorting requirements?

• Do some queries use descending ordering of result sets?

• Do the indexes support joins and referential integrity checks?

• Does indexing affect update types (direct versus deferred)?

• What indexes are needed for cursor positioning?

• If dirty reads are required, are there unique indexes to support the 
scan?

• Should IDENTITY columns be added to tables and indexes to 
generate unique indexes? Unique indexes are required for updatable 
cursors and dirty reads.

When deciding how many indexes to use, consider:

• Space constraints

• Access paths to table

• Percentage of data modifications versus select operations

• Performance requirements of reports versus OLTP

• Performance impacts of index changes

• How often you can use update statistics

Index keys and logical keys
Index keys need to be differentiated from logical keys. Logical keys are 
part of the database design, defining the relationships between tables: 
primary keys, foreign keys, and common keys.



Choosing indexes 

176  Adaptive Server Enterprise

When you optimize your queries by creating indexes, the logical keys may 
or may not be used as the physical keys for creating indexes. You can 
create indexes on columns that are not logical keys, and you may have 
logical keys that are not used as index keys.

Choose index keys for performance reasons. Create indexes on columns 
that support the joins, search arguments, and ordering requirements in 
queries.

A common error is to create the clustered index for a table on the primary 
key, even though it is never used for range queries or ordering result sets.

Guidelines for clustered indexes
These are general guidelines for clustered indexes:

• Most allpages-locked tables should have clustered indexes or use 
partitions to reduce contention on the last page of heaps.

In a high-transaction environment, the locking on the last page 
severely limits throughput. 

• If your environment requires a lot of inserts, do not place the clustered 
index key on a steadily increasing value such as an IDENTITY 
column.

Choose a key that places inserts on random pages to minimize lock 
contention while remaining useful in many queries. Often, the 
primary key does not meet this condition.

This problem is less severe on data-only-locked tables, but is a major 
source of lock contention on allpages-locked tables.

• Clustered indexes provide very good performance when the key 
matches the search argument in range queries, such as:

where colvalue >= 5 and colvalue < 10

In allpages-locked tables, rows are maintained in key order and pages 
are linked in order, providing very fast performance for queries using 
a clustered index.

In data-only-locked tables, rows are in key order after the index is 
created, but the clustering can decline over time.

• Other good choices for clustered index keys are columns used in order 
by clauses and in joins.



CHAPTER 8    Indexing for Performance

Performance & Tuning Guide 177

• If possible, do not include frequently updated columns as keys in 
clustered indexes on allpages-locked tables.

When the keys are updated, the rows must be moved from the current 
location to a new page. Also, if the index is clustered, but not unique, 
updates are done in deferred mode. 

Choosing clustered indexes
Choose indexes based on the kinds of where clauses or joins you perform. 
Choices for clustered indexes are:

• The primary key, if it is used for where clauses and if it randomizes 
inserts

• Columns that are accessed by range, such as:

col1 between 100 and 200 
col12 > 62 and < 70

• Columns used by order by

• Columns that are not frequently changed

• Columns used in joins

If there are several possible choices, choose the most commonly needed 
physical order as a first choice.

As a second choice, look for range queries. During performance testing, 
check for “hot spots” due to lock contention.

Candidates for nonclustered indexes
When choosing columns for nonclustered indexes, consider all the uses 
that were not satisfied by your clustered index choice. In addition, look at 
columns that can provide performance gains through index covering. 

On data-only-locked tables, clustered indexes can perform index covering, 
since they have a leaf level above the data level.

On allpages-locked tables, noncovered range queries work well for 
clustered indexes, but may or may not be supported by nonclustered 
indexes, depending on the size of the range.



Choosing indexes 

178  Adaptive Server Enterprise

Consider using composite indexes to cover critical queries and to support 
less frequent queries:

• The most critical queries should be able to perform point queries and 
matching scans.

• Other queries should be able to perform nonmatching scans using the 
index, which avoids table scans.

Other indexing guidelines
Here are some other considerations for choosing indexes:

• If an index key is unique, define it as unique so the optimizer knows 
immediately that only one row matches a search argument or a join on 
the key.

• If your database design uses referential integrity (the references 
keyword or the foreign key...references keywords in the create table 
statement), the referenced columns must have a unique index, or the 
attempt to create the referential integrity constraint fails.

However, Adaptive Server does not automatically create an index on 
the referencing column. If your application updates primary keys or 
deletes rows from primary key tables, you may want to create an 
index on the referencing column so that these lookups do not perform 
a table scan.

• If your applications use cursors, see “Index use and requirements for 
cursors” on page 675.

• If you are creating an index on a table where there will be a lot of 
insert activity, use fillfactor to temporarily minimize page splits and 
improve concurrency and minimize deadlocking.

• If you are creating an index on a read-only table, use a fillfactor of 100 
to make the table or index as compact as possible.

• Keep the size of the key as small as possible. Your index trees remain 
flatter, accelerating tree traversals.

• Use small datatypes whenever it fits your design.

• Numerics compare slightly faster than strings internally. 



CHAPTER 8    Indexing for Performance

Performance & Tuning Guide 179

• Variable-length character and binary types require more row 
overhead than fixed-length types, so if there is little difference 
between the average length of a column and the defined length, 
use fixed length. Character and binary types that accept null 
values are variable-length by definition. 

• Whenever possible, use fixed-length, non-null types for short 
columns that will be used as index keys.

• Be sure that the datatypes of the join columns in different tables are 
compatible. If Adaptive Server has to convert a datatype on one side 
of a join, it may not use an index for that table.

See“Datatype mismatches and query optimization” on page 445 for 
more information.

Choosing nonclustered indexes
When you consider adding nonclustered indexes, you must weigh the 
improvement in retrieval time against the increase in data modification 
time. In addition, you need to consider these questions:

• How much space will the indexes use?

• How volatile is the candidate column?

• How selective are the index keys? Would a scan be better?

• Are there a lot of duplicate values? 

Because of data modification overhead, add nonclustered indexes only 
when your testing shows that they are helpful.

Performance price for data modification

Each nonclustered index needs to be updated, for all locking schemes:

• For each insert into the table

• For each delete from the table

An update to the table that changes part of an index’s key requires updating 
just that index.

For tables that use allpages locking, all indexes need to be updated:



Choosing indexes 

180  Adaptive Server Enterprise

• For any update that changes the location of a row by updating a 
clustered index key so that the row moves to another page

• For every row affected by a data page split

For allpages-locked tables, exclusive locks are held on affected index 
pages for the duration of the transaction, increasing lock contention as well 
as processing overhead.

Some applications experience unacceptable performance impacts with 
only three or four indexes on tables that experience heavy data 
modification. Other applications can perform well with many more tables.

Choosing composite indexes
If your analysis shows that more than one column is a good candidate for 
a clustered index key, you may be able to provide clustered-like access 
with a composite index that covers a particular query or set of queries. 
These include:

• Range queries.

• Vector (grouped) aggregates, if both the grouped and grouping 
columns are included. Any search arguments must also be included in 
the index.

• Queries that return a high number of duplicates.

• Queries that include order by.

• Queries that table scan, but use a small subset of the columns on the 
table.

Tables that are read-only or read-mostly can be heavily indexed, as long as 
your database has enough space available. If there is little update activity 
and high select activity, you should provide indexes for all of your frequent 
queries. Be sure to test the performance benefits of index covering.

Key order and performance in composite indexes
Covered queries can provide excellent response time for specific queries 
when the leading columns are used. 

With the composite nonclustered index on au_lname, au_fname, au_id, this 
query runs very quickly:



CHAPTER 8    Indexing for Performance

Performance & Tuning Guide 181

select au_id
    from authors
where au_fname = "Eliot" and au_lname = "Wilk"

This covered point query needs to read only the upper levels of the index 
and a single page in the leaf-level row in the nonclustered index of a 5000-
row table.

This similar-looking query (using the same index) does not perform quite 
as well. This query is still covered, but searches on au_id:

select au_fname, au_lname 
    from authors
where au_id = "A1714224678" 

Since this query does not include the leading column of the index, it has to 
scan the entire leaf level of the index, about 95 reads. 

Adding a column to the select list in the query above, which may seem like 
a minor change, makes the performance even worse:

select au_fname, au_lname, phone
    from authors
where au_id = "A1714224678" 

This query performs a table scan, reading 222 pages. In this case, the 
performance is noticeably worse. For any search argument that is not the 
leading column, Adaptive Server has only two possible access methods: a 
table scan, or a covered index scan.

It does not scan the leaf level of the index for a non-leading search 
argument and then access the data pages. A composite index can be used 
only when it covers the query or when the first column appears in the 
where clause.

For a query that includes the leading column of the composite index, 
adding a column that is not included in the index adds only a single data 
page read. This query must read the data page to find the phone number:

select au_id, phone
    from authors
where au_fname = "Eliot" and au_lname = "Wilk"

Table 8-2 shows the performance characteristics of different where clauses 
with a nonclustered index on au_lname, au_fname, au_id and no other 
indexes on the table. 



Choosing indexes 

182  Adaptive Server Enterprise

Table 8-2: Composite nonclustered index ordering and 
performance

Choose the ordering of the composite index so that most queries form a 
prefix subset.

Advantages and disadvantages of composite indexes
Composite indexes have these advantages:

• A composite index provides opportunities for index covering.

• If queries provide search arguments on each of the keys, the 
composite index requires fewer I/Os than the same query using an 
index on any single attribute.

• A composite index is a good way to enforce the uniqueness of 
multiple attributes.

Good choices for composite indexes are:

• Lookup tables

• Columns that are frequently accessed together

• Columns used for vector aggregates

• Columns that make a frequently used subset from a table with very 
wide rows

The disadvantages of composite indexes are:

• Composite indexes tend to have large entries. This means fewer 
index entries per index page and more index pages to read. 

• An update to any attribute of a composite index causes the index to be 
modified. The columns you choose should not be those that are 
updated often.

Columns in the where clause 
Performance with the indexed 
columns in the select list

Performance with other 
columns in the select list

au_lname 

or au_lname, au_fname

or au_lname, au_fname, au_id

Good; index used to descend tree; data 
level is not accessed

Good; index used to descend tree; 
data is accessed (one more page 
read per row)

au_fname

or au_id

or au_fname, au_id

Moderate; index is scanned to return 
values

Poor; index not used, table scan



CHAPTER 8    Indexing for Performance

Performance & Tuning Guide 183

Poor choices are:

• Indexes that are nearly as wide as the table

• Composite indexes where only a minor key is used in the where clause

Techniques for choosing indexes
This section presents a study of two queries that must access a single table, 
and the indexing choices for these two queries. The two queries are:

• A range query that returns a large number of rows

• A point query that returns only one or two rows

Choosing an index for a range query
Assume that you need to improve the performance of the following query:

select title
from titles
where price between $20.00 and $30.00

Some basic statistics on the table are:

• The table has 1,000,000 rows, and uses allpages locking.

• There are 10 rows per page; pages are 75 percent full, so the table has 
approximately 135,000 pages.

• 190,000 (19%) of the titles are priced between $20 and $30.

With no index, the query would scan all 135,000 pages.

With a clustered index on price, the query would find the first $20 book 
and begin reading sequentially until it gets to the last $30 book. With pages 
about 75 percent full, the average number of rows per page is 7.5. To read 
190,000 matching rows, the query would read approximately 25,300 
pages, plus 3 or 4 index pages.

With a nonclustered index on price and random distribution of price values, 
using the index to find the rows for this query requires reading about 19 
percent of the leaf level of the index, about 1,500 pages.



Techniques for choosing indexes 

184  Adaptive Server Enterprise

If the price values are randomly distributed, the number of data pages that 
must be read is likely to be high, perhaps as many data pages as there are 
qualifying rows, 190,000. Since a table scan requires only 135,000 pages, 
you would not want to use this nonclustered.

Another choice is a nonclustered index on price, title. The query can 
perform a matching index scan, using the index to find the first page with 
a price of $20, and then scanning forward on the leaf level until it finds a 
price of more than $30. This index requires about 35,700 leaf pages, so to 
scan the matching leaf pages requires reading about 19 percent of the 
pages of this index, or about 6,800 reads.

For this query, the covering nonclustered index on price, title is best.

Adding a point query with different indexing requirements
The index choice for the range query on price produced a clear 
performance choice when all possibly useful indexes were considered. 
Now, assume this query also needs to run against titles:

select price
from titles
where title = "Looking at Leeks"

You know that there are very few duplicate titles, so this query returns only 
one or two rows.

Considering both this query and the previous query, Table 8-3 shows four 
possible indexing strategies and estimate costs of using each index. The 
estimates for the numbers of index and data pages were generated using a 
fillfactor of 75 percent with sp_estspace:

sp_estspace titles, 1000000, 75

The values were rounded for easier comparison.

Table 8-3: Comparing index strategies for two queries

Possible index choice Index pages Range query on price Point query on title

1 Nonclustered on title
Clustered on price

36,800
650

Clustered index, about 26,600 
pages (135,000 *.19)

With 16K I/O: 3,125 I/Os

Nonclustered index, 6 I/Os

2 Clustered on title
Nonclustered on price

3,770
6,076 

Table scan, 135,000 pages

With 16K I/O: 17,500 I/Os

Clustered index, 6 I/Os



CHAPTER 8    Indexing for Performance

Performance & Tuning Guide 185

Examining the figures in Table 8-3 shows that:

• For the range query on price, choice 4 is best; choices 1 and 3 are 
acceptable with 16K I/O.

• For the point query on titles, indexing choices 1, 2, and 3 are excellent.

The best indexing strategy for a combination of these two queries is to use 
two indexes:

• Choice 4, for range queries on price.

• Choice 2, for point queries on title, since the clustered index requires 
very little space.

You may need additional information to help you determine which 
indexing strategy to use to support multiple queries. Typical 
considerations are:

• What is the frequency of each query? How many times per day or per 
hour is the query run?

• What are the response time requirements? Is one of them especially 
time critical?

• What are the response time requirements for updates? Does creating 
more than one index slow updates?

• Is the range of values typical? Is a wider or narrower range of prices, 
such as $20 to $50, often used? How do different ranges affect index 
choice?

• Is there a large data cache? Are these queries critical enough to 
provide a 35,000-page cache for the nonclustered composite indexes 
in index choice 3 or 4? Binding this index to its own cache would 
provide very fast performance.

• What other queries and what other search arguments are used? Is this 
table frequently joined with other tables?

3 Nonclustered on title, 
price

36,835 Nonmatching index scan, 
about 35,700 pages

With 16K I/O: 4,500 I/Os

Nonclustered index, 
5 I/Os

4 Nonclustered on price, 
title

36,835 Matching index scan, about 
6,800 pages (35,700 *.19) 

With 16K I/O: 850 I/Os

Nonmatching index scan, 
about 35,700 pages

With 16K I/O: 4,500 I/Os

Possible index choice Index pages Range query on price Point query on title



Index and statistics maintenance 

186  Adaptive Server Enterprise

Index and statistics maintenance
To ensure that indexes evolve with your system:

• Monitor queries to determine if indexes are still appropriate for your 
applications.

Periodically, check the query plans, as described in Chapter 36, 
“Using set showplan,” and the I/O statistics for your most frequent 
user queries. Pay special attention to noncovering indexes that 
support range queries. They are most likely to switch to table scans if 
the data distribution changes

• Drop and rebuild indexes that hurt performance.

• Keep index statistics up to date.

• Use space management properties to reduce page splits and to reduce 
the frequency of maintenance operations.

Dropping indexes that hurt performance
Drop indexes that hurt performance. If an application performs data 
modifications during the day and generates reports at night, you may want 
to drop some indexes in the morning and re-create them at night.

Many system designers create numerous indexes that are rarely, if ever, 
actually used by the query optimizer. Make sure that you base indexes on 
the current transactions and processes that are being run, not on the 
original database design.

Check query plans to determine whether your indexes are being used.

Foe more information on maintaining indexes see “Maintaining index and 
column statistics” on page 394 and “Rebuilding indexes” on page 395.

Choosing space management properties for indexes
Space management properties can help reduce the frequency of index 
maintenance. In particular, fillfactor can reduce the number of page splits 
on leaf pages of nonclustered indexes and on the data pages of allpages-
locked tables with clustered indexes.



CHAPTER 8    Indexing for Performance

Performance & Tuning Guide 187

See Chapter 14, “Setting Space Management Properties,” for more 
information on choosing fillfactor values for indexes.

Additional indexing tips
Here are some additional suggestions that can lead to improved 
performance when you are creating and using indexes:

• Modify the logical design to make use of an artificial column and a 
lookup table for tables that require a large index entry.

• Reduce the size of an index entry for a frequently used index.

• Drop indexes during periods when frequent updates occur and rebuild 
them before periods when frequent selects occur.

• If you do frequent index maintenance, configure your server to speed 
up the sorting.

See “Configuring Adaptive Server to speed sorting” on page 392 for 
information about configuration parameters that enable faster sorting.

Creating artificial columns
When indexes become too large, especially composite indexes, it is 
beneficial to create an artificial column that is assigned to a row, with a 
secondary lookup table that is used to translate between the internal ID and 
the original columns.

This may increase response time for certain queries, but the overall 
performance gain due to a more compact index and shorter data rows is 
usually worth the effort.

Keeping index entries short and avoiding overhead
Avoid storing purely numeric IDs as character data. Use integer or 
numeric IDs whenever possible to:

• Save storage space on the data pages

• Make index entries more compact



Additional indexing tips 

188  Adaptive Server Enterprise

• Improve performance, since internal comparisons are faster

Index entries on varchar columns require more overhead than entries on 
char columns. For short index keys, especially those with little variation in 
length in the column data, use char for more compact index entries.

Dropping and rebuilding indexes
You might drop nonclustered indexes prior to a major set of inserts, and 
then rebuild them afterwards. In that way, the inserts and bulk copies go 
faster, since the nonclustered indexes do not have to be updated with every 
insert.

For more information, see “Rebuilding indexes” on page 395.



Performance & Tuning Guide 189

C H A P T E R  9 How Indexes Work

This chapter describes how Adaptive Server stores indexes and how it 
uses indexes to speed data retrieval for select, update, delete, and insert 
operations.

Indexes are the most important physical design element in improving 
database performance:

• Indexes help prevent table scans. Instead of reading hundreds of data 
pages, a few index pages and data pages can satisfy many queries.

• For some queries, data can be retrieved from a nonclustered index 
without ever accessing the data rows.

• Clustered indexes can randomize data inserts, avoiding insert “hot 
spots” on the last page of a table.

• Indexes can help avoid sorts, if the index order matches the order of 
columns in an order by clause.

In addition to their performance benefits, indexes can enforce the 
uniqueness of data.

Indexes are database objects that can be created for a table to speed direct 
access to specific data rows. Indexes store the values of the key(s) that 
were named when the index was created, and logical pointers to the data 
pages or to other index pages.

Although indexes speed data retrieval, they can slow down data 
modifications, since most changes to the data also require updating the 
indexes. Optimal indexing demands:

Topic Page
Types of indexes 190

Clustered indexes on allpages-locked tables 192

Nonclustered indexes 201

Index covering 208

Indexes and caching 211



Types of indexes 

190  Adaptive Server Enterprise

• An understanding of the behavior of queries that access unindexed 
heap tables, tables with clustered indexes, and tables with 
nonclustered indexes

• An understanding of the mix of queries that run on your server

• An understanding of the Adaptive Server optimizer

Types of indexes
Adaptive Server provides two types of indexes:

• Clustered indexes, where the table data is physically stored in the 
order of the keys on the index:

• For allpages-locked tables, rows are stored in key order on pages, 
and pages are linked in key order.

• For data-only-locked tables, indexes are used to direct the storage 
of data on rows and pages, but strict key ordering is not 
maintained.

• Nonclustered indexes, where the storage order of data in the table is 
not related to index keys

You can create only one clustered index on a table because there is only 
one possible physical ordering of the data rows. You can create up to 249 
nonclustered indexes per table.

A table that has no clustered index is called a heap. The rows in the table 
are in no particular order, and all new rows are added to the end of the 
table. Chapter 7, “Data Storage,” discusses heaps and SQL operations on 
heaps.

Index pages
Index entries are stored as rows on index pages in a format similar to the 
format used for data rows on data pages. Index entries store the key values 
and pointers to lower levels of the index, to the data pages, or to individual 
data rows.

Adaptive Server uses B-tree indexing, so each node in the index structure 
can have multiple children.



CHAPTER 9    How Indexes Work

Performance & Tuning Guide 191

Index entries are usually much smaller than a data row in a data page, and 
index pages are much more densely populated than data pages. If a data 
row has 200 bytes (including row overhead), there are 10 rows per page.

An index on a 15-byte field has about 100 rows per index page (the 
pointers require 4–9 bytes per row, depending on the type of index and the 
index level).

Indexes can have multiple levels:

• Root level

• Leaf level

• Intermediate level

Root level

The root level is the highest level of the index. There is only one root page. 
If an allpages-locked table is very small, so that the entire index fits on a 
single page, there are no intermediate or leaf levels, and the root page 
stores pointers to the data pages.

Data-only-locked tables always have a leaf level between the root page 
and the data pages.

For larger tables, the root page stores pointers to the intermediate level 
index pages or to leaf-level pages.

Leaf level

The lowest level of the index is the leaf level. At the leaf level, the index 
contains a key value for each row in the table, and the rows are stored in 
sorted order by the index key:

• For clustered indexes on allpages-locked tables, the leaf level is the 
data. No other level of the index contains one index row for each data 
row.

• For nonclustered indexes and clustered indexes on data-only-locked 
tables, the leaf level contains the index key value for each row, a 
pointer to the page where the row is stored, and a pointer to the rows 
on the data page.

The leaf level is the level just above the data; it contains one index row 
for each data row. Index rows on the index page are stored in key 
value order.



Clustered indexes on allpages-locked tables 

192  Adaptive Server Enterprise

Intermediate level

All levels between the root and leaf levels are intermediate levels. An 
index on a large table or an index using long keys may have many 
intermediate levels. A very small allpages-locked table may not have an 
intermediate level at all; the root pages point directly to the leaf level.

Index Size
Table 9-1 describes the new limits for index size for APL and DOL tables:

Table 9-1: Index row-size limit

Because you can create tables with columns wider than the limit for the 
index key, these columns become non-indexable. For example, if you 
perform the following on a 2K page server, then try to create an index on 
c3, the command fails and Adaptive Server issues an error message 
because column c3 is larger than the index row-size limit (600 bytes).

create table t1 (

c1 int

c2 int

c3 char(700))

“Non-indexable” does not mean that you cannot use these columns in 
search clauses. Even though a column is non-indexable (as in c3, above), 
you can still create statistics for it. Also, if you include the column in a 
where clause, it will be evaluated during optimization.

Clustered indexes on allpages-locked tables
In clustered indexes on allpages-locked tables, leaf-level pages are also the 
data pages, and all rows are kept in physical order by the keys.

Page size
User-visible index row-size 
limit

Internal index row-
size limit

2K (2048 bytes) 600 650

4K (4096bytes) 1250 1310

8K (8192 bytes) 2600 2670

16K (16384 bytes) 5300 5390



CHAPTER 9    How Indexes Work

Performance & Tuning Guide 193

Physical ordering means that:

• All entries on a data page are in index key order.

• By following the “next page” pointers on the data pages, Adaptive 
Server reads the entire table in index key order.

On the root and intermediate pages, each entry points to a page on the next 
level.

Clustered indexes and select operations
To select a particular last name using a clustered index, Adaptive Server 
first uses sysindexes to find the root page. It examines the values on the 
root page and then follows page pointers, performing a binary search on 
each page it accesses as it traverses the index. See Figure 9-1 below.

Figure 9-1: Selecting a row using a clustered index, allpages-
locked table

Page 1007
Bennet 1132
Greane 1133
Hunter 1127

Page 1009
Karsen 1315

Page 1132
Bennet
Chan
Dull
Edwards

Page 1133
Greane
Green
Greene

Page 1127
Hunter
Jenkins

Page 1001
Bennet 1007
Karsen 1009
Smith 1062

Root page Data pages Intermediate

Key             Pointer

Key             Pointer

select * 
from employees
where lname = "Green"



Clustered indexes on allpages-locked tables 

194  Adaptive Server Enterprise

On the root level page, “Green” is greater than “Bennet,” but less than 
Karsen, so the pointer for “Bennet” is followed to page 1007. On page 
1007, “Green” is greater than “Greane,” but less than “Hunter,” so the 
pointer to page 1133 is followed to the data page, where the row is located 
and returned to the user.

This retrieval via the clustered index requires:

• One read for the root level of the index

• One read for the intermediate level

• One read for the data page

These reads may come either from cache (called a logical read) or from 
disk (called a physical read). On tables that are frequently used, the higher 
levels of the indexes are often found in cache, with lower levels and data 
pages being read from disk.

Clustered indexes and insert operations
When you insert a row into an allpages-locked table with a clustered 
index, the data row must be placed in physical order according to the key 
value on the table.

Other rows on the data page move down on the page, as needed, to make 
room for the new value. As long as there is room for the new row on the 
page, the insert does not affect any other pages in the database.

The clustered index is used to find the location for the new row.

Figure 9-2 shows a simple case where there is room on an existing data 
page for the new row. In this case, the key values in the index do not need 
to change. 



CHAPTER 9    How Indexes Work

Performance & Tuning Guide 195

Figure 9-2: Inserting a row into an allpages-locked table with a 
clustered index

Page splitting on full data pages
If there is not enough room on the data page for the new row, a page split 
must be performed.

• A new data page is allocated on an extent already in use by the table. 
If there is no free page available, a new extent is allocated.

• The next and previous page pointers on adjacent pages are changed to 
incorporate the new page in the page chain. This requires reading 
those pages into memory and locking them.

• Approximately half of the rows are moved to the new page, with the 
new row inserted in order.

• The higher levels of the clustered index change to point to the new 
page.

• If the table also has nonclustered indexes, all pointers to the affected 
data rows must be changed to point to the new page and row locations.

Page 1001
Bennet 1007
Karsen 1009
Smith 1062

Page 1132
Bennet
Chan
Dull
Edwards

Page 1133
Greane
Greco
Green
Greene

Page 1127
Hunter
Jenkins

Page 1007
Bennet 1132
Greane 1133
Hunter 1127

Page 1009
Karsen 1315

Root page Data pages Intermediate

Key             Pointer

Key             Pointer

insert employees (lname)
values ("Greco")



Clustered indexes on allpages-locked tables 

196  Adaptive Server Enterprise

In some cases, page splitting is handled slightly differently.

See “Exceptions to page splitting” on page 196.

In Figure 9-3, the page split requires adding a new row to an existing index 
page, page 1007.

Figure 9-3: Page splitting in an allpages-locked table with a 
clustered index

Exceptions to page splitting

There are exceptions to 50-50 page splits:

• If you insert a huge row that cannot fit on either the page before or the 
page after the page that requires splitting, two new pages are 
allocated, one for the huge row and one for the rows that follow it.

Page 1144
Green
Greene

Page 1133
Greane
Greco
Green
Greene

Page 1132
Bennet
Chan
Dull
Edwards

Page 1133
Greane
Greaves
Greco

Page 1127
Hunter
Jenkins

Page 1007
Bennet 1132
Greane 1133
Green 1144
Hunter 1127

Page 1009
Karsen 1315

Page 1001
Bennet 1007
Karsen 1009
Smith 1062

Root page Data pages Intermediate

Key             Pointer

Key             Pointer
insert employees (lname)
values ("Greaves")

Before



CHAPTER 9    How Indexes Work

Performance & Tuning Guide 197

• If possible, Adaptive Server keeps duplicate values together when it 
splits pages.

• If Adaptive Server detects that all inserts are taking place at the end 
of the page, due to a increasing key value, the page is not split when 
it is time to insert a new row that does not fit at the bottom of the page. 
Instead, a new page is allocated, and the row is placed on the new 
page.

• If Adaptive Server detects that inserts are taking place in order at other 
locations on the page, the page is split at the insertion point.

Page splitting on index pages
If a new row needs to be added to a full index page, the page split process 
on the index page is similar to the data page split.

A new page is allocated, and half of the index rows are moved to the new 
page.

A new row is inserted at the next highest level of the index to point to the 
new index page.

Performance impacts of page splitting
Page splits are expensive operations. In addition to the actual work of 
moving rows, allocating pages, and logging the operations, the cost is 
increased by:

• Updating the clustered index itself

• Updating the page pointers on adjacent pages to maintain page 
linkage

• Updating all nonclustered index entries that point to the rows affected 
by the split

When you create a clustered index for a table that will grow over time, you 
may want to use fillfactor to leave room on data pages and index pages. This 
reduces the number of page splits for a time.

See “Choosing space management properties for indexes” on page 186.



Clustered indexes on allpages-locked tables 

198  Adaptive Server Enterprise

Overflow pages
Special overflow pages are created for nonunique clustered indexes on 
allpages-locked tables when a newly inserted row has the same key as the 
last row on a full data page. A new data page is allocated and linked into 
the page chain, and the newly inserted row is placed on the new page (see 
Figure 9-4).

Figure 9-4: Adding an overflow page to a clustered index, allpages-
locked table

The only rows that will be placed on this overflow page are additional 
rows with the same key value. In a nonunique clustered index with many 
duplicate key values, there can be numerous overflow pages for the same 
value.

The clustered index does not contain pointers directly to overflow pages. 
Instead, the next page pointers are used to follow the chain of overflow 
pages until a value is found that does not match the search value.

insert employees (lname)
values("Greene") 

Page 1133
Greane
Greco
Green
Greene

Data pages

Before insert

Overflow data 
pagePage 1134

Gresham
Gridley

Page 1133
Greane
Greco
Green
Greene

Page 1156
Greene

Page 1134
Gresham
Gridley

After insert



CHAPTER 9    How Indexes Work

Performance & Tuning Guide 199

Clustered indexes and delete operations
When you delete a row from an allpages-locked table that has a clustered 
index, other rows on the page move up to fill the empty space so that the 
data remains contiguous on the page.

Figure 9-5 shows a page that has four rows before a delete operation 
removes the second row on the page. The two rows that follow the deleted 
row are moved up. 

Figure 9-5: Deleting a row from a table with a clustered index

Page 1132
Bennet
Chan
Dull
Edwards

Page 1133
Greane
Greco
Greene

Page 1127
Hunter
Jenkins

Page 1001
Bennet 1007
Karsen 1009
Smith 1062

delete
from employees
where lname = "Green"

Page 1007
Bennet 1132
Greane 1133
Hunter 1127

Page 1009
Karsen 1315

Root page Data pages Intermediate

Key             Pointer

Key             Pointer

G
reen

Page 1133
Greane
Green
Greco
Greene

Before delete
Data to be 
deleted



Clustered indexes on allpages-locked tables 

200  Adaptive Server Enterprise

Deleting the last row on a page

If you delete the last row on a data page, the page is deallocated and the 
next and previous page pointers on the adjacent pages are changed.

The rows that point to that page in the leaf and intermediate levels of the 
index are removed.

If the deallocated data page is on the same extent as other pages belonging 
to the table, it can be used again when that table needs an additional page.

If the deallocated data page is the last page on the extent that belongs to 
the table, the extent is also deallocated and becomes available for the 
expansion of other objects in the database.

In Figure 9-6, which shows the table after the deletion, the pointer to the 
deleted page has been removed from index page 1007 and the following 
index rows on the page have been moved up to keep the used space 
contiguous.



CHAPTER 9    How Indexes Work

Performance & Tuning Guide 201

Figure 9-6: Deleting the last row on a page (after the delete)

Index page merges

If you delete a pointer from an index page, leaving only one row on that 
page, the row is moved onto an adjacent page, and the empty page is 
deallocated. The pointers on the parent page are updated to reflect the 
changes.

Nonclustered indexes
The B-tree works much the same for nonclustered indexes as it does for 
clustered indexes, but there are some differences. In nonclustered indexes:

G
ridley

Page R1007
Bennet 1132
Greane 1133
Hunter 1127

Page 1009
Karsen 1315

Page 1134

Page 1001
Bennet 1007
Karsen 1009
Smith 1062

delete
from employees
where lname = "Gridley"

Root page Data pages Intermediate

Key Pointer

Key Pointer

Empty page 
available for 
reallocation

G
ridley

Page 1133
Greane
Green
Greane

Page 1127
Hunter
Jenkins



Nonclustered indexes 

202  Adaptive Server Enterprise

• The leaf pages are not the same as the data pages.

• The leaf level stores one key-pointer pair for each row in the table.

• The leaf-level pages store the index keys and page pointers, plus a 
pointer to the row offset table on the data page. This combination of 
page pointer plus the row offset number is called the row ID.

• The root and intermediate levels store index keys and page pointers to 
other index pages. They also store the row ID of the key’s data row.

With keys of the same size, nonclustered indexes require more space than 
clustered indexes.

Leaf pages revisited
The leaf page of an index is the lowest level of the index where all of the 
keys for the index appear in sorted order.

In clustered indexes on allpages-locked tables, the data rows are stored in 
order by the index keys, so by definition, the data level is the leaf level. 
There is no other level of the clustered index that contains one index row 
for each data row. Clustered indexes on allpages-locked tables are sparse 
indexes.

The level above the data contains one pointer for every data page, not data 
row.

In nonclustered indexes and clustered indexes on data-only-locked tables, 
the level just above the data is the leaf level: it contains a key-pointer pair 
for each data row. These indexes are dense. At the level above the data, 
they contain one index row for each data row.

Nonclustered index structure
The table in Figure 9-7 shows a nonclustered index on lname. The data 
rows at the far right show pages in ascending order by employee_id (10, 
11, 12, and so on) because there is a clustered index on that column. 

The root and intermediate pages store:

• The key value

• The row ID



CHAPTER 9    How Indexes Work

Performance & Tuning Guide 203

• The pointer to the next level of the index

The leaf level stores:

• The key value

• The row ID

The row ID in higher levels of the index is used for indexes that allow 
duplicate keys. If a data modification changes the index key or deletes a 
row, the row ID positively identifies all occurrences of the key at all index 
levels. 

Figure 9-7: Nonclustered index structure

Page 1132
Bennet 1421,1
Chan 1129,3
Dull 1409,1
Edwards 1018,5

Page 1007
Bennet 1421,1 1132
Greane 1307,4 1133
Hunter 1307,1 1127

Page 1242
10 O’Leary
11 Ringer
12 White
13 Jenkins

Root page Data pages Intermediate

Key RowID Pointer

Key             Pointer

Page 1307
14 Hunter
15 Smith
16 Ringer
17 Greane

Page 1421
18 Bennet
19 Green
20 Yokomoto

Page 1409
21 Dull
22 Greene
23 White

Page 1133
Greane 1307,4
Green 1421,2
Greene 1409,2

Page 1127
Hunter 1307,1
Jenkins 1242,4

Page 1009
Karsen 1411,3 1315

Page 1001
Bennet 1421,1 1007
Karsen 1411,3 1009
Smith 1307,2 1062

Leaf pages 

Key RowID Pointer



Nonclustered indexes 

204  Adaptive Server Enterprise

Nonclustered indexes and select operations
When you select a row using a nonclustered index, the search starts at the 
root level. sysindexes.root stores the page number for the root page of the 
nonclustered index. 

In Figure 9-8, “Green” is greater than “Bennet,” but less than “Karsen,” so 
the pointer to page 1007 is followed.

“Green” is greater than “Greane,” but less than “Hunter,” so the pointer to 
page 1133 is followed. Page 1133 is the leaf page, showing that the row 
for “Green” is row 2 on page 1421. This page is fetched, the “2” byte in 
the offset table is checked, and the row is returned from the byte position 
on the data page.

Figure 9-8: Selecting rows using a nonclustered index

Page 1007
Bennet 1421,1 1132
Greane 1307,4 1133
Hunter 1307,1 1127

Page 1009
Karsen 1411,3 1315

Page 1132
Bennet 1421,1
Chan 1129,3
Dull 1409,1
Edwards 1018,5

Page 1133
Greane 1307,4
Green 1421,2
Greene 1409,2

Page 1127
Hunter 1307,1
Jenkins 1242,4

Page 1001
Bennet 1421,1 1007
Karsen 1411,3 1009
Smith 1307,2 1062

Root page Data pages Intermediate

Key RowID Pointer

Key Pointer

Leaf pages 

Key        RowID    Pointer

select * 
from employee
where lname = "Green"

Page 1242
Ray O’Leary
Ron Ringer
Lisa White
Bob Jenkins

Page 1307
Tim Hunter
Liv Smith
Ann Ringer
Jo Greane

Page 1421
Ian Bennet
Andy Green
Les Yokomoto

Page 1409
Chad Dull
Eddy Greene
Gabe White
Kip Greco



CHAPTER 9    How Indexes Work

Performance & Tuning Guide 205

Nonclustered index performance
The query in Figure 9-8 requires the following I/O:

• One read for the root level page

• One read for the intermediate level page

• One read for the leaf-level page 

• One read for the data page

If your applications use a particular nonclustered index frequently, the root 
and intermediate pages will probably be in cache, so only one or two 
physical disk I/Os need to be performed.

Nonclustered indexes and insert operations
When you insert rows into a heap that has a nonclustered index and no 
clustered index, the insert goes to the last page of the table.

If the heap is partitioned, the insert goes to the last page on one of the 
partitions. Then, the nonclustered index is updated to include the new row.

If the table has a clustered index, it is used to find the location for the row. 
The clustered index is updated, if necessary, and each nonclustered index 
is updated to include the new row.

Figure 9-9 shows an insert into a heap table with a nonclustered index. The 
row is placed at the end of the table. A row containing the new key value 
and the row ID is also inserted into the leaf level of the nonclustered index. 



Nonclustered indexes 

206  Adaptive Server Enterprise

Figure 9-9: An insert into a heap table with a nonclustered index

Nonclustered indexes and delete operations
When you delete a row from a table, the query can use a nonclustered 
index on the columns in the where clause to locate the data row to delete, 
as shown in Figure 9-10.

The row in the leaf level of the nonclustered index that points to the data 
row is also removed. If there are other nonclustered indexes on the table, 
the rows on the leaf level of those indexes are also deleted. 

Page 1242
Ray O’Leary
Ron Ringer
Lisa White
Bob Jenkins

Page 1307
Tim Hunter
Liv Smith
Ann Ringer
Jo Greane

Page 1421
Ian Bennet
Andy Green
Les Yokomoto

Page 1409
Chad Dull
Edi Greene
Gabe White
Kip Greco

Page 1132
Bennet 1421,1
Chan 1129,3
Dull 1409,1
Edwards 1018,5

Page 1133
Greane 1307,4
Greco 1409,4
Green 1421,2
Greene 1409,2

Page 1127
Hunter 1307,1
Jenkins 1242,4

Page 1007
Bennet 1421,1 1132
Greane 1307,4 1133
Hunter 1307,1 1127

Page 1009
Karsen 1411,3 1315

Page 1001
Bennet 1421,1 1007
Karsen 1411,3 1009
Smith 1307,2 1062

Root page Data pages Intermediate

Key RowID Pointer

Key Pointer

Leaf pages 

Key RowID Pointer

insert employees 
(empid, lname)
values(24, "Greco")



CHAPTER 9    How Indexes Work

Performance & Tuning Guide 207

Figure 9-10: Deleting a row from a table with a nonclustered index

If the delete operation removes the last row on the data page, the page is 
deallocated and the adjacent page pointers are adjusted in allpages-locked 
tables. Any references to the page are also deleted in higher levels of the 
index.

If the delete operation leaves only a single row on an index intermediate 
page, index pages may be merged, as with clustered indexes.

See “Index page merges” on page 201.

There is no automatic page merging on data pages, so if your applications 
make many random deletes, you may end up with data pages that have 
only a single row, or a few rows, on a page. 

Page 1242
Ray O’Leary
Ron Ringer
Lisa White
Bob Jenkins

Page 1307
Tim Hunter
Liv Smith
Ann Ringer
Jo Greane

Page 1421
Ian Bennet
Andy Green
Les Yokomoto

Page 1409
Chad Dull
Eddy Greene
Gabe White
Kip Greco

Page 1133
Greane 1307,4
Greco 1409,4
Green 1421,2
Greene 1409,2

Page 1127
Hunter 1307,1
Jenkins 1242,4

Page 1001
Bennet 1421,1 1007
Karsen 1411,3 1009
Smith 1307,2 1062

Page 1007
Bennet 1421,1 1132
Greane 1307,4 1133
Hunter 1307,1 1127

Page 1009
Karsen 1411,3 1315

G
reen

Root page Data pages Intermediate

Key RowID Pointer

Key Pointer

Leaf pages 

Key RowID Pointer

delete employees 
where lname = "Green"

G
reen

Page 1132
Bennet 1421,1
Chan 1129,3
Dull 1409,1
Edwards 1018,5



Index covering 

208  Adaptive Server Enterprise

Clustered indexes on data-only-locked tables
Clustered indexes on data-only-locked tables are structured like 
nonclustered indexes. They have a leaf level above the data pages. The leaf 
level contains the key values and row ID for each row in the table. 

Unlike clustered indexes on allpages-locked tables, the data rows in a data-
only-locked table are not necessarily maintained in exact order by the key. 
Instead, the index directs the placement of rows to pages that have 
adjacent or nearby keys.

When a row needs to be inserted in a data-only-locked table with a 
clustered index, the insert uses the clustered index key just before the 
value to be inserted. The index pointers are used to find that page, and the 
row is inserted on the page if there is room. If there is not room, the row is 
inserted on a page in the same allocation unit, or on another allocation unit 
already used by the table.

To provide nearby space for maintaining data clustering during inserts and 
updates to data-only-locked tables, you can set space management 
properties to provide space on pages (using fillfactor and exp_row_size) or 
on allocation units (using reservepagegap).

See Chapter 14, “Setting Space Management Properties.”

Index covering
Index covering can produce dramatic performance improvements when 
all columns needed by the query are included in the index.

You can create indexes on more than one key. These are called composite 
indexes. Composite indexes can have up to 31 columns adding up to a 
maximum 600 bytes.

If you create a composite nonclustered index on each column referenced 
in the query’s select list and in any where, having, group by, and order by 
clauses, the query can be satisfied by accessing only the index.

Since the leaf level of a nonclustered index or a clustered index on a data-
only-locked table contains the key values for each row in a table, queries 
that access only the key values can retrieve the information by using the 
leaf level of the nonclustered index as if it were the actual table data. This 
is called index covering. 



CHAPTER 9    How Indexes Work

Performance & Tuning Guide 209

There are two types of index scans that can use an index that covers the 
query:

• The matching index scan

• The nonmatching index scan

For both types of covered queries, the index keys must contain all the 
columns named in the query. Matching scans have additional 
requirements.

“Choosing composite indexes” on page 180 describes query types that 
make good use of covering indexes.

Covering matching index scans
Lets you skip the last read for each row returned by the query, the read that 
fetches the data page.

For point queries that return only a single row, the performance gain is 
slight — just one page.

For range queries, the performance gain is larger, since the covering index 
saves one read for each row returned by the query.

For a covering matching index scan to be used, the index must contain all 
columns named in the query. In addition, the columns in the where clauses 
of the query must include the leading column of the columns in the index.

For example, for an index on columns A, B, C, and D, the following sets 
can perform matching scans: A, AB, ABC, AC, ACD, ABD, AD, and 
ABCD. The columns B, BC, BCD, BD, C, CD, or D do not include the 
leading column and can be used only for nonmatching scans.

When doing a matching index scan, Adaptive Server uses standard index 
access methods to move from the root of the index to the nonclustered leaf 
page that contains the first row.

In Figure 9-11, the nonclustered index on lname, fname covers the query. 
The where clause includes the leading column, and all columns in the 
select list are included in the index, so the data page need not be accessed.



Index covering 

210  Adaptive Server Enterprise

Figure 9-11: Matching index access does not have to read the data 
row

Covering nonmatching index scans
When the columns specified in the where clause do not include the leading 
column in the index, but all columns named in the select list and other 
query clauses (such as group by or having) are included in the index, 
Adaptive Server saves I/O by scanning the entire leaf level of the index, 
rather than scanning the table.

It cannot perform a matching scan because the first column of the index is 
not specified.

The query in Figure 9-12 shows a nonmatching index scan. This query 
does not use the leading columns on the index, but all columns required in 
the query are in the nonclustered index on lname, fname, emp_id.

Page 1560
Bennet,Sam 1580,1
Chan,Sandra 1129,3
Dull,Normal 1409,1
Edwards,Linda 1018,5

Page 1561
Greane,Grey 1307,4
Greco,Del 1409,4
Green,Rita 1421,2
Greene,Cindy 1703,2

Page 1843
Hunter,Hugh 1307,1
Jenkins,Ray 1242,4

Page 1544
Bennet,Sam 1580,1 1560
Greane,Grey 1649,4 1561
Hunter,Hugh 1649,1 1843

Root page Data pages Intermediate

Key Pointer

Leaf pages 

Key  RowID  Pointer

select fname, lname
from employees 
where lname = "Greene"

Page 1647
10 O’Leary
11 Ringer
12 White
13 Jenkins

Page 1649
14 Hunter
15 Smith
16 Ringer
17 Greane

Page 1580
18 Bennet
20 Yokomoto

Page 1703
21 Dull
22 Greene
23 White
24 Greco



CHAPTER 9    How Indexes Work

Performance & Tuning Guide 211

The nonmatching scan must examine all rows on the leaf level. It scans all 
leaf level index pages, starting from the first page. It has no way of 
knowing how many rows might match the query conditions, so it must 
examine every row in the index. Since it must begin at the first page of the 
leaf level, it can use the pointer in sysindexes.first rather than descending 
the index.

Figure 9-12: A nonmatching index scan

Indexes and caching
“How Adaptive Server performs I/O for heap operations” on page 157 
introduces the basic concepts of the Adaptive Server data cache, and 
shows how caches are used when reading heap tables.

Page 1544
Bennet,Sam,409... 1580,1 1560
Greane,Grey,486... 1649,4 1561
Hunter,Hugh,457... 1649,1 1843

Page 1561
Greane,Grey,486... 1307,4
Greco,Del,672... 1409,4
Green,Rita,398... 1421,2
Greene,Cindy,127... 1703,2

Page 1843
Hunter,Hugh,457... 1307,1
Jenkins,Ray,723... 1242,4

Page 1560
Bennet,Sam,409... 1580,1
Chan,Sandra,817... 1129,3
Dull,Normal,415... 1409,1
Edwards,Linda,238... 1018,5

Root page Data pages Intermediate

Key Pointer

Leaf pages 

Key RowI Pointer

select lname, emp_id
from employees 
where fname = "Rita"

Page 1647
10 O’Leary
11 Ringer
12 White
13 Jenkins

Page 1649
14 Hunter
15 Smith
16 Ringer
17 Greane

Page 1580
18 Bennet
20 Yokomoto

Page 1703
21 Dull
22 Greene
23 White
24 Greco

sysindexes.first



Indexes and caching 

212  Adaptive Server Enterprise

Index pages get special handling in the data cache, as follows:

• Root and intermediate index pages always use LRU strategy.

• Index pages can use one cache while the data pages use a different 
cache, if the index is bound to a different cache.

• Covering index scans can use fetch-and-discard strategy.

• Index pages can cycle through the cache many times, if number of 
index trips is configured.

When a query that uses an index is executed, the root, intermediate, leaf, 
and data pages are read in that order. If these pages are not in cache, they 
are read into the MRU end of the cache and are moved toward the LRU 
end as additional pages are read in.

Each time a page is found in cache, it is moved to the MRU end of the page 
chain, so the root page and higher levels of the index tend to stay in the 
cache.

Using separate caches for data and index pages
Indexes and the tables they index can use different caches. A System 
Administrator or table owner can bind a clustered or nonclustered index to 
one cache and its table to another.

Index trips through the cache
A special strategy keeps index pages in cache. Data pages make only a 
single trip through the cache: they are read in at the MRU end of the cache 
or placed just before the wash marker, depending on the cache strategy 
chosen for the query.

Once the pages reach the LRU end of the cache, the buffer for that page is 
reused when another page needs to be read into cache.

For index pages, a counter controls the number of trips that an index page 
can make through the cache.

When the counter is greater than 0 for an index page, and it reaches the 
LRU end of the page chain, the counter is decremented by 1, and the page 
is placed at the MRU end again.



CHAPTER 9    How Indexes Work

Performance & Tuning Guide 213

By default, the number of trips that an index page makes through the cache 
is set to 0. To change the default, a System Administrator can set the 
number of index trips configuration parameter

For more information, see the System Administration Guide.



Indexes and caching 

214  Adaptive Server Enterprise



Performance & Tuning Guide 215

C H A P T E R  1 0 Locking in Adaptive Server

This chapter discusses basic locking concepts and the locking schemes 
and types of locks used for databases in Adaptive Server. 

The following chapters provide more information on locking:

• Chapter 13, “Locking Configuration and Tuning,” describes 
performance considerations and suggestions and configuration 
parameters that affect locking.

• Chapter 11, “Using Locking Commands,”describes commands that 
affect locking: specifying the locking scheme for tables, choosing an 
isolation level for a session or query, the lock table command, and 
server or session level lock time-outs periods.

• Chapter 12, “Reporting on Locks,” describes commands for 
reporting on locks and locking behavior, including sp_who, sp_lock, 
and sp_object_stats.

Topic Page
How locking affects performance 216

Overview of locking 216

Granularity of locks and locking schemes 218

Types of locks in Adaptive Server 221

Lock compatibility and lock sufficiency 230

How isolation levels affect locking 231

Lock types and duration during query processing 238

Pseudo column-level locking 245



How locking affects performance 

216  Adaptive Server Enterprise

How locking affects performance
Adaptive Server protects the tables, data pages, or data rows currently 
used by active transactions by locking them. Locking is a concurrency 
control mechanism: it ensures the consistency of data within and across 
transactions. Locking is needed in a multiuser environment, since several 
users may be working with the same data at the same time.

Locking affects performance when one process holds locks that prevent 
another process from accessing needed data. The process that is blocked 
by the lock sleeps until the lock is released. This is called lock contention.

A more serious locking impact on performance arises from deadlocks. A 
deadlock occurs when two user processes each have a lock on a separate 
page or table and each wants to acquire a lock on the same page or table 
held by the other process. The transaction with the least accumulated CPU 
time is killed and all of its work is rolled back.

Understanding the types of locks in Adaptive Server can help you reduce 
lock contention and avoid or minimize deadlocks.

Overview of locking
Consistency of data means that if multiple users repeatedly execute a 
series of transactions, the results are correct for each transaction, each 
time. Simultaneous retrievals and modifications of data do not interfere 
with each other: the results of queries are consistent.

For example, in Table 10-1, transactions T1 and T2 are attempting to 
access data at approximately the same time. T1 is updating values in a 
column, while T2 needs to report the sum of the values.



CHAPTER 10    Locking in Adaptive Server

Performance & Tuning Guide 217

Table 10-1: Consistency levels in transactions

If transaction T2 runs before T1 starts or after T1 completes, either 
execution of T2 returns the correct value. But if T2 runs in the middle of 
transaction T1 (after the first update), the result for transaction T2 will be 
different by $100. While such behavior may be acceptable in certain 
limited situations, most database transactions need to return correct 
consistent results.

By default, Adaptive Server locks the data used in T1 until the transaction 
is finished. Only then does it allow T2 to complete its query. T2 “sleeps,” 
or pauses in execution, until the lock it needs it is released when T1 is 
completed.

The alternative, returning data from uncommitted transactions, is known 
as a dirty read. If the results of T2 do not need to be exact, it can read the 
uncommitted changes from T1, and return results immediately, without 
waiting for the lock to be released.

Locking is handled automatically by Adaptive Server, with options that 
can be set at the session and query level by the user. You must know how 
and when to use transactions to preserve the consistency of your data, 
while maintaining high performance and throughput. 

T1 Event Sequence T2
begin transaction

update account
set balance = balance - 100
where acct_number = 25

update account
set balance = balance + 100
where acct_number = 45

commit transaction

T1 and T2 start.

T1 updates balance 
for one account by 
subtracting $100.

T2 queries the sum 
balance, which is off 
by $100 at this point 
in time—should it 
return results now, or 
wait until T1 ends?

T1 updates balance of 
the other account by 
adding the $100.

T1 ends.

begin transaction

select sum(balance)
from account
where acct_number < 50

commit transaction



Granularity of locks and locking schemes 

218  Adaptive Server Enterprise

Granularity of locks and locking schemes
The granularity of locks in a database refers to how much of the data is 
locked at one time. In theory, a database server can lock as much as the 
entire database or as little as one column of data. Such extremes affect the 
concurrency (number of users that can access the data) and locking 
overhead (amount of work to process lock requests) in the server. Adaptive 
Server supports locking at the table, page, and row level.

By locking at higher levels of granularity, the amount of work required to 
obtain and manage locks is reduced. If a query needs to read or update 
many rows in a table:

• It can acquire just one table-level lock

• It can acquire a lock for each page that contained one of the required 
rows

• It can acquire a lock on each row

Less overall work is required to use a table-level lock, but large-scale locks 
can degrade performance, by making other users wait until locks are 
released. Decreasing the lock size makes more of the data accessible to 
other users. However, finer granularity locks can also degrade 
performance, since more work is necessary to maintain and coordinate the 
increased number of locks. To achieve optimum performance, a locking 
scheme must balance the needs of concurrency and overhead.

Adaptive Server provides these locking schemes:

• Allpages locking, which locks datapages and index pages

• Datapages locking, which locks only the data pages

• Datarows locking, which locks only the data rows

For each locking scheme, Adaptive Server can choose to lock the entire 
table for queries that acquire many page or row locks, or can lock only the 
affected pages or rows.



CHAPTER 10    Locking in Adaptive Server

Performance & Tuning Guide 219

Allpages locking
Allpages locking locks both data pages and index pages. When a query 
updates a value in a row in an allpages-locked table, the data page is locked 
with an exclusive lock. Any index pages affected by the update are also 
locked with exclusive locks. These locks are transactional, meaning that 
they are held until the end of the transaction.

Figure 10-1 shows the locks acquired on data pages and indexes while a 
new row is being inserted into an allpages-locked table.

Figure 10-1: Locks held during allpages locking

In many cases, the concurrency problems that result from allpages locking 
arise from the index page locks, rather than the locks on the data pages 
themselves. Data pages have longer rows than indexes, and often have a 
small number of rows per page. If index keys are short, an index page can 
store between 100 and 200 keys. An exclusive lock on an index page can 
block other users who need to access any of the rows referenced by the 
index page, a far greater number of rows than on a locked data page. 

Index on FirstName Index on LastName

Legend
Locked

Index Leaf

Mark 10,1

Index Leaf

Twain 10,1

Page 10

Mark Twain

Unlocked

insert authors values ("Mark", "Twain")



Granularity of locks and locking schemes 

220  Adaptive Server Enterprise

Datapages locking
In datapages locking, entire data pages are still locked, but index pages are 
not locked. When a row needs to be changed on a data page, that page is 
locked, and the lock is held until the end of the transaction. The updates to 
the index pages are performed using latches, which are non transactional. 
Latches are held only as long as required to perform the physical changes 
to the page and are then released immediately. Index page entries are 
implicitly locked by locking the data page. No transactional locks are held 
on index pages. For more information on latches, see “Latches” on page 
230.

Figure 10-2 shows an insert into a datapages-locked table. Only the 
affected data page is locked. 

Figure 10-2: Locks held during datapages locking

Index on FirstName Index on LastName

Index Leaf

Mark 10,1

Index Leaf

Twain 10,1

Page 10

Mark Twain

Legend
Locked

Unlocked

insert authors values ("Mark", "Twain")



CHAPTER 10    Locking in Adaptive Server

Performance & Tuning Guide 221

Datarows locking
In datarows locking, row-level locks are acquired on individual rows on 
data pages. Index rows and pages are not locked. When a row needs to be 
changed on a data page, a non transactional latch is acquired on the page. 
The latch is held while the physical change is made to the data page, and 
then the latch is released. The lock on the data row is held until the end of 
the transaction. The index rows are updated, using latches on the index 
page, but are not locked. Index entries are implicitly locked by acquiring 
a lock on the data row.

Figure 10-3 shows an insert into a datarows-locked table. Only the 
affected data row is locked. 

Figure 10-3: Locks held during datarows locking

Types of locks in Adaptive Server
Adaptive Server has two levels of locking:

• For tables that use allpages locking or datapages locking, either page 
locks or table locks. 

Index on FirstName Index on LastName

Index Leaf

Mark 10,1

Index Leaf

Twain 10,1

Page 10

Mark Twain

Legend
Locked
Unlocked

insert authors values ("Mark", "Twain")



Types of locks in Adaptive Server 

222  Adaptive Server Enterprise

• For tables that use datarows locking, either row locks or table locks

Page or row locks are less restrictive (or smaller) than table locks. A page 
lock locks all the rows on data page or an index page; a table lock locks an 
entire table. A row lock locks only a single row on a page. Adaptive Server 
uses page or row locks whenever possible to reduce contention and to 
improve concurrency.

Adaptive Server uses a table lock to provide more efficient locking when 
an entire table or a large number of pages or rows will be accessed by a 
statement. Locking strategy is directly tied to the query plan, so the query 
plan can be as important for its locking strategies as for its I/O 
implications. If an update or delete statement has no useful index, it 
performs a table scan and acquires a table lock. For example, the following 
statement acquires a table lock:

update account set balance = balance * 1.05

If an update or delete statement uses an index, it begins by acquiring page 
or row locks. It tries to acquire a table lock only when a large number of 
pages or rows are affected. To avoid the overhead of managing hundreds 
of locks on a table, Adaptive Server uses a lock promotion threshold 
setting. Once a scan of a table accumulates more page or row locks than 
allowed by the lock promotion threshold, Adaptive Server tries to issue a 
table lock. If it succeeds, the page or row locks are no longer necessary and 
are released. See “Configuring locks and lock promotion thresholds” on 
page 286 for more information.

Adaptive Server chooses which type of lock to use after it determines the 
query plan. The way you write a query or transaction can affect the type of 
lock the server chooses. You can also force the server to make certain locks 
more or less restrictive by specifying options for select queries or by 
changing the transaction’s isolation level. See “Controlling isolation 
levels” on page 257 for more information. Applications can explicitly 
request a table lock with the lock table command.

Page and row locks
The following describes the types of page and row locks:

• Shared locks



CHAPTER 10    Locking in Adaptive Server

Performance & Tuning Guide 223

Adaptive Server applies shared locks for read operations. If a shared 
lock has been applied to a data page or data row or to an index page, 
other transactions can also acquire a shared lock, even when the first 
transaction is active. However, no transaction can acquire an 
exclusive lock on the page or row until all shared locks on the page or 
row are released. This means that many transactions can 
simultaneously read the page or row, but no transaction can change 
data on the page or row while a shared lock exists. Transactions that 
need an exclusive lock wait or “block” for the release of the shared 
locks before continuing.

By default, Adaptive Server releases shared locks after it finishes 
scanning the page or row. It does not hold shared locks until the 
statement is completed or until the end of the transaction unless 
requested to do so by the user. For more details on how shared locks 
are applied, see “Locking for select queries at isolation Level 1” on 
page 241.

• Exclusive locks

Adaptive Server applies an exclusive lock for a data modification 
operation. When a transaction gets an exclusive lock, other 
transactions cannot acquire a lock of any kind on the page or row until 
the exclusive lock is released at the end of its transaction. The other 
transactions wait or “block” until the exclusive lock is released.

• Update locks

Adaptive Server applies an update lock during the initial phase of an 
update, delete, or fetch (for cursors declared for update) operation 
while the page or row is being read. The update lock allows shared 
locks on the page or row, but does not allow other update or exclusive 
locks. Update locks help avoid deadlocks and lock contention. If the 
page or row needs to be changed, the update lock is promoted to an 
exclusive lock as soon as no other shared locks exist on the page or 
row.

In general, read operations acquire shared locks, and write operations 
acquire exclusive locks. For operations that delete or update data, 
Adaptive Server applies page-level or row-level exclusive and update 
locks only if the column used in the search argument is part of an index. If 
no index exists on any of the search arguments, Adaptive Server must 
acquire a table-level lock.



Types of locks in Adaptive Server 

224  Adaptive Server Enterprise

The examples in Table 10-2 show what kind of page or row locks Adaptive 
Server uses for basic SQL statements. For these examples, there is an 
index acct_number, but no index on balance.

Table 10-2: Page locks and row locks

Table locks
The following describes the types of table locks.

• Intent lock

An intent lock indicates that page-level or row-level locks are 
currently held on a table. Adaptive Server applies an intent table lock 
with each shared or exclusive page or row lock, so an intent lock can 
be either an exclusive lock or a shared lock. Setting an intent lock 
prevents other transactions from subsequently acquiring conflicting 
table-level locks on the table that contains that locked page. An intent 
lock is held as long as page or row locks are in effect for the 
transaction.

• Shared lock

This lock is similar to a shared page or lock, except that it affects the 
entire table. For example, Adaptive Server applies a shared table lock 
for a select command with a holdlock clause if the command does not 
use an index. A create nonclustered index command also acquires a 
shared table lock.

• Exclusive lock

Statement Allpages-Locked Table Datarows-Locked Table
select balance 
from account 
where acct_number = 25 

Shared page lock Shared row lock

insert account values
(34, 500)

Exclusive page lock on data page 
and exclusive page lock on leaf-
level index page

Exclusive row lock 

delete account 
where acct_number = 25

Update page locks followed by 
exclusive page locks on data pages 
and exclusive page locks on leaf-
level index pages

Update row locks followed by 
exclusive row locks on each 
affected row

update account 
set balance = 0 
where acct_number = 25

Update page lock on data page and 
exclusive page lock on data page

Update row lock followed by 
exclusive row lock



CHAPTER 10    Locking in Adaptive Server

Performance & Tuning Guide 225

This lock is similar to an exclusive page or row lock, except it affects 
the entire table. For example, Adaptive Server applies an exclusive 
table lock during a create clustered index command. update and delete 
statements require exclusive table locks if their search arguments do 
not reference indexed columns of the object.

The examples in Table 10-3 show the respective page, row, and table locks 
of page or row locks Adaptive Server uses for basic SQL statements. For 
these examples, there is an index acct_num. 

Table 10-3: Table locks applied during query processing

Exclusive table locks are also applied to tables during select into 
operations, including temporary tables created with tempdb..tablename 
syntax. Tables created with #tablename are restricted to the sole use of the 
process that created them, and are not locked.

Demand locks
Adaptive Server sets a demand lock to indicate that a transaction is next 
in the queue to lock a table, page, or row. Since many readers can all hold 
shared locks on a given page, row, or table, tasks that require exclusive 
locks are queued after a task that already holds a shared lock. Adaptive 
Server allows up to three readers’ tasks to skip over a queued update task.

Statement Allpages-Locked Table Datarows-Locked Table
select balance from account 
where acct_number = 25

Intent shared table lock
Shared page lock

Intent shared table lock
Shared row lock

insert account values 
(34, 500)

Intent exclusive table lock
Exclusive page lock on data page
Exclusive page lock on leaf index 
pages

Intent exclusive table lock
Exclusive row lock 

delete account 
where acct_number = 25

Intent exclusive table lock 
Update page locks followed by 
exclusive page locks on data pages 
and leaf-level index pages

Intent exclusive table lock 
Update row locks followed by 
exclusive row locks on data 
rows

update account
set balance = 0 
where acct_number = 25

With an index on acct_number, 
intent exclusive table lock 
Update page locks followed by 
exclusive page locks on data pages 
and leaf-level index pages

With no index, exclusive table lock

With an index on acct_number, 
intent exclusive table lock
Update row locks followed by 
exclusive row locks on data 
rows

With no index, exclusive table 
lock



Types of locks in Adaptive Server 

226  Adaptive Server Enterprise

After a write transaction has been skipped over by three tasks or families 
(in the case of queries running in parallel) that acquire shared locks, 
Adaptive Server gives a demand lock to the write transaction. Any 
subsequent requests for shared locks are queued behind the demand lock, 
as shown in Figure 10-4.

As soon as the readers queued ahead of the demand lock release their 
locks, the write transaction acquires its lock and is allowed to proceed. The 
read transactions queued behind the demand lock wait for the write 
transaction to finish and release its exclusive lock.

Demand locking with serial execution

Figure 10-4 illustrates how the demand lock scheme works for serial 
query execution. It shows four tasks with shared locks in the active lock 
position, meaning that all four tasks are currently reading the page. These 
tasks can access the same page simultaneously because they hold 
compatible locks. Two other tasks are in the queue waiting for locks on the 
page. Here is a series of events that could lead to the situation shown in 
Figure 10-4:

• Originally, task 2 holds a shared lock on the page.

• Task 6 makes an exclusive lock request, but must wait until the shared 
lock is released because shared and exclusive locks are not 
compatible.

• Task 3 makes a shared lock request, which is immediately granted 
because all shared locks are compatible.

• Tasks 1 and 4 make shared lock requests, which are also immediately 
granted for the same reason.

• Task 6 has now been skipped three times, and is granted a demand 
lock.

• Task 5 makes a shared lock request. It is queued behind task 6’s 
exclusive lock request because task 6 holds a demand lock. Task 5 is 
the fourth task to make a shared page request. 

• After tasks 1, 2, 3, and 4 finish their reads and release their shared 
locks, task 6 is granted its exclusive lock.

• After task 6 finishes its write and releases its exclusive page lock, task 
5 is granted its shared page lock. 



CHAPTER 10    Locking in Adaptive Server

Performance & Tuning Guide 227

Figure 10-4: Demand locking with serial query execution

Demand locking with parallel execution

When queries are running in parallel, demand locking treats all the shared 
locks from a family of worker processes as if they were a single task. The 
demand lock permits reads from three families (or a total of three serial 
tasks and families combined) before granting the exclusive lock. 

Figure 10-5 illustrates how the demand lock scheme works when parallel 
query execution is enabled. The figure shows six worker processes from 
three families with shared locks. A task waits for an exclusive lock, and a 
worker process from a fourth family waits behind the task. Here is a series 
of events that could lead to the situation shown in Figure 10-5:

• Originally, worker process 1:3 (worker process 3 from a family with 
family ID 1) holds a shared lock on the page.

• Task 9 makes an exclusive lock request, but must wait until the shared 
lock is released.

• Worker process 2:3 requests a shared lock, which is immediately 
granted because shared locks are compatible. The skip count for task 
9 is now 1.

Shared
page

Shared
page

2

3

1

6 5

Exclusive
page

Page

Active lock Demand lock Sleep wait

4



Types of locks in Adaptive Server 

228  Adaptive Server Enterprise

• Worker processes 1:1, 2:1, 3:1, task 10, and worker processes 3:2 and 
1:2 are consecutively granted shared lock requests. Since family ID 3 
and task 10 have no prior locks queued, the skip count for task 9 is 
now 3, and task 9 is granted a demand lock.

• Finally, worker process 4:1 makes a shared lock request, but it is 
queued behind task 9’s exclusive lock request. 

• Any additional shared lock requests from family IDs 1, 2, and 3 and 
from task 10 are queued ahead of task 9, but all requests from other 
tasks are queued after it.

• After all the tasks in the active lock position release their shared locks, 
task 9 is granted its exclusive lock.

• After task 9 releases its exclusive page lock, task 4:1 is granted its 
shared page lock.

Figure 10-5: Demand locking with parallel query execution

Shared
page

Shared
page

1:3

2:3

9 4:1

Exclusive
page

Page

Active lock Demand lock Sleep wait

1:1

3:2

2:1

10
3:1

1:2



CHAPTER 10    Locking in Adaptive Server

Performance & Tuning Guide 229

Range locking for serializable reads
Rows that can appear or disappear from a results set are called phantoms. 
Some queries that require phantom protection (queries at isolation level 3) 
use range locks.

Isolation level 3 requires serializable reads within the transaction. A query 
at isolation level 3 that performs two read operations with the same query 
clauses should return the same set of results each time. No other task can 
be allowed to:

• Modify one of the result rows so that it no longer qualifies for the 
serializable read transaction, by updating or deleting the row

• Modify a row that is not included in the serializable read result set so 
that the row now qualifies, or insert a row that would qualify for the 
result set

Adaptive Server uses range locks, infinity key locks, and next-key locks 
to protect against phantoms on data-only-locked tables. Allpages-locked 
tables protect against phantoms by holding locks on the index pages for the 
serializable read transaction. 

When a query at isolation level 3 (serializable read) performs a range scan 
using an index, all the keys that satisfy the query clause are locked for the 
duration of the transaction. Also, the key that immediately follows the 
range is locked, to prevent new values from being added at the end of the 
range. If there is no next value in the table, an infinity key lock is used as 
the next key, to ensure that no rows are added after the last key in the table.

Range locks can be shared, update, or exclusive locks; depending on the 
locking scheme, they are either row locks or page locks. sp_lock output 
shows “Fam dur, Range” in the context column for range locks. For 
infinity key locks, sp_lock shows a lock on a nonexistent row, row 0 of the 
root index page and “Fam dur, Inf key” in the context column.

Every transaction that performs an insert or update to a data-only-locked 
table checks for range locks.



Lock compatibility and lock sufficiency 

230  Adaptive Server Enterprise

Latches
Latches are non transactional synchronization mechanisms used to 
guarantee the physical consistency of a page. While rows are being 
inserted, updated or deleted, only one Adaptive Server process can have 
access to the page at the same time. Latches are used for datapages and 
datarows locking but not for allpages locking. 

The most important distinction between a lock and a latch is the duration:

• A lock can persist for a long period of time: while a page is being 
scanned, while a disk read or network write takes place, for the 
duration of a statement, or for the duration of a transaction.

• A latch is held only for the time required to insert or move a few bytes 
on a data page, to copy pointers, columns or rows, or to acquire a latch 
on another index page.

Lock compatibility and lock sufficiency
Two basic concepts underlie issues of locking and concurrency:

• Lock compatibility: if task holds a lock on a page or row, can another 
row also hold a lock on the page or row?

• Lock sufficiency: for the current task, is the current lock held on a 
page or row sufficient if the task needs to access the page again? 

Lock compatibility affects performance when users needs to acquire a lock 
on a row or page, and that row or page is already locked by another user 
with an incompatible lock. The task that needs the lock waits, or blocks, 
until the incompatible locks are released.

Lock sufficiency works with lock compatibility. If a lock is sufficient, the 
task does not need to acquire a different type of lock. For example, if a task 
updates a row in a transaction, it holds an exclusive lock. If the task then 
selects from the row before committing the transaction, the exclusive lock 
on the row is sufficient; the task does not need to make an additional lock 
request. The opposite case is not true: if a task holds a shared lock on a 
page or row, and wants to update the row, the task may need to wait to 
acquire its exclusive lock if other tasks also hold shared locks on the page. 

Table 10-4 summarizes the information about lock compatibility, showing 
when locks can be acquired immediately. 



CHAPTER 10    Locking in Adaptive Server

Performance & Tuning Guide 231

Table 10-4: Lock compatibility

Table 10-5 shows the lock sufficiency matrix.

Table 10-5: Lock sufficiency

How isolation levels affect locking
The SQL standard defines four levels of isolation for SQL transactions. 
Each isolation level specifies the kinds of interactions that are not 
permitted while concurrent transactions are executing—that is, whether 
transactions are isolated from each other, or if they can read or update 
information in use by another transaction. Higher isolation levels include 
the restrictions imposed by the lower levels.

The isolation levels are shown in Table 10-6, and described in more detail 
on the following pages. 

Table 10-6: Transaction isolation levels

Can another process immediately acquire:

If one process has:
A Shared 
Lock?

An Update 
Lock?

An Exclusive 
Lock?

A Shared 
Intent Lock?

An Exclusive 
Intent Lock?

A Shared Lock Yes Yes No Yes No

An Update Lock Yes No No N/A N/A

An Exclusive Lock No No No No No

A Shared Intent Lock Yes N/A No Yes Yes

An Exclusive Intent Lock No N/A No Yes Yes

Is that lock sufficient if the task needs:

If a task has: A Shared Lock An Update Lock An Exclusive Lock

A Shared Lock Yes No No

An Update Lock Yes Yes No

An Exclusive Lock Yes Yes Yes

Number Name Description

0 read uncommitted The transaction is allowed to read uncommitted 
changes to data.

1 read committed The transaction is allowed to read only committed 
changes to data.

2 repeatable read The transaction can repeat the same query, and no 
rows that have been read by the transaction will have 
been updated or deleted.



How isolation levels affect locking 

232  Adaptive Server Enterprise

You can choose the isolation level for all select queries during a session, 
or you can choose the isolation level for a specific query or table in a 
transaction.

At all isolation levels, all updates acquire exclusive locks and hold them 
for the duration of the transaction.

Note  For tables that use the allpages locking scheme, requesting isolation 
level 2 also enforces isolation level 3.

Isolation Level 0, read uncommitted
Level 0, also known as read uncommitted, allows a task to read 
uncommitted changes to data in the database. This is also known as a dirty 
read, since the task can display results that are later rolled back. Table 10-
7 shows a select query performing a dirty read.

Table 10-7: Dirty reads in transactions

3 serializable read The transaction can repeat the same query, and 
receive exactly the same results. No rows can be 
inserted that would appear in the result set.

Number Name Description

T3 Event Sequence T4
begin transaction

update account
set balance = balance - 100
where acct_number = 25

rollback transaction

T3 and T4 start.

T3 updates balance 
for one account by 
subtracting $100.

T4 queries current 
sum of balance for 
accounts.

T4 ends.

T3 rolls back, 
invalidating the 
results from T4.

begin transaction

select sum(balance)
from account
where acct_number < 50

commit transaction



CHAPTER 10    Locking in Adaptive Server

Performance & Tuning Guide 233

If transaction T4 queries the table after T3 updates it, but before it rolls 
back the change, the amount calculated by T4 is off by $100.The update 
statement in transaction T3 acquires an exclusive lock on account. 
However, transaction T4 does not try to acquire a shared lock before 
querying account, so it is not blocked by T3. The opposite is also true. If 
T4 begins to query accounts at isolation level 0 before T3 starts, T3 could 
still acquire its exclusive lock on accounts while T4’s query executes, 
because T4 does not hold any locks on the pages it reads.

At isolation level 0, Adaptive Server performs dirty reads by:

• Allowing another task to read rows, pages, or tables that have 
exclusive locks; that is, to read uncommitted changes to data. 

• Not applying shared locks on rows, pages or tables being searched.

Any data modifications that are performed by T4 while the isolation level 
is set to 0 acquire exclusive locks at the row, page, or table level, and block 
if the data they need to change is locked.

If the table uses allpages locking, a unique index is required to perform an 
isolation level 0 read, unless the database is read-only. The index is 
required to restart the scan if an update by another process changes the 
query’s result set by modifying the current row or page. Forcing the query 
to use a table scan or a non unique index can lead to problems if there is 
significant update activity on the underlying table, and is not 
recommended.

Applications that can use dirty reads may see better concurrency and 
reduced deadlocks than when the same data is accessed at a higher 
isolation level. If transaction T4 requires only an estimate of the current 
sum of account balances, which probably changes frequently in a very 
active table, T4 should query the table using isolation level 0. Other 
applications that require data consistency, such as queries of deposits and 
withdrawals to specific accounts in the table, should avoid using isolation 
level 0.

Isolation level 0 can improve performance for applications by reducing 
lock contention, but can impose performance costs in two ways:

• Dirty reads make in-cache copies of dirty data that the isolation level 
0 application needs to read. 

• If a dirty read is active on a row, and the data changes so that the row 
is moved or deleted, the scan must be restarted, which may incur 
additional logical and physical I/O. 



How isolation levels affect locking 

234  Adaptive Server Enterprise

During deferred update of a data row, there can be a significant time 
interval between the delete of the index row and the insert of the new index 
row. During this interval, there is no index row corresponding to the data 
row. If a process scans the index during this interval at isolation level 0, it 
will not return the old or new value of the data row. See “Deferred 
updates” on page 511.

sp_sysmon reports on these factors. See “Dirty read behavior” on page 
1014.

Isolation Level 1, read committed
Level 1, also known as read committed, prevents dirty reads. Queries at 
level 1 can read only committed changes to data. At isolation level 1, if a 
transaction needs to read a row that has been modified by an incomplete 
transaction in another session, the transaction waits until the first 
transaction completes (either commits or rolls back.) 

For example, compare Table 10-8, showing a transaction executed at 
isolation level 1, to Table 10-7, showing a dirty read transaction.

Table 10-8: Transaction isolation level 1 prevents dirty reads

When the update statement in transaction T5 executes, Adaptive Server 
applies an exclusive lock (a row-level or page-level lock if acct_number is 
indexed; otherwise, a table-level lock) on account. 

T5 Event Sequence T6
begin transaction

update account
set balance = balance - 100
where acct_number = 25

rollback transaction

T5 and T6 start.

T5 updates account 
after getting 
exclusive lock.

T6 tries to get shared 
lock to query account 
but must wait until 
T5 releases its lock.

T5 ends and releases 
its exclusive lock.

T6 gets shared lock, 
queries account, and 
ends.

begin transaction

select sum(balance)
from account
where acct_number < 50

commit transaction



CHAPTER 10    Locking in Adaptive Server

Performance & Tuning Guide 235

If T5 holds an exclusive table lock, T6 blocks trying to acquire its shared 
intent table lock. If T5 holds exclusive page or exclusive row locks, T6 can 
begin executing, but is blocked when it tries to acquire a shared lock on a 
page or row locked by T5. The query in T6 cannot execute (preventing the 
dirty read) until the exclusive lock is released, when T5 ends with the 
rollback.

While the query in T6 holds its shared lock, other processes that need 
shared locks can access the same data, and an update lock can also be 
granted (an update lock indicates the read operation that precedes the 
exclusive-lock write operation), but no exclusive locks are allowed until 
all shared locks have been released.

Isolation Level 2, repeatable read
Level 2 prevents nonrepeatable reads. These occur when one transaction 
reads a row and a second transaction modifies that row. If the second 
transaction commits its change, subsequent reads by the first transaction 
yield results that are different from the original read. Isolation level 2 is 
supported only on data-only-locked tables. In a session at isolation level 2, 
isolation level 3 is also enforced on any tables that use the allpages locking 
scheme. Table 10-9 shows a nonrepeatable read in a transaction at 
isolation level 1.

Table 10-9: Nonrepeatable reads in transactions

T7 Event Sequence T8
begin transaction

select balance
from account
where acct_number = 25

select balance
from account
where acct_number = 25

commit transaction

T7 and T8 start.

T7 queries the balance 
for one account.

T8 updates the balance 
for that same account.

T8 ends.

T7 makes same query 
as before and gets 
different results.

T7 ends.

begin transaction

update account
set balance = balance - 100
where acct_number = 25

commit transaction



How isolation levels affect locking 

236  Adaptive Server Enterprise

If transaction T8 modifies and commits the changes to the account table 
after the first query in T7, but before the second one, the same two queries 
in T7 would produce different results. Isolation level 2 blocks transaction 
T8 from executing. It would also block a transaction that attempted to 
delete the selected row.

Isolation Level 3, serializable reads
Level 3 prevents phantoms. These occur when one transaction reads a set 
of rows that satisfy a search condition, and then a second transaction 
modifies the data (through an insert, delete, or update statement). If the 
first transaction repeats the read with the same search conditions, it obtains 
a different set of rows. In Table 10-10, transaction T9, operating at 
isolation level 1, sees a phantom row in the second query.

Table 10-10: Phantoms in transactions

If transaction T10 inserts rows into the table that satisfy T9’s search 
condition after the T9 executes the first select, subsequent reads by T9 
using the same query result in a different set of rows.

Adaptive Server prevents phantoms by:

• Applying exclusive locks on rows, pages, or tables being changed. It 
holds those locks until the end of the transaction.

T9 Event Sequence T10
begin transaction

select * from account
where acct_number < 25

select * from account
where acct_number < 25

commit transaction

T9 and T10 start.

T9 queries a certain set 
of rows.

T10 inserts a row that 
meets the criteria for 
the query in T9.

T10 ends.

T9 makes the same 
query and gets a 
new row. 

T9 ends.

begin transaction

insert into account
(acct_number, balance)
values (19, 500)

commit transaction



CHAPTER 10    Locking in Adaptive Server

Performance & Tuning Guide 237

• Applying shared locks on rows, pages, or tables being searched. It 
holds those locks until the end of the transaction.

• Using range locks or infinity key locks for certain queries on data-
only-locked tables.

Holding the shared locks allows Adaptive Server to maintain the 
consistency of the results at isolation level 3. However, holding the shared 
lock until the transaction ends decreases Adaptive Server’s concurrency 
by preventing other transactions from getting their exclusive locks on the 
data.

Compare the phantom, shown in Table 10-10, with the same transaction 
executed at isolation level 3, as shown in Table 10-11.

Table 10-11: Avoiding phantoms in transactions

In transaction T11, Adaptive Server applies shared page locks (if an index 
exists on the acct_number argument) or a shared table lock (if no index 
exists) and holds the locks until the end of T11. The insert in T12 cannot 
get its exclusive lock until T11 releases its shared locks. If T11 is a long 
transaction, T12 (and other transactions) may wait for longer periods of 
time. As a result, you should use level 3 only when required.

T11 Event Sequence T12
begin transaction

select * from 
account holdlock
where acct_number < 25

select * from 
account holdlock
where acct_number < 25

commit transaction

T11 and T12 start.

T11 queries account 
and holds acquired 
shared locks. 

T12 tries to insert row 
but must wait until T11 
releases its locks.

T11 makes same query 
and gets same results.

T11 ends and releases 
its shared locks.

T12 gets its exclusive 
lock, inserts new row, 
and ends.

begin transaction

insert into account
(acct_number, balance)
values (19, 500)

commit transaction



Lock types and duration during query processing 

238  Adaptive Server Enterprise

Adaptive Server default isolation level
Adaptive Server’s default isolation level is 1, which prevents dirty reads. 
Adaptive Server enforces isolation level 1 by:

• Applying exclusive locks on pages or tables being changed. It holds 
those locks until the end of the transaction. Only a process at isolation 
level 0 can read a page locked by an exclusive lock.

• Applying shared locks on pages being searched. It releases those 
locks after processing the row, page or table.

Using exclusive and shared locks allows Adaptive Server to maintain the 
consistency of the results at isolation level 1. Releasing the shared lock 
after the scan moves off a page improves Adaptive Server’s concurrency 
by allowing other transactions to get their exclusive locks on the data.

Lock types and duration during query processing
The types and the duration of locks acquired during query processing 
depend on the type of command, the locking scheme of the table, and the 
isolation level at which the command is run.

The lock duration depends on the isolation level and the type of query. 
Lock duration can be one of the following:

• Scan duration – Locks are released when the scan moves off the row 
or page, for row or page locks, or when the scan of the table 
completes, for table locks.

• Statement duration – Locks are released when the statement execution 
completes.

• Transaction duration – Locks are released when the transaction 
completes.

Table 10-12 shows the types of locks acquired by queries at different 
isolation levels, for each locking scheme for queries that do not use 
cursors. Table 10-13 shows information for cursor-based queries.



CHAPTER 10    Locking in Adaptive Server

Performance & Tuning Guide 239

Table 10-12: Lock type and duration without cursors

Statement
Isolation 
Level

Locking 
Scheme

Table 
Lock

Data
Page
Lock

Index
Page 
Lock

Data
Row 
Lock Duration

select 
readtext
any type of 
scan

0 allpages
datapages
datarows

-
-
-

-
-
-

-
-
-

-
-
-

No locks are acquired.

1
2 with
noholdlock
3 with
noholdlock

allpages
datapages
datarows

IS
IS
IS

S
*
-

S
-
-

-
-
*

* Depends on setting of read 
committed with lock. See 
“Locking for select queries at 
isolation Level 1” on page 
241.

2 allpages
datapages
datarows

IS
IS
IS

S
S
-

S
-
-

-
-
S

Locks are released at the end 
of the transaction. See 
“Isolation Level 2 and 
Allpages-Locked tables” on 
page 242.

select via 
index scan

3
1 with holdlock
2 with holdlock

allpages
datapages
datarows

IS
IS
IS

S
S
-

S
-
-

-
-
S

Locks are released at the end 
of the transaction. 

select
via 
table scan

3
1 with holdlock
2 with holdlock

allpages
datapages
datarows

IS
S
S

S
-
-

-
-
-    

-
-
-

Locks are released at the end 
of the transaction.

insert 0, 1, 2, 3 allpages
datapages
datarows

IX
IX
IX

X
X
-

X
-
-

-
-
X

Locks are released at the end 
of the transaction.

writetext 0, 1, 2, 3 allpages
datapages
datarows

IX
IX
IX

X
X
-

-
-
-

-
-
X

Locks are held on first text 
page or row; locks released at 
the end of the transaction.

delete
update
any type of 
scan

0, 1, 2 allpages
datapages
datarows

IX
IX
IX

U, X
U, X
-

U, X
-
-

-
-
U, X

“U” locks are released after 
the statement completes.
“IX” and “X” locks are 
released at the end of the 
transaction.

delete
update
via index 
scan

3 allpages
datapages
datarows

IX
IX
IX

U, X
U, X
-

U, X
-
-

-
-
U, X

“U” locks are released after 
the statement completes. “IX” 
and “X” locks are released at 
the end of the transaction.

delete
update
via table 
scan

3 allpages
datapages
datarows

IX
X
X

U, X
-
-

-
-
-

-
-
-

Locks are released at the end 
of the transaction.

Key: IS intent shared, IX intent exclusive, S shared, U update, X exclusive



Lock types and duration during query processing 

240  Adaptive Server Enterprise

Table 10-13: Lock type and duration with cursors

Statement
Isolation 
Level

Locking 
Scheme

Table 
Lock

Data 
Page 
Lock

Index
Page 
Lock

Data 
Row 
Lock Duration

select 
(without for 
clause) 
select... for 
read only

0 allpages
datapages
datarows

-
-
-

-
-
-

-
-
-

-
-
-

No locks are acquired.

1
2 with 
noholdlock
3 with 
noholdlock

allpages
datapages
datarows

IS
IS
IS

S
*
-

S
-
-

-
-
*

* Depends on setting of read 
committed with lock. See 
“Locking for select queries 
at isolation Level 1” on page 
241.

2, 3

1 with holdlock

2 with holdlock

allpages
datapages
datarows

IS
IS
IS

S
S
-

S
-
-

-
-
S

Locks become transactional 
after the cursor moves out of 
the page/row. Locks are 
released at the end of the 
transaction.

select...for 
update

1 allpages
datapages
datarows

IX
IX
IX

U, X
U, X
-

X
-
-

-
-
U, X

“U” locks are released after 
the cursor moves out of the 
page/row. “IX” and “X” 
locks are released at the end 
of the transaction.

select...for 
update with 
shared

1 allpages
datapages
datarows

IX
IX
IX

S, X
S, X
-

X
-
-

-
-
S, X

“S” locks are released after 
the cursor moves out of 
page/row. “IX” and “X” 
locks are released at the end 
of the transaction.

select...for 
update

2, 3, 1 holdlock

2, holdlock

allpages
datapages
datarows

IX
IX
IX

U, X
U, X
-

X
-
-

-
-
U, X

Locks become transactional 
after the cursor moves out of 
the page/row. Locks are 
released at the end of the 
transaction.

select...for 
update with 
shared

2, 3

1 with holdlock

2 with holdlock

allpages
datapages
datarows

IX
IX
IX

S, X
S, X
-

X
-
-

-
-
S, X

Locks become transactional 
after the cursor moves out of 
the page/row. Locks are 
released at the end of the 
transaction.

Key: IS intent shared, IX intent exclusive, S shared, U update, X exclusive



CHAPTER 10    Locking in Adaptive Server

Performance & Tuning Guide 241

Lock types during create index commands
Table 10-14 describes the types of locks applied by Adaptive Server for 
create index statements:

Table 10-14: Summary of locks for insert and create index 
statements

Locking for select queries at isolation Level 1
When a select query on an allpages-locked table performs a table scan at 
isolation level 1, it first acquires a shared intent lock on the table and then 
acquires a shared lock on the first data page. It locks the next data page, 
and drops the lock on the first page, so that the locks “walk through” the 
result set. As soon as the query completes, the lock on the last data page is 
released, and then the table-level lock is released. Similarly, during index 
scans on an allpages-locked table, overlapping locks are held as the scan 
descends from the index root page to the data page. Locks are also held on 
the outer table of a join while matching rows from inner table are scanned.

select queries on data-only-locked tables first acquire a shared intent table 
lock. Locking behavior on the data pages and data rows is configurable 
with the parameter read committed with lock, as follows:

• If read committed with lock is set to 0 (the default) then select queries 
read the column values with instant-duration page or row locks. The 
required column values or pointers for the row are read into memory, 
and the lock is released. Locks are not held on the outer tables of joins 
while rows from the inner tables are accessed. This reduces 
deadlocking and improves concurrency.

If a select query needs to read a row that is locked with an 
incompatible lock, the query still blocks on that row until the 
incompatible lock is released. Setting read committed with lock to 0 
does not affect the isolation level; only committed rows are returned 
to the user.

Statement Table Lock Data Page Lock

create clustered index X -

create nonclustered index S -

Key: IX = intent exclusive, S = shared, X = exclusive



Lock types and duration during query processing 

242  Adaptive Server Enterprise

• If read committed with lock is set to 1, select queries acquire shared 
page locks on datapages-locked tables and shared row locks on 
datarows-locked tables. The lock on the first page or row is held, then 
the lock is acquired on the second page or row and the lock on the first 
page or row is dropped.

Cursors must be declared as read-only to avoid holding locks during scans 
when read committed with lock is set to 0. Any implicitly or explicitly up 
datable cursor on a data-only-locked table holds locks on the current page 
or row until the cursor moves off the row or page. When read committed 
with lock is set to 1, read-only cursors hold a shared page or row lock on 
the row at the cursor position.

read committed with lock does not affect locking behavior on allpages-
locked tables. For information on setting the configuration parameter, see 
in the System Administration Guide.

Table scans and isolation Levels 2 and 3
This section describes special considerations for locking during table 
scans at isolation levels 2 and 3.

Table scans and table locks at isolation Level 3

When a query performs a table scan at isolation level 3 on a data-only-
locked table, a shared or exclusive table lock provides phantom protection 
and reduces the locking overhead of maintaining a large number of row or 
page locks. On an allpages-locked table, an isolation level 3 scan first 
acquires a shared or exclusive intent table lock and then acquires and holds 
page-level locks until the transaction completes or until the lock 
promotion threshold is reached and a table lock can be granted.

Isolation Level 2 and Allpages-Locked tables

On allpages-locked tables, Adaptive Server supports isolation level 2 
(repeatable reads) by also enforcing isolation level 3 (serializable reads). 
If transaction level 2 is set in a session, and an allpages-locked table is 
included in a query, isolation level 3 will also be applied on the allpages-
locked tables. Transaction level 2 will be used on all data-only-locked 
tables in the session.



CHAPTER 10    Locking in Adaptive Server

Performance & Tuning Guide 243

When update locks are not required
All update and delete commands on an allpages-locked table first acquire 
an update lock on the data page and then change to an exclusive lock if the 
row meets the qualifications in the query.

Updates and delete commands on data-only-locked tables do not first 
acquire update locks when:

• The query includes search arguments for every key in the index 
chosen by the query, so that the index unambiguously qualifies the 
row, and 

• The query does not contain an or clause.

Updates and deletes that meet these requirements immediately acquire an 
exclusive lock on the data page or data row. This reduces lock overhead. 

Locking during or processing
In some cases, queries using or clauses are processed as a union of more 
than one query. Although some rows may match more than one of the or 
conditions, each row must be returned only once. Different indexes can be 
used for each or clause. If any of the clauses do not have a useful index, 
the query is performed using a table scan. 

The table’s locking scheme and the isolation level affect how or processing 
is performed and the types and duration of locks that are held during the 
query.

Processing or queries for Allpages-Locked tables

If the or query uses the OR Strategy (different or clauses might match the 
same rows), query processing retrieves the row IDs and matching key 
values from the index and stores them in a worktable, holding shared locks 
on the index pages containing the rows. When all row IDs have been 
retrieved, the worktable is sorted to remove duplicate values. Then, the 
worktable is scanned, and the row IDs are used to retrieve the data rows, 
acquiring shared locks on the data pages. The index and data page locks 
are released at the end of the statement (for isolation level 1) or at the end 
of the transaction (for isolation levels 2 and 3).



Lock types and duration during query processing 

244  Adaptive Server Enterprise

If the or query has no possibility of returning duplicate rows, no worktable 
sort is needed. At isolation level 1, locks on the data pages are released as 
soon as the scan moves off the page.

Processing or queries for Data-Only-Locked tables

On data-only-locked tables, the type and duration of locks acquired for or 
queries using the OR Strategy (when multiple clauses might match the 
same rows) depend on the isolation level.

Processing or queries at isolation Levels 1 and 2

No locks are acquired on the index pages or rows of data-only-locked 
tables while row IDs are being retrieved from indexes and copied to a 
worktable. After the worktable is sorted to remove duplicate values, the 
data rows are re-qualified when the row IDs are used to read data from the 
table. If any rows were deleted, they are not returned. If any rows were 
updated, they are re-qualified by applying the full set of query clauses to 
them. The locks are released when the row qualification completes, for 
isolation level 1, or at the end of the transaction, for isolation level 2.

Processing or queries at isolation Level 3

Isolation level 3 requires serializable reads. At this isolation level, or 
queries obtain locks on the data pages or data rows during the first phase 
of or processing, as the worktable is being populated. These locks are held 
until the transaction completes. Re-qualification of rows is not required.

Skipping uncommitted inserts during selects
select queries on data-only-locked tables do not block on uncommitted 
inserts when the following conditions are true:

• The table uses datarows locking, and

• The isolation level is 1 or 2.



CHAPTER 10    Locking in Adaptive Server

Performance & Tuning Guide 245

Pseudo column-level locking
During concurrent transactions that involve select queries and update 
commands, pseudo column-level locking can allow some queries to return 
values from locked rows, and can allow other queries to avoid blocking on 
locked rows that do not qualify. Pseudo column-level locking can reduce 
blocking:

• When the select query does not reference columns on which there is 
an uncommitted update.

• When the where clause of a select query references one or more 
columns affected by an uncommitted update, but the row does not 
qualify due to conditions in other clauses.

• When neither the old nor new value of the updated column qualifies, 
and an index containing the updated column is being used.

Select queries that do not reference the updated column
A select query on a datarows-locked table can return values without 
blocking, even though a row is exclusively locked when:

• The query does not reference an updated column in the select list or 
any clauses (where, having, group by, order by or compute), and

• The query does not use an index that includes the updated column

Transaction T14 in Table 10-15 requests information about a row that is 
locked by T13. However, since T14 does not include the updated column 
in the result set or as a search argument, T14 does not block on T13’s 
exclusive row lock.



Pseudo column-level locking 

246  Adaptive Server Enterprise

Table 10-15: Pseudo-column-level locking with mutually-exclusive 
columns

If T14 uses an index that includes the updated column (for example, 
acct_number, balance), the query blocks trying to read the index row.

For select queries to avoid blocking when they do not reference updated 
columns, all of the following conditions must be met:

• The table must use datarows locking.

• The columns referenced in the select query must be among the first 32 
columns of the table.

• The select query must run at isolation level 1.

• The select query must not use an index that contains the updated 
column.

• The configuration parameter read committed with lock must be set to 0, 
the default value.

Using alternative predicates to skip nonqualifying rows
When a select query includes multiple where clauses linked with and, 
Adaptive Server can apply the qualification for any columns that have not 
been affected by an uncommitted update of a row. If the row does not 
qualify because of one of the clauses on an unmodified column, the row 
does not need to be returned, so the query does not block.

T13 Event Sequence T14
begin transaction

update accounts 
set balance = 50
where acct_number = 35

commit transaction

T13 and T14 start.

T13 updates accounts 
and holds an exclusive 
row lock.

T14 queries the same 
row in accounts, but 
does not access the 
updated column. T14 
does not block.

begin transaction

select lname, fname, phone
from accounts 
where acct_number = 35
commit transaction



CHAPTER 10    Locking in Adaptive Server

Performance & Tuning Guide 247

If the row qualifies when the conditions on the unmodified columns have 
been checked, and the conditions described in the next section, Qualifying 
old and new values for uncommitted updates does not allow the query to 
proceed, then the query blocks until the lock is released.

For example, transaction T15 in Table 10-16 updates balance, while 
transaction T16 includes balance in the result set and in a search clause. 
However, T15 does not update the branch column, so T16 can apply that 
search argument.

Since the branch value in the row affected by T15 is not 77, the row does 
not qualify, and the row is skipped, as shown. If T15 updated a row where 
branch equals 77, a select query would block until T15 either commits or 
rolls back.

Table 10-16: Pseudo-column-level locking with multiple predicates

For select queries to avoid blocking when they reference columns in 
addition to columns that are being updated, all of the following conditions 
must be met:

• The table must use datarows or datapages locking.

• At least one of the search clauses of the select query must be on a 
column that among the first 32 columns of the table.

• The select query must run at isolation level 1 or 2.

• The configuration parameter read committed with lock must be set to 0, 
the default value.

T15 Event Sequence T16
begin transaction

update accounts 
set balance = 80
where acct_number = 20
and branch = 23

commit transaction

T15 and T16 start.

T15 updates accounts 
and holds an exclusive 
row lock.

T16 queries accounts, 
but does not block 
because the branch 
qualification can be 
applied.

begin transaction

select acct_number, balance
from accounts 
where balance < 50 
and branch = 77
commit tran



Pseudo column-level locking 

248  Adaptive Server Enterprise

Qualifying old and new values for uncommitted updates
If a select query includes conditions on a column affected by an 
uncommitted update, and the query uses an index on the updated column, 
the query can examine both the old and new values for the column:

• If neither the old or new value meets the search criteria, the row can 
be skipped, and the query does not block.

• If either the old or new value, or both of them qualify, the query blocks 
In Table 10-17, if the original balance is $80, and the new balance is 
$90, the row can be skipped, as shown. If either of the values is less 
than $50, T18 must wait until T17 completes. 

Table 10-17: Checking old and new values for an uncommitted 
update

For select queries to avoid blocking when old and new values of 
uncommitted updates do not qualify, all of the following conditions must 
be met:

• The table must use datarows or datapages locking.

• At least one of the search clauses of the select query must be on a 
column that among the first 32 columns of the table.

• The select query must run at isolation level 1 or 2.

• The index used for the select query must include the updated column.

• The configuration parameter read committed with lock must be set to 0, 
the default value.

T17 Event Sequence T18
begin transaction

update accounts 
set balance = balance + 10
where acct_number = 20

commit transaction

T17 and T18 start.

T17 updates accounts 
and holds an exclusive 
row lock; the original 
balance was 80, so the 
new balance is 90.

T18 queries accounts 
using an index that 
includes balance. It 
does not block since 
balance does not 
qualify

begin transaction

select acct_number, balance
from accounts 
where balance < 50 
commit tran



CHAPTER 10    Locking in Adaptive Server

Performance & Tuning Guide 249

Suggestions to reduce contention
To help reduce lock contention between update and select queries:

• Use datarows or datapages locking for tables with lock contention due 
to updates and selects. 

• If tables have more than 32 columns, make the first 32 columns the 
columns that are most frequently used as search arguments and in 
other query clauses.

• Select only needed columns. Avoid using select * when all columns 
are not needed by the application.

• Use any available predicates for select queries. When a table uses 
datapages locking, the information about updated columns is kept for 
the entire page, so that if a transaction updates some columns in one 
row, and other columns in another row on the same page, any select 
query that needs to access that page must avoid using any of the 
updated columns. 



Pseudo column-level locking 

250  Adaptive Server Enterprise



Performance & Tuning Guide 251

C H A P T E R  1 1 Using Locking Commands

This chapter discusses the types of locks used in Adaptive Server and the 
commands that can affect locking. 

Specifying the locking scheme for a table
The locking schemes in Adaptive Server provide you with the flexibility 
to choose the best locking scheme for each table in your application and 
to adapt the locking scheme for a table if contention or performance 
requires a change. The tools for specifying locking schemes are:

• sp_configure, to specify a server-wide default locking scheme 

• create table to specify the locking scheme for newly created tables

• alter table to change the locking scheme for a table to any other 
locking scheme

• select into to specify the locking scheme for a table created by 
selecting results from other tables

Specifying a server-wide locking scheme
The lock scheme configuration parameter sets the locking scheme to be 
used for any new table, if the create table command does not specify the 
lock scheme. 

To see the current locking scheme, use: 

Topic Topic
Specifying the locking scheme for a table 251

Controlling isolation levels 257

Readpast locking 262

Cursors and locking 262

Additional locking commands 265



Specifying the locking scheme for a table 

252  Adaptive Server Enterprise

sp_configure "lock scheme" 

Parameter Name   Default     Memory Used Config Value Run Value 
---------------- ----------- ----------- ------------ -----------
lock scheme      allpages              0 datarows    datarows

The syntax for changing the locking scheme is:

sp_configure "lock scheme", 0, 
    {allpages | datapages | datarows}

This command sets the default lock scheme for the server to datapages: 

sp_configure "lock scheme", 0, datapages

When you first install Adaptive Server, lock scheme is set to allpages.

Specifying a locking scheme with create table
You can specify the locking scheme for a new table with the create table 
command. The syntax is: 

create table table_name (column_name_list)
[lock {datarows | datapages | allpages}]

If you do not specify the lock scheme for a table, the default value for your 
server is used, as determined by the setting of the lock scheme 
configuration parameter. 

This command specifies datarows locking for the new_publishers table:

create table new_publishers 
(pub_id char(4) not null,
 pub_name varchar(40) null,
 city varchar(20) null,
 state char(2) null)
lock datarows

Specifying the locking scheme with create table overrides the default 
server-wide setting. 

See “Specifying a server-wide locking scheme” on page 251 for more 
information.



CHAPTER 11    Using Locking Commands

Performance & Tuning Guide 253

Changing a locking scheme with alter table
Use the alter table command to change the locking scheme for a table. The 
syntax is: 

alter table table_name 
lock {allpages | datapages | datarows}

This command changes the locking scheme for the titles table to datarows 
locking:

alter table titles lock datarows

alter table supports changing from one locking scheme to any other locking 
scheme. Changing from allpages locking to data-only locking requires 
copying the data rows to new pages and re-creating any indexes on the 
table.

The operation takes several steps and requires sufficient space to make the 
copy of the table and indexes. The time required depends on the size of the 
table and the number of indexes.

Changing from datapages locking to datarows locking or vice versa does 
not require copying data pages and rebuilding indexes. Switching between 
data-only locking schemes only updates system tables, and completes in a 
few seconds.

Note  You cannot use data-only locking for tables that have rows that are 
at, or near, the maximum length of 1962 (including the two bytes for the 
offset table).

For data-only-locked tables with only fixed-length columns, the maximum 
user data row size is 1960 bytes (including the 2 bytes for the offset table).

Tables with variable-length columns require 2 additional bytes for each 
column that is variable-length (this includes columns that allow nulls.) 

See Chapter 16, “Determining Sizes of Tables and Indexes,” for 
information on rows and row overhead.

Before and after changing locking schemes
Before you change from allpages locking to data-only locking or vice 
versa, the following steps are recommended:



Specifying the locking scheme for a table 

254  Adaptive Server Enterprise

• If the table is partitioned, and update statistics has not been run since 
major data modifications to the table, run update statistics on the table 
that you plan to alter. alter table...lock performs better with accurate 
statistics for partitioned tables.

Changing the locking scheme does not affect the distribution of data 
on partitions; rows in partition 1 are copied to partition 1 in the copy 
of the table.

• Perform a database dump.

• Set any space management properties that should be applied to the 
copy of the table or its rebuilt indexes.

See Chapter 14, “Setting Space Management Properties,” for more 
information. 

• Determine if there is enough space. 

See “Determining the space available for maintenance activities” on 
page 404.

• If any of the tables in the database are partitioned and require a 
parallel sort:

• Use sp_dboption to set the database option 
select into/bulkcopy/pllsort to true and run checkpoint in the 
database. 

• Set your configuration for optimum parallel sort performance.

After alter table completes

• Run dbcc checktable on the table and dbcc checkalloc on the database 
to insure database consistency.

• Perform a database dump.

Note  After you have changed the locking scheme from allpages 
locking to data-only locking or vice versa, you cannot use the dump 
transaction to back up the transaction log.

You must first perform a full database dump.



CHAPTER 11    Using Locking Commands

Performance & Tuning Guide 255

Expense of switching to or from allpages locking
Switching from allpages locking to data-only locking or vice versa is an 
expensive operation, in terms of I/O cost. The amount of time required 
depends on the size of the table and the number of indexes that must be re-
created. Most of the cost comes from the I/O required to copy the tables 
and re-create the indexes. Some logging is also required. 

The alter table...lock command performs the following actions when 
moving from allpages locking to data-only locking or from data-only 
locking to allpages locking:

• Copies all rows in the table to new data pages, formatting rows 
according to the new format. If you are changing to data-only locking, 
any data rows of less than 10 bytes are padded to 10 bytes during this 
step. If you are changing to allpages locking from data-only locking, 
extra padding is stripped from rows of less than 10 bytes.

• Drops and re-creates all indexes on the table. 

• Deletes the old set of table pages.

• Updates the system tables to indicate the new locking scheme.

• Updates a counter maintained for the table, to cause the recompilation 
of query plans.

If a clustered index exists on the table, rows are copied in clustered index 
key order onto the new data pages. If no clustered index exists, the rows 
are copied in page-chain order for an allpages-locking to data-only-
locking conversion.

The entire alter table...lock command is performed as a single transaction 
to ensure recoverability. An exclusive table lock is held on the table for the 
duration of the transaction. 

Switching from datapages locking to datarows locking or vice versa does 
not require that you copy pages or re-create indexes. It updates only the 
system tables. You are not required to set sp_dboption "select 
into/bulkcopy/pllsort".



Specifying the locking scheme for a table 

256  Adaptive Server Enterprise

Sort performance during alter table
If the table being altered is partitioned, parallel sorting can be used while 
rebuilding the indexes. alter table performance can be greatly improved if 
the data cache and server are configured for optimal parallel sort 
performance. 

During alter table, the indexes are re-created one at a time. If your system 
has enough engines, data cache, and I/O throughput to handle 
simultaneous create index operations, you can reduce the overall time 
required to change locking schemes by:

• Droping the nonclustered indexes

• Altering the locking scheme

• Configuring for best parallel sort performance

• Re-creating two or more nonclustered indexes at once

Specifying a locking scheme with select into
You can specify a locking scheme when you create a new table, using the 
select into command. The syntax is: 

select [all | distinct] select_list 
into [[database.]owner.]table_name
lock {datarows | datapages | allpages}

from ...

If you do not specify a locking scheme with select into, the new table uses 
the server-wide default locking scheme, as defined by the configuration 
parameter lock scheme.

This command specifies datarows locking for the table it creates:

select title_id, title, price 
into bus_titles
lock datarows 
from titles
where type = "business"

Temporary tables created with the #tablename form of naming are single-
user tables, so lock contention is not an issue. For temporary tables that 
can be shared among multiple users, that is, tables created with 
tempdb..tablename, any locking scheme can be used.



CHAPTER 11    Using Locking Commands

Performance & Tuning Guide 257

Controlling isolation levels
You can set the transaction isolation level used by select commands:

• For all queries in the session, with the set transaction isolation level 
command

• For an individual query, with the at isolation clause

• For specific tables in a query, with the holdlock, noholdlock, and shared 
keywords

When choosing locking levels in your applications, use the minimum 
locking level that is consistent with your business model. The combination 
of setting the session level while providing control over locking behavior 
at the query level allows concurrent transactions to achieve the results that 
are required with the least blocking.

Note  If you use transaction isolation level 2 (repeatable reads) on 
allpages-locked tables, isolation level 3 (serializing reads) is also 
enforced.

For more information on isolation levels, see the System Administration 
Guide.

Setting isolation levels for a session
The SQL standard specifies a default isolation level of 3. To enforce this 
level, Transact-SQL provides the set transaction isolation level command. 
For example, you can make level 3 the default isolation level for your 
session as follows:

set transaction isolation level 3

If the session has enforced isolation level 3, you can make the query 
operate at level 1 using noholdlock, as described below.

If you are using the Adaptive Server default isolation level of 1, or if you 
have used the set transaction isolation level command to specify level 0 or 
2, you can enforce level 3 by using the holdlock option to hold shared locks 
until the end of a transaction.

The current isolation level for a session can be determined with the global 
variable @@isolation.



Controlling isolation levels 

258  Adaptive Server Enterprise

Syntax for query-level and table-level locking options
The holdlock, noholdlock, and shared options can be specified for each 
table in a select statement, with the at isolation clause applied to the entire 
query. 

select select_list
from table_name [holdlock | noholdlock] [shared]

[, table_name [[holdlock | noholdlock] [shared]
{where/group by/order by/compute clauses}
[at isolation {

[read uncommitted | 0] | 
[read committed | 1] |
[repeatable read | 2]| 
[serializable | 3]]

Here is the syntax for the readtext command: 

readtext [[database.]owner.]table_name.column_name
text_pointer offset size 
[holdlock | noholdlock] [readpast]
[using {bytes | chars | characters}]
[at isolation {

[read uncommitted | 0] | 
[read committed | 1] |
[repeatable read | 2]| 
[serializable | 3]}]

Using holdlock, noholdlock, or shared
You can override a session’s locking level by applying the holdlock, 
noholdlock, and shared options to individual tables in select or readtext 
commands:

These keywords affect locking for the transaction: if you use holdlock, all 
locks are held until the end of the transaction.

Level to use Keyword Effect

1 noholdlock Do not hold locks until the end of the 
transaction; use from level 3 to enforce 
level 1

2, 3 holdlock Hold shared locks until the transaction 
completes; use from level 1 to enforce 
level 3

N/A shared Applies shared rather than update locks 
for select statements in cursors open for 
update



CHAPTER 11    Using Locking Commands

Performance & Tuning Guide 259

If you specify holdlock in a query while isolation level 0 is in effect for the 
session, Adaptive Server issues a warning and ignores the holdlock clause, 
not acquiring locks as the query executes.

If you specify holdlock and read uncommitted, Adaptive Server prints an 
error message, and the query is not executed.

Using the at isolation clause
You can change the isolation level for all tables in the query by using the 
at isolation clause with a select or readtext command. The options in the at 
isolation clause are:

For example, the following statement queries the titles table at isolation 
level 0:

select *
from titles
at isolation read uncommitted

For more information about the transaction isolation level option and the at 
isolation clause, see the Transact-SQL User’s Guide.

Level to use Option Effect

0 read 
uncommitted

Reads uncommitted changes; use from 
level 1, 2, or 3 queries to perform dirty 
reads (level 0).

1 read committed Reads only committed changes; wait 
for locks to be released; use from level 
0 to read only committed changes, but 
without holding locks.

2 repeatable read Holds shared locks until the transaction 
completes; use from level 0 or level 1 
queries to enforce level 2.

3 serializable Holds shared locks until the transaction 
completes; use from level 1 or level 2 
queries to enforce level 3.



Controlling isolation levels 

260  Adaptive Server Enterprise

Making locks more restrictive
If isolation level 1 is sufficient for most of your work, but some queries 
require higher levels of isolation, you can selectively enforce the higher 
isolation level using clauses in the select statement:

• Use repeatable read to enforce level 2

• Use holdlock or at isolation serializable to enforce level 3

The holdlock keyword makes a shared page or table lock more restrictive. 
It applies:

• To shared locks

• To the table or view for which it is specified

• For the duration of the statement or transaction containing the 
statement

The at isolation clause applies to all tables in the from clause, and is applied 
only for the duration of the transaction. The locks are released when the 
transaction completes.

In a transaction, holdlock instructs Adaptive Server to hold shared locks 
until the completion of that transaction instead of releasing the lock as 
soon as the required table, view, or data page is no longer needed. 
Adaptive Server always holds exclusive locks until the end of a 
transaction.

The use of holdlock in the following example ensures that the two queries 
return consistent results:

begin transaction
select branch, sum(balance)
    from account holdlock
    group by branch
select sum(balance) from account
commit transaction

The first query acquires a shared table lock on account so that no other 
transaction can update the data before the second query runs. This lock is 
not released until the transaction including the holdlock command 
completes.



CHAPTER 11    Using Locking Commands

Performance & Tuning Guide 261

Using read committed

If your session isolation level is 0, and you need to read only committed 
changes to the database, you can use the at isolation level read committed 
clause.

Making locks less restrictive
In contrast to holdlock, the noholdlock keyword prevents Adaptive Server 
from holding any shared locks acquired during the execution of the query, 
regardless of the transaction isolation level currently in effect.

noholdlock is useful in situations where your transactions require a default 
isolation level of 2 or 3. If any queries in those transactions do not need to 
hold shared locks until the end of the transaction, you can specify 
noholdlock with those queries to improve concurrency.

For example, if your transaction isolation level is set to 3, which would 
normally cause a select query to hold locks until the end of the transaction, 
this command releases the locks when the scan moves off the page or row:

select balance from account noholdlock
    where acct_number < 100

Using read uncommitted

If your session isolation level is 1, 2, or 3, and you want to perform dirty 
reads, you can use the at isolation level read uncommitted clause.

Using shared

The shared keyword instructs Adaptive Server to use a shared lock 
(instead of an update lock) on a specified table or view in a cursor.

See “Using the shared keyword” on page 263 for more information.



Readpast locking 

262  Adaptive Server Enterprise

Readpast locking
Readpast locking allows select and readtext queries to silently skip all 
rows or pages locked with incompatible locks. The queries do not block, 
terminate, or return error or advisory messages to the user. It is largely 
designed to be used in queue-processing applications.

In general, these applications allow queries to return the first unlocked row 
that meets query qualifications. An example might be an application 
tracking calls for service: the query needs to find the row with the earliest 
timestamp that is not locked by another repair representative.

For more information on readpast locking, see the Transact-SQL User’s 
Guide.

Cursors and locking
Cursor locking methods are similar to the other locking methods in 
Adaptive Server. For cursors declared as read only or declared without the 
for update clause, Adaptive Server uses a shared page lock on the data page 
that includes the current cursor position.

When additional rows for the cursor are fetched, Adaptive Server acquires 
a lock on the next page, the cursor position is moved to that page, and the 
previous page lock is released (unless you are operating at isolation level 
3).

For cursors declared with for update, Adaptive Server uses update page 
locks by default when scanning tables or views referenced with the for 
update clause of the cursor.

If the for update list is empty, all tables and views referenced in the from 
clause of the select statement receive update locks. An update lock is a 
special type of read lock that indicates that the reader may modify the data 
soon. An update lock allows other shared locks on the page, but does not 
allow other update or exclusive locks.

If a row is updated or deleted through a cursor, the data modification 
transaction acquires an exclusive lock. Any exclusive locks acquired by 
updates through a cursor in a transaction are held until the end of that 
transaction and are not affected by closing the cursor.



CHAPTER 11    Using Locking Commands

Performance & Tuning Guide 263

This is also true of shared or update locks for cursors that use the holdlock 
keyword or isolation level 3. 

The following describes the locking behavior for cursors at each isolation 
level:

• At level 0, Adaptive Server uses no locks on any base table page that 
contains a row representing a current cursor position. Cursors acquire 
no read locks for their scans, so they do not block other applications 
from accessing the same data.

However, cursors operating at this isolation level are not updatable, 
and they require a unique index on the base table to ensure accuracy.

• At level 1, Adaptive Server uses shared or update locks on base table 
or leaf-level index pages that contain a row representing a current 
cursor position.

The page remains locked until the current cursor position moves off 
the page as a result of fetch statements.

• At level 2 or 3, Adaptive Server uses shared or update locks on any 
base table or leaf-level index pages that have been read in a 
transaction through the cursor.

Adaptive Server holds the locks until the transaction ends; it does not 
release the locks when the data page is no longer needed or when the 
cursor is closed.

If you do not set the close on endtran or chained options, a cursor remains 
open past the end of the transaction, and its current page locks remain in 
effect. It may also continue to acquire locks as it fetches additional rows.

Using the shared keyword
When declaring an updatable cursor using the for update clause, you can 
tell Adaptive Server to use shared page locks (instead of update page 
locks) in the declare cursor statement: 

declare cursor_name cursor
for select select_list
from {table_name | view_name} shared
for update [of column_name_list]

This allows other users to obtain an update lock on the table or an 
underlying table of the view. 



Cursors and locking 

264  Adaptive Server Enterprise

You can use the holdlock keyword in conjunction with shared after each 
table or view name. holdlock must precede shared in the select statement. 
For example:

declare authors_crsr cursor
for select au_id, au_lname, au_fname
    from authors holdlock shared
    where state != ’CA’
    for update of au_lname, au_fname

These are the effects of specifying the holdlock or shared options when 
defining an updatable cursor:

• If you do not specify either option, the cursor holds an update lock on 
the row or on the page containing the current row.

Other users cannot update, through a cursor or otherwise, the row at 
the cursor position (for datarows-locked tables) or any row on this 
page (for allpages and datapages-locked tables).

Other users can declare a cursor on the same tables you use for your 
cursor, and can read data, but they cannot get an update or exclusive 
lock on your current row or page.

• If you specify the shared option, the cursor holds a shared lock on the 
current row or on the page containing the currently fetched row.

Other users cannot update, through a cursor or otherwise, the current 
row, or the rows on this page. They can, however, read the row or rows 
on the page.

• If you specify the holdlock option, you hold update locks on all the 
rows or pages that have been fetched (if transactions are not being 
used) or only the pages fetched since the last commit or rollback (if in 
a transaction).

Other users cannot update, through a cursor or otherwise, currently 
fetched rows or pages.

Other users can declare a cursor on the same tables you use for your 
cursor, but they cannot get an update lock on currently fetched rows 
or pages. 

• If you specify both options, the cursor holds shared locks on all the 
rows or pages fetched (if not using transactions) or on the rows or 
pages fetched since the last commit or rollback.

Other users cannot update, through a cursor or otherwise, currently 
fetched rows or pages. 



CHAPTER 11    Using Locking Commands

Performance & Tuning Guide 265

Additional locking commands

lock table Command
In transactions, you can explicitly lock a table with the lock table 
command. 

• To immediately lock the entire table, rather than waiting for lock 
promotion to take effect.

• When the query or transactions uses multiple scans, and none of the 
scans locks a sufficient number of pages or rows to trigger lock 
promotion, but the total number of locks is very large.

• When large tables, especially those using datarows locking, need to be 
accessed at transaction level 2 or 3, and lock promotion is likely to be 
blocked by other tasks. Using lock table can prevent running out of 
locks.

The table locks are released at the end of the transaction.

lock table allows you to specify a wait period. If the table lock cannot be 
granted within the wait period, an error message is printed, but the 
transaction is not rolled back. 

See lock table in the Adaptive Server Reference Manual for an example of 
a stored procedure that uses lock time-outs, and checks for an error 
message. The procedure continues to execute if it was run by the System 
Administrator, and returns an error message to other users.

Lock timeouts
You can specify the time that a task waits for a lock:

• At the server level, with the lock wait period configuration parameter

• For a session or in a stored procedure, with the set lock wait command

• For a lock table command

See the Transact-SQL Users’ Guide for more information on these 
commands. 



Additional locking commands 

266  Adaptive Server Enterprise

Except for lock table, a task that attempts to acquire a lock and fails to 
acquire it within the time period returns an error message and the 
transaction is rolled back.

Using lock time-outs can be useful for removing tasks that acquire some 
locks, and then wait for long periods of time blocking other users. 
However, since transactions are rolled back, and users may simply 
resubmit their queries, timing out a transaction means that the work needs 
to be repeated.

You can use sp_sysmon to monitor the number of tasks that exceed the 
time limit while waiting for a lock. 

See “Lock time-out information” on page 1006.



Performance & Tuning Guide 267

C H A P T E R  1 2 Reporting on Locks

This chapter discusses the tools that report on locks and locking behavior. 

Locking tools
sp_who, sp_lock, and sp_familylock report on locks held by users, and show 
processes that are blocked by other transactions.

Getting information about blocked processes
sp_who reports on system processes. If a user’s command is being blocked 
by locks held by another task or worker process, the status column shows 
“lock sleep” to indicate that this task or worker process is waiting for an 
existing lock to be released.

The blk_spid or block_xloid column shows the process ID of the task or 
transaction holding the lock or locks.

You can add a user name parameter to get sp_who information about a 
particular Adaptive Server user. If you do not provide a user name, sp_who 
reports on all processes in Adaptive Server. 

Note  The sample output for sp_lock and sp_familylock in this chapter 
omits the class column to increase readability. The class column reports 
either the names of cursors that hold locks or “Non Cursor Lock.”

Topic Page
Locking tools 267

Deadlocks and concurrency 272

Identifying tables where concurrency is a problem 278

Lock management reporting 280



Locking tools 

268  Adaptive Server Enterprise

Viewing locks 
To get a report on the locks currently being held on Adaptive Server, use 
sp_lock:

sp_lock
fid spid loid locktype         table_id   page  row dbname   context
--- ---- ---- ---------------- ---------- ----- --- -------- ----------------
  0  15   30  Ex_intent         208003772     0   0 sales    Fam dur
  0  15   30  Ex_page           208003772  2400   0 sales    Fam dur, Ind pg
  0  15   30  Ex_page           208003772  2404   0 sales    Fam dur, Ind pg
  0  15   30  Ex_page-blk       208003772   946   0 sales    Fam dur
  0  30   60  Ex_intent         208003772     0   0 sales    Fam dur
  0  30   60  Ex_page           208003772   997   0 sales    Fam dur
  0  30   60  Ex_page           208003772  2405   0 sales    Fam dur, Ind pg
  0  30   60  Ex_page           208003772  2406   0 sales    Fam dur, Ind pg
  0  35   70  Sh_intent          16003088     0   0 sales    Fam dur
  0  35   70  Sh_page            16003088  1096   0 sales    Fam dur, Inf key
  0  35   70  Sh_page            16003088  3102   0 sales    Fam dur, Range
  0  35   70  Sh_page            16003088  3113   0 sales    Fam dur, Range
  0  35   70  Sh_page            16003088  3365   0 sales    Fam dur, Range
  0  35   70  Sh_page            16003088  3604   0 sales    Fam dur, Range
  0  49   98  Sh_intent         464004684     0   0 master   Fam dur
  0  50  100  Ex_intent         176003658     0   0 stock    Fam dur
  0  50  100  Ex_row            176003658 36773   8 stock    Fam dur
  0  50  100  Ex_intent         208003772     0   0 stock    Fam dur
  0  50  100  Ex_row            208003772 70483   1 stock    Fam dur
  0  50  100  Ex_row            208003772 70483   2 stock    Fam dur
  0  50  100  Ex_row            208003772 70483   3 stock    Fam dur
  0  50  100  Ex_row            208003772 70483   5 stock    Fam dur
  0  50  100  Ex_row            208003772 70483   8 stock    Fam dur
  0  50  100  Ex_row            208003772 70483   9 stock    Fam dur
 32  13   64  Sh_page           240003886 17264   0 stock
 32  16   64  Sh_page           240003886  4376   0 stock
 32  17   64  Sh_page           240003886  7207   0 stock
 32  18   64  Sh_page           240003886 12766   0 stock
 32  18   64  Sh_page           240003886 12767   0 stock
 32  18   64  Sh_page           240003886 12808   0 stock
 32  19   64  Sh_page           240003886 22367   0 stock
 32  32   64  Sh_intent          16003088     0   0 stock    Fam dur
 32  32   64  Sh_intent          48003202     0   0 stock    Fam dur
 32  32   64  Sh_intent          80003316     0   0 stock    Fam dur
 32  32   64  Sh_intent         112003430     0   0 stock    Fam dur
 32  32   64  Sh_intent         176003658     0   0 stock    Fam dur
 32  32   64  Sh_intent         208003772     0   0 stock    Fam dur
 32  32   64  Sh_intent         240003886     0   0 stock    Fam dur



CHAPTER 12    Reporting on Locks

Performance & Tuning Guide 269

This example shows the lock status of serial processes and two parallel 
processes:

• spid 15 hold an exclusive intent lock on a table, one data page lock, 
and two index page locks. A “blk” suffix indicates that this process is 
blocking another process that needs to acquire a lock; spid 15 is 
blocking another process. As soon as the blocking process completes, 
the other processes move forward.

• spid 30 holds an exclusive intent lock on a table, one lock on a data 
page, and two locks on index pages.

• spid 35 is performing a range query at isolation level 3. It holds range 
locks on several pages and an infinity key lock.

• spid 49 is the task that ran sp_lock; it holds a shared intent lock on the 
spt_values table in master while it runs.

• spid 50 holds intent locks on two tables, and several row locks.

• fid 32 shows several spids holding locks: the parent process (spid 32) 
holds shared intent locks on 7 tables, while the worker processes hold 
shared page locks on one of the tables.

The lock type column indicates not only whether the lock is a shared lock 
(“Sh” prefix), an exclusive lock (“Ex” prefix), or an “Update” lock, but 
also whether it is held on a table (“table” or “intent”) or on a “page” or 
“row.”

A “demand” suffix indicates that the process will acquire an exclusive lock 
as soon as all current shared locks are released. 

See the System Administration Guide for more information on demand 
locks.

The context column consists of one or more of the following values:

• “Fam dur” means that the task will hold the lock until the query 
completes, that is, for the duration of the family of worker processes. 
Shared intent locks are an example of Fam dur locks.

For a parallel query, the coordinating process always acquires a 
shared intent table lock that is held for the duration of the parallel 
query. If the parallel query is part of a transaction, and earlier 
statements in the transaction performed data modifications, the 
coordinating process holds family duration locks on all of the changed 
data pages.



Locking tools 

270  Adaptive Server Enterprise

Worker processes can hold family duration locks when the query 
operates at isolation level 3.

• “Ind pg” indicates locks on index pages (allpages-locked tables only).

• “Inf key” indicates an infinity key lock, used on data-only-locked 
tables for some range queries at transaction isolation level 3.

• “Range” indicates a range lock, used for some range queries at 
transaction isolation level 3.

To see lock information about a particular login, give the spid for the 
process:

sp_lock 30

fid spid loid locktype         table_id   page  row dbname   context
--- ---- ---- ---------------- ---------- ----- --- -------- ----------------
  0  30   60  Ex_intent         208003772     0   0 sales    Fam dur
  0  30   60  Ex_page           208003772   997   0 sales    Fam dur
  0  30   60  Ex_page           208003772  2405   0 sales    Fam dur, Ind pg
  0  30   60  Ex_page           208003772  2406   0 sales    Fam dur, Ind pg

If the spid you specify is also the fid for a family of processes, sp_who 
prints information for all of the processes.

You can also request information about locks on two spids:

sp_lock 30, 15
fid spid loid locktype         table_id   page  row dbname   context
--- ---- ---- ---------------- ---------- ----- --- -------- ----------------
  0  15   30  Ex_intent         208003772     0   0 sales    Fam dur
  0  15   30  Ex_page           208003772  2400   0 sales    Fam dur, Ind pg
  0  15   30  Ex_page           208003772  2404   0 sales    Fam dur, Ind pg
  0  15   30  Ex_page-blk       208003772   946   0 sales    Fam dur
  0  30   60  Ex_intent         208003772     0   0 sales    Fam dur
  0  30   60  Ex_page           208003772   997   0 sales    Fam dur
  0  30   60  Ex_page           208003772  2405   0 sales    Fam dur, Ind pg
  0  30   60  Ex_page           208003772  2406   0 sales    Fam dur, Ind pg

Viewing locks
sp_familylock displays the locks held by a family. This examples shows 
that the coordinating process (fid 51, spid 51) holds a shared intent lock on 
each of four tables and a worker process holds a shared page lock:



CHAPTER 12    Reporting on Locks

Performance & Tuning Guide 271

sp_familylock 51
fid spid loid locktype         table_id   page  row dbname   context
--- ---- ---- ---------------- ---------- ----- --- -------- ----------------
 51  23  102  Sh_page           208003772   945   0 sales
 51  51 102  Sh_intent          16003088     0   0 sales    Fam dur
 51  51  102  Sh_intent          48003202     0   0 sales    Fam dur
 51  51  102  Sh_intent         176003658     0   0 sales    Fam dur
 51  51  102  Sh_intent         208003772     0   0 sales    Fam dur

You can also specify two IDs for sp_familylock.

Intrafamily blocking during network buffer merges
When many worker processes are returning query results, you may see 
blocking between worker processes. This example shows five worker 
processes blocking on the sixth worker process:

sp_who 11
fid spid status     loginame origname hostname blk dbname cmd
--- ---- ---------- -------- -------- -------- --- ------ --------------
 11   11 sleeping   diana    diana    olympus  0   sales  SELECT
 11   16 lock sleep diana    diana    olympus  18  sales  WORKER PROCESS
 11   17 lock sleep diana    diana    olympus  18  sales  WORKER PROCESS
 11   18 send sleep diana    diana    olympus  0   sales  WORKER PROCESS
 11   19 lock sleep diana    diana    olympus  18  sales  WORKER PROCESS
 11   20 lock sleep diana    diana    olympus  18  sales  WORKER PROCESS
 11   21 lock sleep diana    diana    olympus  18  sales  WORKER PROCESS

Each worker process acquires an exclusive address lock on the network 
buffer while writing results to it. When the buffer is full, it is sent to the 
client, and the lock is held until the network write completes.



Deadlocks and concurrency 

272  Adaptive Server Enterprise

Deadlocks and concurrency
Simply stated, a deadlock occurs when two user processes each have a 
lock on a separate data page, index page, or table and each wants to acquire 
a lock on same page or table locked by the other process. When this 
happens, the first process is waiting for the second release the lock, but the 
second process will not release it until the lock on the first process’s object 
is released. 

Server-side versus application-side deadlocks
When tasks deadlock in Adaptive Server, a deadlock detection mechanism 
rolls back one of the transactions, and sends messages to the user and to 
the Adaptive Server error log. It is possible to induce application-side 
deadlock situations in which a client opens multiple connections, and 
these client connections wait for locks held by the other connection of the 
same application.

These are not true server-side deadlocks and cannot be detected by 
Adaptive Server deadlock detection mechanisms.

Application deadlock example

Some developers simulate cursors by using two or more connections from 
DB-Library™. One connection performs a select and the other connection 
performs updates or deletes on the same tables. This can create application 
deadlocks. For example:

• Connection A holds a shared lock on a page. As long as there are rows 
pending from Adaptive Server, a shared lock is kept on the current 
page.

• Connection B requests an exclusive lock on the same pages and then 
waits.

• The application waits for Connection B to succeed before invoking 
the logic needed to remove the shared lock. But this never happens.

Since Connection A never requests a lock that is held by Connection B, 
this is not a server-side deadlock.



CHAPTER 12    Reporting on Locks

Performance & Tuning Guide 273

Server task deadlocks
 Below is an example of a deadlock between two processes.

If transactions T19 and T20 execute simultaneously, and both transactions 
acquire exclusive locks with their initial update statements, they deadlock, 
waiting for each other to release their locks, which will not happen.

Adaptive Server checks for deadlocks and chooses the user whose 
transaction has accumulated the least amount of CPU time as the victim.

Adaptive Server rolls back that user’s transaction, notifies the application 
program of this action with message number 1205, and allows the other 
process to move forward.

The example above shows two data modification statements that 
deadlock; deadlocks can also occur between a process holding and 
needing shared locks, and one holding and needing exclusive locks.

In a multiuser situation, each application program should check every 
transaction that modifies data for message 1205 if there is any chance of 
deadlocking. It indicates that the user transaction was selected as the 
victim of a deadlock and rolled back. The application program must restart 
that transaction. 

T19 Event sequence T20
begin transaction

update savings
set balance = balance - 250
where acct_number = 25

update checking
set balance = balance + 250
where acct_number = 45

commit transaction

T19 and T20 start.

T19 gets exclusive lock 
on savings while T20 
gets exclusive lock on 
checking.

T19 waits for T20 to 
release its lock while 
T20 waits for T19 to 
release its lock; 
deadlock occurs.

begin transaction

update checking
set balance = balance - 75
where acct_number = 45

update savings
set balance = balance + 75
where acct_number = 25

commit transaction



Deadlocks and concurrency 

274  Adaptive Server Enterprise

Deadlocks and parallel queries
Worker processes can acquire only shared locks, but they can still be 
involved in deadlocks with processes that acquire exclusive locks. The 
locks they hold meet one or more of these conditions:

• A coordinating process holds a table lock as part of a parallel query.

The coordinating process could hold exclusive locks on other tables 
as part of a previous query in a transaction.

• A parallel query is running at transaction isolation level 3 or using 
holdlock and holds locks.

• A parallel query is joining two or more tables while another process 
is performing a sequence of updates to the same tables within a 
transaction.

A single worker process can be involved in a deadlock such as those 
between two serial processes. For example, a worker process that is 
performing a join between two tables can deadlock with a serial process 
that is updating the same two tables.

In some cases, deadlocks between serial processes and families involve a 
level of indirection.

For example, if a task holds an exclusive lock on tableA and needs a lock 
on tableB, but a worker process holds a family-duration lock on tableB, the 
task must wait until the transaction that the worker process is involved in 
completes.

If another worker process in the same family needs a lock on tableA, the 
result is a deadlock. Figure 12-1 illustrates the following deadlock 
scenario:

• The family identified by fid 8 is doing a parallel query that involves a 
join of stock_tbl and sales_tbl, at transaction level 3.

• The serial task identified by spid 17 (T17) is performing inserts to 
stock_tbl and sales_tbl in a transaction.

These are the steps that lead to the deadlock:

• W8 9, a worker process with a fid of 8 and a spid of 9, holds a shared 
lock on page 10862 of stock_tbl.

• T17 holds an exclusive lock on page 634 of sales_tbl. T17 needs an 
exclusive lock on page 10862, which it cannot acquire until W8 9 
releases its shared lock.



CHAPTER 12    Reporting on Locks

Performance & Tuning Guide 275

• The worker process W8 10 needs a shared lock on page 634, which it 
cannot acquire until T17 releases its exclusive lock. 

Figure 12-1: A deadlock involving a family of worker processes

Printing deadlock information to the error log
Server-side deadlocks are detected and reported to the application by 
Adaptive Server and in the server’s error log. The error message sent to the 
application is error 1205.

The message sent to the error log, by default, merely identifies that a 
deadlock occurred. The numbering in the message indicates the number of 
deadlocks since the last boot of the server.

03:00000:00029:1999/03/15 13:16:38.19 server  Deadlock Id 11 detected

In this output, fid 0, spid 29 started the deadlock detection check, so its fid 
and spid values are used as the second and third values in the deadlock 
message. (The first value, 03, is the engine number.)

To get more information about the tasks that deadlock, set the print 
deadlock information configuration parameter to 1. This setting sends more 
detailed deadlock messages to the log and to the terminal session where 
the server started.

Page 10862

Page 634

stock_tbl

sales_tbl

W8 9

W8 10

T1 7

Shared
intent
lock

Exclusive
page
lock

Shared
page
lock

Worker
process

Legend:   Lock held by

Needs lock

Worker
process(level 3)



Deadlocks and concurrency 

276  Adaptive Server Enterprise

However, setting print deadlock information to 1 can degrade Adaptive 
Server performance. For this reason, you should use it only when you are 
trying to determine the cause of deadlocks. 

The deadlock messages contain detailed information, including:

• The family and server-process IDs of the tasks involved

• The commands and tables involved in deadlocks; if a stored 
procedure was involved, the procedure name is shown

• The type of locks each task held, and the type of lock each task was 
trying to acquire

• The server login IDs (suid values)

In the following report, spid 29 is deadlocked with a parallel task, fid 94, 
spid 38. The deadlock involves exclusive versus shared lock requests on 
the authors table. spid 29 is chosen as the deadlock victim:

Deadlock Id 11: detected. 1 deadlock chain(s) involved.

Deadlock Id 11: Process (Familyid 94, 38) (suid 62) was executing a SELECT 
command at line 1.
Deadlock Id 11: Process (Familyid 29, 29) (suid 56) was executing a INSERT 
command at line 1.
SQL Text: insert authors (au_id, au_fname, au_lname) values (’A999999816’, 
’Bill’, ’Dewart’)

Deadlock Id 11: Process (Familyid 0, Spid 29) was waiting for a ’exclusive page’ 
lock on page 1155 of the ’authors’ table in database 8 but process (Familyid 
94, Spid 38) already held a ’shared page’ lock on it.
Deadlock Id 11: Process (Familyid 94, Spid 38) was waiting for a ’shared page’ 
lock on page 2336 of the ’authors’ table in database 8 but process (Familyid 
29, Spid 29) already held a ’exclusive page’ lock on it.
Deadlock Id 11: Process (Familyid 0, 29) was chosen as the victim. End of 
deadlock information.

Avoiding deadlocks
It is possible to encounter deadlocks when many long-running transactions 
are executed at the same time in the same database. Deadlocks become 
more common as the lock contention increases between those transactions, 
which decreases concurrency.



CHAPTER 12    Reporting on Locks

Performance & Tuning Guide 277

Methods for reducing lock contention, such as changing the locking 
scheme, avoiding table locks, and not holding shared locks, are described 
in Chapter 13, “Locking Configuration and Tuning.”

Acquire locks on objects in the same order

Well-designed applications can minimize deadlocks by always acquiring 
locks in the same order. Updates to multiple tables should always be 
performed in the same order. 

For example, the transactions described in Figure 12-1 could have avoided 
their deadlock by updating either the savings or checking table first in both 
transactions. That way, one transaction gets the exclusive lock first and 
proceeds while the other transaction waits to receive its exclusive lock on 
the same table when the first transaction ends.

In applications with large numbers of tables and transactions that update 
several tables, establish a locking order that can be shared by all 
application developers.

Delaying deadlock checking

Adaptive Server performs deadlock checking after a minimum period of 
time for any process waiting for a lock to be released (sleeping). This 
deadlock checking is time-consuming overhead for applications that wait 
without a deadlock.

If your applications deadlock infrequently, Adaptive Server can delay 
deadlock checking and reduce the overhead cost. You can specify the 
minimum amount of time (in milliseconds) that a process waits before it 
initiates a deadlock check using the configuration parameter deadlock 
checking period.

Valid values are 0–2147483. The default value is 500. deadlock checking 
period is a dynamic configuration value, so any change to it takes 
immediate effect.

If you set the value to 0, Adaptive Server initiates deadlock checking when 
the process begins to wait for a lock. If you set the value to 600, Adaptive 
Server initiates a deadlock check for the waiting process after at least 600 
ms. For example:

sp_configure "deadlock checking period", 600



Identifying tables where concurrency is a problem 

278  Adaptive Server Enterprise

Setting deadlock checking period to a higher value produces longer delays 
before deadlocks are detected. However, since Adaptive Server grants 
most lock requests before this time elapses, the deadlock checking 
overhead is avoided for those lock requests.

Adaptive Server performs deadlock checking for all processes at fixed 
intervals, determined by deadlock checking period. If Adaptive Server 
performs a deadlock check while a process’s deadlock checking is 
delayed, the process waits until the next interval.

Therefore, a process may wait from the number of milliseconds set by 
deadlock checking period to almost twice that value before deadlock 
checking is performed. sp_sysmon can help you tune deadlock checking 
behavior. 

See “Deadlock detection” on page 1004.

Identifying tables where concurrency is a problem
sp_object_stats prints table-level information about lock contention. You 
can use it to:

• Report on all tables that have the highest contention level

• Report contention on tables in a single database

• Report contention on individual tables

The syntax is: 

sp_object_stats interval [, top_n 
[, dbname [, objname [, rpt_option ]]]]

To measure lock contention on all tables in all databases, specify only the 
interval. This example monitors lock contention for 20 minutes, and 
reports statistics on the ten tables with the highest levels of contention:

sp_object_stats "00:20:00"

Additional arguments to sp_object_stats are as follows:

• top_n – allows you to specify the number of tables to be included in 
the report. Remember, the default is 10. To report on the top 20 high-
contention tables, for example, use:

sp_object_stats "00:20:00", 20



CHAPTER 12    Reporting on Locks

Performance & Tuning Guide 279

• dbname – prints statistics for the specified database.

• objname – measures contention for the specified table.

• rpt_option – specifies the report type:

• rpt_locks reports grants, waits, deadlocks, and wait times for the 
tables with the highest contention. rpt_locks is the default.

• rpt_objlist reports only the names of the objects with the highest 
level of lock activity.

Here is sample output for titles, which uses datapages locking:

Object Name: pubtune..titles (dbid=7, objid=208003772,lockscheme=Datapages)

  Page Locks     SH_PAGE                UP_PAGE               EX_PAGE
  ----------    ----------             ----------            ----------
  Grants:            94488                   4052                  4828
  Waits:               532                    500                   776
  Deadlocks:             4                      0                    24
  Wait-time:      20603764 ms            14265708 ms            2831556 ms
  Contention:         0.56%                 10.98%                13.79%

 *** Consider altering pubtune..titles to Datarows locking.

Table 12-1 shows the meaning of the values.

Table 12-1: sp_object_stats output

sp_object_stats recommends changing the locking scheme when total 
contention on a table is more than 15 percent, as follows:

• If the table uses allpages locking, it recommends changing to 
datapages locking.

• If the table uses datapages locking, it recommends changing to 
datarows locking.

Output dow Value

Grants The number of times the lock was granted immediately.

Waits The number of times the task needing a lock had to wait.

Deadlocks The number of deadlocks that occurred.

Wait-times The total number of milliseconds that all tasks spent 
waiting for a lock.

Contention The percentage of times that a task had to wait or 
encountered a deadlock.



Lock management reporting 

280  Adaptive Server Enterprise

Lock management reporting
Output from sp_sysmon gives statistics on locking and deadlocks 
discussed in this chapter. 

Use the statistics to determine whether the Adaptive Server system is 
experiencing performance problems due to lock contention.

For more information about sp_sysmon and lock statistics, see “Lock 
management” on page 997.

Use Adaptive Server Monitor to pinpoint locking problems.



Performance & Tuning Guide 281

C H A P T E R  1 3 Locking Configuration and 
Tuning

This chapter discusses the types of locks used in Adaptive Server and the 
commands that can affect locking. you can find an introduction to Locking 
concepts in the Adaptive Server System Administration Guide.

Locking and performance
Locking affects performance of Adaptive Server by limiting concurrency. 
An increase in the number of simultaneous users of a server may increase 
lock contention, which decreases performance. Locks affect performance 
when:

• Processes wait for locks to be released –

Any time a process waits for another process to complete its 
transaction and release its locks, the overall response time and 
throughput is affected.

• Transactions result in frequent deadlocks –

A deadlock causes one transaction to be aborted, and the transaction 
must be restarted by the application. If deadlocks occur often, it 
severely affects the throughput of applications.

Using datapages or datarows locking, or redesigning the way 
transactions access the data can help reduce deadlock frequency.

• Creating indexes locks tables–

Creating a clustered index locks all users out of the table until the 
index is created;

Topic Page
Locking and performance 281

Configuring locks and lock promotion thresholds 286

Choosing the locking scheme for a table 295



Locking and performance 

282  Adaptive Server Enterprise

Creating a nonclustered index locks out all updates until it is created.

Either way, you should create indexes when there is little activity on 
your server.

• Turning off delayed deadlock detection causes spinlock contention –

Setting the deadlock checking period to 0 causes more frequent 
deadlock checking. The deadlock detection process holds spinlocks 
on the lock structures in memory while it looks for deadlocks.

In a high transaction production environment, do not set this 
parameter to 0 (zero).

Using sp_sysmon and sp_object_stats
Many of the following sections suggest that you change configuration 
parameters to reduce lock contention.

Use sp_object_stats or sp_sysmon to determine if lock contention is a 
problem, and then use it to determine how tuning to reduce lock contention 
affects the system. 

See “Identifying tables where concurrency is a problem” on page 278 for 
information on using sp_object_stats. 

See “Lock management” on page 997 for more information about using 
sp_sysmon to view lock contention.

If lock contention is a problem, you can use Adaptive Server Monitor to 
pinpoint locking problems by checking locks per object.

Reducing lock contention
Lock contention can impact Adaptive Server’s throughput and response 
time. You need to consider locking during database design, and monitor 
locking during application design.

Solutions include changing the locking scheme for tables with high 
contention, or redesigning the application or tables that have the highest 
lock contention. For example:

• Add indexes to reduce contention, especially for deletes and updates.

• Keep transactions short to reduce the time that locks are held.



CHAPTER 13    Locking Configuration and Tuning

Performance & Tuning Guide 283

• Check for “hot spots,” especially for inserts on allpages-locked heap 
tables.

Adding indexes to reduce contention

An update or delete statement that has no useful index on its search 
arguments performs a table scan and holds an exclusive table lock for the 
entire scan time. If the data modification task also updates other tables:

• It can be blocked by select queries or other updates.

• It may be blocked and have to wait while holding large numbers of 
locks.

• It can block or deadlock with other tasks.

Creating a useful index for the query allows the data modification 
statement to use page or row locks, improving concurrent access to the 
table. If creating an index for a lengthy update or delete transaction is not 
possible, you can perform the operation in a cursor, with frequent commit 
transaction statements to reduce the number of page locks.

Keeping transactions short

Any transaction that acquires locks should be kept as short as possible. In 
particular, avoid transactions that need to wait for user interaction while 
holding locks.

Table 13-1: Examples

With page-level locking With row-level locking
begin tran

select balance 
from account holdlock
where acct_number = 25

Intent shared table lock
Shared page lock

Intent shared table lock
Shared row lock

If the user goes to lunch now, no 
one can update rows on the page 
that holds this row.

If the user goes to lunch now, no 
one can update this row.

update account
set balance = balance + 50
where acct_number = 25

Intent exclusive table lock
Update page lock on data page 
followed by 
exclusive page lock on data 
page

Intent exclusive table lock
Update row lock on data page 
followed by
exclusive row lock on data page

No one can read rows on the 
page that holds this row.

No one can read this row.

commit tran



Locking and performance 

284  Adaptive Server Enterprise

Avoid network traffic as much as possible within transactions. The 
network is slower than Adaptive Server. The example below shows a 
transaction executed from isql, sent as two packets.

Keeping transactions short is especially crucial for data modifications that 
affect nonclustered index keys on allpages-locked tables.

Nonclustered indexes are dense: the level above the data level contains 
one row for each row in the table. All inserts and deletes to the table, and 
any updates to the key value affect at least one nonclustered index page 
(and adjoining pages in the page chain, if a page split or page deallocation 
takes place).

While locking a data page may slow access for a small number of rows, 
locks on frequently-used index pages can block access to a much larger set 
of rows.

Avoiding hot spots

Hot spots occur when all updates take place on a certain page, as in an 
allpages-locked heap table, where all inserts happen on the last page of the 
page chain.

For example, an unindexed history table that is updated by everyone 
always has lock contention on the last page. This sample output from 
sp_sysmon shows that 11.9% of the inserts on a heap table need to wait for 
the lock:

Last Page Locks on Heaps
Granted                     3.0     0.4     185      88.1 %
Waited                      0.4     0.0      25      11.9 %

Possible solutions are:

• Change the lock scheme to datapages or datarows locking.

begin tran
update account
set balance = balance + 50
where acct_number = 25
go

isql batch sent to Adaptive Server
Locks held waiting for commit

update account
set balance = balance - 50
where acct_number = 45
commit tran
go

isql batch sent to Adaptive Server
Locks released



CHAPTER 13    Locking Configuration and Tuning

Performance & Tuning Guide 285

Since these locking schemes do not have chained data pages, they can 
allocate additional pages when blocking occurs for inserts.

• Partition the table. Partitioning a heap table creates multiple page 
chains in the table, and, therefore, multiple last pages for inserts.

Concurrent inserts to the table are less likely to block one another, 
since multiple last pages are available. Partitioning provides a way to 
improve concurrency for heap tables without creating separate tables 
for different groups of users. 

See “Improving insert performance with partitions” on page 85 for 
information about partitioning tables.

• Create a clustered index to distribute the updates across the data pages 
in the table.

Like partitioning, this solution creates multiple insertion points for the 
table. However, it also introduces overhead for maintaining the 
physical order of the table’s rows.

Additional locking guidelines
These locking guidelines can help reduce lock contention and speed 
performance:

• Use the lowest level of locking required by each application. Use 
isolation level 2 or 3 only when necessary.

Updates by other transactions may be delayed until a transaction 
using isolation level 3 releases any of its shared locks at the end of the 
transaction.

Use isolation level 3 only when nonrepeatable reads or phantoms may 
interfere with your desired results.

If only a few queries require level 3, use the holdlock keyword or at 
isolation serializing clause in those queries instead of using set 
transaction isolation level 3 for the entire transaction.

If most queries in the transaction require level 3, use set transaction 
isolation level 3, but use noholdlock or at isolation read committed in the 
remaining queries that can execute at isolation level 1.

• If you need to perform mass inserts, updates, or deletes on active 
tables, you can reduce blocking by performing the operation inside a 
stored procedure using a cursor, with frequent commits.



Configuring locks and lock promotion thresholds 

286  Adaptive Server Enterprise

• If your application needs to return a row, provide for user interaction, 
and then update the row, consider using timestamps and the tsequal 
function rather than holdlock.

• If you are using third-party software, check the locking model in 
applications carefully for concurrency problems.

Also, other tuning efforts can help reduce lock contention. For example, if 
a process holds locks on a page, and must perform a physical I/O to read 
an additional page, it holds the lock much longer than it would have if the 
additional page had already been in cache.

Better cache utilization or using large I/O can reduce lock contention in 
this case. Other tuning efforts that can pay off in reduced lock contention 
are improved indexing and good distribution of physical I/O across disks.

Configuring locks and lock promotion thresholds
A System Administrator can configure:

• The total number of locks available to processes on Adaptive Server

• The size of the lock hash table and the number of spinlocks that 
protect the page/row lock hashtable, table lock hashtable, and address 
lock hash table

• The server-wide lock timeout limit, and the lock timeout limit for 
distributed transactions

• Lock promotion thresholds, server-wide, for a database or for 
particular tables

• The number of locks available per engine and the number of locks 
transferred between the global free lock list and the engines 

See the Adaptive Server System Administration Guide for information 
on these parameters.

Configuring Adaptive Server’s lock limit
By default, Adaptive Server is configured with 5000 locks. System 
administrators can use sp_configure to change this limit. For example:



CHAPTER 13    Locking Configuration and Tuning

Performance & Tuning Guide 287

sp_configure "number of locks", 25000

You may also need to adjust the sp_configure parameter total memory, since 
each lock uses memory.

The number of locks required by a query can vary widely, depending on 
the locking scheme and on the number of concurrent and parallel 
processes and the types of actions performed by the transactions. 
Configuring the correct number for your system is a matter of experience 
and familiarity with the system.

You can start with 20 locks for each active concurrent connection, plus 20 
locks for each worker process. Consider increasing the number of locks if:

• You change tables to use datarows locking

• Queries run at isolation level 2 or 3, or use serializable or holdlock

• You enable parallel query processing, especially for isolation level 2 
or 3 queries

• You perform many multirow updates

• You increase lock promotion thresholds

Estimating number of locks for data-only-locked tables

Changing to data-only locking may require more locks or may reduce the 
number of locks required:

• Tables using datapages locking require fewer locks than tables using 
allpages locking, since queries on datapages-locked tables do not 
acquire separate locks on index pages.

• Tables using datarows locking can require a large number of locks. 
Although no locks are acquired on index pages for datarows-locked 
tables, data modification commands that affect many rows may hold 
more locks.

Queries running at transaction isolation level 2 or 3 can acquire and 
hold very large numbers of row locks. 

Insert commands and locks

An insert with allpages locking requires N+1 locks, where N is the number 
of indexes. The same insert on a data-only-locked table locks only the data 
page or data row.



Configuring locks and lock promotion thresholds 

288  Adaptive Server Enterprise

select queries and locks

Scans at transaction isolation level 1, with read committed with lock set to 
hold locks (1), acquire overlapping locks that roll through the rows or 
pages, so they hold, at most, two data page locks at a time.

However, transaction isolation level 2 and 3 scans, especially those using 
datarows locking, can acquire and hold very large numbers of locks, 
especially when running in parallel. Using datarows locking, and 
assuming no blocking during lock promotion, the maximum number of 
locks that might be required for a single table scan is:

row lock promotion HWM * parallel_degree

If lock contention from exclusive locks prevents scans from promoting to 
a table lock, the scans can acquire a very large number of locks.

Instead of configuring the number of locks to meet the extremely high 
locking demands for queries at isolation level 2 or 3, consider changing 
applications that affect large numbers of rows to use the lock table 
command. This command acquires a table lock without attempting to 
acquire individual page locks. 

See “lock table Command” on page 265 for information on using lock 
table.

Data modification commands and locks

For tables that use the datarows locking scheme, data modification 
commands can require many more locks than data modification on 
allpages or datapages-locked tables.

For example, a transaction that performs a large number of inserts into a 
heap table may acquire only a few page locks for an allpages-locked table, 
but requires one lock for each inserted row in a datarows-locked table. 
Similarly, transactions that update or delete large numbers of rows may 
acquire many more locks with datarows locking.



CHAPTER 13    Locking Configuration and Tuning

Performance & Tuning Guide 289

Configuring the lock hashtable (Lock Manager)
Table 13-2: lock hashtable size

The lock hashtable size parameter specifies the number of hash buckets in 
the lock hash table. This table manages all row, page, and table locks and 
all lock requests. Each time a task acquires a lock, the lock is assigned to 
a hash bucket, and each lock request for that lock checks the same hash 
bucket. Setting this value too low results in large numbers of locks in each 
hash bucket and slows the searches.

On Adaptive Servers with multiple engines, setting this value too low can 
also lead to increased spinlock contention. You should not set the value to 
less than the default value, 2048. lock hashtable size must be a power of 2. 
If the value you specify is not a power of 2, sp_configure rounds the value 
to the next highest power of 2 and prints an informational message.

The optimal hash table size is a function of the number of distinct objects 
(pages, tables, and rows) that will be locked concurrently. The optimal 
hash table size is at least 20 percent of the number of distinct objects that 
need to be locked concurrently. See “Lock management” on page 997 for 
more information on configuring the lock hash table size.

However, if you have a large number of users and have had to increase the 
number of locks parameter to avoid running out of locks, you should check 
the average hash chain length with sp_sysmon at peak periods. If the 
average length of the hash chains exceeds 4 or 5, consider increased the 
value of lock hashtable size to the next power of 2 from its current setting.

The hash chain length may be high during large insert batches, such as 
bulk copy operations. This is expected behavior, and does not require that 
you reset the lock hash table size.

Summary Information

Default value 2048

Range of values 1–2147483647

Status Static

Display Level Comprehensive

Required Role System Administrator



Configuring locks and lock promotion thresholds 

290  Adaptive Server Enterprise

Setting lock promotion thresholds
The lock promotion thresholds set the number of page or row locks 
permitted by a task or worker process before Adaptive Server attempts to 
escalate to a table lock on the object. You can set lock promotion 
thresholds at the server-wide level, at the database level, and for individual 
tables.

The default values provide good performance for a wide range of table 
sizes. Configuring the thresholds higher reduces the chance of queries 
acquiring table locks, especially for very large tables where queries lock 
hundreds of data pages.

Note  Lock promotion is always two-tiered: from page locks to table locks 
or from row locks to table locks. Row locks are never promoted to page 
locks.

Lock promotion and scan sessions

Lock promotion occurs on a per-scan session basis.

A scan session is how Adaptive Server tracks scans of tables within a 
transaction. A single transaction can have more than one scan session for 
the following reasons:

• A table may be scanned more than once inside a single transaction in 
the case of joins, subqueries, exists clauses, and so on.

Each scan of the table is a scan session.

• A query executed in parallel scans a table using multiple worker 
processes.

Each worker process has a scan session. 

A table lock is more efficient than multiple page or row locks when an 
entire table might eventually be needed. At first, a task acquires page or 
row locks, then attempts to escalate to a table lock when a scan session 
acquires more page or row locks than the value set by the lock promotion 
threshold.



CHAPTER 13    Locking Configuration and Tuning

Performance & Tuning Guide 291

Since lock escalation occurs on a per-scan session basis, the total number 
of page or row locks for a single transaction can exceed the lock promotion 
threshold, as long as no single scan session acquires more than the lock 
promotion threshold number of locks. Locks may persist throughout a 
transaction, so a transaction that includes multiple scan sessions can 
accumulate a large number of locks. 

Lock promotion cannot occur if another task holds locks that conflict with 
the type of table lock needed. For instance, if a task holds any exclusive 
page locks, no other process can promote to a table lock until the exclusive 
page locks are released.

When lock promotion is denied due to conflicting locks, a process can 
accumulate page or row locks in excess of the lock promotion threshold 
and may exhaust all available locks in Adaptive Server.

The lock promotion parameters are:

• For allpages-locked tables and datapages-locked tables, page lock 
promotion HWM, page lock promotion LWM, and page lock promotion 
PCT.

• For datarows-locked tables, row lock promotion HWM, row lock 
promotion LWM, and row lock promotion PCT.

The abbreviations in these parameters are:

• HWM, high water mark

• LWM, low water mark

• PCT, percent

Lock promotion high water mark

page lock promotion HWM and row lock promotion HWM set a maximum 
number of page or row locks allowed on a table before Adaptive Server 
attempts to escalate to a table lock. The default value is 200.

When the number of locks acquired during a scan session exceeds this 
number, Adaptive Server attempts to acquire a table lock.

Setting the high water mark to a value greater than 200 reduces the chance 
of any task or worker process acquiring a table lock on a particular table. 
For example, if a process updates more than 200 rows of a very large table 
during a transaction, setting the lock promotion high water mark higher 
keeps this process from attempting to acquire a table lock.



Configuring locks and lock promotion thresholds 

292  Adaptive Server Enterprise

Setting the high water mark to less than 200 increases the chances of a 
particular task or worker process acquiring a table lock.

Lock promotion low water mark

page lock promotion LWM and row lock promotion LWM set a minimum 
number of locks allowed on a table before Adaptive Server attempts to 
acquire a table lock. The default value is 200. Adaptive Server never 
attempts to acquire a table lock until the number of locks on a table is equal 
to the low water mark.

The low water mark must be less than or equal to the corresponding high 
water mark. 

Setting the low water mark to a very high value decreases the chance for a 
particular task or worker process to acquire a table lock, which uses more 
locks for the duration of the transaction, potentially exhausting all 
available locks in Adaptive Server. This possibility is especially high with 
queries that update a large number of rows in a datarows-locked table, or 
select large numbers of rows from datarows-locked tables at isolation 
levels 2 or 3.

If conflicting locks prevent lock promotion, you may need to increase the 
value of the number of locks configuration parameter.

Lock promotion percent

page lock promotion PCT and row lock promotion PCT set the percentage of 
locked pages or rows (based on the table size) above which Adaptive 
Server attempts to acquire a table lock when the number of locks is 
between the lock promotion HWM and the lock promotion LWM.

The default value is 100.

Adaptive Server attempts to promote page locks to a table lock or row 
locks to a table lock when the number of locks on the table exceeds:

(PCT * number of pages or rows in the table) / 100

Setting lock promotion PCT to a very low value increases the chance of a 
particular user transaction acquiring a table lock. Figure 13-1 shows how 
Adaptive Server determines whether to promote page locks on a table to a 
table lock.



CHAPTER 13    Locking Configuration and Tuning

Performance & Tuning Guide 293

Figure 13-1: Lock promotion logic

Setting server-wide lock promotion thresholds

The following command sets the server-wide page lock promotion LWM to 
100, the page lock promotion HWM to 2000, and the page lock promotion 
PCT to 50 for all datapages-locked and allpages-locked tables:

sp_setpglockpromote "server", null, 100, 2000, 50

In this example, the task does not attempt to promote to a table lock unless 
the number of locks on the table is between 100 and 2000.

If a command requires more than 100 but less than 2000 locks, Adaptive 
Server compares the number of locks to the percentage of locks on the 
table.

If the number of locks is greater than the number of pages resulting from 
the percentage calculation, Adaptive Server attempts to issue a table lock.

sp_setrowlockpromote sets the configuration parameters for all datarows-
locked tables:

Promote to 
table lock.

Do not promote
to table lock.

Does this scan session hold
lock promotion HWM number

of page or row or locks?

Does any other process hold
exclusive lock on object?

Yes

No

Yes

Does this scan session hold
lock promotion PCT 

page or row locks?

Yes

No

No Do not promote
to table lock.

Does this scan session hold
lock promotion LWM number

of page or row locks?

Yes

No Do not promote
to table lock.



Configuring locks and lock promotion thresholds 

294  Adaptive Server Enterprise

sp_setrowlockpromote "server", null, 300, 500, 50

The default values for lock promotion configuration parameters are likely 
to be appropriate for most applications.

Setting the lock promotion threshold for a table or database

To configure lock promotion values for an individual table or database, 
initialize all three lock promotion thresholds. For example:

sp_setpglockpromote "table", titles, 100, 2000, 50 
sp_setrowlockpromote "table", authors, 300, 500, 50

After the values are initialized, you can change any individual value. For 
example, to change the lock promotion PCT only, use the following 
command:

sp_setpglockpromote "table", titles, null, null, 70
sp_setrowlockpromote "table", authors, null, null, 
50

To configure values for a database, use:

sp_setpglockpromote "database", pubs3, 1000, 1100, 
45
sp_setrowlockpromote "database", pubs3, 1000, 1100, 
45

Precedence of settings

You can change the lock promotion thresholds for any user database or an 
individual table. Settings for an individual table override the database or 
server-wide settings; settings for a database override the server-wide 
values.

Server-wide values for lock promotion apply to all user tables on the 
server, unless the database or tables have lock promotion values 
configured for them.

Dropping database and table settings

To remove table or database lock promotion thresholds, use 
sp_dropglockpromote or sp_droprowlockpromote. When you drop a 
database’s lock promotion thresholds, tables that do not have lock 
promotion thresholds configured use the server-wide values.



CHAPTER 13    Locking Configuration and Tuning

Performance & Tuning Guide 295

When you drop a table’s lock promotion thresholds, Adaptive Server uses 
the database’s lock promotion thresholds, if they have been configured, or 
the server-wide values, if the lock promotion thresholds have not been 
configured. You cannot drop the server-wide lock promotion thresholds.

Using sp_sysmon while tuning lock promotion thresholds

Use sp_sysmon to see how many times lock promotions take place and the 
types of promotions they are. 

See “Lock promotions” on page 1005 for more information.

If there is a problem, look for signs of lock contention in the “Granted” and 
“Waited” data in the “Lock Detail” section of the sp_sysmon output. 

See “Lock detail” on page 1001 for more information. 

If lock contention is high and lock promotion is frequent, consider 
changing the lock promotion thresholds for the tables involved.

Use Adaptive Server Monitor to see how changes to the lock promotion 
threshold affect the system at the object level.

Choosing the locking scheme for a table
In general, choice of lock scheme for a new table should be determined by 
the likelihood that applications will experience lock contention on the 
table. The decision about whether to change the locking scheme for an 
existing table can be based on contention measurements on the table, but 
also needs to take application performance into account.

Here are some typical situations and general guidelines for choosing the 
locking scheme:

• Applications require clustered access to the data rows due to range 
queries or order by clauses

Allpages locking provides more efficient clustered access than data-
only-locking.

• A large number of applications access about 10 to 20% of the data 
rows, with many updates and selects on the same data.



Choosing the locking scheme for a table 

296  Adaptive Server Enterprise

Use datarows or datapages locking to reduce contention, especially on 
the tables with the highest contention.

• The table is a heap table that will have a high rate of inserts.

Use datarows locking to avoid contention. If the number of rows 
inserted per batch is high, datapages locking is also acceptable. 
Allpages locking has more contention for the “last page” of heap 
tables.

• Applications need to maintain an extremely high transaction rate; 
contention is likely to be low.

Use allpages locking; less locking and latching overhead yields 
improved performance.

Analyzing existing applications
If your existing applications experience blocking and deadlock problems, 
follow the steps below to analyze the problem:

1 Check for deadlocks and lock contention:

• Use sp_object_stats to determine the tables where blocking is a 
problem. 

• Identify the table(s) involved in the deadlock, either using 
sp_object_stats or by enabling the print deadlock information 
configuration parameter.

2 If the table uses allpages locking and has a clustered index, ensure that 
performance of the modified clustered index structure on data-only-
locked tables will not hurt performance. 

See “Tables where clustered index performance must remain high” 
on page 299. 

3 If the table uses allpages locking, convert the locking scheme to 
datapages locking to determine whether it solves the concurrency 
problem.

4 Re-run your concurrency tests. If concurrency is still an issue, change 
the locking scheme to datarows locking.



CHAPTER 13    Locking Configuration and Tuning

Performance & Tuning Guide 297

Choosing a locking scheme based on contention statistics
If the locking scheme for the table is allpages, the lock statistics reported 
by sp_object_stats include both data page and index lock contention.

If lock contention totals 15% or more for all shared, update, and exclusive 
locks, sp_object_stats recommends changing to datapages locking. You 
should make the recommended change, and run sp_object_stats again.

If contention using datapages locking is more than 15%, sp_object_stats 
recommends changing to datarows locking. This two-phase approach is 
based on these characteristics:

• Changing from allpages locking to either data-only-locking scheme is 
time consuming and expensive, in terms of I/O cost, but changing 
between the two data-only-locking schemes is fast and does not 
require copying the table.

• Datarows locking requires more locks, and consumes more locking 
overhead.

If your applications experience little contention after you convert 
high-contending tables to use datapages locking, you do not need to 
incur the locking overhead of datarows locking.

Note  The number of locks available to all processes on the server is 
limited by the number of locks configuration parameter.

Changing to datapages locking reduces the number of locks required, 
since index pages are no longer locked.

Changing to datarows locking can increase the number of locks 
required, since a lock is needed for each row.

See “Estimating number of locks for data-only-locked tables” on 
page 287 for more information.

When examining sp_object_stats output, look at tables that are used 
together in transactions in your applications. Locking on tables that are 
used together in queries and transactions can affect the locking contention 
of the other tables.

Reducing lock contention on one table could ease lock contention on other 
tables as well, or it could increase lock contention on another table that 
was masked by blocking on the first table in the application. For example:



Choosing the locking scheme for a table 

298  Adaptive Server Enterprise

• Lock contention is high for two tables that are updated in transactions 
involving several tables. Applications first lock TableA, then attempt 
to acquire locks on TableB, and block, holding locks on TableA.

Additional tasks running the same application block while trying to 
acquire locks on TableA. Both tables show high contention and high 
wait times.

Changing TableB to data-only locking may alleviate the contention on 
both tables.

• Contention for TableT is high, so its locking scheme is changed to a 
data-only locking scheme.

Re-running sp_object_stats now shows contention on TableX, which 
had shown very little lock contention. The contention on TableX was 
masked by the blocking problem on TableT.

If your application uses many tables, you may want to convert your set of 
tables to data-only locking gradually, by changing just those tables with 
the highest lock contention. Then test the results of these changes by 
rerunning sp_object_stats.

You should run your usual performance monitoring tests both before and 
after you make the changes.

Monitoring and managing tables after conversion
After you have converted one or more tables in an application to a data-
only-locking scheme:

• Check query plans and I/O statistics, especially for those queries that 
use clustered indexes.

• Monitor the tables to learn how changing the locking scheme affects:

• The cluster ratios, especially for tables with clustered indexes

• The number of forwarded rows in the table

Applications not likely to benefit from data-only locking
This section describes tables and application types that may get little 
benefit from converting to data-only locking, or may require additional 
management after the conversion.



CHAPTER 13    Locking Configuration and Tuning

Performance & Tuning Guide 299

Tables where clustered index performance must remain high

If queries with high performance requirements use clustered indexes to 
return large numbers of rows in index order, you may see performance 
degradation if you change these tables to use data-only locking. Clustered 
indexes on data-only-locked tables are structurally the same as 
nonclustered indexes.

Placement algorithms keep newly inserted rows close to existing rows 
with adjacent values, as long as space is available on nearby pages.

Performance for a data-only-locked table with a clustered index should be 
close to the performance of the same table with allpages locking 
immediately after a create clustered index command or a reorg rebuild 
command, but performance, especially with large I/O, declines if cluster 
ratios decline because of inserts and forwarded rows.

Performance remains high for tables that do not experience a lot of inserts. 
On tables that get a lot of inserts, a System Administrator may need to drop 
and re-create the clustered index or run reorg rebuild more frequently.

Using space management properties such as fillfactor, exp_row_size, and 
reservepagegap can help reduce the frequency of maintenance operations. 
In some cases, using the allpages locking scheme for the table, even if 
there is some contention, may provide better performance for queries 
performing clustered index scans than using data-only locking for the 
tables.

Tables with maximum-length rows

Data-only-locked tables require more overhead per page and per row than 
allpages-locked tables, so the maximum row size for a data-only-locked 
table is slightly shorter than the maximum row size for an allpages-locked 
table.

For tables with fixed-length columns only, the maximum row size is 1958 
bytes of user data for data-only-locked tables. Allpages-locked tables 
allow a maximum of 1960 bytes.

For tables with variable-length columns, subtract 2 bytes for each 
variable-length column (this includes all columns that allow null values). 
For example, the maximum user row size for a data-only-locked table with 
4 variable-length columns is 1950 bytes.



Choosing the locking scheme for a table 

300  Adaptive Server Enterprise

If you try to convert an allpages-locked table that has more than 1958 bytes 
in fixed-length columns, the command fails as soon as it reads the table 
schema.

When you try to convert an allpages-locked table with variable-length 
columns, and some rows exceed the maximum size for the data-only-
locked table, the alter table command fails at the first row that is too long 
to convert.



Performance & Tuning Guide 301

C H A P T E R  1 4 Setting Space Management 
Properties

Setting space management properties can help reduce the amount of 
maintenance work required to maintain high performance for tables and 
indexes.

Reducing index maintenance
By default, Adaptive Server creates indexes that are completely full at the 
leaf level and leaves growth room for two rows on the intermediate pages.

The fillfactor option for the create index command allows you to specify 
how full to make index pages and the data pages of clustered indexes. 
When you use fillfactor, except for a fillfactor value of 100 percent, data 
and index rows use more disk space than the default setting requires.

If you are creating indexes for tables that will grow in size, you can reduce 
the impact of page splitting on your tables and indexes by using the 
fillfactor option for create index.

The fillfactor is used only when you create the index; it is not maintained 
over time.

When you issue create index, the fillfactor value specified as part of the 
command is applied as follows:

• Clustered index:

• On an allpages-locked table, the fillfactor is applied to the data 
pages.

Topic Page
Reducing index maintenance 301

Reducing row forwarding 307

Leaving space for forwarded rows and inserts 313

Using max_rows_per_page on allpages-locked tables 321



Reducing index maintenance 

302  Adaptive Server Enterprise

• On a data-only-locked table, the fillfactor is applied to the leaf 
pages of the index, and the data pages are fully packed (unless 
sp_chgattribute has been used to store a fillfactor for the table).

• Nonclustered index – the fillfactor value is applied to the leaf pages of 
the index.

fillfactor values specified with create index are applied at the time the index 
is created. They are not saved in sysindexes, and the fullness of the data or 
index pages is not maintained over time.

You can also use sp_chgattribute to store values for fillfactor that are used 
when reorg rebuild is run on a table. 

See “Setting fillfactor values” on page 303 for more information.

Advantages of using fillfactor
Setting fillfactor to a low value provides a temporary performance 
enhancement. Its benefits fade as inserts to the database increase the 
amount of space used on data or index pages. 

A lower fillfactor provides these benefits:

• It reduces page splits on the leaf-level of indexes, and the data pages 
of allpages-locked tables.

• It improves data-row clustering on data-only-locked tables with 
clustered indexes that experience inserts.

• It can reduce lock contention for tables that use page-level locking, 
since it reduces the likelihood that two processes will need the same 
data or index page simultaneously.

• It can help maintain large I/O efficiency for the data pages and for the 
leaf levels of nonclustered indexes, since page splits occur less 
frequently. This means that eight pages on an extent are likely to be 
sequential.

Disadvantages of using fillfactor
If you use fillfactor, especially a very low fillfactor, you may notice these 
effects on queries and maintenance activities:



CHAPTER 14    Setting Space Management Properties

Performance & Tuning Guide 303

• More pages must be read for each query that does a table scan or leaf-
level scan on a nonclustered index.

In some cases, it may also add a level to an index’s B-tree structure, 
since there will be more pages at the data level and possibly more 
pages at each index level.

• dbcc commands need to check more pages, so dbcc commands take 
more time.

• dump database time increases, because more pages need to be 
dumped. dump database copies all pages that store data, but does not 
dump pages that are not yet in use.

Your dumps and loads will take longer to complete and may use more 
tapes.

• Fillfactors fade away over time. If you use fillfactor to reduce the 
performance impact of page splits, you need to monitor your system 
and re-create indexes when page splitting begins to hurt performance.

Setting fillfactor values
sp_chgattribute allows you to store a fillfactor percentage for each index and 
for the table. The fillfactor you set with sp_chgattribute is applied when you:

• Run reorg rebuild to restore the cluster ratios of data-only-locked 
tables and indexes.

• Use alter table...lock to change the locking scheme for a table or you 
use an alter table...add/modify command that requires copying the 
table.

• Run create clustered index and there is a value stored for the table.

The stored fillfactor is not applied when nonclustered indexes are rebuilt as 
a result of a create clustered index command:

• If a fillfactor value is specified with create clustered index, that value is 
applied to each nonclustered index.

• If no fillfactor value is specified with create clustered index, the server-
wide default value (set with the default fill factor percent configuration 
parameter) is applied to all indexes.



Reducing index maintenance 

304  Adaptive Server Enterprise

fillfactor examples
The following examples show the application of fillfactor values.

No stored fillfactor values

With no fillfactor values stored in sysindexes, the fillfactor specified in 
commands “create index”are applied as shown in Table 14-1.

create clustered index title_id_ix
on titles (title_id) 
with fillfactor = 80

Table 14-1: fillfactor values applied with no table-level saved value

The nonclustered indexes use the fillfactor specified in the create clustered 
index command.

If no fillfactor is specified in create clustered index, the nonclustered 
indexes always use the server-wide default; they never use a value from 
sysindexes.

Values used for alter table...lock and reorg rebuild

When no fillfactor values are stored, both alter table...lock and reorg rebuild 
apply the server-wide default value, set by the default fill factor percentage 
configuration parameter. The default fillfactor is applied as shown in Table 
14-2.

Table 14-2: fillfactor values applied with during rebuilds

Table-level or clustered index fillfactor value stored

This command stores a fillfactor value of 50 for the table:

sp_chgattribute titles, "fillfactor", 50

Command Allpages-locked table Data-only-locked table

create clustered
index

Data pages: 80 Data pages: fully packed
Leaf pages: 80

Nonclustered index rebuilds Leaf pages: 80 Leaf pages: 80

Command Allpages-locked table Data-only-locked table

Clustered index rebuild Data pages: default value Data pages: fully packed
Leaf pages: default value

Nonclustered index rebuilds Leaf pages: default Leaf pages: default



CHAPTER 14    Setting Space Management Properties

Performance & Tuning Guide 305

With 50 as the stored table-level value for fillfactor, the following create 
clustered index  command applies the fillfactor values shown in Table 14-3.

create clustered index title_id_ix
on titles (title_id) 
with fillfactor = 80 

Table 14-3: Using stored fillfactor values for clustered indexes

Note  When a create clustered index command is run, any table-level 
fillfactor value stored in sysindexes is reset to 0.

To affect the filling of data-only-locked data pages during a create 
clustered index or reorg command, you must first issue sp_chgattribute.

Effects of alter table...lock when values are stored

Stored values for fillfactor are used when an alter table...lock command 
copies tables and rebuilds indexes.

Tables with clustered indexes

In an allpages-locked table, the table and the clustered index share the 
sysindexes row, so only one value for fillfactor can be stored and used for 
the table and clustered index. You can set the fillfactor value for the data 
pages by providing either the table name or the clustered index name. This 
command saves the value 50:

sp_chgattribute titles, "fillfactor", 50

This command saves the value 80, overwriting the value of 50 set by the 
previous command:

sp_chgattribute "titles.clust_ix", "fillfactor", 80

If you alter the titles table to use data-only locking after issuing the 
sp_chgattribute commands above, the stored value fillfactor of 80 is used for 
both the data pages and the leaf pages of the clustered index.

Command Allpages-Locked Table Data-Only-Locked Table

create clustered index Data pages: 80 Data pages: 50
Leaf pages: 80

Nonclustered index rebuilds Leaf pages: 80 Leaf pages: 80



Reducing index maintenance 

306  Adaptive Server Enterprise

In a data-only-locked table, information about the clustered index is stored 
in a separate row in sysindexes. The fillfactor value you specify for the table 
applies to the data pages and the fillfactor value you specify for the 
clustered index applies to the leaf level of the clustered index.

When a data-only-locked table is altered to use allpages locking, the 
fillfactor stored for the table is used for the data pages. The fillfactor stored 
for the clustered index is ignored.

Table 14-4 shows the fillfactors used on data and index pages by an alter 
table...lock command, executed after the sp_chgattribute commands above 
have been run. 

Table 14-4: Effects of stored fillfactor values during alter table

Note  alter table...lock sets all stored fillfactor values for a table to 0. 

fillfactor values stored for nonclustered indexes

Each nonclustered index is represented by a separate sysindexes row. 
These commands store different values for two nonclustered indexes:

sp_chgattribute "titles.ncl_ix", "fillfactor", 90
sp_chgattribute "titles.pubid_ix", "fillfactor", 75

Table 14-5 shows the effects of a reorg rebuild command on a data-only-
locked table when the sp_chgattribute commands above are used to store 
fillfactor values. 

Table 14-5: Effect of stored fillfactor values during reorg rebuild

alter table...lock No clustered index Clustered index

From allpages locking to 
data-only locking

Data pages: 80 Data pages: 80
Leaf pages: 80

From data-only locking to 
allpages locking

Data pages: 80 Data pages: 80

reorg rebuild No clustered index Clustered index Nonclustered indexes

Data-only-locked table Data pages: 80 Data pages: 50
Leaf pages: 80

ncl_ix leaf pages: 90
pubid_ix leaf pages: 75



CHAPTER 14    Setting Space Management Properties

Performance & Tuning Guide 307

Use of the sorted_data and fillfactor options
The sorted_data option for create index is used when the data to be sorted 
is already in order by the index key. This allows create clustered index to 
skip the copy step while creating a clustered index.

For example, if data that is bulk copied into a table is already in order by 
the clustered index key, creating an index with the sorted_data option 
creates the index without performing a sort. If the data does not need to be 
copied to new pages, the fillfactor is not applied. However, the use of other 
create index options might still require copying.

For more information, see“Creating an index on sorted data” on page 393. 

Reducing row forwarding
Specifying an expected row size for a data-only-locked table is useful 
when an application allows rows that contain null values or short variable-
length character fields to be inserted, and these rows grow in length with 
subsequent updates. The major purpose of setting an expected row size is 
to reduce row forwarding.

For example, the titles table in the pubs2 database has many varchar 
columns and columns that allow null values. The maximum row size for 
this table is 331 bytes, and the average row size (as reported by optdiag) is 
184 bytes, but it is possible to insert a row with less than 40 bytes, since 
many columns allow null values. In a data-only-locked table, inserting 
short rows and then updating them can result in row forwarding. 

See “Data-only locked heap tables” on page 152 for more information.

You can set the expected row size for tables with variable-length columns, 
using:

• exp_row_size parameter, in a create table statement.

• sp_chgattribute, for an existing table.

• A server-wide default value, using the configuration parameter default 
exp_row_size percent. This value is applied to all tables with variable-
length columns, unless create table or sp_chgattribute is used to set a 
row size explicitly or to indicate that rows should be fully packed on 
data pages.



Reducing row forwarding 

308  Adaptive Server Enterprise

If you specify an expected row size value for an allpages-locked table, the 
value is stored in sysindexes, but the value is not applied during inserts and 
updates.

If the table is later converted to data-only locking, the exp_row_size is 
applied during the conversion process, and to all subsequent inserts and 
updates.

Default, minimum, and maximum values for exp_row_size
Table 14-6 shows the minimum and maximum values for expected row 
size and the meaning of the special values 0 and 1. 

Table 14-6: Valid values for expected row size

You cannot specify an expected row size for tables that have fixed-length 
columns only. Columns that accept null values are by definition variable-
length, since they are zero-length when null.

Default value

If you do not specify an expected row size or a value of 0 when you create 
a data-only-locked table with variable-length columns, Adaptive Server 
uses the amount of space specified by the configuration parameter default 
exp_row_size percent for any table that has variable-length columns.

See “Setting a default expected row size server-wide” on page 310 for 
information on how this parameter affects space on data pages. Use 
sp_help to see the defined length of the columns in the table.

Specifying an expected row size with create table
This create table statement specifies an expected row size of 200 bytes:

exp_row_size values Minimum, maximum, and special values

Minimum The greater of: 

• 2 bytes

• The sum of all fixed-length columns

Maximum Maximum data row length

0 Use server-wide default value

1 Fully pack all pages; do not reserve room for expanding rows



CHAPTER 14    Setting Space Management Properties

Performance & Tuning Guide 309

create table new_titles (
      title_id    tid,
      title       varchar(80) not null,
      type        char(12),
      pub_id      char(4) null,
      price       money null,
      advance     money null,
      total_sales int null,
      notes       varchar(200) null,
      pubdate     datetime,
      contract    bit                             )
lock datapages
with exp_row_size = 200

Adding or changing an expected row size
To add or change the expected row size for a table, us sp_chgattribute. This 
sets the expected row size to 190 for the new_titles table:

sp_chgattribute new_titles, "exp_row_size", 190

If you want a table to switch to the default exp_row_size percent instead of 
a current, explicit value, enter:

sp_chgattribute new_titles, "exp_row_size", 0

To fully pack the pages, rather than saving space for expanding rows, set 
the value to 1.

Changing the expected row size with sp_chgattribute does not immediately 
affect the storage of existing data. The new value is applied:

• When a clustered index on the table is created or reorg rebuild is run 
on the table. The expected row size is applied as rows are copied to 
new data pages.

If you increase exp_row_size, and re-create the clustered index or run 
reorg rebuild, the new copy of the table may require more storage 
space.

• The next time a page is affected by data modifications.



Reducing row forwarding 

310  Adaptive Server Enterprise

Setting a default expected row size server-wide
default exp_row_size percent reserves a percentage of the page size to set 
aside for expanding updates. The default value, 5, sets aside 5% of the 
space available per data page for all data-only-locked tables that include 
variable-length columns. Since there are 2002 bytes available on data 
pages in data-only-locked tables, the default value sets aside 100 bytes for 
row expansion. This command sets the default value to 10%:

sp_configure "default exp_row_size percent", 10

Setting default exp_row_size percent to 0 means that no space is reserved 
for expanding updates for any tables where the expected row size is not 
explicitly set with create table or sp_chgattribute.

If an expected row size for a table is specified with create table or 
sp_chgattribute, that value takes precedence over the server-wide setting.

Displaying the expected row size for a table
Use sp_help to display the expected row size for a table:

sp_help titles

If the value is 0, and the table has nullable or variable-length columns, use 
sp_configure to display the server-wide default value:

sp_configure "default exp_row_size percent"

This query displays the value of the exp_rowsize column for all user tables 
in a database:

select object_name(id), exp_rowsize 
from sysindexes
where id > 100 and (indid = 0 or indid = 1)

Choosing an expected row size for a table
Setting an expected row size helps reduce the number of forwarded rows 
only if the rows expand after they are first inserted into the table. Setting 
the expected row size correctly means that:

• Your application results in a small percentage of forwarded rows.

• You do not waste too much space on data pages due to over-
configuring the expected row size value.



CHAPTER 14    Setting Space Management Properties

Performance & Tuning Guide 311

Using optdiag to check for forwarded rows

For tables that already contain data, use optdiag to display statistics for the 
table. The “Data row size” shows the average data row length, including 
the row overhead. This sample optdiag output for the titles table shows 12 
forwarded rows and an average data row size of 184 bytes:

Statistics for table:               "titles"

     Data page count:               655
     Empty data page count:         5
     Data row count:                4959.000000000
     Forwarded row count:           12.000000000
     Deleted row count:             84.000000000
     Data page CR count:            0.000000000
     OAM + allocation page count:   6
     Pages in allocation extent:    1
     Data row size:                 184.000000000

You can also use optdiag to check the number of forwarded rows for a table 
to determine whether your setting for exp_row_size is reducing the number 
of forwarded rows generated by your applications.

For more information on optdiag, see Chapter 37, “Statistics Tables and 
Displaying Statistics with optdiag.”

Querying systabstats to check for forwarded rows

You can check the forwrowcnt column in the systabstats table to see the 
number of forwarded rows for a table. This query checks the number of 
forwarded rows for all user tables (those with object IDs greater than 100):

select object_name(id) , forwrowcnt
from systabstats 
where id > 100 and (indid = 0 or indid = 1)

Note  Forwarded row counts are updated in memory, and the housekeeper 
periodically flushes them to disk.

If you need to query the systabstats table using SQL, use sp_flushstats first 
to ensure that the most recent statistics are available. optdiag flushes 
statistics to disk before displaying values.



Reducing row forwarding 

312  Adaptive Server Enterprise

Conversion of max_rows_per_page to exp_row_size
If a max_rows_per_page value is set for an allpages-locked table, the value 
is used to compute an expected row size during the alter table...lock 
command. The formula is shown in Table 14-7.

Table 14-7: Conversion of max_rows_per_page to exp_row_size

For example, if max_rows_per_page is set to 10 for an allpages-locked 
table with a maximum defined row size of 300 bytes, the exp_row_size 
value will be 200 (2002/10) after the table is altered to use data-only 
locking.

If max_rows_per_page is set to 10, but the maximum defined row size is 
only 150, the expected row size value will be set to 150.

Monitoring and managing tables that use expected row size
After setting an expected row size for a table, use optdiag or queries on 
systabstats to check the number of forwarded rows still being generated by 
your applications. Run reorg forwarded_rows if you feel that the number of 
forwarded rows is high enough to affect application performance. reorg 
forwarded_rows uses short transactions and is very nonintrusive, so you 
can run it while applications are active.

See the System Administration Guide for more information.

If the application still results in a large number of forwarded rows, you 
may want to use sp_chgattribute to increase the expected row size for the 
table.

You may want to allow a certain percentage of forwarded rows. If running 
reorg to clear forwarded rows does not cause concurrency problems for 
your applications, or if you can run reorg at non-peak times, allowing a 
small percentage of forwarded rows does not cause a serious performance 
problem. 

Value of max_rows_per_page Value of exp_row_size 

0 Percentage value set by default exp_row_size percent

1-254 The smaller of:

• Maximum row size 

• 2002/max_rows_per_page value



CHAPTER 14    Setting Space Management Properties

Performance & Tuning Guide 313

Setting the expected row size for a table increases the amount of storage 
space and the number of I/Os needed to read a set of rows. If the increase 
in the number of I/Os due to increased storage space is high, then allowing 
rows to be forwarded and occasionally running reorg may have less overall 
performance impact.

Leaving space for forwarded rows and inserts
Setting a reservepagegap value can reduce the frequency of maintenance 
activities such as running reorg rebuild and re-creating indexes for some 
tables to maintain high performance. Good performance on data-only-
locked tables requires good data clustering on the pages, extents, and 
allocation units used by the table.

The clustering of data and index pages in physical storage stays high as 
long as there is space nearby for storing forwarded rows and rows that are 
inserted in index key order. The reservepagegap space management 
property is used to reserve empty pages for expansion when additional 
pages need to be allocated.

Row and page cluster ratios are usually 1.0, or very close to 1.0, 
immediately after a clustered index is created on a table or immediately 
after reorg rebuild is run. However, future data modifications can cause row 
forwarding and can require allocation of additional data and index pages 
to store inserted rows.

Setting a reserve page gap can reduce storage fragmentation and reduce 
the frequency with which you need to re-create indexes or run reorg rebuild 
on the table.

Extent allocation operations and reservepagegap
Commands that allocate many data pages perform extent allocation to 
allocate eight pages at a time, rather than allocating just one page at a time. 
Extent allocation reduces logging, since it writes one log record instead of 
eight. 



Leaving space for forwarded rows and inserts 

314  Adaptive Server Enterprise

Commands that perform extent allocation are: select into, create index, 
reorg rebuild, bcp, alter table...lock, and the alter table...unique and primary 
key constraint options, since these constraints create indexes. alter table 
commands that add, drop, or modify columns sometimes require a table-
copy operation also. All of these commands allocate an extent, and, unless 
a reserve page gap value is in effect, fill all eight pages. 

You specify the reservepagegap in pages, indicating a ratio of empty pages 
to filled pages. For example, if you specify a reservepagegap of 8, an 
operation doing extent allocation fills seven pages and leaves the eighth 
page empty.

These empty pages can be used to store forwarded rows and for 
maintaining the clustering of data rows in index key order, for data-only-
locked tables with clustered indexes.

Since extent allocation operations must allocate entire extents, they do not 
use the first page on each allocation unit, because it stores the allocation 
page. For example, if you create a clustered index on a large table and do 
not specify a reserve page gap, each allocation unit has 7 empty, 
unallocated pages, 248 used pages, and the allocation page. These 7 pages 
can be used for row forwarding and inserts to the table, which helps keep 
forwarded rows and inserts with clustered indexes on the same allocation 
unit. Using reservepagegap leaves additional empty pages on each 
allocation unit.

Figure 14-1shows how an allocation unit might look after a clustered 
index is created with a reservepagegap value of 16 on the table. The pages 
that share the first extent with the allocation unit are not used and are not 
allocated to the table. Pages 279, 295, and 311 are the unused pages on 
extents that are allocated to the table.



CHAPTER 14    Setting Space Management Properties

Performance & Tuning Guide 315

Figure 14-1: Reserved pages after creating a clustered index

Specifying a reserve page gap with create table
This create table command specifies a reservepagegap value of 16:

create table more_titles (
      title_id    tid,
      title       varchar(80) not null,
      type        char(12),
      pub_id      char(4) null,
      price       money null,
      advance     money null,
      total_sales int null,
      notes       varchar(200) null,
      pubdate     datetime,
      contract    bit
    )
lock datarows
with reservepagegap = 16

Any operation that performs extent allocation on the more_titles table 
leaves 1 empty page for each 15 filled pages.

295

283

279

..

274

256 257 258 259 260 261 262 263

264 265 266 267 268 269 270 271

272 273 275 276 277 278

280 281 282 284 285 286 287

.
504 505 506 507 508 509 510

291288 288 290 291 293 294

299296 297 298 300 301 302 303

307304 305 306 308 309 310 311

Pages used by object

Reserved pages

Allocation page

Unallocated pages

511



Leaving space for forwarded rows and inserts 

316  Adaptive Server Enterprise

The default value for reservepagegap is 0, meaning that no space is 
reserved. You can have more than 255 bytes, use pattern strings for LIKE 
more thatn 255 bytes and LIKE can also operate on wider columns.

Specifying a reserve page gap with create index
This command specifies a reservepagegap of 10 for the nonclustered index 
pages:

create index type_price_ix 
on more_titles(type, price) 
with reservepagegap = 10

You can also specify a reservepagegap value with the alter table...constraint 
options, primary key and unique, that create indexes. This example creates 
a unique constraint:

alter table more_titles
add constraint uniq_id unique (title_id)
with reservepagegap = 20

Changing reservepagegap
The following command uses sp_chgattribute to change the reserve page 
gap for the titles table to 20:

sp_chgattribute more_titles, "reservepagegap", 20

This command sets the reserve page gap for the index title_ix to 10:

sp_chgattribute "titles.title_ix", 
    "reservepagegap", 10

sp_chgattribute changes only values in system tables; data is not moved on 
data pages as a result of running the procedure. Changing reservepagegap 
for a table affects future storage as follows:

• When data is bulk-copied into the table, the reserve page gap is 
applied to all newly allocated space, but the storage of existing pages 
is not affected.

• When the reorg rebuild command is run on the table, the reserve page 
gap is applied as the table is copied to new data pages.

• When a clustered index is created, the reserve page gap value stored 
for the table is applied to the data pages.



CHAPTER 14    Setting Space Management Properties

Performance & Tuning Guide 317

The reserve page gap is applied to index pages during:

• alter table...lock, while rebuilding indexes for the table

• reorg rebuild commands that affect indexes

• create clustered index and alter table commands that create a clustered 
index, as nonclustered indexes are rebuilt

reservepagegap examples
These examples show how reservepagegap is applied during alter table and 
reorg rebuild commands. 

reservepagegap specified only for the table

The following commands specify a reservepagegap for the table, but do 
not specify a value in the create index commands:

sp_chgattribute titles, "reservepagegap", 16
create clustered index title_ix on titles(title_id)
create index type_price on titles(type, price)

Table 14-8 shows the values applied when running reorg rebuild or 
dropping and creating a clustered index.

Table 14-8: reservepagegap values applied with table-level saved 
value

The reservepagegap for the table is applied to both the data and index 
pages for an allpages-locked table with a clustered index. For a data-only-
locked table, the table’s reservepagegap is applied to the data pages, but 
not to the clustered index pages.

reservepagegap specified for a clustered index

These commands specify different reservepagegap values for the table and 
the clustered index, and a value for the nonclustered type_price index:

sp_chgattribute titles, "reservepagegap", 16

Command Allpages-locked table Data-only-locked table

create clustered 
index or clustered index rebuild 
due to reorg rebuild

Data and index pages: 16 Data pages: 16
Index pages: 0 (filled extents)

Nonclustered index rebuild Index pages: 0 (filled extents) Index pages: 0 (filled extents)



Leaving space for forwarded rows and inserts 

318  Adaptive Server Enterprise

create clustered index title_ix on titles(title)
    with reservepagegap = 20
create index type_price on titles(type, price)
    with reservepagegap = 24

Table 14-9 shows the effects of this sequence of commands.

Table 14-9: reservepagegap values applied with for index pages

For allpages-locked tables, the reservepagegap specified with create 
clustered index applies to both data and index pages. For data-only-locked 
tables, the reservepagegap specified with create clustered index applies 
only to the index pages. If there is a stored reservepagegap value for the 
table, that value is applied to the data pages.

Choosing a value for reservepagegap
Choosing a value for reservepagegap depends on:

• Whether the table has a clustered index,

• The rate of inserts to the table,

• The number of forwarded rows that occur in the table, and

• How often you re-create the clustered index or run the reorg rebuild 
command.

When reservepagegap is configured correctly, enough pages are left for 
allocation of new pages to tables and indexes so that the cluster ratios for 
the table, clustered index, and nonclustered leaf-level pages remain high 
during the intervals between regular index maintenance tasks.

Monitoring reservepagegap settings
You can use optdiag to check the cluster ratio and the number of forwarded 
rows in tables. Declines in cluster ratios can also indicate that running 
reorg commands could improve performance:

Command Allpages-locked table Data-only-locked table

create clustered 
index or clustered index rebuild due to 
reorg rebuild

Data and index pages: 20 Data pages: 16
Index pages: 20

Nonclustered index rebuilds Index pages: 24 Index pages: 24



CHAPTER 14    Setting Space Management Properties

Performance & Tuning Guide 319

• If the data page cluster ratio for a clustered index is low, run reorg 
rebuild or drop and re-create the clustered index.

• If the index page cluster ratio is low, drop and re-create the non-
clustered index.

To reduce the frequency with which you run reorg commands to maintain 
cluster ratios, increase the reservepagegap slightly before running reorg 
rebuild. 

See Chapter 37, “Statistics Tables and Displaying Statistics with 
optdiag,” for more information on optdiag.

reservepagegap and sorted_data options to create index
When you create a clustered index on a table that is already stored on the 
data pages in index key order, the sorted_data option suppresses the step 
of copying the data pages in key order for unpartitioned tables. The 
reservepagegap option can be specified in create clustered index 
commands, to leave empty pages on the extents used by the table, leaving 
room for later expansion. There are rules that determine which option 
takes effect. You cannot use sp_chgattribute to change the reservepagegap 
value and get the benefits of both of these options.

If you specify both with create clustered index:

• On unpartitioned, allpages-locked tables, if the reservepagegap value 
specified with create clustered index matches the values already stored 
in sysindexes, the sorted_data option takes precedence. Data pages are 
not copied, so the reservepagegap is not applied. If the 
reservepagegap value specified in the create clustered index command 
is different from the values stored in sysindexes, the data pages are 
copied, and the reservepagegap value specified in the command is 
applied to the copied pages.

• On data-only-locked tables, the reservepagegap value specified with 
create clustered index applies only to the index pages. Data pages are 
not copied.

Background on the sorted_data option

Besides reservepagegap, other options to create clustered index may 
require a sort, which causes the sorted_data option to be ignored. 



Leaving space for forwarded rows and inserts 

320  Adaptive Server Enterprise

For more information, see “Creating an index on sorted data” on page 
393. 

In particular, the following comments relate to the use of reservepagegap:

• On partitioned tables, any create clustered index command that 
requires copying data pages performs a parallel sort and then copies 
the data pages in sorted order, applying the reservepagegap values as 
the pages are copied to new extents.

• Whenever the sorted_data option is not superseded by other create 
clustered index options, the table is scanned to determine whether the 
data is stored in key order. The index is built during the scan, without 
a sort being performed.

Table 14-10 shows how these rules apply.

Table 14-10: reservepagegap and sorted_data options

Matching options and goals

If you want to redistribute the data pages of a table, leaving room for later 
expansion:

• For allpages-locked tables, drop and re-create the clustered index 
without using the sorted_data option. Specify the desired 
reservepagegap value in the create clustered index command, if the 
value stored in sysindexes is not the value you want.

Partitioned table Unpartitioned table

Allpages-Locked Table

create index with sorted_data 
and matching reservepagegap 
value

Does not copy data pages; builds the 
index as pages are scanned.

Does not copy data pages; builds the 
index as pages are scanned.

create index with sorted_data 
and different reservepagegap 
value

Performs parallel sort, applying 
reservepagegap as pages are stored 
in new locations in sorted order.

Copies data pages, applying 
reservepagegap and building the 
index as pages are copied; no sort is 
performed.

Data-Only-Locked Table

create index with sorted_data 
and any reservepagegap value

reservepagegap applies to index 
pages only; does not copy data 
pages.

reservepagegap applies to index 
pages only; does not copy data 
pages.



CHAPTER 14    Setting Space Management Properties

Performance & Tuning Guide 321

• For data-only-locked tables, use sp_chgattribute to set the 
reservepagegap for the table to the desired value and then drop and re-
create the clustered index, without using the sorted_data option. The 
reservepagegap stored for the table applies to the data pages. If 
reservepagegap is specified in the create clustered index command, it 
applies only to the index pages.

To create a clustered index without copying data pages:

• For allpages-locked tables, use the sorted_data option, but do not 
specify a reservepagegap with the create clustered index command. 
Alternatively, you can specify a value that matches the value stored in 
sysindexes.

• For data-only-locked tables, use the sorted_data option. If a 
reservepagegap value is specified in the create clustered index 
command, it applies only to the index pages and does not cause data 
page copying.

If you plan to use the sorted_data option following a bulk copy operation, 
a select into command, or another command that uses extent allocation, set 
the reservepagegap value that you want for the data pages before copying 
the data or specify it in the select into command. Once the data pages have 
been allocated and filled, the following command applies reservepagegap 
to the index pages only, since the data pages do not need to be copied:

create clustered index title_ix 
on titles(title_id) 
with sorted_data, reservepagegap = 32 

Using max_rows_per_page on allpages-locked tables
Setting a maximum number of rows per pages can reduce contention for 
allpages-locked tables and indexes. In most cases, it is preferable to 
convert the tables to use a data-only-locking scheme. If there is some 
reason that you cannot change the locking scheme and contention is a 
problem on an allpages-locked table or index, setting a 
max_rows_per_page value may help performance.



Using max_rows_per_page on allpages-locked tables 

322  Adaptive Server Enterprise

When there are fewer rows on the index and data pages, the chances of 
lock contention are reduced. As the keys are spread out over more pages, 
it becomes more likely that the page you want is not the page someone else 
needs. To change the number of rows per page, adjust the fillfactor or 
max_rows_per_page values of your tables and indexes.

fillfactor (defined by either sp_configure or create index) determines how 
full Adaptive Server makes each data page when it creates a new index on 
existing data. Since fillfactor helps reduce page splits, exclusive locks are 
also minimized on the index, improving performance. However, the 
fillfactor value is not maintained by subsequent changes to the data. 
max_rows_per_page (defined by sp_chgattribute, create index, create table, 
or alter table) is similar to fillfactor, except that Adaptive Server maintains 
the max_rows_per_page value as the data changes.

The costs associated with decreasing the number of rows per page using 
fillfactor or max_rows_per_page include more I/O to read the same number 
of data pages, more memory for the same performance from the data 
cache, and more locks. In addition, a low value for max_rows_per_page for 
a table may increase page splits when data is inserted into the table.

Reducing lock contention
The max_rows_per_page value specified in a create table, create index, or 
alter table command restricts the number of rows allowed on a data page, 
a clustered index leaf page, or a nonclustered index leaf page. This reduces 
lock contention and improves concurrency for frequently accessed tables.

max_rows_per_page applies to the data pages of a heap table or the leaf 
pages of an index. Unlike fillfactor, which is not maintained after creating 
a table or index, Adaptive Server retains the max_rows_per_page value 
when adding or deleting rows. 

The following command creates the sales table and limits the maximum 
rows per page to four:

create table sales
      (stor_id         char(4)      not null,
      ord_num          varchar(20)  not null,
      date             datetime     not null)
      with max_rows_per_page = 4



CHAPTER 14    Setting Space Management Properties

Performance & Tuning Guide 323

If you create a table with a max_rows_per_page value, and then create a 
clustered index on the table without specifying max_rows_per_page, the 
clustered index inherits the max_rows_per_page value from the create 
table statement. Creating a clustered index with max_rows_per_page 
changes the value for the table’s data pages.

Indexes and max_rows_per_page
The default value for max_rows_per_page is 0, which creates clustered 
indexes with full data pages, creates nonclustered indexes with full leaf 
pages, and leaves a comfortable amount of space within the index B-tree 
in both the clustered and nonclustered indexes.

For heap tables and clustered indexes, the range for max_rows_per_page 
is 0–256. 

For nonclustered indexes, the maximum value for max_rows_per_page is 
the number of index rows that fit on the leaf page, without exceeding 256. 
To determine the maximum value, subtract 32 (the size of the page header) 
from the page size and divide the difference by the index key size. The 
following statement calculates the maximum value of max_rows_per_page 
for a nonclustered index:

select (@@pagesize - 32)/minlen
    from sysindexes 
    where name = "indexname"

select into and max_rows_per_page
select into does not carry over the base table’s max_rows_per_page value, 
but creates the new table with a max_rows_per_page value of 0. Use 
sp_chgattribute to set the max_rows_per_page value on the target table.

Applying max_rows_per_page to existing data
sp_chgattribute configures the max_rows_per_page of a table or an index. 
sp_chgattribute affects all future operations; it does not change existing 
pages. For example, to change the max_rows_per_page value of the 
authors table to 1, enter:

sp_chgattribute authors, "max_rows_per_page", 1



Using max_rows_per_page on allpages-locked tables 

324  Adaptive Server Enterprise

There are two ways to apply a max_rows_per_page value to existing data:

• If the table has a clustered index, drop and re-create the index with a 
max_rows_per_page value.

• Use the bcp utility as follows:

a Copy out the table data.

b Truncate the table.

c Set the max_rows_per_page value with sp_chgattribute.

d Copy the data back in. 



Performance & Tuning Guide 325

C H A P T E R  1 5 Memory Use and Performance

This chapter describes how Adaptive Server uses the data and procedure 
caches and other issues affected by memory configuration. In general, the 
more memory available, the faster Adaptive Server’s response time.

The System Administration Guide describes how to determine the best 
memory configuration values for Adaptive Server, and the memory needs 
of other server configuration options. 

How memory affects performance
Having ample memory reduces disk I/O, which improves performance, 
since memory access is much faster than disk access. When a user issues 
a query, the data and index pages must be in memory, or read into memory, 
in order to examine the values on them. If the pages already reside in 
memory, Adaptive Server does not need to perform disk I/O.

Adding more memory is cheap and easy, but developing around memory 
problems is expensive. Give Adaptive Server as much memory as 
possible. 

Memory conditions that can cause poor performance are:

Topic Page
How memory affects performance 325

How much memory to configure 326

Caches in Adaptive Server 329

Procedure cache 330

Data cache 332

Configuring the data cache to improve performance 337

Named data cache recommendations 348

Maintaining data cache performance for large I/O 359

Speed of recovery 360

Auditing and performance 362



How much memory to configure 

326  Adaptive Server Enterprise

• Total data cache size is too small.

• Procedure cache size is too small.

• Only the default cache is configured on an SMP system with several 
active CPUs, leading to contention for the data cache.

• User-configured data cache sizes are not appropriate for specific user 
applications.

• Configured I/O sizes are not appropriate for specific queries.

• Audit queue size is not appropriate if auditing feature is installed.

How much memory to configure
Memory is the most important consideration when you are configuring 
Adaptive Server. Memory is consumed by various configuration 
parameters, procedure cache and data caches. Setting the values of the 
various configuration parameters and the caches correctly is critical to 
good system performance.

The total memory allocated during boot-time is the sum of memory 
required for all the configuration needs of Adaptive Server. This value can 
be obtained from the read-only configuration parameter 'total logical 
memory'. This value is calculated by Adaptive Server. The configuration 
parameter 'max memory' must be greater than or equal to 'total logical 
memory'. 'max memory' indicates the amount of memory you will allow 
for Adaptive Server needs.

During boot-time, by default, Adaptive Server allocates memory based on 
the value of 'total logical memory'. However, if the configuration 
parameter 'allocate max shared memory' has been set, then the memory 
allocated will be based on the value of 'max memory'. The configuration 
parameter 'allocate max shared memory' will enable a system 
administrator to allocate, the maximum memory that is allowed to be used 
by Adaptive Server, during boot-time.

The key points for memory configuration are:

• The system administrator should determine the size of shared memory 
available to Adaptive Server and set 'max memory' to this value.



CHAPTER 15    Memory Use and Performance

Performance & Tuning Guide 327

• The configuration parameter 'allocate max shared memory' can be 
turned on during boot-time and run-time to allocate all the shared 
memory up to 'max memory' with the least number of shared memory 
segments. Large number of shared memory segments has the 
disadvantage of some performance degradation on certain platforms. 
Please check your operating system documentation to determine the 
optimal number of shared memory segments. Note that once a shared 
memory segment is allocated, it cannot be released until the next 
server reboot.

• Configure the different configuration parameters, if the defaults are 
not sufficient.

• Now the difference between 'max memory' and 'total logical memory' 
is additional memory available for procedure, data caches or for other 
configuration parameters.

The amount of memory to be allocated by Adaptive Server during 
boot-time, is determined by either 'total logical memory' or 'max 
memory'. If this value too high:

• Adaptive Server may not start, if the physical resources on your 
machine does is not sufficient.

• If it does start, the operating system page fault rates may rise 
significantly and the operating system may need to re configured 
to compensate.

The System Administration Guide provides a thorough discussion of:

• How to configure the total amount of memory used by Adaptive 
Server

• Configurable parameters that use memory, which affects the amount 
of memory left for processing queries

• Handling wider character literals requires Adaptive Server to allocate 
memory for string user data. Also, rather than statically allocating 
buffers of the maximum possible size, Adaptive Server allocates 
memory dynamically. That is, it allocates memory for local buffers as 
it needs it, always allocating the maximum size for these buffers, even 
if large buffers are unnecessary. These memory management requests 
may cause Adaptive Server to have a marginal loss in performance 
when handling wide-character data.



How much memory to configure 

328  Adaptive Server Enterprise

• If you require Adaptive Server to handle more than 1000 columns 
from a single table, or process over 10000 arguments to stored 
procedures, the server must set up and allocate memory for various 
internal data structures for these objects. An increase in the number of 
small tasks that are performed repeatedly may cause performance 
degradation for queries that deal with larger numbers of such items. 
This performance hit increases as the number of columns and stored 
procedure arguments increases.

• Memory that is allocated dynamically (as opposed to rebooting 
Adaptive Server to allocate the memory) slightly degrades the 
server’s performance.

• When Adaptive Server uses larger logical page sizes, all disk I/Os are 
done in terms of the larger logical page sizes. For example, if 
Adaptive Server uses an 8K logical page size, it retrieves data from 
the disk in 8K blocks. This should result in an increased I/O 
throughput, although the amount of throughput is eventually limited 
by the controller’s I/O bandwidth.

What remains after all other memory needs have been met is available for 
the procedure cache and the data cache. Figure 15-1 shows how memory 
is divided. 



CHAPTER 15    Memory Use and Performance

Performance & Tuning Guide 329

Figure 15-1: How Adaptive Server uses memory

Caches in Adaptive Server
Once the procedure cache and the data cache are configured there is no 
division or left over memory.

• The procedure cache – used for stored procedures and triggers and 
for short-term memory needs such as statistics and query plans for 
parallel queries.

• The data cache – used for data, index, and log pages. The data cache 
can be divided into separate, named caches, with specific databases or 
database objects bound to specific caches.

Set the procedure cache size to an absolute value using sp_configure. See 
the System Administration Guide for more information.

OS and other programs

Procedure cache
Adaptive

Server

Physical
memory

Cache

Internal
structures

Adaptive Server Executable

Static overhead

Kernel and 
server structures

Data cache

Data cache overheadTotal 
logical
memory

Total physical memory

Ma
xim

um
 me

mo
ry



Procedure cache 

330  Adaptive Server Enterprise

Procedure cache
Adaptive Server maintains an MRU/LRU (most recently used/least 
recently used) chain of stored procedure query plans. As users execute 
stored procedures, Adaptive Server looks in the procedure cache for a 
query plan to use. If a query plan is available, it is placed on the MRU end 
of the chain, and execution begins.

If no plan is in memory, or if all copies are in use, the query tree for the 
procedure is read from the sysprocedures table. It is then optimized, using 
the parameters provided to the procedure, and put on the MRU end of the 
chain, and execution begins. Plans at the LRU end of the page chain that 
are not in use are aged out of the cache. 

The memory allocated for the procedure cache holds the optimized query 
plans (and occasionally trees) for all batches, including any triggers.

If more than one user uses a procedure or trigger simultaneously, there will 
be multiple copies of it in cache. If the procedure cache is too small, a user 
trying to execute stored procedures or queries that fire triggers receives an 
error message and must resubmit the query. Space becomes available 
when unused plans age out of the cache.

When you first install Adaptive Server, the default procedure cache size is 
3271 memory pages. The optimum value for the procedure cache varies 
from application to application, and it may also vary as usage patterns 
change. The configuration parameter to set the size, procedure cache size, 
is documented in the System Administration Guide.

Getting information about the procedure cache size
When you start Adaptive Server, the error log states how much procedure 
cache is available.

proc buffers

Represents the maximum number of compiled procedural objects that can 
reside in the procedure cache at one time. 

proc headers

Represents the number of pages dedicated to the procedure cache. Each 
object in cache requires at least 1 page. 



CHAPTER 15    Memory Use and Performance

Performance & Tuning Guide 331

Monitoring procedure cache performance

sp_sysmon reports on stored procedure executions and the number of 
times that stored procedures need to be read from disk.

For more information, see “Procedure cache management” on page 1022.

Procedure cache errors

If there is not enough memory to load another query tree or plan or the 
maximum number of compiled objects is already in use, Adaptive Server 
reports Error 701.

Procedure cache sizing
On a production server, you want to minimize the procedure reads from 
disk. When a user needs to execute a procedure, Adaptive Server should 
be able to find an unused tree or plan in the procedure cache for the most 
common procedures. The percentage of times the server finds an available 
plan in cache is called the cache hit ratio. Keeping a high cache hit ratio 
for procedures in cache improves performance.

The formulas in Figure 15-2 suggest a good starting point.

Figure 15-2: Formulas for sizing the procedure cache

If you have nested stored procedures (for example, A, B and C)—
procedure A calls procedure B, which calls procedure C—all of them need 
to be in the cache at the same time. Add the sizes for nested procedures, 
and use the largest sum in place of “Size of largest plan” in the formula in 
Figure 15-2.

=

Procedure 
cache size

Minimum procedure 
cache size needed

(Max # of concurrent users) * 
(Size of largest plan) * 1.25=

(# of main procedures) * 
(Average plan size)



Data cache 

332  Adaptive Server Enterprise

The minimum procedure cache size is the smallest amount of memory that 
allows at least one copy of each frequently used compiled object to reside 
in cache. However, the procedure cache can also be used as additional 
memory at execution time, such as when an ad hoc query uses the distinct 
keyword which uses the internal lmlink function that will dynamically 
allocate memory from the procedure cache. Then the create index will also 
use the procedure cache memory and can generate the 701 error though no 
stored procedure is involved.

For additional information on sizing the procedure cache see“Using 
sp_monitor to measure CPU usage” on page 37.

Estimating stored procedure size
To get a rough estimate of the size of a single stored procedure, view, or 
trigger, use:

select(count(*) / 8) +1
    from sysprocedures
where id = object_id("procedure_name")

For example, to find the size of the titleid_proc in pubs2:

select(count(*) / 8) +1
    from sysprocedures
where id = object_id("titleid_proc")
----------- 
          3

Data cache
Default data cache and other caches are configured as absolute values. The 
data cache contains pages from recently accessed objects, typically:

• sysobjects, sysindexes, and other system tables for each database

• Active log pages for each database

• The higher levels and parts of the lower levels of frequently used 
indexes

• Recently accessed data pages



CHAPTER 15    Memory Use and Performance

Performance & Tuning Guide 333

Default cache at installation time
When you first install Adaptive Server, it has a single data cache that is 
used by all Adaptive Server processes and objects for data, index, and log 
pages. The default size is 8MB.

The following pages describe the way this single data cache is used. 
“Configuring the data cache to improve performance” on page 337 
describes how to improve performance by dividing the data cache into 
named caches and how to bind particular objects to these named caches.

Most of the concepts on aging, buffer washing, and caching strategies 
apply to both the user-defined data caches and the default data cache.

Page aging in data cache
The Adaptive Server data cache is managed on a most recently used/least 
recently used (MRU/LRU) basis. As pages in the cache age, they enter a 
wash area, where any dirty pages (pages that have been modified while in 
memory) are written to disk. There are some exceptions to this:

• Caches configured with relaxed LRU replacement policy use the 
wash section as described above, but are not maintained on an 
MRU/LRU basis.

Typically, pages in the wash section are clean, i.e. the I/O on these 
pages have been completed. When a task or query wants to grab a 
page from LRU end it expects the page to be clean. If not, the query 
has to wait for the I/O to complete on the page before it can be 
grabbed which impairs performance.

• A special strategy ages out index pages and OAM pages more slowly 
than data pages. These pages are accessed frequently in certain 
applications and keeping them in cache can significantly reduce disk 
reads. 

See the System Administration Guide for more information.

• Adaptive Server may choose to use the LRU cache replacement 
strategy that does not flush other pages out of the cache with pages 
that are used only once for an entire query.

• The checkpoint process ensures that if Adaptive Server needs to be 
restarted, the recovery process can be completed in a reasonable 
period of time.



Data cache 

334  Adaptive Server Enterprise

When the checkpoint process estimates that the number of changes to 
a database will take longer to recover than the configured value of the 
recovery interval configuration parameter, it traverses the cache, 
writing dirty pages to disk. 

• Recovery uses only the default data cache making it faster.

• The housekeeper task writes dirty pages to disk when idle time is 
available between user processes.

Effect of data cache on retrievals
Figure 15-3 shows the effect of data caching on a series of random select 
statements that are executed over a period of time. If the cache is empty 
initially, the first select statement is guaranteed to require disk I/O. You 
have to be sure to adequately size the data cache for the number of 
transactions you expect against the database.

As more queries are executed and the cache is being filled, there is an 
increasing probability that one or more page requests can be satisfied by 
the cache, thereby reducing the average response time of the set of 
retrievals.

Once the cache is filled, there is a fixed probability of finding a desired 
page in the cache from that point forward. 



CHAPTER 15    Memory Use and Performance

Performance & Tuning Guide 335

Figure 15-3: Effects of random selects on the data cache

If the cache is smaller than the total number of pages that are being 
accessed in all databases, there is a chance that a given statement will have 
to perform some disk I/O. A cache does not reduce the maximum possible 
response time—some query may still need to perform physical I/O for all 
of the pages it needs. But caching decreases the likelihood that the 
maximum delay will be suffered by a particular query—more queries are 
likely to find at least some of the required pages in cache. 

Effect of data modifications on the cache
The behavior of the cache in the presence of update transactions is more 
complicated than for retrievals.

There is still an initial period during which the cache fills. Then, because 
cache pages are being modified, there is a point at which the cache must 
begin writing those pages to disk before it can load other pages. Over time, 
the amount of writing and reading stabilizes, and subsequent transactions 
have a given probability of requiring a disk read and another probability 
of causing a disk write.

The steady-state period is interrupted by checkpoints, which cause the 
cache to write all dirty pages to disk.

Fill
cache

Av
er

ag
e 

re
sp

on
se

 ti
m

e

Random selects over time

Steady 
state



Data cache 

336  Adaptive Server Enterprise

Data cache performance
You can observe data cache performance by examining the cache hit 
ratio, the percentage of page requests that are serviced by the cache.

One hundred percent is outstanding, but implies that your data cache is as 
large as the data or at least large enough to contain all the pages of your 
frequently used tables and indexes.

A low percentage of cache hits indicates that the cache may be too small 
for the current application load. Very large tables with random page access 
generally show a low cache hit ratio.

Testing data cache performance
Consider the behavior of the data and procedure caches when you measure 
the performance of a system. When a test begins, the cache can be in any 
one of the following states:

• Empty

• Fully randomized

• Partially randomized

• Deterministic

An empty or fully randomized cache yields repeatable test results because 
the cache is in the same state from one test run to another.

A partially randomized or deterministic cache contains pages left by 
transactions that were just executed. Such pages could be the result of a 
previous test run. In these cases, if the next test steps request those pages, 
then no disk I/O will be needed. 

Such a situation can bias the results away from a purely random test and 
lead to inaccurate performance estimates.

The best testing strategy is to start with an empty cache or to make sure 
that all test steps access random parts of the database. For more precise 
testing, execute a mix of queries that is consistent with the planned mix of 
user queries on your system.



CHAPTER 15    Memory Use and Performance

Performance & Tuning Guide 337

Cache hit ratio for a single query

To see the cache hit ratio for a single query, use set statistics io on to see 
the number of logical and physical reads, and set showplan on to see the 
I/O size used by the query.

To compute the cache hit ratio, use this formula:

Figure 15-4: 

With statistics io, physical reads are reported in I/O-size units. If a query 
uses 16K I/O, it reads 8 pages with each I/O operation.

If statistics io reports 50 physical reads, it has read 400 pages. Use 
showplan to see the I/O size used by a query.

Cache hit ratio information from sp_sysmon

sp_sysmon reports on cache hits and misses for:

• All caches on Adaptive Server

• The default data cache

• Any user-configured caches

The server-wide report provides the total number of cache searches and the 
percentage of cache hits and cache misses. 

See “Cache statistics summary (all caches)” on page 1009.

For each cache, the report contains the number of cache searches, cache 
hits and cache misses, and the number of times that a needed buffer was 
found in the wash section. 

See “Cache management by cache” on page 1015.

Configuring the data cache to improve performance
When you install Adaptive Server, it has single default data cache, with a 
2K memory pool, one cache partition and a single spinlock.

Cache hit ratio 
Logical reads - (Physical reads * Pages 

Logical reads



Configuring the data cache to improve performance 

338  Adaptive Server Enterprise

To improve performance you can add data caches and bind databases or 
database objects to them:

1 To reduce contention on the default data cache spinlock, divide the 
cache into n where n is 1, 2, 4, 8,16, 32 or 64. If you have contention 
on the spinlock with 1 cache partition, the contention is expected to 
reduce x/n where n is the number of partitions.

2 When a particular cache partition spinlock is hot, consider splitting 
the default cache into named caches.

3 If there is still contention, consider splitting the named cache into 
named cache partitions.

You can configure 4K, 8K, and 16K buffer pools from the logical page size 
in both user-defined data caches and the default data caches, allowing 
Adaptive Server to perform large I/O. In addition, caches that are sized to 
completely hold tables or indexes can use relaxed LRU cache policy to 
reduce overhead. 

You can also split the default data cache or a named cache into partitions 
to reduce spinlock contention.

Configuring the data cache can improve performance in the following 
ways:

• You can configure named data caches large enough to hold critical 
tables and indexes.

This keeps other server activity from contending for cache space and 
speeds up queries using these tables, since the needed pages are 
always found in cache.

You can configure these caches to use relaxed LRU replacement 
policy, which reduces the cache overhead.

• You can bind a “hot” table—a table in high demand by user 
applications—to one cache and the indexes on the table to other 
caches to increase concurrency.

• You can create a named data cache large enough to hold the “hot 
pages” of a table where a high percentage of the queries reference 
only a portion of the table.



CHAPTER 15    Memory Use and Performance

Performance & Tuning Guide 339

For example, if a table contains data for a year, but 75% of the queries 
reference data from the most recent month (about 8% of the table), 
configuring a cache of about 10% of the table size provides room to 
keep the most frequently used pages in cache and leaves some space 
for the less frequently used pages.

• You can assign tables or databases used in decision support systems 
(DSS) to specific caches with large I/O configured.

This keeps DSS applications from contending for cache space with 
online transaction processing (OLTP) applications. DSS applications 
typically access large numbers of sequential pages, and OLTP 
applications typically access relatively few random pages.

• You can bind tempdb to its own cache to keep it from contending with 
other user processes.

Proper sizing of the tempdb cache can keep most tempdb activity in 
memory for many applications. If this cache is large enough, tempdb 
activity can avoid performing I/O.

• Text pages can be bound to named caches to improve the performance 
on text access.

• You can bind a database’s log to a cache, again reducing contention 
for cache space and access to the cache.

• When changes are made to a cache by a user process, a spinlock 
denies all other processes access to the cache.

Although spinlocks are held for extremely brief durations, they can 
slow performance in multiprocessor systems with high transaction 
rates. When you configure multiple caches, each cache is controlled 
by a separate spinlock, increasing concurrency on systems with 
multiple CPUs.

Within a single cache, adding cache partitions creates multiple 
spinlocks to further reduce contention. Spinlock contention is not an 
issue on single-engine servers.

Most of these possible uses for named data caches have the greatest impact 
on multiprocessor systems with high transaction rates or with frequent 
DSS queries and multiple users. Some of them can increase performance 
on single CPU systems when they lead to improved utilization of memory 
and reduce I/O.



Configuring the data cache to improve performance 

340  Adaptive Server Enterprise

Commands to configure named data caches
The commands used to configure caches and pools are shown in Table 15-
1

Table 15-1: Commands used to configure caches

For a full description of configuring named caches and binding objects to 
caches, see the System Administration Guide. Only a System 
Administrator can configure named caches and bind database objects to 
them.

Tuning named caches
Creating named data caches and memory pools, and binding databases and 
database objects to the caches, can dramatically hurt or improve Adaptive 
Server performance. For example:

• A cache that is poorly used hurts performance.

If you allocate 25% of your data cache to a database that services a 
very small percentage of the query activity on your server, I/O 
increases in other caches.

• A pool that is unused hurts performance.

If you add a 16K pool, but none of your queries use it, you have taken 
space away from the 2K pool. The 2K pool’s cache hit ratio is 
reduced, and I/O is increased.

Command Function

sp_cacheconfig Creates or drops named caches and set the size, cache type, cache policy 
and local cache partition number. Reports on sizes of caches and pools.

sp_poolconfig Creates and drops I/O pools and changes their size, wash size, and 
asynchronous prefetch limit.

sp_bindcache Binds databases or database objects to a cache.

sp_unbindcache Unbinds the specified database or database object from a cache.

sp_unbindcache_all Unbinds all databases and objects bound to a specified cache.

sp_helpcache Reports summary information about data caches and lists the databases 
and database objects that are bound to a cache. Also reports on the 
amount of overhead required by a cache.

sp_sysmon Reports statistics useful for tuning cache configuration, including cache 
spinlock contention, cache utilization, and disk I/O patterns.



CHAPTER 15    Memory Use and Performance

Performance & Tuning Guide 341

• A pool that is overused hurts performance.

If you configure a small 16K pool, and virtually all of your queries use 
it, I/O rates are increased. The 2K cache will be under-used, while 
pages are rapidly cycled through the 16K pool. The cache hit ratio in 
the 16K pool will be very poor.

• When you balance your pool utilization within a cache, performance 
can increase dramatically.

Both 16K and 2K queries experience improved cache hit ratios. The 
large number of pages often used by queries that perform 16K I/O do 
not flush 2K pages from disk. Queries using 16K will perform 
approximately one-eighth the number of I/Os required by 2K I/O.

When tuning named caches, always measure current performance, make 
your configuration changes, and measure the effects of the changes with 
similar workload.

Cache configuration goals
Goals for configuring caches are:

• Reduced contention for spinlocks on multiple engine servers.

• Improved cache hit ratios and/or reduced disk I/O. As a bonus, 
improving cache hit ratios for queries can reduce lock contention, 
since queries that do not need to perform physical I/O usually hold 
locks for shorter periods of time.

• Fewer physical reads, due to the effective use of large I/O.

• Fewer physical writes, because recently modified pages are not being 
flushed from cache by other processes.

• Reduced cache overhead and reduced CPU bus latency on SMP 
systems, when relaxed LRU policy is appropriately used.

• Reduced cache spinlock contention on SMP systems, when cache 
partitions are used.

In addition to commands such as showplan and statistics io that help tune 
on a per-query basis, you need to use a performance monitoring tool such 
as sp_sysmon to look at the complex picture of how multiple queries and 
multiple applications share cache space when they are run simultaneously.



Configuring the data cache to improve performance 

342  Adaptive Server Enterprise

Gather data, plan, and then implement
The first step in developing a plan for cache usage is to provide as much 
memory as possible for the data cache:

• Determine the maximum amount of memory you can allocate to 
Adaptive Server. Set 'max memory' configuration parameter to that 
value.

• Once all the configuration parameters that use Adaptive Server 
memory have been configured, the difference between the 'max 
memory' and run value of 'total logical memory' is the memory 
available for additional configuration and/or for data/procedure 
caches. If you have sufficiently configured all the other configuration 
parameters, you can choose to allocate this additional memory to data 
caches. Note that configuration of a data cache requires a reboot.

• Note that if you allocate all the additional memory to data caches, 
there may not be any memory available for reconfiguration of other 
configuration parameters. However, if there is additional memory 
available in your system, 'max memory' value can be increased 
dynamically and other dynamic configuration parameters like 
'procedure cache size', 'user connections, etc., can be increased.

• Use your performance monitoring tools to establish baseline 
performance, and to establish your tuning goals.

Determine the size of memory you can allocate to data caches as 
mentioned in the above steps. Include the size of already configured 
cache(s), like the default data cache and any named cache(s). 

Decide the data caches's size by looking at existing objects and 
applications. Note that addition of new caches or increase in configuration 
parameters that consume memory does not reduce the size of the default 
data cache. Once you have decided the memory available for data caches 
and size of each individual cache, add new caches and increase or decrease 
size of existing data caches.

• Evaluate cache needs by analyzing I/O patterns, and evaluate pool 
needs by analyzing query plans and I/O statistics. 

• Configure the easiest choices that will gain the most performance 
first:

• Choose a size for a tempdb cache.

• Choose a size for any log caches, and tune the log I/O size.



CHAPTER 15    Memory Use and Performance

Performance & Tuning Guide 343

• Choose a size for the specific tables or indexes that you want to 
keep entirely in cache.

• Add large I/O pools for index or data caches, as appropriate.

• Once these sizes are determined, examine remaining I/O patterns, 
cache contention, and query performance. Configure caches 
proportional to I/O usage for objects and databases. 

Keep your performance goals in mind as you configure caches:

• If your major goal in configuring caches is to reduce spinlock 
contention, increasing the number of cache partitions for heavily-used 
caches may be the only step.

Moving a few high-I/O objects to separate caches also reduces the 
spinlock contention and improves performance.

• If your major goal is to improve response time by improving cache hit 
ratios for particular queries or applications, creating caches for the 
tables and indexes used by those queries should be guided by a 
thorough understanding of the access methods and I/O requirements.

Evaluating cache needs
Generally, your goal is to configure caches in proportion to the number of 
times that the pages in the caches will be accessed by your queries and to 
configure pools within caches in proportion to the number of pages used 
by queries that choose I/O of that pool’s size.

If your databases and their logs are on separate logical devices, you can 
estimate cache proportions using sp_sysmon or operating system 
commands to examine physical I/O by device. 

See “Disk I/O management” on page 1027 for information about the 
sp_sysmon output showing disk I/O.



Configuring the data cache to improve performance 

344  Adaptive Server Enterprise

Large I/O and performance
You can configure the default cache and any named caches you create for 
large I/O by splitting a cache into pools. The default I/O size is 2K, one 
Adaptive Server data page.

Note  Reference to Large I/Os are on a 2K logical page size server. If you 
have an 8K page size server, the basic unit for the I/O is 8K. If you have a 
16K page size server, the basic unit for the I/O is 16K.

For queries where pages are stored and accessed sequentially, Adaptive 
Server reads up to eight data pages in a single I/O. Since the majority of 
I/O time is spent doing physical positioning and seeking on the disk, large 
I/O can greatly reduce disk access time. In most cases, you want to 
configure a 16K pool in the default data cache. 

Certain types of Adaptive Server queries are likely to benefit from large 
I/O. Identifying these types of queries can help you determine the correct 
size for data caches and memory pools. 

In the following examples, either the database or the specific table, index 
or LOB page change (used for, text, image, and Java off-row columns) 
must be bound to a named data cache that has large memory pools, or the 
default data cache must have large I/O pools. Types of queries that can 
benefit from large I/O include:

• Queries that scan entire tables. For example:

select title_id, price from titles
select count(*) from authors
    where state = "CA"   /* no index on state */

• Range queries on tables with clustered indexes. For example:

where indexed_colname >= value

• Queries that scan the leaf level of an index, both matching and non-
matching scans. If there is a nonclustered index on type, price, this 
query could use large I/O on the leaf level of the index, since all the 
columns used in the query are contained in the index:

select type, sum(price)
    from titles
    group by type

• Queries that join entire tables, or large portions of tables. Different I/O 
sizes may be used on different tables in a join. 



CHAPTER 15    Memory Use and Performance

Performance & Tuning Guide 345

• Queries that select text or image or Java off-row columns. For 
example:

select au_id, copy from blurbs

• Queries that generate Cartesian products. For example:

select title, au_lname
from titles, authors

This query needs to scan all of one table, and scan the other table 
completely for each row from the first table. Caching strategies for 
these queries follow the same principles as for joins.

• Queries such as select into that allocate large numbers of pages.

• create index commands.

• Bulk copy operations on heaps—both copy in and copy out.

• The update statistics, dbcc checktable, and dbcc checkdb commands.

The optimizer and cache choices

If the cache for a table or index has a 16K pool, the optimizer decides on 
the I/O size to use for data and leaf-level index pages based on the number 
of pages that need to be read and the cluster ratios for the table or index. 

The optimizer’s knowledge is limited to the single query it is analyzing 
and to statistics about the table and cache. It does not have information 
about how many other queries are simultaneously using the same data 
cache. It also has no statistics on whether table storage is fragmented in 
such a way that large I/Os or asynchronous prefetch would be less 
effective.

In some cases, this combination of factors can lead to excessive I/O. For 
example, users may experience higher I/O and poor performance if 
simultaneous queries with large result sets are using a very small memory 
pool.

Choosing the right mix of I/O sizes for a cache

You can configure up to four pools in any data cache, but, in most cases, 
caches for individual objects perform best with only a 2K pool and a 16K 
pool. A cache for a database where the log is not bound to a separate cache 
should also have a pool configured to match the log I/O size configured for 
the database; often the best log I/O size is 4K.



Configuring the data cache to improve performance 

346  Adaptive Server Enterprise

Reducing spinlock contention with cache partitions
As the number of engines and tasks running on an SMP system increases, 
contention for the spinlock on the data cache can also increase. Any time 
a task needs to access the cache to find a page in cache or to relink a page 
on the LRU/MRU chain, it holds the cache spinlock to prevent other tasks 
from modifying the cache at the same time.

With multiple engines and users, tasks wind up waiting for access to the 
cache. Adding cache partitions separates the cache into partitions that are 
each protected by its own spinlock. When a page needs to be read into 
cache or located, a hash function is applied to the database ID and page ID 
to identify which partition holds the page.

The number of cache partitions is always a power of 2. Each time you 
increase the number of partitions, you reduce the spinlock contention by 
approximately 1/2. If spinlock contention is greater than 10 to 15%, 
consider increasing the number of partitions for the cache. This example 
creates 4 partitions in the default data cache:

sp_cacheconfig "default data cache", 
"cache_partition=4"

You must reboot the server for changes in cache partitioning to take effect. 

For more information on configuring cache partitions, see the System 
Administration Guide. 

For information on monitoring cache spinlock contention with sp_sysmon, 
see “Cache spinlock contention” on page 1015. 

Each pool in the cache is partitioned into a separate LRU/MRU chain of 
pages, with its own wash marker.

Cache replacement strategies and policies
The Adaptive Server optimizer uses two cache replacement strategies to 
keep frequently used pages in cache while flushing the less frequently 
used pages. For some caches, you may want to consider setting the cache 
replacement policy to reduce cache overhead.



CHAPTER 15    Memory Use and Performance

Performance & Tuning Guide 347

Strategies

Replacement strategies determine where the page is placed in cache when 
it is read from disk. The optimizer decides on the cache replacement 
strategy to be used for each query. The two strategies are:

• Fetch-and-discard, or MRU replacement, strategy links the newly 
read buffers at the wash marker in the pool.

• LRU replacement strategy links newly read buffers at the most-
recently used end of the pool.

Cache replacement strategies can affect the cache hit ratio for your query 
mix:

• Pages that are read into cache with the fetch-and-discard strategy 
remain in cache a much shorter time than queries read in at the MRU 
end of the cache. If such a page is needed again (for example, if the 
same query is run again very soon), the pages will probably need to 
be read from disk again.

• Pages that are read into cache with the fetch-and-discard strategy do 
not displace pages that already reside in cache before the wash 
marker. This means that the pages already in cache before the wash 
marker will not be flushed out of cache by pages that are needed only 
once by a query.

See “Specifying the cache strategy” on page 465 and “Controlling large 
I/O and cache strategies” on page 467 for information on specifying the 
cache strategy in queries or setting values for tables.

Policies

A System Administrator can specify whether a cache is going to be 
maintained as an MRU/LRU-linked list of pages (strict) or whether 
relaxed LRU replacement policy can be used. The two replacement 
policies are:

• Strict replacement policy replaces the least recently used page in the 
pool, linking the newly read page(s) at the beginning (MRU end) of 
the page chain in the pool. 

• Relaxed replacement policy attempts to avoid replacing a recently 
used page, but without the overhead of keeping buffers in LRU/MRU 
order.



Named data cache recommendations 

348  Adaptive Server Enterprise

The default cache replacement policy is strict replacement. Relaxed 
replacement policy should be used only when both of these conditions are 
true:

• There is little or no replacement of buffers in the cache.

• The data is not updated or is updated infrequently.

Relaxed LRU policy saves the overhead of maintaining the cache in 
MRU/LRU order. On SMP systems, where copies of cached pages may 
reside in hardware caches on the CPUs themselves, relaxed LRU policy 
can reduce bandwidth on the bus that connects the CPUs. 

If you have created a cache to hold all, or most of, certain objects, and the 
cache hit rate is above 95%, using relaxed cache replacement policy for 
the cache can improve performance slightly. 

See the System Administration Guide for more information.

Configuring relaxed LRU Replacement for database logs

Log pages are filled with log records and are immediately written to disk. 
When applications include triggers, deferred updates or transaction 
rollbacks, some log pages may be read, but usually they are very recently 
used pages, which are still in the cache.

Since accessing these pages in cache moves them to the MRU end of a 
strict-replacement policy cache, log caches may perform better with 
relaxed LRU replacement.

Relaxed LRU replacement for lookup tables and indexes

User-defined caches that are sized to hold indexes and frequently used 
lookup tables are good candidates for relaxed LRU replacement. If a cache 
is a good candidate, but you find that the cache hit ratio is slightly lower 
than the performance guideline of 95%, determine whether slightly 
increasing the size of the cache can provide enough space to completely 
hold the table or index.

Named data cache recommendations
These cache recommendations can improve performance on both single 
and multiprocessor servers:



CHAPTER 15    Memory Use and Performance

Performance & Tuning Guide 349

• Adaptive Server writes log pages according to the size of the logical 
page size. Larger log pages potentially reduce the rate of commit-
sharing writes for log pages. 

Commit-sharing occurs when, instead of performing many individual 
commits, Adaptive Server waits until it can perform a batch of 
commits at one time. Per-process user log caches are sized according 
to the logical page size and the user log cache size configuration 
parameter. The default size of the user log cache is one logical page. 

For transactions generating many log records, the time required to 
flush the user log cache is slightly higher for larger logical page sizes. 
However, because the log-cache sizes are also larger, Adaptive Server 
does not need to perform as many log-cache flushes to the log page 
for long transactions.

See the Utilities Guide for specific information.

• Create a named cache for tempdb and configure the cache for 16K I/O 
for use by select into queries and sorts. 

• Create a named cache for the logs for your high-use databases. 
Configure pools in this cache to match the log I/O size set with 
sp_logiosize. 

See “Choosing the I/O size for the transaction log” on page 352.

• If a table or its index is small and constantly in use, create a cache for 
just that object or for a few objects.

• For caches with cache hit ratios of more than 95%, configure relaxed 
LRU cache replacement policy if you are using multiple engines.

• Keep cache sizes and pool sizes proportional to the cache utilization 
objects and queries:

• If 75% of the work on your server is performed in one database, 
that database should be allocated approximately 75% of the data 
cache, in a cache created specifically for the database, in caches 
created for its busiest tables and indexes, or in the default data 
cache.

• If approximately 50% of the work in your database can use large 
I/O, configure about 50% of the cache in a 16K memory pool.

• It is better to view the cache as a shared resource than to try to 
micromanage the caching needs of every table and index.



Named data cache recommendations 

350  Adaptive Server Enterprise

Start cache analysis and testing at the database level, concentrating on 
particular tables and objects with high I/O needs or high application 
priorities and those with special uses, such as tempdb and transaction 
logs.

• On SMP servers, use multiple caches to avoid contention for the 
cache spinlock:

• Use a separate cache for the transaction log for busy databases, 
and use separate caches for some of the tables and indexes that 
are accessed frequently.

• If spinlock contention is greater than 10% on a cache, split it into 
multiple caches or use cache partitions.

Use sp_sysmon periodically during high-usage periods to check 
for cache contention.

See “Cache spinlock contention” on page 1015.

• Set relaxed LRU cache policy on caches with cache hit ratios of 
more than 95%, such as those configured to hold an entire table 
or index.

Sizing caches for special objects, tempdb, and transaction logs
Creating caches for tempdb, the transaction logs, and for a few tables or 
indexes that you want to keep completely in cache can reduce cache 
spinlock contention and improve cache hit ratios. 

Determining cache sizes for special tables or indexes

You can use sp_spaceused to determine the size of the tables or indexes 
that you want to keep entirely in cache. If you know how fast these tables 
increase in size, allow some extra cache space for their growth. To see the 
size of all the indexes for a table, use:

sp_spaceused table_name, 1

Examining cache needs for tempdb

Look at your use of tempdb:

• Estimate the size of the temporary tables and worktables generated by 
your queries.



CHAPTER 15    Memory Use and Performance

Performance & Tuning Guide 351

Look at the number of pages generated by select into queries.

These queries can use 16K I/O, so you can use this information to help 
you size a 16K pool for the tempdb cache.

• Estimate the duration (in wall-clock time) of the temporary tables and 
worktables.

• Estimate how often queries that create temporary tables and 
worktables are executed.

Try to estimate the number of simultaneous users, especially for 
queries that generate very large result sets in tempdb.

With this information, you can a form a rough estimate of the amount of 
simultaneous I/O activity in tempdb. Depending on your other cache 
needs, you can choose to size tempdb so that virtually all tempdb activity 
takes place in cache, and few temporary tables are actually written to disk. 

In most cases, the first 2MB of tempdb are stored on the master device, 
with additional space on another logical device. You can use sp_sysmon to 
check those devices to help determine physical I/O rates.

Examining cache needs for transaction logs

On SMP systems with high transaction rates, binding the transaction log 
to its own cache can greatly reduce cache spinlock contention in the 
default data cache. In many cases, the log cache can be very small.

The current page of the transaction log is written to disk when transactions 
commit, so your objective in sizing the cache or pool for the transaction 
log is not to avoid writes. Instead, you should try to size the log to reduce 
the number of times that processes that need to reread log pages must go 
to disk because the pages have been flushed from the cache.

Adaptive Server processes that need to read log pages are:

• Triggers that use the inserted and deleted tables, which are built from 
the transaction log when the trigger queries the tables 

• Deferred updates, deletes, and inserts, since these require rereading 
the log to apply changes to tables or indexes

• Transactions that are rolled back, since log pages must be accessed to 
roll back the changes 

When sizing a cache for a transaction log:

• Examine the duration of processes that need to reread log pages.



Named data cache recommendations 

352  Adaptive Server Enterprise

Estimate how long the longest triggers and deferred updates last.

If some of your long-running transactions are rolled back, check the 
length of time they ran.

• Estimate the rate of growth of the log during this time period.

You can check your transaction log size with sp_spaceused at regular 
intervals to estimate how fast the log grows.

Use this log growth estimate and the time estimate to size the log cache. 
For example, if the longest deferred update takes 5 minutes, and the 
transaction log for the database grows at 125 pages per minute, 625 pages 
are allocated for the log while this transaction executes.

If a few transactions or queries are especially long-running, you may want 
to size the log for the average, rather than the maximum, length of time.

Choosing the I/O size for the transaction log

When a user performs operations that require logging, log records are first 
stored in a “user log cache” until certain events flush the user’s log records 
to the current transaction log page in cache. Log records are flushed:

• When a transaction ends

• When the user log cache is full

• When the transaction changes tables in another database

• When another process needs to write a page referenced in the user log 
cache

• At certain system events

To economize on disk writes, Adaptive Server holds partially filled 
transaction log pages for a very brief span of time so that records of several 
transactions can be written to disk simultaneously. This process is called 
group commit. 

In environments with high transaction rates or transactions that create 
large log records, the 2K transaction log pages fill quickly, and a large 
proportion of log writes are due to full log pages, rather than group 
commits.

Creating a 4K pool for the transaction log can greatly reduce the number 
of log writes in these environments.



CHAPTER 15    Memory Use and Performance

Performance & Tuning Guide 353

sp_sysmon reports on the ratio of transaction log writes to transaction log 
allocations. You should try using 4K log I/O if all of these conditions are 
true:

• Your database is using 2K log I/O.

• The number of log writes per second is high.

• The average number of writes per log page is slightly above one.

Here is some sample output showing that a larger log I/O size might help 
performance:

                         per sec   per xact    count  % of total
Transaction Log Writes      22.5       458.0      1374     n/a
Transaction Log Alloc       20.8       423.0      1269     n/a
Avg # Writes per Log Page    n/a         n/a   1.08274     n/a

See “Transaction log writes” on page 983 for more information.

Configuring for large log I/O size

The log I/O size for each database is reported in the server’s error log when 
Adaptive Server starts. You can also use sp_logiosize.

To see the size for the current database, execute sp_logiosize with no 
parameters. To see the size for all databases on the server and the cache in 
use by the log, use:

sp_logiosize "all"

To set the log I/O size for a database to 4K, the default, you must be using 
the database. This command sets the size to 4K:

sp_logiosize "default"

By default, Adaptive Server sets the log I/O size for user databases to 4K. 
If no 4K pool is available in the cache used by the log, 2K I/O is used 
instead.

If a database is bound to a cache, all objects not explicitly bound to other 
caches use the database’s cache. This includes the syslogs table.

To bind syslogs to another cache, you must first put the database in single-
user mode, with sp_dboption, and then use the database and execute 
sp_bindcache. Here is an example:

sp_bindcache pubs_log, pubtune, syslogs



Named data cache recommendations 

354  Adaptive Server Enterprise

Additional tuning tips for log caches

For further tuning after configuring a cache for the log, check sp_sysmon 
output. Look at the output for:

• The cache used by the log

• The disk the log is stored on

• The average number of writes per log page

When looking at the log cache section, check “Cache Hits” and “Cache 
Misses” to determine whether most of the pages needed for deferred 
operations, triggers, and rollbacks are being found in cache.

In the “Disk Activity Detail” section, look at the number of “Reads” 
performed to see how many times tasks that need to reread the log had to 
access the disk.

Basing data pool sizes on query plans and I/O
Divide a cache into pools based on the proportion of the I/O performed by 
your queries that use the corresponding I/O sizes. If most of your queries 
can benefit from 16K I/O, and you configure a very small 16K cache, you 
may see worse performance.

Most of the space in the 2K pool remains unused, and the 16K pool 
experiences high turnover. The cache hit ratio is significantly reduced.

The problem is most severe with nested-loop join queries that have to 
repeatedly reread the inner table from disk.

Making a good choice about pool sizes requires:

• Knowledge of the application mix and the I/O size your queries can 
use

• Careful study and tuning, using monitoring tools to check cache 
utilization, cache hit rates, and disk I/O



CHAPTER 15    Memory Use and Performance

Performance & Tuning Guide 355

Checking I/O size for queries

You can examine query plans and I/O statistics to determine which queries 
are likely to perform large I/O and the amount of I/O those queries 
perform. This information can form the basis for estimating the amount of 
16K I/O the queries should perform with a 16K memory pool. I/Os are 
done in terms of logical page sizes, if it uses the 2K page it retrieves in 2K 
sizes, if 8K it retrieves in the 8K size, as shown:

Another example, a query that scans a table and performs 800 physical 
I/Os using a 2K pool should perform about 100 8K I/Os. 

See “Large I/O and performance” on page 344 for a list of query types.

To test your estimates, you need to actually configure the pools and run the 
individual queries and your target mix of queries to determine optimum 
pool sizes. Choosing a good initial size for your first test using 16K I/O 
depends on a good sense of the types of queries in your application mix.

This estimate is especially important if you are configuring a 16K pool for 
the first time on an active production server. Make the best possible 
estimate of simultaneous uses of the cache.

Some guidelines:

• If most I/O occurs in point queries using indexes to access a small 
number of rows, make the 16K pool relatively small, say about 10 to 
20% of the cache size. 

• If you estimate that a large percentage of the I/Os will use the 16K 
pool, configure 50 to 75% of the cache for 16K I/O.

Queries that use 16K I/O include any query that scans a table, uses the 
clustered index for range searches and order by, and queries that 
perform matching or nonmatching scans on covering nonclustered 
indexes. 

• If you are not sure about the I/O size that will be used by your queries, 
configure about 20% of your cache space in a 16K pool, and use 
showplan and statistics i/o while you run your queries.

Logical page size Memory pool

2K 16K

4K 64K

8K 128K

16K 256K



Named data cache recommendations 

356  Adaptive Server Enterprise

Examine the showplan output for the “Using 16K I/O” message. 
Check statistics i/o output to see how much I/O is performed.

• If you think that your typical application mix uses both 16K I/O and 
2K I/O simultaneously, configure 30 to 40% of your cache space for 
16K I/O.

Your optimum may be higher or lower, depending on the actual mix 
and the I/O sizes chosen by the query.

If many tables are accessed by both 2K I/O and 16K I/O, Adaptive 
Server cannot use 16K I/O, if any page from the extent is in the 2K 
cache. It performs 2K I/O on the other pages in the extent that are 
needed by the query. This adds to the I/O in the 2K cache.

After configuring for 16K I/O, check cache usage and monitor the I/O for 
the affected devices, using sp_sysmon or Adaptive Server Monitor. Also, 
use showplan and statistics io to observe your queries.

• Look for nested-loop join queries where an inner table would use 16K 
I/O, and the table is repeatedly scanned using the fetch-and-discard 
(MRU) strategy.

This can occur when neither table fits completely in cache. If 
increasing the size of the 16K pool allows the inner table to fit 
completely in cache, I/O can be significantly reduced. You might also 
consider binding the two tables to separate caches.

• Look for excessive 16K I/O, when compared to table size in pages.

For example, if you have an 8000-page table, and a 16K I/O table scan 
performs significantly more than 1000 I/Os to read this table, you may 
see improvement by re-creating the clustered index on this table.

• Look for times when large I/O is denied. Many times, this is because 
pages are already in the 2K pool, so the 2K pool will be used for the 
rest of the I/O for the query. 

For a complete list of the reasons that large I/O cannot be used, see 
“When prefetch specification is not followed” on page 464.



CHAPTER 15    Memory Use and Performance

Performance & Tuning Guide 357

Configuring buffer wash size
You can configure the wash area for each pool in each cache. If you set the 
wash size is set too high, Adaptive Server may perform unnecessary 
writes. If you set the wash area too small, Adaptive Server may not be able 
to find a clean buffer at the end of the buffer chain and may have to wait 
for I/O to complete before it can proceed. Generally, wash size defaults are 
correct and need to be adjusted only in large pools that have very high rates 
of data modification. 

Adaptive Server allocates buffer pools in units of logical pages. For 
example, on a server using 2K logical pages, 8MB are allocated to the 
default data cache. By default this constitutes approximately 4096 buffers. 

If you allocated the same 8MB for the default data cache on a server using 
a 16K logical page size, the default data cache is approximately 512 
buffers. On a busy system, this small number of buffers might result in a 
buffer always being in the wash region, causing a slowdown for tasks 
requesting clean buffers.

In general, to obtain the same buffer management characteristics on larger 
page sizes as with 2K logical page sizes, you should scale the size of the 
caches to the larger page size. In other words, if you increase your logical 
page size by four times, your cache and pool sizes should be about four 
times larger as well.

Queries performing large I/O, extent- based reads and writes, and so on, 
benefit from the use of larger logical page sizes. However, as catalogs 
continue to be page-locked, there is greater contention and blocking at the 
page level on system catalogs.

Row and column copying for DOL tables will result in a greater slowdown 
when used for wide columns. Memory allocation to support wide rows and 
wide columns will marginally slow the server.

See the System Administration Guide for more information.

Overhead of pool configuration and binding objects
Configuring memory pools and binding objects to caches can affect users 
on a production system, so these activities are best performed during off-
hours.



Named data cache recommendations 

358  Adaptive Server Enterprise

Pool configuration overhead

When a pool is created, deleted, or changed, the plans of all stored 
procedures and triggers that use objects bound to the cache are recompiled 
the next time they are run. If a database is bound to the cache, this affects 
all of the objects in a database.

There is a slight amount of overhead involved in moving buffers between 
pools.

Cache binding overhead

When you bind or unbind an object, all the object’s pages that are currently 
in the cache are flushed to disk (if dirty) or dropped from the cache (if 
clean) during the binding process.

The next time the pages are needed by user queries, they must be read from 
the disk again, slowing the performance of the queries.

Adaptive Server acquires an exclusive lock on the table or index while the 
cache is being cleared, so binding can slow access to the object by other 
users. The binding process may have to wait until transactions complete to 
acquire the lock.

Note  The fact that binding and unbinding objects from caches removes 
them from memory can be useful when tuning queries during development 
and testing.

If you need to check physical I/O for a particular table, and earlier tuning 
efforts have brought pages into cache, you can unbind and rebind the 
object. The next time the table is accessed, all pages used by the query 
must be read into the cache.

The plans of all stored procedures and triggers using the bound objects are 
recompiled the next time they are run. If a database is bound to the cache, 
this affects all the objects in the database.



CHAPTER 15    Memory Use and Performance

Performance & Tuning Guide 359

Maintaining data cache performance for large I/O
When heap tables, clustered indexes, or nonclustered indexes have just 
been created, they show optimal performance when large I/O is being 
used. Over time, the effects of deletes, page splits, and page deallocation 
and reallocation can increase the cost of I/O. optdiag reports a statistic 
called “Large I/O efficiency” for tables and indexes.

When this value is 1, or close to 1, large I/O is very efficient. As the value 
drops, more I/O is required to access data pages needed for a query, and 
large I/O may be bringing pages into cache that are not needed by the 
query.

You need to consider rebuilding indexes when large I/O efficiency drops 
or activity in the pool increases due to increased 16K I/O.

When large I/O efficiency drops, you can:

• Run reorg rebuild on tables that use data-only-locking. You can also 
use reorg rebuild on the index of data-only-locked tables.

• For allpages-locked tables, drop and re-create the indexes.

For more information, see “Running reorg on tables and indexes” on page 
391.

Diagnosing excessive I/O Counts
There are several reasons why a query that performs large I/O might 
require more reads than you anticipate:

• The cache used by the query has a 2K cache and other processes have 
brought pages from the table into the 2K cache.

If Adaptive Server finds that one of the pages it would read using 16K 
I/Os already in the 2K cache, it performs 2K I/O on the other pages in 
the extent that are required by the query.

• The first extent on each allocation unit stores the allocation page, so 
if a query needs to access all the pages on the extent, it must perform 
2K I/O on the 7 pages that share the extent with the allocation page.

The other 31 extents can be read using 16K I/O. So, the minimum 
number of reads for an entire allocation unit is always 38, not 32.



Speed of recovery 

360  Adaptive Server Enterprise

• In nonclustered indexes and clustered indexes on data-only-locked 
tables, an extent may store both leaf-level pages and pages from 
higher levels of the index. 2K I/O is performed on the higher levels of 
indexes, and for leaf-level pages when few pages are needed by a 
query.

When a covering leaf-level scan performs 16K I/O, it is likely that 
some of the pages from some extents will be in the 2K cache. The rest 
of the pages in the extent will be read using 2K I/O.

Using sp_sysmon to check large I/O performance
The sp_sysmon output for each data cache includes information that can 
help you determine the effectiveness for large I/Os:

• “Large I/O usage” on page 1020 reports the number of large I/Os 
performed and denied and provides summary statistics.

• “Large I/O detail” on page 1021 reports the total number of pages that 
were read into the cache by a large I/O and the number of pages that 
were actually accessed while they were in the cache.

Speed of recovery
As users modify data in Adaptive Server, only the transaction log is 
written to disk immediately, to ensure that given data or transactions can 
be recovered. The changed or “dirty” data and index pages stay in the data 
cache until one of these events causes them to be written to disk:

• The checkpoint process wakes up, determines that the changed data 
and index pages for a particular database need to be written to disk, 
and writes out all the dirty pages in each cache used by the database.

The combination of the setting for recovery interval and the rate of data 
modifications on your server determine how often the checkpoint 
process writes changed pages to disk.

• As pages move into the buffer wash area of the cache, dirty pages are 
automatically written to disk.



CHAPTER 15    Memory Use and Performance

Performance & Tuning Guide 361

• Adaptive Server has spare CPU cycles and disk I/O capacity between 
user transactions, and the housekeeper task uses this time to write 
dirty buffers to disk.

• Recovery happens only on the default data cache.

• A user issues a checkpoint command.

The combination of checkpoints, the housekeeper, and writes started at the 
wash marker has these benefits:

• Many transactions may change a page in the cache or read the page in 
the cache, but only one physical write is performed.

• Adaptive Server performs many physical writes at times when the I/O 
does not cause contention with user processes.

Tuning the recovery interval
The default recovery interval in Adaptive Server is five minutes per 
database. Changing the recovery interval can affect performance because 
it can impact the number of times Adaptive Server writes pages to disk.

Table 15-2 shows the effects of changing the recovery interval from its 
current setting on your system. 

Table 15-2: Effects of recovery interval on performance and 
recovery time

See the System Administration Guide for information on setting the 
recovery interval. sp_sysmon reports the number and duration of 
checkpoints. 

See “Recovery management” on page 1024.

Setting Effects on performance Effects on recovery

Lower May cause more reads and writes and may lower 
throughput. Adaptive Server will write dirty 
pages to the disk more often. Any checkpoint I/O 
“spikes” will be smaller.

Recovery period will be very short.

Higher Minimizes writes and improves system 
throughput. Checkpoint I/O spikes will be 
higher.

Automatic recovery may take more time 
on start-up. Adaptive Server may have 
to reapply a large number of transaction 
log records to the data pages.



Auditing and performance 

362  Adaptive Server Enterprise

Effects of the housekeeper task on recovery time
Adaptive Server’s housekeeper task automatically begins cleaning dirty 
buffers during the server’s idle cycles. If the task is able to flush all active 
buffer pools in all configured caches, it wakes up the checkpoint process. 
This may result in faster checkpoints and shorter database recovery time.

System Administrators can use the housekeeper free write percent 
configuration parameter to tune or disable the housekeeper task. This 
parameter specifies the maximum percentage by which the housekeeper 
task can increase database writes.

For more information on tuning the housekeeper and the recovery interval, 
see “Recovery management” on page 1024.

Auditing and performance
Heavy auditing can affect performance as follows:

• Audit records are written first to a queue in memory and then to the 
sybsecurity database. If the database shares a disk used by other busy 
databases, it can slow performance.

• If the in-memory audit queue fills up, the user processes that generate 
audit records sleep. See Figure 15-5 on page 363.

Sizing the audit queue
The size of the audit queue can be set by a System Security Officer. The 
default configuration is as follows:

• A single audit record requires a minimum of 32 bytes, up to a 
maximum of 424 bytes.

This means that a single data page stores between 4 and 80 records.

• The default size of the audit queue is 100 records, requiring 
approximately 42K.

The minimum size of the queue is 1 record; the maximum size is 
65,335 records.

There are trade-offs in sizing the audit queue, as shown in Figure 15-5.



CHAPTER 15    Memory Use and Performance

Performance & Tuning Guide 363

If the audit queue is large, so that you do not risk having user processes 
sleep, you run the risk of losing any audit records in memory if there is a 
system failure. The maximum number of records that can be lost is the 
maximum number of records that can be stored in the audit queue.

If security is your chief concern, keep the queue small. If you can risk the 
loss of more audit records, and you require high performance, make the 
queue larger. 

Increasing the size of the in-memory audit queue takes memory from the 
total memory allocated to the data cache.

Figure 15-5: Trade-offs in auditing and performance

Auditing performance guidelines
• Heavy auditing slows overall system performance. Audit only the 

events you need to track.

• If possible, place the sysaudits database on its own device. If that is 
not possible, place it on a device that is not used for your most critical 
applications.

Audit

Audit queue size

If the system crashes,

If the audit queue is full,

sysaudits

record

this process will sleep until
space is available

these records are lost



Auditing and performance 

364  Adaptive Server Enterprise



Performance & Tuning Guide 365

C H A P T E R  1 6 Determining Sizes of Tables and 
Indexes

This chapter explains how to determine the current sizes of tables and 
indexes and how to estimate table size for space planning.

It contains the following sections:

Why object sizes are important to query tuning
Knowing the sizes of your tables and indexes is important to 
understanding query and system behavior. At several stages of tuning 
work, you need size data to:

• Understand statistics io reports for a specific query plan. Chapter 34, 
“Using Statistics to Improve Performance,” describes how to use 
statistics io to examine the I/O performed.

• Understand the optimizer’s choice of query plan. Adaptive Server’s 
cost-based optimizer estimates the physical and logical I/O required 
for each possible access method and chooses the cheapest method. If 
you think a particular query plan is unusual, you can used dbcc 
traceon(302) to determine why the optimizer made the decision. This 
output includes page number estimates. 

Topic Page
Why object sizes are important to query tuning 365

Tools for determining the sizes of tables and indexes 366

Effects of data modifications on object sizes 367

Using optdiag to display object sizes 367

Using sp_spaceused to display object size 368

Using sp_estspace to estimate object size 370

Using formulas to estimate object size 372



Tools for determining the sizes of tables and indexes 

366  Adaptive Server Enterprise

• Determine object placement, based on the sizes of database objects 
and the expected I/O patterns on the objects. You can improve 
performance by distributing database objects across physical devices 
so that reads and writes to disk are evenly distributed. Object 
placement is described in Chapter 5, “Controlling Physical Data 
Placement.”

• Understand changes in performance. If objects grow, their 
performance characteristics can change. One example is a table that is 
heavily used and is usually 100 percent cached. If that table grows too 
large for its cache, queries that access the table can suddenly suffer 
poor performance. This is particularly true for joins requiring multiple 
scans.

• Do capacity planning. Whether you are designing a new system or 
planning for growth of an existing system, you need to know the space 
requirements in order to plan for physical disks and memory needs.

• Understand output from Adaptive Server Monitor and from 
sp_sysmon reports on physical I/O.

Tools for determining the sizes of tables and indexes
Adaptive Server includes several tools that provide information on the 
current sizes of tables or indexes or that can predict future sizes:

• The utility program optdiag displays the sizes and many other 
statistics for tables and indexes. For information on using optdiag, see 
Chapter 37, “Statistics Tables and Displaying Statistics with 
optdiag.”

• The system procedure sp_spaceused reports on the current size of an 
existing table and any indexes.

• The system procedure sp_estspace can predict the size of a table and 
its indexes, given a number of rows as a parameter.

You can also compute table and index size using formulas provided in this 
chapter. The sp_spaceused and optdiag commands report actual space 
usage. The other methods presented in this chapter provide size estimates. 
For partitioned tables, the system procedure sp_helpartition reports on the 
number of pages stored on each partition of the table. See “Getting 
information about partitions” on page 95 for information.



CHAPTER 16    Determining Sizes of Tables and Indexes

Performance & Tuning Guide 367

Effects of data modifications on object sizes
Over time, the effects of randomly distributed data modifications on a set 
of tables tends to produce data pages and index pages that average 
approximately 75 percent full. The major factors are:

• When you insert a row that needs to be placed on a page of an 
allpages-locked table with a clustered index, and there is no room on 
the page for that row, the page is split, leaving two pages that are about 
50 percent full.

• When you delete rows from heaps or from tables with clustered 
indexes, the space used on the page decreases. You can have pages 
that contain very few rows or even a single row.

• After some deletes or page splits have occurred, inserting rows into 
tables with clustered indexes tends to fill up pages that have been split 
or pages where rows have been deleted.

Page splits also take place when rows need to be inserted into full index 
pages, so index pages also tend to average approximately 75% full, unless 
you drop and recreate them periodically.

Using optdiag to display object sizes
The optdiag command displays statistics for tables, indexes, and columns, 
including the size of tables and indexes. If you are engaged in query 
tuning, optdiag provides the best tool for viewing all the statistics that you 
need. Here is a sample report for the titles table in the pubtune database:

Table owner:                        "dbo"

Statistics for table:               "titles"

     Data page count:               662
     Empty data page count:         10
     Data row count:                4986.0000000000000000
     Forwarded row count:           18.0000000000000000
     Deleted row count:             87.0000000000000000
     Data page CR count:            86.0000000000000000
     OAM + allocation page count:   5
     First extent data pages:       3
     Data row size:                 238.8634175691937287



Using sp_spaceused to display object size 

368  Adaptive Server Enterprise

See Chapter 37, “Statistics Tables and Displaying Statistics with 
optdiag,” for more information.

Advantages of optdiag
The advantages of optdiag are:

• optdiag can display statistics for all tables in a database, or for a single 
table.

• optdiag output contains addition information useful for understanding 
query costs, such as index height and the average row length.

• optdiag is frequently used for other tuning tasks, so you should have 
these reports on hand.

Disadvantages of optdiag
The disadvantages of optdiag are:

• It produces a lot of output, so if you need only a single piece of 
information, such as the number of pages in the table, other methods 
are faster and have lower system overhead.

Using sp_spaceused to display object size
The system procedure sp_spaceused reads values stored on an object’s 
OAM page to provide a quick report on the space used by the object. 

sp_spaceused titles
name         rowtotal reserved   data      index_size  unused   
------------ -------- ---------- --------- ----------- --------
titles       5000        1756 KB   1242 KB     440 KB     74 KB

The rowtotal value may be inaccurate at times; not all Adaptive Server 
processes update this value on the OAM page. The commands update 
statistics, dbcc checktable, and dbcc checkdb correct the rowtotal value on 
the OAM page. Table 16-1 explains the headings in sp_spaceused output. 



CHAPTER 16    Determining Sizes of Tables and Indexes

Performance & Tuning Guide 369

Table 16-1: sp_spaceused output

To report index sizes separately, use:

sp_spaceused titles, 1
 index_name           size       reserved   unused 
 -------------------- ---------- ---------- ----------
 title_id_cix         14 KB      1294 KB    38 KB
 title_ix             256 KB     272 KB     16 KB
 type_price_ix        170 KB     190 KB     20 KB

name         rowtotal reserved   data      index_size  unused   
------------ -------- ---------- --------- ----------- --------
titles       5000        1756 KB   1242 KB     440 KB     74 KB

For clustered indexes on allpages-locked tables, the size value represents 
the space used for the root and intermediate index pages. The reserved 
value includes the index size and the reserved and used data pages.

The “1” in the sp_spaceused syntax indicates that detailed index 
information should be printed. It has no relation to index IDs or other 
information. 

Advantages of sp_spaceused
The advantages of sp_spaceused are:

• It provides quick reports without excessive I/O and locking, since it 
uses only values in the table and index OAM pages to return results.

Column Meaning

rowtotal Reports an estimate of the number of rows. The value is 
read from the OAM page. Though not always exact, this 
estimate is much quicker and leads to less contention than 
select count(*).

reserved Reports pages reserved for use by the table and its indexes. 
It includes both the used and unused pages in extents 
allocated to the objects. It is the sum of data, index_size, 
and unused.

data Reports the kilobytes on pages used by the table.

index_size Reports the total kilobytes on pages used by the indexes.

unused Reports the kilobytes of unused pages in extents allocated 
to the object, including the unused pages for the object’s 
indexes.



Using sp_estspace to estimate object size 

370  Adaptive Server Enterprise

• It shows the amount of space that is reserved for expansion of the 
object, but not currently used to store data.

• It provides detailed reports on the size of indexes and of text and 
image, and Java off-row column storage.

Disadvantages of sp_spaceused
The disadvantages of sp_spaceused are:

• It may report inaccurate counts for row total and space usage.

• Output is in kilobytes, while most query-tuning activities use pages as 
a unit of measure.

Using sp_estspace to estimate object size
sp_spaceused and optdiag report on actual space usage. sp_estspace can 
help you plan for future growth of your tables and indexes. This procedure 
uses information in the system tables (sysobjects, syscolumns, and 
sysindexes) to determine the length of data and index rows. You provide a 
table name, and the number of rows you expect to have in the table, and 
sp_estspace estimates the size for the table and for any indexes that exist. 
It does not look at the actual size of the data in the tables.

 To use sp_estspace:

• Create the table, if it does not exist.

• Create any indexes on the table.

• Execute the procedure, estimating the number of rows that the table 
will hold.

The output reports the number of pages and bytes for the table and for each 
level of the index.

The following example estimates the size of the titles table with 500,000 
rows, a clustered index, and two nonclustered indexes:

sp_estspace titles, 500000
name                  type         idx_level Pages    Kbytes       
--------------------- ------------ --------- -------- -------- 
titles                data                 0    50002   100004 



CHAPTER 16    Determining Sizes of Tables and Indexes

Performance & Tuning Guide 371

title_id_cix          clustered            0      302      604 
title_id_cix          clustered            1        3        6 
title_id_cix          clustered            2        1        2 
title_ix              nonclustered         0    13890    27780 
title_ix              nonclustered         1      410      819 
title_ix              nonclustered         2       13       26 
title_ix              nonclustered         3        1        2 
type_price_ix         nonclustered         0     6099    12197 
type_price_ix         nonclustered         1       88      176 
type_price_ix         nonclustered         2        2        5 
type_price_ix         nonclustered         3        1        2 

Total_Mbytes      
----------------- 
  138.30 

name                  type         total_pages  time_mins    
--------------------- ------------ ------------ ------------ 
title_id_cix          clustered           50308          250 
title_ix              nonclustered        14314           91 
type_price_ix         nonclustered         6190           55 

sp_estspace also allows you to specify a fillfactor, the average size of 
variable-length fields and text fields, and the I/O speed. For more 
information, see in the Adaptive Server Reference Manual.

Note  The index creation times printed by sp_estspace do not factor in the 
effects of parallel sorting.

Advantages of sp_estspace
The advantages of using sp_estspace to estimate the sizes of objects are:

• sp_estspace provides a quick, easy way to perform initial capacity 
planning and to plan for table and index growth.

• sp_estspace helps you estimate the number of index levels.

• sp_estspace can be used to estimate future disk space, cache space, 
and memory requirements.



Using formulas to estimate object size 

372  Adaptive Server Enterprise

Disadvantages of sp_estspace
The disadvantages of using sp_estspace to estimate the sizes of objects 
are:

• Returned sizes are only estimates and may differ from actual sizes due 
to fillfactors, page splitting, actual size of variable-length fields, and 
other factors.

• Index creation times can vary widely, depending on disk speed, the 
use of extent I/O buffers, and system load.

Using formulas to estimate object size
Use the formulas in this section to help you estimate the future sizes of the 
tables and indexes in your database. The amount of overhead in each row 
for tables and indexes that contain variable-length fields is greater than 
tables that contain only fixed-length fields, so two sets of formulas are 
required.

The process involves calculating the number of bytes of data and overhead 
for each row, and dividing that number into the number of bytes available 
on a data page. Each page requires some overhead, which limits the 
number of bytes available for data:

• For allpages-locked tables, page overhead is 32 bytes, leaving 2016 
bytes available for data on a 2K page.

• For data-only-locked tables, 46 bytes, leaving 2002 bytes available 
for data.

For the most accurate estimate, round down divisions that calculate the 
number of rows per page (rows are never split across pages), and round up 
divisions that calculate the number of pages.

Factors that can affect storage size
Using space management properties can increase the space needed for a 
table or an index. See “Effects of space management properties” on page 
386, and “max_rows_per_page” on page 387.



CHAPTER 16    Determining Sizes of Tables and Indexes

Performance & Tuning Guide 373

The formulas in this section use the maximum size for variable-length 
character and binary data.To use the average size instead of the maximum 
size, see “Using average sizes for variable fields” on page 387.

If your table includes text or image datatypes or Java off-row columns, use 
16 (the size of the text pointer that is stored in the row) in your 
calculations. Then see “LOB pages” on page 388 to see how to calculate 
the storage space required for the actual text or image data.

Indexes on data-only-locked tables may be smaller than the formulas 
predict due to two factors:

• Duplicate keys are stored only once, followed by a list of row IDs for 
the key.

• Compression of keys on non-leaf levels; only enough of the key to 
differentiate from the neighboring keys is stored. This is especially 
effective in reducing the size when long character keys are used.

If the configuration parameter page utilization percent is set to less than 
100, Adaptive Server may allocate new extents before filling all pages on 
the allocated extents. This does not change the number of pages used by 
an object, but leaves empty pages in the extents allocated to the object. See 
in the System Administration Guide.

Storage sizes for datatypes
The storage sizes for datatypes are shown in Table 16-2:



Using formulas to estimate object size 

374  Adaptive Server Enterprise

Table 16-2: Storage sizes for Adaptive Server datatypes

The storage size for a numeric or decimal column depends on its precision. 
The minimum storage requirement is 2 bytes for a 1- or 2-digit column. 
Storage size increases by 1 byte for each additional 2 digits of precision, 
up to a maximum of 17 bytes.

Any columns defined as NULL are considered variable-length columns, 
since they involve the overhead associated with variable-length columns.

All calculations in the examples that follow are based on the maximum 
size for varchar, univarchar, nvarchar, and varbinary data—the defined size 
of the columns. They also assume that the columns were defined as NOT 
NULL. If you want to use average values instead, see “Using average 
sizes for variable fields” on page 387.

Datatype Size 

char Defined size 

nchar Defined size * @@ncharsize 

unichar n*@@unicharsize (@@unicharsize equals 2)

univarchar the actual number of characters*@@unicharsize

varchar Actual number of characters

nvarchar Actual number of characters * @@ncharsize

binary Defined size 

varbinary Data size 

int 4 

smallint 2 

tinyint 1 

float 4 or 8, depending on precision

double precision 8

real 4 

numeric 2–17, depending on precision and scale

decimal 2–17, depending on precision and scale

money 8 

smallmoney 4 

datetime 8 

smalldatetime 4 

bit 1 

text 16 bytes + 2K * number of pages used

image 16 bytes + 2K * number of pages used

timestamp 8 



CHAPTER 16    Determining Sizes of Tables and Indexes

Performance & Tuning Guide 375

Tables and indexes used in the formulas
The example illustrates the computations on a table that contains 
9,000,000 rows:

• The sum of fixed-length column sizes is 100 bytes.

• The sum of variable-length column sizes is 50 bytes; there are 2 
variable-length columns.

The table has two indexes:

• A clustered index, on a fixed-length column, of 4 bytes

• A composite nonclustered index with these columns:

• A fixed length column, of 4 bytes

• A variable length column, of 20 bytes

Different formulas are needed for allpages-locked and data-only-locked 
tables, since they have different amounts of overhead on the page and per 
row:

• See “Calculating table and clustered index sizes for allpages-locked 
tables” on page 375 for tables that use allpages-locking.

• See “Calculating the sizes of data-only-locked tables” on page 381 
for the formulas to use if tables that use data-only locking.

Calculating table and clustered index sizes for allpages-locked 
tables

The formulas and examples for allpages-locked tables are divided into two 
sets of steps:

• Steps 1–6 outline the calculations for an allpages-locked table with a 
clustered index, giving the table size and the size of the index tree. 

• Steps 7–12 outline the calculations for computing the space required 
by nonclustered indexes. 

These formulas show how to calculate the sizes of tables and clustered 
indexes. If your table does not have clustered indexes, skip steps 3, 4, and 
5. Once you compute the number of data pages in step 2, go to step 6 to 
add the number of OAM pages.



Using formulas to estimate object size 

376  Adaptive Server Enterprise

Step 1: Calculate the data row size

Rows that store variable-length data require more overhead than rows that 
contain only fixed-length data, so there are two separate formulas for 
computing the size of a data row. 

Fixed-length columns only

Use this formula if the table contains only fixed-length columns, and all 
are defined as NOT NULL.

Some variable-length columns

Use this formula if the table contains any variable-length columns or 
columns that allow null values.

The table in the example contains variable-length columns, so the 
computations are shown in the right column.

Step 2: Compute the number of data pages

Formula

4 (Overhead) 

+ Sum of bytes in all fixed-length columns 

= Data row size 

Formula Example

4 (Overhead) 4

+ Sum of bytes in all fixed-length columns + 100

+ Sum of bytes in all variable-length columns + 50

= Subtotal 154

  

+  (Subtotal / 256) + 1 (Overhead) 1

+  Number of variable-length columns + 1 3

+ 2 (Overhead) 2

= Data row size 160

Formula

2016 / Data row size = Number of data rows per page 

Number of rows / Rows per page = Number of data pages required 



CHAPTER 16    Determining Sizes of Tables and Indexes

Performance & Tuning Guide 377

Step 3: Compute the size of clustered index rows

Index rows containing variable-length columns require more overhead 
than index rows containing only fixed-length values. Use the first formula 
if all the keys are fixed length. Use the second formula if the keys include 
variable-length columns or allow null values.

Fixed-length columns only

The clustered index in the example has only fixed length keys.

Some variable-length columns

The results of the division (Subtotal / 256) are rounded down.

Step 4: Compute the number of clustered index pages

Example

2016 / 160 = 12 data rows per page

9,000,000 / 12 = 750,000 data pages 

Formula Example

5 (Overhead) 5

+ Sum of bytes in the fixed-length index keys + 4

= Clustered row size 9

5 (Overhead) 

+ Sum of bytes in the fixed-length index keys 

+ Sum of bytes in variable-length index keys

= Subtotal

  

+  (Subtotal / 256) + 1 (Overhead)

+  Number of variable-length columns + 1

+ 2 (Overhead) 

= Clustered index row size 

Formula Example

(2016 / Clustered row size) - 2 = No. of clustered index 
rows per page

(2016 / 9) - 2 = 222



Using formulas to estimate object size 

378  Adaptive Server Enterprise

If the result for the “number of index pages at the next level” is greater than 
1, repeat the following division step, using the quotient as the next 
dividend, until the quotient equals 1, which means that you have reached 
the root level of the index: 

Step 5: Compute the total number of index pages

Add the number of pages at each level to determine the total number of 
pages in the index:

Step 6: Calculate allocation overhead and total pages

Each table and each index on a table has an object allocation map (OAM). 
A single OAM page holds allocation mapping for between 2,000 and 
63,750 data pages or index pages. In most cases, the number of OAM 
pages required is close to the minimum value. To calculate the number of 
OAM pages for the table, use:

To calculate the number of OAM pages for the index, use:

No. of rows / No. of CI rows per page = No. of index pages at next 
level

750,000 / 222 = 3379

Formula Example

Formula

No. of index pages 
at last level

/ No. of clustered index 
rows per page

= No. of index pages at 
next level

Example

3379 / 222 = 16 index pages (Level 1) 

16 / 222 = 1 index page (Level 2)

Formula Example

Index Levels Pages  Pages Rows

2 1 16

1 + + 16 3379

0 + + 3379 750000

Total number of index pages 3396

Formula Example

Number of reserved data pages / 63,750 = Minimum OAM pages 750,000 / 63,750 = 12

Number of reserved data pages / 2000 = Maximum OAM pages 750,000 / 2000 = 376



CHAPTER 16    Determining Sizes of Tables and Indexes

Performance & Tuning Guide 379

Total pages needed

Finally, add the number of OAM pages to the earlier totals to determine 
the total number of pages required:

Step 7: Calculate the size of the leaf index row

Index rows containing variable-length columns require more overhead 
than index rows containing only fixed-length values.

Fixed-length keys only Use this formula if the index contains only fixed-length keys and are 
defined as NOT NULL:

Some variable-length keys Use this formula if the index contains any variable-length keys or columns 
defined as NULL:

Formula Example

Number of reserved index pages / 63,750 = Minimum OAM pages 3396/ 63,750 = 1

Number of reserved index pages / 2000 = Maximum OAM pages 3396 / 2000 = 2

Formula Example

Minimum Maximum Minimum Maximum

Clustered index pages 3396 3379

OAM pages + + 1 2

Data pages + + 750000 750000

OAM pages + + 12 376

Total 753409 753773

Formula

7 (Overhead) 

+ Sum of fixed-length keys 

= Size of leaf index row

Formula Example

9 (Overhead) 9 

+ Sum of length of fixed-length keys + 4

+ Sum of length of variable-length keys + 20

+ Number of variable-length keys + 1 + 2

= Subtotal 35

 

+ (Subtotal / 256) + 1 (overhead) + 1

= Size of leaf index row 36



Using formulas to estimate object size 

380  Adaptive Server Enterprise

Step 8: Calculate the number of leaf pages in the index

Step 9: Calculate the size of the non-leaf rows

Step 10: Calculate the number of non-leaf pages

If the number of leaf pages from step 8 is greater than 1, repeat the 
following division step, using the quotient as the next dividend, until the 
quotient equals 1, which means that you have reached the root level of the 
index: 

Step 11: Calculate the total number of non-leaf index pages

Add the number of pages at each level to determine the total number of 
pages in the index:

Formula Example

(2016 / leaf row size) = No. of leaf index rows per 
page

2016 / 36 = 56

No. of table rows / No. of leaf rows per page = No. of index pages at next 
level

9,000,000 / 56 = 160,715

Formula Example

Size of leaf index row 36 

+ 4 Overhead + 4

= Size of non-leaf row 40

Formula Example

(2016 / Size of non-leaf row) - 2 = No. of non-leaf index rows per page (2016 / 40) - 2 = 48

Formula

No. of index pages at previous level / No. of non-leaf index rows per page = No. of index pages at next level

Example

160715 / 48 = 3349 Index pages, level 1 

3349 / 48 = 70 Index pages, level 2 

 70 / 48 = 2 Index pages, level 3 

2 / 48 = 1 Index page, level 4 (root level)



CHAPTER 16    Determining Sizes of Tables and Indexes

Performance & Tuning Guide 381

Step 12: Calculate allocation overhead and total pages

Total Pages Needed Add the number of OAM pages to the total in step 11 to determine the total 
number of index pages:

Calculating the sizes of data-only-locked tables
The formulas and examples that follow show how to calculate the sizes of 
tables and indexes. This example uses the same columns sizes and index 
as the previous example. See “Tables and indexes used in the formulas” 
on page 375 for the specifications.

The formulas for data-only-locked tables are divided into two sets of steps:

• Steps 1–3 outline the calculations for a data-only-locked table. The 
example that follows Step 3 illustrates the computations on a table 
that has 9,000,000 rows. 

• Steps 4–8 outline the calculations for computing the space required by 
an index, followed by an example using the 9,000,000-row table. 

Index Levels Pages  Pages Rows

4 1 2

3 + + 2 70

2 + + 70 3348

1 + + 3349 160715

0 + + 160715 9000000

Total number of 2K data pages used 164137

Formula Example

Number of index pages / 63,750 = Minimum OAM pages 164137 / 63,750 = 3

Number of index pages / 2000 = Maximum OAM pages 164137 / 2000 = 83

Formula Example

Minimum Maximum Minimum Maximum

Nonclustered index pages 164137 164137

OAM pages + + 3 83

Total 164140 164220



Using formulas to estimate object size 

382  Adaptive Server Enterprise

Step 1: Calculate the data row size

Rows that store variable-length data require more overhead than rows that 
contain only fixed-length data, so there are two separate formulas for 
computing the size of a data row. 

Fixed-length columns only

Use this formula if the table contains only fixed-length columns defined as 
NOT NULL:

Note  Data-only locked tables must allow room for each row to store a 6-
byte forwarded row ID. If a data-only-locked table has rows shorter than 
10 bytes, each row is padded to 10 bytes when it is inserted. This affects 
only data pages, and not indexes, and does not affect allpages-locked 
tables.

Some variable-length columns

Use this formula if the table contains variable-length columns or columns 
that allow null values: 

Step 2: Compute the number of data pages

In the first part of this step, the number of rows per page is rounded down:

6 (Overhead) 

+ Sum of bytes in all fixed-length columns 

Data row size 

Formula Example

8 (Overhead) 8

+ Sum of bytes in all fixed-length columns + 100

+ Sum of bytes in all variable-length columns + 50

+ Number of variable-length columns * 2 + 4

 Data row size 162

Formula

2002 / Data row size = Number of data rows per page 

Number of rows / Rows per page = Number of data pages required 



CHAPTER 16    Determining Sizes of Tables and Indexes

Performance & Tuning Guide 383

Step 3: Calculate allocation overhead and total pages

Allocation overhead

Each table and each index on a table has an object allocation map (OAM). 
The OAM is stored on pages allocated to the table or index. A single OAM 
page holds allocation mapping for between 2,000 and 63,750 data pages 
or index pages. In most cases, the number of OAM pages required is close 
to the minimum value. To calculate the number of OAM pages for the 
table, use:

Total pages needed

Add the number of OAM pages to the earlier totals to determine the total 
number of pages required:

Step 4: Calculate the size of the index row

Use these formulas for clustered and nonclustered indexes on data-only-
length tables.

Index rows containing variable-length columns require more overhead 
than index rows containing only fixed-length values.

Fixed-length keys only Use this formula if the index contains only fixed-length keys defined as 
NOT NULL:

Example

2002 / 162 = 12 data rows per page

9,000,000 / 12 = 750,000 data pages 

Formula Example

Number of reserved data pages / 63,750 = Minimum OAM pages 750,000 / 63,750 = 12

Number of reserved data pages / 2000 = Maximum OAM pages 750,000 / 2000 = 375

Formula Example

Minimum Maximum Minimum Maximum

Data pages + + 750000 750000

OAM pages + + 12 375

Total 750012 750375



Using formulas to estimate object size 

384  Adaptive Server Enterprise

Some variable-length keys Use this formula if the index contains any variable-length keys or columns 
that allow null values:

Step 5: Calculate the number of leaf pages in the index

Step 6: Calculate the number of non-leaf pages in the index

If the number of index pages at the next level above is greater than 1, 
repeat the following division step, using the quotient as the next dividend, 
until the quotient equals 1, which means that you have reached the root 
level of the index:

9 (Overhead) 

+ Sum of fixed-length keys 

Size of index row

Formula Example

9 (Overhead) 9

+ Sum of length of fixed-length keys + 4

+ Sum of length of variable-length keys + 20

+ Number of variable-length keys * 2 + 2

 Size of index row 35

Formula

2002 / Size of index row = No. of rows per page

No. of rows in table / No. of rows per page = No. of leaf pages

Example

2002 / 35 = 57 Nonclustered index rows per page 

9,000,000 / 57 = 157,895 leaf pages 

Formula

No. of leaf pages / No. of index rows per page = No. of pages at next level

Formula

No. of index pages at previous level / No. of non-leaf index rows per page = No. of index pages at next level



CHAPTER 16    Determining Sizes of Tables and Indexes

Performance & Tuning Guide 385

Step 7: Calculate the total number of non-leaf index pages

Add the number of pages at each level to determine the total number of 
pages in the index:

Step 8: Calculate allocation overhead and total pages

Total pages needed Add the number of OAM pages to the total in step 8 to determine the total 
number of index pages:

Example

157895/57 = 2771 Index pages, level 1 

2770 / 57 = 49 Index pages, level 2 

48 / 57 =1 Index pages, level 3 

Formula Example

Index Levels Pages  Pages Rows

3 1 49

2 + 49 2771

1 + 2771 157895

0 + 157895 9000000

Total number of 2K pages used 160716

Formula

Number of index pages / 63,750 = Minimum OAM pages 

Number of index pages / 2000 = Maximum OAM pages 

Example

160713 / 63,750 = 3 (minimum) 

160713 / 2000 = 81 (maximum) 

Formula Example

Minimum Maximum Minimum Maximum

Nonclustered index pages 160716 160716

OAM pages + + 3 81

Total 160719 160797



Using formulas to estimate object size 

386  Adaptive Server Enterprise

Other factors affecting object size
In addition to the effects of data modifications that occur over time, other 
factors can affect object size and size estimates:

• The space management properties

• Whether computations used average row size or maximum row size

• Very small text rows

• Use of text and image data

Effects of space management properties

Values for fillfactor, exp_row_size, reservepagegap and 
max_rows_per_page can affect object size.

fillfactor

The fillfactor you specify for create index is applied when the index is 
created. The fillfactor is not maintained during inserts to the table. If a 
fillfactor has been stored for an index using sp_chgattribute, this value is 
used when indexes are re-created with alter table...lock commands and 
reorg rebuild. The main function of fillfactor is to allow space on the index 
pages, to reduce page splits. Very small fillfactor values can cause the 
storage space required for a table or an index to be significantly greater.

With the default fillfactor of 0, the index management process leaves room 
for two additional rows on each index page when you create a new index. 
When you set fillfactor to 100 percent, it no longer leaves room for these 
rows. The only effect that fillfactor has on size calculations is when 
calculating the number of clustered index pages and when calculating the 
number of non-leaf pages. Both of these calculations subtract 2 from the 
number of rows per page. Eliminate the -2 from these calculations. 

Other values for fillfactor reduce the number of rows per page on data pages 
and leaf index pages. To compute the correct values when using fillfactor, 
multiply the size of the available data page (2016) by the fillfactor. For 
example, if your fillfactor is 75 percent, your data page would hold 1471 
bytes. Use this value in place of 2016 when you calculate the number of 
rows per page. For these calculations, see “Step 2: Compute the number 
of data pages” on page 376 and “Step 8: Calculate the number of leaf 
pages in the index” on page 380. 



CHAPTER 16    Determining Sizes of Tables and Indexes

Performance & Tuning Guide 387

exp_row_size

Setting an expected row size for a table can increase the amount of storage 
required. If your tables have many rows that are shorter than the expected 
row size, setting this value and running reorg rebuild or changing the 
locking scheme increases the storage space required for the table. 
However, the space usage for tables that formerly used 
max_rows_per_page should remain approximately the same.

reservepagegap

Setting a reservepagegap for a table or an index leaves empty pages on 
extents that are allocated to the object when commands that perform extent 
allocation are executed. Setting reservepagegap to a low value increases 
the number of empty pages and spreads the data across more extents, so 
the additional space required is greatest immediately after a command 
such as create index or reorg rebuild. Row forwarding and inserts into the 
table fill in the reserved pages. For more information, see “Leaving space 
for forwarded rows and inserts” on page 313.

max_rows_per_page

The max_rows_per_page value (specified by create index, create table, 
alter table, or sp_chgattribute) limits the number of rows on a data page.

To compute the correct values when using max_rows_per_page, use the 
max_rows_per_page value or the computed number of data rows per page, 
whichever is smaller, in“Step 2: Compute the number of data pages” on 
page 376 and “Step 8: Calculate the number of leaf pages in the index” on 
page 380.

Using average sizes for variable fields

All of the formulas use the maximum size of the variable-length fields.

optdiag output includes the average length of data rows and index rows. 
You can use these values for the data and index row lengths, if you want 
to use average lengths instead.



Using formulas to estimate object size 

388  Adaptive Server Enterprise

Very small rows
Adaptive Server cannot store more than 256 data or index rows on a page. 
Even if your rows are extremely short, the minimum number of data pages 
is: 

LOB pages
Each text or image or Java off-row column stores a 16-byte pointer in the 
data row with the datatype varbinary(16). Each column that is initialized 
requires at least 2K (one data page) of storage space. 

Columns store implicit null values, meaning that the text pointer in the 
data row remains null and no text page is initialized for the value, saving 
2K of storage space. 

If a LOB column is defined to allow null values, and the row is created 
with an insert statement that includes NULL for the column, the column is 
not initialized, and the storage is not allocated.

If a LOB column is changed in any way with update, then the text page is 
allocated. Of course, inserts or updates that place actual data in a column 
initialize the page. If the column is subsequently set to NULL, a single 
page remains allocated.

Each LOB page stores approximately 1800 bytes of data. To estimate the 
number of pages that a particular entry will use, use this formula:

The result should be rounded up in all cases; that is, a data length of 1801 
bytes requires two 2K pages. 

The total space required for the data may be slightly larger than the 
calculated value, because some LOB pages store pointer information for 
other page chains in the column. Adaptive Server uses this pointer 
information to perform random access and prefetch data when accessing 
LOB columns. The additional space required to store pointer information 
depends on the total size and type of the data stored in the column. Use the 
information in Table 16-3 to estimate the additional pages required to store 
pointer information for data in LOB columns.

Number of Rows / 256 = Number of data pages required 

Data length / 1800 = Number of 2K pages 



CHAPTER 16    Determining Sizes of Tables and Indexes

Performance & Tuning Guide 389

Table 16-3: Estimated additional pages for pointer information in 
LOB columns

Advantages of using formulas to estimate object size
The advantages of using the formulas are:

• You learn more details of the internals of data and index storage.

• The formulas provide flexibility for specifying averages sizes for 
character or binary columns. 

• While computing the index size, you see how many levels each index 
has, which helps estimate performance.

Disadvantages of using formulas to estimate object size
The disadvantages of using the formulas are:

• The estimates are only as good as your estimates of average size for 
variable-length columns.

• The multistep calculations are complex, and skipping steps may lead 
to errors.

• The actual size of an object may be different from the calculations, 
based on use.

Data Size and Type
Additional Pages Required for Pointer 
Information

400K image 0 to 1 page

700K image 0 to 2 pages

5MB image 1 to 11 pages

400K of multibyte text 1 to 2 pages

700K of multibyte text 1 to 3 pages

5MB of multibyte text 2 to 22 pages



Using formulas to estimate object size 

390  Adaptive Server Enterprise



Performance & Tuning Guide 391

C H A P T E R  1 7 Maintenance Activities and 
Performance

This chapter explains both how maintenance activities can affect the 
performance of other Adaptive Server activities, and how to improve the 
performance of maintenance tasks.

Maintenance activities include such tasks as dropping and re-creating 
indexes, performing dbcc checks, and updating index statistics. All of 
these activities can compete with other processing work on the server.

Whenever possible,perform maintenance tasks when your Adaptive 
Server usage is low. This chapter can help you determine what kind of 
performance impacts these maintenance activities have on applications 
and on overall Adaptive Server performance.

Running reorg on tables and indexes
The reorg command can improve performance for data-only-locked tables 
by improving the space utilization for tables and indexes. The reorg 
subcommands and their uses are:

• reclaim_space – cears committed deletes and space left when updates 
shorten the length of data rows.

Topic Page
Running reorg on tables and indexes 391

Creating and maintaining indexes 392

Creating or altering a database 396

Backup and recovery 398

Bulk copy 400

Database consistency checker 403

Using dbcc tune (cleanup) 403

Using dbcc tune on spinlocks 404

Determining the space available for maintenance activities 404



Creating and maintaining indexes 

392  Adaptive Server Enterprise

• forwarded_rows – returns forwarded rows to home pages.

• compact – performs both of the operations above.

• rebuild – rebuilds an entire table or index.

When you run reorg rebuild on a table, it locks the table for the entire time 
it takes to rebuild the table and its indexes. This means that you should 
schedule the reorg rebuild command on a table when users do not need 
access to the table.

All of the other reorg commands, including reorg rebuild on an index, lock 
a small number of pages at a time, and use short, independent transactions 
to perform their work. You can run these commands at any time. The only 
negative effects might be on systems that are very I/O bound.

For more information on running reorg commands, see the System 
Administration Guide.

Creating and maintaining indexes
Creating indexes affects performance by locking other users out of a table. 
The type of lock depends on the index type:

• Creating a clustered index requires an exclusive table lock, locking 
out all table activity. Since rows in a clustered index are arranged in 
order by the index key, create clustered index reorders data pages.

• Creating a nonclustered index requires a shared table lock, locking out 
update activity.

Configuring Adaptive Server to speed sorting
A configuration parameter configures how many buffers can be used in 
cache to hold pages from the input tables. In addition, parallel sorting can 
benefit from large I/O in the cache used to perform the sort.

See “Configuring resources for parallel sorting” on page 630 for more 
information.



CHAPTER 17    Maintenance Activities and Performance

Performance & Tuning Guide 393

Dumping the database after creating an index
When you create an index, Adaptive Server writes the create index 
transaction and the page allocations to the transaction log, but does not log 
the actual changes to the data and index pages. To recover a database that 
you have not dumped since you created the index, the entire create index 
process is executed again while loading transaction log dumps.

If you perform routine index re-creations (for example, to maintain the 
fillfactor in the index), you may want to schedule these operations to run 
shortly before a routine database dump.

Creating an index on sorted data
If you need to re-create a clustered index or create one on data that was 
bulk copied into the server in index key order, use the sorted_data option 
to create index to shorten index creation time.

Since the data rows must be arranged in key order for clustered indexes, 
creating a clustered index without sorted_data requires that you rewrite the 
data rows to a complete new set of data pages. Adaptive Server can skip 
sorting and/or copying the table’s data rows in some cases. Factors include 
table partitioning and on clauses used in the create index statement. 

When creating an index on a nonpartitioned table, sorted_data and the use 
of any of the following clauses requires that you copy the data, but does 
not require a sort:

• ignore_dup_row 

• fillfactor

• The on segment_name clause, specifying a different segment from the 
segment where the table data is located

• The max_rows_per_page clause, specifying a value that is different 
from the value associated with the table

When these options and sorted_data are included in a create index on a 
partitioned table, the sort step is performed and the data is copied, 
distributing the data pages evenly on the table’s partitions.

Table 17-1: Using options for creating a clustered index

Options Partitioned table Unpartitioned table

No options specified Parallel sort; copies data, distributing 
evenly on partitions; creates index tree.

Either parallel or nonparallel sort; 
copies data, creates index tree.



Creating and maintaining indexes 

394  Adaptive Server Enterprise

In the simplest case, using sorted_data and no other options on a 
nonpartitioned table, the order of the table rows is checked and the index 
tree is built during this single scan.

If the data rows must be copied, but no sort needs to be performed, a single 
table scan checks the order of rows, builds the index tree, and copies the 
data pages to the new location in a single table scan.

For large tables that require numerous passes to build the index, saving the 
sort time reduces I/O and CPU utilization considerably. 

Whenever creating a clustered index copies the data rows, the space 
available must be approximately 120 percent of the table size to copy the 
data and store the index pages.

Maintaining index and column statistics
The histogram and density values for an index are not maintained as data 
rows are added and deleted. The database owner must issue an update 
statistics command to ensure that statistics are current. Run update 
statistics:

• After deleting or inserting rows that change the skew of key values in 
the index

• After adding rows to a table whose rows were previously deleted with 
truncate table

• After updating values in index columns

Run update statistics after inserts to any index that includes an IDENTITY 
column or any increasing key value. Date columns often have regularly 
increasing keys.

with sorted_data only
or 
with sorted_data on
same_segment

Creates index tree only. Does not 
perform the sort or copy data. Does not 
run in parallel.

Creates index tree only. Does not 
perform the sort or copy data. Does 
not run in parallel.

with sorted_data and
ignore_dup_row
or fillfactor
or on other_segment
or max_rows_per_page

Parallel sort; copies data, distributing 
evenly on partitions; creates index tree.

Copies data and creates the index 
tree. Does not perform the sort. Does 
not run in parallel.

Options Partitioned table Unpartitioned table



CHAPTER 17    Maintenance Activities and Performance

Performance & Tuning Guide 395

Running update statistics on these types of indexes is especially important 
if the IDENTITY column or other increasing key is the leading column in 
the index. After a number of rows have been inserted past the last key in 
the table when the index was created, all that the optimizer can tell is that 
the search value lies beyond the last row in the distribution page.

It cannot accurately determine how many rows match a given value.

Note  Failure to update statistics can severely hurt performance.

See Chapter 34, “Using Statistics to Improve Performance,” for more 
information.

Rebuilding indexes
Rebuilding indexes reclaims space in the B-trees. As pages are split and 
rows are deleted, indexes may contain many pages that contain only a few 
rows. Also, if your application performs scans on covering nonclustered 
indexes and large I/O, rebuilding the nonclustered index maintains the 
effectiveness of large I/O by reducing fragmentation.

You can rebuild indexes by dropping and re-creating the index. If the table 
uses data-only locking, you can run the reorg rebuild command on the table 
or on an individual index. 

Re-create or rebuild indexes when:

• Data and usage patterns have changed significantly.

• A period of heavy inserts is expected, or has just been completed.

• The sort order has changed.

• Queries that use large I/O require more disk reads than expected, or 
optdiag reports lower cluster ratios than usual.

• Space usage exceeds estimates because heavy data modification has 
left many data and index pages partially full.

• Space for expansion provided by the space management properties 
(fillfactor, expected row size, and reserve page gap) has been filled by 
inserts and updates, resulting in page splits, forwarded rows, and 
fragmentation.

• dbcc has identified errors in the index.



Creating or altering a database 

396  Adaptive Server Enterprise

If you re-create a clustered index or run reorg rebuild on a data-only-locked 
table, all nonclustered indexes are re-created, since creating the clustered 
index moves rows to different pages.

You must re-create nonclustered indexes to point to the correct pages.

In many database systems, there are well-defined peak periods and off-
hours. You can use off-hours to your advantage for example to:

• Delete all indexes to allow more efficient bulk inserts.

• Create a new group of indexes to help generate a set of reports.

See “Creating and maintaining indexes” on page 392 for information 
about configuration parameters that increase the speed of creating indexes.

Speeding index creation with sorted_data

If data is already sorted, you can use the sorted_data option for the create 
index command to save index creation time. You can use this option for 
both clustered and nonclustered indexes.

See “Creating an index on sorted data” on page 393 for more information.

Creating or altering a database
Creating or altering a database is I/O-intensive; consequently, other I/O-
intensive operations may suffer. When you create a database, Adaptive 
Server copies the model database to the new database and then initializes 
all the allocation pages and clears database pages.

The following procedures can speed database creation or minimize its 
impact on other processes:

• Use the for load option to create database if you are restoring a 
database, that is, if you are getting ready to issue a load database 
command.

When you create a database without for load, it copies model and then 
initializes all of the allocation units.



CHAPTER 17    Maintenance Activities and Performance

Performance & Tuning Guide 397

When you use for load, it postpones zeroing the allocation units until 
the load is complete. Then it initializes only the untouched allocation 
units. If you are loading a very large database dump, this can save a 
lot of time.

• Create databases during off-hours if possible.

create database and alter database perform concurrent parallel I/O when 
clearing database pages. The number of devices is limited by the number 
of large i/o buffers configuration parameter. The default value for this 
parameter is 6, allowing parallel I/O on 6 devices at once.

A single create database and alter database command can use up to 8 of 
these buffers at once. These buffers are also used by load database, disk 
mirroring, and some dbcc commands.

Using the default value of 6, if you specify more than 6 devices, the first 6 
writes are immediately started. As the I/O to each device completes, the 
16K buffers are used for remaining devices listed in the command. The 
following example names 10 separate devices:

create database hugedb
      on dev1 = 100,
      dev2 = 100,
      dev3 = 100,
      dev4 = 100,
      dev5 = 100,
      dev6 = 100,
      dev7 = 100,
      dev8 = 100
log on logdev1 = 100,
      logdev2 = 100

During operations that use these buffers, a message is sent to the log when 
the number of buffers is exceeded. This information for the create 
database command above shows that create database started clearing 
devices on the first 6 disks, using all of the large I/O buffers, and then 
waited for them to complete before clearing the pages on other devices:

CREATE DATABASE: allocating 51200 pages on disk ’dev1’
CREATE DATABASE: allocating 51200 pages on disk ’dev2’
CREATE DATABASE: allocating 51200 pages on disk ’dev3’
CREATE DATABASE: allocating 51200 pages on disk ’dev4’
CREATE DATABASE: allocating 51200 pages on disk ’dev5’
CREATE DATABASE: allocating 51200 pages on disk ’dev6’
01:00000:00013:1999/07/26 15:36:17.54 server  No disk i/o buffers 
are available for this operation. The total number of buffers is 
controlled by the configuration parameter ’number of large i/o 



Backup and recovery 

398  Adaptive Server Enterprise

buffers’.
CREATE DATABASE: allocating 51200 pages on disk ’dev7’
CREATE DATABASE: allocating 51200 pages on disk ’dev8’
CREATE DATABASE: allocating 51200  pages on disk ’logdev1’
CREATE DATABASE: allocating 51200  pages on disk ’logdev2’

When create database copies model, it uses 2K I/O.

See the System Administration Guide.

Backup and recovery
All Adaptive Server backups are performed by a backup server. The 
backup architecture uses a client/server paradigm, with Adaptive Servers 
as clients to a backup server.

Local backups
Adaptive Server sends the local Backup Server instructions, via remote 
procedure calls, telling the Backup Server which pages to dump or load, 
which backup devices to use, and other options. Backup server performs 
all the disk I/O.

Adaptive Server does not read or send dump and load data, it sends only 
instructions.

Remote backups
backup server also supports backups to remote machines. For remote 
dumps and loads, a local backup server performs the disk I/O related to the 
database device and sends the data over the network to the remote backup 
server, which stores it on the dump device.



CHAPTER 17    Maintenance Activities and Performance

Performance & Tuning Guide 399

Online backups
You can perform backups while a database is active. Clearly, such 
processing affects other transactions, but you should not hesitate to back 
up critical databases as often as necessary to satisfy the reliability 
requirements of the system.

See the System Administration Guide for a complete discussion of backup 
and recovery strategies.

Using thresholds to prevent running out of log space
If your database has limited log space, and you occasionally hit the last-
chance threshold, install a second threshold that provides ample time to 
perform a transaction log dump. Running out of log space has severe 
performance impacts. Users cannot execute any data modification 
commands until log space has been freed.

Minimizing recovery time
You can help minimize recovery time, by changing the recovery interval 
configuration parameter. The default value of 5 minutes per database 
works for most installations. Reduce this value only if functional 
requirements dictate a faster recovery period. It can increase the amount 
of I/O required. 

See “Tuning the recovery interval” on page 361.

Recovery speed may also be affected by the value of the housekeeper free 
write percent configuration parameter. The default value of this parameter 
allows the server’s housekeeper task to write dirty buffers to disk during 
the server’s idle cycles, as long as disk I/O is not increased by more than 
20 percent.

Recovery order
During recovery, system databases are recovered first. Then, user 
databases are recovered in order by database ID. 



Bulk copy 

400  Adaptive Server Enterprise

Bulk copy
Bulk copying into a table on Adaptive Server runs fastest when there are 
no indexes or active triggers on the table. When you are running fast bulk 
copy, Adaptive Server performs reduced logging.

It does not log the actual changes to the database, only the allocation of 
pages. And, since there are no indexes to update, it saves all the time it 
would otherwise take to update indexes for each data insert and to log the 
changes to the index pages. 

To use fast bulk copy:

• Drop any indexes; re-create them when the bulk copy completes.

• Use alter table...disable trigger to deactivate triggers during the copy; 
use alter table...enable trigger after the copy completes.

• Set the select into/bulkcopy/pllsort option with sp_dboption. Remember 
to turn the option off after the bulk copy operation completes.

During fast bulk copy, rules are not enforced, but defaults are enforced.

Since changes to the data are not logged, you should perform a dump 
database soon after a fast bulk copy operation. Performing a fast bulk copy 
in a database blocks the use of dump transaction, since the unlogged data 
changes cannot be recovered from the transaction log dump.

Parallel bulk copy
For fastest performance, you can use fast bulk copy to copy data into 
partitioned tables. For each bulk copy session, you specify the partition on 
which the data should reside.

If your input file is already in sorted order, you can bulk copy data into 
partitions in order, and avoid the sorting step while creating clustered 
indexes. 

See “Steps for partitioning tables” on page 100 for step-by-step 
procedures.



CHAPTER 17    Maintenance Activities and Performance

Performance & Tuning Guide 401

Batches and bulk copy
If you specify a batch size during a fast bulk copy, each new batch must 
start on a new data page, since only the page allocations, and not the data 
changes, are logged during a fast bulk copy. Copying 1000 rows with a 
batch size of 1 requires 1000 data pages and 1000 allocation records in the 
transaction log.

If you are using a small batch size to help detect errors in the input file, you 
may want to choose a batch size that corresponds to the numbers of rows 
that fit on a data page.

Slow bulk copy
If a table has indexes or triggers, a slower version of bulk copy is 
automatically used. For slow bulk copy:

• You do not have to set the select into/bulkcopy.

• Rules are not enforced and triggers are not fired, but defaults are 
enforced.

• All data changes are logged, as well as the page allocations.

• Indexes are updated as rows are copied in, and index changes are 
logged.

Improving bulk copy performance
Other ways to increase bulk copy performance are:

• Set the trunc log on chkpt option to keep the transaction log from filling 
up. If your database has a threshold procedure that automatically 
dumps the log when it fills, you will save the transaction dump time.

Remember that each batch is a separate transaction, so if you are not 
specifying a batch size, setting trunc log on chkpt will not help.

• Set the number of pre allocated extents configuration parameter high if 
you perform many large bulk copies. 

See the System Administration Guide.

• Find the optimal network packet size. 

See Chapter 2, “Networks and Performance,”.



Bulk copy 

402  Adaptive Server Enterprise

Replacing the data in a large table
If you are replacing all the data in a large table, use the truncate table 
command instead of the delete command. truncate table performs reduced 
logging. Only the page deallocations are logged.

delete is completely logged, that is, all the changes to the data are logged.

The steps are:

1 Truncate the table. If the table is partitioned, you must unpartition 
before you can truncate it.

2 Drop all indexes on the table.

3 Load the data.

4 Re-create the indexes.

See “Steps for partitioning tables” on page 100 for more information on 
using bulk copy with partitioned tables.

Adding large amounts of data to a table
When you are adding 10 to 20 percent or more to a large table, drop the 
nonclustered indexes, load the data, and then re-create nonclustered 
indexes.

For very large tables, you may need to leave the clustered index in place 
due to space constraints. Adaptive Server must make a copy of the table 
when it creates a clustered index. In many cases, once tables become very 
large, the time required to perform a slow bulk copy with the index in place 
is less than the time to perform a fast bulk copy and re-create the clustered 
index.

Using partitions and multiple bulk copy processes
If you are loading data into a table without indexes, you can create 
partitions on the table and use one bcp session for each partition.

See “Using parallel bcp to copy data into partitions” on page 94.



CHAPTER 17    Maintenance Activities and Performance

Performance & Tuning Guide 403

Impacts on other users
Bulk copying large tables in or out may affect other users’ response time. 
If possible:

• Schedule bulk copy operations for off-hours.

• Use fast bulk copy, since it does less logging and less I/O.

Database consistency checker
It is important to run database consistency checks periodically with dbcc. 
If you back up a corrupt database, the backup is useless. But dbcc affects 
performance, since dbcc must acquire locks on the objects it checks.

See the System Administration Guide for information about dbcc and 
locking, with additional information about how to minimize the effects of 
dbcc on user applications.

Using dbcc tune (cleanup)
Adaptive Server performs redundant memory cleanup checking as a final 
integrity check after processing each task. In very high throughput 
environments, a slight performance improvement may be realized by 
skipping this cleanup error check. To turn off error checking, enter:

dbcc tune(cleanup,1)

The final cleanup frees up any memory a task might hold. If you turn the 
error checking off, but you get memory errors, reenable the checking by 
entering:

dbcc tune(cleanup,0)



Using dbcc tune on spinlocks 

404  Adaptive Server Enterprise

Using dbcc tune on spinlocks
When you see a scaling problem due to a spinlock contention on the "des 
manager" you can use the des_bind command to improve the scalability of 
the server where object descriptors are reserved for hot objects. The 
descriptors for these hot objects are never scavenged.

dbcc tune(des_bind, <dbid>, <objname>)

To remove the binding use:

dbcc tune(des_unbind, <dbid>, <objname>)

Note  To unbind an object from the database, the database has to be in 
"single user mode"

When not to use this command
There are instances where this command cannot be used:

• On objects in system databases such as master and tempdb

• On system tables.

Since this bind command is not persistent, it has to be re-instantiated 
during startup.

Determining the space available for maintenance 
activities

Several maintenance operations require room to make a copy of the data 
pages of a table:

• create clustered index 

• alter table...lock 

• Some alter table commands that add or modify columns

• reorg rebuild on a table 



CHAPTER 17    Maintenance Activities and Performance

Performance & Tuning Guide 405

In most cases, these commands also require space to re-create any indexes, 
so you need to determine:

• The size of the table and its indexes 

• The amount of space available on the segment where the table is 
stored

• The space management properties set for the table and its indexes

The following sections describe tools that provide information on space 
usage and space availability.

Overview of space requirements
Any command that copies a table’s rows also re-creates all of the indexes 
on the table. You need space for a complete copy of the table and copies 
of all indexes.

These commands do not estimate how much space is needed. They stop 
with an error message if they run out of space on any segment used by the 
table or its indexes. For large tables, this could occur minutes or even 
hours after the command starts. 

You need free space on the segments used by the table and its indexes, as 
follows:

• Free space on the table’s segment must be at least equal to:

• The size of the table, plus

• Approximately 20 percent of the table size, if the table has a 
clustered index and you are changing from allpages locking to 
data-only locking

.

• Free space on the segments used by nonclustered indexes must be at 
least equal to the size of the indexes. 

Clustered indexes for data-only-locked tables have a leaf level above the 
data pages. If you are altering a table with a clustered index from allpages 
locking to data-only locking, the resulting clustered index requires more 
space. The additional space required depends on the size of the index keys.



Determining the space available for maintenance activities 

406  Adaptive Server Enterprise

Tools for checking space usage and space available
As a simple guideline, copying a table and its indexes requires space equal 
to the current space used by the table and its indexes, plus about 20% 
additional room. However:

• If data modifications have created many partially-full pages, space 
required for the copy of the table can be smaller than the current size.

• If space-management properties for the table have changed, or if 
space required by fillfactor or reservepagegap has been filled by data 
modifications, the size required for the copy of the table can be larger.

• Adding columns or modifying columns to larger datatypes requires 
more space for the copy.

Log space is also required.

Checking space used for tables and indexes

To see the size of a table and its indexes, use:

sp_spaceused titles, 1

See “Calculating the sizes of data-only-locked tables” on page 381 for 
information on estimating the size of the clustered index.

Checking space on segments

Tables are always copied to free space on the segment where they are 
currently stored, and indexes are re-created on the segment where they are 
currently stored. Commands that create clustered indexes can specify a 
segment. The copy of the table and the clustered index are created on the 
target segment.

To determine the number of pages available on a segment, use 
sp_helpsegment. The last line of sp_helpsegment shows the total number 
of free pages available on a segment. 

The following command prints segment information for the default 
segment, where objects are stored when no segment was explicitly 
specified:

sp_helpsegment "default"

sp_helpsegment reports the names of indexes on the segment. If you do not 
know the segment name for a table, use sp_help and the table name. The 
segment names for indexes are also reported by sp_help. 



CHAPTER 17    Maintenance Activities and Performance

Performance & Tuning Guide 407

Checking space requirements for space management properties

If you make significant changes to space management property values, the 
table copy can be considerably larger or smaller than the original table. 
Settings for space management properties are stored in the sysindexes 
tables, and are displayed by sp_help and sp_helpindex. This output shows 
the space management properties for the titles table:

exp_row_size reservepagegap fillfactor max_rows_per_page 
------------ -------------- ---------- ----------------- 
         190             16         90                 0

sp_helpindex produces this report:

index_name           index_description
    index_keys
    index_max_rows_per_page index_fillfactor index_reservepagegap
    ----------------------- ---------------- --------------------
title_id_ix          nonclustered located on default
    title_id
                          0               75                    0
title_ix             nonclustered located on default
    title
                          0               80                   16
type_price           nonclustered located on default
    type, price
                          0               90                    0

Space management properties applied to the table

During the copy step, the space management properties for the table are 
used as follows:

• If an expected row size value is specified for the table, and the locking 
scheme is being changed from allpages locking to data-only locking, 
the expected row size is applied to the data rows as they are copied.

If no expected row size is set, but there is a max_rows_per_page value 
for the table, an expected row size is computed, and that value is used.

Otherwise, the default value specified with the configuration 
parameter default exp_row_size percent is used for each page allocated 
for the table.

• The reservepagegap is applied as extents are allocated to the table.



Determining the space available for maintenance activities 

408  Adaptive Server Enterprise

• If sp_chgattribute has been used to save a fillfactor value for the table, 
it is applied to the new data pages as the rows are copied.

Space management properties applied to the index

When the indexes are rebuilt, space management properties for the 
indexes are applied, as follows:

• If sp_chgattribute has been used to save fillfactor values for indexes, 
these values are applied when the indexes are re-created.

• If reservepagegap values are set for indexes, these values are applied 
when the indexes are re-created.

Estimating the effects of space management properties
Table 17-2 shows how to estimate the effects of setting space management 
properties. 

Table 17-2: Effects of space management properties on space use

For more information, see Chapter 14, “Setting Space Management 
Properties,”.

If a table has max_rows_per_page set, and the table is converted from 
allpages locking to data-only locking, the value is converted to an 
exp_row_size value before the alter table...lock command copies the table 
to its new location.

Property Formula Example

fillfactor Requires
(100/fillfactor) * num_pages if pages are 
currently fully packed

fillfactor of 75 requires 1.33 times current 
number of pages; a table of 1,000 pages 
grows to 1,333 pages.

reservepagegap Increases space by
1/reservepagegap if extents are currently 
filled

reservepagegap of 10 increase space used 
by 10%; a table of 1,000 pages grows to 
1,100 pages.

max_rows_per_page Converted to exp_row_size when 
converting to data-only-locking

See Table 17-3 on page 409.

exp_row_size Increase depends on number of rows 
smaller than exp_rowsize, and the average 
length of those rows

If exp_row_size is 100, and 1,000 rows 
have a length of 60, the increase in space 
is:

(100 - 60) * 1000 or 40,000 bytes; 
approximately 20 additional pages.



CHAPTER 17    Maintenance Activities and Performance

Performance & Tuning Guide 409

The exp_row_size is enforced during the copy. Table 17-3 shows how the 
values are converted.

Table 17-3: Converting max_rows_per_page to exp_row_size

If there is not enough space
If there is not enough space to copy the table and re-create all the indexes, 
determine whether dropping the nonclustered indexes on the table leaves 
enough room to create a copy of the table. Without any nonclustered 
indexes, the copy operation requires space just for the table and the 
clustered index.

Do not drop the clustered index, since it is used to order the copied rows, 
and attempting to re-create it later may require space to make a copy of the 
table. Re-create the nonclustered indexes after the command completes.

If max_rows_per_page is set to Set exp_row_size to

0 Percentage value set by default exp_row_size percent

1–254 The smaller of:

• maximum row size 

• 2002/max_rows_per_page value



Determining the space available for maintenance activities 

410  Adaptive Server Enterprise



Performance & Tuning Guide 411

C H A P T E R  1 8 tempdb Performance Issues

This chapter discusses the performance issues associated with using the 
tempdb database. tempdb is used by Adaptive Server users. Anyone can 
create objects in tempdb. Many processes use it silently. It is a server-wide 
resource that is used primarily for internal sorts processing, creating 
worktables, reformatting, and for storing temporary tables and indexes 
created by users.

Many applications use stored procedures that create tables in tempdb to 
expedite complex joins or to perform other complex data analysis that is 
not easily performed in a single step.

How management of tempdb affects performance
Good management of tempdb is critical to the overall performance of 
Adaptive Server. tempdb cannot be overlooked or left in a default state. It 
is the most dynamic database on many servers and should receive special 
attention. 

If planned for in advance, most problems related to tempdb can be 
avoided. These are the kinds of things that can go wrong if tempdb is not 
sized or placed properly: 

Topic Page
How management of tempdb affects performance 411

Types and uses of temporary tables 412

Initial allocation of tempdb 414

Sizing the tempdb 415

Placing tempdb 416

Dropping the master device from tempdb segments 416

Binding tempdb to its own cache 417

Temporary tables and locking 418

Minimizing logging in tempdb 419

Optimizing temporary tables 420



Types and uses of temporary tables 

412  Adaptive Server Enterprise

• tempdb fills up frequently, generating error messages to users, who 
must then resubmit their queries when space becomes available.

• Sorting is slow, and users do not understand why their queries have 
such uneven performance.

• User queries are temporarily locked from creating temporary tables 
because of locks on system tables.

• Heavy use of tempdb objects flushes other pages out of the data cache.

Main solution areas for tempdb performance
These main areas can be addressed easily:

• Sizing tempdb correctly for all Adaptive Server activity

• Placing tempdb optimally to minimize contention

• Binding tempdb to its own data cache

• Minimizing the locking of resources within tempdb

Types and uses of temporary tables
The use or misuse of user-defined temporary tables can greatly affect the 
overall performance of Adaptive Server and your applications. 

Temporary tables can be quite useful, often reducing the work the server 
has to do. However, temporary tables can add to the size requirement of 
tempdb. Some temporary tables are truly temporary, and others are 
permanent.

tempdb is used for three types of tables:

• Truly temporary tables

• Regular user tables

• Worktables



CHAPTER 18    tempdb Performance Issues

Performance & Tuning Guide 413

Truly temporary tables
You can create truly temporary tables by using “#” as the first character of 
the table name:

create table #temptable (...)

or:

select select_list 
    into #temptable ...

Temporary tables:

• Exist only for the duration of the user session or for the scope of the 
procedure that creates them

• Cannot be shared between user connections

• Are automatically dropped at the end of the session or procedure (or 
can be dropped manually)

When you create indexes on temporary tables, the indexes are stored in 
tempdb:

create index tempix on #temptable(col1)

Regular user tables
You can create regular user tables in tempdb by specifying the database 
name in the command that creates the table:

create table tempdb..temptable (...)

or:

select select_list
    into tempdb..temptable

Regular user tables in tempdb:

• Can persist across sessions

• Can be used by bulk copy operations

• Can be shared by granting permissions on them

• Must be explicitly dropped by the owner (otherwise, they are removed 
when Adaptive Server is restarted) 

You can create indexes in tempdb on permanent temporary tables:



Initial allocation of tempdb 

414  Adaptive Server Enterprise

create index tempix on tempdb..temptable(col1)

Worktables
Worktables are automatically created in tempdb by Adaptive Server for 
merge joins, sorts, and other internal server processes. These tables:

• Are never shared

• Disappear as soon as the command completes

Initial allocation of tempdb
When you install Adaptive Server, tempdb is 2MB, and is located 
completely on the master device, as shown in Figure 18-1. This is 
typically the first database that a System Administrator needs to make 
larger. The more users on the server, the larger it needs to be. It can be 
altered onto the master device or other devices. Depending on your needs, 
you may want to stripe tempdb across several devices. 

Figure 18-1: tempdb default allocation

Use sp_helpdb to see the size and status of tempdb. The following example 
shows tempdb defaults at installation time:

sp_helpdb tempdb
name      db_size  owner  dbid   created     status
--------- -------- ------ ------ ----------- --------------------
tempdb    2.0 MB   sa     2     May 22, 1999 select into/bulkcopy

device_frag  size    usage        free kbytes
------------ -------- ------------ ---------
master       2.0 MB  data and log 1248

d_master

tempdb

(2MB)
data and log



CHAPTER 18    tempdb Performance Issues

Performance & Tuning Guide 415

Sizing the tempdb
tempdb needs to be big enough to handle the following processes for every 
concurrent Adaptive Server user:

• Worktables for merge joins

• Worktables that are created for distinct, group by, and order by, for 
reformatting, and for the OR strategy, and for materializing some 
views and subqueries

• Temporary tables (those created with “#” as the first character of their 
names)

• Indexes on temporary tables

• Regular user tables in tempdb

• Procedures built by dynamic SQL

Some applications may perform better if you use temporary tables to split 
up multitable joins. This strategy is often used for:

• Cases where the optimizer does not choose a good query plan for a 
query that joins more than four tables

• Queries that join a very large number of tables

• Very complex queries

• Applications that need to filter data as an intermediate step

You might also use tempdb to:

• Denormalize several tables into a few temporary tables

• Normalize a denormalized table to do aggregate processing

For most applications, make tempdb 20 to 25% of the size of your user 
databases to provide enough space for these uses.



Placing tempdb 

416  Adaptive Server Enterprise

Placing tempdb
Keep tempdb on separate physical disks from your critical application 
databases. Use the fastest disks available. If your platform supports solid 
state devices and your tempdb use is a bottleneck for your applications, use 
those devices. After you expand tempdb onto additional devices, drop the 
master device from the system, default, and logsegment segments.

Although you can expand tempdb on the same device as the master 
database,Sybase suggests that you use separate devices. Also, remember 
that logical devices, but not databases, are mirrored using Adaptive Server 
mirroring. If you mirror the master device, you create a mirror of all 
portions of the databases that reside on the master device. If the mirror 
uses serial writes, this can have a serious performance impact if your 
tempdb database is heavily used.

Dropping the master device from tempdb segments
By default, the system, default, and logsegment segments for tempdb 
include its 2MB allocation on the master device. When you allocate new 
devices to tempdb, they automatically become part of all three segments. 
Once you allocate a second device to tempdb, you can drop the master 
device from the default and logsegment segments. This way, you can be 
sure that the worktables and other temporary tables in tempdb do not 
contend with other uses on the master device.

To drop the master device from the segments:

1 Alter tempdb onto another device, if you have not already done so. For 
example:

alter database tempdb on tune3 = 20

2 Issue a use tempdb command, and then drop the master device from 
the segments:

sp_dropsegment "default", tempdb, master
sp_dropdegment system, tempdb, master
sp_dropdegment logsegment, tempdb, master

3 To verify that the default segment no longer includes the master 
device, issue this command:

select dbid, name, segmap



CHAPTER 18    tempdb Performance Issues

Performance & Tuning Guide 417

from sysusages, sysdevices
where sysdevices.low <= sysusages.size + vstart
  and sysdevices.high >= sysusages.size + vstart -1
  and dbid = 2
  and (status = 2 or status = 3)

The segmap column should report “1” for any allocations on the 
master device, indicating that only the system segment still uses the 
device:

 dbid   name            segmap      
 ------ --------------- ----------- 
      2 master                    1 
      2 tune3                     7

Using multiple disks for parallel query performance
If tempdb spans multiple devices, as shown in Figure 18-2, you can take 
advantage of parallel query performance for some temporary tables or 
worktables.

Figure 18-2: tempdb spanning disks

Binding tempdb to its own cache
Under normal Adaptive Server use, tempdb makes heavy use of the data 
cache as temporary tables are created, populated, and then dropped.

disk_2 disk_3

d_master

disk_1

tempdbtempdb



Temporary tables and locking 

418  Adaptive Server Enterprise

Assigning tempdb to its own data cache:

• Keeps the activity on temporary objects from flushing other objects 
out of the default data cache

• Helps spread I/O between multiple caches

See “Examining cache needs for tempdb” on page 350 for more 
information.

Commands for cache binding
Use sp_cacheconfig and sp_poolconfig to create named data caches and to 
configure pools of a given size for large I/O. Only a System Administrator 
can configure caches and pools. 

Note  Reference to Large I/Os are on a 2K logical page size server. If you 
have an 8K page size server, the basic unit for the I/O is 8K. If you have a 
16K page size server, the basic unit for the I/O is 16K.

For instructions on configuring named caches and pools, see the System 
Administration Guide. 

Once the caches have been configured, and the server has been restarted, 
you can bind tempdb to the new cache:

sp_bindcache "tempdb_cache", tempdb

Temporary tables and locking
Creating or dropping temporary tables and their indexes can cause lock 
contention on the system tables in tempdb. When users create tables in 
tempdb, information about the tables must be stored in system tables such 
as sysobjects, syscolumns, and sysindexes. If multiple user processes are 
creating and dropping tables in tempdb, heavy contention can occur on the 
system tables. Worktables created internally do not store information in 
system tables.



CHAPTER 18    tempdb Performance Issues

Performance & Tuning Guide 419

If contention for tempdb system tables is a problem with applications that 
must repeatedly create and drop the same set of temporary tables, try 
creating the tables at the start of the application. Then use insert...select to 
populate them, and truncate table to remove all the data rows. Although 
insert...select requires logging and is slower than select into, it can provide 
a solution to the locking problem.

Minimizing logging in tempdb
Even though the trunc log on checkpoint database option is turned on in 
tempdb, changes to tempdb are still written to the transaction log. You can 
reduce log activity in tempdb by:

• Using select into instead of create table and insert

• Selecting only the columns you need into the temporary tables

 With select into
When you create and populate temporary tables in tempdb, use the select 
into command, rather than create table and insert...select, whenever 
possible. The select into/bulkcopy database option is turned on by default 
in tempdb to enable this behavior.

select into operations are faster because they are only minimally logged. 
Only the allocation of data pages is tracked, not the actual changes for each 
data row. Each data insert in an insert...select query is fully logged, 
resulting in more overhead.

By using shorter rows
If the application creating tables in tempdb uses only a few columns of a 
table, you can minimize the number and size of log records by:

• Selecting just the columns you need for the application, rather than 
using select * in queries that insert data into the tables 

• Limiting the rows selected to just the rows that the applications 
requires



Optimizing temporary tables 

420  Adaptive Server Enterprise

Both of these suggestions also keep the size of the tables themselves 
smaller.

Optimizing temporary tables
Many uses of temporary tables are simple and brief and require little 
optimization. But if your applications require multiple accesses to tables 
in tempdb, you should examine them for possible optimization strategies. 
Usually, this involves splitting out the creation and indexing of the table 
from the access to it by using more than one procedure or batch.

When you create a table in the same stored procedure or batch where it is 
used, the query optimizer cannot determine how large the table is, the table 
has not yet been created when the query is optimized, as shown in 
Figure 18-3. This applies to both temporary tables and regular user tables. 



CHAPTER 18    tempdb Performance Issues

Performance & Tuning Guide 421

Figure 18-3: Optimizing and creating temporary tables

The optimizer assumes that any such table has 10 data pages and 100 rows. 
If the table is really large, this assumption can lead the optimizer to choose 
a suboptimal query plan.

These two techniques can improve the optimization of temporary tables:

• Creating indexes on temporary tables

• Breaking complex use of temporary tables into multiple batches or 
procedures to provide information for the optimizer

Creating indexes on temporary tables
You can define indexes on temporary tables. In many cases, these indexes 
can improve the performance of queries that use tempdb. The optimizer 
uses these indexes just like indexes on ordinary user tables. The only 
requirements are:

Query optimized here

Table created here

Compile

Optimize

Parse and 
Normalize

Query

Results

Execute

Optimize

Compile



Optimizing temporary tables 

422  Adaptive Server Enterprise

• The table must contain data when the index is created. If you create 
the temporary table and create the index on an empty table, Adaptive 
Server does not create column statistics such as histograms and 
densities. If you insert data rows after creating the index, the 
optimizer has incomplete statistics.

• The index must exist while the query using it is optimized. You cannot 
create an index and then use it in a query in the same batch or 
procedure.

• The optimizer may choose a suboptimal plan if rows have been added 
or deleted since the index was created or since update statistics was 
run.

Providing an index for the optimizer can greatly increase performance, 
especially in complex procedures that create temporary tables and then 
perform numerous operations on them.

Creating nested procedures with temporary tables
You need to take an extra step to create the procedures described above. 
You cannot create base_proc until select_proc exists, and you cannot 
create select_proc until the temporary table exists. Here are the steps:

1 Create the temporary table outside the procedure. It can be empty; it 
just needs to exist and to have columns that are compatible with 
select_proc:

select * into #huge_result from ... where 1 = 2

2 Create the procedure select_proc, as shown above.

3 Drop #huge_result.

4 Create the procedure base_proc.

Breaking tempdb uses into multiple procedures
For example, this query causes optimization problems with #huge_result:

create proc base_proc 
as
    select * 
        into #huge_result 
        from ...



CHAPTER 18    tempdb Performance Issues

Performance & Tuning Guide 423

    select * 
        from tab, 
        #huge_result where ...

You can achieve better performance by using two procedures. When the 
base_proc procedure calls the select_proc procedure, the optimizer can 
determine the size of the table:

create proc select_proc 
as
    select * 
        from tab, #huge_result where ...
create proc base_proc 
as
    select * 
        into #huge_result 
        from ...
    exec select_proc

If the processing for #huge_result requires multiple accesses, joins, or 
other processes, such as looping with while, creating an index on 
#huge_result may improve performance. Create the index in base_proc so 
that it is available when select_proc is optimized.



Optimizing temporary tables 

424  Adaptive Server Enterprise



Performance & Tuning Guide 425

C H A P T E R  1 9 Adaptive Server Optimizer

This chapter introduces the Adaptive Server query optimizer and explains 
the steps performed when you run queries. 

This chapter explains how costs for individual query clauses are 
determined.

Chapter 22, “Access Methods and Query Costing for Single 
Tables,”explains how these costs are used to estimate the logical, physical, 
and total I/O cost for single table queries.

Chapter 23, “Accessing Methods and Costing for Joins and Subqueries,” 
explains how costs are used when queries join two or more tables, or when 
queries include subqueries.

Definition
The optimizer examines parsed and normalized queries, and information 
about database objects. The input to the optimizer is a parsed SQL query 
and statistics about the tables, indexes, and columns named in the query. 
The output from the optimizer is a query plan. 

Topic Page
Definition 425

Object sizes are important to query tuning 427

Query optimization 428

Factors examined during optimization 429

Preprocessing can add clauses for optimizing 430

Guidelines for creating search arguments 435

Search arguments and useful indexes 436

Join syntax and join processing 442

Datatype mismatches and query optimization 445

Splitting stored procedures to improve costing 453

Basic units of costing 454



Definition 

426  Adaptive Server Enterprise

The query plan is compiled code that contains the ordered steps to carry out the 
query, including the access methods (table scan or index scan, type of join to 
use, join order, and so on) to access each table.

Using statistics on tables and indexes, the optimizer predicts the cost of using 
alternative access methods to resolve a particular query. It finds the best query 
plan – the plan that is least the costly in terms of I/O. For many queries, there 
are many possible query plans. Adaptive Server selects the least costly plan, 
and compiles and executes it. 

Steps in query processing
Adaptive Server processes a query in these steps:

1 The query is parsed and normalized. The parser ensures that the SQL 
syntax is correct. Normalization ensures that all the objects referenced in 
the query exist. Permissions are checked to ensure that the user has 
permission to access all tables and columns in the query.

2 Preprocessing changes some search arguments to an optimized form and 
adds optimized search arguments and join clauses.

3 As the query is optimized, each part of the query is analyzed, and the best 
query plan is chosen. Optimization includes:

• Each table is analyzed.

• The cost of using each index that matches a search argument or join 
column is estimated.

• The join order and join type are chosen.

• The final access method is determined.

4 The chosen query plan is compiled.

5 The query is executed, and the results are returned to the user.

Working with the optimizer
The goal of the optimizer is to select the access method for each table that 
reduces the total time needed to process a query. The optimizer bases its choice 
on the statistics available for the tables being queried and on other factors such 
as cache strategies, cache size, and I/O size. A major component of optimizer 
decision-making is the statistics available for the tables, indexes, and columns.



CHAPTER 19    Adaptive Server Optimizer

Performance & Tuning Guide 427

In some situations, the optimizer may seem to make the incorrect choice of 
access methods. This may be the result of inaccurate or incomplete information 
(such as out-of-date statistics). In other cases, additional analysis and the use 
of special query processing options can determine the source of the problem 
and provide solutions or workarounds.

The query optimizer uses I/O cost as the measure of query execution cost. The 
significant costs in query processing are:

• Physical I/O, when pages must be read from disk

• Logical I/O, when pages in cache are read for a query

See access methods and query costing.

Object sizes are important to query tuning
You should know the sizes of your tables and indexes to understanding query 
and system behavior. At several stages of tuning work, you need size data to:

• Understand statistics io reports for a specific query plan. 

Chapter 35, “Using the set statistics Commands,” describes how to use 
statistics io to examine the I/O performed.

• Understand the optimizer’s choice of query plan. Adaptive Server’s cost-
based optimizer estimates the physical and logical I/O required for each 
possible access method and chooses the cheapest method. If you think a 
particular query plan is unusual, you can used dbcc traceon(302) to 
determine why the optimizer made the decision. This output includes page 
number estimates. 

• Determine object placement, based on the sizes of database objects and the 
expected I/O patterns on the objects. You can improve performance by 
distributing database objects across physical devices so that reads and 
writes to disk are evenly distributed. 

Object placement is described in Chapter 5, “Controlling Physical Data 
Placement.”

• Understand changes in performance. If objects grow, their performance 
characteristics can change. One example is a table that is heavily used and 
is usually 100 percent cached. If that table grows too large for its cache, 
queries that access the table can suddenly suffer poor performance. This is 
particularly true for joins requiring multiple scans.



Query optimization 

428  Adaptive Server Enterprise

• Do capacity planning. Whether you are designing a new system or 
planning for growth of an existing system, you need to know the space 
requirements to plan for physical disks and memory needs.

• Understand output from Adaptive Server Monitor and from sp_sysmon 
reports on physical I/O.

See the Adaptive Server System Administration Guide for more information on 
sizing.

Query optimization
To understand the optimization of a query, you need to understand how the 
query accesses database objects, the sizes of the objects, and the indexes on the 
tables to determine whether it is possible to improve the query’s performance.

Some symptoms of optimization problems are:

• A query runs more slowly than you expect, based on indexes and table 
size.

• A query runs more slowly than similar queries.

• A query suddenly starts running more slowly than usual.

• A query processed within a stored procedure takes longer than when it is 
processed as an ad hoc statement.

• The query plan shows the use of a table scan when you expect it to use an 
index.

Some sources of optimization problems are:

• Statistics have not been updated recently, so the actual data distribution 
does not match the values used by Adaptive Server to optimize queries.

• The rows to be referenced by a given transaction do not fit the pattern 
reflected by the index statistics.

• An index is being used to access a large portion of the table.

• where clauses are written in a form that cannot be optimized.

• No appropriate index exists for a critical query.

• A stored procedure was compiled before significant changes to the 
underlying tables were performed.



CHAPTER 19    Adaptive Server Optimizer

Performance & Tuning Guide 429

Factors examined during optimization
Query plans consist of retrieval tactics and an ordered set of execution steps to 
retrieve the data needed by the query. In developing query plans, the optimizer 
examines:

• The size of each table in the query, both in rows and data pages, and the 
number of OAM and allocation pages that need to be read.

• The indexes that exist on the tables and columns used in the query, the type 
of index, and the height, number of leaf pages, and cluster ratios for each 
index.

• Whether the index covers the query, that is, whether the query can be 
satisfied by retrieving data from the index leaf pages without having to 
access the data pages. Adaptive Server can use indexes that cover queries, 
even if no where clauses are included in the query.

• The density and distribution of keys in the indexes.

• The size of the available data cache or caches, the size of I/O supported by 
the caches, and the cache strategy to be used.

• The cost of physical and logical reads.

• Join clauses and the best join order and join type, considering the costs and 
number of scans required for each join and the usefulness of indexes in 
limiting the I/O.

• Whether building a worktable (an internal, temporary table) with an index 
on the join columns would be faster than repeated table scans if there are 
no useful indexes for the inner table in a join.

• Whether the query contains a max or min aggregate that can use an index 
to find the value without scanning the table.

• Whether the data or index pages will be needed repeatedly to satisfy a 
query such as a join or whether a fetch-and-discard strategy can be 
employed because the pages need to be scanned only once.

For each plan, the optimizer determines the total cost by computing the logical 
and physical I/Os. Adaptive Server then uses the cheapest plan.

Stored procedures and triggers are optimized when the object is first executed, 
and the query plan is stored in the procedure cache. If other users execute the 
same procedure while an unused copy of the plan resides in cache, the 
compiled query plan is copied in cache, rather than being recompiled.



Preprocessing can add clauses for optimizing 

430  Adaptive Server Enterprise

Preprocessing can add clauses for optimizing
After a query is parsed and normalized, but before the optimizer begins its 
analysis, the query is preprocessed to increase the number of clauses that can 
be optimized:

• Some search arguments are converted to equivalent arguments.

• Some expressions used as search arguments are preprocessed to generate 
a literal value that can be optimized.

• Search argument transitive closure is applied where possible.

• Join column transitive closure is applied where possible.

• For some queries that use or, additional search arguments can be generated 
to provide additional optimization paths.

The changes made by preprocessing are transparent unless you are examining 
the output of query tuning tools such as showplan, statistics io, or dbcc 
traceon(302). If you run queries that benefit from the addition of optimized 
search arguments, you see the added clauses:

• In additional costing blocks for the added clauses to be optimized in dbcc 
traceon(302) output.

• In showplan output, you may see “Keys are” messages for tables where 
you did not specify a search argument or a join.

Converting clauses to search argument equivalents
Preprocessing looks for some query clauses that it can convert to the form used 
for search arguments (SARGs). These are listed in Table 19-1. 

Table 19-1: Search argument equivalents

Clause Conversion

between Converted to >= and <= clauses. For example, between 10 and 20 is 
converted to >= 10 and <= 20.

like If the first character in the pattern is a constant, like clauses can be 
converted to greater than or less than queries. For example, like "sm%" 
becomes >= "sm" and < "sn". 

If the first character is a wildcard, a clause such as like "%x" cannot use an 
index for access, but histogram values can be used to estimate the number 
of matching rows.



CHAPTER 19    Adaptive Server Optimizer

Performance & Tuning Guide 431

Converting expressions into search arguments
Many expressions are converted into literal search strings before query 
optimization. In the following examples, the processed expressions are shown 
as they appear in the search argument analysis of dbcc traceon(302) output:

These conversions allow the optimizer to use the histogram values for a 
column rather than using default selectivity values.

The following are exceptions:

• The getdate function

• Most system functions such as object_id or object_name 

These are not converted to literal values before optimization.

Search argument transitive closure
Preprocessing applies transitive closure to search arguments. For example, the 
following query joins titles and titleauthor on title_id and includes a search 
argument on titles.title_id:

in (values_list) Converted to a list of or queries, that is, int_col in (1, 2, 3) becomes int_col 
= 1 or int_col = 2 or int_col = 3.

Clause Conversion

Operation Example of where Clause Processed expression

Implicit 
conversion

numeric_col = 5 numeric_col = 5.0

Conversion 
function

int_column = convert(int, "77") int_column = 77

Arithmetic salary = 5000*12 salary = 6000
0

Math functions width = sqrt(900) width = 30

String functions shoe_width = replicate("E", 5) shoe_width = "EEEEE"

String 
concatenation

full_name = "Fred" + " " + "Simpson" full_name = "Fred Simpson"

Date functions week = datepart(wk, "5/22/99") week = 21

Note  getdate() cannot be optimized.



Preprocessing can add clauses for optimizing 

432  Adaptive Server Enterprise

select au_lname, title
from titles t, titleauthor ta, authors a
where t.title_id = ta.title_id
        and a.au_id = ta.au_id
        and t.title_id = "T81002"

This query is optimized as if it also included the search argument on 
titleauthor.title_id:

select au_lname, title
from titles t, titleauthor ta, authors a
where t.title_id = ta.title_id
        and a.au_id = ta.au_id
        and t.title_id = "T81002"
        and ta.title_id = "T81002"

With this additional clause, the optimizer can use index statistics on 
titles.title_id to estimate the number of matching rows in the titleauthor table. 
The more accurate cost estimates improve index and join order selection.

Join transitive closure
Preprocessing applies transitive closure to join columns for normal equijoins if 
join transitive closure is enabled at the server or session level. The following 
query specifies the equijoin of t1.c11 and t2.c21, and the equijoin of t2.c21 and 
t3.c31:

select * 
from t1, t2, t3
where t1.c11 = t2.c21 
and t2.c21 = t3.c31
and t3.c31 = 1

Without join transitive closure, the only join orders considered are (t1, t2, t3), 
(t2, t1, t3), (t2, t3, t1),and (t3, t2, t1). By adding the join on t1.c11 = t3.31, the 
optimizer expands the list of join orders with these possibilities: (t1, t3, t2) and 
(t3, t1, t2). Search argument transitive closure applies the condition specified 
by t3.c31 = 1 to the join columns of t1 and t2. 

Transitive closure is used only for normal equijoins, as shown above. Join 
transitive closure is not performed for:

• Non-equijoins; for example, t1.c1 > t2.c2

• Equijoins that include an expression; for example, t1.c1 = t2.c1 + 5

• Equijoins under an or clause



CHAPTER 19    Adaptive Server Optimizer

Performance & Tuning Guide 433

• Outer joins; for example t1.c11 *= t2.c2 or left join or right join

• Joins across subquery boundaries

• Joins used to check referential integrity or the with check option on views

• Columns of incompatible datatypes

Enabling join transitive closure

A System Administrator can enable join transitive closure at the server level 
with the enable sort-merge joins and JTC configuration parameter. This 
configuration parameter also enables merge joins. At the session level, set jtc 
on enables join transitive closure, and takes precedence over the server-wide 
setting. For more information on the types of queries likely to benefit from the 
use of join transitive closure. 

See “Enabling and disabling join transitive closure” on page 468.

Predicate transformation and factoring
Predicate transformation and factoring improves the number of choices 
available to the optimizer. It adds clauses that can be optimized to a query by 
extracting clauses from blocks of predicates linked with or into clauses linked 
by and. These additional optimized clauses mean that there are more access 
paths available for query execution. The original or predicates are retained to 
ensure query correctness.

During predicate transformation:

1 Simple predicates (joins, search arguments, and in lists) that are an exact 
match in each or clause are extracted. In the sample query, this clause 
matches exactly in each block, so it is extracted:

 t.pub_id = p.pub_id

between clauses are converted to greater-than-or-equal and less-than-or-
equal clauses before predicate transformation. The sample query above 
uses between 15 in both query blocks (though the end ranges are different). 
The equivalent clause is extracted by step 1:

price >=15

2 Search arguments on the same table are extracted; all terms that reference 
the same table are treated as a single predicate during expansion. Both type 
and price are columns in the titles table, so the extracted clauses are:



Preprocessing can add clauses for optimizing 

434  Adaptive Server Enterprise

(type = "travel" and price >=15 and price <= 30)
or
(type = "business" and price >= 15 and price <= 50)

3 in lists and or clauses are extracted. If there are multiple in lists for a table 
within one of the blocks, only the first is extracted. The extracted lists for 
the sample query are:

 p.pub_id in ("P220", "P583", "P780")
or
 p.pub_id in ("P651", "P066", "P629")

4 These steps can overlap and extract the same clause, so any duplicates are 
eliminated. 

5 Each generated term is examined to determine whether it can be used as 
an optimized search argument or a join clause. Only those terms that are 
useful in query optimization are retained.

6 The additional clauses are added to the existing query clauses that were 
specified by the user.

Example

All clauses optimized in this query are enclosed in the or clauses:

select p.pub_id, price
from publishers p, titles t
where (
    t.pub_id = p.pub_id
    and type = "travel"
    and price between 15 and 30
    and p.pub_id in ("P220", "P583", "P780")
    )
or  (
    t.pub_id = p.pub_id
    and type = "business"
    and price between 15 and 50
    and p.pub_id in ("P651", "P066", "P629")
    )

Predicate transformation pulls clauses linked with and from blocks of clauses 
linked with or, such as those shown above. It extracts only clauses that occur 
in all parenthesized blocks. If the example above had a clause in one of the 
blocks linked with or that did not appear in the other clause, that clause would 
not be extracted.



CHAPTER 19    Adaptive Server Optimizer

Performance & Tuning Guide 435

Guidelines for creating search arguments
Follow these guidelines when you write search arguments for your queries:

• Avoid functions, arithmetic operations, and other expressions on the 
column side of search clauses. When possible, move functions and other 
operations to the expression side of the clause.

• Avoid incompatible datatypes for columns that will be joined and for 
variables and parameter used as search arguments. 

See “Datatype mismatches and query optimization” on page 445 for more 
information.

• Use the leading column of a composite index as a search argument. The 
optimization of secondary keys provides less performance.

• Use all the search arguments you can to give the optimizer as much as 
possible to work with.

• If a query has more than 102 predicates for a table, put the most potentially 
useful clauses near the beginning of the query, since only the first 102 
SARGs on each table are used during optimization. (All of the search 
conditions are used to qualify the rows.)

• Some queries using > (greater than) may perform better if you can rewrite 
them to use >= (greater than or equal to). For example, this query, with an 
index on int_col uses the index to find the first value where int_col equals 
3, and then scans forward to find the first value that is greater than 3. If 
there are many rows where int_col equals 3, the server has to scan many 
pages to find the first row where int_col is greater than 3:

select * from table1 where int_col > 3

It is probably more efficient to write the query like this:

select * from table1 where int_col >= 4

This optimization is more difficult with character strings and floating-
point data. You need to know your data.

• Check showplan output to see which keys and indexes are used.

• If you expect an index is not being used when you expect it to be, check 
dbcc traceon(302) output to see if the optimizer is considering the index. 



Search arguments and useful indexes 

436  Adaptive Server Enterprise

Search arguments and useful indexes
It is important to distinguish between where and having clause predicates that 
can be used to optimize the query, and those that are used later during query 
processing to filter the rows to be returned.

Search arguments can be used to determine the access path to the data rows 
when a column in the where clause matches a leading index key. The index can 
be used to locate and retrieve the matching data rows. Once the row has been 
located in the data cache or has been read into the data cache from disk, any 
remaining clauses are applied.

For example, if the authors table has on an index on au_lname and another on 
city, either index can be used to locate the matching rows for this query:

select au_lname, city, state
from authors
where city = "Washington"
and au_lname = "Catmull"

The optimizer uses statistics, including histograms, the number of rows in the 
table, the index heights, and the cluster ratios for the index and data pages to 
determine which index provides the cheapest access. The index that provides 
the cheapest access to the data pages is chosen and used to execute the query, 
and the other clause is applied to the data rows once they have been accessed.

Search argument syntax
Search arguments (SARGs) are expressions in one of these forms: 

<column> <operator> <expression>

<expression> <operator> <column> 

<column> is null

Where:

• column is only a column name. If functions, expressions, or concatenation 
are added to the column name, an index on the column cannot be used.

• operator must be one of the following:

 =, >, <, >=, <=, !>, !<, <>, !=, is null 

• expression is either a constant, or an expression that evaluates to a 
constant. The optimizer uses the index statistics differently, depending on 
whether the value of the expression is known at compile time:



CHAPTER 19    Adaptive Server Optimizer

Performance & Tuning Guide 437

• If expression is a known constant or can be converted to a known 
constant during preprocessing, it can be compared to the histogram 
values stored for an index to return accurate row estimates. 

• If the value of expression is not known at compile time, the optimizer 
uses the total density to estimate the number of rows to be returned by 
the query. The value of variables set in a query batch or parameters set 
within a stored procedure cannot be known until execution time.

• If the datatype of the expression is not compatible with the datatype 
of the column, an index cannot be used, and is not considered. 

See “Datatype mismatches and query optimization” on page 445 for 
more information.

Nonequality operators

The nonequality operators, < > and !=, are special cases. The optimizer checks 
for covering nonclustered indexes if the column is indexed and uses a 
nonmatching index scan if an index covers the query. However, if the index 
does not cover the query, the table is accessed via a table scan.

Examples of SARGs

The following are some examples of clauses that can be fully optimized. If 
there are statistics on these columns, they can be used to help estimate the 
number of rows the query will return. If there are indexes on the columns, the 
indexes can be used to access the data:

au_lname = "Bennett" 
price >= $12.00
advance > $10000 and advance < $20000
au_lname like "Ben%" and price > $12.00

The following search arguments cannot be optimized:

advance * 2 = 5000  /*expression on column side
                     not permitted */
substring(au_lname,1,3) = "Ben" /* function on
                                column name */

These two clauses can be optimized if written in this form:

advance = 5000/2
au_lname like "Ben%"

Consider this query, with the only index on au_lname:



Search arguments and useful indexes 

438  Adaptive Server Enterprise

select au_lname, au_fname, phone
    from authors
    where au_lname = "Gerland"
        and city = "San Francisco"

The clause qualifies as a SARG: 

au_lname = "Gerland" 

• There is an index on au_lname.

• There are no functions or other operations on the column name.

• The operator is a valid SARG operator.

• The datatype of the constant matches the datatype of the column.

city = "San Francisco" 

This clause matches all the criteria above except the first—there is no index on 
the city column. In this case, the index on au_lname is used for the query. All 
data pages with a matching last name are brought into cache, and each 
matching row is examined to see if the city matches the search criteria.

How statistics are used for SARGS
When you create an index, statistics are generated and stored in system tables. 
Some of the statistics relevant to determining the cost of search arguments and 
joins are:

• Statistics about the index: the number of pages and rows, the height of the 
index, the number of leaf pages, the average leaf row size.

• Statistics about the data in the column:

• A histogram for the leading column of the index. Histograms are used 
to determine the selectivity of the SARG, that is, how many rows from 
the table match a given value.

• Density values, measuring the density of keys in the index.

• Cluster ratios that measure the fragmentation of data storage and the 
effectiveness of large I/O.

Only a subset of these statistics (the number of leaf pages, for example) are 
maintained during query processing. Other statistics are updated only when 
you run update statistics or when you drop and re-create the index. You can 
display these statistics using optdiag. 



CHAPTER 19    Adaptive Server Optimizer

Performance & Tuning Guide 439

See Chapter 37, “Statistics Tables and Displaying Statistics with optdiag.”

Histogram cells

When you create an index, a histogram is created on the first column of the 
index. The histogram stores information about the distribution of values in the 
column. Then you can use update statistics to generate statistics for the minor 
keys of a compound index and columns used in unindexed search clauses.

The histogram for a column contains data in a set of steps or cells. You can 
specify the number of cells can when the index is created or when the update 
statistics command is run. For each cell, the histogram stores a column value 
and a weight for the cell.

There are two types of cells in histograms:

• A frequency cell represents a value that has a high proportion of 
duplicates in the column. The weight of a frequency cell times the number 
of rows in the table equals the number of rows in the table that match the 
value for the cell. If a column does not have highly duplicated values, there 
are only range cells in the histogram.

• Range cells represent a range of values. Range cell weights and the range 
cell density are used for estimating the number of rows to be returned 
when search argument values falls within a range cell.

For more information on histograms, see “Histogram displays” on page 883.

Density values

Density is a measure of the average proportion of duplicate keys in the index. 
It varies between 0 and 1. An index with N rows whose keys are unique has a 
density of 1/N; an index whose keys are all duplicates of each other has a 
density of 1.

For indexes with multiple keys, density values are computed and stored for 
each prefix of keys in the index. That is, for an index on columns A, B, C, D, 
densities are stored for:

• A

• A, B

• A, B, C

• A, B, C, D



Search arguments and useful indexes 

440  Adaptive Server Enterprise

Range cell density and total density

For each prefix subset, two density values are stored:

• Range cell density, used for search arguments

• Total density, used for joins

Range cell density represents the average number of duplicates of all values 
that are represented by range cells in the histogram. Total density represents the 
average number of duplicates for all values, those in both frequency and range 
cells. Total density is used to estimate the number of matching rows for joins 
and for search arguments whose value is not known when the query is 
optimized.

How the optimizer uses densities and histograms

When the optimizer analyzes a SARG, it uses the histogram values, densities, 
and the number of rows in the table to estimate the number of rows that match 
the value specified in the SARG:

• If the SARG value matches a frequency cell, the estimated number of 
matching rows is equal to the weight of the frequency cell multiplied by 
the number of rows in the table. This query includes a data value with a 
high number of duplicates, so it matches a frequency cell:

where authors.city = "New York"

If the weight of the frequency cell is #.015606, and the authors table has 
5000 rows, the optimizer estimates that the query returns 5000 * .015606 
= 78 rows.

• If the SARG value falls within a range cell, the optimizer uses the range 
cell density to estimate the number of rows. For example, a query on a city 
value that falls in a range cell, with a range cell density of .000586 for the 
column, would estimate that 5000 * .000586 = 3 rows would be returned.

• For range queries, the optimizer adds the weights of all cells spanned by 
the range of values. When the beginning or end of the range falls in a range 
cell, the optimizer uses interpolation to estimate the number of rows from 
that cell that are included in the range.

Using statistics on multiple search arguments
When there are multiple search arguments on the same table, the optimizer uses 
statistics to combine the selectivity of the search arguments.



CHAPTER 19    Adaptive Server Optimizer

Performance & Tuning Guide 441

This query specifies search arguments for two columns in the table:

select title_id 
from titles 
where type = "news" 
and price < $20

With an index on type, price, the selectivity estimates vary, depending on 
whether statistics have been created for price:

• With only statistics for type, the optimizer uses the frequency cell weight 
for type and a default selectivity for price. The selectivity for type is 
#.106600, and the default selectivity for an open-ended range query is 
33%. The number of rows to be returned for the query is estimated using 
.106600 * .33, or .035178. With 5000 rows in the table, the estimate is 171 
rows. 

See Table 19-2 for the default values used when statistics are not available.

• With statistics added for price, the histogram is used to estimate that 
.133334 rows match the search argument on price. Multiplied by the 
selectivity of type, the result is .014213, and the row estimate is 71 rows.

The actual number of rows returned is 53 rows for this query, so the additional 
statistics improved the accuracy. For this simple single-table query, the more 
accurate selectivity did not change the access method, the index on type, price. 
For some single-table queries, however, the additional statistics can help the 
optimizer make a better choice between using a table scan or using other 
indexes. In join queries, having more accurate statistics on each table can result 
in more efficient join orders.

Default values for search arguments
When statistics are not available for a search argument or when the value of a 
search argument is not known at optimization, the optimizer uses default 
values. These values are shown in Table 19-2.



Join syntax and join processing 

442  Adaptive Server Enterprise

Table 19-2: Density approximations for unknown search arguments

SARGs using variables and parameters
Since the optimizer computes its estimates before a query executes, it cannot 
know the value of a variable that is set in the batch or procedure. If the value 
of a variable is not known at compile time, the optimizer uses the default values 
shown in Table 19-2

For example, the value of @city is set in this batch:

declare @city varchar(25)
select @city = city from publishers
    where pub_name = "Brave Books"
select au_lname from authors where city = @city

The optimizer uses the total density, .000879, and estimates that 4 rows will be 
returned; the actual number of rows could be far larger. 

A similar problem exists when you set the values of variables inside a stored 
procedure. In this case, you can improve performance by splitting the 
procedure: set the variable in the first procedure and then call the second 
procedure, passing the variables as parameters. The second procedure can then 
be optimized correctly. 

See “Splitting stored procedures to improve costing” on page 453 for an 
example.

Join syntax and join processing
Join clauses take this form:

table1.column_name <operator> table2.column_name

The join operators are:

Operation Type Operator Density Approximation

Equality = Total density, if statistics are available 
for the column, or 10%

Open-ended range <, <=, 
>, or >=

33%

Closed range between 25%



CHAPTER 19    Adaptive Server Optimizer

Performance & Tuning Guide 443

=, >, >=, <, <=, !>, !<, !=, <>, *=, =*

And:

table1 [ left | right ] join table2 
    on column_name = column_name
table1 inner join table2
    on column_name = column_name

When joins are optimized, the optimizer can only consider indexes on column 
names. Any type of operator or expression in combination with the column 
name means that the optimizer does not evaluate using an index on the column 
as a possible access method. If the columns in the join are of incompatible 
datatypes, the optimizer can consider an index on only one of the columns.

How joins are processed
When the optimizer creates a query plan for a join query:

• It evaluates indexes for each table by estimating the I/O required for each 
possible index and for a table scan.

• It determines the join order, basing the decision on the total cost estimates 
for the possible join orders. It estimates costs for both nested-loop joins 
and sort-merge joins.

• If no useful index exists on the inner table of a join, the optimizer may 
decide to build a temporary index, a process called reformatting. 

See “Reformatting strategy” on page 542.

• It determines the I/O size and caching strategy.

• It also compares the cost of serial and parallel execution, if parallel query 
processing is enabled. 

See Chapter 25, “Parallel Query Optimization,” for more information.

Factors that determine costs on single-table selects, such as appropriate 
indexing, search argument selectivity, and density of keys, become much more 
critical for joins.

When statistics are not available for joins
If statistics are not available for a column in a join, the optimizer uses default 
values: 



Join syntax and join processing 

444  Adaptive Server Enterprise

For example, in the following query, the optimizer uses 1/500 for the join 
selectivity for both tables if there are no statistics for either city column, and 
stores has 500 rows and authors has 5000 rows:

select au_fname, au_lname, stor_name
    from authors a, stores s
    where a.city = s.city

Density values and joins
When statistics are available on a join column, the total density is used to 
estimate how many rows match each join key. If the authors table has 5000 
rows, and the total density for the city column is .000879, the optimizer 
estimates that 5000 * .000879 = 4 rows will be returned from authors each time 
a join on the city column matches a row from the other table. 

Multiple column joins
When a join query specifies multiple join columns on two tables, and there is 
a composite index on the columns, the composite total density is used. For 
example, if authors and publishers each has an index on city, state, the 
composite total density for city, state is used for each table in this query:

select au_lname, pub_name
from authors a, publishers p
where a.city = p.city
and a.state = p.state

Search arguments and joins on a table
When there are search arguments and joins on a table, the selectivities of the 
columns are combined during join costing to estimate the number of rows more 
accurately.

Operator type Examples Default selectivity

Equality t1.c1 = t1.c2 1/rows in smaller table

Nonequality t1.c1 > t1.c2
t1.c1 >= t1.c2
t1.c1 < t1.c2
t1.c1 <= t1.c2

33%



CHAPTER 19    Adaptive Server Optimizer

Performance & Tuning Guide 445

The following example joins authors and stores on both the city and state 
columns. There is a search argument on authors.state, so search argument 
transitive closure adds the search argument for stores.state table also:

select au_fname, au_lname, stor_name
from authors a, stores s
where  a.city = s.city
and a.state = s.state 
and a.state = "GA"

If there is an index on city for each table, but no statistics available for state, the 
optimizer uses the default search argument selectivity (10%) combined with 
the total density for city. This overestimates the number of rows that match the 
search argument for this query, for a state with more rows that match a search 
argument on state, it would underestimate the number of rows. When statistics 
exist for state on each table, the estimate of the number of qualifying rows 
improves, and overall costing for the join query improves also.

Datatype mismatches and query optimization
One common problem when queries fail to use indexes as expected is datatype 
mismatches. Datatype mismatches occur:

• With search clauses using variables or stored procedure parameters that 
have a different datatype than the column, for example:

where int_col = @money_parameter

• In join queries when the columns being joined have different datatypes, for 
example:

where tableA.int_col = tableB.money_col

Datatype mismatches lead to optimization problems when they prevent the 
optimizer from considering an index. The most common problems arise from:

• Comparisons between the integer types, int, smallint and tinyint

• Comparisons between money and smallmoney

• Comparisons between datetime and smalldatetime

• Comparisons between numeric and decimal types of differing precision and 
scale



Datatype mismatches and query optimization 

446  Adaptive Server Enterprise

• Comparisons between numeric or decimal types and integer or money 
columns

To avoid problems, use the same datatype (including the same precision and 
scale) for columns that are likely join candidates when you create tables. Use 
a matching datatype for any variables or stored procedure parameters used as 
search arguments. The following sections detail the rules and considerations 
applied when the same datatype is not used, and provide some troubleshooting 
tips.

Overview of the datatype hierarchy and index issues
The datatype hierarchy controls the use of indexes when search arguments or 
join columns have different datatypes. The following query prints the hierarchy 
values and datatype names:

select hierarchy, name from systypes order by 1
hierarchy name
 --------- ------------------------------
         1 floatn
         2 float
         3 datetimn
         4 datetime
         5 real
         6 numericn
         7 numeric
         8 decimaln
         9 decimal
        10 moneyn
        11 money
        12 smallmoney
        13 smalldatetime
        14 intn
        15 int
        16 smallint
        17 tinyint
        18 bit
        19 univarchar
        20 unichar
        21 reserved
        22 varchar
        22 sysname
        22 nvarchar
        23 char
        23 nchar



CHAPTER 19    Adaptive Server Optimizer

Performance & Tuning Guide 447

        24 varbinary
        24 timestamp
        25 binary
        26 text
        27 image

If you have created user-defined datatypes, they are also listed in the query 
output, with the corresponding hierarchy values.

The general rule is that when different datatypes are used, the 
systypes.hierarchy value determines whether an index can be used.

• For search arguments, the index is considered when the column’s datatype 
is same as, or precedes, the hierarchy value of the parameter or variable. 

• For a join, the index is considered only on the column whose 
systypes.hierarchy value is the same as the other column’s, or precedes the 
other column’s in the hierarchy.

• When char and unichar datatypes are used together, char is converted to 
unichar.

The exceptions are:

• Comparisons between char and varchar, unichar and univarchar, or between 
binary and varbinary datatypes. For example, although their hierarchy 
values are 23 and 22 respectively, char and varchar columns are treated as 
the same datatype for index consideration purposes. The index is 
considered for both columns in this join:

where t1.char_column = t2.varchar_column

char columns that accept NULL values are stored as varchar, but indexes 
can still be used on both columns for joins.

• The null type of the column has no effect, that is, although float and floatn 
have different hierarchy values, they are always treated as the same 
datatype.

• Comparisons of decimal or numeric types also take precision and scale into 
account. This includes comparisons of numeric or decimal types to each 
other, and comparisons of numeric or decimal to other datatypes such as int 
or money. 

See “Comparison of numeric and decimal datatypes” on page 448 for 
more information.



Datatype mismatches and query optimization 

448  Adaptive Server Enterprise

Comparison of numeric and decimal datatypes

When a query joins columns of numeric or decimal datatypes, an index can be 
used when both of these conditions are true:

• The scale of the column being considered for a join equals or exceeds the 
scale of the other join column, and 

• The length of the integer portion of the column equals or exceeds the 
length of the other column’s integer portion. 

Here are some examples of when indexes can be considered:

Comparing numeric types to other datatypes

When comparing numeric and decimal columns to columns of other numeric 
datatypes, such as money or int:

• numeric and decimal precede integer and money columns in the hierarchy, 
so the index on the numeric or decimal column is the only index 
considered.

• The precision and scale requirements must be met for the numeric or 
decimal index to be considered. The scale of the numeric column must be 
equal to, or greater than, the scale of the integer or money column, and the 
number of digits in the integer portion of the numeric column must be 
equal to or greater than the maximum number of digits usable for the 
integer or money column.

The precision and scale of integer and money types is shown in Table 19-3.

Datatypes in the join Indexes considered

numeric(12,4) and 
numeric(16,4)

Index considered only for numeric(16,4), the 
integer portion of numeric(12,4) is smaller.

numeric(12,4) and 
numeric(12,8)

Neither index is considered, integer portion is 
smaller for numeric(12,8) and scale is smaller 
for numeric(12,4).

numeric(12,4) and 
numeric(12,4)

Both indexes are considered.



CHAPTER 19    Adaptive Server Optimizer

Performance & Tuning Guide 449

Table 19-3: Precision and scale of integer and money types

Datatypes for parameters and variables used as SARGs
When declaring datatypes for variables or stored procedure parameters to be 
used as search arguments, match the datatype of the column in the variable or 
parameter declaration to ensure the use of an index. For example:

declare @int_var int 
select @int_var = 50 
select * 
from t1 
where int_col = @int_var

Use of the index depends on the precedence of datatypes in the hierarchy. The 
index on a column can be used only if the column’s datatype precedes the 
variable’s datatype. For example, int precedes smallint and tinyint in the 
hierarchy. Here are just the integer types:

hierarchy name
 --------- ------------------------------
        15 int
        16 smallint
        17 tinyint

If a variable or parameter has a datatype of smallint or tinyint, an index on an int 
column can be used for a query. But an index on a tinyint column cannot be used 
for an int parameter.

Similarly, money precedes int. If a variable or parameter of money is compared 
to an int column, an index on the int column cannot be used.

This eliminates issues that could arise from truncation or overflow. For 
example, it would not be useful or correct to attempt to truncate the money 
value to 5 in order to use an index on int_col for this query:

declare @money_var money 
select @money_var = $5.12 
select * from t1 where int_col = @money_var

Datatype Precision, scale

tinyint 3,0

smallint 5,0

int 10,0

smallmoney 10,4

money 19,4



Datatype mismatches and query optimization 

450  Adaptive Server Enterprise

Troubleshooting datatype mismatch problems fo SARGs

If there is a datatype mismatch problem with a search argument on an indexed 
column, the query can use another index if there are other search arguments or 
it can perform a table scan. showplan output displays the access method and 
keys used for each table in a query.

You can use dbcc traceon(302) to determine whether an index is being 
considered. For example, using an integer variable as a search argument on 
int_col produces the following output:

Selecting best index for the SEARCH CLAUSE:
    t1.int_col = unknown-value

SARG is a local variable or the result of a function or 
an expression, using the total density to estimate 
selectivity.

Estimated selectivity for int_col,
   selectivity = 0.020000.

Using an incompatible datatype such as money for a variable used as a search 
argument on an integer column does not produce a “Selecting best index for the 
SEARCH CLAUSE” block in dbcc traceon(302) output, indicating that the 
index is not being considered, and cannot be used. If an index is not used as you 
expect in a query, looking for this costing section in dbcc traceon(302) output 
should be one of your first debugging steps.

The “unknown-value” and the fact that the total density is used to estimate the 
number of rows that match this search argument is due to the fact that the value 
of the variable was set in the batch; it is not a datatype mismatch problem.

See “SARGs using variables and parameters” on page 442 for more 
information.

Compatible datatypes for join columns
The optimizer considers an index for joined columns only when the column 
types are the same or when the datatype of the join column precedes the other 
column’s datatype in the datatype hierarchy. This means that the optimizer 
considers using the index on only one of the join columns, limiting the choice 
of join orders.

For example, this query joins columns of decimal and int datatypes:

select * 



CHAPTER 19    Adaptive Server Optimizer

Performance & Tuning Guide 451

from t1, t2 
where t1.decimal_col = t2.int_col

decimal precedes int in the hierarchy, so the optimizer can consider an index on 
t1.decimal_col, but cannot use an index on t2.int_col. The result is likely to be a 
table scan of t2, followed by use of the index on t1.decimal_col.

Table 19-4 shows how the hierarchy affects index choice for some commonly 
problematic datatypes.

Table 19-4: Indexes considered for mismatched column datatypes

Troubleshooting datatype mismatch problems for joins

If you suspect that an index is not being considered on one side of a join due to 
datatype mismatches, use dbcc traceon(302). In the output, look for “Selecting 
best index for the JOIN CLAUSE”. If datatypes are compatible, you see two of 
these blocks for each join; for example:

Selecting best index for the JOIN CLAUSE:
t1.int_col = t2.int_col

And later in the output for the other table in the join:

Selecting best index for the JOIN CLAUSE:
t2.int_col = t1.int_col

For a query that compares incompatible datatypes, for example, comparing a 
decimal column to an int, column, there is only the single block:

Selecting best index for the JOIN CLAUSE:
t1.decimal_col = t2.int_col

This means that the join costing for using an index with t2.int_col as the outer 
column is not performed.

Suggestions on datatypes and comparisons
To avoid datatype mismatch problems:

Join column types Index considered on column of type

money and smallmoney money

datetime and smalldatetime datetime

int and smallint int

int and tinyint int

smallint and tinyint smallint



Datatype mismatches and query optimization 

452  Adaptive Server Enterprise

• When you create tables, use the same datatypes for columns that will be 
joined.

• If columns of two frequently joined tables have different datatypes, 
consider using alter table...modify to change the datatype of one of the 
columns.

• Use the column’s datatype whenever declaring variables or stored 
procedure parameters that will be used as search arguments.

• Consider user-defined datatype definitions. Once you have created 
definitions with sp_addtype, you can use them in commands such create 
table, alter table, and create procedure, and for datatype declarations.

• For some queries where datatype mismatches cause performance 
problems, you may be able to use the convert function so that indexes are 
considered on the other table in the join. The next section describes this 
work around.

Forcing a conversion to the other side of a join
If a join between different datatypes is unavoidable, and it impacts 
performance, you can, for some queries, force the conversion to the other side 
of the join. In the following query, an index on smallmoney_col cannot be used, 
so the query performs a table scan on huge_table:

select * 
from tiny_table, huge_table
where tiny_table.money_col = 
    huge_table.smallmoney_col

Performance improves if the index on huge_table.smallmoney_col can be used. 
Using the convert function on the money column of the small table allows the 
index on the large table to be used, and a table scan is performed on the small 
table:

select * 
from tiny_table, huge_table
where convert(smallmoney,tiny_table.money_col) = 
    huge_table.smallmoney_col

This workaround assumes that there are no values in tinytable.money_col that 
are large enough to cause datatype conversion errors during the conversion to 
smallmoney. If there are values larger than the maximum value for smallmoney, 
you can salvage this solution by adding a search argument specifying the 
maximum values for a smallmoney column:



CHAPTER 19    Adaptive Server Optimizer

Performance & Tuning Guide 453

select smallmoney_col, money_col 
from tiny_table , huge_table 
where convert(smallmoney,tiny_table.money_col) =
    huge_table.smallmoney_col
and tiny_table.money_col <= 214748.3647

Converting floating-point and numeric data can change the meaning of some 
queries. This query compares integers and floating-point numbers:

select *
    from tab1, tab2
    where tab1.int_column = tab2.float_column

In the query above,you cannot use an index on int_column. This conversion 
forces the index access to tab1, but also returns different results than the query 
that does not use convert:

select *
from tab1, tab2
where tab1.int_col = convert(int, tab2.float_col)

For example, if int_column is 4, and float_column is 4.2, the modified query 
implicitly converts to a 4, and returns a row not returned by the original query. 
The workaround can be salvaged by adding this self-join:

and tab2.float_col = convert(int, tab2.float_col)

This workaround assumes that all values in tab2.float_col can be converted to 
int without conversion errors.

Splitting stored procedures to improve costing
The optimizer cannot use statistics the final select in the following procedure, 
because it cannot know the value of @city until execution time:

create procedure au_city_names 
    @pub_name varchar(30)
as
    declare @city varchar(25)
    select @city = city 
    from publishers where pub_name = @pub_name
    select au_lname 
        from authors 
        where city = @city



Basic units of costing 

454  Adaptive Server Enterprise

The following example shows the procedure split into two procedures. The 
first procedure calls the second one:

create procedure au_names_proc 
    @pub_name varchar(30) 
as 
    declare @city varchar(25) 
    select @city = city  
        from publishers 
        where pub_name = @pub_name 
    exec select_proc @city
create procedure select_proc @city varchar(25) 
as
    select au_lname 
        from authors 
        where city = @city

When the second procedure executes, Adaptive Server knows the value of 
@city and can optimize the select statement. Of course, if you modify the value 
of @city in the second procedure before it is used in the select statement, the 
optimizer may choose the wrong plan because it optimizes the query based on 
the value of @city at the start of the procedure. If @city has different values 
each time the second procedure is executed, leading to very different query 
plans, you may want to use with recompile.

Basic units of costing
When the optimizer estimates costs for the query, the two factors it considers 
are the cost of physical I/O, reading pages from disk, and the cost of logical I/O, 
finding pages in the data cache. The optimizer assigns 18 as the cost of a 
physical I/O and 2 as the cost of a logical I/O. These are relative units of cost 
and do not represent time units such as milliseconds or clock ticks. These units 
are used in the formulas in this chapter, with the physical I/O costs first, then 
the logical I/O costs. The total cost of accessing a table can be expressed as: 

Cost = All physical IOs * 18 + All logical IOs * 2



Performance & Tuning Guide 455

C H A P T E R  2 0 Advanced Optimizing Tools

This chapter describes query processing options that affect the optimizer’s 
choice of join order, index, I/O size and cache strategy.

Special optimizing techniques
Being familiar with the information presented in the Basics volume helps 
to understand the material in this chapter. Use caution, as the tools allow 
you to override the decisions made by Adaptive Server’s optimizer and 
can have an extreme negative effect on performance if misused. You 
should understand the impact on the performance of both your individual 
query and the possible implications for overall system performance.

Adaptive Server’s advanced, cost-based optimizer produces excellent 
query plans in most situations. But there are times when the optimizer 
does not choose the proper index for optimal performance or chooses a 
suboptimal join order, and you need to control the access methods for the 
query. The options described in this chapter allow you that control.

Topic Page
Special optimizing techniques 455

Specifying optimizer choices 456

Specifying table order in joins 457

Specifying the number of tables considered by the optimizer 459

Specifying an index for a query 460

Specifying I/O size in a query 462

Specifying the cache strategy 465

Controlling large I/O and cache strategies 467

Enabling and disabling merge joins 468

Enabling and disabling join transitive closure 468

Suggesting a degree of parallelism for a query 469

Concurrency optimization for small tables 471



Specifying optimizer choices 

456  Adaptive Server Enterprise

In addition, while you are tuning, you may want to see the effects of a 
different join order, I/O size, or cache strategy. Some of these options let 
you specify query processing or access strategy without costly 
reconfiguration.

Adaptive Server provides tools and query clauses that affect query 
optimization and advanced query analysis tools that let you understand 
why the optimizer makes the choices that it does.

Note  This chapter suggests workarounds for certain optimization 
problems. If you experience these types of problems, please call Sybase 
Technical Support. 

Specifying optimizer choices
Adaptive Server lets you specify these optimization choices by including 
commands in a query batch or in the text of the query:

• The order of tables in a join

• The number of tables evaluated at one time during join optimization

• The index used for a table access

• The I/O size

• The cache strategy

• The degree of parallelism

In a few cases, the optimizer fails to choose the best plan. In some of these 
cases, the plan it chooses is only slightly more expensive than the “best” 
plan, so you need to weigh the cost of maintaining forced options against 
the slower performance of a less than optimal plan.



CHAPTER 20    Advanced Optimizing Tools

Performance & Tuning Guide 457

The commands to specify join order, index, I/O size, or cache strategy, 
coupled with the query-reporting commands like statistics io and showplan, 
can help you determine why the optimizer makes its choices.

 Warning! Use the options described in this chapter with caution. The 
forced query plans may be inappropriate in some situations and may cause 
very poor performance. If you include these options in your applications, 
check query plans, I/O statistics, and other performance data regularly.

These options are generally intended for use as tools for tuning and 
experimentation, not as long-term solutions to optimization problems.

Specifying table order in joins
Adaptive Server optimizes join orders to minimize I/O. In most cases, the 
order that the optimizer chooses does not match the order of the from 
clauses in your select command. To force Adaptive Server to access tables 
in the order they are listed, use: 

set forceplan [on|off]

The optimizer still chooses the best access method for each table. If you 
use forceplan, specifying a join order, the optimizer may use different 
indexes on tables than it would with a different table order, or it may not 
be able to use existing indexes.

You might use this command as a debugging aid if other query analysis 
tools lead you to suspect that the optimizer is not choosing the best join 
order. Always verify that the order you are forcing reduces I/O and logical 
reads by using set statistics io on and comparing I/O with and without 
forceplan.

If you use forceplan, your routine performance maintenance checks should 
include verifying that the queries and procedures that use it still require the 
option to improve performance.

You can include forceplan in the text of stored procedures.

set forceplan forces only join order, and not join type. There is no 
command for specifying the join type; you can disable merge joins at the 
server or session level. 



Specifying table order in joins 

458  Adaptive Server Enterprise

See “Enabling and disabling merge joins” on page 468 for more 
information.

Risks of using forceplan
Forcing join order has these risks:

• Misuse can lead to extremely expensive queries. Always test the 
query thoroughly with statistics io, and with and without forceplan.

• It requires maintenance. You must regularly check queries and stored 
procedures that include forceplan. Also, future versions of Adaptive 
Server may eliminate the problems that lead you to incorporate index 
forcing, so you should check all queries using forced query plans each 
time a new version is installed.

Things to try before using forceplan
Before you use forceplan:

• Check showplan output to determine whether index keys are used as 
expected.

• Use dbcc traceon(302) to look for other optimization problems.

• Run update statistics on the index. 

• Use update statistics to add statistics for search arguments on 
unindexed search clauses in the query, especially for search 
arguments that match minor keys in compound indexes.

• If the query joins more than four tables, use set table count to see if it 
results in an improved join order. 

See “Specifying the number of tables considered by the optimizer” 
on page 459.



CHAPTER 20    Advanced Optimizing Tools

Performance & Tuning Guide 459

Specifying the number of tables considered by the 
optimizer

Adaptive Server optimizes joins by considering permutations of two to 
four tables at a time, as described in “Costing and optimizing joins” on 
page 521. If you suspect that an inefficient join order is being chosen for 
a join query, you can use the set table count option to increase the number 
of tables that are considered at the same time. The syntax is: 

set table count int_value

Valid values are 0 though 8; 0 restores the default behavior. 

For example, to specify 4-at-a-time optimization, use:

set table count 4

dbcc traceon(310) reports the number of tables considered at a time. See 
“dbcc traceon(310) and final query plan costs” on page 923 for more 
information.

As you decrease the value, you reduce the chance that the optimizer will 
consider all the possible join orders. Increasing the number of tables 
considered at one time during join ordering can greatly increase the time 
it takes to optimize a query.

Since the time it takes to optimize the query is increased with each 
additional table, the set table count option is most useful when the 
execution savings from improved join order outweighs the extra 
optimizing time. Some examples are:

• If you think that a more optimal join order can shorten total query 
optimization and execution time, especially for stored procedures that 
you expect to be executed many times once a plan is in the procedure 
cache 

• When saving abstract plans for later use

Use statistics time to check parse and compile time and statistics io to verify 
that the improved join order is reducing physical and logical I/O. 

If increasing the table count produces an improvement in join 
optimization, but increases the CPU time unacceptably, rewrite the from 
clause in the query, specifying the tables in the join order indicated by 
showplan output, and use forceplan to run the query. Your routine 
performance maintenance checks should include verifying that the join 
order you are forcing still improves performance.



Specifying an index for a query 

460  Adaptive Server Enterprise

Specifying an index for a query
You can specify the index to use for a query using the (index index_name) 
clause in select, update, and delete statements. You can also force a query 
to perform a table scan by specifying the table name. The syntax is: 

select select_list
from table_name [correlation_name]

(index {index_name | table_name } )
[, table_name ...]

where ...

delete table_name 
from table_name [correlation_name]
(index {index_name | table_name }) ... 

update table_name set col_name = value
from table_name [correlation_name]
(index {index_name | table_name})...

For example:

select pub_name, title
    from publishers p, titles t (index date_type)
    where p.pub_id = t.pub_id
    and type = "business"
    and pubdate > "1/1/93"

Specifying an index in a query can be helpful when you suspect that the 
optimizer is choosing a suboptimal query plan. When you use this option:

• Always check statistics io for the query to see whether the index you 
choose requires less I/O than the optimizer’s choice. 

• Ttest a full range of valid values for the query clauses, especially if 
you are tuning queries:

• Tuning queries on tables that have skewed data distribution

• Performing range queries, since the access methods for these 
queries are sensitive to the size of the range



CHAPTER 20    Advanced Optimizing Tools

Performance & Tuning Guide 461

Use this option only after testing to be certain that the query performs 
better with the specified index option. Once you include an index 
specification in a query, you should check regularly to be sure that the 
resulting plan is still better than other choices made by the optimizer.

Note  If a nonclustered index has the same name as the table, specifying a 
table name causes the nonclustered index to be used. You can force a table 
scan using select select_list from tablename (0).

Risks
Specifying indexes has these risks:

• Changes in the distribution of data could make the forced index less 
efficient than other choices.

• Dropping the index means that all queries and procedures that specify 
the index print an informational message indicating that the index 
does not exist. The query is optimized using the best alternative 
access method.

• Maintenance increases, since all queries using this option need to be 
checked periodically. Also, future versions of Adaptive Server may 
eliminate the problems that lead you to incorporate index forcing, so 
you should check all queries using forced indexes each time you 
install a new version.

Things to try before specifying an index
Before specifying an index in queries:

• Check showplan output for the “Keys are” message to be sure that the 
index keys are being used as expected.

• Use dbcc traceon(302) to look for other optimization problems.

• Run update statistics on the index.



Specifying I/O size in a query 

462  Adaptive Server Enterprise

• If the index is a composite index, run update statistics on the minor 
keys in the index, if they are used as search arguments. This can 
greatly improve optimizer cost estimates. Creating statistics for other 
columns frequently used for search clauses can also improve 
estimates.

Specifying I/O size in a query
If your Adaptive Server is configured for large I/Os in the default data 
cache or in named data caches, the optimizer can decide to use large I/O 
for:

• Queries that scan entire tables

• Range queries using clustered indexes, such as queries using >, <, > x 
and < y, between, and like “charstring %”

• Queries that scan a large number of index leaf pages

If the cache used by the table or index is configured for 16K I/O, a single 
I/O can read up to eight pages simultaneously. Each named data cache can 
have several pools, each with a different I/O size. Specifying the I/O size 
in a query causes the I/O for that query to take place in the pool that is 
configured for that size. See the System Administration Guide for 
information on configuring named data caches.

To specify an I/O size that is different from the one chosen by the 
optimizer, add the prefetch specification to the index clause of a select, 
delete, or update statement. The syntax is: 

select select_list
from table_name

( [index {index_name | table_name} ]
prefetch size)

[, table_name ...]
where ...

 

delete table_name from table_name 
( [index {index_name | table_name} ]

prefetch size)
... 

 



CHAPTER 20    Advanced Optimizing Tools

Performance & Tuning Guide 463

update table_name set col_name = value 
from table_name 

( [index {index_name | table_name} ]
prefetch size)

...

The valid prefetch size depends on the page size. If no pool of the specified 
size exists in the data cache used by the object, the optimizer chooses the 
best available size.

If there is a clustered index on au_lname, this query performs 16K I/O 
while it scans the data pages:

select * 
from authors (index au_names prefetch 16)
    where au_lname like "Sm%"

If a query normally performs large I/O, and you want to check its I/O 
performance with 2K I/O, you can specify a size of 2K:

select type, avg(price)
    from titles (index type_price prefetch 2)
    group by type

Note  Reference to Large I/Os are on a 2K logical page size server. If you 
have an 8K page size server, the basic unit for the I/O is 8K. If you have a 
16K page size server, the basic unit for the I/O is 16K.

Index type and large I/O
When you specify an I/O size with prefetch, the specification can affect 
both the data pages and the leaf-level index pages. Table 20-1 shows the 
effects.



Specifying I/O size in a query 

464  Adaptive Server Enterprise

Table 20-1: Access methods and prefetching

showplan reports the I/O size used for both data and leaf-level pages. 

See “I/O Size Messages” on page 844 for more information.

When prefetch specification is not followed
In most cases, when you specify an I/O size in a query, the optimizer 
incorporates the I/O size into the query’s plan. However, there are times 
when the specification cannot be followed, either for the query as a whole 
or for a single, large I/O request.

Large I/O cannot be used for the query if:

• The cache is not configured for I/O of the specified size. The 
optimizer substitutes the best size available.

• sp_cachestrategy has been used to disable large I/O for the table or 
index.

Large I/O cannot be used for a single buffer if 

• Any of the pages included in that I/O request are in another pool in the 
cache.

• The page is on the first extent in an allocation unit. This extent holds 
the allocation page for the allocation unit, and only seven data pages.

• No buffers are available in the pool for the requested I/O size.

Whenever a large I/O cannot be performed, Adaptive Server performs 2K 
I/O on the specific page or pages in the extent that are needed by the query.

To determine whether the prefetch specification is followed, use showplan 
to display the query plan and statistics io to see the results on I/O for the 
query. sp_sysmon reports on the large I/Os requested and denied for each 
cache. 

Access method Large I/O performed on

Table scan Data pages

Clustered index Data pages only, for allpages-locked 
tables

Data pages and leaf-level index pages for 
data-only-locked tables

Nonclustered index Data pages and leaf pages of 
nonclustered index



CHAPTER 20    Advanced Optimizing Tools

Performance & Tuning Guide 465

See “Data cache management” on page 1006.

set prefetch on
By default, a query uses large I/O whenever a large I/O pool is configured 
and the optimizer determines that large I/O would reduce the query cost. 
To disable large I/O during a session, use:

set prefetch off

To reenable large I/O, use:

set prefetch on

If large I/O is turned off for an object using sp_cachestrategy, set prefetch 
on does not override that setting.

If large I/O is turned off for a session using set prefetch off, you cannot 
override the setting by specifying a prefetch size as part of a select, delete, 
or insert statement.

The set prefetch command takes effect in the same batch in which it is run, 
so you can include it in a stored procedure to affect the execution of the 
queries in the procedure.

Specifying the cache strategy
For queries that scan a table’s data pages or the leaf level of a nonclustered 
index (covered queries), the Adaptive Server optimizer chooses one of two 
cache replacement strategies: the fetch-and-discard (MRU) strategy or the 
LRU strategy. 

See “Overview of cache strategies” on page 159 for more information 
about these strategies.

The optimizer may choose the fetch-and-discard (MRU) strategy for:

• Any query that performs table scans

• A range query that uses a clustered index

• A covered query that scans the leaf level of a nonclustered index



Specifying the cache strategy 

466  Adaptive Server Enterprise

• An inner table in a nested-loop join, if the inner table is larger than the 
cache

• The outer table of a nested-loop join, since it needs to be read only 
once

• Both tables in a merge join

You can affect the cache strategy for objects:

• By specifying lru or mru in a select, update, or delete statement

• By using sp_cachestrategy to disable or reenable mru strategy

If you specify MRU strategy, and a page is already in the data cache, the 
page is placed at the MRU end of the cache, rather than at the wash marker.

Specifying the cache strategy affects only data pages and the leaf pages of 
indexes. Root and intermediate pages always use the LRU strategy.

In select, delete, and update statements
You can use lru or mru (fetch-and-discard) in a select, delete, or update 
command to specify the I/O size for the query: 

select select_list
from table_name

(index index_name prefetch size [lru|mru])
[, table_name ...]

where ...

 

delete table_name from table_name (index index_name 
prefetch size [lru|mru]) ... 

 

update table_name set col_name = value
from table_name (index index_name

prefetch size [lru|mru]) ...

This query adds the LRU replacement strategy to the 16K I/O 
specification:

select au_lname, au_fname, phone
    from authors (index au_names prefetch 16 lru)

For more information about specifying a prefetch size, see “Specifying I/O 
size in a query” on page 462.



CHAPTER 20    Advanced Optimizing Tools

Performance & Tuning Guide 467

Controlling large I/O and cache strategies
Status bits in the sysindexes table identify whether a table or an index 
should be considered for large I/O prefetch or for MRU replacement 
strategy. By default, both are enabled. To disable or reenable these 
strategies, use sp_cachestrategy. The syntax is: 

sp_cachestrategy dbname , [ownername.]tablename 
[, indexname | "text only" | "table only" 
[, { prefetch | mru }, { "on" | "off"}]]

This command turns off the large I/O prefetch strategy for the 
au_name_index of the authors table:

sp_cachestrategy pubtune, 
authors, au_name_index, prefetch, "off"

This command reenables MRU replacement strategy for the titles table:

sp_cachestrategy pubtune, 
titles, "table only", mru, "on"

Only a System Administrator or the object owner can change or view the 
cache strategy status of an object.

Getting information on cache strategies
To see the cache strategy that is in effect for a given object, execute 
sp_cachestrategy, with the database and object name:

sp_cachestrategy pubtune, titles
object name      index name       large IO MRU     
---------------- ---------------- -------- --------
titles           NULL             ON       ON 

showplan output shows the cache strategy used for each object, including 
worktables.



Enabling and disabling merge joins 

468  Adaptive Server Enterprise

Enabling and disabling merge joins
By default, merge joins are not enabled at the server level. When merge 
joins are disabled, the server only costs nested-loop joins, and merge joins 
are not considered. To enable merge joins server-wide, set enable sort-
merge joins and JTC to 1. This also enables join transitive closure.

The command set sort_merge on overrides the server level to allow use of 
merge joins in a session or stored procedure.

To enable merge joins, use:

set sort_merge on

To disable merge joins, use:

set sort_merge off

For information on configuring merge joins server-wide see the System 
Administration Guide.

Enabling and disabling join transitive closure
By default, join transitive closure is not enabled at the server level, since 
it can increase optimization time. You can enable join transitive closure at 
a session level with set jtc on. The session-level command overrides the 
server-level setting for the enable sort-merge joins and JTC configuration 
parameter. 

For queries that execute quickly, even when several tables are involved, 
join transitive closure may increase optimization time with little 
improvement in execution cost. For example, with join transitive closure 
applied to this query, the number of possible joins is multiplied for each 
added table:

select * from t1, t2, t3, t4, ... tN
where t1.c1 = t2.c1
and t1.c1 = t3.c1
and t1.c1 = t4.c1
...
and t1.c1 = tN.c1

For joins on very large tables, however, the additional optimization time 
involved in costing the join orders added by join transitive closure may 
result in a join order that greatly improves the response time.



CHAPTER 20    Advanced Optimizing Tools

Performance & Tuning Guide 469

You can use set statistics time to see how long it takes to optimize the 
query. If running queries with set jtc on greatly increases optimization 
time, but also improves query execution by choosing a better join order, 
check the showplan or dbcc traceon(302, 310) output. Explicitly add the 
useful join orders to the query text. You can run the query without join 
transitive closure, and get the improved execution time, without the 
increased optimization time of examining all possible join orders 
generated by join transitive closure.

You can also enable join transitive closure and save abstract plans for 
queries that benefit. If you then execute those queries with loading from 
the saved plans enabled, the saved execution plan is used to optimize the 
query, making optimization time extremely short. 

See Chapter 29, “Introduction to Abstract Plans,” for more information on 
using abstract plans.

For information on configuring join transitive closure server-wide see the 
System Administration Guide.

Suggesting a degree of parallelism for a query
The parallel and degree_of_parallelism extensions to the from clause of a 
select command allow users to restrict the number of worker processes 
used in a scan.

For a parallel partition scan to be performed, the degree_of_parallelism 
must be equal to or greater than the number of partitions. For a parallel 
index scan, specify any value for the degree_of_parallelism. 

The syntax for the select statement is: 

select...
[from {tablename} 

[(index index_name 
[parallel [degree_of_parallelism | 1]]
[prefetch size] [lru|mru])],

{tablename} [([index_name] 
[parallel [degree_of_parallelism | 1] 

[prefetch size] [lru|mru])] ...

Table 20-2 shows how to combine the index and parallel keywords to 
obtain serial or parallel scans. 



Suggesting a degree of parallelism for a query 

470  Adaptive Server Enterprise

Table 20-2: Optimizer hints for serial and parallel execution

When you specify the parallel degree for a table in a merge join, it affects 
the degree of parallelism used for both the scan of the table and the merge 
join.

You cannot use the parallel option if you have disabled parallel processing 
either at the session level with the set parallel_degree 1 command or at the 
server level with the parallel degree configuration parameter. The parallel 
option cannot override these settings.

If you specify a degree_of_parallelism that is greater than the maximum 
configured degree of parallelism, Adaptive Server ignores the hint.

The optimizer ignores hints that specify a parallel degree if any of the 
following conditions is true:

• The from clause is used in the definition of a cursor.

• parallel is used in the from clause of an inner query block of a 
subquery, and the optimizer does not move the table to the outermost 
query block during subquery flattening.

• The table is a view, a system table, or a virtual table.

• The table is the inner table of an outer join.

• The query specifies exists, min, or max on the table.

• The value for the max scan parallel degree configuration parameter is 
set to 1.

• An unpartitioned clustered index is specified or is the only parallel 
option.

• A nonclustered index is covered.

• The query is processed using the OR strategy. 

To specify this type of scan: Use this syntax:

Parallel partition scan (index tablename   parallel N)

Parallel index scan (index index_name   parallel N)

Serial table scan (index tablename parallel 1)

Serial index scan (index index_name   parallel 1)

Parallel, with the choice of table or 
index scan left to the optimizer

(parallel N)

Serial, with the choice of table or 
index scan left to the optimizer

(parallel 1)



CHAPTER 20    Advanced Optimizing Tools

Performance & Tuning Guide 471

For an explanation of the OR strategy, see “Access Methods and 
Costing for or and in Clauses” on page 501.

• The select statement is used for an update or insert.

Query level parallel clause examples
To specify the degree of parallelism for a single query, include parallel after 
the table name. This example executes in serial:

select * from titles (parallel 1)

This example specifies the index to be used in the query, and sets the 
degree of parallelism to 5:

select * from titles 
    (index title_id_clix parallel 5)
where ...

To force a table scan, use the table name instead of the index name.

Concurrency optimization for small tables
For data-only-locked tables of 15 pages or fewer, Adaptive Server does not 
consider a table scan if there is a useful index on the table. Instead, it 
always chooses the cheapest index that matches any search argument that 
can be optimized in the query. The locking required for an index scan 
provides higher concurrency and reduces the chance of deadlocks, 
although slightly more I/O may be required than for a table scan.

If concurrency on small tables is not an issue, and you want to optimize 
the I/O instead, you can disable this optimization with sp_chgattribute. 
This command turns off concurrency optimization for a table:

sp_chgattribute tiny_lookup_table,
    "concurrency_opt_threshold", 0

With concurrency optimization disabled, the optimizer can choose table 
scans when they require fewer I/Os. 

You can also increase the concurrency optimization threshold for a table. 
This command sets the concurrency optimization threshold for a table to 
30 pages:



Concurrency optimization for small tables 

472  Adaptive Server Enterprise

sp_chgattribute lookup_table, 
    "concurrency_opt_threshold", 30

The maximum value for the concurrency optimization threshold is 32,767. 
Setting the value to -1 enforces concurrency optimization for a table of any 
size. It may be useful in cases where a table scan is chosen over indexed 
access, and the resulting locking results in increased contention or 
deadlocks.

The current setting is stored in systabstats.conopt_thld and is printed as 
part of optdiag output.

Changing locking scheme
Concurrency optimization affects only data-only-locked tables. Table 20-
3 shows the effect of changing the locking scheme.

Table 20-3: Effects of alter table on concurrency optimization 
settings

Changing locking scheme from Effect on stored value

Allpages to data-only Set to 15, the default

Data-only to allpages Set to 0

One data-only scheme to another Configured value retained



Performance & Tuning Guide 473

C H A P T E R  2 1  Query Tuning Tools

This chapter provides a guide to the tools that can help you tune your 
queries.

The tools mentioned in this chapter are described in more detail in the 
chapters that follow.

Overview
Adaptive Server provides the following diagnostic and informational 
tools to help you understand query optimization and improve the 
performance of your queries:

• A choice of tools to check or estimate the size of tables and indexes. 
These tools are described in Chapter 16, “Determining Sizes of 
Tables and Indexes.”

• set statistics io on displays the number of logical and physical reads 
and writes required for each table in a query. If resource limits are 
enabled, it also displays the total actual I/O cost. set statistics io is 
described in Chapter 35, “Using the set statistics Commands.”

• set showplan on displays the steps performed for each query in a 
batch. It is often used with set noexec on, especially for queries that 
return large numbers of rows. 

See Chapter 36, “Using set showplan.”

• set statistics subquerycache on displays the number of cache hits and 
misses and the number of rows in the cache for each subquery. 

See “Subquery results caching” on page 552 for examples.

Topic Page
Overview 473

How tools may interact 475

How tools relate to query processing 476



Overview 

474  Adaptive Server Enterprise

• set statistics time on displays the time it takes to parse and compile 
each command. 

See “Checking compile and execute time” on page 794 for more 
information.

• dbcc traceon (302) and dbcc traceon(310) provide additional 
information about why particular plans were chosen and is often used 
when the optimizer chooses a plan that seems incorrect. 

See Chapter 38, “Tuning with dbcc traceon.”

• The optdiag utility command displays statistics for tables, indexes, 
and columns. 

See Chapter 37, “Statistics Tables and Displaying Statistics with 
optdiag.”

• Chapter 20, “Advanced Optimizing Tools,” explains tools you can 
use to enforce index choice, join order, and other query optimization 
choices. These tools include:

• set forceplan – forces the query to use the tables in the order 
specified in the from clause.

• set table count – increases the number of tables that the optimizer 
considers at one time while determining join order.

• select, delete, update clauses with 
(index...prefetch...mru_lru...parallel) –specifies the index, I/O size, 
or cache strategy to use for the query.

• set prefetch –toggles prefetch for query tuning experimentation.

• set sort_merge – disallows sort-merge joins.

• set parallel_degree – specifies the degree of parallelism for a 
query.

• sp_cachestrategy – sets status bits to enable or disable prefetch 
and fetch-and-discard cache strategies.



CHAPTER 21    Query Tuning Tools

Performance & Tuning Guide 475

How tools may interact
showplan, statistics io, and other commands produce their output while 
stored procedures are being run. The system procedures that you might use 
for checking table structure or indexes as you test optimization strategies 
can produce voluminous output when diagnostic information is being 
printed. You may want to have hard copies of your table schemas and 
index information, or you can use separate windows for running system 
procedures such as sp_helpindex. 

For lengthy queries and batches, you may want the save showplan and 
statistics io output in files. You can do so by using “echo input” flag to isql. 
The syntax is: 

isql -P password -e -i input_file -o outputfile

Using showplan and noexec together
showplan is often used in conjunction with set noexec on, which prevents 
SQL statements from being executed. Issue showplan, or any other set 
commands, before you issue the noexec command. Once you issue set 
noexec on, the only command that Adaptive Server executes is set noexec 
off. This example shows the correct order:

set showplan on
set noexec on
go
select au_lname, au_fname
    from   authors
    where  au_id = "A137406537"
go

noexec and statistics io
While showplan and noexec make useful companions, noexec stops all the 
output of statistics io. The statistics io command reports actual disk I/O; 
while noexec is in effect, no I/O takes place, so the reports are not printed.



How tools relate to query processing 

476  Adaptive Server Enterprise

How tools relate to query processing
Many of the tools, for example, the set commands, affect the decisions 
made by the optimizer. showplan and dbcc traceon(302, 310) show you 
optimizer decision-making. dbcc traceon(302,310) shows intermediate 
information as analysis is performed, with dbcc traceon(310) printing the 
final plan statistics. showplan shows the final decision on access methods 
and join order.

statistics io and statistics time provide information about how the query was 
executed: statistics time measures time from the parse step until the query 
completes. statistics io prints actual I/O performed during query execution. 

noexec allows you to obtain information such as showplan or dbcc 
traceon(302,310) output without actually executing the query. 



Performance & Tuning Guide 477

C H A P T E R  2 2 Access Methods and Query 
Costing for Single Tables

This chapter introduces the methods that Adaptive Server uses to access 
rows in tables. It examines various types of queries on single tables, and 
describes the access methods that can be used, and the associated costs. 

Chapter 19, “Adaptive Server Optimizer,” explains how the optimizer 
uses search arguments and join clauses to estimate the number of rows that 
a query will return. This chapter looks at how the optimizer uses row 
estimates and other statistics to estimate the number of pages that must be 
read for the query, and how many logical and physical I/Os are required. 

This chapter looks at queries that affect a single table. 

For queries that involve more than one table, see Chapter 23, “Accessing 
Methods and Costing for Joins and Subqueries.”

For parallel queries, see Chapter 25, “Parallel Query Optimization.”

This chapter contains information about query processing that you can use 
in several ways as it:

• Provides a general overview of the access methods that Adaptive 
Server uses to process a variety of queries, including illustrations and 
sample queries. This information will help you understand how 
particular types of queries are executed and how you can improve 
query performance by adding indexes or statistics for columns used 
in the queries.

Topic Page
Table scan cost 479

From rows to pages 482

Evaluating the cost of index access 485

Costing for queries using order by 493

Access Methods and Costing for or and in Clauses 501

How aggregates are optimized 506

How update operations are performed 508



 

478  Adaptive Server Enterprise

• Provides a description of how the optimizer arrives at the logical and 
physical I/O estimates for the queries. These descriptions can help 
you understand whether the I/O use and response time are reasonable 
for a given query. These descriptions can be used with the following 
tuning tools:

• optdiag can be used to display the statistics about your tables, 
indexes, and column values. 

See Chapter 37, “Statistics Tables and Displaying Statistics with 
optdiag.”

• showplan displays the access method (table scan, index scan, type 
of OR strategy, and so forth) for a query. 

See Chapter 36, “Using set showplan.”

• statistics io displays the logical and physical I/O for each table in 
a query. 

• Provides detailed formulas, very close to the actual formulas used by 
Adaptive Server. Use these formulas are meant to be used in 
conjunction with the tuning tools:

• optdiag can be used to display the statistics that you need to apply 
the formulas. See Chapter 37, “Statistics Tables and Displaying 
Statistics with optdiag.”

• dbcc traceon(302) displays the sizes, densities, selectivities and 
cluster ratios used to produce logical I/O estimates, and dbcc 
traceon(310) displays the final query costing for each table, 
including the estimated physical I/O. See Chapter 38, “Tuning 
with dbcc traceon.”

In many cases, you will need to use these formulas only when you are 
debugging problem queries. You may need to discover why an or 
query performs a table scan, or why an index that you thought was 
useful is not being used by a query.

This chapter can also help you determine when to stop working to improve 
the performance of a particular query. If you know that it needs to read a 
certain number of index pages and data pages, and the number of I/Os 
cannot be reduced further by adding a covering index, you know that you 
have reached the optimum performance possible for query analysis and 
index selection. You might need to look at other issues, such as cache 
configuration, parallel query options, or object placement.



CHAPTER 22    Access Methods and Query Costing for Single Tables

Performance & Tuning Guide 479

Table scan cost
When a query requires a table scan, Adaptive Server reads each page of 
the table from disk into the data cache and checks the data values (if there 
is a where clause) and returns qualifying rows.

Table scans are performed:

• When no index exists on the columns used in the search clauses.

• When the optimizer determines that using the index is more expensive 
than performing a table scan. The optimizer may determine that it is 
cheaper to read the data pages directly than to read the index pages 
and then the data pages for each row that is to be returned. 

The cost of a table scan depends on the size of the table and the I/O size.

Note  Reference to Large I/Os are on a 2K logical page size server. If you 
have an 8K page size server, the basic unit for the I/O is 8K. If you have a 
16K page size server, the basic unit for the I/O is 16K.

Cost of a scan on allpages-locked table
The I/O cost of a table scan on an allpages-locked table using 2K I/O is 
one physical I/O and one logical I/O for each page in the table:

Table scan cost = Number of pages * 18 
+ Number of pages * 2 

If the table uses a cache with large I/O, the number of physical I/Os is 
estimated by dividing the number of pages by the I/O size and using a 
factor that is based on the data page cluster ratio to estimate the number of 
large I/Os that need to be performed. Since large I/O cannot be performed 
on any data pages on the first extent in the allocation unit, each of those 
pages must be read with 2K I/O.

The logical I/O cost is one logical I/O for each page in the table. The 
formula is: 

Table scan cost = (pages /pages per IO) * Clustering adjust-
ment* 18+ Number of pages * 2



Table scan cost 

480  Adaptive Server Enterprise

See “How cluster ratios affect large I/O estimates” on page 483 for more 
information on cluster ratios.

Note  Adaptive Server does not track the number of pages in the first 
extent of an allocation unit for an allpages-locked table, so the optimizer 
does not include this slight additional I/O in its estimates.

Cost of a scan on a data-only-locked tables
Tables that use data-only locking do not have page chains like allpages-
locked tables. To perform a table scan on a data-only-locked table, 
Adaptive Server:

• Reads the OAM (object allocation map) page(s) for the table

• Uses the pointers on the OAM page to access the allocation pages 

• Uses the pointers on the allocation pages to locate the extents used by 
the table

• Performs either large I/O or 2K I/O on the pages in the extent

The total cost of a table scan on a data-only-locked table includes the 
logical and physical I/O for all pages in the table, plus the cost of logical 
and physical I/O for the OAM and allocation pages.

Figure 22-1 shows the pointers from OAM pages to allocation pages and 
from allocation pages to extents.



CHAPTER 22    Access Methods and Query Costing for Single Tables

Performance & Tuning Guide 481

Figure 22-1: Sequence of pointers for OAM scans

The formula for computing the cost of an OAM scan with 2K I/O is:

OAM Scan Cost = (OAM_alloc_pages + Num_pages) * 18
+ (OAM_alloc_pages + Num_pages)* 2

When large I/O can be used, the optimizer adds the cost of performing 2K 
I/O for the pages in the first extent of each allocation unit to the cost of 
performing 16K I/O on the pages in regular extents. The number of 
physical I/Os is the number of pages in the table, modified by a cluster 
adjustment that is based on the data page cluster ratio for the table. 

See “How cluster ratios affect large I/O estimates” on page 483 for more 
information on cluster ratios.

27 2824 25 26 29 30 31

750 1 2 3 4 6

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

248 249 250 251 252 253 254 255

283

511

279

..

274

256 257 258 259 260 261 262 263

264 265 266 267 268 269 270 271

272 273 275 276 277 278

280 281 282 284 285 286 287

.
504 505 506 507 508 509 510

Pages used by 
object

Other pages

Allocation page

...

OAM Page
0
256



From rows to pages 

482  Adaptive Server Enterprise

Logical I/O costs are one I/O per page in the table, plus the logical I/O cost 
of reading the OAM and allocation pages. The formula for computing the 
cost of an OAM scan with large I/O is:

 OAM Scan Cost = OAM_alloc_pages * 18 
+ Pages in 1st extent * 18
+ Pages in other extents / Pages per IO 

* Cluster adjustment * 18
+ OAM_alloc_pages * 2
+ Pages in table * 2

optdiag reports the number of pages for each of the needed values.

When a data-only-locked table contains forwarded rows, the I/O cost of 
reading the forwarded rows is added to the logical and physical I/O for a 
table scan. 

See “Allpages-locked heap tables” on page 152 for more information on 
row forwarding.

From rows to pages
When the optimizer costs the use of an index to resolve a query, it first 
estimates the number of qualifying rows, and then estimates the number of 
pages that need to be read.

The examples in Chapter 19, “Adaptive Server Optimizer,” show how 
Adaptive Server estimates the number of rows for a search argument or 
join using statistics. Once the number of rows has been estimated, the 
optimizer estimates the number of data pages and index leaf pages that 
need to be read:

• For tables, the optimizer divides the number of rows in the table by 
the number of pages to determine the average number of rows per data 
page.

• To estimate the average number of rows per page on the leaf level of 
an index, the optimizer divides the number of rows in the table by the 
number of leaf pages in the index.



CHAPTER 22    Access Methods and Query Costing for Single Tables

Performance & Tuning Guide 483

After the number of pages is estimated, data page and index page cluster 
ratios are used to adjust the page estimates for queries using large I/O, and 
data row cluster ratios are used to estimate the number of data pages for 
queries using noncovering indexes.

How cluster ratios affect large I/O estimates
When clustering is high, large I/O is effective. As the cluster ratios decline, 
effectiveness of large I/O drops rapidly. To refine I/O estimates, the 
optimizer uses a set of cluster ratios:

• For a table, the data page cluster ratio measures the packing and 
sequencing of pages on extents.

• For an index, the data page cluster ratio measures the effectiveness of 
large I/O for accessing the table using this index.

• The index page cluster ratio measures the packing and sequencing of 
leaf-level index pages on index extents.

Note  The data row cluster ratio, another cluster ratio used by query 
optimization, is used to cost the number of data pages that need to be 
accessed during scans using a particular index. It is not used in large 
I/O costing.

optdiag displays the cluster ratios for tables and indexes. 

Data page cluster ratio

The data page cluster ratio for a table measures the effectiveness of large 
I/O for table scans. Its use is slightly different depending on the locking 
scheme.



From rows to pages 

484  Adaptive Server Enterprise

On allpages-locked tables

For allpages-locked tables, a table scan or a scan that uses a clustered 
index to scan many pages follows the next-page pointers on each data 
page. Immediately after the clustered index is created, the data page 
cluster ratio is 1.0, and pages are ordered by page number on the extents. 
However, after updates and page splits, the page chain can be fragmented 
across the page chain, as shown in Figure 22-2, where page 10 has been 
split; the page pointers point from page 10 to page 26 in another extent, 
then to page 11. 

Figure 22-2: Page chain crossing extents in an allpages-locked 
table

The data page cluster ratio for an allpages-locked table measures the 
effectiveness of large I/O for both table scans and clustered index scans.

On data-only-locked tables

For data-only-locked tables, the data page cluster ratio measures how well 
the pages are packed on the extents. A cluster ratio of 1.0 indicates 
complete packing of extents, with the page chain ordered. If extents 
contain unused pages, the data page cluster ratio is less than 1.0. 

optdiag reports two data page cluster ratios for data-only-locked tables 
with clustered indexes. The value reported for the table is used for table 
scans. The value reported for the clustered index is used for scans using 
the index.

27 2824 25 26 29 30 31

750 1 2 3 4 6

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

248 249 250 251 252 253 254 255

OAM page

Pages used by object

Other pages

Allocation page

...



CHAPTER 22    Access Methods and Query Costing for Single Tables

Performance & Tuning Guide 485

Index page cluster ratio

The index page cluster ratio measures the packing and sequencing of index 
leaf pages on extents for nonclustered indexes and clustered indexes on 
data-only-locked tables. For queries that need to read more than one leaf 
page, the leaf level of the index is scanned using next-page or previous-
page pointers. If many leaf rows need to be read, 16K I/O can be used on 
the leaf pages to read one extent at a time. The index page cluster ratio 
measures fragmentation of the page chain for the leaf level of the index.

Evaluating the cost of index access
When a query has search arguments on useful indexes, the query accesses 
only the index pages and data pages that contain rows that match the 
search arguments. Adaptive Server compares the total cost of index and 
data page I/O to the cost of performing a table scan, and uses the cheapest 
method.

Query that returns a single row
A query that returns a single row using an index performs one I/O for each 
index level plus one read for the data page. The optimizer estimates the 
total cost as one physical I/O and one logical I/O for each index page and 
the data page. The cost for a point query is:

Point query cost   = (Number of index levels + data page) * 18
+ (Number of index levels + data page) * 2

optdiag output displays the number of index levels.

The root page and intermediate pages of frequently used indexes are often 
found in cache. In that case, actual physical I/O is reduced by one or two 
reads.

Query that returns many rows
A query that returns many rows may be optimized very differently, 
depending on the type of index and the number of rows to be returned. 
Some examples are:



Evaluating the cost of index access 

486  Adaptive Server Enterprise

• Queries with search arguments that match many values, such as:

select title, price
from titles
where pub_id = "P099"

• Range queries, such as:

select title, price
from titles
where price between $20 and $50

For queries that return a large number of rows using the leading key of the 
index, clustered indexes and covering nonclustered indexes are very 
efficient:

• If the table uses allpages locking, and has a clustered index on the 
search arguments, the index is used to position the scan on the first 
qualifying row. The remaining qualifying rows are read by scanning 
forward on the data pages.

• If a nonclustered index or the clustered index on a data-only-locked 
table covers the query, the index is used to position the scan at the first 
qualifying row on the index leaf page, and the remaining qualifying 
rows are read by scanning forward on the leaf pages of the index.

If the index does not cover the query, using a clustered index on a data-
only-locked table or a nonclustered index requires accessing the data page 
for each index row that matches the search arguments on the index. The 
matching rows may be scattered across many data pages, or they could be 
located on a very small number of pages, particularly if the index is a 
clustered index on a data-only-locked table. The optimizer uses data row 
cluster ratios to estimate how many physical and logical I/Os are required 
to read all of the qualifying data pages.

Range queries using clustered indexes (allpages locking)

To estimate the number of physical I/Os required for a range query using 
a clustered index on an allpages-locked table, the optimizer adds the 
physical and logical I/O for each index level and the physical and logical 
I/O of reading the needed data pages. Since data pages are read in order 
following the page chain, the cluster adjustment helps estimate the 
effectiveness of large I/O. The formula is:

Data pages = Number of qualified rows / Data rows per page



CHAPTER 22    Access Methods and Query Costing for Single Tables

Performance & Tuning Guide 487

Range query cost = Number of index levels * 18
+ Data pages/pages per IO * Cluster adjustment * 18
+ Number of index levels * 2
+ Data pages * 2

If a query returns 500 rows, and the table has 10 rows per page, the query 
needs to read 50 data pages, plus one index page for each index level. If 
the query uses 2K I/O, it requires 50 I/Os for the data pages. If the query 
uses 16K I/O, these 50 data pages require 7 I/Os.

The cluster adjustment uses the data page cluster ratio to refine the 
estimate of large I/O for the table, based on how fragmented the data page 
storage has become on the table’s extents.

Figure 22-3 shows how a range query using a clustered index positions the 
search on the first matching row on the data pages. The next-page pointers 
are used to scan forward on the data pages until a nonmatching row is 
encountered. 



Evaluating the cost of index access 

488  Adaptive Server Enterprise

Figure 22-3: Range query on the clustered index of an 
allpages-locked table

Range queries with covering indexes
Range queries using covering indexes perform very well because:

• The index is used to position the search at the first qualifying row on 
the index leaf level.

• Each index page contains more rows than corresponding data rows, so 
fewer pages need to be read. 

Page 1144
Green
Greene
Highland
Hopper

Page 1133
Greane
Greaves
Greco

Page 1132
Bennet
Chan
Dull
Edwards

Page 1127
Hunter
Jenkins

Page 1007
Bennet 1132
Greane 1133
Green 1144
Hunter 1127

Page 1009
Karsen 1009

Root page Data pages Intermediate

Key           Pointer

Key           Pointer

select fname, lname, id
from employees
where lname between "Greaves"
and "Highland"
Clustered index on lname

Page 1001
Bennet 1007
Karsen 1009
Smith 1062



CHAPTER 22    Access Methods and Query Costing for Single Tables

Performance & Tuning Guide 489

• Index pages tend to remain in cache longer than data pages, so fewer 
physical I/Os are needed.

• If the cache used by the index is configured for large I/O, up to 8 leaf-
level pages can be read per I/O.

• The data pages do not have to be accessed.

Both nonclustered indexes and clustered indexes on data-only-locked 
tables have a leaf level above the data level, so they can provide index 
covering. 

The cost of using a covering index is determined by: 

• The number of non-leaf index levels 

• The number of rows that the query returns

• The number of rows per page on the leaf level of the index 

• The number of leaf pages read per I/O

• The index page cluster ratio, used to adjust large I/O estimates when 
the index pages are not stored consecutively on the extents

This formula shows the costs:

Leaf pages = Number of qualified rows / Leaf level rows per page

Covered scan cost =Number of index levels * 18
+(Leaf pages /Pages per IO) * Cluster adjustment * 18
+Number of index levels * 2
+Leaf pages * 2

For example, if a query needs to read 1,200 leaf pages, and there are 40 
rows per leaf-level page, the query needs to read 30 leaf-level pages. If 
large I/O can be used, this requires 4 I/Os. If inserts have caused page 
splits on the index leaf-level, the cluster adjustment increases the 
estimated number of large I/Os.

Range queries with noncovering indexes
When a nonclustered index or a clustered index on a data-only-locked 
table does not cover the query, Adaptive Server:

• Uses the index to locate the first qualifying row at the leaf level of the 
nonclustered index



Evaluating the cost of index access 

490  Adaptive Server Enterprise

• Follows the pointer to the data page for that index, and reads the page

• Finds the next row on the index page, and locates its data page, and 
continues this process until all matching keys have been used

For each subsequent key, the data row could be on the same page as the 
row for the previous key, or the data row may be on a different page in the 
table. The clustering of key values for each index is measured by a value 
called the data row cluster ratio. The data row cluster ratio is applied to 
estimate the number of logical and physical I/Os.

When the data row cluster ratio is 1.0, clustering is very high. High cluster 
ratios are always seen immediately after creating a clustered index; cluster 
ratios are 1.00000 or .999997, for example. Rows on the data pages are 
stored the same order as the rows in the index. The number of logical and 
physical I/Os needed for the data pages is (basically) the number of rows 
to be returned, divided by the number of rows per page. For a table with 
10 rows per page, a query that needs to return 500 rows needs to read 50 
pages if the data row cluster ratio is 1.

When the data row cluster ratio is extremely low, the data rows are 
scattered on data pages with no relationship to the ordering of the keys. 
Nonclustered indexes often have low data row cluster ratios, since there is 
no relationship between the ordering of the index keys and the ordering of 
the data rows on data pages. When the data row cluster ratio is 0, or close 
to 0, the number of physical and logical I/Os required could be as much as 
1 data page I/O for each row to be returned. A query that needs to return 
500 rows needs to read 500 pages, or nearly 500 pages, if the data row 
cluster ratio is near 0 and the rows are widely scattered on the data pages. 
In a huge table, this still provides good performance, but in a table with 
less than 500 pages, the optimizer chooses the cheaper alternative – a table 
scan. 

The size of the data cache is also used in calculating the physical I/O. If 
the data row cluster ratio is very low, and the cache is small, pages may be 
flushed from cache before they can be reused. If the cache is large, the 
optimizer estimates that some pages will be found in cache.



CHAPTER 22    Access Methods and Query Costing for Single Tables

Performance & Tuning Guide 491

Result-set size and index use

A range query that returns a small number of rows performs well with the 
index, however, range queries that return a large number of rows may not 
use the index—it may be more expensive to perform the logical and 
physical I/O for a large number of index pages plus a large number of data 
pages. The lower the data row cluster ratio, the more expensive it is to use 
the index.

At the leaf level of a nonclustered index or a clustered index on a data-
only-locked table, the keys are stored sequentially. For a search argument 
on a value that matches 100 rows, the rows on the index leaf level fit on 
perhaps one or two index pages. The actual data rows might all be on 
different data pages. The following queries show how different data row 
cluster ratios affect I/O estimates. The authors table uses datarows locking, 
and has these indexes:

• A clustered index on au_lname

• A nonclustered index on state

Each of these queries returns about 100 rows:

select au_lname, phone 
from authors 
where au_lname like "E%"
select au_id, au_lname, phone 
from authors 
where state = "NC"

The following table shows the data row cluster ratio for each index, and 
the optimizer’s estimate of the number of rows to be returned and the 
number of pages required. 

The basic information on the table is:

• The table has 262 pages. 

• There are 19 rows per data page in the table.

SARG on Data row cluster ratio Row estimate Page estimate Data I/O size

au_lname .999789 101 8 16K

state .232539 103 83 2K



Evaluating the cost of index access 

492  Adaptive Server Enterprise

While each of the queries has its search clauses in valid search-argument 
form, and each of the clauses matches an index, only the first query uses 
the index: for the other query, a table scan is cheaper than using the index. 
With 262 pages, the cost of the table scan is:

Closer look at the Search Argument costing

Looking more closely at the tables, cluster ratios, and search arguments 
explains why the table scan is chosen:

• The estimate for the clustered index on au_lname includes just 8 
physical I/Os:

• 6 I/Os (using 16K I/O) on the data pages, because the data row 
cluster ratio indicates very high clustering. 

• 2 I/Os for the index pages (there are 128 rows per leaf page); 16K 
I/O is also used for the index leaf pages.

• The query using the search argument on state has to read many more 
data pages, since the data row cluster ratio is low. The optimizer 
chooses 2K I/O on the data pages. 83 physical I/Os is more than 
double the physical I/O required for a table scan (using 16K I/O).

Table scan cost = (262 /8) = 37 * 18 =666 
+ 262 * 2 =524

____
1190



CHAPTER 22    Access Methods and Query Costing for Single Tables

Performance & Tuning Guide 493

Costing for noncovering index scans

The basic formula for estimating I/O for queries accessing the data 
through a noncovering index is:

Costing for forwarded rows

If a data-only-locked table has forwarded rows, the cost of the extra I/O 
for accessing forwarded rows is added for noncovered index scans. The 
cost is computed by multiplying the number of forwarded rows in the table 
and the percent of the rows from the table that to be returned by the query. 
The added cost is:

Costing for queries using order by
Queries that perform sorts for order by may create and sort, or they may be 
able to use the index to return rows by relying on the index ordering. For 
example, the optimizer chooses one of these access methods for a query 
with an order by clause:

• With no useful search arguments – use a table scan, followed by 
sorting the worktable.

Leaf pages = Number of qualified rows / Leaf level rows per page

Data pages = Number of qualifying rows * Data row cluster adjustment

Scan cost = Number of nonleaf index levels * 18
+ (Leaf pages / Pages per IO) * Data page cluster adjustment * 18
+ (Data pages / Pages per IO) * Data page cluster adjustment * 18
+ Number of nonleaf index levels * 18
+ Leaf pages * 2
+ Number of qualifying rows * Data row cluster adjustment * 2 

Forwarded row cost = % of rows returned * Number of forwarded rows in the table



Costing for queries using order by 

494  Adaptive Server Enterprise

• With selective search argument or join on an index that does not 
match the order by clause – use an index scan, followed by sorting the 
worktable.

• With a search argument or join on an index that matches the order by 
clause – an index scan using this index, with no worktable or sort.

Sorts are always required for result sets when the columns in the result set 
are a superset of the index keys. For example, if the index on authors 
includes au_fname and au_lname, and the order by clause also includes the 
au_id, the query requires a sort.

If there are search arguments on indexes that match the order by clause, 
and other search arguments on indexes that do not support the required 
ordering, the optimizer costs both access methods. If the worktable and 
sort is required, the cost of performing the I/O for these operations is added 
to the cost of the index scan. If an index is potentially useful to help avoid 
the sort, dbcc traceon(302) prints a message while the search or join 
argument costing takes place. 

See “Sort avert messages” on page 913 for more information.

Besides the availability of indexes, two major factors determine whether 
the index is considered:

• The order by clause must specify a prefix subset of the index keys.

• The order by clause and the index must have compatible 
ascending/descending key ordering.

Prefix subset and sorts
For a query to use an index to avoid a sort step, the keys specified in the 
order by clause must be a prefix subset of the index keys. For example, if 
the index specifies the keys as A, B, C, D:

• The following order by clauses can use the index:

• A

• A, B

• A, B, C

• A, B, C, D

• And other set of columns cannot use the index. For example, these are 
not prefix subsets:



CHAPTER 22    Access Methods and Query Costing for Single Tables

Performance & Tuning Guide 495

• A, C

• B, C, D

Key ordering and sorts
Both order by clauses and commands that create indexes can use the asc or 
desc (ascending or descending) ordering qualifications:

• For index creation, the asc and desc qualifications specify the order 
in which keys are to be stored in the index.

• In the order by clause, the ordering qualifications specify the order in 
which the columns are to be returned in the output.

To avoid a sort when using a specific index, the asc or desc qualifications 
in the order by clause must either be exactly the same as those used to 
create the index, or must be exactly the opposite.

Specifying ascending or descending order for index keys

Queries that use a mix of ascending and descending order in an order by 
clause do not perform a separate sort step if the index was created using 
the same mix of ascending and descending order as that specified in the 
order by clause, or if the index order is the reverse of the order specified in 
the order by clause. Indexes are scanned forward or backward, following 
the page chain pointers at the leaf level of the index.

For example, this command creates an index on the titles table with pub_id 
ascending and pubdate descending:

create index pub_ix 
    on titles (pub_id asc, pubdate desc)

The rows are ordered on the pages as shown in Figure 22-4. When the 
ascending and descending order in the query matches the index creation 
order, the result is a forward scan, starting at the beginning of the index or 
at the first qualifying row, returning the rows in order from each page, and 
following the next-page pointers to read subsequent pages.

If the ordering in the query is the exact opposite of the index creation 
order, the result is a backward scan, starting at the last page of the index or 
the page containing the last qualifying row, returning rows in backward 
order from each page, and following previous page pointers. 



Costing for queries using order by 

496  Adaptive Server Enterprise

Figure 22-4: Forward and backward scans on an index

The following query using the index shown in Figure 22-4 performs a 
forward scan:

select *
from titles
order by pub_id asc, pubdate desc

This query using the index shown in Figure 22-4 performs a backward 
scan:

select *
from titles
order by pub_id desc, pubdate asc

For the following two queries on the same table, the plan requires a sort 
step, since the order by clauses do not match the ordering specified for the 
index:

select *
from titles
order by pub_id desc, pubdate desc
select *
from titles
order by pub_id asc, pubdate asc

Note  Parallel sort operations are optimized very differently for partitioned 
tables. See Chapter 26, “Parallel Sorting,” for more information.

Page 1132
P066 12/20/93
P066 11/11/93
P066 10/4/93
P073 11/26/93

Page 1133
P073 10/14/93
P087 12/01/93
P087 10/4/93
P087 9/7/93

Page 1132
P066 12/20/93
P066 11/11/93
P066 10/4/93
P073 11/26/93

Page 1133
P073 10/14/93
P087 12/01/93
P087 10/4/93
P087 9/7/93

Forward scan: scans rows in 
order on the page, then 
follows the next-page 

Backward scan: scans rows in 
reverse order on the page, then 
follows the previous-page 



CHAPTER 22    Access Methods and Query Costing for Single Tables

Performance & Tuning Guide 497

How the optimizer costs sort operations
When Adaptive Server optimizes queries that require sorts:

• It computes the cost of using an index that matches the required sort 
order, if such an index exists.

• It computes the physical and logical I/O cost of creating a worktable 
and performing the sort for every index where the index order does 
not match the sort order. It computes the physical and logical I/O cost 
of performing a table scan, creating a worktable, and performing the 
sort. 

Adding the cost of creating and sorting the worktable to the cost of index 
access and the cost of creating and sorting the worktable favors the use of 
an index that supports the order by clause. However, when comparing 
indexes that are very selective, but not ordered, versus indexes that are 
ordered, but not selective:

• Access costs are low for the more selective index, and so are sort 
costs.

• Access costs are high for the less selective index, and may exceed the 
cost of access using the more selective index and sort.

Allpages-locked tables with clustered indexes
For allpages-locked tables with clustered indexes, order by queries that 
match the index keys are efficient if:

• There is also a search argument that uses the index, the index key 
positions the search on the data page for first qualifying row.

• The scan follows the next-page pointers until all qualifying rows have 
been found.

• No sort is needed.

In Figure 22-5, the index was created in ascending order, and the order by 
clause does not specify the order, so ascending is used by default.   



Costing for queries using order by 

498  Adaptive Server Enterprise

Figure 22-5: An order by query using a clustered index, allpages 
locking

 Queries requiring descending sort order (for example, order by title_id 
desc) can avoid sorting by scanning pages in  reverse order. If the entire 
table is needed for a query without a  where clause, Adaptive Server 
follows the index pointers to the last  page, and then scans backward using 
the previous page pointers. If the  where clause includes an index key, the 
index is used to position the  search, and then the pages are scanned 
backward, as shown in  Figure 22-6.  

Page 1133
Greane
Greaves
Greco

Page 1007
Bennet 1132
Greane 1133
Green 1144
Hunter 1127

Page 1009
Karsen 1009 Page 1144

Green
Greene
Highland

Page 1132
Bennet
Chan
Dull
Edwards

Page 1127
Hunter
Jenkins

Page 1001
Bennet 1007
Karsen 1009
Smith 1062

Root page Data pages Intermediate

Key           Pointer

Key           Pointer

select fname, lname, id
from employees
where lname between "Dull" 
and "Greene"
order by lname
Clustered index on lname



CHAPTER 22    Access Methods and Query Costing for Single Tables

Performance & Tuning Guide 499

Figure 22-6: An order by desc query using a clustered index

Sorts when index covers the query
When an index covers the query and the order by columns form a prefix 
subset of the index keys, the rows are returned directly from the 
nonclustered index leaf pages. If the columns do not form a prefix subset 
of the index keys, a worktable is created and sorted.

With a nonclustered index on au_lname, au_fname, au_id of the authors 
table, this query can return the data directly from the leaf pages:

select au_id, au_lname
from authors
order by au_lname, au_fname

Page 1007
Bennet 1132
Greane 1133
Green 1144
Hunter 1127

Page 1009
Karsen 1009

Page 1133
Greane
Greaves
Greco

Page 1144
Green
Greene
Highland

Page 1132
Bennet
Chan
Dull
Edwards

Page 1127
Hunter
Jenkins

Page 1001
Bennet 1007
Karsen 1009
Smith 1062

Root page Data pages Intermediate

Key           Pointer

Key           Pointer

select fname, lname, id
from employees
where lname <= "Highland"
order by lname desc
Clustered index on lname



Costing for queries using order by 

500  Adaptive Server Enterprise

Sorts and noncovering indexes
With a noncovering index, Adaptive Server determines whether using the 
index that supports the ordering requirements is cheaper than performing 
a table scan or using a more selective index, and then inserting rows into 
a worktable and sorting the data. The cost of using the index depends on 
the number of rows and the data row cluster ratio.

Backward scans and joins

If two or more tables are being joined, and the order by clause specifies 
descending order for index keys on the joined tables, any of the tables and 
indexes involved can be scanned with a backward scan to avoid the 
worktable and sort costs. If all the columns for one table are in ascending 
order, and the columns for the other tables are in descending order, the first 
table is scanned in ascending order and the others in descending order.

Deadlocks and descending scans

Descending scans may deadlock with queries performing update 
operations using ascending scans and with queries performing page splits 
and shrinks, except when the backward scans are performed at transaction 
isolation level 0.

The allow backward scans configuration parameter controls whether the 
optimizer uses the backward scan strategy. The default value of 1 allows 
descending scans. 

See the System Administration Guide for more information on this 
parameter. 

Also, see “Index scans” on page 992 for information on the number of 
ascending and descending scans performed and “Deadlocks by lock type” 
on page 1003 for information on detecting deadlocks.



CHAPTER 22    Access Methods and Query Costing for Single Tables

Performance & Tuning Guide 501

Access Methods and Costing for or and in Clauses
When a query on a single table contains or clauses or an in (values_list) 
clause, it can be optimized in different ways, depending on the presence of 
indexes, the selectivity of the search arguments, the existence of other 
search arguments, and whether or not the clauses might return duplicate 
rows.

or syntax
or clauses take one of the following forms: 

where column_name1 = <value>
    or column_name1 = <value>
    ...

or: 

where column_name1 = <value>
    or column_name2 = <value>
    ...

in (values_list) converts to or processing
Preprocessing converts in lists to or clauses, so this query:

select title_id, price 
    from titles
    where title_id in ("PS1372", "PS2091","PS2106")

becomes:

select title_id, price 
    from titles
    where title_id = "PS1372"
        or title_id = "PS2091"
        or title_id = "PS2106"



Access Methods and Costing for or and in Clauses 

502  Adaptive Server Enterprise

Methods for processing or clauses
A single-table query including or clauses is a union of more than one 
query. Although some rows may match more than one of the conditions, 
each row must be returned only once. Depending on indexes and query 
clauses, or queries can be resolved by one of these methods:

• If any of the clauses linked by or is not indexed, the query must use a 
table scan. If there is an index on type, but no index on advance, this 
query performs a table scan:

select title_id, price
from titles
where type = "business" or advance > 10000

• If there is a possibility that one or more of the or clauses could match 
values in the same row, the query is resolved using the OR strategy, 
also known as using a dynamic index. The OR strategy selects the 
row IDs for matching rows into a worktable, and sorts the worktable 
to remove duplicate row IDs. For example, there can be rows for 
which both of these conditions are true:

select title_id 
from titles
where pub_id = "P076" or type > "business"

If there is an index on pub_id, and another on type, the OR strategy can 
be used. 

See “Dynamic index (OR strategy)” on page 504 for more 
information.

Note  The OR Strategy  (multiple matching index scans) is only 
considered for equality predicates. It is disqualified for range 
predicates even if meeting other conditions. As an example, when a 
select statement contains the following:

where bar between 1 and 5
or bar between 10 and 15

This will not be considered for the OR Strategy.

• If there is no possibility that the or clauses can select the same row, the 
query can be resolved with multiple matching index scans, also 
known as the special OR strategy. The special OR strategy does not 
require a worktable and sort. The or clauses in this query cannot select 
the same row twice:



CHAPTER 22    Access Methods and Query Costing for Single Tables

Performance & Tuning Guide 503

select title_id, price
from titles
where pub_id = "P076" or pub_id = "P087"

With an index on pub_id, this query can be resolved using two 
matching index scans. 

See “Multiple matching index scans (special OR strategy)” on page 
506 for more information.

• The costs of index access for each or clause are added together, and 
the cost of the sort, if required. If sum of these costs is greater than a 
table scan, the table scan is chosen. For example, this query uses a 
table scan if the total cost of all of the indexed scans on pub_id is 
greater than the table scan:

select title_id, price
from titles
where pub_id in ("P095", "P099", "P128", "P220", 
"P411", "P445", "P580", "P988")

• If the query contains additional search arguments on indexed 
columns, predicate transformation may add search arguments that can 
be optimized, adding alternative optimization options. The cost of 
using all alternative access methods is compared, and the cheapest 
alternative is selected. This query contains a search argument on type 
as well as clauses linked with or:

select title_id, type, price from titles
where type = "business" 
and (pub_id = "P076" or pubdate > "12/1/93")

With a separate index on each search argument, the optimizer uses the 
least expensive access method:

• The index on type

• The OR strategy on pub_id and pubdate

When table scans are used for or queries

A query with or clauses or an in (values_list) uses a table scan if either of 
these conditions is true:

• The cost of all the index accesses is greater than the cost of a table 
scan, or

• At least one of the columns is not indexed, so the only way to resolve 
the query conditions is to perform a table scan.



Access Methods and Costing for or and in Clauses 

504  Adaptive Server Enterprise

Dynamic index (OR strategy)

If the query uses the OR strategy because the query could return duplicate 
rows, the appropriate indexes are used to retrieve the row IDs for rows that 
satisfy each or clause. The row IDs for each or clause are stored in a 
worktable. Since the worktable contains only row IDs, it is called a 
“dynamic index.” Adaptive Server then sorts the worktable to remove the 
duplicate row IDs. The row IDs are used to retrieve the rows from the base 
tables. The total cost of the query includes:

• The sum of the index accesses, that is, for each or clause, the cost of 
using the index to access the row IDs on the leaf pages of the index 
(or on the data pages, for a clustered index on an allpages-locked 
table)

• The cost of reading the worktable and performing the sort

• The cost of using the row IDs to access the data pages

Figure 22-7 illustrates the process of building and sorting a dynamic index 
for an or query on two different columns. 



CHAPTER 22    Access Methods and Query Costing for Single Tables

Performance & Tuning Guide 505

Figure 22-7: Resolving or queries using the OR strategy

As shown in Figure 22-7, the optimizer can choose to use a different index 
for each clause. 

showplan displays “Using Dynamic Index” and “Positioning by Row 
IDentifier (RID)” when the OR strategy is used. 

See “Dynamic index message (OR strategy)” on page 839 for more 
information.

Queries in cursors cannot use the OR strategy, but must perform a table 
scan. However, queries in cursors can use the multiple matching index 
scans strategy.

Locking during queries that use the OR strategy depends on the locking 
scheme of the table.

Page Row
1441 4
1537 2
1537 2
1822 5
1941 2

Find rows on Save results Sort and 
remove duplicates

Page 1239
Backwards... 1527, 4
Computer... 1441,4
Computer... 1537,2
Optional... 1923, 7

Page 1473
$14 1427, 8
$15 1941, 2
$15 1537, 2
$15 1822, 5
$16 1445,6

Page Row
1441 4
1537 2
1941 2
1537 2
1822 5

index leaf pages in a worktable

select title_id, price
    from titles
    where price <= $15 or title like "Compute%"

title_id_ix

price_ix

Access rows on 
data pages

Page 1537
Using ... $27
Computer... $15
New... $18
Home... $44

Page 1441
Tricks ... $23
Computer... $29
Garden... $20
Best... $50

(to page 1882)

(to page 1941)



How aggregates are optimized 

506  Adaptive Server Enterprise

Multiple matching index scans (special OR strategy)

Adaptive Server uses multiple matching index scans when the or clauses 
are on the same table, and there is no possibility that the or clauses will 
return duplicate rows. For example, this query cannot return any duplicate 
rows:

select title 
    from titles
    where title_id in ("T6650", "T95065", "T11365")

This query can be resolved using multiple matching index scans, using the 
index on title_id. The total cost of the query is the sum of the multiple index 
accesses performed. If the index on title_id has 3 levels, each or clause 
requires 3 index reads, plus one data page read, so the total cost for each 
clause is 4 logical and 4 physical I/Os, and the total query cost is estimated 
to be 12 logical and 12 physical I/Os.

The optimizer determines which index to use for each or clause or value in 
the in (values_list) clause by costing each clause or value separately. If each 
column named in a clause is indexed, a different index can be used for each 
clause or value. showplan displays the message “Using N Matching Index 
Scans” when the special OR strategy is used. 

See “Matching index scans message” on page 838.

How aggregates are optimized
Aggregates are processed in two steps:

• First, appropriate indexes are used to retrieve the appropriate rows, or 
a table scan is performed. For vector (grouped) aggregates, the results 
are placed in a worktable. For scalar aggregates, results are computed 
in a variable in memory.

• Second, the worktable is scanned to return the results for vector 
aggregates, or the results are returned from the internal variable.

Vector aggregates can use a covering composite index on the aggregated 
column and the grouping column, if any, rather than performing table 
scans. For example, if the titles table has a nonclustered index on type, 
price, the following query retrieves its results by scanning the leaf level of 
the nonclustered index:



CHAPTER 22    Access Methods and Query Costing for Single Tables

Performance & Tuning Guide 507

select type, avg(price)
    from titles
    group by type

Scalar aggregates can also use covering indexes to reduce I/O. For 
example, the following query can use the index on type, price:

select min(price)
    from titles

Table 22-1 shows some of the access methods that the optimizer can 
choose for queries with aggregates when there is no where, having or group 
by clause in the query. 

Table 22-1: Special access methods for aggregates

Combining max and min aggregates
When used separately, max and min aggregates on leading index columns 
use special processing if there is no where clause in the query:

• min aggregates retrieve the first value on the root page of the index, 
performing a single read to find the value. 

• max aggregates follow the last entry on the last page at each index 
level until they reach the leaf level. 

However, when min and max are used together, this optimization is not 
available. The entire leaf level of an index is scanned to locate the first and 
last values.

min and max optimizations are not applied if:

Aggregate Index description Access method

min Scalar aggregate is leading column Use first the value on the root page of the index. 

max Clustered index on an allpages-
locked table

Follow the last pointer on root page and 
intermediate pages to data page, and return the last 
value.

Clustered index on a data-only-
locked table

Any nonclustered index

Follow last pointer on root page and intermediate 
pages to leaf page, and return the last value.

count(*) Nonclustered index or clustered 
index on a data-only-locked table

Count all rows in the leaf level of the index with the 
smallest number of pages.

count(col_name) Covering nonclustered index, or 
covering clustered index on data-
only-locked table

Count all non-null values in the leaf level of the 
smallest index containing the column name.



How update operations are performed 

508  Adaptive Server Enterprise

• The expression inside the max or min function is anything but a 
column. When numeric_col has a nonclustered index:

• max(numeric_col*2) contains an operation on a column, so the 
query performs a leaf-level scan of the index.

• max(numeric_col)*2 uses max optimization, because the 
multiplication is performed on the result of the function.

• There is another aggregate in the query.

• There is a group by clause.

Queries that use both min and max

If you have max and min aggregates that can be optimized, you should get 
much better performance by putting them in separate queries. For 
example, even if there is an index with price as the leading key, this query 
results in a full leaf-level scan of the index:

select max(price), min(price) 
    from titles

When you separate them, Adaptive Server uses the index once for each of 
the two queries, rather than scanning the entire leaf level. This example 
shows two queries:

select max(price) 
    from titles
select min(price) 
    from titles

How update operations are performed
Adaptive Server handles updates in different ways, depending on the 
changes being made to the data and the indexes used to locate the rows. 
The two major types of updates are deferred updates and direct updates. 
Adaptive Server performs direct updates whenever possible.

Direct updates
Adaptive Server performs direct updates in a single pass:



CHAPTER 22    Access Methods and Query Costing for Single Tables

Performance & Tuning Guide 509

• It locates the affected index and data rows.

• It writes the log records for the changes to the transaction log.

• It makes the changes to the data pages and any affected index pages.

There are three techniques for performing direct updates: 

• In-place updates

• Cheap direct updates

• Expensive direct updates 

Direct updates require less overhead than deferred updates and are 
generally faster, as they limit the number of log scans, reduce logging, 
save traversal of index B-trees (reducing lock contention), and save I/O 
because Adaptive Server does not have to refetch pages to perform 
modifications based on log records.

In-place updates

Adaptive Server performs in-place updates whenever possible. 

When Adaptive Server performs an in-place update, subsequent rows on 
the page are not moved; the row IDs remain the same and the pointers in 
the row offset table are not changed.

For an in-place update, the following requirements must be met:

• The row being changed cannot change its length. 

• The column being updated cannot be the key, or part of the key, of a 
clustered index on an allpages-locked table. Because the rows in a 
clustered index on an allpages-locked table are stored in key order, a 
change to the key almost always means that the row location is 
changed.

• One or more indexes must be unique or must allow duplicates.

• The update statement satisfies the conditions listed in “Restrictions 
on update modes through joins” on page 515.

• The affected columns are not used for referential integrity.

• There cannot be a trigger on the column.

• The table cannot be replicated (via Replication Server).



How update operations are performed 

510  Adaptive Server Enterprise

An in-place update is the fastest type of update because it makes a single 
change to the data page. It changes all affected index entries by deleting 
the old index rows and inserting the new index row. In-place updates affect 
only indexes whose keys are changed by the update, since the page and 
row locations are not changed.

Cheap direct updates

If Adaptive Server cannot perform an update in place, it tries to perform a 
cheap direct update—changing the row and rewriting it at the same offset 
on the page. Subsequent rows on the page are moved up or down so that 
the data remains contiguous on the page, but the row IDs remain the same. 
The pointers in the row offset table change to reflect the new locations.

A cheap direct update,must meet these requirements: 

• The length of the data in the row is changed, but the row still fits on 
the same data page, or the row length is not changed, but there is a 
trigger on the table or the table is replicated.

• The column being updated cannot be the key, or part of the key, of a 
clustered index. Because Adaptive Server stores the rows of a 
clustered index in key order, a change to the key almost always means 
that the row location is changed.

• One or more indexes must be unique or must allow duplicates.

• The update statement satisfies the conditions listed in “Restrictions 
on update modes through joins” on page 515.

• The affected columns are not used for referential integrity.

Cheap direct updates are almost as fast as in-place updates. They require 
the same amount of I/O, but slightly more processing. Two changes are 
made to the data page (the row and the offset table). Any changed index 
keys are updated by deleting old values and inserting new values. Cheap 
direct updates affect only indexes whose keys are changed by the update, 
since the page and row ID are not changed.

Expensive direct updates

If the data does not fit on the same page, Adaptive Server performs an 
expensive direct update, if possible. An expensive direct update deletes the 
data row, including all index entries, and then inserts the modified row and 
index entries.



CHAPTER 22    Access Methods and Query Costing for Single Tables

Performance & Tuning Guide 511

Adaptive Server uses a table scan or an index to find the row in its original 
location and then deletes the row. If the table has a clustered index, 
Adaptive Server uses the index to determine the new location for the row; 
otherwise, Adaptive Server inserts the new row at the end of the heap.

An expensive direct updatemust meet these requirements:

• The length of a data row is changed so that the row no longer fits on 
the same data page, and the row is moved to a different page, or the 
update affects key columns for the clustered index.

• The index used to find the row is not changed by the update.

• The update statement satisfies the conditions listed in “Restrictions 
on update modes through joins” on page 515.

• The affected columns are not used for referential integrity.

An expensive direct update is the slowest type of direct update. The delete 
is performed on one data page, and the insert is performed on a different 
data page. All index entries must be updated, since the row location is 
changed. 

Deferred updates
Adaptive Server uses deferred updates when direct update conditions are 
not met. A deferred update is the slowest type of update.

In a deferred update, Adaptive Server:

• Locates the affected data rows, writing the log records for deferred 
delete and insert of the data pages as rows are located.

• Reads the log records for the transaction and performs the deletes on 
the data pages and any affected index rows.

• Reads the log records a second time, and performs all inserts on the 
data pages, and inserts any affected index rows.

When deferred updates are required

Deferred updates are always required for:

• Updates that use self-joins

• Updates to columns used for self-referential integrity



How update operations are performed 

512  Adaptive Server Enterprise

• Updates to a table referenced in a correlated subquery

Deferred updates are also required when:

• The update moves a row to a new page while the table is being 
accessed via a table scan or a clustered index.

• Duplicate rows are not allowed in the table, and there is no unique 
index to prevent them.

• The index used to find the data row is not unique, and the row is 
moved because the update changes the clustered index key or because 
the new row does not fit on the page.

Deferred updates incur more overhead than direct updates because they 
require Adaptive Server to reread the transaction log to make the final 
changes to the data and indexes. This involves additional traversal of the 
index trees.

For example, if there is a clustered index on title, this query performs a 
deferred update:

update titles set title = "Portable C Software" where 
title = "Designing Portable Software"

Deferred index inserts
Adaptive Server performs deferred index updates when the update affects 
the index used to access the table or when the update affects columns in a 
unique index. In this type of update, Adaptive Server:

• Deletes the index entries in direct mode

• Updates the data page in direct mode, writing the deferred insert 
records for the index

• Reads the log records for the transaction and inserts the new values in 
the index in deferred mode

Deferred index insert mode must be used when the update changes the 
index used to find the row or when the update affects a unique index. A 
query must update a single, qualifying row only once—deferred index 
update mode ensures that a row is found only once during the index scan 
and that the query does not prematurely violate a uniqueness constraint.



CHAPTER 22    Access Methods and Query Costing for Single Tables

Performance & Tuning Guide 513

The update in Figure 22-8 changes only the last name, but the index row 
is moved from one page to the next. To perform the update, Adaptive 
Server:

1 Reads index page 1133, deletes the index row for “Greene” from that 
page, and logs a deferred index scan record. 

2 Changes “Green” to “Hubbard” on the data page in direct mode and 
continues the index scan to see if more rows need to be updated.

3 Inserts the new index row for “Hubbard” on page 1127.

Figure 22-8 shows the index and data pages prior to the deferred update 
operation, and the sequence in which the deferred update changes the data 
and index pages.



How update operations are performed 

514  Adaptive Server Enterprise

Figure 22-8: Deferred index update

Page 1421
18 Bennet
19 Hubbard
20 Yokomoto

Page 1421
18 Bennet
19 Green
20 Yokomoto

Page 1007
Bennet 1421,1 1132
Greane 1307,4 1133
Hunter 1307,1 1127

Page 1133
Greane 1307,4
Green 1421,2
Greene 1409,2

Page 1001
Bennet 1421,1 1007
Karsen 1411,3 1009
Smith 1307,2 1062

Green
Page 1242

10 O’Leary
11 Ringer
12 White
13 Jenkins

Page 1307
14 Hunter
15 Smith
16 Ringer
17 Greane

Page 1409
21 Dull
22 Greene
23 White

Page 1132
Bennet 1421,1
Chan 1129,3
Dull 1409,1
Edwards 1018,5

Page 1127
Hunter 1307,1
Jenkins 1242,4

Page 1009
Karsen 1411,3 1315

Root page Data pages Intermediate

Key  RowID Pointer

Key Pointer

Leaf pages 

Key  RowID Pointer

update employee
set lname = "Hubbard"
where lname = "Green"

Step 2: Change data 
page.

Step 1: Write log 
records, then delete 
index row.

Page 1133
Greane 1307,4
Greene 1409,2

Page 1127
Hubbard 1421,2
Hunter 1307,1
Jenkins 1242,4

 

Step 3: Read log, 
insert index row.

Before update

Update steps



CHAPTER 22    Access Methods and Query Costing for Single Tables

Performance & Tuning Guide 515

Assume a similar update to the titles table:

update titles
set title = "Computer Phobic’s Manual", 
    advance = advance * 2 
where title like "Computer Phob%"

This query shows a potential problem. If a scan of the nonclustered index 
on the title column found “Computer Phobia Manual,” changed the title, 
and multiplied the advance by 2, and then found the new index row 
“Computer Phobic’s Manual” and multiplied the advance by 2, the 
advance wold be very skewed against the reality.

A deferred index delete may be faster than an expensive direct update, or 
it may be substantially slower, depending on the number of log records 
that need to be scanned and whether the log pages are still in cache. 

During deferred update of a data row, there can be a significant time 
interval between the delete of the index row and the insert of the new index 
row. During this interval, there is no index row corresponding to the data 
row. If a process scans the index during this interval at isolation level 0, it 
will not return the old or new value of the data row.

Restrictions on update modes through joins
Updates and deletes that involve joins can be performed in direct, 
deferred_varcol, or deferred_index mode when the table being updated is 
the outermost table in the join order, or when it is preceded in the join order 
by tables where only a single row qualifies.

Joins and subqueries in update and delete statements

The use of the from clause to perform joins in update and delete statements 
is a Transact-SQL extension to ANSI SQL. Subqueries in ANSI SQL form 
can be used in place of joins for some updates and deletes.

This example uses the from syntax to perform a join:

update t1 set t1.c1 = t1.c1 + 50
from t1, t2
where t1.c1 = t2.c1
and t2.c2 = 1

The following example shows the equivalent update using a subquery:

update t1 set c1 = c1 + 50



How update operations are performed 

516  Adaptive Server Enterprise

where t1.c1 in (select t2.c1
                from t2 
                where t2.c2 = 1)

The update mode that is used for the join query depends on whether the 
updated table is the outermost query in the join order—if it is not the 
outermost table, the update is performed in deferred mode. The update that 
uses a subquery is always performed as a direct, deferred_varcol, or 
deferred_index update.

For a query that uses the from syntax and performs a deferred update due 
to the join order, use showplan and statistics io to determine whether 
rewriting the query using a subquery can improve performance. Not all 
queries using from can be rewritten to use subqueries.

Deletes and updates in triggers versus referential integrity

Triggers that join user tables with the deleted or inserted tables are run in 
deferred mode. If you are using triggers solely to implement referential 
integrity, and not to cascade updates and deletes, then using declarative 
referential integrity in place of triggers may avoid the penalty of deferred 
updates in triggers.

Optimizing updates
showplan messages provide information about whether an update is 
performed in direct mode or deferred mode. If a direct update is not 
possible, Adaptive Server updates the data row in deferred mode. There 
are times when the optimizer cannot know whether a direct update or a 
deferred update will be performed, so two showplan messages are 
provided:

• The “deferred_varcol” message shows that the update may change the 
length of the row because a variable-length column is being updated. 
If the updated row fits on the page, the update is performed in direct 
mode; if the update does not fit on the page, the update is performed 
in deferred mode.

• The “deferred_index” message indicates that the changes to the data 
pages and the deletes to the index pages are performed in direct mode, 
but the inserts to the index pages are performed in deferred mode.



CHAPTER 22    Access Methods and Query Costing for Single Tables

Performance & Tuning Guide 517

These types of direct updates depend on information that is available only 
at runtime, since the page actually has to be fetched and examined to 
determine whether the row fits on the page.

Designing for direct updates

When you design and code your applications, be aware of the differences 
that can cause deferred updates. Follow these guidelines to help avoid 
deferred updates:

• Create at least one unique index on the table to encourage more direct 
updates.

• Whenever possible, use nonkey columns in the where clause when 
updating a different key.

• If you do not use null values in your columns, declare them as not null 
in your create table statement.

Effects of update types and indexes on update modes

Table 22-2 shows how indexes affect the update mode for three different 
types of updates. In all cases, duplicate rows are not allowed. For the 
indexed cases, the index is on title_id. The three types of updates are:

• Update of a variable-length key column:

update titles set title_id = value
    where title_id = "T1234"

• Update of a fixed-length nonkey column:

update titles set pub_date = value
        where title_id = "T1234"

• Update of a variable-length nonkey column:

    update titles set notes = value
        where title_id = "T1234"

Table 22-2 shows how a unique index can promote a more efficient update 
mode than a nonunique index on the same key. Pay particular attention to 
the differences between direct and deferred in the shaded areas of the table. 
For example, with a unique clustered index, all of these updates can be 
performed in direct mode, but they must be performed in deferred mode if 
the index is nonunique.



How update operations are performed 

518  Adaptive Server Enterprise

For a table with a nonunique clustered index, a unique index on any other 
column in the table provides improved update performance. In some cases, 
you may want to add an IDENTITY column to a table in order to include 
the column as a key in an index that would otherwise be nonunique.

Table 22-2: Effects of indexing on update mode

If the key for an index is fixed length, the only difference in update modes 
from those shown in the table occurs for nonclustered indexes. For a 
nonclustered, nonunique index, the update mode is deferred_index for 
updates to the key. For a nonclustered, unique index, the update mode is 
direct for updates to the key.

If the length of varchar or varbinary is close to the maximum length, use 
char or binary instead. Each variable-length column adds row overhead 
and increases the possibility of deferred updates. 

Using max_rows_per_page to reduce the number of rows allowed on a 
page increases direct updates, because an update that increases the length 
of a variable-length column may still fit on the same page. 

For more information on using max_rows_per_page, see “Using 
max_rows_per_page on allpages-locked tables” on page 321.

Using sp_sysmon while tuning updates
You can use showplan to determine whether an update is deferred or direct, 
but showplan does not give you detailed information about the type of 
deferred or direct update. Output from the sp_sysmon or Adaptive Server 
Monitor supplies detailed statistics about the types of updates performed 
during a sample interval.

Update To:

Index 
Variable-
length key

Fixed-length 
column

Variable-
length column

No index N/A direct deferred_varcol

Clustered, unique direct direct direct

Clustered, not unique deferred deferred deferred

Clustered, not unique, with a 
unique index on another column

deferred direct deferred_varcol

Nonclustered, unique deferred_varcol direct direct

Nonclustered, not unique deferred_varcol direct deferred_varcol



CHAPTER 22    Access Methods and Query Costing for Single Tables

Performance & Tuning Guide 519

Run sp_sysmon as you tune updates, and look for reduced numbers of 
deferred updates, reduced locking, and reduced I/O. 

See “Transaction detail” on page 974 for more information.



How update operations are performed 

520  Adaptive Server Enterprise



Performance & Tuning Guide 521

C H A P T E R  2 3 Accessing Methods and Costing 
for Joins and Subqueries

This chapter introduces the methods that Adaptive Server uses to access 
rows in tables when more than one table is used in a query, and how the 
optimizer costs access. 

In determining the cost of multitable queries, Adaptive Server uses many 
of the same formulas discussed in Chapter 22, “Access Methods and 
Query Costing for Single Tables.”

Costing and optimizing joins
Joins extract information from two or more tables. In a two-table join, one 
table is treated as the outer table and the other table is treated as the inner 
table. Adaptive Server examines the outer table for rows that satisfy the 
query conditions. For each row in the outer table that qualifies, Adaptive 
Server then examines the inner table, looking at each row where the join 
columns match.

Optimizing join queries is extremely important for system performance, 
since relational databases make heavy use of joins. Queries that perform 
joins on several tables are especially critical to performance, as explained 
in the following sections.

Topic Page
Costing and optimizing joins 521

Nested-loop joins 526

Access methods and costing for sort-merge joins 529

Enabling and disabling merge joins 541

Reformatting strategy 542

Subquery optimization 543

or clauses versus unions in joins 554



Costing and optimizing joins 

522  Adaptive Server Enterprise

In showplan output, the order of “FROM TABLE” messages indicates the 
order in which Adaptive Server chooses to join tables. 

See “FROM TABLE message” on page 807 for an example that joins 
three tables. Some subqueries are also converted to joins. 

See “Flattening in, any, and exists subqueries” on page 544.

Processing
By default, Adaptive Server uses nested-loop joins, and also consider 
merge joins, if this feature is enabled at the server-wide or session level.

When merge joins are enabled, Adaptive Server can use either nested-loop 
joins or merge joins to process queries involving two or more tables. For 
each join, the optimizer costs both methods. For queries involving more 
than two tables, the optimizer examines query costs for merge joins and 
for nested-loops, and chooses the mix of merge and nested-loop joins that 
provides the cheapest query cost.

Index density and joins
The optimizer uses a statistic called the total density to estimate the 
number of rows in a joined table that match a particular value during the 
join. 

See “Density values and joins” on page 444 for more information.

The query optimizer uses the total density to estimate the number of rows 
that will be returned for each scan of the inner table of a join. For example, 
if the optimizer is considering a nested-loop join with a 250,000-row table, 
and the table has a density of .0001, the optimizer estimates that an average 
of 25 rows from the inner table match for each row that qualifies in the 
outer table. 

optdiag reports the total density for each column for which statistics have 
been created. You can also see the total density used for joins in dbcc 
traceon(302) output.



CHAPTER 23    Accessing Methods and Costing for Joins and Subqueries

Performance & Tuning Guide 523

Multicolumn densities

Adaptive Server maintains the total density for each prefix subset of 
columns in a composite index. If two tables are being joined on multiple 
leading columns of a composite index, the optimizer uses the appropriate 
density for an index when estimating the cost of a join using that index. In 
a 10,000-row table with an index on seven columns, the entire seven-
column key might have a density of 1/10,000, while the first column might 
have a density of only 1/2, indicating that it would return 5000 rows.

Datatype mismatches and joins
One of the most common problems in optimizing joins on tables that have 
indexes is that the datatypes of the join columns are incompatible. When 
this occurs, one of the datatypes must be converted to the other, and an 
index can only be used for one side of the join. 

See “Datatype mismatches and query optimization” on page 445 for more 
information.

Join permutations
When you are joining four or fewer tables, Adaptive Server considers all 
possible permutations of join orders for the tables. However, due to the 
iterative nature of Adaptive Server’s optimizer, queries on more than four 
tables examine join order combinations in sets of two to four tables at a 
time. This grouping during join order costing is used because the number 
of permutations of join orders multiplies with each additional table, 
requiring lengthy computation time for large joins. The method the 
optimizer uses to determine join order has excellent results for most 
queries and requires much less CPU time than examining all permutations 
of all combinations. 

If the number of tables in a join is greater than 25, Adaptive Server 
automatically reduces the number of tables considered at a time. Table 23-
1 shows the default values.



Costing and optimizing joins 

524  Adaptive Server Enterprise

Table 23-1: Tables considered at a time during a join

The optimizer starts by considering the first two to four tables, and 
determining the best join order for those tables. It remembers the outer 
table from the best plan involving the tables it examined and eliminates 
that table from the set of tables. Then, it optimizes the best set of tables out 
of the remaining tables. It continues until only two to four tables remain, 
at which point it optimizes them.

For example, suppose you have a select statement with the following from 
clause:

 from T1, T2, T3, T4, T5, T6

The optimizer looks at all possible sets of 4 tables taken from these 6 
tables. The 15 possible combinations of all 6 tables are:

T1, T2, T3, T4
T1, T2, T3, T5
T1, T2, T3, T6
T1, T2, T4, T5
T1, T2, T4, T6
T1, T2, T5, T6
T1, T3, T4, T5
T1, T3, T4, T6
T1, T3, T5, T6
T1, T4, T5, T6
T2, T3, T4, T5
T2, T3, T4, T6
T2, T3, T5, T6
T2, T4, T5, T6
T3, T4, T5, T6

For each one of these combinations, the optimizer looks at all the join 
orders (permutations). For each set of 4 tables, there are 24 possible join 
orders, for a total of 360 (24 * 15) permutations. For example, for the set 
of tables T2, T3, T5, and T6, the optimizer looks at these 24 possible orders:

T2, T3, T5, T6
T2, T3, T6, T5
T2, T5, T3, T6
T2, T5, T6, T3
T2, T6, T3, T5

Tables joined Tables considered at a time

4 – 25 4

26 – 37 3

38 – 50 2



CHAPTER 23    Accessing Methods and Costing for Joins and Subqueries

Performance & Tuning Guide 525

T2, T6, T5, T3
T3, T2, T5, T6
T3, T2, T6, T5
T3, T5, T2, T6
T3, T5, T6, T2
T3, T6, T2, T5
T3, T6, T5, T2
T5, T2, T3, T6
T5, T2, T6, T3
T5, T3, T2, T6
T5, T3, T6, T2
T5, T6, T2, T3
T5, T6, T3, T2
T6, T2, T3, T5
T6, T2, T5, T3
T6, T3, T2, T5
T6, T3, T5, T2
T6, T5, T2, T3
T6, T5, T3, T2

Let’s say that the best join order is determined to be:

T5, T3, T6, T2

At this point, T5 is designated as the outermost table in the query. 

The next step is to choose the second-outermost table. The optimizer 
eliminates T5 from consideration as it chooses the rest of the join order. 
Now, it has to determine where T1, T2, T3, T4, and T6 fit into the rest of 
the join order. It looks at all the combinations of four tables chosen from 
these five:

T1, T2, T3, T4
T1, T2, T3, T6
T1, T2, T4, T6
T1, T3, T4, T6
T2, T3, T4, T6

It looks at all the join orders for each of these combinations, remembering 
that T5 is the outermost table in the join. Let’s say that the best order in 
which to join the remaining tables to T5 is:

T3, T6, T2, T4 

So the optimizer chooses T3 as the next table after T5 in the join order for 
the entire query. It eliminates T3 from consideration in choosing the rest of 
the join order. 

The remaining tables are:



Nested-loop joins 

526  Adaptive Server Enterprise

T1, T2, T4, T6

Now we’re down to 4 tables, so the optimizer looks at all the join orders 
for all the remaining tables. Let’s say the best join order is:

T6, T2, T4, T1

This means that the join order for the entire query is:

T5, T3, T6, T2, T4, T1

Outer joins and join permutations

Outer joins restrict the set of possible join orders. When the inner member 
of an outer join is compared to an outer member, the outer member must 
precede the inner member in the join order. The only join permutations 
that are considered for outer joins are those that meet this requirement. For 
example, these two queries perform outer joins, the first using ANSI SQL 
syntax, the second using Transact-SQL syntax:

select T1.c1, T2.c1, T3.c2, T4.c2
from T4 inner join T1 on T1.c1 = T4.c1
left outer join T2 on T1.c1 = T2.c1 
left outer join T3 on T2.c2 = T3.c2
select T1.c1, T2.c1, T3.c2, T4.c2
from T1 , T2, T3, T4
where T1.c1 *= T2.c1 
and T2.c2 *= T3.c2 
and T1.c1 = T4.c1

The only join orders considered place T1 outer to T2 and T2 outer to T3. 
The join orders considered by the optimizer are:

T1, T2, T3, T4
T1, T2, T4, T3
T1, T4, T2, T3
T4, T1, T2, T3

Nested-loop joins
Nested-loop joins provide efficient access when tables are indexed on join 
columns. The process of creating the result set for a nested-loop join is to 
nest the tables, and to scan the inner tables repeatedly for each qualifying 
row in the outer table, as shown in Figure 23-1. 



CHAPTER 23    Accessing Methods and Costing for Joins and Subqueries

Performance & Tuning Guide 527

Figure 23-1: Nesting of tables during a nested-loop join

In Figure 23-1, the access to the tables to be joined is nested:

• TableA is accessed once. If the table has no useful indexes, a table scan 
is performed. If an index can reduce I/O costs, the index is used to 
locate the rows.

• TableB is accessed once for each qualifying row in TableA. If 15 rows 
from TableA match the conditions in the query, TableB is accessed 15 
times. If TableB has a useful index on the join column, it might require 
3 I/Os to read the data page for each scan, plus one I/O for each data 
page. The cost of accessing TableB would be 60 logical I/Os.

• TableC is accessed once for each qualifying row in TableB each time 
TableB is accessed. If 10 rows from TableB match for each row in 
TableA, then TableC is scanned 150 times. If each access to TableC 
requires 3 I/Os to locate the data row, the cost of accessing TableC is 
450 logical I/Os.

If TableC is small, or has a useful index, the I/O count stays reasonably 
small. If TableC is large and has no useful index on the join columns, the 
optimizer may choose to use a sort-merge join or the reformatting strategy 
to avoid performing extensive I/O.

Scan inner TableB

Scan innermost 
TableC

For each qualifying row in TableB

For each qualifying row in TableA



Nested-loop joins 

528  Adaptive Server Enterprise

Cost formula
For a nested-loop join with two tables, the formula for estimating the cost 
is:

With additional tables, the cost of a nested-loop join is:

How inner and outer tables are determined
The outer table is usually the one that has:

• The smallest number of qualifying rows, and/or

• The largest numbers of I/Os required to locate rows.

The inner table usually has:

• The largest number of qualifying rows, and/or

• The smallest number of reads required to locate rows.

For example, when you join a large, unindexed table to a smaller table with 
indexes on the join key, the optimizer chooses:

• The large table as the outer table, so that the large table is scanned 
only once.

• The indexed table as the inner table, so that each time the inner table 
is accessed, it takes only a few reads to find rows.

Join cost = Cost of accessing A + 
# of qualifying rows in A * Pages of B to scan for each qualifying row

Cost of accessing outer table
+ (Number of qualified rows in outer) * ( Cost of accessing inner table)
+ ...
+ (Number of qualified rows from previous) * (Cost of accessing innermost table)



CHAPTER 23    Accessing Methods and Costing for Joins and Subqueries

Performance & Tuning Guide 529

Access methods and costing for sort-merge joins
There are four possible execution methods for merge joins:

• Full-merge join – the two tables being joined have useful indexes on 
the join columns. The tables do not need to be sorted, but can be 
merged using the indexes.

• Left-merge join – sort the inner table in the join order, then merge with 
the left, outer table.

• Right-merge join – sort the outer table in the join order, then merge 
with the right, inner table.

• Sort-merge join – sort both tables, then merge.

Merge joins always operate on stored tables – either user tables or 
worktables created for the merge join. When a worktable is required for a 
merge join, it is sorted into order on the join key, then the merge step is 
performed. The costing for any merge joins that involve sorting includes 
the estimated I/O cost of creating and sorting a worktable. For full-merge 
joins, the only cost involved is scanning the tables.

Figure 23-2 provides diagrams of the merge join types.



Access methods and costing for sort-merge joins 

530  Adaptive Server Enterprise

Figure 23-2: Merge join types

Left-merge join (LMJ)

Sort-merge join (SMJ)

Full-merge join (FMJ) Step 1

T1 T2

FMJ

Step 1

T2

Worktable1

Step 2

T1 Worktable1

sort
LMJ

Right-merge join (RMJ) Step 1

T1

Worktable1

Step 2

Worktable1 T2

sort
RMJ

Step 1

T1

Worktable1

Step 3

Worktable1 Worktable2

sort
SMJ

Step 2

T2

Worktable2

sort



CHAPTER 23    Accessing Methods and Costing for Joins and Subqueries

Performance & Tuning Guide 531

How a full-merge is performed
If both Table1 and Table2 have indexes on the join key, this query can use 
a full-merge join:

select *
    from Table1, Table2
    where Table1.c1 = Table2.c2
    and Table1.c1 between 100 and 120

If both tables are allpages-locked tables with clustered indexes, and Table1 
is chosen as the outer table, the index is used to position the search on the 
data page at the row where the value equals 100. The index on Table2 is 
also used to position the scan at the first row in Table2 where the join 
column equals 100. From this point, rows from both tables are returned as 
the scan moves forward on the data pages. 

Figure 23-3: A serial merge scan on two tables with clustered 
indexes

Merge joins can also be performed using nonclustered indexes. The index 
is used to position the scan on the first matching value on the leaf page of 
the index. For each matching row, the index pointers are used to access the 
data pages. Figure 23-4 shows a full-merge scan using a nonclustered 
index on the inner table. 

Page 1037
98
99

100
101
102

Page 3423
93

100
102
105
113
122

Page 1040
105
109
113
117
122

Table1 Table2



Access methods and costing for sort-merge joins 

532  Adaptive Server Enterprise

Figure 23-4: Full merge scan using a nonclustered index on the 
inner table

How a right-merge or left-merge is performed
A right-merge or left-merge join always operates on a user table and a 
worktable created for the merge join. There are two steps:

1 A table or set of tables is scanned, and the results are inserted into a 
worktable.

2 The worktable is sorted and then merged with the other table in the 
join, using the index.

Page 1037
98
99

100
101
102

Page 1040
105
109
113
117
122

Leaf pageData pages

Page 1752
102 
823
113
29

Page 1907
105
842
113
472

Page 1903
57
623
100

Page 3423
93 1955,1
100 1903,3
102 1752,2
105 1907,1
113 1752,3
122 2409,4

Table1 Table2

Data pages



CHAPTER 23    Accessing Methods and Costing for Joins and Subqueries

Performance & Tuning Guide 533

How a sort-merge is performed
For a sort-merge join, there are three steps, since the inputs to the sort-
merge joins are both sorted worktables:

1 A table or set of tables is scanned and the results are inserted into one 
worktable. This will be the outer table in the merge.

2 Another table is scanned and the results are inserted into another 
worktable. This will be the inner table in the merge.

3 Each of the worktables is sorted, then the two sorted result sets are 
merged.

Mixed example
This query performs a mixture of merge and nested-loop joins:

select pub_name, au_lname, price
from titles t, authors a, titleauthor ta,
            publishers p
where t.title_id = ta.title_id
    and a.au_id = ta.au_id
    and p.pub_id = t.pub_id
    and type = ’business’
    and price < $25

Adaptive Server executes this query in three steps:

• Step 1 uses 3 worker processes to scan titles as the outer table, 
performing a full-merge join with titleauthor and then a nested-loop 
join with authors. No sorting is required for the full-merge join. titles 
has a clustered index on title_id. The index on titleauthor, ta_ix, 
contains the title_id and au_id, so the index covers the query. The 
results are stored in Worktable1, for use in the sort-merge join 
performed in Step 3. 

• Step 2 scans the publishers table, and saves the needed columns 
(pub_name and pub_id) in Worktable2.

• In Step 3:

• Worktable1 is sorted into join column order, on pub_id.

• Worktable2 is sorted into order on pub_id.

• The sorted results are merged.



Access methods and costing for sort-merge joins 

534  Adaptive Server Enterprise

Figure 23-5 shows the steps. 

Figure 23-5: Multiple steps in processing a merge join

showplan messages for sort-merge joins

showplan messages for each type of merge join appear as specific 
combinations: 

• Full-merge join – there are no “FROM TABLE Worktable” messages, 
only the “inner table” and “outer table” messages for base tables in the 
query.

• Right-merge join – the “outer table” is always a worktable.

Step 1

publishers

FMJ

Worktable2Step 2

titles titleauthor

Worktable1

authors

NLJ

Step 3 SMJ

Worktable1 Worktable2

sortsort



CHAPTER 23    Accessing Methods and Costing for Joins and Subqueries

Performance & Tuning Guide 535

• Left-merge join – the “inner table” is always a worktable.

• Sort-merge join – both tables are worktables.

For more information, see “Messages describing access methods, 
caching, and I/O cost” on page 825.

Costing for merge joins
The total cost for merge joins depends on:

• The type of merge join.

• Full-merge joins do not require sorts and worktables.

• For right-merge and left-merge joins, one side of the join is 
selected into a worktable, then sorted.

• For sort-merge joins, both sides of the join are selected into 
worktables, and each worktable is sorted.

• The type of index used to scan the tables while performing the merge 
step.

• The locking scheme of the underlying table: costing models for most 
scans are different for allpages locking than data-only locking. 
Clustered index access cost on data-only-locked tables is more 
comparable to nonclustered access.

• Whether the query is executed in serial or parallel mode.

• Whether the outer table has duplicate values for the join key.

In general, when comparing costs between a nested-loop join and a merge 
join for the same tables, using the same indexes, the cost for the outer table 
remains the same. Access to the inner table costs less for a merge join 
because the scan remains positioned on the leaf pages as matching values 
are returned, saving the logical I/O cost of scanning down the index from 
the root page each time.



Access methods and costing for sort-merge joins 

536  Adaptive Server Enterprise

Costing for a full-merge with unique values
If a full-merge join is performed in serial mode and there is no need to sort 
the tables, the cost of a merge join on T1 and T2 is the sum of the cost of 
the scans of both tables, as long as all join values are unique:

The cost saving of a merge join over a nested-loop join is:

• For a nested-loop join, access to the inner table of the join starts at the 
root page of the index for each row from the outer table that qualifies.

• For a full-merge join, the upper levels of the index are used for the 
first access, to position the scan:

• On the leaf page of the index, for nonclustered indexes and 
clustered indexes on data-only-locked tables

• On the data page, if there is a clustered index on an allpages-
locked table

The higher levels of the index do not need to be read for each 
matching outer row.

Example: allpages-locked tables with clustered indexes
For allpages-locked tables where clustered indexes are used to perform the 
scans, the search arguments on the index are used to position the search on 
the first matching row of each table. The total cost of the query is the cost 
of scanning forward on the data pages of each table. For example, with 
clustered indexes on t1(c1) and t2(c1), the query on two allpages-locked 
tables can use a full-merge join:

select t1.c2, t2.c2
from t1, t2
where t1.c1 = t2.c1
and t1.c1 >= 1000 and t1.c1 < 1100

If there are 100 rows that qualify from t1, and 100 rows from t2, and each 
of these tables has 10 rows per page, and an index height of 3, the costs are:

• 3 index pages to position the scan on the first matching row of t1

• Scanning 10 pages of t1

Cost of scan of T1 + Cost of scan of T2Merge join cost = 



CHAPTER 23    Accessing Methods and Costing for Joins and Subqueries

Performance & Tuning Guide 537

• 3 index pages to position the scan on the first matching row of t2

• Scanning 10 pages of t2

Costing for a full-merge with duplicate values
If the outer table in a merge join has duplicate values, the inner table must 
be accessed from the root page of the index for each duplicate value. This 
query is the same as the previous example:

select t1.c2, t2.c2
from t1, t2
where t1.c1 = t2.c1
and t1.c1 >= 1000 and t1.c1 < 1100

If t1 is the outer table, and there are duplicate values for some of the rows 
in t1, so that there are 120 rows between 1000 and 1100,with 20 duplicate 
values, then each time one of the duplicate values is accessed, the scan of 
t2 is restarted from the root page of the index. If one row for t2 matches 
each value from t1, the I/O costs for this query are:

• 3 index pages to position on the first matching row of t1

• Scanning 12 pages of t1

• 3 index pages to position on the first matching row of t2, plus an I/O 
to read the data page

• For the remaining rows:

• If the value from t1 is a duplicate, the scan of t2 restarts from the 
root page of the index.

• For all values of t1 that are not duplicates, the scan remains 
positioned on the leaf level of t2. The scan on the inner table 
remains positioned on the leaf page as rows are returned until the 
next duplicate value in the outer table requires the scan to restart 
from the root page.

This formula gives the cost of the scan of the inner table for a merge join:

Cost of scan of inner = Num duplicate values * (index height + scan size) 
+ Num unique values * scan size



Access methods and costing for sort-merge joins 

538  Adaptive Server Enterprise

The scan size is the number of pages of the inner table that need to be read 
for each value in the outer table. For tables where multiple inner rows 
match, the scan size is the average number of pages that need to be read 
for each outer row.

Costing sorts
Sort cost during sort-merge joins depends on:

• The size of the worktables, which depends on the number of columns 
and rows selected

• The setting for the number of sort buffers configuration parameter, 
which determines how many pages of the cache can be used

These variables affect the number of merge runs required to sort the 
worktable.

Worktable size for sort-merge joins

When a worktable is created for a merge join that requires a sort, only the 
columns that are needed for the result set and for later joins in the query 
execution are selected into the worktable. When the worktable for the titles 
table is created for the join shown in Figure 23-5 on page 534:

• Worktable1 includes the price and authors.state, because they are part 
of the result set, and pub_id, because it is needed for a subsequent join.

• Worktable2 includes the publishers.state column because it is part of 
the result set, and the pub_id, because it is needed for the merge step.

The type column is used as a search argument while the rows from titles 
are selected, but since it is not used later in the query or in the result set, it 
is not included in the worktable.

Each sort performed for a merge join can use up to number of sort buffers 
for intermediate sort steps. Sort buffers for worktable sorts are allocated 
from the cache used by tempdb. If the number of pages to be sorted is less 
the number of sort buffers, then the number of buffers reserved for the sort 
is the number of pages in the worktable.



CHAPTER 23    Accessing Methods and Costing for Joins and Subqueries

Performance & Tuning Guide 539

When merge joins cannot be used
Merge joins are not used:

• For joins using <, >, <=, >=, or != on the join columns.

• For outer joins, that is, queries using *= or =*, and left join and right join.

• For queries that include a text or image column or Java object columns 
in the select list or in a where clause. 

• For subqueries that are not flattened or materialized in parallel 
queries.

• For multitable updates and deletes, such as:

update R set a = 5
    from R, S, T
    where ...

• For joins to perform referential integrity checks for insert, update, and 
delete commands. These joins are generated internally to check for 
the existence of the column values. They usually involve joins that 
return a single value from the referenced table. Often, these joins are 
supported by indexes. There would be no benefit from using a merge 
join for constraint checks.

• When the number of bytes in a row for a worktable would exceed the 
page-size limit (1960 bytes of user data) or the limit on the number of 
columns (1024). If the select list and required join columns for a join 
would create a worktable that exceeds either of these limits, the 
optimizer does not consider performing a merge join at that point in 
the query plan.

• When the use of worktables for a merge join would require more than 
the maximum allowable number of worktables for a query (14).

There are some limits on where merge joins can be used in the join order:

• Merge joins can be performed only before an existence join. Some 
distinct queries are turned into existence joins, and merge joins are not 
used for these.

• Full-merge joins and left-merge joins can be performed only on the 
outermost tables in the join order.



Access methods and costing for sort-merge joins 

540  Adaptive Server Enterprise

Use of worker processes
When parallel processing is enabled, merge joins can use multiple worker 
processes to perform:

• The scan that selects rows into the worktables

• Worktable sort operations

• The merge join and subsequent joins in the step

See “Parallel range-based scans” on page 596 for more information.

Recommendations for improved merge performance
Here are some suggestions for improving sort-merge join performance:

• To reduce the size of worktables select only needed columns for tables 
used in merge joins. Avoid using select * unless you need all columns 
of the tables. This reduces the load on tempdb and the cost of sorting 
the result tables. 

• If you are concerned about possible performance impacts of merge 
joins or possible space problems in tempdb, see Chapter 29, 
“Introduction to Abstract Plans,” for a discussion of how abstract 
query plans can help determine which queries on your system use 
merge joins.

• Look for opportunities for index covering. One example is queries 
where joins are in the form:

select t1.c3, t3.c4
from t1, t2, t3
wehre t1.c1 = t2.c1 and t2.c2 = t3.c2
and ...

and columns from t2 are not in the select list, or only the join columns 
are in the select list. An index on the join columns, t2(c1, c2) covers 
the query, allowing a merge join to avoid accessing the data pages of 
t2. 

• Merge joins can use indexes created in ascending or descending order 
when two tables are joined on multiple columns, such as these:

A.c1 = B.c1 and A.c2 = B.c2 and A.c3 = B.c3



CHAPTER 23    Accessing Methods and Costing for Joins and Subqueries

Performance & Tuning Guide 541

The column order specified for the indexes must be an exact match, 
or exactly the reverse, for all columns to be used as join predicates 
when costing the join and accessing the data. If there is a mismatch of 
ordering in second or subsequent columns, only the matching 
columns are used for the join, and the remaining columns are used to 
restrict the results after the row has been retrieved. This table shows 
some examples for the query above:

Index key ordering is generally chosen to eliminate sort costs for order 
by queries. Using compatible ordering for frequently joined tables can 
also reduce join costs.

Enabling and disabling merge joins
You can enable and disable merge joins at the server and session level 
using set sort_merge, or at the server level with the configuration 
parameter enable sort-merge joins and JTC. This configuration parameter 
also enables and disables join transitive closure.

Index creation order
Clauses used as join 
predicates

A(c1 asc, c2 asc, c3 asc)
B(c1 asc, c2 asc, c3 asc)

All three clauses. 

A(c1 asc, c2 asc, c3 asc)
B(c1 desc, c2 desc, c3 desc)

All three clauses. 

A(c1 asc, c2 asc, c3 asc)
B(c1 desc, c2 desc, c3 asc)

The first two join clauses are used as 
join predicates and the third clause is 
evaluated as a restriction on the 
result. 

A1(c1 asc, c2 desc, c3 desc)
B1(c1 desc, c2 desc, c3 asc)

Only the first join clause is used as a 
join predicate. The remaining two 
clauses is evaluated as restrictions on 
the result set. 



Reformatting strategy 

542  Adaptive Server Enterprise

At the server level
To enable merge joins server-wide, set enable sort-merge joins and JTC to 
1. The default value is 0, which means that merge joins are not considered. 
When this value is set to 1, merge joins and join transitive closure are 
considered for equijoins. If merge joins are disabled at the server level, 
they can be enabled for a session with set sort_merge.

Join transitive closure can be enabled independently at the session level 
with set jtc on. 

See “Enabling and disabling join transitive closure” on page 468.

The configuration parameter is dynamic, and can be reset without 
restarting the server.

At the session level
To enable merge joins for a session, use:

set sort_merge on

To disable merge joins during a session, use:

set sort_merge off

The session setting has precedence over the server-wide setting; you can 
use merge joins in a session or stored procedure even if they are disabled 
at the server-wide level.

Reformatting strategy
When a table is large and has no useful index for a join, the optimizer 
considers a sort merge join, and also considers creating and sorting a 
worktable, and using a nested-loop join.

The process of generating a worktable with a clustered index and 
performing a nested-loop join is known as reformatting.



CHAPTER 23    Accessing Methods and Costing for Joins and Subqueries

Performance & Tuning Guide 543

Like a sort-merge join, reformatting scans the tables and copies qualifying 
rows to a worktable. But instead of the sort and merge used for a merge 
join, Adaptive Server creates a temporary clustered index on the join 
column for the inner table. In some cases, creating and using the clustered 
index is cheaper than a sort-merge join.

The steps in the reformatting strategy are:

• Creating a worktable

• Inserting the needed columns from the qualifying rows

• Creating a clustered index on the join columns of the worktable 

• Using the clustered index in the join to retrieve the qualifying rows 
from each table

The main cost of the reformatting strategy is the time and I/O necessary to 
create the worktable and to build the clustered index on the worktable. 
Adaptive Server uses reformatting only when the reformatting cost is less 
than the cost of a merge join or repeated table scans.

A showplan message indicates when Adaptive Server is using the 
reformatting strategy and includes other messages showing the steps used 
to build the worktables. 

See “Reformatting Message” on page 841.

Subquery optimization
Subqueries use the following optimizations to improve performance:

• Flattening – converting the subquery to a join

• Materializing – storing the subquery results in a worktable

• Short circuiting – placing the subquery last in the execution order

• Caching subquery results – recording the results of executions

The following sections explain these strategies.

 See “showplan messages for subqueries” on page 851 for an explanation 
of the showplan messages for subquery processing.



Subquery optimization 

544  Adaptive Server Enterprise

Flattening in, any, and exists subqueries
Adaptive Server can flatten some quantified predicate subqueries to a join. 
Quantified predicate subqueries are introduced with in, any, or exists. Each 
result row in the outer query is returned once, and only once, if the 
subquery condition evaluates to TRUE. 

When flattening can be done

• For any level of nesting of subqueries, for example:

select au_lname, au_fname 
from authors 
where au_id in 
   (select au_id 
    from titleauthor 
    where title_id in 
       (select title_id 
        from titles 
        where type = "popular_comp") )

• For multiple subqueries in the outer query, for example:

select title, type 
from titles 
where title in 
   (select title 
    from titles, titleauthor, authors 
    where titles.title_id = titleauthor.title_id 
    and titleauthor.au_id = authors.au_id 
    and authors.state = "CA") 
and title in 
   (select title 
    from titles, publishers 
    where titles.pub_id = publishers.pub_id 
    and publishers.state = "CA") 

Exceptions to flattening

A subquery introduced with in, any, or exists cannot be flattened if one of 
the following is true:

• The subquery is correlated and contains one or more aggregates.

• The subquery is in the select list or in the set clause of an update 
statement.



CHAPTER 23    Accessing Methods and Costing for Joins and Subqueries

Performance & Tuning Guide 545

• The subquery is connected to the outer query with or.

• The subquery is part of an isnull predicate.

• The subquery is the outermost subquery in a case expression.

If the subquery computes a scalar aggregate, materialization rather than 
flattening is used. 

See “Materializing subquery results” on page 549.

Flattening methods

Adaptive Server uses one of these flattening methods to resolve a 
quantified predicate subquery using a join:

• A regular join – if the uniqueness conditions in the subquery mean 
that it returns a unique set of values, the subquery can be flattened to 
use a regular join.

• An existence join, also known as a semi-join – instead of scanning a 
table to return all matching values, an existence join returns TRUE 
when it finds the first matching value and then stops processing. If no 
matching value is found, it returns FALSE.

• A unique reformat – the subquery result set is selected into a 
worktable, sorted to remove duplicates, and a clustered index is built 
on the worktable. The clustered index is used to perform a regular 
join.

• A duplicate elimination sort optimization – the subquery is flattened 
into a regular join that selects the results into a worktable, then the 
worktable is sorted to remove duplicate rows

Join order and flattening methods

A major factor in the choice of flattening method depends on the cost of 
the possible join orders. For example, in a join of t1, t2, and t3:

select * from t1, t2
where t1.c1 = t2.c1
and t2.c2 in (select c3 from t3)

If the cheapest join order is t1, t2, t3 or t2, t1, t3, a regular joinor or an 
existence join is used. However, if it is cheaper to perform the join with t3 
as the outer table, say, t3, t1, t2, a unique reformat or duplicate elimination 
sort is used.



Subquery optimization 

546  Adaptive Server Enterprise

The resulting flattened join can include nested-loop joins or merge joins. 
When an existence join is used, merge joins can be performed only before 
the existence join. 

Flattened subqueries executed as regular joins

Quantified predicate subqueries can be executed as normal joins when the 
result set of the subquery is a set of unique values. For example, if there is 
a unique index on publishers.pub_id, this single-table subquery is 
guaranteed to return a set of unique values:

select title
from titles
where pub_id in (select pub_id
    from publishers
    where state = "TX")

With a nonunique index on publishers.city, this query can also be executed 
using a regular join:

select au_lname 
from authors a 
where exists (select city 
        from publishers p where p.city = a.city)

Although the index on publishers.city is not unique, the join can still be 
flattened to a normal join if the index is used to filter duplicate rows from 
the query.

When a subquery is flattened to a normal join, showplan output shows a 
normal join. If filtering is used, showplan output is not different; the only 
diagnostic message is in dbcc traceon(310) output, where the method for 
the table indicates “NESTED ITERATION with Tuple Filtering.”

Flattened subqueries executed as existence joins

All in, any, and exists queries test for the existence of qualifying values and 
return TRUE as soon as a matching row is found.

The optimizer converts the following subquery to an existence join:

select title 
    from titles
    where title_id in 
        (select title_id 
         from titleauthor)
    and title like "A Tutorial%"



CHAPTER 23    Accessing Methods and Costing for Joins and Subqueries

Performance & Tuning Guide 547

The existence join query looks like the following ordinary join, although 
it does not return the same results:

select title 
    from titles T, titleauthor TA
    where T.title_id = TA.title_id
        and title like "A Tutorial%"

In the pubtune database, two books match the search string on title. Each 
book has multiple authors, so it has multiple entries in titleauthor. A regular 
join returns five rows, but the subquery returns only two rows, one for each 
title_id, since it stops execution of the join at the first matching row.

When subqueries are flattened to use existence joins, the showplan output 
shows output for a join, with the message “EXISTS TABLE: nested 
iteration” as the join type for the table in the subquery. 

Flattened subqueries executed using unique reformatting

To perform unique reformatting, Adaptive Server:

• Selects rows into a worktable and sorts the worktable, removing 
duplicates and creating a clustered index on the join key.

• Joins the worktable with the next table in the join order. If there is a 
nonunique index on publishers.pub_id, this query can use a unique 
reformat strategy:

select title_id 
from titles 
where pub_id in
(select pub_id from publishers where state = 
"TX")

This query is executed as:

select pub_id 
into #publishers 
from publishers 
where state = "TX"

And after the sort removes duplicates and creates the clustered index:

select title_id 
from titles, #publishers
where titles.pub_id = #publishers.pub_id



Subquery optimization 

548  Adaptive Server Enterprise

showplan messages for unique reformatting show “Worktable created for 
REFORMATTING” in Step 1, and “Using Clustered Index” on the 
worktable in Step 2. 

dbcc traceon(310) displays “REFORMATTING with Unique 
Reformatting” for the method for the publishers table.

Flattened subqueries using duplicate elimination

When it is cheaper to place the subquery tables as outer tables in the join 
order, the query is executed by:

• Performing a regular join with the subquery flattened into the outer 
query, placing results in a worktable.

• Sorting the worktable to remove duplicates.

For example, salesdetail has duplicate values for title_id, and it is used in 
this subquery:

select  title_id, au_id, au_ord
from titleauthor ta
where title_id in (select ta.title_id 
    from titles t, salesdetail sd
    where t.title_id = sd.title_id
    and ta.title_id = t.title_id
    and type = ’travel’ and qty > 10)

If the best join order for this query is salesdetail, titles, titleauthor, the 
optimal join order can be used by:

• Selecting all of the query results into a worktable

• Removing the duplicates from the worktable and returning the results 
to the user

showplan Messages for Flattened Subqueries Performing Sorts

showplan output includes two steps for subqueries that use normal joins 
plus a sort. The first step shows “Worktable1 created for DISTINCT” and 
the flattened join. The second step shows the sort and select from the 
worktable. 

dbcc traceon(310) prints a message for each join permutation when a table 
or tables from a quantified predicate subquery is placed first in the join 
order. Here is the output when the join order used for the query above is 
considered:

2 - 0 - 1 -



CHAPTER 23    Accessing Methods and Costing for Joins and Subqueries

Performance & Tuning Guide 549

This join order created while converting an exists 
join to a regular join, which can happen for 
subqueries, referential integrity, and select 
distinct.

Flattening expression subqueries
Expression subqueries are included in a query’s select list or that are 
introduced by >, >=, <, <=, =, or !=. Adaptive Server converts, or flattens, 
expression subqueries to equijoins if:

• The subquery joins on unique columns or returns unique columns, and 

• There is a unique index on the columns.

Materializing subquery results
In some cases, a subquery is processed in two steps: the results from the 
inner query are materialized, or stored in a temporary worktable or internal 
variable, before the outer query is executed. The subquery is executed in 
one step, and the results of this execution are stored and then used in a 
second step. Adaptive Server materializes these types of subqueries:

• Noncorrelated expression subqueries

• Quantified predicate subqueries containing aggregates where the 
having clause includes the correlation condition

Noncorrelated expression subqueries

Noncorrelated expression subqueries must return a single value. When a 
subquery is not correlated, it returns the same value, regardless of the row 
being processed in the outer query. The query is executed by:

• Executing the subquery and storing the result in an internal variable.

• Substituting the result value for the subquery in the outer query.

The following query contains a noncorrelated expression subquery:

select title_id
from titles
where total_sales = (select max(total_sales)



Subquery optimization 

550  Adaptive Server Enterprise

                    from ts_temp)

Adaptive Server transforms the query to:

select <internal_variable> = max(total_sales)
    from ts_temp
select title_id
    from titles
    where total_sales = <internal_variable>

The search clause in the second step of this transformation can be 
optimized. If there is an index on total_sales, the query can use it. The total 
cost of a materialized expression subquery is the sum of the cost of the two 
separate queries. 

Quantified predicate subqueries containing aggregates

Some subqueries that contain vector (grouped) aggregates can be 
materialized. These are:

• Noncorrelated quantified predicate subqueries

• Correlated quantified predicate subqueries correlated only in the 
having clause 

The materialization of the subquery results in these two steps:

• Adaptive Server executes the subquery first and stores the results in a 
worktable.

• Adaptive Server joins the outer table to the worktable as an existence 
join. In most cases, this join cannot be optimized because statistics for 
the worktable are not available.

Materialization saves the cost of evaluating the aggregates once for each 
row in the table. For example, this query:

select title_id
from titles
where total_sales in (select max(total_sales)
                     from titles
                     group by type)

Executes in these steps:

select maxsales = max(total_sales)
    into #work
    from titles
    group by type
select title_id



CHAPTER 23    Accessing Methods and Costing for Joins and Subqueries

Performance & Tuning Guide 551

    from titles, #work
    where total_sales = maxsales

The total cost of executing quantified predicate subqueries is the sum of 
the query costs for the two steps.

When there are where clauses in addition to a subquery, Adaptive Server 
executes the subquery or subqueries last to avoid unnecessary executions 
of the subqueries. Depending on the clauses in the query, it is often 
possible to avoid executing the subquery because less expensive clauses 
can determine whether the row is to be returned:

• If any and clauses evaluate to FALSE, the row will not be returned.

• If any or clauses evaluate to TRUE, the row will be returned.

In both cases, as soon as the status of the row is determined by the 
evaluation of one clause, no other clauses need to be applied to that row. 
This provides a performance improvement, because expensive subqueries 
need to be executed less often.

Subquery introduced with an and clause
When and joins the clauses, evaluation stops as soon as any clause 
evaluates to FALSE. The row is skipped.

This query contains two and clauses, in addition to the correlated 
subquery:

select au_fname, au_lname, title, royaltyper
from titles t, authors a, titleauthor ta
where t.title_id = ta.title_id
and a.au_id = ta.au_id
and advance >= (select avg(advance) 
                        from titles t2 
                        where t2.type = t.type)
and price > $100
and au_ord = 1

Adaptive Server orders the execution steps to evaluate the subquery last, 
after it evaluates the conditions on price and au_ord. If a row does not meet 
an and condition, Adaptive Server discards the row without checking any 
more and conditions and begins to evaluate the next row, so the subquery 
is not processed unless the row meets all of the and conditions.



Subquery optimization 

552  Adaptive Server Enterprise

Subquery introduced with an or clause
If a query’s where conditions are connected by or, evaluation stops when 
any clause evaluates to TRUE, and the row is returned.

This query contains two or clauses in addition to the subquery:

select au_fname, au_lname, title
from titles t, authors a, titleauthor ta
where t.title_id = ta.title_id
and a.au_id = ta.au_id
and (advance > (select avg(advance) 
                    from titles t2
                    where t.type = t2.type)
or title = "Best laid plans"
or price > $100)

Adaptive Server orders the conditions in the query plan to evaluate the 
subquery last. If a row meets the condition of the or clause, Adaptive 
Server returns the row without executing the subquery, and proceeds to 
evaluate the next row. 

Subquery results caching
When it cannot flatten or materialize a subquery, Adaptive Server uses an 
in-memory cache to store the results of each evaluation of the subquery. 
While the query runs, Adaptive Server tracks the number of times a 
needed subquery result is found in cache. This is called a cache hit ratio. 
If the cache hit ratio is high, it means that the cache is reducing the number 
of times that the subquery executes. If the cache hit ratio is low, the cache 
is not useful, and it is reduced in size as the query runs.

Caching the subquery results improves performance when there are 
duplicate values in the join columns or the correlation columns. It is even 
more effective when the values are ordered, as in a query that uses an 
index. Caching does not help performance when there are no duplicate 
correlation values.

Displaying subquery cache information

The set statistics subquerycache on command displays the number of cache 
hits and misses and the number of rows in the cache for each subquery. The 
following example shows subquery cache statistics: 

set statistics subquerycache on



CHAPTER 23    Accessing Methods and Costing for Joins and Subqueries

Performance & Tuning Guide 553

select type, title_id
from titles
where price > all
    (select price
        from titles
        where advance < 15000)
Statement: 1  Subquery: 1  cache size: 75  hits: 4925  
misses: 75

If the statement includes subqueries on either side of a union, the 
subqueries are numbered sequentially through both sides of the union. 

Optimizing subqueries
When queries containing subqueries are not flattened or materialized:

• The outer query and each unflattened subquery are optimized one at a 
time.

• The innermost subqueries (the most deeply nested) are optimized 
first.

• The estimated buffer cache usage for each subquery is propagated 
outward to help evaluate the I/O cost and strategy of the outer queries.

In many queries that contain subqueries, a subquery is “nested over” to 
one of the outer table scans by a two-step process. First, the optimizer finds 
the point in the join order where all the correlation columns are available. 
Then, the optimizer searches from that point to find the table access that 
qualifies the fewest rows and attaches the subquery to that table. The 
subquery is then executed for each qualifying row from the table it is 
nested over.



or clauses versus unions in joins 

554  Adaptive Server Enterprise

or clauses versus unions in joins
Adaptive Server cannot optimize join clauses that are linked with or and it 
may perform Cartesian products to process the query. 

Note  Adaptive Server optimizes search arguments that are linked with or. 
This description applies only to join clauses.

For example, when Adaptive Server processes this query, it must look at 
every row in one of the tables for each row in the other table:

select * 
    from tab1, tab2
    where tab1.a = tab2.b
        or tab1.x = tab2.y

If you use union, each side of the union is optimized separately:

    select * 
        from tab1, tab2
        where tab1.a = tab2.b
union all
    select * 
        from tab1, tab2
        where tab1.x = tab2.y

You can use union instead of union all to eliminate duplicates, but this 
eliminates all duplicates. You may not get exactly the same set of 
duplicates from the rewritten query.

Adaptive Server can optimize selects with joins that are linked with union. 
The result of or is somewhat like the result of union, except for the 
treatment of duplicate rows and empty tables:

• union removes all duplicate rows (in a sort step); union all does not 
remove any duplicates. The comparable query using or might return 
some duplicates.

• A join with an empty table returns no rows.



Performance & Tuning Guide 555

C H A P T E R  2 4 Parallel Query Processing

This chapter introduces basic concepts and terminology needed for 
parallel query optimization, parallel sorting, and other parallel query 
topics, and provides an overview of the commands for working with 
parallel queries.

Other chapters that cover specific parallel processing topics in more depth 
include:

• For details on how the Adaptive Server optimizer determines 
eligibility and costing for parallel execution, see Chapter 25, 
“Parallel Query Optimization.” 

• To understand parallel sorting topics, see Chapter 26, “Parallel 
Sorting.” 

• For information on object placement for parallel performance, see 
“Partitioning tables for performance” on page 83.

• For information about locking behavior during parallel query 
processing, see System Administration Guide

• For information on showplan messages, see “showplan messages for 
parallel queries” on page 846.

• To understand how Adaptive Server uses multiple engines, see 
Chapter 3, “Using Engines and CPUs.”

Topic Page
Types of queries that can benefit from parallel processing 556

Adaptive Server’s worker process model 557

Types of parallel data access 561

Controlling the degree of parallelism 566

Commands for working with partitioned tables 572

Balancing resources and performance 575

Guidelines for parallel query configuration 576

System level impacts 581

When parallel query results can differ 583



Types of queries that can benefit from parallel processing 

556  Adaptive Server Enterprise

Types of queries that can benefit from parallel 
processing

When Adaptive Server is configured for parallel query processing, the 
optimizer evaluates each query to determine whether it is eligible for 
parallel execution. If it is eligible, and if the optimizer determines that a 
parallel query plan can deliver results faster than a serial plan, the query is 
divided into components that are processed simultaneously. The results are 
combined and delivered to the client in a shorter period of time than it 
would take to process the query serially as a single component.

Parallel query processing can improve the performance of the following 
types of queries:

• select statements that scan large numbers of pages but return 
relatively few rows, such as:

• Table scans or clustered index scans with grouped or ungrouped 
aggregates

• Table scans or clustered index scans that scan a large number of 
pages, but have where clauses that return only a small percentage 
of the rows

• select statements that include union, order by, or distinct, since these 
queries can populate worktables in parallel, and can make use of 
parallel sorting

• select statements that use merge joins can use parallel processing for 
scanning tables and for performing the sort and merge steps

• select statements where the reformatting strategy is chosen by the 
optimizer, since these can populate worktables in parallel, and can 
make use of parallel sorting

• create index statements, and the alter table...add constraint clauses that 
create indexes, unique and primary key 

• The dbcc checkstorage command

Join queries can use parallel processing on one or more tables.

Commands that return large, unsorted result sets are unlikely to benefit 
from parallel processing due to network constraints—in most cases, 
results can be returned from the database faster than they can be merged 
and returned to the client over the network.



CHAPTER 24    Parallel Query Processing

Performance & Tuning Guide 557

Commands that modify data (insert, update, and delete), and cursors do not 
run in parallel. The inner, nested blocks of queries containing subqueries 
are never executed in parallel, but the outer block can be executed in 
parallel.

Decision support system (DSS) queries that access huge tables and return 
summary information benefit the most from parallel query processing. The 
overhead of allocating and managing parallel queries makes parallel 
execution less effective for online transaction processing (OLTP) queries, 
which generally access fewer rows and join fewer tables. When a server is 
configured for parallel processing, only queries that access 20 data pages 
or more are considered for parallel processing, so most OLTP queries run 
in serial. 

Adaptive Server’s worker process model
Adaptive Server uses a coordinating process and multiple worker 
processes to execute queries in parallel. A query that runs in parallel with 
eight worker processes is much like eight serial queries accessing one-
eighth of the table, with the coordinating process supervising the 
interaction and managing the process of returning results to the client. 
Each worker process uses approximately the same amount of memory as 
a user connection. Each worker process runs as a task that must be 
scheduled on an engine, scans data pages, queues disk I/Os, and performs 
in many ways like any other task on the server. One major difference is that 
in last phase of query processing, the coordinating process manages 
merging the results and returning them to the client, coordinating with 
worker processes.

Figure 24-1 shows the events that take place during parallel query 
processing:

1 The client submits a query.

2 The client task assigned to execute the query becomes the 
coordinating process for parallel query execution.

3 The coordinating process requests four worker processes from the 
pool of worker processes. The coordinating process together with the 
worker processes is called a family.

4 The worker processes execute the query in parallel. 



Adaptive Server’s worker process model 

558  Adaptive Server Enterprise

5 The coordinating process returns the results produced by all the 
worker processes.

The serial client shown in the lower-right corner of Figure 24-1 submits a 
query that is processed serially.

Figure 24-1: Worker process model

During query processing, the tasks are tracked in the system tables by a 
family ID (fid). Each worker process for a family has the same family ID 
and its own unique server process ID (spid). System procedures such as 
sp_who and sp_lock display both the fid and the spid for parallel queries, 
allowing you to observe the behavior of all processes in a family.

Query

1. Parallel client

Adaptive Server

4. Worker processes

5. Results returned

2. 
Clie

nt 
tas

k b
ec

om
es

3. Request for
worker 
processes

 Pool of worker processes

scan the table in
parallel

co
or

din
ati

ng
 pr

oc
es

s

Serial client

Task 1 Query

Result



CHAPTER 24    Parallel Query Processing

Performance & Tuning Guide 559

Parallel query execution
Figure 24-2 shows how parallel query processing reduces response time 
over the same query running in serial. In parallel execution, three worker 
processes scan the data pages. The times required by each worker process 
may vary, depending on the amount of data that each process needs to 
access. Also, a scan can be temporarily blocked due to locks on data pages 
held by other users. When all of the data has been read, the results from 
each worker process are merged into a single result set by the coordinating 
process and returned to the client.

Figure 24-2: Relative execution times for serial and parallel query 
execution

The total amount of work performed by the query running in parallel is 
greater than the amount of work performed by the query running in serial, 
but the response time is shorter.

Merge and Parse,
optimize,
compile

Data access

Serial execution 
of a group by query

time

Return 
results

Parse,
optimize,
compile

Data access

return results

Parallel 
execution of the 
same query with 
3 worker 
processes

Coordinating process

Worker process

Worker process

Worker process



Adaptive Server’s worker process model 

560  Adaptive Server Enterprise

Returning results from parallel queries
Results from parallel queries are returned through one of three merge 
strategies, or as the final step in a sort. Parallel queries that do not have a 
final sort step use one of these merge types:

• Queries that contain a vector (grouped) aggregate use worktables to 
store temporary results; the coordinating process merges the results 
into one worktable and returns results to the client.

• Queries that contain a scalar (ungrouped) aggregate use internal 
variables, and the coordinating process performs the final 
computations to return the results to the client.

• Queries that do not contain aggregates and that do not use clauses that 
do not require a final sort can return results to the client as the tables 
are being scanned. Each worker process stores results in a result 
buffer and uses address locks to coordinate transferring the results to 
the network buffers for the task.

More than one merge type can be used when queries require several steps 
or multiple worktables.

See “showplan messages for parallel queries” on page 846 for more 
information on merge messages.

For parallel queries that include an order by clause, distinct, or union, 
results are stored in a worktable in tempdb, then sorted. If the sort can 
benefit from parallel sorting, a parallel sort is used, and results are returned 
to the client during the final merge step performed by the sort.

For more information on how parallel sorts are performed, see Chapter 26, 
“Parallel Sorting.”

Note  Since parallel queries use multiple processes to scan data pages, 
queries that do not use aggregates and do not include a final sort step may 
return results in different order than serial queries and may return different 
results for queries with set rowcount in effect and for queries that select 
into a local variable. 

For details and solutions, see “When parallel query results can differ” on 
page 583.



CHAPTER 24    Parallel Query Processing

Performance & Tuning Guide 561

Types of parallel data access
Adaptive Server accesses data in parallel in different ways, depending 
configuration parameter settings, table partitioning, and the availability of 
indexes. The optimizer may choose a mix of serial and parallel methods 
for queries that involve multiple tables or multiple steps. Parallel methods 
include:

• Hash-based table scans

• Hash-based nonclustered index scans

• Partition-based scans, either full table scans or scans positioned with 
a clustered index

• Range-based scans during merge joins

The following sections describe some of the methods. 

For more examples, see Chapter 25, “Parallel Query Optimization.”

Figure 24-3 shows a scan on an allpages-locked table executed in serial by 
a single task. The task follows the table’s page chain to read each page, 
stopping to perform physical I/O when needed pages are not in the cache. 

Figure 24-3: A serial task scans data pages

 7T1

Single page chain



Types of parallel data access 

562  Adaptive Server Enterprise

Hash-based table scans
Figure 24-4 shows how three worker processes divide the work of 
accessing data pages from an allpages-locked table during a hash-based 
table scan. Each worker process performs a logical I/O on every page, but 
each process examines rows on only one-third of the pages, as indicated 
by the differently shaded pages. Hash-based table scans are used only for 
the outer query in a join.

With only one engine, the query still benefits from parallel access because 
one worker process can execute while others wait for I/O. If there are 
multiple engines, some of the worker processes could be running 
simultaneously. 

Figure 24-4: Worker processes scan an unpartitioned table

Hash-based table scans increase the logical I/O for the scan, since each 
worker process must access each page to hash on the page ID. For data-
only-locked tables, hash-based table scans hash either on the extent ID or 
the allocation page ID, so that only a single worker process scans a page, 
and logical I/O does not increase.

Multiple worker processes

WP2
WP3

Single Page ChainWP1



CHAPTER 24    Parallel Query Processing

Performance & Tuning Guide 563

Partition-based scans
Figure 24-5 shows how a query scans a table that has three partitions on 
three physical disks. With a single engine, this query can benefit from 
parallel processing because one worker process can execute while others 
sleep waiting for I/O or waiting for locks held by other processes to be 
released. If multiple engines are available, the worker processes can run 
simultaneously. This configuration can yield high parallel performance by 
providing I/O parallelism. 

Figure 24-5: Multiple worker processes access multiple partitions

Hash-based index scans
Figure 24-6 shows a hash-based index scan. Hash-based index scans can 
be performed using nonclustered indexes or clustered indexes on data-
only-locked tables. Each worker process navigates higher levels of the 
index and reads the leaf-level pages of the index. Each worker process 
then hashes on either the data page ID or the key value to determine which 
data pages or data rows to process. Reading every leaf page produces 
negligible overhead. 

data_dev1 data_dev2 data_dev3

 7WP1 WP2 WP3

Table on 3 
partitions 



Types of parallel data access 

564  Adaptive Server Enterprise

Figure 24-6: Hash-based, nonclustered index scan

Parallel processing for two tables in a join
Figure 24-7 shows a nested-loop join query performing a partition-based 
scan on a table with three partitions, and a hash-based index scan, with two 
worker processes on the second table. When parallel access methods are 
used on more than one table in a nested-loop join, the total number of 
worker processes required is the product of worker process for each scan. 
In this case, six workers perform the query, with each worker process 
scanning both tables. Two worker processes scan each partition in the first 
table, and all six worker processes navigate the index tree for the second 
table and scan the leaf pages. Each worker process accesses the data pages 
that correspond to its hash value.

The optimizer chooses a parallel plan for a table only when a scan returns 
20 pages or more. These types of join queries require 20 or more matches 
on the join key for the inner table in order for the inner scan to be 
optimized in parallel. 

Index Pages

Data Pages

WP2 WP3 7WP1

Pages read by worker process 1

Pages read by worker process 2

Pages read by worker process 3



CHAPTER 24    Parallel Query Processing

Performance & Tuning Guide 565

Figure 24-7: Join query using different parallel access methods on 
each table

showplan messages
showplan prints the degree of parallelism each time a table is accessed in 
parallel. The following example shows the messages for each table in the 
join in Figure 24-7:

data_dev1 data_dev2 data_dev3

 7WP1 WP2 WP3

Index Pages

Data Pages

 7WP4 WP5 WP6

Table1: 
Partitioned table 
on 3 devices

Table2: 
Nonclustered index 
with more than 20 
matching rows for 
each join key



Controlling the degree of parallelism 

566  Adaptive Server Enterprise

Executed in parallel with a 2-way hash scan.
Executed in parallel with a 3-way partition scan.

showplan also prints a message showing the total number of worker 
processes used. For the query shown in Figure 24-7, it reports:

Executed in parallel by coordinating process and 6 
worker processes.

See “showplan messages for parallel queries” on page 846 for more 
information and Chapter 25, “Parallel Query Optimization,” for 
additional examples.

Controlling the degree of parallelism
A parallel query’s degree of parallelism is the number of worker 
processes used to execute the query. This number depends on several 
factors, including:

• The values to which of the parallel configuration parameters or the 
session-level limits,

(see Table 24-1 and Table 24-2)

• The number of partitions on a table (for partition-based scans)

• The level of parallelism suggested by the optimizer

• The number of worker processes that are available at the time the 
query executes. 

You can establish limits on the degree of parallelism:

• Server-wide – using sp_configure with parameters shown in Table 24-
1. Only a System Administrator can use sp_configure.

• For a session – using set with the parameters shown in Table 24-2. All 
users can run set; it can also be included in stored procedures.

• In a select query – using the parallel clause, as shown in “Controlling 
parallelism for a query” on page 570.



CHAPTER 24    Parallel Query Processing

Performance & Tuning Guide 567

Configuration parameters for controlling parallelism
The configuration parameters that give you control over the degree of 
parallelism server-wide are shown in Table 24-1. 

Table 24-1: Configuration parameters for parallel execution

Configuring number of worker processes affects the size of the data and 
procedure cache, so you may want to change the value of total memory 
also. 

For more information see the System Administration Guide.

When you change max parallel degree or max scan parallel degree, all 
query plans in cache are invalidated, so the next execution of any stored 
procedure or trigger recompiles the plan and uses the new values.

How limits apply to query plans

When queries are optimized, the configuration parameters affect query 
plans.

• max parallel degree limits:

• The number of worker processes for a partition-based scan

• The total combined number of worker processes for nested-loop 
join queries, where parallel access methods are used on more 
than one table

• The number of worker processes used for the merge and sort 
steps in merge joins

• The number of worker processes that can be used by parallel sort 
operations

Parameter Explanation Comment

number of worker processes The maximum number of worker processes available for 
all parallel queries. Each worker process requires 
approximately as much memory as a user connection.

Restart of server 
required

max parallel degree The number of worker processes that can be used by a 
single query. It must be equal to or less than number of 
worker processes and equal to or greater than max scan 
parallel degree.

Dynamic, no 
restart required

max scan parallel degree The maximum number of worker processes that can be 
used for a hash scan. It must be equal to or less than 
number of worker processes and max parallel degree.

Dynamic, no 
restart required



Controlling the degree of parallelism 

568  Adaptive Server Enterprise

• max scan parallel degree limits the number of worker processes for 
hash-based table scans and index scans.

How the limits work in combination

You might configure number of worker processes to 50 to allow multiple 
parallel queries to operate at the same time. If the table with the largest 
number of partitions has 10 partitions, you might set max parallel degree to 
10, limiting all select queries to a maximum of 10 worker processes. Since 
hash-based scans operate best with 2–3 worker processes, max scan 
parallel degree could be set to 3. 

For a single-table query, or a join involving serial access on other tables, 
some of the parallel possibilities allowed by these values are:

• Parallel partition scans on any tables with 2–10 partitions 

• Hash-based table scans with up to 3 worker processes 

• Hash-based nonclustered index scans on tables with nonclustered 
indexes, with up to 3 worker processes

For nested-loop joins where parallel methods are used on more than one 
table, some possible parallel choices are:

• Joins using a hash-based scan on one table and partitioned-based 
scans on tables with 2 or 3 partitions

• Joins using partition- based scans on both tables. For example:

• A parallel degree of 3 for a partitioned table multiplied by max 
scan parallel degree of 3 for a hash-based scan requires 9 worker 
processes. 

• A table with 2 partitions and a table with 5 partitions requires 10 
worker processes for partition-based scans on both tables.

• Tables with 4–10 partitions can be involved in a join, with one or 
more tables accessed in serial.

For merge joins:

• For a full-merge join, 10 worker processes scan the base tables (unless 
these are fewer than 10 distinct values on the join keys); the number 
of partitions on the tables is not considered.

• For a merge join that scans a table and selects rows into a worktable:



CHAPTER 24    Parallel Query Processing

Performance & Tuning Guide 569

• The scan that precedes the merge join may be performed in serial 
or in parallel. The degree of parallelism is determined in the usual 
way for such a query.

• For the merge, 10 worker processes are used unless there are 
fewer distinct values in the join key.

• For the sort, up to 10 worker processes can be used.

For fast performance, while creating a clustered index on a table with 10 
partitions, the setting of 50 for number of worker processes allows you to 
set max parallel degree to 20 for the create index command.

For more information on configuring worker processes for sorting, see 
“Worker process requirements for parallel sorts” on page 631.

Examples of setting parallel configuration parameters

The following command sets number of worker processes:

sp_configure "number of worker processes", 50

After a restart of the server, these commands set the other configuration 
parameters:

sp_configure "max parallel degree", 10
sp_configure "max scan parallel degree", 3

To display the current settings for these parameters, use:

sp_configure "Parallel Query"

Using set options to control parallelism for a session
Two set options let you restrict the degree of parallelism on a session basis 
or in stored procedures or triggers. These options are useful for tuning 
experiments with parallel queries and can also be used to restrict 
noncritical queries to run in serial, so that worker processes remain 
available for other tasks. The set options are summarized in Table 24-2.

Table 24-2: set options for parallel execution tuning

Parameter Function

parallel_degree Sets the maximum number of worker processes for a query in a session, stored 
procedure, or trigger. Overrides the max parallel degree configuration parameter, 
but must be less than or equal to the value of max parallel degree.



Controlling the degree of parallelism 

570  Adaptive Server Enterprise

If you specify a value that is too large for set either option, the value of the 
corresponding configuration parameter is used, and a message reports the 
value in effect. While set parallel_degree or set scan_parallel_degree is in 
effect during a session, the plans for any stored procedures that you 
execute are not placed in the procedure cache. Procedures executed with 
these options in effect may produce suboptimal plans.

set command examples

This example restricts all queries started in the current session to 5 worker 
processes:

set parallel_degree 5

While this command is in effect, any query on a table with more than 5 
partitions cannot use a partition-based scan.

To remove the session limit, use:

set parallel_degree 0
or
set scan_parallel_degree 0

To run subsequent queries in serial mode, use:

set parallel_degree 1
or
set scan_parallel_degree 1

Controlling parallelism for a query
The parallel extension to the from clause of a select command allows users 
to suggest the number of worker processes used in a select statement. The 
degree of parallelism that you specify cannot be more than the value set 
with sp_configure or the session limit controlled by a set command. If you 
specify a higher value, the specification is ignored, and the optimizer uses 
the set or sp_configure limit.

The syntax for the select statement is: 

scan_parallel_degree Sets the maximum number of worker processes for a hash-based scan during a 
specific session, stored procedure, or trigger. Overrides the max scan parallel 
degree configuration parameter but must be less than or equal to the value of max 
scan parallel degree.

Parameter Function



CHAPTER 24    Parallel Query Processing

Performance & Tuning Guide 571

select ...
from tablename [( [index index_name] 
     [parallel [degree_of_parallelism | 1 ]]
     [prefetch size] [lru|mru] ) ]  ,
   tablename [( [index index_name] 
     [parallel [degree_of_parallelism | 1] 
     [prefetch size] [lru|mru] ) ]  ...

Query level parallel clause examples

To specify the degree of parallelism for a single query, include parallel after 
the table name. This example executes in serial:

select * from huge_table (parallel 1)

This example specifies the index to use in the query, and sets the degree of 
parallelism to 2:

select * from huge_table (index ncix parallel 2)

See “Suggesting a degree of parallelism for a query” on page 469 for 
more information.

Worker process availability and query execution
At runtime, if the number of worker processes specified in the query plan 
is not available, Adaptive Server creates an adjusted query plan to execute 
the query using fewer worker processes. This is called a runtime 
adjustment, and it can result in serial execution of the query.

A runtime adjustment now and then probably indicates an occasional, 
momentary bottleneck. Frequent runtime adjustments indicate that the 
system may not be configured with enough worker processes for the 
workload. 

See “Runtime adjustments to worker processes” on page 609 for more 
information. 

You can also use the set process_limit_action option to control whether a 
query or stored procedure should silently use an adjusted plan, whether it 
should warn the user, or whether the command should fail if it cannot use 
the optimal number of worker processes.

See “Using set process_limit_action” on page 619 for more information.

Runtime adjustments are transparent to end users, except:



Commands for working with partitioned tables 

572  Adaptive Server Enterprise

• A query that normally runs in parallel may perform very slowly in 
serial.

• If set process_limit_action is in effect, they may get a warning, or the 
query may be aborted, depending on the setting.

Other configuration parameters for parallel processing
Two additional configuration parameters for parallel query processing are:

• number of sort buffers – configures the maximum number of buffers 
that parallel sort operations can use from the data cache.

See “Caches, sort buffers, and parallel sorts” on page 635.

• memory per worker process – establishes a pool of memory that all 
worker processes use for messaging during query processing. The 
default value, 1024 bytes per worker process, provides ample space in 
almost all cases, so this value should not need to be reset.

See “Worker process management” on page 946 for information on 
monitoring and tuning this value.

Commands for working with partitioned tables
Detailed steps for partitioning tables, placing them on specific devices, 
and loading data with parallel bulk copy are in Chapter 5, “Controlling 
Physical Data Placement.” The commands and tasks for creating, 
managing, and maintaining partitioned tables are:

• alter database – to make devices available to the database.

• sp_addsegment – to create a segment on a device; sp_extendsegment 
to extend the segment over additional devices, and sp_dropsegment to 
drop the log and system segments from data devices.

• create table...on segment_name – to create a table on a segment.

• alter table...partition and alter table...unpartition – to add or remove 
partitioning from a table.

• create clustered index – to distribute the data evenly across the table’s 
partitions.



CHAPTER 24    Parallel Query Processing

Performance & Tuning Guide 573

• bcp (bulk copy) – with the partition number added after the table 
name, to copy data into specific table partitions.

• sp_helpartition – to display the number of partitions and the 
distribution of data in partitions, and sp_helpsegment to check the 
space used on each device in a segment and on the segment as a 
whole.

Figure 24-8 shows a scenario for creating a new partitioned table.



Commands for working with partitioned tables 

574  Adaptive Server Enterprise

Figure 24-8: Steps for creating and loading a new partitioned table

T10 cooking 6.95 A Unified Approach to...
T10001 cooking  42.95 Scheme for an internet...
T10007 cooking 47.95 Internet Protocol Ha...
T10023 cooking 46.95 Proposed change in P...
T10029 cooking 74.95 System Summary for...
T10032 fiction 35.95 Cyberpunk
T10035 cooking 49.95 Achieving reliable coo...
T10038 cooking 12.95 Reliable Recipes
T25355 business 69.95 Plan and schedule
T39076 psychology 10.95 Reallocation and Urb...
T56358 UNDECIDED 39.95 New title
T75542 romance 44.95 Rosalie’s Romance
T10056 cooking 1.95 Brave New Cookery
T25361 business 42.95 Network Nuisance
T39082 psychology 6.95 On the problem...
authentication for network mail

alter database makes devices available to 
the database.

sp_addsegment creates a segment on a 
device, sp_extendsegment extends the 
segment over additional devices, and 
sp_dropsegment drops log and system 
segments from data devices.

create table...on segment_name creates 
the table on the segment.

alter table...partition creates a partition on 
each device.

Parallel bulk copy loads data into 
each partition from an input data 
file.



CHAPTER 24    Parallel Query Processing

Performance & Tuning Guide 575

Balancing resources and performance
Maximum parallel performance requires multiple CPUs and multiple I/O 
devices to achieve I/O parallelism. As with most performance 
configuration, parallel systems reach a point of diminishing returns, and a 
later point where additional resources do not yield performance 
improvement.

You need to determine whether queries are CPU-intensive or I/O-intensive 
and when your performance is blocked by CPU saturation or I/O 
bottlenecks. If CPU utilization is low, spreading a table across more 
devices and using more worker processes increases CPU utilization and 
provides improved response time. Conversely, if CPU utilization is 
extremely high, but the I/O system is not saturated, increasing the number 
of CPUs can provide performance improvement.

CPU resources
Without an adequate number of engines (CPU resources), tasks and 
worker processes must wait for access to Adaptive Server engines, and 
response time can be slow. Many factors determine the number of engines 
needed by the system, such as whether the query is CPU intensive or I/O 
intensive, or, at different times, both:

• Worker processes tend to spend time waiting for disk I/O and other 
system resources while other tasks are active on the CPU.

• Queries that perform sorts and aggregates tend to be more CPU-
intensive.

• Execution classes and engine affinity bindings on parallel CPU-
intensive queries can have complex effects on the system. If there are 
not enough CPUs, performance for both serial and parallel queries, 
can be degraded.

See Chapter 4, “Distributing Engine Resources,” for more 
information.



Guidelines for parallel query configuration 

576  Adaptive Server Enterprise

Disk resources and I/O
In most cases, configuring the physical layout of tables and indexes on 
devices is the key to parallel performance. Spreading partitions across 
different disks and controllers can improve performance during partition-
based scanning if all of the following conditions are true:

• Data is distributed over different disks.

• Those disks are distributed over different controllers.

• There are enough worker processes available at runtime to allocate 
one worker process for each partition.

Tuning example: CPU and I/O saturation
One experiment on a CPU-bound query found near-linear scaling in 
performance by adding CPUs until the I/O subsystem became saturated. 
At that point, additional CPU resources did not improve performance. The 
query performs a table scan on an 800MB table with 30 partitions, using 
16K I/O. Table 24-3 shows the CPU scaling.

Table 24-3: Scaling of engines and worker processes

Guidelines for parallel query configuration
Parallel processing places very different demands on system resources 
than running the same queries in serial. Two components in planning for 
parallel processing are:

• A good understanding of the capabilities of the underlying hardware 
(especially disk drives and controllers) in use on your system

• A set of performance goals for queries you plan to run in parallel

Engines
Elapsed time,
(in seconds)

CPU 
utilization I/O saturation

Throughput 
per device, 
per second

1 207 100% Not saturated .13MB 

2 100 98.7% Not saturated .27MB 

4 50 98% Not saturated .53MB 

8 27 93% 100% saturated .99MB 



CHAPTER 24    Parallel Query Processing

Performance & Tuning Guide 577

Hardware guidelines
Some guidelines for hardware configuration and disk I/O speeds are:

• Each Adaptive Server engine can support about five worker processes 
before saturating on CPU utilization for CPU-intensive queries. If 
CPU is not saturated at this ratio, and you want to improve parallel 
query performance, increase the ratio of worker processes to engines 
until I/O bandwidth becomes a bottleneck.

• For sequential scans, such as table scans using 16K I/O, it may be 
possible to achieve 1.6MB per second, per device, that is, 100 16K 
I/Os, or 800 pages per second, per device.

• For queries doing random access, such as nonclustered index access, 
the figure is approximately 50 2K I/Os, or 50 pages per second, per 
device.

• One I/O controller can sustain a transfer rate of up to 10–18MB per 
second. This means that one SCSI I/O controller can support up to 
6 –10 devices performing sequential scans. Some high-end disk 
controllers can support more throughput. Check your hardware 
specifications, and use sustained rates, rather than peak rates, for your 
calculations.

• RAID disk arrays vary widely in performance characteristics, 
depending on the RAID level, the number of devices in the stripe set, 
and specific features, such as caching. RAID devices may provide 
better or worse throughput for parallelism than the same number of 
physical disks without striping. In most cases, start your parallel 
query tuning efforts by setting the number of partitions for tables on 
these devices to the number of disks in the array.

Working with your performance goals and hardware guidelines
The following examples use the hardware guidelines and Table 24-3 to 
provide illustrate how to use parallelism to meet performance goals:

• The number of partitions for a table should be less than or equal to the 
number of devices. For the experiment showing scaling of engines 
and worker processes shown in Table 24-3, there were 30 devices 
available, so 30 partitions were used. Performance is optimal when 
each partition is placed on a separate physical device.



Guidelines for parallel query configuration 

578  Adaptive Server Enterprise

• Determine the number of partitions based on the I/O throughput you 
want to achieve. If you know your disks and controllers can sustain 
1MB per second per device, and you want a table scan on an 800MB 
table to complete in 30 seconds, you need to achieve approximately 
27MB per second total throughput, so you would need at least 27 
devices with one partition per device, and at least 27 worker 
processes, one for each partition. These figures are very close to the 
I/O rates in the example in Table 24-3.

• Estimate the number of CPUs, based on the number of partitions, and 
then determine the optimum number by tracking both CPU utilization 
and I/O saturation. The example shown in Table 24-3 had 30 
partitions available. Following the suggestions in the hardware 
guidelines of one CPU for each five devices suggests using six 
engines for CPU-intensive queries. At that level, I/O was not 
saturated, so adding more engines improved response time.

Examples of parallel query tuning
The following examples use the I/O capabilities described in “Hardware 
guidelines” on page 577.

Improving the performance of a table scan

This example shows how a table might be partitioned to meet performance 
goals. Queries that scan whole tables and return a limited number of rows 
are good candidates for parallel performance. An example is this query 
containing group by:

select type, avg(price) 
    from titles
group by type

Here are the performance statistics and tuning goals:

The steps for configuring for parallel operation are:

Table size 48,000 pages

Access method Table scan, 16K I/O

Serial response time 60 seconds

Target performance 6 seconds



CHAPTER 24    Parallel Query Processing

Performance & Tuning Guide 579

• Create 10 partitions for the table, and evenly distribute the data across 
the partitions.

• Set the number of worker processes and max parallel degree 
configuration parameters to at least 10.

• Check that the table uses a cache configured for 16K I/O.

In serial execution, 48,000 pages can be scanned in 60 seconds using 16K 
I/O. In parallel execution, each process scans 1 partition, approximately 
4,800 pages, in about 6 seconds, again using 16K I/O.

Improving the performance of a nonclustered index scan

The following example shows how performance of a query using a 
nonclustered index scan can be improved by configuring for a hash-based 
scan. The performance statistics and tuning goals are:

The steps for configuring for parallel operation are:

• Set max scan parallel degree configuration parameters to 5 to use 5 
worker processes in the hash-based scan.

• Set number of worker processes and max parallel degree to at least 5.

In parallel execution, each worker process scans 300 pages in 6 seconds.

Guidelines for partitioning and parallel degree
Here are some additional guidelines to consider when you are moving 
from serial query execution to parallel execution or considering additional 
partitioning or additional worker processes for a system already running 
parallel queries:

• If the cache hit ratio for a table is more than 90 percent, partitioning 
the table will not greatly improve performance. Since most of the 
needed pages are in cache, there is no benefit from the physical I/O 
parallelism. 

Data pages accessed 1500

Access method Nonclustered index, 2K I/O

Serial response time 30 seconds

Target performance 6 seconds



Guidelines for parallel query configuration 

580  Adaptive Server Enterprise

• If CPU utilization is more than 80 percent, and a high percentage of 
the queries in your system can make use of parallel queries, increasing 
the degree of parallelism may cause CPU saturation. This guideline 
also applies to moving from all-serial query processing to parallel 
query processing, where a large number of queries are expected to 
make use of parallelism. Consider adding more engines, or start with 
a low degree of parallelism.

• If CPU utilization is high, and a few users run large DSS queries while 
most users execute OLTP queries that do not operate in parallel, 
enabling or increasing parallelism can improve response time for the 
DSS queries. However, if response time for OLTP queries is critical, 
start with a low degree of parallelism, or make small changes to the 
existing degree of parallelism.

• If CPU utilization is low, move incrementally toward higher degrees 
of parallelism. On a system with two CPUs, and an average CPU 
utilization of 60 percent, doubling the number of worker processes 
would saturate the CPUs.

• If I/O for the devices is well below saturation, you may be able to 
improve performance for some queries by breaking the one-partition-
per-device guideline. Except for RAID devices, always use a multiple 
of the number of logical devices in a segment for partitioning; that is, 
for a table on a segment with four devices, you can use eight 
partitions. Doubling the number of partitions per device may cause 
extra disk-head movement and reduce I/O parallelism. Creating an 
index on any partitioned table that has more partitions than devices 
prints a warning message that you can ignore in this case. 

Experimenting with data subsets
Parallel query processing can provide the greatest performance gains on 
your largest tables and most I/O-intensive queries. Experimenting with 
different physical layouts on huge tables, however, is extremely time-
consuming. Here are some suggestions for working with smaller subsets 
of data:



CHAPTER 24    Parallel Query Processing

Performance & Tuning Guide 581

• For initial exploration to determine the types of query plans that 
would be chosen by the optimizer, experiment with a proportional 
subset of your data. For example, if you have a 50-million row table 
that joins to a 5-million row table, you might choose to work with just 
one-tenth of the data, using 5 million and 500,000 rows. Select 
subsets of the tables that provide valid joins. Pay attention to join 
selectivity—if the join on the table would run in parallel because it 
would return 20 rows for a scan, be sure your subset reflects this join 
selectivity.

• The optimizer does not take underlying physical devices into account; 
only the partitioning on the tables. During exploratory tuning work, 
distributing your data on separate physical devices will give you more 
accurate predictions about the probable characteristics of your 
production system using the full tables. You can partition tables that 
reside on a single device and ignore any warning messages during the 
early stages of your planning work, such as testing configuration 
parameters, table partitioning and checking your query optimization. 
Of course, this does not provide accurate I/O statistics.

Working with subsets of data can help determine parallel query plans and 
the degree of parallelism for tables. One difference is that with smaller 
tables, sorts are performed in serial that would be performed in parallel on 
larger tables. 

System level impacts
In addition to other impacts described throughout this chapter, here are 
some concerns to be aware of when adding parallelism to mixed DSS and 
OLTP environments. Your goal should be improved performance of DSS 
through parallelism, without adverse effects on the performance of OLTP 
applications.

Locking issues
Look out for lock contention:

• Parallel queries are slower than queries bench marked without 
contention. If the scans find many pages with exclusive locks due 
to update transactions, performance can change.



System level impacts 

582  Adaptive Server Enterprise

• If parallel queries return a large number of rows using network 
buffer merges, there is likely to be high contention for the 
network buffer. Queries hold shared locks on data pages during 
the scans and cause data modifications to wait for the shared 
locks to be released. You may need to restrict queries with large 
result sets to serial operation.

• If your applications experience deadlocks when DSS queries are 
running in serial, you may see an increase in deadlocks when you 
run these queries in parallel. The transaction that is rolled back in 
these deadlocks is likely to be the OLTP query, because the 
rollback decision for deadlocks is based on the accumulated CPU 
time of the processes involved.

See “Deadlocks and concurrency” on page 272 for more 
information on deadlocks.

Device issues
Configuring multiple devices for tempdb should improve performance for 
parallel queries that require worktables, including those that perform sorts 
and aggregates and those that use the reformatting strategy.

Procedure cache effects
Parallel query plans are slightly larger than serial query plans because they 
contain extra instructions on the partition or pages that the worker 
processes need to access. 

During ad hoc queries, each worker process needs a copy of the query 
plan. Space from the procedure cache is used to hold these plans in 
memory, and is available to the procedure cache again when the ad hoc 
query completes.

Stored procedures in cache are invalidated when you change the max 
parallel degree and max scan parallel degree configuration parameters. The 
next time a query is run, the query is read from disk and recompiled.



CHAPTER 24    Parallel Query Processing

Performance & Tuning Guide 583

When parallel query results can differ
When a query does not include vector or scalar aggregates or does not 
require a final sorting step, a parallel query might return results in a 
different order from the same query run in serial, and subsequent 
executions of the same query in parallel might return results in different 
order each time.

Results from serial and parallel queries that include vector or scalar 
aggregates, or require a final sort step, are returned after all of the results 
from worktables are merged or sorted in the final query processing step. 
Without query clauses that require this final step, parallel queries send 
results to the client using a network buffer merge, that is, each worker 
process sends results to the network buffer as it retrieves the data that 
satisfies the queries.

The relative speed of the different worker processes leads to differences in 
result set ordering. Each parallel scan behaves differently, due to pages 
already in cache, lock contention, and so forth. Parallel queries always 
return the same set of results, just not in the same order. If you need a 
dependable ordering of results, use order by or run the query in serial 
mode.

In addition, due to the pacing effects of multiple worker processes reading 
data pages, two types of queries accessing the same data may return 
different results when an aggregate or a final sort is not done:

• Queries that use set rowcount 

• Queries that select a column into a local variable without sufficiently-
restrictive query clauses

Queries that use set rowcount
The set rowcount option stops processing after a certain number of rows 
are returned to the client. With serial processing, the results are consistent 
in repeated executions. In serial mode, the same rows are returned in the 
same order for a given rowcount value, because a single process reads the 
data pages in the same order every time.



When parallel query results can differ 

584  Adaptive Server Enterprise

With parallel queries, the order of the results and the set of rows returned 
can differ, because worker processes may access pages sooner or later than 
other processes. When set rowcount is in effect, each row is written to the 
network buffer as it is found and the buffer is sent to the client when it is 
full, until the required number of rows have been returned. To get 
consistent results, you must either use a clause that performs a final sort 
step or run the query in serial mode.

Queries that set local variables
This query sets the value of a local variable in a select statement:

select @tid = title_id from titles
    where type = "business"

The where clause matches multiple rows in the titles table. so the local 
variable is always set to the value from the last matching row returned by 
the query. The value is always the same in serial processing, but for 
parallel query processing, the results depend on which worker process 
finishes last. To achieve a consistent result, use a clause that performs a 
final sort step, execute the query in serial mode, or add clauses so that the 
query arguments select only single rows.

Achieving consistent results
To achieve consistent results for the types of queries discussed in this 
section, you can either add a clause to enforce a final sort or you can run 
the queries in serial mode. The query clauses that provide a final sort are:

• order by 

• distinct, except for uses of distinct within an aggregate, such as 
avg(distinct price)

• union, but not union all 

To run queries in serial mode, you can:

• Use set parallel_degree 1 to limit the session to serial operation

• Include the (parallel 1) clause after each table listed in the from clause 
of the query



Performance & Tuning Guide 585

C H A P T E R  2 5 Parallel Query Optimization

This chapter describes the basic strategies that Adaptive Server uses to 
perform parallel queries and explains how the optimizer applies those 
strategies to different queries. Parallel query optimization is an automatic 
process, and the optimized query plans created by Adaptive Server 
generally yield the best response time for a particular query. 

However, knowing the internal workings of a parallel query can help you 
understand why queries are sometimes executed in serial, or with fewer 
worker processes than you expect. Knowing why these events occur can 
help you make changes elsewhere in your system to ensure that certain 
queries are executed in parallel and with the desired number of processes.

Topic Page
What is parallel query optimization? 586

When is optimization performed? 586

Overhead costs 587

Parallel access methods 588

Summary of parallel access methods 598

Degree of parallelism for parallel queries 600

Parallel query examples 609

Runtime adjustment of worker processes 617

Diagnosing parallel performance problems 621

Resource limits for parallel queries 623



What is parallel query optimization? 

586  Adaptive Server Enterprise

What is parallel query optimization?
Parallel query optimization is the process of analyzing a query and 
choosing the best combination of parallel and serial access methods to 
yield the fastest response time for the query. Parallel query optimization is 
an extension of the serial optimization strategies discussed in earlier 
chapters. In addition to the costing performed for serial query 
optimization, parallel optimization analyzes the cost of parallel access 
methods for each combination of join orders, join types, and indexes. The 
optimizer can choose any combination of serial and parallel access 
methods to create the fastest query plan.

Optimizing for response time versus total work
Serial query optimization selects the query plan that is the least costly to 
execute. Since only one process executes the query, choosing the least 
costly plan yields the fastest response time and requires the least amount 
of total work from the server.

The goal of executing queries in parallel is to get the fastest response time, 
even if it involves more total work from the server. During parallel query 
optimization, the optimizer uses cost-based comparisons similar to those 
used in serial optimization to select a final query plan.

However, since multiple worker processes execute the query, a parallel 
query plan requires more total work from Adaptive Server. Multiple 
worker processes, engines, and partitions that improve the speed of a 
query require additional costs in overhead, CPU utilization, and disk 
access. In other words, serial query optimization improves performance by 
minimizing the use of server resources, but parallel query optimization 
improves performance for individual queries by fully utilizing available 
resources to get the fastest response time.

When is optimization performed?
The optimizer considers parallel query plans only when Adaptive Server 
and the current session are properly configured for parallelism, as 
described in “Controlling the degree of parallelism” on page 566.



CHAPTER 25    Parallel Query Optimization

Performance & Tuning Guide 587

If both the Adaptive Server and the current session are configured for 
parallel queries, then all queries within the session are eligible for parallel 
query optimization. Individual queries can also attempt to enforce parallel 
query optimization by using the optimizer hint parallel N for parallel or 
parallel 1 for serial.

If the Adaptive Server or the current session is not configured for parallel 
queries, or if a given query uses optimizer hints to enforce serial execution, 
then the optimizer considers serial access methods; the parallel access 
methods described in this chapter are not considered.

Adaptive Server does not execute parallel queries against system tables.

Overhead costs
Parallel queries incur more overhead costs to perform such internal tasks 
as:

• Allocating and initializing worker processes

• Coordinating worker processes as they execute a query plan

• Deallocating worker processes after the query is completed

To avoid applying these overhead costs to OLTP-based queries, the 
optimizer “disqualifies” tables from using parallel access methods when a 
scan would access fewer than 20 data pages in a table. This restriction 
applies whether or not an index is used to access a table’s data. When 
Adaptive Server must scan fewer than 20 data pages, the optimizer 
considers only serial table and index scans and does not consider parallel 
optimization.

Factors that are not considered
When computing the cost of a parallel access method, the optimizer does 
not consider factors such as the number of engines available, the ratio of 
engines to CPUs, and whether or not a table’s partitions reside on 
dedicated physical devices and controllers. Each of these factors can 
significantly affect the performance of a query. It is up to the System 
Administrator to ensure that these resources are configured in the best 
possible way for the Adaptive Server system as a whole.



Parallel access methods 

588  Adaptive Server Enterprise

See “Configuration parameters for controlling parallelism” on page 567 
for information on configuring Adaptive Server. 

See “Commands for partitioning tables” on page 90 for information on 
partitioning your data to best facilitate parallel queries.

Parallel access methods
The following sections describe parallel access methods and other 
strategies that the optimizer considers when optimizing parallel queries. 
Parallel access methods fall into these general categories:

• Partition-based access methods use two or more worker processes 
to access separate partitions of a table. Partition-based methods yield 
the fastest response times because they can distribute the work in 
accessing a table over both CPUs and physical disks. At the CPU 
level, worker processes can be queued to separate engines to increase 
processing performance. At the physical disk level, worker processes 
can perform I/O independently of one another, if the table’s partitions 
are distributed over separate physical devices and controllers. 

• Hash-based access methods provide parallel access to partitioned 
tables, using either table scans or index scans. Hash-based strategies 
employ multiple worker processes to work on a single chain of data 
pages or a set of index pages. I/O is not distributed over physical 
devices or controllers, but worker processes can still be queued to 
multiple engines to distribute processing and improve response times.

• Range-based access methods provide parallel access during merge 
joins on partitioned tables and unpartitioned tables, including 
worktables created for sorting and merging, and via indexes. The 
partitioning on the tables is not considered when choosing the degree 
of parallelism, so it is not distributed over physical devices or 
controllers. Worker processes can be queued to multiple engines to 
distribute processing and improve response times.



CHAPTER 25    Parallel Query Optimization

Performance & Tuning Guide 589

Parallel partition scan
In a parallel partition scan, multiple worker processes completely scan 
each partition in a partitioned table. One worker process is assigned to 
each partition, and each process reads all pages in the partition. Figure 25-
1 illustrates a parallel partition scan.   

Figure 25-1: Parallel partition scan

The parallel partition scan operates faster than a serial table scan. The 
work is divided over several worker processes that can execute 
simultaneously on different engines. Some worker processes can be 
executing during the time that others sleep on I/O or other system 
resources. If the table partitions reside on separate physical devices, I/O 
parallelism is also possible.

Worker
process A

Worker
process B

Worker
process C

Partition 1

Partition 2

Partition 3

Partitioned Table



Parallel access methods 

590  Adaptive Server Enterprise

Requirements for consideration

The optimizer considers the parallel partition scan only for partitioned 
tables in a query. The table’s data cannot be skewed in relation to the 
number of partitions, or the optimizer disqualifies partition-based access 
methods from consideration. Table data is considered skewed when the 
size of the largest partition is two or more times the average partition size.

Finally, the query must access at least 20 data pages before the optimizer 
considers any parallel access methods.

Cost model

The Adaptive Server optimizer computes the cost of a parallel table 
partition scan as the largest number of logical and physical I/Os performed 
by any one worker process in the scan. In other words, the cost of this 
access method equals the I/O required to read all pages in the largest 
partition of the table.

For example, if a table with 3 partitions has 200 pages in its first partition, 
300 pages in its second, and 500 pages in its last partition, the cost of 
performing a partition scan on that table is 500 logical and 500 physical 
I/Os (assuming 2K I/O for the physical I/O). In contrast, the cost of a serial 
scan of this table is 1000 logical and physical I/Os.

Parallel clustered index partition scan (allpages-locked tables)
A clustered index partition scan uses multiple worker processes to scan 
data pages in a partitioned table when the clustered index key matches a 
search argument. This method can be used only on allpages-locked tables.

One worker process is assigned to each partition in the table. Each worker 
process accesses data pages in the partition, using one of two methods, 
depending on the range of key values accessed by the process. When a 
partitioned table has a clustered index, rows are assigned to partitions 
based on the clustered index key.

Figure 25-2 shows a clustered index partition scan that spans three 
partitions. Worker processes A, B, and C are assigned to each of the table’s 
three partitions. The scan involves two methods:

• Method 1



CHAPTER 25    Parallel Query Optimization

Performance & Tuning Guide 591

Worker process A traverses the clustered index to find the first 
starting page that satisfies the search argument, about midway 
through partition 1. It then begins scanning data pages until it reaches 
the end of partition 1.

• Method 2

Worker processes B and C do not use the clustered index, but, instead, 
they begin scanning data pages from the beginning of their partitions. 
Worker process B completes scanning when it reaches the end of 
partition 2. Worker process C completes scanning about midway 
through partition 3, when the data rows no longer satisfy the search 
argument.   

Figure 25-2: Parallel clustered index partition scan

Worker
process A

Worker
process B

Worker
process C

Partition 1

Partition 2

Partition 3

Index pages

Partitioned tableselect avg (price)
from t1
where keyvalue > 400
and keyvalue < 2700

1

1000

1001

2000

2001

3000

Values assigned to 
the partition



Parallel access methods 

592  Adaptive Server Enterprise

Requirements for consideration

The optimizer considers a clustered index partition scan only when:

• The query accesses at least 20 data pages of the table.

• The table is partitioned and uses allpages locking.

• The table’s data is not skewed in relation to the number of partitions. 
Table data is considered skewed when the size of the largest partition 
is two or more times the average partition size.

Cost model

The Adaptive Server optimizer computes the cost of a clustered index 
partition scan differently, depending on the total number of pages that need 
to be scanned:

• If the total number of pages that need to be scanned is less than or 
equal to two times the average size of a partition, the optimizer costs 
the scan as the total number of pages to be scanned divided by 2.

• If the total number of pages that need to be scanned is greater than two 
times the average size of a partition, the optimizer costs the scan as 
the average number of pages in a partition.

The actual cost of the scan may be higher if:

• The total number of pages that need to be scanned is less than the size 
of a partition, and 

• The data to be scanned lies entirely within one partition 

If both of these conditions are true, the actual cost of the scan is the same 
as if the scan were executed serially. 

Parallel hash-based table scan
Parallel hash-based table scans are performed slightly differently, 
depending on the locking scheme of the table.



CHAPTER 25    Parallel Query Optimization

Performance & Tuning Guide 593

Hash-based table scans on allpages-locked tables

In a hash-based table scan on an allpages-locked table, multiple worker 
processes scan a single chain of data pages in a table simultaneously. All 
worker processes traverse the page chain and apply an internal hash 
function to each page ID. The hash function determines which worker 
process reads the rows in the current page. The hash function ensures that 
only one worker process scans the rows on any given page of the table. 
Figure 25-3 illustrates the hash-based table scan.

Figure 25-3: Parallel hash-based table scan on an allpages-locked 
table

The hash-based scan provides a way to distribute the processing of a single 
chain of data pages over multiple engines. The optimizer may use this 
access method for the outer table of a join query to process a join condition 
in parallel. 

Hash-based table scans on data-only-locked tables

A hash-based scan on a data-only-locked table hashes on either the extent 
number or the allocation page number, rather than hashing on the page 
number. The choice of whether to hash on the allocation page or the extent 
number is a cost-based decision made by the optimizer. Both methods can 
reduce the cost of performing parallel queries on unpartitioned tables. 
Queries that choose a serial scan on an allpages-locked table may use one 
of the new hash-based scan methods if the table is converted to data-only 
locking.

Worker
processes 
A, B, and C

Pages scanned 
by B

Pages scanned 
by C

Pages scanned 
by A

Single page chain



Parallel access methods 

594  Adaptive Server Enterprise

Requirements for consideration

The optimizer considers the hash-based table scan only for heap tables, 
and only for outer tables in a join query—it does not consider this access 
method for clustered indexes or for single-table queries. Hash-based scans 
can be used on either unpartitioned or partitioned tables. The query must 
access at least 20 data pages of the table before the optimizer considers any 
parallel access methods.

Cost model

The optimizer computes the cost of a hash-based table scan as the total 
number of logical and physical I/Os required to scan the table. 

For an allpages-locked table, the physical I/O cost is approximately the 
same as for a serial table scan. The logical cost is the number of pages to 
be read multiplied by the number of worker processes. The cost per worker 
process is one logical I/O for each page in the table, and approximately 1/N 
physical I/Os, with N being the number of worker processes.

For a data-only-locked table, this is approximately the same cost applied 
to a serial table scan, with the physical and logical I/O divided evenly 
between the worker processes.

Parallel hash-based index scan
An index hash-based scan can be performed using either a nonclustered 
index or a clustered index on a data-only-locked table. To perform the 
scan:

• All worker processes traverse the higher index levels.

• All worker processes scan the leaf-level index pages.

For data-only-locked tables, the worker processes scanning the leaf level 
hash on the page ID for each row, and scan the matching data pages.

For allpages-locked tables, a hash-based index scan is performed in one of 
two ways, depending on whether the table is a heap table or has a clustered 
index. The major difference between the two methods is the hashing 
mechanism:

• For a table with a clustered index, the hash is on the key values. 

• For a heap table, the scan hashes on the page ID.



CHAPTER 25    Parallel Query Optimization

Performance & Tuning Guide 595

Figure 25-4 illustrates a nonclustered index hash-based scan on a heap 
table with two worker processes. 

Figure 25-4: Nonclustered index hash-based scan

Cost model and requirements

The cost model of a nonclustered index scan uses the formula:

Pages scanned by 
worker
process 1

Pages scanned by 
worker
process 2

Pages scanned by 
both worker 
processes

Index pages

Data pages

WP2 7WP1

Scan Cost = Number of index levels
+ Number of leaf pages / pages per IO
+ (Number of data pages / pages per IO ) / number of worker processes



Parallel access methods 

596  Adaptive Server Enterprise

The optimizer considers a hash-based index scan for any tables in a query 
that have useful nonclustered indexes, and for data-only-locked tables 
with clustered indexes. The query must also access at least 20 data pages 
of the table.

Note  If a nonclustered index covers the result of a query, the optimizer 
does not consider using the nonclustered index hash-based scan.

See “Index covering” on page 208 for more information about index 
covering.

Parallel range-based scans
Parallel range-based scans are used for the merge process in merge joins.

When two tables are merged in parallel, each worker process is assigned a 
range of values to merge. The range is determined using histogram 
statistics or sampling. When a histogram exists for at least one of the join 
columns, it is used to partition the ranges so that each worker process 
operates on approximately the same number of rows. If neither join 
column has a histogram, sampling similar to that performed for other 
parallel sort operations determines the range of values to be merged by 
each worker process.

Figure 25-5 shows a parallel right-merge join. In this case:

• A right-merge join is used. Table1, the outer table, is scanned into a 
worktable and sorted, then merged with the inner table. These worker 
processes are deallocated at the end of this step.

• The outer table has two partitions, so two worker processes are used 
to perform a parallel partition scan.

• The inner table has a nonclustered index on the join key. max parallel 
degree is set to 3, so 3 worker processes are used.

Requirements for consideration

The optimizer considers parallel merge joins when the configuration 
parameter enable merge joins is set to 1 and the table accesses more than 
20 data pages from the outer table in the merge join.



CHAPTER 25    Parallel Query Optimization

Performance & Tuning Guide 597

Figure 25-5: A parallel right-merge join

data_dev1 data_dev2

All worker processes

Index pages

Data Ppages

WP3WP1

 7WP1 WP2

Table1: 
Partitioned table 
on 2 devices

WP2

Worker process 1

Worker process 2

Worker process 3

Merge runs after sort

Worktable1

Sort

Table2: 
Nonclustered index 
on join key

Pages read by:



Summary of parallel access methods 

598  Adaptive Server Enterprise

Additional parallel strategies
Adaptive Server may employ additional strategies when executing queries 
in parallel. Those strategies involve the use of partitioned worktables and 
parallel sorting.

Partitioned worktables

For queries that require a worktable, Adaptive Server may choose to create 
a partitioned worktable and populate it using multiple worker processes. 
Partitioning the worktable improves performance when Adaptive Server 
populates the table, and therefore, improves the response time of the query 
as a whole.

See “Parallel query examples” on page 609 for examples of queries that 
can benefit from the use of partitioned worktables.

Parallel sorting

Parallel sorting employs multiple worker processes to sort data in parallel, 
similar to the way multiple worker processes execute a query in parallel. 
create index and any query that requires sorting can benefit from the use of 
parallel sorting.

The optimizer does not directly optimize or control the execution of a 
parallel sort.

See “Parallel query examples” on page 609 for examples of queries that 
can benefit from the parallel sorting strategy.

Also, see “Overview of the parallel sorting strategy” on page 627 for a 
detailed explanation of how Adaptive Server executes a sort in parallel.

Summary of parallel access methods
Table 25-1 summarizes the potential use of parallel access methods in 
Adaptive Server query processing. In all cases, the query must access at 
least 20 data pages in the table before the optimizer considers parallel 
access methods. 



CHAPTER 25    Parallel Query Optimization

Performance & Tuning Guide 599

Table 25-1: Parallel access method summary

Selecting parallel access methods
For a given table in a query, the optimizer first evaluates the available 
indexes and partitions to determine which access methods it can use to 
scan the table’s data. For any query that involves a join, Adaptive Server 
considers a range-based merge join, and considers using a parallel merge 
join if parallel query processing is enabled. The use of a range-based scan 
does not depend on table partitioning, and range-based scans can be 
performed using clustered and nonclustered indexes. They are considered, 
and are very likely to be used, on tables that have no useful index on the 
join key.

Table 25-2 shows the other parallel access methods that the optimizer may 
evaluate for different table and index combinations. Hash-based table 
scans are considered only for the outer table in a query, unless the query 
uses the parallel optimizer hint.

Parallel method Major cost factors
Requirements for 
consideration

Competing 
serial methods

Partition-based scan Number of pages in the largest 
partition

Partitioned table with 
balanced data

Serial table scan, 
serial index scan

Hash-based table scan Number of pages in table Any outer table in a join 
query and that is a heap

Serial table scan, 
serial index scan

Clustered index partition 
scan

If total number of pages to be 
scanned <= 2 * number of pages in 
average-sized partition, then: Total 
number of pages to be scanned / 2

If total number of pages to be 
scanned > 2 * number of pages in 
average-sized partition, then: 
Average number of pages in a 
partition

Partitioned table with a 
useful clustered index; 
allpages locking only

Serial index scan

Hash-based index scan Number of index pages above leaf 
level to scan + number of leaf-level 
index pages to scan + (number of 
data pages referenced in leaf-level 
index pages / number of worker 
processes)

Any table with a useful 
nonclustered index or a 
data-only-locked table 
with a clustered index 

Serial index scan

Range-based scan Number of pages to be accessed in 
both tables/number of worker 
processes, plus any sort costs

Any table in a join eligible 
for merge join 
consideration

Serial merge, 
nested-loop join



Degree of parallelism for parallel queries 

600  Adaptive Server Enterprise

Table 25-2: Determining applicable partition or hash-based access 
methods

The optimizer may further eliminate parallel access methods from 
consideration, based on the number of worker processes that are available 
to the query. This process of elimination occurs when the optimizer 
computes the degree of parallelism for the query as a whole.

For an example, see “Partitioned heap table” on page 607.

Degree of parallelism for parallel queries
The degree of parallelism for a query is the number of worker processes 
chosen by the optimizer to execute the query in parallel. The degree of 
parallelism depends on both the upper limit to the degree of parallelism for 
the query and on the level of parallelism suggested by the optimizer. 

Computing the degree of parallelism for a query is important for two 
reasons:

• The final degree of parallelism directly affects the performance of a 
query since it specifies how many worker processes should do the 
work in parallel. 

No useful index
Useful clustered 
index

Useful index (nonclustered 
or clustered on data-only-
locked table)

Partitioned Table Partition scan

Hash-based table scan 
(if table is a heap)

Serial table scan

Clustered index 
partition scan

Serial index scan

Nonclustered index hash-based 
scan

Serial index scan

Unpartitioned Table Hash-based table scan 
(if table is a heap)

Serial table scan

Serial index scan Nonclustered index hash-based 
scan

Serial index scan



CHAPTER 25    Parallel Query Optimization

Performance & Tuning Guide 601

• While computing the degree of parallelism, the optimizer disqualifies 
parallel access methods that would require more worker processes 
than the limits set by configuration parameters, the set command, or 
the parallel clause in a query. This reduces the total number of access 
methods that the optimizer must consider when costing the query, 
and, therefore, decreases the overall optimization time. Disqualifying 
access methods in this manner is especially important for multitable 
joins, where the optimizer must consider many different combinations 
of join orders and access methods before selecting a final query plan.

Upper limit
A System Administrator configures the upper limit to the degree of 
parallelism using server-wide configuration parameters. Session-wide and 
query-level options can further limit the degree of parallelism. These 
limits set both the total number of worker processes that can be used in a 
parallel query and the total number of worker processes that can be used 
for hash-based access methods.

The optimizer removes from consideration any parallel access methods 
that would require more worker processes than the upper limit for the 
query. (If the upper limit to the degree of parallelism is 1, the optimizer 
does not consider any parallel access methods.)

See “Configuration parameters for controlling parallelism” on page 567 
for more information about configuration parameters that control the 
upper limit to the degree of parallelism.

Optimized degree
The optimizer can potentially use worker processes up to the maximum 
degree of parallelism set at the server, session, or query level. However, 
the optimized degree of parallelism may be less than this maximum. For 
partition-based scans, the optimizer chooses the degree of parallelism 
based on the number of partitions in the tables of the query and the number 
of worker processes configured.



Degree of parallelism for parallel queries 

602  Adaptive Server Enterprise

Worker processes for partition-based scans

For partition-based access methods, Adaptive Server requires one worker 
process for every partition in a table. If the number of partitions exceeds 
max parallel degree or a session-level or query-level limit, the optimizer 
uses a hash-based or serial access method; if a merge join can be used, it 
may choose a merge join using the max parallel degree.

Worker processes for hash-based scans

For hash-based access methods, the optimizer does not compute an 
optimal degree of parallelism; instead, it uses the number of worker 
processes specified by the max scan parallel degree parameter. It is up to 
the System Administrator to set max scan parallel degree to an optimal 
value for the Adaptive Server system as a whole. A general rule of thumb 
is to set this parameter to no more than 2 or 3, since it takes only 2–3 
worker processes to fully utilize the I/O of a given physical device.

Worker processes for range-based scans

A merge join can use multiple worker processes to perform:

• The scan that selects rows into a worktable, for any merge join that 
requires a sort

• The worktable sort

• The merge join and subsequent joins in the step

• The range scan of both tables during a full merge join

Usage while creating the worktable

If a worktable is needed for a merge join, the query step that creates the 
worktable can use a serial or parallel access method for the scan. The 
number of worker processes for this step is determined by the usual 
methods for selecting the number of worker processes for a query. The 
query that selects the rows into the worktable can be a single-table query 
or a join performing a nested-loop or merge join, or a combination of 
nested-loops joins and a merge join. 



CHAPTER 25    Parallel Query Optimization

Performance & Tuning Guide 603

Parallel sorting for merge-join worktables

Parallel sorting is used when the number of pages in the worktable to be 
sorted is eight times the value of the number of sort buffers configuration 
parameter.

See Chapter 26, “Parallel Sorting,” for more information about parallel 
sorting.

Number of merge threads

For the merge step, the number of merge threads is set to max parallel 
degree, unless the number of distinct values is smaller than max parallel 
degree. If the number of values to be merged is smaller than the max 
parallel degree, the task uses one worker process per value, with each 
worker process merging one value. If the tables being merged have 
different numbers of distinct values, the lower number determines the 
number of worker processes to be used. The formula is:

When there is only one distinct value on the join column, or there is an 
equality search argument on a join column, the merge step is performed in 
serial mode. If a merge join is used for this query, the merge is performed 
in serial mode:

select * from t1, t2 
where t1.c1 = t2.c1
and t1.c1 = 10

Total usage for merge joins

A merge join can use up to max parallel degree threads for the merge step 
and up to max parallel degree threads can be used for each sort. A merge 
that performs a parallel sort may use up to 2*max parallel degree threads. 
Worker processes used for sorts are released when the sort completes. 

Worker processes = min (max pll degree, min(t1_uniq_vals, t2_uniq_vals))



Degree of parallelism for parallel queries 

604  Adaptive Server Enterprise

Nested-loop joins
For individual tables in a nested-loop join, the optimizer computes the 
degree of parallelism using the same rules described in “Optimized 
degree” on page 601. However, the degree of parallelism for the join query 
as a whole is the product of the worker processes that access individual 
tables in the join. All worker processes allocated for a join query access all 
tables in the join. Using the product of worker processes to drive the 
degree of parallelism for a join ensures that processing is distributed 
evenly over partitions and that the join returns no duplicate rows.

Figure 25-6 illustrates this rule for two tables in a join where the outer 
table has three partitions and the inner table has two partitions. If the 
optimizer determines that partition-based access methods are to be used on 
each table, then the query requires a total of six worker processes to 
execute the join. Each of the six worker processes scans one partition of 
the outer table and one partition of the inner table to process the join 
condition. 



CHAPTER 25    Parallel Query Optimization

Performance & Tuning Guide 605

Figure 25-6: Worker process usage for a nested-loop join

In Figure 25-6, if the optimizer chose to scan the inner table using a serial 
access method, only three worker processes would be required to execute 
the join. In this situation, each worker process would scan one partition of 
the outer table, and all worker processes would scan the inner table to find 
matching rows.

Therefore, for any two tables in a query with scan degrees of m and n 
respectively, the potential degrees of parallelism for a nested-loop join 
between the two tables are:

• 1, if the optimizer accesses both tables serially

• m*1, if the optimizer accesses the first table using a parallel access 
method (with m worker processes), and the second table serially

• n*1, if the optimizer accesses the second table using a parallel access 
method (with n worker processes) and the first table serially

Outer table

Inner table

Partition 1

Partition 2

Partition 3

Partition 1

Partition 2

WP2

WP1

 7WP3

WP5

WP4

 7WP6



Degree of parallelism for parallel queries 

606  Adaptive Server Enterprise

• m*n, if the optimizer accesses both tables using parallel access 
methods

Alternative plans

Using partition-based scans on both tables in a join is fairly rare because 
of the high cost of repeatedly scanning the inner table. The optimizer may 
also choose:

• A merge join.

• The reformatting strategy, if reformatting is a cheaper alternative.

• A partitioned-based scan plus a hash-based index scan, when a join 
returns rows from 20 or more data pages.

See Figure 24-7 on page 565 for an illustration.

Computing the degree of parallelism for nested-loop joins

To determine the degree of parallelism for a join between any two tables 
(and to disqualify parallel access methods that would require too many 
worker processes), the optimizer applies the following rules: 

1 The optimizer determines possible access methods and degrees of 
parallelism for the outer table of the join. This process is the same as 
for single-table queries.

See “Optimized degree” on page 601.

2 For each access method determined in step 1, the optimizer calculates 
the remaining number of worker processes that are available for the 
inner table of the join. The following formula determines this number:

3 The optimizer uses the remaining number of worker processes as an 
upper limit to determine possible access methods and degrees of 
parallelism for the inner table of the join.

The optimizer repeats this process for all possible join orders and access 
methods and applies the cost function for joins to each combination. The 
optimizer selects the least costly combination of join orders and access 
methods, and the final combination drives the degree of parallelism for the 
join query as a whole.

Remaining worker processes = max parallel degree/ Worker processes for outer table



CHAPTER 25    Parallel Query Optimization

Performance & Tuning Guide 607

See “Nested-loop joins” on page 604 for examples of this process.

Parallel queries and existence joins

Adaptive Server imposes an additional restriction for subqueries 
processed as existence joins. For these queries, only the number of 
partitions in the outer table determines the degree of parallelism. There are 
only as many worker processes as there are partitions in the outer table. 
The inner table in such a query is always accessed serially. This restriction 
does not apply to subqueries that are flattened into regular joins. 

Examples
The examples in this section show how the limits to the degree of 
parallelism affect the following types of queries:

• A partition heap table

• A nonpartitioned heap table

• A table with a clustered index

Partitioned heap table

Assume that max parallel degree is set to 10 worker processes and max 
scan parallel degree is set to 3 worker processes. 

Single-table query

For a single-table query on a heap table with 6 partitions and no useful 
nonclustered index, the optimizer costs the following access methods:

• A parallel partition scan using 6 worker processes

• A serial table scan using a single process

If max parallel degree is set to 5 worker processes, then the optimizer does 
not consider the partition scan for a table with 6 partitions.



Degree of parallelism for parallel queries 

608  Adaptive Server Enterprise

Query with a join

The situation changes if the query involves a join. If max parallel degree is 
set to 10 worker processes, the query involves a join, and a table with 6 
partitions is the outer table in the query, then the optimizer considers the 
following access methods:

• A partition scan using 6 worker processes

• A hash-based table scan using 3 worker processes

• A merge join using 10 worker processes

• A serial scan using a single process

If max scan parallel degree is set to 5 and max scan parallel degree is set to 
3, then the optimizer considers the following access methods:

• A hash-based table scan using 3 worker processes

• A merge join using 5 worker processes

• A serial scan using a single process

Finally, if max parallel degree is set to 5 and max scan parallel degree is set 
to 1, then the optimizer considers only a merge join as a parallel access 
method.

Nonpartitioned heap table

If the query involves a join, and max scan parallel degree is set to 3, and 
the nonpartitioned heap table is the outer table in the query, then the 
optimizer considers the following access methods:

• A hash-based table scan using 3 worker processes

• A range scan using 10 worker processes for the merge join

• A serial scan using a single process

If max scan parallel degree is set to 1, then the optimizer does not consider 
the hash-based scan.

See “Single-table scans” on page 610 for more examples of determining 
the degree of parallelism for queries.

Table with clustered index

If the table has a clustered index, the optimizer considers the following 
parallel access methods when the table uses allpages locking:



CHAPTER 25    Parallel Query Optimization

Performance & Tuning Guide 609

• A parallel partition scan or a parallel clustered index scan, if the table 
is partitioned and max parallel degree is set to at least 6

• A range scan, using max parallel degree worker processes

• A serial scan

If the table uses data-only-locking, the optimizer considers:

• A parallel partition scan, if the table is partitioned and max parallel 
degree is set to at least 6

• A range scan, using max parallel degree worker processes

• A serial scan

Runtime adjustments to worker processes
Even after the optimizer determines a degree of parallelism for the query 
as a whole, Adaptive Server may make final adjustments at runtime to 
compensate for the actual number of worker processes that are available. 
If fewer worker processes are available at runtime than are suggested by 
the optimizer, the degree of parallelism is reduced to a level that is 
consistent with the available worker processes and the access methods in 
the final query plan. “Runtime adjustment of worker processes” on page 
617 describes the process of adjusting the degree of parallelism at runtime 
and explains how to determine when these adjustments occur.

Parallel query examples
The following sections further explain and provide examples of how 
Adaptive Server optimizes these types of parallel queries:

• Single-table scans

• Multitable joins

• Subqueries

• Queries that require worktables

• union queries

• Queries with aggregates



Parallel query examples 

610  Adaptive Server Enterprise

• select into statements

Commands that insert, delete, or update data, and commands executed 
from within cursors are never considered for parallel query optimization.

Single-table scans
The simplest parallel query optimization involves queries that access a 
single base table. Adaptive Server optimizes these queries by evaluating 
the base table to determine applicable access methods, and then applying 
cost functions to select the least costly plan.

Understanding how Adaptive Server optimizes single-table queries is 
integral to understanding more complex parallel queries. Although queries 
such as multitable joins and subqueries use additional optimization 
strategies, the process of accessing individual tables for those queries is 
the same. 

The following example shows instances in which the optimizer uses 
parallel access methods on single-table queries.

Table partition scan 

This example shows a query where the optimizer chooses a table partition 
scan over a serial table scan. The configuration and table layout are as 
follows:

The example query is:

Configuration parameter values

Parameter Setting

max parallel degree 10 worker processes

max scan parallel degree 2 worker processes

Table layout

Table name Useful indexes
Number of 
partitions Number of pages

authors None 5 Partition 1: 50 pages
Partition 2: 70 pages
Partition 3: 90 pages
Partition 4: 80 pages
Partition 5: 10 pages



CHAPTER 25    Parallel Query Optimization

Performance & Tuning Guide 611

select * 
    from authors 
    where au_lname < "L"

Using the logic in Table 25-2 on page 600, the optimizer determines that 
the following access methods are available for consideration:

• Partition scan

• Serial table scan

The optimizer does not consider a hash-based table scan for the table, 
since the balance of pages in the partitions is not skewed, and the upper 
limit to the degree of parallelism for the table, 10, is high enough to allow 
a partition-based scan.

The optimizer computes the cost of each access method, as follows:

The optimizer chooses to perform a table partition scan at a cost of 90 
physical and logical I/Os. Because the table has 5 partitions, the optimizer 
chooses to use 5 worker processes. The final showplan output for this 
query is:

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 5 worker
processes.
    STEP 1
        The type of query is SELECT.
        Executed in parallel by coordinating process and 5
        worker processes.
    FROM TABLE
        authors
    Nested iteration.
    Table Scan.
    Forward scan.
    Positioning at start of table.
    Executed in parallel with a 5-way partition scan.
    Using I/O Size 16 Kbytes for data pages.
    With LRU Buffer Replacement Strategy for data pages.
    Parallel network buffer merge.

Cost of table partition scan = # of pages in the largest partition = 90 pages

Cost of serial table scan = # of pages in table = 300 pages



Parallel query examples 

612  Adaptive Server Enterprise

Multitable joins
When optimizing joins, the optimizer considers the best join order for all 
combinations of tables and applicable access methods. The optimizer uses 
a different strategy to select access methods for inner and outer tables and 
the degree of parallelism for the join query as a whole.

As in serial processing, the optimizer weighs many alternatives for 
accessing a particular table. The optimizer balances the costs of parallel 
execution with other factors that affect join queries, such as the presence 
of a clustered index, the use of either nested-loop or merge joins, the 
possibility of reformatting the inner table, the join order, and the I/O and 
caching strategy. The following discussion focuses only on parallel versus 
serial access method choices.

Parallel join optimization and join orders

This example illustrates how the optimizer devises a query plan for a join 
query that is eligible for parallel execution. The configuration and table 
layout are as follows:

The example query involves a simple join between these two tables:

select * 
    from publishers, titles 
    where publishers.pub_id = titles.pub_id

In theory, the optimizer considers the costs of all the possible 
combinations:

Configuration parameter values

Parameter Setting

max parallel degree 15 worker processes

max scan parallel degree 3 worker processes

Table layout

Table 
name

Number of 
partitions

Number of 
pages Number of rows

publishers 1 (not partitioned) 1,000 80,000

titles 10 10,000 (distributed 
evenly over 
partitions)

800,000



CHAPTER 25    Parallel Query Optimization

Performance & Tuning Guide 613

• titles as the outer table and publishers as the inner table, with titles 
accessed in parallel

• titles as the outer table and publishers as the inner table, with titles 
accessed serially

• publishers as the outer table and titles as the inner table, with titles 
accessed in parallel

• publishers as the outer table and titles as the inner table, with titles 
accessed serially

• publishers as the outer table and titles as the inner table, with publishers 
accessed in parallel

For example, the cost of a join order in which titles is the outer table and is 
accessed in parallel is calculated as follows:

The cost of having publishers as the outer table is calculated as follows:

However, other factors are often more important in determining the join 
order than whether a particular table is eligible for parallel access.

Scenario A: clustered index on publishers

The presence of a useful clustered index is often the most important factor 
in how the optimizer creates a query plan for a join query. If publishers has 
a clustered index on pub_id and titles has no useful index, the optimizer can 
choose the indexed table (publishers) as the inner table. With this join 
order, each access to the inner table takes only a few reads to find rows.

With publishers as the inner table, the optimizer costs the eligible access 
methods for each table. For titles, the outer table, it considers:

• A parallel partition scan (cost is number of pages in the largest 
partition)

• A serial table scan (cost is number of pages in the table)

For publishers, the inner table, the optimizer considers only a serial 
clustered index scan.

It also considers performing a merge join, sorting the worktable from titles 
into order on titles, either a right-merge or left-merge join.

The final cost of the query is the cost of accessing titles in parallel times 
the number of accesses of the clustered index on publishers.



Parallel query examples 

614  Adaptive Server Enterprise

Scenario B: clustered index on titles

If titles has a clustered index on pub_id, and publishers has no useful index, 
the optimizer chooses titles as the inner table in the query.

With the join order determined, the optimizer costs the eligible access 
methods for each table. For publishers, the outer table, it considers:

• A hash-based table scan (the initial cost is the same as a serial table 
scan)

For titles, the inner table, the optimizer considers only aserial clustered 
index scan.

In this scenario, the optimizer chooses parallel over serial execution of 
publishers. Even though a hash-based table scan has the same cost as a 
serial scan, the processing time is cut by one-third, because each worker 
process can scan the inner table’s clustered index simultaneously. 

Scenario C: neither table has a useful index

If neither table has a useful index, a merge join is a very likely choice for 
the access method. If merge joins are disabled, the table size and available 
cache space can be more important factors than potential parallel access 
for join order. The benefits of having a smaller table as the inner table 
outweigh the benefits of one parallel access method over the other. The 
optimizer chooses the publishers table as the inner table, because it is small 
enough to be read once and kept in cache, reducing costly physical I/O.

Then, the optimizer costs the eligible access methods for each table. For 
titles, the outer table, it considers:

• A parallel partition scan (cost is number of pages in the largest 
partition)

• A serial table scan (cost is number of pages in the table)

For publishers, the inner table, it considers only a serial table scan loaded 
into cache.

The optimizer chooses to access titles in parallel, because it reduces the 
cost of the query by a factor of 10.

In some cases where neither table has a useful index, the optimizer 
chooses the reformatting strategy, creating a temporary table and clustered 
index instead of repeatedly scanning the inner table.



CHAPTER 25    Parallel Query Optimization

Performance & Tuning Guide 615

Subqueries
When a query contains a subquery, Adaptive Server uses different access 
methods to reduce the cost of processing the subquery. Parallel 
optimization depends on the type of subquery and the access methods:

• Materialized subqueries – parallel query methods are not considered 
for the materialization step.

• Flattened subqueries – parallel query optimization is considered only 
when the subquery is flattened to a regular join. It is not considered 
for existence joins or other flattening strategies.

• Nested subqueries – parallel access methods are considered for the 
outermost query block in a query containing a subquery; the inner, 
nested queries always execute serially. Although the optimizer 
considers parallel access methods for only the outermost query block 
in a subquery, all worker processes that access the outer query block 
also access the inner tables of the nested subqueries.

Each worker process accesses the inner, nested query block in serial. 
Although the subquery is run once for each row in the outer table, 
each worker process performs only one-fifth of the executions. 
showplan output for the subquery indicates that the nested query is 
“Executed by 5 worker processes,” since each worker process used in 
the outer query block scans the table specified in the inner query 
block.

Each worker process maintains a separate cache of subquery results, 
so the subquery may be executed slightly more often than in serial 
processing. 

Queries that require worktables
Parallel queries that require worktables create partitioned worktables and 
populate them in parallel. For queries that require sorts, the parallel sort 
manager determines whether to use a serial or parallel sort.

See Chapter 26, “Parallel Sorting,” for more information about parallel 
sorting.



Parallel query examples 

616  Adaptive Server Enterprise

union queries
The optimizer considers parallel access methods for each part of a union 
query separately. Each select in a union is optimized separately, so one 
query can use a parallel plan, another a serial plan, and a third a parallel 
plan with a different number of worker processes. If a union query requires 
a worktable, then the worktable may also be partitioned and populated in 
parallel by worker processes.

If a union query is to return no duplicate rows, then a parallel sort may be 
performed on the internal worktable to remove duplicate rows.

See Chapter 26, “Parallel Sorting,” for more information about parallel 
sorting. 

Queries with aggregates
Adaptive Server considers parallel access methods for queries that return 
aggregate results in the same way it does for other queries. For queries that 
use the group by clause to return a grouped aggregate result, Adaptive 
Server also creates multiple worktables with clustered indexes—one 
worktable for each worker process that executes the query. Each worker 
process stores partial aggregate results in its designated worktable. As 
worker processes finish computing their partial results, they merge those 
results into a common worktable. After all worker processes have merged 
their partial results, the common worktable contains the final grouped 
aggregate result set for the query.

select into statements
select into creates a new table to store the query’s result set. Adaptive 
Server optimizes the base query portion of a select into command in the 
same way it does a standard query, considering both parallel and serial 
access methods. A select into statement that is executed in parallel:

1 Creates the new table using columns specified in the select into 
statement.

2 Creates n partitions in the new table, where n is the degree of 
parallelism that the optimizer chose for the query as a whole.

3 Populates the new table with query results, using n worker processes.



CHAPTER 25    Parallel Query Optimization

Performance & Tuning Guide 617

4 Unpartitions the new table.

Performing a select into statement in parallel requires additional steps than 
the equivalent serial query plan. Therefore, the execution of a parallel 
select into statement takes place using four discrete transactions, rather 
than the two transactions of a serial select into statement. See select in the 
Adaptive Server Reference Manual for information about how this affects 
the database recovery process.

Runtime adjustment of worker processes
The output of showplan describes the optimized plan for a given query. An 
optimized query plan specifies the access methods and the degree of 
parallelism that the optimizer suggests when the query is compiled. At 
execution time, there may be fewer worker processes available than are 
required by the optimized query plan. This can occur when:

• There are not enough worker processes available for the optimized 
query plan.

• The server-level or session-level limits for the query were reduced 
after the query was compiled. This can happen with queries executed 
from within stored procedures.

In these circumstances, Adaptive Server may create an adjusted query plan 
to compensate for the available worker processes. An adjusted query 
plan is generated at runtime and compensates for the lack of available 
worker processes. An adjusted query plan may use fewer worker processes 
than the optimized query plan, and it may use a serial access method 
instead of a parallel method for one or more of the tables.

The response time of an adjusted query plan may be significantly longer 
than its optimized counterpart. Adaptive Server provides:

• A set option, process_limit_action, which allows you to control 
whether runtime adjustments are allowed.

• Information on runtime adjustments in sp_sysmon output.



Runtime adjustment of worker processes 

618  Adaptive Server Enterprise

How Adaptive Server adjusts a query plan
Adaptive Server uses two basic rules to reduce the number of required 
worker processes in an adjusted query plan:

1 If the optimized query plan specifies a partition-based access method 
for a table, but not enough processes are available to scan each 
partition, the adjusted plan uses a serial access method.

2 If the optimized query plan specifies a hash-based access method for 
a table, but not enough processes are available to cover the optimized 
degree of parallelism, the adjusted plan reduces the degree of 
parallelism to a level consistent with the available worker processes.

To illustrate the first case, assume that an optimized query plan 
recommends scanning a table’s five partitions using a partition-based table 
scan. If only four worker processes are actually available at the time the 
query executes, Adaptive Server creates an adjusted query plan that 
accesses the table in serial, using a single process.

In the second case, if the optimized query plan recommended scanning the 
table with a hash-based access method and five worker processes, the 
adjusted query plan would still use a hash-based access method, but with, 
at the most, four worker processes.

Evaluating the effect of runtime adjustments
Although optimized query plans generally outperform adjusted query 
plans, the difference in performance is not always significant. The ultimate 
effect on performance depends on the number of worker processes that 
Adaptive Server uses in the adjusted plan, and whether or not a serial 
access method is used in place of a parallel method. Obviously, the most 
negative impact on performance occurs when Adaptive Server uses a 
serial access method instead of a parallel access method to execute a query. 

The performance of multitable join queries can also suffer dramatically 
from adjusted query plans, since Adaptive Server does not change the join 
ordering when creating an adjusted query plan. If an adjusted query plan 
is executed in serial, the query can potentially perform more slowly than 
an optimized serial join. This may occur because the optimized parallel 
join order for a query is different from the optimized serial join order.



CHAPTER 25    Parallel Query Optimization

Performance & Tuning Guide 619

Recognizing and managing runtime adjustments
Adaptive Server provides two mechanisms to help you observe runtime 
adjustments of query plans.

• set process_limit_action allows you to abort batches or procedures 
when runtime adjustments take place or print warnings.

• showplan prints an adjusted query plan when runtime adjustments 
occur, and showplan is effect.

Using set process_limit_action

The process_limit_action option to the set command lets you monitor the 
use of adjusted query plans at a session or stored procedure level. When 
you set process_limit_action to “abort,” Adaptive Server records Error 
11015 and aborts the query, if an adjusted query plan is required. When 
you set process_limit_action to “warning,” Adaptive Server records Error 
11014 but still executes the query. 

For example, this command aborts the batch when a query is adjusted at 
runtime:

set process_limit_action abort

By examining the occurrences of Errors 11014 and 11015 in the error log, 
you can determine the degree to which Adaptive Server uses adjusted 
query plans instead of optimized query plans. To remove the restriction 
and allow runtime adjustments, use:

set process_limit_action quiet

See set in the Adaptive Server Reference Manual for more information 
about process_limit_action.

Using showplan

When you use showplan, Adaptive Server displays the optimized plan for 
a given query before it runs the query. When the query plan involves 
parallel processing, and a runtime adjustment is made, showplan displays 
this message, followed by the adjusted query plan:

AN ADJUSTED QUERY PLAN WILL BE USED FOR STATEMENT 1 
BECAUSE NOT ENOUGH WORKER PROCESSES ARE AVAILABLE AT 
THIS TIME.



Runtime adjustment of worker processes 

620  Adaptive Server Enterprise

Adaptive Server does not attempt to execute a query when the set noexec 
is in effect, so runtime plans are never displayed while using this option.

Reducing the likelihood of runtime adjustments
To reduce the number of runtime adjustments, you must increase the 
number of worker processes that are available to parallel queries. You can 
do this either by adding more total worker processes to the system or by 
restricting or eliminating parallel execution for noncritical queries, as 
follows:

• Use set parallel_degree and/or set scan_parallel_degree to set session-
level limits on the degree of parallelism, or

• Use the query-level parallel 1 and parallel N clauses to limit the worker 
process usage of individual statements.

To reduce the number of runtime adjustments for system procedures, 
recompile the procedures after changing the degree of parallelism at the 
server or session level. See sp_recompile in the Adaptive Server Reference 
Manual for more information.

Checking runtime adjustments with sp_sysmon
sp_sysmon shows how many times a request for worker processes was 
denied due to a lack of worker processes and how many times the number 
of worker processes recommended for a query was adjusted to a smaller 
number. The following sections of the report provide information:

• “Worker process management” on page 946 describes the output for 
the number of worker process requests that were requested and denied 
and the success and failure of memory requests for worker processes. 

• “Parallel query management” on page 949 describes the sp_sysmon 
output that reports on the number of runtime adjustments and locks 
for parallel queries.



CHAPTER 25    Parallel Query Optimization

Performance & Tuning Guide 621

If insufficient worker processes in the pool seems to be the problem, 
compare the number of worker processes used to the number of worker 
processes configured. If the maximum number of worker processes used 
is equal to the configured value for number of worker processes, and the 
percentage of worker process requests denied is greater than 80 percent, 
increase the value for number of worker processes and re-run sp_sysmon. 
If the maximum number of worker processes used is less than the 
configured value for number of worker processes, and the percentage of 
worker thread requests denied is 0 percent, decreases the value for number 
of worker processes to free memory resources.

Diagnosing parallel performance problems
The following sections provide troubleshooting guidelines for parallel 
queries. They cover two situations:

• The query runs in serial, when you expect it to run in parallel.

• The query runs in parallel, but does not perform as well as you expect.

Query does not run in parallel
If you think that a query should run in parallel but does not, possible 
explanations are:

• The max parallel degree configuration parameter is set to 1, or the 
session-level setting set parallel_degree is set to 1, preventing all 
parallel access.

• The max scan parallel degree configuration parameter is set to 1, or the 
session level setting set scan_parallel_degree is set to 1, preventing 
hash-based parallel access.

• There are insufficient worker threads at execution time. Check for 
runtime adjustments, using the tools discussed in “Runtime 
adjustments to worker processes” on page 609.

• The scope of the scan is less than 20 data pages. This can be bypassed 
with the (parallel) clause.

• The plan calls for a table scan and:



Diagnosing parallel performance problems 

622  Adaptive Server Enterprise

• The table is not a heap, 

• The table is not partitioned, 

• The partitioning is unbalanced, or

• The table is a heap but is not the outer table of a join.

The last two conditions can be bypassed with the (parallel) clause.

• The plan calls for a clustered index scan and:

• The table is not partitioned, or

• The partitioning is unbalanced. This can be bypassed with the 
(parallel) clause.

• The plan calls for a nonclustered index scan, and the chosen index 
covers the required columns.

• The table is a temporary table or a system table.

• The table is the inner table of an outer join.

• A limit has been set through the Resource Governor, and all parallel 
plans exceed that limit in terms of total work.

• The query is a type that is not made parallel, such as an insert, update, 
or delete command, a nested (not the outermost) query, or a cursor.

Parallel performance is not as good as expected
Possible explanations are:

• There are too many partitions for the underlying physical devices.

• There are too many devices per controller.

• The (parallel) clause has been used inappropriately.

• The max scan parallel degree is set too high; the recommended range 
is 2–3.

Calling technical support for diagnosis
If you cannot diagnose the problem using these hints, the following 
information will be needed by Sybase Technical Support to determine the 
source of the problem:



CHAPTER 25    Parallel Query Optimization

Performance & Tuning Guide 623

• The table and index schema—create table, alter table...partition, and 
create index statements are most helpful. Provide output from sp_help 
if the actual create and alter commands are not available.

• The query.

• The output of the query run with commands:

• dbcc traceon (3604,302, 310)

• set showplan on

• set noexec on

• The statistics io output for the query.

Resource limits for parallel queries
The tracking of I/O cost limits may be less precise for partitioned tables 
than for unpartitioned tables, when Adaptive Server is configured for 
parallel query processing. 

When you query a partitioned table, all the labor in processing the query 
is divided among the partitions. For example, if you query a table with 
three partitions, the query’s work is divided among 3 worker processes. If 
the user has specified an I/O resource limit with an upper bound of 6000, 
the optimizer assigns a limit of 2000 to each worker process. 

However, since no two threads are guaranteed to perform the exact same 
amount of work, the parallel processor cannot precisely distribute the 
work among worker processes. You may get an error message saying you 
have exceeded your I/O resource limit when, according to showplan or 
statistics io output, you actually have not. Conversely, one partition may 
exceed the limit slightly, without the limit taking effect.

See the System Administration Guide for more information about setting 
resource limits.



Resource limits for parallel queries 

624  Adaptive Server Enterprise



Performance & Tuning Guide 625

C H A P T E R  2 6 Parallel Sorting

This chapter discusses how to configure the server for improved 
performance for commands that perform parallel sorts.

 The process of sorting data is an integral part of any database 
management system. Sorting is for creating indexes and for processing 
complex queries. The Adaptive Server parallel sort manager provides a 
high-performance, parallel method for sorting data rows. All Transact-
SQL commands that require an internal sort can benefit from the use of 
parallel sorting. 

Parallel sorting and how it works and what factors affect the performance 
of parallel sorts is also covered. You need to understand these subjects to 
get the best performance from parallel sorting, and to keep parallel sort 
resource requirements from interfering with other resource needs. 

Commands that benefits from parallel sorting
Any Transact-SQL command that requires data row sorting can benefit 
from parallel sorting techniques. These commands are:

• create index commands and the alter table...add constraint commands 
that build indexes, unique and primary key

• Queries that use the order by clause

• Queries that use distinct

Topic Page
Commands that benefits from parallel sorting 625

Requirements and resources overview 626

Overview of the parallel sorting strategy 627

Configuring resources for parallel sorting 630

Recovery considerations 644

Tools for observing and tuning sort behavior 644

Using sp_sysmon to tune index creation 649



Requirements and resources overview 

626  Adaptive Server Enterprise

• Queries that perform merge joins requiring sorts

• Queries that use union (except union all)

• Queries that use the reformatting strategy

In addition, any cursors that use the above commands can benefit from 
parallel sorting.

Requirements and resources overview
Like parallel query processing, parallel sorting requires more resources 
than performing the same command in parallel. Response time for creating 
the index or sorting query results improves, but the server performs more 
work due to overhead. 

Adaptive Server’s sort manager determines whether the resources required 
to perform a sort operation in parallel are available, and also whether a 
serial or parallel sort should be performed, given the size of the table and 
other factors. For a parallel sort to be performed, certain criteria must be 
met:

• The select into/bulk copy/pllsort database option must be set to true with 
sp_dboption in the target database:

• For indexes, the option must be enabled in the database where the 
table resides. For creating a clustered index on a partitioned table, 
this option must be enabled, or the sort fails. For creating other 
indexes, serial sorts can be performed if parallel sorts cannot be 
performed.

• For sorting worktables, this option must be on in tempdb. Serial 
sorts can be performed if parallel sorts cannot be performed. 

• Parallel sorts must have a minimum number of worker processes 
available. The number depends on the number of partitions on the 
table and/or the number of devices on the target segment. The degree 
of parallelism at the server and session level must be high enough for 
the sort to use at least the minimum number of worker processes 
required for a parallel sort. Clustered indexes on partitioned tables 
must be created in parallel; other sorts can be performed in serial if 
there are not enough worker processes available. “Worker process 
requirements for parallel sorts” on page 631 and “Worker process 
requirements for select query sorts” on page 634.



CHAPTER 26    Parallel Sorting

Performance & Tuning Guide 627

• For select commands that require sorting, and for creating 
nonclustered indexes, the table to be sorted must be at least eight 
times the size of the available sort buffers (the value of the number of 
sort buffers configuration parameter), or the sort will be performed in 
serial mode. This ensures that Adaptive Server does not perform 
parallel sorting on smaller tables that would not show significant 
improvements in performance. This rule does not apply to creating 
clustered indexes on partitioned tables, since this operation always 
requires a parallel sort.

See “Sort buffer configuration guidelines” on page 637.

• For create index commands, the value of the number of sort buffers 
configuration parameter must be at least as large as the number of 
worker processes available for the parallel sort. 

See “Sort buffer configuration guidelines” on page 637.

Note  You cannot use the dump transaction command after indexes are 
created using a parallel sort. You must dump the database. Serial 
create index commands can be recovered, but only by completely re-
doing the indexing command, which can greatly lengthen recovery 
time. Performing database dumps after serial create indexes is 
recommended to speed recovery, although it is not required in order 
to use dump transaction.

Overview of the parallel sorting strategy
Like the Adaptive Server optimizer, the Adaptive Server parallel sort 
manager analyzes the available worker processes, the input table, and 
other resources to determine the number of worker processes to use for the 
sort.

After determining the number of worker processes to use, Adaptive Server 
executes the parallel sort. The process of executing a parallel sort is the 
same for create index commands and queries that require sorts. Adaptive 
Server executes a parallel sort by:

1 Creating a distribution map. For a merge join with statistics on a join 
column, histogram statistics are used for the distribution map. In other 
cases, the input table is sampled to build the map.



Overview of the parallel sorting strategy 

628  Adaptive Server Enterprise

2 Reading the table data and dynamically partitioning the key values 
into a set of sort buffers, as determined by the distribution map.

3 Sorting each individual range of key values and creating subindexes.

4 Merging the sorted subindexes into the final result set.

Each of these steps is described in the sections that follow. 

Figure 26-1 depicts a parallel sort of a table with two partitions and two 
physical devices on its segment.

Figure 26-1: Parallel sort strategy

Producer 
process 1

Producer 
process 2

4

Distribution map

 2 4 5 97 830 1 6

Consumer 
process 2

Consumer 
process 1

2 4 5 97 8 3 01 6

Partition 1 Partition 2

Sorted data or Sorted data orCoordinating
process subindex subindex

Merged result
or index

Step 1. Sampling 
the data and 
building the 
distribution map.

Step 2. Partitioning 
data into discrete 
ranges.

Step 3. Sorting 
each range and 
creating indexes.

2K sort buffers

Step 4. Merging the 
sorted data.

2

4

2 430 1 5 97 86

8
65

9
7

3
0

1



CHAPTER 26    Parallel Sorting

Performance & Tuning Guide 629

Creating a distribution map
As a first step in executing a parallel sort, Adaptive Server creates a 
distribution map. If the sort is performed as part of a merge join, and there 
are statistics on the join columns, the histograms are used to build the 
distribution map. For other sorts, Adaptive Server selects and sorts a 
random sample of data from the input table. This distribution 
information—referred to as the distribution map—is used in the second 
sort step to divide the input data into equally sized ranges during the next 
phase of the parallel sort process.

The distribution map contains a key value for the highest key that is 
assigned to each range, except the final range in the table. In Figure 26-1, 
the distribution map shows that all values less than or equal to 4 are 
assigned to the first range and that all values greater than 4 are assigned to 
the second range.

Dynamic range partitioning
After creating the distribution map, Adaptive Server employs two kinds of 
worker processes to perform different parts of the sort. These worker 
processes are called producer processes and consumer processes:

• Producer processes read data from the input table and use the 
distribution map to determine the range to which each key value 
belongs. The producers distribute the data by copying it to the sort 
buffers belonging to the correct range.

• Each consumer process reads the data from a range of the sort buffers 
and sorts it into subindexes, as described in “Range sorting” on page 
630.

In Figure 26-1, two producer processes read data from the input table. 
Each producer process scans one table partition and distributes the data 
into ranges using the distribution map. For example, the first producer 
process reads data values 7, 2, 4, 5, and 9. Based on the information in the 
distribution map, the process distributes values 2 and 4 to the first 
consumer process, and values 7, 5, and 9 to the second consumer process.



Configuring resources for parallel sorting 

630  Adaptive Server Enterprise

Range sorting
Each partitioned range has a dedicated consumer process that sorts the 
data in that range independently of other ranges. Depending on the size of 
the table and the number of buffers available to perform the sort, the 
consumers may perform multiple merge runs, writing intermediate results 
to disk, and reading and merging those results, until all of the data for the 
assigned range is completely sorted.

• For create index commands, each consumer for each partitioned range 
of data writes to a separate database device. This improves 
performance through increased I/O parallelism, if database devices 
reside on separate physical devices and controllers. The consumer 
process also builds an index, referred to as a subindex, on the sorted 
data.

• For merge joins, each consumer process writes the ordered rows to a 
separate set of linked data pages, one for each worker process that will 
perform the merge.

• For queries, the consumer process simply orders the data in the range 
from the smallest value to the largest. 

Merging results
After all consumer processes have finished sorting the data for each 
partitioned range: 

• For create index commands, the coordinating process merges the 
subindexes into one final index.

• For merge joins, the worker processes for the merge step perform the 
merge with the other tables in the merge join.

• For other queries, the coordinating process merges the sort results and 
returns them to the client.

Configuring resources for parallel sorting
The following sections describe the resources used by Adaptive Server 
when sorting data in parallel:



CHAPTER 26    Parallel Sorting

Performance & Tuning Guide 631

• Worker processes read the data and perform the sort.

• Sort buffers pass data in cache from producers to consumers, reducing 
physical I/O.

• Large I/O pools in the cache used for the sort also help reduce 
physical I/O.

Note  Reference to Large I/Os are on a 2K logical page size server. If 
you have an 8K page size server, the basic unit for the I/O is 8K. If 
you have a 16K page size server, the basic unit for the I/O is 16K.

• Multiple physical devices increase I/O parallelism and help determine 
the number of worker processes for most sorts.

Worker process requirements for parallel sorts
Adaptive Server requires a minimum number of worker processes to 
perform a parallel sort. If additional worker processes are available, the 
sort can be performed more quickly. The minimum number required and 
the maximum number that can be used are determined by the number of:

• Partitions on the table, for creating clustered indexes 

• Devices, for creating nonclustered indexes

• Threads used to create the worktable and the number of devices in 
tempdb, for merge joins

• Devices in tempdb, for other queries that require sorts

If the minimum number of worker processes is not available:

• Sorts for clustered indexes on partitioned tables must be performed in 
parallel; the sort fails if not enough worker processes are available. 

• Sorts for nonclustered indexes and sorts for clustered indexes on 
unpartitioned tables can be performed in serial.

• All sorts for queries can be performed in serial.

The availability of worker processes is determined by server-wide and 
session-wide limits. At the server level, the configuration parameters 
number of worker processes and max parallel degree limit the total size of 
the pool of worker processes and the maximum number that can be used 
by any create index or select command.



Configuring resources for parallel sorting 

632  Adaptive Server Enterprise

The available processes at runtime may be smaller than the configured 
value of max parallel degree or the session limit, due to other queries 
running in parallel. The decision on the number of worker processes to use 
for a sort is made by the sort manager, not by the optimizer. Since the sort 
manager makes this decision at runtime, parallel sort decisions are based 
on the actual number of worker processes available when the sort begins. 

See “Controlling the degree of parallelism” on page 566 for more 
information about controlling the server-wide and session-wide limits.

Worker process requirements for creating indexes

Table 26-1 shows the number of producers and consumers required to 
create indexes. The target segment for a sort is the segment where the 
index is stored when the create index command completes. When you 
create an index, you can specify the location with the on segment_name 
clause. If you do not specify a segment, the index is stored on the default 
segment.

Table 26-1: Number of producers and consumers used for create 
index

Consumers are the workhorses of parallel sort, using CPU time to perform 
the actual sort and using I/O to read and write intermediate results and to 
write the final index to disk. First, the sort manager assigns one worker 
process as a consumer for each target device. Next, if there are enough 
available worker processes, the sort manager assigns one producer to each 
partition in the table. If there are not enough worker processes to assign 
one producer to each partition, the entire table is scanned by a single 
producer.

Index type Producers Consumers

Nonclustered index Number of partitions, or 1 Number of devices on target segment

Clustered index on unpartitioned 
table

1 Number of devices on target segment

Clustered index on partitioned 
table

Number of partitions, or 1 Number of partitions



CHAPTER 26    Parallel Sorting

Performance & Tuning Guide 633

Clustered indexes on partitioned tables

To create a clustered index on a partitioned table, Adaptive Server requires 
at least one consumer process for every partition on the table, plus one 
additional worker process to scan the table. If fewer worker processes are 
available, then the create clustered index command fails and prints a 
message showing the available and required numbers of worker processes.

If enough worker processes are available, the sort manager assigns one 
producer process per partition, as well as one consumer process for each 
partition. This speeds up the reading of the data.

Clustered indexes on unpartitioned tables

Only one producer process can be used to scan the input data for 
unpartitioned tables. The number of consumer processes is determined by 
the number of devices on the segment where the index is to be stored. If 
there are not enough worker processes available, the sort can be performed 
in serial.

Nonclustered indexes

The number of consumer processes is determined by the number of 
devices on the target segment. If there are enough worker processes 
available and the table is partitioned, one producer process is used for each 
partition on the table; otherwise, a single producer process scans the entire 
table. If there are not enough worker processes available, the sort can be 
performed in serial.

Minimum 1 consumer per partition, plus 1 producer

Maximum 2 worker processes per partition

Can be performed in 
serial

No

Minimum 1 consumer per device, plus 1 producer

Maximum 1 consumer per device, plus 1 producer

Can be performed in 
serial

Yes

Minimum 1 consumer per device, plus 1 producer

Maximum 1 consumer per device, plus 1 producer per partition

Can be performed in 
serial

Yes



Configuring resources for parallel sorting 

634  Adaptive Server Enterprise

Using with consumers while creating indexes

RAID devices appear to Adaptive Server as a single database device, so, 
although the devices may be capable of supporting the I/O load of parallel 
sorts, Adaptive Server assigns only a single consumer for the device, by 
default. 

The with consumers clause to the create index statement provides a way to 
specify the number of consumer processes that create index can use. By 
testing the I/O capacity of striped devices, you can determine the number 
of simultaneous processes your RAID device can support and use this 
number to suggest a degree of parallelism for parallel sorting. As a 
baseline, use one consumer for each underlying physical device. This 
example specifies eight consumers:

create index order_ix on orders (order_id) 
with consumers = 8

You can also use the with consumers clause with the alter table...add 
constraint clauses that create the primary key and unique indexes:

alter table orders 
add constraint prim_key primary key (order_id) with 
consumers = 8

The with consumers clause can be used for creating indexes—you cannot 
control the number of consumer processes used in internal sorts for 
parallel queries. You cannot use this clause when creating a clustered 
index on a partitioned table. When creating a clustered index on a 
partitioned table, Adaptive Server must use one consumer process for 
every partition in the table to ensure that the final, sorted data is distributed 
evenly over partitions.

Adaptive Server ignores the with consumers clause if the specified number 
of processes is higher than the number of available worker processes, or if 
the specified number of processes exceeds the server or session limits for 
parallelism.

Worker process requirements for select query sorts
Queries that require worktable sorts have multistep query plans. The 
determination of the number of worker processes for a worktable sort is 
made after the scan of the base table completes. During the phase of the 
query where data is selected into the worktable, each worker process 
selects data into a separate partition of the worktable. 



CHAPTER 26    Parallel Sorting

Performance & Tuning Guide 635

Once the worktable is populated, additional worker processes are allocated 
to perform the sort step. showplan does not report this value; the sort 
manager reports only whether the sort is performed in serial or parallel. 
The worker processes used in the previous step do not participate in the 
sort, but remain allocated to the parallel task until the task completes. 

Worker processes for merge-join sorts

For merge joins, one consumer process is assigned for each device in 
tempdb; if there is only one device in tempdb, two consumer processes are 
used. The number of producers depends on the number of partitions in the 
worktable, and the setting for max parallel degree:

• If the worktable is not partitioned, one producer process is used.

• If the number of consumers plus the number of partitions in the 
worktable is less than or equal to max parallel degree, one producer 
process is allocated for each worktable partition.

• If the number of consumer processes plus the number of partitions in 
the worktable is greater than max parallel degree, one producer 
process is used.

Other worktable sorts

For all other worktable sorts, the worktable is unpartitioned when the step 
that created it completes. Worker processes are assigned in the following 
way:

• If there is only one device in tempdb, the sort is performed using two 
consumers and one producer; otherwise, one consumer process is 
assigned for each device in tempdb, and a single producer process 
scans the worktable.

• If there are more devices in tempdb than the available worker 
processes when the sort starts, the sort is performed in serial.

Caches, sort buffers, and parallel sorts
Optimal cache configuration and an optimal setting for the number of sort 
buffers configuration parameter can greatly speed the performance of 
parallel sorts. The tuning options to consider when you work with parallel 
sorting are:



Configuring resources for parallel sorting 

636  Adaptive Server Enterprise

• Cache bindings

• Sort buffers

• Large I/O

In most cases, the configuration you choose for normal runtime operation 
should be aimed at the needs of queries that perform worktable sorts. You 
need to understand how many simultaneous sorts are needed and the 
approximate size of the worktables, and then configure the cache used by 
tempdb to optimize the sort.

If you drop and create indexes during periods of low system usage, you 
can reconfigure caches and pools and change cache bindings to optimize 
the sorts and reduce the time required. If you need to perform index 
maintenance while users are active, you need to consider the impact that 
re configuration could have on user response time. Configuring a large 
percentage of the cache for exclusive use by the sort or temporarily 
unbinding objects from caches can seriously impact performance for other 
tasks.

Cache bindings

Sorts for create index take place in the cache to which the table is bound. 
If the table is not bound to a cache, but the database is, then cache is used. 
If there is no explicit cache binding, the default data cache is used. 
Worktable sorts use the cache to which tempdb is bound, or the default data 
cache. 

To configure the number of sort buffers and large I/O for a particular sort, 
always check the cache bindings. You can see the binding for a table with 
sp_help. To see all of the cache bindings on a server, use sp_helpcache. 
Once you have determined the cache binding for a table, use 
sp_cacheconfig check the space in the 2K and 16K pools in the cache.

Number of sort buffers can affect sort performance

Producers perform disk I/O to read the input table, and consumers perform 
disk I/O to read and write intermediate sort results to and from disk. 
During the sort, producers pass data to consumers using the sort buffers. 
This avoids disk I/O by copying data rows completely in memory. The 
reserved buffers are not available to any other tasks for the duration of the 
sort. 



CHAPTER 26    Parallel Sorting

Performance & Tuning Guide 637

The number of sort buffers configuration parameter determines the 
maximum space that can be used to perform a serial sort. Each sort 
instance can use up to the number of sort buffers value for each sort. If 
active sorts have reserved all of the buffers in a cache, and another sort 
needs sort buffers, that sort waits until buffers are available in the cache.

Sort buffer configuration guidelines

Since number of sort buffers controls the amount of data that can be read 
and sorted in one batch, configuring more sort buffers increases the batch 
size, reduces the number of merge runs needed, and makes the sort run 
faster. Changing number of sort buffers is dynamic, so you do not have to 
restart the server.

Some general guidelines for configuring sort buffers are as follows:

• The sort manager chooses serial sorts when the number of pages in a 
table is less than 8 times the value of number of sort buffers. In most 
cases, the default value (500) works well for select queries and small 
indexes. At this setting, the sort manager chooses serial sorting for all 
create index and worktable sorts of 4000 pages or less, and parallel 
sorts for larger result sets, saving worker processes for query 
processing and larger sorts. It allows multiple sort processes to use up 
to 500 sort buffers simultaneously. 

A temporary worktable would need to be very large before you would 
need to set the value higher to reduce the number of merge runs for a 
sort. See “Sizing the tempdb” on page 415 for more information.

• If you are creating indexes on large tables while other users are active, 
configure the number of sort buffers so that you do not disrupt other 
activity that needs to use the data cache.

• If you are re-creating indexes during scheduled maintenance periods 
when few users are active on the system, you may want to configure 
a high value for sort buffers. To speed your index maintenance, you 
may want to benchmark performance of high sort buffer values, large 
I/O, and cache bindings to optimize your index activity.

• The reduction in merge runs is a logarithmic function. Increasing the 
value of number of sort buffers from 500 to 600 has very little effect on 
the number of merge runs. Increasing the size to a much larger value, 
such as 5000, can greatly speed the sort by reducing the number of 
merge runs and the amount of I/O needed.



Configuring resources for parallel sorting 

638  Adaptive Server Enterprise

• If number of sort buffers is set to less than the square root of the 
worktable size, sort performance is degraded. Since worktables 
include only columns specified in the select list plus columns needed 
for later joins, worktable size for merge joins is usually considerably 
smaller than the original table size.

When enough sort buffers are configured, fewer intermediate steps and 
merge runs need to take place during a sort, and physical I/O is required. 
When number of sort buffers is equal to or greater than the number of pages 
in the table, the sort can be performed completely in cache, with no 
physical I/O for the intermediate steps: the only I/O required is the I/O to 
read and write the data and index pages.

Using less than the configured number of sort buffers

There are two types of sorts that may use fewer than the configured 
number of sort buffers:

• Creating a clustered index on a partition table always requires a 
parallel sort. If the table size is smaller than the number of configured 
sort buffers, then the sort reserves the number of pages in the table for 
the sort.

• Small serial sorts reserve just the number of sort buffers required to 
hold the table in cache.

Configuring the number of sort buffers parameter

When creating indexes in parallel, the number of sort buffers must be equal 
to or less than 90 percent of the number of buffers in the pool area, before 
the wash marker, as shown in Figure 26-2. 

Figure 26-2: Area available for sort buffers

MRU LRU

Wash marker

Up to 90% of the space before the wash 
marker can be used for sort buffers

Using a 2K pool



CHAPTER 26    Parallel Sorting

Performance & Tuning Guide 639

The limit of 90 percent of the pool size is not enforced when you configure 
the number of sort buffers parameter, but it is enforced when you run the 
create index command, since the limit is enforced on the pool for the table 
being sorted. The maximum value that can be set for number of sort buffers 
is 32,767; this value is enforced by sp_configure.

Computing the allowed sort buffer value for a pool

sp_cacheconfig returns the size of the pool in megabytes and the wash size 
in kilobytes. For example, this output shows the size of the pools in the 
default data cache:

Cache: default data cache,   Status: Active,   Type: Default
      Config Size: 0.00 Mb,   Run Size: 38.23 Mb
      Config Replacement: strict LRU,   Run Replacement: strict LRU
      Config Partition:            2,   Run Partition:            2
 IO Size  Wash Size Config Size  Run Size     APF Percent 
 -------- --------- ------------ ------------ ----------- 
     2 Kb   4544 Kb      0.00 Mb     22.23 Mb     10      
    16 Kb   3200 Kb     16.00 Mb     16.00 Mb     10

This procedure takes the size of the 2K pool and its wash size as 
parameters, converts both values to pages and computes the maximum 
number of pages that can be used for sort buffers:

create proc bufs @poolsize numeric(6,2), @wash int
as
select "90% of non-wash 2k pool" = 
    ((@poolsize * 512) - (@wash/2)) * .9

The following example executes bufs with values of “22.23 Mb” for the 
pool size and “4544 Kb” for the wash size:

bufs 22.23, 4544

The bufs procedure returns the following results:

90% of non-wash 2k pool
----------------------- 
              8198.784 

This command sets the number of sort buffers to 8198 pages:

sp_configure "number of sort buffers", 8198



Configuring resources for parallel sorting 

640  Adaptive Server Enterprise

If the table on which you want to create the index is bound to a user-
defined cache, configure the appropriate number of sort buffers for the 
specific cache. As an alternative, you can unbind the table from the cache, 
create the index, and rebind the table:

sp_unbindcache pubtune, titles
create clustered index title_ix 
    on titles (title_id)
sp_bindcache pubtune_cache, pubtune, titles

 Warning! The buffers used by a sort are reserved entirely for the use of 
the sort until the sort completes. They cannot be used by another other task 
on the server. Setting the number of sort buffers to 90 percent of the pool 
size can seriously affect query processing if you are creating indexes while 
other transactions are active.

Procedure for estimating merge levels and I/O

The following procedure estimates the number of merge runs and the 
amount of physical I/O required to create an index:

create proc merge_runs @pages int, @bufs int
as
declare @runs int, @merges int, @maxmerge int

select @runs = ceiling ( @pages / @bufs ) 

/* if all pages fit into sort buffers, no merge runs needed */
if @runs <=1 
        select @merges = 0
else 
begin
    if @runs > @bufs select @maxmerge = @bufs
    else  select @maxmerge = @runs

    if @maxmerge < 2 select @maxmerge = 2

    select @merges = ceiling(log10(@runs) / log10(@maxmerge)) 
end
select @merges "Merge Levels",
        2 * @pages * @merges + @pages "Total IO"

The parameters for the procedure are:



CHAPTER 26    Parallel Sorting

Performance & Tuning Guide 641

• pages – the number of pages in the table, or the number of leaf-level 
pages in a nonclustered index. 

• bufs – the number of sort buffers to configure.

This example uses the default number of sort buffers for a table with 
2,000,000 pages:

merge_runs 2000000, 500, 20

The merge_runs procedure estimates that 2 merge runs and 10,000,000 
I/Os would be required to create the index:

 Merge Levels Total IO    
 ------------ ----------- 
            2    10000000  

Increasing the number of sort buffers to 1500 reduces the number of merge 
runs and the I/O required:

merge_runs 2000000, 1500 
 Merge Levels Total IO    
 ------------ ----------- 
            1     6000000  

The total I/O predicted by this procedure may be different than the I/O 
usage on your system, depending on the size and configuration of the 
cache and pools used by the sort.

Configuring caches for large I/O during parallel sorting

Sorts can use large I/O:

• During the sampling phase

• For the producers scanning the input tables 

• For the consumers performing disk I/O on intermediate and final sort 
results

For these steps, sorts can use the largest pool size available in the cache 
used by the table being sorted; they can use the 2K pool if no large I/O 
buffers are available.



Configuring resources for parallel sorting 

642  Adaptive Server Enterprise

Balancing sort buffers and large I/O configuration

Configuring a pool for 16K buffers in the cache used by the sort greatly 
speeds I/O for the sort, substantially reducing the number of physical I/Os 
for a sort. Part of this I/O savings results from using large I/O to scan the 
input table.

Additional I/O, both reads and writes, takes place during merge phases of 
the sort. The amount of I/O during this step depends on the number of 
merge phases required. During the sort and merge step, buffers are either 
read once and not needed again, or they are filled with intermediate sort 
output results, written to disk, and available for reuse. The cache-hit ratio 
during sorts will always be low, so configuring a large 16K cache wastes 
space that can better be used for sort buffers, to reduce merge runs.

For example, creating a clustered index on a 250MB table using a 32MB 
cache performed optimally with only 4MB configured in the 16K pool and 
10,000 sort buffers. Larger pool sizes did not affect the cache hit ratio or 
number of I/Os. Changing the wash size for the 16K pool to the maximum 
allowed helped performance slightly, since the small pool size tended to 
allow buffers to reach the LRU end of the cache before the writes were 
completed. The following formula computes the maximum allowable 
wash size for a 16K pool:

select floor((size_in_MB * 1024 /16) * .8) * 16

Disk requirements
Disk requirements for parallel sorting are as follows:

• Space is needed to store the completed index.

• Having multiple devices in the target segment increases the number 
of consumers for worktable sorts and for creating nonclustered 
indexes and clustered indexes on non partitioned tables. 



CHAPTER 26    Parallel Sorting

Performance & Tuning Guide 643

Space requirements for creating indexes

Creating indexes requires space to store the sorted index. For clustered 
indexes, this requires copying the data rows to new locations in the order 
of the index key. The newly ordered data rows and the upper levels of the 
index must be written before the base table can be removed. Unless you 
are using the with sorted_data clause to suppress the sort, creating a 
clustered index requires approximately 120 percent of the space occupied 
by the table.

Creating a nonclustered index requires space to store the new index. To 
help determine the size of objects and the space that is available, use the 
following system procedures:

• sp_spaceused – to see the size of the table. See “Using sp_spaceused 
to display object size” on page 368.

• sp_estspace – to predict the size of the index. See “Using sp_estspace 
to estimate object size” on page 370.

• sp_helpsegment – to see space left on a database segment. See 
“Checking data distribution on devices with sp_helpsegment” on 
page 97.

Space requirements for worktable sorts

Queries that sort worktables (merge joins and order by, distinct, union, and 
reformatting) first copy the needed columns for the query into the 
worktable and then perform the sort. These worktables are stored on the 
system segment in tempdb, so this is the target segment for queries that 
require sorts. To see the space available and the number of devices, use:

tempdb..sp_helpsegment system

The process of inserting the rows into the worktable and the parallel sort 
do not require multiple devices to operate in parallel. However, 
performance improves when the system segment in tempdb spans multiple 
database devices. 

Number of devices in the target segment

As described in “Worker process requirements for parallel sorts” on page 
631, the number of devices in the target segment determines the number 
of consumers for sort operations, except for creating a clustered index on 
a partitioned table. 



Recovery considerations 

644  Adaptive Server Enterprise

Performance considerations for query processing, such as the 
improvements in I/O when indexes are on separate devices from the data 
are more important in determining your device allocations and object 
placement than sort requirements.

If your worktable sorts are large enough to require parallel sorts, multiple 
devices in the system segment of tempdb will speed these sorts, as well as 
increase I/O parallelism while rows are being inserted into the worktable.

Recovery considerations
Creating indexes is a minimally-logged database operation. Serial sorts are 
recovered from the transaction log by completely redoing the sort. 
However, parallel create index commands are not recoverable from the 
transaction log—after performing a parallel sort, you must dump the 
database before you can use the dump transaction command on the 
database. 

Adaptive Server does not automatically perform parallel sorting for create 
index commands unless the select into/bulk copy/pllsort database option is 
set on. Creating a clustered index on a partitioned table always requires a 
parallel sort; other sort operations can be performed in serial if the select 
into/bulk copy/pllsort option is not enabled. 

Tools for observing and tuning sort behavior
Adaptive Server provides several tools for working with sort behavior:

• set sort_resources on shows how a create index command would be 
performed, without creating the index. See “Using set sort_resources 
on” on page 645.

• Several system procedures can help estimate the size, space, and time 
requirements:

• sp_configure – Displays configuration parameters. See 
“Configuration parameters for controlling parallelism” on page 
567.



CHAPTER 26    Parallel Sorting

Performance & Tuning Guide 645

• sp_helpartition – Displays information about partitioned tables. 
See “Getting information about partitions” on page 95.

• sp_helpsegment – Displays information about segments, devices, 
and space usage. See “Checking data distribution on devices 
with sp_helpsegment” on page 97. 

• sp_sysmon – Reports on many system resources used for parallel 
sorts, including CPU utilization, physical I/O, and caching. See 
“Using sp_sysmon to tune index creation” on page 649.

Using set sort_resources on
The set sort_resources on command can help you understand how the sort 
manager performs parallel sorting for create index statements. You can use 
it before creating an index to determine whether you want to increase 
configuration parameters or specify additional consumers for a sort.

After you use set sort_resources on, Adaptive Server does not actually 
create indexes, but analyzes resources, performs the sampling step, and 
prints detailed information about how Adaptive Server would use parallel 
sorting to execute the create index command. Table 26-2 describes the 
messages that can be printed for sort operations.

Table 26-2: Basic sort resource messages

Message Explanation See 
The Create Index is done 
using sort_type

sort_type is either “Parallel Sort” or 
“Serial Sort.”

“Requirements and resources 
overview” on page 626

Sort buffer size: N N is the configured value for the number 
of sort buffers configuration parameter.

“Sort buffer configuration 
guidelines” on page 637

Parallel degree: N N is the maximum number of worker 
processes that the parallel sort can use, 
as set by configuration parameters.

“Caches, sort buffers, and 
parallel sorts” on page 635

Number of output 
devices: N

N is the total number of database 
devices on the target segment.

“Disk requirements” on page 
642

Number of producer 
threads: N

N is the optimal number of producer 
processes determined by the sort 
manager.

“Worker process requirements 
for parallel sorts” on page 631

Number of consumer 
threads: N

N is the optimal number of consumer 
processes determined by the sort 
manager.

“Worker process requirements 
for parallel sorts” on page 631



Tools for observing and tuning sort behavior 

646  Adaptive Server Enterprise

Examples

The following examples show the output of the set sort_resources 
command.

Nonclustered index on a nonpartitioned table

This example shows how Adaptive Server performs parallel sorting for a 
create index command on an unpartitioned table. Pertinent details for the 
example are:

• The default segment spans 4 database devices.

• max parallel degree is set to 20 worker processes.

• number of sort buffers is set to the default, 500 buffers.

The following commands set sort_resources on and issue a create index 
command on the orders table:

set sort_resources on
create index order_ix on orders (order_id)

Adaptive Server prints the following output:

The Create Index is done using Parallel Sort
Sort buffer size: 500
Parallel degree: 20
Number of output devices: 4
Number of producer threads: 1
Number of consumer threads: 4
The distribution map contains 3 element(s) for 4 
partitions.
Partition Element: 1
      

The distribution map 
contains M element(s) 
for N partitions.

M is the number of elements that define 
range boundaries in the distribution 
map. N is the total number of partitions 
(ranges) in the distribution map.

“Creating a distribution map” 
on page 629

Partition Element:N
value

N is the number of the distribution map 
element. value is the distribution map 
element that defines the boundary of 
each partition.

“Creating a distribution map” 
on page 629

Number of sampled 
records: N

N is the number of sampled records used 
to create the distribution map.

“Creating a distribution map” 
on page 629

Message Explanation See 



CHAPTER 26    Parallel Sorting

Performance & Tuning Guide 647

458052

Partition Element: 2
      
909063

Partition Element: 3
      
1355747

Number of sampled records: 2418

In this example, the 4 devices on the default segment determine the number 
of consumer processes for the sort. Because the input table is not 
partitioned, the sort manager allocates 1 producer process, for a total 
degree of parallelism of 5. 

The distribution map uses 3 dividing values for the 4 ranges. The lowest 
input values up to and including the value 458052 belong to the first range. 
Values greater than 458052 and less than or equal to 909063 belong to the 
second range. Values greater than 909063 and less than or equal to 
1355747 belong to the third range. Values greater than 1355747 belong to 
the fourth range.

Nonclustered index on a partitioned table

This example uses the same tables and devices as the first example. 
However, in this example, the input table is partitioned before creating the 
nonclustered index. The commands are:

set sort_resources on
alter table orders partition 9
create index order_ix on orders (order_id)

In this case, the create index command under the sort_resources option 
prints the output:

The Create Index is done using Parallel Sort
Sort buffer size: 500
Parallel degree: 20
Number of output devices: 4
Number of producer threads: 9
Number of consumer threads: 4
The distribution map contains 3 element(s) for 4 
partitions.
Partition Element: 1
      



Tools for observing and tuning sort behavior 

648  Adaptive Server Enterprise

458464
Partition Element: 2
      
892035
Partition Element: 3
      
1349187
Number of sampled records: 2448

Because the input table is now partitioned, the sort manager allocates 9 
producer threads, for a total of 13 worker processes. The number of 
elements in the distribution map is the same, although the values differ 
slightly from those in the previous sort examples.

Clustered index on partitioned table executed in parallel

This example creates a clustered index on orders, specifying the segment 
name, order_seg.

set sort_resources on
alter table orders partition 9
create clustered index order_ix 
    on orders (order_id) on order_seg

Since the number of available worker processes is 20, this command can 
use 9 producers and 9 consumers, as shown in the output:

The Create Index is done using Parallel Sort
Sort buffer size: 500
Parallel degree: 20
Number of output devices: 9
Number of producer threads: 9
Number of consumer threads: 9
The distribution map contains 8 element(s) for 9 
partitions.
Partition Element: 1

199141
Partition Element: 2

397543
Partition Element: 3

598758
Partition Element: 4

800484



CHAPTER 26    Parallel Sorting

Performance & Tuning Guide 649

Partition Element: 5

1010982
Partition Element: 6

1202471
Partition Element: 7

1397664
Partition Element: 8

1594563
Number of sampled records: 8055

This distribution map contains 8 elements for the 9 partitions on the table 
being sorted. The number of worker processes used is 18.

Sort failure

For example, if only 10 worker processes had been available for this 
command, it could have succeeded using a single producer process to read 
the entire table. If fewer than 10 worker processes had been available, a 
warning message would be printed instead of the sort_resources output:

Msg 1538, Level 17, State 1:
Server ’snipe’, Line 1:
Parallel degree 8 is less than required parallel 
degree 10 to create clustered index on partition 
table. Change the parallel degree to required 
parallel degree and retry.

Using sp_sysmon to tune index creation
You can use the “begin_sample” and “end_sample” syntax for sp_sysmon 
to provide performance results for individual create index commands:

sp_sysmon begin_sample
create index ...
sp_sysmon end_sample

Sections of the report to check include:

• The “Sample Interval,” for the total time taken to create the index

• Cache statistics for the cache used by the table



Using sp_sysmon to tune index creation 

650  Adaptive Server Enterprise

• Check the value for “Buffer Grabs” for the 2K and 16K pools to 
determine the effectiveness of large I/O.

• Check the value “Dirty Buffer Grabs,” If this value is nonzero, set 
the wash size in the pool higher and/or increase the pool size, 
using sp_poolconfig. 

• Disk I/O for the disks used by the table and indexes: check the value 
for “Total Requested I/Os” 



Performance & Tuning Guide 651

C H A P T E R  2 7 Tuning Asynchronous Prefetch

This chapter explains how asynchronous prefetch improves I/O 
performance for many types of queries by reading data and index pages 
into cache before they are needed by the query. 

How asynchronous prefetch improves performance
Asynchronous prefetch improves performance by anticipating the pages 
required for certain well-defined classes of database activities whose 
access patterns are predictable. The I/O requests for these pages are issued 
before the query needs them so that most pages are in cache by the time 
query processing needs to access the page. Asynchronous prefetch can 
improve performance for:

• Sequential scans, such as table scans, clustered index scans, and 
covered nonclustered index scans 

• Access via nonclustered indexes

• Some dbcc checks and update statistics 

• Recovery

Asynchronous prefetch can improve the performance of queries that 
access large numbers of pages, such as decision support applications, as 
long as the I/O subsystems on the machine are not saturated.

Topic Page
How asynchronous prefetch improves performance 651

When prefetch is automatically disabled 657

Tuning Goals for asynchronous prefetch 661

Other Adaptive Server performance features 662

Special settings for asynchronous prefetch limits 665

Maintenance activities for high prefetch performance 666

Performance monitoring and asynchronous prefetch 667



How asynchronous prefetch improves performance 

652  Adaptive Server Enterprise

Asynchronous prefetch cannot help (or may help only slightly) when the 
I/O subsystem is already saturated or when Adaptive Server is CPU-
bound. It may be used in some OLTP applications, but to a much lesser 
degree, since OLTP queries generally perform fewer I/O operations.

When a query in Adaptive Server needs to perform a table scan, it:

• Examines the rows on a page and the values in the rows.

• Checks the cache for the next page to be read from a table. If that page 
is in cache, the task continues processing. If the page is not in cache, 
the task issues an I/O request and sleeps until the I/O completes.

• When the I/O completes, the task moves from the sleep queue to the 
run queue. When the task is scheduled on an engine, Adaptive Server 
examines rows on the newly fetched page.

This cycle of executing and stalling for disk reads continues until the table 
scan completes. In a similar way, queries that use a nonclustered index 
process a data page, issue the I/O for the next page referenced by the index, 
and sleep until the I/O completes, if the page is not in cache.

This pattern of executing and then waiting for I/O slows performance for 
queries that issue physical I/Os for large number of pages. In addition to 
the waiting time for the physical I/Os to complete, the task switches on and 
off the engine repeatedly. This task switching adds overhead to processing.

Improving query performance by prefetching pages
Asynchronous prefetch issues I/O requests for pages before the query 
needs them so that most pages are in cache by the time query processing 
needs to access the page. If required pages are already in cache, the query 
does not yield the engine to wait for the physical read. (It may still yield 
for other reasons, but it yields less frequently.)

Based on the type of query being executed, asynchronous prefetch builds 
a look-ahead set of pages that it predicts will be needed very soon. 
Adaptive Server defines different look-ahead sets for each processing type 
where asynchronous prefetch is used.



CHAPTER 27    Tuning Asynchronous Prefetch

Performance & Tuning Guide 653

In some cases, look-ahead sets are extremely precise; in others, some 
assumptions and speculation may lead to pages being fetched that are 
never read. When only a small percentage of unneeded pages are read into 
cache, the performance gains of asynchronous prefetch far outweigh the 
penalty for the wasted reads. If the number of unused pages becomes large, 
Adaptive Server detects this condition and either reduces the size of the 
look-ahead set or temporarily disables prefetching.

Prefetching control mechanisms in a multiuser environment
When many simultaneous queries are prefetching large numbers of pages 
into a buffer pool, there is a risk that the buffers fetched for one query 
could be flushed from the pool before they are used.

Adaptive Server tracks the buffers brought into each pool by asynchronous 
prefetch and the number that are used. It maintains a per-pool count of 
prefetched but unused buffers. By default, Adaptive Server sets an 
asynchronous prefetch limit of 10 percent of each pool. In addition, the 
limit on the number of prefetched but unused buffers is configurable on a 
per-pool basis.

The pool limits and usage statistics act like a governor on asynchronous 
prefetch to keep the cache-hit ratio high and reduce unneeded I/O. Overall, 
the effect is to ensure that most queries experience a high cache-hit ratio 
and few stalls due to disk I/O sleeps.

The following sections describe how the look-ahead set is constructed for 
the activities and query types that use asynchronous prefetch. In some 
asynchronous prefetch optimizations, allocation pages are used to build 
the look-ahead set.

For information on how allocation pages record information about object 
storage, see “Allocation pages” on page 142.



How asynchronous prefetch improves performance 

654  Adaptive Server Enterprise

Look-ahead set during recovery
During recovery, Adaptive Server reads each log page that includes 
records for a transaction and then reads all the data and index pages 
referenced by that transaction, to verify timestamps and to roll transactions 
back or forward. Then, it performs the same work for the next completed 
transaction, until all transactions for a database have been processed. Two 
separate asynchronous prefetch activities speed recovery: asynchronous 
prefetch on the log pages themselves and asynchronous prefetch on the 
referenced data and index pages.

Prefetching log pages

The transaction log is stored sequentially on disk, filling extents in each 
allocation unit. Each time the recovery process reads a log page from a 
new allocation unit, it prefetches all the pages on that allocation unit that 
are in use by the log.

In databases that do not have a separate log segment, log and data extents 
may be mixed on the same allocation unit. Asynchronous prefetch still 
fetches all the log pages on the allocation unit, but the look-ahead sets may 
be smaller.

Prefetching data and index pages

For each transaction, Adaptive Server scans the log, building the look-
ahead set from each referenced data and index page. While one 
transaction’s log records are being processed, asynchronous prefetch 
issues requests for the data and index pages referenced by subsequent 
transactions in the log, reading the pages for transactions ahead of the 
current transaction.

Note  Recovery uses only the pool in the default data cache. See “Setting 
limits for recovery” on page 665 for more information.

Look-ahead set during sequential scans
Sequential scans include table scans, clustered index scans, and covered 
nonclustered index scans.



CHAPTER 27    Tuning Asynchronous Prefetch

Performance & Tuning Guide 655

During table scans and clustered index scans, asynchronous prefetch uses 
allocation page information about the pages used by the object to construct 
the look-ahead set. Each time a page is fetched from a new allocation unit, 
the look-ahead set is built from all the pages on that allocation unit that are 
used by the object.

The number of times a sequential scan hops between allocation units is 
kept to measure fragmentation of the page chain. This value is used to 
adapt the size of the look-ahead set so that large numbers of pages are 
prefetched when fragmentation is low, and smaller numbers of pages are 
fetched when fragmentation is high. For more information, see “Page 
chain fragmentation” on page 659.

Look-ahead set during nonclustered index access
When using a nonclustered index to access rows, asynchronous prefetch 
finds the page numbers for all qualified index values on a nonclustered 
index leaf page. It builds the look-ahead set from the unique list of all the 
pages that are needed.

Asynchronous prefetch is used only if two or more rows qualify.

If a nonclustered index access requires several leaf-level pages, 
asynchronous prefetch requests are also issued on the leaf pages.

Look-ahead set during dbcc checks
Asynchronous prefetch is used during the following dbcc checks:

• dbcc checkalloc, which checks allocation for all tables and indexes in 
a database, and the corresponding object-level commands, dbcc 
tablealloc and dbcc indexalloc

• dbcc checkdb, which checks all tables and index links in a database, 
and dbcc checktable, which checks individual tables and their indexes



How asynchronous prefetch improves performance 

656  Adaptive Server Enterprise

Allocation checking

The dbcc commands checkalloc, tablealloc and indexalloc, which check 
page allocations validate information on the allocation page. The look-
ahead set for the dbcc operations that check allocation is similar to the 
look-ahead set for other sequential scans. When the scan enters a different 
allocation unit for the object, the look-ahead set is built from all the pages 
on the allocation unit that are used by the object.

checkdb and checktable

The dbcc checkdb and dbcc checktable commands check the page chains 
for a table, building the look-ahead set in the same way as other sequential 
scans.

If the table being checked has nonclustered indexes, they are scanned 
recursively, starting at the root page and following all pointers to the data 
pages. When checking the pointers from the leaf pages to the data pages, 
the dbcc commands use asynchronous prefetch in a way that is similar to 
nonclustered index scans. When a leaf-level index page is accessed, the 
look-ahead set is built from the page IDs of all the pages referenced on the 
leaf-level index page.

Look-ahead set minimum and maximum sizes
The size of a look-ahead set for a query at a given point in time is 
determined by several factors:

• The type of query, such as a sequential scan or a nonclustered index 
scan

• The size of the pools used by the objects that are referenced by the 
query and the prefetch limit set on each pool

• The fragmentation of tables or indexes, in the case of operations that 
perform scans

• The recent success rate of asynchronous prefetch requests and 
overload conditions on I/O queues and server I/O limits

Table 27-1 summarizes the minimum and maximum sizes for different 
type of asynchronous prefetch usage. 



CHAPTER 27    Tuning Asynchronous Prefetch

Performance & Tuning Guide 657

Table 27-1: Look-ahead set sizes

When prefetch is automatically disabled
Asynchronous prefetch attempts to fetch needed pages into buffer pools 
without flooding the pools or the I/O subsystem and without reading 
unneeded pages. If Adaptive Server detects that prefetched pages are 
being read into cache but not used, it temporarily limits or discontinues 
asynchronous prefetch.

Access type Action Look-ahead set sizes

Table scan
Clustered index scan
Covered leaf level scan

Reading a page from a 
new allocation unit

Minimum is 8 pages needed by the query

Maximum is the smaller of:

• The number of pages on an allocation unit that 
belong to an object.

• The pool prefetch limits

Nonclustered index scan Locating qualified 
rows on the leaf page 
and preparing to 
access data pages

Minimum is 2 qualified rows

Maximum is the smaller of:

• The number of unique page numbers on 
qualified rows on the leaf index page

• The pool’s prefetch limit

Recovery Recovering a 
transaction

Maximum is the smaller of:

• All of the data and index pages touched by a 
transaction undergoing recovery

• The prefetch limit of the pool in the default 
data cache

Scanning the 
transaction log

Maximum is all pages on an allocation unit 
belonging to the log 

dbcc tablealloc, indexalloc, and 
checkalloc

Scanning the page 
chain

Same as table scan

dbcc checktable and checkdb Scanning the page 
chain 

Checking 
nonclustered index 
links to data pages

Same as table scan

All of the data pages referenced on a leaf level 
page.



When prefetch is automatically disabled 

658  Adaptive Server Enterprise

Flooding pools
For each pool in the data caches, a configurable percentage of buffers can 
be read in by asynchronous prefetch and held until their first use. For 
example, if a 2K pool has 4000 buffers, and the limit for the pool is 10 
percent, then, at most, 400 buffers can be read in by asynchronous prefetch 
and remain unused in the pool. If the number of nonaccessed prefetched 
buffers in the pool reaches 400, Adaptive Server temporarily discontinues 
asynchronous prefetch for that pool.

As the pages in the pool are accessed by queries, the count of unused 
buffers in the pool drops, and asynchronous prefetch resumes operation. If 
the number of available buffers is smaller than the number of buffers in the 
look-ahead set, only that many asynchronous prefetches are issued. For 
example, if 350 unused buffers are in a pool that allows 400, and a query’s 
look-ahead set is 100 pages, only the first 50 asynchronous prefetches are 
issued.

This keeps multiple asynchronous prefetch requests from flooding the 
pool with requests that flush pages out of cache before they can be read. 
The number of asynchronous I/Os that cannot be issued due to the per-pool 
limits is reported by sp_sysmon.

I/O system overloads
Adaptive Server and the operating system place limits on the number of 
outstanding I/Os for the server as a whole and for each engine. The 
configuration parameters max async i/os per server and max async i/os per 
engine control these limits for Adaptive Server. See your operating system 
documentation for more information on configuring them for your 
hardware.

The configuration parameter disk i/o structures controls the number of disk 
control blocks that Adaptive Server reserves. Each physical I/O (each 
buffer read or written) requires one control block while it is in the I/O 
queue.

See the System Administration Guide.



CHAPTER 27    Tuning Asynchronous Prefetch

Performance & Tuning Guide 659

If Adaptive Server tries to issue asynchronous prefetch requests that would 
exceed max async i/os per server, max async i/os per engine, or disk i/o 
structures, it issues enough requests to reach the limit and discards the 
remaining requests. For example, if only 50 disk I/O structures are 
available, and the server attempts to prefetch 80 pages, 50 requests are 
issued, and the other 30 are discarded.

sp_sysmon reports the number of times these limits are exceeded by 
asynchronous prefetch requests. See “Asynchronous prefetch activity 
report” on page 1011.

Unnecessary reads
Asynchronous prefetch tries to avoid unnecessary physical reads. During 
recovery and during nonclustered index scans, look-ahead sets are exact, 
fetching only the pages referenced by page number in the transaction log 
or on index pages. 

Look-ahead sets for table scans, clustered index scans, and dbcc checks are 
more speculative and may lead to unnecessary reads. During sequential 
scans, unnecessary I/O can take place due to:

• Page chain fragmentation on allpages-locked tables

• Heavy cache utilization by multiple users

Page chain fragmentation

Adaptive Server’s page allocation mechanism strives to keep pages that 
belong to the same object close to each other in physical storage by 
allocating new pages on an extent already allocated to the object and by 
allocating new extents on allocation units already used by the object.

However, as pages are allocated and deallocated, page chains on data-
only-locked tables can develop kinks. Figure 27-1 shows an example of a 
kinked page chain between extents in two allocation units.



When prefetch is automatically disabled 

660  Adaptive Server Enterprise

Figure 27-1: A kink in a page chain crossing allocation units

In Figure 27-1, when a scan first needs to access a page from allocation 
unit 0, it checks the allocation page and issues asynchronous I/Os for all 
the pages used by the object it is scanning, up to the limit set on the pool. 
As the pages become available in cache, the query processes them in order 
by following the page chain. When the scan reaches page 10, the next page 
in the page chain, page 273, belongs to allocation unit 256.

When page 273 is needed, allocation page 256 is checked, and 
asynchronous prefetch requests are issued for all the pages in that 
allocation unit that belong to the object.

When the page chain points back to a page in allocation unit 0, there are 
two possibilities:

• The prefetched pages from allocation unit 0 are still in cache, and the 
query continues processing with no unneeded physical I/Os. 

283

511

279

..

274

256 257 258 259 260 261 262 263

264 265 266 267 268 269 270 271

272 273 275 276 277 278

280 281 282 284 285 286 287

.
504 505 506 507 508 509 510

27 2824 25 26 29 30 31

750 1 2 3 4 6

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

248 249 250 251 252 253 254 255 OAM page

Pages used by object

Other pages

Allocation page

...



CHAPTER 27    Tuning Asynchronous Prefetch

Performance & Tuning Guide 661

• The prefetch pages from allocation unit 0 have been flushed from the 
cache by the reads from allocation unit 256 and other I/Os taking 
place by other queries that use the pool. The query must reissue the 
prefetch requests. This condition is detected in two ways:

• Adaptive Server’s count of the hops between allocation pages 
now equals two. It uses the ratio between the count of hops and 
the prefetched pages to reduce the size of the look-ahead set, so 
fewer I/Os are issued.

• The count of prefetched but unused pages in the pool is likely to 
be high, so asynchronous prefetch may be temporarily 
discontinued or reduced, based on the pool’s limit.

Tuning Goals for asynchronous prefetch
Choosing optimal pool sizes and prefetch percentages for buffer pools can 
be key to achieving improved performance with asynchronous prefetch. 
When multiple applications are running concurrently, a well-tuned 
prefetching system balances pool sizes and prefetch limits to accomplish 
these goals:

• Improved system throughput 

• Better performance by applications that use asynchronous prefetch

• No performance degradation in applications that do not use 
asynchronous prefetch

Configuration changes to pool sizes and the prefetch limits for pools are 
dynamic, allowing you to make changes to meet the needs of varying 
workloads. For example, you can configure asynchronous prefetch for 
good performance during recovery or dbcc checking and reconfigure 
afterward without needing to restart Adaptive Server.

See “Setting limits for recovery” on page 665 and “Setting limits for 
dbcc” on page 666 for more information.



Other Adaptive Server performance features 

662  Adaptive Server Enterprise

Commands for configuration
Asynchronous prefetch limits are configured as a percentage of the pool in 
which prefetched but unused pages can be stored. There are two 
configuration levels:

• The server-wide default, set with the configuration parameter global 
async prefetch limit. When you first install, the default value for global 
async prefetch limit is 10 (percent).

For more information, see of the System Administration Guide.

• A per-pool override, set with sp_poolconfig. To see the limits set for 
each pool, use sp_cacheconfig.

For more information, see of the System Administration Guide.

Changing asynchronous prefetch limits takes effect immediately, and does 
not require a reboot. Both the global and per-pool limits can also be 
configured in the configuration file.

Other Adaptive Server performance features
This section covers the interaction of asynchronous prefetch with other 
Adaptive Server performance features.

Large I/O
The combination of large I/O and asynchronous prefetch can provide rapid 
query processing with low I/O overhead for queries performing table scans 
and for dbcc operations.

When large I/O prefetches all the pages on an allocation unit, the minimum 
number of I/Os for the entire allocation unit is:

• 31 16K I/Os 



CHAPTER 27    Tuning Asynchronous Prefetch

Performance & Tuning Guide 663

• 7 2K I/Os, for the pages that share an extent with the allocation page

Note  Reference to Large I/Os are on a 2K logical page size server. If you 
have an 8K page size server, the basic unit for the I/O is 8K. If you have a 
16K page size server, the basic unit for the I/O is 16K.

Sizing and limits for the 16k pool

Performing 31 16K prefetches with the default asynchronous prefetch 
limit of 10 percent of the buffers in the pool requires a pool with at least 
310 16K buffers. If the pool is smaller, or if the limit is lower, some 
prefetch requests will be denied. To allow more asynchronous prefetch 
activity in the pool, you can configure a larger pool or a larger prefetch 
limit for the pool.

If multiple overlapping queries perform table scans using the same pool, 
the number of unused, prefetched pages allowed in the poll needs to be 
higher. The queries are probably issuing prefetch requests at slightly 
staggered times and are at different stages in reading the accessed pages. 
For example, one query may have just prefetched 31 pages, and have 31 
unused pages in the pool, while an earlier query has only 2 or 3 unused 
pages left. To start your tuning efforts for these queries, assume one-half 
the number of pages for a prefetch request multiplied by the number of 
active queries in the pool.

Limits for the 2K pool

Queries using large I/O during sequential scans may still need to perform 
2K I/O:

• When a scan enters a new allocation unit, it performs 2K I/O on the 7 
pages in the unit that share space with the allocation page. 

• If pages from the allocation unit already reside in the 2K pool when 
the prefetch requests are issued, the pages that share that extent must 
be read into the 2K pool.

If the 2K pool has its asynchronous prefetch limit set to 0, the first 7 reads 
are performed by normal asynchronous I/O, and the query sleeps on each 
read if the pages are not in cache. Set the limits on the 2K pool high enough 
that it does not slow prefetching performance.



Other Adaptive Server performance features 

664  Adaptive Server Enterprise

Fetch-and-discard (MRU) scans
When a scan uses MRU replacement policy, buffers are handled in a 
special manner when they are read into the cache by asynchronous 
prefetch. First, pages are linked at the MRU end of the chain, rather than 
at the wash marker. When the query accesses the page, the buffers are re 
linked into the pool at the wash marker. This strategy helps to avoid cases 
where heavy use of a cache flushes prefetched buffers linked at the wash 
marker before they can be used. It has little impact on performance, unless 
large numbers of unneeded pages are being prefetched. In this case, the 
prefetched pages are more likely to flush other pages from cache. 

Parallel scans and large I/Os
The demand on buffer pools can become higher with parallel queries. With 
serial queries operating on the same pools, it is safe to assume that queries 
are issued at slightly different times and that the queries are in different 
stages of execution: some are accessing pages are already in cache, and 
others are waiting on I/O.

Parallel execution places different demands on buffer pools, depending on 
the type of scan and the degree of parallelism. Some parallel queries are 
likely to issue a large number of prefetch requests simultaneously. 

Hash-based table scans

Hash-based table scans on allpages-locked tables have multiple worker 
processes accessing the same page chain. Each worker process checks the 
page ID of each page in the table, but examines only the rows on those 
pages where page ID matches the hash value for the worker process.

The first worker process that needs a page from a new allocation unit 
issues a prefetch request for all pages from that unit. When the scans of 
other worker processes also need pages from that allocation unit, they will 
either find that the pages they need are already in I/O or already in cache. 
As the first scan to complete enters the next unit, the process is repeated.

As long as one worker process in the family performing a hash-based scan 
does not become stalled (waiting for a lock, for example), the hash-based 
table scans do not place higher demands on the pools than they place on 
serial processes. Since the multiple processes may read the pages much 
more quickly than a serial process does, they change the status of the pages 
from unused to used more quickly.



CHAPTER 27    Tuning Asynchronous Prefetch

Performance & Tuning Guide 665

Partition-based scans

Partition-based scans are more likely to create additional demands on 
pools, since multiple worker processes may be performing asynchronous 
prefetching on different allocation units. On partitioned tables on multiple 
devices, the per-server and per-engine I/O limits are less likely to be 
reached, but the per-pool limits are more likely to limit prefetching.

Once a parallel query is parsed and compiled, it launches its worker 
processes. If a table with 4 partitions is being scanned by 4 worker 
processes, each worker process attempts to prefetch all the pages in its first 
allocation unit. For the performance of this single query, the most 
desirable outcome is that the size and limits on the 16K pool are 
sufficiently large to allow 124 (31*4) asynchronous prefetch requests, so 
all of the requests succeed. Each of the worker processes scans the pages 
in cache quickly, moving onto new allocation units and issuing more 
prefetch requests for large numbers of pages.

Special settings for asynchronous prefetch limits
You may want to change asynchronous prefetch configuration temporarily 
for specific purposes, including:

• Recovery

• dbcc operations that use asynchronous prefetch

Setting limits for recovery
During recovery, Adaptive Server uses only the 2K pool of the default data 
cache. If you shut down the server using shutdown with nowait, or if the 
server goes down due to power failure or machine failure, the number of 
log records to be recovered may be quite large.

To speed recovery, you can edit the configuration file to do one or both of 
the following:

• Increase the size of the 2K pool in the default data cache by reducing 
the size of other pools in the cache

• Increase the prefetch limit for the 2K pool



Maintenance activities for high prefetch performance 

666  Adaptive Server Enterprise

Both of these configuration changes are dynamic, so you can use 
sp_poolconfig to restore the original values after recovery completes, 
without restarting Adaptive Server. The recovery process allows users to 
log into the server as soon as recovery of the master database is complete. 
Databases are recovered one at a time and users can begin using a 
particular database as soon as it is recovered. There may be some 
contention if recovery is still taking place on some databases, and user 
activity in the 2K pool of the default data cache is heavy.

Setting limits for dbcc
If you are performing database consistency checking at a time when other 
activity on the server is low, configuring high asynchronous prefetch 
limits on the pools used by dbcc can speed consistency checking.

dbcc checkalloc can use special internal 16K buffers if there is no 16K pool 
in the cache for the appropriate database. If you have a 2K pool for a 
database, and no 16K pool, set the local prefetch limit to 0 for the pool 
while executing dbcc checkalloc. Use of the 2K pool instead of the 16K 
internal buffers may actually hurt performance.

Maintenance activities for high prefetch performance
Page chains for all pages-locked tables and the leaf levels of indexes 
develop kinks as data modifications take place on the table. In general, 
newly created tables have few kinks. Tables where updates, deletes, and 
inserts that have caused page splits, new page allocations, and page 
deallocations are likely to have cross-allocation unit page chain kinks. If 
more than 10 to 20 percent of the original rows in a table have been 
modified, you should determine if kinked page chains are reducing 
asynchronous prefetch effectiveness. If you suspect that page chain kinks 
are reducing asynchronous prefetch performance, you may need to re-
create indexes or reload tables to reduce kinks.



CHAPTER 27    Tuning Asynchronous Prefetch

Performance & Tuning Guide 667

Eliminating kinks in heap tables
For allpages-locked heaps, page allocation is generally sequential, unless 
pages are deallocated by deletes that remove all rows from a page. These 
pages may be reused when additional space is allocated to the object. You 
can create a clustered index (and drop it, if you want the table stored as a 
heap) or bulk copy the data out, truncate the table, and copy the data in 
again. Both activities compress the space used by the table and eliminate 
page-chain kinks.

Eliminating kinks in clustered index tables
For clustered indexes, page splits and page deallocations can cause page 
chain kinks. Rebuilding clustered indexes does not necessarily eliminate 
all cross-allocation page linkages. Use fillfactor for clustered indexes where 
you expect growth, to reduce the number of kinks resulting from data 
modifications.

Eliminating kinks in nonclustered indexes
If your query mix uses covered index scans, dropping and re-creating 
nonclustered indexes can improve asynchronous prefetch performance, 
once the leaf-level page chain becomes fragmented.

Performance monitoring and asynchronous prefetch
The output of statistics io reports the number physical reads performed by 
asynchronous prefetch and the number of reads performed by normal 
asynchronous I/O. In addition, statistics io reports the number of times that 
a search for a page in cache was found by the asynchronous prefetch 
without holding the cache spinlock.

See “Reporting physical and logical I/O statistics” on page 795 for more 
information.

sp_sysmon report contains information on asynchronous prefetch in both 
the “Data Cache Management” section and the “Disk I/O Management” 
section. 



Performance monitoring and asynchronous prefetch 

668  Adaptive Server Enterprise

If you are using sp_sysmon to evaluate asynchronous prefetch 
performance, you may see improvements in other performance areas, such 
as:

• Much higher cache hit ratios in the pools where asynchronous 
prefetch is effective

• A corresponding reduction in context switches due to cache misses, 
with voluntary yields increasing

• A possible reduction in lock contention. Tasks keep pages locked 
during the time it takes for perform I/O for the next page needed by 
the query. If this time is reduced because asynchronous prefetch 
increases cache hits, locks will be held for a shorter time.

See “Data cache management” on page 1006 and “Disk I/O management” 
on page 1027 for more information. 



Performance & Tuning Guide 669

C H A P T E R  2 8 Cursors and Performance

This chapter discusses performance issues related to cursors. Cursors are 
a mechanism for accessing the results of a SQL select statement one row 
at a time (or several rows, if you use set cursors rows). Since cursors use 
a different model from ordinary set-oriented SQL, the way cursors use 
memory and hold locks has performance implications for your 
applications. In particular, cursor performance issues includes locking at 
the page and at the table level, network resources, and overhead of 
processing instructions. 

Definition
A cursor is a symbolic name that is associated with a select statement. It 
enables you to access the results of a select statement one row at a time. 
Figure 28-1 shows a cursor accessing the authors table. 

Topic Page
Definition 669

Resources required at each stage 672

Cursor modes 675

Index use and requirements for cursors 675

Comparing performance with and without cursors 677

Locking with read-only cursors 680

Isolation levels and cursors 682

Partitioned heap tables and cursors 682

Optimizing tips for cursors 683



Definition 

670  Adaptive Server Enterprise

Figure 28-1: Cursor example

You can think of a cursor as a “handle” on the result set of a select 
statement. It enables you to examine and possibly manipulate one row at 
a time.

Set-oriented versus row-oriented programming
SQL was conceived as a set-oriented language. Adaptive Server is 
extremely efficient when it works in set-oriented mode. Cursors are 
required by ANSI SQL standards; when they are needed, they are very 
powerful. However, they can have a negative effect on performance.

For example, this query performs the identical action on all rows that 
match the condition in the where clause:

update titles
    set contract = 1 
where type = ’business’

The optimizer finds the most efficient way to perform the update. In 
contrast, a cursor would examine each row and perform single-row 
updates if the conditions were met. The application declares a cursor for a 
select statement, opens the cursor, fetches a row, processes it, goes to the 
next row, and so forth. The application may perform quite different 
operations depending on the values in the current row, and the server’s 
overall use of resources for the cursor application may be less efficient 
than the server’s set level operations. However, cursors can provide more 
flexibility than set-oriented programming.

Figure 28-2 shows the steps involved in using cursors. The function of 
cursors is to get to the middle box, where the user or application code 
examines a row and decides what to do, based on its values.

Result setCursor with select * from authors 
where state = ’KY’

Programming can:
- Examine a row
- Take an action based on row values

 A978606525 Marcello Duncan KY                  

 A937406538 Carton Nita KY                                        

 A1525070956 Porczyk Howard KY                                 

 A913907285 Bier Lane KY 



CHAPTER 28    Cursors and Performance

Performance & Tuning Guide 671

Figure 28-2: Cursor flowchart

Example
Here is a simple example of a cursor with the “Process Rows” step shown 
above in pseudocode:

declare biz_book cursor
    for select * from titles
    where type = ’business’
go
open biz_book
go
fetch biz_book
go
/* Look at each row in turn and perform
** various tasks based on values, 

Declare cursor

Open cursor

Fetch row

Process row
(Examine/Update/Delete)

No

Yes

Close cursor

Deallocate cursor

Get next
row?



Resources required at each stage 

672  Adaptive Server Enterprise

** and repeat fetches, until
** there are no more rows
*/
close biz_book
go
deallocate cursor biz_book
go

Depending on the content of the row, the user might delete the current row:

delete titles where current of biz_book

or update the current row:

update titles set title="The Rich 
    Executive’s Database Guide"
where current of biz_book

Resources required at each stage
Cursors use memory and require locks on tables, data pages, and index 
pages. When you open a cursor, memory is allocated to the cursor and to 
store the query plan that is generated. While the cursor is open, Adaptive 
Server holds intent table locks and sometimes row or page locks. 
Figure 28-3 shows the duration of locks during cursor operations.



CHAPTER 28    Cursors and Performance

Performance & Tuning Guide 673

Figure 28-3: Resource use by cursor statement

The memory resource descriptions in Figure 28-3 and Table 28-1 refer to 
ad hoc cursors for queries sent by isql or Client-Library™. For other kinds 
of cursors, the locks are the same, but the memory allocation and 
deallocation differ somewhat depending on the type of cursor being used, 
as described in “Memory use and execute cursors” on page 674.

page
locks

Memory

Declare cursor

Open cursor

Fetch row

Process row
(Examine/Update/Delete)

No

Yes

Close cursor

Deallocate cursor

Get next
row?

Table
locks
(intent);
some
row or 

locks
page

Row 
or



Resources required at each stage 

674  Adaptive Server Enterprise

Table 28-1: Locks and memory use for isql and Client-Library client 
cursors

Memory use and execute cursors
The descriptions of declare cursor and deallocate cursor in Table 28-1 refer 
to ad hoc cursors that are sent by isql or Client-Library. Other kinds of 
cursors allocate memory differently:

• For cursors that are declared on stored procedures, only a small 
amount of memory is allocated at declare cursor time. Cursors 
declared on stored procedures are sent using Client-Library or the 
precompiler and are known as execute cursors. 

• For cursors declared within a stored procedure, memory is already 
available for the stored procedure, and the declare statement does not 
require additional memory.

Cursor 
command Resource use

declare cursor When you declare a cursor, Adaptive Server uses only 
enough memory to store the query text.

open When you open a cursor, Adaptive Server allocates 
memory to the cursor and to store the query plan that is 
generated. The server optimizes the query, traverses 
indexes, and sets up memory variables. The server does not 
access rows yet, unless it needs to build worktables. 
However, it does set up the required table-level locks (intent 
locks). Row and page locking behavior depends on the 
isolation level, server configuration, and query type.

See System Administration Guide for more information.

fetch When you execute a fetch, Adaptive Server gets the row(s) 
required and reads specified values into the cursor variables 
or sends the row to the client. If the cursor needs to hold 
lock on rows or pages, the locks are held until a fetch moves 
the cursor off the row or page or until the cursor is closed. 
The lock is either a shared or an update lock, depending on 
how the cursor is written.

close When you close a cursor, Adaptive Server releases the locks 
and some of the memory allocation. You can open the 
cursor again, if necessary. 

deallocate cursor When you deallocate a cursor, Adaptive Server releases the 
rest of the memory resources used by the cursor. To reuse 
the cursor, you must declare it again. 



CHAPTER 28    Cursors and Performance

Performance & Tuning Guide 675

Cursor modes
There are two cursor modes: read-only and update. As the names suggest, 
read-only cursors can only display data from a select statement; update 
cursors can be used to perform positioned updates and deletes. 

Read-only mode uses shared page or row locks. If read committed with lock 
is set to 0, and the query runs at isolation level 1, it uses instant duration 
locks, and does not hold the page or row locks until the next fetch.

Read-only mode is in effect when you specify for read only or when the 
cursor’s select statement uses distinct, group by, union, or aggregate 
functions, and in some cases, an order by clause.

Update mode uses update page or row locks. It is in effect when:

• You specify for update.

• The select statement does not include distinct, group by, union, a 
subquery, aggregate functions, or the at isolation read uncommitted 
clause.

• You specify shared.

If column_name_list is specified, only those columns are updatable.

For more information on locking during cursor processing, see System 
Administration Guide.

Specify the cursor mode when you declare the cursor. If the select 
statement includes certain options, the cursor is not updatable even if you 
declare it for update.

Index use and requirements for cursors
When a query is used in a cursor, it may require or choose different indexes 
than the same query used outside of a cursor.

Allpages-locked tables
For read-only cursors, queries at isolation level 0 (dirty reads) require a 
unique index. Read-only cursors at isolation level 1 or 3 should produce 
the same query plan as the select statement outside of a cursor. 



Index use and requirements for cursors 

676  Adaptive Server Enterprise

The index requirements for updatable cursors mean that updatable cursors 
may use different query plans than read-only cursors. Update cursors have 
these indexing requirements:

• If the cursor is not declared for update, a unique index is preferred 
over a table scan or a nonunique index.

• If the cursor is declared for update without a for update of list, a unique 
index is required on allpages-locked tables. An error is raised if no 
unique index exists.

• If the cursor is declared for update with a for update of list, then only 
a unique index without any columns from the list can be chosen on an 
allpages-locked table. An error is raised if no unique index qualifies.

When cursors are involved, an index that contains an IDENTITY column 
is considered unique, even if the index is not declared unique. In some 
cases, IDENTITY columns must be added to indexes to make them 
unique, or the optimizer might be forced to choose a suboptimal query 
plan for a cursor query.

Data-only-locked tables
In data-only-locked tables, fixed row IDs are used to position cursor scans, 
so unique indexes are not required for dirty reads or updatable cursors. The 
only cause for different query plans in updatable cursors is that table scans 
are used if columns from only useful indexes are included in the for update 
of list.

Table scans to avoid the Halloween problem

The Halloween problem is an update anomaly that can occur when a client 
using a cursor updates a column of the cursor result-set row, and that 
column defines the order in which the rows are returned from the table. For 
example, if a cursor was to use an index on last_name, first_name, and 
update one of these columns, the row could appear in the result set a 
second time. 

To avoid the Halloween problem on data-only-locked tables, Adaptive 
Server chooses a table scan when the columns from an otherwise useful 
index are included in the column list of a for update clause. 



CHAPTER 28    Cursors and Performance

Performance & Tuning Guide 677

For implicitly updatable cursors declared without a for update clause, and 
for cursors where the column list in the for update clause is empty, cursors 
that update a column in the index used by the cursor may encounter the 
Halloween problem.

Comparing performance with and without cursors
This section examines the performance of a stored procedure written two 
different ways:

• Without a cursor – this procedure scans the table three times, 
changing the price of each book.

• With a cursor – this procedure makes only one pass through the table.

In both examples, there is a unique index on titles(title_id).

Sample stored procedure without a cursor
This is an example of a stored procedure without cursors:

/* Increase the prices of books in the
** titles table as follows:
** 
** If current price is <= $30, increase it by 20%
** If current price is > $30 and <= $60, increase 
** it by 10%
** If current price is > $60, increase it by 5%
**
** All price changes must take effect, so this is
** done in a single transaction.
*/

create procedure increase_price
as

    /* start the transaction */
    begin transaction
    /* first update prices > $60 */
    update titles
        set price = price * 1.05
        where price > $60



Comparing performance with and without cursors 

678  Adaptive Server Enterprise

    /* next, prices between $30 and $60 */
    update titles 
        set price = price * 1.10    
    where price > $30 and price <= $60

    /* and finally prices <= $30 */
    update titles 
    set price = price * 1.20
    where price <= $30

    /* commit the transaction */ 
    commit transaction

return

Sample stored procedure with a cursor
This procedure performs the same changes to the underlying table as the 
procedure written without a cursor, but it uses cursors instead of set-
oriented programming. As each row is fetched, examined, and updated, a 
lock is held on the appropriate data page. Also, as the comments indicate, 
each update commits as it is made, since there is no explicit transaction.

/* Same as previous example, this time using a 
** cursor. Each update commits as it is made.
*/
create procedure increase_price_cursor
as
declare @price money

/* declare a cursor for the select from titles */
declare curs cursor for 
    select price 
    from titles 
    for update of price

/* open the cursor */
open curs

/* fetch the first row */
fetch curs into @price

/* now loop, processing all the rows
** @@sqlstatus = 0 means successful fetch



CHAPTER 28    Cursors and Performance

Performance & Tuning Guide 679

** @@sqlstatus = 1 means error on previous fetch
** @@sqlstatus = 2 means end of result set reached
*/
while (@@sqlstatus != 2)
begin    
    /* check for errors */
    if (@@sqlstatus = 1)
    begin
        print "Error in increase_price"
        return
    end
    
    /* next adjust the price according to the 
    ** criteria 
    */
    if @price > $60
    select @price = @price * 1.05
    else
    if @price > $30 and @price <= $60
    select @price = @price * 1.10
    else
    if @price <= $30 
    select @price = @price * 1.20

    /* now, update the row */
    update titles
    set price = @price
    where current of curs
    
    /* fetch the next row */
    fetch curs into @price
end

/* close the cursor and return */
close curs
return

Which procedure do you think will have better performance, one that 
performs three table scans or one that performs a single scan via a cursor?

Cursor versus noncursor performance comparison
Table 28-2 shows statistics gathered against a 5000-row table. The cursor 
code takes over 4 times longer, even though it scans the table only once.



Locking with read-only cursors 

680  Adaptive Server Enterprise

Table 28-2: Sample execution times against a 5000-row table

Results from tests like these can vary widely. They are most pronounced 
on systems that have busy networks, a large number of active database 
users, and multiple users accessing the same table.

In addition to locking, cursors involve more network activity than set 
operations and incur the overhead of processing instructions. The 
application program needs to communicate with Adaptive Server 
regarding every result row of the query. This is why the cursor code took 
much longer to complete than the code that scanned the table three times.

Cursor performance issues include:

• Locking at the page and table level

• Network resources

• Overhead of processing instructions

If there is a set-level programming equivalent, it may be preferable, even 
if it involves multiple table scans.

Locking with read-only cursors
Here is a piece of cursor code you can use to display the locks that are set 
up at each point in the life of a cursor. The following example uses an 
allpages-locked table. Execute the code in Figure 28-4, and pause at the 
arrows to execute sp_lock and examine the locks that are in place. 

Procedure Access method Time

increase_price Uses three table scans 28 seconds

increase_price_cursor Uses cursor, single table 
scan

125 seconds



CHAPTER 28    Cursors and Performance

Performance & Tuning Guide 681

Figure 28-4: Read-only cursors and locking experiment input

Table 28-3 shows the results.

Table 28-3: Locks held on data and index pages by cursors

If you issue another fetch command after the last row of the result set has 
been fetched, the locks on the last page are released, so there will be no 
cursor-related locks.

With a data-only-locked table:

• If the cursor query runs at isolation level 1, and read committed with 
lock is set to 0, you do not see any page or row locks. The values are 
copied from the page or row, and the lock is immediately released.

• If read committed with lock is set to 1 or if the query runs at isolation 
level 2 or 3, you see either shared page or shared row locks at the point 
that Table 28-3 indicates shared page locks. If the table uses datarows 
locking, the sp_lock report includes the row ID of the fetched row.

Event Data page

After declare No cursor-related locks. 

After open Shared intent lock on authors.

After first fetch Shared intent lock on authors and shared page lock on 
a page in authors. 

After 100 fetches Shared intent lock on authors and shared page lock on 
a different page in authors.

After close No cursor-related locks.

declare curs1 cursor for
select au_id, au_lname, au_fname
    from authors
    where au_id like ’15%’
    for read only
go
open curs1
go
fetch curs1
go
fetch curs1
go 100
close curs1
go
deallocate cursor curs1
go



Isolation levels and cursors 

682  Adaptive Server Enterprise

Isolation levels and cursors
The query plan for a cursor is compiled and optimized when the cursor is 
opened. You cannot open a cursor and then use set transaction isolation 
level to change the isolation level at which the cursor operates.

Since cursors using isolation level 0 are compiled differently from those 
using other isolation levels, you cannot open a cursor at isolation level 0 
and open or fetch from it at level 1 or 3. Similarly, you cannot open a 
cursor at level 1 or 3 and then fetch from it at level 0. Attempts to fetch 
from a cursor at an incompatible level result in an error message.

Once the cursor has been opened at a particular isolation level, you must 
deallocate the cursor before changing isolation levels. The effects of 
changing isolation levels while the cursor is open are as follows:

• Attempting to close and reopen the cursor at another isolation level 
fails with an error message.

• Attempting to change isolation levels without closing and reopening 
the cursor has no effect on the isolation level in use and does not 
produce an error message.

You can include an at isolation clause in the cursor to specify an isolation 
level. The cursor in the example below can be declared at level 1 and 
fetched from level 0 because the query plan is compatible with the 
isolation level:

declare cprice cursor for
select title_id, price
    from titles 
    where type = "business"
    at isolation read uncommitted

Partitioned heap tables and cursors
A cursor scan of an unpartitioned heap table can read all data up to and 
including the final insertion made to that table, even if insertions took 
place after the cursor scan started.



CHAPTER 28    Cursors and Performance

Performance & Tuning Guide 683

If a heap table is partitioned, data can be inserted into one of the many page 
chains. The physical insertion point may be before or after the current 
position of a cursor scan. This means that a cursor scan against a 
partitioned table is not guaranteed to scan the final insertions made to that 
table.

Note  If your cursor operations require all inserts to be made at the end of 
a single page chain, do not partition the table used in the cursor scan.

Optimizing tips for cursors
Here are several optimizing tips for cursors:

• Optimize cursor selects using the cursor, not an ad hoc query.

• Use union or union all instead of or clauses or in lists.

• Declare the cursor’s intent.

• Specify column names in the for update clause.

• Fetch more than one row if you are returning rows to the client.

• Keep cursors open across commits and rollbacks.

• Open multiple cursors on a single connection.

Optimizing for cursor selects using a cursor
A standalone select statement may be optimized very differently than the 
same select statement in an implicitly or explicitly updatable cursor. When 
you are developing applications that use cursors, always check your query 
plans and I/O statistics using the cursor, rather than using a standalone 
select. In particular, index restrictions of updatable cursors require very 
different access methods.



Optimizing tips for cursors 

684  Adaptive Server Enterprise

Using union instead of or clauses or in lists
Cursors cannot use the dynamic index of row IDs generated by the OR 
strategy. Queries that use the OR strategy in standalone select statements 
usually perform table scans using read-only cursors. Updatable cursors 
may need to use a unique index and still require access to each data row, 
in sequence, in order to evaluate the query clauses.

See “Access Methods and Costing for or and in Clauses” on page 501 for 
more information.

A read-only cursor using union creates a worktable when the cursor is 
declared, and sorts it to remove duplicates. Fetches are performed on the 
worktable. A cursor using union all can return duplicates and does not 
require a worktable. 

Declaring the cursor’s intent
Always declare a cursor’s intent: read-only or updatable. This gives you 
greater control over concurrency implications. If you do not specify the 
intent, Adaptive Server decides for you, and very often it chooses 
updatable cursors. Updatable cursors use update locks, thereby preventing 
other update locks or exclusive locks. If the update changes an indexed 
column, the optimizer may need to choose a table scan for the query, 
resulting in potentially difficult concurrency problems. Be sure to examine 
the query plans for queries that use updatable cursors.

Specifying column names in the for update clause
Adaptive Server acquires update locks on the pages or rows of all tables 
that have columns listed in the for update clause of the cursor select 
statement. If the for update clause is not included in the cursor declaration, 
all tables referenced in the from clause acquire update locks.

The following query includes the name of the column in the for update 
clause, but acquires update locks only on the titles table, since price is 
mentioned in the for update clause. The table uses allpages locking. The 
locks on authors and titleauthor are shared page locks:

declare curs3 cursor
for
select au_lname, au_fname, price
    from titles t, authors a,



CHAPTER 28    Cursors and Performance

Performance & Tuning Guide 685

        titleauthor ta
where advance <= $1000 
    and t.title_id = ta.title_id
    and a.au_id = ta.au_id
for update of price

Table 28-4 shows the effects of:

• Omitting the for update clause entirely—no shared clause

• Omitting the column name from the for update clause

• Including the name of the column to be updated in the for update 
clause

• Adding shared after the name of the titles table while using for update 
of price

In this table, the additional locks, or more restrictive locks for the two 
versions of the for update clause are emphasized.

Table 28-4: Effects of for update clause and shared on cursor 
locking

Using set cursor rows
The SQL standard specifies a one-row fetch for cursors, which wastes 
network bandwidth. Using the set cursor rows query option and Open 
Client’s transparent buffering of fetches, you can improve performance:

ct_cursor(CT_CURSOR_ROWS)

Be careful when you choose the number of rows returned for frequently 
executed applications using cursors—tune them to the network.

Clause titles authors titleauthor

None

sh_page on data

sh_page on index

sh_page on data sh_page on data

for update updpage on index

updpage on data

updpage on index

updpage on data updpage on data

for update of 
price updpage on data

sh_page on index

sh_page on data sh_page on data

for update of 
price
+ shared

sh_page on data

sh_page on index

sh_page on data sh_page on data



Optimizing tips for cursors 

686  Adaptive Server Enterprise

See “Changing network packet sizes” on page 15 for an explanation of 
this process.

Keeping cursors open across commits and rollbacks
ANSI closes cursors at the conclusion of each transaction. Transact- SQL 
provides the set option close on endtran for applications that must meet 
ANSI behavior. By default, however, this option is turned off. Unless you 
must meet ANSI requirements, leave this option off to maintain 
concurrency and throughput.

If you must be ANSI-compliant, decide how to handle the effects on 
Adaptive Server. Should you perform a lot of updates or deletes in a single 
transaction? Or should you keep the transactions short?

If you choose to keep transactions short, closing and opening the cursor 
can affect throughput, since Adaptive Server needs to rematerialize the 
result set each time the cursor is opened. Choosing to perform more work 
in each transaction, this can cause concurrency problems, since the query 
holds locks.

Opening multiple cursors on a single connection
Some developers simulate cursors by using two or more connections from 
DB-Library™. One connection performs a select and the other performs 
updates or deletes on the same tables. This has very high potential to create 
application deadlocks. For example:

• Connection A holds a shared lock on a page. As long as there are rows 
pending from Adaptive Server, a shared lock is kept on the current 
page.

• Connection B requests an exclusive lock on the same pages and then 
waits.

• The application waits for Connection B to succeed before invoking 
whatever logic is needed to remove the shared lock. But this never 
happens.

Since Connection A never requests a lock that is held by Connection B, 
this is not a server-side deadlock.



Performance & Tuning Guide 687

C H A P T E R  2 9 Introduction to Abstract Plans

This chapter provides an overview of abstract plans. 

Definition
Adaptive Server can generate an abstract plan for a query, and save the 
text and its associated abstract plan in the sysqueryplans system table. 
Using a rapid hashing method, incoming SQL queries can be compared to 
saved query text, and if a match is found, the corresponding saved abstract 
plan is used to execute the query.

An abstract plan describes the execution plan for a query using a language 
created for that purpose. This language contains operators to specify the 
choices and actions that can be generated by the optimizer. For example, 
to specify an index scan on the titles table, using the index title_id_ix, the 
abstract plan says:

( i_scan title_id_ix titles)

Abstract plans provide a means for System Administrators and 
performance tuners to protect the overall performance of a server from 
changes to query plans. Changes in query plans can arise due to:

• Adaptive Server software upgrades that affect optimizer choices and 
query plans

• New Adaptive Server features that change query plans

Topic Page
Definition 687

Managing abstract plans 688

Relationship between query text and query plans 688

Full versus partial plans 689

Abstract plan groups 691

How abstract plans are associated with queries 692



Managing abstract plans 

688  Adaptive Server Enterprise

• Changing tuning options such as the parallel degree, table 
partitioning, or indexing

The major purpose of abstract plans is to provide a means to capture query 
plans before and after major system changes. The sets of before-and-after 
query plans can be compared to determine the effects of changes on your 
queries. Other uses include:

• Searching for specific types of plans, such as table scans or 
reformatting

• Searching for plans that use particular indexes

• Specifying full or partial plans for poorly-performing queries

• Saving plans for queries with long optimization times

Abstract plans provide an alternative to options that must be specified in 
the batch or query in order to influence optimizer decisions. Using abstract 
plans, you can influence the optimization of a SQL statement without 
having to modify the statement syntax. While matching query text to 
stored text requires some processing overhead, using a saved plan reduces 
query optimization overhead.

Managing abstract plans
A full set of system procedures allows System Administrators and 
Database Owners to administer plans and plan groups. Individual users 
can view, drop, and copy the plans for the queries that they have run. 

See Chapter 32, “Managing Abstract Plans with System Procedures.”

Relationship between query text and query plans
For most SQL queries, there are many possible query execution plans. 
SQL describes the desired result set, but does not describe how that result 
set should be obtained from the database. Consider a query that joins three 
tables, such as this:

select t1.c11, t2.c21
from t1, t2, t3



CHAPTER 29    Introduction to Abstract Plans

Performance & Tuning Guide 689

where t1.c11 = t2.c21
and t1.c11 = t3.c31

There are many different possible join orders, and depending on the 
indexes that exist on the tables, many possible access methods, including 
table scans, index scans, and the reformatting strategy. Each join may use 
either a nested-loop join or a merge join. These choices are determined by 
the optimizer’s query costing algorithms, and are not included in or 
specified in the query itself.

When you capture the abstract plan, the query is optimized in the usual 
way, except that the optimizer also generates an abstract plan, and saves 
the query text and abstract plan in sysqueryplans. 

Limits of options for influencing query plans
Adaptive Server provides other options for influencing optimizer choices:

• Session-level options such as set forceplan to force join order or set 
parallel_degree to specify the maximum number of worker processes 
to use for the query

• Options that can be included in the query text to influence the index 
choice, cache strategy, and parallel degree

There are some limitations to using set commands or adding hints to the 
query text:

• Not all query plan steps can be influenced, for example, subquery 
attachment

• Some query-generating tools do not support the in-query options or 
require all queries to be vendor-independent

Full versus partial plans
Abstract plans can be full plans, describing all query processing steps and 
options, or they can be partial plans. A partial plan might specify that an 
index is to be used for the scan of a particular table, without specifying the 
index name or the join order for the query. For example:

select t1.c11, t2.c21
from t1, t2, t3



Full versus partial plans 

690  Adaptive Server Enterprise

where t1.c11 = t2.c21
and t1.c11 = t3.c31

The full abstract plan includes:

• The join type, either nl_g_join for nested-loop joins, or m_g_join for 
merge joins. The plan for this query specifies a nested-loop join.

• The join order, included in the nl_g_join clause.

• The type of scan, t_scan for table scan or i_scan for index scan.

• The name of the index chosen for the tables that are accessed via an 
index scan.

• The scan properties: the parallel degree, I/O size, and cache strategy 
for each table in the query.

The abstract plan for the query above specifies the join order, the access 
method for each table in the query, and the scan properties for each table:

( nl_g_join 
    ( t_scan t2 ) 
    ( i_scan t1_c11_ix t1 ) 
    ( i_scan t3_c31_ix t3 ) 
) 
( prop t3 
    ( parallel 1 ) 
    ( prefetch 16 ) 
    ( lru ) 
) 
( prop t1 
    ( parallel 1 ) 
    ( prefetch 16 ) 
    ( lru ) 
) 
( prop t2 
    ( parallel 1 ) 
    ( prefetch 16 ) 
    ( lru ) 
)   

Chapter 33, “Abstract Plan Language Reference,” provides a reference to 
the abstract plan language and syntax.



CHAPTER 29    Introduction to Abstract Plans

Performance & Tuning Guide 691

Creating a partial plan
When abstract plans are captured, full abstract plans are generated and 
stored. You can write partial plans to affect only a subset of the optimizer 
choices. If the query above had not used the index on t3, but all other parts 
of the query plan were optimal, you could create a partial plan for the 
query using the create plan command. This partial plan specifies only the 
index choice for t3:

create plan
"select t1.c11, t2.c21
from t1, t2, t3
where t1.c11 = t2.c21
and t1.c11 = t3.c31"
"( i_scan t3_c31_ix t3 )"

You can also create abstract plans with the plan clause for select, delete, 
update, and other commands that can be optimized. 

See “Creating plans using SQL” on page 728.

Abstract plan groups
When you first install Adaptive Server, there are two abstract plan groups:

• ap_stdout, used by default for capturing plans

• ap_stdin, used by default for plan association

A System Administrator can enable server-wide plan capture to ap_stdout, 
so that all query plans for all queries are captured. Server-wide plan 
association uses queries and plans from ap_stdin. If some queries require 
specially-tuned plans, they can be made available server-wide.

A System Administrator or Database Owner can create additional plan 
groups, copy plans from one group to another, and compare plans in two 
different groups. 

The capture of abstract plans and the association of abstract plans with 
queries always happens within the context of the currently-active plan 
group. Users can use session-level set commands to enable plan capture 
and association.

Some of the ways abstract plan groups can be used are:



How abstract plans are associated with queries 

692  Adaptive Server Enterprise

• A query tuner can create abstract plans in a group created for testing 
purposes without affecting plans for other users on the system

• Using plan groups, “before” and “after” sets of plans can be used to 
determine the effects of system or upgrade changes on query 
optimization.

See Chapter 31, “Creating and Using Abstract Plans,” for information on 
enabling the capture and association of plans.

How abstract plans are associated with queries
When an abstract plan is saved, all white space (returns, tabs, and multiple 
spaces) in the query is trimmed to a single space, and a hash-key value is 
computed for the white-space trimmed SQL statement. The trimmed SQL 
statement and the hash key are stored in sysqueryplans along with the 
abstract plan, a unique plan ID, the user’s ID, and the ID of the current 
abstract plan group. 

When abstract plan association is enabled, the hash key for incoming SQL 
statements is computed, and this value is used to search for the matching 
query and abstract plan in the current association group, with the 
corresponding user ID. The full association key of an abstract plans 
consists of:

• The user ID of the current user

• The group ID of the current association group

• The full query text

Once a matching hash key is found, the full text of the saved query is 
compared to the query to be executed, and used if it matches. 

The association key combination of user ID, group ID and query text 
means that for a given user, there cannot be two queries in the same 
abstract plan group that have the same query text, but different query 
plans.



Performance & Tuning Guide 693

C H A P T E R  3 0 Abstract Query Plan Guide

This chapter covers some guidelines you can use in writing Abstract 
Plans.

Introduction
Abstract plans allow you to specify the desired execution plan of a query. 
Abstract plans provide an alternative to the session-level and query level 
options that force a join order, or specify the index, I/O size, or other query 
execution options. The session-level and query-level options are 
described in Chapter 31, “Creating and Using Abstract Plans.”

There are several optimization decisions that cannot be specified with set 
commands or clauses included in the query text. Some examples are:

• Subquery attachment

• The join order for flattened subqueries 

• Reformatting 

In many cases, including set commands or changing the query text is not 
always possible or desired. Abstract plans provide an alternative, more 
complete method of influencing optimizer decisions.

Abstract plans are relational algebra expressions that are not included in 
the query text. They are stored in a system catalog and associated to 
incoming queries based on the text of these queries. 

Topic Page
Introduction 693

Tips on writing abstract plans 715

Comparing plans “before” and “after” 716

Abstract plans for stored procedures 718

Ad Hoc queries and abstract plans 719



Introduction 

694  Adaptive Server Enterprise

The tables used in this section are the same as those in Chapter 33, 
“Abstract Plan Language Reference.” See “Schema for examples” on 
page 750 for the create table and create index statements.

Abstract plan language
The abstract plan language is a relational algebra that uses these operators: 

• g_join, the generic join, a high-level logical join operator. It describes 
inner, outer and existence joins, using either nested-loop joins or sort-
merge joins. 

• nl_g_join, specifying a nested-loop join, including all inner, outer, and 
existence joins

• m_g_join, specifying a merge join, including inner and outer joins.

• union, a logical union operator. It describes both the union and the 
union all SQL constructs.

• scan, a logical operator that transforms a stored table in a flow of 
rows, a derived table. It allows partial plans that do not restrict the 
access method.

• i_scan, a physical operator, implementing scan. It directs the 
optimizer to use an index scan on the specified table.

• t_scan, a physical operator, implementing scan. It directs the 
optimizer to use a full table scan on the specified table.

• store, a logical operator, describing the materialization of a derived 
table in a stored worktable. 

• nested, a filter, describing the placement and structure of nested 
subqueries.

See “Schema for examples” on page 750 for the create table and create 
index commands used for the examples in this section.

Additional abstract plan keywords are used for grouping and 
identification:

• plan groups the elements when a plan requires multiple steps.

• hints groups a set of hints for a partial plan.

• prop introduces a set of scan properties for a table: prefetch, lru|mru 
and parallel.



CHAPTER 30    Abstract Query Plan Guide

Performance & Tuning Guide 695

• table identifies a table when correlation names are used, and in 
subqueries or views.

• work_t identifies a worktable.

• in, used with table, for identifying tables named in a subquery (subq) 
or view (view).

• subq is also used under the nested operator to indicate the attachment 
point for a nested subquery, and to introduce the subqueries abstract 
plan.

Queries, access methods, and abstract plans

For any specific table, there can be several access methods for a specific 
query: index scans using different indexes, table scans, the OR strategy, 
and reformatting are some examples. 

This simple query has several choices of access methods:

select * from t1 
where c11 > 1000 and c12 < 0

The following abstract plans specify three different access methods: 

• Use the index i_c11:

(i_scan i_c11 t1)

• Use the index i_c12:

(i_scan i_c12 t1)

• Do a full table scan:

(t_scan t1)

Abstract plans can be full plans, specifying all optimizer choices for a 
query, or can specify a subset of the choices, such as the index to use for a 
single table in the query, but not the join order for the tables. For example, 
using a partial abstract plan, you can specify that the query above should 
use some index and let the optimizer choose between i_c11 and i_c12, but 
not do a full table scan. The empty parentheses are used in place of the 
index name:

(i_scan () t1)

In addition, the query could use either 2K or 16K I/O, or be performed in 
serial or parallel. 



Introduction 

696  Adaptive Server Enterprise

Identifying tables
Abstract plans need to name all of a query’s tables in a non-ambiguous 
way, such that a table named in the abstract can be linked to its occurrence 
in the SQL query. In most cases, the table name is all that is needed. If the 
query qualifies the table name with the database and owner name, these 
are also needed to fully identify a table in the abstract plan. For example, 
this example used the unqualified table name:

select * from t1

The abstract plan also uses the unqualified name:

(t_scan t1)

If a database name and/or owner name are provided in the query:

select * from pubs2.dbo.t1

Then the abstract plan must also use the qualifications:

(t_scan pubs2.dbo.t1)

However, the same table may occur several times in the same query, as in 
this example:

select * from t1 a, t1 b 

Correlation names, a and b in the example above, identify the two tables 
in SQL. In an abstract plan, the table operator associates each correlation 
name with the occurrence of the table: 

( g_join 
        ( t_scan ( table ( a t1 ) ) ) 
        ( t_scan ( table ( b t1 ) ) ) 
)

Table names can also be ambiguous in views and subqueries, so the table 
operator is used for tables in views and subqueries.

For subqueries, the in and subq operators qualify the name of the table with 
its syntactical containment by the subquery. The same table is used in the 
outer query and the subquery in this example:

select * 
from t1 
where c11 in (select c12 from t1 where c11 > 100)

The abstract plan identifies them unambiguously:

( g_join 
    ( t_scan t1 ) 



CHAPTER 30    Abstract Query Plan Guide

Performance & Tuning Guide 697

    ( i_scan i_c11_c12 ( table t1 ( in ( subq 1 ) ) ) )
) 

For views, the in and view operators provide the identification. The query 
in this example references a table used in the view:

create view v1
as
select * from t1 where c12 > 100
select t1.c11 from t1, v1
    where t1.c12 = v1.c11

Here is the abstract plan: 

( g_join 
    ( t_scan t1 ) 
    ( i_scan i_c12 ( table t1 ( in ( view v1 ) ) ) )
) 

Identifying indexes
The i_scan operator requires two operands, the index name and the table 
name, as shown here:

( i_scan i_c12 t1 )

To specify that some index should be used, without specifying the index, 
substitute empty parenthesis for the index name:

( i_scan ( ) t1 )

Specifying join order
Adaptive Server performs joins of three or more tables by joining two of 
the tables, and joining the “derived table” from that join to the next table 
in the join order. This derived table is a flow of rows, as from an earlier 
nested-loop join in the query execution.

This query joins three tables: 

select * 
from t1, t2, t3
where c11 = c21 
    and c12 = c31
    and c22 = 0
    and c32 = 100



Introduction 

698  Adaptive Server Enterprise

This example shows the binary nature of the join algorithm, using g_join 
operators. The plan specifies the join order t2, t1, t3: 

(g_join
    (g_join
        (scan t2)
        (scan t1)
    )
    (scan t3)
)

The results of the t2-t1 join are then joined to t3. The scan operator in this 
example leaves the choice of table scan or index scan up to the optimizer. 

Shorthand notation for joins

In general, a N-way join, with the order t1, t2, t3..., tN-1, tN is described by: 

(g_join
    (g_join
        ...
            (g_join
                (g_join
                    (scan t1)
                    (scan t2)
                )
                (scan t3)
            )
        ...
        (scan tN-1)
    )
    (scan tN)
)

This notation can be used as shorthand for the g_join operator: 

(g_join
    (scan t1)
    (scan t2)
    (scan t3)
    ...
    (scan tN-1)
    (scan tN)
)

This notation can be used for g_join, and nl_g_join, and m_g_join. 



CHAPTER 30    Abstract Query Plan Guide

Performance & Tuning Guide 699

Join order examples

The optimizer could select among several plans for this three-way join 
query:

select * 
from t1, t2, t3
where c11 = c21 
    and c12 = c31
    and c22 = 0
    and c32 = 100

Here are a few examples:

• Use c22 as a search argument on t2, join with t1 on c11, then with t3 
on c31:

(g_join
    (i_scan i_c22 t2)
    (i_scan i_c11 t1)
    (i_scan i_c31 t3)
)

• Use the search argument on t3, and the join order t3, t1, t2:

(g_join
    (i_scan i_c32 t3)
    (i_scan i_c12 t1)
    (i_scan i_c21 t2)
)

• Do a full table scan of t2, if it is small and fits in cache, still using the 
join order t3, t1, t2:

(g_join
    (i_scan i_c32 t3)
    (i_scan i_c12 t1)
    (t_scan t2)
)

• If t1 is very large, and t2 and t3 individually qualify a large part of t1, 
but together a very small part, this plan specifies a STAR join:

(g_join
    (i_scan i_c22 t2)
    (i_scan i_c32 t3)
    (i_scan i_c11_c12 t1)
)

All of these plans completely constrain the choice of join order, letting the 
optimizer choose the type of join. 



Introduction 

700  Adaptive Server Enterprise

The generic g_join operator implements outer joins, inner joins, and 
existence joins. For examples of flattened subqueries that perform 
existence joins, see “Flattened subqueries” on page 706.

Match between execution methods and abstract plans

There are some limits to join orders and join types, depending on the type 
of query. One example is outer joins, such as:

select * from t1, t2
where c11 *= c21

Adaptive Server requires the outer member of the outer join to be the outer 
table during join processing. Therefore, this abstract plan is illegal:

(g_join
    (scan t2)
    (scan t1)
)

Attempting to use this plan results in an error message, and the query is not 
compiled.

Specifying join order for queries using views

You can use abstract plans to enforce the join order for merged views. This 
example creates a view. This view performs a join of t2 and t3: 

create view v2 
as 
select * 
from t2, t3
where c22 = c32

This query performs a join with the t2 in the view:

select * from t1, v2
where c11 = c21 
    and c22 = 0

This abstract plan specifies the join order t2, t1, t3:

(g_join
    (scan (table t2 (in (view v2))))
    (scan t1)
    (scan (table t3 (in (view v2))))
)

This example joins with t3 in the view:



CHAPTER 30    Abstract Query Plan Guide

Performance & Tuning Guide 701

select * from t1, v2
where c11 = c31 
    and c32 = 100

This plan uses the join order t3, t1, t2: 

(g_join
    (scan (table t3 (in (view v2))))
    (scan t1)
    (scan (table t2 (in (view v2))))
)

This is an example where abstract plans can be used, if needed, to affect 
the join order for a query, when set forceplan cannot.

Specifying the join type
Adaptive Server can perform either nested-loop or merge joins. The g_join 
operator leaves the optimizer free to choose the best join algorithm, based 
on costing. To specify a nested-loop join, use the nl_g_join operator; for a 
sort-merge join, use the m_g_join operator. Abstract plans captured by 
Adaptive Server always include the operator that specifies the algorithm, 
and not the g_join operator.

Note that the “g” that appears in each operator means “generic,” meaning 
that they apply to inner joins and outer joins; g_join and nl_g_join can also 
apply to existence joins.

This query specifies a join between t1 and t2: 

select * from t1, t2
    where c12 = c21 and c11 = 0

This abstract plan specifies a nested-loop join: 

(nl_g_join
    (i_scan i_c11 t1)
    (i_scan i_c21 t2)
)

The nested-loop plan uses the index i_c11  to limit the scan using the search 
clause, and then performs the join with t2, using the index on the join 
column.

This merge-join plan uses different indexes: 

(m_g_join
    (i_scan i_c12 t1)



Introduction 

702  Adaptive Server Enterprise

    (i_scan i_c21 t2)
)

The merge join uses the indexes on the join columns, i_c12  and i_c21, for 
the merge keys. This query performs a full-merge join and no sort is 
needed. 

A merge join could also use the index on i_c11  to select the rows from t1 
into a worktable; the merge uses the index on i_c21: 

(m_g_join
    (i_scan i11 t1)
    (i_scan i21 t2)
)

The step that creates the worktable is not specified in the plan; the 
optimizer detects when a worktable and sort are needed for join-key 
ordering.

Specifying partial plans and hints
There are cases when a full plan is not needed. For example, if the only 
problem with a query plan is that the optimizer chooses a table scan instead 
of using a nonclustered index, the abstract plan can specify only the index 
choice, and leave the other decisions to the optimizer. 

The optimizer could choose a table scan of t3 rather than using i_c31 for 
this query: 

select * 
from t1, t2, t3
where c11 = c21 
    and c12 < c31
    and c22 = 0
    and c32 = 100

The following plan, as generated by the optimizer, specifies join order t2, 
t1, t3. However, the plan specifies a table scan of t3:

(g_join
    (i_scan i_c22 t2)
    (i_scan i_c11 t1)
    (t_scan t3)
)

This full plan could be modified to specify the use of i_c31 instead:

(g_join



CHAPTER 30    Abstract Query Plan Guide

Performance & Tuning Guide 703

    (i_scan i_c22 t2)
    (i_scan i_c11 t1)
    (i_scan i_c31 t3)
)

However, specifying only a partial abstract plan is a more flexible 
solution. As data in the other tables of that query evolves, the optimal join 
order can change. The partial plan can specify just one partial plan item. 
For the index scan of t3, the partial plan is simply: 

(i_scan i_c31 t3)

The optimizer chooses the join order and the access methods for t1 and t2.

Grouping multiple hints

There may be cases where more than one plan fragment is needed. For 
example, you might want to specify that some index should be used for 
each table in the query, but leave the join order up to the optimizer. When 
multiple hints are needed, they can be grouped with the hints operator:

(hints
    (i_scan () t1)
    (i_scan () t2)
    (i_scan () t3)
)

In this case, the role of the hints operator is purely syntactic; it does not 
affect the ordering of the scans.

There are no limits on what may be given as a hint. Partial join orders may 
be mixed with partial access methods. This hint specifies that t2 is outer to 
t1 in the join order, and that the scan of t3 should use an index, but the 
optimizer can choose the index for t3, the access methods for t1 and t2, and 
the placement of t3 in the join order: 

(hints
    (g_join
        (scan t2)
        (scan t1)
    )
    (i_scan () t3)
)



Introduction 

704  Adaptive Server Enterprise

Inconsistent and illegal plans using hints

It is possible to describe inconsistent plans using hints, such as this plan 
that specifies contradictory join orders:

(hints
    (g_join
        (scan t2)
        (scan t1)
    )
    (g_join
        (scan t1)
        (scan t2)
    )
)

When the query associated with the plan is executed, the query cannot be 
compiled, and an error is raised. 

Other inconsistent hints do not raise an exception, but may use any of the 
specified access methods. This plan specifies both an index scan and a 
table scan for the same table:

(hints
    (t_scan t3)
    (i_scan () t3)
)

In this case, either method may be chosen, the behavior is indeterminate.

Creating abstract plans for subqueries
Subqueries are resolved in several ways in Adaptive Server, and the 
abstract plans reflect the query execution steps:

• Materialization – The subquery is executed and results are stored in a 
worktable or internal variable. See “Materialized subqueries” on page 
705. 

• Flattening – The query is flattened into a join with the tables in the 
main query. See “Flattened subqueries” on page 706. 

• Nesting – The subquery is executed once for each outer query row. 
See “Nested subqueries” on page 707.



CHAPTER 30    Abstract Query Plan Guide

Performance & Tuning Guide 705

Abstract plans do not allow the choice of the basic subquery resolution 
method. This is a rule-based decision and cannot be changed during query 
optimization. Abstract plans, however, can be used to influence the plans 
for the outer and inner queries. In nested subqueries, abstract plans can 
also be used to choose where the subquery is nested in the outer query.

Materialized subqueries

This query includes a non correlated subquery that can be materialized: 

select * 
from t1
where c11 = (select count(*) from t2)

The first step in the abstract plan materializes the scalar aggregate in the 
subquery. The second step uses the result to scan t1:

( plan 
    ( i_scan i_c21 ( table t2 ( in (subq 1 ) ) ) )
    ( i_scan i_c11 t1 ) 
) 

This query includes a vector aggregate in the subquery: 

select * 
from t1
where c11 in (select max(c21)
        from t2
        group by c22)

The abstract plan materializes the subquery in the first step, and joins it to 
the outer query in the second step:

( plan 
    ( store Worktab1 
        ( t_scan ( table t2 ( in (subq 1 ) ) ) )
    ) 
    ( nl_g_join 
        ( t_scan t1 ) 
        ( t_scan ( work_t Worktab1 ) ) 
    ) 
) 



Introduction 

706  Adaptive Server Enterprise

Flattened subqueries

Some subqueries can be flattened into joins. The g_join and nl_g_join 
operators leave it to the optimizer to detect when an existence join is 
needed. For example, this query includes a subquery introduced with 
exists: 

select * from t1
where c12 > 0 
    and exists (select * from t2 
            where t1.c11 = c21
                and c22 < 100)

The semantics of the query require an existence join between t1 and t2. The 
join order t1, t2 is interpreted by the optimizer as an existence join, with 
the scan of t2 stopping on the first matching row of t2 for each qualifying 
row in t1: 

(g_join
    (scan t1)
    (scan (table t2 (in (subq 1) ) )) 
)

The join order t2, t1 requires other means to guarantee the duplicate 
elimination:

(g_join
    (scan (table t2 (in (subq 1) ) ) )
    (scan t1)
)

Using this abstract plan, the optimizer can decide to use:

• A unique index on t2.c21, if one exists, with a regular join.

• The unique reformatting strategy, if no unique index exists. In this 
case, the query will probably use the index on c22 to select the rows 
into a worktable.

• The duplicate elimination sort optimization strategy, performing a 
regular join and selecting the results into the worktable, then sorting 
the worktable.

The abstract plan does not need to specify the creation and scanning of the 
worktables needed for the last two options.

For more information on subquery flattening, see “Flattening in, any, and 
exists subqueries” on page 544.



CHAPTER 30    Abstract Query Plan Guide

Performance & Tuning Guide 707

Example: changing the join order in a flattened subquery

The query can be flattened to an existence join: 

select * 
from t1, t2
where c11 = c21
    and c21 > 100
    and exists (select * from t3 
        where c31 != t1.c11)

The “!=” correlation can make the scan of t3 rather expensive. If the join 
order is t1, t2, the best place for t3 in the join order depends on whether the 
join of t1 and t2 increases or decreases the number of rows, and therefore, 
the number of times that the expensive table scan needs to be performed. 
If the optimizer fails to find the right join order for t3, the following 
abstract plan can be used when the join reduces the number of times that 
t3 must be scanned: 

(g_join
    (scan t1)
    (scan t2)
    (scan (table t3 (in (subq 1) ) ) )
)

If the join increases the number of times that t3 needs to be scanned, this 
abstract plan performs the scans of t3 before the join: 

(g_join
    (scan t1)
    (scan (table t3 (in (subq 1) ) ) )
    (scan t2)
)

Nested subqueries

Nested subqueries can be explicitly described in abstract plans:

• The abstract plan for the subquery is provided.

• The location at which the subquery attaches to the main query is 
specified.

Abstract plans allow you to affect the query plan for the subquery, and to 
change the attachment point for the subquery in the outer query. 



Introduction 

708  Adaptive Server Enterprise

The nested operator specifies the position of the subquery in the outer 
query. Subqueries are “nested over” a specific derived table. The optimizer 
chooses a spot where all the correlation columns for the outer query are 
available, and where it estimates that the subquery needs to be executed 
the least number of times.

The following SQL statement contains a correlated expression subquery: 

select * 
from t1, t2
where c11 = c21
    and c21 > 100
    and c12 = (select c31 from t3 
                where c32 = t1.c11)

The abstract plan shows the subquery nested over the scan of t1: 

( g_join 
    ( nested 
        ( i_scan i_c12 t1 ) 
        ( subq 1 
            (t_scan ( table t3 ( in ( subq 1 ) ) ) )
         ) 
    ) 
    ( i_scan i_c21 t2 ) 
) 

Subquery identification and attachment

Subqueries are identified with numbers, in the order of their leading 
opened parenthesis “(“. 

This example has two subqueries, one in the select list:

select 
    (select c11 from t1 where c12 = t3.c32), c31
from t3
where c32 > (select c22 from t2 where c21 = t3.c31)

In the abstract plan, the subquery containing t1 is named “1” and the 
subquery containing t2 is named “2”. Both subquery 1 and 2 are nested 
over the scan of t3:

( nested 
    ( nested 
        ( t_scan t3 ) 
        ( subq 1 
            ( i_scan i_c11_c12 ( table t1 (in ( subq 1 ) ) ) ) 



CHAPTER 30    Abstract Query Plan Guide

Performance & Tuning Guide 709

        ) 
    ) 
    ( subq 2 
        ( i_scan i_c21 ( table t2 ( in ( subq 2 ) ) ) ) 
    ) 
) 

In this query, the second subquery is nested in the first:

select * from t3 
where c32 > all 
    (select c11 from t1 where c12 > all 
        (select c22 from t2 where c21 = t3.c31)) 

In this case, the subquery containing t1 is also named “1” and the subquery 
containing t2 is named “2”. In this plan, subquery 2 is nested over the scan 
of t1, which is performed in subquery 1; subquery 1 is nested over the scan 
of t3 in the main query:

( nested 
    ( t_scan t3 ) 
    ( subq 1 
        ( nested 
            ( i_scan i_c11_c12 ( table t1 ( in ( subq 1 ) ) ) ) 
            ( subq 2 
                ( i_scan i_c21 ( table t2 ( in ( subq 2 ) ) ) ) 
            ) 
        ) 
    ) 

More subquery examples: reading ordering and attachment

The nested operator has the derived table as the first operand and the 
nested subquery as the second operand. This allows an easy vertical 
reading of the join order and subquery placement: 

select * 
from t1, t2, t3
where c12 = 0
    and c11 = c21
    and c22 = c32
    and 0 < (select c21 from t2 where c22 = t1.c11)

In the plan, the join order is t1, t2, t3, with the subquery nested over the 
scan of t1:

( g_join 
    ( nested 



Introduction 

710  Adaptive Server Enterprise

        ( i_scan i_c11 t1 ) 
        ( subq 1 
            ( t_scan ( table t2 ( in (subq 1 ) ) ) 
        ) 
    ) 
    ( i_scan i_c21 t2 ) 
    ( i_scan i_c32 t3 ) 
) 

Modifying subquery nesting

If you modify the attachment point for a subquery, you must choose a point 
at which all of the correlation columns are available.This query is 
correlated to both of the tables in the outer query:

select * 
from t1, t2, t3
where c12 = 0
    and c11 = c21
    and c22 = c32
    and 0 < (select c31 from t3 where c31 = t1.c11
                    and c32 = t2.c22)

This plan uses the join order t1, t2, t3, with the subquery nested over the 
t1-t2 join:

( g_join 
    ( nested 
        ( g_join 
            ( i_scan i_c11_c12 t1 ) 
            ( i_scan i_c22 t2 ) 
        ) 
        ( subq 1 
            ( t_scan ( table t3 ( in (subq 1 ) ) ) ) 
        ) 
    )
    ( i_scan i_c32 t3 ) 
) 

Since the subquery requires columns from both outer tables, it would be 
incorrect to nest it over the scan of t1 or the scan of t2; such errors are 
silently corrected during optimization.



CHAPTER 30    Abstract Query Plan Guide

Performance & Tuning Guide 711

Abstract plans for materialized views
This view is materialized during query processing: 

create view v3
as
select distinct * 
from t3

This query performs a join with the materialized view:

select * 
from t1, v3
where c11 = c31

A first step materializes the view v3  into a worktable. The second joins it 
with the main query table t1 :

( plan 
        ( store Worktab1 
                ( t_scan ( table t3 ( in (view v3 ) ) ) )
        ) 
        ( g_join 
                ( t_scan t1 ) 
                ( t_scan ( work_t Worktab1 ) ) 
        ) 
) 

Abstract plans for queries containing aggregates
This query returns a scalar aggregate: 

select max(c11) from t1

The first step computes the scalar aggregate and stores it in an internal 
variable. The second step is empty, as it only returns the variable, in a step 
with nothing to optimize:

( plan 
        ( t_scan t1 ) 
        ( ) 
)

Vector aggregates are also two-step queries: 

select max(c11)
from t1
group by c12



Introduction 

712  Adaptive Server Enterprise

The first step processes the aggregates into a worktable; the second step 
scans the worktable:

( plan 
        ( store Worktab1 
                ( t_scan t1 ) 
        )
        ( t_scan ( work_t Worktab1 ) ) 
) 

Nested aggregates are a Transact-SQL extension:

select max(count(*))
from t1
group by c11

The first step processes the vector aggregate into a worktable, the second 
scans it to process the nested scalar aggregate into an internal variable, and 
the third step returns the value. 

( plan 
     ( store Worktab1 
          ( i_scan i_c12 t1 ) 
     ) 
     ( t_scan ( work_t Worktab1 ) ) 
     ( ) 
) 

Extended columns in aggregate queries are a Transact-SQL extension:

select max(c11), c11
from t1
group by c12

The first step processes the vector aggregate; the second one joins it back 
to the base table to process the extended columns: 

( plan 
     ( store Worktab1 
          ( t_scan t1 ) 
     ) 
     ( g_join 
          ( t_scan t1 ) 
          ( i_scan i_c11 ( work_t Worktab1 ) ) 
     ) 
) 

This example contains an aggregate in a merged view: 

create view v4



CHAPTER 30    Abstract Query Plan Guide

Performance & Tuning Guide 713

as
select max(c11) as c41, c12 as c42
from t1
group by c12
select * from t2, v4
where c21 = 0
    and c22 > c41

The first step processes the vector aggregate; the second joins it to the 
main query table:

( plan 
    ( store Worktab1 
        ( t_scan ( table t1 ( in (view v4 ) ) ) )
    ) 
    ( g_join 
        ( i_scan i_c22 t2 ) 
        ( t_scan ( work_t Worktab1 ) ) 
    ) 
) 

This example includes an aggregate that is processed using a materialized 
view: 

create view v5
as
select distinct max(c11) as c51, c12 as c52
from t1
group by c12
select * from t2, v5
where c21 = 0
    and c22 > c51

The first step processes the vector aggregate into a worktable. The second 
step scans it into a second worktable to process the materialized view. The 
third step joins this second worktable in the main query:

( plan 
    ( store Worktab1 
        ( t_scan ( table t1 ( in (view v5 ) ) ) )
    ) 
    ( store Worktab2 
        ( t_scan ( work_t Worktab1 ) ) 
    ) 
    ( g_join 
        ( i_scan i_c22 t2 ) 
        ( t_scan ( work_t Worktab2 ) ) 
    ) 



Introduction 

714  Adaptive Server Enterprise

) 

Specifying the reformatting strategy
In this query, t2 is very large, and has no index: 

select *
from t1, t2
where c11 > 0
    and c12 = c21
    and c22 = 0

The abstract plan that specifies the reformatting strategy on t2 is:

( g_join
    (t_scan t1
    (scan
        (store Worktab1
            (t_scan t2)
        )
    )
)

In the case of the reformatting strategy, the store operator is an operand of 
scan. This is the only case when the store operator is not the operand of a 
plan operator. 

OR strategy limitation
The OR strategy has no matching abstract plan that describes the RID scan 
required to perform the final step. All abstract plans generated by Adaptive 
Server for the OR strategy specify only the scan operator. You cannot use 
abstract plans to influence index choice for queries that require the OR 
strategy to eliminate duplicates.

When the store operator is not specified
Some multistep queries that require worktables do not require multistep 
plans with a separate worktable step, and the use of the store operator to 
create the worktable. These are:

• The sort step of queries using distinct



CHAPTER 30    Abstract Query Plan Guide

Performance & Tuning Guide 715

• The worktables needed for merge joins

• Worktables needed for union queries

• The sort step, when a flattened subquery requires sort to remove 
duplicates

Tips on writing abstract plans
Here are some additional tips for writing and using abstract plans:

• Look at the current plan for the query and at plans that use the same 
query execution steps as the plan you need to write. It is often easier 
to modify an existing plan than to write a full plan from scratch.

• Capture the plan for the query.

• Use sp_help_qplan to display the SQL text and plan.

• Edit this output to generate a create plan command, or attach an 
edited plan to the SQL query using the plan clause.

• It is often best to specify partial plans for query tuning in cases where 
most optimizer decisions are appropriate, but only an index choice, 
for example, needs improvement. 

By using partial plans, the optimizer can choose other paths for other 
tables as the data in other tables changes.

• Once saved, abstract plans are static. Data volumes and distributions 
may change so that saved abstract plans are no longer optimal. 

Subsequent tuning changes made by adding indexes, partitioning a 
table, or adding buffer pools may mean that some saved plans are not 
performing as well as possible under current conditions. Most of the 
time, you want to operate with a small number of abstract plans that 
solve specific problems. 

Perform periodic plan checks to verify that the saved plans are still 
better than the plan that the optimizer would choose.



Comparing plans “before” and “after” 

716  Adaptive Server Enterprise

Comparing plans “before” and “after”
Abstract query plans can be used to assess the impact of an Adaptive 
Server software upgrade or system tuning changes on your query plans. 
You need to save plans before the changes are made, perform the upgrade 
or tuning changes, and then save plans again and compare the plans. The 
basic set of steps is:

1 Enable server-wide capture mode by setting the configuration 
parameter abstract plan dump to 1. All plans are then captured in the 
default group, ap_stdout.

2 Allow enough time for the captured plans to represent most of the 
queries run on the system. You can check whether additional plans are 
being generated by checking whether the count of rows in the 
ap_stdout group in sysqueryplans is stable:

select count(*) from sysqueryplans where gid = 2

3 Copy all plans from ap_stdout to ap_stdin (or some other group, if you 
do not want to use server-wide plan load mode), using 
sp_copy_all_qplans.

4 Drop all query plans from ap_stdout, using sp_drop_all_qplans.

5 Perform the upgrade or tuning changes.

6 Allow sufficient time for plans to be captured to ap_stdout.

7 Compare plans in ap_stdout and ap_stdin, using the diff mode 
parameter of sp_cmp_all_qplans. For example, this query compares 
all plans in ap_stdout and ap_stdin:

sp_cmp_all_qplans ap_stdout, ap_stdin, diff

This displays only information about the plans that are different in the 
two groups.

Effects of enabling server-wide capture mode
When server-wide capture mode is enabled, plans for all queries that can 
be optimized are saved in all databases on the server. Some possible 
system administration impacts are:



CHAPTER 30    Abstract Query Plan Guide

Performance & Tuning Guide 717

• When plans are captured, the plan is saved in sysqueryplans and log 
records are generated. The amount of space required for the plans and 
log records depends on the size and complexity of the SQL statements 
and query plans. Check space in each database where users will be 
active. 

You may need to perform more frequent transaction log dumps, 
especially in the early stages of server-wide capture when many new 
plans are being generated.

• If users execute system procedures from the master database, and 
installmaster was loaded with server-wide plan capture enabled, then 
plans for the statements that can be optimized in system procedures 
are saved in master..sysqueryplans. 

This is also true for any user-defined procedures created while plan 
capture was enabled. You may want to provide a default database at 
login for all users, including System Administrators, if space in 
master is limited.

• The sysqueryplans table uses datarows locking to reduce lock 
contention. However, especially when a large number of new plans 
are being saved, there may be a slight impact on performance.

• While server-wide capture mode is enabled, using bcp saves query 
plans in the master database. If you perform bcp using a large number 
of tables or views, check sysqueryplans and the transaction log in 
master.

Time and space to copy plans
If you have a large number of query plans in ap_stdout, be sure there is 
sufficient space to copy them on the system segment before starting the 
copy. Use sp_spaceused to check the size of sysqueryplans, and 
sp_helpsegment to check the size of the system segment.

Copying plans also requires space in the transaction log.

sp_copy_all_qplans calls sp_copy_qplan for each plan in the group to be 
copied. If sp_copy_all_qplans fails at any time due to lack of space or other 
problems, any plans that were successfully copied remain in the target 
query plan group.



Abstract plans for stored procedures 

718  Adaptive Server Enterprise

Abstract plans for stored procedures
For abstract plans to be captured for the SQL statements that can be 
optimized in stored procedures:

• The procedures must be created while plan capture or plan association 
mode is enabled. (This saves the text of the procedure in 
sysprocedures.)

• The procedure must be executed with plan capture mode enabled, and 
the procedure must be read from disk, not from the procedure cache. 

This sequence of steps captures the query text and abstract plans for all 
statements in the procedure that can be optimized:

set plan dump dev_plans on
go
create procedure myproc as ...
go
exec myproc
go

If the procedure is in cache, so that the plans for the procedure are not 
being captured, you can execute the procedure with recompile. Similarly, 
once a stored procedure has been executed using an abstract query plan, 
the plan in the procedure cache is used so that query plan association does 
not take place unless the procedure is read from disk.

Procedures and plan ownership
When plan capture mode is enabled, abstract plans for the statements in a 
stored procedure that can be optimized are saved with the user ID of the 
owner of the procedure. 

During plan association mode, association for stored procedures is based 
on the user ID of the owner of the procedure, not the user who executes the 
procedure. This means that once an abstract query plan is created for a 
procedure, all users who have permission to execute the procedure use the 
same abstract plan.



CHAPTER 30    Abstract Query Plan Guide

Performance & Tuning Guide 719

Procedures with variable execution paths and optimization
Executing a stored procedure saves abstract plans for each statement that 
can be optimized, even if the stored procedure contains control-of-flow 
statements that can cause different statements to be run depending on 
parameters to the procedure or other conditions. If the query is run a 
second time with different parameters that use a different code path, plans 
for any statements that were optimized and saved by the earlier execution, 
and the abstract plan for the statement is associated with the query.

However, abstract plans for procedures do not solve the problem with 
procedures with statements that are optimized differently depending on 
conditions or parameters. One example is a procedure where users provide 
the low and high values for a between clause, with a query such as:

select title_id
from titles
where price between @lo and @hi

Depending on the parameters, the best plan could either be index access or 
a table scan. For these procedures, the abstract plan may specify either 
access method, depending on the parameters when the procedure was first 
executed. For more information on optimization of procedures, see 
“Splitting stored procedures to improve costing” on page 453.

Ad Hoc queries and abstract plans
Abstract plan capture saves the full text of the SQL statement and abstract 
plan association is based on the full text of the SQL query. If users submit 
ad hoc SQL statements, rather than using stored procedures or Embedded 
SQL, abstract plans are saved for each different combination of query 
clauses. This can result in a very large number of abstract plans.

If users check the price of a specific title_id using select statements, an 
abstract plan is saved for each statement. The following two queries each 
generate an abstract plan:

select price from titles where title_id = "T19245"
select price from titles where title_id = "T40007"

In addition, there is one plan for each user, that is, if several users check 
for the title_id “T40007”, a plan is save for each user ID.

If such queries are included in stored procedures, there are two benefits:



Ad Hoc queries and abstract plans 

720  Adaptive Server Enterprise

• Only only one abstract plan is saved, for example, for the query:

select price from titles where title_id = 
@title_id

• The plan is saved with the user ID of the user who owns the stored 
procedure, and abstract plan association is made based on the 
procedure owner’s ID.

Using Embedded SQL, the only abstract plan is saved with the host 
variable:

select price from titles 
where title_id = :host_var_id



Performance & Tuning Guide 721

C H A P T E R  3 1 Creating and Using Abstract 
Plans

This chapter provides an overview of the commands used to capture 
abstract plans and to associate incoming SQL queries with saved plans. 
Any user can issue session-level commands to capture and load plans 
during a session, and a System Administrator can enable server-wide 
abstract plan capture and association. This chapter also describes how to 
specify abstract plans using SQL. 

Using set commands to capture and associate plans
At the session level, any user can enable and disable capture and use of 
abstract plans with the set plan dump and set plan load commands. The set 
plan replace command determines whether existing plans are overwritten 
by changed plans.

Enabling and disabling abstract plan modes takes effect at the end of the 
batch in which the command is included (similar to showplan). Therefore, 
change the mode in a separate batch before you run your queries:

set plan dump on
go
/*queries to run*/
go

Any set plan commands used in a stored procedure do not affect the 
procedure in which they are included, but remain in effect after the 
procedure completes.

Topic Page
Using set commands to capture and associate plans 721

set plan exists check option 726

Using other set options with abstract plans 726

Server-wide abstract plan capture and association Modes 728

Creating plans using SQL 728



Using set commands to capture and associate plans 

722  Adaptive Server Enterprise

Enabling plan capture mode with set plan dump
The set plan dump command activates and deactivates the capture of 
abstract plans. You can save the plans to the default group, ap_stdout, by 
using set plan dump with no group name:

set plan dump on

To start capturing plans in a specific abstract plan group, specify the group 
name. This example sets the group dev_plans as the capture group:

set plan dump dev_plans on

The group that you specify must exist before you issue the set command. 
The system procedure sp_add_qpgroup creates abstract plan groups; only 
the System Administrator or Database Owner can create an abstract plan 
group. Once an abstract plan group exists, any user can dump plans to the 
group. See “Creating a group” on page 734 for information on creating a 
plan group.

To deactivate the capturing of plans, use:

set plan dump off

You do not need to specify a group name to end capture mode. Only one 
abstract plan group can be active for saving or matching abstract plans at 
any one time. If you are currently saving plans to a group, you must turn 
off the plan dump mode, and reenable it for the new group, as shown here:

set plan dump on /*save to the default group*/
go
/*some queries to be captured */
go
set plan dump off
go
set plan dump dev_plans on
go
/*additional queries*/
go

The use of the use database command while set plan dump is in effect 
disables plan dump mode.

Associating queries with stored plans
The set plan load command activates and deactivates the association of 
queries with stored abstract plans.



CHAPTER 31    Creating and Using Abstract Plans

Performance & Tuning Guide 723

To start the association mode using the default group, ap_stdin, use the 
command:

set plan load on

To enable association mode using another abstract plan group, specify the 
group name: 

set plan load test_plans on

Only one abstract plan group can be active for plan association at one time. 
If plan association is active for a group, you must deactivate the current 
group and start association for the new group, as shown here:

set plan load test_plans on
go
/*some queries*/
go
set plan load off
go
set plan load dev_plans on
go

The use of the use database command while set plan load is in effect 
disables plan load mode.

Using replace mode during plan capture
While plan capture mode is active, you can choose whether to have plans 
for the same query replace existing plans by enabling or disabling set plan 
replace. This command activates plan replacement mode:

set plan replace on

You do not specify a group name with set plan replace; it affects the current 
active capture group.

To disable plan replacement:

set plan replace off

The use of the use database command while set plan replace is in effect 
disables plan replace mode.



Using set commands to capture and associate plans 

724  Adaptive Server Enterprise

When to use replace mode

When you are capturing plans, and a query has the same query text as an 
already-saved plan, the existing plan is not replaced unless replace mode 
is enabled. If you have captured abstract plans for specific queries, and you 
are making physical changes to the database that affect optimizer choices, 
you need to replace existing plans for these changes to be saved.

Some actions that might require plan replacement are:

• Adding or dropping indexes, or changing the keys or key ordering in 
indexes

• Changing the partitioning on a table

• Adding or removing buffer pools

• Changing configuration parameters that affect query plans

For plans to be replaced, plan load mode should not be enabled in most 
cases. When plan association is active, any plan specifications are used as 
inputs to the optimizer. For example, if a full query plan includes the 
prefetch property and an I/O size of 2K, and you have created a 16K pool 
and want to replace the prefetch specification in the plan, do not enable 
plan load mode. 

You may want to check query plans and replace some abstract plans as 
data distribution changes in tables, or after rebuilds on indexes, updating 
statistics, or changing the locking scheme.

Using dump, load, and replace modes simultaneously
You can have both plan dump and plan load mode active simultaneously, 
with or without replace mode active.

Using dump and load to the same group

If you have enabled dump and load to the same group, without replace 
mode enabled:

• If a valid plan exists for the query, it is loaded and used to optimize 
the query.

• If a plan exists that is not valid (say, because an index has been 
dropped) a new plan is generated and used to optimize the query, but 
is not saved.



CHAPTER 31    Creating and Using Abstract Plans

Performance & Tuning Guide 725

• If the plan is a partial plan, a full plan is generated, but the existing 
partial plan is not replaced

• If a plan does not exist for the query, a plan is generated and saved.

With replace mode also enabled:

• If a valid plan exists for the query, it is loaded and used to optimize 
the query.

• If the plan is not valid, a new plan is generated and used to optimize 
the query, and the old plan is replaced.

• If the plan is a partial plan, a complete plan is generated and used, and 
the existing partial plan is replaced. The specifications in the partial 
plan are used as input to the optimizer.

• If a plan does not exist for the query, a plan is generated and saved.

Using dump and load to different groups

If you have dump enabled to one group, and load enabled from another 
group, without replace mode enabled:

• If a valid plan exists for the query in the load group, it is loaded and 
used. The plan is saved in the dump group, unless a plan for the query 
already exists in the dump group.

• If the plan in the load group is not valid, a new plan is generated. The 
new plan is saved in the dump group, unless a plan for the query 
already exists in the dump group.

• If the plan in the load group is a partial plan, a full plan is generated 
and saved in the dump group, unless a plan already exists. The 
specifications in the partial plan are used as input to the optimizer.

• If there is no plan for the query in the load group, the plan is generated 
and saved in the dump group, unless a plan for the query exists in the 
dump group.

With replace mode active:

• If a valid plan exists for the query in the load group, it is loaded and 
used. 

• If the plan in the load group is not valid, a new plan is generated and 
used to optimize the query. The new plan is saved in the dump group.



set plan exists check option 

726  Adaptive Server Enterprise

• If the plan in the load group is a partial plan, a full plan is generated 
and saved in the dump group. The specifications in the partial plan are 
used as input to the optimizer.

• If a plan does not exist for the query in the load group, a new plan is 
generated. The new plan is saved in the dump group.

set plan exists check option
The exists check mode can be used during query plan association to speed 
performance when users require abstract plans for fewer than 20 queries 
from an abstract plan group. If a small number of queries require plans to 
improve their optimization, enabling exists check mode speeds execution 
of all queries that do not have abstract plans, because they do not check for 
plans in sysqueryplans. 

When set plan load and set exists check are both enabled, the hash keys for 
up to 20 queries in the load group are cached for the user. If the load group 
contains more than 20 queries, exists check mode is disabled. Each 
incoming query is hashed; if its hash key is not stored in the abstract plan 
cache, then there is no plan for the query and no search is made. This 
speeds the compilation of all queries that do not have saved plans.

The syntax is: 

set plan exists check {on | off}

You must enable load mode before you enable plan hash-key caching.

A System Administrator can configure server-wide plan hash-key caching 
with the configuration parameter abstract plan cache. To enable server-
wide plan caching, use:

sp_configure "abstract plan cache", 1

Using other set options with abstract plans
You can combine other set tuning options with set plan dump and set plan 
load.



CHAPTER 31    Creating and Using Abstract Plans

Performance & Tuning Guide 727

Using showplan
When showplan is turned on, and abstract plan association mode has been 
enabled with set plan load, showplan prints the plan ID of the matching 
abstract plan at the beginning of the showplan output for the statement:

QUERY PLAN FOR STATEMENT 1 (at line 1).
Optimized using an Abstract Plan (ID : 832005995).

If you run queries using the plan clause added to a SQL statement, 
showplan displays:

Optimized using the Abstract Plan in the PLAN clause.

Using noexec
You can use noexec mode to capture abstract plans without actually 
executing the queries. If noexec mode is in effect, queries are optimized 
and abstract plans are saved, but no query results are returned.

To use noexec mode while capturing abstract plans, execute any needed 
procedures (such as sp_add_qpgroup) and other set options (such as set 
plan dump) before enabling noexec mode. The following example shows a 
typical set of steps:

sp_add_qpgroup pubs_dev
go
set plan dump pubs_dev on
go
set noexec on
go
select type, sum(price) from titles group by type
go

Using forceplan
If set forceplan on is in effect, and query association is also enabled for the 
session, forceplan is ignored if a full abstract plan is used to optimize the 
query. If a partial plan does not completely specify the join order:

• First, the tables in the abstract plan are ordered, as specified.

• The remaining tables are ordered as specified in the from clause.

• The two lists of tables are merged.



Server-wide abstract plan capture and association Modes 

728  Adaptive Server Enterprise

Server-wide abstract plan capture and association 
Modes

A System Administrator can enable server-wide plan capture, association, 
and replacement modes with these configuration parameters: 

• abstract plan dump – enables dumping to the default abstract plans 
capture group, ap_stdout.

• abstract plan load – enables loading from the default abstract plans 
loading group, ap_stdin.

• abstract plan replace – when plan dump mode is also enabled, enables 
plan replacement.

• abstract plan cache – enables caching of abstract plan hash IDs; 
abstract plan load must also be enabled. See “set plan exists check 
option” on page 726 for more information.

By default, these configuration parameters are set to 0, which means that 
capture and association modes are off. To enable a mode, set the 
configuration value to 1:

sp_configure "abstract plan dump", 1

Enabling any of the server-wide abstract plan modes is dynamic; you do 
not have to reboot the server.

Server-wide capture and association allows the System Administrator to 
capture all plans for all users on a server. You cannot override he server-
wide modes at the session level.

Creating plans using SQL
You can directly specify the abstract plan for a query by:

• Using the create plan command

• Adding the plan clause to select, insert...select, update, delete and 
return commands, and to if and while clauses

For information on writing plans, see Chapter 30, “Abstract Query Plan 
Guide.”



CHAPTER 31    Creating and Using Abstract Plans

Performance & Tuning Guide 729

Using create plan
The create plan command specifies the text of a query, and the abstract 
plan to save for the query. 

This example creates an abstract plan:

create plan
    "select avg(price) from titles"
"( plan 
    ( i_scan type_price_ix titles ) 
    ( )
)"

The plan is saved in the current active plan group. You can also specify the 
group name:

create plan
    "select avg(price) from titles"
"( plan 
    ( i_scan type_price_ix titles ) 
    ( )
)"
into dev_plans

If a plan already exists for the specified query in the current plan group, or 
the plan group that you specify, you must first enable replace mode in 
order to overwrite the existing plan.

If you want to see the plan ID that is used for a plan you create, create plan 
can return the ID as a variable. You must declare the variable first. This 
example returns the plan ID:

declare @id int
create plan
    "select avg(price) from titles"
"( plan 
    ( i_scan type_price_ix titles ) 
    ( )
)"
into dev_plans
and set @id
select @id

When you use create plan, the query in the plan is not executed. This 
means that:

• The text of the query is not parsed, so the query is not checked for 
valid SQL syntax.



Creating plans using SQL 

730  Adaptive Server Enterprise

• The plans are not checked for valid abstract plan syntax.

• The plans are not checked to determine whether they are compatible 
with the SQL text.

To guard against errors and problems, you should immediately execute the 
specified query with showplan enabled.

Using the plan Clause
You can use the plan clause with the following SQL statements to specify 
the plan to use to execute the query:

• select 

• insert...select 

• delete 

• update 

• if 

• while 

• return 

This example specifies the plan to use to execute the query:

select avg(price) from titles
     plan
" ( plan
    ( i_scan type_price_ix titles )
    ( )
)"

When you specify an abstract plan for a query, the query is executed using 
the specified plan. If you have showplan enabled, this message is printed:

Optimized using the Abstract Plan in the PLAN clause.

When you use the plan clause with a query, any errors in the SQL text, the 
plan syntax, and any mismatches between the plan and the SQL text are 
reported as errors. For example, this plan omits the empty parentheses that 
specify the step of returning the aggregate:

/* step missing! */
select avg(price) from titles
     plan
" ( plan 



CHAPTER 31    Creating and Using Abstract Plans

Performance & Tuning Guide 731

    ( i_scan type_price titles )
)"

It returns the following message:

Msg 1005, Level 16, State 1:
Server ‘smj’, Line 2:
Abstract Plan (AP) : The number of operands of the PLAN operator 
in the AP differs from the number of steps needed to compute the 
query. The extra items will be ignored. Check the AP syntax and 
its correspondence to the query.

Plans specified with the plan clause are saved in sysqueryplans only if plan 
capture is enabled. If a plan for the query already exists in the current 
capture group, you must enable replace mode in order to replace an 
existing plan.



Creating plans using SQL 

732  Adaptive Server Enterprise



Performance & Tuning Guide 733

C H A P T E R  3 2 Managing Abstract Plans with 
System Procedures

This chapter provides an introduction to the basic functionality and use of 
the system procedures for working with abstract plans. For detailed 
information on each procedure, see the Adaptive Server Reference 
Manual.

System procedures for managing abstract plans
The system procedures for managing abstract plans work on individual 
plans or on abstract plan groups. 

• Managing an abstract plan group

• sp_add_qpgroup

• sp_drop_qpgroup

• sp_help_qpgroup

• sp_rename_qpgroup

• Finding abstract plans

• sp_find_qplan 

• Managing individual abstract plans

• sp_help_qplan

Topic Page
System procedures for managing abstract plans 733

Managing an abstract plan group 734

Finding abstract plans 738

Managing individual abstract plans 739

Managing all plans in a group 742

Importing and exporting groups of plans 746



Managing an abstract plan group 

734  Adaptive Server Enterprise

• sp_copy_qplan

• sp_drop_qplan

• sp_cmp_qplans

• sp_set_qplan

• Managing all plans in a group

• sp_copy_all_qplans

• sp_cmp_all_qplans

• sp_drop_all_qplans

• Importing and exporting groups of plans

• sp_export_qpgroup 

• sp_import_qpgroup 

Managing an abstract plan group
You can use system procedures to create, drop, rename, and provide 
information about an abstract plan group.

Creating a group
sp_add_qpgroup creates and names an abstract plan group. Unless you are 
using the default capture group, ap_stdout, you must create a plan group 
before you can begin capturing plans. For example, to start saving plans in 
a group called dev_plans, you must create the group, then issue the set plan 
dump command, specifying the group name:

sp_add_qpgroup dev_plans
set plan dump dev_plans on
/*SQL queries to capture*/

Only a System Administrator or Database Owner can add abstract plan 
groups. Once a group is created, any user can dump or load plans from the 
group. 



CHAPTER 32    Managing Abstract Plans with System Procedures

Performance & Tuning Guide 735

Dropping a group
sp_drop_qpgroup drops an abstract plan group. 

The following restrictions apply to sp_drop_qpgroup:

• Only a System Administrator or Database Owner can drop abstract 
plan groups.

• You cannot drop a group that contains plans. To remove all plans from 
a group, use sp_drop_all_qplans, specifying the group name. 

• You cannot drop the default abstract plan groups ap_stdin and 
ap_stdout.

This command drops the dev_plans plan group:

sp_drop_qpgroup dev_plans

Getting information about a group
sp_help_qpgroup prints information about an abstract plan group, or about 
all abstract plan groups in a database.

When you use sp_help_qpgroup without a group name, it prints the names 
of all abstract plan groups, the group IDs, and the number of plans in each 
group:

sp_help_qpgroup
Query plan groups in database ‘pubtune’
 Group                          GID         Plans       
 ------------------------------ ----------- ----------- 
 ap_stdin                                 1           0 
 ap_stdout                                2           2 
 p_prod                                   4           0 
 priv_test                                8           1 
 ptest                                    3          51 
 ptest2                                   7         189

When you use sp_help_qpgroup with a group name, the report provides 
statistics about plans in the specified group. This example reports on the 
group ptest2:

sp_help_qpgroup ptest2
Query plans group ’ptest2’, GID 7
 
 Total Rows  Total QueryPlans 



Managing an abstract plan group 

736  Adaptive Server Enterprise

 ----------- ---------------- 
         452              189 
sysqueryplans rows consumption, number of query 
plans per row count
 Rows        Plans       
 ----------- ----------- 
           5           2 
           3          68 
           2         119 
Query plans that use the most sysqueryplans rows
 Rows        Plan        
 ----------- ----------- 
           5  1932533918 
           5  1964534032 
 Hashkeys    
 ----------- 
         123 
There is no hash key collision in this group.

When reporting on an individual group, sp_help_qpgroup reports:

• The total number of abstract plans, and the total number of rows in the 
sysqueryplans table.

• The number of plans that have multiple rows in sysqueryplans. They 
are listed in descending order, starting with the plans with the largest 
number of rows.

• Information about the number of hash keys and hash-key collisions. 
Abstract plans are associated with queries by a hashing algorithm 
over the entire query.

When a System Administrator or the Database Owner executes 
sp_help_qpgroup, the procedure reports on all of the plans in the database 
or in the specified group. When any other user executes sp_help_qpgroup, 
it reports only on plans that he or she owns.

sp_help_qpgroup provides several report modes. The report modes are:

Mode Information returned

full The number of rows and number of plans in the group, the number of 
plans that use two or more rows, the number of rows and plan IDs for 
the longest plans, and number of hash keys, and has- key collision 
information. This is the default report mode.

stats All of the information from the full report, except hash-key 
information.



CHAPTER 32    Managing Abstract Plans with System Procedures

Performance & Tuning Guide 737

This example shows the output for the counts mode:

sp_help_qpgroup ptest1, counts
Query plans group ’ptest1’, GID 3

 Total Rows  Total QueryPlans 
 ----------- ---------------- 
          48               19 
 
Query plans in this group

Rows  Chars     hashkey     id          query                                 
----- --------- ----------- ----------- ---------------------------- 
    3      623  1801454852   876530156 select title from titles ... 
    3      576   476063777   700529529 select au_lname, au_fname... 
    3      513   444226348   652529358 select au1.au_lname, au1.... 
    3      470   792078608   716529586 select au_lname, au_fname... 
    3      430   789259291   684529472 select au1.au_lname, au1.... 
    3      425  1929666826   668529415 select au_lname, au_fname... 
    3      421   169283426   860530099 select title from titles ... 
    3      382   571605257   524528902 select pub_name from publ... 
    3      355   845230887   764529757 delete salesdetail where ... 
    3      347   846937663   796529871 delete salesdetail where ... 
    2      379  1400470361   732529643 update titles set price =... 

hash The number of rows and number of abstract plans in the group, the 
number of hash keys, and hash-key collision information.

list The number of rows and number of abstract plans in the group, and 
the following information for each query/plan pair: hash key, plan ID, 
first few characters of the query, and the first few characters of the 
plan.

queries The number of rows and number of abstract plans in the group, and 
the following information for each query: hash key, plan ID, first few 
characters of the query.

plans The number of rows and number of abstract plans in the group, and 
the following information for each plan: hash key, plan ID, first few 
characters of the plan.

counts The number of rows and number of abstract plans in the group, and 
the following information for each plan: number of rows, number of 
characters, hash key, plan ID, first few characters of the query.

Mode Information returned



Finding abstract plans 

738  Adaptive Server Enterprise

Renaming a group
A System Administrator or Database Owner can rename an abstract plan 
group with sp_rename_qpgroup. This example changes the name of the 
group from dev_plans to prod_plans:

sp_rename_qpgroup dev_plans, prod_plans

The new group name cannot be the name of an existing group.

Finding abstract plans
sp_find_qplan searches both the query text and the plan text to find plans 
that match a given pattern.

This example finds all plans where the query includes the string “from 
titles”:

sp_find_qplan "%from titles%"

This example searches for all abstract plans that perform a table scan:

sp_find_qplan "%t_scan%"

When a System Administrator or Database Owner executes sp_find_qplan, 
the procedure examines and reports on plans owned by all users. When 
other users execute the procedure, it searches and reports on only plans 
that they own.

If you want to search just one abstract plan group, specify the group name 
with sp_find_qplan. This example searches only the test_plans group, 
finding all plans that use a particular index:

sp_find_qplan "%i_scan title_id_ix%", test_plans

For each matching plan, sp_find_qplan prints the group ID, plan ID, query 
text, and abstract plan text.



CHAPTER 32    Managing Abstract Plans with System Procedures

Performance & Tuning Guide 739

Managing individual abstract plans
You can use system procedures to print the query and text of individual 
plans, to copy, drop, or compare individual plans, or to change the plan 
associated with a particular query.

Viewing a plan
sp_help_qplan reports on individual abstract plans. It provides three types 
of reports that you can specify: brief, full, and list. The brief report prints 
only the first 78 characters of the query and plan; use full to see the entire 
query and plan, or list to display only the first 20 characters of the query 
and plan.

This example prints the default brief report:

sp_help_qplan 588529130
 gid         hashkey     id          
 ----------- ----------- ----------- 
           8  1460604254   588529130 
 query                                                                          
 --------------------------------------------------------------- 
 select min(price) from titles                                                  
 plan                                                                           
--------------------------------------------------------------- 
 ( plan 
    ( i_scan type_price titles ) 
    ( ) 
) 
( prop titles 
    ( parallel ... 

A System Administrator or Database Owner can use sp_help_qplan to 
report on any plan in the database. Other users can only view the plans that 
they own.

sp_help_qpgroup reports on all plans in a group. For more information see 
“Getting information about a group” on page 735.



Managing individual abstract plans 

740  Adaptive Server Enterprise

Copying a plan to another group
sp_copy_qplan copies an abstract plan from one group to another existing 
group. This example copies the plan with plan ID 316528161 from its 
current group to the prod_plans group:

sp_copy_qplan 316528161, prod_plans

sp_copy_qplan checks to make sure that the query does not already exist 
in the destination group. If a possible conflict exists, it runs 
sp_cmp_qplans to check plans in the destination group. In addition to the 
message printed by sp_cmp_qplans, sp_copy_qplan prints messages when:

• The query and plan you are trying to copy already exists in the 
destination group

• Another plan in the group has the same user ID and hash key

• Another plan in the group has the same hash key, but the queries are 
different

If there is a hash-key collision, the plan is copied. If the plan already exists 
in the destination group or if it would give an association key collision, the 
plan is not copied. The messages printed by sp_copy_qplan contain the 
plan ID of the plan in the destination group, so you can use sp_help_qplan 
to check the query and plan.

A System Administrator or the Database Owner can copy any abstract 
plan. Other users can copy only plans that they own. The original plan and 
group are not affected by sp_copy_qplan. The copied plan is assigned a 
new plan ID, the ID of the destination group, and the user ID of the user 
who ran the query that generated the plan.

Dropping an individual abstract plan
sp_drop_qplan drops individual abstract plans. This example drops the 
specified plan:

sp_drop_qplan 588529130

A System Administrator or Database Owner can drop any abstract plan in 
the database. Other users can drop only plans that they own.

To find abstract plan IDs, use sp_find_qplan to search for plans using a 
pattern from the query or plan, or sp_help_qpgroup to list the plans in a 
group.



CHAPTER 32    Managing Abstract Plans with System Procedures

Performance & Tuning Guide 741

Comparing two abstract plans
Given two plan IDs, sp_cmp_qplans compares two abstract plans and the 
associated queries. For example:

sp_cmp_qplans 588529130, 1932533918

sp_cmp_qplans prints one message reporting the comparison of the query, 
and a second message about the plan, as follows:

• For the two queries, one of:

• The queries are the same. 

• The queries are different. 

• The queries are different but have the same hash key. 

• For the plans:

• The query plans are the same. 

• The query plans are different. 

This example compares two plans where the queries and plans both match:

sp_cmp_qplans 411252620, 1383780087
The queries are the same.
The query plans are the same.

This example compares two plans where the queries match, but the plans 
are different:

sp_cmp_qplans 2091258605, 647777465
The queries are the same.
The query plans are different.

sp_cmp_qplans returns a status value showing the results of the 
comparison. The status values are shown in Table 32-1

Table 32-1: Return status values for sp_cmp_qplans

A System Administrator or Database Owner can compare any two abstract 
plans in the database. Other users can compare only plans that they own.

Return value Meaning

0 The query text and abstract plans are the same.

+1 The queries and hash keys are different.

+2 The queries are different, but the hash keys are the same.

+10 The abstract plans are different.

100 One or both of the plan IDs does not exist.



Managing all plans in a group 

742  Adaptive Server Enterprise

Changing an existing plan
sp_set_qplan changes the abstract plan for an existing plan ID without 
changing the ID or the query text. It can be used only when the plan text 
is 255 or fewer characters.

sp_set_qplan 588529130, "( i_scan title_ix titles)"

A System Administrator or Database Owner can change the abstract plan 
for any saved query. Other users can modify only plans that they own.

When you execute sp_set_qplan, the abstract plan is not checked against 
the query text to determine whether the new plan is valid for the query, or 
whether the tables and indexes exist. To test the validity of the plan, 
execute the associated query.

You can also use create plan and the plan clause to specify the abstract plan 
for a query. See “Creating plans using SQL” on page 728.

Managing all plans in a group
These system procedures help manage groups of plans:

• sp_copy_all_qplans 

• sp_cmp_all_qplans 

• sp_drop_all_qplans 

Copying all plans in a group
sp_copy_all_qplans copies all of the plans in one abstract plan group to 
another group. This example copies all of the plans from the test_plans 
group to the helpful_plans group:

sp_copy_all_qplans test_plans, helpful_plans

The helpful_plans group must exist before you execute sp_copy_all_qplans. 
It can contain other plans.

sp_copy_all_qplans copies each plan in the group by executing 
sp_copy_qplan, so copying a plan may fail for the same reasons that 
sp_copy_qplan might fail. See “Comparing two abstract plans” on page 
741.



CHAPTER 32    Managing Abstract Plans with System Procedures

Performance & Tuning Guide 743

Each plan is copied as a separate transaction, and failure to copy any single 
plan does not cause sp_copy_all_qplans to fail. If sp_copy_all_qplans fails 
for any reason, and has to be restarted, you see a set of messages for the 
plans that have already been successfully copied, telling you that they exist 
in the destination group.

A new plan ID is assigned to each copied plan. The copied plans have the 
original user’s ID. To copy abstract plans and assign new user IDs, you 
must use sp_export_qpgroup and sp_import_qpgroup. See “Importing and 
exporting groups of plans” on page 746.

A System Administrator or Database Owner can copy all plans in the 
database. Other users can copy only plans that they own.

Comparing all plans in a group
sp_cmp_all_qplans compares all abstract plans in two groups and reports:

• The number of plans that are the same in both groups

• The number of plans that have the same association key, but different 
abstract plans

• The number of plans that are present in one group, but not the other

This example compares the plans in ap_stdout and ap_stdin:

sp_cmp_all_qplans ap_stdout, ap_stdin
If the two query plans groups are large, this might take some 
time.
Query plans that are the same
 count
 -----------
         338
Different query plans that have the same association key

 count
 -----------
          25
Query plans present only in group ’ap_stdout’ :

 count
 -----------
           0
Query plans present only in group ’ap_stdin’ :



Managing all plans in a group 

744  Adaptive Server Enterprise

 count
 -----------
           1

With the additional specification of a report-mode parameter, 
sp_cmp_all_qplans provides detailed information, including the IDs, 
queries, and abstract plans of the queries in the groups. The mode 
parameter lets you get the detailed information for all plans, or just those 
with specific types of differences.Table 32-2 shows the report modes and 
what type of information is reported for each mode.

Table 32-2: Report modes for sp_cmp_all_qplans

This example shows the brief report mode:

sp_cmp_all_qplans ptest1, ptest2, brief
If the two query plans groups are large, this might take 
some time.
Query plans that are the same
 count       
 ----------- 
          39 
Different query plans that have the same association key

Mode Reported information

counts The counts of: plans that are the same, plans that have the same 
association key, but different groups, and plans that exist in one 
group, but not the other. This is the default report mode.

brief The information provided by counts, plus the IDs of the abstract 
plans in each group where the plans are different, but the 
association key is the same, and the IDs of plans that are in one 
group, but not in the other.

same All counts, plus the IDs, queries, and plans for all abstract plans 
where the queries and plans match.

diff All counts, plus the IDs, queries, and plans for all abstract plans 
where the queries and plans are different.

first All counts, plus the IDs, queries, and plans for all abstract plans 
that are in the first plan group, but not in the second plan group.

second All counts, plus the IDs, queries, and plans for all abstract plans 
that are in the second plan group, but not in the first plan group.

offending All counts, plus the IDs, queries, and plans for all abstract plans 
that have different association keys or that do not exist in both 
groups. This is the combination of the diff, first, and second 
modes.

full All counts, plus the IDs, queries, and plans for all abstract plans. 
This is the combination of same and offending modes.



CHAPTER 32    Managing Abstract Plans with System Procedures

Performance & Tuning Guide 745

 count       
 ----------- 
           4 
 
    ptest1    ptest2

 id1         id2         
 ----------- ----------- 
   764529757  1580532664 
   780529814  1596532721 
   796529871  1612532778 
   908530270  1724533177 
Query plans present only in group ’ptest1’ :

 count       
 ----------- 
           3 
 

 id          
 ----------- 
   524528902 
  1292531638 
  1308531695 
 
Query plans present only in group ’ptest2’ :

 count       
 ----------- 
           1 
 

 id          
 ----------- 
  2108534545 

Dropping all abstract plans in a group
sp_drop_all_qplans drops all abstract plans in a group. This example drops 
all abstract plans in the dev_plans group:

sp_drop_all_qplans dev_plans



Importing and exporting groups of plans 

746  Adaptive Server Enterprise

When a System Administrator or the Database Owner executes 
sp_drop_all_qplans, all plans belonging to all users are dropped from the 
specified group. When another user executes this procedure, it affects only 
the plans owned by that users. 

Importing and exporting groups of plans
sp_export_qpgroup and sp_import_qpgroup copy groups of plans between 
sysqueryplans and a user table. This allows a System Administrator or 
Database Owner to:

• Copy abstract plans from one database to another on the same server

• Create a table that can be copied out of the current server with bcp, 
and copied into another server

• Assign different user IDs to existing plans in the same database

Exporting plans to a user table
sp_export_qpgroup copies all plans for a specific user from an abstract plan 
group to a user table. This example copies plans owned by the Database 
Owner (dbo) from the fast_plans group, creating a table called transfer:

sp_export_qpgroup dbo, fast_plans, transfer

sp_export_qpgroup uses select...into to create a table with the same 
columns and datatypes as sysqueryplans. If you do not have the 
select into/bulkcopy/pllsort option enabled in the database, you can specify 
the name of another database. This command creates the export table in 
tempdb:

sp_export_qpgroup mary, ap_stdout, "tempdb..mplans"

The table can be copied out using bcp, and copied into a table on another 
server. The plans can also be imported to sysqueryplans in another 
database on the same server, or the plans can be imported into 
sysqueryplans in the same database, with a different group name or user 
ID.



CHAPTER 32    Managing Abstract Plans with System Procedures

Performance & Tuning Guide 747

Importing plans from a user table
sp_import_qpgroup copies plans from tables created by sp_export_qpgroup 
into a group in sysqueryplans. This example copies the plans from the table 
tempdb..mplans into ap_stdin, assigning the user ID for the Database 
Owner:

sp_import_qpgroup "tempdb..mplans", dbo, ap_stdin

You cannot copy plans into a group that already contains plans for the 
specified user.



Importing and exporting groups of plans 

748  Adaptive Server Enterprise



Performance & Tuning Guide 749

C H A P T E R  3 3 Abstract Plan Language 
Reference

This chapter describes the operators and other language elements in the 
abstract plan language.

Keywords
The following words are keywords in the abstract query plan language. 
They are not reserved words, and do not conflict with the names of tables 
or indexes used in abstract plans. For example, a table or index may be 
named hints.

Operands
The following operands are used in the abstract plan syntax statements:

Topic Page
Keywords 749

Operands 749

Schema for examples 750



Schema for examples 

750  Adaptive Server Enterprise

Table 33-1: Identifiers used

table_name and view_name can be specified using the notation 
database.owner.object_name. 

Derived tables
A derived table is a result of access to a stored table during query 
execution. It can be:

• The result set generated by the query

• An intermediate result during query execution; that is, the result of the 
join of the first two tables in the join order, which is then   joined with 
a third table

Derived tables result from one of the scan operators that specify the access 
method: scan, i_scan, or t_scan, for example, (i_scan title_id_ix titles).

Schema for examples
To simplify the sample abstract plan examples, the following tables are 
used in this section:

create table t1 (c11 int, c12 int)
create table t2 (c21 int, c22 int)
create table t3 (c31 int, c32 int)

The following indexes are used:

create index i_c11 on t1(c11)

Identifier Describes

table_name The name of a base table, that is, a user or system table

correlation_name The correlation name specified for a table in a query

derived_table A table that results from the scan of a stored table

stored_table A base table or a worktable

worktable_name The name of a worktable

view_name The name of a view

index_name The name of an index

subquery_id An integer identifying the order of the subqueries in the 
query



CHAPTER 33    Abstract Plan Language Reference

Performance & Tuning Guide 751

create index i_c12 on t1(c12)
create index i_c11_c12 on t1(c11, c12)
create index i_c21 on t2(c21)
create index i_c22 on t2(c22)
create index i_c31 on t3(c31)
create index i_c32 on t3(c32)

g_join
Description Specifies the join of two or more derived tables without specifying the join 

type (nested-loop or sort-merge).

Syntax ( g_join derived_table1 derived_table2
)

( g_join ( derived_table1 )
( derived_table2 )
...

( derived_tableN )
)

Parameters derived_table1...derived_tableN
are the derived tables to be united.

Return value A derived table that is the join of the specified derived tables.

Examples Example 1 

select *
from t1, t2
where c21 = 0
and c22 = c12

 

( g_join
    ( i_scan i_c21 t2 )
    ( i_scan i_c12 t1 )
)

Table t2 is the outer table, and t1 the inner table in the join order.

Example 2  

select *
from t1, t2, t3
where c21 = 0
and c22 = c12



g_join 

752  Adaptive Server Enterprise

and c11 = c31

 

( g_join
    ( i_scan i_c21 t2 )
    ( i_scan i_c12 t1 )
    ( i_scan i_c31 t3 )
)

Table t2 is joined with t1, and the derived table is joined with t3.

Usage • The g_join operator is a generic logical operator that describes all 
binary joins (inner join, outer join, or existence join).

• The g_join operator is never used in generated plans; nl_g_join and 
m_g_join operators indicate the join type used.

• The optimizer chooses between a nested-loop join and a sort-merge 
join when the g_join operator is used. To specify a sort-merge join, use 
m_g_join. To specify a nested-loop join, use nl_g_join.

• The syntax provides a shorthand method of described a join involving 
multiple tables. This syntax:

( g_join
        ( scan t1)
        ( scan t2)
        ( scan t3)
        ...
        ( scan tN-1)
        ( scan tN)
)

is shorthand for:

( g_join
        ( g_join
                ...
                    ( g_join
                            (g_join
                                    ( scan t1)
                                    ( scan t2)
                            )
                            ( scan t3)
                    )
                ...
                ( scan tN-1)
        )
        ( scan tN)



CHAPTER 33    Abstract Plan Language Reference

Performance & Tuning Guide 753

)

• If g_join is used to specify the join order for some, but not all, of the 
tables in a query, the optimizer uses the join order specified, but may 
insert other tables between the g_join operands. For example, for this 
query:

select *
    from t1, t2, t3
    where ...

the following partial abstract plan describes only the join order of t1 
and t2:

( g_join
        ( scan t2)
        ( scan t1)
)

The optimizer can choose any of the three join orders: t3-t2-t1, t2-t3-
t1 or t2-t1-t3.

• The tables are joined in the order specified in the g_join clause.

• If set forceplan on is in effect, and query association is also enabled for 
the session, forceplan is ignored if a full abstract plan is used to 
optimize the query. If a partial plan does not completely specify the 
join order:

• First, the tables in the abstract plan are ordered as specified.

• The remaining tables are ordered as specified in the from clause.

• The two lists of tables are merged.

See also m_g_join, nl_g_join

hints
Description Introduces and groups items in a partial abstract plan.

Syntax ( hints ( derived_table ) 
     ...
)

Parameters derived_table
is one or more expressions that generate a derived table.



i_scan 

754  Adaptive Server Enterprise

Return value A derived table.

Examples select * 
from t1, t2
where c12 = c21
        and c11 > 0
        and c22 < 1000

 

( hints
    ( g_join 
        ( t_scan t2 )
        ( i_scan () t1 )
    )
)

Specifies a partial plan, including a table scan on t2, the use of some index 
on t1, and the join order t1-t2. The index choice for t1 and the type of join 
(nested-loop or sort-merge) is left to the optimizer.

Usage • The specified hints are used during query optimization.

• The hints operator appears as the root of a partial abstract plan that 
includes multiple steps. If a partial plan contains only one expression, 
hints is optional.

• The hints operator does not appear in plans generated by the 
optimizer; these are always full plans.

• Hints can be associated with queries:

• By changing the plan for an existing query with sp_set_qplan.

• By specifying the plan for a query with the plan clause. To save 
the query and hints, set plan dump must be enabled.

• By using the create plan command.

• When hints are specified in the plan clause for a SQL statement, the 
plans are checked to be sure they are valid. When hints are specified 
using sp_set_qplan, plans are not checked before being saved.

i_scan
Description Specifies an index scan of a base table.



CHAPTER 33    Abstract Plan Language Reference

Performance & Tuning Guide 755

Syntax ( i_scan index_name base_table )

( i_scan () base_table )

Parameters index_name
is the name or index ID of the index to use for an index scan of the 
specified stored table. Use of empty parentheses specify that an index 
scan (rather than table scan) is to be performed, but leaves the choice of 
index to the optimizer.

base_table
is the name of the base table to be scanned.

Return value A derived table produced by a scan of the base table.

Examples Example 1 

select * from t1 where c11 = 0

 

( i_scan i_c11 t1 )

Specifies the use of index i_c11 for a scan of t1.

Example 2  

select *
    from t1, t2
    where c11 = 0
        and c22 = 1000
        and c12 = c21

 

( g_join
        ( scan t2 )
        ( i_scan () t1 )
)

Specifies a partial plan, indicating the join order, but allowing the 
optimizer to choose the access method for t2, and the index for t1.

select * from t1 where c12 = 0

 

( i_scan 2 t1 )

Identifies the index on t1 by index ID, rather than by name. 

Usage • The index is used to scan the table, or, if no index is specified, an 
index is used rather than a table scan.



in 

756  Adaptive Server Enterprise

• Use of empty parentheses after the i_scan operator allows the 
optimizer to choose the index or to perform a table scan if no index 
exists on the table.

• When the i_scan operator is specified, a covering index scan is always 
performed when all of the required columns are included in the index. 
No abstract plan specification is needed to describe a covering index 
scan.

• Use of the i_scan operator suppresses the choice of the reformatting 
strategy and the OR strategy, even if the specified index does not 
exist. The optimizer chooses another useful index and an advisory 
message is printed. If no index is specified for i_scan, or if no indexes 
exist, a table scan is performed, and an advisory message is printed.

• Although specifying an index using the index ID is valid in abstract 
query plans, using an index ID is not recommended. If indexes are 
dropped and re-created in a different order, plans become invalid or 
perform suboptimally. 

See also scan, t_scan

in
Description Identifies the location of a table that is specified in a subquery or view.

Syntax ( in ( [ subq subquery_id | view view_name ] )
)

Parameters subq subquery_id
is an integer identifying a subquery. In abstract plans, subquery 
numbering is based on the order of the leading open parentheses for the 
subqueries in a query.

view view_name
is the name of a view. The specification of database and owner name in 
the abstract plan must match the usage in the query in order for plan 
association to be performed.

Examples Example 1 

create view v1 as 
select * from t1

select * from v1



CHAPTER 33    Abstract Plan Language Reference

Performance & Tuning Guide 757

 

( t_scan ( table t1 ( in ( view v1 ) ) ) )

Identifies the view in which table t1 is used.

Example 2  

select * 
from t2 
where c21 
in (select c12 from t1)

 

( g_join 
    ( t_scan t2 ) 
    ( t_scan ( table t1 ( in ( subq 1 ) ) ) ) 
) 

Identifies the scan of table t1 in subquery 1.

Example 3  

create view v9    
as 
select *
from t1
where c11 in (select c21 from t2)

 

create view v10
as
select * from v9
where c11 in (select c11 from v9)

 

select * from v10, t3
where c11 in 
        (select c11 from v10 where c12 = t3.c31)

 

( g_join 
( t_scan t3 ) 
( i_scan i_c21 ( table t2 ( in ( subq 1 ) ( view v9 ) ( view v10 )))) 
( i_scan i_c11 ( table t1 ( in ( view v9 ) ( view v10 )))) 
( i_scan i_c11 ( table t1 ( in ( view v9 ) ( view v10 ) ( subq 1 )))) 



lru 

758  Adaptive Server Enterprise

( i_scan i_c11 ( table t1 ( in ( view v9 ) ( subq 1 ) ( view v10 )))) 
( i_scan i_c21 ( table t2 ( in ( subq 1 ) ( view v9 ) ( subq 1 ) ( view v10 )))) 
( i_scan i_c11 ( table t1 ( in ( view v9 ) ( subq 1 ) ( view v10 ) ( subq 1 )))) 
( i_scan i_c21 ( table t2 ( in ( subq 1 ) ( view v9 ) ( view v10 ) ( subq 1 )))) 
( i_scan i_c21 ( table t2(in( subq 1 )( view v9 )( subq 1 )( view v10 ) ( 
subq 1)))) 
) 

An example of multiple nesting of views and subqueries.

Usage • Identifies the occurrence of a table in view or subqueryof the SQL 
query.

• The in list has the innermost items to the left, near the table’s name 
(itself the deeply nested item), and the outermost items (the ones 
occurring in the top level query) to the right. For example, the 
qualification: 

(table t2 (in (subq 1) (view v9) (subq 1) (view 
v10) (subq 1) ) )

can be read in either direction:

• Reading left to right, starting from the table: the base table t2  as 
scanned in the first subquery of view v9 , which occurs in the first 
subquery of view v10 , which occurs in the first subquery of the 
main query

• Reading from right to left, that is, starting from the main query: 
in the main query there’s a first subquery, that scans the view v10 
, that contains a first subquery that scans the view v9 , that 
contains a first subquery that scans the base table t2

See also nested, subq, table, view

lru
Description Specifies LRU cache strategy for the scan of a stored table.

Syntax ( prop table_name
( lru )

)

Parameters table_name
is the table to which the property is to be applied.

Examples select * from t1



CHAPTER 33    Abstract Plan Language Reference

Performance & Tuning Guide 759

( prop t1
        ( lru)    
)

Specifies the use of LRU cache strategy for the scan of t1.

Usage • LRU strategy is used in the resulting query plan.

• Partial plans can specify scan properties without specifying other 
portions of the query plan.

• Full query plans always include all scan properties.

See also mru, prop

m_g_join
Description Specifies a merge join of two derived tables.

Syntax ( m_g_join (
( derived_table1 )
( derived_table2 )

)

Parameters derived_table1...derived_tableN
are the derived tables to be united. derived_table1 is always the outer 
table and derived_table2 is the inner table

Return value A derived table that is the join of the specified derived tables.

Examples Example 1 

select t1.c11, t2.c21
    from t1, t2, t3
    where t1.c11 = t2.c21
        and t1.c11 = t3.c31

( nl_g_join 
        ( m_g_join 
            ( i_scan i_c31 t3 ) 
            ( i_scan i_c11 t1 ) 
        ) 
        ( t_scan t2 ) 
)



m_g_join 

760  Adaptive Server Enterprise

Specifies a right-merge join of tables t1 and t3, followed by a nested-loop 
join with table t2.

Example 2  

select * from t1, t2, t3
where t1.c11 = t2.c21 and t1.c11 = t3.c31
and t2.c22 =7

 

( nl_g_join 
    ( m_g_join 
        ( i_scan i_c21 t2 ) 
        ( i_scan i_c11 t1 ) 
    ) 
    ( i_scan i_c31 t3 ) 
) 

Specifies a full-merge join of tables t2 (outer) and t1 (inner), followed in 
the join order by a nested-loop join with t3.

Example 3  

select c11, c22, c32
from t1, t2, t3
where t1.c11 = t2.c21
and t2.c22 = t3.c32

 

( m_g_join
        (nl_g_join
            (i_scan i_c11 t1)
            (i_scan i_c12 t2)
        )
    (i_scan i_c32_ix t3)
) 

Specifies a nested-loop join of t1 and t2, followed by a merge join with t3.

Usage • The tables are joined in the order specified in the m_g_join clause.

• The sort step and worktable required to process sort-merge join 
queries are not represented in abstract plans.

• If the m_g_join operator is used to specify a join that cannot be 
performed as a merge join, the specification is silently ignored.

See also g_join, nl_g_join



CHAPTER 33    Abstract Plan Language Reference

Performance & Tuning Guide 761

mru
Description Specifies MRU cache strategy for the scan of a stored table.

Syntax ( prop table_name
( mru)

)

Parameters table_name
is the table to which the property is to be applied.

Examples select * from t1

 

( prop t1
        ( mru )    
)

Specifies the use of MRU cache strategy for the table.

Usage • MRU strategy is specified in the resulting query plan

• Partial plans can specify scan properties without specifying other 
portions of the query plan.

• Generated query plans always include all scan properties.

• If sp_cachestrategy has been used to disable MRU replacement for a 
table or index, and the query plan specifies MRU, the specification in 
the abstract plan is silently ignored.

See also lru, prop

nested
Description Describes the nesting of subqueries on a derived table.

Syntax ( nested 
( derived_table )

( subquery_specification )
)

Parameters derived_table
is the derived table over which to nest the specified subquery.

subquery_specification
is the subquery to nest over derived_table



nested 

762  Adaptive Server Enterprise

Return value A derived table.

Examples Example 1 

select c11 from t1
where c12 = 
        (select c21 from t2 where c22 = t1.c11)

 

( nested 
        ( t_scan t1 ) 
        ( subq 1 
                ( t_scan ( table t2 ( in ( subq 1 ) ) ) ) 
        ) 
) 

A single nested subquery.

Example 2  

select c11 from t1
where c12 = 
        (select c21 from t2 where c22 = t1.c11)
    and c12 = 
        (select c31 from t3 where c32 = t1.c11)

 

( nested 
        ( nested 
                ( t_scan t1 ) 
                ( subq 1 
                        ( t_scan ( table t2 ( in ( subq 1 ) ) ) ) 
                ) 
        ) 
        ( subq 2 
                ( t_scan ( table t3 ( in ( subq 2 ) ) ) ) 
        ) 
) 

The two subqueries are both nested in the main query.

Example 3  

select c11 from t1
where c12 = 
    (select c21 from t2 where c22 = 
        (select c31 from t3 where c32 = t1.c11))

 



CHAPTER 33    Abstract Plan Language Reference

Performance & Tuning Guide 763

( nested 
        ( t_scan t1 ) 
        ( subq 1 
                ( nested 
                        ( t_scan ( table t2 ( in ( subq 1 ) ) ) ) 
                        ( subq 2 
                              ( t_scan ( table t3 ( in ( subq 2 ) ) ) ) 
                        ) 
                ) 
        ) 
) 

A level 2 subquery nested into a level 1 subquery nested in the main query.

Usage • The subquery is executed at the specified attachment point in the 
query plan.

• Materialized and flattened subqueries do not appear under a nested 
operator. See subq on page 772  for examples.

See also in, subq

nl_g_join
Description Specifies a nested-loop join of two or more derived tables.

Syntax ( nl_g_join        ( derived_table1 )
( derived_table2 )

        ...
( derived_tableN )

)

Parameters derived_table1...derived_tableN
are the derived tables to be united.

Return value A derived table that is the join of the specified derived tables.

Examples Example 1 

select *
from t1, t2
where c21 = 0
and c22 = c12

 

( nl_g_join
    ( i_scan i_c21 t2 )



parallel 

764  Adaptive Server Enterprise

    ( i_scan i_c12 t1 )
)

Table t2 is the outer table, and t1 the inner table in the join order.

Example 2  

select *
from t1, t2, t3
where c21 = 0
and c22 = c12
and c11 = c31

 

( nl_g_join
    ( i_scan i_c21 t2 )
    ( i_scan i_c12 t1 )
    ( i_scan i_c31 t3 )
)

Table t2 is joined with t1, and the derived table is joined with t3.

Usage • The tables are joined in the order specified in the nl_g_join clause

• The nl_g_join operator is a generic logical operator that describes all 
binary joins (inner join, outer join, or semijoin). The joins are 
performed using the nested-loops query execution method.

See also g_join, m_g_join

parallel
Description Specifies the degree of parallelism for the scan of a stored table.

Syntax ( prop table_name
( parallel degree  )

)

Parameters table_name
is the table to which the property is to be applied.

degree
is the degree of parallelism to use for the scan.

Examples select * from t1

 



CHAPTER 33    Abstract Plan Language Reference

Performance & Tuning Guide 765

(prop t1
        ( parallel 5 ) 
)

Specifies that 5 worker processes should be used for the scan of the t1 
table.

Usage • The scan is performed using the specified number of worker 
processes, if available.

• Partial plans can specify scan properties without specifying other 
portions of the query plan.

• If a saved plan specifies the use of a number of worker processes, but 
session-level or server-level values are different when the query is 
executed:

• If the plan specifies more worker processes than permitted by the 
current settings, the current settings are used or the query is 
executed using a serial plan.

• If the plan specifies fewer worker processes than permitted by the 
current settings, the values in the plan are used.

These changes to the query plan are performed transparently to the 
user, so no warning messages are issued.

See also prop

plan
Description Provides a mechanism for grouping the query plan steps of multi-step 

queries, such as queries requiring worktables, and queries computing 
aggregate values.

Syntax (plan
query_step1
...
query_stepN

)

Parameters query_step1...query_stepN –
specify the abstract plan steps for the execution of each step in the 
query.

Return value A derived table.



plan 

766  Adaptive Server Enterprise

Examples Example 1 

select max(c11) from t1
group by c12

 

( plan
    ( store Worktab1
        ( t_scan t1 )
    )
    ( t_scan ( work_t Worktab1 ) )
)

Returns a vector aggregate. The first operand of the plan operator creates 
Worktab1 and specifies a table scan of the base table. The second operand 
scans the worktable to return the results.

Example 2  

select max(c11) from t1

 

( plan
    ( t_scan t1 )
    ( )
)

Returns a scalar aggregate. The last derived table is empty, because scalar 
aggregates accumulate the result value in an internal variable rather than a 
worktable.

Example 3  

select *
from t1
where c11 = (select count(*) from t2)

 

( plan
    ( i_scan i_c21 (table t2 ( in_subq 1) ) )
    ( i_scan i_c11 t1 )
)

Specifies the execution of a materialized subquery.

Example 4  

create view v3
as



CHAPTER 33    Abstract Plan Language Reference

Performance & Tuning Guide 767

select distinct * from t3

 

select * from t1, v3
where c11 = c31

 

( plan
    ( store Worktab1
        ( t_scan (table t3 (in_view v3 ) ) )
    )
    ( nl_g_join
        ( t_scan t1 )
        ( t_scan ( work_t Worktab1 ) )
    )
)

Specifies the execution of a materialized view.

Usage • Tables are accessed in the order specified, with the specified access 
methods.

• The plan operator is required for multistep queries, including:

• Queries that generate worktables, such as queries that perform 
sorts and those that compute vector aggregates

• Queries that compute scalar aggregates

• Queries that include materialized subqueries

• An abstract plan for a query that requires multiple execution steps 
must include operands for each step in query execution if it begins 
with the plan keyword. Use the hints operator to introduce partial 
plans.

See also hints

prefetch
Description Specifies the I/O size to use for the scan of a stored table.

Syntax ( prop table_name
( prefetch size  )

)



prop 

768  Adaptive Server Enterprise

Parameters table_name
is the table to which the property is to be applied.

size
is a valid I/O size: 2, 4, 8 or 16.

Examples select * from t1

 

( prop t1
    (prefetch 16 )
)

16K I/O size is used for the scan of t1.

Usage • The specified I/O size is used in the resultant query plan if a pool of 
that size exists in the cache used by the table.

• Partial plans can specify scan properties without specifying other 
portions of the query plan.

• If large I/O specifications in a saved plan do not match current pool 
configuration or other options:

• If the plan specifies 16K I/O, and the 16K pool does not exist, the 
next largest available I/O size is used.

• If session or server-level options have made large I/O unavailable 
for the query (set prefetch for the session, or sp_cachestrategy for 
the table), 2K I/O is used.

• If you save plans that specify only 2K I/O for the scan properties, and 
later create large I/O pools, enable replace mode to save the new plans 
if you want these plans to use larger I/O sizes.

See also prop

prop
Description Specifies properties to use for the scan of a stored table.

Syntax ( prop table_name
( property_specification ) ...

)

property_specification:



CHAPTER 33    Abstract Plan Language Reference

Performance & Tuning Guide 769

( prefetch size )
( lru | mru )
( parallel degree )

Parameters table_name
is the table to which the property is to be applied.

Examples select * from t1

 

( t_scan t1 ) 
( prop t1 
    ( parallel 1 ) 
    ( prefetch 16 ) 
    ( lru ) 
)

Shows the property values used by the scan of t1.

Usage • The specified properties are used for the scan of the table

• Partial plans can specify scan properties without specifying other 
portions of the query plan.

• Generated plans include the parallel, prefetch, and cache strategy 
properties used for each table in the query.

See also lru, mru, parallel, prefetch

scan
Description Specifies the scan of a stored table, without specifying the type of scan.

Syntax ( scan stored_table )

Parameters stored_table
is the name of the stored table to be scanned. It can be a base table or 
worktable.

Return value A derived table produced by the scan of the stored table.

Examples Example 1 

select * from t1 where c11 > 10

 

( scan t1 )



store 

770  Adaptive Server Enterprise

Specifies a scan of t1, leaving the optimizer to choose whether to perform 
a table scan or index scan.

Example 2  

select *
    from t1, t2
    where c11 = 0
        and c22 = 1000
        and c12 = c21

 

( nl_g_join
        ( scan t2 )
        ( i_scan i_c22 t1 )
)

Specifies a partial plan, indicating the join order, but allowing the 
optimizer to choose the access method for t2. 

Usage • The optimizer chooses the access method for the stored table.

• The scan operator is used when the choice of the type of scan should 
be left to the optimizer. The resulting access method can be one of the 
following:

• A full table scan

• An index scan, with access to data pages

• A covering index scan, with no access to data pages

• A RID scan, used for the OR strategy

• For an example of an abstract plan that specifies the reformatting 
strategy, see store.

See also i_scan, store, t_scan

store
Description Stores the results of a scan in a worktable.

Syntax ( store worktable_name
( [scan | i_scan | t_scan ] table_name )

)



CHAPTER 33    Abstract Plan Language Reference

Performance & Tuning Guide 771

Parameters worktable_name
is the name of the worktable to be created.

table_name
is the name of the base table to be scanned.

Return value A worktable that is the result of the scan.

Examples select c12, max(c11) from t1
        group by c12

 

( plan 
    ( store Worktab1 
        ( t_scan t1 ) 
    ) 
    ( t_scan ( work_t Worktab1 ) ) 
)

Specifies the two-step process of selecting the vector aggregate into a 
worktable, then selecting the results of the worktable.

Usage • The specified table is scanned, and the result is stored in a worktable

• The legal places for a store operator in an abstract plan are:

• Under a plan or union operator, where the store operator signifies 
a preprocessing step resulting in a worktable

• Under a scan operator (but not under an i_scan or t_scan 
operator)

• During plan capture mode, worktables are identified as Worktab1, 
Worktab2, and so on. For manually entered plans, any naming 
convention can be used.

• The use of the reformatting strategy can be described in an abstract 
plan using the scan (store ( )) combination of operators. For example, 
if t2 has no indexes and is very large, the abstract plan below indicates 
that t2 should be scanned once, via a table scan, with the results stored 
in a worktable:

select * 
from t1, t2
where c11 > 0
        and c12 = c21
        and c22 between 0 and 10000
( nl_g_join
        (i_scan i_c11 t1)



subq 

772  Adaptive Server Enterprise

        ( scan (store (t_scan t2 )))
)

See also scan

subq
Description Identifies a subquery.

Syntax ( subq subquery_id
)

Parameters subquery_id
is an integer identifying the subquery. In abstract plans, subquery 
numbering is based on the order of the leading parenthesis for the 
subqueries in a query.

Examples Example 1 

select c11 from t1
where c12 = 
        (select c21 from t2 where c22 = t1.c11)

 

( nested 
        ( t_scan t1 ) 
        ( subq 1 
                ( t_scan ( table t2 ( in ( subq 1 ) ) ) ) 
        ) 
)

A single nested subquery.

Example 2  

select c11 from t1
where c12 = 
        (select c21 from t2 where c22 = t1.c11)
    and c12 = 
        (select c31 from t3 where c32 = t1.c11)

 

( nested 
        ( nested 
                ( t_scan t1 ) 
                ( subq 1 



CHAPTER 33    Abstract Plan Language Reference

Performance & Tuning Guide 773

                        ( t_scan ( table t2 ( in ( 
subq 1 ) ) ) ) 
                ) 
        ) 
        ( subq 2 
                ( t_scan ( table t3 ( in ( subq 2 ) ) ) ) 
        ) 
) 

The two subqueries are both nested in the main query.

Example 3  

select c11 from t1
where c12 = 
    (select c21 from t2 where c22 = 
        (select c31 from t3 where c32 = t1.c11))

 

( nested 
     ( t_scan t1 ) 
     ( subq 1 
          ( nested 
               ( t_scan ( table t2 ( in ( subq 1 ) ) ) ) 
               ( subq 2 
                    ( t_scan ( table t3 ( in ( subq 
2 ) ) ) ) 
               ) 
          ) 
     ) 
) 

A level 2 subquery nested into a level 1 subquery nested in the main query.

Usage • The subq operator has two meanings in an abstract plan expression: 

• Under a nested operator, it describes the attachment of a nested 
subquery to a table

• Under an in operator, it describes the nesting of the base tables 
and views that the subquery contains

• To specify the attachment of a subquery without providing a plan 
specification, use an empty hint:

( nested
    ( t_scan t1)
    ( subq 1
            ()



subq 

774  Adaptive Server Enterprise

    )
)

• To provide a description of the abstract plan for a subquery, without 
specifying its attachment, specify an empty hint as the derived table 
in the nested operator:

( nested 
    ()
    ( subq 1
        (t_scan ( table t1 ( in ( subq 1 ) ) ) )
    )
)

• When subqueries are flattened to a join, the only reference to the 
subquery in the abstract plan is the identification of the table specified 
in the subquery:

select * 
from t2 
where c21 in (select c12 from t1)
( nl_g_join 
    ( t_scan t1 ) 
    ( t_scan ( table t2 ( in ( subq 1 ) ) ) ) 

• When a subquery is materialized, the subquery appears in the store 
operation, identifying the table to be scanned during the 
materialization step:

select * 
from t1 
where c11 in (select max(c22) from t2 group by 
c21)
( plan 
    ( store Worktab1 
        ( t_scan ( table t2 ( in ( subq 1 ) ) ) ) 
    ) 
    ( nl_g_join 
        ( t_scan t1 ) 
        ( t_scan ( work_t Worktab1 ) ) 
    ) 
) 

See also in, nested, table



CHAPTER 33    Abstract Plan Language Reference

Performance & Tuning Guide 775

t_scan
Description Specifies a table scan of a stored table.

Syntax ( t_scan stored_table )

Parameters stored_table
is the name of the stored table to be scanned.

Return value A derived table produced by the scan of the stored table.

Examples select * from t1

 

( t_scan t1 )

Performs a table scan of t1.

Usage • Instructs the optimizer to perform a table scan on the stored table.

• Specifying t_scan forbids the use of reformatting and the OR strategy.

See also i_scan, scan, store

table
Description Identifies a base table that occurs in a subquery or view or that is assigned 

a correlation name in the from clause of the query.

Syntax ( table table_name [ qualification ] )

( table ( correlation_name table_name) )

Parameters table_name
is a base table. If the query uses the database name and/or owner name, 
the abstract plan must also provide them.

correlation_name
is the correlation name, if a correlation name is used in the query.

qualification
is either in (subq subquery_id) or in (view view_name).

Examples Example 1 

select * from t1 table1, t2 table2
where table1.c11 = table2.c21

 



table 

776  Adaptive Server Enterprise

( nl_g_join 
    ( t_scan ( table ( table1 t1 ) ) )
    ( t_scan ( table ( table2 t2 ) ) )
)

Tables t1 and t2 are identified by reference to the correlation names used 
in the query.

Example 2  

select c11 from t1
where c12 = 
        (select c21 from t2 where c22 = t1.c11)

 

( nested 
        ( t_scan t1 ) 
        ( subq 1 
                ( t_scan ( table t2 ( in ( subq 1 ) ) ) ) 
        ) 
) 

Table t2 in the subquery is identified by reference to the subquery.

Example 3  

create view v1
as
select * from t1 where c12 > 100

select t1.c11 from t1, v1
where t1.c12 = v1.c11

 

( nl_g_join 
        ( t_scan t1 ) 
        ( i_scan 2 ( table t1 ( in ( view v1 ) ) ) )

Table t1 in the view is identified by reference to the view.

Usage • The specified derived tables in the abstract plan are matched against 
the positionally corresponding tables specified in the query.

• The table operator is used to link table names in an abstract plan to the 
corresponding table in a SQL query in queries that contain views, 
subqueries, and correlation names for tables.

• When correlation names are used, all references to the table, including 
those in the scan properties section, are in the form:



CHAPTER 33    Abstract Plan Language Reference

Performance & Tuning Guide 777

( table ( correlation_name table_name) )

The table operator is used for all references to the table, including the 
scan properties for the table under the props operator.

See also in, subq, view

union
Description Describes the union of the two or more derived tables.

Syntax (union
derived_table1
...
derived_tableN

)

Parameters derived_table1...derived_tableN
is the derived tables to be united.

Return value A derived table that is the union of the specified operands.

Examples Example 1 

select * from t1
union
select * from t2
union
select * from t3

 

(union
    (t_scan t1)
    (t_scan t2)
    (t_scan t3)
)

Returns the union of the three full table scans.

Example 2  

select 1,2
union
select * from t2

 



view 

778  Adaptive Server Enterprise

(union
    ( )
    (tscan t2)
)

Since the first side of the union is not an optimizable query, the first union 
operand is empty.

Usage • The specified derived tables in the abstract plan are matched against 
the positionally corresponding tables specified in the query.

• The union operator describes the processing for:

• union, which removes duplicate values and 

• union all, which preserves duplicate values

• The union operator in an abstract query plan must have the same 
number of union sides as the SQL query and the order of the operands 
for the abstract plan must match the order of tables in the query.

• The sort step and worktable required to process union queries are not 
represented in abstract plans.

• If union queries list nonoptimizable elements, an empty operand is 
required. A select query that has no from clause is shown in example 

See also i_scan, scan, t_scan

view
Description Identifies a view that contains the base table to be scanned.

Syntax view view_name

Parameters view_name
is the name of a view specified in the query. If the query uses the 
database name and/or owner name, the abstract plan must also provide 
them.

Examples create view v1 as 
select * from t1

 

select * from v1



CHAPTER 33    Abstract Plan Language Reference

Performance & Tuning Guide 779

 

( t_scan ( table t1 ( in ( view v ) ) ) )

Identifies the view in which table t1 is used.

Usage • When a query includes a view, the table must be identified using table 
(tablename ( in view_name )).

See also in, table

work_t
Description Describes a stored worktable.

Syntax ( work_t [ worktable_name 
| (correlation_name worktable_name) ]

)

Parameters worktable_name
is the name of a worktable.

correlation_name
is the correlation name specified for a worktable, if any.

Return value A stored table. 

Examples select c12, max(c11) from t1
    group by c12

 

( plan 
    ( store Worktab1 
        ( t_scan t1 ) 
    ) 
    ( t_scan ( work_t Worktab1 ) ) 
)

Specifies the two-step process of selecting vector aggregates into a 
worktable, then selecting the results of the worktable. 

Usage • Matches the stored table against a work table in the query plan.

• The store operator creates a worktable; the work_t operator identifies 
a stored worktable for later access in the abstract plan.



work_t 

780  Adaptive Server Enterprise

• During plan capture mode, worktables are identified as Worktab1, 
Worktab2, and so on. For manually entered plans, any naming 
convention can be used.

• If the scan of the worktable is never specified explicitly with a scan 
operator, the worktable does not have to be named and the work_t 
operator can be omitted. The following plan uses an empty scan 
operator “( )” in place of the t_scan and work_t specifications used in 
example 

( plan
    ( store 
        ( t_scan titles ) 
        ) 
    ()
)

• Correlation names for worktables are needed only for self-joined 
materialized views, for example:

create view v 
as 
select distinct c11 from t1

select * 
from v v1, v v2
where ...

( plan
    ( store Worktab1
        ( t_scan ( table t1 (in ( view v ) ) ) )
    )
    ( g_join
        ( t_scan (work_t ( v1 Worktab1 ) ) )
        ( t_scan (work_t ( v2 Worktab1 ) ) )
    )
)

See also store, view



Performance & Tuning Guide 781

C H A P T E R  3 4 Using Statistics to Improve 
Performance

Accurate statistics are essential to the query optimization. In some cases, 
adding statistics for columns that are not leading index keys also improves 
query performance. This chapter explains how and when to use the 
commands that manage statistics. 

Importance of statistics
Adaptive Server’s cost-based optimizer uses statistics about the tables, 
indexes, and columns named in a query to estimate query costs. It chooses 
the access method that the optimizer determines has the least cost. But this 
cost estimate cannot be accurate if statistics are not accurate.

Some statistics, such as the number of pages or rows in a table, are updated 
during query processing. Other statistics, such as the histograms on 
columns, are only updated when you run the update statistics command or 
when indexes are created.

If you are having problems with a query performing slowly, and seek help 
from Technical Support or a Sybase news group on the Internet, one of the 
first questions you are likely be asked is “Did you run update statistics?” 
You can use the optdiag command to see the time update statistics was last 
run for each column on which statistics exist:

Topic Page
Importance of statistics 781

update statistics commands 783

Column statistics and statistics maintenance 784

Creating and updating column statistics 785

Choosing step numbers for histograms 787

Scan types, sort requirements, and locking 788

When row counts may be inaccurate 791

Using the delete statistics command 791



Importance of statistics 

782  Adaptive Server Enterprise

Last update of column statistics: Aug 31 2001 
4:14:17:180PM

Another command you may need for statistics maintenance is delete statistics. 
Dropping an index does not drop the statistics for that index. If the distribution 
of keys in the columns changes after the index is dropped, but the statistics are 
still used for some queries, the outdated statistics can affect query plans.

Updating
The update statistics commands update the column-related statistics such as 
histograms and densities. So statistics need to be updated on those columns 
where the distribution of keys in the index changes in ways that affect the use 
of indexes for your queries.

Running the update statistics commands requires system resources. Like other 
maintenance tasks, it should be scheduled at times when load on the server is 
light. In particular, update statistics requires table scans or leaf-level scans of 
indexes, may increase I/O contention, may use the CPU to perform sorts, and 
uses the data and procedure caches. Use of these resources can adversely affect 
queries running on the server if you run update statistics at times when usage is 
high. In addition, some update statistics commands require shared locks, which 
can block updates. See “Scan types, sort requirements, and locking” on page 
788 for more information.

Adding statistics for unindexed columns
When you create an index, a histogram is generated for the leading column in 
the index. Examples in earlier chapters have shown how statistics for other 
columns can increase the accuracy of optimizer statistics. For example, see 
“Using statistics on multiple search arguments” on page 440. 

You should consider adding statistics for virtually all columns that are 
frequently used as search arguments, as long as your maintenance schedule 
allows time to keep these statistics up to date.

In particular, adding statistics for minor columns of composite indexes can 
greatly improve cost estimates when those columns are used in search 
arguments or joins along with the leading index key.



CHAPTER 34    Using Statistics to Improve Performance

Performance & Tuning Guide 783

update statistics commands
The update statistics commands create statistics, if there are no statistics for a 
particular column, or replaces existing statistics if they already exist. The 
statistics are stored in the system tables systabstats and sysstatistics. The syntax 
is: 

update statistics table_name 
    [ [index_name] | [( column_list ) ] ]
    [using step values ]
    [with consumers = consumers ]

update index statistics table_name [index_name] 
    [using step values ]
    [with consumers = consumers ]

 

update all statistics table_name 

The effects of the commands and their parameters are:

• For update statistics:

• table_name – Generates statistics for the leading column in each 
index on the table.

• table_name index_name – Generates statistics for all columns of the 
index.

• table_name (column_name) – Generates statistics for only this 
column.

• table_name (column_name, column_name...) – Generates a 
histogram for the leading column in the set, and multi column density 
values for the prefix subsets.

• For update index statistics:

• table_name – Generates statistics for all columns in all indexes on the 
table.

• table_name index_name – Generates statistics for all columns in this 
index.

• For update all statistics:

• table_name – Generates statistics for all columns of a table.



Column statistics and statistics maintenance 

784  Adaptive Server Enterprise

Column statistics and statistics maintenance
Histograms are kept on a per-column basis, rather than on a per-index basis. 
This has certain implications for managing statistics:

• If a column appears in more than one index, update statistics, update index 
statistics or create index updates the histogram for the column and the 
density statistics for all prefix subsets.

update all statistics updates histograms for all columns in a table.

• Dropping an index does not drop the statistics for the index, since the 
optimizer can use column-level statistics to estimate costs, even when no 
index exists.

If you want to remove the statistics after dropping an index, you must 
explicitly delete them with delete statistics.

If the statistics are useful to the optimizer and you want to keep the 
statistics without having an index, you need to use update statistics, 
specifying the column name, for indexes where the distribution of key 
values changes over time.

• Truncating a table does not delete the column-level statistics in 
sysstatistics. In many cases, tables are truncated and the same data is 
reloaded.

Since truncate table does not delete the column-level statistics, there is no 
need to run update statistics after the table is reloaded, if the data is the 
same.

If you reload the table with data that has a different distribution of key 
values, you need to run update statistics.

• You can drop and re-create indexes without affecting the index statistics, 
by specifying 0 for the number of steps in the with statistics clause to create 
index. This create index command does not affect the statistics in 
sysstatistics:

create index title_id_ix on titles(title_id)
    with statistics using 0 values

This allows you to re-create an index without overwriting statistics that 
have been edited with optdiag.

• If two users attempt to create an index on the same table, with the same 
columns, at the same time, one of the commands may fail due to an attempt 
to enter a duplicate key value in sysstatistics.



CHAPTER 34    Using Statistics to Improve Performance

Performance & Tuning Guide 785

Creating and updating column statistics
Creating statistics on unindexed columns can improve the performance of 
many queries. The optimizer can use statistics on any column in a where or 
having clause to help estimate the number of rows from a table that match the 
complete set of query clauses on that table.

Adding statistics for the minor columns of indexes and for unindexed columns 
that are frequently used in search arguments can greatly improve the 
optimizer’s estimates.

Maintaining a large number of indexes during data modification can be 
expensive. Every index for a table must be updated for each insert and delete 
to the table, and updates can affect one or more indexes.

Generating statistics for a column without creating an index gives the optimizer 
more information to use for estimating the number of pages to be read by a 
query, without entailing the processing expense of index updates during data 
modification.

The optimizer can apply statistics for any columns used in a search argument 
of a where or having clause and for any column named in a join clause. You 
need to determine whether the expense of creating and maintaining the 
statistics on these columns is worth the improvement in query optimization.

The following commands create and maintain statistics:

• update statistics, when used with the name of a column, generates statistics 
for that column without creating an index on it.

The optimizer can use these column statistics to more precisely estimate 
the cost of queries that reference the column.

• update index statistics, when used with an index name, creates or updates 
statistics for all columns in an index.

If used with a table name, it updates statistics for all indexed columns.

• update all statistics creates or updates statistics for all columns in a table.

Good candidates for column statistics are:

• Columns frequently used as search arguments in where and having clauses

• Columns included in a composite index, and which are not the leading 
columns in the index, but which can help estimate the number of data rows 
that need to be returned by a query.



Creating and updating column statistics 

786  Adaptive Server Enterprise

See “How scan and filter selectivity can differ” on page 919 for 
information on how additional column statistics can be used in query 
optimization.

When additional statistics may be useful
To determine when additional statistics are useful, run queries using dbcc 
traceon(302) and statistics io. If there are significant discrepancies between the 
“rows to be returned” and I/O estimates displayed by dbcc traceon(302) and the 
actual I/O displayed by statistics io, examine these queries for places where 
additional statistics can improve the estimates. Look especially for the use of 
default density values for search arguments and join columns. 

See “Tuning with dbcc traceon(302)” on page 905 for more information.

Adding statistics for a column with update statistics
This command adds statistics for the price column in the titles table:

update statistics titles (price) 

This command specifies the number of histogram steps for a column:

update statistics titles (price) 
    using 50 values

This command adds a histogram for the titles.pub_id column and generates 
density values for the prefix subsets pub_id; pub_id, pubdate; and pub_id, 
pubdate, title_id:

update statistics titles(pub_id, pubdate, title_id)

Note  Running update statistics with a table name updates histograms and 
densities for leading columns for indexes only.

It does not update the statistics for unindexed columns.

To maintain these statistics, you must run update statistics and specify the 
column name, or run update all statistics.



CHAPTER 34    Using Statistics to Improve Performance

Performance & Tuning Guide 787

Adding statistics for minor columns with update index statistics
To create or update statistics on all columns in an index, use update index 
statistics. The syntax is: 

update index statistics table_name [index_name] 
[using step values]
[with consumers = consumers ]

Adding statistics for all columns with update all statistics
To create or update statistics on all columns in a table, use update all statistics. 
The syntax is: 

update all statistics table_name

Choosing step numbers for histograms
By default, each histogram has 20 steps which provides good performance and 
modeling for columns that have an even distribution of values. A higher 
number of steps can increase the accuracy of I/O estimates for:

• Columns with a large number of highly duplicated values

• Columns with unequal or skewed distribution of values

• Columns that are queried using leading wild cards in like queries

Note  If your database was updated from a pre-11.9 version of the server, 
the number of steps defaults to the number of steps that were used on the 
distribution page.

Disadvantages of too many steps
Increasing the number of steps beyond what is needed for good query 
optimization can hurt Adaptive Server performance, largely due to the amount 
of space that is required to store and use the statistics. Increasing the number 
of steps:

• Increases the disk storage space required for sysstatistics



Scan types, sort requirements, and locking 

788  Adaptive Server Enterprise

• Increases the cache space needed to read statistics during query 
optimization

• Requires more I/O, if the number of steps is very large

During query optimization, histograms use space borrowed from the procedure 
cache. This space is released as soon as the query is optimized.

Choosing a step number
See “Choosing the number of steps for highly duplicated values” on page 888 
for more information.

For example, if your table has 5000 rows, and one value in the column that has 
only one matching row, you may need to request 5000 steps to get a histogram 
that includes a frequency cell for every distinct value. The actual number of 
steps is not 5000; it is either the number of distinct values plus one (for dense 
frequency cells) or twice the number of values plus one (for sparse frequency 
cells).

Scan types, sort requirements, and locking 
Table 34-1 shows the types of scans performed during update statistics, the 
types of locks acquired, and when sorts are needed.

Table 34-1: Scans, sorts, and locking during update statistics

update statistics specifying Scans and sorts performed Locking

Table name

Allpages-locked table Table scan, plus a leaf-level scan of each 
nonclustered index

Level 1; shared intent table lock, 
shared lock on current page

Data-only-locked table Table scan, plus a leaf-level scan of each 
nonclustered index and the clustered 
index, if one exists

Level 0; dirty reads

Table name and clustered index name

Allpages-locked table Table scan Level 1; shared intent table lock, 
shared lock on current page

Data-only-locked table Leaf level index scan Level 0; dirty reads

Table name and nonclustered index name



CHAPTER 34    Using Statistics to Improve Performance

Performance & Tuning Guide 789

Sorts for unindexed or non leading columns
For unindexed columns and columns that are not the leading columns in 
indexes, Adaptive Server performs a serial table scan, copying the column 
values into a worktable, and then sorts the worktable in order to build the 
histogram. The sort is performed in serial, unless the with consumers clause is 
specified.

See Chapter 26, “Parallel Sorting,”, for information on parallel sort 
configuration requirements.

Locking, scans, and sorts during update index statistics
The update index statistics command generates a series of update statistics 
operations that use the same locking, scanning, and sorting as the equivalent 
index-level and column-level command. For example, if the salesdetail table 
has a nonclustered index named sales_det_ix on salesdetail(stor_id, ord_num, 
title_id), this command:

update index statistics salesdetail

performs these update statistics operations:

update statistics salesdetail sales_det_ix 
update statistics salesdetail (ord_num)
update statistics salesdetail (title_id)

Allpages-locked table Leaf level index scan Level 1; shared intent table lock, 
shared lock on current page

Data-only-locked table Leaf level index scan Level 0; dirty reads

Table name and column name

Allpages-locked table Table scan; creates a worktable and sorts 
the worktable

Level 1; shared intent table lock, 
shared lock on current page

Data-only-locked table Table scan; creates a worktable and sorts 
the worktable

Level 0; dirty reads

update statistics specifying Scans and sorts performed Locking



Scan types, sort requirements, and locking 

790  Adaptive Server Enterprise

Locking, scans and sorts during update all statistics
The update all statistics commands generates a series of update statistics 
operations for each index on the table, followed by a series of update statistics 
operations for all unindexed columns, followed by an update partition statistics 
operation.

Using the with consumers clause
The with consumers clause for update statistics is designed for use on 
partitioned tables on RAID devices, which appear to Adaptive Server as a 
single I/O device, but which are capable of producing the high throughput 
required for parallel sorting. Chapter 26, “Parallel Sorting,” for more 
information.

Reducing update statistics impact on concurrent processes
Since update statistics uses dirty reads (transaction isolation level 0) for data-
only locked tables, it can be run while other tasks are active on the server, and 
does not block access to tables and indexes. Updating statistics for leading 
columns in indexes requires only a leaf-level scan of the index, and does not 
require a sort, so updating statistics for these columns does not affect 
concurrent performance very much.

However, updating statistics for unindexed and non leading columns, which 
require a table scan, worktable, and sort can affect concurrent processing. 

• Sorts are CPU intensive. Use a serial sort, or a small number of worker 
processes if you want to minimize CPU utilization. Alternatively, you can 
use execution classes to set the priority for update statistics.

See Chapter 3, “Using Engines and CPUs,”.

• The cache space required for merging sort runs is taken from the data 
cache, and some procedure cache space is also required. Setting the 
number of sort buffers to a low value reduces the space used in the buffer 
cache.

If number of sort buffers is set to a large value, it takes more space from the 
data cache, and may also cause stored procedures to be flushed from the 
procedure cache, since procedure cache space is used while merging 
sorted values.



CHAPTER 34    Using Statistics to Improve Performance

Performance & Tuning Guide 791

Creating the worktables for sorts also uses space in tempdb.

Using the delete statistics command
In pre-11.9 versions of SQL Server and Adaptive Server, dropping an index 
removes the distribution page for the index. In version 11.9.2, maintaining 
column-level statistics is under explicit user control, and the optimizer can use 
column-level statistics even when an index does not exist. The delete statistics 
command allows you to drop statistics for specific columns.

If you create an index and then decide to drop it because it is not useful for data 
access, or because of the cost of index maintenance during data modifications, 
you need to determine:

• Whether the statistics on the index are useful to the optimizer.

• Whether the distribution of key values in the columns for this index are 
subject to change over time as rows are inserted and deleted.

If the distribution of key values changes, you need to run update statistics 
periodically to maintain useful statistics.

This example command deletes the statistics for the price column in the titles 
table:

delete statistics titles(price)

Note  The delete statistics command, when used with a table name, removes all 
statistics for a table, even where indexes exist.

You must run update statistics on the table to restore the statistics for the index.

When row counts may be inaccurate
Row count values for the number of rows, number of forwarded rows, and 
number of deleted rows may be inaccurate, especially if query processing 
includes many rollback commands. If workloads are extremely heavy, and the 
housekeeper task does not run often, these statistics are more likely to be 
inaccurate.



When row counts may be inaccurate 

792  Adaptive Server Enterprise

Running update statistics corrects these counts in systabstats.

Running dbcc checktable or dbcc checkdb updates these values in memory.

When the housekeeper task runs, or when you execute sp_flushstats, these 
values are saved in systabstats.

Note  The configuration parameter housekeeper free write percent must be set 
to 1 or greater to enable housekeeper statistics flushing.



Performance & Tuning Guide 793

C H A P T E R  3 5 Using the set statistics 
Commands

Contains a guide to using the set statistics command.

Command syntax
The syntax for the set statistics commands is: 

set statistics {io, simulate, subquerycache, time} [on | off]

You can issue a single command:

set statistics io on

You can combine more than one command on a single line by separating 
them with commas:

set statistics io, time on

Topic Page
Command syntax 793

Using simulated statistics 794

Checking subquery cache performance 794

Checking compile and execute time 794

Reporting physical and logical I/O statistics 795



Using simulated statistics 

794  Adaptive Server Enterprise

Using simulated statistics
The optdiag utility command allows you to load simulated statistics and 
perform query diagnosis using those statistics. Since you can load 
simulated statistics even for tables that are empty, using simulated 
statistics allows you to perform tuning diagnostics in a very small database 
that contains only the tables and indexes. Simulated statistics do not 
overwrite any existing statistics when they are loaded, so you can also load 
them into an existing database.

Once simulated statistics have been loaded, instruct the optimizer to use 
them (rather than the actual statistics):

set statistics simulate on

For complete information on using simulated statistics, see “Using 
simulated statistics” on page 894.

Checking subquery cache performance
When subqueries are not flattened or materialized, a subquery cache is 
created to store results of earlier executions of the subquery to reduce the 
number of expensive executions of the subquery.

See “Displaying subquery cache information” on page 552 for 
information on using this option.

Checking compile and execute time
set statistics time displays information about the time it takes to parse and 
execute Adaptive Server commands. 

Parse and Compile Time 57.
SQL Server cpu time: 5700 ms.
 
Execution Time 175.
SQL Server cpu time: 17500 ms.  SQL Server elapsed time: 70973 ms.

The meaning of this output is:



CHAPTER 35    Using the set statistics Commands

Performance & Tuning Guide 795

• Parse and Compile Time – The number of CPU ticks taken to parse, 
optimize, and compile the query. See below for information on 
converting ticks to milliseconds.

• SQL Server cpu time – Shows the CPU time in milliseconds.

• Execution Time – The number of CPU ticks taken to execute the 
query.

• SQL Server cpu time – The number of CPU ticks taken to execute the 
query, converted to milliseconds.

• SQL Server elapsed time – The difference in milliseconds between 
the time the command started and the current time, as taken from the 
operating system clock.

This output shows that the query was parsed and compiled in 57 clock 
ticks. It took 175 ticks, or 17.5 seconds, of CPU time to execute. Total 
elapsed time was 70.973 seconds, indicating that Adaptive Server spent 
some time processing other tasks or waiting for disk or network I/O to 
complete.

Converting ticks to milliseconds
 To convert ticks to milliseconds:

To see the clock_rate for your system, execute:

sp_configure "sql server clock tick length"

See the System Administration Guide for more information.

Reporting physical and logical I/O statistics
set statistics io reports information about physical and logical I/O and the 
number of times a table was accessed. set statistics io output follows the 
query results and provides actual I/O performed by the query.

CPU_ticks * clock_rate

1000
Milliseconds =



Reporting physical and logical I/O statistics 

796  Adaptive Server Enterprise

For each table in a query, including worktables, statistics io reports one line 
of information with several values for the pages read by the query and one 
row that reports the total number of writes. If a System Administrator has 
enabled resource limits, statistics io also includes a line that reports the 
total actual I/O cost for the query. The following example shows statistics 
io output for a query with resource limits enabled:

select avg(total_sales)
from titles

Table: titles  scan count 1,  logical reads: (regular=656 apf=0 
total=656), physical reads: (regular=444 apf=212 total=656),  apf 
IOs used=212
Total actual I/O cost for this command: 13120.
Total writes for this command: 0

The following sections describe the four major components of statistics io 
output:

• Actual I/O cost

• Total writes

• Read statistics

• Table name and “scan count”

Total actual I/O cost value
If resource limits are enabled, statistics io prints the “Total actual I/O cost” 
line. Adaptive Server reports the total actual I/O as a unitless number. The 
formula for determining the cost of a query is:

This formula multiplies the “cost” of a logical I/O by the number of logical 
I/Os and the “cost” of a physical I/O by the number of physical I/Os. 

For the example above that performs 656 physical reads and 656 logical 
reads, 656 * 2 + 656 * 18 = 13120, which is the total I/O cost reported by 
statistics io.

Cost = All physical IOs * 18 + All logical IOs * 2



CHAPTER 35    Using the set statistics Commands

Performance & Tuning Guide 797

Statistics for writes
statistics io reports the total number of buffers written by the command. 
Read-only queries report writes when they cause dirty pages to move past 
the wash marker in the cache so that the write on the page starts.

Queries that change data may report only a single write, the log page write, 
because the changed pages remain in the MRU section of the data cache.

Statistics for reads
statistics io reports the number of logical and physical reads for each table 
and index included in a query, including worktables. I/O for indexes is 
included with the I/O for the table.

Table 35-1 shows the values that statistics io reports for logical and 
physical reads. 

Table 35-1: statistics io output for reads

Sample output with and without an index

Using statistics io to perform a query on a table without an index and the 
same query on the same table with an index shows how important good 
indexes can be to query and system performance. Here is a sample query:

select title 

Output Description

logical reads

regular Number of times that a page needed by the query was found 
in cache; only pages not brought in by asynchronous 
prefetch (APF) are counted here.

apf Number of times that a request brought in by an APF request 
was found in cache. 

total Sum of regular and apf logical reads.

physical reads

regular Number of times a buffer was brought into cache by regular 
asynchronous I/O

apf Number of times that a buffer w.as brought into cache by 
APF.

total Sum of regular and apf physical reads.

apf IOs used Number of buffers brought in by APF in which one or more 
pages were used during the query.



Reporting physical and logical I/O statistics 

798  Adaptive Server Enterprise

from titles 
where title_id = "T5652"

statistics io without an index

With no index on title_id, statistics io reports these values, using 2K I/O:

Table: titles scan count 1, logical 
reads:(regular=624 apf=0 total=624), physical 
reads:(regular=230 apf=394 total=624), apf IOs 
used=394
Total actual I/O cost for this command: 12480.
Total writes for this command: 0

This output shows that:

• The query performed a total of 624 logical I/Os, all regular logical 
I/Os.

• The query performed 624 physical reads. Of these, 230 were regular 
asynchronous reads, and 394 were asynchronous prefetch reads.

• All of the pages read by APF were used by the query.

statistics io with an Index

With a clustered index on title_id, statistics io reports these values for the 
same query, also using 2K I/O:

Table: titles  scan count 1,  logical reads: (regular=3 apf=0 
total=3),
physical reads: (regular=3 apf=0 total=3),  apf IOs used=0 
Total actual I/O cost for this command: 60.
Total writes for this command: 0

The output shows that:

• The query performed 3 logical reads.

• The query performed 3 physical reads: 2 reads for the index pages and 
1 read for the data page.

statistics io output for cursors
For queries using cursors, statistics io prints the cumulative I/O since the 
cursor was opened:

1> open c



CHAPTER 35    Using the set statistics Commands

Performance & Tuning Guide 799

Table: titles scan count 0, logical reads: (regular=0 apf=0 total=0), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total actual I/O cost for this command: 0.
Total writes for this command: 0

1> fetch c

title_id type         price                    
 -------- ------------ ------------------------ 
 T24140   business                       201.95 
Table: titles scan count 1, logical reads: (regular=3 apf=0 total=3), 
physical reads: (regular=0 apf=0 total=0), apf IOs used=0
Total actual I/O cost for this command: 6.
Total writes for this command: 0

1> fetch c

title_id type         price                    
 -------- ------------ ------------------------ 
 T24226   business                       201.95 
Table: titles scan count 1, logical reads: (regular=4 apf=0 
total=4), physical reads: (regular=0 apf=0 total=0), apf IOs 
used=0
Total actual I/O cost for this command: 8.
Total writes for this command: 0

Scan count
statistics io reports the number of times a query accessed a particular table. 
A “scan” can represent any of these access methods:

• A table scan.

• An access via a clustered index. Each time the query starts at the root 
page of the index and follows pointers to the data pages, it is counted 
as a scan. 

• An access via a nonclustered index. Each time the query starts at the 
root page of the index and follows pointers to the leaf level of the 
index (for a covered query) or to the data pages, it is counted.

• If queries run in parallel, each worker process access to the table is 
counted as a scan.



Reporting physical and logical I/O statistics 

800  Adaptive Server Enterprise

Use showplan, as described in Chapter 36, “Using set showplan,” to 
determine which access method is used.

Queries reporting a scan count of 1

Examples of queries that return a scan count of 1 are:

• A point query:

select title_id 
from titles
    where title_id = "T55522" 

• A range query:

select au_lname, au_fname
    from authors
    where au_lname > "Smith"
    and au_lname < "Smythe"

If the columns in the where clauses of these queries are indexed, the 
queries can use the indexes to scan the tables; otherwise, they perform 
table scans. In either case, they require only a single scan of the table to 
return the required rows.

Queries reporting a scan count of more than 1

Examples of queries that return larger scan count values are:

• Parallel queries that report a scan for each worker process.

• Queries that have indexed where clauses connected by or report a scan 
for each or clause. If the query uses the special OR strategy, it reports 
one scan for each value. If the query uses the OR strategy, it reports 
one scan for each index, plus one scan for the RID list access.

This query uses the special OR strategy, so it reports a scan count of 
2 if the titles table has indexes on title_id and another on pub_id:

select title_id 
from titles
    where title_id = "T55522" 
    or pub_id  = "P988"

Table: titles scan count 2,logical reads: (regular=149 apf=0 
total=149), physical reads: (regular=63 apf=80 total=143), apf IOs 
used=80
Table: Worktable1  scan count 1, logical reads: (regular=172 apf=0 
total=172), physical reads: (regular=0 apf=0 total=0), apf IOs



CHAPTER 35    Using the set statistics Commands

Performance & Tuning Guide 801

The I/O for the worktable is also reported.

• Nested-loop joins that scan inner tables once for each qualifying row 
in the outer table. In the following example, the outer table, 
publishers, has three publishers with the state “NY”, so the inner table, 
titles, reports a scan count of 3:

select title_id 
from titles t, publishers p
where t.pub_id = p.pub_id
    and p.state = "NY"

Table: titles scan count 3,logical reads: (regular=442 apf=0 
total=442), physical reads: (regular=53 apf=289 total=342), apf IOs 
used=289
Table: publishers scan count 1, logical reads: (regular=2 apf=0 
total=2), physical reads: (regular=2 apf=0 total=2), apf IOs used=0

This query performs a table scan on publishers, which occupies only 
2 data pages, so 2 physical I/Os are reported. There are 3 matching 
rows in publishers, so the query scans titles 3 times, using an index on 
pub_id.

• Merge joins with duplicate values in the outer table restart the scan for 
each duplicate value, and report an additional scan count each time.

Queries reporting scan count of 0

Multistep queries and certain other types of queries may report a scan 
count of 0. Some examples are:

• Queries that perform deferred updates 

• select...into queries

• Queries that create worktables

Relationship between physical and logical reads
If a page needs to be read from disk, it is counted as a physical read and a 
logical read. Logical I/O is always greater than or equal to physical I/O.

Logical I/O always reports 2K data pages. Physical reads and writes are 
reported in buffer-sized units. Multiple pages that are read in a single I/O 
operation are treated as a unit: they are read, written, and moved through 
the cache as a single buffer.



Reporting physical and logical I/O statistics 

802  Adaptive Server Enterprise

Logical reads, physical reads, and 2K I/O

With 2K I/O, the number of times that a page is found in cache for a query 
is logical reads minus physical reads. When the total number of logical 
reads and physical reads is the same for a table scan, it means that each 
page was read from disk and accessed only once during the query.

When pages for the query are found in cache, logical reads are higher than 
physical reads. This happens frequently with pages from higher levels of 
the index, since they are reused often, and tend to remain in cache. 

Physical reads and large I/O

Physical reads are not reported in pages, but in buffers, that is, the actual 
number of times Adaptive Server accesses the disk.

• If the query uses 16K I/O (showplan reports the I/O size), a single 
physical read brings 8 data pages into cache.

• If a query reports 100 16K physical reads, it has read 800 data pages 
into cache.

• If the query needs to scan each of those data pages, it reports 800 
logical reads.

• If a query, such as a join query, must read the page multiple times 
because other I/O has flushed the page from the cache, each physical 
read is counted.

Reads and writes on worktables

Reads and writes are reported for any worktable that needs to be created 
for the query. When a query creates more than one worktable, the 
worktables are numbered in statistics io output to correspond to the 
worktable numbers used in showplan output.

Effects of caching on reads

If you are testing a query and checking its I/O, and you execute the same 
query a second time, you may get surprising physical read values, 
especially if the query uses LRU replacement strategy.

The first execution reports a high number of physical reads; the second 
execution reports 0 physical reads.



CHAPTER 35    Using the set statistics Commands

Performance & Tuning Guide 803

The first time you execute the query, all the data pages are read into cache 
and remain there until other server processes flush them from the cache. 
Depending on the cache strategy used for the query, the pages may remain 
in cache for a longer or shorter period of time.

• If the query uses the fetch-and-discard (MRU) cache strategy, the 
pages are read into the cache at the wash marker.

In small or very active caches, pages read into the cache at the wash 
marker are flushed quickly.

• If the query uses LRU cache strategy to read the pages in at the top of 
the MRU end of the page chain, the pages remain in cache for longer 
periods of time. 

During actual use on a production system, a query can be expected to find 
some of the required pages already in the cache, from earlier access by 
other users, while other pages need to be read from disk. Higher levels of 
indexes, in particular, tend to be frequently used, and tend to remain in the 
cache.

If you have a table or index bound to a cache that is large enough to hold 
all the pages, no physical I/O takes place once the object has been read into 
cache. 

However, during query tuning on a development system with few users, 
you may want to clear the pages used for the query from cache in order to 
see the full physical I/O needed for a query. You can clear an object’s pages 
from cache by:

• Changing the cache binding for the object:

• If a table or index is bound to a cache, unbind it, and rebind it.

• If a table or index is not bound to a cache, bind it to any cache 
available, then unbind it.

You must have at least one user-defined cache to use this option.

• If you do not have any user-defined caches, you can execute a 
sufficient number of queries on other tables, so that the objects of 
interest are flushed from cache. If the cache is very large, this can be 
time-consuming.

• The only other alternative is rebooting the server.

For more information on testing and cache performance, see “Testing data 
cache performance” on page 336.



Reporting physical and logical I/O statistics 

804  Adaptive Server Enterprise

statistics io and merge joins
statistics io output does not include sort costs for merge joins. If you have 
allow resource limits enabled, the sort cost is not reported in the “Total 
estimated I/O cost” and “Total actual I/O cost” statistics. Only dbcc 
traceon(310) shows these costs.



Performance & Tuning Guide 805

C H A P T E R  3 6 Using set showplan

This chapter describes each message printed by the showplan utility. 
showplan displays the steps performed for each query in a batch, the keys 
and indexes used for the query, the order of joins, and special optimizer 
strategies. 

Using 
To see the query plan for a query, use:

set showplan on

To stop displaying query plans, use:

set showplan off

You can use showplan in conjunction with other set commands.

When you want to display showplans for a stored procedure, but not 
execute them, use the set fmtonly command.

See Chapter 21, “Query Tuning Tools,” for information on how options 
affect each other’s operation.

Note  Do not use set noexec with stored procedures - compilation and 
execution will not occur and you will not get the necessary output 

Topic Page
Using 805

Basic showplan messages 806

showplan messages for query clauses 814

Messages describing access methods, caching, and I/O cost 825

showplan messages for parallel queries 846

showplan messages for subqueries 851



Basic showplan messages 

806  Adaptive Server Enterprise

Basic showplan messages
This section describes showplan messages that are printed for most select, 
insert, update, and delete operations. 

This section describes showplan messages that are printed for most select, 
insert, update, and delete operations. 

Query plan delimiter message
QUERY PLAN FOR STATEMENT N (at line N)

Adaptive Server prints this line once for each query in a batch. Its main 
function is to provide a visual cue that separates one section of showplan 
output from the next section. Line numbers are provided to help you match 
query output with your input.

Step message
STEP N

showplan output displays “STEP N” for every query, where N is an integer, 
beginning with “STEP 1”. For some queries, Adaptive Server cannot   
retrieve the results in a single step and breaks the query plan into several 
steps. For example, if a query includes a group by clause, Adaptive Server 
breaks it into at least two steps:

• One step to select the qualifying rows from the table and to group 
them, placing the results in a worktable

• Another step to return the rows from the worktable

This example demonstrates a single-step query.

select au_lname, au_fname
from authors 
where city = "Oakland"

QUERY PLAN FOR STATEMENT 1 (at line 1).

    STEP 1
        The type of query is SELECT.

        FROM TABLE
            authors



CHAPTER 36    Using set showplan

Performance & Tuning Guide 807

        Nested iteration.
        Table Scan.
        Forward scan.
        Positioning at start of table.
        Using I/O Size 2 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.

Multiple-step queries are demonstrated following “GROUP BY message” 
on page 815.

Query type message
The type of query is query type. 

This message describes the type of query for each step. For most queries 
that require tuning, the value for query type is SELECT, INSERT, 
UPDATE, or DELETE. However, the query type can include any Transact-
SQL command that you issue while showplan is enabled. For example, 
here is output from a create index command:

STEP 1
        The type of query is CREATE INDEX.
        TO TABLE
            titleauthor

FROM TABLE message
FROM TABLE
    tablename [ correlation_name ]

This message indicates which table the query is reading from. The “FROM 
TABLE” message is followed on the next line by the table name. If the 
from clause includes correlation names for tables, these are printed after 
the table names. When queries create and use worktables, the “FROM 
TABLE” prints the name of the worktable.

When your query joins one or more tables, the order of “FROM TABLE” 
messages in the output shows you the order in which the query plan chosen 
by the optimizer joins the tables. This query displays the join order in a 
three-table join:

select a.au_id, au_fname, au_lname 
    from titles t, titleauthor ta, authors a
where a.au_id = ta.au_id 



Basic showplan messages 

808  Adaptive Server Enterprise

    and ta.title_id = t.title_id 
    and au_lname = "Bloom"

QUERY PLAN FOR STATEMENT 1 (at line 1).

    STEP 1
        The type of query is SELECT.

        FROM TABLE
            authors
            a
        Nested iteration.
        Index : au_lname_ix
        Forward scan.
        Positioning by key.
        Keys are:
            au_lname  ASC
        Using I/O Size 2 Kbytes for index leaf pages.
        With LRU Buffer Replacement Strategy for index leaf pages.
        Using I/O Size 2 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.

        FROM TABLE
            titleauthor
            ta
        Nested iteration.
        Index : at_ix
        Forward scan.
        Positioning by key.
        Index contains all needed columns. Base table will not be 
read.
        Keys are:
            au_id  ASC
        Using I/O Size 2 Kbytes for index leaf pages.
        With LRU Buffer Replacement Strategy for index leaf pages.

        FROM TABLE
            titles
            t
        Nested iteration.
        Using Clustered Index.
        Index : title_id_ix
        Forward scan.
        Positioning by key.
        Index contains all needed columns. Base table will not be 
read.
        Keys are:



CHAPTER 36    Using set showplan

Performance & Tuning Guide 809

            title_id  ASC
        Using I/O Size 2 Kbytes for index leaf pages.
        With LRU Buffer Replacement Strategy for index leaf pages.

The sequence of tables in this output shows the order chosen by the query 
optimizer, which is not the order in which they were listed in the from 
clause or where clause:

• First, the qualifying rows from the authors table are located (using the 
search clause on au_lname). 

• Then, those rows are joined with the titleauthor table (using the join 
clause on the au_id columns).

• Finally, the titles table is joined with the titleauthor table to retrieve the 
desired columns (using the join clause on the title_id columns).

FROM TABLE and referential integrity

When you insert or update rows in a table that has a referential integrity 
constraint, the showplan output includes “FROM TABLE” and other 
messages indicating the method used to access the referenced table. This 
salesdetail table definition includes a referential integrity check on the 
title_id column:

create table salesdetail (
        stor_id            char(4),
        ord_num            varchar(20),     
        title_id           tid     
            references titles(title_id), 
        qty                smallint,
        discount            float )

An insert to salesdetail, or an update on the title_id column, requires a 
lookup in the titles table:

insert salesdetail values ("S245", "X23A5", "T10", 
15, 40.25)

QUERY PLAN FOR STATEMENT 1 (at line 1).

    STEP 1
        The type of query is INSERT.
        The update mode is direct.

        FROM TABLE
            titles
        Using Clustered Index.
        Index : title_id_ix



Basic showplan messages 

810  Adaptive Server Enterprise

        Forward scan.
        Positioning by key.
        Keys are:
            title_id        
        Using I/O Size 2 Kbytes for index leaf pages.
        With LRU Buffer Replacement Strategy for index leaf pages.
        TO TABLE
            salesdetail

The clustered index on title_id_ix is used to verify the referenced value.

TO TABLE message
TO TABLE
    tablename

When a command such as insert, delete, update, or select into modifies or 
attempts to modify one or more rows of a table, the “TO TABLE” message 
displays the name of the target table. For operations that require an 
intermediate step to insert rows into a worktable, “TO TABLE” indicates 
that the results are going to the “Worktable” table rather than to a user 
table. This insert command shows the use of the “TO TABLE” statement:

insert sales 
values ("8042", "QA973", "12/7/95")
QUERY PLAN FOR STATEMENT 1 (at line 1).

    STEP 1
        The type of query is INSERT.
        The update mode is direct.
        TO TABLE
            sales

Here is a command that performs an update:

update publishers 
set city = "Los Angeles"
where pub_id = "1389"

 QUERY PLAN FOR STATEMENT 1 (at line 1).

   STEP 1
        The type of query is UPDATE.
        The update mode is direct.

        FROM TABLE
            publishers



CHAPTER 36    Using set showplan

Performance & Tuning Guide 811

        Nested iteration.
        Using Clustered Index.
        Index : publ_id_ix
        Forward scan.
        Positioning by key.
        Keys are:
            pub_id  ASC
        Using I/O Size 2 Kbytes for index leaf pages.
        With LRU Buffer Replacement Strategy for index leaf pages.
        Using I/O Size 2 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.
        TO TABLE
            publishers

The update query output indicates that the publishers table is used as both 
the “FROM TABLE” and the “TO TABLE”. In the case of update 
operations, the optimizer needs to read the table that contains the row(s) to 
be updated, resulting in the “FROM TABLE” statement, and then needs to 
modify the row(s), resulting in the “TO TABLE” statement.

Update mode messages
Adaptive Server uses different modes to perform update operations such 
as insert, delete, update, and select into. These methods are called direct 
update mode and deferred update mode.

Direct update mode
The update mode is direct.

Whenever possible, Adaptive Server uses direct update mode, since it is 
faster and generates fewer log records than deferred update mode. 

The direct update mode operates as follows:

1 Pages are read into the data cache. 

2 The changes are recorded in the transaction log.

3 The change is made to the data page.

4 The transaction log page is flushed to disk when the transaction 
commits.

For more information on the different types of direct updates, see “How 
Update Operations Are Performed” on page 112.



Basic showplan messages 

812  Adaptive Server Enterprise

Adaptive Server uses direct update mode for the following delete 
command: 

delete 
from authors 
where au_lname = "Willis" 
and au_fname = "Max"

QUERY PLAN FOR STATEMENT 1 (at line 1).

    STEP 1
        The type of query is DELETE.
        The update mode is direct.

        FROM TABLE
            authors
        Nested iteration.
        Using Clustered Index.
        Index : au_names_ix
        Forward scan.
        Positioning by key.
        Keys are:
            au_lname  ASC
            au_fname  ASC
        Using I/O Size 2 Kbytes for index leaf pages.
        With LRU Buffer Replacement Strategy for index leaf pages.
        Using I/O Size 2 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.
        TO TABLE
            authors

Deferred mode
The update mode is deferred.

In deferred mode, processing takes place in these steps:

1 For each qualifying data row, Adaptive Server writes transaction log 
records for one deferred delete and one deferred insert.

2 Adaptive Server scans the transaction log to process the deferred 
inserts, changing the data pages and any affected index pages.

Consider the following insert...select operation, where mytable is a heap 
without a clustered index or a unique nonclustered index:

insert mytable
    select title, price * 2
        from mytable



CHAPTER 36    Using set showplan

Performance & Tuning Guide 813

   QUERY PLAN FOR STATEMENT 1 (at line 1).

    STEP 1
        The type of query is INSERT.
        The update mode is deferred.

        FROM TABLE
            mytable
        Nested iteration.
        Table Scan.
        Forward scan.
        Positioning at start of table.
        Using I/O Size 2 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.
        TO TABLE
            mytable

This command copies every row in the table and appends the rows to the 
end of the table.

It needs to differentiate between the rows that are currently in the table 
(prior to the insert command) and the rows being inserted so that it does 
not get into a continuous loop of selecting a row, inserting it at the end of 
the table, selecting the row that it just inserted, and reinserting it.

The query processor solves this problem by performing the operation in 
two steps:

1 It scans the existing table and writes insert records into the transaction 
log for each row that it finds. 

2 When all the “old” rows have been read, it scans the log and performs 
the insert operations.

Deferred index and deferred varcol messages
The update mode is deferred_varcol.

The update mode is deferred_index.

These showplan messages indicate that Adaptive Server may process an 
update command as a deferred index update.

Adaptive Server uses deferred_varcol mode when updating one or more 
variable-length columns. This update may be done in deferred or direct 
mode, depending on information that is available only at runtime. 



showplan messages for query clauses 

814  Adaptive Server Enterprise

Adaptive Server uses deferred_index mode when the index is unique or 
may change as part of the update. In this mode, Adaptive Server deletes 
the index entries in direct mode but inserts them in deferred mode.

Optimized using messages
These messages are printed when special optimization options are used for 
a query.

Simulated statistics message
Optimized using simulated statistics.

The simulated statistics message is printed when:

• The set statistics simulate option was active when the query was 
optimized, and

• Simulated statistics have been loaded using optdiag.

Abstract plan messages
Optimized using an Abstract Plan (ID : N).

The message above is printed when an abstract plan was associated with 
the query. The variable prints the ID number of the plan. 

Optimized using the Abstract Plan in the PLAN clause.

The message above is printed when the plan clause is used for a select, 
update, or delete statement. See Creating and Using Abstract Plans in the 
Performance and Tuning Guide: Optimizing and Abstract Plans for more 
information.

showplan messages for query clauses
Use of certain Transact-SQL clauses, functions, and keywords is reflected 
in showplan output. These include group by, aggregates, distinct, order by, 
and select into clauses. 



CHAPTER 36    Using set showplan

Performance & Tuning Guide 815

Use of certain Transact-SQL clauses, functions, and keywords is reflected 
in showplan output. These include group by, aggregates, distinct, order by, 
and select into clauses. 

Table 36-1: showplan messages for various clauses

GROUP BY message
GROUP BY

This statement appears in the showplan output for any query that contains 
a group by clause. Queries that contain a group by clause are always 
executed in at least two steps: 

• One step selects the qualifying rows into a worktable and groups 
them.

Message Explanation

GROUP BY The query contains a group by statement.

The type of query is SELECT (into 
WorktableN).

The step creates a worktable to hold 
intermediate results.

Evaluate Grouped type AGGREGATE

Evaluate Ungrouped type AGGREGATE.

The query contains an aggregate function.

“Grouped” indicates that there is a grouping 
column for the aggregate (vector aggregate).

“Ungrouped” indicates that there is no 
grouping column (scalar aggregate). The 
variable indicates the type of aggregate.

Evaluate Grouped ASSIGNMENT 
OPERATOR

Evaluate Ungrouped ASSIGNMENT 
OPERATOR

The query includes compute (ungrouped) or 
compute by (grouped).

WorktableN created for DISTINCT. The query contains the distinct keyword in the 
select list and requires a sort to eliminate 
duplicates.

WorktableN created for ORDER BY. The query contains an order by clause that 
requires ordering rows.

This step involves sorting. The query includes on order by or distinct 
clause, and results must be sorted.

Using GETSORTED The query created a worktable and sorted it. 
GETSORTED is a particular technique used 
to return the rows.

The sort for WorktableN is done in Serial.

The sort for WorktableN is done in Parallel.

Indicates how the sort for a worktable is 
performed.



showplan messages for query clauses 

816  Adaptive Server Enterprise

• Another step returns the rows from the worktable.

Selecting into a worktable
The type of query is SELECT (into WorktableN).

Queries using a group by clause first put qualifying results into a 
worktable. The data is grouped as the table is generated. A second step 
returns the grouped rows. 

The following example returns a list of all cities and indicates the number 
of authors that live in each city. The query plan shows the two steps: the 
first step selects the rows into a worktable, and the second step retrieves 
the grouped rows from the worktable:

select city, total_authors = count(*) 
    from authors 
    group by city

QUERY PLAN FOR STATEMENT 1 (at line 1).

    STEP 1
        The type of query is SELECT (into Worktable1).
        GROUP BY
        Evaluate Grouped COUNT AGGREGATE.

        FROM TABLE
            authors
        Nested iteration.
        Table Scan.
        Forward scan.
        Positioning at start of table.
        Using I/O Size 16 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.
        TO TABLE
            Worktable1.

    STEP 2
        The type of query is SELECT.

        FROM TABLE
            Worktable1.
        Nested iteration.
        Table Scan.
        Forward scan.
        Positioning at start of table.



CHAPTER 36    Using set showplan

Performance & Tuning Guide 817

        Using I/O Size 16 Kbytes for data pages.
        With MRU Buffer Replacement Strategy for data pages. 

Grouped aggregate message
Evaluate Grouped type AGGREGATE 

This message is printed by queries that contain aggregates and group by or 
compute by.

The variable indicates the type of aggregate—COUNT, SUM OR 
AVERAGE, MINIMUM, or MAXIMUM. 

avg reports both COUNT and SUM OR AVERAGE; sum reports SUM OR 
AVERAGE. Two additional types of aggregates (ONCE and ANY) are 
used internally by Adaptive Server while processing subqueries.

See “Internal Subquery Aggregates” on page 864.

Grouped aggregates and group by

When an aggregate function is combined with group by, the result is called 
a grouped aggregate, or vector aggregate. The query results have one row 
for each value of the grouping column or columns.

The following example illustrates a grouped aggregate:

select type, avg(advance) 
from titles 
group by type

 QUERY PLAN FOR STATEMENT 1 (at line 1).

   STEP 1
        The type of query is SELECT (into Worktable1).
        GROUP BY
        Evaluate Grouped COUNT AGGREGATE.
        Evaluate Grouped SUM OR AVERAGE AGGREGATE.

        FROM TABLE
            titles
        Nested iteration.
        Table Scan.
        Forward scan.
        Positioning at start of table.
        Using I/O Size 16 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.



showplan messages for query clauses 

818  Adaptive Server Enterprise

        TO TABLE
            Worktable1.

    STEP 2
        The type of query is SELECT.

        FROM TABLE
            Worktable1.
        Nested iteration.
        Table Scan.
        Forward scan.
        Positioning at start of table.
        Using I/O Size 16 Kbytes for data pages.
        With MRU Buffer Replacement Strategy for data pages.

In the first step, the worktable is created, and the aggregates are computed. 
The second step selects the results from the worktable.

compute by message
Evaluate Grouped ASSIGNMENT OPERATOR

Queries using compute by display the same aggregate messages as group 
by, with the “Evaluate Grouped ASSIGNMENT OPERATOR” message.

The values are placed in a worktable in one step, and the computation of 
the aggregates is performed in a second step. This query uses type and 
advance, like the group by query example above:

select type, advance  from titles
having title like "Compu%"
order by type
compute avg(advance) by type

In the showplan output, the computation of the aggregates takes place in 
step 2:

QUERY PLAN FOR STATEMENT 1 (at line 1).

    STEP 1
        The type of query is INSERT.
        The update mode is direct.
        Worktable1 created for ORDER BY.

        FROM TABLE
            titles
        Nested iteration.



CHAPTER 36    Using set showplan

Performance & Tuning Guide 819

        Index : title_ix
        Forward scan.
        Positioning by key.
        Keys are:
            title  ASC
        Using I/O Size 2 Kbytes for index leaf pages.
        With LRU Buffer Replacement Strategy for index leaf pages.
        Using I/O Size 2 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.
        TO TABLE
            Worktable1.

    STEP 2
        The type of query is SELECT.
        Evaluate Grouped SUM OR AVERAGE AGGREGATE.
        Evaluate Grouped COUNT AGGREGATE.
        Evaluate Grouped ASSIGNMENT OPERATOR.
        This step involves sorting.

        FROM TABLE
            Worktable1.
        Using GETSORTED
        Table Scan.
        Forward scan.
        Positioning at start of table.
        Using I/O Size 16 Kbytes for data pages.
        With MRU Buffer Replacement Strategy for data pages.

Ungrouped aggregate message
Evaluate Ungrouped type AGGREGATE.

This message is reported by:

• Queries that use aggregate functions, but do not use group by

• Queries that use compute 

Ungrouped aggregates

When an aggregate function is used in a select statement that does not 
include a group by clause, it produces a single value. The query can operate 
on all rows in a table or on a subset of the rows defined by a where clause.



showplan messages for query clauses 

820  Adaptive Server Enterprise

When an aggregate function produces a single value, the function is called 
a scalar aggregate, or an ungrouped aggregate. Here is showplan output 
for an ungrouped aggregate:

select avg(advance) 
from titles 
where type = "business"

QUERY PLAN FOR STATEMENT 1 (at line 1).

    STEP 1
        The type of query is SELECT.
        Evaluate Ungrouped COUNT AGGREGATE.
        Evaluate Ungrouped SUM OR AVERAGE AGGREGATE.

        FROM TABLE
            titles
        Nested iteration.
        Index : type_price
        Forward scan.
        Positioning by key.
        Keys are:
            type  ASC
        Using I/O Size 2 Kbytes for index leaf pages.
        With LRU Buffer Replacement Strategy for index leaf pages.
        Using I/O Size 2 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.

    STEP 2
        The type of query is SELECT.

This is a two-step query, similar to the showplan from the group by query 
shown earlier.

Since the scalar aggregate returns a single value, Adaptive Server uses an 
internal variable to compute the result of the aggregate function, as the 
qualifying rows from the table are evaluated. After all rows from the table 
have been evaluated (step 1), the final value from the variable is selected 
(step 2) to return the scalar aggregate result.

compute messages
Evaluate Ungrouped ASSIGNMENT OPERATOR

When a query includes compute to compile a scalar aggregate, showplan 
prints the “Evaluate Ungrouped ASSIGNMENT OPERATOR” message. 
This query computes an average for the entire result set:



CHAPTER 36    Using set showplan

Performance & Tuning Guide 821

select type, advance from titles
where title like "Compu%"
order by type
compute avg(advance)

The showplan output shows that the computation of the aggregate values 
takes place in the step 2:

QUERY PLAN FOR STATEMENT 1 (at line 1).

    STEP 1
        The type of query is INSERT.
        The update mode is direct.
        Worktable1 created for ORDER BY.

        FROM TABLE
            titles
        Nested iteration.
        Index : title_ix
        Forward scan.
        Positioning by key.
        Keys are:
            title  ASC
        Using I/O Size 2 Kbytes for index leaf pages.
        With LRU Buffer Replacement Strategy for index leaf pages.
        Using I/O Size 2 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.
        TO TABLE
            Worktable1.

    STEP 2
        The type of query is SELECT.
        Evaluate Ungrouped SUM OR AVERAGE AGGREGATE.
        Evaluate Ungrouped COUNT AGGREGATE.
        Evaluate Ungrouped ASSIGNMENT OPERATOR.
        This step involves sorting.

        FROM TABLE
            Worktable1.
        Using GETSORTED
        Table Scan.
        Forward scan.
        Positioning at start of table.
        Using I/O Size 16 Kbytes for data pages.
        With MRU Buffer Replacement Strategy for data pages.



showplan messages for query clauses 

822  Adaptive Server Enterprise

messages for order by and distinct
Some queries that include distinct use a sort step to enforce the uniqueness 
of values in the result set. distinct queries and order by queries do not 
require the sorting step when the index used to locate rows supports the 
order by or distinct clause.

For those cases where the sort is performed, the distinct keyword in a select 
list and the order by clause share some showplan messages:

• Each generates a worktable message.

• The message “This step involves sorting.”.

• The message “Using GETSORTED”.

Worktable message for distinct
WorktableN created for DISTINCT.

A query that includes the distinct keyword excludes all duplicate rows from 
the results so that only unique rows are returned. When there is no useful 
index, Adaptive Server performs these steps to process queries that 
include distinct: 

1 It creates a worktable to store all of the results of the query, including 
duplicates. 

2 It sorts the rows in the worktable, discards the duplicate rows, and 
then returns the rows.

Subqueries with existence joins sometimes create a worktable and sort it 
to remove duplicate rows.

See “Flattening in, any, and exists subqueries” on page 145 for more 
information.

The “WorktableN created for DISTINCT” message appears as part of 
“Step 1” in showplan output. “Step 2” for distinct queries includes the 
messages “This step involves sorting” and “Using GETSORTED”. See 
“Sorting messages” on page 812.

select distinct city
from authors

QUERY PLAN FOR STATEMENT 1 (at line 1).

    STEP 1
        The type of query is INSERT.
        The update mode is direct.



CHAPTER 36    Using set showplan

Performance & Tuning Guide 823

        Worktable1 created for DISTINCT.

        FROM TABLE
            authors
        Nested iteration.
        Table Scan.
        Forward scan.
        Positioning at start of table.
        Using I/O Size 16 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.
        TO TABLE
            Worktable1.

    STEP 2
        The type of query is SELECT.
        This step involves sorting.

        FROM TABLE
            Worktable1.
        Using GETSORTED
        Table Scan.
        Forward scan.
        Positioning at start of table.
        Using I/O Size 16 Kbytes for data pages.
        With MRU Buffer Replacement Strategy for data pages.

Worktable message for order by
WorktableN created for ORDER BY.

Queries that include an order by clause often require the use of a temporary 
worktable. When the optimizer cannot use an index to order the result 
rows, it creates a worktable to sort the result rows before returning them. 
This example shows an order by clause that creates a worktable because 
there is no index on the city column:

select * 
from authors 
order by city

QUERY PLAN FOR STATEMENT 1 (at line 1).

    STEP 1
        The type of query is INSERT.
        The update mode is direct.
        Worktable1 created for ORDER BY.



showplan messages for query clauses 

824  Adaptive Server Enterprise

        FROM TABLE
            authors
        Nested iteration.
        Table Scan.
        Forward scan.
        Positioning at start of table.
        Using I/O Size 16 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.
        TO TABLE
            Worktable1.
 
    STEP 2
        The type of query is SELECT.
        This step involves sorting.

        FROM TABLE
            Worktable1.
        Using GETSORTED
        Table Scan.
        Forward scan.
        Positioning at start of table.
        Using I/O Size 16 Kbytes for data pages.
        With MRU Buffer Replacement Strategy for data pages.

order by queries and indexes

Certain queries using order by do not require a sorting step, depending on 
the type of index used to access the data.

See Chapter 8, “Indexing for Performance,” for more information.

Sorting messages
These messages report on sorts.

Step involves sorting message
This step involves sorting.

This showplan message indicates that the query must sort the intermediate 
results before returning them to the user. Queries that use distinct or that 
have an order by clause not supported by an index require an intermediate 
sort. The results are put into a worktable, and the worktable is then sorted.



CHAPTER 36    Using set showplan

Performance & Tuning Guide 825

For examples of this message, see “Worktable message for distinct” on 
page 810 and “Worktable message for order by” on page 811.

GETSORTED message
Using GETSORTED

This statement indicates one of the ways that Adaptive Server returns 
result rows from a table.

In the case of “Using GETSORTED,” the rows are returned in sorted 
order. However, not all queries that return rows in sorted order include this 
step. For example, order by queries whose rows are retrieved using an 
index with a matching sort sequence do not require “GETSORTED.” 

The “Using GETSORTED” method is used when Adaptive Server must 
first create a temporary worktable to sort the result rows and then return 
them in the proper sorted order. The examples for distinct on and for order 
by on show the “Using GETSORTED” message.

Serial or parallel sort message
The sort for WorktableN is done in Serial.

The sort for WorktableN is done in Parallel.

These messages indicate whether a serial or parallel sort was performed 
for a worktable. They are printed after the sort manager determines 
whether a given sort should be performed in parallel or in serial.

If set noexec is in effect, the worktable is not created, so the sort is not 
performed, and no message is displayed. 

Messages describing access methods, caching, and 
I/O cost

showplan output provides information about access methods and caching 
strategies.



Messages describing access methods, caching, and I/O cost 

826  Adaptive Server Enterprise

Auxiliary scan descriptors message
Auxiliary scan descriptors required: N

When a query involving referential integrity requires a large number of 
user or system tables, including references to other tables to check 
referential integrity, this showplan message indicates the number of 
auxiliary scan descriptors needed for the query. If a query does not exceed 
the number of pre allocated scan descriptors allotted for the session, the 
“Auxiliary scan descriptors required” message is not printed.

The following example shows partial output for a delete from the 
employees table, which is referenced by 30 foreign tables:

delete employees
where empl_id = "222-09-3482"

QUERY PLAN FOR STATEMENT 1 (at line 1).

Auxiliary scan descriptors required: 4

    STEP 1
        The type of query is DELETE.
        The update mode is direct.

        FROM TABLE
            employees
        Nested iteration.
        Using Clustered Index.
        Index : employees_empl_i_10080066222
        Forward scan.
        Positioning by key.
        Keys are:
            empl_id  ASC
        Using I/O Size 2 Kbytes for index leaf pages.
        With LRU Buffer Replacement Strategy for index leaf pages.
        Using I/O Size 2 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.

        FROM TABLE
            benefits
        Index : empl_id_ix
        Forward scan.
        Positioning by key.
        Index contains all needed columns. Base table will not be 
read.
        Keys are:



CHAPTER 36    Using set showplan

Performance & Tuning Guide 827

            empl_id  ASC
        Using I/O Size 2 Kbytes for index leaf pages.
        With LRU Buffer Replacement Strategy for index leaf pages.
        .
        .
        .
        FROM TABLE
            dependents
        Index : empl_id_ix
        Forward scan.
        Positioning by key.
        Index contains all needed columns. Base table will not be 
read.
        Keys are:
            empl_id  ASC
        Using I/O Size 2 Kbytes for index leaf pages.
        With LRU Buffer Replacement Strategy for index leaf pages.
        TO TABLE
            employees

Nested iteration message
Nested Iteration.

This message indicates one or more loops through a table to return rows. 
Even the simplest access to a single table is an iteration, as shown here:

select * from publishers
QUERY PLAN FOR STATEMENT 1 (at line 1).

    STEP 1
        The type of query is SELECT.

        FROM TABLE
            publishers
        Nested iteration.
        Table Scan.
        Forward scan.
        Positioning at start of table.
        Using I/O Size 2 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.

For queries that perform nested-loop joins, access to each table is nested 
within the scan of the outer table.

See “Nested-Loop Joins” on page 128 for more information. 



Messages describing access methods, caching, and I/O cost 

828  Adaptive Server Enterprise

Merge join messages
Merge join (outer table).

Merge join (inner table).

Merge join messages indicate the use of a merge join and the table’s 
position (inner or outer) with respect to the other table in the merge join. 
Merge join messages appear immediately after the table name in the 

FROM TABLE

 output. This query performs a mixture of merge and nested-loop joins:

select pub_name, au_lname, price
from titles t, authors a, titleauthor ta,
            publishers p
where t.title_id = ta.title_id
    and a.au_id = ta.au_id
    and p.pub_id = t.pub_id
    and type = ’business’
    and price < $25

Messages for merge joins are printed in bold type in the showplan output:

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 3 worker 
processes.

    STEP 1
        The type of query is INSERT.
        The update mode is direct.
        Executed in parallel by coordinating process and 3 
worker processes.

        FROM TABLE
            titles
            t
        Merge join (outer table).
        Parallel data merge using 3 worker processes.
        Using Clustered Index.
        Index : title_id_ix
        Forward scan.
        Positioning by key.
        Keys are:
            title_id  ASC
        Using I/O Size 16 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.



CHAPTER 36    Using set showplan

Performance & Tuning Guide 829

        FROM TABLE
            titleauthor
            ta
        Merge join (inner table).
        Index : ta_ix
        Forward scan.
        Positioning by key.
        Index contains all needed columns. Base table will 
not be read.
        Keys are:
            title_id  ASC
        Using I/O Size 16 Kbytes for index leaf pages.
        With LRU Buffer Replacement Strategy for index leaf 
pages.

        FROM TABLE
            authors
            a
        Nested iteration.
        Index : au_id_ix
        Forward scan.
        Positioning by key.
        Keys are:
            au_id  ASC
        Using I/O Size 2 Kbytes for index leaf pages.
        With LRU Buffer Replacement Strategy for index leaf 
pages.
        Using I/O Size 2 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.
        TO TABLE
            Worktable1.
        Worktable1 created for sort merge join.

    STEP 2
        The type of query is INSERT.
        The update mode is direct.
        Executed by coordinating process.

        FROM TABLE
            publishers
            p
        Nested iteration.
        Table Scan.
        Forward scan.
        Positioning at start of table.



Messages describing access methods, caching, and I/O cost 

830  Adaptive Server Enterprise

        Using I/O Size 2 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.
        TO TABLE
            Worktable2.
        Worktable2 created for sort merge join.

    STEP 3
        The type of query is SELECT.
        Executed by coordinating process.

        FROM TABLE
            Worktable1.
        Merge join (outer table).
        Serial data merge.
        Table Scan.
        Forward scan.
        Positioning at start of table.
        Using I/O Size 2 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.

        FROM TABLE
            Worktable2.
        Merge join (inner table).
        Table Scan.
        Forward scan.
        Positioning at start of table.
        Using I/O Size 2 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.

Total estimated I/O cost for statement 1 (at line 1): 4423.

The sort for Worktable1 is done in Serial

The sort for Worktable2 is done in Serial

This query performed the following joins:

• A full-merge join on titles and titleauthor, with titles as the outer table

• A nested-loop join with the authors table

• A sort-merge join with the publishers table

Worktable message
WorktableN created for sort merge join.



CHAPTER 36    Using set showplan

Performance & Tuning Guide 831

If a merge join requires a sort for a table, a worktable is created and sorted 
into order by the join key. A later step in the query uses the worktable as 
either an inner table or outer table.

Table scan message
Table Scan.

This message indicates that the query performs a table scan. The following 
query shows a typical table scan:

select au_lname, au_fname 
from authors

QUERY PLAN FOR STATEMENT 1 (at line 1).

    STEP 1
        The type of query is SELECT.

        FROM TABLE
            authors
        Nested iteration.
        Table Scan.
        Forward scan.
        Positioning at start of table.
        Using I/O Size 16 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data 
pages.

Clustered index message
Using Clustered Index.

This showplan message indicates that the query optimizer chose to use the 
clustered index on a table to retrieve the rows. The following query shows 
the clustered index being used to retrieve the rows from the table:

select title_id, title 
from titles 
where title_id like "T9%"

QUERY PLAN FOR STATEMENT 1 (at line 1).

    STEP 1
        The type of query is SELECT.



Messages describing access methods, caching, and I/O cost 

832  Adaptive Server Enterprise

        FROM TABLE
            titles
        Nested iteration.
        Using Clustered Index.
        Index : title_id_ix
        Forward scan.
        Positioning by key.
        Keys are:
            title_id  ASC
        Using I/O Size 16 Kbytes for index leaf pages.
        With LRU Buffer Replacement Strategy for index 
leaf pages.
        Using I/O Size 16 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data 
pages.

Index name message
Index : indexname

This message indicates that the query is using an index to retrieve the 
rows. The message includes the index name.

If the line above this message in the output is “Using Clustered Index,” the 
index is clustered; otherwise, the index is nonclustered.

The keys used to position the search are reported in the “Keys are...” 
message. 

See “Keys message” on page 838.

This query illustrates the use of a nonclustered index to find and return 
rows:

select au_id, au_fname, au_lname
from authors
where au_fname = "Susan"

QUERY PLAN FOR STATEMENT 1 (at line 1).

    STEP 1
        The type of query is SELECT.

        FROM TABLE
            authors
        Nested iteration.
        Index : au_names_ix
        Forward scan.



CHAPTER 36    Using set showplan

Performance & Tuning Guide 833

        Positioning by key.
        Keys are:
            au_fname  ASC
        Using I/O Size 16 Kbytes for index leaf pages.
        With LRU Buffer Replacement Strategy for index 
leaf pages.
        Using I/O Size 2 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data 
pages.

Scan direction messages
Forward scan.

Backward scan.

These messages indicate the direction of a table or index scan.

The scan direction depends on the ordering specified when the indexes 
were created and the order specified for columns in the order by clause.

Backward scans cam be used when the order by clause contains the asc or 
desc qualifiers on index keys, in the exact opposite of those in the create 
index clause. The configuration parameter allow backward scans must be 
set to 1 to allow backward scans. 

The scan-direction messages are followed by positioning messages. Any 
keys used in the query are followed by “ASC” or “DESC”. The forward 
and backward scan messages and positioning messages describe whether 
a scan is positioned:

• At the first matching index key, at the start of the table, or at the first 
page of the leaf-level pages chain, and searching toward end of the 
index, or

• At the last matching index key, or end of the table, or last page of the 
leaf-level page chain, and searching toward the beginning.

If allow backward scans is set to 0, all accesses use forward scans.

This example uses a backward scan:

select *
from sysmessages 
where description like "%Optimized using%"
order by error desc

QUERY PLAN FOR STATEMENT 1 (at line 1).



Messages describing access methods, caching, and I/O cost 

834  Adaptive Server Enterprise

    STEP 1
        The type of query is SELECT.

        FROM TABLE
            sysmessages
        Nested iteration.
        Table Scan.
        Backward scan.
        Positioning at end of table.
        Using I/O Size 2 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data 
pages.

This query using the max aggregate also uses a backward scan:

select max(error) from sysmessages
QUERY PLAN FOR STATEMENT 1 (at line 1).

    STEP 1
        The type of query is SELECT.
        Evaluate Ungrouped MAXIMUM AGGREGATE.

        FROM TABLE
            sysmessages
        Nested iteration.
        Index : ncsysmessages
        Backward scan.
        Positioning by key.
        Scanning only up to the first qualifying row.
        Index contains all needed columns. Base table 
will not be read.
        Keys are:
            error  ASC
        Using I/O Size 2 Kbytes for index leaf pages.
        With LRU Buffer Replacement Strategy for index 
leaf pages.

    STEP 2
        The type of query is SELECT.

Positioning messages
Positioning at start of table.

Positioning at end of table.



CHAPTER 36    Using set showplan

Performance & Tuning Guide 835

Positioning by Row IDentifier (RID).

Positioning by key.

Positioning at index start.

Positioning at index end.

These messages describe how access to a table or to the leaf level of an 
index takes place. The choices are:

Positioning at start of table.

Indicates a forward table scan, starting at the first row of the table. 

Positioning at end of table.

Indicates a backward table scan, starting at the last row of the table. 
Positioning by Row IDentifier (RID).

It is printed after the OR strategy has created a dynamic index of row 
IDs.

See “Dynamic index message (OR strategy)” on page 839 for more 
information about how row IDs are used.

Positioning by key.

Indicates that the index is used to position the search at the first 
qualifying row. It is printed for:

• Direct access an individual row in a point query

• Range queries that perform matching scans of the leaf level of an 
index

• Range queries that scan the data pages when there is a clustered 
index on an allpages-locked table

• Indexed accesses to inner tables in joins

Positioning at index start. 
Positioning at index end.

These messages indicate a nonmatching index scan, used when the 
index covers the query. Matching scans are positioned by key.

Forward scans are positioned at the start of the index; backward scans 
are positioned at the end of the index.



Messages describing access methods, caching, and I/O cost 

836  Adaptive Server Enterprise

Scanning messages
Scanning only the last page of the table.

This message indicates that a query containing an ungrouped (scalar) max 
aggregate can access only the last page of the table to return the value.

Scanning only up to the first qualifying row.

This message appears only for queries that use an ungrouped (scalar) min 
aggregate. The aggregated column needs to be the leading column in the 
index.

Note  For indexes with the leading key created in descending order, the use 
of the messages for min and max aggregates is reversed:

min uses “Positioning at index end”

while max prints “Positioning at index start” and “Scanning only up to the 
first qualifying row.”

See Performance and Tuning Guide: Optimizing and Abstract Plans for 
more information.

Index covering message
Index contains all needed columns. Base table will 
not be read.

This message indicates that an index covers the query. It is printed both for 
matching and nonmatching scans. Other messages in showplan output help 
distinguish these access methods:

• A matching scan reports “Positioning by key.”

A nonmatching scan reports “Positioning at index start,” or 
“Positioning at index end” since a nonmatching scan must read the 
entire leaf level of the index.

• If the optimizer uses a matching scan, the “Keys are...” message 
reports the keys used to position the search. This message is not 
included for a nonmatching scan.

The next query shows output for a matching scan, using a composite, 
nonclustered index on au_lname, au_fname, au_id: 

select au_fname, au_lname, au_id



CHAPTER 36    Using set showplan

Performance & Tuning Guide 837

from authors
where au_lname = "Williams"

QUERY PLAN FOR STATEMENT 1 (at line 1).

    STEP 1
        The type of query is SELECT.

        FROM TABLE
            authors
        Nested iteration.
        Index : au_names_id
        Forward scan.
        Positioning by key.
        Index contains all needed columns. Base table 
will not be read.
        Keys are:
            au_lname  ASC
        Using I/O Size 2 Kbytes for index leaf pages.
        With LRU Buffer Replacement Strategy for index 
leaf pages.

With the same composite index on au_lname, au_fname, au_id, this query 
performs a nonmatching scan, since the leading column of the index is not 
included in the where clause:

select au_fname, au_lname, au_id
from authors
where au_id = "A93278"

QUERY PLAN FOR STATEMENT 1 (at line 1).

       STEP 1
        The type of query is SELECT.

        FROM TABLE
            authors
        Nested iteration.
        Index : au_names_id
        Forward scan.
        Positioning at index start.
        Index contains all needed columns. Base table 
will not be read.
        Using I/O Size 16 Kbytes for index leaf pages.
        With LRU Buffer Replacement Strategy for index 
leaf pages.



Messages describing access methods, caching, and I/O cost 

838  Adaptive Server Enterprise

Note that the showplan output does not contain a “Keys are...” message, 
and the positioning message is “Positioning at index start.” This query 
scans the entire leaf level of the nonclustered index, since the rows are not 
ordered by the search argument.

Keys message
Keys are: 
    key [ ASC | DESC ] ...

This message is followed by the index key(s) used when Adaptive Server 
uses an index scan to locate rows. The index ordering is printed after each 
index key, showing the order, ASC for ascending or DESC for descending, 
used when the index was created. For composite indexes, all leading keys 
in the where clauses are listed.

Matching index scans message
Using N Matching Index Scans.

This showplan message indicates that a query using or clauses or an 
in (values list) clause uses multiple index scans (also called the “special 
OR strategy”) instead of using a dynamic index.

Multiple matching scans can be used only when there is no possibility that 
the or clauses or in list items will match duplicate rows – that is, when there 
is no need to build the worktable and perform the sort to remove the 
duplicates.

For more information on how queries containing or are processed, see 
Performance and Tuning Guide: Optimizing and Abstract Plans.

For queries that use multiple matching scans, different indexes may be 
used for some of the scans, so the messages that describe the type of index, 
index positioning, and keys used are printed for each scan.

The following example uses multiple matching index scans to return rows:

select title
    from titles
    where title_id in ("T18168","T55370")

QUERY PLAN FOR STATEMENT 1 (at line 1).

    STEP 1



CHAPTER 36    Using set showplan

Performance & Tuning Guide 839

        The type of query is SELECT.

        FROM TABLE
            titles
        Nested iteration.
        Using 2 Matching Index Scans
        Index : title_id_ix
        Forward scan.
        Positioning by key.
        Keys are:
            title_id
        Index : title_id_ix
        Forward scan.
        Positioning by key.
        Keys are:
            title_id
        Using I/O Size 2 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.

Dynamic index message (OR strategy)
Using Dynamic Index.

The term dynamic index refers to a worktable of row IDs used to process 
some queries that use or clauses or an in (values list) clause. When the OR 
strategy is used, Adaptive Server builds a list of all the row IDs that match 
the query, sorts the list to remove duplicates, and uses the list to retrieve 
the rows from the table.

For a full explanation, see Performance and Tuning Guide: Optimizing 
and Abstract Plans.

For a query with two SARGs that match the two indexes (one on 
au_fname, one on au_lname), the showplan output below includes three 
“FROM TABLE” sections: 

• The first two “FROM TABLE” blocks in the output show the two 
index accesses, one for the first name “William” and one for the last 
name “Williams”.

These blocks include the output “Index contains all needed columns,” 
since the row IDs can be retrieved from the leaf level of a 
nonclustered index.

• The final “FROM TABLE” block shows the “Using Dynamic Index” 
output and “Positioning by Row IDentifier (RID).”



Messages describing access methods, caching, and I/O cost 

840  Adaptive Server Enterprise

In this step, the dynamic index is used to access the data pages to 
locate the rows to be returned.

select au_id, au_fname, au_lname
from authors
where au_fname = "William"
    or au_lname = "Williams"

QUERY PLAN FOR STATEMENT 1 (at line 1).

    STEP 1
        The type of query is SELECT.

        FROM TABLE
            authors
        Nested iteration.
        Index : au_fname_ix
        Forward scan.
        Positioning by key.
        Index contains all needed columns. Base table will not be read.
        Keys are:
            au_fname  ASC
        Using I/O Size 2 Kbytes for index leaf pages.
        With LRU Buffer Replacement Strategy for index leaf pages.

        FROM TABLE
            authors
        Nested iteration.
        Index : au_lname_ix
        Forward scan.
        Positioning by key.
        Index contains all needed columns. Base table will not be read.
        Keys are:
            au_lname  ASC
        Using I/O Size 2 Kbytes for index leaf pages.
        With LRU Buffer Replacement Strategy for index leaf pages.

        FROM TABLE
            authors
        Nested iteration.
        Using Dynamic Index.
        Forward scan.
        Positioning by Row IDentifier (RID).
        Using I/O Size 2 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.



CHAPTER 36    Using set showplan

Performance & Tuning Guide 841

Reformatting Message
WorktableN Created for REFORMATTING.

When joining two or more tables, Adaptive Server may choose to use a 
reformatting strategy to join the tables when the tables are large and the 
tables in the join do not have a useful index. 

The reformatting strategy:

• Inserts the needed columns from qualifying rows of the smaller of the 
two tables into a worktable.

• Creates a clustered index on the join column(s) of the worktable. The 
index is built using keys to join the worktable to the other table in the 
query.

• Uses the clustered index in the join to retrieve the qualifying rows 
from the table. 

See Performance and Tuning Guide: Optimizing and Abstract Plans for 
more information on reformatting.

The following example illustrates the reformatting strategy. It performs a 
three-way join on the titles, titleauthor, and titles tables. There are no 
indexes on the join columns in the tables (au_id and title_id), so Adaptive 
Server uses the reformatting strategy on two of the tables:

select au_lname, title
from authors a, titleauthor ta, titles t
where a.au_id = ta.au_id
and t.title_id = ta.title_id

QUERY PLAN FOR STATEMENT 1 (at line 1).

STEP 1
        The type of query is INSERT.
        The update mode is direct.
        Worktable1 created for REFORMATTING.

        FROM TABLE
            titleauthor
            ta
        Nested iteration.
        Table Scan.
        Forward scan.
        Positioning at start of table.
        Using I/O Size 2 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.



Messages describing access methods, caching, and I/O cost 

842  Adaptive Server Enterprise

        TO TABLE
            Worktable1.

    STEP 2
        The type of query is INSERT.
        The update mode is direct.
        Worktable2 created for REFORMATTING.

        FROM TABLE
            authors
            a
        Nested iteration.
        Table Scan.
        Forward scan.
        Positioning at start of table.
        Using I/O Size 2 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.
        TO TABLE
            Worktable2.

    STEP 3
        The type of query is SELECT.

        FROM TABLE
            titles
            t
        Nested iteration.
        Table Scan.
        Forward scan.
        Positioning at start of table.
        Using I/O Size 2 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.

        FROM TABLE
            Worktable1.
        Nested iteration.
        Using Clustered Index.
        Forward scan.
        Positioning by key.
        Using I/O Size 2 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.

        FROM TABLE
            Worktable2.
        Nested iteration.
        Using Clustered Index.



CHAPTER 36    Using set showplan

Performance & Tuning Guide 843

        Forward scan.
        Positioning by key.
        Using I/O Size 2 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.

This query was run with set sort_merge off. When sort-merge joins are 
enabled, this query chooses a sort-merge join instead.

Trigger Log Scan Message
Log Scan.

When an insert, update, or delete statement causes a trigger to fire, and the 
trigger includes access to the inserted or deleted tables, these tables are 
built by scanning the transaction log.

This example shows the output for the update to the titles table when this 
insert fires the totalsales_trig trigger on the salesdetail table:

insert salesdetail values (’7896’, ’234518’, 
’TC3218’, 75, 40)

QUERY PLAN FOR STATEMENT 1 (at line 1).

    STEP 1
        The type of query is UPDATE.
        The update mode is direct.

        FROM TABLE
            titles
        Nested iteration.
        Table Scan.
        Forward scan.
        Positioning at start of table.
        Using I/O Size 2 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.

        FROM TABLE
            salesdetail
        EXISTS TABLE : nested iteration.
        Log Scan.
        Forward scan.
        Positioning at start of table.

        Run subquery 1 (at nesting level 1).
        Using I/O Size 2 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.



Messages describing access methods, caching, and I/O cost 

844  Adaptive Server Enterprise

        TO TABLE
            titles

NESTING LEVEL 1 SUBQUERIES FOR STATEMENT 4.

  QUERY PLAN FOR SUBQUERY 1 (at nesting level 1 and at line 23).

    Correlated Subquery.
    Subquery under an EXPRESSION predicate.

    STEP 1
        The type of query is SELECT.
        Evaluate Ungrouped SUM OR AVERAGE AGGREGATE.

        FROM TABLE
            salesdetail
        Nested iteration.
        Log Scan.
        Forward scan.
        Positioning at start of table.
        Using I/O Size 2 Kbytes for data pages.
        With MRU Buffer Replacement Strategy for data pages.

I/O Size Messages
Using I/O size N Kbtyes for data pages.

Using I/O size N Kbtyes for index leaf pages.

The messages report the I/O sizes used in the query. The possible sizes are 
2K, 4K, 8K, and 16K.

If the table, index, LOB object, or database used in the query uses a data 
cache with large I/O pools, the optimizer can choose large I/O. It can 
choose to use one I/O size for reading index leaf pages, and a different size 
for data pages. The choice depends on the pool size available in the cache, 
the number of pages to be read, the cache bindings for the objects, and the 
cluster ratio for the table or index pages.

See Chapter 14, “Memory Use and Performance,” for more information 
on large I/O and the data cache.



CHAPTER 36    Using set showplan

Performance & Tuning Guide 845

Cache strategy messages
With <LRU/MRU> Buffer Replacement Strategy for data 
pages.

With <LRU/MRU> Buffer Replacement Strategy for index 
leaf pages.

These messages indicate the cache strategy used for data pages and for 
index leaf pages.

See “Overview of cache strategies” on page 180 for more information on 
cache strategies.

Total estimated I/O cost message
Total estimated I/O cost for statement N (at line N): X.

Adaptive Server prints this message only if a System Administrator has 
configured Adaptive Server to enable resource limits. Adaptive Server 
prints this line once for each query in a batch. The message displays the 
optimizer’s estimate of the total cost of logical and physical I/O. If the 
query runs in parallel, the cost per thread is printed. System 
Administrators can use this value when setting compile-time resource 
limits.

See “Total actual I/O cost value” on page 780 for information on how cost 
is computed

 If you are using dbcc traceon(310), this value is the sum of the values in 
the FINAL PLAN output for the query.

The following example demonstrates showplan output for an Adaptive 
Server configured to allow resource limits:

select au_lname, au_fname
from authors 
where city = "Oakland"

QUERY PLAN FOR STATEMENT 1 (at line 1).

    STEP 1
        The type of query is SELECT.

        FROM TABLE
            authors
        Nested iteration.
        Table Scan.



showplan messages for parallel queries 

846  Adaptive Server Enterprise

        Forward scan.
        Positioning at start of table.
        Using I/O Size 16 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.

Total estimated I/O cost for statement 1 (at line 1): 1160.

For more information on creating resource limits, see in the System 
Administration Guide.

showplan messages for parallel queries
showplan reports information about parallel execution, showing which 
query steps are executed in parallel.

showplan reports information about parallel execution, explicitly stating 
which query steps are executed in parallel.

Table 36-2: showplan messages for parallel queries

Message Explanation

Executed in parallel by coordinating process and N 
worker processes.

Indicates that a query is run in parallel, 
and shows the number of worker 
processes used.

Executed in parallel by N worker processes. Indicates the number of worker 
processes used for a query step.

Executed in parallel with a N-way hash scan.

Executed in parallel with a N-way partition scan.

Indicates the number of worker 
processes and the type of scan, hash-
based of partition-based, for a query 
step.

Parallel work table merge.
Parallel network buffer merge.
Parallel result buffer merge.

Indicates the way in which the results of 
parallel scans were merged.

Parallel data merge using N worker processes. Indicates that a merge join used a 
parallel data merge, and the number of 
worker processes used.

Serial data merge. Indicates that the merge join used a 
serial data merge.

AN ADJUSTED QUERY PLAN WILL BE USED 
FOR STATEMENT N BECAUSE NOT ENOUGH 
WORKER PROCESSES ARE AVAILABLE AT 
THIS TIME. ADJUSTED QUERY PLAN:

Indicates that a run-time adjustment to 
the number of worker processes was 
required.



CHAPTER 36    Using set showplan

Performance & Tuning Guide 847

Executed in parallel messages
The Adaptive Server optimizer uses parallel query optimization strategies 
only when a given query is eligible for parallel execution. If the query is 
processed in parallel, showplan uses three separate messages to report:

• The fact that some or all of the query was executed by the 
coordinating process and worker processes. The number of worker 
processes is included in this message.

• The number of worker processes for each step of the query that is 
executed in parallel. 

• The degree of parallelism for each scan.

Note that the degree of parallelism used for a query step is not the same as 
the total number of worker processes used for the query.

For more examples of parallel query plans, see Chapter 7, “Parallel Query 
Optimization.”

Coordinating process message
Executed in parallel by coordinating process and N worker processes.

For each query that runs in parallel mode, showplan reports prints this 
message, indicating the number of worker processes used.

Worker processes message
Executed in parallel by N worker processes.

For each step in a query that is executed in parallel, showplan reports the 
number of worker processes for the step following the “Type of query” 
message.

Scan type message
Executed in parallel with a N-way  hash scan.

Executed in parallel with a N-way partition scan.

For each step in the query that accesses data in parallel, showplan prints 
the number of worker processes used for the scan, and the type of scan, 
either “hash” or “partition.”



showplan messages for parallel queries 

848  Adaptive Server Enterprise

Merge messages

Results from the worker processes that process a query are merged using 
one of the following types of merge:

• Parallel worktable merge

• Parallel network buffer merge

• Parallel result buffer merge

Merge message for worktables

Parallel work table merge.

Grouped aggregate results from the worktables created by each worker 
process are merged into one result set.

In the following example, titles has two partitions. The showplan 
information specific to parallel query processing appears in bold.

select type, sum(total_sales)
    from titles
    group by type

QUERY PLAN FOR STATEMENT 1 (at line 1).

    STEP 1
        The type of query is SELECT (into Worktable1).
        GROUP BY
        Evaluate Grouped SUM OR AVERAGE AGGREGATE.
        Executed in parallel by coordinating process and 2 worker 
processes.

        FROM TABLE
            titles
        Nested iteration.
        Table Scan.
        Forward scan.
        Positioning at start of table.
        Executed in parallel with a 2-way partition scan.
        Using I/O Size 16 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.
        TO TABLE
            Worktable1.

        Parallel work table merge.

    STEP 2
        The type of query is SELECT.



CHAPTER 36    Using set showplan

Performance & Tuning Guide 849

        Executed by coordinating process.

        FROM TABLE
            Worktable1.
        Nested iteration.
        Table Scan.
        Forward scan.
        Positioning at start of table.
        Using I/O Size 16 Kbytes for data pages.
        With MRU Buffer Replacement Strategy for data pages.

See “Merge join messages” on page 824 for an example that uses parallel 
processing to perform sort-merge joins.

Merge message for buffer merges

Parallel network buffer merge.

Unsorted, non aggregate results returned by the worker processes are 
merged into a network buffer that is sent to the client. In the following 
example, titles has two partitions.

select title_id from titles
QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2 worker processes.

    STEP 1
        The type of query is SELECT.
        Executed in parallel by coordinating process and 2 worker 
processes.

        FROM TABLE
            titles
        Nested iteration.
        Table Scan.
        Forward scan.
        Positioning at start of table.
        Executed in parallel with a 2-way partition scan.
        Using I/O Size 16 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.

        Parallel network buffer merge.

Merge message for result buffers

Parallel result buffer merge.



showplan messages for parallel queries 

850  Adaptive Server Enterprise

Ungrouped aggregate results or unsorted, non aggregate variable 
assignment results from worker processes are merged.

Each worker process stores the aggregate in a result buffer. The result 
buffer merge produces a single value, ranging from zero-length (when the 
value is NULL) to the maximum length of a character string.

In the following example, titles has two partitions:

select sum(total_sales) 
from titles

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2 worker 
processes.

    STEP 1
        The type of query is SELECT.
        Evaluate Ungrouped SUM OR AVERAGE AGGREGATE.
        Executed in parallel by coordinating process and 2 worker 
processes.

        FROM TABLE
            titles
        Nested iteration.
        Table Scan.
        Forward scan.
        Positioning at start of table.
        Executed in parallel with a 2-way partition scan.
        Using I/O Size 16 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.

        Parallel result buffer merge.

    STEP 2
        The type of query is SELECT.
        Executed by coordinating process.

Data merge messages
Parallel data merge using N worker processes.

Serial data merge.

The data merge messages indicate whether a serial or parallel data merge 
was performed. If the merge is performed in parallel mode, the number of 
worker processes is also printed.

For sample output, see “Merge join messages” on page 828“.



CHAPTER 36    Using set showplan

Performance & Tuning Guide 851

Runtime adjustment message
AN ADJUSTED QUERY PLAN WILL BE USED FOR STATEMENT N BECAUSE NOT 
ENOUGH WORKER PROCESSES ARE AVAILABLE AT THIS TIME.
ADJUSTED QUERY PLAN:

showplan output displays this message and an adjusted query plan when 
fewer worker processes are available at runtime than the number specified 
by the optimized query plan.

showplan messages for subqueries
Since subqueries can contain the same clauses that regular queries contain, 
their showplan output can include many of the messages listed in earlier 
sections. 

The showplan messages for subqueries, shown in “Subquery 
optimization” on page 543, include delimiters so that you can spot the 
beginning and the end of a subquery processing block, the messages that 
identify the type of subquery, the place in the outer query where the 
subquery is executed, and messages for special types of processing that is 
performed only in subqueries.

The showplan messages for subqueries include special delimiters that 
allow you to easily spot the beginning and end of a subquery processing 
block, messages to identify the type of subquery, the place in the outer 
query where the subquery is executed, or special types of processing 
performed only in subqueries

Table 36-3: showplan messages for subqueries

Message Explanation

Run subquery N (at nesting level N). This message appears at the point in the 
query where the subquery actually runs. 
Subqueries are numbered in order for 
each side of a union.

NESTING LEVEL N SUBQUERIES FOR STATEMENT N. Shows the nesting level of the subquery.

QUERY PLAN FOR SUBQUERY N (at nesting level N and at line N).

END OF QUERY PLAN FOR SUBQUERY N.

These lines bracket showplan output for 
each subquery in a statement. Variables 
show the subquery number, the nesting 
level, and the input line.

Correlated Subquery. The subquery is correlated.

Non-correlated Subquery. The subquery is not correlated.



showplan messages for subqueries 

852  Adaptive Server Enterprise

For information about how Adaptive Server optimizes certain types of 
subqueries by materializing results or by flattening the queries to joins, see 
“Subquery optimization” on page 543.

For basic information on subqueries, subquery types, and the meaning of 
the subquery predicates, see the Transact-SQL User’s Guide. 

Output for flattened or materialized subqueries
Certain forms of subqueries can be processed more efficiently when:

• The query is flattened into a join query, or 

• The subquery result set is materialized as a first step, and the results 
are used in a second step with the rest of the outer query.

When the optimizer chooses one of these strategies, the query is not 
processed as a subquery, so you will not see the subquery message 
delimiters. The following sections describe showplan output for flattened 
and materialized queries. 

Subquery under an IN predicate. The subquery is introduced by in.

Subquery under an ANY predicate. The subquery is introduced by any.

Subquery under an ALL predicate. The subquery is introduced by all.

Subquery under an EXISTS predicate. The subquery is introduced by exists.

Subquery under an EXPRESSION predicate. The subquery is introduced by an 
expression, or the subquery is in the 
select list.

Evaluate Grouped ANY AGGREGATE. Evaluate Grouped ONCE 
AGGREGATE. Evaluate Grouped ONCE-UNIQUE AGGREGATE.

or

Evaluate Ungrouped ANY AGGREGATE.
Evaluate Ungrouped ONCE AGGREGATE.
Evaluate Ungrouped ONCE-UNIQUE AGGREGATE.

The subquery uses an internal aggregate.

EXISTS TABLE: nested iteration The query includes an exists, in, or any 
clause, and the subquery is flattened into 
a join.

Message Explanation



CHAPTER 36    Using set showplan

Performance & Tuning Guide 853

Flattened queries

Adaptive Server can use one of several methods to flatten subqueries into 
joins.

These methods are described in “Flattening in, any, and exists subqueries” 
on page 145.

Subqueries executed as existence joins

When subqueries are flattened into existence joins, the output looks like 
normal showplan output for a join, with the possible exception of the 
message “EXISTS TABLE: nested iteration.”

This message indicates that instead of the normal join processing, which 
looks for every row in the table that matches the join column, Adaptive 
Server uses an existence join and returns TRUE as soon as the first 
qualifying row is located.

For more information on subquery flattening, see “Flattened subqueries 
executed as existence joins” on page 148.

Adaptive Server flattens the following subquery into an existence join:

select title 
from titles
where  title_id in 
    (select title_id 
        from titleauthor)
and title like "A Tutorial%"

QUERY PLAN FOR STATEMENT 1 (at line 1).

    STEP 1
        The type of query is SELECT.
 
        FROM TABLE
            titles
        Nested iteration.
        Index : title_ix
        Forward scan.
        Positioning by key.
        Keys are:
            title  ASC
        Using I/O Size 16 Kbytes for index leaf pages.
        With LRU Buffer Replacement Strategy for index leaf pages.
        Using I/O Size 2 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.
 



showplan messages for subqueries 

854  Adaptive Server Enterprise

        FROM TABLE
            titleauthor
        EXISTS TABLE : nested iteration.
        Index : ta_ix
        Forward scan.
        Positioning by key.
        Index contains all needed columns. Base table will not be read.
        Keys are:
            title_id  ASC
        Using I/O Size 2 Kbytes for index leaf pages.
        With LRU Buffer Replacement Strategy for index leaf pages.

Subqueries using unique reformatting

If there is not a unique index on publishers.pub_id, this query is flattened 
by selecting the rows from publishers into a worktable and then creating a 
unique clustered index. This process is called unique reformatting:

select title_id 
from titles 
where pub_id in
(select pub_id from publishers where state = "TX")

QUERY PLAN FOR STATEMENT 1 (at line 1).

    STEP 1
        The type of query is INSERT.
        The update mode is direct.
        Worktable1 created for REFORMATTING.

        FROM TABLE
            publishers
        Nested iteration.
        Table Scan.
        Forward scan.
        Positioning at start of table.
        Using I/O Size 2 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.
        TO TABLE
            Worktable1.

    STEP 2
        The type of query is SELECT.

        FROM TABLE
            Worktable1.
        Nested iteration.



CHAPTER 36    Using set showplan

Performance & Tuning Guide 855

        Using Clustered Index.
        Forward scan.
        Positioning at start of table.
        Using I/O Size 2 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.

        FROM TABLE
            titles
        Nested iteration.
        Table Scan.
        Forward scan.
        Positioning at start of table.
        Using I/O Size 2 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.

For more information, see “Flattened subqueries executed using unique 
reformatting” on page 547.

Subqueries using duplicate elimination

This query performs a regular join, selecting all of the rows into a 
worktable. In the second step, the worktable is sorted to remove 
duplicates. This process is called duplicate elimination:

select  title_id, au_id, au_ord
from titleauthor ta
where title_id in (select ta.title_id 
    from titles t, salesdetail sd
    where t.title_id = sd.title_id
    and ta.title_id = t.title_id
    and type = ’travel’ and qty > 10)

QUERY PLAN FOR STATEMENT 1 (at line 1).

    STEP 1
        The type of query is INSERT.
        The update mode is direct.
        Worktable1 created for DISTINCT.

        FROM TABLE
            salesdetail
            sd
        Nested iteration.
        Table Scan.
        Forward scan.
        Positioning at start of table.
        Using I/O Size 16 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.



showplan messages for subqueries 

856  Adaptive Server Enterprise

        FROM TABLE
            titles
            t
        Nested iteration.
        Using Clustered Index.
        Index : title_id_ix
        Forward scan.
        Positioning by key.
        Keys are:
            title_id  ASC
        Using I/O Size 2 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.

        FROM TABLE
            titleauthor
            ta
        Nested iteration.
        Index : ta_ix
        Forward scan.
        Positioning by key.
        Keys are:
            title_id  ASC
        Using I/O Size 2 Kbytes for index leaf pages.
        With LRU Buffer Replacement Strategy for index leaf pages.
        Using I/O Size 2 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.
        TO TABLE
            Worktable1.

    STEP 2
        The type of query is SELECT.
        This step involves sorting.

        FROM TABLE
            Worktable1.
        Using GETSORTED
        Table Scan.
        Forward scan.
        Positioning at start of table.
        Using I/O Size 16 Kbytes for data pages.
        With MRU Buffer Replacement Strategy for data pages.



CHAPTER 36    Using set showplan

Performance & Tuning Guide 857

Materialized queries

When Adaptive Server materializes subqueries, the query is executed in 
two steps:

1 The first step stores the results of the subquery in an internal variable 
or worktable.

2 The second step uses the internal variable or worktable results in the 
outer query.

This query materializes the subquery into a worktable:

select type, title_id
from titles
where total_sales in (select max(total_sales)
            from sales_summary
            group by type)

QUERY PLAN FOR STATEMENT 1 (at line 1).

    STEP 1
        The type of query is SELECT (into Worktable1).
        GROUP BY
        Evaluate Grouped MAXIMUM AGGREGATE.

        FROM TABLE
            sales_summary
        Nested iteration.
        Table Scan.
        Forward scan.
        Positioning at start of table.
        Using I/O Size 2 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.
        TO TABLE
            Worktable1.

    STEP 2
        The type of query is SELECT.

        FROM TABLE
            titles
        Nested iteration.
        Table Scan.
        Forward scan.
        Positioning at start of table.
        Using I/O Size 16 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.



showplan messages for subqueries 

858  Adaptive Server Enterprise

        FROM TABLE
            Worktable1.
        EXISTS TABLE : nested iteration.
        Table Scan.
        Forward scan.
        Positioning at start of table.
        Using I/O Size 16 Kbytes for data pages.
        With MRU Buffer Replacement Strategy for data pages.

The showplan message “EXISTS TABLE: nested iteration,” near the end 
of the output, shows that Adaptive Server performs an existence join.

Structure of subquery showplan output
When a query contains subqueries that are not flattened or materialized:

• The showplan output for the outer query appears first. It includes the 
message “Run subquery N (at nesting level N)”, indicating the point 
in the query processing where the subquery executes.

• For each nesting level, the query plans at that nesting level are 
introduced by the message “NESTING LEVEL N SUBQUERIES 
FOR STATEMENT N.”

• The plan for each subquery is introduced by the message “QUERY 
PLAN FOR SUBQUERY N (at nesting level N and at line N)”, and 
the end of its plan is marked by the message “END OF QUERY 
PLAN FOR SUBQUERY N.” This section of the output includes 
information showing:

• The type of query (correlated or uncorrelated)

• The predicate type (IN, ANY, ALL, EXISTS, or EXPRESSION)

Subquery execution message
Run subquery N (at nesting level N).

This message shows the place where the subquery execution takes place 
in the execution of the outer query. Adaptive Server executes the subquery 
at the point in the outer query where it need to be run least often.

The plan for this subquery appears later in the output for the subquery’s 
nesting level. The first variable in this message is the subquery number; 
the second variable is the subquery nesting level.



CHAPTER 36    Using set showplan

Performance & Tuning Guide 859

Nesting level delimiter message
NESTING LEVEL N SUBQUERIES FOR STATEMENT N.

This message introduces the showplan output for all the subqueries at a 
given nesting level. The maximum nesting level is 16.

Subquery plan start delimiter
QUERY PLAN FOR SUBQUERY N (at nesting level N and at line N).

This statement introduces the showplan output for a particular subquery at 
the nesting level indicated by the previous NESTING LEVEL message. 

Line numbers to help you match showplan output to your input.

Subquery plan end delimiter
END OF QUERY PLAN FOR SUBQUERY N.

This statement marks the end of the query plan for a particular subquery. 

Type of subquery
Correlated Subquery.

Non-correlated Subquery.

A subquery is either correlated or non correlated.

• A correlated subquery references a column in a table that is listed in 
the from list of the outer query. If the subquery is correlated, showplan 
includes the message “Correlated Subquery.” 

• A non correlated subquery can be evaluated independently of the 
outer query. Non correlated subqueries are sometimes materialized, 
so their showplan output does not include the normal subquery 
showplan messages. 

Subquery predicates
Subquery under an IN predicate.



showplan messages for subqueries 

860  Adaptive Server Enterprise

Subquery under an ANY predicate.

Subquery under an ALL predicate.

Subquery under an EXISTS predicate.

Subquery under an EXPRESSION predicate.

Subqueries introduced by in, any, all, or exists are quantified predicate 
subqueries. Subqueries introduced by >, >=, <, <=, =, != are expression 
subqueries.

Internal subquery aggregates
Certain types of subqueries require special internal aggregates, as listed in 
Table 36-4. Adaptive Server generates these aggregates internally – they 
are not part of Transact-SQL syntax and cannot be included in user 
queries.

Table 36-4: Internal subquery aggregates

Messages for internal aggregates include “Grouped” when the subquery 
includes a group by clause and computes the aggregate for a group of rows, 
otherwise the messages include “Ungrouped”; the subquery the aggregate 
for all rows in the table that satisfy the correlation clause.

Quantified predicate subqueries and the ANY aggregate
Evaluate Grouped ANY AGGREGATE.

Evaluate Ungrouped ANY AGGREGATE.

Subquery type Aggregate Effect

Quantified 
predicate

ANY Returns TRUE or FALSE to the 
outer query.

Expression ONCE Returns the result of the 
subquery. Raises error 512 if the 
subquery returns more than one 
value.

Subquery 
containing distinct

ONCE-UNIQUE Stores the first subquery result 
internally and compares each 
subsequent result to the first. 
Raises error 512 if a subsequent 
result differs from the first.



CHAPTER 36    Using set showplan

Performance & Tuning Guide 861

All quantified predicate subqueries that are not flattened use the internal 
ANY aggregate. Do not confuse this with the any predicate that is part of 
SQL syntax.

The subquery returns TRUE when a row from the subquery satisfies the 
conditions of the subquery predicate. It returns FALSE to indicate that no 
row from the subquery matches the conditions.

For example:

select type, title_id
from titles
where price > all
    (select price
        from titles
        where advance < 15000) 

QUERY PLAN FOR STATEMENT 1 (at line 1).

    STEP 1
        The type of query is SELECT.

        FROM TABLE
            titles
        Nested iteration.
        Table Scan.
        Forward scan.
        Positioning at start of table.

        Run subquery 1 (at nesting level 1).
        Using I/O Size 16 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.

NESTING LEVEL 1 SUBQUERIES FOR STATEMENT 1.

  QUERY PLAN FOR SUBQUERY 1 (at nesting level 1 and at line 4).

    Correlated Subquery.
    Subquery under an ALL predicate.

    STEP 1
        The type of query is SELECT.
        Evaluate Ungrouped ANY AGGREGATE.

        FROM TABLE
            titles
        EXISTS TABLE : nested iteration.
        Table Scan.



showplan messages for subqueries 

862  Adaptive Server Enterprise

        Forward scan.
        Positioning at start of table.
        Using I/O Size 16 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.

  END OF QUERY PLAN FOR SUBQUERY 1.

Expression subqueries and the ONCE aggregate
Evaluate Ungrouped ONCE AGGREGATE.

Evaluate Grouped ONCE AGGREGATE.

Expression subqueries return only a single value. The internal ONCE 
aggregate checks for the single result required by an expression subquery. 

This query returns one row for each title that matches the like condition:

select title_id, (select city + " " + state 
                    from publishers
                    where pub_id = t.pub_id)
from titles t
where title like "Computer%"

QUERY PLAN FOR STATEMENT 1 (at line 1).

    STEP 1
        The type of query is SELECT.

        FROM TABLE
            titles
            t
        Nested iteration.
        Index : title_ix
        Forward scan.
        Positioning by key.
        Keys are:
            title  ASC

        Run subquery 1 (at nesting level 1).
        Using I/O Size 16 Kbytes for index leaf pages.
        With LRU Buffer Replacement Strategy for index leaf pages.
        Using I/O Size 2 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.

NESTING LEVEL 1 SUBQUERIES FOR STATEMENT 1.

  QUERY PLAN FOR SUBQUERY 1 (at nesting level 1 and at line 1).



CHAPTER 36    Using set showplan

Performance & Tuning Guide 863

    Correlated Subquery.
    Subquery under an EXPRESSION predicate.

    STEP 1
        The type of query is SELECT.
        Evaluate Ungrouped ONCE AGGREGATE.

        FROM TABLE
            publishers
        Nested iteration.
        Table Scan.
        Forward scan.
        Positioning at start of table.
        Using I/O Size 2 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.

  END OF QUERY PLAN FOR SUBQUERY 1.

Subqueries with distinct and the ONCE-UNIQUE aggregate
Evaluate Grouped ONCE-UNIQUE AGGREGATE.

Evaluate Ungrouped ONCE-UNIQUE AGGREGATE.

When the subquery includes distinct, the ONCE-UNIQUE aggregate 
indicates that duplicates are being eliminated:

select pub_name from publishers
where pub_id =
(select distinct titles.pub_id from titles
    where publishers.pub_id = titles.pub_id
    and price > $1000)

QUERY PLAN FOR STATEMENT 1 (at line 1).

    STEP 1
        The type of query is SELECT.

        FROM TABLE
            publishers
        Nested iteration.
        Table Scan.
        Forward scan.
        Positioning at start of table.

        Run subquery 1 (at nesting level 1).



showplan messages for subqueries 

864  Adaptive Server Enterprise

        Using I/O Size 2 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.

NESTING LEVEL 1 SUBQUERIES FOR STATEMENT 1.

  QUERY PLAN FOR SUBQUERY 1 (at nesting level 1 and at line 3).

    Correlated Subquery.
    Subquery under an EXPRESSION predicate.

    STEP 1
        The type of query is SELECT.
        Evaluate Ungrouped ONCE-UNIQUE AGGREGATE.

        FROM TABLE
            titles
        Nested iteration.
        Index : pub_id_ix
        Forward scan.
        Positioning by key.
        Keys are:
            pub_id  ASC
        Using I/O Size 16 Kbytes for index leaf pages.
        With LRU Buffer Replacement Strategy for index leaf pages.
        Using I/O Size 2 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.

  END OF QUERY PLAN FOR SUBQUERY 1.

Existence join message
EXISTS TABLE: nested iteration

This message indicates a special form of nested iteration. In a regular 
nested iteration, the entire table or its index is searched for qualifying 
values.

In an existence test, the query can stop the search as soon as it finds the 
first matching value.

The types of subqueries that can produce this message are:

• Subqueries that are flattened to existence joins

• Subqueries that perform existence tests



CHAPTER 36    Using set showplan

Performance & Tuning Guide 865

Subqueries that perform existence tests

There are several ways you can write queries that perform an existence 
test, for example, using exists, in, or =any. These queries are treated as if 
they were written with an exists clause. The following example shows an 
existence test. This query cannot be flattened because the outer query 
contains or:

select au_lname, au_fname 
from authors 
where exists 
    (select * 
    from publishers 
    where authors.city = publishers.city) 
or city = "New York"

QUERY PLAN FOR STATEMENT 1 (at line 1).

    STEP 1
        The type of query is SELECT.

        FROM TABLE
            authors
        Nested iteration.
        Table Scan.
        Forward scan.
        Positioning at start of table.

        Run subquery 1 (at nesting level 1).
        Using I/O Size 16 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.

NESTING LEVEL 1 SUBQUERIES FOR STATEMENT 1.

  QUERY PLAN FOR SUBQUERY 1 (at nesting level 1 and at line 4).

    Correlated Subquery.
    Subquery under an EXISTS predicate.

    STEP 1
        The type of query is SELECT.
        Evaluate Ungrouped ANY AGGREGATE.

        FROM TABLE
            publishers
        EXISTS TABLE : nested iteration.
        Table Scan.



showplan messages for subqueries 

866  Adaptive Server Enterprise

        Forward scan.
        Positioning at start of table.
        Using I/O Size 2 Kbytes for data pages.
        With LRU Buffer Replacement Strategy for data pages.

END OF QUERY PLAN FOR SUBQUERY 1.



Performance & Tuning Guide 867

C H A P T E R  3 7 Statistics Tables and Displaying 
Statistics with optdiag

This chapter explains how statistics are stored and displayed. 

For more information on managing statistics, see Chapter 34, “Using 
Statistics to Improve Performance.” 

System tables that store statistics
The systabstats and sysstatistics tables store statistics for all tables, 
indexes, and any unindexed columns for which you have explicitly 
created statistics. In general terms:

• systabstats stores information about the table or index as an object, 
that is, the size, number of rows, and so forth.

It is updated by query processing, data definition language, and 
update statistics commands.

• sysstatistics stores information about the values in a specific column.

It is updated by data definition language and update statistics 
commands.

For more information, see “Effects of SQL commands on statistics” on 
page 900.

Topic Page
System tables that store statistics 867

Viewing statistics with the optdiag utility 869

Changing statistics with optdiag 889

Using simulated statistics 894

Character data containing quotation marks 900

Effects of SQL commands on statistics 900



System tables that store statistics 

868  Adaptive Server Enterprise

systabstats table
The systabstats table contains basic statistics for tables and indexes, for 
example:

• Number of data pages for a table, or the number of leaf level pages for 
an index

• Number of rows in the table

• Height of the index

• Average length of data rows and leaf rows

• Number of forwarded and deleted rows

• Number of empty pages

• Statistics to increase the accuracy of I/O cost estimates, including 
cluster ratios, the number of pages that share an extent with an 
allocation page, and the number of OAM and allocation pages used 
for the object

• Stopping points for the reorg command so that it can resume 
processing 

systabstats stores one row for each table and nonclustered index in the 
database. The storage for clustered index information depends on the 
locking scheme for the table:

• If the table is a data-only-locked table, systabstats stores an additional 
row for a clustered index. 

• If the table is an allpages-locked table, the data pages are treated as 
the leaf level of the index, so the systabstats entry for a clustered index 
is stored in the same row as the table data.

The indid column for clustered indexes on allpages-locked tables is 
always 1.

See the Adaptive Server Reference Manual for more information.

sysstatistics table
The sysstatistics table stores one or more rows for each indexed column on 
a user table. In addition, it can store statistics for unindexed columns.



CHAPTER 37    Statistics Tables and Displaying Statistics with optdiag

Performance & Tuning Guide 869

The first row for each column stores basic statistics about the column, such 
as the density for joins and search arguments, the selectivity for some 
operators, and the number of steps stored in the histogram for the column. 
If the index has multiple columns, or if you specify multiple columns 
when you generate statistics for unindexed columns, there is a row for 
each prefix subset of columns.

For more information on prefix subsets, see “Column statistics” on page 
878.

Additional rows store histogram data for the leading column. Histograms 
do not exist if indexes were created before any data was inserted into a 
table (run update statistics after inserting data to generate the histogram).

See “Histogram displays” on page 883 for more information.

See the Adaptive Server Reference Manual for more information.

Viewing statistics with the optdiag utility
The optdiag utility displays statistics from the systabstats and sysstatistics 
tables. optdiag can also be used to update sysstatistics information. Only a 
System Administrator can run optdiag.

optdiag syntax
The syntax for optdiag is: 

optdiag [binary] [simulate] statistics
    {-i input_file | 
    database[.owner[.[table[.column]]]]
        [-o output_file]} 
    [-U username] [-P password]
    [-I interfaces_file] 
    [-S server]
    [-v] [-h] [-s] [-Tflag_value]
    [-z language] [-J client_charset] 
    [-a display_charset]

You can use optdiag to display statistics for an entire database, for a single 
table and its indexes and columns, or for a particular column.



Viewing statistics with the optdiag utility 

870  Adaptive Server Enterprise

To display statistics for all user tables in the pubtune database, placing the 
output in the pubtune.opt file, use the following command:

optdiag statistics pubtune -Usa -Ppasswd  
-o pubtune.opt

This command displays statistics for the titles table and for any indexes on 
the table:

optdiag statistics pubtune..titles -Usa -Ppasswd
        -o titles.opt

See Utility Programs Manual for your platform for more information on 
the optdiag command. The following sections provide information about 
the output from optdiag.

optdiag header information
After printing the version information for optdiag and Adaptive Server, 
optdiag prints the server name and summarizes the arguments used to 
display the statistics.

The header of the optdiag report lists the objects described in the report:

Server name:                        "test_server"

Specified database:                 "pubtune"
Specified table owner:              not specified
Specified table:                    "titles"
Specified column:                   not specified

Table 37-1 describes the output.



CHAPTER 37    Statistics Tables and Displaying Statistics with optdiag

Performance & Tuning Guide 871

Table 37-1: Table and column information

Table statistics
This optdiag section reports basic statistics for the table.

Sample output for table statistics
Table owner:                        "dbo"

Statistics for table:               "titles"

     Data page count:               662
     Empty data page count:         10
     Data row count:                4986.0000000000000000
     Forwarded row count:           18.0000000000000000
     Deleted row count:             87.0000000000000000
     Data page CR count:            86.0000000000000000
     OAM + allocation page count:   5
     First extent data pages:       3
     Data row size:                 238.8634175691937287

  Derived statistics:
     Data page cluster ratio:       0.9896907216494846

Table 37-2: Table statistics

Row Label Information Provided

Server name The name of the server, as stored in the 
@@servername variable. You must use 
sp_addserver, and restart the server for the server 
name to be available in the variable.

Specified database Database name given on the optdiag command line.

Specified table owner Table owner given on the optdiag command line.

Specified table Table name given on the optdiag command line.

Specified column Column name given on the optdiag command line.

Row label Information provided

Table owner Name of the table owner. You can omit owner names on the 
command line by specifying dbname..tablename. If multiple tables 
have the same name, and different owners, optdiag prints 
information for each table with that name.

Statistics for table Name of the table.

Data page count Number of data pages in the table.



Viewing statistics with the optdiag utility 

872  Adaptive Server Enterprise

Data page CR count

The “Data Page CR count” is used to compute the data page cluster ratio, 
which can help determine the effectiveness of large I/O for table scans and 
range scans. This value is updated only when you run update statistics.

Table-level derived statistics

The “Derived statistics” in the table-level section reports the statistics 
derived from the “Data Page CR count” and data page count. Table 37-3 
describes the output.

Empty data page count Count of pages that have deleted rows only.

Data row count Number of data rows in the table.

Forwarded row count Number of forwarded rows in the table. This value is always 0 for an 
allpages-locked table.

Deleted row count Number of rows that have been deleted from the table. These are 
committed deletes where the space has not been reclaimed by one of 
the functions that clears deleted rows.

This value is always 0 for an allpages-locked table.

Data page CR count A counter used to derive the data page cluster ratio. 

See “Data page CR count” on page 872.

OAM + allocation page count Number of OAM pages for the table, plus the number of allocation 
units in which the table occupies space. These statistics are used to 
estimate the cost of OAM scans on data-only-locked tables.

The value is maintained only on data-only-locked tables.

First extent data pages Number of pages that share the first extent in an allocation unit with 
the allocation page. These pages need to be read using 2K I/O, rather 
than large I/O.

This information is maintained only for data-only-locked tables.

Data row size Average length of a data row, in bytes. The size includes row 
overhead.

This value is updated only by update statistics, create index, and alter 
table...lock.

Index height Height of the index, not counting the leaf level. This row is included 
in the table-level output only for clustered indexes on allpages-
locked tables. For all other indexes, the index height appears in the 
index-level output.

This value does not apply to heap tables.

Row label Information provided



CHAPTER 37    Statistics Tables and Displaying Statistics with optdiag

Performance & Tuning Guide 873

Table 37-3: Cluster ratio for a table

Data page cluster ratio

For allpages-locked tables, the data page cluster ratio measures how well 
the pages are sequenced on extents, when the table is read in page-chain 
order. A cluster ratio of 1.0 indicates perfect sequencing. A lower cluster 
ratio indicates that the page chain is fragmented.

For data-only-locked tables, the data page cluster ratio measures how well 
the pages are packed on the extents. A cluster ratio of 1.0 indicates 
complete packing of extents. A low data page cluster ratio indicates that 
extents allocated to the table contain empty pages.

For an example of how the data page cluster ratio is used, see “How cluster 
ratios affect large I/O estimates” on page 483.

Space utilization

Space utilization uses the average row size and number of rows to compute 
the expected minimum number of data pages, and compares it to the 
current number of pages. If space utilization is low, running reorg rebuild 
on the table or dropping and re-creating the clustered index can reduce the 
amount of empty space on data pages, and the number of empty pages in 
extents allocated to the table.

If you are using space management properties such as fillfactor or 
reservepagegap, the empty space that is left for additional rows on data 
pages of a table with a clustered index and the number of empty pages left 
in extents for the table affects the space utilization value.

Row label Information provided

Data page cluster ratio The data page cluster ratio is used to estimate the 
effectiveness of large I/O.

It is used to estimate the number of I/Os required 
to read an allpages-locked table by following the 
page chain, and to estimate the number of large 
I/Os required to scan a data-only-locked table 
using an OAM scan.

Space utilization The ratio of the minimum space usage for this 
table, and the current space usage.

Large I/O efficiency Estimates the number of useful pages brought in 
by each large I/O. 



Viewing statistics with the optdiag utility 

874  Adaptive Server Enterprise

If statistics have not been updated recently and the average row size has 
changed or the number of rows and pages are inaccurate, space utilization 
may report values greater than 1.0.

Large I/O efficiency

Large I/O efficiency estimates the number of useful pages brought in by 
each large I/O. For examples, if the value is.5, a 16K I/O returns, on 
average, 4 2K pages needed for the query, and 4 other pages, either empty 
pages or pages that share the extent due to lack of clustering. Low values 
are an indication that re-creating the clustered index or running reorg 
rebuild on the table could improve I/O performance.

Index statistics
This optdiag section is printed for each nonclustered index and for a 
clustered index on a data-only-locked table. Information for clustered 
indexes on allpages-locked tables is reported as part of the table statistics. 
Table 37-4 describes the output.

Sample output for index statistics
Statistics for index:                   "title_id_ix" (nonclustered)
Index column list:                      "title_id"
     Leaf count:                        45
     Empty leaf page count:             0
     Data page CR count:                4952.0000000000000000
     Index page CR count:               6.0000000000000000
     Data row CR count:                 4989.0000000000000000
     First extent leaf pages:           0
     Leaf row size:                     17.8905999999999992
     Index height:                      1

  Derived statistics:        
     Data page cluster ratio:           0.0075819672131148
     Index page cluster ratio:          1.0000000000000000
     Data row cluster ratio:            0.0026634382566586



CHAPTER 37    Statistics Tables and Displaying Statistics with optdiag

Performance & Tuning Guide 875

Table 37-4: Index statistics

Index-level derived statistics

The derived statistics in the index-level section are based on the “CR 
count” values shown in “Index statistics” on page 874.

Row label Information provided

Statistics for index Index name and type.

Index column list List of columns in the index.

Leaf count Number of leaf-level pages in the index.

Empty leaf page 
count

Number of empty leaf pages in the index.

Data page CR count A counter used to compute the data page 
cluster r.atio for accessing a table using the 
index. 

See “Index-level derived statistics” on page 
875.

Index page CR count A counter used to compute the index page 
cluster ratio. 

See “Index-level derived statistics” on page 
875.

Data row CR count A counter used to compute the data row cluster 
ratio 

See “Index-level derived statistics” on page 
875.

First extent leaf pages The number of leaf pages in the index stored in 
the first extent in an allocation unit. These 
pages need to be read using 2K I/O, rather than 
large I/O.

This information is maintained only for 
indexes on data-only-locked tables.

Leaf row size Average size of a leaf-level row in the index. 
This value is only updated by update statistics, 
create index, and alter table...lock.

Index height Index height, not including the leaf level.



Viewing statistics with the optdiag utility 

876  Adaptive Server Enterprise

Table 37-5: Cluster ratios for a nonclustered index

Data page cluster ratio

The data page cluster ratio is used to compute the effectiveness of large I/O 
when this index is used to access the data pages. If the table is perfectly 
clustered with respect to the index, the cluster ratio is 1.0. Data page 
cluster ratios can vary widely. They are often high for some indexes, and 
very low for others. 

See “How cluster ratios affect large I/O estimates” on page 483 for more 
information.

Index page cluster ratio

The index page cluster ratio is used to estimate the cost of large I/O for 
queries that need to read a large number of leaf-level pages from 
nonclustered indexes or clustered indexes on data-only-locked tables. 
Some examples of such queries are covered index scans and range queries 
that read a large number of rows.

Row label Information provided

Data page cluster ratio The fraction of row accesses that do not require an 
additional extent I/O because of storage fragmentation, 
while accessing rows in order by this index using large 
I/O.

It is a measure of the sequencing of data pages on 
extents.

Index page cluster 
ratio

The fraction of index leaf page accesses via the page 
chain that do not require extra extent I/O.

It is a measure of the sequencing of index pages on 
extents.

Data row cluster ratio The fraction of data page accesses that do not require an 
extra I/O when accessing data rows in order by this 
index.

It is a measure of the sequencing of rows on data pages.

Space utilization The ratio of the minimum space usage for the leaf level 
of this index, and the current space usage.

Large I/O efficiency Estimates the number of useful pages brought in by 
each large I/O. 



CHAPTER 37    Statistics Tables and Displaying Statistics with optdiag

Performance & Tuning Guide 877

On newly created indexes, the “Index page cluster ratio” is 1.0, or very 
close to 1.0, indicating optimal clustering of index leaf pages on extents. 
As index pages are split and new pages are allocated from additional 
extents, the ratio drops. A very low percentage could indicate that 
dropping and re-creating the index or running reorg rebuild on the index 
would improve performance, especially if many queries perform covered 
scans. 

See “How cluster ratios affect large I/O estimates” on page 483 for more 
information.

Data row cluster ratio

The data row cluster ratio is used to estimate the number of pages that need 
to be read while using this index to access the data pages. This ratio may 
be very high for some indexes, and quite low for others. 

Space utilization for an index

Space utilization uses the average row size and number of rows to compute 
the expected minimum size of leaf-level index pages and compares it to 
the current number of leaf pages.

If space utilization is low, running reorg rebuild on index or dropping and 
re-creating the index can reduce the amount of empty space on index 
pages, and the number of empty pages in extents allocated to the index.

If you are using space management properties such as fillfactor or 
reservepagegap, the empty space that is left for additional rows on leaf 
pages, and the number of empty pages left in extents for the index affects 
space utilization.

If statistics have not been updated recently and the average row size has 
changed or the number of rows and pages are inaccurate, space utilization 
may report values greater than 1.0.

Large I/O efficiency for an index

Large I/O efficiency estimates the number of useful pages brought in by 
each large I/O. For examples, if the value is.5, a 16K I/O returns, on 
average, 4 2K pages needed for the query, and 4 other pages, either empty 
pages or pages that share the extent due to lack of clustering.



Viewing statistics with the optdiag utility 

878  Adaptive Server Enterprise

Low values are an indication that re-creating indexes or running reorg 
rebuild could improve I/O performance.

Column statistics
optdiag column-level statistics include:

• Statistics giving the density and selectivity of columns. If an index 
includes more than one column, optdiag prints the information 
described in Table 37-6 for each prefix subset of the index keys. If 
statistics are created using update statistics with a column name list, 
density statistics are stored for each prefix subset in the column list.

• A histogram, if the table contains one or more rows of data at the time 
the index is created or update statistics is run. There is a histogram for 
the leading column for:

• Each index that currently exists (if there was at least one non-null 
value in the column when the index was created)

• Any indexes that have been created and dropped (as long as 
delete statistics has not been run) 

• Any column list on which update statistics has been run

There is also a histogram for:

• Every column in an index, if the update index statistics command 
was used

• Every column in the table, if the update all statistics command 
was used

optdiag also prints a list of the columns in the table for which there are no 
statistics. For example, here is a list of the columns in the authors table that 
do not have statistics:

No statistics for column(s):        "address"
(default values used)               "au_fname"
                                    "phone"
                                    "state"
                                    "zipcode"



CHAPTER 37    Statistics Tables and Displaying Statistics with optdiag

Performance & Tuning Guide 879

Sample output for column statistics

The following sample shows the statistics for the city column in the authors 
table:

Statistics for column:                 "city"
Last update of column statistics:      Jul 20 1998  6:05:26:656PM

     Range cell density:               0.0007283200000000
     Total density:                    0.0007283200000000
     Range selectivity:                default used (0.33)
     In between selectivity:           default used (0.25)



Viewing statistics with the optdiag utility 

880  Adaptive Server Enterprise

Table 37-6: Column statistics

Range cell and total density values

Row label Information provided

Statistics for column Name of the column; if this block of information 
provides information about a prefix subset in a 
compound index or column list, the row label is 
“Statistics for column group.”

Last update of column 
statistics

Date the index was created, date that update 
statistics was last run, or date that optdiag was last 
used to change statistics.

Statistics originated from 
upgrade of distribution page

Statistics resulted from an upgrade of a pre-11.9 
distribution page. This message is not printed if 
update statistics has been run on the table or 
index or if the index has been dropped and re-
created after an upgrade.

If this message appears in optdiag output, running 
update statistics is recommended.

Statistics loaded from 
Optdiag

optdiag was used to change sysstatistics 
information. create index commands print 
warning messages indicating that edited statistics 
are being overwritten.

This row is not displayed if the statistics were 
generated by update statistics or create index.

Range cell density Density for equality search arguments on the 
column.

See “Range cell and total density values” on 
page 880.

Total density Join density for the column. This value is used to 
estimate the number of rows that will be returned 
for a join on this column.

See “Range cell and total density values” on 
page 880.

Range selectivity Prints the default value of .33, unless the value 
has been updated using optdiag input mode.

This is the value used for range queries if the 
search argument is not known at optimize time.

In between selectivity Prints the default value of .25, unless the value 
has been updated using optdiag input mode.

This is the value used for range queries if the 
search argument is not known at optimize time. 



CHAPTER 37    Statistics Tables and Displaying Statistics with optdiag

Performance & Tuning Guide 881

Adaptive Server stores two values for the density of column values:

• The “Range cell density” measures the duplicate values only for range 
cells.

If there are any frequency cells for the column, they are eliminated 
from the computation for the range-cell density.

If there are only frequency cells for the column, and no range cells, 
the range-cell density is 0.

See “Understanding histogram output” on page 884 for information 
on range and frequency cells.

• The “Total density” measures the duplicate values for all columns, 
those represented by both range cells and frequency cells.

Using two separate values improves the optimizer’s estimates of the 
number of rows to be returned:

• If a search argument matches the value of a frequency cell, the 
fraction of rows represented by the weight of the frequency cell will 
be returned.

• If a search argument falls within a range cell, the range-cell density 
and the weight of the range cell are used to estimate the number of 
rows to be returned.

For joins, the optimizer bases its estimates on the average number of rows 
to be returned for each scan of the table, so the total density, which 
measures the average number of duplicates for all values in the column, 
provides the best estimate. The total density is also used for equality 
arguments when the value of the search argument is not known when the 
query is optimized.

See “Range and in-between selectivity values” on page 882 for more 
information.

For indexes on multiple columns, the range-cell density and total density 
are stored for each prefix subset. In the sample output below for an index 
on titles (pub_id, type, pubdate), the density values decrease with each 
additional column considered. 

Statistics for column:              "pub_id"
Last update of column statistics:   Feb  4 1998 12:58PM

     Range cell density:            0.0335391029690461
     Total density:                 0.0335470400000000
 



Viewing statistics with the optdiag utility 

882  Adaptive Server Enterprise

Statistics for column group:        "pub_id", "type"
Last update of column statistics:   Feb  4 1998 12:58PM

     Range cell density:            0.0039044009265108
     Total density:                 0.0039048000000000

Statistics for column group:        "pub_id", "type", "pubdate"
Last update of column statistics:   Feb  4 1998 12:58PM

     Range cell density:            0.0002011791956201
     Total density:                 0.0002011200000000

With 5000 rows in the table, the increasing precision of the optimizer’s 
estimates of rows to be returned depends on the number of search 
arguments used in the query:

• An equality search argument on only pub_id results in the estimate 
that 0.0335391029690461 * 5000 rows, or 168 rows, will be returned.

• Equality search arguments for all three columns result in the estimate 
that 0.0002011791956201 * 5000 rows, or only 1 row will be 
returned. 

This increasing level of accuracy as more search arguments are evaluated 
can greatly improve the optimization of many queries.

Range and in-between selectivity values

optdiag prints the default values for range and in-between selectivity, or the 
values that have been set for these selectivities in an earlier optdiag 
session. These values are used for range queries when search arguments 
are not known when the query is optimized.

For equality search arguments whose value is not known, the total density 
is used as the default.

Search arguments cannot be known at optimization time for:

• Stored procedures that set variables within a procedure

• Queries in batches that set variables for search arguments within a 
batch

Table 19-2 on page 442 shows the default values that are used. These 
approximations can result in suboptimal query plans because they either 
overestimate or underestimate the number of rows to be returned by a 
query.



CHAPTER 37    Statistics Tables and Displaying Statistics with optdiag

Performance & Tuning Guide 883

See “Updating selectivities with optdiag input mode” on page 891 for 
information on using optdiag to supply selectivity values.

Histogram displays
Histograms store information about the distribution of values in a column. 
Table 37-7 shows the commands that create and update histograms and 
which columns are affected. 

Table 37-7: Commands that create histograms

Sample output for histograms
Histogram for column:               "city"
Column datatype:                    varchar(20)
Requested step count:               20
Actual step count:                  20

optdiag first prints summary data about the histogram, as shown in Table 
37-8. 

Table 37-8: Histogram summary statistics

Histogram output is printed in columns, as described in Table 37-9. 

Command Histogram for

create index Leading column only

update statistics

table_name or index_name Leading column only

column_list Leading column only

update index statistics All indexed columns

update all statistics All columns

Row label Information provided

Histogram for column Name of the column.

Column datatype Datatype of the column, including the length, 
precision and scale, if appropriate for the datatype.

Requested step count Number of steps requested for the column.

Actual step count Number of steps generated for the column.

This number can be less than the requested number 
of steps if the number of distinct values in the 
column is smaller than the requested number of 
steps.



Viewing statistics with the optdiag utility 

884  Adaptive Server Enterprise

Table 37-9: Columns in optdiag histogram output

No heading is printed for the Operator column.

Understanding histogram output

A histogram is a set of cells in which each cell has a weight. Each cell has 
an upper bound and a lower bound, which are distinct values from the 
column. The weight of the cell is a floating-point value between 0 and 1, 
representing either:

• The fraction of rows in the table within the range of values, if the 
operator is <=, or

• The number of values that match the step, if the operator is =.

The optimizer uses the combination of ranges, weights, and density values 
to estimate the number of rows in the table that are to be returned for a 
query clause on the column.

Adaptive Server uses equi-height histograms, where the number of rows 
represented by each cell is approximately equal. For example, the 
following histogram on the city column on pubtune..authors has 20 steps; 
each step in the histogram represents about 5 percent of the table:

Step     Weight                Value
 
   1     0.00000000     <=     "APO 
Miamh\377\377\377\377\377\377\377"
   2     0.05460000     <=     "Atlanta"
   3     0.05280000     <=     "Boston"
   4     0.05400000     <=     "Charlotte"
   5     0.05260000     <=     "Crown"
   6     0.05260000     <=     "Eddy"
   7     0.05260000     <=     "Fort Dodge"
   8     0.05260000     <=     "Groveton"

Column Information provided

Step Number of the step.

Weight Weight of the step.

(Operator) <, <=, or =, indicating the limit of the value. 
Operators differ, depending on whether the cell 
represents a range cell or a frequency call.

Value Upper boundary of the values represented by a 
range cell or the value represented by a frequency 
count.



CHAPTER 37    Statistics Tables and Displaying Statistics with optdiag

Performance & Tuning Guide 885

   9     0.05340000     <=     "Hyattsville"
  10     0.05260000     <=     "Kunkle"
  11     0.05260000     <=     "Luthersburg"
  12     0.05340000     <=     "Milwaukee"
  13     0.05260000     <=     "Newbern"
  14     0.05260000     <=     "Park Hill"
  15     0.05260000     <=     "Quicksburg"
  16     0.05260000     <=     "Saint David"
  17     0.05260000     <=     "Solana Beach"
  18     0.05260000     <=     "Thornwood"
  19     0.05260000     <=     "Washington"
  20     0.04800000     <=     "Zumbrota"

The first step in a histogram represents the proportion of null values in the 
table. Since there are no null values for city, the weight is 0. The value for 
the step that represents null values is represented by the highest value that 
is less than the minimum column value.

For character strings, the value for the first cell is the highest possible 
string value less than the minimum column value (“APO Miami” in this 
example), padded to the defined column length with the highest character 
in the character set used by the server. What you actually see in your output 
depends on the character set, type of terminal, and software that you are 
using to view optdiag output files.

In the preceding histogram, the value represented by each cell includes the 
upper bound, but excludes the lower bound. The cells in this histogram are 
called range cells, because each cell represents a range of values.

The range of values included in a range cell can be represented as follows: 

lower_bound < (values for cell) <= upper bound

In optdiag output, the lower bound is the value of the previous step, and the 
upper bound is the value of the current step.

For example, in the histogram above, step 4 includes Charlotte (the upper 
bound), but excludes Boston (the lower bound). The weight for this step 
is.0540, indicating that 5.4 percent of the table matches the query clause:

where city > Boston and city <= "Charlotte"

The operator column in the optdiag histogram output shows the <= 
operator. Different operators are used for histograms with highly 
duplicated values.



Viewing statistics with the optdiag utility 

886  Adaptive Server Enterprise

Histograms for columns with highly duplicated values

Histograms for columns with highly duplicated values look very different 
from histograms for columns with a large number of discrete values. In 
histograms for columns with highly duplicated values, a single cell, called 
a frequency cell, represents the duplicated value.

The weight of the frequency cell shows the percentage of columns that 
have matching values. 

Histogram output for frequency cells varies, depending on whether the 
column values represent one of the following:

• A dense frequency count, where values in the column are contiguous 
in the domain. For example, 1, 2, 3 are contiguous integer values

• A sparse frequency count, where the domain of possible values 
contains values not represented by the discrete set of values in the 
table

• A mix of dense and sparse frequency counts.

Histogram output for some columns includes a mix of frequency cells and 
range cells.

Histograms for dense frequency counts

The following output shows the histogram for a column that has 6 distinct 
integer values, 1–6, and some null values:

Step     Weight                Value

   1     0.13043478      <     1
   2     0.04347826      =     1
   3     0.17391305     <=     2
   4     0.30434781     <=     3
   5     0.13043478     <=     4
   6     0.17391305     <=     5
   7     0.04347826     <=     6

The histogram above shows a dense frequency count, because all the 
values for the column are contiguous integers.

The first cell represents null values. Since there are null values, the weight 
for this cell represents the percentage of null values in the column.

The “Value” column for the first step displays the minimum column value 
in the table and the < operator.



CHAPTER 37    Statistics Tables and Displaying Statistics with optdiag

Performance & Tuning Guide 887

Histograms for sparse frequency counts

In a histogram representing a column with a sparse frequency count, the 
highly duplicated values are represented by a step showing the discrete 
values with the = operator and the weight for the cell.

Preceding each step, there is a step with a weight of 0.0, the same value, 
and the < operator, indicating that there are no rows in the table with 
intervening values. For columns with null values, the first step will have a 
nonzero weight if there are null values in the table.

The following histogram represents the type column of the titles table. 
Since there are only 9 distinct types, they are represented by 18 steps.

Step     Weight                    Value
 
    1     0.00000000        <       "UNDECIDED   "
    2     0.11500000        =       "UNDECIDED   "
    3     0.00000000        <       "adventure   "
    4     0.11000000        =       "adventure   "
    5     0.00000000        <       "business    "
    6     0.11040000        =       "business    "
    7     0.00000000        <       "computer    "
    8     0.11640000        =       "computer    "
    9     0.00000000        <       "cooking     "
   10     0.11080000        =       "cooking     "
   11     0.00000000        <       "news        "
   12     0.10660000        =       "news        "
   13     0.00000000        <       "psychology  "
   14     0.11180000        =       "psychology  "
   15     0.00000000        <       "romance     "
   16     0.10800000        =       "romance     "
   17     0.00000000        <       "travel      "
   18     0.11100000        = "travel      "

For example, 10.66% of the values in the type column are “news,” so for 
a table with 5000 rows, the optimizer estimates that 533 rows will be 
returned.

Histograms for columns with sparse and dense values

For tables with some values that are highly duplicated, and others that 
have distributed values, the histogram output shows a combination of 
operators and a mix of frequency cells and range cells.



Viewing statistics with the optdiag utility 

888  Adaptive Server Enterprise

The column represented in the histogram below has a value of 30.0 for a 
large percentage of rows, a value of 50.0 for a large percentage of rows, 
and a value 100.0 for another large percentage of rows.

There are two steps in the histogram for each of these values: one step 
representing the highly duplicated value has the = operator and a weight 
showing the percentage of columns that match the value. The other step 
for each highly duplicated value has the < operator and a weight of 0.0. 
The datatype for this column is numeric(5,1).

Step     Weight                Value

   1     0.00000000     <=     0.9
   2     0.04456094     <=     20.0
   3     0.00000000      <     30.0
   4     0.29488859      =     30.0
   5     0.05996068     <=     37.0
   6     0.04292267     <=     49.0
   7     0.00000000      <     50.0
   8     0.19659241      =     50.0
   9     0.06028834     <=     75.0
  10     0.05570118     <=     95.0
  11     0.01572739     <=     99.0
  12     0.00000000      <     100.0
  13     0.22935779      =     100.0

Since the lowest value in the column is 1.0, the step for the null values is 
represented by 0.9.

Choosing the number of steps for highly duplicated values

The histogram examples for frequency cells in this section use a relatively 
small number of highly duplicated values, so the resulting histograms 
require less than 20 steps, which is the default number of steps for create 
index or update statistics.

If your table contains a large number of highly duplicated values for a 
column, and the distribution of keys in the column is not uniform, 
increasing the number of steps in the histogram can allow the optimizer to 
produce more accurate cost estimates for queries with search arguments on 
the column.

For columns with dense frequency counts, the number of steps should be 
at least one greater than the number of values, to allow a step for the cell 
representing null values.



CHAPTER 37    Statistics Tables and Displaying Statistics with optdiag

Performance & Tuning Guide 889

For columns with sparse frequency counts, use at least twice as many steps 
as there are distinct values. This allows for the intervening cells with zero 
weights, plus the cell to represent the null value. For example, if the titles 
table in the pubtune database has 30 distinct prices, this update statistics 
command creates a histogram with 60 steps:

update statistics titles
using 60 values

This create index command specifies 60 steps:

create index price_ix on titles(price)
with statistics using 60 values

If a column contains some values that match very few rows, these may still 
be represented as range cells, and the resulting number of histogram steps 
will be smaller than the requested number. For example, requesting 100 
steps for a state column may generate some range cells for those states 
represented by a small percentage of the number of rows.

Changing statistics with optdiag
A System Administrator can use optdiag to change column-level statistics. 

 Warning! Using optdiag to alter statistics can improve the performance of 
some queries. Remember, however, that optdiag overwrites existing 
information in the system tables, which can affect all queries for a given 
table.

Use extreme caution and test all changes thoroughly on all queries that use 
the table. If possible, test the changes using optdiag simulate on a 
development server before loading the statistics into a production server.

If you load statistics without simulate mode, be prepared to restore the 
statistics, if necessary, either by using an untouched copy of optdiag output 
or by rerunning update statistics.

Do not attempt to change any statistics by running an update, delete, or 
insert command.



Changing statistics with optdiag 

890  Adaptive Server Enterprise

After you change statistics using optdiag, running create index or update 
statistics overwrites the changes. The commands succeed, but print a 
warning message. This message indicates that altered statistics for the 
titles.type column have been overwritten:

WARNING: Edited statistics are overwritten. Table: ’titles’ 
(objectid 208003772), column: ’type’.

Using the optdiag binary mode
Because precision can be lost with floating point numbers, optdiag 
provides a binary mode. The following command displays both human-
readable and binary statistics:

optdiag binary statistics pubtune..titles.price
        -Usa -Ppasswd -o price.opt

In binary mode, any statistics that can be edited with optdiag are printed 
twice, once with binary values, and once with floating-point values. The 
lines displaying the float values start with the optdiag comment character, 
the pound sign (#).

This sample shows the first few rows of the histogram for the city column 
in the authors table:

Step  Weight              Value
 
  1   0x3d2810ce    <=    0x41504f204d69616d68ffffffffffffffffffffff
# 1   0.04103165    <=    "APO Miamh\377\377\377\377\377\377\377\377"
  2   0x3d5748ba    <=    0x41746c616e7461
# 2   0.05255959    <=    "Atlanta"
  3   0x3d5748ba    <=    0x426f79657273
# 3   0.05255959    <=    "Boyers"
  4   0x3d58e27d    <=    0x4368617474616e6f6f6761
# 4   0.05295037    <=    "Chattanooga"

When optdiag loads this file, all uncommented lines are read, while all 
characters following the pound sign are ignored. To edit the float values 
instead of the binary values, remove the pound sign from the lines 
displaying the float values, and insert the pound sign at the beginning of 
the corresponding line displaying the binary value.



CHAPTER 37    Statistics Tables and Displaying Statistics with optdiag

Performance & Tuning Guide 891

When you must use binary mode

Two histogram steps in optdiag output can show the same value due to loss 
of precision, even though the binary values differ. For example, both 
1.999999999 and 2.000000000 may be displayed as 2.000000000 in 
decimal, even though the binary values are 0x3fffffffffbb47d0 and 
0x4000000000000000. In these cases, you should use binary mode for 
input.

If you do not use binary mode, optdiag issues an error message indicating 
that the step values are not increasing and telling you to use binary mode. 
optdiag skips loading the histogram in which the error occurred, to avoid 
losing precision in sysstatistics.

Updating selectivities with optdiag input mode
You can use optdiag to customize the server-wide default values for 
selectivities to match the data for specific columns in your application. 
The optimizer uses range and in-between selectivity values when the value 
of a search argument is not known when a query is optimized.

The server-wide defaults are:

• Range selectivity – 0.33

• In-between selectivity – 0.25

You can use optdiag to provide values to be used to optimize queries on a 
specific column. The following example shows how optdiag displays 
default values:

Statistics for column:              "city"
Last update of column statistics:   Feb  4 1998  8:42PM

     Range cell density:            0x3f634d23b702f715
#    Range cell density:            0.0023561189228464
     Total density:                 0x3f46fae98583763d
#    Total density:                 0.0007012977830773
     Range selectivity:             default used (0.33)
#    Range selectivity:             default used (0.33)
     In between selectivity:        default used (0.25)
#    In between selectivity:        default used (0.25)



Changing statistics with optdiag 

892  Adaptive Server Enterprise

To edit these values, replace the entire “default used (0.33)” or “default 
used (0.25)” string with a float value. The following example changes the 
range selectivity to .25 and the in-between selectivity to .05, using 
decimal values:

     Range selectivity:             0.250000000
     In between selectivity:        0.050000000

Editing histograms
You can edit histograms to:

• Remove a step, by transferring its weight to an adjacent line and 
deleting the step

• Add a step or steps, by spreading the weight of a cell to additional 
lines, with the upper bound for column values the step is to represent

Adding frequency count cells to a histogram

One common reason for editing histograms is to add frequency count cells 
without greatly increasing the number of steps. The changes you will need 
to make to histograms vary, depending on whether the values represent a 
dense or sparse frequency count.

Editing a histogram with a dense frequency count

To add a frequency cell for a given column value, check the column value 
just less than the value for the new cell. If the next-lesser value is as close 
as possible to the value to be added, then the frequency count determined 
simply.

If the next lesser column value to the step to be changed is as close as 
possible to the frequency count value, then the frequency count cell can be 
extracted simply. 

For example, if a column contains at least one 19 and many 20s, and the 
histogram uses a single cell to represent all the values greater than 17 and 
less than or equal to 22, optdiag output shows the following information 
for the cell:

Step     Weight            Value
... 
4     0.100000000    <=     17
5     0.400000000    <=     22



CHAPTER 37    Statistics Tables and Displaying Statistics with optdiag

Performance & Tuning Guide 893

... 

Altering this histogram to place the value 20 on its own step requires 
adding two steps, as shown here:

... 
4     0.100000000    <=     17
5     0.050000000    <=     19
6     0.300000000    <=     20
7     0.050000000    <=     22
... 

In the altered histogram above, step 5 represents all values greater than 17 
and less than or equal to 19. The sum of the weights of steps 5, 6, and 7 in 
the modified histogram equals the original weight value for step 5. 

Editing a histogram with a sparse frequency count

If the column has no values greater than 17 and less than 20, the 
representation for a sparse frequency count must be used instead. Here are 
the original histogram steps:

Step     Weight            Value
... 
4     0.100000000    <=     17
5     0.400000000    <=     22
... 

The following example shows the zero-weight step, step 5, required for a 
sparse frequency count:

... 
4     0.100000000    <=     17
5     0.000000000     <     20
6     0.350000000     =     20
7     0.050000000    <=     22
...

The operator for step 5 must be <. Step 6 must specify the weight for the 
value 20, and its operator must be =.

Skipping the load-time verification for step numbering

By default, optdiag input mode checks that the numbering of steps in a 
histogram increases by 1. To skip this check after editing histogram steps, 
use the command line flag -T4:

optdiag statistics pubtune..titles -Usa -Ppassword



Using simulated statistics 

894  Adaptive Server Enterprise

    -T4 -i titles.opt

Rules checked during histogram loading

During histogram input, the following rules are checked, and error 
messages are printed if the rules are violated:

• The step numbers must increase monotonically, unless the -T4 
command line flag is used.

• The column values for the steps must increase monotonically.

• The weight for each cell must be between 0.0 and 1.0.

• The total of weights for a column must be close to 1.0.

• The first cell represents null values and it must be present, even for 
columns that do not allow null values. There must be only one cell 
representing the null value.

• Two adjacent cells cannot both use the < operator.

Re-creating indexes without losing statistics updates

If you need to drop and re-create an index after you have updated a 
histogram, and you want to keep the edited values, specify 0 for the 
number of steps in the create index command. This command re-creates 
the index without changing the histogram:

create index title_id_ix on titles(title_id)
with statistics using 0 values

Using simulated statistics
optdiag can generate statistics that can be used to simulate a user 
environment without requiring a copy of the table data. This permits 
analysis of query optimization using a very small database. For example, 
simulated statistics can be used:

• For Technical Support replication of optimizer problems

• To perform “what if” analysis to plan configuration changes



CHAPTER 37    Statistics Tables and Displaying Statistics with optdiag

Performance & Tuning Guide 895

In most cases, you will use simulated statistics to provide information to 
Technical Support or to perform diagnostics on a development server.

See “Requirements for loading and using simulated statistics” on page 
897 for information on setting up a separate database for using simulated 
statistics.

You can also load simulated statistics into the database from which they 
were copied. Simulated statistics are loaded into the system tables with 
IDs that distinguish them from the actual table data. The set statistics 
simulate on command instructs the server to optimize queries using the 
simulated statistics, rather than the actual statistics.

optdiag syntax for simulated statistics
This command displays simulate-mode statistics for the pubtune database:

optdiag simulate statistics pubtune -o pubtune.sim

If you want binary simulated output, use:

optdiag binary simulate statistics pubtune -
o pubtune.sim

To load these statistics, use:

optdiag simulate statistics -i pubtune.sim

Simulated statistics output
Output for the simulate option to optdiag prints a row labeled “simulated” 
for each row of statistics, except histograms. You can modify and load the 
simulated values, while retaining the file as a record of the actual values.

• If binary mode is specified, there are three rows of output:

• A binary “simulated” row

• A decimal “simulated” row, commented out

• A decimal “actual” row, commented out

• If binary mode is not specified, there are two rows:

• A “simulated” row

• An “actual” row, commented out



Using simulated statistics 

896  Adaptive Server Enterprise

Here is a sample of the table-level statistics for the titles table in the 
pubtune database:

Table owner:                           "dbo"
Table name:                            "titles"

Statistics for table:                  "titles"

     Data page count:                  731.0000000000000000 (simulated)
#    Data page count:                  731.0000000000000000 (actual)
     Empty data page count:            1.0000000000000000 (simulated)
#    Empty data page count:            1.0000000000000000 (actual)
     Data row count:                   5000.0000000000000000 (simulated)
#    Data row count:                   5000.0000000000000000 (actual)
     Forwarded row count:              0.0000000000000000 (simulated)
#    Forwarded row count:              0.0000000000000000 (actual)
     Deleted row count:                0.0000000000000000 (simulated)
#    Deleted row count:                0.0000000000000000 (actual)
     Data page CR count:               0.0000000000000000 (simulated)
#    Data page CR count:               0.0000000000000000 (actual)
     OAM + allocation page count:      6.0000000000000000 (simulated)
#    OAM + allocation page count:      6.0000000000000000 (actual)
     First extent data pages:          0.0000000000000000 (simulated)
#    First extent data pages:          0.0000000000000000 (actual)
     Data row size:                    190.0000000000000000 (simulated)
#    Data row size:                    190.0000000000000000 (actual)

In addition to table and index statistics, the simulate option to optdiag 
copies out:

• Partitioning information for partitioned tables. If a table is partitioned, 
these two lines appear at the end of the table statistics:

     Pages in largest partition:       390.0000000000000000 (simulated)
#    Pages in largest partition:       390.0000000000000000 (actual)

• Settings for the parallel processing configuration parameters:

Configuration Parameters:
     Number of worker processes:        20 (simulated)
#    Number of worker processes:        20 (actual)
     Max parallel degree:              10 (simulated)
#    Max parallel degree:              10 (actual)
     Max scan parallel degree:         3 (simulated)
#    Max scan parallel degree:         3 (actual)



CHAPTER 37    Statistics Tables and Displaying Statistics with optdiag

Performance & Tuning Guide 897

• Cache configuration information for the default data cache and the 
caches used by the specified database or the specified table and its 
indexes. If tempdb is bound to a cache, that cache’s configuration is 
also included. Here is sample output for the cache used by the pubtune 
database:

Configuration for cache:               "pubtune_cache"

     Size of 2K pool in Kb:            15360 (simulated)
#    Size of 2K pool in Kb:            15360 (actual)
     Size of 4K pool in Kb:            0 (simulated)
#    Size of 4K pool in Kb:            0 (actual)
     Size of 8K pool in Kb:            0 (simulated)
#    Size of 8K pool in Kb:            0 (actual)
     Size of 16K pool in Kb:           0 (simulated)
#    Size of 16K pool in Kb:           0 (actual)

If you want to test how queries use a 16K pool, you could alter the 
simulated statistics values above to read:

Configuration for cache:               "pubtune_cache"

     Size of 2K pool in Kb:            10240 (simulated)
#    Size of 2K pool in Kb:            15360 (actual)
     Size of 4K pool in Kb:            0 (simulated)
#    Size of 4K pool in Kb:            0 (actual)
     Size of 8K pool in Kb:            0 (simulated)
#    Size of 8K pool in Kb:            0 (actual)
     Size of 16K pool in Kb:           5120 (simulated)
#    Size of 16K pool in Kb:           0 (actual)

Requirements for loading and using simulated statistics
To use simulated statistics, you must issue the set statistics simulate on 
command before running the query.

For more information, see “Running queries with simulated statistics” on 
page 899.

To accurately simulate queries:

• Use the same locking scheme and partitioning for tables



Using simulated statistics 

898  Adaptive Server Enterprise

• Re-create any triggers that exist on the tables and use the same 
referential integrity constraints

• Set any non default cache strategies and any non default concurrency 
optimization values

• Bind databases and objects to the caches used in the environment you 
are simulating

• Include any set options that affect query optimization (such as set 
parallel_degree) in the batch you are testing

• Create any view used in the query

• Use cursors, if they are used for the query

• Use a stored procedure, if you are simulating a procedure execution

Simulated statistics can be loaded into the original database, or into a 
database created solely for performing “what-if” analysis on queries. 

Using simulated statistics in the original database

When the statistics are loaded into the original database, they are placed in 
separate rows in the system tables, and do not overwrite existing non-
simulated statistics. The simulated statistics are only used for sessions 
where the set statistics simulate command is in effect. 

While simulated statistics are not used to optimize queries for other 
sessions, executing any queries by using simulated statistics may result in 
query plans that are not optimal for the actual tables and indexes, and 
executing these queries may adversely affect other queries on the system. 

Using simulated statistics in another database

When statistics are loaded into a database created solely for performing 
“what-if” analysis on queries, the following steps must be performed first:

• The database named in the input file must exist; it can be as small as 
2MB. Since the database name occurs only once in the input file, you 
can change the database name, for example, from production to 
test_db.

• All tables and indexes included in the input file must exist, but the 
tables do not need to contain data. 



CHAPTER 37    Statistics Tables and Displaying Statistics with optdiag

Performance & Tuning Guide 899

• All caches named in the input file must exist. They can be the smallest 
possible cache size, 512K, with only a 2K pool. The simulated 
statistics provide the information for pool configuration.

Dropping simulated statistics
Loading simulated statistics adds rows describing cache configuration to 
the sysstatistics table in the master database. To remove these statistics, use 
delete shared statistics. The command has no effect on the statistics in the 
database where the simulated statistics were loaded.

If you have loaded simulated statistics into a database that contains real 
table and index statistics, you can drop simulated statistics in one of these 
ways:

• Use delete statistics on the table which deletes all statistics, and run 
update statistics to re-create only the non simulated statistics.

• Use optdiag (without simulate mode) to copy statistics out; then run 
delete statistics on the table, and use optdiag (without simulate mode) 
to copy statistics in.

Running queries with simulated statistics
set statistics simulate on tells the optimizer to optimize queries using 
simulated statistics:

set statistics simulate on

In most cases, you also want to use set showplan on or dbcc traceon(302). 

If you have loaded simulated statistics into a production database, use set 
noexec on when you run queries using simulated statistics so that the query 
does not execute based on statistics that do not match the actual tables and 
indexes. This lets you examine the output of showplan and dbcc 
traceon(302) without affecting the performance of the production system.

showplan messages for simulated statistics

When set statistics simulate is enabled and there are simulated statistics 
available, showplan prints the following message:

Optimized using simulated statistics.



Character data containing quotation marks 

900  Adaptive Server Enterprise

If the server on which the simulation tests are performed has the parallel 
query options set to smaller values than the simulated values, showplan 
output first displays the plan using the simulated statistics, and then an 
adjusted query plan. If set noexec is turned on, the adjusted plan is not 
displayed.

Character data containing quotation marks
In histograms for character and datetime columns, all column data is 
contained in double quotes. If the column itself contains the double-quote 
character, optdiag displays two quotation marks. If the column value is:

a quote "mark"

optdiag displays:

    "a quote" "mark"

The only other special character in optdiag output is the pound sign (#). In 
input mode, all characters on the line following a pound sign are ignored, 
except when the pound sign occurs within quotation marks as part of a 
column name or column value.

Effects of SQL commands on statistics
The information stored in systabstats and sysstatistics is affected by data 
definition language (DDL). Some data modification language also affects 
systabstats. Table 37-10 summarizes how DDL affects the systabstats and 
sysstatistics tables. 

Table 37-10: Effects of DDL on systabstats and sysstatistics

Command Effect on systabstats Effect on sysstatistics

alter table...lock Changes values to reflect the changes to table 
and index structure and size.

When changing from allpages locking to 
data-only locking, the indid for clustered 
indexes is set to 0 for the table, and a new row 
is inserted for the index.

Same as create index, if changing 
from allpages to data-only locking 
or vice versa; no effect on changing 
between data-only locking 
schemes.



CHAPTER 37    Statistics Tables and Displaying Statistics with optdiag

Performance & Tuning Guide 901

alter table to add, drop or 
modify a column definition

If the change affects the length of the row so 
that copying the table is required,

create table Adds a row for the table. If a constraint 
creates an index, see the create index 
commands below.

No effect, unless a constraint 
creates an index. See the create 
index commands below.

create clustered index For allpages-locked tables, changes indid to 1 
and updates columns that are pertinent to the 
index; for data-only-locked tables, adds a 
new row.

Adds rows for columns not already 
included; updates rows for columns 
already included.

create nonclustered index Adds a row for the nonclustered index. Adds rows for columns not already 
included; updates rows for columns 
already included.

delete statistics  No effect. Deletes all rows for a table or just 
the rows for a specified column.

drop index Removes rows for nonclustered indexes and 
for clustered indexes on data-only-locked 
tables. For clustered indexes on allpages-
locked tables, sets the indid to 0 and updates 
column values. 

Does not delete actual statistics for 
the indexed columns. This allows 
the optimizer to continue to use this 
information.

Deletes simulated statistics for 
nonclustered indexes. For clustered 
indexes on allpages-locked tables, 
changes the value for the index ID 
in the row that contains simulated 
table data.

drop table Removes all rows for the table. Removes all rows for the table.

reorg Updates restart points, if used with a time 
limit; updates number of pages and cluster 
ratios if page counts change; affects other 
values such as empty pages, forwarded or 
deleted row counts, depending on the option 
used.

The rebuild option recreates 
indexes.

truncate table Resets values to reflect an empty table. Some 
values, like row length, are retained.

No effect; this allows reloading a 
truncated table without rerunning 
update statistics. 

update statistics

table_name Updates values for the table and for all 
indexes on the specified table.

Updates histograms for the leading 
column of each index on the table; 
updates the densities for all indexes 
and prefix subsets of indexes.

Command Effect on systabstats Effect on sysstatistics



Effects of SQL commands on statistics 

902  Adaptive Server Enterprise

How query processing affects systabstats
Data modification can affect many of the values in the systabstats table. 
To improve performance, these values are changed in memory and flushed 
to systabstats periodically by the housekeeper task.

If you need to query systabstats directly, you can flush the in-memory 
statistics to systabstats with sp_flushstats. This command flushes the 
statistics for the titles table and any indexes on the table:

sp_flushstats titles

index_name Updates values for the specified index. Updates the histogram for the 
leading column of the specified 
index; updates the densities for the 
prefix subsets of the index.

column_name(s) No effect. Updates or creates a histogram for a 
column and updates or creates 
densities for the prefix subsets of 
the specified columns.

update index statistics

table_name Updates values for the table and for all 
columns in all indexes on the specified table.

Updates histograms for all columns 
of each index on the table; updates 
the densities for all indexes and 
prefix subsets of indexes.

index_name Updates values for the specified index Updates the histogram for all 
column of the specified index; 
updates the densities for the prefix 
subsets of the index.

update all statistics

table_name Updates values for the table and for all 
columns in the specified table.

Updates histograms for all columns 
on the table; updates the densities 
for all indexes and prefix subsets of 
indexes.

Command Effect on systabstats Effect on sysstatistics



CHAPTER 37    Statistics Tables and Displaying Statistics with optdiag

Performance & Tuning Guide 903

If you do not provide a table name, sp_flushstats flushes statistics for all 
tables in the current database.

Note  Some statistics, particularly cluster ratios, may be slightly inaccurate 
because not all page allocations and deallocations are recorded during 
changes made by data modification queries. Run update statistics or create 
index to correct any inconsistencies.



Effects of SQL commands on statistics 

904  Adaptive Server Enterprise



Performance & Tuning Guide 905

C H A P T E R  3 8 Tuning with dbcc traceon

This chapter describes the output of the dbcc traceon(302, 310) diagnostic 
tools. These tools can be used for debugging problems with query 
optimization.

Tuning with dbcc traceon(302)
showplan tells you the final decisions that the optimizer makes about your 
queries. dbcc traceon(302) can often help you understand why the 
optimizer makes choices that seem incorrect. It can help you debug 
queries and decide whether to use certain options, like specifying an index 
or a join order for a particular query. It can also help you choose better 
indexes for your tables.

When you turn on dbcc traceon(302), you eavesdrop on the optimizer as it 
examines query clauses and applies statistics for tables, search arguments, 
and join columns.

The output from this trace facility is more detailed than showplan and 
statistics io output, but it provides information about why the optimizer 
made certain query plan decisions.

The query cost statistics printed by dbcc traceon(302) can help to explain, 
for example, why a table scan is chosen rather than an indexed access, why 
index1 is chosen rather than index2, and so on.

Topic Page
Tuning with dbcc traceon(302) 905

Table information block 909

Base cost block 911

Clause block 911

Column block 914

Index selection block 919

Best access block 921

dbcc traceon(310) and final query plan costs 923



Tuning with dbcc traceon(302) 

906  Adaptive Server Enterprise

dbcc traceon(310)
dbcc traceon(310) output can be extremely lengthy and is hard to 
understand without a thorough understanding of the optimizer. You often 
need to have your showplan output available as well to understand the join 
order, join type, and the join columns and indexes used.

The most relevant parts of dbcc traceon(310) output, however, are the per-
table total I/O estimates.

Invoking the dbcc trace facility
To start the dbcc traceon(302) trace facility, execute the following 
command from an isql batch, followed by the query or stored procedure 
that you want to examine:

dbcc traceon(3604, 302)

This is what the trace flags mean:

To turn off the output, use:

dbcc traceoff(3604, 302)

dbcc traceon(302) is often used in conjunction with dbcc traceon(310), 
which provides more detail on the optimizer’s join order decisions and 
final cost estimates. dbcc traceon(310) also prints a “Final plan” block at 
the end of query optimization. To enable this trace option also, use:

dbcc traceon(3604, 302, 310)

To turn off the output, use:

dbcc traceoff(3604, 302, 310)

See “dbcc traceon(310) and final query plan costs” on page 923 for 
information on dbcc traceon(310).

Trace flag Explanation

3604 Directs trace output to the client, rather than to the error log.

302 Prints trace information on index selection.



CHAPTER 38    Tuning with dbcc traceon

Performance & Tuning Guide 907

General tips for tuning with dbcc traceon(302)
To get helpful output from dbcc traceon(302), be sure that your tests cause 
the optimizer to make the same decisions that it would make while 
optimizing queries in your application.

• You must supply the same parameters and values to your stored 
procedures or where clauses.

• If the application uses cursors, use cursors in your tuning work

• If you are using stored procedures, make sure that they are actually 
being optimized during the trial by executing them with recompile.

Checking for join columns and search arguments
In most cases, Adaptive Server uses only one index per table in a query. 
This means that the optimizer must often choose between indexes when 
there are multiple where clauses supporting both search arguments and 
join clauses. The optimizer first matches the search arguments to available 
indexes and statistics and estimates the number of rows and pages that 
qualify for each available index.

The most important item that you can verify using dbcc traceon(302) is that 
the optimizer is evaluating all possible where clauses included in the 
query.

If a SARG clause is not included in the output, then the optimizer has 
determined it is not a valid search argument. If you believe your query 
should benefit from the optimizer evaluating this clause, find out why the 
clause was excluded, and correct it if possible.

Once all of the search arguments have been examined, each join 
combination is analyzed. If the optimizer is not choosing a join order that 
you expect, one of the first checks you should perform is to look for the 
sections of dbcc traceon(302) output that show join order costing: there 
should be two blocks of output for each join.

If there is only one output for a given join, it means that the optimizer 
cannot consider using an index for the missing join order.

The most common reasons for clauses that cannot be optimized include:

• Use of functions, arithmetic, or concatenation on the column in a 
SARG, or on one of the join columns



Tuning with dbcc traceon(302) 

908  Adaptive Server Enterprise

• Datatype mismatches between SARGs and columns or between two 
columns in a join

• Numerics compared against constants that are larger than the 
definition of the column in a SARG, or joins between columns of 
different precision and scale

See “Search arguments and useful indexes” on page 436 for more 
information on requirements for search arguments.

Determining how the optimizer estimates I/O costs
Identifying how the optimizer estimates I/O often leads to the root of the 
problems and to solutions. You can to see when the optimizer uses actual 
statistics and when it uses default values for your search arguments.

Structure of dbcc traceon(302) output
dbcc traceon(302) prints its output as the optimizer examines the clauses 
for each table involved in a query. The optimizer first examines all search 
clauses and determines the cost for each possible access method for the 
search clauses for each table in the query. It then examines each join clause 
and the cost of available indexes for the joins.

dbcc traceon(302) output prints each search and join analysis as a block of 
output, delimited with a line of asterisks. 

The search and join blocks each contain smaller blocks of information:

• A table information block, giving basic information on the table

• A block that shows the cost of a table scan

• A block that displays the clauses being analyzed

• A block for each index analyzed

• A block that shows the best index for the clauses in this section

For joins, each join order is represented by a separate block. For example, 
for these joins on titles, titleauthor, and authors: 

    where titles.title_id = titleauthor.title_id
        and authors.au_id = titleauthor.au_id

there is a block for each join, as follows:



CHAPTER 38    Tuning with dbcc traceon

Performance & Tuning Guide 909

• titles, titleauthor

• titleauthor, titles

• titleauthor, authors

• authors, titleauthor

Additional blocks and messages

Some queries generate additional blocks or messages in dbcc traceon(302) 
output, as follows:

• Queries that contain an order by clause contain additional blocks for 
displaying the analysis of indexes that can be used to avoid 
performing a sort.

See “Sort avert messages” on page 913 for more information.

• Queries using transaction isolation level 0 (dirty reads) or updatable 
cursors on allpages-locked tables, where unique indexes are required, 
return a message like the following:

Considering unique index ’au_id_ix’, indid 2.

• Queries that specify an invalid prefetch size return a message like the 
following:

Forced data prefetch size of 8K is not available.  
The largest available prefetch size will be used.

Table information block
This sample output shows the table information block for a query on the 
titles table:

Beginning selection of qualifying indexes for table ’titles’,
correlation name ’t’, varno = 0, objectid 208003772.
   The table (Datapages) has 5000 rows, 736 pages,
   Data Page Cluster Ratio 0.999990
   The table has 5 partitions.
   The largest partition has 211 pages.
   The partition skew is 1.406667.



Table information block 

910  Adaptive Server Enterprise

Identifying the table
The first two lines identify the table, giving the table name, the correlation 
name (if one was used in the query), a varno value that identifies the order 
of the table in the from clause, and the object ID for the table.

In the query, titles is specified using “t” as a correlation name, as in: 

    from titles t

The correlation name is included in the output only if a correlation name 
was used in the query. The correlation name is especially useful when you 
are trying to analyze the output from subqueries or queries doing self-joins 
on a table, such as: 

    from sysobjects o1, sysobjects o2

Basic table data
The next lines of output provide basic data about the table: the locking 
scheme, the number of rows, and the number of pages in the table. The 
locking scheme is one of: Allpages, Datapages, or Datarows.

Cluster ratio
The next line prints the data page cluster ratio for the table.

Partition information
The following lines are included only for partitioned tables. They give the 
number of partitions, plus the number of pages in the largest partition, and 
the skew:

The table has 5 partitions.
The largest partition has 211 pages.
The partition skew is 1.406667.

This information is useful if you are tuning parallel queries, because:

• Costing for parallel queries is based on the cost of accessing the 
table’s largest partition.

• The optimizer does not choose a parallel plan if the partition skew is 
2.0 or greater.



CHAPTER 38    Tuning with dbcc traceon

Performance & Tuning Guide 911

See Chapter 24, “Parallel Query Processing,” for more information on 
parallel query optimization.

Base cost block
The optimizer determines the cost of a table scan as a first step. It also 
displays the caches used by the table, the availability of large I/O, and the 
cache replacement strategy.

The following output shows the base cost for the titles table:

Table scan cost is 5000 rows, 748 pages,
   using data prefetch (size 16K I/O),
   in data cache ’default data cache’ (cacheid 0) with LRU replacement

If the cache used by the query has only a 2K pool, the prefetch message is 
replace by:

using no data prefetch (size 2K I/O)

Concurrency optimization message
For very small data-only-locked tables, the following message may be 
included in this block:

If this table has useful indexes, a table scan will 
not be considered because concurrency optimization 
is turned ON for this table.

For more information, see “Concurrency optimization for small tables” 
on page 471.

Clause block
The clause block prints the search clauses and join clauses that the 
optimizer considers while it estimates the cost of each index on the table. 
Search clauses for all tables are analyzed first, and then join clauses.



Clause block 

912  Adaptive Server Enterprise

Search clause identification
For search clauses, the clause block prints each of the search clauses that 
the optimizer can use. The list should be compared carefully to the clauses 
that are included in your query. If query clauses are not listed, it means that 
the optimizer did not evaluate them because it cannot use them.

For example, this set of clauses on the titles table:

where type = "business" 
    and title like "B%"
    and total_sales > 12 * 1000 

produces this list of optimizable search clauses, with the table names 
preceding the column names:

Selecting best index for the SEARCH CLAUSE:
        titles.title < ’C’
        titles.title >= ’B’
        titles.type = ’business’
        titles.total_sales > 12000

Notice that the like has been expanded into a range query, searching for >= 
‘B’ and <‘C’. All of the clauses in the SQL statement are included in the 
dbcc traceon(302) output, and can be used to help optimize the query.

If search argument transitive closure and predicate factoring have added 
optimizable search arguments, these are included in this costing block too.

See “Search arguments and useful indexes” on page 436 for more 
information.

When search clauses are not optimizable

The following set of clauses on the authors table includes the substring 
function on the au_fname column: 

    where substring(au_fname,1,4) = "Fred" 
         and city = "Miami"

Due to the use of the substring function on a column name, the set of 
optimizable clauses does not include the where clause on the au_fname 
column:

Selecting best index for the SEARCH CLAUSE:
    authors.city = ’Miami’



CHAPTER 38    Tuning with dbcc traceon

Performance & Tuning Guide 913

Values unknown at optimize time

For values that are not known at optimize time, dbcc traceon(302) prints 
“unknown-value.” For example, this clause uses the getdate function:

where pubdate > getdate()

It produces this message in the search clause list:

titles.pubdate > unknown-value

Join clause identification
Once all of the search clauses for each table have been analyzed, the join 
clauses are analyzed and optimized.

Each table is analyzed in the order listed in the from clause. dbcc 
traceon(302) prints the operator and table and column names, as shown in 
this sample output of a join between titleauthor and titles, during the costing 
of the titleauthor table:

Selecting best index for the JOIN CLAUSE:
        titleauthor.title_id = titles.title_id

The table currently undergoing analysis is always printed on the left in the 
join clause output. When the titles table is being analyzed, titles is printed 
first:

Selecting best index for the JOIN CLAUSE:
        titles.title_id = titleauthor.title_id

If you expect an index for a join column to be used, and it is not, check for 
the JOIN CLAUSE output with the table as the leading table. If it is not 
included in the output, check for datatype mismatches on the join columns.

Sort avert messages
If the query includes an order by clause, additional messages are displayed. 
The optimizer checks to see if an index matches the ordering required by 
the order by clause, to avoid incurring sort costs for the query. 

This message is printed for search clauses:

        Selecting best index for the SEARCH SORTAVERT CLAUSE:
            titles.type = ’business’



Column block 

914  Adaptive Server Enterprise

The message for joins shows the column under consideration first. This 
message is printed while the optimizer analyzes the titles table:

Selecting best index for the JOIN SORTAVERT CLAUSE:
    titles.title_id = titleauthor.title_id

At the end of the block for the search or join clause, one of two messages 
is printed, depending on whether an index exists that can be used to avoid 
performing a sort step. If no index is available, this message is printed:

No sort avert index has been found for table ’titles’ 
(objectid 208003772, varno = 0).

If an index can be used to avoid the sort step, the sort-avert message 
includes the index ID, the number of pages that need to be accessed, and 
the number of rows to be returned for each scan. This is a typical message:

The best sort-avert index is index 3, costing 9 pages 
and generating 8 rows per scan.

This message does not mean that the optimizer has decided to use this 
index. It means simply that, if this index is used, it does not require a sort.

If you expect an index to be used to avoid a sort, and you see the “No sort 
avert index” message, check the order by clauses in the query for the use 
of asc and desc to request ascending and descending ordering, and check 
the ordering specifications for the index.

For more information, see “Costing for queries using order by” on page 
493.

Column block
This section prints the selectivity of each optimizable search argument or 
join clause. Selectivity is used to estimate the number of matching rows 
for a search clause or join clause.

The optimizer uses column statistics, if they exist and if the value of the 
search argument is known at optimize time. If not, the optimizer uses 
default values.



CHAPTER 38    Tuning with dbcc traceon

Performance & Tuning Guide 915

Selectivities when statistics exist and values are known
This shows the selectivities for a search clause on the title column, when 
an index exists for the column:

Estimated selectivity for title,
   selectivity = 0.001077, upper limit = 0.060200.

For equality search arguments where the value falls in a range cell:

• The selectivity is the “Range cell density” displayed by optdiag.

• The upper limit is the weight of the histogram cell. 

If the value matches a frequency cell, the selectivity and upper limit are the 
weight of that cell.

For range queries, the upper limit is the sum of the weights of all histogram 
cells that contain values in the range. The upper limit is used only in cases 
where interpolation yields a selectivity that is greater than the upper limit.

The upper limit is not printed when the selectivity for a search argument 
is 1.

For join clauses, the selectivity is the “Total density” displayed by optdiag.

When the optimizer uses default values
The optimizer uses default values for selectivity:

• When the value of a search argument is not known at the time the 
query is optimized

• For search arguments where no statistics are available

In both of these cases, the optimizer uses different default values, 
depending on the operators used in the query clause.

Unknown values

Unknown values include variables that are set in the same batch as the 
query and values set within a stored procedure. This message indicates an 
unknown value for a column where statistics are available and the equality 
(=) operator is used:

SARG is a local variable or the result of a function or an expression, 
using the total density to estimate selectivity.



Column block 

916  Adaptive Server Enterprise

Similar messages are printed for open-ended range queries and queries 
using between.

If no statistics are available

If no statistics are available for a column, a message indicates the default 
selectivity that will be used. This message is printed for an open-ended 
range query on the total_sales table:

No statistics available for total_sales,
using the default range selectivity to estimate selectivity.

Estimated selectivity for total_sales,
    selectivity = 0.330000.

See “Default values for search arguments” on page 441 for the default 
values used for search arguments and “When statistics are not available 
for joins” on page 443 for the default values used for joins.

You may be able to improve optimization for queries where default values 
are used frequently, by creating statistics on the columns.

See “Creating and updating column statistics” on page 785.

Out-of-range messages
Out-of-range messages are printed when a search argument is out of range 
of the values included in the histogram for an indexed column.

The following clause searches for a value greater than the last title_id: 

    where title_id > "Z"

dbcc traceon(302) prints:

Estimated selectivity for title_id,
   selectivity = 0.000000, upper limit = 0.000000.
Lower bound search value ’’Z’’ is greater than the largest value 
in sysstatistics for this column.

For a clause that searches for a value that is less than the first key value in 
an index, dbcc traceon(302) prints:

Estimated selectivity for title_id,
    selectivity = 0.000000, upper limit = 0.000000.
Upper bound search value ’’B’’ is less than the smallest value
in sysstatistics for this column.



CHAPTER 38    Tuning with dbcc traceon

Performance & Tuning Guide 917

If the equality operator is used instead of a range operator, the messages 
read:

Estimated selectivity for title_id,
   selectivity = 0.000000, upper limit = 0.000000.
Equi-SARG search value ’’Zebracode’’ is greater than the largest 
value in sysstatistics for this column.

or:

Estimated selectivity for title_id,
   selectivity = 0.000000, upper limit = 0.000000.
Equi-SARG search value ’’Applepie’’ is less than the smallest value 
in sysstatistics for this column.

These messages may simply indicate that the search argument used in the 
query is out of range for the values in the table. In that case, no rows are 
returned by the query. However, if there are matching values for the out-
of-range keys, it may indicate that it is time to run update statistics on the 
table or column, since rows containing these values must have been added 
since the last time the histogram was generated.

There is a special case for search clauses using the >= operator and a value 
that is less than or equal to the lowest column value in the histogram. For 
example, if the lowest value in an integer column is 20, this clause:

where col1 >= 16

produces this message:

Lower bound search condition ’>= 16’ includes all values in this 
column.

For these cases, the optimizer assumes that all non-null values in the table 
qualify for this search condition.

“Disjoint qualifications” message
The “disjoint qualifications” message often indicates a user error in 
specifying the search clauses. For example, this query searches for a range 
where there could be no values that match both of the clauses: 

    where advance > 10000
    and advance < 1000

The selectivity for such a set of clauses is always 0.0, meaning that no 
rows match these qualifications, as shown in this output:

Estimated selectivity for advance,



Column block 

918  Adaptive Server Enterprise

   disjoint qualifications, selectivity is 0.0.

Forcing messages
dbcc traceon(302) prints messages if any of the index, I/O size, buffer 
strategy, or parallel force options are included for a table or if an abstract 
plan specifying these scan properties was used to optimize the query. Here 
are sample messages for a query using an abstract plan:

For table ‘titles’: 
User forces index 2 (index name = type_price_ix)
User forces index and data prefetch of 16K
User forces MRU buffer replacement strategy on index and data 
pages 
User forces parallel strategy.  Parallel Degree = 3

Unique index messages
When a unique index is being considered for a join or a search argument, 
the optimizer knows that the query will return one row per scan. The 
message includes the index type, the string “returns 1 row,” and a page 
estimate, which includes the number of index levels, plus one data page:

Unique clustered index found, returns 1 row, 2 pages
Unique nonclustered index found, returns 1 row, 3 pages

Other messages in the column block
If the statistics for the column have been modified using optdiag, dbcc 
traceon(302) prints:

Statistics for this column have been edited.

If the statistics result from an upgrade of an earlier version of the server or 
from loading a database from an pre-11.9 version of the server, dbcc 
traceon(302) prints:

Statistics for this column were obtained from upgrade.

If this message appears, run update statistics for the table or index.



CHAPTER 38    Tuning with dbcc traceon

Performance & Tuning Guide 919

Index selection block
While costing index access, dbcc traceon(302) prints a set of statistics for 
each useful index. This index block shows statistics for an index on 
au_lname in the authors table:

Estimating selectivity of index ’au_names_ix’, indid 2
   scan selectivity 0.000936, filter selectivity 0.000936 
   5 rows, 3 pages, index height 2,
   Data Row Cluster Ratio 0.990535,
   Index Page Cluster Ratio 0.538462,
   Data Page Cluster Ratio 0.933579

Scan and filter selectivity values
The index selection block includes, a scan selectivity value and a filter 
selectivity value. In the example above, these values are the same 
(0.000936).

For queries that specify search arguments on multiple columns, these 
values are different when the search arguments include the leading key, 
and some other index key that is not part of a prefix subset.

That is, if the index is on columns A, B, C, D, a query specifying search 
arguments on A, B, and D will have different scan and filter selectivities. 
The two selectivities are used for estimating costs at different levels:

How scan and filter selectivity can differ

This statement creates a composite index on titles:

create index composite_ix
on titles (pub_id, type, price)

Both of the following clauses can be used to position the start of the search 
and to limit the end point, since the leading columns are specified: 

Scan Selectivity Filter Selectivity 

Used to estimate: Number of index rows and 
leaf-level pages to be read

Number of data pages to be 
accessed

Determined by: Search arguments on 
leading columns in the 
index

All search arguments on the 
index under consideration. 
even if they are not part of 
the prefix subset for the 
index



Index selection block 

920  Adaptive Server Enterprise

    where pub_id = "P099"
    where pub_id = "P099" and type = "news"

The first example requires reading all the index pages where pub_id equals 
“P099”, while the second reads only the index pages where both 
conditions are true. In both cases, these queries need to read the data rows 
for each of the index rows that are examined, so the scan and filter 
selectivity are the same.

In the following example, the query needs to read all of the index leaf-level 
pages where pub_id equals “P099”, as in the queries above. But in this 
case, Adaptive Server examines the value for price, and needs to read only 
those data pages where the price is less than $50: 

    where pub_id = "P099" and price < $50

In this case, the scan and filter selectivity differ. If column-level statistics 
exist for price, the optimizer combines the column statistics on pub_id and 
price to determine the filter selectivity, otherwise the filter selectivity is 
estimated using the default range selectivity.

In the dbcc traceon(302) output below, the selectivity for the price column 
uses the default value, 0.33, for an open range. When combined with the 
selectivity of 0.031400 for pub_id, it yields the filter selectivity of 
0.010362 for composite_ix:

Selecting best index for the SEARCH CLAUSE:
    titles.price < 50.00
    titles.pub_id = ’P099’

Estimated selectivity for pub_id,
   selectivity = 0.031400, upper limit = 0.031400.

No statistics available for price,
using the default range selectivity to estimate selectivity.

Estimated selectivity for price,
   selectivity = 0.330000.

Estimating selectivity of index ’composite_ix’, indid 6
   scan selectivity 0.031400, filter selectivity 0.010362 
   52 rows, 57 pages, index height 2,
   Data Row Cluster Ratio 0.013245,
   Index Page Cluster Ratio 1.000000,
   Data Page Cluster Ratio 0.100123



CHAPTER 38    Tuning with dbcc traceon

Performance & Tuning Guide 921

Other information in the index selection block
The index selection block prints out an estimate of the number of rows that 
would be returned if this index were used and the number of pages that 
would need to be read. It includes the index height.

For a single-table query, this information is basically all that is needed for 
the optimizer to choose between a table scan and the available indexes. For 
joins, this information is used later in optimization to help determine the 
cost of various join orders.

The three cluster ratio values for the index are printed, since estimates for 
the number of pages depend on cluster ratios.

If the index covers the query, this block includes the line:

Index covers query.

This message indicates that the data pages of the table do not have to be 
accessed if this index is chosen.

Best access block
The final section for each SARG or join block for a table shows the best 
qualifying index for the clauses examined in the block. 

When search arguments are being analyzed, the best access block looks 
like:

The best qualifying  index is ’pub_id_ix’ (indid 5)
   costing 153 pages,
   with an estimate of 168 rows to be returned per scan of the table,
   using index prefetch (size 16K I/O) on leaf pages,
   in index cache ’default data cache’ (cacheid 0) with LRU 
replacement
   using no data prefetch (size 2K I/O),
   in data cache ’default data cache’ (cacheid 0) with LRU replacement
Search argument selectivity is 0.033539.

If no useful index is found, the final block looks like:

The best qualifying access is a table scan,
   costing 621 pages,
   with an estimate of 1650 rows to be returned per scan of the table,
   using data prefetch (size 16K I/O),
   in data cache ’default data cache’ (cacheid 0) with LRU replacement



Best access block 

922  Adaptive Server Enterprise

Search argument selectivity is 0.330000.

For joins, there are two best access blocks when a merge join is considered 
during the join-costing phase, one for nested-loop join cost, and one for 
merge-join cost:

The best qualifying Nested Loop join index is ’au_city_ix’ (indid 
4)
   costing 6 pages,
   with an estimate of 4 rows to be returned per scan of the table,
   using index prefetch (size 16K I/O) on leaf pages,
   in index cache ’default data cache’ (cacheid 0) with LRU 
replacement
   using no data prefetch (size 2K I/O),
   in data cache ’default data cache’ (cacheid 0) with LRU 
replacement
Join selectivity is 0.000728.

The best qualifying Merge join index is ’au_city_ix’ (indid 4)
   costing 6 pages,
   with an estimate of 4 rows to be returned per scan of the table,
   using no index prefetch (size 2K I/O) on leaf pages,
   in index cache ’default data cache’ (cacheid 0) with LRU 
replacement
   using no data prefetch (size 2K I/O),
   in data cache ’default data cache’ (cacheid 0) with LRU 
replacement
Join selectivity is 0.000728.

Note that the output in this block estimates the number of “rows to be 
returned per scan of the table.” At this point in query optimization, the join 
order has not yet been chosen.

If this table is the outer table, the total cost of accessing the table is 6 pages, 
and it is estimated to return 4 rows.

If this query is an inner table of a nested-loop join, with a cost of 6 pages 
each time, each access is estimated to return 4 rows. The number of times 
the table will be scanned depends on the number of estimated qualifying 
rows for the other table in the join.

If no index qualifies as a possible merge-join index, dbcc traceon(302) 
prints:

If this access path is selected for merge join, it 
will be sorted



CHAPTER 38    Tuning with dbcc traceon

Performance & Tuning Guide 923

dbcc traceon(310) and final query plan costs
The end of each search clause and join clause block prints the best index 
for the search or join clauses in that particular block. If you are concerned 
only about the optimization of the search arguments, dbcc traceon(302) 
output has probably provided the information you need. 

The choice of the best query plan also depends on the join order for the 
tables, which is the next step in query optimization after the index costing 
step completes. dbcc traceon(310) provides information about the join 
order selection step. 

It starts by showing the number of tables considered at a time during a join. 
This message shows three-at-a-time optimization, with the default for set 
table count, and a 32-table join:

QUERY IS CONNECTED
Number of tables in join: 32
Number of tables considered at a time: 3
Table count setting: 0 (default value used)

dbcc traceon(310) prints the first plan that the optimizer considers, and 
then each cheaper plan, with the heading “NEW PLAN.”

To see all of the plans, use dbcc traceon(317). It prints each plan 
considered, with the heading “WORK PLAN.” This may produce an 
extremely large amount of output, especially for queries with many tables, 
many indexes, and numerous query clauses.

If you use dbcc traceon(317), also use dbcc traceon(3604) and direct the 
output to a file, rather than to the server’s error log to avoid filling up the 
error log device.

dbcc traceon(310) or (317) prints the join orders being considered as the 
optimizer analyzes each of the permutations. It uses the varno, 
representing the order of the tables in the from clause. For example, for the 
first permutation, it prints:

 0 - 1 - 2 -

This is followed by the cost of joining the tables in this order. The 
permutation order for subsequent join orders follows, with “NEW PLAN” 
and the analysis of each table for the plan appearing whenever a cheaper 
plan is found. Once all plans have been examined, the final plan is 
repeated, with the heading “FINAL PLAN”. This is the plan that Adaptive 
Server uses for the query.



dbcc traceon(310) and final query plan costs 

924  Adaptive Server Enterprise

Flattened subquery join order message
For some flattened subqueries, certain join orders are possible only if a 
sort is later used to remove duplicate results. When one of these join orders 
is considered, the following message is printed right after the join 
permutation order is printed:

2 - 0 - 1 -

This join order created while converting an exists join to a 
regular join, which can happen for subqueries, referential 
integrity, and select distinct.

For more information on subqueries and join orders, see “Flattened 
subqueries using duplicate elimination” on page 548.

Worker process information
Just before printing final plan information, dbcc traceon(310) prints the 
parallel configuration parameters and session level settings in effect when 
the command was run. 

PARALLEL:
    number of worker processes = 20
    max parallel degree = 10
    min(configured,set) parallel degree = 10
    min(configured,set) hash scan parallel degree = 3

If session-level limits or simulated statistics in effect when the query is 
optimized, those values are shown in the output.

Final plan information
The plan chosen by the optimizer is displayed in the final plan block. 
Information about the cost of each table is printed; the output starts from 
the outermost table in the join order.

select pub_name, au_lname, price
from titles t, authors a, titleauthor ta,
            publishers p
where t.title_id = ta.title_id
    and a.au_id = ta.au_id
    and p.pub_id = t.pub_id
    and type = ’business’



CHAPTER 38    Tuning with dbcc traceon

Performance & Tuning Guide 925

    and price < $25
FINAL PLAN (total cost = 3909)

varno=0 (titles) indexid=1 (title_id_ix)
path=0xd6b25148 pathtype=pll-mrgscan-outer
method=NESTED ITERATION 
scanthreads=3
outerrows=1 outer_wktable_pgs=0 rows=164 joinsel=1.000000
jnpgs_per_scan=3 scanpgs=623
data_prefetch=YES data_iosize=16 data_bufreplace=LRU
scanlio_perthrd=211 tot_scanlio=633 scanpio_perthrd=116 
tot_scanpio=346
outer_srtmrglio=0 inner_srtmrglio=0
corder=1

varno=2 (titleauthor) indexid=3 (ta_ix)
path=0xd6b20000 pathtype=pll-mrgscan-inner
method=FULL MERGE JOIN 
scanthreads=3 mergethreads=3
outerrows=164 outer_wktable_pgs=0 rows=243 joinsel=0.000237
jnpgs_per_scan=2 scanpgs=87
index_prefetch=YES index_iosize=16 index_bufreplace=LRU
scanlio_perthrd=29 total_scanlio=87 scanpio_perthrd=29 
tot_scanpio=87
outer_srtmrglio_perthrd=0 tot_outer_srtmrglio=0
inner_srtmrglio_perthrd=0 tot_inner_srtmrglio=0
corder=2

varno=1 (authors) indexid=3 (au_id_ix)
path=0xd6b20318 pathtype=join
method=NESTED ITERATION 
scanthreads=1
outerrows=243 rows=243 joinsel=0.000200 jnpgs_per_scan=3
index_prefetch=NO index_iosize=2 index_bufreplace=LRU
data_prefetch=NO data_iosize=2 data_bufreplace=LRU
scanlio=82 scanpio=9
corder=1

jnvar=2 refcost=0 refpages=0 reftotpages=0 ordercol[0]=1  
ordercol[1]=1

varno=3 (publishers) indexid=0 ()
path=0xd6b1f150 pathtype=sclause
method=SORT MERGE JOIN 
scanthreads=1
outerrows=243 outer_wktable_pgs=7 rows=243 joinsel=0.033333



dbcc traceon(310) and final query plan costs 

926  Adaptive Server Enterprise

jnpgs_per_scan=1 scanpgs=3
data_prefetch=NO data_iosize=2 data_bufreplace=LRU
scanlio=3 scanpio=3
outer_srtmrglio_perthrd=88 tot_outer_srtmrglio=250
inner_srtmrglio_perthrd=31 tot_inner_srtmrglio=30
corder=0

Sort-Merge Cost of Inner = 98 
Sort-Merge Cost of Outer = 344

For the showplan output for the same query, see “Merge join messages” on 
page 828.

Table 38-1 shows the meaning of the values in the output.



CHAPTER 38    Tuning with dbcc traceon

Performance & Tuning Guide 927

Table 38-1: dbcc traceon(310) output

Label Information provided

varno Indicates the table order in the from clause, starting 
with 0 for the first table. The table name is provided 
in parentheses.

indexid The index ID, followed by the index name, or 0 for 
a table scan.

pathtype The access method for this table. See Table 38-2.

method The method used for the scan or join: 

• NESTED ITERATION

• NESTED ITERATION with Tuple Filtering

• REFORMATTING

• REFORMATTING with Unique Reformatting

• OR OPTIMIZATION

• SORT MERGE JOIN

• RIGHT MERGE JOIN

• LEFT MERGE JOIN

• FULL MERGE JOIN

scanthreads Number of worker processes to be used for the scan 
of this table.

merge threads Number of threads to use for a parallel data merge, 
for a sort-merge join.

outerrows Number of rows that qualify from the outer tables in 
the query or 1, for the first table in the join order.

outer_wktable_pgs For a merge join, the number of pages in the 
worktable that is outer to this table, or tables in a 
full-merge join.

rows Number of rows estimated to qualify in this table or 
as a result of this join. For a parallel query, this is the 
maximum number of rows per worker process.

joinsel The join selectivity.

jnpgs_per_scan Number of index and data pages to be read for each 
scan. 

scanpgs The total number of index and data pages to be read 
for the table.

index_prefetch YES if large I/O will be used on index leaf pages 
(not printed for table scans and allpages-locked 
table clustered index scans).



dbcc traceon(310) and final query plan costs 

928  Adaptive Server Enterprise

index_iosize The I/O size to be used on the index leaf pages (not 
printed for table scans and allpages-locked table 
clustered index scans).

index_bufreplace The buffer replacement strategy to be used on the 
index leaf pages (not printed for table scans and 
allpages-locked table clustered index scans).

data_prefetch YES if large I/O will be used on the data pages; NO 
if large I/O will not be used (not printed for covered 
scans).

data_iosize The I/O size to be used on the data pages (not printed 
for covered scans).

data_bufreplace The buffer replacement strategy to be used on the 
data pages (not printed for covered scans).

scanlio Estimated total logical I/O for a serial query.

scanpio Estimated total physical I/O for a serial query.

scanlio_perthrd Estimated logical I/O per thread, for a parallel query.

tot_scanlio Estimated total logical I/O, for a parallel query.

scanpio_perthrd Estimated physical I/O per thread, for a parallel 
query. 

tot_scanpio Estimated total physical I/O, for a parallel query.

outer_srtmrglio_perthrd Estimated logical I/O on the outer table to perform 
the sort-merge, per thread.

tot_outer_srtmrglio Estimated total logical I/O on the outer table to 
perform a sort-merge.

inner_srtmrglio_perthrd Estimated logical I/O on the inner table to perform a 
sort-merge join, per thread.

tot_inner_srtmrglio Estimated total logical I/O on the inner table to 
perform a sort-merge join.

corder The order of the column used as a search argument 
or join key.

jnvar The varno of the table to which this table is being 
joined, for second and subsequent tables in a join.

refcost The total cost of reformatting, when reformatting is 
considered as an access method.

refpages The number of pages read in each scan of the table 
created for formatting. Included for the second and 
subsequent tables in the join order.

reftotpages The number of pages in the table created for 
formatting. Included for the second and subsequent 
tables in the join order.

Label Information provided



CHAPTER 38    Tuning with dbcc traceon

Performance & Tuning Guide 929

Table 38-2 shows the access methods that correspond to the pathtype 
information in the dbcc traceon(310) output.

Table 38-2: pathtypes in dbcc traceon(310) output

Sort-merge costs

If the query plan includes a sort-merge join, the cost of creating the 
worktables and sorting them are printed. These messages include the total 
cost that is added to the query cost:

Sort-Merge Cost of Inner = 538 
Sort-Merge Cost of Outer = 5324

These are the total costs of performing the sort-merge work, representing 
the logical I/O on the worktables multiplied by 2.

ordercol[0] The order of the join column from the inner table.

ordercol[1] The order of the join column from the outer table.

pathtype Access method

sclause Search clause

join Join

orstruct or clause

join-sort Join, using a sort-avert index

sclause-sort Search clause, using a sort-avert index

pll-sarg-nc Parallel index hash scan on a search clause 

pll-join-nc Parallel index hash scan on a join clause

pll-sarg-cl Parallel clustered index scan on a search clause

pll-join-cl Parallel clustered index scan on a join 

pll-sarg-cp Parallel partitioned clustered index scan on a search 
clause 

pll-join-cp Parallel partitioned clustered index scan on a join 
clause

pll-partition Parallel partitioned table scan 

pll-nonpart Parallel nonpartitioned table scan 

pll-mrg-scan-inner Parallel sort-merge join, with this table as the inner 
table

pll-mrg-scan-outer Parallel sort-merge join, with this table as the outer 
table

Label Information provided



dbcc traceon(310) and final query plan costs 

930  Adaptive Server Enterprise



Performance & Tuning Guide 931

C H A P T E R  3 9 Monitoring Performance with 
sp_sysmon

This chapter describes output from sp_sysmon, a system procedure that 
produces Adaptive Server performance data. It includes suggestions for 
interpreting its output and deducing possible implications.

sp_sysmon output is most valuable when you have a good understanding 
of your Adaptive Server environment and its specific mix of applications. 
Otherwise, you may find that sp_sysmon output has little relevance. 

Topic Page
Using 932

Invoking 933

How to use the reports 936

Sample interval and time reporting 939

Kernel utilization 940

Worker process management 946

Parallel query management 949

Task management 952

Application management 961

ESP management 967

Housekeeper task activity 968

Monitor access to executing SQL 969

Transaction profile 971

Transaction management 978

Index management 984

Metadata cache management 993

Lock management 997

Data cache management 1006

Procedure cache management 1022

Memory management 1023

Recovery management 1024

Disk I/O management 1027

Network I/O management 1032



Using 

932  Adaptive Server Enterprise

Using
When you invoke sp_sysmon, it clears all accumulated data from a set of 
counters that will be used during the sample interval to accumulate the 
results of user and system activity. At the end of the sample interval, the 
procedure reads the values in the counters, prints the report, and stops 
executing.

sp_sysmon contributes 5 to 7% overhead while it runs on a single CPU 
server, and more on multiprocessor servers. The amount of overhead 
increases with the number of CPUs.

 Warning! sp_sysmon and Adaptive Server Monitor use the same internal 
counters. sp_sysmon resets these counters to 0, producing erroneous 
output for Adaptive Server Monitor when it is used simultaneously with 
sp_sysmon.

Also, starting a second execution of sp_sysmon while an earlier execution 
is running clears all the counters, so the first iteration of reports will be 
inaccurate.

When to run
You can run sp_sysmon both before and after tuning Adaptive Server 
configuration parameters to gather data for comparison. This data gives 
you a basis for performance tuning and lets you observe the results of 
configuration changes.

Use sp_sysmon when the system exhibits the behavior you want to 
investigate. For example, if you want to find out how the system behaves 
under typically loaded conditions, run sp_sysmon when conditions are 
normal and typically loaded.

In this case, it would not make sense to run sp_sysmon for 10 minutes 
starting at 7:00 p.m., before the batch jobs begin and after most of the day’s 
OLTP users have left the site. Instead, it would be best to run sp_sysmon 
both during the normal OLTP load and during batch jobs.

In many tests, it is best to start the applications, and then start sp_sysmon 
when the caches have had a chance to reach a steady state. If you are trying 
to measure capacity, be sure that the amount of work you give the server 
keeps it busy for the duration of the test.



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 933

Many of the statistics, especially those that measure data per second, can 
look extremely low if the server is idle during part of the sample interval.

In general, sp_sysmon produces valuable information when you use it:

• Before and after cache or pool configuration changes

• Before and after certain sp_configure changes

• Before and after the addition of new queries to your application mix

• Before and after an increase or decrease in the number of Adaptive 
Server engines

• When adding new disk devices and assigning objects to them

• During peak periods, to look for contention or bottlenecks

• During stress tests to evaluate an Adaptive Server configuration for a 
maximum expected application load

• When performance seems slow or behaves abnormally

It can also help with micro-level understanding of certain queries or 
applications during development. Some examples are:

• Working with indexes and updates to see if certain updates reported 
as deferred_varcol are resulting direct vs. deferred updates

• Checking caching behavior of particular queries or a mix of queries

• Tuning the parameters and cache configuration for parallel index 
creation

Invoking
There are two ways to use sp_sysmon:

• Using a fixed time interval to provide a sample for a specified number 
of minutes

• Using the begin_sample and end_sample parameters to start and stop 
sampling 

You can also tailor the output to provide the information you need:

• You can print the entire report.



Invoking 

934  Adaptive Server Enterprise

• You can print just one section of the report, such as “Cache 
Management” or “Lock Management.”

• You can include application-level detailed reporting for named 
applications (such as isql, bcp, or any named application) and for 
combinations of named applications and user names. (The default is 
to omit this section.)

Fixed time intervals
To invoke sp_sysmon, execute the following command using isql:

sp_sysmon interval [, section  [, applmon]]

interval must be in the form “hh:mm:ss”. To run sp_sysmon for 10 
minutes, use this command:

sp_sysmon "00:10:00"

The following command prints only the “Data Cache Management” 
section of the report:

sp_sysmon "00:10:00", dcache

For information on the applmon parameter, see “Specifying the 
application detail parameter” on page 935.

Using begin_sample and end_sample
With the begin_sample and end_sample parameters, you can invoke 
sp_sysmon to start sampling, issue queries, and end the sample and print 
the results at any point in time. For example:

sp_sysmon begin_sample
execute proc1
execute proc2
select sum(total_sales) from titles
sp_sysmon end_sample

Note  On systems with many CPUs and high activity, counters can 
overflow if the sample period is too long.

If you see negative results in your sp_sysmon output, reduce your sample 
time.



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 935

Specifying report sections for output
To print only a single section of the report, use one of the values listed in 
Table 39-1 for the second parameter.

Table 39-1: sp_sysmon report sections

* Most of the information available through sp_sysmon_mdcache can be 
obtained throu using sp_monitorconfig.

Specifying the application detail parameter
If you specify the third parameter to sp_sysmon, the report includes 
detailed information by application or by application and login name. This 
parameter is valid only when you print the entire report or when you 
request the “Application Management” section by specifying appmgmt as 
the section. It is ignored if you specify it and request any other section of 
the report.

The third parameter must be one of the following: 

Report section Parameter

Application Management appmgmt

Data Cache Management dcache

Disk I/O Management diskio

ESP Management esp

Houskeeper Task Activity housekeeper

Index Management indexmgmt

Kernel Utilization kernel

Lock Management locks

Memory Management memory

Metadata Cache Management mdcache*

Monitor Access to Executing SQL monaccess

Network I/O Management netio

Parallel Query Management parallel

Procedure Cache Management pcache

Recovery Management recovery

Task Management taskmgmt

Transaction Management xactmgmt

Transaction Profile xactsum

Worker Process Management wpm



How to use the reports 

936  Adaptive Server Enterprise

This example runs sp_sysmon for 5 minutes and prints the “Application 
Management” section, including the application and login detail report:

sp_sysmon "00:05:00", appmgmt, appl_and_login

See “Per application or per application and login” on page 966 for sample 
output.

Redirecting output to a file
A full sp_sysmon report contains hundreds of lines of output. Use isql 
input and output redirect flags to save the output to a file.

See the Utility Programs manual for more information on isql.

How to use the reports
sp_sysmon can give you information about Adaptive Server system 
behavior both before and after tuning. It is important to study the entire 
report to understand the full impact of the changes you make. Sometimes 
removing one performance bottleneck reveals another.

 It is also possible that your tuning efforts might improve performance in 
one area, while actually causing performance degradation in another area. 

In addition to pointing out areas for tuning work, sp_sysmon output is 
valuable for determining when further tuning will not pay off in additional 
performance gains.

It is just as important to know when to stop tuning Adaptive Server, or 
when the problem resides elsewhere, as it is to know what to tune. 

Other information can contribute to interpreting sp_sysmon output:

Parameter Information reported

appl_only CPU, I/O, priority changes, and resource limit 
violations by application name.

appl_and_login CPU, I/O, priority changes, and resource limit 
violations   by application name and login name.

no_appl Skips the application and login section of the 
report. This is the default.



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 937

• Information on the configuration parameters in use, from sp_configure 
or the configuration file

• Information on the cache configuration and cache bindings, from 
sp_cacheconfig and sp_helpcache

• Information on disk devices, segments, and the objects stored on them

Reading output
sp_sysmon displays performance statistics in a consistent tabular format. 
For example, in an SMP environment running nine Adaptive Server 
engines, the output typically looks like this:

Engine Busy Utilization:
    Engine 0                      98.8 %
    Engine 1                      98.8 %
    Engine 2                      97.4 %
    Engine 3                      99.5 %
    Engine 4                      98.7 %
    Engine 5                      98.7 %
    Engine 6                      99.3 %
    Engine 7                      98.3 %
    Engine 8                      97.7 %
  -----------             ---------------          ----------------
  Summary:                Total:  887.2 %          Average:  98.6 %

Rows

Most rows represent a specific type of activity or event, such as acquiring 
a lock or executing a stored procedure. When the data is related to CPUs, 
the rows show performance information for each Adaptive Server engine 
in the SMP environment. Often, when there are groups of related rows, the 
last row is a summary of totals and an average.

The sp_sysmon report indents some rows to show that one category is a 
subcategory of another. In the following example, “Found in Wash” is a 
subcategory of “Cache Hits”, which is a subcategory of “Cache Searches”:

Cache Searches
      Cache Hits                 202.1        3.0    12123     100.0 %
         Found in Wash             0.0        0.0        0       0.0 %
      Cache Misses                 0.0        0.0        0       0.0 %
  -------------------------  ---------  ---------  -------



How to use the reports 

938  Adaptive Server Enterprise

    Total Cache Searches         202.1        3.0    12123

Many rows are not printed when the “count” value is 0.

Columns

Unless otherwise stated, the columns represent the following performance 
statistics:

• “per sec”– average per second during sampling interval

• “per xact” – average per committed transaction during sampling 
interval

• “count” – total number during the sample interval

• “% of total” – varies, depending on context, as explained for each 
occurrence

Interpreting the data
When tuning Adaptive Server, the fundamental measures of success 
appear as increases in throughput and reductions in application response 
time. Unfortunately, tuning Adaptive Server cannot be reduced to printing 
these two values.

In most cases, your tuning efforts must take an iterative approach, 
involving a comprehensive overview of Adaptive Server activity, careful 
tuning and analysis of queries and applications, and monitoring locking 
and access on an object-by-object basis.

Per second and per transaction data

Weigh the importance of the per second and per transaction data on the 
environment and the category you are measuring. The per transaction data 
is generally more meaningful in benchmarks or in test environments where 
the workload is well defined.

It is likely that you will find per transaction data more meaningful for 
comparing test data than per second data alone because in a benchmark 
test environment, there is usually a well-defined number of transactions, 
making comparison straightforward. Per transaction data is also useful for 
determining the validity of percentage results.



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 939

Percent of total and count data

The meaning of the “% of total” data varies, depending on the context of 
the event and the totals for the category. When interpreting percentages, 
keep in mind that they are often useful for understanding general trends, 
but they can be misleading when taken in isolation.

For example, 50% of 200 events is much more meaningful than 50% of 2 
events.

The “count” data is the total number of events that occurred during the 
sample interval. You can use count data to determine the validity of 
percentage results.

Per engine data

In most cases, per engine data for a category shows a fairly even balance 
of activity across all engines. Two exceptions are:

• If you have fewer processes than CPUs, some of the engines will 
show no activity.

• If most processes are doing fairly uniform activity, such as simple 
inserts and short selects, and one process performs some I/O intensive 
operation such as a large bulk copy, you will see unbalanced network 
and disk I/O.

Total or summary data

Summary rows provide an overview of Adaptive Server engine activity by 
reporting totals and averages.

Be careful when interpreting averages because they can give false 
impressions of true results when the data is skewed. For example, if one 
Adaptive Server engine is working 98% of the time and another is working 
2% of the time, a 49% average can be misleading.

Sample interval and time reporting
The heading of an sp_sysmon report includes the software version, server 
name, date, the time the sample interval started, the time it completed, and 
the duration of the sample interval.



Kernel utilization 

940  Adaptive Server Enterprise

====================================================================== 
      Sybase Adaptive Server Enterprise System Performance Report
====================================================================== 
Server Version: Adaptive Server Enterprise/12.0/P/Sun_svr4/OS 5.6/1548/3
Server Name:            tinman
Run Date                Sep 20, 1999
Statistics Cleared at   16:05:40
Statistics Sampled at   16:15:40
Sample Interval         00:10:00

Kernel utilization
“Kernel Utilization” reports Adaptive Server activities. It tells you how 
busy Adaptive Server engines were during the time that the CPU was 
available to Adaptive Server, how often the CPU yielded to the operating 
system, the number of times that the engines checked for network and disk 
I/O, and the average number of I/Os they found waiting at each check.

Sample output
The following sample shows sp_sysmon output for “Kernel Utilization” in 
an environment with eight Adaptive Server engines.

Kernel Utilization
------------------
 
  Engine Busy Utilization:
    Engine 0                    98.5 %                                
    Engine 1                    99.3 %                                
    Engine 2                    98.3 %                                
    Engine 3                    97.2 %                                
    Engine 4                    97.8 %                                
    Engine 5                    99.3 %                                
    Engine 6                    98.8 %                                
    Engine 7                    99.7 %                                
  -----------             ---------------          ----------------
  Summary:                Total:  789.0 %          Average:  98.6 %

 CPU Yields by Engine         per sec   per xact    count  % of total



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 941

  -------------------------  ---------  ---------  -------  ---------- 
                                   0.0        0.0        0       n/a      
  Network Checks
    Non-Blocking               79893.3     1186.1  4793037     100.0 %
    Blocking                       1.1        0.0       67       0.0 %
  -------------------------  ---------  ---------  -------
  Total Network I/O Checks     79894.4     1186.1  4793104             
  Avg Net I/Os per Check           n/a        n/a  0.00169       n/a   
 
 
  Disk I/O Checks
    Total Disk I/O Checks      94330.3     1400.4  5659159       n/a   
    Checks Returning I/O       92881.0     1378.9  5572210      98.5 %
    Avg Disk I/Os Returned         n/a        n/a  0.00199       n/a 

In this example, the CPU did not yield to the operating system, so there are 
no detail rows.

Engine busy utilization
“Engine Busy Utilization” reports the percentage of time the Adaptive 
Server Kernel is busy executing tasks on each Adaptive Server engine 
(rather than time spent idle). The summary row gives the total and the 
average active time for all engines combined. 

The values reported here may differ from the CPU usage values reported 
by operating system tools. When Adaptive Server has no tasks to process, 
it enters a loop that regularly checks for network I/O, completed disk I/Os, 
and tasks in the run queue.

Operating system commands to check CPU activity may show high usage 
for a Adaptive Server engine because they are measuring the looping 
activity, while “Engine Busy Utilization” does not include time spent 
looping—it is considered idle time.

One measurement that cannot be made from inside Adaptive Server is the 
percentage of time that Adaptive Server had control of the CPU vs. the 
time the CPU was in use by the operating system. Check your operating 
system documentation for the correct commands.

If you want to reduce the time that Adaptive Server spends checking for 
I/O while idle, you can lower the sp_configure parameter runnable process 
search count. This parameter specifies the number of times a Adaptive 
Server engine loops looking for a runnable task before yielding the CPU.



Kernel utilization 

942  Adaptive Server Enterprise

For more information, see the System Administration Guide.

“Engine Busy Utilization” measures how busy Adaptive Server engines 
were during the CPU time they were given. If the engine is available to 
Adaptive Server for 80% of a 10-minute sample interval, and “Engine 
Busy Utilization” was 90%, it means that Adaptive Server was busy for 7 
minutes and 12 seconds and was idle for 48 seconds.

This category can help you decide whether there are too many or too few 
Adaptive Server engines. Adaptive Server’s high scalability is due to 
tunable mechanisms that avoid resource contention.

By checking sp_sysmon output for problems and tuning to alleviate 
contention, response time can remain high even at “Engine Busy” values 
in the 80 to 90% range. If values are consistently very high (more than 
90%), it is likely that response time and throughput could benefit from an 
additional engine. 

The “Engine Busy Utilization” values are averages over the sample 
interval, so very high averages indicate that engines may be 100% busy 
during part of the interval.

When engine utilization is extremely high, the housekeeper process writes 
few or no pages out to disk (since it runs only during idle CPU cycles.) 
This means that a checkpoint finds many pages that need to be written to 
disk, and the checkpoint process, a large batch job, or a database dump is 
likely to send CPU usage to 100% for a period of time, causing a 
perceptible dip in response time. 

If the “Engine Busy Utilization” percentages are consistently high, and 
you want to improve response time and throughput by adding Adaptive 
Server engines, check for increased resource contention in other areas 
after adding each engine.

In an environment where Adaptive Server is serving a large number of 
users, performance is usually fairly evenly distributed across engines. 
However, when there are more engines than tasks, you may see some 
engines with a large percentage of utilization, and other engines may be 
idle. On a server with a single task running a query, for example, you may 
see output like this:

Engine Busy Utilization 
    Engine 0                    97.2 %        
    Engine 1                     0.0 %        
    Engine 2                     0.0 %        
    Engine 3                     0.0 %        
    Engine 4                     0.0 %        



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 943

    Engine 5                     0.0 %        
  -----------          ---------------          ----------------
  Summary              Total    97.2 %          Average   16.2 %

In an SMP environment, tasks have soft affinity to engines. Without other 
activity (such as lock contention) that could cause this task to be placed in 
the global run cue, the task continues to run on the same engine.

CPU yields by engine
“CPU Yields by Engine” reports the number of times each Adaptive 
Server engine yielded to the operating system. “% of total” data is the 
percentage of times an engine yielded as a percentage of the combined 
yields for all engines. 

“Total CPU Yields” reports the combined data over all engines.

If the “Engine Busy Utilization” data indicates low engine utilization, use 
“CPU Yields by Engine” to determine whether the “Engine Busy 
Utilization” data reflects a truly inactive engine or one that is frequently 
starved out of the CPU by the operating system. 

When an engine is not busy, it yields to the CPU after a period of time 
related to the runnable process search count parameter. A high value for 
“CPU Yields by Engine” indicates that the engine yielded voluntarily. 

If you also see that “Engine Busy Utilization” is a low value, then the 
engine really is inactive, as opposed to being starved out.

See the System Administration Guide for more information.

Network checks
“Network Checks” includes information about blocking and non-blocking 
network I/O checks, the total number of I/O checks for the interval, and 
the average number of network I/Os per network check.

Adaptive Server has two ways to check for network I/O: blocking and non-
blocking modes.



Kernel utilization 

944  Adaptive Server Enterprise

Non–blocking

“Non-Blocking” reports the number of times Adaptive Server performed 
non-blocking network checks. With non-blocking network I/O checks, an 
engine checks the network for I/O and continues processing, whether or 
not it found I/O waiting.

Blocking

“Blocking” reports the number of times Adaptive Server performed 
blocking network checks.

After an engine completes a task, it loops waiting for the network to 
deliver a runnable task. After a certain number of loops (determined by the 
sp_configure parameter runnable process search count), the Adaptive 
Server engine goes to sleep after a blocking network I/O. 

When an engine yields to the operating system because there are no tasks 
to process, it wakes up once per clock tick to check for incoming network 
I/O. If there is I/O, the operating system blocks the engine from active 
processing until the I/O completes.

If an engine has yielded to the operating system and is doing blocking 
checks, it might continue to sleep for a period of time after a network 
packet arrives. This period of time is referred to as the latency period. You 
can reduce the latency period by increasing the runnable process search 
count parameter so that the Adaptive Server engine loops for longer 
periods of time.

See the System Administration Guide for more information.

Total network I/O checks

“Total Network I/O Checks” reports the number of times an engine polls 
for incoming and outgoing packets. This category is helpful when you use 
it with “CPU Yields by Engine.”

When an engine is idle, it loops while checking for network packets. If 
“Network Checks” is low and “CPU Yields by Engine” is high, the engine 
could be yielding too often and not checking the network frequently 
enough. If the system can afford the overhead, it might be acceptable to 
yield less often. 



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 945

Average network I/Os per check

“Avg Net I/Os per Check” reports the average number of network I/Os 
(both sends and receives) per check for all Adaptive Server engine checks 
that took place during the sample interval.

The sp_configure parameter i/o polling process count specifies the 
maximum number of processes that Adaptive Server runs before the 
scheduler checks for disk and/or network I/O completions. Tuning i/o 
polling process count affects both the response time and throughput of 
Adaptive Server.

See the System Administration Guide.

If Adaptive Server engines check frequently, but retrieve network I/O 
infrequently, you can try reducing the frequency for network I/O checking. 

Disk I/O checks
This section reports the total number of disk I/O checks, and the number 
of checks returning I/O.

Total disk I/O checks
“Total Disk I/O Checks” reports the number of times engines checked for 
disk I/O. 

When a task needs to perform I/O, the Adaptive Server engine running that 
task immediately issues an I/O request and puts the task to sleep, waiting 
for the I/O to complete. The engine processes other tasks, if any, but also 
loops to check for completed I/Os. When the engine finds completed I/Os, 
it moves the task from the sleep queue to the run queue.

Checks returning I/O

“Checks Returning I/O” reports the number of times that a requested I/O 
had completed when an engine checked for disk I/O.

For example, if an engine checks for expected I/O 100,000 times, this 
average indicates the percentage of time that there actually was I/O 
pending. If, of those 100,000 checks, I/O was pending 10,000 times, then 
10% of the checks were effective, and the other 90% were overhead.



Worker process management 

946  Adaptive Server Enterprise

However, you should also check the average number of I/Os returned per 
check and how busy the engines were during the sample interval. If the 
sample includes idle time, or the I/O traffic is “bursty,” it is possible that 
during a high percentage of the checks were returning I/O during the busy 
period.

If the results in this category seem low or high, you can configure i/o polling 
process count to increase or decrease the frequency of the checks.

See the System Administration Guide.

Average disk I/Os returned

“Avg Disk I/Os Returned” reports the average number of disk I/Os 
returned over all Adaptive Server engine checks combined.

Increasing the amount of time that Adaptive Server engines wait between 
checks may result in better throughput because Adaptive Server engines 
can spend more time processing if they spend less time checking for I/O. 
However, you should verify this for your environment. Use the 
sp_configure parameter i/o polling process count to increase the length of 
the checking loop.

See the System Administration Guide.

Worker process management
“Worker Process Management” reports the use of worker processes, 
including the number of worker process requests that were granted and 
denied and the success and failure of memory requests for worker 
processes.

You need to analyze this output in combination with the information 
reported under “Parallel query management” on page 949. 

Sample output
Worker Process Management
-------------------------
                               per sec   per xact    count  % of total
                             ---------  ---------  -------  ---------- 



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 947

 Worker Process Requests
  Requests Granted                 0.1        8.0       16     100.0 %
  Requests Denied                  0.0        0.0        0       0.0 %
 --------------------------  ---------  ---------  -------             
  Total Requests                   0.1        8.0       16             
 
  Requests Terminated              0.0        0.0        0       0.0 %
 
 Worker Process Usage
   Total Used                      0.4       39.0       78       n/a   
   Max Ever Used During Sample     0.1       12.0       24       n/a   
 
 Memory Requests for Worker Processes
   Succeeded                       4.5      401.0      802     100.0 %
   Failed                          0.0        0.0        0       0.0 % 

Avg Mem Ever Used by a WP 
          (in bytes) n/a           n/a      311.7     n/a        n/a

Worker process requests
This section reports requests for worker processes and worker process 
memory. A parallel query may make multiple requests for worker 
processes. For example, a parallel query that requires a sort may make one 
request for accessing data and a second for parallel sort. 

The “Requests Granted” and “Requests Denied” rows show how many 
requests were granted and how many requests were denied due to a lack of 
available worker processes at execution time.

To see the number of adjustments made to the number of worker 
processes, see “Parallel query usage” on page 950.

“Requests Terminated” reports the number of times a request was 
terminated by user action, such as pressing Ctrl-c, that cancelled the query.



Worker process management 

948  Adaptive Server Enterprise

Worker process usage
In this section, “Total Used” reports the total number of worker processes 
used during the sample interval. “Max Ever Used During Sample” reports 
the highest number in use at any time during sp_sysmon’s sampling 
period. You can use “Max Ever Used During Sample” to set the 
configuration parameter number of worker processes.

Memory requests for worker processes
This section reports how many requests were made for memory 
allocations for worker processes, how many of those requests succeeded 
and how many failed. Memory for worker processes is allocated from a 
memory pool configured with the parameter memory per worker process.

If “Failed” is a nonzero value, you may need to increase the value of 
memory per worker process. 

Avg mem ever used by a WP
This row reports the maximum average memory used by all active worker 
processes at any time during the sample interval. Each worker process 
requires memory, principally for exchanging coordination messages. This 
memory is allocated by Adaptive Server from the global memory pool.

The size of the pool is determined by multiplying the two configuration 
parameters, number of worker processes and memory per worker process.

If number of worker processes is set to 50, and memory per worker process 
is set to the default value of 1024 bytes, 50K is available in the pool. 
Increasing memory for worker process to 2048 bytes would require 50K of 
additional memory.

At start-up, static structures are created for each worker process. While 
worker processes are in use, additional memory is allocated from the pool 
as needed and deallocated when not needed. The average value printed is 
the average for all static and dynamically memory allocated for all worker 
processes, divided by the number of worker processes actually in use 
during the sample interval. 

If a large number of worker processes are configured, but only a few are 
in use during the sample interval, the value printed may be inflated, due to 
averaging in the static memory for unused processes. 



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 949

If “Avg Mem” is close to the value set by memory per worker process and 
the number of worker processes in “Max Ever Used During Sample” is 
close to the number configured, you may want to increase the value of the 
parameter.

If a worker process needs memory from the pool, and no memory is 
available, the process prints an error message and exits.

Note  For most parallel query processing, the default value of 1024 is more 
than adequate.

The exception is dbcc checkstorage, which can use up 1792 bytes if only 
one worker process is configured. If you are using dbcc checkstorage, and 
number of worker processes is set to 1, you may want to increase memory 
per worker process.

Parallel query management
“Parallel Query Management” reports the execution of parallel queries. It 
reports the total number of parallel queries, how many times the number 
of worker processes was adjusted at runtime, and reports on the granting 
of locks during merges and sorts.

Sample output
Parallel Query Management
-------------------------
 
  Parallel Query Usage         per sec   per xact    count  % of total
  -------------------------  ---------  ---------  -------  ---------- 
  Total Parallel Queries           0.1        8.0       16       n/a   
  WP Adjustments Made                                                  
    Due to WP Limit                0.0        0.0        0       0.0 %
    Due to No WPs                  0.0        0.0        0       0.0 %
 
  Merge Lock Requests          per sec   per xact    count  % of total
  -------------------------  ---------  ---------  -------  ---------- 
    Network Buffer Merge Locks                                     
      Granted with no wait         4.9      438.5      877      56.2 %



Parallel query management 

950  Adaptive Server Enterprise

      Granted after wait           3.7      334.5      669      42.9 %
 
    Result Buffer Merge Locks                                          
      Granted with no wait         0.0        0.0        0       0.0 %
      Granted after wait           0.0        0.0        0       0.0 %
 
    Work Table Merge Locks                                               
      Granted with no wait         0.1        7.0       14       0.9 %
      Granted after wait           0.0        0.0        0       0.0 %
  -------------------------  ---------  ---------  -------
  Total # of Requests              8.7      780.0     1560             
 
  Sort Buffer Waits            per sec   per xact    count  % of total
  -------------------------  ---------  ---------  -------  ---------- 
  Total # of Waits                 0.0        0.0        0       n/a   

Parallel query usage
“Total Parallel Queries” reports the total number of queries eligible to be 
run in parallel. The optimizer determines the best plan, deciding whether 
a query should be run serially or in parallel and how many worker 
processes should be used for parallel queries.

“WP Adjustments Made” reports how many times the number of worker 
processes recommended by the optimizer had to be adjusted at runtime. 
Two possible causes are reported:

• “Due to WP Limit” indicates the number of times the number of 
worker processes for a cached query plan was adjusted due to a 
session-level limit set with set parallel_degree or 
set scan_parallel_degree.

If “Due to WP Limit” is a nonzero value, look for applications that set 
session-level limits.

• “Due to No WPs” indicates the number of requests for which the 
number of worker processes was reduced due to lack of available 
worker processes. These queries may run in serial, or they may run in 
parallel with fewer worker processes than recommended by the 
optimizer. It could mean that queries are running with poorly-
optimized plans.



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 951

If “Due to No WPs” is a nonzero value, and the sample was taken at 
a time of typical load on your system, you may want to increase the 
number of worker processes configuration parameter or set session-
level limits for some queries.

Running sp_showplan on the fid (family ID) of a login using an 
adjusted plan shows only the cached plan, not the adjusted plan.

If the login is running an adjusted plan, sp_who shows a different 
number of worker processes for the fid than the number indicated by 
sp_showplan results.

Merge lock requests
“Merge Lock Requests” reports the number of parallel merge lock 
requests that were made, how many were granted immediately, and how 
many had to wait for each type of merge. The three merge types are:

• “Network Buffer Merge Locks”–reports contention for the network 
buffers that return results to clients.

• “Result Buffer Merge Locks”–reports contention for the result buffers 
used to process results for ungrouped aggregates and nonsorted, non 
aggregate variable assignment results.

• “Work Table Merge Locks”–reports contention for locks while results 
from work tables were being merge.

“Total # of Requests” prints the total of the three types of merge requests.

Sort buffer waits
This section reports contention for the sort buffers used for parallel sorts. 
Parallel sort buffers are used by:

• Producers – the worker processes returning rows from parallel scans

• Consumers – the worker processes performing the parallel sort

If the number of waits is high, you can configure number of sort buffers to 
a higher value.

See “Sort buffer configuration guidelines” on page 637 for guidelines.



Task management 

952  Adaptive Server Enterprise

Task management
“Task Management” provides information on opened connections, task 
context switches by engine, and task context switches by cause.

Sample output
The following sample shows sp_sysmon output for the “Task 
Management” categories.

  Task Management             per sec   per xact    count  % of total
  -------------------------  ---------  ---------  -------  ----------
  Connections Opened               0.0        0.0        0       n/a

  Task Context Switches by Engine
    Engine 0                      94.8        0.8     5730      10.6 %
    Engine 1                      94.6        0.8     5719      10.6 %
    Engine 2                      92.8        0.8     5609      10.4 %
    Engine 3                     105.0        0.9     6349      11.7 %
    Engine 4                     101.8        0.8     6152      11.4 %
    Engine 5                     109.1        0.9     6595      12.2 %
    Engine 6                     102.6        0.9     6201      11.4 %
    Engine 7                      99.0        0.8     5987      11.1 %
    Engine 8                      96.4        0.8     5830      10.8 %
  -------------------------  ---------  ---------  -------
    Total Task Switches:         896.1        7.5    54172

  Task Context Switches Due To:
    Voluntary Yields              69.1        0.6     4179       7.7 %
    Cache Search Misses           56.7        0.5     3428       6.3 %
    System Disk Writes             1.0        0.0       62       0.1 %
    I/O Pacing                    11.5        0.1      695       1.3 %
    Logical Lock Contention        3.7        0.0      224       0.4 %
    Address Lock Contention        0.0        0.0        0       0.0 %
    Latch Contention               0.1        0.6       17       0.0 %
    Log Semaphore Contention      51.0        0.4     3084       5.7 %
    PLC Lock Contention            0.0        0.0        2       0.0 %
    Group Commit Sleeps           82.2        0.7     4971       9.2 %
    Last Log Page Writes          69.0        0.6     4172       7.7 %
    Modify Conflicts              83.7        0.7     5058       9.3 %
    I/O Device Contention          6.4        0.1      388       0.7 %
    Network Packet Received      120.0        1.0     7257      13.4 %
    Network Packet Sent          120.1        1.0     7259      13.4 %
    Other Causes                 221.6        1.8    13395      24.7 %



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 953

Connections opened
“Connections Opened” reports the number of connections opened to 
Adaptive Server. It includes any type of connection, such as client 
connections and remote procedure calls. It counts only connections that 
were started during the sample interval.

Connections that were established before the interval started are not 
counted, although they may be active and using resources.

This provides a general understanding of the Adaptive Server environment 
and the work load during the interval. This data can also be useful for 
understanding application behavior – it can help determine if applications 
repeatedly open and close connections or perform multiple transactions 
per connection.

See “Transaction profile” on page 971 for information about committed 
transactions.

Task context switches by engine
“Task Context Switches by Engine” reports the number of times each 
Adaptive Server engine switched context from one user task to another. 
“% of total” reports the percentage of engine task switches for each 
Adaptive Server engine as a percentage of the total number of task 
switches for all Adaptive Server engines combined.

“Total Task Switches” summarizes task-switch activity for all engines on 
SMP servers. You can use “Total Task Switches” to observe the effect of 
re configurations. You might reconfigure a cache or add memory if tasks 
appear to block on cache search misses and to be switched out often. Then, 
check the data to see if tasks tend to be switched out more or less often.

Task context switches due to
“Task Context Switches Due To” reports the number of times that 
Adaptive Server switched context for a number of common reasons. “% of 
total” reports the percentage of times the context switch was due to each 
specific cause as a percentage of the total number of task context switches 
for all Adaptive Server engines combined.



Task management 

954  Adaptive Server Enterprise

“Task Context Switches Due To” provides an overview of the reasons that 
tasks were switched off engines. The possible performance problems 
shown in this section can be investigated by checking other sp_sysmon 
output, as indicated in the sections that describe the causes. 

For example, if most of the task switches are caused by physical I/O, try 
minimizing physical I/O by adding more memory or re configuring 
caches. However, if lock contention causes most of the task switches, 
check the locking section of your report.

See “Lock management” on page 997 for more information.

Voluntary yields

“Voluntary Yields” reports the number of times a task completed or 
yielded after running for the configured amount of time. The Adaptive 
Server engine switches context from the task that yielded to another task.

The configuration parameter time slice sets the amount of time that a 
process can run. A CPU-intensive task that does not switch out due to 
other causes yields the CPU at certain “yield points” in the code, in order 
to allow other processes a turn on the CPU.

See “Scheduling client task processing time” on page 30 for more 
information.

A high number of voluntary yields indicates that there is little contention. 

Cache search misses

“Cache Search Misses” reports the number of times a task was switched 
out because a needed page was not in cache and had to be read from disk. 
For data and index pages, the task is switched out while the physical read 
is performed.

See “Data cache management” on page 1006 for more information about 
the cache-related parts of the sp_sysmon output.

System disk writes

“System Disk Writes” reports the number of times a task was switched out 
because it needed to perform a disk write or because it needed to access a 
page that was being written by another process, such as the housekeeper 
or the checkpoint process.



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 955

Most Adaptive Server writes happen asynchronously, but processes sleep 
during writes for page splits, recovery, and OAM page writes.

If “System Disk Writes” seems high, check the value for page splits to see 
if the problem is caused by data page and index page splits.

See “Page splits” on page 987 for more information.

If the high value for system disk writes is not caused by page splitting, you 
cannot affect this value by tuning.

I/O pacing

“I/O Pacing” reports how many times an I/O-intensive task was switched 
off an engine due to exceeding an I/O batch limit. Adaptive Server paces 
disk writes to keep from flooding the disk I/O subsystems during certain 
operations that need to perform large amounts of I/O.

Two examples are the checkpoint process and transaction commits that 
write a large number of log pages. The task is switched out and sleeps until 
the batch of writes completes and then wakes up and issues another batch.

By default, the number of writes per batch is set to 10. You may want to 
increase the number of writes per batch if:

• You have a high-throughput, high-transaction environment with a 
large data cache

• Your system is not I/O bound

Valid values are from 1 to 50. This command sets the number of writes per 
batch to 20:

dbcc tune (maxwritedes, 20)

Logical lock contention

“Logical Lock Contention” reports the number of times a task was 
switched out due to contention for locks on tables, data pages, or data 
rows. 

Investigate lock contention problems by checking the transaction detail 
and lock management sections of the report.

• See “Transaction detail” on page 974 and “Lock management” on 
page 997. 



Task management 

956  Adaptive Server Enterprise

• Check to see if your queries are doing deferred and direct expensive 
updates, which can cause additional index locks.

See “Updates” on page 976.

• Use sp_object_stats to report information on a per-object basis.

See “Identifying tables where concurrency is a problem” on page 
278.

For additional help on locks and lock contention, check the following 
sources:

• “Types of Locks” in the System Administration Guide provides 
information about types of locks to use at server or query level.

• “Reducing lock contention” on page 282 provides pointers on 
reducing lock contention.

• Chapter 8, “Indexing for Performance,” provides information on 
indexes and query tuning. In particular, use indexes to ensure that 
updates and deletes do not lead to table scans and exclusive table 
locks.

Address lock contention

“Address Lock Contention” reports the number of times a task was 
switched out because of address locks. Adaptive Server acquires address 
locks on index pages of allpages-locked tables. Address lock contention 
blocks access to data pages.

Latch contention

“Latch Contention” reports the number of times a task was switched out 
because it needed to wait for a latch.

If your user tables use only allpages-locking, this latch contention is taking 
place either on a data-only-locked system table or on allocation pages.

If your applications use data-only-locking, the contention reported here 
includes all waits for latches, including those on index pages and OAM 
pages as well as allocation pages.



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 957

Reducing contention during page allocation

In SMP environments where inserts and expanding updates are extremely 
high, so that page allocations take place very frequently, contention for the 
allocation page latch can reduce performance. Normally, Adaptive Server 
allocates new pages for an object on an allocation unit that is already in use 
by the object and known to have free space.

For each object, Adaptive Server tracks this allocation page number as a 
hint for any tasks that need to allocate a page for that object. When more 
than one task at a time needs to allocate a page on the same allocation unit, 
the second and subsequent tasks block on the latch on the allocation page.

You can specify a “greedy allocation” scheme, so that Adaptive Server 
keeps a list of eight allocation hints for page allocations for a table. 

This command enables greedy allocation for the salesdetail table in 
database 6:

dbcc tune(des_greedyalloc, 6, salesdetail, "on")

To turn it off, use:

dbcc tune(des_greedyalloc, 6, salesdetail, "off")

The effect of dbcc tune(des_greedyalloc) are not persistent, so you need to 
reissue the commands after a reboot.

You should use this command only if all of the following are true:

• You have multiple engines. It is rarely useful with fewer than four 
engines.

• A large number of pages are being allocated for the object. You can 
use sp_spaceused or optdiag to track the number of pages.

• The latch contention counter shows contention.

Greedy allocation is more useful when tables are assigned to their own 
segments. If you enable greedy allocation for several tables on the same 
segment, the same allocation hint could be used for more than one table. 
Hints are unique for each table, but uniqueness is not enforced across all 
tables.

Greedy allocation is not allowed in the master and tempdb databases, and 
is not allowed on system tables.



Task management 

958  Adaptive Server Enterprise

Log semaphore contention

“Log Semaphore Contention” reports the number of times a task was 
switched out because it needed to acquire the transaction log semaphore 
held by another task. This applies to SMP systems only.

If log semaphore contention is high, see “Transaction management” on 
page 978. 

Check disk queuing on the disk used by the transaction log.

See “Disk I/O management” on page 1027. 

Also see “Engine busy utilization” on page 941. If engine utilization 
reports a low value, and response time is within acceptable limits, consider 
reducing the number of engines. Running with fewer engines reduces 
contention by decreasing the number of tasks trying to access the log 
simultaneously.

PLC lock contention

“PLC Lock Contention” reports contention for a lock on a user log cache.

Group commit sleeps

“Group Commit Sleeps” reports the number of times a task performed a 
transaction commit and was put to sleep until the log was written to disk.

Compare this value to the number of committed transactions, reported in 
“Transaction profile” on page 971. If the transaction rate is low, a higher 
percentage of tasks wait for “Group Commit Sleeps.”

If there are a significant number of tasks resulting in “Group Commit 
Sleeps,” and the log I/O size is greater than 2K, a smaller log I/O size can 
help to reduce commit time by causing more frequent page flushes. 
Flushing the page wakes up tasks sleeping on the group commit.

In high throughput environments, a large log I/O size helps prevent 
problems in disk queuing on the log device. A high percentage of group 
commit sleeps should not be regarded as a problem.

Other factors that can affect group commit sleeps are the number of tasks 
on the run queue and the speed of the disk device on which the log resides.



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 959

When a task commits, its log records are flushed from its user log cache to 
the current page of the transaction log in cache. If the log page (or pages, 
if a large log I/O size is configured) is not full, the task is switched out and 
placed on the end of the run queue. The log write for the page is performed 
when:

• Another process fills the log page(s), and flushes the log

• When the task reaches the head of the run queue, and no other process 
has flushed the log page

For more information, see “Choosing the I/O size for the transaction log” 
on page 352.

Last log page writes

“Last Log Page Writes” reports the number of times a task was switched 
out because it was put to sleep while writing the last log page.

The task switched out because it was responsible for writing the last log 
page, as opposed to sleeping while waiting for some other task to write the 
log page, as described in “Group commit sleeps” on page 958.

If this value is high, review “Avg # writes per log page” on page 983 to 
determine whether Adaptive Server is repeatedly writing the same last 
page to the log. If the log I/O size is greater than 2K, reducing the log I/O 
size might reduce the number of unneeded log writes.

Modify conflicts

“Modify Conflicts” reports the number of times that a task tried to get 
exclusive access to a page that was held by another task under a special 
lightweight protection mechanism. For certain operations, Adaptive 
Server uses a lightweight protection mechanism to gain exclusive access 
to a page without using actual page locks. Examples are access to some 
system tables and dirty reads. These processes need exclusive access to the 
page, even though they do not modify it.

I/O device contention

“I/O Device Contention” reports the number of times a task was put to 
sleep while waiting for a semaphore for a particular device. 



Task management 

960  Adaptive Server Enterprise

When a task needs to perform physical I/O, Adaptive Server fills out the 
I/O structure and links it to a per-engine I/O queue. If two Adaptive Server 
engines request an I/O structure from the same device at the same time, 
one of them sleeps while it waits for the semaphore. 

If there is significant contention for I/O device semaphores, try reducing it 
by redistributing the tables across devices or by adding devices and 
moving tables and indexes to them.

See “Spreading data across disks to avoid I/O contention” on page 77 for 
more information.

Network packet received

When task switching is reported by “Network Packet Received,” the task 
switch is due to one of these causes: 

• A task received part of a multi packet batch and was switched out 
waiting for the client to send the next packet of the batch, or

• A task completely finished processing a command and was put into a 
receive sleep state while waiting to receive the next command or 
packet from the client.

If “Network Packet Received” is high, see “Network I/O management” on 
page 1032 for more information about network I/O. Also, you can 
configure the network packet size for all connections or allow certain 
connections to log in using larger packet sizes.

See “Changing network packet sizes” on page 15 and the System 
Administration Guide.

Network packet sent

“Network Packet Sent” reports the number of times a task went into a send 
sleep state while waiting for the network to send each packet to the client. 
The network model determines that there can be only one outstanding 
packet per connection at any one point in time. This means that the task 
sleeps after each packet it sends. 

If there is a lot of data to send, and the task is sending many small packets 
(512 bytes per packet), the task could end up sleeping a number of times. 
The data packet size is configurable, and different clients can request 
different packet sizes.



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 961

For more information, see “Changing network packet sizes” on page 15 
and the System Administration Guide.

If “Network Packet Sent” is a major cause of task switching, see “Network 
I/O management” on page 1032 for more information. 

Other causes

“Other Causes” reports the number of tasks switched out for any reasons 
not described above. In a well-tuned server, this value may rise as tunable 
sources of task switching are reduced.

Application management
“Application Management” reports execution statistics for user tasks. This 
section is useful if you use resource limits, or if you plan to tune 
applications by setting execution attributes and assigning engine affinity. 
Before making any adjustments to applications, logins, or stored 
procedures, run sp_sysmon during periods of typical load, and familiarize 
yourself with the statistics in this section.

For related background information, see Chapter 4, “Distributing Engine 
Resources.”

Requesting detailed application information
If you request information about specific tasks using the third sp_sysmon 
parameter, sp_sysmon output gives statistics specific to each application 
individually in addition to summary information. You can choose to 
display detailed application information in one of two ways:

• Application and login information (using the sp_sysmon parameter 
appl_and_login) – sp_sysmon prints a separate section for each login 
and the applications it is executing.

• Application information only (using the sp_sysmon parameter, 
appl_only) – sp_sysmon prints a section for each application, which 
combines data for all of the logins that are executing it.



Application management 

962  Adaptive Server Enterprise

For example, if 10 users are logged in with isql, and 5 users are logged in 
with an application called sales_reports, requesting “application and 
login” information prints 15 detail sections. Requesting “application only” 
information prints 2 detail sections, one summarizing the activity of all isql 
users, and the other summarizing the activity of the sales_reports users.

See “Specifying the application detail parameter” on page 935 for 
information on specifying the parameters for sp_sysmon.

Sample output
The following sample shows sp_sysmon output for the “Application 
Management” categories in the summary section. 

Application Management
----------------------

  Application Statistics Summary (All Applications)
  -------------------------------------------------
  Priority Changes         per sec      per xact       count  % of total
  ------------------    ----------   -----------  ----------  ----------
    To High Priority          15.7           1.8        5664      49.9 %
    To Medium Priority        15.8           1.8        5697      50.1 %
    To Low Priority            0.0           0.0           0       0.0 %
  --------------------  ----------    ----------   ----------
  Total Priority Changes      31.6           3.5       11361

  Allotted Slices Exhausted per sec   per xact       count    % of total
  ------------------------- -------   ----------  ----------  ----------
    High Priority               0.0          0.0           0       0.0 %
    Medium Priority             7.0          0.8        2522     100.0 %
    Low Priority                0.0          0.0           0       0.0 %
  ----------------------  ---------   ----------  ----------
  Total Slices Exhausted        7.0          0.8        2522
 
  Skipped Tasks By Engine  per sec    per xact     count      % of total
  ----------------------  ----------  ----------   ---------  
  Total Engine Skips             0.0         0.0           0         n/a
 
  Engine Scope Changes           0.0         0.0           0         n/a

The following example shows output for application and login; only the 
information for one application and login is included. The first line 
identifies the application name (before the arrow) and the login name 
(after the arrow). 



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 963

-----------------------------------------------------------------------
  Application->Login:   ctisql->adonis
 
  Application Activity    per sec       per xact   count     % of total
  ----------------------  ----------    ---------  --------  ----------
    CPU Busy                     0.1          0.0        27       2.8 %
    I/O Busy                     1.3          0.1       461      47.3 %
    Idle                         1.4          0.2       486      49.9 % 
 
Number of Times Scheduled        1.7          0.2       597         n/a
 
 Application Priority Changes  per sec    per xact   count   % of total
  -------------------------  ----------  ---------  -------  ----------
    To High Priority                0.2        0.0       72      50.0 %
    To Medium Priority              0.2        0.0       72      50.0 %
    To Low Priority                 0.0        0.0        0       0.0 %
  ------------------------  -----------  ---------  -------
  Total Priority Changes            0.4        0.0      144
 
  Application I/Os Completed   per sec    per xact   count   % of total
  -------------------------  ---------  ----------  --------  ----------
    Disk I/Os Completed             0.6        0.1       220      53.9 %
    Network I/Os Completed          0.5        0.1       188      46.1 %
  -------------------------  ------------  -------  --------
  Total I/Os Completed              1.1        0.1       408

 Resource Limits Violated    per sec    per xact    count  % of total
 ------------------------    --------  ----------   ------  -----------
 IO Limit Violations 
     Estimated                    0.0         0.0        0        0.0 %
     Actual                       0.1         4.0        4       50.0 %
 Time Limit Violations 
     Batch                        0.0         0.0        0        0.0 %
     Xact                         0.0         0.0        0        0.0 %
 RowCount Limit Violations        0.1         4.0        4       50.0 %

----------------------------  --------  ---------  -------
  Total Limits Violated           0.1         8.0        8

Application statistics summary (all applications)
The sp_sysmon statistics in the summary section can help you determine 
whether there are any anomalies in resource utilization. If there are, you 
can investigate further using the detailed report.



Application management 

964  Adaptive Server Enterprise

This section gives information about:

• Whether tasks are switching back and forth between different priority 
levels

• Whether the assigned time that tasks are allowed to run is appropriate

• Whether tasks to which you have assigned low priority are getting 
starved for CPU time

• Whether engine bindings with respect to load balancing is correct

Note that “Application Statistics Summary” includes data for system tasks 
as well as for user tasks. If the summary report indicates a resource issue, 
but you do not see supporting evidence in the application or application 
and login information, investigate the sp_sysmon kernel section of the 
report (“Kernel utilization” on page 940).

Priority changes

“Priority Changes” reports the priority changes that took place for all user 
tasks in each priority run queue during the sample interval. It is normal to 
see some priority switching due to system-related activity. Such priority 
switching occurs, for example, when:

• A task sleeps while waiting on a lock – Adaptive Server temporarily 
raises the task’s priority.

• The housekeeper task sleeps – Adaptive Server raises the priority to 
medium while the housekeeper sleeps, and changes it back to low 
when it wakes up.

• A task executes a stored procedure – the task assumes the priority of 
the stored procedure and resumes its previous priority level after 
executing the procedure.

If you are using logical process management and there are a high number 
of priority changes compared to steady state values, it may indicate that an 
application, or a user task related to that application, is changing priorities 
frequently. Check priority change data for individual applications. Verify 
that applications and logins are behaving as you expect. 

If you determine that a high-priority change rate is not due to an 
application or to related tasks, then it is likely due to system activity.



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 965

Total priority changes

“Total Priority Changes” reports the total number of priority changes 
during the sample period. This section gives you a quick way to determine 
if there are a high number of run queue priority changes occurring.

Allotted slices exhausted

“Allotted Slices Exhausted” reports the number of times user tasks in each 
run queue exceeded the time allotted for execution. Once a user task gains 
access to an engine, it is allowed to execute for a given period of time. If 
the task has not yielded the engine before the time is exhausted, Adaptive 
Server requires it to yield as soon as possible without holding critical 
resources. After yielding, the task is placed back on the run queue.

This section helps you to determine whether there are CPU-intensive 
applications for which you should tune execution attributes or engine 
associations. If these numbers are high, it indicates that an application is 
CPU intensive. Application-level information can help you figure out 
which application to tune. Some tasks, especially those which perform 
large sort operations, are CPU intensive.

Skipped tasks by engine

“Skipped Tasks By Engine” reports the number of times engines skipped 
a user task at the head of a run queue. This happens when the task at the 
head of the run queue has affinity to an engine group and was bypassed in 
the queue by an engine that is not part of the engine group.

The value is affected by configuring engine groups and engine group 
bindings. A high number in this category might be acceptable if low 
priority tasks are bypassed for more critical tasks. It is possible that an 
engine group is bound so that a task that is ready to run might not be able 
to find a compatible engine. In this case, a task might wait to execute while 
an engine sits idle. Investigate engine groups and how they are bound, and 
check load balancing.

Engine scope changes

“Engine Scope Changes” reports the number of times a user changed the 
engine group binding of any user task during the sample interval.



Application management 

966  Adaptive Server Enterprise

Per application or per application and login
This section gives detailed information about system resource used by 
particular application and login tasks, or all users of each application.

Application activity

“Application Activity” helps you to determine whether an application is 
I/0 intensive or CPU intensive. It reports how much time all user task in 
the application spend executing, doing I/O, or being idle. It also reports the 
number of times a task is scheduled and chosen to run.

CPU busy

“CPU Busy” reports the number of clock ticks during which the user task 
was executing during the sample interval. When the numbers in this 
category are high, it indicates a CPU- bound application. If this is a 
problem, engine binding might be a solution.

I/O busy

“I/O Busy” reports the number of clock ticks during which the user task 
was performing I/O during the sample interval. If the numbers in this 
category are high, it indicates an I/O-intensive process. If idle time is also 
high, the application could be I/O bound.

The application might achieve better throughput if you assign it a higher 
priority, bind it to a lightly loaded engine or engine group, or partition the 
application’s data onto multiple devices.

Idle

“Idle” reports the number of clock ticks during which the user task was 
idle during the sample interval.

Number of times scheduled

“Number of Times Scheduled” reports the number of times a user task is 
scheduled and chosen to run on an engine. This data can help you 
determine whether an application has sufficient resources. If this number 
is low for a task that normally requires substantial CPU time, it may 
indicate insufficient resources. Consider changing priority in a loaded 
system with sufficient engine resources.



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 967

Application priority changes

“Application Priority Changes” reports the number of times this 
application had its priority changed during the sample interval.

When the “Application Management” category indicates a problem, use 
this section to pinpoint the source. 

Application I/Os completed

“Application I/Os Completed” reports the disk and network I/Os 
completed by this application during the sample interval.

This category indicates the total number of disk and network I/Os 
completed.

If you suspect a problem with I/O completion, see “Disk I/O 
management” on page 1027 and “Network I/O management” on page 
1032.

Resource limits violated

“Resource Limits Violated” reports the number and types of violations for:

• I/O Limit Violations–Estimated and Actual

• Time Limits–Batch and Transaction

• RowCount Limit Violations

• “Total Limits Violated”

If no limits are exceeded during the sample period, only the total line is 
printed.

See the System Administration Guide for more information on resource 
limits.

ESP management
This section reports on the use of extended stored procedures.



Housekeeper task activity 

968  Adaptive Server Enterprise

Sample output
ESP Management          per sec    per xact     count  % of total
---------------------  ----------  ----------  --------  --------
  ESP Requests                0.0         0.0         7       n/a 
  Avg. Time to Execute an ESP   2.07000 seconds

ESP requests

“ESP Requests” reports the number of extended stored procedure calls 
during the sample interval.

Avg. time to execute an ESP

“Avg. Time to Execute an ESP” reports the average length of time for all 
extended stored procedures executed during the sample interval.

Housekeeper task activity
The “Housekeeper Tasks Activity” section reports on housekeeper tasks. 
If the configuration parameter housekeeper free write percent is set to 0, the 
housekeeper task does not run. If housekeeper free write percent is 1 or 
greater, space reclamation can be enabled separately by setting enable 
housekeeper GC to 1, or disabled by setting it to 0.

Sample output
Housekeeper Task Activity
-------------------------
                         per sec      per xact       count  % of total
                    ------------  ------------  ----------
Buffer Cache Washes
  Clean                    63.6           3.8       38163      96.7 %
  Dirty                     2.1           0.1        1283       3.3 %
                    ------------  ------------  ----------
Total Washes               65.7           3.9       39446

Garbage Collections         3.7           0.2        2230       n/a
Pages Processed in GC       0.0           0.0           1       n/a
Statistics Updates          3.7           0.2        2230       n/a



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 969

Buffer cache washes
This section reports:

• The number of buffers examined by the housekeeper

• The number that were found clean

• The number that were found dirty

The number of dirty buffers includes those already in I/O due to writes 
being started at the wash marker. 

The “Recovery Management” section of sp_sysmon reports how many 
times the housekeeper task was able to write all dirty buffers for a 
database.

See“Recovery management” on page 1024.

Garbage collections
This section reports the number of times the housekeeper task checked to 
determine whether there were committed deletes that indicated that there 
was space that could be reclaimed on data pages.

“Pages Processed in GC” reports the number of pages where the 
housekeeper task succeeded in reclaiming unused space on the a page of a 
data-only-locked table.

Statistics updates
“Statistics Updates” reports on the number of times the housekeeper task 
checked to see if statistics needed to be written.

Monitor access to executing SQL
This section reports:

• Contention that occurs when sp_showplan or Adaptive Server 
Monitor accesses query plans



Monitor access to executing SQL 

970  Adaptive Server Enterprise

• The number of overflows in SQL batch text buffers and the maximum 
size of SQL batch text sent during the sample interval

Sample output
Monitor Access to Executing SQL
-------------------------------
                             per sec    per xact   count    % of total
                             ---------  ---------  -------  ----------
 Waits on Execution Plans          0.1        0.0        5       n/a
 Number of SQL Text Overflows      0.0        0.0        1       n/a
 Maximum SQL Text Requested        n/a        n/a     4120       n/a
  (since beginning of sample)

Waits on execution plans

“Waits on Execution Plans” reports the number of times that a process 
attempting to use sp_showplan had to wait to acquire read access to the 
query plan. Query plans may be unavailable if sp_showplan is run before 
the compiled plan is completed or after the query plan finished executing. 
In these cases, Adaptive Server tries to access the plan three times and then 
returns a message to the user.

Number of SQL text overflows

“Number of SQL Text Overflows” reports the number of times that SQL 
batch text exceeded the text buffer size.

Maximum SQL text requested

“Maximum SQL Text Requested” reports the maximum size of a batch of 
SQL text since the sample interval began. You can use this value to set the 
configuration parameter max SQL text monitored.

See the System Administration Guide.



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 971

Transaction profile
The “Transaction Profile” section reports on data modifications by type of 
command and table locking scheme.

Sample output
The following sample shows sp_sysmon output for the “Transaction 
Profile” section.

Transaction Profile
-------------------
 
  Transaction Summary          per sec   per xact    count  % of total
  -------------------------  ---------  ---------  -------  ---------- 
    Committed Xacts               16.5        n/a     9871     n/a     
 
  Transaction Detail           per sec   per xact    count  % of total
  -------------------------  ---------  ---------  -------  ---------- 
    Inserts
      APL Heap Table             229.8       14.0   137900      98.6 %
      APL Clustered Table          2.5        0.2     1511       1.1 %
      Data Only Lock Table         0.9        0.1      512       0.4 %
  -------------------------  ---------  ---------  -------  ---------- 
    Total Rows Inserted          233.2       14.2   139923      91.5 %
 
    Updates
      APL Deferred                 0.5        0.0      287       2.3 %
      APL Direct In-place          0.0        0.0       15       0.1 %
      APL Direct Cheap             0.0        0.0        3       0.0 %
      APL Direct Expensive         0.0        0.0        0       0.0 %
      DOL Deferred                 0.4        0.0      255       2.1 %
      DOL Direct                  19.7        1.2    11802      95.5 %
  -------------------------  ---------  ---------  -------  ---------- 
    Total Rows Updated            20.6        1.3    12362       8.1 %
 
    Data Only Locked Updates
      DOL Replace                 19.6        1.2    11761      97.6 %
      DOL Shrink                   0.0        0.0        1       0.0 %
      DOL Cheap Expand             0.3        0.0      175       1.5 %
      DOL Expensive Expand         0.2        0.0      101       0.8 %
      DOL Expand & Forward         0.0        0.0       18       0.1 %
      DOL Fwd Row Returned         0.0        0.0        0       0.0 %
  -------------------------  ---------  ---------  -------  ---------- 
    Total DOL Rows Updated        20.1        1.2    12056       7.9 %



Transaction profile 

972  Adaptive Server Enterprise

 
    Deletes
      APL Deferred                 0.5        0.0      308      48.4 %
      APL Direct                   0.0        0.0        9       1.4 %
      DOL                          0.5        0.0      320      50.2 %
  -------------------------  ---------  ---------  -------  ---------- 
    Total Rows Deleted             1.1        0.1      637       0.4 %
  =========================  =========  =========  =======
    Total Rows Affected          254.9       15.5   152922

Transaction summary
“Transaction Summary” reports committed transactions. “Committed 
Xacts” reports the number of transactions committed during the sample 
interval.

The count of transactions includes transactions that meet explicit, implicit, 
and ANSI definitions for “committed”, as described here:

• An implicit transaction executes data modification commands such as 
insert, update, or delete. If you do not specify a begin transaction 
statement, Adaptive Server interprets every operation as a separate 
transaction; an explicit commit transaction statement is not required. 
For example, the following is counted as three transactions.

1> insert …
2> go
1> insert …
2> go
1> insert …
2> go

• An explicit transaction encloses data modification commands within 
begin transaction and commit transaction statements and counts the 
number of transactions by the number of commit statements. For 
example the following set of statements is counted as one transaction:

1> begin transaction
2> insert …
3> insert …
4> insert …
5> commit transaction
6> go



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 973

• In the ANSI transaction model, any select or data modification 
command starts a transaction, but a commit transaction statement must 
complete the transaction. sp_sysmon counts the number of 
transactions by the number of commit transaction statements. For 
example, the following set of statements is counted as one transaction:

1> insert …
2> insert …
3> insert …
4> commit transaction
5> go

If there were transactions that started before the sample interval began and 
completed during the interval, the value reports a larger number of 
transactions than the number that started and completed during the sample 
interval. If transactions do not complete during the interval, “Total # of 
Xacts” does not include them. In Figure 39-1, both T1 and T2 are counted,   
but T3 is not.

Figure 39-1: How transactions are counted

How to count multi database transactions

Multi database transactions are also counted. For example, a transaction 
that modifies three databases is counted as three transactions.

Multi database transactions incur more overhead than single database 
transactions: they require more log records and more ULC flushes, and 
they involve two-phase commit between the databases.

You can improve performance by reducing the number of multi database 
transactions whenever possible. 

T1

T2
T3

Interval



Transaction profile 

974  Adaptive Server Enterprise

Transaction detail
“Transaction Detail” gives statistical detail about data modification 
operations by type. The work performed by rolled back transactions is 
included in the output below, although the transaction is not counted in the 
number of transactions.

For the “Total Rows” for inserts, updates, and deletes, the “% of total” 
column reports the percentage of the transaction type as a percentage of all 
transactions.

See “Update mode messages” on page 811 for more information on 
deferred and direct inserts, updates, and deletes.

In the output for this section, APL indicates allpages-locked tables and 
DOL indicates data-only-locked tables.

Inserts
”Inserts” provides detailed information about the types of inserts taking 
place on heap tables (including partitioned heap tables), clustered tables, 
and all inserts as a percentage of all insert, update, and delete operations. 
It displays the number of inserts performed on:

• Allpages-locked heap tables

• Allpages-locked tables with clustered indexes

• Data-only locked tables

Insert statistics do not include fast bulk copy inserts, because those are 
written directly to the data pages and to disk without the normal insert and 
logging mechanisms.

APL heap tables

“APL Heap Tables” reports the number of row inserts that took place on 
allpages-locked heap tables—all tables that do not have a clustered index. 
This includes:

• Partitioned heap tables

• Unpartitioned heap tables

• Slow bulk copy inserts into heap tables

• select into commands 



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 975

• Inserts into worktables

The “% of total” column shows the percentage of row inserts into heap 
tables as a percentage of the total number of inserts.

If there are a large number of inserts to heap tables, determine if these 
inserts are generating contention.

Check the sp_sysmon report for data on last page locks on heaps in “Lock 
detail” on page 1001. If there appears to be a contention problem, 
Adaptive Server Monitor can help you figure out which tables are 
involved.

In many cases, creating a clustered index that randomizes insert activity 
solves the performance problems for heaps. In other cases, you might need 
to establish partitions on an unpartitioned table or increase the number of 
partitions on a partitioned table.

For more information, see Chapter 9, “How Indexes Work” and 
“Improving insert performance with partitions” on page 85.

APL clustered table

“APL Clustered Table” reports the number of row inserts to allpages-
locked tables with clustered indexes. The “% of total” column shows the 
percentage of row inserts to tables with clustered indexes as a percentage 
of the total number of rows inserted.

Inserts into allpages-locked clustered tables can lead to page splitting.

See Row ID updates from clustered split and “Page splits” on page 987.

Data only lock table

“Data Only Lock Table” reports the number of inserts for all data-only-
locked tables. The “% of total” column shows the percentage of inserts to 
data-only-locked tables as a percentage of all inserts.

Total rows inserted

“Total Rows Inserted” reports all row inserts to all tables combined. It 
gives the average number of all inserts per second, the average number of 
all inserts per transaction, and the total number of inserts. “% of total” 
shows the percentage of rows inserted compared to the total number of 
rows affected by data modification operations.



Transaction profile 

976  Adaptive Server Enterprise

Updates and update detail sections
The “Updates” report has two sections, “Updates” and “Data Only Locked 
Updates.”

Updates

“Updates” reports the number of deferred and direct row updates. The “% 
of total” column reports the percentage of each type of update as a 
percentage of the total number of row updates. sp_sysmon reports the 
following types of updates:

• APL Deferred 

• APL Direct In-place

• APL Direct Cheap 

• APL Direct Expensive

• DOL Deferred

• DOL Direct

Direct updates incur less overhead than deferred updates and are generally 
faster because they limit the number of log scans, reduce locking, save 
traversal of index B-trees (reducing lock contention), and can save I/O 
because Adaptive Server does not have to refetch pages to perform 
modification based on log records.

For a description of update types, see “How update operations are 
performed” on page 508.

If there is a high percentage of deferred updates, see “Optimizing updates” 
on page 516.

Total rows updated

“Total Rows Updated” reports all deferred and direct updates combined. 
The “% of total” columns shows the percentage of rows updated, based on 
all rows modified.

Data-only-locked updates

This section reports more detail on updates to data-only-locked tables: 

• DOL Replace – The update did not change the length of the row; some 
or all of the row was changed resulting in the same row length



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 977

• DOL Shrink – The update shortened the row, leaving non contiguous 
empty space on the page to be collected during space reclamation.

• DOL Cheap Expand – The row grew in length; it was the last row on 
the page, so expanding the length of the row did not require moving 
other rows on the page.

• DOL Expensive Expand – The row grew in length and required 
movement of other rows on the page.

• DOL Expand and Forward – The row grew in length, and did not fit 
on the page. The row was forwarded to a new location.

• DOL Fwd Row Returned – The update affected a forwarded row; the 
row fit on the page at its original location and was returned to that 
page.

The total reported in “Total DOL Rows Updated” are not included in the 
“Total Rows Affected” sum at the end of the section, since the updates in 
this group are providing a different breakdown of the updates already 
reported in “DOL Deferred” and “DOL Direct.”

Deletes
“Deletes” reports the number of deferred and direct row deletes from 
allpages-locked tables. All deletes on data-only-locked tables are 
performed by marking the row as deleted on the page, so the   categories 
“direct” and “deferred” do not apply. The “% of total” column reports the 
percentage of each type of delete as a percentage of the total number of 
deletes. 

Total rows deleted

“Total Rows Deleted” reports all deferred and direct deletes combined. 
The “% of total” columns reports the percentage of deleted rows as a 
compared to all rows inserted, updated, or deleted.



Transaction management 

978  Adaptive Server Enterprise

Transaction management
“Transaction Management” reports transaction management activities, 
including user log cache (ULC) flushes to transaction logs, ULC log 
records, ULC semaphore requests, log semaphore requests, transaction log 
writes, and transaction log allocations.

Sample output
The following sample shows sp_sysmon output for the “Transaction 
Management” categories.

Transaction Management
----------------------

  ULC Flushes to Xact Log      per sec   per xact    count  % of total
  -------------------------  ---------  ---------  -------  ----------
    by Full ULC                    0.0        0.0        0       0.0 %
    by End Transaction           120.1        1.0     7261      99.7 %
    by Change of Database          0.0        0.0        0       0.0 %
    by System Log Record           0.4        0.0       25       0.3 %
    by Other                       0.0        0.0        0       0.0 %
  -------------------------  ---------  ---------  -------
  Total ULC Flushes              120.5        1.0     7286

  ULC Log Records                727.5        6.1    43981       n/a
  Max ULC Size                     n/a        n/a      532       n/a

 
ULC Semaphore Requests
    Granted                     1452.3       12.1    87799     100.0 %
    Waited                         0.0        0.0        0       0.0 %
  -------------------------  ---------  ---------  -------
  Total ULC Semaphore Req       1452.3       12.1    87799

  Log Semaphore Requests
    Granted                       69.5        0.6     4202      57.7 %
    Waited                        51.0        0.4     3084      42.3 %
  -------------------------  ---------  ---------  -------
  Total Log Semaphore Req        120.5        1.0     7286



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 979

  Transaction Log Writes          80.5        0.7     4867       n/a
  Transaction Log Alloc           22.9        0.2     1385       n/a
  Avg # Writes per Log Page        n/a        n/a  3.51408       n/a

ULC flushes to transaction log
“ULC Flushes to Xact Log” reports the total number of times that user log 
caches (ULCs) were flushed to a transaction log. The “% of total” column 
reports the percentage of times the type of flush took place, for each 
category, as a percentage of the total number of ULC flushes. This 
category can help you identify areas in the application that cause problems 
with ULC flushes.

There is one user log cache (ULC) for each configured user connection. 
Adaptive Server uses ULCs to buffer transaction log records. On both 
SMP and single-processor systems, this helps reduce transaction log I/O. 
For SMP systems, it reduces the contention on the current page of the 
transaction log.

You can configure the size of ULCs with the configuration parameter user 
log cache size.

See the System Administration Guide.

ULC flushes are caused by the following activities:

• “by Full ULC” – A process’s ULC becomes full.

• “by End Transaction” – A transaction ended (rollback or commit, either 
implicit or explicit).

• “by Change of Database” – A transaction modified an object in a 
different database (a multi database transaction).

• “by System Log Record” – A system transaction (such as an OAM 
page allocation) occurred within the user transaction.

• “by Other” – Any other reason, including needing to write to disk.

When one of these activities causes a ULC flush, Adaptive Server copies 
all log records from the user log cache to the database transaction log.



Transaction management 

980  Adaptive Server Enterprise

“Total ULC Flushes” reports the total number of all ULC flushes that took 
place during the sample interval.

Note  In databases with mixed data and log segments, the user log cache 
is flushed after each record is added.

By full ULC

A high value for “by Full ULC” indicates that Adaptive Server is flushing 
the ULCs more than once per transaction, negating some performance 
benefits of user log caches. If the “% of total” value for “by Full ULC” is 
greater than 20%, consider increasing the size of the user log cache size 
parameter.

Increasing the ULC size increases the amount of memory required for 
each user connection, so you do not want to configure the ULC size to suit 
a small percentage of large transactions.

By end transaction

A high value for “by End Transaction” indicates a healthy number of short, 
simple transactions.

By change of database

The ULC is flushed every time there is a database change. If this value is 
high, consider decreasing the size of the ULC if it is greater than 2K.

By system log record and by other

If either of these values is higher than approximately 20%, and size of your 
ULC is more than 2048, consider reducing the ULC size.

Check sections of your sp_sysmon report that relate to log activity:

• Contention for semaphore on the user log caches (SMP only); see 
“ULC semaphore requests” on page 982

• Contention for the log semaphore. (SMP only); see “Log semaphore 
requests” on page 982

• The number of transaction log writes; see “Transaction log writes” on 
page 983



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 981

Total ULC flushes
“Total ULC Flushes” reports the total number of ULC flushes during the 
sample interval.

ULC log records
This row provides an average number of log records per transaction. It is 
useful in benchmarking or in controlled development environments to 
determine the number of log records written to ULCs per transaction.

Many transactions, such as those that affect several indexes or deferred 
updates or deletes, require several log records for a single data 
modification. Queries that modify a large number of rows use one or more 
records for each row.

If this data is unusual, study the data in the next section, Maximum ULC 
size and look at your application for long-running transactions and for 
transactions that modify large numbers of rows.

Maximum ULC size
The value in the “count” column is the maximum number of bytes used in 
any ULCs, across all ULCs. This data can help you determine if ULC size 
is correctly configured.

Since Adaptive Server flushes the ULC when a transaction completes, any 
unused memory allocated to the ULCs is wasted. If the value in the 
“count” column is consistently less than the defined value for the user log 
cache size configuration parameter, reduce user log cache size to the value 
in the “count” column (but no smaller than 2048 bytes).

When “Max ULC Size” equals the user log cache size, check the number 
of flushes due to transactions that fill the user log cache (see “By full 
ULC” on page 980). If the number of times that logs were flushed due to 
a full ULC is more than 20%, consider increasing the user log cache size 
configuration parameter.

See the System Administration Guide.



Transaction management 

982  Adaptive Server Enterprise

ULC semaphore requests
“ULC Semaphore Requests” reports the number of times a user task was 
immediately granted a semaphore or had to wait for it. “% of total” shows 
the percentage of tasks granted semaphores and the percentage of tasks 
that waited for semaphores as a percentage of the total number of ULC 
semaphore requests. This is relevant only in SMP environments.

A semaphore is a simple internal locking mechanism that prevents a 
second task from accessing the data structure currently in use. Adaptive 
Server uses semaphores to protect the user log caches since more than one 
process can access the records of a ULC and force a flush.

This category provides the following information:

• Granted – The number of times a task was granted a ULC semaphore 
immediately upon request. There was no contention for the ULC.

• Waited – The number of times a task tried to write to ULCs and 
encountered semaphore contention.

• Total ULC Semaphore Requests – The total number of ULC 
semaphore requests that took place during the interval. This includes 
requests that were granted or had to wait.

Log semaphore requests
“Log Semaphore Requests” reports of contention for the log semaphore 
that protects the current page of the transaction log in cache. This data is 
meaningful for SMP environments only.

This category provides the following information:

• Granted – The number of times a task was granted a log semaphore 
immediately after it requested one. “% of total” reports the percentage 
of immediately granted requests as a percentage of the total number 
of log semaphore requests.

• Waited – The number of times two tasks tried to flush ULC pages to 
the log simultaneously and one task had to wait for the log semaphore. 
“% of total” reports the percentage of tasks that had to wait for a log 
semaphore as a percentage of the total number of log semaphore 
requests.



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 983

• Total Log Semaphore Requests – The total number of times tasks 
requested a log semaphore including those granted immediately and 
those for which the task had to wait.

Log semaphore contention and user log caches

In high throughput environments with a large number of concurrent users 
committing transactions, a certain amount of contention for the log 
semaphore is expected. In some tests, very high throughput is maintained, 
even though log semaphore contention is in the range of 20 to 30%. 

Transaction log writes
“Transaction Log Writes” reports the total number of times Adaptive 
Server wrote a transaction log page to disk. Transaction log pages are 
written to disk when a transaction commits (after a wait for a group 
commit sleep) or when the current log page(s) become full.

Transaction log allocations
“Transaction Log Alloc” reports the number of times additional pages 
were allocated to the transaction log. This data is useful for comparing to 
other data in this section and for tracking the rate of transaction log 
growth.

Avg # writes per log page
“Avg # Writes per Log Page” reports the average number of times each log 
page was written to disk. The value is reported in the “count” column.

In high throughput applications, this number should be as low as possible. 
If the transaction log uses 2K I/O, the lowest possible value is 1; with 4K 
log I/O, the lowest possible value is .5, since one log I/O can write 2 log 
pages.

In low throughput applications, the number will be significantly higher. In 
very low throughput environments, it may be as high as one write per 
completed transaction. 



Index management 

984  Adaptive Server Enterprise

Index management
This category reports index management activity, including nonclustered 
maintenance, page splits, and index shrinks.

Sample output
The following sample shows sp_sysmon output for the “Index 
Management” categories.

Index Management
----------------
 
  Nonclustered Maintenance     per sec   per xact    count  % of total
  -------------------------  ---------  ---------  -------  ---------- 
    Ins/Upd Requiring Maint       20.4        1.2    12269       n/a   
      # of NC Ndx Maint            5.9        0.4     3535       n/a   
      Avg NC Ndx Maint / Op        n/a        n/a  0.28812       n/a   
 
    Deletes Requiring Maint       20.4        1.2    12259       n/a   
      # of NC Ndx Maint            5.9        0.4     3514       n/a   
      Avg NC Ndx Maint / Op        n/a        n/a  0.28665       n/a   
 
    RID Upd from Clust Split       0.0        0.0        0       n/a   
      # of NC Ndx Maint            0.0        0.0        0       n/a   
 
    Upd/Del DOL Req Maint          7.3        0.4     4351       n/a   
      # of DOL Ndx Maint           4.7        0.3     2812       n/a   
      Avg DOL Ndx Maint / Op       n/a        n/a  0.64629       n/a   
 
  Page Splits                      0.3        0.0      207       n/a   
    Retries                        0.0        0.0        1       0.5 %
    Deadlocks                      0.0        0.0        0       0.0 %
    Add Index Level                0.0        0.0        0       0.0 %
 
  Page Shrinks                     0.0        0.0        0       n/a   
 
  Index Scans                  per sec   per xact    count  % of total
  -------------------------  ---------  ---------  -------  ---------- 
    Ascending Scans              717.1       43.6   430258      90.6 %
    DOL Ascending Scans           74.3        4.5    44551       9.4 %
    Descending Scans               0.1        0.0       85       0.0 %
    DOL Descending Scans           0.0        0.0        6       0.0 %
                             ---------  ---------  -------        
    Total Scans                  791.5       48.1   474900



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 985

Nonclustered maintenance
This category reports the number of operations that required, or potentially 
required, maintenance to one or more indexes; that is, it reports the number 
of operations for which Adaptive Server had to at least check to determine 
whether it was necessary to update the index. The output also gives the 
number of indexes that were updated and the average number of indexes 
maintained per operation.

In tables with clustered indexes and one or more nonclustered indexes, all 
inserts, all deletes, some update operations, and any data page splits, 
require changes to the nonclustered indexes. High values for index 
maintenance indicate that you should assess the impact of maintaining 
indexes on your Adaptive Server performance. While indexes speed 
retrieval of data, maintaining indexes slows data modification. 
Maintenance requires additional processing, additional I/O, and additional 
locking of index pages.

Other sp_sysmon output that is relevant to assessing this category is:

• Information on total updates, inserts and deletes, and information on 
the number and type of page splits

See “Transaction detail” on page 974, and “Page splits” on page 987.

• Information on lock contention.

See “Lock detail” on page 1001.

• Information on address lock contention.

See “Address lock contention” on page 956 and “Address locks” on 
page 1002.

For example, you can compare the number of inserts that took place with 
the number of maintenance operations that resulted. If a relatively high 
number of maintenance operations, page splits, and retries occurred, 
consider the usefulness of indexes in your applications.

See Chapter 8, “Indexing for Performance,” for more information.

Inserts and updates requiring maintenance to indexes

The data in this section gives information about how insert and update 
operations affect indexes on allpages-locked tables. For example, an insert 
to a clustered table with three nonclustered indexes requires updates to all 
three indexes, so the average number of operations that resulted in 
maintenance to nonclustered indexes is three. 



Index management 

986  Adaptive Server Enterprise

However, an update to the same table may require only one maintenance 
operation—to the index whose key value was changed.

• “Ins/Upd Requiring Maint” reports the number of insert and update 
operations to a table with indexes that potentially required 
modifications to one or more indexes.

• “# of NC Ndx Maint” reports the number of nonclustered indexes that 
required maintenance as a result of insert and update operations.

• “Avg NC Ndx Maint/Op” reports the average number of nonclustered 
indexes per insert or update operation that required maintenance.

For data-only-locked tables, inserts are reported in “Ins/Upd Requiring 
Maint” and deletes and inserts are reported in “Upd/Del DOL Req Maint.”

Deletes requiring maintenance

The data in this section gives information about how delete operations 
affected indexes on allpages-locked tables: 

• “Deletes Requiring Maint” reports the number of delete operations 
that potentially required modification to one or more indexes.

See “Deletes” on page 977.

• “# of NC Ndx Maint” reports the number of nonclustered indexes that 
required maintenance as a result of delete operations.

• “Avg NC Ndx Maint/Op” reports the average number of nonclustered 
indexes per delete operation that required maintenance.

Row ID updates from clustered split

This section reports index maintenance activity caused by page splits in 
allpages-locked tables with clustered indexes. These splits require 
updating the nonclustered indexes for all of the rows that move to the new 
data page.

• “RID Upd from Clust Split” reports the total number of page splits 
that required maintenance of a nonclustered index.

• “# of NC Ndx Maint” reports the number of nonclustered rows that 
required maintenance as a result of row ID update operations.

• “Avg NC Ndx Maint/Op” reports the average number of nonclustered 
indexes entries that were updated for each page split.



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 987

Data-Only-Locked updates and deletes requiring maintenance

The data in this section gives information about how updates and deletes 
affected indexes on data-only-locked tables:

• “Upd/Del DOL Req Maint” reports the number of update and delete 
operations that potentially required modification to one or more 
indexes. 

• “# of DOL Ndx Main” reports the number of indexes that required 
maintenance as a result of update or delete operations.

• “Avg DOL Ndx Maint/Op” reports the average number of indexes per 
update or delete operation that required maintenance.

Page splits
“Page Splits” reports the number page splits for data pages, clustered 
index pages, or nonclustered index pages because there was not enough 
room for a new row.

When a data row is inserted into an allpages-locked table with a clustered 
index, the row must be placed in physical order according to the key value. 
Index rows must also be placed in physical order on the pages. If there is 
not enough room on a page for a new row, Adaptive Server splits the page, 
allocates a new page, and moves some rows to the new page. Page splitting 
incurs overhead because it involves updating the parent index page and the 
page pointers on the adjoining pages and adds lock contention. For 
clustered indexes, page splitting also requires updating all nonclustered 
indexes that point to the rows on the new page.

See “Choosing space management properties for indexes” on page 186 
for more information about how to temporarily reduce page splits using 
fillfactor. 

Reducing page splits for ascending key inserts

If “Page Splits” is high and your application is inserting values into an 
allpages-locked table with a clustered index on a compound key, it may be 
possible to reduce the number of page splits through a special optimization 
that changes the page split point for these indexes.



Index management 

988  Adaptive Server Enterprise

The special optimization is designed to reduce page splitting and to result 
in more completely filled data pages. This affects only clustered indexes 
with compound keys, where the first key is already in use in the table, and 
the second column is based on an increasing value.

Default data page splitting

The table sales has a clustered index on store_id, customer_id. There are 
three stores (A, B, and C). Each store adds customer records in ascending 
numerical order. The table contains rows for the key values A,1; A,2; A,3; 
B,1; B,2; C,1; C,2; and C,3, and each page holds four rows, as shown in 
Figure 39-2. 

Figure 39-2: Clustered table before inserts

Using the normal page-splitting mechanism, inserting “A,4” results in 
allocating a new page and moving half of the rows to it, and inserting the 
new row in place, as shown in Figure 39-3. 

Figure 39-3: Insert causes a page split

When “A,5” is inserted, no split is needed, but when “A,6” is inserted, 
another split takes place, as shown in Figure 39-4. 

Page 1007
A 1 ...
A 2 ...
A 3 ...
B 1 ...

Page 1009
B 2 ...
C 1 ...
C 2 ...
C 3 ...

Page 1007
A 1 ...
A 2 ...

Page 1009
B 2 ...
C 1 ...
C 2 ...
C 3 ...

Page 1129
A 3 ...
A 4 ...
B 1 ...



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 989

Figure 39-4: Another insert causes another page split

Adding “A,7” and “A,8” results in yet another page split, as shown in 
Figure 39-5. 

Figure 39-5: Page splitting continues

Effects of ascending inserts

You can set ascending inserts mode for a table, so that pages are split at the 
point of the inserted row, rather than in the middle of the page. Starting 
from the original table shown in Figure 39-2 on page 988, the insertion of 
“A,4” results in a split at the insertion point, with the remaining rows on 
the page moving to a newly allocated page, as shown in Figure 39-6. 

Figure 39-6: First insert with ascending inserts mode

Inserting “A,5” causes a new page to be allocated, as shown in Figure 39-
7. 

Page 1007
A 1 ...
A 2 ...

Page 1009
B 2 ...
C 1 ...
C 2 ...
C 3 ...

Page 1129
A 3 ...
A 4 ...

Page 1134
A 5 ...
A 6 ...
B 1 ...

Page 1007
A 1 ...
A 2 ...

Page 1009
B 2 ...
C 1 ...
C 2 ...
C 3 ...

Page 1129
A 3 ...
A 4 ...

Page 1134
A 5 ...
A 6 ...

Page 1137
A 7 ...
A 8 ...
B 1 ...

Page 1007
A 1 ...
A 2 ...
A 3 ...
A 4 ...

Page 1009
B 2 ...
C 1 ...
C 2 ...
C 3 ...

Page 1129
B 1 ...



Index management 

990  Adaptive Server Enterprise

Figure 39-7: Additional ascending insert causes a page allocation

Adding “A,6”, “A,7”, and “A,8” fills the new page, as shown in Figure 39-
8. 

Figure 39-8: Additional inserts fill the new page

Setting ascending inserts mode for a table

The following command turns on ascending insert mode for the sales 
table:

dbcc tune (ascinserts, 1, "sales")

To turn ascending insert mode off, use:

dbcc tune (ascinserts, 0, "sales")

These commands update the status2 bit of sysindexes.

If tables sometimes experience random inserts and have more ordered 
inserts during batch jobs, it is better to enable dbcc tune (ascinserts) only 
for the period during which the batch job runs.

Page 1007
A 1 ...
A 2 ...
A 3 ...
A 4 ...

Page 1009
B 2 ...
C 1 ...
C 2 ...
C 3 ...

Page 1129
B 1 ...

Page 1134
A 5 ...

Page 1007
A 1 ...
A 2 ...
A 3 ...
A 4 ...

Page 1009
B 2 ...
C 1 ...
C 2 ...
C 3 ...

Page 1129
B 1 ...

Page 1134
A 5 ...
A 6 ...
A 7 ...
A 8 ...



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 991

Retries and deadlocks

“Deadlocks” reports the number of index page splits and shrinks that 
resulted in deadlocks. Adaptive Server has a mechanism called deadlock 
retries that attempts to avoid transaction rollbacks caused by index page 
deadlocks. “Retries” reports the number of times Adaptive Server used 
this mechanism. 

Deadlocks on index pages take place when each of two transactions needs 
to acquire locks held by the other transaction. On data pages, deadlocks 
result in choosing one process (the one with the least accumulated CPU 
time) as a deadlock victim and rolling back the process.

By the time an index deadlock takes place, the transaction has already 
updated the data page and is holding data page locks so rolling back the 
transaction causes overhead.

In a large percentage of index deadlocks caused by page splits and shrinks, 
both transactions can succeed by dropping one set of index locks, and 
restarting the index scan. The index locks for one of the processes are 
released (locks on the data pages are still held), and Adaptive Server tries 
the index scan again, traversing the index from the root page of the index. 

Usually, by the time the scan reaches the index page that needs to be split, 
the other transaction has completed, and no deadlock takes place. By 
default, any index deadlock that is due to a page split or shrink is retried 
up to five times before the transaction is considered deadlocked and is 
rolled back.

For information on changing the default value for the number of deadlock 
retries, see the System Administration Guide.

The deadlock retries mechanism causes the locks on data pages to be held 
slightly longer than usual and causes increased locking and overhead. 
However, it reduces the number of transactions that are rolled back due to 
deadlocks. The default setting provides a reasonable compromise between 
the overhead of holding data page locks longer and the overhead of rolling 
back transactions that have to be reissued.

A high number of index deadlocks and deadlock retries indicates high 
contention in a small area of the index B-tree. 

If your application encounters a high number of deadlock retries, reduce 
page splits using fillfactor when you re-create the index.

See “Reducing index maintenance” on page 301.



Index management 

992  Adaptive Server Enterprise

Add index level

“Add Index Level” reports the number of times a new index level was 
added. This does not happen frequently, so you should expect to see result 
values of 0 most of the time. The count could have a value of 1 or 2 if your 
sample includes inserts into either an empty table or a small table with 
indexes.

Page shrinks
“Page Shrinks” reports the number of times that deleting index rows 
caused the index to shrink off a page. Shrinks incur overhead due to 
locking in the index and the need to update pointers on adjacent pages. 
Repeated “count” values greater than 0 indicate there may be many pages 
in the index with fairly small numbers of rows per page due to delete and 
update operations. If there are a high number of shrinks, consider 
rebuilding the indexes.

Index scans
The “Index Scans” section reports forward and backward scans by lock 
scheme:

• “Ascending Scans” reports the number of forward scans on allpages-
locked tables.

• “DOL Ascending Scans” reports the number of forward scans on 
data-only-locked tables.

• “Descending Scans” reports the number of backward scans on 
allpages-locked tables.

• “DOL Descending Scans” reports the number of backward scans on 
data-only-locked tables.

For more information on forward and backward scans, see “Costing for 
queries using order by” on page 493.



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 993

Metadata cache management
“Metadata Cache Management” reports the use of the metadata caches that 
store information about the three types of metadata caches: objects, 
indexes, and databases. This section also reports the number of object, 
index and database descriptors that were active during the sample interval, 
and the maximum number of descriptors that have been used since the 
server was last started. It also reports spinlock contention for the object 
and index metadata caches.

Sample output
Metadata Cache Management
-------------------------

  Metadata Cache Summary      per sec   per xact    count  % of total
  ------------------------  ---------  ---------  -------  ----------

  Open Object Usage
    Active                        0.4        0.1      116       n/a
    Max Ever Used Since Boot      0.4        0.1      121       n/a
    Free                          1.3        0.3      379       n/a
    Reuse Requests
      Succeeded                   0.0        0.0        0       n/a
      Failed                      0.0        0.0        0       n/a

  Open Index Usage
    Active                        0.2        0.1       67       n/a
    Max Ever Used Since Boot      0.2        0.1       72       n/a
    Free                          1.4        0.3      428       n/a
    Reuse Requests
      Succeeded                   0.0        0.0        0       n/a
      Failed                      0.0        0.0        0       n/a

  Open Database Usage
    Active                        0.0        0.0       10       n/a
    Max Ever Used Since Boot      0.0        0.0       10       n/a
    Free                          0.0        0.0        2       n/a
    Reuse Requests
      Succeeded                   0.0        0.0        0       n/a
      Failed                      0.0        0.0        0       n/a

  Object Spinlock Contention       n/a        n/a      n/a       0.0 %
 



Metadata cache management 

994  Adaptive Server Enterprise

  Index Spinlock Contention        n/a        n/a      n/a       1.0 %
 
  Hash Spinlock Contention         n/a        n/a      n/a       1.0 %

Open object, index, and database usage
Each of these sections contains the same information for the three types of 
metadata caches. The output provides this information:

• “Active” reports the number of objects, indexes, or databases that 
were active during the sample interval.

• “Max Ever Used Since Boot” reports the maximum number of   
descriptors used since the last restart of Adaptive Server.

• “Free” reports the number of free descriptors in the cache.

• “Reuse Requests” reports the number of times that the cache had to be 
searched for reusable descriptors:

• “Failed” means that all descriptors in cache were in use and that 
the client issuing the request received an error message. 

• “Succeeded” means the request found a reusable descriptor in 
cache. Even though “Succeeded” means that the client did not get 
an error message, Adaptive Server is doing extra work to locate 
reusable descriptors in the cache and to read metadata 
information from disk. 

You can use this information to set the configuration parameters number of 
open indexes, number of open objects, and number of open databases, as 
shown in Table 39-2.



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 995

Table 39-2: Action to take based on metadata cache usage 
statistics

Object and index spinlock contention
These sections report on spinlock contention on the object descriptor and 
index descriptor caches. You can use this information to tune the 
configuration parameters open object spinlock ratio and open index spinlock 
ratio. If the reported contention is more than 3%, decrease the value of the 
corresponding parameter to lower the number of objects or indexes that 
are protected by a single spinlock.

Hash spinlock contention
This section reports contention for the spinlock on the index metadata 
cache hash table. You can use this information to tune the open index hash 
spinlock ratio configuration parameter. If the reported contention is greater 
than 3%, decrease the value of the parameter.

Using sp_monitorconfig to find metadata cache usage statistics

sp_monitorconfig displays metadata cache usage statistics on certain shared 
server resources, including: 

• The number of databases, objects, and indexes that can be open at any 
one time

• The number of auxiliary scan descriptors used by referential integrity 
queries

• The number of free and active descriptors

• The percentage of active descriptors

• The maximum number of descriptors used since the server was last 
started

sp_sysmon output Action

Large number of “Free” descriptors Set parameter lower

Very few “Free” descriptors Set parameter higher

“Reuse Requests Succeeded” nonzero Set parameter higher

“Reuse Requests Failed” nonzero Set parameter higher



Metadata cache management 

996  Adaptive Server Enterprise

• The current size of the procedure cache and the amount actually used.

For example, suppose you have configured the number of open indexes 
configuration parameter to 500. During a peak period, you can run 
sp_monitorconfig as follows to get an accurate reading of the actual 
metadata cache usage for index descriptors. For example:

1> sp_monitorconfig "number of open indexes"

Usage information at date and time: Apr 22 2002  2:49PM.
Name num_free num_active pct_act Max_Used Reused 
-------------- -------- ---------- ------- -------- ------
number of open 217 283 56.60 300 No

In this report, the maximum number of open indexes used since the server 
was last started is 300, even though Adaptive Server is configured for 500. 
Therefore, you can reset the number of open indexes configuration 
parameter to 330, to accommodate the 300 maximum used index 
descriptors, plus space for 10 percent more.

You can also determine the current size of the procedure cache with 
sp_monitorconfig procedure cache size. This parameter describes the 
amount of space in the procedure cache is currently configured for and the 
most it has ever actually used. For example, the procedure cache in the 
following server is configured for 20,000 pages:

1> sp_configure "procedure cache size"

option_name config_value run_value
------------------------------ ------------ ---------
procedure cache size 3271 3271

However, when you run sp_montorconfig “procedure cache size”, you find 
that the most the procedure cache has ever used is 14241 pages, which 
means that you can lower the run value of the procedure cache, saving 
memory:

1> sp_monitorconfig "procedure cache size"

Usage information at date and time: Apr 22 2002  2:49PM.
Name num_free num_active pct_act Max_Used Reused 
-------------- -------- ---------- ------- -------- ------
procedure cache 5878 14122 70.61 14241 No



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 997

Lock management
“Lock Management” reports locks, deadlocks, lock promotions, and lock 
contention.

Sample output
The following sample shows sp_sysmon output for the “Lock 
Management” categories.

Lock Management
---------------
 
  Lock Summary            per sec      per xact       count  % of total
  -----------------  ------------  ------------  ----------  ---------- 
  Total Lock Requests      2634.5         151.2     1580714       n/a   
  Avg Lock Contention         2.4           0.1        1436       0.1 %
  Deadlock Percentage         0.0           0.0           1       0.0 %

Lock Detail                  per sec   per xact    count  % of total
  -------------------------  ---------  ---------  -------  ----------
Table Lock Hashtable
Lookups 0.0 0.0 0 n/a 
Spinlock Contention n/a n/a n/a 0.0 % 

  Exclusive Table
    Granted                      403.7        4.0    24376     100.0 %
    Waited                         0.0        0.0        0       0.0 %
  -------------------------  ---------  ---------  -------
  Total EX-Table Requests          0.0        0.0        0       0.0 %

  Shared Table
    Granted                      325.2        4.0    18202     100.0 %
    Waited                         0.0        0.0        0       0.0 %
  -------------------------  ---------  ---------  -------
  Total SH-Table Requests          0.0        0.0        0       0.0 %

  Exclusive Intent
    Granted                      480.2        4.0    29028     100.0 %
    Waited                         0.0        0.0        0       0.0 %
  -------------------------  ---------  ---------  -------
  Total EX-Intent Requests       480.2        4.0    29028      18.9 %



Lock management 

998  Adaptive Server Enterprise

  Shared Intent
    Granted                      120.1        1.0     7261     100.0 %
    Waited                         0.0        0.0        0       0.0 %
  -------------------------  ---------  ---------  -------
  Total SH-Intent Requests       120.1        1.0     7261       4.7 %

Page & Row Lock HashTable
Lookups 0.0 0.0 0 n/a 
Spinlock Contention n/a n/a n/a 0.0 % 

  Exclusive Page
    Granted                      483.4        4.0    29227     100.0 %
    Waited                         0.0        0.0        0       0.0 %
  -------------------------  ---------  ---------  -------
  Total EX-Page Requests         483.4        4.0    29227      19.0 %

  Update Page
    Granted                      356.5        3.0    21553      99.0 %
    Waited                         3.7        0.0      224       1.0 %
  -------------------------  ---------  ---------  -------
  Total UP-Page Requests         360.2        3.0    21777      14.2 %

  Shared Page
    Granted                        3.2        0.0      195     100.0 %
    Waited                         0.0        0.0        0       0.0 %
  -------------------------  ---------  ---------  -------
  Total SH-Page Requests           3.2        0.0      195       0.1 %

  Exclusive Row
    Granted                        1.3        0.1      751      75.6 %
    Waited                         0.4        0.0      243      24.4 %
  -------------------------  ---------  ---------  -------  ---------- 
  Total EX-Row Requests            1.7        0.1      994       0.1 %
 
  Update Row
    Granted                        0.2        0.0      155      62.0 %
    Waited                         0.3        0.0       95      38.0 %
  -------------------------  ---------  ---------  -------  ----------
  Total UP-Row Requests            0.4        0.0      250       0.0 %
 
  Shared Row
    Granted                     1699.8      103.3  1019882     100.0 %



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 999

    Waited                         0.1        0.0       46       0.0 %
  -------------------------  ---------  ---------  -------  ----------
  Total SH-Row Requests         1699.9      103.3  1019928      59.7 %

Next Key
Total Next-Key Requests0.00.00n/a

Address Lock Hashtable
Lookups0.00.00n/a
Spinlock Contentionn/an/an/a0.0%

  Exclusive Address
    Granted                      134.2        1.1     8111     100.0 %
    Waited                         0.0        0.0        0       0.0 %
  -------------------------  ---------  ---------  -------
  Total EX-Address Requests      134.2        1.1     8111       5.3 %

  Shared Address
    Granted                      959.5        8.0    58008     100.0 %
    Waited                         0.0        0.0        0       0.0 %
  -------------------------  ---------  ---------  -------
  Total SH-Address Requests      959.5        8.0    58008      37.8 %

  Last Page Locks on Heaps
    Granted                      120.1        1.0     7258     100.0 %
    Waited                         0.0        0.0        0       0.0 %
  -------------------------  ---------  ---------  -------
  Total Last Pg Locks            120.1        1.0     7258       4.7 %

  Deadlocks by Lock Type       per sec   per xact    count  % of total
  -------------------------  ---------  ---------  -------  ----------
  Total Deadlocks                  0.0        0.0        0       n/a

  Deadlock Detection
    Deadlock Searches              0.1        0.0        4       n/a
    Searches Skipped               0.0        0.0        0       0.0 %
    Avg Deadlocks per Search       n/a        n/a  0.00000       n/a

  Lock Promotions
    Total Lock Promotions          0.0        0.0        0       n/a



Lock management 

1000  Adaptive Server Enterprise

Lock Timeouts by Lock Type   per sec   per xact    count  % of total
-------------------------  ---------  ---------  -------  ----------
  Exclusive Table                0.0        0.0        0       0.0 %
  Shared Table                   0.0        0.0        0       0.0 %
  Exclusive Intent               0.0        0.0        4      44.4 %
  Shared Intent                  0.0        0.0        0       0.0 %
  Exclusive Page                 0.0        0.0        0       0.0 %
  Update Page                    0.0        0.0        1      11.1 %
  Shared Page                    0.0        0.0        4      44.4 %
  Exclusive Row                  0.0        0.0        0       0.0 %
  Update Row                     0.0        0.0        0       0.0 %
  Shared Row                     0.0        0.0        0       0.0 %
  Exclusive Address              0.0        0.0        0       0.0 %
  Shared Address                 0.0        0.0        0       0.0 %
  Shared Next-Key                0.0        0.0        0       0.0 %
-------------------------  ---------  ---------  -------
Total Lock Timeouts              0.0        0.0        9 

“Lock Promotions” does report detail rows if there were no occurrences of 
them during the sample interval. In this sample report, “Deadlocks by 
Lock Type” is one example. 

Lock summary
“Lock Summary” provides overview statistics about lock activity that took 
place during the sample interval.

•  “Total Lock Requests” reports the total number of lock requests. 

• “Avg Lock Contention” reports the average number of times there 
was lock contention as a percentage of the total number of lock 
requests.

If the lock contention average is high, study the lock detail 
information below.

See Chapter 13, “Locking Configuration and Tuning,” for more 
information on tuning locking behavior.

•  “Deadlock Percentage” reports the percentage of deadlocks as a 
percentage of the total number lock requests.

If this value is high, see “Deadlocks by lock type” on page 1003.



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 1001

• “Avg Hash Chain Length” reports the average number of locks per 
hash bucket during the sample interval. You can configure the size of 
the lock hash table with the configuration parameter lock hashtable 
size. If the average number of locks per hash chain is more than four, 
consider increasing the size of the hash table.

See “Configuring the lock hashtable (Lock Manager)” on page 289 
for more information.

Large inserts with bulk copy are an exception to this guideline. Lock 
hash chain lengths may be longer during large bulk copies.

Lock detail
“Lock Detail” provides information that you can use to determine whether 
the application is causing a lock contention or deadlock-related problem. 

This output reports locks by type, displaying the number of times that each 
lock type was granted immediately, and the number of times a task had to 
wait for a particular type of lock. The “% of total” is the percentage of the 
specific lock type that was granted or had to wait with respect to the total 
number of lock requests.

“Lock Detail” reports the following types of locks:

• Exclusive Table

• Shared Table

• Exclusive Intent

• Shared Intent

• Exclusive Page

• Update Page

• Shared Page

• Exclusive Row

• Update Row

• Shared Row

• Exclusive Address

• Shared Address

• Last Page Locks on Heaps



Lock management 

1002  Adaptive Server Enterprise

Lock contention can have a large impact on Adaptive Server performance. 
Table locks generate more lock contention than page or row locks because 
no other tasks can access a table while there is an exclusive table lock on 
it, and if a task requires an exclusive table lock, it must wait until all shared 
locks are released. If lock contention is high, run sp_object_stats to help 
pinpoint the tables involved.

See “Identifying tables where concurrency is a problem” on page 278 for 
more information.

Address locks

“Exclusive Address” and “Shared Address” report the number of times 
address locks were granted immediately or the number of times the task 
had to wait for the lock. Address locks are held on index pages of allpages-
locked tables. They can have serious impact, since a lock on an index page 
blocks access to all data pages pointed to by the index page.

Last page locks on heaps

“Last Page Locks on Heaps” reports locking attempts on the last page of a 
partitioned or unpartitioned heap table. It only reports on allpages-locked 
tables. 

This information can indicate whether there are tables in the system that 
would benefit from using data-only-locking or from partitioning or from 
increasing the number of partitions. Adding a clustered index that 
distributes inserts randomly across the data pages may also help. If you 
know that one or more tables is experiencing a problem with contention 
for the last page, Adaptive Server Monitor can help determine which table 
is experiencing the problem.

See “Improving insert performance with partitions” on page 85 for 
information on how partitions can help solve the problem of last-page 
locking on unpartitioned heap tables.

Table lock hashtable
“Lock Hashtable Lookups” reports the number of times the lock hash table 
was searched for a lock on a page, row, or table.



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 1003

You can configure the size of the lock hash table with the configuration 
parameter lock hashtable size. If the average number of locks per hash 
chain is more than 4, consider increasing the size of the hash table. See 
“Configuring the lock hashtable (Lock Manager)” on page 289 for more 
information.

Deadlocks by lock type
“Deadlocks by Lock Type” reports the number of specific types of 
deadlocks. “% of total” gives the number of each deadlock type as a 
percentage of the total number of deadlocks.

Deadlocks may occur when many transactions execute at the same time in 
the same database. They become more common as the lock contention 
increases between the transactions. 

This category reports data for the following deadlock types:

• Exclusive Table

• Shared Table

• Exclusive Intent

• Shared Intent

• Exclusive Page

• Update Page

• Shared Page

• Exclusive Row

• Update Row

• Shared Row

• Shared Next-Key

• Exclusive Address

• Shared Address

• Others

“Total Deadlocks” summarizes the data for all lock types.



Lock management 

1004  Adaptive Server Enterprise

As in the example for this section, if there are no deadlocks, sp_sysmon 
does not display any detail information, it only prints the “Total 
Deadlocks” row with zero values.

To pinpoint where deadlocks occur, use one or both of the following 
methods:

• Use sp_object_stats. See “Identifying tables where concurrency is a 
problem” on page 278 for more information.

• Enable printing of detailed deadlock information to the log.

See “Printing deadlock information to the error log” on page 275.

For more information on deadlocks and coping with lock contention, see 
“Deadlocks and concurrency” on page 272 and “Locking and 
performance” on page 281.

Deadlock detection
“Deadlock Detection” reports the number of deadlock searches that found 
deadlocks and deadlock searches that were skipped during the sample 
interval

 For a discussion of the background issues related to this topic, see 
“Deadlocks and concurrency” on page 272.

Deadlock searches

“Deadlock Searches” reports the number of times that Adaptive Server 
initiated a deadlock search during the sample interval. Deadlock checking 
is time-consuming overhead for applications that experience no deadlocks 
or very low levels of deadlocking. You can use this data with Average 
deadlocks per search to determine if Adaptive Server is checking for 
deadlocks too frequently.

Searches skipped

“Searches Skipped” reports the number of times that a task started to 
perform deadlock checking, but found deadlock checking in progress and 
skipped its check. “% of total” reports the percentage of deadlock searches 
that were skipped as a percentage of the total number of searches.



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 1005

When a process is blocked by lock contention, it waits for an interval of 
time set by the configuration parameter deadlock checking period. When 
this period elapses, it starts deadlock checking. If a search is already in 
process, the process skips the search.

If you see some number of searches skipped, but some of the searches are 
finding deadlocks, increase the parameter slightly. If you see a lot of 
searches skipped, and no deadlocks, or very few, you can increase the 
parameter by a larger amount.

See the System Administration Guide for more information.

Average deadlocks per search

“Avg Deadlocks per Search” reports the average number of deadlocks 
found per search.

This category measures whether Adaptive Server is checking too 
frequently. If your applications rarely deadlock, you can adjust the 
frequency with which tasks search for deadlocks by increasing the value 
of the deadlock checking period configuration parameter.

See the System Administration Guide for more information.

Lock promotions
“Lock Promotions” reports the number of times that the following 
escalations took place:

• “Ex-Page to Ex-Table” – Exclusive page to exclusive table.

• “Sh-Page to Sh-Table” – Shared page to shared table.

• “Ex-Row to Ex-Table” – Exclusive row to exclusive table.

• “Sh-Row to Sh-Table – Shared row to shared table.

• “Sh-Next-Key to Sh-Table” – Shared next-key to shared table.

The “Total Lock Promotions” row reports the average number of lock 
promotion types combined per second and per transaction.

If no lock promotions took place during the sample interval, only the total 
row is printed.

If there are no lock promotions, sp_sysmon does not display the detail 
information, as the example for this section shows.



Data cache management 

1006  Adaptive Server Enterprise

“Lock Promotions” data can:

• Help you detect if lock promotion in your application to is a cause of 
lock contention and deadlocks

• Be used before and after tuning lock promotion variables to determine 
the effectiveness of the values.

Look at the “Granted” and “Waited” data above for signs of contention. If 
lock contention is high and lock promotion is frequent, consider changing 
the lock promotion thresholds for the tables involved.

You can configure the lock promotion threshold either server-wide or for 
individual tables.

 See information on locking in the System Administration Guide.

Lock time-out information
The “Lock Time-outs by Lock Type” section reports on the number of 
times a task was waiting for a lock and the transaction was rolled back due 
to a session-level or server-level lock time-out. The detail rows that show 
the lock types are printed only if lock time-outs occurred during the 
sample period. If no lock time-outs occurred, the “Total Lock Time-outs” 
row is displayed with all values equal to 0.

For more information on lock time-outs, see “Lock timeouts” on page 
265.

Data cache management
sp_sysmon reports summary statistics for all caches followed by statistics 
for each named cache.

sp_sysmon reports the following activities for the default data cache and 
for each named cache:

• Spinlock contention

• Utilization

• Cache searches including hits and misses

• Pool turnover for all configured pools



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 1007

• Buffer wash behavior, including buffers passed clean, buffers already 
in I/O, and buffers washed dirty

• Prefetch requests performed and denied 

• Dirty read page requests

You can use sp_cacheconfig and sp_helpcache output to help analyze the 
data from this section of the report. sp_cacheconfig provides information 
about caches and pools, and sp_helpcache provides information about 
objects bound to caches.

See the System Administration Guide for information on how to use these 
system procedures.

See “Configuring the data cache to improve performance” on page 337 
for more information on performance issues and named caches.

Sample output
The following sample shows sp_sysmon output for the “Data Cache 
Management” categories. The first block of data, “Cache Statistics 
Summary,” includes information for all caches. sp_sysmon reports a 
separate block of data for each cache. These blocks are identified by the 
cache name. The sample output shown here includes only the default data 
cache, although there were more caches configured during the interval.

Data Cache Management
---------------------
 
  Cache Statistics Summary (All Caches)
  -------------------------------------
                               per sec   per xact    count  % of total
                             ---------  ---------  -------  ----------
 
    Cache Search Summary
      Total Cache Hits          7520.5      524.7  1804925      99.3 %
      Total Cache Misses          55.9        3.9    13411       0.7 %
  -------------------------  ---------  ---------  -------
    Total Cache Searches        7576.4      528.6  1818336             
 
    Cache Turnover
      Buffers Grabbed             47.1        3.3    11310       n/a   
      Buffers Grabbed Dirty        0.0        0.0        0       0.0 %
 
    Cache Strategy Summary



Data cache management 

1008  Adaptive Server Enterprise

      Cached (LRU) Buffers      6056.0      422.5  1453437      99.8 %
      Discarded (MRU) Buffers     11.4        0.8     2734       0.2 %
 
    Large I/O Usage
      Large I/Os Performed         7.3        0.5     1752      49.1 %
      Large I/Os Denied            7.6        0.5     1819      50.9 %
  -------------------------  ---------  ---------  -------
    Total Large I/O Requests      14.9        1.0     3571             
 
    Large I/O Effectiveness
      Pages by Lrg I/O Cached     55.9        3.9    13424       n/a   
      Pages by Lrg I/O Used       43.6        3.0    10475      78.0 %
 
    Asynchronous Prefetch Activity
      APFs Issued                  9.3        0.6     2224      30.1 %
      APFs Denied Due To                                               
        APF I/O Overloads          0.2        0.0       36       0.5 %
        APF Limit Overloads        0.7        0.0      158       2.1 %
        APF Reused Overloads       0.4        0.0      100       1.4 %
      APF Buffers Found in Cache                                                
        With Spinlock Held         0.0        0.0        1       0.0 %
        W/o Spinlock Held         20.3        1.4     4865      65.9 %
  -------------------------  ---------  ---------  -------
    Total APFs Requested          30.8        2.1     7384             
 
    Other Asynchronous Prefetch Statistics
      APFs Used                    8.7        0.6     1819       n/a   
      APF Waits for I/O            4.0        0.3      965       n/a   
      APF Discards                 0.0        0.0        0       n/a   
 
    Dirty Read Behavior
      Page Requests                0.0        0.0        0       n/a   
 
---------------------------------------------------------------------- 
  Cache: default data cache                                            
                               per sec   per xact    count  % of total
  -------------------------  ---------  ---------  -------  ---------- 
    Spinlock Contention            n/a        n/a      n/a      24.0 %
 
    Utilization                    n/a        n/a      n/a      93.4 %
 
    Cache Searches
      Cache Hits                7034.6      490.8  1688312      99.4 %
         Found in Wash             2.4        0.2      583       0.0 %
      Cache Misses                42.7        3.0    10250       0.6 %
  -------------------------  ---------  ---------  -------



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 1009

    Total Cache Searches        7077.3      493.8  1698562             
 
    Pool Turnover
      2  Kb Pool                                                       
          LRU Buffer Grab         30.7        2.1     7371      82.0 %
            Grabbed Dirty          0.0        0.0        0       0.0 %
      16 Kb Pool                                                       
          LRU Buffer Grab          6.7        0.5     1616      18.0 %
            Grabbed Dirty          0.0        0.0        0       0.0 %
  -------------------------  ---------  ---------  -------
    Total Cache Turnover          37.4        2.6     8987             
 
    Buffer Wash Behavior
      Buffers Passed Clean         0.3        0.0       64     100.0 %
      Buffers Already in I/O       0.0        0.0        0       0.0 %
      Buffers Washed Dirty         0.0        0.0        0       0.0 %
 
    Cache Strategy
      Cached (LRU) Buffers      5571.9      388.7  1337248      99.8 %
      Discarded (MRU) Buffers     11.4        0.8     2732       0.2 %
 
    Large I/O Usage
      Large I/Os Performed         6.7        0.5     1614      47.1 %
      Large I/Os Denied            7.6        0.5     1814      52.9 %
  -------------------------  ---------  ---------  -------
    Total Large I/O Requests      14.3        1.0     3428             
 
    Large I/O Detail
     16  Kb Pool                                                       
        Pages Cached              53.9        3.8    12928       n/a   
        Pages Used                42.4        3.0    10173      78.7 %
 
    Dirty Read Behavior
      Page Requests               0.0           0.0    0       n/a 

Cache statistics summary (all caches)
This section summarizes behavior for the default data cache and all named 
data caches combined. Corresponding information is printed for each data 
cache.

See “Cache management by cache” on page 1015.



Data cache management 

1010  Adaptive Server Enterprise

Cache search summary

This section provides summary information about cache hits and misses. 
Use this data to get an overview of how effective cache design is. A high 
number of cache misses indicates that you should investigate statistics for 
each cache.

• “Total Cache Hits” reports the number of times that a needed page 
was found in any cache. “% of total” reports the percentage of cache 
hits as a percentage of the total number of cache searches.

• “Total Cache Misses” reports the number of times that a needed page 
was not found in a cache and had to be read from disk. “% of total” 
reports the percentage of times that the buffer was not found in the 
cache as a percentage of all cache searches.

• “Total Cache Searches” reports the total number of cache searches, 
including hits and misses for all caches combined.

Cache turnover

This section provides a summary of cache turnover:

• “Buffers Grabbed” reports the number of buffers that were replaced 
in all of the caches. The “count” column represents the number of 
times that Adaptive Server fetched a buffer from the LRU end of the 
cache, replacing a database page. If the server was recently restarted, 
so that the buffers are empty, reading a page into an empty buffer is 
not counted here.

• “Buffers Grabbed Dirty” reports the number of times that fetching a 
buffer found a dirty page at the LRU end of the cache and had to wait 
while the buffer was written to disk. If this value is nonzero, find out 
which caches are affected. It represents a serious performance hit.

Cache strategy summary

This section provides a summary of the caching strategy used.

• “Cached (LRU) Buffers” reports the total number of buffers placed at 
the head of the MRU/LRU chain in all caches.

• “Discarded (MRU) Buffers” reports the total number of buffers in all 
caches following the fetch-and-discard strategy—the buffers placed 
at the wash marker.



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 1011

Large I/O usage

This section provides summary information about the large I/O requests in 
all caches. If “Large I/Os Denied” is high, investigate individual caches to 
determine the cause.

• “Large I/Os Performed” measures the number of times that the 
requested large I/O was performed. “% of total” is the percentage of 
large I/O requests performed as a percentage of the total number of 
I/O requests made.

• “Large I/Os Denied” reports the number of times that large I/O could 
not be performed. “% of total” reports the percentage of large I/O 
requests denied as a percentage of the total number of requests made.

• “Total Large I/O Requests” reports the number of all large I/O 
requests (both granted and denied) for all caches.

Large I/O effectiveness

“Large I/O Effectiveness” helps you to determine the performance 
benefits of large I/O. It compares the number of pages that were brought 
into cache by a large I/O to the number of pages actually referenced while 
in the cache. If the percentage for “Pages by Lrg I/O Used” is low, it means 
that few of the pages brought into cache are being accessed by queries. 
Investigate the individual caches to determine the source of the problem. 
Use optdiag to check the value for “Large I/O Efficiency” for each table 
and index. 

• “Pages by Lrg I/O Cached” reports the number of pages brought into 
all caches by all large I/O operations that took place during the sample 
interval. Low percentages could indicate one of the following:

• Allocation fragmentation in the table’s storage

• Inappropriate caching strategy

• “Pages by Lrg I/O Used” reports the total number of pages that were 
used after being brought into cache by large I/O. sp_sysmon does not 
print output for this category if there were no “Pages by Lrg I/O 
Cached.”

Asynchronous prefetch activity report

This section reports asynchronous prefetch activity for all caches.



Data cache management 

1012  Adaptive Server Enterprise

For information on asynchronous prefetch for each database device, see 
“Disk I/O management” on page 1027.

“Total APFs Requested” reports the total number of pages eligible to be 
pre fetched, that is, the sum of the look-ahead set sizes of all queries issued 
during the sample interval. Other rows in “Asynchronous Prefetch 
Activity” provide detail in the three following categories:

• Information about the pages that were pre fetched, “APFs Issued”

• Information about the reasons that prefetch was denied

• Information about how the page was found in the cache

APFs issued

“APFs Issued” reports the number of asynchronous prefetch requests 
issued by the system during the sample interval.

APFs denied due to

This section reports the reasons that APFs were not issued:

• “APF I/O Overloads” reports the number of times APF usage was 
denied because of a lack of disk I/O structures or because of disk 
semaphore contention.

If this number is high, check the following information in the “Disk 
I/O Management” section of the report:

• Check the value of the disk i/o structures configuration parameter.

See “Disk I/O structures” on page 1029. 

• Check values for contention for device semaphores for each 
database device to determine the source of the problem.

See “Device semaphore granted and waited” on page 1032 for 
more information.

If the problem is due to a shortage of disk I/O structures, set the 
configuration parameter higher, and repeat your tests. If the problem 
is due to high disk semaphore contention, examine the physical 
placement of the objects where high I/O takes place.



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 1013

• “APF Limit Overloads” indicates that the percentage of buffer pools 
that can be used for asynchronous prefetch was exceeded. This limit 
is set for the server as a whole by the global async prefetch limit 
configuration parameter. It can be tuned for each pool with 
sp_poolconfig. 

• “APF Reused Overloads” indicates that APF usage was denied due to 
a kinked page chain or because the buffers brought in by APF were 
swapped out before they could be accessed.

APF buffers found in cache

This section reports how many buffers from APF look-ahead sets were 
found in the data cache during the sample interval. Asynchronous prefetch 
tries to find a page it needs to read in the data cache using a quick scan 
without holding the cache spinlock. If that does not succeed, it then 
performs a thorough scan holding the spinlock.

Other asynchronous prefetch statistics

Three additional asynchronous prefetch statistics are reported in this 
section:

• “APFs Used” reports the number of pages that were brought into the 
cache by asynchronous prefetch and used during the sample interval. 
The pages counted for this report may have been brought into cache 
during the sample interval or by asynchronous prefetch requests that 
were issued before the sample interval started.

• “APF Waits for I/O” reports the number of times that a process had to 
wait for an asynchronous prefetch to complete. This indicates that the 
prefetch was not issued early enough for the pages to be in cache 
before the query needed them. It is reasonable to expect some 
percentage of “APF Waits.” Some reasons that tasks may have to wait 
are:

• The first asynchronous prefetch request for a query is generally 
included in “APF Waits.”

• Each time a sequential scan moves to a new allocation unit and 
issues prefetch requests, the query must wait until the first I/O 
completes.



Data cache management 

1014  Adaptive Server Enterprise

• Each time a nonclustered index scan finds a set of qualified rows 
and issues prefetch requests for the pages, it must wait for the first 
pages to be returned.

Other factors that can affect “APF Waits for I/O” are the amount of 
processing that needs to be done on each page and the speed of the I/O 
subsystem.

• “APF Discards” indicates the number of pages that were read in by 
asynchronous prefetch and discarded before they were used. A high 
value for “APFs Discards” may indicate that increasing the size of the 
buffer pools could help performance, or it may indicate that APF is 
bringing pages into cache that are not needed by the query.

Dirty read behavior

This section provides information to help you analyze how dirty reads 
(isolation level 0 reads) affect the system.

Page requests

“Page Requests” reports the average number of pages that were requested 
at isolation level 0. The “% of total” column reports the percentage of dirty 
reads with respect to the total number of page reads. 

Dirty read page requests incur high overhead if they lead to many dirty 
read restarts.

Dirty read re-starts

“Re-Starts” reports the number of dirty read restarts that took place. This 
category is reported only for the server as a whole, and not for individual 
caches. sp_sysmon does not print output for this category if there were no 
“Dirty Read Page Requests,” as in the sample output.

A dirty read restart occurs when a dirty read is active on a page and another 
process makes changes to the page that cause the page to be deallocated. 
The scan for the level 0 must be restarted.

The “% of total” output is the percentage of dirty read restarts done with 
isolation level 0 as a percentage of the total number of page reads. 

If these values are high, you might take steps to reduce them through 
application modifications because overhead associated with dirty reads 
and resulting restarts is very expensive. Most applications should avoid 
restarts because of the large overhead it incurs.



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 1015

Cache management by cache
This sections reports cache utilization for each active cache on the server. 
The sample output shows results for the default data cache. The following 
section explains the per-cache statistics.

Cache spinlock contention

“Spinlock Contention” reports the number of times an engine encountered 
spinlock contention on the cache, and had to wait, as a percentage of the 
total spinlock requests for that cache. This is meaningful for SMP 
environments only. 

When a user task makes any changes to a cache, a spinlock denies all other 
tasks access to the cache while the changes are being made. Although 
spinlocks are held for extremely brief durations, they can slow 
performance in multiprocessor systems with high transaction rates. If 
spinlock contention is more than 10%, consider using named caches or 
adding cache partitions.

See “Configuring the data cache to improve performance” on page 337 
for information on adding caches, and “Reducing spinlock contention 
with cache partitions” on page 346.

Utilization

“Utilization” reports the percentage of searches using this cache as a 
percentage of searches across all caches.You can compare this value for 
each cache to determine if there are caches that are over- or under-utilized. 
If you decide that a cache is not well utilized, you can:

• Change the cache bindings to balance utilization. For more 
information, see “Caches and object bindings” on page 158.

• Resize the cache to correspond more appropriately to its utilization.

For more information, see the System Administration Guide.



Data cache management 

1016  Adaptive Server Enterprise

Cache search, hit, and miss information

This section displays the number hits and misses and the total number of 
searches for this cache. Cache hits are roughly comparable to the logical 
reads values reported by statistics io; cache misses are roughly equivalent 
to physical reads. sp_sysmon always reports values that are higher than 
those shown by statistics io, since sp_sysmon also reports the I/O for 
system tables, log pages, OAM pages and other system overhead.

Interpreting cache hit data requires an understanding of how the 
application uses each cache. In caches that are created to hold specific 
objects such as indexes or look up tables, cache hit ratios may reach 100%. 
In caches used for random point queries on huge tables, cache hit ratios 
may be quite low but still represent effective cache use. 

This data can also help you to determine if adding more memory would 
improve performance. For example, if “Cache Hits” is high, adding 
memory probably would not help much.

Cache hits

“Cache Hits” reports the number of times that a needed page was found in 
the data cache. “% of total” reports the percentage of cache hits compared 
to the total number of cache searches.

Found in wash

The number of times that the needed page was found in the wash section 
of the cache. “% of total” reports the percentage of times that the buffer 
was found in the wash area as a percentage of the total number of hits. If 
the data indicate a large percentage of cache hits found in the wash section, 
it may mean the wash area is too big. It is not a problem for caches that are 
read-only or that have a low number of writes. 

A large wash section might lead to increased physical I/O because 
Adaptive Server initiates a write on all dirty pages as they cross the wash 
marker. If a page in the wash area is written to disk, then updated a second 
time, I/O has been wasted. Check to see whether a large number of buffers 
are being written at the wash marker.

See “Buffer wash behavior” on page 1019 for more information.

If queries on tables in the cache use “fetch-and-discard” strategy for a non-
APF I/O, the first cache hit for a page finds it in the wash. The buffers is 
moved to the MRU end of the chain, so a second cache hit soon after the 
first cache hit will find the buffer still outside the wash area.



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 1017

See “Cache strategy” on page 1020 for more information, and “Specifying 
the cache strategy” on page 465 for information about controlling caching 
strategy.

If necessary, you can change the wash size. If you make the wash size 
smaller, run sp_sysmon again under fully loaded conditions and check the 
output for “Grabbed Dirty” values greater than 0

 See “Cache turnover” on page 1010.

Cache misses

“Cache Misses” reports the number of times that a needed page was not 
found in the cache and had to be read from disk. “% of total” is the 
percentage of times that the buffer was not found in the cache as a 
percentage of the total searches.

Total cache searches

This row summarizes cache search activity. Note that the “Found in Wash” 
data is a subcategory of the “Cache Hits” number and it is not used in the 
summary calculation.

Pool turnover

“Pool Turnover” reports the number of times that a buffer is replaced from 
each pool in a cache. Each cache can have up to 4 pools, with I/O sizes of 
2K, 4K, 8K, and 16K. If there is any “Pool Turnover,” sp_sysmon prints 
the “LRU Buffer Grab” and “Grabbed Dirty” information for each pool 
that is configured and a total turnover figure for the entire cache. If there 
is no “Pool Turnover,” sp_sysmon prints only a row of zeros for “Total 
Cache Turnover.” 

This information helps you to determine if the pools and cache are the right 
size.

LRU buffer grab

“LRU Buffer Grab” is incremented only when a page is replaced by 
another page. If you have recently restarted Adaptive Server, or if you 
have just unbound and rebound the object or database to the cache, 
turnover does not count reading pages into empty buffers.



Data cache management 

1018  Adaptive Server Enterprise

If memory pools are too small for the throughput, you may see high 
turnover in the pools, reduced cache hit rates, and increased I/O rates. If 
turnover is high in some pools and low in other pools, you might want to 
move space from the less active pool to the more active pool, especially if 
it can improve the cache-hit ratio.

If the pool has 1000 buffers, and Adaptive Server is replacing 100 buffers 
every second, 10% of the buffers are being turned over every second. That 
might be an indication that the buffers do not remain in cache for long 
enough for the objects using that cache. 

Grabbed dirty

“Grabbed Dirty” gives statistics for the number of dirty buffers that 
reached the LRU before they could be written to disk. When Adaptive 
Server needs to grab a buffer from the LRU end of the cache in order to 
fetch a page from disk, and finds a dirty buffer instead of a clean one, it 
must wait for I/O on the dirty buffer to complete. “% of total” reports the 
percentage of buffers grabbed dirty as a percentage of the total number of 
buffers grabbed.

If “Grabbed Dirty” is a nonzero value, it indicates that the wash area of the 
pool is too small for the throughput in the pool. Remedial actions depend 
on the pool configuration and usage:

• If the pool is very small and has high turnover, consider increasing the 
size of the pool and the wash area.

• If the pool is large, and it is used for a large number of data 
modification operations, increase the size of the wash area.

• If several objects use the cache, moving some of them to another 
cache could help.

• If the cache is being used by create index, the high I/O rate can cause 
dirty buffer grabs, especially in a small 16K pool. In these cases, set 
the wash size for the pool as high as possible, to 80% of the buffers in 
the pool.

• If the cache is partitioned, reduce the number of partitions.

• Check query plans and I/O statistics for objects that use the cache for 
queries that perform a lot of physical I/O in the pool. Tune queries, if 
possible, by adding indexes.



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 1019

Check the “per second” values for “Buffers Already in I/O” and “Buffers 
Washed Dirty” in the section “Buffer wash behavior” on page 1019. The 
wash area should be large enough to allow I/O to be completed on dirty 
buffers before they reach the LRU. The time required to complete the I/O 
depends on the actual number of physical writes per second achieved by 
your disk drives.

Also check “Disk I/O management” on page 1027 to see if I/O contention 
is slowing disk writes.

Also, it might help to increase the value of the housekeeper free write 
percent configuration parameter. See the System Administration Guide.

Total cache turnover

This summary line provides the total number of buffers grabbed in all 
pools in the cache.

Buffer wash behavior

This category reports information about the state of buffers when they 
reach the pool’s wash marker. When a buffer reaches the wash marker it 
can be in one of three states:

• “Buffers Passed Clean” reports the number of buffers that were clean 
when they passed the wash marker. The buffer was not changed while 
it was in the cache, or it was changed, and has already been written to 
disk by the housekeeper or a checkpoint. “% of total” reports the 
percentage of buffers passed clean as a percentage of the total number 
of buffers that passed the wash marker.

• “Buffers Already in I/O” reports the number of times that I/O was 
already active on a buffer when it entered the wash area. The page was 
dirtied while in the cache. The housekeeper or a checkpoint has 
started I/O on the page, but the I/O has not completed. “% of total” 
reports the percentage of buffers already in I/O as a percentage of the 
total number of buffers that entered the wash area. 

• “Buffers Washed Dirty” reports the number of times that a buffer 
entered the wash area dirty and not already in I/O. The buffer was 
changed while in the cache and has not been written to disk. An 
asynchronous I/O is started on the page as it passes the wash marker. 
“% of total” reports the percentage of buffers washed dirty as a 
percentage of the total number of buffers that entered the wash area.



Data cache management 

1020  Adaptive Server Enterprise

If no buffers pass the wash marker during the sample interval, sp_sysmon 
prints:

Statistics Not Available - No Buffers Entered Wash Section Yet!

Cache strategy

This section reports the number of buffers placed in cache following the 
fetch-and-discard (MRU) or normal (LRU) caching strategies:

• “Cached(LRU) Buffers” reports the number of buffers that used 
normal cache strategy and were placed at the MRU end of the cache. 
This includes all buffers read directly from disk and placed at the 
MRU end, and all buffers that were found in cache. At the completion 
of the logical I/O, the buffer was placed at the MRU end of the cache.

• “Discarded (MRU) Buffers” reports the number of buffers that were 
placed at the wash marker, using the fetch-and-discard strategy.

If you expect an entire table to be cached, but you e see a high value 
for “Discarded Buffers,” use showplan to see if the optimizer is 
generating the fetch-and-discard strategy when it should be using the 
normal cache strategy.

See “Specifying the cache strategy” on page 465 for more 
information.

Large I/O usage

This section provides data about Adaptive Server prefetch requests for 
large I/O. It reports statistics on the numbers of large I/O requests 
performed and denied.

Large I/Os performed

“Large I/Os Performed” measures the number of times that a requested 
large I/O was performed. “% of total” reports the percentage of large I/O 
requests performed as a percentage of the total number of requests made.

Large I/Os denied

“Large I/Os Denied” reports the number of times that large I/O could not 
be performed. “% of total” reports the percentage of large I/O requests 
denied as a percentage of the total number of requests made.

Adaptive Server cannot perform large I/O:



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 1021

• If any page in a buffer already resides in another pool.

• When there are no buffers available in the requested pool.

• On the first extent of an allocation unit, since it contains the allocation 
page, which is always read into the 2K pool.

If a high percentage of large I/Os were denied, it indicates that the use of 
the larger pools might not be as effective as it could be. If a cache contains 
a large I/O pool, and queries perform both 2K and 16K I/O on the same 
objects, there will always be some percentage of large I/Os that cannot be 
performed because pages are in the 2K pool. 

If more than half of the large I/Os were denied, and you are using 16K I/O, 
try moving all of the space from the 16K pool to the 8K pool. Re-run the 
test to see if total I/O is reduced. Note that when a 16K I/O is denied, 
Adaptive Server does not check for 8K or 4K pools, but uses the 2K pool.

You can use information from this category and “Pool Turnover” to help 
judge the correct size for pools.

Total large I/O requests

“Total Large I/O Requests” provides summary statistics for large I/Os 
performed and denied.

Large I/O detail

This section provides summary information for each pool individually. It 
contains a block of information for each 4K, 8K, or 16K pool configured 
in cache. It prints the pages brought in (“Pages Cached”) and pages 
referenced (“Pages Used”) for each I/O size that is configured. 

For example, if a query performs a 16K I/O and reads a single data page, 
the “Pages Cached” value is 8, and “Pages Used” value is 1.

• “Pages by Lrg I/O Cached” prints the total number of pages read into 
the cache. 

• “Pages by Lrg I/O Used” reports the number of pages used by a query 
while in cache. 

Dirty read behavior

“Page Requests” reports the average number of pages requested at 
isolation level 0.



Procedure cache management 

1022  Adaptive Server Enterprise

The “% of total” output for “Dirty Read Page Requests” shows the 
percentage of dirty reads with respect to the total number of page reads. 

Procedure cache management
“Procedure Cache Management” reports the number of times stored 
procedures and triggers were requested, read from disk, and removed.

Sample output
The following sample shows sp_sysmon output for the “Procedure Cache 
Management” section. 

Procedure Cache Management     per sec   per xact    count  % of total
---------------------------  ---------  ---------  -------  ----------
  Procedure Requests              67.7        1.0     4060       n/a
  Procedure Reads from Disk        0.0        0.0        0       0.0 %
  Procedure Writes to Disk         0.0        0.0        0       0.0 %
  Procedure Removals               0.0        0.0        0       n/a

Procedure requests
“Procedure Requests” reports the number of times stored procedures were 
executed.

When a procedure is executed, these possibilities exist:

• An idle copy of the query plan in memory, so it is copied and used.

• No copy of the procedure is in memory, or all copies of the plan in 
memory are in use, so the procedure must be read from disk.

Procedure reads from disk
“Procedure Reads from Disk” reports the number of times that stored 
procedures were read from disk rather than found and copied in the 
procedure cache.



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 1023

“% of total” reports the percentage of procedure reads from disk as a 
percentage of the total number of procedure requests. If this is a relatively 
high number, it could indicate that the procedure cache is too small.

Procedure writes to disk
“Procedure Writes to Disk” reports the number of procedures created 
during the interval. This can be significant if application programs 
generate stored procedures.

Procedure removals
“Procedure Removals” reports the number of times that a procedure aged 
out of cache. 

Memory management
“Memory Management” reports the number of pages allocated and 
deallocated during the sample interval.

Sample output
The following sample shows sp_sysmon output for the “Memory 
Management” section. 

Memory Management           per sec   per xact    count  % of total
---------------------------  ---------  ---------  -------  ----------
  Pages Allocated                  0.0        0.0        0       n/a
  Pages Released                   0.0        0.0        0       n/a

Pages allocated
“Pages Allocated” reports the number of times that a new page was 
allocated in memory.



Recovery management 

1024  Adaptive Server Enterprise

Pages released
“Pages Released” reports the number of times that a page was freed.

Recovery management
This data indicates the number of checkpoints caused by the normal 
checkpoint process, the number of checkpoints initiated by the 
housekeeper task, and the average length of time for each type. This 
information is helpful for setting the recovery and housekeeper parameters 
correctly.

Sample output
The following sample shows sp_sysmon output for the “Recovery 
Management” section. 

Recovery Management
-------------------
  Checkpoints                  per sec   per xact    count  % of total
  -------------------------  ---------  ---------  -------  ----------
    # of Normal Checkpoints    0.00117    0.00071        1       n/a
    # of Free Checkpoints      0.00351    0.00213        3       n/a
  -------------------------  ---------  ---------  -------
  Total Checkpoints            0.00468    0.00284        4

  Avg Time per Normal Chkpt       0.01050 seconds
  Avg Time per Free Chkpt         0.16221 seconds

Checkpoints
Checkpoints write dirty pages (pages that have been modified in memory, 
but not written to disk) to the database device. Adaptive Server’s 
automatic (normal) checkpoint mechanism works to maintain a minimum 
recovery interval. By tracking the number of log records in the transaction 
log since the last checkpoint was performed, it estimates whether the time 
required to recover the transactions exceeds the recovery interval. If so, 
the checkpoint process scans all data caches and writes out all changed 
data pages.



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 1025

When Adaptive Server has no user tasks to process, a housekeeper task 
begins writing dirty buffers to disk. These writes are done during the 
server’s idle cycles, so they are known as “free writes.” They result in 
improved CPU utilization and a decreased need for buffer washing during 
transaction processing.

If the housekeeper process finishes writing all dirty pages in all caches to 
disk, it checks the number of rows in the transaction log since the last 
checkpoint. If there are more than 100 log records, it issues a checkpoint. 
This is called a “free checkpoint” because it requires very little overhead. 
In addition, it reduces future overhead for normal checkpoints.

Number of normal checkpoints

“# of Normal Checkpoints” reports the number of checkpoints performed 
by the normal checkpoint process.

If the normal checkpoint is doing most of the work, especially if the time 
required is lengthy, it might make sense to increase the number of writes 
performed by the housekeeper task.

See the System Administration Guide for information about changing the 
number of normal checkpoints.

Number of free checkpoints

“# of Free Checkpoints” reports the number of checkpoints performed by 
the housekeeper task. The housekeeper performs checkpoints only when it 
has cleared all dirty pages from all configured caches.

You can use the housekeeper free write percent parameter to configure the 
maximum percentage by which the housekeeper task can increase 
database writes. See the System Administration Guide.

Total checkpoints

“Total Checkpoints” reports the combined number of normal and free 
checkpoints that occurred during the sample interval.



Recovery management 

1026  Adaptive Server Enterprise

Average time per normal checkpoint
“Avg Time per Normal Chkpt” reports the average time that normal 
checkpoints lasted.

Average time per free checkpoint
“Avg Time per Free Chkpt” reports the average time that free (or 
housekeeper) checkpoints lasted.

Increasing the housekeeper batch limit
The housekeeper process has a built-in batch limit to avoid overloading 
disk I/O for individual devices. By default, the batch size for housekeeper 
writes is set to 3. As soon as the housekeeper detects that it has issued 3 
I/Os to a single device, it stops processing in the current buffer pool and 
begins checking for dirty pages in another pool. If the writes from the next 
pool go to the same device, it moves on to another pool. Once the 
housekeeper has checked all of the pools, it waits until the last I/O it has 
issued has completed, and then begins the cycle again.

The default batch limit is designed to provide good device I/O 
characteristics for slow disks. You may get better performance by 
increasing the batch size for fast disk drives. This limit can be set globally 
for all devices on the server or to different values for disks with different 
speeds. You must reset the limits each time Adaptive Server is restarted.

This command sets the batch size to 10 for a single device, using the 
virtual device number from sysdevices:

dbcc tune(deviochar, 8, "10")

To see the device number, use sp_helpdevice or this query:

select name, low/16777216 
from sysdevices
where status&2=2

To change the housekeeper’s batch size for all devices on the server, use -
1 in place of a device number:

dbcc tune(deviochar, -1, "5")

For very fast drives, setting the batch size as high as 50 has yielded 
performance improvements during testing.



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 1027

You may want to try setting the batch size higher if:

• The average time for normal checkpoints is high

• There are no problems with exceeding I/O configuration limits or 
contention on the semaphores for the devices

Disk I/O management
This section reports on disk I/O. It provides an overview of disk I/O 
activity for the server as a whole and reports on reads, writes, and 
semaphore contention for each logical device.

Sample output
The following sample shows sp_sysmon output for the “Disk I/O 
Management” section. 

Disk I/O Management
-------------------

  Max Outstanding I/Os         per sec   per xact    count  % of total
  -------------------------  ---------  ---------  -------  ----------
    Server                         n/a        n/a       74       n/a
    Engine 0                       n/a        n/a       20       n/a
    Engine 1                       n/a        n/a       21       n/a
    Engine 2                       n/a        n/a       18       n/a
    Engine 3                       n/a        n/a       23       n/a
    Engine 4                       n/a        n/a       18       n/a
    Engine 5                       n/a        n/a       20       n/a
    Engine 6                       n/a        n/a       21       n/a
    Engine 7                       n/a        n/a       17       n/a
    Engine 8                       n/a        n/a       20       n/a

  I/Os Delayed by
    Disk I/O Structures            n/a        n/a        0       n/a
    Server Config Limit            n/a        n/a        0       n/a
    Engine Config Limit            n/a        n/a        0       n/a
    Operating System Limit         n/a        n/a        0       n/a



Disk I/O management 

1028  Adaptive Server Enterprise

  Total Requested Disk I/Os      202.8        1.7    12261       n/a

  Completed Disk I/O’s
    Engine 0                      25.0        0.2     1512      12.4 %
    Engine 1                      21.1        0.2     1274      10.5 %
    Engine 2                      18.4        0.2     1112       9.1 %
    Engine 3                      23.8        0.2     1440      11.8 %
    Engine 4                      22.7        0.2     1373      11.3 %
    Engine 5                      22.9        0.2     1387      11.4 %
    Engine 6                      24.4        0.2     1477      12.1 %
    Engine 7                      22.0        0.2     1332      10.9 %
    Engine 8                      21.2        0.2     1281      10.5 %
  -------------------------  ---------  ---------  -------  ----------
  Total Completed I/Os           201.6        1.7    12188

  d_master
  master                       per sec   per xact    count  % of total
  -------------------------  ---------  ---------  -------  ----------
    Reads
       APF                         56.6        0.5     3423      46.9 %
       Non-APF                     
    Writes                        64.2        0.5     3879      53.1 %
  -------------------------  ---------  ---------  -------  ----------
  Total I/Os                     120.8        1.0     7302      60.0 %

  Device Semaphore Granted       116.7        1.0     7056      94.8 %
  Device Semaphore Waited          6.4        0.1      388       5.2 %

Maximum outstanding I/Os
“Max Outstanding I/Os” reports the maximum number of I/Os pending for 
Adaptive Server as a whole (the first line), and for each Adaptive Server 
engine at any point during the sample interval. 

This information can help configure I/O parameters at the server or 
operating system level if any of the “I/Os Delayed By” values are nonzero.

I/Os delayed by
When the system experiences an I/O delay problem, it is likely that I/O is 
blocked by one or more Adaptive Server or operating system limits.



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 1029

Most operating systems have a kernel parameter that limits the number of 
asynchronous I/Os that can take place.

Disk I/O structures

“Disk I/O Structures” reports the number of I/Os delayed by reaching the 
limit on disk I/O structures. When Adaptive Server exceeds the number of 
available disk I/O control blocks, I/O is delayed because Adaptive Server 
requires that tasks get a disk I/O control block before initiating an I/O 
request.

If the result is a nonzero value, try increasing the number of available disk 
I/O control blocks by increasing the configuration parameter disk i/o 
structures. See the System Administration Guide.

Server configuration limit

Adaptive Server can exceed its limit for the number of asynchronous disk 
I/O requests that can be outstanding for the entire Adaptive Server at one 
time. You can raise this limit using the max async i/os per server 
configuration parameter. See the System Administration Guide.

Engine configuration limit

An engine can exceed its limit for outstanding asynchronous disk I/O 
requests. You can change this limit with the max async i/os per engine 
configuration parameter. See the System Administration Guide.

Operating system limit

“Operating System Limit” reports the number of times the operating 
system limit on outstanding asynchronous I/Os was exceeded during the 
sample interval. The operating system kernel limits the maximum number 
of asynchronous I/Os that either a process or the entire system can have 
pending at any one time. See the System Administration Guide; also see 
your operating system documentation.

Requested and completed disk I/Os
This data shows the total number of disk I/Os requested and the number 
and percentage of I/Os completed by each Adaptive Server engine.



Disk I/O management 

1030  Adaptive Server Enterprise

“Total Requested Disk I/Os” and “Total Completed I/Os” should be the 
same or very close. These values will be very different if requested I/Os 
are not completing due to saturation.

The value for requested I/Os includes all requests that were initiated 
during the sample interval, and it is possible that some of them completed 
after the sample interval ended. These I/Os will not be included in “Total 
Completed I/Os”, and will cause the percentage to be less than 100, when 
there are no saturation problems.

The reverse is also true. If I/O requests were made before the sample 
interval began and they completed during the period, you would see a “% 
of Total” for “Total Completed I/Os” value that is more than 100%.

If the data indicates a large number of requested disk I/Os and a smaller 
number of completed disk I/Os, there could be a bottleneck in the 
operating system that is delaying I/Os.

Total requested disk I/Os

“Total Requested Disk I/Os” reports the number of times that Adaptive 
Server requested disk I/Os.

Completed disk I/Os

“Total Completed Disk I/Os” reports the number of times that each engine 
completed I/O. “% of total” reports the percentage of times each engine 
completed I/Os as a percentage of the total number of I/Os completed by 
all Adaptive Server engines combined.

You can also use this information to determine whether the operating 
system can keep pace with the disk I/O requests made by all of the engines.

Device activity detail
“Device Activity Detail” reports activity on each logical device. It is 
useful for checking that I/O is well balanced across the database devices 
and for finding a device that might be delaying I/O. For example, if the 
“Task Context Switches Due To” data indicates a heavy amount of device 
contention, you can use “Device Activity Detail” to figure out which 
device(s) is causing the problem.



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 1031

This section prints the following information about I/O for each data 
device on the server:

• The logical and physical device names

• The number of reads and writes and the total number of I/Os

• The number of device semaphore requests immediately granted on the 
device and the number of times a process had to wait for a device 
semaphore

Reads and writes

“Reads” and “Writes” report the number of times that reads or writes to a 
device took place. “Reads” reports the number of pages that were read by 
asynchronous prefetch and those brought into cache by other I/O activity. 
The “% of total” column reports the percentage of reads or writes as a 
percentage of the total number of I/Os to the device.

Total I/Os

“Total I/Os” reports the combined number of reads and writes to a device. 
The “% of total” column is the percentage of combined reads and writes 
for each named device as a percentage of the number of reads and writes 
that went to all devices.

You can use this information to check I/O distribution patterns over the 
disks and to make object placement decisions that can help balance disk 
I/O across devices. For example, does the data show that some disks are 
more heavily used than others? If you see that a large percentage of all I/O 
went to a specific named device, you can investigate the tables residing on 
the device and then determine how to remedy the problem.

See “Creating objects on segments” on page 80.



Network I/O management 

1032  Adaptive Server Enterprise

Device semaphore granted and waited

The “Device Semaphore Granted” and “Device Semaphore Waited” 
categories report the number of times that a request for a device semaphore 
was granted immediately and the number of times the semaphore was busy 
and the task had to wait for the semaphore to be released. The “% of total” 
column is the percentage of times the device the semaphore was granted 
(or the task had to wait) as a percentage of the total number of device 
semaphores requested. This data is meaningful for SMP environments 
only.

When Adaptive Server needs to perform a disk I/O, it gives the task the 
semaphore for that device in order to acquire a block I/O structure. On 
SMP systems, multiple engines can try to post I/Os to the same device 
simultaneously. This creates contention for that semaphore, especially if 
there are hot devices or if the data is not well distributed across devices. 

A large percentage of I/O requests that waited could indicate a semaphore 
contention issue. One solution might be to redistribute the data on the 
physical devices.

Network I/O management
“Network I/O Management” reports the following network activities for 
each Adaptive Server engine:

• Total requested network I/Os

• Network I/Os delayed

• Total TDS packets and bytes received and sent 

• Average size of packets received and sent

This data is broken down by engine, because each engine does its own 
network I/O. Imbalances are usually caused by one of the following 
condition:

• There are more engines than tasks, so the engines with no work to 
perform report no I/O, or

• Most tasks are sending and receiving short packets, but another task 
is performing heavy I/O, such as a bulk copy.



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 1033

Sample output
The following sample shows sp_sysmon output for the “Network I/O 
Management” categories. 

Network I/O Management
----------------------

  Total Network I/O Requests     240.1        2.0    14514       n/a
    Network I/Os Delayed           0.0        0.0        0       0.0 %

  Total TDS Packets Received   per sec   per xact    count  % of total
  -------------------------  ---------  ---------  -------  ----------
    Engine 0                       7.9        0.1      479       6.6 %
    Engine 1                      12.0        0.1      724      10.0 %
    Engine 2                      15.5        0.1      940      13.0 %
    Engine 3                      15.7        0.1      950      13.1 %
    Engine 4                      15.2        0.1      921      12.7 %
    Engine 5                      17.3        0.1     1046      14.4 %
    Engine 6                      11.7        0.1      706       9.7 %
    Engine 7                      12.4        0.1      752      10.4 %
    Engine 8                      12.2        0.1      739      10.2 %
  -------------------------  ---------  ---------  -------  ----------
  Total TDS Packets Rec’d        120.0        1.0     7257

  Total Bytes Received         per sec   per xact    count  % of total
  -------------------------  ---------  ---------  -------  ----------
    Engine 0                     562.5        4.7    34009       6.6 %
    Engine 1                     846.7        7.1    51191      10.0 %
    Engine 2                    1100.2        9.2    66516      13.0 %
    Engine 3                    1112.0        9.3    67225      13.1 %
    Engine 4                    1077.8        9.0    65162      12.7 %
    Engine 5                    1219.8       10.2    73747      14.4 %
    Engine 6                     824.3        6.9    49835       9.7 %
    Engine 7                     879.2        7.3    53152      10.4 %
    Engine 8                     864.2        7.2    52244      10.2 %
  -------------------------  ---------  ---------  -------  ----------
  Total Bytes Rec’d             8486.8       70.7   513081

   Avg Bytes Rec’d per Packet       n/a        n/a       70       n/a

  --------------------------------------------------------------------

  Total TDS Packets Sent       per sec   per xact    count  % of total



Network I/O management 

1034  Adaptive Server Enterprise

  -------------------------  ---------  ---------  -------  ----------
    Engine 0                       7.9        0.1      479       6.6 %
    Engine 1                      12.0        0.1      724      10.0 %
    Engine 2                      15.6        0.1      941      13.0 %
    Engine 3                      15.7        0.1      950      13.1 %
    Engine 4                      15.3        0.1      923      12.7 %
    Engine 5                      17.3        0.1     1047      14.4 %
    Engine 6                      11.7        0.1      705       9.7 %
    Engine 7                      12.5        0.1      753      10.4 %
    Engine 8                      12.2        0.1      740      10.2 %
  -------------------------  ---------  ---------  -------  ----------
  Total TDS Packets Sent         120.1        1.0     7262

  Total Bytes Sent             per sec   per xact    count  % of total
  -------------------------  ---------  ---------  -------  ----------
    Engine 0                     816.1        6.8    49337       6.6 %
    Engine 1                    1233.5       10.3    74572      10.0 %
    Engine 2                    1603.2       13.3    96923      13.0 %
    Engine 3                    1618.5       13.5    97850      13.1 %
    Engine 4                    1572.5       13.1    95069      12.7 %
    Engine 5                    1783.8       14.9   107841      14.4 %
    Engine 6                    1201.1       10.0    72615       9.7 %
    Engine 7                    1282.9       10.7    77559      10.4 %
    Engine 8                    1260.8       10.5    76220      10.2 %
  -------------------------  ---------  ---------  -------  ----------
  Total Bytes Sent             12372.4      103.0   747986

  Avg Bytes Sent per Packet        n/a        n/a      103       n/a

Total network I/Os requests
“Total Network I/O Requests” reports the total number of packets received 
and sent. 

If you know how many packets per second the network can handle, you 
can determine whether Adaptive Server is challenging the network 
bandwidth.



CHAPTER 39    Monitoring Performance with sp_sysmon

Performance & Tuning Guide 1035

The issues are the same whether the I/O is inbound or outbound. If 
Adaptive Server receives a command that is larger than the packet size, 
Adaptive Server waits to begin processing until it receives the full 
command. Therefore, commands that require more than one packet are 
slower to execute and take up more I/O resources.

If the average bytes per packet is near the default packet size configured 
for your server, you may want to configure larger packet sizes for some 
connections. You can configure the network packet size for all connections 
or allow certain connections to log in using larger packet sizes.

See “Changing network packet sizes” on page 15 in the System 
Administration Guide.

Network I/Os delayed
“Network I/Os Delayed” reports the number of times I/O was delayed. If 
this number is consistently nonzero, consult with your network 
administrator. 

Total TDS packets received
“Total TDS Packets Received” reports the number of TDS packets 
received per engine. “Total TDS Packets Rec’d” reports the number of 
packets received during the sample interval. 

Total bytes received
“Total Bytes Received” reports the number of bytes received per engine. 
“Total Bytes Rec’d” reports the total number of bytes received during the 
sample interval.

Average bytes received per packet
“Average Bytes Rec’d per Packet” reports the average number of bytes for 
all packets received during the sample interval.



Network I/O management 

1036  Adaptive Server Enterprise

Total TDS packets sent
“Total TDS Packets Sent” reports the number of packets sent by each 
engine, and a total for the server as a whole. 

Total bytes sent
“Total Bytes Sent” reports the number of bytes sent by each Adaptive 
Server engine, and the server as a whole, during the sample interval.

Average bytes sent per packet
“Average Bytes Sent per Packet” reports the average number of bytes for 
all packets sent during the sample interval.

Reducing packet overhead
If your applications use stored procedures, you may see improved 
throughput by turning off certain TDS messages that are sent after each 
select statement that is performed in a stored procedure. This message, 
called a “done in proc” message, is used in some client products. In some 
cases, turning off “done in proc” messages also turns off the “rows 
returned” messages. These messages may be expected in certain Client-
Library programs, but many clients simply discard these results. Test the 
setting with your client products and Open Client programs to determine 
whether it affects them before disabling this message on a production 
system.

Turning off “done in proc” messages can increase throughput slightly in 
some environments, especially those with slow or overloaded networks, 
but may have virtually no effect in other environments. To turn the 
messages off, issue the command:

dbcc tune (doneinproc, 0)

To turn the messages on, use:

dbcc tune (doneinproc, 1)

This command must be issued each time Adaptive Server is restarted.



Performance & Tuning Guide 1037

Symbols
> (greater than)

optimizing 435
< (less than)

in histograms 887
<= (less than or equals)

in histograms 884
# (pound sign)

in optdiag output 900
temporary table identifier prefix 413

() (parentheses)
empty, for i_scan operator 756
empty, for worktable scans 780
empty, in union queries 778
empty, subqueries and 773

= (equals sign) comparison operator
in histograms 887

Numerics
302 trace flag 905–929
310 trace flag 906
317 trace flag 923
3604 trace flag 906
4K memory pool, transaction log and 352

A
abstract plan cache configuration parameter 728
abstract plan dump configuration parameter 728
abstract plan groups

adding 734
creating 734
dropping 735
exporting 746
importing 747
information about 735

overview of use 691
plan association and 691
plan capture and 691
procedures for managing 733–747

abstract plan load configuration parameter 728
abstract plan replace configuration parameter 728
abstract plans

comparing 741
copying 740
finding 738
information about 739
pattern matching 738
viewing with sp_help_qplan 739

access
See also access methods
index 136
memory and disk speeds 325
optimizer methods 135, 588–599

access methods 588
hash-based 588
hash-based scan 588
parallel 588–600
partition-based 588
range-based scan 588
selection of 599
showplan messages for 825–846

add index level, sp_sysmon report 994
adding

abstract plan groups 734
address locks

contention 956
deadlocks reported by sp_sysmon 1005
sp_sysmon report on 1004

affinity
CPU 32, 40
engine example 60

aggregate functions
denormalization and performance 128
denormalization and temporary tables 415
ONCE AGGREGATE messages in showplan 862

Index



Index

1038 Adaptive Server Enterprise

optimization of 506, 507
parallel optimization of 616
showplan messages for 817
subqueries including 550

aging
data cache 333
procedure cache 330

algorithm 43
guidelines 46

all keyword
union, optimization of 554

allocation map. See Object Allocation Map (OAM) pages
allocation pages 142

large I/O and 1023
allocation units 140, 142

database creation and 396
table 872

allpages locking 219
changing to with alter table 253
OR strategy 243
specifying with create table 252
specifying with select into 256
specifying with sp_configure 251

alter table command
changing table locking scheme with 253–256
lock option and fillfactor and 306
parallel sorting and 634
partition clause 90
reservepagegap for indexes 316
sp_dboption and changing lock scheme 254
statistics and 900
unpartition 91

and keyword
subqueries containing 551

any keyword
subquery optimization and 544

APL tables. See all pages locking
application design 933

cursors and 686
deadlock avoidance 277
deadlock detection in 273
delaying deadlock checking 277
denormalization for 126
DSS and OLTP 339
index specification 461
isolation level 0 considerations 233

levels of locking 285
managing denormalized data with 132
network packet size and 17
primary keys and 178
procedure cache sizing 331
SMP servers 41
temporary tables in 415
user connections and 953
user interaction in transactions 283

application execution precedence 51, 69–71
environment analysis 49
scheduling and 59
system procedures 55
tuning with sp_sysmon 961

application queues. See application execution 
precedence

applications
CPU usage report 966
disk I/O report 967
I/O usage report 966
idle time report 966
network I/O report 967
priority changes 967
TDS messages and 1038
yields (CPU) 966

architecture
multithreaded 23

artificial columns 187
asc index option 495–496
ascending scan showplan message 833
ascending sort 495, 498
ascinserts (dbcc tune parameter) 992
assigning execution precedence 51
associating queries with plans

plan groups and 691
session-level 722

association key
defined 692
plan association and 692
sp_cmp_all_qplans and 743
sp_copy_qplan and 740

asynchronous I/O
buffer wash behavior and 1021
sp_sysmon report on 1031
statistics io report on 797

asynchronous prefetch 651, 662



Index

Performance & Tuning Guide 1039

dbcc and 655, 666
denied due to limits 1014
during recovery 654
fragmentation and 659
hash-based scans and 664
large I/O and 662
look-ahead set 652
maintenance for 666
MRU replacement strategy and 664
nonclustered indexes and 655
page chain fragmentation and 659
page chain kinks and 659, 666
parallel query processing and 664
partition-based scans and 665
performance monitoring 667
pool limits and 658
recovery and 665
sequential scans and 654
sp_sysmon report on 1033
tuning goals 661

@@pack_received global variable 18
@@pack_sent global variable 18
@@packet_errors global variable 18
attributes

execution classes 53
auditing

disk contention and 75
performance effects 362
queue, size of 363

auxiliary scan descriptors, showplan messages for 
826

average disk I/Os returned, sp_sysmon report on 
946

average lock contention, sp_sysmon report on 1002

B
Backup Server 398
backups

network activity from 20
planning 5

backward scans
sp_sysmon report on 994

base priority 53
batch processing

bulk copy and 401
I/O pacing and 955
managing denormalized data with 133
performance monitoring and 932
temporary tables and 421
transactions and lock contention 284

bcp (bulk copy utility) 400
heap tables and 153
large I/O for 345
parallel 94
partitioned tables and 94
reclaiming space with 165
temporary tables 413

best access block 921
between keyword

optimization 430
between operator selectivity

dbcc traceon(302) output 916
statistics 442

binary expressions xli
binary mode

optdiag utility program 890–892
binding

caches 338, 358
objects to data caches 158
tempdb 339, 418
transaction logs 339

blocking 296
blocking network checks, sp_sysmon report on 944
blocking process

avoiding during mass operations 285
sp_lock report on 269
sp_who report on 267

B-trees, index
nonclustered indexes 201

buffer pools
specifying I/O size 767

buffers
allocation and caching 161
chain of 158
grabbed statistics 1012
procedure (“proc”) 330
sorting 637–638
statistics 1012
unavailable 464
wash behavior 1021



Index

1040 Adaptive Server Enterprise

bulk copying. See bcp (bulk copy utility)
business models and logical database design 117

C
cache hit ratio

cache replacement policy and 349
data cache 336
partitioning and 579
procedure cache 331
sp_sysmon report on 1012, 1018

cache replacement policy 347
defined 347
indexes 348
lookup tables 348
transaction logs 348

cache replacement strategy 159–163, 347
cache strategy property

specifying 758, 761
cache, procedure

cache hit ratio 331
errors 331
query plans in 330
size report 330
sizing 331
sp_sysmon report on 1024
task switching and 954

cached (LRU) buffers 1012
caches, data 332–360

aging in 158
binding objects to 158
cache hit ratio 336
clearing pages from 803
data modification and 161, 335
deletes on heaps and 162
guidelines for named 348
hits found in wash 1018
hot spots bound to 338
I/O configuration 157, 345
inserts to heaps and 161
joins and 160
large I/O and 344
misses 1019
MRU replacement strategy 160
named 337–358

page aging in 333
parallel sorting and 636
pools in 157, 345
sorts and 637–638
spinlocks on 339
strategies chosen by optimizer 346, 1022
subquery results 552
table scans and 479
task switching and 954
tempdb bound to own 339, 418
total searches 1019
transaction log bound to own 339
updates to heaps and 162
utilization 1017
wash marker 158

canceling
queries with adjusted plans 619

capturing plans
session-level 722

chain of buffers (data cache) 158
chains of pages

overflow pages and 198
placement 74
unpartitioning 91

changing
configuration parameters 932

character expressions xli
cheap direct updates 510
checkpoint process 333, 1027

average time 1028
CPU usage 942
housekeeper task and 35
I/O batch size 955
sp_sysmon and 1026

client
connections 23
packet size specification 17
task 24
TDS messages 1038

client/server architecture 15
close command

memory and 674
close on endtran option, set 686
cluster ratio

data pages 876
data pages, optdiag output 876



Index

Performance & Tuning Guide 1041

data rows 877
dbcc traceon(302) report on 910
index pages 876
reservepagegap and 313, 318
statistics 873, 875

clustered indexes 190
asynchronous prefetch and scans 654
changing locking modes and 255
computing number of data pages 382
computing number of pages 376
computing size of rows 377
create index requirements 633
delete operations 199
estimating size of 375, 381
exp_row_size and row forwarding 307–313
fillfactor effect on 386
guidelines for choosing 176
insert operations and 194
order of key values 193
overflow pages and 198
overhead 164
page reads 194
page splits and 989
partitioned tables and 91
performance and 164
point query cost 485
prefetch and 463
range query cost 486
reclaiming space with 165
reducing forwarded rows 307–313
scans and asynchronous prefetch 654
segments and 82
select operations and 193
showplan messages about 831
size of 369, 378
space requirements 643
structure of 192

clustered table, sp_sysmon report on 975
collapsing tables 128
column-level statistics

generating the update statistics 786
truncate table and 784
update statistics and 784

columns
artificial 187
datatype sizes and 376, 382

derived 128
fixed- and variable-length 376
fixed-length 382
redundant in database design 127
splitting tables 131
unindexed 137
values in, and normalization 120
variable-length 382

command syntax 793
commands for configuration 662
committed transactions, sp_sysmon report on 972
comparing abstract plans 741
compiled objects 330

data cache size and 332
composite indexes 180

advantages of 182
density statistics 878
performance 882
selectivity statistics 878
statistics 882
update index statistics and 787

compute clause
showplan messages for 818

concurrency
deadlocks and 272
locking and 218, 272
SMP environment 41

concurrency optimization
for small tables 471

concurrency optimization threshold
deadlocks and 472

configuration (Server)
lock limit 286
memory 326

configuration (server)
housekeeper task 35
I/O 344
named data caches 337
network packet size 15
number of rows per page 323
performance monitoring and 933
sp_sysmon and 932

configuration server)
parallel query processing 567

connections
client 23



Index

1042 Adaptive Server Enterprise

cursors and 686
opened (sp_sysmon report on) 953
packet size 15

consistency
data and performance 133
transactions and 216

constants xli
constraints

primary key 174
unique 174

consumer process 629, 645
contention 933

address locks 956
avoiding with clustered indexes 189
data cache 350
data cache spinlock 1017
device semaphore 1034
disk devices 959
disk I/O 77, 361, 1029
disk structures 959
disk writes 954
hash spinlock 997
I/O device 77, 959
last page of heap tables 1004
lock 955, 1002, 1005
log semaphore requests 958, 982
logical devices and 74
max_rows_per_page and 322
partitions to avoid 83
reducing 282
SMP servers and 41
spinlock 350, 1017
system tables in tempdb 418
transaction log writes 166
underlying problems 75
yields and 954

contention, lock
locking scheme and 297
sp_object_stats report on 279

context column of sp_lock output 269
context switches 953
control pages for partitioned tables

updating statistics on 99
controller, device 77
conventions

used in manuals xxxix

conversion
datatypes 452
in lists to or clauses 501
subqueries to equijoins 549
ticks to milliseconds, formula for 795

coordinating process 557, 630
copying

abstract plans 740
plan groups 742
plans 740, 742

correlated subqueries
showplan messages for 859

correlation names
for tables 775
for views 780

cost
base cost 911
index scans output in dbcc traceon(302) 919
parallel clustered index partition scan 592
parallel hash-based table scan 594
parallel nonclustered index hash-based scan 595
parallel partition scan 590
point query 485
range query using clustered index 486
range query using nonclustered index 488, 489
sort operations 493
table scan 911

count col_name aggregate function
optimization of 507

count(*) aggregate function
optimization of 507

counters, internal 932
covered queries

index covering 136
specifying cache strategy for 465

covering nonclustered indexes
asynchronous prefetch and 654
configuring I/O size for 355
cost 489
nonequality operators and 437
range query cost 488
rebuilding 395
showplan message for 836

CPU
affinity 40
checkpoint process and usage 942



Index

Performance & Tuning Guide 1043

guidelines for parallel queries 577
processes and 939
saturation 576, 578
server use while idle 941
sp_sysmon report and 937
ticks 795
time 795
utilization 575, 580
yielding and overhead 944
yields by engine 943

cpu grace time configuration parameter
CPU yields and 31

CPU usage
applications, sp_sysmon report on 966
CPU-intensive queries 575
deadlocks and 273
housekeeper task and 35
logins, sp_sysmon report on 966
lowering 941
monitoring 37
sp_monitor system procedure 37
sp_sysmon report on 940

CPU usages
parallel queries and 580

cpuaffinity (dbcc tune parameter) 40
create clustered index command

sorted_data and fillfactor interaction 307
sorted_data and reservepagegap interaction 

319–321
statistics and 901

create database command
parallel I/O 74

create index command
distributing data with 91
fillfactor and 301–306
locks acquired by 241, 392
logging considerations of 644
number of sort buffers parameter and 627, 636–

641
parallel configuration and 92
parallel sort and 92
reservepagegap option 316
segments and 393
sorted_data option 393
space requirements 643
with consumers clause and 634

create nonclustered index command
statistics and 901

create table command
exp_row_size option 308
locking scheme specification 252
reservepagegap option 315
space management properties 308
statistics and 901

creating
abstract plan groups 734

cursor rows option, set 685
cursors

close on endtran option 263
execute 674
Halloween problem 676
indexes and 675
isolation levels and 263, 682
lock duration 240
lock type 240, 242
locking and 262–264, 672
modes 675
multiple 686
or strategy optimization and 505
read-only 675
shared keyword in 263
statistics io output for 798
stored procedures and 674
updatable 675

D
data

consistency 133, 216
little-used 130
max_rows_per_page and storage 322
storage 77, 135–166
uniqueness 189

data caches 332–360
aging in 158
binding objects to 158
cache hit ratio 336
contention 1017
data modification and 161, 335
deletes on heaps and 162
fetch-and-discard strategy 160



Index

1044 Adaptive Server Enterprise

flushing during table scans 479
guidelines for named 348
hot spots bound to 338
inserts to heaps and 161
joins and 160
large I/O and 344
management, sp_sysmon report on 1008
named 337–358
page aging in 333
parallel sorting and 638, 642
sizing 340–356
sort buffers and 638
spinlocks on 339, 1017
strategies chosen by optimizer 346
subquery cache 552
tempdb bound to own 339, 417, 418
transaction log bound to own 339
updates to heaps and 162
wash marker 158

data integrity
application logic for 132
denormalization effect on 125
managing 131

data modification
data caches and 161, 335
heap tables and 153
log space and 399
nonclustered indexes and 179
number of indexes and 169
recovery interval and 360
showplan messages 811
transaction log and 166
update modes 508, 811

data page cluster ratio
defined 876
optdiag output 876
statistics 873

data pages 137–165
clustered indexes and 192
computing number of 376, 382
count of 871
fillfactor effect on 386
full, and insert operations 195
limiting number of rows on 322
linking 151
number of empty 872

partially full 164
prefetching 463
text and image 139

data row cluster ratio
defined 876
statistics 876

data rows
size, optdiag output 872

database design 117–133
collapsing tables 128
column redundancy 127
indexing based on 186
logical keys and index keys 175
normalization 119
ULC flushes and 980

database devices 76
parallel queries and 77, 577
sybsecurity 78
tempdb 78

database objects
binding to caches 158
placement 73–115
placement on segments 73
storage 135–166

databases
See also database design
creation speed 396
devices and 77
lock promotion thresholds for 286
placement 73

data-only locking
OR strategy and locking 244

data-only locking (DOL) tables
maximum row size 253

datapages locking
changing to with alter table 253
described 220
specifying with create table 252
specifying with select into 256
specifying with sp_configure 251

datarows locking
changing to with alter table 253
described 221
specifying with create table 252
specifying with select into 256
specifying with sp_configure 251



Index

Performance & Tuning Guide 1045

datatypes
choosing 178, 187
matching in queries 445
mismatched 908
numeric compared to character 187

dbcc (database c+onsistency checker)
configuring asynchronous prefetch for 666

dbcc (database consistency checker)
asynchronous prefetch and 655
large I/O for 345
trace flags 905

dbcc (engine) command 39
dbcc traceon(302) 905–929

simulated statistics and 899
dbcc traceon(310) 906
dbcc traceon(317) 923
dbcc traceon(3604) 906
dbcc tune

ascinserts 992
cleanup 403
cpuaffinity 40
des _bind 404
des_greedyalloc 957
deviochar 1028
doneinproc 1038
log_prealloc 983
maxwritedes 955

deadlock checking period configuration parameter 
277

deadlocks 272–278, 280
application-generated 272
avoiding 276
concurrency optimization threshold settings 472
defined 272
delaying checking 277
descending scans and 500
detection 273, 280, 1006
diagnosing 296
error messages 273
percentage 1002
performance and 281
read committed with lock effects on 241
searches 1006
sp_object_stats report on 279
sp_sysmon report on 1002
statistics 1005

table scans and 472
worker process example 274

deallocate cursor command
memory and 674

debugging aids
dbcc traceon(302) 905
set forceplan on 457

decision support system (DSS) applications
execution preference 70
named data caches for 339
network packet size for 16
parallel queries and 557, 580

declare cursor command
memory and 674

default exp_row_size percent configuration parameter 
310

default fill factor percentage configuration parameter 
304

default settings
audit queue size 363
auditing 362
index statistics 443
max_rows_per_page 323
network packet size 15
number of tables optimized 459

deferred index updates 512
deferred updates 511

showplan messages for 812
degree of parallelism 566, 600–609

definition of 600
joins and 604, 606
optimization of 601
parallel sorting and 634
query-level 570
runtime adjustment of 609, 617–620
server-level 567
session-level 569
specifying 764
upper limit to 601

delete command
transaction isolation levels and 236

delete operations
clustered indexes 199
heap tables 154
index maintenance and 988
joins and update mode 511



Index

1046 Adaptive Server Enterprise

nonclustered indexes 206
object size and 367
update mode in joins 511

delete shared statistics command 899
delete statistic 791
delete statistics command

managing statistics and 791
system tables and 901

deleted rows
reported by optdiag 872

deleting
plans 740, 745

demand locks 225
sp_lock report on 269

denormalization 124
application design and 132
batch reconciliation and 133
derived columns 128
disadvantages of 126
duplicating tables and 129
management after 131
performance benefits of 126
processing costs and 125
redundant columns 127
techniques for 127
temporary tables and 415

dense frequency counts 886
density

index, and joins 522, 543
range cell 440
total 440

density statistics
joins and 881
range cell density 880, 881
total density 880, 881

derived columns 128
derived table

defined 750
desc index option 495–496
descending order (desc keyword) 495, 498

covered queries and 499
descending scan showplan message 833
descending scans

deadlocks and 500
detecting deadlocks 280
devices

activity detail 1033
adding 933
adding for partitioned tables 107, 112
object placement on 73
partitioned tables and 112
RAID 87, 577
semaphores 1034
throughput, measuring 87
using separate 42

deviochar (dbcc tune parameter) 1028
direct updates 508

cheap 510
expensive 510
in-place 509
joins and 511

dirty pages
checkpoint process and 334
wash area and 333

dirty reads 217
modify conflicts and 959
preventing 234
requests 1023
restarts 1016
sp_sysmon report on 1016
transaction isolation levels and 232

discarded (MRU) buffers, sp_sysmon report on 1012
disjoint qualifications

dbcc traceon(302) message 917
disk devices

adding 933
average I/Os 946
contention 959
I/O checks report (sp_sysmon) 945
I/O management report (sp_sysmon) 1029
I/O speed 577
I/O structures 1031
parallel queries and 572, 576
parallel sorting and 642, 643
performance and 73–115
transaction log and performance 958
write operations 954

disk I/O
application statistics 967
performing 34
sp_sysmon report on 1029

disk i/o structures configuration parameter 1031



Index

Performance & Tuning Guide 1047

asynchronous prefetch and 658
disk mirroring

device placement 79
performance and 74

distinct keyword
parallel optimization of 625
showplan messages for 822, 863

distribution map 629, 646
drop index command

statistics and 791, 901
drop table command

statistics and 901
dropping

abstract plan groups 735
indexes specified with index 461
plans 740, 745

DSS applications
 See  Decision Support Systems

dump database command
parallel sorting and 644

duplicate rows
removing from worktables 504

duplication
tables 129
update performance effect of 512

duration of latches 230
duration of locks

read committed with lock and 241
read-only cursors 242
transaction isolation level and 238

dynamic index
or query optimization 502

dynamic indexes 505
showplan message for 839

E
EC

attributes 53
empty parentheses

i_scan operator and 756
in union queries 778
subqueries and 773
worktable scans and 780

end transaction, ULC flushes and 980

engine affinity, task 53, 55
example 56

engine resources
results analysis and tuning 50

engine resources, distribution 43
engines 24

busy 941
“config limit” 1031
connections and 953
CPU affinity 40
CPU report and 942
defined 24
functions and scheduling 32
monitoring performance 933
network 33
number of 575
outstanding I/O 1031
scheduling 32
taking offline 39
utilization 941

environment analysis 49
I/O-intensive and CPU-intensive execution objects 

48
intrusive and unintrusive 48

environment analysis and planning 47
equality selectivity

dbcc traceon(302) output 443, 915
statistics 442

equi-height histograms 884
equijoins

subqueries converted to 549
equivalents in search arguments 430
error logs

procedure cache size in 330
error messages

deadlocks 273
procedure cache 331
process_limit_action 619
runtime adjustments 619

errors
packet 18
procedure cache 330

escalation, lock 291
estimated cost

fast and slow query processing 427
I/O, reported by showplan 845



Index

1048 Adaptive Server Enterprise

indexes 426
joins 443
materialization 550
or clause 503
reformatting 543
subquery optimization 553

exceed logical page size 147
exclusive locks

intent deadlocks 1005
page 223
page deadlocks 1005
sp_lock report on 269
table 224
table deadlocks 1005

execute cursors
memory use of 674

execution 34
attributes 51
mixed workload precedence 70
precedence and users 71
preventing with set noexec on 805
ranking applications for 51
stored procedure precedence 71
system procedures for 55
time statistics from set statistics time on 795

execution class 51
attributes 53
predefined 52
user-defined 52

execution objects 51
behavior 48
performance hierarchy 51
scope 61

execution precedence
among applications 56
assigning 51
scheduling and 59

existence joins
showplan messages for 864

exists check mode 726
exists keyword

parallel optimization of 615
exists keyword

showplan messages for 864
subquery optimization and 544

exp_row_size option 307–313

create table 308
default value 308
server-wide default 310
setting before alter table...lock 408
sp_chgattribute 309
storage required by 387

expected row size. See exp_row_size option
expensive direct updates 510, 511
exporting plan groups 746
expression subqueries

optimization of 549
showplan messages for 862

expressions
optimization of queries using 915

extended stored procedures
sp_sysmon report on 967

extents 872, 875
allocation and reservepagegap 313
partitioned tables and extent stealing 98
space allocation and 140

F
FALSE, return value of 545
fam dur locks 269
family of worker processes 557
fetch-and-discard cache strategy 160
fetching cursors

locking and 264
memory and 674

fillfactor
advantages of 302
disadvantages of 302
index creation and 178, 301
index page size and 386
locking and 322
max_rows_per_page compared to 322
page splits and 302

fillfactor option
See also fillfactor values
create index 301
sorted_data option and 307

fillfactor values
See also fillfactor option
alter table...lock 304



Index

Performance & Tuning Guide 1049

applied to data pages 305
applied to index pages 305
clustered index creation and 304
nonclustered index rebuilds 304
reorg rebuild 304
table-level 304

filter selectivity 919
finding abstract plans 738
first normal form 120

See also normalization
first page

allocation page 142
text pointer 139

fixed-length columns
calculating space for 372
data row size of 376, 382
for index keys 179
index row size and 377
indexes and update modes 518
overhead 179

flattened subqueries 544, 774
showplan messages for 853

floating-point data xli
for load option

performance and 396
for update option, declare cursor

optimizing and 685
forceplan

abstract plans and 753
forceplan option, set 457

alternatives 458
risks of 458

foreign keys
denormalization and 126

formulas
cache hit ratio 337
table or index sizes 372–389

forward scans
sp_sysmon report on 994

forwarded rows
optdiag output 872
query on systabstats 311
reserve page gap and 313

fragmentation
optdiag cluster ratio output 873, 876

fragmentation, data

effects on asynchronous prefetch 659
large I/O and 1013
page chain 659

fragmentation, reserve page gap and 313
free checkpoints 1028
free writes 35
frequency cell

defined 886
weights and query optimization 915

full ULC, log flushes and 980
functions

optimization of queries using 915

G
g_join operator 751–753
global allocation map (GAM) pages 141
grabbed dirty, sp_sysmon report on 1020
group by clause

showplan messages for 815, 817
group commit sleeps, sp_sysmon report on 958

H
Halloween problem

cursors and 676
hardware

network 19
parallel query processing guidelines 577
ports 22
terminology 76

hash spinlock
contention 997

hash-based scans
asynchronous prefetch and 664
heap tables and 599
I/O and 588
indexing and 599
joins and 77
limiting with set scan_parallel_degree 570
nonclustered indexes and 594–595, 599
table scans 593–594
worker processes and 588

header information



Index

1050 Adaptive Server Enterprise

data pages 138
packet 15
“proc headers” 330

heading, sp_sysmon report 939
heap tables 151–166

bcp (bulk copy utility) and 402
delete operations 154
deletes and pages in cache 162
guidelines for using 164
I/O and 157
I/O inefficiency and 164
insert operations on 153
insert statistics 974
inserts and pages in cache 161
lock contention 1004
locking 153
maintaining 164
performance limits 153
select operations on 152, 160
updates and pages in cache 162
updates on 155

high priority users 71
hints operator 753–754
histograms 878

dense frequency counts in 886
duplicated values 886
equi-height 884
null values and 885
optdiag output 884–889
sample output 883
sparse frequency counts in 887
steps, number of 787

historical data 130
holdlock keyword

locking 260
shared keyword and 264

horizontal table splitting 130
hot spots 71

avoiding 284
binding caches to 338

housekeeper free write percent configuration parameter 
35, 1027

housekeeper task 35–36
batch write limit 1028
buffer washing 969
checkpoints and 1027

garbage collection 969
reclaiming space 969
recovery time and 362
sp_sysmon and 1026
sp_sysmon report on 968

I
I/O

See also large I/O
access problems and 75
asynchronous prefetch 651, ??–668
balancing load with segments 82
batch limit 955
bcp (bulk copy utility) and 403
buffer pools and 338
checking 945
completed 1032
CPU and 37, 941
create database and 397
default caches and 158
delays 1031
device contention and 959
devices and 74
direct updates and 509
disk 34
efficiency on heap tables 164
expected row size and 313
heap tables and 157
increasing size of 157
limits 1030
limits, effect on asynchronous prefetch 1014
maximum outstanding 1030
memory and 325
named caches and 338
network 33
optimizer estimates of 908
pacing 955
parallel for create database 74
performance and 76
prefetch keyword 462
range queries and 462
recovery interval and 399
requested 1032
saturation 576



Index

Performance & Tuning Guide 1051

saving with reformatting 542
select operations on heap tables and 160
server-wide and database 78, 1029
showplan messages for 844
sp_spaceused and 369
specifying size in queries 462
spreading between caches 418
statistics information 795
structures 1031
total 1033
total estimated cost showplan message 845
transaction log and 166
update operations and 510

i/o polling process count configuration parameter
network checks and 945

I/O size
specifying 767

i_scan operator 754
identifiers

list of 749
IDENTITY columns

cursors and 676
indexing and performance 176

idle CPU, sp_sysmon report on 943
image datatype

page size for storage 140
storage on separate device 82, 139

importing abstract plan groups 747
in keyword

matching index scans and 838
optimization of 501
subquery optimization and 544

in operator (abstract plans) 756–758
in-between selectivity 442

changing with optdiag 892
dbcc traceon(302) output 916
query optimization and 891

index covering
definition 136
showplan messages for 836
sort operations and 499

index descriptors, sp_sysmon report on 997
index height 921

optdiag report 872
statistics 875

index keys

asc option for ordering 495–496
desc option for ordering 495–496
showplan output 838

index keys, logical keys and 175
index pages

cluster ratio 876
fillfactor effect on 303, 386
limiting number of rows on 322
locks on 219
page splits for 197
storage on 190

index row size
statistics 875

index scans
i_scan operator 754

indexes 189–213
access through 136, 189
add levels statistics 994
avoiding sorts with 493
bulk copy and 400
cache replacement policy for 348
choosing 136
computing number of pages 377
cost of access 919
creating 392, 625
cursors using 675
dbcc traceon(302) report on 919
denormalization and 126
design considerations 167
dropping infrequently used 186
dynamic 505
fillfactor and 301
guidelines for 178
height statistics 872
intermediate level 192
large I/O for 462
leaf level 191
leaf pages 202
locking with 223
maintenance statistics 986
management 985
max_rows_per_page and 323
number allowed 174
optdiag output 874
parallel creation of 625
performance and 189–213



Index

1052 Adaptive Server Enterprise

rebuilding 395
recovery and creation 393
root level 191
selectivity 169
size of 366
size of entries and performance 170
SMP environment and multiple 41
sort order changes 395
sp_spaceused size report 369
specifying for queries 460
temporary tables and 413, 421
types of 190
update index statistics on 787
update modes and 517
update operations and 509, 510
update statistics on 787
usefulness of 151

infinity key locks 229
information (Server)

dbcc traceon(302) messages ??–929
information (server)

dbcc traceon(302) messages 905–??
I/O statistics 795

information (sp_sysmon)
CPU usage 37

initializing
text or image pages 388

inner tables of joins 528
in-place updates 509
insert command

contention and 284
transaction isolation levels and 236

insert operations
clustered indexes 194
clustered table statistics 975
heap table statistics 974
heap tables and 153
index maintenance and 987
logging and 419
nonclustered indexes 205
page split exceptions and 196
partitions and 83
performance of 74
rebuilding indexes after many 395
total row statistics 975

integer data

in SQL xli
optimizing queries on 435, 908

intent table locks 224
sp_lock report on 269

intermediate levels of indexes 192
isolation levels 231–238, 257–262

cursors 263, 682
default 257
dirty reads 234
lock duration and 238, 239, 240
nonrepeatable reads 235
phantoms 236
serializable reads and locks 229
transactions 231

J
join clauses

dbcc traceon(302) output 913
join operator

g_join 751
m_g_join 759
merge join 759
nested-loop join 763
nl_g_join 763

join order
dbcc traceon(317) output 923
outer join restrictions 526

join transitive closure
defined 432
enabling 432

joins
choosing indexes for 177
data cache and 160
datatype compatibility in 179, 452
denormalization and 124
derived columns instead of 128
hash-based scan and 77
index density 522, 543
indexing by optimizer 443
many tables in 523, 524
nested-loop 526
normalization and 120
number of tables considered by optimizer 459
optimizing 521, 907



Index

Performance & Tuning Guide 1053

or clause optimization 554
parallel optimization of 604–607, 612–614
process of 443
scan counts for 801
table order in 457
table order in parallel 604–607, 612–614
temporary tables for 415
union operator optimization 554
update mode and 511
updates using 509, 510, 511

jtc option, set 468

K
kernel

engine busy utilization 941
utilization 940

key values
index storage 189
order for clustered indexes 193
overflow pages and 198

keys, index
choosing columns for 176
clustered and nonclustered indexes and 190
composite 180
logical keys and 175
monotonically increasing 197
showplan messages for 836
size and performance 178
size of 174
unique 178
update operations on 509

keywords
list of 749

L
large I/O

asynchronous prefetch and 662
denied 1013, 1022
effectiveness 1013
fragmentation and 1013
index leaf pages 462
named data caches and 344

pages used 1023
performed 1013, 1022
pool detail 1023
restrictions 1023
total requests 1013, 1023
usage 1013, 1022

large object (LOB) 82
last log page writes in sp_sysmon report 959
last page locks on heaps in sp_sysmon report 1004
latches 230
leaf levels of indexes 191

average size 875
fillfactor and number of rows 386
queries on 137
row size calculation 379, 383

leaf pages 202
calculating number in index 380, 384
limiting number of rows on 322

levels
indexes 191
locking 285
tuning 3–8

lightweight process 25
like optimization 430
limits

parallel query processing 566, 569
parallel sort 566
worker processes 566, 569

listeners, network 22
load balancing for partitioned tables 97

maintaining 114
local backups 398
local variables

optimization of queries using 915
lock allpages option

alter table command 253
create table command 252
select into command 256

lock datapages option
alter table command 253
create table command 252
select into command 256

lock datarows option
alter table command 253
create table command 252
select into command 256



Index

1054 Adaptive Server Enterprise

lock duration. See Duration of locks
lock hash table

sp_sysmon report on 1003
lock hashtable

lookups 1005
lock hashtable size configuration parameter

sp_sysmon report on 1003
lock promotion thresholds 286–295

database 294
default 294
dropping 294
precedence 294
promotion logic 293
server-wide 293
sp_sysmon report on 1007
table 294

lock scheme configuration parameter 251
lock timeouts

sp_sysmon report on 1008
locking 10–??, 216–287

allpages locking scheme 219
concurrency 218
contention and 955
contention, reducing 282–286
control over 217, 222
create index and 392
cursors and 262
datapages locking scheme 220
datarows locking scheme 221
deadlocks 272–278
entire table 222
for update clause 262
forcing a write 225
heap tables and inserts 153
holdlock keyword 258
index pages 219
indexes used 223
isolation levels and 231–238, 257–262
last page inserts and 176
monitoring contention 298
noholdlock keyword 258
noholdlock keyword 261
overhead 218
page and table, controlling 231, 290
performance 281
read committed clause 259

read uncommitted clause 259, 261
reducing contention 282
serializable clause 259
shared keyword 258, 261
sp_lock report on 268
sp_sysmon report on 1002
tempdb and 418
transactions and 217
worktables and 418

locking commands 251–266
locking configuration 281
locking scheme 295–300

allpages 219
changing with alter table 253–256
clustered indexes and changing 255
create table and 252
datapages 220
datarows 221
lock types and 221
server-wide default 251
specifying with create table 252
specifying with select into 256

locks
address 956
blocking 267
command type and 239, 240
deadlock percentage 1002
demand 225
escalation 291
exclusive page 223
exclusive table 224
fam dur 269
granularity 218
infinity key 229
intent table 224
isolation levels and 239, 240
latches and 230
limits 241
“lock sleep” status 267
or queries and 243
page 222
reporting on 267
shared page 222
shared table 224
size of 218
sp_sysmon report on 1003



Index

Performance & Tuning Guide 1055

table 224
table versus page 290
table versus row 290
table, table scans and 242
total requests 1002
types of 221, 269
update page 223
viewing 268
worker processes and 227

locks, number of
data-only-locking and 287

locktype column of sp_lock output 269
log I/O size

group commit sleeps and 958
matching 345
tuning 342, 959
using large 353

log scan showplan message 843
log semaphore requests 982
logging

bulk copy and 400
minimizing in tempdb 419
parallel sorting and 644

logical database design 117, 133
logical device name 76
logical expressions xli
logical keys, index keys and 175
logical process manager 51
logins 33
look-ahead set 652

dbcc and 655
during recovery 654
nonclustered indexes and 655
sequential scans and 654

lookup tables, cache replacement policy for 348
loops

runnable process search count and 941, 943
showplan messages for nested iterations 827

LRU replacement strategy 158, 159
buffer grab in sp_sysmon report 1019
I/O and 802
showplan messages for 845
specifying 466

lru scan property 758–759

M
m_g_join operator 759–760
maintenance tasks 391–403

forced indexes 461
forceplan checking 457
indexes and 987
performance and 74

managing denormalized data 131
map, object allocation. See object allocation map (OAM) 

pages
matching index scans 209

showplan message 838
materialized subqueries 549, 774

showplan messages for 857
max aggregate function

min used with 507
optimization of 507

max async i/os per engine configuration parameter
asynchronous prefetch and 658
tuning 1031

max async i/os per server configuration parameter
asynchronous prefetch and 658
tuning 1031

max parallel degree configuration parameter 567, 
607, 608

sorts and 632
max scan parallel degree configuration parameter 

567, 602
max_rows_per_page option

fillfactor compared to 322
locking and 322
select into effects 323

maximum outstanding I/Os 1030
maximum ULC size, sp_sysmon report on 981
maxwritedes (dbcc tune parameter) 955
memory

allocated 1025
cursors and 672
I/O and 325
named data caches and 337
network packets and 16
performance and 325–363
released 1025
shared 31
sp_sysmon report on 1025
system procedures used for 998



Index

1056 Adaptive Server Enterprise

merge join
abstract plans for 760

merge runs, parallel sorting 630, 637
reducing 637

merging index results 630
messages

See also errors
dbcc traceon(302) 905–929
deadlock victim 273
dropped index 461
showplan 805–866
turning off TDS 1038

metadata caches
finding usage statistics 997

min aggregate function
max used with 507
optimization of 507

minor columns
update index statistics and 787

mixed workload execution priorities 70
model, SMP process 31
modes of disk mirroring 80
“Modify conflicts” in sp_sysmon report 959
modifying abstract plans 742
monitoring

CPU usage 37
data cache performance 336
index usage 186
lock contention 298
network activity 17
performance 3, 932

monitoring environment 50
MRU replacement strategy 158

asynchronous prefetch and 664
disabling 467
showplan messages for 845
specifying 466

mru scan property 761
multicolumn index. See composite indexes
multidatabase transactions 973, 980
multiple matching index scans 502, 506
multiple network engines 33
multiple network listeners 22
multitasking 27
multithreading 23

N
names

column, in search arguments 436
index clause and 461
index prefetch and 463
index, in showplan messages 832

nested operator 761–763
nested-loop joins 526

specifying 763
nesting

showplan messages for 859
temporary tables and 422

network engines 33
network I/O 33

application statistics 967
network packets

global variables 17
sp_monitor system procedure 17, 37

networks 13
blocking checks 944
cursor activity of 680
delayed I/O 1037
hardware for 19
I/O management 1034
i/o polling process count and 945
multiple listeners 22
packets 960
performance and 13–22
ports 22
reducing traffic on 18, 403, 1038
server based techniques 18
sp_sysmon report on 943
total I/O checks 944

nl_g_join operator 763–764
noholdlock keyword, select 261
nonblocking network checks, sp_sysmon report on 

944
nonclustered indexes 190

asynchronous prefetch and 655
covered queries and sorting 499
create index requirements 633
definition of 201
delete operations 206
estimating size of 379–381
guidelines for 177
hash-based scans 594–595



Index

Performance & Tuning Guide 1057

insert operations 205
maintenance report 986
number allowed 174
point query cost 485
range query cost 488, 489
select operations 204
size of 202, 369, 379, 383
sorting and 500
structure 202

nonleaf rows 380
nonmatching index scans 210–211

nonequality operators and 437
nonrepeatable reads 235
normal forms 10
normalization 119

first normal form 120
joins and 120
second normal form 121
temporary tables and 415
third normal form 122

null columns
optimizing updates on 517
storage of rows 139
storage size 374
variable-length 178

null values
datatypes allowing 178
text and image columns 388

number (quantity of)
bytes per index key 174
checkpoints 1027
clustered indexes 190
cursor rows 685
data pages 871
data rows 872
deleted rows 872
empty data pages 872
engines 575
forwarded rows 872
indexes per table 174
locks in the system 286
locks on a table 291
nonclustered indexes 190
OAM and allocation pages 872
OAM pages 381, 385
packet errors 18

pages 871
pages in an extent 872, 875
procedure (“proc”) buffers 330
processes 26
rows 872
rows (rowtotal), estimated 368
rows on a page 322
tables considered by optimizer 459

number of columns and sizes 145
number of locks configuration parameter

data-only-locked tables and 287
number of sort buffers configuration parameter

parallel sort messages and 645
parallel sorting and 627, 636–641

number of worker processes configuration parameter 
567

numbers
row offset 202
showplan output 806

numeric expressions xli

O
OAM. Seeobject allocation map
object allocation map

costing 480
object Allocation Map (OAM) pages

number reported by optdiag 872
object allocation map (OAM) pages 142

overhead calculation and 378, 383
object allocation mapp (OAM) pages

LRU strategy in data cache 159
object size

viewing with optdiag 367
observing deadlocks 280
offset table

nonclustered index selects and 204
row IDs and 202
size of 139

online backups 399
online transaction processing (OLTP)

execution preference assignments 70
named data caches for 339
network packet size for 16
parallel queries and 587



Index

1058 Adaptive Server Enterprise

open command
memory and 674

operands
list of 749

operating systems
monitoring server CPU usage 941
outstanding I/O limit 1031

operators
nonequality, in search arguments 437
in search arguments 436

optdiag utility command
binary mode 890–892
object sizes and 367
simulate mode 894

optimization
See also parallel query optimization
cursors 674
in keyword and 501
OAM scans 593
order by queries 495
parallel query 585–623
subquery processing order 553

optimizer 425–454, 477–519, 521–554, 585–623
See also parallel query optimization
aggregates and 506, 616
cache strategies and 346
dbcc traceon(302) 905–929
dbcc traceon(310) 923
diagnosing problems of 428, 621
dropping indexes not used by 186
expression subqueries 549
I/O estimates 908
indexes and 167
join order 604–607, 923
nonunique entries and 169
or clauses and 501
overriding 455
parallel queries and 585–623
procedure parameters and 442
quantified predicate subqueries 544
query plan output 905–929
reformatting strategy 542, 841
sources of problems 428
subqueries and 543
temporary tables and 420
understanding 905

updates and 516
viewing with trace flag 302 905

or keyword
estimated cost 503
matching index scans and 838
optimization and 501
optimization of join clauses using 554
processing 502
scan counts and 800
subqueries containing 552

or queries
allpages-locked tables and 243
data-only-locked tables and 244
isolation levels and 244
locking and 243
row requalification and 244

OR strategy 502
cursors and 684
showplan messages for 835, 839
statistics io output for 800

order
composite indexes and 180
data and index storage 190
index key values 193
joins 604–607
presorted data and index creation 393
recovery of databases 399
result sets and performance 164
tables in a join 457, 524
tables in showplan messages 807

order by clause
parallel optimization of 615

order by clause
indexes and 189
optimization of 495
parallel optimization of 625
showplan messages for 822
worktables for 823

outer join
permutations 526

outer joins 528
join order 526

output
showplan 805–866
sp_estspace 170
sp_spaceused 368



Index

Performance & Tuning Guide 1059

overflow pages 198
key values and 198

overhead
calculation (space allocation) 381, 385
clustered indexes and 164
CPU yields and 944
cursors 680
datatypes and 178, 188
deferred updates 512
network packets and 17, 1038
nonclustered indexes 179
object size calculations 372
parallel query 587–588
pool configuration 357
row and page 372
single process 25
sp_sysmon 932
space allocation calculation 378, 383
variable-length and null columns 374
variable-length columns 179

overheads 144

P
@@pack_received global variable 18
@@pack_sent global variable 18
packet size 15
@@packet_errors global variable 18
packets

default 16
number 17
size specification 17

packets, network 15
average size received 1037
average size sent 1038
received 1037
sent 1038
size, configuring 15, 960

page allocation to transaction log 985
page chain kinks

asynchronous prefetch and 659, 666
clustered indexes and 667
defined 659
heap tables and 667
nonclustered indexes and 667

page chains
overflow pages and 198
placement 74
text or image data 388
unpartitioning 91

page lock promotion HWM configuration parameter 
291

page lock promotion LWM configuration parameter 
292

page lock promotion PCT configuration parameter 
292

page locks 221
sp_lock report on 269
table locks versus. 290
types of 222

page requests, sp_sysmon report on 1016
page splits 988

avoiding 989
data pages 195
disk write contention and 955
fillfactor effect on 302
index maintenance and 989
index pages and 197
max_rows_per_page setting and 322
nonclustered indexes, effect on 195
object size and 367
performance impact of 197
reducing 302
retries and 993

page utilization percent configuration parameter
object size estimation and 373

pages
global allocation map (GAM) 141
overflow 198

pages, control
updating statistics on 99

pages, data 137–165
bulk copy and allocations 400
calculating number of 376, 382
cluster ratio 873
fillfactor effect on 386
fillfactor for SMP systems 42
linking 151
number of 871
prefetch and 463
size 137



Index

1060 Adaptive Server Enterprise

splitting 195
pages, index

aging in data cache 333
calculating number of 377
calculating number of non-leaf 384
fillfactor effect on 303, 386
fillfactor for SMP systems 42
leaf level 202
shrinks, sp_sysmon report on 994
storage on 190

pages, OAM (Object Allocation Map)
number of 381

pages, OAM (object allocation map) 142
aging in data cache 333
number of 378, 383, 385

parallel clustered index partition scan 590–592
cost of using 592
definition of 590
requirements for using 592
summary of 599

parallel hash-based table scan 593–594
cost of using 594
definition of 593
requirements for using 594
summary of 599

parallel keyword, select command 620
parallel nonclustered index hash-based scan 594–595

cost of using 595
summary of 599

parallel partition scan 589–590
cost of using 590
definition of 589
example of 610
requirements for using 590
summary of 599

parallel queries
worktables and 615

parallel query optimization 585–623
aggregate queries 616
definition of 586
degree of parallelism 600–609
examples of 609–620
exists clause 615
join order 604–607, 612–614
order by clause 615
overhead 586, 587–588

partitioning considerations 587, 588
requirements for 586
resource limits 623
select into queries 616
serial optimization compared to 586
single-table scans 610–611
speed as goal 586
subqueries 615
system tables and 587
troubleshooting 621
union operator 616

parallel query processing 556–584, 585–623
asynchronous prefetch and 664
configuring for 567
configuring worker processes 569
CPU usage and 575, 577, 580
demand locks and 227
disk devices and 576
execution phases 559
hardware guidelines 577
I/O and 576
joins and 564
merge types 560
object placement and 74
performance of 75
query types and 556
resources 575
worker process limits 567

parallel scan property 764–765
parallel sorting 625–650

clustered index requirements 633
commands affected by 625
conditions for performing 626
configuring worker processes 569
coordinating process and 630
degree of parallelism of 634, 645
distribution map 629, 646
dynamic range partitioning for 629
examples of 646–648
logging of 644
merge runs 630
merging results 630
nonclustered index requirements 633
number of sort buffers parameter and 627
observation of 644–648
overview of 627



Index

Performance & Tuning Guide 1061

producer process and 629
range sorting and 630
recovery and 644
resources required for 626, 630
sampling data for 629, 646
select into/bulk copy/pllsort option and 626
sort buffers and 637–638, 645
sort_resources option 645
sub-indexes and 630
target segment 632
tempdb and 643
tuning tools 644
with consumers clause and 634
worktables and 634, 635

parameters, procedure
optimization and 442
tuning with 907

parse and compile time 795
partial plans

hints operator and 753
specifying with create plan 691

partition clause, alter table command 90
partition-based scans 589–590, 590–592, 599

asynchronous prefetch and 665
partitioned tables 83

bcp (bulk copy utility) and 94, 402
changing the number of partitions 91
command summary 90
configuration parameters for 86
configuration parameters for indexing 92
create index and 91, 92, 633, 644
creating new 101
data distribution in 95
devices and 97, 107, 112
distributing data across 91, 103
extent stealing and 98
information on 95
load balancing and 97, 98
loading with bcp 94
maintaining 99, 114
moving with on segmentname 102
parallel optimization and 588, 600
read-mostly 88
read-only 88
segment distribution of 86
size of 95, 99

skew in data distribution 590
sorted data option and 102
space planning for 87
statistics 99
statistics updates 99
unpartitioning 91
updates and 89
updating statistics 99, 100
worktables 598

partitioning tables 90
partitions

cache hit ratio and 579
guidelines for configuring 579
parallel optimization and 587
RAID devices and 577
ratio of sizes 95
size of 95, 99

performance 1
analysis 8
backups and 399
bcp (bulk copy utility) and 401
cache hit ratio 336
clustered indexes and 164, 299
costing queries for data-only-locked tables 480
data-only-locked tables and 299
designing 2
diagnosing slow queries 621
indexes and 167
lock contention and 955
locking and 281
monitoring 936
networks 13
number of indexes and 169
number of tables considered by optimizer 459
optdiag and altering statistics 889
order by and 495–496
problems 13
runtime adjustments and 618
speed and 933
techniques 14
tempdb and 411–422

performing benchmark tests 49
performing disk I/O 34
phantoms 229

serializable reads and 229
phantoms in transactions 236



Index

1062 Adaptive Server Enterprise

physical device name 76
plan dump option, set 721
plan groups

adding 734
copying 742
copying to a table 746
creating 734
dropping 735
dropping all plans in 745
exporting 746
information about 735
overview of use 691
plan association and 691
plan capture and 691
reports 735

plan load option, set 723
plan operator 765–767
plan replace option, set 723
plans

changing 742
comparing 741
copying 740, 742
deleting 745
dropping 740, 745
finding 738
modifying 742
searching for 738

point query 136
pointers

index 190
last page, for heap tables 153
page chain 151
text and image page 139

pool size
specifying 767

pools, data cache
configuring for operations on heap tables 157
large I/Os and 344
overhead 357
sp_sysmon report on size 1020

pools, worker process 557
size 571

ports, multiple 22
positioning showplan messages 834
precedence

lock promotion thresholds 294

rule (execution hierarchy) 61
precedence rule, execution hierarchy 62
precision, datatype

size and 374
predefined execution class 52
prefetch

asynchronous 651–??
data pages 463
disabling 465
enabling 465
queries 462
sequential 157
sp_cachestrategy 467

prefetch keyword
I/O size and 462

prefetch scan property 767–768
prefix subset

defined 439
density values for 878
examples of 439
order by and 499
statistics for 878

primary key constraint
index created by 174

primary keys
normalization and 121
splitting tables and 130

priority 53
application 51
assigning 52
changes, sp_sysmon report on 964, 967
precedence rule 62
run queues 59
task 51

“proc headers” 330
procedure (“proc”) buffers 330
procedure cache

cache hit ratio 331
errors 331
management with sp_sysmon 1024
query plans in 330
size report 330
sizing 331

procedure cache sizing configuration parameter 329
process model 31
processes (server tasks) 27



Index

Performance & Tuning Guide 1063

CPUs and 939
identifier (PID) 26
lightweight 25
number of 26
overhead 25
run queue 27

processing power 575
producer process 629, 645
profile, transaction 971
promotion, lock 291
prop operator 768–769
ptn_data_pgs system function 99

Q
quantified predicate subqueries

aggregates in 550
optimization of 544
showplan messages for 859

queries
execution settings 805
parallel 585–623
point 136
range 169
specifying I/O size 462
specifying index for 460
unindexed columns in 137

query analysis 477–519, 521–554
dbcc traceon(302) 905–929
set statistics io 795
showplan and 805–866
sp_cachestrategy 467
tools for 473–476

query optimization 428
OAM scans 480

query plans
optimizer and 425
procedure cache storage 330
runtime adjustment of 617–618
suboptimal 460
unused and procedure cache 330
updatable cursors and 684

query processing
large I/O for 345
parallel 556–584

steps in 426
queues

run 34
scheduling and 28
sleep 28

R
RAID devices

consumers and 634
create index and 634
partitioned tables and 87, 577

range
partition sorting 630

range cell density 440
query optimization and 915
statistics 880, 881

range queries 169
large I/O for 462

range selectivity 442
changing with optdiag 892
dbcc traceon(302) output 916
query optimization and 891

range-based scans
I/O and 588
worker processes and 588

read committed with lock configuration parameter
deadlocks and 241
lock duration 241

read-only cursors 675
indexes and 675
locking and 680

reads
clustered indexes and 194
disk 1033
disk mirroring and 80
image values 140
named data caches and 359
statistics for 801
text values 140

reclaiming space
housekeeper task 969

recompilation
avoiding runtime adjustments 620
cache binding and 358



Index

1064 Adaptive Server Enterprise

testing optimization and 907
recovery

asynchronous prefetch and 654
configuring asynchronous prefetch for 665
housekeeper task and 35
index creation and 393
log placement and speed 79
parallel sorting and 644
sp_sysmon report on 1026

recovery interval in minutes configuration parameter 
333, 360

I/O and 399
re-creating

indexes 92, 393
referential integrity

references and unique index requirements 178
update operations and 509
updates using 511

reformatting 542
joins and 542
parallel optimization of 626
showplan messages for 841

reformatting strategy
prohibiting with i_scan 756
prohibiting with t_scan 775
specifying in abstract plans 771

relaxed LRU replacement policy
indexes 348
lookup tables 348
transaction logs 348

remote backups 398
reorg command

statistics and 901
replacement policy. See cache replacement policy
replacement strategy. See LRU replacement strategy; MRU 

replacement strategy
replication

network activity from 19
tuning levels and 4
update operations and 509

reports
cache strategy 467
plan groups 735
procedure cache size 330
sp_estspace 370

reserved pages, sp_spaceused report on 370

reservepagegap option 313–319
cluster ratios 313, 318
create index 316
create table 315
extent allocation and 313
forwarded rows and 313
sp_chgattribute 316
space usage and 313
storage required by 387

resource limits 620
showplan messages for 845
sp_sysmon report on violations 967

response time
CPU utilization and 942
definition of 1
other users affecting 20
parallel optimization for 586
sp_sysmon report on 938
table scans and 136

retries, page splits and 993
risks of denormalization 125
root level of indexes 191
rounding

object size calculation and 372
row ID (RID) 202, 988

update operations and 509
updates from clustered split 988
updates, index maintenance and 988

row lock promotion HWM configuration parameter 
291

row lock promotion LWM configuration parameter 
292

row lock promotion PCT configuration parameter 292
row locks

sp_lock report on 269
table locks versus 290

row offset number 202
row-level locking. See Data-only locking
rows per data page 149
rows, data

number of 872
size of 872

rows, index
size of 875
size of leaf 379, 383
size of non-leaf 380



Index

Performance & Tuning Guide 1065

rows, table
splitting 131

run queue 26, 27, 34, 958
runtime adjustment 609, 617–620

avoiding 620
defined 571
effects of 618
recognizing 619

S
sample interval, sp_sysmon 939
sampling for parallel sort 629, 646
SARGs. See search arguments
saturation

CPU 576
I/O 576

scan operator 769–770
scan properties

specifying 768
scan selectivity 919
scan session 290
scanning, in showplan messages 836
scans, number of (statistics io) 799
scans, table

auxiliary scan descriptors 826
avoiding 189
costs of 479
performance issues 136
showplan message for 833

scheduling, Server
engines 32
tasks 28

scope rule 61, 63
search arguments

dbcc traceon(302) list 912
equivalents in 430
examples of 437
indexable 436
indexes and 436
matching datatypes in 445
operators in 436
optimizing 907
parallel query optimization 590
statistics and 438

syntax 436
transitive closure for 431

search conditions
clustered indexes and 176
locking 223

searches skipped, sp_sysmon report on 1006
searching for abstract plans 738
second normal form 121

See also normalization
segments 76

changing table locking schemes 406
clustered indexes on 82
database object placement on 77, 82
free pages in 97
moving tables between 102
nonclustered indexes on 82
parallel sorting and 632
partition distribution over 86
performance of parallel sort 643
target 632, 645
tempdb 416

select * command
logging of 419

select command
optimizing 169
parallel clause 570
specifying index 460

select into command
parallel optimization of

 616
in parallel queries 616

select into command
heap tables and 153
large I/O for 345

select into/bulkcopy/pllsort database option
parallel sorting and 626

select operations
clustered indexes and 193
heaps 152
nonclustered indexes 204

selectivity
changing with optdiag 892
dbcc traceon(302) output 914
default values 916

semaphores 982
disk device contention 1034



Index

1066 Adaptive Server Enterprise

log contention 958
user log cache requests 982

sequential prefetch 157, 344
serial query processing

demand locks and 226
serializable reads

phantoms and 229
server

other tools 18
server config limit, in sp_sysmon report 1031
servers

monitoring performance 932
scheduler 30
uniprocessor and SMP 41

set command
forceplan 457
jtc 468
noexec and statistics io interaction 475
parallel degree 569
plan dump 721
plan exists 726
plan load 723
plan replace 723
query plans 805–866
scan_parallel_degree 570
sort_merge 468
sort_resources 644
statistics io 475, 797
statistics simulate 794
statistics time 794
subquery cache statistics 552
transaction isolation level 257

set forceplan on
abstract plans and 753

set plan dump command 722
set plan exists check 726
set plan load command 722
set plan replace command 723
set theory operations

compared to row-oriented programming 670
shared keyword

cursors and 263, 675
locking and 263

shared locks
cursors and 263
holdlock keyword 260

intent deadlocks 1005
page 222
page deadlocks 1005
read-only cursors 675
sp_lock report on 269
table 224
table deadlocks 1005

showplan messages
descending index scans 838
simulated statistics message 814

showplan option, set 805–866
access methods 825
caching strategies 825
clustered indexes and 831
compared to trace flag 302 905
I/O cost strategies 825
messages 806
query clauses 814
sorting messages 824
subquery messages 851
update modes and 811

simulated statistics
dbcc traceon(302) and 899
dropping 899
set noexec and 899
showplan message for 814

single CPU 26
single-process overhead 25
size

data pages 137
datatypes with precisions 374
formulas for tables or indexes 372–389
I/O 157, 344
I/O, reported by showplan 844
indexes 366
nonclustered and clustered indexes 202
object (sp_spaceused) 368
partitions 95
predicting tables and indexes 375–389
procedure cache 330, 331
sp_spaceused estimation 370
stored procedure 332
tables 366
tempdb database 414
transaction logs 985
triggers 332



Index

Performance & Tuning Guide 1067

views 332
skew in partitioned tables

defined 590
effect on query plans 590
information on 95

sleep queue 28
sleeping CPU 944
sleeping locks 267
slow queries 428
SMP (symmetric multiprocessing) systems

application design in 41
architecture 31
disk management in 42
log semaphore contention 958
named data caches for 340
temporary tables and 42

sort buffers
computing maximum allowed 639
configuring 637–638
guidelines 637
requirements for parallel sorting 627
set sort_resources and 645

sort operations (order by)
See also parallel sorting
covering indexes and 499
improving performance of 392
indexing to avoid 189
nonclustered indexes and 500
performance problems 412
showplan messages for 833
sorting plans 644
without indexes 493

sort order
ascending 495, 498
descending 495, 498
rebuilding indexes after changing 395

sort_merge option, set 468
sort_resources option, set 645–648
sorted data, reindexing 393, 396
sorted_data option

fillfactor and 307
reservepagegap and 319

sorted_data option, create index
partitioned tables and 102
sort suppression and 393

sources of optimization problems 428

sp_add_qpgroup system procedure 734
sp_addengine system procedure 57
sp_addexeclass system procedure 52
sp_bindexeclass system procedure 52
sp_cachestrategy system procedure 467
sp_chgattribute system procedure

concurrency_opt_threshold 471
exp_row_size 309
fillfactor 303–307
reservepagegap 316

sp_cmp_qplans system procedure 741
sp_copy_all_qplans system procedure 742
sp_copy_qplan system procedure 740
sp_drop_all_qplans system procedure 745
sp_drop_qpgroup system procedure 735
sp_drop_qplan system procedure 740
sp_dropglockpromote system procedure 294
sp_droprowlockpromote system procedure 294
sp_estspace system procedure

advantages of 371
disadvantages of 372
planning future growth with 370

sp_export_qpgroup system procedure 746
sp_find_qplan system procedure 738
sp_flushstats system procedure

statistics maintenance and 902
sp_help system procedure

displaying expected row size 310
sp_help_qpgroup system procedure 735
sp_help_qplan system procedure 739
sp_helpartition system procedure 95
sp_helpsegment system procedure

checking data distribution 97
sp_import_qpgroup system procedure 747
sp_lock system procedure 268
sp_logiosize system procedure 353
sp_monitor system procedure 37

network packets 17
sp_sysmon interaction 932

sp_monitorconfig system procedure 997
sp_object_stats system procedure 278–279
sp_set_qplan system procedure 742
sp_setpglockpromote system procedure 293
sp_setrowlockpromote system procedure 293
sp_spaceused system procedure 368

row total estimate reported 368



Index

1068 Adaptive Server Enterprise

sp_sysmon system procedure 931–1038
parallel sorting and 649
sorting and 649
transaction management and 978

sp_who system procedure
blocking process 267

space 144, 145
clustered compared to nonclustered indexes 202
estimating table and index size 375–389
extents 140
for text or image storage 140
reclaiming 165
unused 140
worktable sort requirements 643

space allocation
clustered index creation 174
contiguous 143
deallocation of index pages 201
deletes and 155
extents 140
index page splits 197
monotonically increasing key values and 197
object allocation map (OAM) pages 378, 383
overhead calculation 378, 381, 383, 385
page splits and 195
predicting tables and indexes 375–389
procedure cache 330
sp_spaceused 370
tempdb 417
unused space within 140

space management properties 301–324
object size and 386
reserve page gap 313–319
space usage 408

sparse frequency counts 887
special OR strategy 502, 506

statistics io output for 800
speed (server)

cheap direct updates 510
deferred index deletes 515
deferred updates 511
direct updates 508
expensive direct updates 510
in-place updates 509
memory compared to disk 325
select into 419

slow queries 428
sort operations 392, 630
updates 508

spinlocks
contention 350, 1017
data caches and 339, 1017

splitting
data pages on inserts 195
horizontal 130
procedures for optimization 441, 442
tables 129
vertical 131

SQL standards
concurrency problems 286
cursors and 670

statistics
allocation pages 872
between selectivity 442
cache hits 1012, 1018
cluster ratios 875
column-level 784, 785, 786, 878–888
data page cluster ratio 873, 876
data page count 871
data row cluster ratio 876
data row size 872
deadlocks 1002, 1005
deleted rows 872
deleting table and column with delete statistics 

791
displaying with optdiag 869–888
drop index and 784
empty data page count 872
equality selectivity 442
forwarded rows 872
in between selectivity 880
index 874–??
index add levels 994
index height 872, 875
index maintenance 986
index maintenance and deletes 988
index row size 875
large I/O 1013
locks 999, 1002, 1005
OAM pages 872
page shrinks 994
range cell density 880, 881



Index

Performance & Tuning Guide 1069

range selectivity 880
recovery management 1026
row counts 872
spinlock 1017
subquery cache usage 552
system tables and 867–869
total density 880, 881
transactions 974
truncate table and 784
update time stamp 880

statistics clause, create index command 784
statistics subquerycache option, set 552
steps

deferred updates 511
direct updates 508
key values in distribution table 439
problem analysis 8
query plans 806

storage management
collapsed tables effect on 128
delete operations and 155
I/O contention avoidance 77
page proximity 143
row storage 139
space deallocation and 200

store operator 770–772
materialized subqueries and 774

stored procedures
cursors within 678
hot spots and 71
optimization 442
performance and 74
procedure cache and 330
size estimation 332
sp_sysmon report on 1024, 1025
splitting 441, 442
temporary tables and 422

stress tests, sp_sysmon and 933
striping tempdb 414

sort performance and 643
subprocesses 27

switching context 27
subq operator 772–774
subqueries

any, optimization of 544
attachment 553

exists, optimization of 544
expression, optimization of 549
flattened 774
flattening 544
identifying in plans 772
in, optimization of 544
materialization and 549
materialized 774
nesting and views 758
nesting examples 772
nesting of 761
optimization 543, 615
parallel optimization of 615
quantified predicate, optimization of 544
results caching 552, 615
showplan messages for 851–866

sybsecurity database
audit queue and 362
placement 78

symbols
in SQL statements xl

Symmetric Multi Processing System.  See SMP 32
symptoms of optimization problems 428
sysgams table 141
sysindexes table

data access and 143
text objects listed in 140

sysprocedures table
query plans in 330

sysstatistics table 868
systabstats table 868

query processing and 902
system log record, ULC flushes and (in sp_sysmon 

report) 980
system tables

data access and 143
performance and 74

T
t_scan operator 775
table count option, set 459
table locks 221, 1007

controlling 231
page locks versus 290



Index

1070 Adaptive Server Enterprise

row locks versus 290
sp_lock report on 269
types of 224

table operator 775–777
table scans

asynchronous prefetch and 654
avoiding 189
cache flushing and 479
evaluating costs of 479
forcing 460
locks and 242
OAM scan cost 593
performance issues 136
showplan messages for 831
specifying 775

tables
collapsing 128
denormalizing by splitting 129
designing 119
duplicating 129
estimating size of 372
heap 151–166
locks held on 231, 269
moving with on segmentname 102
normal in tempdb 413
normalization 119
partitioning 83, 90
secondary 187
size of 366
size with a clustered index 375, 381
unpartitioning 91

tabular data stream 15
tabular data stream (TDS) protocol 15

network packets and 960
packets received 1037
packets sent 1038

target segment 632, 645
task level tuning

algorithm 43
tasks

client 24
context switches 953
CPU resources and 575
demand locks and 225
execution 34
queued 28

scheduling 28
sleeping 958

TDS.  See  Tabular Data Stream
tempdb database

data caches 417
logging in 419
named caches and 339
performance and 411–422
placement 78, 416
segments 416
in SMP environment 42
space allocation 417
striping 414

temporary tables
denormalization and 415
indexing 421
nesting procedures and 422
normalization and 415
optimizing 420
performance considerations 74, 412
permanent 413
SMP systems 42

testing
caching and 802
data cache performance 336
“hot spots” 177
index forcing 460
nonclustered indexes 179
performance monitoring and 932
statistics io and 802

text datatype
chain of text pages 388
page size for storage 140
storage on separate device 82, 139
sysindexes table and 140

third normal form. See normalization
thresholds

bulk copy and 401
database dumps and 399

throughput 2
adding engines and 942
CPU utilization and 942
group commit sleeps and 958
log I/O size and 958
measuring for devices 87
monitoring 938



Index

Performance & Tuning Guide 1071

pool turnover and 1020
TDS messages and 1038

time interval
deadlock checking 277
recovery 361
since sp_monitor last run 37
sp_sysmon 934

time slice 53
configuration parameter 30

time slice configuration parameter
CPU yields and 31

timeouts, lock
sp_sysmon report on 1008

tools
packet monitoring with sp_monitor 17

total cache hits in sp_sysmon report 1012
total cache misses in sp_sysmon report on 1012
total cache searches in sp_sysmon report 1012
total density 440

equality search arguments and 881
joins and 881
query optimization and 915
statistics 880, 881

total disk I/O checks in sp_sysmon report 945
total lock requests in sp_sysmon report 1002
total network I/O checks in sp_sysmon report 944
total work compared to response time optimization 

586
trace flag

302 905–929
310 923
317 923
3604 906

transaction isolation level option, set 257
transaction isolation levels

lock duration and 238
or processing and 244

transaction length 42
transaction logs

average writes 985
cache replacement policy for 348
contention 958
I/O batch size 955
last page writes 959
log I/O size and 352
named cache binding 339

page allocations 985
placing on separate segment 78
on same device 79
storage as heap 166
task switching and 958
update operation and 509
writes 984

transactions
close on endtran option 263
committed 972
deadlock resolution 273
default isolation level 257
locking 217
log records 979, 981
logging and 419
management 978
monitoring 938
multidatabase 973, 980
performance and 938
profile (sp_sysmon report) 971
statistics 974

transitive closure
joins 432

transitive closure for SARGs 431
triggers

managing denormalized data with 132
procedure cache and 330
showplan messages for 843
size estimation 332
update mode and 516
update operations and 509

TRUE, return value of 545
truncate table command

column-level statistics and 784
not allowed on partitioned tables 86
statistics and 901

tsequal system function
compared to holdlock 286

tuning
Adaptive Server layer 5
advanced techniques for 455–472, 905–929
application layer 4
asynchronous prefetch 661
database layer 4
definition of 2
devices layer 6



Index

1072 Adaptive Server Enterprise

hardware layer 7
levels 3–8
monitoring performance 932
network layer 6
operating system layer 7
parallel query 578
parallel query processing 575–581
parallel sorts 635–644
range queries 460
recovery interval 361

turnover, pools (sp_sysmon report on) 1019
turnover, total (sp_sysmon report on) 1021
two-phase commit

network activity from 19

U
ULC. See user log cache (ULC)
union operator

parallel optimization of 616
union operator 777–778

cursors and 684
optimization of joins using 554
parallel optimization of 626
subquery cache numbering and 553

uniprocessor system 26
unique constraints

index created by 174
unique indexes 189

optimizing 178
update modes and 517

units, allocation. See allocation units
unknown values

total density and 881
unpartition clause, alter table 91
unpartitioning tables 91
unused space

allocations and 140
update all statistics 785
update all statistics command 783, 787
update command

image data and 388
text data and 388
transaction isolation levels and 236

update cursors 675

update index statistics 785, 787, 789
update locks 223

cursors and 675
sp_lock report on 269

update modes
cheap direct 510
deferred 511
deferred index 512
direct 511
expensive direct 510, 511
indexing and 517
in-place 509
joins and 511
optimizing for 516
triggers and 516

update operations 508
checking types 976
heap tables and 155
hot spots 284
index maintenance and 987
index updates and 179

update page deadlocks, sp_sysmon report on 1005
update partition statistics 790
update partition statistics command 99, 100
update statistics command

column-level 786
column-level statistics 786
large I/O for 345
managing statistics and 784
with consumers clause 790

updating
statistics 782

user connections
application design and 953
network packets and 16
sp_sysmon report on 953

user IDs
changing with sp_import_qpgroup 747

user log cache (ULC)
log records 979, 981
log size and 352
maximum size 981
semaphore requests 982

user log cache size configuration parameter 981
increasing 980

user-defined execution class 52



Index

Performance & Tuning Guide 1073

users
assigning execution priority 71
login information 33

utilization
cache 1017
engines 941
kernel 940

V
values

unknown, optimizing 454
variable-length 147
variable-length columns

index overhead and 188
variables

optimization of queries using 915
optimizer and 442

vertical table splitting 131
view operator 778
views

collapsing tables and 129
correlation names 780
nesting of subqueries 758
size estimation 332
specifying location of tables in 756

W
wait-times 279
wash area 333

configuring 357
parallel sorting and 642

wash marker 158
where clause

creating indexes for 177
optimizing 907
table scans and 151

with consumers clause, create index 634
with statistics clause, create index command 784
work_t operator 779–780
worker processes 24, 557

clustered indexes and 633
configuring 569

consumer process 629
coordinating process 630
deadlock detection and 274
joins and 604
locking and 227
nonclustered indexes and 633
overhead of 587
parallel sort requirements 631
parallel sorting and 634
pool 557
pool size and 571
producer process 629
resource limits with 623
runtime adjustment of 609, 617–620
specifying 764
worktable sorts and 635

worktable 823
worktable scans

empty scan operators 780
worktables

distinct and 822
locking and 418
or clauses and 504
order by and 823
parallel queries and 598, 615
parallel sorting and 634, 637
parallel sorts on 615
partitioning of 598
reads and writes on 802
reformatting and 543
showplan messages for 816
space requirements 643
store operator and 770
tempdb and 414

write operations
contention 954
disk 1033
disk mirroring and 80
free 35
housekeeper process and 36
image values 140
serial mode of disk mirroring 80
statistics for 801
text values 140
transaction log 984



Index

1074 Adaptive Server Enterprise

Y
yields, CPU

cpu grace time configuration parameter 31
sp_sysmon report on 943
time slice configuration parameter 31
yield points 30


	Performance and Tuning Guide
	About This Book
	CHAPTER 1 Overview
	Good performance
	Response time
	Throughput
	Designing for performance

	Tuning performance
	Tuning levels
	Application layer
	Database layer
	Adaptive Server layer
	Devices layer
	Network layer
	Hardware layer
	Operating - system layer


	Identifying system limits
	Setting tuning goals
	Analyzing performance
	Normal Forms
	Locking
	Special Considerations


	CHAPTER 2 Networks and Performance
	Introduction
	Potential performance problems
	Basic questions on network performance
	Techniques summary
	Using sp_sysmon while changing network configuration

	How Adaptive Server uses the network
	Changing network packet sizes
	Large versus default packet sizes for user connections
	Number of packets is important
	Evaluation tools with Adaptive Server
	Evaluation tools outside of Adaptive Server
	Server-based techniques for reducing network traffic

	Impact of other server activities
	Single user versus multiple users

	Improving network performance
	Isolate heavy network users
	Set tcp no delay on TCP networks
	Configure multiple network listeners


	CHAPTER 3 Using Engines and CPUs
	Background concepts
	How Adaptive Server processes client requests
	Client task implementation

	Single-CPU process model
	Scheduling engines to the CPU
	Scheduling tasks to the engine
	Execution task scheduling
	Scheduling client task processing time
	Maintaining CPU availability during idle time


	Adaptive Server SMP process model
	Scheduling engines to CPUs
	Scheduling Adaptive Server tasks to engines
	Multiple network engines
	Task priorities and run queues
	Processing scenario

	Housekeeper task improves CPU utilization
	Side effects of the housekeeper task
	Configuring the housekeeper task
	Changing the percentage by which writes can be increased
	Disabling the housekeeper task
	Allowing the housekeeper task to work continuously


	Measuring CPU usage
	Single-CPU machines
	Using sp_monitor to measure CPU usage
	Using sp_sysmon to measure CPU usage
	Operating - system commands and CPU usage

	Determining when to configure additional engines
	Taking engines offline

	Enabling engine-to-CPU affinity
	Multiprocessor application design guidelines

	CHAPTER 4 Distributing Engine Resources
	Algorithm for successfully distributing engine resources
	Algorithm guidelines
	Environment analysis and planning
	Analyzing
	Example: phase 1 - execution object behavior
	Example: phase 2 - the environment as a whole

	Performing benchmark tests
	Setting goals
	Results analysis and tuning
	Monitoring the environment over time

	Manage preferred access to resources
	Types of execution classes
	Predefined execution classes
	User-Defined execution classes

	Execution class attributes
	Base priority
	Time slice
	Task-to-engine affinity

	Setting execution class attributes
	Assigning execution classes
	Engine groups and establishing task-to-engine affinity
	How execution class bindings affect scheduling
	Execution class bindings
	Engine affinity can affect scheduling

	Setting attributes for a session only
	Getting information

	Rules for determining precedence and scope
	Multiple execution objects and ECs
	Precedence rule
	Scope rule

	Resolving a precedence conflict
	Examples: determining precedence


	Example scenario using precedence rules
	Planning
	Configuration
	Execution characteristics

	Considerations for Engine Resource Distribution
	Client applications: OLTP and DSS
	Unintrusive client applications
	I/O-bound client applications
	Highly critical applications

	Adaptive Server logins: high-priority users
	Stored procedures: “hot spots”


	CHAPTER 5 Controlling Physical Data Placement
	Object placement can improve performance
	Symptoms of poor object placement
	Underlying problems
	Using sp_sysmon while changing data placement

	Terminology and concepts
	Guidelines for improving I/O performance
	Spreading data across disks to avoid I/O contention
	Avoiding physical contention in parallel join queries

	Isolating server-wide I/O from database I/O
	Where to place tempdb
	Where to place sybsecurity

	Keeping transaction logs on a separate disk
	Mirroring a device on a separate disk
	Device mirroring performance issues
	Using serial mode


	Creating objects on segments
	Using segments
	Separating tables and indexes
	Splitting large tables across devices
	Moving text storage to a separate device

	Partitioning tables for performance
	User transparency
	Partitioned tables and parallel query processing
	Distributing data across partitions

	Improving insert performance with partitions
	How partitions address page contention
	Selecting heap tables to partition

	Restrictions on partitioned tables
	Partition-related configuration parameters
	How Adaptive Server distributes partitions on devices
	RAID devices and partitioned tables


	Space planning for partitioned tables
	Read-only tables
	Read-mostly tables
	Tables with random data modification

	Commands for partitioning tables
	alter table...partition syntax
	alter table...unpartition Syntax
	Changing the number of partitions
	Distributing data evenly across partitions
	Commands to create and drop clustered indexes
	Using reorg rebuild on data-only-locked tables
	Using drop index and create clustered index
	Using constraints and alter table
	Special concerns for partitioned tables and clustered indexes

	Using parallel bcp to copy data into partitions
	Parallel copy and locks

	Getting information about partitions
	Using bcp to correct partition balance
	Checking data distribution on devices with sp_helpsegment
	Effects of imbalance of data on segments and partitions
	Determining the number of pages in a partition

	Updating partition statistics
	Syntax for update partition statistics


	Steps for partitioning tables
	Backing up the database after partitioning tables
	Table does not exist
	Table exists elsewhere in the database
	Table exists on the segment
	Redistributing data
	Adding devices to a segment


	Special procedures for difficult situations
	Clustered indexes on large tables
	Alternative for clustered indexes

	Problems when devices for partitioned tables are full
	Adding disks when devices are full
	Adding disks when devices are nearly full

	Maintenance issues and partitioned tables
	Regular maintenance checks for partitioned tables


	CHAPTER 6 Database Design
	Basic design
	Physical database design for Adaptive Server
	Logical Page Sizes

	Normalization
	Levels of normalization
	Benefits of normalization
	First Normal Form
	Second Normal Form
	Third Normal Form

	Denormalizing for performance
	Risks
	Disadvantages
	Performance advantages

	Denormalization input
	Techniques
	Adding redundant columns
	Adding derived columns
	Collapsing tables
	Duplicating tables

	Splitting tables
	Horizontal splitting
	Vertical splitting

	Managing denormalized data
	Using triggers
	Using application logic
	Batch reconciliation


	CHAPTER 7 Data Storage
	Performance gains through query optimization
	Query processing and page reads

	Adaptive Server pages
	Page headers and page sizes
	Varying logical page sizes
	Data and index pages
	Large Object (LOB) Pages
	Extents

	Pages that manage space allocation
	Global allocation map pages
	Allocation pages
	Object allocation map pages
	How OAM pages and allocation pages manage object storage
	Page allocation keeps an object’s pages together
	sysindexes table and data access

	Space overheads
	Number of columns and size
	Variable-length columns in APL tables
	Variable length columns in DOL tables

	Number of rows per data page
	Maximum numbers
	Arguments for stored procedures
	Retrieving data with enhanced limits


	Heaps of data: tables without clustered indexes
	Lock schemes and differences between heaps
	Select operations on heaps
	Allpages-locked heap tables
	Data-only locked heap tables

	Inserting data into an allpages-locked heap table
	Conflicts during heap inserts

	Inserting data into a data-only-locked heap table
	If conflicts occur during heap inserts

	Deleting data from a heap table
	Deleting from an allpages-locked heap table
	Deleting from a data-only locked heap table
	Deleting the last row on a page

	Updating data on a heap table
	Allpages-locked heap tables
	Data-only-locked heap tables


	How Adaptive Server performs I/O for heap operations
	Sequential prefetch, or large I/O

	Caches and object bindings
	Heaps, I/O, and cache strategies
	Overview of cache strategies
	LRU replacement strategy
	When LRU strategy is used
	MRU replacement strategy

	Select operations and caching
	Data modification and caching
	Caching and inserts on heaps
	Caching, update and delete operations on heaps


	Asynchronous prefetch and I/O on heap tables
	Heaps: pros and cons
	Maintaining heaps
	Methods
	Using reorg rebuild to reclaim space
	Reclaiming space by creating a clustered index
	Reclaiming space using bcp


	Transaction log: a special heap table

	CHAPTER 8 Indexing for Performance
	How indexes affect performance
	Detecting indexing problems
	Symptoms of poor indexing
	Lack of indexes is causing table scans
	Index is not selective enough
	Index does not support range queries
	Too many indexes slow data modification
	Index entries are too large
	Exception for wide data rows and wide index rows


	Fixing corrupted indexes
	Repairing the system table index
	Repairing a nonclustered index


	Index limits and requirements
	Choosing indexes
	Index keys and logical keys
	Guidelines for clustered indexes
	Choosing clustered indexes
	Candidates for nonclustered indexes
	Other indexing guidelines
	Choosing nonclustered indexes
	Performance price for data modification

	Choosing composite indexes
	Key order and performance in composite indexes
	Advantages and disadvantages of composite indexes

	Techniques for choosing indexes
	Choosing an index for a range query
	Adding a point query with different indexing requirements

	Index and statistics maintenance
	Dropping indexes that hurt performance
	Choosing space management properties for indexes

	Additional indexing tips
	Creating artificial columns
	Keeping index entries short and avoiding overhead
	Dropping and rebuilding indexes


	CHAPTER 9 How Indexes Work
	Types of indexes
	Index pages
	Root level
	Leaf level
	Intermediate level

	Index Size

	Clustered indexes on allpages-locked tables
	Clustered indexes and select operations
	Clustered indexes and insert operations
	Page splitting on full data pages
	Exceptions to page splitting

	Page splitting on index pages
	Performance impacts of page splitting
	Overflow pages
	Clustered indexes and delete operations
	Deleting the last row on a page
	Index page merges


	Nonclustered indexes
	Leaf pages revisited
	Nonclustered index structure
	Nonclustered indexes and select operations
	Nonclustered index performance
	Nonclustered indexes and insert operations
	Nonclustered indexes and delete operations
	Clustered indexes on data-only-locked tables

	Index covering
	Covering matching index scans
	Covering nonmatching index scans

	Indexes and caching
	Using separate caches for data and index pages
	Index trips through the cache


	CHAPTER 10 Locking in Adaptive Server
	How locking affects performance
	Overview of locking
	Granularity of locks and locking schemes
	Allpages locking
	Datapages locking
	Datarows locking

	Types of locks in Adaptive Server
	Page and row locks
	Table locks
	Demand locks
	Demand locking with serial execution
	Demand locking with parallel execution

	Range locking for serializable reads
	Latches

	Lock compatibility and lock sufficiency
	How isolation levels affect locking
	Isolation Level 0, read uncommitted
	Isolation Level 1, read committed
	Isolation Level 2, repeatable read
	Isolation Level 3, serializable reads
	Adaptive Server default isolation level

	Lock types and duration during query processing
	Lock types during create index commands
	Locking for select queries at isolation Level 1
	Table scans and isolation Levels 2 and 3
	Table scans and table locks at isolation Level 3
	Isolation Level 2 and Allpages-Locked tables

	When update locks are not required
	Locking during or processing
	Processing or queries for Allpages-Locked tables
	Processing or queries for Data-Only-Locked tables

	Skipping uncommitted inserts during selects

	Pseudo column-level locking
	Select queries that do not reference the updated column
	Using alternative predicates to skip nonqualifying rows
	Qualifying old and new values for uncommitted updates
	Suggestions to reduce contention


	CHAPTER 11 Using Locking Commands
	Specifying the locking scheme for a table
	Specifying a server-wide locking scheme
	Specifying a locking scheme with create table
	Changing a locking scheme with alter table
	Before and after changing locking schemes
	After alter table completes

	Expense of switching to or from allpages locking
	Sort performance during alter table
	Specifying a locking scheme with select into

	Controlling isolation levels
	Setting isolation levels for a session
	Syntax for query-level and table-level locking options
	Using holdlock, noholdlock, or shared
	Using the at isolation clause
	Making locks more restrictive
	Using read committed

	Making locks less restrictive
	Using read uncommitted
	Using shared


	Readpast locking
	Cursors and locking
	Using the shared keyword

	Additional locking commands
	lock table Command
	Lock timeouts


	CHAPTER 12 Reporting on Locks
	Locking tools
	Getting information about blocked processes
	Viewing locks
	Viewing locks
	Intrafamily blocking during network buffer merges

	Deadlocks and concurrency
	Server-side versus application-side deadlocks
	Application deadlock example

	Server task deadlocks
	Deadlocks and parallel queries
	Printing deadlock information to the error log
	Avoiding deadlocks
	Acquire locks on objects in the same order
	Delaying deadlock checking


	Identifying tables where concurrency is a problem
	Lock management reporting

	CHAPTER 13 Locking Configuration and Tuning
	Locking and performance
	Using sp_sysmon and sp_object_stats
	Reducing lock contention
	Adding indexes to reduce contention
	Keeping transactions short
	Avoiding hot spots

	Additional locking guidelines

	Configuring locks and lock promotion thresholds
	Configuring Adaptive Server’s lock limit
	Estimating number of locks for data-only-locked tables

	Configuring the lock hashtable (Lock Manager)
	Setting lock promotion thresholds
	Lock promotion and scan sessions
	Lock promotion high water mark
	Lock promotion low water mark
	Lock promotion percent
	Setting server-wide lock promotion thresholds
	Setting the lock promotion threshold for a table or database
	Precedence of settings
	Dropping database and table settings
	Using sp_sysmon while tuning lock promotion thresholds


	Choosing the locking scheme for a table
	Analyzing existing applications
	Choosing a locking scheme based on contention statistics
	Monitoring and managing tables after conversion
	Applications not likely to benefit from data-only locking
	Tables where clustered index performance must remain high
	Tables with maximum-length rows



	CHAPTER 14 Setting Space Management Properties
	Reducing index maintenance
	Advantages of using fillfactor
	Disadvantages of using fillfactor
	Setting fillfactor values
	fillfactor examples
	No stored fillfactor values
	Table-level or clustered index fillfactor value stored

	Use of the sorted_data and fillfactor options

	Reducing row forwarding
	Default, minimum, and maximum values for exp_row_size
	Default value

	Specifying an expected row size with create table
	Adding or changing an expected row size
	Setting a default expected row size server-wide
	Displaying the expected row size for a table
	Choosing an expected row size for a table
	Using optdiag to check for forwarded rows
	Querying systabstats to check for forwarded rows

	Conversion of max_rows_per_page to exp_row_size
	Monitoring and managing tables that use expected row size

	Leaving space for forwarded rows and inserts
	Extent allocation operations and reservepagegap
	Specifying a reserve page gap with create table
	Specifying a reserve page gap with create index
	Changing reservepagegap
	reservepagegap examples
	reservepagegap specified only for the table
	reservepagegap specified for a clustered index

	Choosing a value for reservepagegap
	Monitoring reservepagegap settings
	reservepagegap and sorted_data options to create index
	Background on the sorted_data option
	Matching options and goals


	Using max_rows_per_page on allpages-locked tables
	Reducing lock contention
	Indexes and max_rows_per_page
	select into and max_rows_per_page
	Applying max_rows_per_page to existing data


	CHAPTER 15 Memory Use and Performance
	How memory affects performance
	How much memory to configure
	Caches in Adaptive Server
	Procedure cache
	Getting information about the procedure cache size
	proc buffers
	proc headers
	Monitoring procedure cache performance
	Procedure cache errors

	Procedure cache sizing
	Estimating stored procedure size

	Data cache
	Default cache at installation time
	Page aging in data cache
	Effect of data cache on retrievals
	Effect of data modifications on the cache
	Data cache performance
	Testing data cache performance
	Cache hit ratio for a single query
	Cache hit ratio information from sp_sysmon


	Configuring the data cache to improve performance
	Commands to configure named data caches
	Tuning named caches
	Cache configuration goals
	Gather data, plan, and then implement
	Evaluating cache needs
	Large I/O and performance
	The optimizer and cache choices
	Choosing the right mix of I/O sizes for a cache

	Reducing spinlock contention with cache partitions
	Cache replacement strategies and policies
	Strategies
	Policies


	Named data cache recommendations
	Sizing caches for special objects, tempdb, and transaction logs
	Determining cache sizes for special tables or indexes
	Examining cache needs for tempdb
	Examining cache needs for transaction logs
	Choosing the I/O size for the transaction log
	Configuring for large log I/O size
	Additional tuning tips for log caches

	Basing data pool sizes on query plans and I/O
	Checking I/O size for queries

	Configuring buffer wash size
	Overhead of pool configuration and binding objects
	Pool configuration overhead
	Cache binding overhead


	Maintaining data cache performance for large I/O
	Diagnosing excessive I/O Counts
	Using sp_sysmon to check large I/O performance

	Speed of recovery
	Tuning the recovery interval
	Effects of the housekeeper task on recovery time

	Auditing and performance
	Sizing the audit queue
	Auditing performance guidelines


	CHAPTER 16 Determining Sizes of Tables and Indexes
	Why object sizes are important to query tuning
	Tools for determining the sizes of tables and indexes
	Effects of data modifications on object sizes
	Using optdiag to display object sizes
	Advantages of optdiag
	Disadvantages of optdiag

	Using sp_spaceused to display object size
	Advantages of sp_spaceused
	Disadvantages of sp_spaceused

	Using sp_estspace to estimate object size
	Advantages of sp_estspace
	Disadvantages of sp_estspace

	Using formulas to estimate object size
	Factors that can affect storage size
	Storage sizes for datatypes
	Tables and indexes used in the formulas
	Calculating table and clustered index sizes for allpages-locked tables
	Step 1: Calculate the data row size
	Step 2: Compute the number of data pages
	Step 3: Compute the size of clustered index rows
	Step 4: Compute the number of clustered index pages
	Step 5: Compute the total number of index pages
	Step 6: Calculate allocation overhead and total pages
	Step 7: Calculate the size of the leaf index row
	Step 8: Calculate the number of leaf pages in the index
	Step 9: Calculate the size of the non-leaf rows
	Step 10: Calculate the number of non-leaf pages
	Step 11: Calculate the total number of non-leaf index pages
	Step 12: Calculate allocation overhead and total pages

	Calculating the sizes of data-only-locked tables
	Step 1: Calculate the data row size
	Step 2: Compute the number of data pages
	Step 3: Calculate allocation overhead and total pages
	Step 4: Calculate the size of the index row
	Step 5: Calculate the number of leaf pages in the index
	Step 6: Calculate the number of non-leaf pages in the index
	Step 7: Calculate the total number of non-leaf index pages
	Step 8: Calculate allocation overhead and total pages

	Other factors affecting object size
	Effects of space management properties
	Using average sizes for variable fields

	Very small rows
	LOB pages
	Advantages of using formulas to estimate object size
	Disadvantages of using formulas to estimate object size


	CHAPTER 17 Maintenance Activities and Performance
	Running reorg on tables and indexes
	Creating and maintaining indexes
	Configuring Adaptive Server to speed sorting
	Dumping the database after creating an index
	Creating an index on sorted data
	Maintaining index and column statistics
	Rebuilding indexes
	Speeding index creation with sorted_data


	Creating or altering a database
	Backup and recovery
	Local backups
	Remote backups
	Online backups
	Using thresholds to prevent running out of log space
	Minimizing recovery time
	Recovery order

	Bulk copy
	Parallel bulk copy
	Batches and bulk copy
	Slow bulk copy
	Improving bulk copy performance
	Replacing the data in a large table
	Adding large amounts of data to a table
	Using partitions and multiple bulk copy processes
	Impacts on other users

	Database consistency checker
	Using dbcc tune (cleanup)
	Using dbcc tune on spinlocks
	When not to use this command

	Determining the space available for maintenance activities
	Overview of space requirements
	Tools for checking space usage and space available
	Checking space used for tables and indexes
	Checking space on segments
	Checking space requirements for space management properties
	Space management properties applied to the table
	Space management properties applied to the index

	Estimating the effects of space management properties
	If there is not enough space


	CHAPTER 18 tempdb Performance Issues
	How management of tempdb affects performance
	Main solution areas for tempdb performance

	Types and uses of temporary tables
	Truly temporary tables
	Regular user tables
	Worktables

	Initial allocation of tempdb
	Sizing the tempdb
	Placing tempdb
	Dropping the master device from tempdb segments
	Using multiple disks for parallel query performance

	Binding tempdb to its own cache
	Commands for cache binding

	Temporary tables and locking
	Minimizing logging in tempdb
	With select into
	By using shorter rows

	Optimizing temporary tables
	Creating indexes on temporary tables
	Creating nested procedures with temporary tables
	Breaking tempdb uses into multiple procedures


	CHAPTER 19 Adaptive Server Optimizer
	Definition
	Steps in query processing
	Working with the optimizer

	Object sizes are important to query tuning
	Query optimization
	Factors examined during optimization
	Preprocessing can add clauses for optimizing
	Converting clauses to search argument equivalents
	Converting expressions into search arguments
	Search argument transitive closure
	Join transitive closure
	Enabling join transitive closure

	Predicate transformation and factoring
	Example


	Guidelines for creating search arguments
	Search arguments and useful indexes
	Search argument syntax
	Nonequality operators
	Examples of SARGs

	How statistics are used for SARGS
	Histogram cells
	Density values
	Range cell density and total density
	How the optimizer uses densities and histograms

	Using statistics on multiple search arguments
	Default values for search arguments
	SARGs using variables and parameters

	Join syntax and join processing
	How joins are processed
	When statistics are not available for joins
	Density values and joins
	Multiple column joins
	Search arguments and joins on a table

	Datatype mismatches and query optimization
	Overview of the datatype hierarchy and index issues
	Comparison of numeric and decimal datatypes
	Comparing numeric types to other datatypes

	Datatypes for parameters and variables used as SARGs
	Troubleshooting datatype mismatch problems fo SARGs

	Compatible datatypes for join columns
	Troubleshooting datatype mismatch problems for joins

	Suggestions on datatypes and comparisons
	Forcing a conversion to the other side of a join

	Splitting stored procedures to improve costing
	Basic units of costing

	CHAPTER 20 Advanced Optimizing Tools
	Special optimizing techniques
	Specifying optimizer choices
	Specifying table order in joins
	Risks of using forceplan
	Things to try before using forceplan

	Specifying the number of tables considered by the optimizer
	Specifying an index for a query
	Risks
	Things to try before specifying an index

	Specifying I/O size in a query
	Index type and large I/O
	When prefetch specification is not followed
	set prefetch on

	Specifying the cache strategy
	In select, delete, and update statements

	Controlling large I/O and cache strategies
	Getting information on cache strategies

	Enabling and disabling merge joins
	Enabling and disabling join transitive closure
	Suggesting a degree of parallelism for a query
	Query level parallel clause examples

	Concurrency optimization for small tables
	Changing locking scheme


	CHAPTER 21 Query Tuning Tools
	Overview
	How tools may interact
	Using showplan and noexec together
	noexec and statistics io

	How tools relate to query processing

	CHAPTER 22 Access Methods and Query Costing for Single Tables
	Table scan cost
	Cost of a scan on allpages-locked table
	Cost of a scan on a data-only-locked tables

	From rows to pages
	How cluster ratios affect large I/O estimates
	Data page cluster ratio
	Index page cluster ratio


	Evaluating the cost of index access
	Query that returns a single row
	Query that returns many rows
	Range queries using clustered indexes (allpages locking)

	Range queries with covering indexes
	Range queries with noncovering indexes
	Result-set size and index use
	Costing for noncovering index scans
	Costing for forwarded rows


	Costing for queries using order by
	Prefix subset and sorts
	Key ordering and sorts
	Specifying ascending or descending order for index keys

	How the optimizer costs sort operations
	Allpages-locked tables with clustered indexes
	Sorts when index covers the query
	Sorts and noncovering indexes
	Backward scans and joins
	Deadlocks and descending scans


	Access Methods and Costing for or and in Clauses
	or syntax
	in (values_list) converts to or processing
	Methods for processing or clauses
	When table scans are used for or queries
	Dynamic index (OR strategy)
	Multiple matching index scans (special OR strategy)


	How aggregates are optimized
	Combining max and min aggregates
	Queries that use both min and max


	How update operations are performed
	Direct updates
	In-place updates
	Cheap direct updates
	Expensive direct updates

	Deferred updates
	When deferred updates are required

	Deferred index inserts
	Restrictions on update modes through joins
	Joins and subqueries in update and delete statements
	Deletes and updates in triggers versus referential integrity

	Optimizing updates
	Designing for direct updates
	Effects of update types and indexes on update modes

	Using sp_sysmon while tuning updates


	CHAPTER 23 Accessing Methods and Costing for Joins and Subqueries
	Costing and optimizing joins
	Processing
	Index density and joins
	Multicolumn densities

	Datatype mismatches and joins
	Join permutations
	Outer joins and join permutations


	Nested-loop joins
	Cost formula
	How inner and outer tables are determined

	Access methods and costing for sort-merge joins
	How a full-merge is performed
	How a right-merge or left-merge is performed
	How a sort-merge is performed
	Mixed example
	showplan messages for sort-merge joins

	Costing for merge joins
	Costing for a full-merge with unique values
	Example: allpages-locked tables with clustered indexes
	Costing for a full-merge with duplicate values
	Costing sorts
	Worktable size for sort-merge joins

	When merge joins cannot be used
	Use of worker processes
	Recommendations for improved merge performance

	Enabling and disabling merge joins
	At the server level
	At the session level

	Reformatting strategy
	Subquery optimization
	Flattening in, any, and exists subqueries
	When flattening can be done
	Exceptions to flattening
	Flattening methods
	Join order and flattening methods
	Flattened subqueries executed as regular joins
	Flattened subqueries executed as existence joins
	Flattened subqueries executed using unique reformatting
	Flattened subqueries using duplicate elimination

	Flattening expression subqueries
	Materializing subquery results
	Noncorrelated expression subqueries
	Quantified predicate subqueries containing aggregates

	Subquery introduced with an and clause
	Subquery introduced with an or clause
	Subquery results caching
	Displaying subquery cache information

	Optimizing subqueries

	or clauses versus unions in joins

	CHAPTER 24 Parallel Query Processing
	Types of queries that can benefit from parallel processing
	Adaptive Server’s worker process model
	Parallel query execution
	Returning results from parallel queries

	Types of parallel data access
	Hash-based table scans
	Partition-based scans
	Hash-based index scans
	Parallel processing for two tables in a join
	showplan messages

	Controlling the degree of parallelism
	Configuration parameters for controlling parallelism
	How limits apply to query plans
	How the limits work in combination
	Examples of setting parallel configuration parameters

	Using set options to control parallelism for a session
	set command examples

	Controlling parallelism for a query
	Query level parallel clause examples

	Worker process availability and query execution
	Other configuration parameters for parallel processing

	Commands for working with partitioned tables
	Balancing resources and performance
	CPU resources
	Disk resources and I/O
	Tuning example: CPU and I/O saturation

	Guidelines for parallel query configuration
	Hardware guidelines
	Working with your performance goals and hardware guidelines
	Examples of parallel query tuning
	Improving the performance of a table scan
	Improving the performance of a nonclustered index scan

	Guidelines for partitioning and parallel degree
	Experimenting with data subsets

	System level impacts
	Locking issues
	Device issues
	Procedure cache effects

	When parallel query results can differ
	Queries that use set rowcount
	Queries that set local variables
	Achieving consistent results


	CHAPTER 25 Parallel Query Optimization
	What is parallel query optimization?
	Optimizing for response time versus total work

	When is optimization performed?
	Overhead costs
	Factors that are not considered

	Parallel access methods
	Parallel partition scan
	Requirements for consideration
	Cost model

	Parallel clustered index partition scan (allpages-locked tables)
	Requirements for consideration
	Cost model

	Parallel hash-based table scan
	Hash-based table scans on allpages-locked tables
	Hash-based table scans on data-only-locked tables
	Requirements for consideration
	Cost model

	Parallel hash-based index scan
	Cost model and requirements

	Parallel range-based scans
	Requirements for consideration

	Additional parallel strategies
	Partitioned worktables
	Parallel sorting


	Summary of parallel access methods
	Selecting parallel access methods

	Degree of parallelism for parallel queries
	Upper limit
	Optimized degree
	Worker processes for partition-based scans
	Worker processes for hash-based scans
	Worker processes for range-based scans

	Nested-loop joins
	Alternative plans
	Computing the degree of parallelism for nested-loop joins
	Parallel queries and existence joins

	Examples
	Partitioned heap table
	Nonpartitioned heap table
	Table with clustered index

	Runtime adjustments to worker processes

	Parallel query examples
	Single-table scans
	Table partition scan

	Multitable joins
	Parallel join optimization and join orders

	Subqueries
	Queries that require worktables
	union queries
	Queries with aggregates
	select into statements

	Runtime adjustment of worker processes
	How Adaptive Server adjusts a query plan
	Evaluating the effect of runtime adjustments
	Recognizing and managing runtime adjustments
	Using set process_limit_action
	Using showplan

	Reducing the likelihood of runtime adjustments
	Checking runtime adjustments with sp_sysmon

	Diagnosing parallel performance problems
	Query does not run in parallel
	Parallel performance is not as good as expected
	Calling technical support for diagnosis

	Resource limits for parallel queries

	CHAPTER 26 Parallel Sorting
	Commands that benefits from parallel sorting
	Requirements and resources overview
	Overview of the parallel sorting strategy
	Creating a distribution map
	Dynamic range partitioning
	Range sorting
	Merging results

	Configuring resources for parallel sorting
	Worker process requirements for parallel sorts
	Worker process requirements for creating indexes
	Using with consumers while creating indexes

	Worker process requirements for select query sorts
	Worker processes for merge-join sorts
	Other worktable sorts

	Caches, sort buffers, and parallel sorts
	Cache bindings
	Number of sort buffers can affect sort performance
	Sort buffer configuration guidelines
	Using less than the configured number of sort buffers
	Configuring the number of sort buffers parameter
	Procedure for estimating merge levels and I/O
	Configuring caches for large I/O during parallel sorting
	Balancing sort buffers and large I/O configuration

	Disk requirements
	Space requirements for creating indexes
	Space requirements for worktable sorts
	Number of devices in the target segment


	Recovery considerations
	Tools for observing and tuning sort behavior
	Using set sort_resources on
	Examples


	Using sp_sysmon to tune index creation

	CHAPTER 27 Tuning Asynchronous Prefetch
	How asynchronous prefetch improves performance
	Improving query performance by prefetching pages
	Prefetching control mechanisms in a multiuser environment
	Look-ahead set during recovery
	Prefetching log pages
	Prefetching data and index pages

	Look-ahead set during sequential scans
	Look-ahead set during nonclustered index access
	Look-ahead set during dbcc checks
	Allocation checking
	checkdb and checktable

	Look-ahead set minimum and maximum sizes

	When prefetch is automatically disabled
	Flooding pools
	I/O system overloads
	Unnecessary reads
	Page chain fragmentation


	Tuning Goals for asynchronous prefetch
	Commands for configuration

	Other Adaptive Server performance features
	Large I/O
	Sizing and limits for the 16k pool
	Limits for the 2K pool

	Fetch-and-discard (MRU) scans
	Parallel scans and large I/Os
	Hash-based table scans
	Partition-based scans


	Special settings for asynchronous prefetch limits
	Setting limits for recovery
	Setting limits for dbcc

	Maintenance activities for high prefetch performance
	Eliminating kinks in heap tables
	Eliminating kinks in clustered index tables
	Eliminating kinks in nonclustered indexes

	Performance monitoring and asynchronous prefetch

	CHAPTER 28 Cursors and Performance
	Definition
	Set-oriented versus row-oriented programming
	Example

	Resources required at each stage
	Memory use and execute cursors

	Cursor modes
	Index use and requirements for cursors
	Allpages-locked tables
	Data-only-locked tables
	Table scans to avoid the Halloween problem


	Comparing performance with and without cursors
	Sample stored procedure without a cursor
	Sample stored procedure with a cursor
	Cursor versus noncursor performance comparison

	Locking with read-only cursors
	Isolation levels and cursors
	Partitioned heap tables and cursors
	Optimizing tips for cursors
	Optimizing for cursor selects using a cursor
	Using union instead of or clauses or in lists
	Declaring the cursor’s intent
	Specifying column names in the for update clause
	Using set cursor rows
	Keeping cursors open across commits and rollbacks
	Opening multiple cursors on a single connection


	CHAPTER 29 Introduction to Abstract Plans
	Definition
	Managing abstract plans
	Relationship between query text and query plans
	Limits of options for influencing query plans

	Full versus partial plans
	Creating a partial plan

	Abstract plan groups
	How abstract plans are associated with queries

	CHAPTER 30 Abstract Query Plan Guide
	Introduction
	Abstract plan language
	Queries, access methods, and abstract plans

	Identifying tables
	Identifying indexes
	Specifying join order
	Shorthand notation for joins
	Join order examples
	Match between execution methods and abstract plans
	Specifying join order for queries using views

	Specifying the join type
	Specifying partial plans and hints
	Grouping multiple hints
	Inconsistent and illegal plans using hints

	Creating abstract plans for subqueries
	Materialized subqueries
	Flattened subqueries
	Example: changing the join order in a flattened subquery
	Nested subqueries
	Subquery identification and attachment
	More subquery examples: reading ordering and attachment
	Modifying subquery nesting

	Abstract plans for materialized views
	Abstract plans for queries containing aggregates
	Specifying the reformatting strategy
	OR strategy limitation
	When the store operator is not specified

	Tips on writing abstract plans
	Comparing plans “before” and “after”
	Effects of enabling server-wide capture mode
	Time and space to copy plans

	Abstract plans for stored procedures
	Procedures and plan ownership
	Procedures with variable execution paths and optimization

	Ad Hoc queries and abstract plans

	CHAPTER 31 Creating and Using Abstract Plans
	Using set commands to capture and associate plans
	Enabling plan capture mode with set plan dump
	Associating queries with stored plans
	Using replace mode during plan capture
	When to use replace mode

	Using dump, load, and replace modes simultaneously
	Using dump and load to the same group
	Using dump and load to different groups


	set plan exists check option
	Using other set options with abstract plans
	Using showplan
	Using noexec
	Using forceplan

	Server-wide abstract plan capture and association Modes
	Creating plans using SQL
	Using create plan
	Using the plan Clause


	CHAPTER 32 Managing Abstract Plans with System Procedures
	System procedures for managing abstract plans
	Managing an abstract plan group
	Creating a group
	Dropping a group
	Getting information about a group
	Renaming a group

	Finding abstract plans
	Managing individual abstract plans
	Viewing a plan
	Copying a plan to another group
	Dropping an individual abstract plan
	Comparing two abstract plans
	Changing an existing plan

	Managing all plans in a group
	Copying all plans in a group
	Comparing all plans in a group
	Dropping all abstract plans in a group

	Importing and exporting groups of plans
	Exporting plans to a user table
	Importing plans from a user table


	CHAPTER 33 Abstract Plan Language Reference
	Keywords
	Operands
	Derived tables

	Schema for examples
	g_join
	hints
	i_scan
	in
	lru
	m_g_join
	mru
	nested
	nl_g_join
	parallel
	plan
	prefetch
	prop
	scan
	store
	subq
	t_scan
	table
	union
	view
	work_t

	CHAPTER 34 Using Statistics to Improve Performance
	Importance of statistics
	Updating
	Adding statistics for unindexed columns

	update statistics commands
	Column statistics and statistics maintenance
	Creating and updating column statistics
	When additional statistics may be useful
	Adding statistics for a column with update statistics
	Adding statistics for minor columns with update index statistics
	Adding statistics for all columns with update all statistics

	Choosing step numbers for histograms
	Disadvantages of too many steps
	Choosing a step number

	Scan types, sort requirements, and locking
	Sorts for unindexed or non leading columns
	Locking, scans, and sorts during update index statistics
	Locking, scans and sorts during update all statistics
	Using the with consumers clause
	Reducing update statistics impact on concurrent processes

	Using the delete statistics command
	When row counts may be inaccurate

	CHAPTER 35 Using the set statistics Commands
	Command syntax
	Using simulated statistics
	Checking subquery cache performance
	Checking compile and execute time
	Converting ticks to milliseconds

	Reporting physical and logical I/O statistics
	Total actual I/O cost value
	Statistics for writes
	Statistics for reads
	Sample output with and without an index

	statistics io output for cursors
	Scan count
	Queries reporting a scan count of 1
	Queries reporting a scan count of more than 1
	Queries reporting scan count of 0

	Relationship between physical and logical reads
	Logical reads, physical reads, and 2K I/O
	Physical reads and large I/O
	Reads and writes on worktables
	Effects of caching on reads

	statistics io and merge joins


	CHAPTER 36 Using set showplan
	Using
	Basic showplan messages
	Query plan delimiter message
	Step message
	Query type message
	FROM TABLE message
	FROM TABLE and referential integrity

	TO TABLE message
	Update mode messages
	Direct update mode
	Deferred mode
	Deferred index and deferred varcol messages

	Optimized using messages
	Simulated statistics message
	Abstract plan messages


	showplan messages for query clauses
	GROUP BY message
	Selecting into a worktable
	Grouped aggregate message
	Grouped aggregates and group by

	compute by message
	Ungrouped aggregate message
	Ungrouped aggregates
	compute messages

	messages for order by and distinct
	Worktable message for distinct
	Worktable message for order by

	Sorting messages
	Step involves sorting message
	GETSORTED message
	Serial or parallel sort message


	Messages describing access methods, caching, and I/O cost
	Auxiliary scan descriptors message
	Nested iteration message
	Merge join messages
	Worktable message

	Table scan message
	Clustered index message
	Index name message
	Scan direction messages
	Positioning messages
	Scanning messages
	Index covering message
	Keys message
	Matching index scans message
	Dynamic index message (OR strategy)
	Reformatting Message
	Trigger Log Scan Message
	I/O Size Messages
	Cache strategy messages
	Total estimated I/O cost message

	showplan messages for parallel queries
	Executed in parallel messages
	Coordinating process message
	Worker processes message
	Scan type message
	Merge messages
	Data merge messages
	Runtime adjustment message


	showplan messages for subqueries
	Output for flattened or materialized subqueries
	Flattened queries
	Materialized queries

	Structure of subquery showplan output
	Subquery execution message
	Nesting level delimiter message
	Subquery plan start delimiter
	Subquery plan end delimiter
	Type of subquery
	Subquery predicates
	Internal subquery aggregates
	Quantified predicate subqueries and the ANY aggregate
	Expression subqueries and the ONCE aggregate
	Subqueries with distinct and the ONCE-UNIQUE aggregate

	Existence join message
	Subqueries that perform existence tests



	CHAPTER 37 Statistics Tables and Displaying Statistics with optdiag
	System tables that store statistics
	systabstats table
	sysstatistics table

	Viewing statistics with the optdiag utility
	optdiag syntax
	optdiag header information
	Table statistics
	Sample output for table statistics
	Data page CR count
	Table-level derived statistics
	Data page cluster ratio
	Space utilization
	Large I/O efficiency

	Index statistics
	Sample output for index statistics
	Index-level derived statistics
	Data page cluster ratio
	Index page cluster ratio
	Data row cluster ratio
	Space utilization for an index
	Large I/O efficiency for an index

	Column statistics
	Sample output for column statistics
	Range cell and total density values
	Range and in-between selectivity values

	Histogram displays
	Sample output for histograms
	Understanding histogram output
	Histograms for columns with highly duplicated values
	Choosing the number of steps for highly duplicated values


	Changing statistics with optdiag
	Using the optdiag binary mode
	When you must use binary mode

	Updating selectivities with optdiag input mode
	Editing histograms
	Adding frequency count cells to a histogram
	Skipping the load-time verification for step numbering
	Rules checked during histogram loading
	Re-creating indexes without losing statistics updates


	Using simulated statistics
	optdiag syntax for simulated statistics
	Simulated statistics output
	Requirements for loading and using simulated statistics
	Using simulated statistics in the original database
	Using simulated statistics in another database

	Dropping simulated statistics
	Running queries with simulated statistics
	showplan messages for simulated statistics


	Character data containing quotation marks
	Effects of SQL commands on statistics
	How query processing affects systabstats


	CHAPTER 38 Tuning with dbcc traceon
	Tuning with dbcc traceon(302)
	dbcc traceon(310)
	Invoking the dbcc trace facility
	General tips for tuning with dbcc traceon(302)
	Checking for join columns and search arguments
	Determining how the optimizer estimates I/O costs
	Structure of dbcc traceon(302) output
	Additional blocks and messages


	Table information block
	Identifying the table
	Basic table data
	Cluster ratio
	Partition information

	Base cost block
	Concurrency optimization message

	Clause block
	Search clause identification
	When search clauses are not optimizable
	Values unknown at optimize time

	Join clause identification
	Sort avert messages

	Column block
	Selectivities when statistics exist and values are known
	When the optimizer uses default values
	Unknown values
	If no statistics are available

	Out-of-range messages
	“Disjoint qualifications” message
	Forcing messages
	Unique index messages
	Other messages in the column block

	Index selection block
	Scan and filter selectivity values
	How scan and filter selectivity can differ

	Other information in the index selection block

	Best access block
	dbcc traceon(310) and final query plan costs
	Flattened subquery join order message
	Worker process information
	Final plan information
	Sort-merge costs



	CHAPTER 39 Monitoring Performance with sp_sysmon
	Using
	When to run

	Invoking
	Fixed time intervals
	Using begin_sample and end_sample
	Specifying report sections for output
	Specifying the application detail parameter
	Redirecting output to a file

	How to use the reports
	Reading output
	Rows
	Columns

	Interpreting the data
	Per second and per transaction data
	Percent of total and count data
	Per engine data
	Total or summary data


	Sample interval and time reporting
	Kernel utilization
	Sample output
	Engine busy utilization
	CPU yields by engine
	Network checks
	Non-blocking
	Blocking
	Total network I/O checks
	Average network I/Os per check

	Disk I/O checks
	Total disk I/O checks
	Checks returning I/O
	Average disk I/Os returned


	Worker process management
	Sample output
	Worker process requests
	Worker process usage
	Memory requests for worker processes
	Avg mem ever used by a WP

	Parallel query management
	Sample output
	Parallel query usage
	Merge lock requests
	Sort buffer waits

	Task management
	Sample output
	Connections opened
	Task context switches by engine
	Task context switches due to
	Voluntary yields
	Cache search misses
	System disk writes
	I/O pacing
	Logical lock contention
	Address lock contention
	Latch contention
	Log semaphore contention
	PLC lock contention
	Group commit sleeps
	Last log page writes
	Modify conflicts
	I/O device contention
	Network packet received
	Network packet sent
	Other causes


	Application management
	Requesting detailed application information
	Sample output
	Application statistics summary (all applications)
	Priority changes
	Allotted slices exhausted
	Skipped tasks by engine
	Engine scope changes

	Per application or per application and login
	Application activity
	Application priority changes
	Application I/Os completed
	Resource limits violated


	ESP management
	Sample output
	ESP requests
	Avg. time to execute an ESP


	Housekeeper task activity
	Sample output
	Buffer cache washes
	Garbage collections
	Statistics updates

	Monitor access to executing SQL
	Sample output
	Waits on execution plans
	Number of SQL text overflows
	Maximum SQL text requested


	Transaction profile
	Sample output
	Transaction summary
	How to count multi database transactions

	Transaction detail
	Inserts
	APL heap tables
	APL clustered table
	Data only lock table
	Total rows inserted

	Updates and update detail sections
	Updates
	Data-only-locked updates

	Deletes
	Total rows deleted


	Transaction management
	Sample output
	ULC flushes to transaction log
	By full ULC
	By end transaction
	By change of database
	By system log record and by other

	Total ULC flushes
	ULC log records
	Maximum ULC size
	ULC semaphore requests
	Log semaphore requests
	Log semaphore contention and user log caches

	Transaction log writes
	Transaction log allocations
	Avg # writes per log page

	Index management
	Sample output
	Nonclustered maintenance
	Inserts and updates requiring maintenance to indexes
	Deletes requiring maintenance
	Row ID updates from clustered split
	Data-Only-Locked updates and deletes requiring maintenance

	Page splits
	Reducing page splits for ascending key inserts
	Default data page splitting
	Effects of ascending inserts
	Setting ascending inserts mode for a table
	Retries and deadlocks
	Add index level

	Page shrinks
	Index scans

	Metadata cache management
	Sample output
	Open object, index, and database usage
	Object and index spinlock contention
	Hash spinlock contention
	Using sp_monitorconfig to find metadata cache usage statistics


	Lock management
	Sample output
	Lock summary
	Lock detail
	Address locks
	Last page locks on heaps

	Table lock hashtable
	Deadlocks by lock type
	Deadlock detection
	Deadlock searches
	Searches skipped
	Average deadlocks per search

	Lock promotions
	Lock time-out information

	Data cache management
	Sample output
	Cache statistics summary (all caches)
	Cache search summary
	Cache turnover
	Cache strategy summary
	Large I/O usage
	Large I/O effectiveness
	Asynchronous prefetch activity report
	Other asynchronous prefetch statistics
	Dirty read behavior

	Cache management by cache
	Cache spinlock contention
	Utilization
	Cache search, hit, and miss information
	Pool turnover
	Buffer wash behavior
	Cache strategy
	Large I/O usage
	Large I/O detail
	Dirty read behavior


	Procedure cache management
	Sample output
	Procedure requests
	Procedure reads from disk
	Procedure writes to disk
	Procedure removals

	Memory management
	Sample output
	Pages allocated
	Pages released

	Recovery management
	Sample output
	Checkpoints
	Number of normal checkpoints
	Number of free checkpoints
	Total checkpoints

	Average time per normal checkpoint
	Average time per free checkpoint
	Increasing the housekeeper batch limit

	Disk I/O management
	Sample output
	Maximum outstanding I/Os
	I/Os delayed by
	Disk I/O structures
	Server configuration limit
	Engine configuration limit
	Operating system limit

	Requested and completed disk I/Os
	Total requested disk I/Os
	Completed disk I/Os

	Device activity detail
	Reads and writes
	Total I/Os
	Device semaphore granted and waited


	Network I/O management
	Sample output
	Total network I/Os requests
	Network I/Os delayed
	Total TDS packets received
	Total bytes received
	Average bytes received per packet
	Total TDS packets sent
	Total bytes sent
	Average bytes sent per packet
	Reducing packet overhead


	Index



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


