Component Integration Services
User’s Guide

Adaptive Server Enterprise

12.5

DOCUMENT ID: 32702-01-1250-01
LAST REVISED: May 2001

Copyright © 1989-2001 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase database management software and to any subsequent release until otherwise indicated in new
editions or technical notes. Information in thisdocument is subject to change without notice. The software described herein is furnished
under alicense agreement, and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment viathe above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated inany form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication,
Adaptive Server Everywhere, Adaptive Server 1Q, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager,
AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Translator, APT-Library, Backup Server,
ClearConnect, Client-Library, Client Services, Data Pipeline, Data Workbench, DataArchitect, Database Anayzer, DataExpress,
DataServer, DataWindow, DB-Library, dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution
Director, E-Anywhere, E-Whatever, Embedded SQL, EM S, Enterprise Application Studio, Enterprise Client/Server, Enterprise Connect,
Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work Designer,
Enterprise Work Modeler, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager, |mpactNow, InfoMaker, Information
Anywhere, Information Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase,
MainframeConnect, Maintenance Express, MAP, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, MySupport,
Net-Gateway, Net-Library, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Client,
Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open
Solutions, Optima++, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, Power++, power.stop, PowerAMC, PowerBuilder,
PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, PowerScript, PowerSite,
PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop,
PowerWare Enterprise, ProcessAnayst, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication Server,
Replication Server Manager, Replication Toolkit, Resource Manager, RW-DisplayLib, RW-Library, S-Designor, SDF, Secure SQL
Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL
Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL
Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL
Station, SQLJ, STEP, SupportNow, Sybase Central, Sybase Client/Server I nterfaces, Sybase Financial Server, Sybase Gateways, Sybase
MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financia,
SyberAssist, SyBooks, System 10, System 11, System X| (logo), SystemTools, Tabular Data Stream, Transact-SQL, Translation Toolkit,
UNIBOM, Unilib, Uninull, Unisep, Unistring, URK RuntimeKit for UniCode, Viewer, Visual Components, Visual Speller, Visual Writer,
VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORK S, Watcom, Watcom SQL., Watcom SQL
Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server and XP
Server are trademarks of Sybase, Inc. 3/01

Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.
All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to therestrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., 6475 Christie Avenue, Emeryville, CA 94608.

Contents

About This Book

CHAPTER 1

CHAPTER 2

.. vii
INEFOAUCTION . 1
New features in Adaptive Server Enterprise 12.5ccccoccvvvveneennn. 3
Who can use Component Integration ServiCes.........ccccceevvvvvvnnnnnnnn. 4
Steps needed to use Component Integration Services.................... 5
Understanding Component Integration Servicescccveeveee. 7
BaSIC CONCEPLS ..oveeiiiiiiiiie ettt e s 8
ACCESS METNOUS ..o 8
SEIVEL ClASSES ...eiiiiiiee ittt 8
ODJECT LYPES weveiieeiiiiiiiiiie e 9
Interface to remMote SEIVEISocceviiiiieee e 10
Proxy tableSveeiiiiii i 13
Using the create table command............ccccccooevviviiieeee e, 13
Using the create existing table commandcouveee. 14
Using the create proxy_table command.............cccccceeviivinnenn. 16
Remote Procedures as proxy tablescccecvvvvveeeeeeeinnnnn, 16
New Server IMItS ... 20
Cascading proxy tablescccvvvieiiiiiiiiiie e 24
Proxy databasesccccceeeiiiiiiiiiiiee e 25
User proxy databasescc.eeeeiieeiiiiiiiiiiiee i 25
System proxy databases..........c.eeevveiiiiiiiiiieiie e 28
DDL commands behavior affected by proxy databases.......... 30

File SYSIEM ACCESSuuviiiiei et 32
DIFrECIOIY BCCESS .. uuviiiiiieiiiiiitiiiee ettt 32
Recursion through subordinate directories...........ccccccoovcvvvneeen. 34

FIlE BCCESS ... 35
Security CONSIAErationSccvvveeeeeeeiiiiiiieee e 37
ANSI JOINS .ttt a e e e e e aeee s 37
50-Table join Mtcooeiiiiiiee e 38
UNION N VIBWS ..ttt e e 38
Referential iNtegrityooovcviiieiieiiiii e 39

Contents

REMOLE SEIVEIS ...t 40
Defining remMOte SEIVEISuvviiiiiiiiiiiiiiicce e 40
Connection MaNageMENTcccoovriiiiiieree e 42
LDAP dir€CtOry SEIVICESuvvviiieeeiiiiiiieeeee e e s esirireer e e e e s ssveeees 43
Secure communication With SSL..........ccccccevviiiiiieee e, 43
SECUNMLY ISSUBS ..vvvviieieieeeiitrieee e e e e et e e e e e e e e snieraaeeaeeeasnnnnnnees 44
Remote Server 0ginsuuvieeeieiiiiiie e 44
Mapping of external 10ginscccccvvieiiieee e 45
Remote server connection failover............ccccvvvveeeiciiciiieeeen, 47
Remote server capabilitieSccoocvvviieiieiiiii e, 47

QUETY PrOCESSING .eevieieiiirtiiiee e e ettt teee e s e s e e e e e s s sbbareeeaeeseeaeeenes 49
ProCeSSING StEPS ..vvviiiiiiiiiiiiee ettt 49
Query plan eXECULIONc.uuvviiieee e 57
Passthrough modeceeviiiiiiiiii e 61
Quoted identifier SUPPOIt........covveiiiiiiiiiieiiee e 65
auto identity OPLiONciiccciiiiiiie e 66
LI 10 [0 =] £ USSR 66

RPC handling and Component Integration Services...................... 67
Site handler and outbound RPCS.........ccccccovvviiiiiiieee e, 67
Component Integration Services and outbound RPCs............ 68
Text parameters for RPCS.......cccccvvieiiiiiiee e 69
Text parameter support for XJS/390ccevvvviiiiiiineeniiiiiinnen, 71

Transaction ManagemMENtooccuuveiiiieeriiiiiieiee e e 72
TWO-Phase COMMILuuiiiiiiiiiiiiie e 72
Pre-12.X SEIVEIS ..oveiiiiiiiiieiiieee et 75
Transactional RPCScooiiiiiiic e 76
Restrictions on transaction management...........ccccoovvvvveeeeennn. 76

Using update StatiStiCSeviiiiiiiiiiiiee e e e 78
FINdiNg INAEX NAMESvvviiieeiicciiiice e 78

Java in the databasecccccceee i 80
(@@ S SRR 80
@ @ SIINGSIZE ..evvvieeiie ettt a e e e reaae s 80
Constraints on Java class COlUMNSccccceeevciiviiveeeeeeeciine 81
ErrOr MESSAQES ..evviiiiiiiiiiiieeeeeeeeeeeeeeeeeee e 81
SQLJ in Adaptive Server ENterpriSe.......cccoovvvvvveeeeeeniiiivnnenenn. 81

DaAtALYPES .o 85
UNICOAE SUPPOIT .evviiiieiiiiiiiiiiie ettt e 85
Datatype CONVEISIONSuuiiiiieeiiiiiiiiiee e esiiireeee e e siirneee e 87
text and image datatypesooccvvveieiieeiiiiiiiiee e 88

Fine-grained access CONtrolccovviuiiiiieeeeeiiciiiiiie e 93

The select into comMmMaNdccooiiiiiiiie e 94
SEIECE INTO SYNTAX.....uvviiieee it ie et 95

EXECULe IMMEIALE.vviiii ettt 96

Configuration and tUNINGc.oociiiiiie e 97

Contents

USIiNg SP_CONFIQUIB......ccoiiiiiiiiiie et 97
Global variables for Status.........ccoovveiiiivviiin e 101
CHAPTER 3 SQL refEreNCE ..oveeeeeeccccc e 103
ADCC COMMANTS ...ovveiiiiiiiiieeee et eeeaees 104
ADCC OPLIONS Leeeiiiiiii e 104
Trace flags....c.vvveeiiiiiiiiiie e 105
Transact-SQL comMmMaNdScccoeiiiiiiiiiiiiieeeee e 107
Alter databaSEvvveiiiieiieeieecee e 108
AIEI TADIE ... 110
begin transaction.............ceeiiiiiiii 115
(7= 11 118
(o1 [0 1Y R 120
COMMIL TrANSACLION ...t e e e e eaees 121
CONNECE 10...dISCONNECTcevvvieiiiiiiiicee e 123
Create databaASEcooiiiiiiiiiiiiee e 125
create existing tableccccoo oo 127
CIEALE INUEX . ..iiiieiiiiiiieee ettt e e e e e e b e 136
create proxy_table........oceveviiiiiii 138
Create tabIEoovviiiii i 140
CrEALE TGO . uevtieieiee ettt e e e e e e anes 145
AEAllOCALE CUISON . uvvuiiiiiiieeieeece et 147
AECIAIE CUISON ..oevviiii ettt e e e e e e e eaeees 148
(0 [<] (T 149
drop databasecoeeeiiiiiiiiie e 152
(o [T oI 0o (=) SRR 153
Arop table ... 155
LSy (Lo U (=T RPPRRPPRNt 157
(<] (o] o T 158
FUNCLIONS.....ooviiiiii e e e eaaaaas 160
[1T=] o AU PSP 165
(o] o= o IR PP P PP PP PPPPPPPPPPPPN 167
prepare tranSaCHiONueiviee e 168
(=T Lo | (=) APPSR 170
rollback tranSaCtioNcoovvvviiiiie e 172
Y= [Tt USRNSSRt 175
£SY = A 180
(oY= (0 1T= 182
TrUNCALE tADIE ..vveeiiiciieeeee e 183
U oo F= L= PP PRRPP 184
UPAAte StALISTICS ..iveeviieiiiiiee e 188
A1 S1 () TR 190

Contents

APPENDIX A TULOTTAL e 191
Getting Started with Component Integration Services 191

Adding @ REMOLE SEIVEr.......ccvvviiiiieieiiiiiee e 191

Mapping Remote Objects to Local Proxy Tables 193

Join Between Two Remote Tables.........ccccooeieiiiiieeiiieeene 196

APPENDIX B TroubleshOotingc.ooov i 201
Problems Accessing Component Integration Services 201

Problems Using Component Integration Servicesccco....... 202

Unable to Access Remote SEervercocooceeviieeeeeiieeeeeninenn. 202

Unable to Access Remote Objectcccccvvvvveeeeiiiiiinnennnnn. 205

Problem Retrieving Data From Remote Objects................... 206

If YOU Need Help......uuvieiiiiiiii e 208

Vi

About This Book

Audience

Thisbook iswritten for Sybase® Adaptive Server™ Enterprise System
Administrators, database administrators, and users.

How to use this book

Thisguidewill assist you in configuring and using Component | ntegration
Services. The book includes the following chapters:

Chapter 1, “Introduction,” provides an overview of Component
Integration Services.

Chapter 2, “Understanding Component | ntegration Services,”
provides aframework for understanding how Component I ntegration
works. This chapter includes both basic concepts and in-depth topics.

Chapter 3, “SQL Reference,” describes the Component Integration
Services server classes required to access remote databases.

Appendix A, “Tutorial,” includes atutorial designed to help new
users get Component Integration Services up and running.

Appendix B, “Troubleshooting,” providestroubleshooting tipsif you
encounter a problem with Component Integration Services.

Adaptive Server Enterprise documents

The following documents comprise the Sybase Adaptive Server
Enterprise documentation:

The release bulletin for your platform — contains last-minute
information that was too late to be included in the books.

Vii

viii

A more recent version of the release bulletin may be available on the
World Wide Web. To check for critical product or document information
that was added after the release of the product CD, use the Sybase
Technical Library.

The Installation Guidefor your platform —describesinstallation, upgrade,
and configuration procedures for all Adaptive Server and related Sybase
products.

Configuring Adaptive Server Enterprise for your platform — provides
instructions for performing specific configuration tasks for Adaptive
Server.

What's New in Adaptive Server Enterprise? — describes the new features
in Adaptive Server version 12.5, the system changes added to support
those features, and the changes that may affect your existing applications.

Transact-SQL User’s Guide — documents Transact-SQL, Sybase's
enhanced version of the relational database language. This manual serves
as atextbook for beginning users of the database management system.
This manual also contains descriptions of the pubs2 and pubs3 sample
databases.

System Administration Guide — provides in-depth information about
administering servers and databases. This manual includes instructions
and guidelines for managing physical resources, security, user and system
databases, and specifying character conversion, international language,
and sort order settings.

Reference Manual —contains detailed information about all Transact-SQL
commands, functions, procedures, and datatypes. This manual also
contains alist of the Transact-SQL reserved words and definitions of
system tables.

Performance and Tuning Guide — explains how to tune Adaptive Server
for maximum performance. This manual includes information about
database design issuesthat affect performance, query optimization, how to
tune Adaptive Server for very large databases, disk and cache issues, and
the effects of locking and cursors on performance.

The Utility Guide—documentsthe Adaptive Server utility programs, such
asisql and bcp, which are executed at the operating system level.

The Quick Reference Guide — provides a comprehensive listing of the
names and syntax for commands, functions, system procedures, extended
system procedures, datatypes, and utilitiesin a pocket-sized book.
Available only in print version.

About This Book

The System Tables Diagram —illustrates system tables and their entity
relationships in a poster format. Available only in print version.

Error Messages and Troubleshooting Guide — explains how to resolve
frequently occurring error messages and describes solutions to system
problems frequently encountered by users.

Component Integration Services User’s Guide — explains how to use the
Adaptive Server Component Integration Services feature to connect
remote Sybase and non-Sybase databases.

Javain Adaptive Server Enterprise—describeshow toinstall and use Java
classes as datatypes, functions, and stored procedures in the Adaptive
Server database.

Using Sybase Failover in a High Availability System— provides
instructions for using Sybase's Failover to configure an Adaptive Server
as acompanion server in a high availability system.

Using Adaptive Server Distributed Transaction Management Features—
explains how to configure, use, and troubleshoot Adaptive Server DTM
features in distributed transaction processing environments.

EJB Server User’s Guide — explains how to use EJB Server to deploy and
execute Enterprise JavaBeans in Adaptive Server.

XA Interface Integration Guide for CICS, Encina, and TUXEDO —
providesinstructions for using Sybase’'s DTM XA interface with X/Open
XA transaction managers.

Glossary — defines technical terms used in the Adaptive Server
documentation.

Sybase jConnect for JDBC Programmer’s Reference — describes the
jConnect for JDBC product and explainshow to useit to access datastored
in relational database management systems.

Full-Text Search Specialty Data Sore User’s Guide —describes how to use
the Full-Text Search feature with Verity to search Adaptive Server
Enterprise data.

Historical Server User’s Guide —describes how to use Historical Server to
obtain performance information for SQL Server and Adaptive Server.

Monitor Server User’s Guide — describes how to use Monitor Server to
obtain performance statistics from SQL Server and Adaptive Server.

e Monitor Client Library Programmer’s Guide — describes how to write
Monitor Client Library applications that access Adaptive Server
performance data.

Other sources of information

Use the SyBooks™ and SyBooks-on-the-Web online resources to learn more
about your product:

e SyBooksdocumentation is on the CD that comes with your software. The
DynaText browser, also included on the CD, allows you to access
technical information about your product in an easy-to-use format.

Refer to Installing SyBooks in your documentation package for
instructions on installing and starting SyBooks.

e SyBooks-on-the-Webisan HTML version of SyBooksthat you can access
using a standard Web browser.

To use SyBooks-on-the-Web, go to http://www.sybase.com, and choose
Documentation.

Conventions

What you type to the computer screen is shown as:
Enter text in an entry field
Computer output is shown as:
CIS returns results.

Command arguments you replace with a non-generic value are shown in
italics:

machine_name

About This Book

If you need help

Each Sybaseinstallation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. I
you cannot resolve a problem using the manuals or online help, ask a
designated person at your site to contact Sybase Technical Support.

Xi

Xii

CHAPTER 1

Introduction

Component Integration Servicesisafeaturethat extends Adaptive Server
capabilities and provides enhanced interoperability.

Component Integration Services provides both | ocation transparency and
functional compensation.

L ocation transparency meansthat Component Integration Servicesallows
Adaptive Server to present a uniform view of enterprise datato client
applications. Enterprise-wide data from heterogeneous sources can be
accessed asif it werelocal.

Functional compensation allows Component Integration Services to
emulate all features of the Transact-SQL language, and interact with a
data source only when actual datais needed. With this capability, the full
range and power of Transact-SQL can be applied to any data source,
whether the data source provides support for a particular feature of
Transact-SQL or not. Examples of this capability are built-in functions
and Java functions. Component Integration Services allows statements to
use these functions even though the data on which these functions may
operateisderived from external sourcesthat cannot support the functions.

Component Integration Services together with Adaptive Server
Anywhere, Adaptive Server 1Q and various DirectConnect interfaces,
extends the reach of Adaptive Server Enterprise by enabling transparent
access to database management systems anywhere in the enterprise. This
transparent, extended reach of Adaptive Serve Enterprise makes it easy
for Enterprise Portal components to:

» Accessdatafrom anywhere, and present it as dynamic content to web
pages.
» Execute transactions that span heterogeneous boundaries

* View an entire enterprise through a single view provided by the
global metadata stored in the ASE/CIS system catalogs.

Component Integration Services allows users to access both Sybase and non-
Sybase databases on different servers. These external datasourcesinclude host
data files and tables, views and RPCs (remote procedure calls) in database
systems such as Adaptive Server, Oracle, and DB2, as shown in Figure 1-1.

Figure 1-1: Component Integration Services connects to multiple
vendor databases

raclein London

P

/(O
dataserver CIs
ADAPTIVE SERVER \

Using Component Integration Services, you can:

* Accesstablesinremote servers asif the tables were local.

« Perform joins between tables in multiple remote, heterogeneous servers.
For example, it is possible to join tables between an Oracle database
management system (DBM S) and an Adaptive Server, and between tables
in multiple Adaptive Servers.

e Transfer the contentsof onetableinto anew tableon any supported remote
server by means of aselect into statement.

e Maintain referentia integrity across heterogeneous data sources.

« Accessnative remote server capabilities using the Component Integration
Services passthrough mode.

Chapter 1 Introduction

New features in Adaptive Server Enterprise 12.5

Component Integration Servicesis fully compatible with the new features of
Adaptive Server Enterprise version 12.5.

There are also many new or enhanced featuresin Component Integration
Services.

Distributed Query Optimization Enhancements

Distributed Transaction Management Enhancements
Enhanced Data Access via File System

L ogin name/password mapping to remote systems

XNL - Extensible new limits

Unicode support - new datatypes for support of Unicode character set
LDAP

SSL

Unionin views

Administration and Diagnostic Enhancements

Cascading Proxy Support

Quoted Identifier Support

Enhanced Full Text Search Capabilities

select into existing tables

Enhancements to Proxy Table Support for Remote Procedures
Proxy Database Support

New Global Variables and Set Commands

Who can use Component Integration Services

Who can use Component Integration Services

Component Integration Services can be used by anyone who needs to access
multiple data sources or legacy data. It can also be used by anyone who needs
to migrate data from one server to another.

A single server is often used to access data on multiple external servers.
Component Integration Services manages the dataregardless of the location of
the external servers. Data management is transparent to the client application.

Component Integration Services, in combination with EnterpriseConnect™
and MainframeConnect™ products, provides transparent access to awide
variety of data sources, including:

e Oracle
e Informix
e IBM databasesincluding:

+ DB2for MVS

- DB2/400

« DB22

+ DB2for VM (SQL/DS)
e Microsoft SQL Server
e Adaptive Server Enterprise
e Adaptive Server Anywhere™
e Adaptive Server IQ™

e Mainframe data, including:

« ADABAS
« |IDMS

« IMS

« VSAM

Thelist of certified and supported sources and front-end toolsisincreasing. For
current information on all data sources, versions supported, and products
required for support, please call the Sybase FAX on Demand at 1-800-423-
8737. Request the “Partner Certification Report.”

Chapter 1 Introduction

Steps needed to use Component Integration Services

To get Component Integration Services running:

» Install DirectConnect server(s) or gateways for the external data sources
you choose to access (Oracle, DB2, Informix).

» Configure the server to access remote objects as described in Chapter 2,
“Understanding Component I ntegration Services.”

Steps needed to use Component Integration Services

CHAPTER 2 Understanding Component
Integration Services

This chapter explains how to use Component Integration Services. Itis
intended to help you understand how Adaptive Server works with the
Component Integration Services option configured. The chapter includes
the following topics:

Name Page
Basic concepts 8
Proxy tables 13
Proxy databases 25
File system access 32
Remote servers 40
Query processing 49
RPC handling and Component Integration Services 67
Transaction management 72
Javain the database 80
select into syntax 94
Configuration and tuning 97

Basic concepts

Basic concepts

Access methods

Server classes

The ability to access remote (or external) tables asif they werelocal isa
hallmark of Component Integration Services. Component | ntegration Services
presentstablesto aclient application asif all the datain the tables were stored
locally. Remote tables are mapped to local proxy tables which hold metadata.
Internally, when a query involving remote tables is executed, the storage
location is determined, and the remote location is accessed so that data can be
retrieved.

The access method used to retrieve remote datais determined by two attributes
of the external object:

* The server class associated with the remote object
e Theobject type

To achieve location transparency, tables must first be mapped to their
corresponding external locations.

Access methods form the interface between the server and an external object.
For each server class, there are separate access methods that handle all
interaction between Adaptive Server and remote servers of the same class and
object type.

A server class must be assigned to each server when it is added by means of the
system procedure sp_addserver. Server classes determine the access method
used to interact with the remote server. The server classes are;

e ASEnterprise—Usedif the server isan Adaptive Server Enterpriseversion
11.5 or later. Thisis the default server class.

e ASAnywhere—Used if the server isan Adaptive Server Anywhereversion
6.0 or later.

e ASQ-Usedif the server isan Adaptive Server |Q version 12.5

Chapter 2 Understanding Component Integration Services

Object types

sql_server —indicates that the server is a Sybase SQL Server™ .
Component | ntegration Services determines whether the Sybase server is
arelease 10.0 or later server (supports cursors and dynamic SQL) or apre-
release 10.0 server (does not support cursors or dynamic SQL).

local —thelocal server. There can be only one.

direct_connect —indicates that the server isan Open Server™ application
that conforms to the interface requirements of a DirectConnect™ server.
For access to Microsoft SQL Server a DirectConnect must be used.

access _server —asynonym for server class direct_connect for
compatibility with previous releases.

db2 — indicates that the server is a gateway to DB2 or DB2-compatible
databases. This class is provided only for backward compatibility. The
preferred classis direct_connect.

sds —indicates that the server conforms to the interface requirements of a
Speciaty Data Store.

The server presents anumber of object typesto client applications as if they
were local tables. Supported object types are:

table— The object in aremote server of any classisarelational table. This
is the default type.

view — The object in aremote server of any classis a view. Component
Integration Services treats views as if they were local tables without any
indexes.

rpc — The object in aremote server of any classis an remote procedure.
Component Integration Services treats the result set from the remote
procedure as aread-only table.

file—The object is an individual file within afile system.

directory — The object is afile system directory.

Basic concepts

Interface to remote servers

Directory services

Remote server
definition

Logging into remote
servers

10

The interface between the server and remote serversis handled by the Open
Client software, Client-Library™. The Client-Library featuresthat are used to
implement the interface are dependent upon the class of server with which
Component Integration Servicesisinteracting.

For example, if the server classisdirect_connect (access _server), anumber of
features such as cursor and dynamic requests are used. These features are not
used by a server of class db2.

Before the server can interact with aremote server, you need to configure the
following:

« Remote server addition to directory services
* Remote server definition

e Remote server login information

* Remote object definition

Before accessing remote tables with Component Integration Services, you
must either have access to LDAP directory services, or an interfacesfile
(sgl.ini file on Windows NT). For information on setting up directory services,
see the configuration documentation for your platform. You may wish to refer
to Appendix A which serves as abasic tutorial for Component Integration
Services users.

Remote servers are defined by means of the stored procedure sp_addserver.
Thisprocedureisdocumented in the Adaptive Server Reference Manual. When
using release 12.0 or greater you must name the local server.

Once the remote server has been configured, login information must be
provided. By default, the server uses the names and passwords of its clients
whenever it connects to aremote server on behalf of those clients. However,
this default can be overridden by the use of the stored procedure
sp_addexternlogin. This procedure allows a system administrator to define
the name and password for each user who connects to aremote server.

Using connect to server_name, you can verify that the server configuration is
correct. This command establishes a passthrough mode connection to the
remote server. Passthrough mode allows clients to communicate with remote
serversin native syntax. This passthrough mode remains in effect until you
issue adisconnect command.

Chapter 2 Understanding Component Integration Services

Defining remote
objects

Once aremote server has been properly configured, objectsin that remote
server cannot be accessed as tables until a mapping between them and alocal
object (proxy table) has been established.

You can create new tables on remote servers, and you can define the schema
for an existing object in aremote server. The procedures for both are similar.

You can use one of two methods for defining the storage location of remote
objects:

1 Definethe storage location of individual objects
2 Definethe default location of all objects in a database

Defining the storage location of individual objects

Defining individual object storage locations is done by means of the system
procedure sp_addobjectdef or the use of the at pathname syntax. This
procedure allows you to associate a remote object with alocal proxy table
name. The remote object may or may not exist before you do the mapping.
Complete syntax for sp_addobjectdef is provided in the Adaptive Server
Reference Manual.

An easier method for defining storagelocationsiswith thecreate proxy_table
command.

create proxy_table <table_name>
[external file] at "pathname"

Creating proxy tables

Once you have defined the storage location, you can create the table as a new
or existing object. If the table does not already exist at the remote location, use
the create table syntax. If it already exists, use the create existing table
syntax. If the object typeisrpc, only the create existing table syntax is
allowed.

When acreate existing table statement is received, and the object typeis
either table or view, the existence of the remote object is checked by means of
the catal og stored proceduresp_tables. If the object exists, thenitscolumnand
index attributes are obtained. Column attributes are compared with those
defined for the object in the create existing table statement. Column name,
type, length, and null property are checked. Index attributes are added to the
sysindexes system table.

11

Basic concepts

12

Thecreate proxy_table command is easier to usethan create existing table.
Proxy tables can also be created using the Adaptive Server Enterprise system
administration tool, Sybase Central.

Once the object has been created, either as anew or an existing object, the
remote object can be queried by using its local name.

Chapter 2 Understanding Component Integration Services

Proxy tables

Proxy tables are the key to location transparency. A proxy tableisalocal table
containing metadata which points to aremote or external table. The remote
table is mapped to the proxy table to make it appear asif it were alocal table.

There are three ways to create proxy tables:

* Thecreate table command allowsthe creation of new external tableswith
the following syntax:

create table table_name (column_list) [[external {table | file}] at
“pathname”]]

create table allows external object type table and file.

* Thecreate existing table command isused to map existing remotetables.
It provides datatype conversion and allows the user to specify which
columns are to be mapped with the following syntax:

create existing table table_name (column_list)
[on segment_name]
[[external {table | procedure | file}] at pathname]

create existing table allowsexternal object typetable, procedure andfile.

» Thecreate proxy_table command creates proxy tables which
automatically inherit al the columns, column names and datatypes of the
external table using the following syntax:

create proxy_table table_name
[external type] at pathname

create proxy table allows external object type table, file and directory.

Complete syntax for these commands are found in Chapter 3 of this book.

Using the create table command

Thecreate table command createsaproxy table and aremote table at the same
time with the following syntax:

create table table_name (column_list) [[external {table | file}] at “pathname”]]

The remote location is specified with the at pathname clause. create table
allows external object type table and file. The datatype of each columnis
passed to the remote server without conversion except with server class db2.

13

Proxy tables

Using the create existing table command

14

The create existing table command allows the definition of existing tables
(proxy tables). The syntax for this option is similar to the create table
command and reads as follows:

create existing table table_name (column_list)
[on segment_name]
[[external {table | procedure | file}] at pathname]

The action taken by the server when it receives thiscommand is quite different
from the action it takes when it receives the create table command, however.
In this case, anew tableis not created at the remote location; instead, the table
mapping is checked, and the existence of the underlying object is verified. If
the object does not exist (either host data file or remote server object), the
command is rejected with an error message.

If the object does exist, its attributes are obtained and used to update system
tables sysobjects, syscolumns, and sysindexes.

e The nature of the existing object is determined.

« For remote server objects (other than RPCs), column attributes found for
the table or view are compared with those defined in the column_list.
Column names must match identically (although caseisignored), column
types and lengths must match, or at least be convertible, and the NULL
attributes of the columns must match.

* Index information from the host datafile or remote server tableis
extracted and used to create rows for the system table sysindexes. This
definesindexes and keysin server terms and enables the query optimizer
to consider any indexes that may exist on this table.

e Theon segment_name clause is processed locally and is not passed to a
remote server.

After successfully defining an existing table, issue an update statistics
command for the table.This allows the query optimizer to make intelligent
choices regarding index selection and join order.

Chapter 2 Understanding Component Integration Services

Datatype Conversions

When you usethe create table or create existing table commands, you must
specify al datatypes, using recognized Adaptive Server datatypes. If the
remote server tables reside on aclass of server that is heterogeneous, the
datatypes of the remote table are converted into the specified Adaptive Server
types automatically when the datais retrieved. If the conversion cannot be
made, the create table or create existing table commands do not alow the
table to be created or defined.

Example of Remote Table Definition

The following example illustrates the steps necessary to define the remote
Adaptive Server table, authors, starting with the server definition:

1

Define aserver named SYBASE. Its server classissql_server, and its
namein the interfaces fileis SYBASE:

exec sp_addserver SYBASE, sql_server, SYBASE

Define aremote login alias. This step is optional. User “sa” is known to
remote server SYBASE as user “sa,” password “timothy”:

exec sp_addexternl ogin SYBASE, sa, sa, tinothy
Define the remote authorstable:

create existing table authors
(
au_id id not null,
au_|l name varchar(40) not null,
au_fname varchar(20) not null,

phone char (12) not null,
address varchar(40) null,
city varchar(20) null,
state char (2) nul I,
country varchar(12) null,
post al codechar (10) nul |

)

at " SYBASE. pubs?2. dbo. aut hors", "table"

Update statistics in tables to ensure reasonabl e choices by the query
optimizer:

update statistics authors
Execute a query to test the configuration:

select * fromauthors where au_l nane = ' Carson’

15

Proxy tables

Using the create proxy_table command

create proxy_table isavariant of the create existing table command. Use
create proxy_table to create a proxy table, but (unlike create existing table)
you do not specify acolumn list. CIS derivesthe column list from the metadata
it obtains from the remote table.

The create proxy_table command creates proxy tables which automatically
inherit al the columns, column names and datatypes of the external table using
the following syntax:

create proxy_table table_name
[external type] at pathname

create proxy table allows external object type table, file and directory.The
location information provided by the at keyword specifiesthe pathnameto the
remote object.

External type can be one of the following:

e external table specifiesthat the object is aremote table or view. external
table isthe default, so this clauseis optional.

e external directory specifies that the object is adirectory with a path
similar to the following: “/tmp/directory_name [;R]”. The option “R”
indicates recursive

e external file specifies that the object is afile with apath similar to:
“tmp/filename’

Remote Procedures as proxy tables

16

An optional clause may be added to the create existing table statement to
indicate the remote object is actually a stored (or other) procedure instead of a
table. Without this clause, the remote object is assumed to be atable or view:

create existing table t1

(

column_1lint,
column_2int

)
EXTERNAL PROCEDURE AT "SERVER_A.mydb.dbo.p1"

In the case where the remote object is type procedure, several processing
differences occur:

* Noindexes are created for objects of thistype.

Chapter 2 Understanding Component Integration Services

A column list must be provided which matches the description of the
remote procedure’s result set. This column list is the responsibility of the
user, and no verification of its accuracy is provided.

Column names beginning with underscore (* ") can be used to specify
parameters, which are not part of the remote procedure’s result set. These
columns are referred to as parameter columns. For example:

create existing table rpcl

(

a int,
b int,
[int,
_pl int null,
_p2 int null

external procedure
at “SYBASE.sybsystemprocs.dbo.myproc”

select a, b, ¢ from t1
where _pl=10and _p2=20

In this example, the parameter columns _pl and _p2 are not expected in
the result set, but can be referenced in the query. CIS passes the search
arguments to the remote procedure via parameters, using the names @p1l
and @p2.

If aparameter columnisincluded in the select list, itsvalueis equivalent
to the values specified for it in the where clause, if it was passed to the
remote procedure as a parameter. |f the parameter column did not appear
in the where clause, or was not able to be passed to the remote procedure
as a parameter, but was included in the select ligt, its value would be
NULL.

A parameter column can be passed to the remote procedure as a parameter
if it iswhat the Adaptive Server Enterprise query processor considersto
be a searchable argument, or SARG It is generally a SARG if it is hot
included in any or predicates. For example, the following query would
prevent the parameter columns from being used as parameters:

select a, b, ¢ from t1
where _pl=100R _p2=20

Rules exist for the definition of parameter columnsin the create existing
table statement:

e parameter columns must allow NULL.

e parameter columns cannot precede normal, result columns (i.e. they
must appear at the end of the column list).

17

Proxy tables

Examples

18

Allowing the definition of remote procedures aslocal tablesgives ClSthe
ahility to treat the result set of aremote procedure as a‘virtual table,’
which can be sorted, joined with other tables, or inserted into another table
viainsert/select syntax. However, tables of thistype are considered read
only:

e Youcannotissue adelete, update or insert command against atable
of type procedure;

* You cannot issue acreate index, truncate table or alter table
command against tables of thistype.

Component Integration Services users can map remote or external objects of
the type rpc to local proxy tables. If atableis created in thisway, it can be
referenced only by the select and drop commands. The commandsinsert,
delete, and update generate error messages, since the table is assumed to be
read-only. Proxy definitions should only be created for procedures which
return data.

If an object of the type rpc has been defined within the server, a query is not
issued to the remote server on which the object resides. Instead, the server
issues an RPC and treats the results from the RPC as aread-only table.

create existing table rtable
(collint,
col 2 datetine,
col 3 varchar (30)

)
external procedure at “RMISERVER. .. nyproc*

select * fromrtable

When this query is issued, the server sends the RPC named myproc to server
RMTSERVER. Row results are treated like the results from any other table;
they can be sorted, joined with other tables, grouped, inserted into another
table, and so forth.

RPC parameters should represent arguments that restrict the result set. If the

RPC isissued without parameters, the entire result set of the object isreturned.
If the RPC isissued with parameters, each parameter further limits the result

set. For example, the following query:

select * fromrtable where coll = 10

resultsin asingle parameter, named @col 1, that is sent along with the RPC. Its
valueis 10.

Chapter 2 Understanding Component Integration Services

Component Integration Services attempts to pass as many of the search
arguments as possible to the remote server, but depending on the SQL
statement being executed, Component Integration Services might perform the
result set calculation itself. Each parameter represents a search for an exact
match, for example, the = operator.

Thefollowing areruleswhich definethe parameters sent to the RPC. If an RPC
is used as a Component I ntegration Services object, these rules should be kept
in mind during devel opment.

¢ Component Integration Services sends = operatorsin the where clause as
parameters. For example, the query:

select * fromrpcl where a =3 and b = 2

results in Component Integration Services sending two parameters.
Parameter a hasavalue of 3 and parameter b hasavalue of 2. The RPC is
expected to return only result rowsin which column a hasavalue of 3 and
column b has avalue of 2.

» Component Integration Servicesdoesnot send any parametersfor awhere
clause, or portion of awhere clause, if there is not an exact search
condition. For example:

select * fromrpcl where a = 3 or b = 2

Component Integration Services does not send parametersfor aor b
because of the or clause.

Another example:
select * fromrpcl where a = 2 and b < 3

Component Integration Services does hot send parameters because there
is nothing in the where clause representing an exact search condition.
Component Integration Services performs the result set calculation
locally.

19

Proxy tables

New server limits

20

Limits on length of char, varchar, binary and varbinary datatypes - In version
12.5asin prior releases of Adaptive Server Enterprise, arow cannot span page
boundaries, therefore column size has been limited by row size. However, in
version 12.5 of Adaptive Server Enterprise, configuration allows page sizes of
2K, 4K, 8K or 16K bytes. Also, the arbitrary limit of 255 bytesfor char/binary
columns has been removed. The version 12.5 supports extended sizes of char,
varchar, binary and varbinary data types. The new limit depends on the page
size of the server. For various page sizes, the new limits are as follows:

Table 2-1: New Limits

Pagesize Max. Column Size
2048 2048

4096 4096

8192 8192

16384 16384

Notethat these sizesare still approximate. Thebasic rule specifiesthat thelimit
isthe maximum size that still allows asingle row to fit on apage. These limits
also vary depending on the locking scheme specified when thetableis created.
It is assumed that the bulk of proxy tables are created with the default locking
scheme, which isal page locking.

e Limitson length of Transact-SQL variables and parameters - the size of
char, varchar, binary and varbinary variables are extended to equal the
maximum size of columns of the same datatype for a given server. This
allowsvariablesto be passed to stored procedures (or RPCs) whose length
exceeds the current limit of 255 bytes.

e Limitson number of columns per table- the old limit of 250 are removed,
and up to 1024 columns per table are allowed, aslong as the columns can
still fitonapage. Notethat thereisalimit of 254 variable length columns
(null columns are also considered variable length).

e Limitson the width of an index - the total width of an index within
Adaptive Server Enterprise can be larger than in prior releases, depending
on server pagesize. Inthefollowing table, maximumindex widthisshown
according to pagesize:

Table 2-2: Maximum Index Width

Pagesize Index Width
2048 600
4096 1250

Chapter 2 Understanding Component Integration Services

Pagesize Index Width
8192 2600
16384 5300

* Limits on the number of columns per index - the current limit of 31
columns per index are unchanged in version 12.5.

What these changes mean to CIS and remote servers CIS connectstois
described in the following sections.

Remote server capabilities

When communicating with aremote server, CIS needs to know the maximum
length of a char/varchar column that can be supported by the DBMS.

For connections to serversin classes ASEnterprise, ASAnywhere, ASIQ,
sgl_server and db2, the maximum sizeis determined based on known attributes
of these servers (according to version).

For serversin classdirect_connect and sds, thisinformation is provided by an
addition to the result set returned by the sp_capabilities RPC. A new
capability is specified to allow the Direct Connect to indicate the maximum
length of columns supported by the DBMS for which the Direct Connect is
configured.

Additionally, it is necessary for the Direct Connect to know about the
maximum length of char columns that can be supported by CIS. For this
reason, changes to the existing RPC sp_thread_props are required:

sp_thread_props "maximum ASE column length", n

ThisRPC issent to aDirect Connect after CI S has established a connection for
thefirst time. Thevalue of nisaninteger indicating the maximum column size,
in bytes, allowed by ASE/CIS.

create new proxy table

The create table command allows columns of datatype char, varchar, binary
and varbinary to be specified with extended lengths, as described above. These
datatypes and lengths are forwarded to the remote server on which thetableis
to be created.

21

Proxy tables

create existing proxy table

create proxy_table

alter proxy table

22

The create existing table command a so allows columns to be specified with
alength of greater than 255 bytes. Thisallows CISto treat columnsin remote
databases as char, varchar, binary or varbinary that previously had to betreated
astext or image columns.

Thereis till an opportunity for column size mismatch errors. For example, in
the case where the remote database contains a table with a column length of
5000 bytes, and the Adaptive Server Enterprise processing the create existing
table command only supports columns up to 1900 bytes, a size mismatch error
would occur. In this casg, it is necessary to re-specify the column as a text or
image column.

Inthe case wherethe proxy table column size exceedsthat of the corresponding
column in theremotetable, asize mismatch error is detected and the command
is aborted.

Thecreate proxy_table command imports metadata from aremote server and
converts column information into an internal create existing table command,
with a column list derived from the imported metadata. WWhen obtaining the
column metadata, conversion from theremote DBM Stypetointernal Adaptive
Server Enterprise typesis required.

If the size of remote columns (char, varchar, binary or varbinary datatypes)
exceeds 255 bytes but is still less than or equal to the maximum Adaptive
Server Enterprise column size, then equivalent Adaptive Server Enterprise
datatypes are used for the proxy table. However, if the size of aremote column
exceeds the column size supported by Adaptive Server Enterprise, then CIS
converts the corresponding proxy table column to text or image (asisthe case
with the current in-market implementation).

If this command operates on a proxy table, it isfirst processed locally, then
forwarded to the remote server for execution. If the remote execution fails, the
local changes are backed out and the command is aborted.

The remote server must process the command appropriately, or raise an error.
If anerror isproduced, the CIS side of the command is aborted and rolled back.

Chapter 2 Understanding Component Integration Services

select, insert, delete, update

CIS handles large column values when proxy tables are involved in DML
operations. CIS handles DML using one of several strategies:

TDS Language commands- if the entire SQL statement can be forwarded
to aremote server, then CIS does so using TDS Language commands
generated by Ct-Library - ct_command (CS_LANG_CMD).

The text of the language buffer may contain data for long char or binary
values that exceeds 255 bytes, and remote servers must handle parsing of
these command buffers.

TDS Dynamic commands - if CIS cannot forward the entire SQL
statement to aremote server (i.e. CISisforced to provide functional
compensation for the statement), then an insert, update or delete may be
handled by using TDS Dynamic commands, with parameters as needed,
using the Ct-Library function ct_dynamic (CS_PREPARE_CMD,

CS EXECUTE_CMD, CS DEALLOC_CMD).

The parameters for the dynamic command may be
CS_LONGCHAR_TYPE or CS_LONGBINARY _TYPE.

TDS Cursor commands - Ct-Library cursor operations can be used to
handle proxy table operations for select, update and delete if functional
compensation hasto be performed. For example, if updating aproxy table
and there are multiple tables in the from clause, CIS may have to fetch
rows from multiple data sources, and for each qualifying row, apply the
update to the target table. In this case, CIS usesct_cursor
({CS_DECLARE_CMD, CS OPEN_CMD,
CS_CURSOR_UPDATE_CMD, CS_CLOSE_CMD,

CS DEALLOC_CMD}).

After acursor isprepared, parameters are specified. These parametersmay
now include those of type CS_LONGCHAR or CS_LONGBINARY.

Bulk insert commands - when performing a select/into operation, if the
target server supportsthe bulk interface (only true of remote ASE’s), then
the remote server must be prepared to handle char/binary values> 255 (via
CS_LONGCHAR, CS_LONGBINARY values).

Columns from remote servers may be returned to CIS astype
CS_LONGCHAR_TYPE or CS_LONGBINARY _TYPE.

23

Proxy tables

RPC handling

RPCs sent to remote servers can contain parameters of typesCS L ONGCHAR
and CS_LONGBINARY. TheClIScommand cis_rpc_handling supportsthese
new types.

Note that sending long parameters to pre-12.5 serversis not allowed, as prior
versions of Adaptive Server Enterprise do not support CS_LONGCHAR or
CS _LONGBINARY data. CIS examines TDS capabilities for the remote
server prior to sending the RPC, and if the remote server cannot accept these
datatypes, an error results.

Cascading proxy tables

24

I ssues have arisen surrounding attempts to have a proxy table in one instance
of ClSreferenceaproxy tablein another instance. Version 12.5 addressesthose
issues, allowing cascading proxy table configurations between any number of
instances of CIS.

Thereare obviously conditionswhere this can cause problems, such ascircular
references, or transactions in which the second proxy table references aloca
table on the same server as the first proxy table. In this case, application
deadlocks can result that will not be detected by CIS. Configuring systems to
avoid these potential pitfallsisleft to the customer.

Chapter 2 Understanding Component Integration Services

Proxy databases

There are two types of proxy databases: user and system proxy databases. This
section describes the behavior of each.

User proxy databases

When a user proxy database is created, metadata for the proxy tablesis
imported automatically from the remote location which contains the actual
tables. This metadata is then used to create proxy tables within the proxy
database.

Proxy database creation is done through syntax which extends the create
database command:

create database <dbname>
[create database options]
[with default_location = 'pathname’]
[for proxy_update]]

The use of the clause with default_location allows the database creator to
specify the storage location of any new tables, and the location from which
metadata may be imported for automatic proxy table creation if the for
proxy_update clauseis also specified. The for proxy_update clause
establishes the database as a proxy database; the with default_location clause
defines the location from which proxy tables are imported. Without the for
proxy_update clause, the behavior of the with default_location clause isthe
sameasthat provided by the stored proceduresp_defaultloc - adefault storage
locationisestablished for new and existing table creation, but automaticimport
of proxy table definitionsis not done during the processing of the create
database command.

The value of pathname is a string identifier in the following format:
servername.dbname.owner.

Note: the dots are significant, and all three must be present! Each field in this
string is described as follows:

e servername - required field; represents the name of the server that owns
the objects to be referenced by proxy tables. Must exist in
master.dbo.sysser vers.srvname.

¢ dbname - may be omitted. The name of the database within servername
which contains objects to be referenced by proxy tables

25

Proxy databases

26

owner - may be omitted. The name of the owner of objectsto bereferenced
by proxy tables. Thismay berestrictive, so that if more than one user owns
objects in dbname, specifying the owner will select only those objects
owned by that user. Proxy tables must not be created for objects owned by
other users.

If for proxy_update isspecifiedwithnodefault_location, an error isreported.

When a proxy database is created (using the for proxy_update option), CIS
functions are called upon to:

Provide an estimate of the database size required to contain all proxy
tables representing the actual tables/views found in the primary server’s
database. This estimateis provided in terms of the number of database
pages needed to contain all proxy tables and indexes. Thissizeisused if
no size is specified, and no database devices are specified.

Note: if the database is created with specific size specifications [on
device_name =nn], or if adevice nameis specified with no size [on
device_name], then the size requirements for the proxy database are not
estimated; it is assumed in this case that the user or dba wants to override
the default size calculated for the proxy database.

If you are importing metadata from another Adaptive Server, remote
database users are imported before proxy tables are created. Each
imported database user must have a corresponding system user namein
syslogins.

Create all proxy tables representing the actual tables/views found in the
companion server’s database. Proxy tables are not created for system
tables.

Note: Before the proxy tables are created, the quoted identifier stateis
turned on, and each tableis created with quotes surrounding the table
name and column name. This allows the creation of tables containing
names that may be Sybase Transact-SQL reserved words. When all proxy
tables are created, the quoted identifier state is restored to its original
setting.

grant al permissions on proxy tables to PUBLIC
add the GUEST user to the proxy database
import database users from remote site (if Adaptive Server Enterprise)

grant create table permission to PUBLIC

Chapter 2 Understanding Component Integration Services

¢ Thedatabase status is set to indicate that this database is a user proxy
database. Thisis done by setting a statusfield in
master.dbo.sysdatabases.status3 (0x0001, DBT3_USER_PROXY DB).

After the database has been created, it contains a proxy table for each table or
view found in the default_location. Then the behavior for a user proxy
database, isidentical to prior database behavior. Users can create additional
objects, such as procedure, views, rules, defaults, etc., and both DDL and DML
statements that operate on proxy tables behave as documented in the
Component Integration Services User’s Guide.

The only exception to thisisthe alter database command. New syntax and
capabilities of thiscommand are described in the next section.

User Proxy Database Schema Synchronization

At times, it may be necessary for a DBA to force re-synchronization of the
proxy tables contai ned within the proxy database. This can be done through the
alter database command:

alter database <dbname>
[alter database options]
[for proxy_update]

If thefor proxy_update clauseisentered with no other options, the size of the
database will not be extended; instead, the proxy tables, if any, are dropped
from the proxy database and re-created from the metadata obtained from the
pathname specified during create database ... with default_location =
‘pathname’

If this command is used with other options to extend the size of the database,
the proxy table synchronization is performed after the size extensions are
made.

The purpose of thisalter database extensionisto providea DBA with an easy-
to-use, single step operation with which to obtain an accurate and up-to-date
proxy representation of all tables at a single remote site.

This re-synchronization is supported for all external data sources, and not just
the primary server inaHA-cluster environment. Also, adatabase need not have
been created withthefor proxy_update clause. If adefault storagelocation has
been specified, either through the create database command or using
sp_defaultloc, the metadata contained within the database can be
synchronized with the metadata at the remote storage location.

Certain behavior isimplied by the use of create/alter database to specify a
proxy database:

27

Proxy databases

e Maodification to the default location specified with the create database
command is not allowed using alter database.

« Local tables cannot be created in the proxy database. create table
commands result in the creation of proxy tables, and the actual tableis
created at the default |ocation.

e Thedefault location of the table may be specified in the create table
command, using the at 'pathname’ syntax. If the pathname differs from
the default location, then the alter database command will not
synchronize the metadata for this table.

e Inorder to change the default location, it is necessary to first drop the
database then re-create it with a new pathname specified in the with
default_location ='pathname’ clause. If the location is changed using
sp_defaultloc, then the new location is used to provide metadata
synchronization, and proxy tablesthat were created with the prior location
not be synchronized, and in fact may be dropped and replaced if the name
conflicts with that of tables at the new location.

System proxy databases

28

System proxy databases are provided which behave like user proxy databases,
with some notable enhancements and exceptions. These differences are
described in this section. System proxy databases are only used in an HA
configuration.

The purpose of providing system proxy databasesisto allow customer-written
applications to run on either node in a high-availability cluster. This does not
imply 'single-system image’ capability; rather, it suggests an environment in

which most user-written applications will be able to execute on either node in
the cluster. This means that both databases and user-created objects should be
visible to both nodes. To facilitate this capability, the notion of asystem proxy
database was introduced in version 12.0 of Adaptive Server Enterprise.

A system proxy database has the same name as the database in the primary
node which it references, and contains handling for the user-defined objects
that are necessary to support the application: Proxy tables are created for each
user table and view found in the primary database, and stored procedures are
converted to RPCs and forwarded to the node referenced by the proxy
database.

Chapter 2 Understanding Component Integration Services

System proxy database creation

A system proxy database is created automatically under the following
circumstances:

» TheHA cluster isbeing configured through the use of the stored procedure
sp_companion ServerName, 'configure’, with_proxydb

In this case, asystem proxy database is created for each user database
found in server indicated by ServerName.

» A create database command isissued in a server whose HA state is one
of MODE_APNC, MODE_SNC or MODE_ASNC.

When the creation of the system proxy databaseiscomplete, ClSfunctionswill
then be called upon to:

* grantcreate table to public - thiswill allow table creation on the primary
server to result in proxy table creation in the system proxy database.

Schema synchronization when current database has a system proxy database

In an HA cluster, some of the changes to a primary server’s database need to
be forwarded to the companion server, in order to keep both servers
synchronized.

Several DDL commands, when executed within a database that has a system
proxy database, will cause notification of the companion server and result in
automatic synchronization of the resulting changes:

e create table and drop table - local operation executes, resulting in the
local table being created or dropped. The command is then forwarded to
the companion server, for execution in the system proxy database, so that
aproxy table can be created or dropped

e create index and drop index - local operation executes, resulting in an
index being created or dropped. The server owning the system proxy
database is then notified, and the proxy table is dropped and re-created,
allowing the change to the index to be represented within the proxy table.

e create view and drop view - theloca operation succeeds, resulting in the
local view being created or dropped. The server owning the system proxy
database is then notified, and a proxy tableis either created or dropped.

If these commands are executed within the system proxy database, similar
behavior occurs:

29

Proxy databases

e createtable anddrop table - local proxy tableis created or dropped. The
command is then forwarded to the primary server, so that alocal table
referenced by the proxy table can be created or dropped.

e createindex anddrop index - local operation on the proxy table executes,
resulting in an index being created or dropped. The server owning the
primary databaseisthen notified, and an index iseither created or dropped
on the local table referenced by the proxy table

e create view and drop view - not allowed within a system proxy database.
Error 12818 is produced (see below).

Stored procedure execution within a system proxy database

If a stored procedure request is encountered when the current databaseis a
system proxy database, the stored procedure request isautomatically converted
to an RPC and sent to the server referenced by the system proxy’s default
location.

Additional behavior of the system proxy database

Certain commands, when executed within a system proxy database, will be
rejected with an error:

e create procedure and drop procedure
e create view and drop view

* create trigger and drop trigger

e create rule and drop rule

* create default and drop default

The error generated in these casesis. Msg 12818, Severity 16: Cannot create
an object of thistype in system-created proxy database

DDL commands behavior affected by proxy databases

30

Some commands will be affected by the implementation of proxy databases,
otherswill not. This section contains alist of DDL commands which are
affected by system proxy databases.

e dump database -
e dump transaction -

Chapter 2 Understanding Component Integration Services

* load database -

* load transaction -
e Ccreatetable-

e createview -

e createindex -

e create database -
e droptable-

e dropview -

e dropindex -

e drop database -

All other DDL commands remain unaffected by the existence of system proxy
databases.

31

File system access

File system access

Directory access

32

Version 12.5 provides access to the file system through the SQL language.
With file system access, you can create proxy tables that are mapped to file
system directories, or to individual files.

These features are bundled as an option and must be purchased separately.

A new class of proxy tablesisallowed in version 12.5 that enables SQL access
to file system directories and their underlying files. In order to create proxy
tables mapped to directoriesor files, you must have“ System Administrator” or
“System Security Officer” privileges. The supported syntax is:

create proxy_table <table_name>
external directory at "directory pathnamel[;R]"

The directory pathname must reference afile system directory visible to and
searchable by the Adaptive Server Enterprise process. A proxy tableis created
which maps column names to attributes of files that exist within the directory.
If the’;R’ (indicating "recursion") extension is added to the end of pathname,
ClSincludesentriesin all subordinate directories. Thefollowing table contains
adescription of the proxy table columns that are created when this command
successfully completes:

Table 2-3: Proxy table columns

Column
Name Datatype Description
id numeric(24) | ldentity value consisting of values from st_dev

and st_ino (See stat(2)). These two values are
converted first to asingle string (format:
"%0d%0141d"), and the string is then converted
to anumeric value.

filename | varchar(n) The name of the file within the directory
specifiedin at ' pathname’, or within directories
subordinate to pathname. While the length of
pathname is limited to 255 bytes, the total
length (n) of filename is system dependent, and
specified by the definition of MAXNAMLEN.
For Solaris systems, this valueis 512 bytes; for
most other systemsthiswill be 255 bytes.

Chapter 2 Understanding Component Integration Services

Column
Name

Datatype

Description

size

Int

For regular files - specifies the number of bytes
in the file. For directories - block special or
character special, thisis not defined.

filetype

varchar(4)

thefile type - legal values are: FIFO, for pipe
files; DIR for directories; CHRS for character
special files; BLKSfor block special files; REG
for ordinary files; UNKN for all other filetypes.
Links are automatically expanded, and will not

appear as a separate file type.

access

char(10)

access permissions, presented in amore or less
"standard’ Unix format: "drwxrwxrwx"

uid

varchar(n)

The name of thefile owner. Thevalueof nis
specified by the system definition L_cuserid,
whichis9onall systems except Compaq Tru64,
whereit is64. Thisvalueis0 on NT systems.

gid

varchar(n)

The name of the owning group. The value of n
is specified by the system definition L_cuserid,
whichis9onall systemsexcept Compaq Tru64,
whereit is64. Thisvalueis0 on NT systems.

atime

datetime

Date/time file data was | ast accessed

mtime

datetime

Date/time when file was last modified

ctime

datetime

Date/time when file status was last changed

content

image

The actual physical content of thefile (for

regular filesonly). NULL if thefileisnot a
regular file.

A proxy table that maps to afile system directory can support the following
SQL commands:

select - File attributes and content can be obtained from the proxy table
using the select command. Built-in functions that are designed to handle
text values are fully supported for the content column. (i.e. textptr,
textvalid, patindex, pattern).

insert - A new file or files can be created using the insert command. The
only column values that have meaning are filename and content; the rest
of the columns should be left out of the insert statement. If they are not
left out, they are ignored.

delete - files may be removed by the use of the delete command.

update - Only the name of afile may be changed using the update
command;

33

File system access

e readtext - the contents of afile may be retrieved using the readtext

command,;

e writetext - the contents of afile may be modified using the writetext
command;

No other SQL commands will operate on tables of thistype.

Regular file content isavailable only if the Adaptive Server Enterprise process
has sufficient privilegesto access and read thefile, and if the filetypeindicates
an’ordinary file’ Inall other cases, the content column will be null. For
example:

select filename, size, content

from directory_table
where filename like ‘%.html’

returns the name, size and content of regular fileswith asuffix of .html’, if the
Adaptive Server Enterprise process has access privilegesto thefile. Otherwise,
the content column will be NULL.

The create proxy_table command failsif the pathname referenced by
directory pathname is not a directory, or is not searchable by the Adaptive
Server Enterprise process.

If traceflag 11206 is turned ON, then messages are written to the errorlog that
contain information about the contents of the directories and the query
processing steps needed to obtain that information.

Recursion through subordinate directories

34

If the "pathname” specified in the create proxy_table statement contains the

;R extension, CIS traverses all directories subordinate to pathname, returning

information for the contents of each subordinate directory. When thisis done,

thefilename returned by aquery containsthe complete name of thefilerelative
to the pathname. In other words, all subordinate directory names appear in the
filename. For example, if pathname specifies "/work;R":

create proxy_table d1 external directory at "/work;R"
select filename, filetype from d1

returns values for files in subordinate directories as follows:

Table 2-4: Values for files

Filename Filetype
dirl DIR
dirl/filel.c REG

Chapter 2 Understanding Component Integration Services

File access

Filename Filetype
dirlffile2.c REG
dir2 DIR
dir2/filel.c REG

Another new classof proxy tablesareallowedinversion 12.5 that enables SQL
access to individua fileswithin afile system. The supported syntax is:

create proxy_table <table_name>
external file at " pathname" [column delimiter “<string>"]

When this command is used, a proxy table with one column (named ’'record’,
type varchar(255)) will be created. It is assumed in this case that the contents
of the file are readable characters, and individual records within the file are
separated by the newline (\n) character.

Itisalso possible to specify your own column names and datatypes, using the
create [existing] table command:

create existing table fname (
columnlint null,
column2 datetime null,
column3varchar(1024) null
etc. etc.
) external file at "pathname" [column delimiter “<string>"]

Columns may be any datatype except text, image, or aJava ADT. The use of
the existing keyword is optional, and has no effect on the processing of the
statement. In all cases (create table, create existing table, create
proxy_table), if thefilereferenced by pathname does not exist, it is created. If
it doesexigt, its contentsare not overwritten. Thereisno differencein behavior
between the create table and create existing table commands.

When aproxy table is mapped to afile, some assumptions about thefileand its
contents are made:

1 Thefileisaregular file (i.e. not a directory, block special, or character
special file);

2 The Adaptive Server Enterprise server process has at least read access to
thefile. If thefileisto be created, the server process must have write
access to the directory in which the file is to be created;

3 The contents of an existing file are in human-readable form;

35

File system access

36

Records within the file are delimited by a newline character;
The maximum supported record size is 32767 bytes;

Individual columns, except for the last one, are delimited by the column
delimiter string, which can be up to 16 byteslong; the default isa single
tab character;

Thereisacorrespondence between delimited val ues within each record of
the file and the columns within the proxy table.

With proxy tables mapped to files, it is possible to:

1

Back-up database tables to the file system using either select/into or
insert/select. When an insert statement is processed, each column is
converted to charactersin the default character set of the server. The
results of the conversion are buffered, and all columns (except for the last)
are delimited by asingle tab. The last column is terminated by anewline.
The buffer isthen written to thefile, representing a single row of data.

Provide a SQL alternative to using bep in and bep out. The use of a
select/into statement can easily back-up atableto afile, or copy afile's
contentsinto atable.

Query file content with the select statement, qualifying rows as needed
with search arguments or functions. For example, itis possibleto read the
individual records within the Adaptive Server Enterprise errorlog file:

create proxy_table errorlog
external file at "/usr/sybase/asel12_5/install/errorlog”
select record from errorlog where record like "%server%"

The query will return al rows from the file that match the like pattern. If
the rows arelonger than 255 bytes, they will be truncated. It is possible to
specify longer rows:

create existing table errorlog

(

record varchar(512) null

external file at "/usr/Sybase/asel2_5/install/errorlog”

Inthiscase, recordsupto 512 bytesinlength will bereturned. Again, since
the proxy table containsonly one column, the actual length of each column
will be determined by the presence of a newline character.

Only the select, insert data access statements are supported for file access.
update and delete will result in errorsif the file proxy isthe target of these
commands.

Chapter 2 Understanding Component Integration Services

Wheninserting valuesinto afile, all datatypesarefirst converted to char values
and then delimited by the column delimiter.

Important: truncate table setsthefilesizeto 0.

Traceflag 11206 is also used to log message to the errorlog. These messages
contain information about the stages of query processing that areinvolved with
file access.

Security considerations

ANSI joins

Only Adaptive Server Enterprise users with System Administrator (sa) or
System Security Officer (sso) roles are allowed to create proxy tablesthat are
mapped to files or directories. This requirement addresses the concerns over
the security aspects of accessing file system data from within the Adaptive
Server Enterprise server process (which may have root permission asit runs).

ANSI joins are fully supported for remote data access. If a query cannot be
translated, CIS will compensate functionally. The following rules apply to
ANSI joins with remote data:

When the remote server supports only ANSI joins

All queries containing outer joins are converted to ANSI joins.

When the remote server supports both ANSI joins and T-SQL joins

Queries containing ANSI join syntax are sent using ANSI join syntax. Queries
containing T-SQL outer join syntax are sent with T-SQL syntax.

When the remote server supports only DB2-ANSI

The query to the remote server will be sent in ANSI if all tablesin the from
clause participate in an ANSI join.

* Not sent:

select * from T1 left join T2 on
Tl.a=T2.a, T3

37

File system access

e Sent

select * from T1 Left Join T2 on
Tl.a=T2.aLleft Join T3 on
T3.a=T2.a

When an ANSI query is received for a server that does not support ANSI syntax

The query will be converted to T-SQL if possible.

50-Table join limit

Union in views

38

The 50-table join limit is fully functional with remote servers that support it.

CISfirst checks the capabilities of remote servers. If the 50-tablejoinis
supported by the remote server, the requested query is passed onto the remove
server.

If the remote server does not support a 50-table join, aquery is sent that
references 16 tables or less at atime.

New syntax to support the inclusion of the union operator within a view has
been added to version 12.5. Note that the resulting view is not updatable,
meaning that insert, delete and update operations are not allowed on views
containing the union operator.

Component Integration Services supports union in views when proxy tables
are referenced on either side of the union operator by forwarding as much
syntax as possible to aremote site. This makesit possible to create a’virtua
table’ consisting of separate tablesin Oracle and DB2, for example.

Thisfeatureisinternal to ASE/CIS, and does not directly affect remote servers.
However, when a statement is executed involving aview of thistype, and all
tables referenced by the view reside on the same remote server, the previously
defined union capability will be examined to determine whether the union
operator can be sent to the remote server.

Chapter 2 Understanding Component Integration Services

Referential integrity

You can use Component Integration Services to maintain referential integrity
between remote tables. See the section on constraints in the Transact-SQL
User’s Guide. During update, insert, and delete operations, Component
Integration Services checks the referenced table. If the check fails, the
transaction isrolled back.

39

Remote servers

Remote servers

This section explains how component I ntegration Services interacts with
remote server.

Defining remote servers

Use the system procedure sp_addserver to add entriesto the sysserverstable
for the local server and for each remote server that isto be called. The
sp_addserver syntax is:

sp_addserver server_name [,server_class [,network_name]]
where:
e server_nameisthe name used to identify the server. It must be unique.

e server_classisthe type of server. The supported server classes with the
types of serversthat are in each class are described in the following
sections. The default is server class ASEnterprise.

e network _nameisthe server namein theinterfacesfile. This namemay be
the same as server_name, or it may differ. The network_nameis
sometimes referred to as the physical name. The default isthe same name
as server_name.

Server class ASEnterprise

A server with server class ASEnterprise is Adaptive Server Enterprise version
11.5 or later. When CISfirst establishes a connection to a server in this class,
CIS determines the version (i.e. 11.5, 11.9.2, 12.0, etc.) and establishes server
capabilities based on the version found. For example, version 12.0 supports
ANSI syntax for outer joins, while prior versions do not.

Server class ASAnywhere

A server with server class ASAnywhere is an instance of Adaptive Server
Anywhere or Adaptive Server 1Q:

e Adaptive Server Anywhere 6.0 or later

40

Chapter 2 Understanding Component Integration Services

Server class ASIQ

A server with server class ASQ is any version of Adaptive Server 1Q of 12.0
or later.

Server class sql_server
A server with server class sgl_server is:
e SQL Server release 4.9 or earlier

Server class db2
A server with server class db2 is an IBM DB2 database accessed through:

» DirectConnect for MVS/ TRS (can also be configured as server class
direct_connect)

» Direct (gateway less) access to Mainframe Connect

Server class direct_connect

A server with server classdirect_connect is an Open Server-based application
that conforms to the direct_connect interface specification. Server class
access _server is synonymous with server class direct_connect. It is used for
compatibility with previous releases.

Open Server-based applications using server class direct_connect are the
preferred means of accessing all external, non-Sybase data sources.

Figure 2-1 illustrates the manner in which Adaptive Server with Component
Integration Services enabled interacts with clients and Open Server-based
applications. The data sources are not limited to those in this diagram:

41

Remote servers

Figure 2-1: Adaptive Server with CIS interacts with clients and other
servers

Network —a
> DirectConnect - AS/400
- DirectConnect - DB2
Client <> Cis
application >
<> DirectConnect - Orac|e
Adaptive Server
_ o | DirectConnect - Informix
Access to DirectConnect
Client - -
application

Server class sds

A server with server class sds conforms to the interface requirements of a
Specialty Data Store™ as described in the Adaptive Server Specialty Data
Sore Developer’s Kit manual. A Specialty Data Store is an Open Server
application you design to interface with Adaptive Server.

Connection management

42

When connecting to aremote server on behalf of aclient, CIS uses Client-
Library functions. Once the first connection to a remote server is established
for agiven client, that connection remains open until the client disconnects
from Component Integration Services.

Chapter 2 Understanding Component Integration Services

For servers of class ASA, ASE, ASQ, direct_connect (access server) and
sql_server (release 10.0 and later), only one connection is established to that
server for each client that requires accessto that server. All interaction with
these serversis done within this single connection context.

However, for pre-release 10.0 SQL Server, and servers of class db2, it may be
necessary to establish more than one connection to that server in order to
process a single client request. In this case, multiple connections are
established as needed, and all but one are closed when the Transact-SQL
command requiring them has completed.

LDAP directory services

The LDAP directory services meansthat it is no longer necessary to use an
interfaces file in both the client and the server. Version 12.5 supports LDAP
services for obtaining server information, and so does Component Integration
Services. When a connection to aremote server is attempted, CIS instructs
Open Client software to reference either the interfacesfile or an LDAP server.

CIS uses LDAP services only when the configuration file (libtcl.cfg) specifies
it. libtcl.cfg can be found at $SYBASE/$SYBASE _OCS/config/libtcl.cfg.

Note: When an LDAP Server is specified in libtcl.cfg then server information
becomes accessible from the LDAP Server only and ASE/CIS ighores any
(traditional) interfacesfile.

Secure communication with SSL

Using SSL, you can establish secure connections from CIS to any number of
remote serversthat support the SSL protocol (Adaptive Server enterprise 12.5
and some DirectConnects).

CIS handles SSL connections as follows:

* Thelocation of the trusted rootsfile is established. If the current server is
SSL -enabled, then all outbound CI'S connectionswill use the same trusted
roots file as Adaptive Server Enterprise.

e |If thecurrent server is SSL-enabled, then a connection property is
established to define the Open Client callback that will be used to respond
to achallenge from aremote SSL-enabled server. If the current server is
not SSL -enabled, then the callback used will fail any connectionto a
remote SSL-enabled server.

43

Remote servers

Trusted root files

Security issues

Thetrusted roots file contains certificates for other serversthat the local server
treats as trusted when properly added to the system. A trusted rootsfileis
accessible by the local server (Adaptive Server Enterprise) in:

$SYBASE_CERT/servername.txt
if $SYBASE_CERT is defined. Otherwiseitisin:

$SYBASE/$SYBASE_ASE/certificates/servername.txt (for UNIX)
%SYBASE%\%SYBASE_ASE%!\certificates\servername.txt (for NT)

where servername is the name of the current Adaptive Server.

When establishing a connection to a remote Adaptive Server, Client-Library
functions are used instead of a site handler when either cis_rpc_handling or
set transactional_rpc ison. Thismethod of establishing connectionsprevents
the remote server from distinguishing these connections from those of other
clients. Thus, any remote server security configured on the remote server to
allow or disallow connections from a given server does not take effect.

Another Adaptive Server with Component | ntegration Services enabled cannot
use trusted mode for remote server connections. This forces the Adaptive
Server to be configured with all possible user accountsif it isgoing to be used
with Component Integration Services.

Passwords are stored internally in encrypted form.

Remote server logins

44

To fully support remote logins, Client-Library provides new connection
properties which enable CISto regquest a server connection. This connection is
recognized at the receiving server as a server connection (as opposed to an
ordinary client connection), allowing the remote server to validate the
connection through the use of sysremotelogins as if the connection were made
by a site handler.

This feature is not enabled automatically. Instead, the SSO or DBA must
request it by executing sp_serveroption:

exec sp_serveroption <server_name>,
‘server login’, true | false

Chapter 2 Understanding Component Integration Services

Trusted mode

You cannot change the server login property if the current server’s
@@servername global variableiscurrently NULL.

If the server login option is enabled (set to TRUE), then CIS uses Client-
Library connection properties to establish connections to the specified server:

Remote passwords specified by the client application are passed unchanged to
the remote server. The use of and rules associated with remote passwords in
server logins are identical to those associated with site handler connections.

These connection properties are only established if:
e Theserver option ‘server login' is set to TRUE
e Theremote server is configured with server class ASEnterprise

e Thereisalocal server name defined for the ClS-enabled server (i.e. the
guery select @@servername returns something other than NULL)

Trusted mode can be used with CIS connectionsif “server logins’ is set for a
remote server.

Mapping of external logins

Adaptive Server Enterprise userswho invoke CIS, knowingly or unknowingly,
require login names/passwords to remote servers. By default, the
username/password pair used by CIS to connect to aremote server isthe same
username/password used by the client to connect to Adaptive Server
Enterprise.

This default mapping is frequently insufficient, and since itsfirst release CIS
has supported a one-to-one mapping of Adaptive Server Enterprise login
names and passwords to remote server login names and passwords. For
example, using the stored procedure sp_addexternlogin, it is possible to map
Adaptive Server Enterprise user steve, password sybase to DB2 login name
loginl, password passwordl:

sp_addexternlogin DB2, steve, loginl, passwordl

Inversion 12.5, it is possible to provide a many-to-one mapping so that all
Adaptive Server Enterprise users who need a connection to DB2 can be
assigned the same name and password:

sp_addexternlogin DB2, NULL, login2, password2

45

Remote servers

46

One-to-one mapping has precedence, so that if user steve has an external login
for DB2, that would be used rather than the many-to-one mapping.

In addition to this, it is possible to assign external loginsto Adaptive Server
Enterprise roles. With this capability, anyone with a particular role can be
assigned a corresponding login name/password for any given remote server:

sp_addexternlogin DB2, null, login3, password3, rolename

The use of the fifth argument to this procedure, containing the role name,
identifies the name of arole, rather than the name of a user. Whenever a user
with this role active requires a connection to DB2, the appropriate login
name/password for the roleis used to establish the connection. When
establishing a connection to a remote server for a user that has more than one
role active, each role is searched for an external login mapping, and the first
mapping found is used to establish the login. Thisis the same order as
displayed by the stored procedure sp_activeroles.

The general syntax for sp_addexternlogin is:

sp_addexternlogin
<servername>,
<loginname>,
<external_loginname>,
<external_password>
[, <rolename>]

<rolename> is optional; if specified then the loginname parameter isignored.
Precedence for these capabilities are as follows:

e |f one-to-one mapping is defined, it is used - this has the highest
precedence.

< |f no one-to-one mapping is defined, then if aroleisactive and amapping
for it can be found, the role mapping is used to establish aremote
connection;

e If neither of the above are true, then many-to-one mapping is used if
defined.

< If none of the above s true, then the Adaptive Server Enterprise login
name and password are used to make the connection.

If role mapping is done, and auser’sroleis changed (viaset role), then any
connections made to remote servers that used role mapping is disconnected.

The stored procedure sp_helpexternlogin has been updated to allow viewing
the various types of extern logins that have been added using
sp_addexternlogin. The syntax for sp_helpexternlogin is:

Chapter 2 Understanding Component Integration Services

sp_helpexternlogin [<servername> [,<loginname> [,<rolename>]]]

All three parameters are optional, and any of the parameters can be NULL.

The stored procedure sp_dropexternlogin has also been modified to accept a
third argument, <rolename>. If <role name> is specified then the second
argument, <login name>, isignored.

Remote server connection failover

A standard feature of Ct-Library version 12.0 and greater is the ability to
automatically failover connections from a server that is no longer available to
onethat isconfigured asafailover server. Thisfeatureis supported by CIS, but
requires modifications to directory servicesin order for it to take effect. For
example, server S2 can be configured to serve as afailover server for S1, and
vice-versa, by additions to the interfacesfile, as shown in this example;

S1
master tcp ether hostl 8000
query tcp ether host1l 8000
hafailover S2

S2
master ether host2 9000
query ether host2 9000
hafailover S1

If the interfaces file (or LDAP directory service) is set up to define afailover
configuration, then CI S takes advantage of it by automatically failing over
connections to the failover server if a connection to the primary server fails.

Remote server capabilities

Thefirst time Adaptive Server establishes a connection to aremote server of
class sds or direct_connect, it issues an RPC named sp_capabilities and
expectsaset of resultsinreturn. Thisresult set describesfunctional capabilities
of the remote server so that Component Integration Services can adjust its
interaction with that remote server to take advantage of available features.
Component Integration Services forwards as much syntax as possible to a
remote server, according to its capabilities.

47

Remote servers

For serversin other classes, CIS sets remote server capabilities for the remote
server based on a set of assumptions. For example, server class db2 inherits a
set of assumptions based on known capabilities of IBM’s DB2 database
management system. For server class ASEnterprise, capabilities are
established based on the version of ASE represented by the remote server.

48

Chapter 2 Understanding Component Integration Services

Query processing

The following section describes query processing within Component
Integration Services.

Processing steps

The query processing steps taken when Component Integration Servicesis
enabled are similar to the steps taken by Adaptive Server, except for the
following:

» If aclient connection is made in passthrough mode, the Adaptive Server
query processing is bypassed and the SQL text isforwarded to the remote
server for execution.

* When select, insert, delete or update statements are submitted to the
server for execution, additional steps may be taken by Component
Integration Services to improve the query’s performance, if local proxy
tables are referenced.

The query processing steps are shown in Figure 2-2.

An overview of these steps follows.

49

Query processing

Figure 2-2: Query processing steps

parse

normalize I

Y

preprocess

Component Integration
Services plan generatio

Adaptive Server
optimization/plan
eneration

Can Component

Integration Services :
handle the entire Com OCFQQ Pé%gg{aémn
statement? location optimizer

‘ execute I

Component I ntegration Server
Services access methods access methods

[] shaded boxesindicate steps taken by Component I ntegration Services.

Query parsing

The SQL parser checks the syntax of incoming SQL statements, and raises an

error if the SQL being submitted for execution is not recognized by the
Transact-SQL parser.

Query normalization

During query normalization, each object referenced in the SQL statement is
validated. Query normalization verifiesthe objects referenced in the statement
exist, and the datatypes are compatible with values in the statement.

Example select * from t1 where c1 = 10

50

Chapter 2 Understanding Component Integration Services

The query normalization stage verifies that table t1 with a column named c1
existsin the system catalogs. It also verifies that the datatype of column ¢l is
compatible with the value 10. If the column’s datatype is datetime, for
example, this statement is rejected.

Query preprocessing

Decision point

Query preprocessing prepares the query for optimization. It may change the
representation of a statement such that the SQL statement Component
Integration Services generates will be syntactically different from the original
Statement.

Preprocessing performs view expansion, so that a query can operate on tables
referenced by the view. It also takes steps such as reordering expressions and
transforming subqueries to improve processing efficiency. For example,
subquery transformation may convert some subqueries into joins.

After preprocessing, a decision is made as to whether Component Integration
Services or the standard Adaptive Server query optimizer will handle
optimization.

Component Integration Services will handle optimization (using a feature
known as quickpass mode) when:

e Every table represented in the SQL statement resides within asingle
remote server.

e Theremote server is capable of processing all the syntax represented by
the statement.

Component Integration Services determines the query processing
capabilities of the remote server by its server class. Servers with server
class sgl_server, or db2, have implied capabilities. For example,
Component Integration Services assumes that any server configured as
server class sgl_server is capable of processing all Transact-SQL syntax.

For remote servers with server class access_server or direct_connect,
Component Integration Services issues an RPC to ask the remote server
for its capabilities the first time a connection is made to the server. Based
on the server’s response to the RPC, Component Integration Services
determines the syntax of the SQL it will forward to the remote server.

¢ Thefollowingistrue of the SQL statement:

51

Query processing

» ltisaselect, insert, delete, or update statement

e [Ifitisaninsert, update, or delete statement, there are no identity or
timestamp columns, or referential constraints

e |t contains no text or image columns
* It contains no compute by clauses

e |t containsno for browse clauses

e Itisnot aselect...into statement

e Itisnotacursor-related statement (for example, fetch, declare, open,
close, deallocate, update or delete statements that include where
current of cursor)

If the above conditions are not met, quickpass mode cannot be used, and the
standard Adaptive Server query optimizer handles optimization.

Component Integration Services plan generation

If quickpass mode can be used, Component I ntegration Services produces a
simplified query plan. When statements contain proxy tables, they are executed
more quickly when processed by the remote server than when processed
through the Adaptive Server plan generation phase.

Adaptive Server optimization and plan generation

52

Adaptive Server optimization and plan generation eval uates the optimal path
for executing a query and produces a query plan that tells the Adaptive Server
how to execute the query.

If the update statistics command has been run for the tablesin the query, the
optimizer has sufficient data on which to base decisions regarding join order.
If the update statistics command has not been run, the Adaptive Server
defaults apply.

For more information on Adaptive Server optimization, refer to Chapter 7,
“The Adaptive Server Query Optimizer,” in the Performance and Tuning
Guide.

Chapter 2 Understanding Component Integration Services

Component Integration Services remote location optimizer

update statistics

Adaptive Server generates a query plan containing the optimal join order for a
multitable query without regard to the storage location of each table. If remote
tables are represented in the query, Component Integration Services, which
takes the storage location into account, performs additional optimization for
the following conditions:

» Join processing
» Aggregate processing

In order to make intelligent evaluations of a query to improve performance in
the above areas, statistics are required. These are obtained by executing the
command update statistics for a specific table.

When updating statistics on a remote table, Component Integration Services
intercepts the request and provides meaningful statistics for the remote table
and all of itsindexes (if any). The result of executing an update statistics
command is adistribution statistics page stored in the database, for each index.

In Adaptive Server, data used to create this distribution page comes from local
index pages. When you are updating statistics on aremote table, the data used
to create the distribution statistics page comes from the keys used to make up
the index on the remote table.

The Adaptive Server issues a query to the remote server to obtain all columns
making up the index, sorted according to position within the index. For
example, if tablel has an index made up of two columns, col1 and col2, then
the query to that server is sent as follows when update statistics is executed:

select coll, col2 fromtablel order by coll, col2

The results are then used to construct a distribution page in the format needed
by the optimizer.

The detailed distribution statistics are used to determine optimal join order.
This gives the server the ability to generate optimal queries against remote
databases that may not support cost-based query optimization.

53

Query processing

Join processing

54

On large tables, update statistics can take along time. To speed up the
process, turn ontrace flag 11209 before executing update statistics. Thistrace
flaginstructsupdate statistics to obtain only row countsonremotetables. The
Adaptive Server query optimizer uses the row count information to make
assumptions about the selectivity of a particular index. While these
assumptions are not as complete as the full distribution statistics, they provide
the minimal information needed to handle query optimization.

Component Integration Services remote location optimizer isolates join
conditions represented in the query plan. For each remote server that is
represented by two or more tablesin the join, Component Integration Services
modifies the query plan to appear as though asingle virtual table is being
processed for that server. Component Integration Services then forwards the
join conditions to the remote server during query execution.

For example, if aquery involvesfour tables, two that arelocated on the remote
server SERVERA and two that are located on the remote server SERVERB,
Component Integration Services processes the query as though it were atwo-
way join. The following query:

select * fromAl, A2, Bl, B2
where Al.id = A2.id and A2.id = Bl.id
and Bl.id = B2 id

gets converted to:
select * fromVl, V2 where V1.id = V2.id

V1isthe virtual table representing the results of the join between Al and A2
(processed by SERVERA), and V2 is the virtua table representing the results
of the join between B1 and B2 (processed by SERVERB). Since the Adaptive
Server usesnested iteration (Iooping) to processinner tablesof ajoin, the query
is processed as follows:

open cursor on Vi

fetch V1 row

for each rowin V1

open a cursor on V2

fetch V2

route results V1, V2 to client
cl ose cursor on V2

Chapter 2 Understanding Component Integration Services

Aggregate processing

Query execution

Component Integration Services optimizes queries containing ungrouped
aggregate functions (min, max, sum, and count) by passing the aggregate to
the remote server if the remote server is capable of performing the function.

For example, consider the following query on the remote table Al:
sel ect count(*) from Al where id > 100

The count(*) aggregate is forwarded to the remote server that owns Al.

The query execution stage receives aquery plan, generated either as aresult of
an adhoc query or a stored procedure, and executes each step of the plan,
according to the information stored in the plan. Query plan structures are
tagged with information that indicates which access method isto be invoked.
If atableislocal, then normal Adaptive Server access methods used to process
aquery are activated as required by the plan execution logic. If thetableis
remote, then Component Integration Services access methods are invoked to
process each table (or virtual table) represented in the query.

Distributed query optimization

The performance of queriesinvolving proxy tablesthat reference two or more
remote serversis critical to the success of the CIS features incorporated into
Adaptive Server Enterprise. Several optimization strategies are provided to
make distributed query processing as optimal as possiblewithin the constraints
of the current Adaptive Server Enterprise query processor.

Optimizer cost model for proxy tables

In previous rel eases, the Adaptive Server Enterprise optimizer has been
modified to incorporate the cost of network access to remote servers. The
network cost was pretty much hard-coded into Adaptive Server Enterprise’s
optimizer as an algorithm that assumes network exchanges will be required to

e openacursor
. fetch 50 rows

e closeacursor.

55

Query processing

Sort/Merge joins

An exchange is required for each 50 rows. The cost of an exchange in prior
releases was hard-coded at 100 milliseconds. With version 12.5, the cost of a
single exchange is under the user’s control, and is specified on a per-server
basis, defaulting to 2000 milliseconds, by the sp_serveroption stored
procedure:

sp_serveroption <servername>, "server cost", "nnnn"

Where nnnn is a string of numeric digits representing the number of
milliseconds to be used per exchange during the optimizer’s calculation of
network cost. The string "server cost" represents a new server option
introduced with version 12.5.

Note The server cost limit is 32767. If you exceed that limit, an arithmetic
overflow error occurs.

When a new server is added to sysservers using the stored procedure
sp_addserver, the default cost, 1000ms, is stored in sysattributes for that
server. The use of sp_serveroption may be used to specify a greater or lesser
cost for agiven server. The stored procedure sp_helpserver has also been
modified to show the current network cost associated with the server.

In the Adaptive Server Enterprise 12.0, sort/merge joins were enabled as a
possiblejoin strategy for joining local tables. However, this strategy isdisabled
if any table in aquery is aproxy table. Joins between proxy tables will not be
managed by the sort/merge algorithm.

Semi joins (Reformatting)

56

Reformatting allows the contents of the inner table of a nested loop join to be
transferred to awork table. A clustered index is created on the join column of
the work table, and subsequent join operations use this work table rather than
the original.

When a proxy table is chosen to be the inner table of a nested loop join, the
reformatting strategy can result in significant performance improvements, as
the network is only accessed once, rather than for each row obtained by the
outer table(s).

Chapter 2 Understanding Component Integration Services

Component Integration Services access methods

The Component Integration Services access methods interact with the remote
serversthat contain objects represented in aquery. In Adaptive Server 12.5, all
interaction is done through Client-Library.

When an entire statement can be forwarded to the remote server, the statement
is taken from the query plan. After any parameters have been substituted into
the text of the statement, the entire statement is forwarded to the appropriate
remote server.

When the Adaptive Server optimizer and plan generator are involved, the
statement or fragment of a statement that isto be executed remotely is
constructed from data structures contai ned within the query plan. The
statement or fragment of a statement is then forwarded to the appropriate
remote server.

The results from the remote servers are then converted into the necessary
internal data types, and processed as if they were derived from local tables.

When an order by is processed by the remote server, the results may be
different from what Adaptive Server would return for the same query, because
the sort order is determined by the remote server, not by Adaptive Server.

Query plan execution

Any command that could affect atable is checked by the server to determine
whether the object hasalocal or remote storagelocation. If the storagelocation
is remote, then the appropriate access method isinvoked when the query plan
isexecuted in order to apply the requested operation to the remote objects. The
following commands are affected if they operate on objectsthat are mapped to
aremote storage location:

e alter table

* Dbegin transaction

e commit

e create index

* create table

e create existing table
* deallocate table

e declare cursor

57

Query processing

e delete
e drop table
e dropindex

* execute

¢ fetch
e insert
e open

e prepare transaction

* readtext
* rollback
* select

e set

e setuser

* truncate table
* update
e update statistics

e writetext

create table command

58

When the server receivesacreate table command, the command isinterpreted
as areguest for new table creation. The server invokes the access method
appropriate for the server class of the table that isto be created. If it isremote,
thetableiscreated. If thiscommand is successful, system catal ogs are updated,
and the object appearsto clientsas alocal tablein the database in which it was
created.

The create table command is reconstructed in a syntax that is appropriate for
the server class. For example, if the server classis db2, then the command is
reconstructed using DB2 syntax before being passed to the remote server.
Datatype conversions are made for datatypes that are unique to the Adaptive
Server environment.

Some server classes have restrictions on what datatypes can and cannot be
supported.

Chapter 2 Understanding Component Integration Services

The create table command is passed to remote servers as alanguage request.

create existing table command

When acreate existing table command isreceived, it isinterpreted as a
request to import metadata from the remote or external location of the object
for updating system catalogs. Importing this metadata is performed by means
of three RPCs sent to the remote server with which the object has been
associated:

* sp_tables — verifies that the remote object actually exists.

* sp_columns — obtains column attributes of the remote object for
comparison with those defined in the create existing table command.

* sp_statistics — obtainsindex information in order to update the local
system table, sysindexes.

alter table command

When the server receives the alter table command, it passes the command to
an appropriate access method if:

¢ The object on which the command is to operate has been associated with
aremote or external storage location.

¢ Thecommand consistsof anadd column request. Requeststo add or drop

constraints are not passed to the access methods; instead, they are handled
locally.

The alter table command is passed to remote servers as alanguage request.

create index command

When the server receives the create index command, it passes the command
to an appropriate access method, if the object on which the command isto
operate has been associated with a remote or external storage location.

The command is reconstructed using a syntax appropriate for the class and is
passed to the remote server for execution.

The create index command is passed to remote servers as a language request.

59

Query processing

drop table command

When the server receivesthe drop table command for aremote table, a check
is made to determine whether the table to be dropped has been created with the
existing option. If so, references to the abject within the system tables are
removed, and the operation is complete.

If the table was not created with the existing option, the command is passed to
an appropriate access method, if the object on which the command isto operate
has been associated with aremote or external storage location.

The drop table command is reconstructed using a syntax appropriate for the
class and is passed to the remote server for execution.

This command is passed to remote servers as a language request.

In all cases, references to the object from within the system catalogs are
removed.

drop index command

truncate table comm

60

When the server receivesthe drop index command, it passes the command to
an appropriate access method, if the object on which the command isto operate
has been associated with aremote or external storage location.

Thedrop index command is reconstructed using a syntax appropriate for the
class and is passed to the remote server for execution.

This command is passed to remote servers as a language request.

and

When the server receivesthetruncate table command, it passes the command
to an appropriate access method, if the object on which the command isto
operate has been associated with aremote or external storage location.

The command is reconstructed using a syntax appropriate for the classand is
passed to the remote server for execution. Since this syntax is unique to the
Adaptive Server environment, a server of class db2 would receive adelete
command with no qualifying where clause:

delete from t1

Thetruncate table command is passed to remote servers as alanguage request.

Chapter 2 Understanding Component Integration Services

Passthrough mode

Passthrough mode is provided within Component Integration Servicesasa
means of enabling a user to perform native operations on the server to which
the user is being “passed through.”

For example, requesting passthrough mode for an Oracle server, allowsyou to
send native Oracle SQL statementsto the Oracle DBMS. Results are converted
into aform that is usable by the Open Client™ application and passed back to
the user.

The Transact-SQL® parser and compiler are bypassed in this mode, and each
language batch received from the user is passed directly to the server to which
the user is connected in passthrough mode. Results from each batch are
returned to the client.

There are several ways to use passthrough mode:
¢ Theconnect to command

e Thesp_autoconnect stored procedure

e Thesp_passthru stored procedure

e Thesp_remotesql stored procedure

The connect to command

The connect to command enables users to specify the server to which a
passthrough connection is required. The syntax of the command isas follows:

connect to server_name

where server_nameisthe name of aserver added to the sysserverstable, with
its server class and network name defined. See sp_addserver in the Adaptive
Server Reference Manual.

When establishing a connection to server _name on behalf of the user, the
server uses:

e« Aremotelogin alias set using sp_addexternlogin, or
¢ The name and password used to communicate with the Adaptive Server.

In either case, if the connection cannot be made to the server specified, the
reason is contained in a message returned to the user.

61

Query processing

Example

62

Once a passthrough connection has been made, the Transact-SQL parser and
compiler are bypassed when subsequent language text is received. Any
statements received by the server are passed directly to the specified remote
server.

Note Some database management systems do not recognize more than one
statement at atime and produce syntax errors if, for example, multiple select
statements were received as part of a single language text buffer.

After statements are passed to the requested server, any results are converted
into aform that can be recognized by the Open Client interface and sent back
to the client program.

To exit from passthrough mode, issue the disconnect, or disc, command.
Subsequent language text from this client is then processed using the Transact-
SQL parser and compiler.

Permission to use the connect to command must be explicitly granted by the
System Administrator. The syntax is:

grant connect to user_name
To revoke permission to use the connect to, the syntax is:
revoke connect from user_name

The connect to permissions are stored in the master database. To globally
grant or revoke permissions to “public”, the System Administrator sets the
permissions in the master database; the effect is server-wide, regardless of
what database is being used. The System Administrator can only grant or
revoke permissionsto or from a user, if the user isavalid user of the master
database.

The System Administrator can grant or revoke “all” permissionsto or from
“public” within any database. If the permissions are in the master database,
“al” includes the connect to command. If they are in another database, “all”
does not include the connect to command.

The System Administrator wants to revoke permission from “public” and
wants only the user “fred” to be able to execute the connect to command.
“fred” must be made avalid user of master. To do this, the System
Administrator issues the following commands in master:

revoke connect from public
sp_adduser fred
grant connect to fred

Chapter 2 Understanding Component Integration Services

sp_autoconnect

sp_passthru

Some users may always require a passthrough connection to a given server. If
thisisthe case, Component Integration Services can be configured so that it
automatically connects these usersto a specified remote server in passthrough
mode when the users connect to the server. Thisfeatureis enabled and disabled
by the system procedure sp_autoconnect using the following syntax:

Sp_autoconnect server_name, true|false [,loginname]

Before using sp_autoconnect, add the server_name to sysservers by using
sp_addserver.

A user can request automatic connection to a server using sp_autoconnect,
but only the System Administrator can enabl e or disable automatic passthrough
connection for another user. Thus, only the System Administrator can specify
athird argument to this procedure.

If the second argument istrue, the autoconnect feature is enabled for the
current user (or the user specified in the third argument). If the second
argument is false, the autoconnect feature is disabled.

Anytime auser connects to the server, that user’s autoconnect statusin
sysloginsis checked. If enabled, the server_name, also found in syslogins
(placed there by sp_autoconnect), is checked for validity. If the server is
valid, the user is automatically connected to that server, and a passthrough
status is established. Subsequent language statements received by the server
from this user are handled exactly asif the user explicitly entered the connect
command. This user then views the server very much like a passthrough
gateway to the remote server.

When an “autoconnected” user executes adisconnect, she or heis returned
normally to the server.

If the remote server cannot be reached, the user (unlessthe user is assigned the
“sa” role) will not be connected to the local Adaptive Server. A “login failed”
error message is returned.

Thesp_passthru procedure alows the user to passa SQL command buffer to
aremote server. The syntax of the SQL statement(s) being passed is assumed
to bethe syntax native to the class of server receiving the buffer; no trandation
or interpretation is performed. Results from the remote server are optionally
placed in output parameters. The syntax for sp_passthru follows:

63

Query processing

Example

sp_remotesql

64

sp_passthru server, command, errcode, errmsg, rowcount
[, argl, arg2, ... argn]

where:

» server isthenameof theserver that isto receive the SQL command buffer;
the datatype is varchar(30).

e command isthe SQL command buffer; the datatype is varchar(255).

« errcodeisthe error code returned by the remote server; the datatypeisint
output.

e errmsg isthe error message returned by the remote server; the datatypeis
varchar(255) output.

e rowcount isthe number of rows affected by the last command in the
command buffer; the datatype is int output.

e argl-argn are optional parameters. If provided, these output parameters
will receive the results from the last row returned by the last command in
the command buffer. The datatypes may vary. All must be output
parameters.

sp_passthru ORACLE, "select date fromdual", @rrcode
out put, @rrmsg output, @ owcount output, @radate
out put

This example returns the date from the Oracle server in the output parameter
@oradate. If an Oracle error occurs, the error codeisplaced in @errcode and
the corresponding message isplaced in @errmsg. The @rowcount parameter
issettol.

For more information on sp_passthru and its return status, refer to the
Adaptive Server Reference Manual.

sp_remotesql allows you to pass native syntax to aremote server. The
procedure establishes a connection to aremote server, passes a query buffer,
and relays the results back to the client. The syntax for sp_remotesql isas
follows:

sp_remotesql server_name, query_bufl
[, query_buf2, ..., query_buf254]

where:

e server_nameisthe name of a server that has been defined using
sp_addserver.

Chapter 2 Understanding Component Integration Services

Example

Quoted identifier

e server_nameisavarchar(30) field. If server_nameisnot defined or is not
available, the connection fails, and the procedure is aborted. This
parameter is required.

e query_buflisaquery buffer of type char or varchar with a maximum
length of 255 bytes. This parameter isrequired.

Each additional buffer ischar or varchar with a maximum length of 255 bytes.
If supplied, these optional arguments are concatenated with the contents of
query_bufl into asingle query buffer.

sp_renotesql freds_server, "select @ersion"

In this example, the server passes the query buffer to freds_server, which
interprets the select @@Vversion syntax and returns version information to the
client. The returned information is not interpreted by the server.

For more information on sp_remotesql and its return codes, refer to the
Adaptive Server Reference Manual.

support

Inversion 12.5, quoted identifiers will be forwarded to remote servers that
support them. Thisistriggered by a set command:

set quoted identifier on

If this thread property is enabled, CIS will quote identifiers before sending
SQL statements to remote servers.

Remote servers must have the ability to support quoted identifiers. Thereisa
capability in the sp_capabilities result set reserved for this purpose:

» Capability id: 135
» Capability name: quoted identifier
» Capability value: 0 = no support; 1 = supported

The capability defaultsto O for Direct Connects that do not provide avalue for
this capability. Lack of support for this ability has resulted in CR 140298.

65

Query processing

auto identity option

Triggers

66

When the Adaptive Server auto identity database option is enabled, an
IDENTITY columnis added to any tablesthat are created in the database. The
column nameis CIS IDENTITY_COL, for proxy tables, or
SYB_IDENTITY_COL, for local tables. In either case, the column can be
referenced using the syb_identity keyword.

Component Integration Services allowstriggerson proxy tables; however their
usefulnessislimited. It is possible to create atrigger on a proxy table and the
trigger will be invoked just as it would be for anormal Adaptive Server table.
However, before and after image datais not written to the log for proxy tables
because theinsert, update and delete commands are passed to the remote
server. The inserted or deleted tables, which are actually views into the log,
contain no datafor proxy tables. Users cannot examinethe rows being inserted,
deleted, or updated, so atrigger with a proxy table has limited value.

Chapter 2 Understanding Component Integration Services

RPC handling and Component Integration Services

When Component Integration Servicesis enabled, you can choose between the
site handler or Component Integration Services to handle outbound remote
procedure calls (RPCs). Each of these mechanismsis described in the
following sections.

Site handler and outbound RPCs

Within an Adaptive Server, outgoing RPCs are transmitted by means of a site
handler, which multiplexes multiple requests through a single physical
connection to aremote server. The RPC is handled as part of a multistep
operation:

1

4

Establish connection — The Adaptive Server site handler establishes a
single physical connection to the remote server. Each RPC requiresthat a
logical connection be established over this physical connection. The
logical connection is routed through the site handler of the intended
remote server.

The connection validation process for these connect requests is different
than that of normal client connections. First, the remote server must
determine if the server from which the connect request originated is
configured in its sysserverstable. If so, then the system table

sysremotel ogins is checked to determine how the connect request should
be handled. If trusted mode is configured, password checking is not
performed. (For more information about trusted mode, see “ Trusted
Mode” on page 2-32.)

Transmit the RPC — The RPC request is transmitted over the logical
connection.

Process results — All results from the RPC are relayed from the logical
connection to the client.

Disconnect — The logical connection is terminated.

Because of the logical connect and disconnect steps, site handler RPCs can be
slow.

67

RPC handling and Component Integration Services

Component Integration Services and outbound RPCs

68

If Component Integration Services has been enabled, a client can use one of
two methods to request that Component | ntegration Services handle outbound
RPC requests:

e Configure Component Integration Services to handle outbound RPCs as
the default for all clients by issuing:

sp_configure "cis rpc handling", 1

If you usethismethod to set thecis rpc handling configuration parameter,
all new client connections inherit this behavior, and outbound RPC
requests are handled by Component Integration Services. Thisisa server
property inherited by all future connections. The client can, if necessary,
revert back to the default Adaptive Server behavior by issuing the
command:

set cis_rpc_handling off

« Configure Component Integration Services to handle outbound RPCs for
the current connection only by issuing:

set cis_rpc_handling on

This command enables cis rpc handling for the current thread only, and
will not affect the behavior of other threads.

When cis rpc handling is enabled, outbound RPC requests are not routed
through the Adaptive Server’s site handler. Instead, they are routed through
Component Integration Services, which uses persistent Client-Library
connections to handle the RPC request. Using this mechanism, Component
Integration Services handles outbound RPCs as follows:

1 Determines whether the client already has a Client-Library connection to
the server in which the RPC isintended. If not, establish one.

2 Sendsthe RPC to the remote server using Client-Library functions.

3 Relaystheresults from the remote server back to the client program that
issued the RPC using Client-Library functions.

RPCs can be included within a user-defined transaction. In fact, all work
performed by Component Integration Services on behalf of its client can be
performed within asingle connection context. Thisallows RPCsto beincluded
in atransaction’s unit of work, and the work performed by the RPC can be
committed or rolled back with the other work performed within the transaction.
Thistransactional RPC capability is supported only when release 10.0 or later
Servers or DirectConnect servers are involved.

Chapter 2 Understanding Component Integration Services

The side effects of using Component Integration Services to handle outbound
RPC requests are as follows:

¢ Client-Library connections are persistent so that subsequent RPC requests
can use the same connection to the remote server. This can result in
substantial RPC performance improvements, since the connect and
disconnect logic is bypassed for al but the first RPC.

» Work performed by an RPC can be included in atransaction, and is
committed or rolled back with the rest of the work performed by the
transaction. This transactional RPC behavior is currently supported only
when the server receiving the RPC is another Adaptive Server or a
DirectConnect which supports transactional RPCs.

» Connect requests appear to aremote server asordinary client connections.
The remote server cannot distinguish the connection from a normal
application’s connection. This affects the remote server management
capabilities of an Adaptive Server, since no verification is performed
against sysremotelogins, and all connections must have valid Adaptive
Server login accounts established prior to the connect request (trusted
mode cannot be used in this case). .

Text parameters for RPCs

A new feature has been added to Adaptive Server Enterprise that provides the
ability to send large chunks of datain a single remote procedure call. Thisis
done by treating certain parameters astext pointers, then de-referencing these
text pointersto obtain thetext values associated with them. Thetext dataisthen
packaged into 32k chunks and handed to Client Library as parametersto the
RPC.

A text pointer isidentified as a parameter of type binary(16) or varbinary(16).
Thetext valuereferenced by each text pointer parameter will be obtained when
the RPC is executed, and expanded into 32k chunks, each of which is passed

to Client Library as a parameter of type CS LONGCHAR_TYPE.

This behavior istriggered by a new set command:
set textptr_parameters ON

When an RPC isrequested (cis_rpc_handling must be ON), text pointers are
de-referenced in the ClI S layer, and the text value obtained is used to construct
one or more parameters for Client Library.

69

RPC handling and Component Integration Services

70

In order for thisto work, the text pointers must be preceded by a pathname
argument, which isused to identify the table from which the text pointers have
been derived. For example:

declare @pathname varchar(90)
declare @textptrl binary(16)
declare @textptr2 binary(16)
select @pathname = "mydatabase.dbo.t1",
@textptrl = textptr(cl),
@textptr2 = textptr(c2)
from mydatabase.dbo.t1
where ... (whatever)
set textptr_parameters ON
exec NETGW...myrpc @pathname, @textptrl, @textptr2
set textptr_parameters OFF

When the RPC named 'myrpc’ gets sent to server NETGW, the @pathname
parameter is not actually sent, but is used to help locate the text values
referenced by the textptr’'s @textptrl and @textptr2.

The varchar parameter @pathname must immediately precede the binary(16)
parameter, otherwise @textptrl will be considered an ordinary parameter and
will be transmitted to the server NETGW as anormal binary(16) value.

If the text values of atext pointer exceed 32k bytesin size, the text will be
broken into 32k chunks, each of which will be a separate parameter of type
CS_LONGCHAR_TYPE.

The current value of @@textsize will be ignored.

This schemeis d so designed to work with proxy tables mapped to remote
procedures. For example:

create existing table myrpctable

(
id int, -- result column
crdate datetime, -- result column
name varchar(30), -- result column
_pathname varchar(90), -- parameter column
_textptrl binary(16), -- parameter column
_textptr2 binary(16), -- parameter column

) external procedure at 'NETGW...myrpc’

go

declare @textptrl binary(16)

declare @textptr2 binary(16)

select @textptrl = textptr(cl), @textptr2 = textptr(c2)

from mydatabase.dbo.tl where <whatever>

set textptr_parameters ON

select id, crdate, name

from myrpctable

where_pathname = "mydatabase.dbo.t1" and

Chapter 2 Understanding Component Integration Services

_textptrl = @textptrl and

_textptr2 = @textptr2
When the query against the proxy table myrpctableisprocessed, CISwill send
an RPC named 'myrpc’ to the server 'NETGW'’. The parameters will be
derived from the search arguments contained in the where clause of the query.
Since the 'textptr_parameters option has been set ON, the textptr’'s will be
expanded to CS LONGCHAR_TYPE, just asin the case of the RPC example
shown previously.

Text parameter support for XJS/390

Because of the ability to forward large blocks of text as RPC parameters, it is
now possible for CIS to interact with IBM mainframes using XJS/390.
XJS/390 scripts (Javascript-like syntax) can be stored within Adaptive Server
Enterprise tables (or files accessible via proxy tables), and forwarded to the
mainframe using an RPC. The syntax of the script is analyzed and executed by
XJS/390 facilities, and result sets are generated according to the procedural
logic of the script.

In this way, several new features are enabled:

e Itisnow possible for database events within Adaptive Server Enterprise
to result in the generation of an MQ Series message. Since XJS/390
M script supports the generation of messages, an RPC can be sent to the
mainframe to request that such a message be generated in response to a
triggered event within the database. This can be thought of as SEEB-like
functionality, without the use of Replication Server.

¢ ClSusers now have accessto VSAM, IMS and MQ Series data without
the need to install third party middleware such as InfoHub.

Notethat version 2.0 or later of XJS/390isrequired for handling scriptsasRPC
parameters. Please refer to the XJS/390 specification for details.

71

Transaction management

Transaction m

Two-phase comm

72

anagement

Transactions provide away to group Transact-SQL statements so that they are
treated as a unit—either all work performed by the statementsis committed to
the database, or none of itis.

For the most part, transaction management with Component Integration
Servicesis the same as transaction management in Adaptive Server, but there
are some differences. They are discussed in the following section.

it
Two-phase commit transaction management is now available for remote data.
It is transparent to user-written applications.

This service tracks the state of atransaction in thelocal ClS-enabled server, as
well asin all remote servers participating in transactions. When a user
application commits atransaction, the commit ispropagated to all participating
remote servers using the Adaptive Server Transaction Coordinator (ASTC).

The management of multi-site transactionsis handled by the ASTC; CIS
registers new participating serversfor each transaction, then turns over control
of the transaction coordination to ASTC.

Configure sybsystemdb for at least 10MB.

Version 12.5 introduces a powerful mechanism for supporting distributed
transaction management transparently, using only the services of Adaptive
Server Enterprise. Thisfeature is now used to support transparent two-phase
commit services between local and remote Adaptive Server Enterprise 12.0
servers, involving both RPC and DML (select, insert, delete, update)
operations.

In version 12.0, transparent two-phase commit was limited to DTM-enabled
Adaptive Server Enterprise’s. However, with version 12.5, this limit has been
removed and support for DTM-enabled DirectConnects has been provided. A
Direct Connect will indicate its ability to handle two-phase commit
transactions by means of the capability for Transactions:

Table 2-5: Transaction capabilities
CAP ID ‘ Value ‘ Description

109 0 No support for transactionsis provided. CIS sends no
transaction control statements or RPCs to remote servers
inthis case.

Chapter 2 Understanding Component Integration Services

CAP ID Value Description

109 1 'Best Effort’ support is provided. This requires CISto
send begin tran, prepare tran, commit tran, rollback tran
commands to the DirectConnect when appropriate, and
the DirectConnect will tothe best it can to properly handle
the commands (and report errors/failures).

109 2 Can participate in two-phase commit operations managed
by ASTC, implying support for ASTC's Native RPCs.

DDL is not supported within a distributed transaction. An attempt to do so
resultsin an exception.

Server classes and ASTC

Internally, ASTC views a server as one of three types: DTM-enabled, Pre-
DTM, or No-DTM. These types map to the three sets of callbacks used, and
map to server classes as indicated in the following table:

Table 2-6: ASTC and CIS server classes

ASTC Server Type CIS Server Class

DTM-enabled ASEnterprise (12.x or greater)

Pre-DTM ASEnterprise (pre-12.x)
ASAnywhere

sol_server(10.x or greater)

sds

No-DTM ASIQ

sgl_server (pre-system 10)
db2

Transaction processing through an Adaptive Server Enterprise release 12.x
server to pre-DTM and No-DTM remote servers should produce the same
output as transaction processing through a pre-12.x server to the same remote
servers.

Before starting distributed transactions, the local server must be named.

Strict DTM enforcement

To ensure complete two-phase commit capability, ASTC uses the concept of
strict dtm enforcement. When enabled, strict dtm enforcement causes a
transaction to abort if an attempt is made to include apre-DTM or no-DTM
server in the transaction.

73

Transaction management

Enable xact coordination

Enable CIS

CIS set commands

74

ASTC uses the configuration option enable xact coordination. This option,
enabled by default, allows ASTC to manage all transactions involving remote
servers. You must enable CISbefore xact coordination isenabled. Whilexact
coordination is enabled, CIS cannot be disabled. When xact coordination is
enabled, transactional_rpc’sare implicitly enabled.

ASTC relies on CIS to handle all communication with remote servers. Since
ASTC isenabled by default (enable xact coordination), CISis also enabled
by default.

The behavior of the cis rpc handling configuration property and the set
transactional_rpc commands has changed with the introduction of ASTC. In
earlier releases, enabling cis rpc handling caused all RPCs to be routed
through CIS Client-Library connection. As aresult, whenever cis rpc
handling was enabled, transactional_rpc behavior occurred whether or not it
had been specifically set.

With Adaptive Server Enterpriserelease 12.x, thisbehavior has changed. If cis
rpc handling is enabled and transactional_rpcs is off, RPCswithin a
transaction are routed through the site handler. RPCs executed outside a
transaction are sent viathe CIS Client-Library connection. Thefollowing table
illustrates this change in functionality. Aswith previous releases, cis rpc
handling is disabled by default.

Table 2-7: CIS RPC Handling and Transactional RPCs
12.x Pre-12.x
Non-transactional Non-transactional

CIS RPC handling OFF
Transactional RPCs OFF

CIS RPC handling ON Non-transactional Transactional
Transactional RPCs OFF
CIS RPC handling ON Transactional Transactional

Transactional RPCs ON

Chapter 2 Understanding Component Integration Services

Attach and detach

Pre-12.x servers

ASTC provides the capability to attach and detach from atransaction. This
allows a user to detach from a transaction that will later be attached to a TP
monitor for completion.

An exception resultsif you attempt to detach from atransaction that includes
pre-DTM and no-DTM servers.

Component Integration Services makes every effort to manage user
transactions for pre-12.x servers reliably. However, the different access
methods incorporated into the server allow varying degrees of support for this
capability. The general logic described below is employed by server classes
direct_connect (access server), sql_server (when the server involved is
release 10.0 or later), and sdsif the Specialty Data Store supports transaction
management.

The method for managing transactions involving remote servers uses a two-
phase commit protocol. Adaptive Server 11.5 implements a strategy that
ensures transaction integrity for most scenarios. However, thereis still a
chance that a distributed unit of work will beleft in an undetermined state.
Even though two-phase commit protocol is used, no recovery processis
included.

The general logic for managing a user transaction is as follows:

Component Integration Services prefaceswork to aremote server with abegin
transaction notification. When the transaction is ready to be committed,
Component Integration Services sends aprepare transaction notification to
each remote server that has been part of the transaction. The purpose of
prepare transaction isto “ping” the remote server to determine that the
connection is still viable. If aprepare transaction request fails, al remote
servers aretold to roll back the current transaction. If al prepare transaction
requests are successful, the server sendsacommit transaction request to each
remote server involved with the transaction.

Any command preceded by begin transaction can begin atransaction. Other
commands are sent to aremote server to be executed as a single, remote unit of
work.

75

Transaction management

Transactional RPCs

Restrictions on tr

76

The server alows RPCsto be included within the unit of work initiated by the
current transaction.

Before using transactional RPCs, issue the set transactional_rpc on or set
cis_rpc_handling on command.

Assuming that the remote server can support the inclusion of RPCs within
transactions, the following syntax shows how this capability might be used:

begin transaction
insert into t1 values (1)
update t2 set c1 = 10
execute @status = RMTSERVER.pubs2.dbo.myproc
if @status =1
commit transaction
else
rollback transaction

In this example, the work performed by the procedure myproc in server
RMTSERVER isincluded in the unit of work that began with the begin
transaction command. This example requires that the remote procedure
myproc return astatus of “1” for success. The application controlswhether the
work is committed or rolled back as a complete unit.

The server that isto receive the RPC must allow RPCsto be included in the
sametransactional context as DataManipulation Language (DML) commands
(select, insert, delete, update). Thisistrue for Adaptive Server and is
expected to be true for most DirectConnect products being rel eased by Sybase.
However, some database management systems may not support this capability.

ansaction man agement
Restrictions on transaction management are as follows:;

* If nested begin transaction and commit transaction statements are
included in atransaction that involves remote servers, only the outermost
set of statements is processed. The innermost set, containing the begin
transaction and commit transaction statements, is not transmitted to
remote servers.

Chapter 2 Understanding Component Integration Services

The transaction model described in “Pre-12.x servers’ on page 75 is not
supported in server class db2. It is also not supported in server class
sql_server when the remote server is apre-release 10.0 SQL Server or a
Microsoft SQL Server. Inthese cases, the transactions are committed after
each statement is completed.

77

Using update statistics

Using update statistics

Theupdate statistics command hel psthe server make the best decisions about
whichindexesto usewhenit processesaquery, by providing information about
the distribution of the key values in the indexes. update statistics is not
automatically run when you create or re-create an index on atablethat already
containsdata. It can be used when alarge amount of datain an indexed column
has been added, changed, or deleted. The crucial element in the optimization
of your queriesisthe accuracy of the distribution steps. Therefore, if there are
significant changesin the key valuesin your index, rerun update statistics on
that index.

Only the table owner or the System Administrator can issue the update
statistics command.

The syntax is:
update statistics table_name [index_name]

Try to run update statistics at atime when the tables you need to specify are
not heavily used. update statistics acquires locks on the remote tables and
indexesasit readsthe data. If traceflag 11209 is used, tableswill not be locked.

The server performs atable scan for each index specified in the update
statistics command.

Since Transact-SQL does not require index names to be unique in a database,
you must give the name of the table with which the index is associated.

After running update statistics, run sp_recompile so that triggers and
procedures that use the indexes will use the new distribution:

sp_reconpil e authors

Finding index names

78

You can find the names of indexes by using the sp_helpindex system
procedure. This procedure takes a table name as a parameter.

To list the indexes for the authors table, type:
sp_hel pi ndex aut hors

To update the statistics for all of the indexes in the table, type:
update statistics authors

To update the statistics only for the index on the au_id column, type:

Chapter 2 Understanding Component Integration Services

update statistics authors auidind

79

Java in the database

Java in the database

@@textsize

@@stringsize

80

Javain the Database is supported for remote data access with Component
Integration Services.

The following restrictions apply:
» Javaissupported for remote Adaptive Server Enterprise 12.x serversonly.

« Javaissupported for language events only (no dynamic SQL can be used
with remote tables.)

Before using Java for remote data access, read the section elsewhere in this
book entitled" Java class definitions” on page 83. Then, after installing your
Javaclassfiles on the local server, install the required Java class files on the
remote server.

Dataisreturned asa serialized Java object using theimage datatype format and
then deserialized on the local server. @@textsize must be set large enough to
hold the serialized object. If @@textsize is set too small, the object will be
truncated, and the deserialization will fail.

@@stringsize indicates the amount of character datato be returned from a
toString() method. It is similar in behavior to @@textsize, except it applies
only the char datareturned by the Java Object.toString() method. The default
will valueis 50. The max value is 16384. A value of zero means “use the
default.” Thisvalue can be modified by a new set command:

set stringsize n

where n is an integer value between 0 and 16384. The new value will
immediately show up in the global variable, @@stringsize.

Chapter 2 Understanding Component Integration Services

Constraints on Java class columns

Error messages

Constraints defined on Java columns of remote tables must be checked on the
remote server. If the constraint checking is attempted on thelocal server, it will
fail. Therefore, you must enable trace flag 11220 when you insert, update or
delete datafor which constraint checking will be done on Javadatatypes. See
“Trace Flags’ in Chapter 3.

There aretwo new error messagesthat are specific to Javausewith remote data
access:

» Error 11275 — A statement referencing an extended datatype contained
syntax that prevented it from being sent to the remote server. Rewrite the
statement or remove the extended datatype reference.

» Error 11276 — An object in column '<colname>' could not be deserialized,
possibly because the object was truncated. Check that the value of
@@textsize is large enough to accommodate the serialized object.

SQLJ in Adaptive Server Enterprise

Changes to CIS

The SQLJ effort in Adaptive Server Enterprise version 12.5 consists of
enhancements to the 12.0 Java Classesin Server project in order to bring the
implementation into compliance with the current SQL J standard proposal. In
particular, the SQL J proposal addresses Part 1 of the SQL J standard - which
specifies conventions for calling static Java methods as stored procedures and
user-defined functions (UDF's)

The create function statement will allow a new keyword, exportable, that
determines whether or not a function can be exported to aremote site. It does
not specify that the function must be exported, it specifies only that the
function may be exported. The new statement syntax is:

create function
sql_function_name
sql_function_signature
sql_properties
external_java_reference

81

Java in the database

82

sql_function_name ::= [[identifierl.]identifier2.]identifier3
sql_function_signature ::= ([sql_parameters]) returns sql_datatype
sql_parameters ::= sql_parameter [{, sql_parameter}...]
sql_parameter ::= [parameter_mode] [sql_identifier] sql_datatype
parameter_mode ::=in | out | inout
sql_properties ::=

[modifies sql data]

| [dynamic result sets integer]

| [deterministic | not deterministic]

| [returns null on null input | called on null input]

| [exportable]

| language java

| parameter style java
external_java_reference ::=

external name ’java_method_name [java_method_signature]’
java_method_name ::= java_class_name.method_identifier
java_class_name ::= [packages.]class_identifier
packages ::= package_identifier[.package_identifier]...
package_identifier ::= java_identifier
class_identifier ::= java_identifier
method_identifier ::= java_identifier
java_method_signature ::= ([java_parameters])
java_parameters ::= java_datatype [{, java_datatype}...

When CIS encounters a SQL function, a check for the presence of the
exportable keyword will be made during CIS's query decomposition phase. |f
the function is exportabl e, the statement will be a candidate for quickpass
mode. If the functionis not exportable, it will cause the statement to be thrown
out of quickpass mode.

In quickpass mode, the function name and argument list will be forwarded to a
remote server, even if the capability for JAVA UDF indicates that Java
functions are not supported. Thiswill allow a CIS administrator to create
packages of functionsthat, for example, emulate behavior of foreign database
systems (Oracle, DB2, etc.). Inthisway, SQLJfunctions can be created within
ClSthat will allow CISto forward statements in quickpass mode even though
the function named in the query is not a standard Transact-SQL built-in.

If the statement containing the function cannot be forwarded to the remote
server in quickpass mode, CIS still provides for the correct execution of the
function by retrieving data from remote sites, then invoking the function
locally to operate on the recently-fetched remote data.

Chapter 2 Understanding Component Integration Services

Java Abstract Datatypes (ADTSs)

Java class definitions

Java Classesin SQL (JCS) isthe method of storing and using Java objects
within the Adaptive Server. ClSinteraction in thisimplementation is needed to
support Java objects and Java functions on remote servers.

CIS supports JCS on remote Adaptive Server Enterprise version 12.0 or
greater.

Objects are passed between the local and remote serversin aserialized format,
i.e. abinary representation that is used to re-instantiate the object. CIStreatsa
serialized object as an image blaob, using text and image handling functions to
pass obj ects between servers. The object is re-instantiated on the destination
server before processing continues.

When handling queries containing references to Java objects and functions on
remote servers, CIS attempts to forward as much syntax as possible to the
remote server. Any portion of the query that cannot be passed to the remote
server is handled on the local server, requiring the serialization and de-
serialization of all necessary remote objects. Due to the overhead associated
with serializing and de-serializing the java objects, performance of such
gueriesis significantly less than comparable local access.

To facilitate the interchange of Java objects between servers, CIS issues the
command:

set raw_object_serialization ON

to each ASEnterprise server that is Java-enabled. Thisallows CISto easily de-
serialize the object obtained from the remote site.

The Java class definitions on the local and remote servers must be compatible
to facilitate passing objects between servers. For thisreason, CIS assumes that
compatibility exists, and any errorsin object definition will be detected during
de-serialization efforts. Objects are considered compatibleif the serialized
form of the object on the remote server can be used to successfully instantiate
an object on thelocal server, or vise versa. Also, any Java method referenced
in thelocal server in conjunction with a remotely mapped object must be
defined on the remote object as well.

It isthe responsibility of the database administrator to ensure that class
definitions on local and remote servers are compatible. Incompatible objects
and invalid method references will result in de-serialization errors or Java
exceptions that will cancel the requesting query.

83

Java in the database

84

To improve overall performance, the cis packet size configuration variable
should be increased to better facilitate passing serialized objects between
servers. Serialized objects are passed between serverswith adatatype of image,
and can vary in size from afew bytesto 2 gigabytes.

Chapter 2 Understanding Component Integration Services

Datatypes

Unicode support

create table

create existing table

The following section discusses how Component Integration Services deals
with various datatype issues.

The Adaptive Server Enterprise version 12.5 contains formal support for the
Unicode character set. The new datatypes provided are unichar, and
univarchar. They comprise 2-byte characters expressed in Unicode. Adaptive
Server Enterprise 12.5 provides conversion functions between Unicode data
and all other datatypes, consistent with current handling of char, and varchar
datatypes. By supporting these new datatypes in combination with XNL
features, ClSisableto present aview of all enterprise character data expressed
in Unicode. Character data from mainframes and al other foreign or legacy
systemsisconverted into Unicode when columns of type unichar or univarchar
are used to defined columns in proxy tables.

The following CI S features are affected by these new datatypes:

The create table statement may contain columns described using the new
Unicode datatypes. If the table to be created is a proxy table, CIS forwards the
entire command, including the Unicode datatype names (unichar, univarchar)
to the remote server where the new table isto be created. If the remote server
cannot handle the datatypes, it will be expected to raise an error.

When comparing Adaptive Server Enterprise column types and lengths with
the metadata obtained from a remote server, Unicode datatypes in the proxy
table are allowed under the following circumstances:

» Theremote server datatype for a column is either unichar or univarchar
with equal length (expressed in characters, not bytes)

* Theremote server datatype for a given column is char or varchar. In this
case, it will betheresponsibility of CISto perform conversionsto Unicode
on data fetched from the remote server, and conversions from Unicode to
the default Adaptive Server Enterprise character set (UTF8) on data
transmitted as part of DML commands (select, insert, delete, update).

85

Datatypes

create proxy_table

alter table

e Theremote server datatype for a Unicode column is binary or varbinary.
In this case, the length of the remote server column must be twice the
length of the Unicode column. In this case, CIS performs conversions as
required when transmitting data to or from the remote server.

No other datatype mapping for Unicode datatypesis alowed when mapping a
proxy tableto aremotetable. Other typesresult in atype mismatch error. Using
thismechanism, itispossibleto convert datafrom legacy systemsinto Unicode
simply by creating a proxy table that maps a Unicode column to an existing
char or varchar column.

By using create proxy_table, an Adaptive Server Enterprise user does not
have to specify the column list associated with the proxy table. Instead, the
column list is derived from column metadataimported from the remote server
on which the actual table resides. Unicode columns from the remote server are
mapped to Unicode columns in the proxy table only when the remote column
is datatype unichar or univarchar.

The alter table command allows column types to be modified. With the
Adaptive Server Enterprise version 12.5, a column’s type can be modified to
and from Unicode datatypes. If the command operates upon a proxy table, the
command is reconstructed and forwarded to the remote server that ownsthe
actual table. If the remote server (or DirectConnect) cannot process the
command, an error is expected, and the Adaptive Server Enterprise command
will be aborted.

If traceflag 11221 is ON, then the alter table command does not get forwarded
to aremote server; adding, deleting or modifying columnsisonly done locally
on the proxy table.

select, insert, update and delete statements

86

Unicode datatypes impact the processing of select statementsin two ways
when proxy tables are involved. The first involves the construction of SQL
statements and parameters that are passed to remote servers; the second
involves the conversion of datato Unicode when CIS fetches non-Unicode
data

Chapter 2 Understanding Component Integration Services

A DML command involving a proxy table is handled using either TDS
Language requests or TDS Cursor requests when interacting with the remote
server. If aselect statement contains predicates in the where clause that
involve Unicode columns and constants, it will be necessary to handle the
Unicode constants in one of two ways, depending on whether Language or
Cursor commands will be used to process the statement:

1 TDSLanguage: Generate clear-text values that can be included in the
language text buffer. Thisinvolves converting aconstant Unicode valueto
clear text values that can be transmitted as part of alanguage request.

2 TDSCursor: Generate Unicode parametersfor Ct-Library cursor requests.
Parameter values may be Unicode data, requiring CIS to use parameter
types of CS UNICHAR_TYPE.

CIS handles an insert command involving a proxy table using either TDS
Language requests or TDS Dynamic requests.

If theinsert command can be processed in quickpass mode, then TDS
Language requests are used. If the command cannot be handled in quickpass
mode, then the insert will be processed using TDS Dynamic requests.

In the case of language requests, the issues are the same as with select -
Unicode values have to be converted to clear text form so they can be
transmitted with therest of the SQL statement. In the case of dynamic requests,
Unicode data (along with all other data values) will be transmitted as
parameters to the dynamic command. The receiving server is expected to
process parameters of type CS_UNICHAR _TYPE.

The issues with update and delete commands are the same as for select and
insert. Unicode values have to be converted either to clear text characters for
transmission with the rest of the SQL statement, or they have to be converted
into parameters of type CS_UNICHAR_TYPE.

Datatype conversions

Datatype conversion can take place whenever the server receives datafrom a
remote source, be it DB2, Adaptive Server, or an Open Server-based
application.

Depending on the remote datatype of each column, datais converted from the
native datatype on the remote server to aform that the local server supports.

87

Datatypes

Datatype conversions are made when the create table, alter table and create
existing table commands are processed. The datatype conversions are
dependent on the remote server’sserver class. Seethecreate table, alter table
and create existing table commands in the following reference pages for
tables that illustrate the datatype conversions that take place for each server
class when the commands are processed.

text and image datatypes

The text datatype is used to store printable character data, the column size of
which depends on the logical page size of the Adaptive Server. The image
datatypeisused to store anumber of bytes of hexadecimal-encoded binary data
that, again, depends on the logical page size of the Adaptive Server. The
maximum length for text and image data is defined by the server class of the
remote server to which the column is mapped.

Restrictions on text and image columns

text and image columns cannot be used:

e Asparametersto stored procedures except when set textptr_parametersis
ON.

* Asloca variables.

* Inorder by, compute, or group by clauses.

e Inindexes.

e Insubqueries.

* Inwhere clauses, except with the keyword like.

e Injoins.

Limits of @@textsize

88

select statements return text and image data up to the limit specified in the
global variable @@textsize. The set textsize command is used to change this
limit. Theinitial value of @@textsize is 32K ; the maximum value for
@O@textsize is 2147MB.

Chapter 2 Understanding Component Integration Services

Odd bytes padded

image values of less than 255 bytes that have an odd number of bytes are
padded with aleading zero (an insert of "Oxaaabb" becomes "0x0aaabb"). It is
an error to insert an image val ue of more than 255 bytesif the value has an odd
number of bytes.

Converting text and image datatypes

You can explicitly convert text valuesto char or varchar and image values to
binary or varbinary with the convert function, but you are limited to the
maximum length of the character and binary datatypes, which depends on the
logical page size of the Adaptive Server. If you do not specify the length, the
converted value has a default length of 30 bytes. Implicit conversion is not
supported.

Pattern matching with text data

Use the patindex function to search for the starting position of the first
occurrence of a specified pattern in atext, varchar, or char column. The %
wildcard character must precede and follow the pattern (except when you are
searching for thefirst or last character).

You can use the like keyword to search for a particular pattern. The following
exampl e sel ects each text data value from the blurb column of the texttest table
that contains the pattern “ Straight Talk%":

select blurb fromtexttest
where blurb |ike "Strai ght Tal k%

Entering text and image values

The DB-Library™ functions dbwritetext and dbmoretext and the Client-
Library function ct_send_data are the most efficient ways to enter text and
image values.

When inserting text or image values using the insert command, the length of
the dataiis limited to 450 bytes.

readtext using bytes

If you use the readtext using bytes command on a text column, and the
combination of size and offset result in the transmission of a partial character,
then errors resullt.

89

Datatypes

text and image with bulk copy

Error logging

When you use bulk copy to copy text and image valuesto aremote server, the
server must store the values in data pages before sending them to the remote
server. Once the values have been issued to the remote server, the data pages
are released. Data pages are allocated and released row by row. Users must be
aware of this for the following reasons:

The overhead of allocating and rel easing data pages i mpacts performance.

The data pages are all ocated in the database where the tabl e resides, so the
database must be large enough to accommodate enough data pages for the
largest text and image values that exist for any given row.

Processing of text and image data (with remote servers only) can be logged by
using trace flag 11207.

text and image data with server class sql_server

90

A pointer in atext or image column is assigned when the column is
initialized. Before you can enter text or image datainto a column, the
column must be initialized. This causes a 2K page to be allocated on the
remote or Adaptive Server. To initialize text or image columns, use the
update with aNULL or anon-null insert command. See writetext for
more information.

Before you use writetext to enter text data or readtext to read it, the text
columnmust beinitialized. Useupdate orinsert non-null datatoinitialize
the text column, and then use writetext and readtext.

Using update to replace existing text and imagedatawith NULL, reclaims
all of the allocated data pages, except the first page, in the remote server.

writetext, select into, DB-Library functions, or Client-Library functions
must be used to enter text or image values that are larger than 450 bytes.

insert select cannot be used to insert text or image values.

readtext isthe most efficient way to access text and image data.

Chapter 2 Understanding Component Integration Services

text and image data with server class direct_connect (access_server)

Specific DirectConnect servers support text and image data to varying
degrees. Refer tothe DirectConnect documentation for information on text
and image support.

The server uses the length defined in the global variable @@textsize for
the column length. Before issuing create table, the client application
should set @@textsize to the required length by invoking the set textsize
command.

For DirectConnect serversthat support text and image datatypes but do not
support text pointers, the following restrictions apply:

» Thewritetext command is not supported.

» Thereadtext command is not supported.

» Client-Library functions that use text pointers are not supported.
» DB-Library functions that use text pointers are not supported.

For DirectConnect serversthat support text and image datatypes but do not
support text pointers, some additional processing isperformed to allow the
following functions to be used:

e patindex
e char_length
e datalength

If text pointers are supported, the server performs these functions by
issuing an RPC to the DirectConnect server.

For DirectConnect serversthat do not support text pointers, the server
stores data in the sysattributes system table. Data pages are preall ocated
on a per column per row basis. The column size is determined by the
@@textsize global variable. If thisvalueis not sufficient an error is
returned.

Specific DirectConnect servers may or may not support pattern matching
against the text datatype. If a DirectConnect server does not support this
pattern matching, the server copiesthetext valueto internal datapagesand
performs the pattern matching internally. The best performanceis seen
when pattern matching is performed by the DirectConnect server.

writetext, select into, or insert...select must be used to enter text or
image values that exceed 450 bytes.

91

Datatypes

e selectinto andinsert...select can be used to insert text or image values,
but the table must have a unique index.

db2 server issues

text and image datatypesfor aserver of classdb2 are not supported. If you need
text and image datatypes, you must use a DirectConnect server.

92

Chapter 2 Understanding Component Integration Services

Fine-grained access control

CIS users can employ the features of FGAC because access rules can be bound
to columns on proxy tables.

When queries against proxy tables are processed, the accessruleisadded to the
guery tree during query normalization, thus making its existence transparent to
downstream query processing. Therefore, CIS users can forward additional
predicates to remote servers to restrict the amount of data transferred,
according to the expression defined by the access rule.

CIS can function as an FGAC hub to the entire enterprise through the use of
access rules bound to columns on proxy tables.

93

The select into command

The select into command

94

An Adaptive Server Enterprise 12.5 server with a 2K page configuration
cannot be automatically upgraded to a4K, 8K or 16K configuration, nor can
the dump / load backup facilities provide this upgrade through the Backup
Server. Instead, data (and metadata) must be transferred, or migrated, from one
server to another. To accomplish thistask, use the ’ddigen’ feature of Sybase
Central for Adaptive Server Enterprise. Version 12.5 fully supports DDL, and
enablesthetransfer of server schemaand configuration datafrom one server to
another. In addition, amigration tool serves asadriver for the data transfer.

Once the metadata has been transferred from one server to another, the
migration tool isused to coordinate the datatransfer. Do this by creating proxy
tables at the source server for each table on the target server, and then execute
aselect into statement to effect the transfer from the source table, whichison
local disk, to the target, which is aproxy table referencing the target server.

To facilitate this process, three significant changes to the manner in which the
select into command is executed have been made:

1 Paralle datatransfer: If the sourcetable is partitioned, and islocal, then
the data transfer is achieved through worker threads, one per partition.

2 Allow bulk transfer to existing tables: since the remote tables will already
bein place, thanks to the migration toal, it is necessary to enable data
transfer viaselect into evenif the target table already exists. Thisisdone
with new syntax: select <column_list> into existing table
<table_name> from ... The option existing table is new, and allows the
command to operate on tables that have previously been created. A check
is made to ensure that the datatypes of the <column_list> match, in type
and length, the data types of the target table.

3 Enablebulk insert arrays: when performing a bulk transfer of datafrom
Adaptive Server Enterprise to another Adaptive Server Enterprise, CIS
buffers rows internally, and asks the Open Client bulk library to transfer
them asablock. The size of the array is controlled by anew configuration
parameter cis bulk insert array size. The default is 50 rows, and the
property is dynamic, alowing it to be changed without server reboot.

To achieve performance levels required, the bulk interface currently in use by
CIS has been modified to support bulk insert array binding. Thisallows CISto
buffer a specified number of rowsin local memory, and transfer them all with
asingle bulk transfer command. An Adaptive Server Enterprise configuration
property has been implemented to specify the size of the bulk insert array:

sp_configure "cis bulk insert array size", n

Chapter 2 Understanding Component Integration Services

where nisan integer value greater than 0. The default is 50.

select into syntax

In addition to the existing table syntax described in the previous section,
additional syntax isprovided to allow the specification of proxy table attributes
when you want to create a proxy table through the select into statement. The
new syntax is:

select <column_list> into <newtablename>

[[external <type>] at "location_string"

[column delimiter "<string>"]]
from <source_table(s) [where...]

Using this syntax, you don’t need to use sp_addobjectdef to specify the
location of aproxy table. All attributes of a proxy table can be specified with
this new select into syntax.

The new table created will be a proxy table if the clause at location_string is
provided. The external <type> qualifier isused to indicate that the new proxy
table is mapped to a remote table, a directory, or afile. The column delimiter
isonly valid if the new typeisfile., and if used to specify the string used to
delimit separate fields within the file. The default is atab character.

In addition to the above syntax, new syntax is provided to enable the select
into command when tables already exist:

select <column_list> into existing table <newtablename>
from <source_table(s) [where...]

Theoption existing table isnew, and allowsthe command to operate on tables
that have previously been created. A check ismadeto ensure that the datatypes
of the column_list match, in type and length, the data types of the target table.
If the source columns can be NULL, the corresponding column in the target
table must also allow NULL. Additional restrictions on the use of existing
table syntax exist:

¢ The statement containing the existing table option cannot be used in a
procedure, trigger or view.

e Thetarget table (the “existing table”) must be a proxy table. Using this
syntax for local tablesis not allowed. (Useinsert select instead.)

95

Execute immediate

Execute immediate

The execute immediate feature is fully supported when using Component
Integration Services.

96

Chapter 2 Understanding Component Integration Services

Configuration and tuning

This section isintended for System Administrators. It provides information
about configuration, tuning, trace flags, backup and recovery, and security
issues.

The System Administrator or database owner may elect to use the server in
such away asto optimize performance or to allow use by arequired number of
clients. Configuration choices might involve being able to review total
numbers of reads and writes for a given SQL command.

Once an application is up and running, the System Administrator should
monitor performance and may choose to customize and fine-tune the system.
The server provides tools for these purposes. This section explains:

» Changing system parameters with the sp_configure procedure

» Using update statistics to ensure that Component Integration Services
makes the best use of existing indexes

* Monitoring server activity with the dbcc command.
» Setting trace flags
» Executing ddlgen and related backup and recovery issues

» Determining database size requirements

Using sp_configure

The configuration parametersin the sp_configure system procedure control
resource allocation and performance. The System Administrator can reset
these configuration parametersin order to tune performance and redefine
storage allocation. In the absence of intervention by the System Administrator,
the server supplies default values for all the parameters.

The procedure for resetting configuration parametersis:

» Execute the system procedure sp_configure, which updates the values
field of the system table master..sysconfigures.

» Restart the server if you have reset any of the static configuration
parameters. The parameterslisted below are dynamic; all othersare static:

cis rpc handling
cis cursor rows
cis connect timeout

97

Configuration and tuning

sysconfigures table

cis bulk insert batch size
cis bulk insert array size
cis packet size

The master..sysconfigures system table stores all configuration options. It
contains columns identifying the minimum and maximum values possible for
each configuration parameter, aswell asthe configured value and run valuefor
each parameter.

The status column in sysconfigures cannot be updated by the user. Status 1
means dynamic, indicating that new values for these configuration parameters
take effect immediately. The rest of the configuration parameters (those with
status 0) take effect only after the reconfigure command has been issued and
the server restarted.

You can display the configuration parameters currently in use (run values) by
executing the system procedure sp_configure without giving it any
parameters.

Changing the configuration parameters

The stored procedure sp_configure displaysall the configuration valueswhen
it is used without an argument. When used with an option name and a value,
the server resets the configuration value of that option in the system tables.

See the System Administration Guide for a complete discussion of
sp_configure with syntax options.

To see the Component | ntegration Services options enter:
sp_configure "Conponent Integration Services"

To change the current value of a configuration parameter, execute
sp_configure asfollows:

sp_configure "paraneter", value

Component Integration Services configuration parameters

98

The following configuration parameters are unique to Component I ntegration
Services:

e enablecis

Chapter 2 Understanding Component Integration Services

enable cis

enable file access

enable full-text search

max cis remote
connections

cis bulk insert batch
size

e enable file access

* enable full-text search

* max cis remote connections
e cis bulk insert batch size

e cis bulk insert array size

* cis connect timeout

* ciscursor rows

* cis packet size

e cisrpc handling

Use this parameter with sp_configure to enable Component Integration
Services asfollows:

1 Loginto Adaptive Server asthe System Administrator and issue the
following command:

sp_configure "enable cis", 1
2 Restart Adaptive Server.

I ssuing the command sp_configure "enable cis", 0 disables Component
Integration Services after restarting the server.

This configuration parameter enables access through proxy tablesto eXternal
File System. Requires alicense for ASE_XFS.

This configuration parameter enables Enhances Full-Text Search services.
Requiresalicense for ASE_EFTS.

This configuration property is no longer needed, as RDES structs will be
allocated as needed from shared memory. The default values are sufficient.
With version 12.5, this value will be set to KMAXFD (a platform-dependent
value) for each engine.

This configuration parameter determines how many rows from the source
table(s) areto be bulk copied into the target table asa single batch using select
into, when the target table residesin an Adaptive Server or in a DirectConnect
server that supports a bulk copy interface.

If left at zero (the default), all rows are copied as a single batch. Otherwise,
after the count of rows specified by this parameter has been copied to the target
table, the server issues a bulk commit to the target server, causing the batch to
be committed.

99

Configuration and tuning

cis bulk insert array
size

cis connect timeout

Cis cursor rows

cis packet size

cis rpc handling

100

If anormal client-generated bulk copy operation (such asthat produced by the
bep utility) isreceived, the client is expected to control the size of the bulk
batch, and the server ignores the value of this configuration parameter.

When performing a bulk transfer of datafrom Adaptive Server Enterpriseto
another Adaptive Server Enterprise, CIS buffers rows internally, and asks the
Open Client bulk library to transfer them as ablock. The size of the array is
controlled by a new configuration parameter cis bulk insert array size. The
default is 50 rows, and the property is dynamic, allowing it to be changed
without server reboot.

This configuration parameter determines the wait timein seconds for a
successful Client-Library connection. By default, no timeout is provided.

This configuration parameter allows users to specify the cursor row count for
cursor open and cursor fetch operations. Increasing this value means more

rows will be fetched in one operation. This increases speed but requires more
memory. The default is 50.

This configuration parameter allows you to specify the size of Tabular Data
Stream™ (TDS) packets that are exchanged between the server and aremote
server when connection is initiated.

The default packet size on most systemsis 512 bytes, which is adequate for
most applications. However, larger packet sizes may result in significantly
improved query performance, especially when text and image or bulk datais
involved.

If a packet size larger than the default is specified, and the requested server is
release 10.0 or later, then the target server must be configured to allow
variable-length packet sizes. Adaptive Server configuration parameters of
interest in this case are:

* additional netmem
* maximum network packet size

Refer to the System Administration Guide for a complete explanation of these
configuration parameters.

This global configuration parameter determines whether Component
Integration Serviceswill handle outbound RPC requests by default. When this
is enabled using sp_configure “cis rpc handling” 1, all outbound RPCs are
handled by Component I ntegration Services. Whenyou usesp_configure “cis
rpc handling” 0, the Adaptive Server site handler is used. The thread cannot
overrideit with set cis_rpc_handling on. If the global property isdisabled, a
thread can enable or disable the capability, as required.

Chapter 2 Understanding Component Integration Services

For more information on using the Adaptive Server site handler vs. using
Component Integration Servicesto handle outbound RPCs, see “ RPC handling
and Component Integration Services’ on page 67.

Dynamic reconfiguration

CIS dbcc commands

Dynamic reconfiguration refers to the ability to re-configure Adaptive Server
Enterprise without having to reboot the server in order for the configuration
changes to become effective. Prior to version 12.5, there are 5 memory pools
used to contain various CI S resources:

* SRVDES- pool sizeisindependent of other configuration values;

* OMNI_DES - pool size dependent upon value of "open objects" - one
OMNI_DES s allocated per ' open object’ (DES);

* OMNI_PSS - pool size is dependent upon value of "user connections' -
one OMNI_PSSisallocated per user connection (PSS).

* OMNI_CURSOR - pool size is dependent upon val ue of "user
connections' - one OMNI_CURSOR is alocated per SDES; 16 SDES's
are alocated per user connection.

* RDES- poadl sizeis dependent upon value of "user connections' - there
are four RDES's allocated for each user connection.

With versions before 12.5, if insufficient resources were configured to
accommodate actual server usage, the configuration had to be changed and
rebooted. With the changes to version 12.5, resource pools will be dynamic,
allowing expansion as needed.

The CIS dbcc command dbcc cis("rusage”) has been replaced by the
Adaptive Server Enterprise command: dbcc mempools.

Global variables for status

The following global variables have been added for CIS users:
* @@cis_rpc_handling
* @@transactional_rpc

J @@textptr_parameters

101

Configuration and tuning

* @@stringsize

These global variables show the current status of the corresponding
configuration parameters. For instance, to seethe status of cis_rpc_handling,
issue the following command:

select @@cis_rpc_handling
This returns either 0 (off) or 1 (on).

102

CHAPTER 3 SQL reference

This chapter provides reference material on the server classes supported
by Component Integration Services. The topics include:

Name Page
dbcc commands 104
Transact-SQL commands 107

Each server class has a set of unique characteristics that System
Administratorsand programmers need to know about in order to configure
the server for remote data access. These properties are:

« Typesof serversthat each server class supports
« Datatype conversions specific to the server class

¢ Restrictionson Transact-SQL statementsthat apply to the server class

103

dbcc commands

dbcc commands

dbcc options

remcon

rusage

srvdes

showcaps

104

All dbcc commands used by Component Integration Services are available
with asingle dbcc entry point.

The syntax for dbcc cis is:
dbcc cis ("subcomuand"[, varargl, vararg2...])

If Component Integration Servicesis not configured or loaded, the command
will result in arun-time error.

The use of the dbcc cis command is unrestricted.

The following dbcc options are unique to Component Integration Services.

remcon displaysalist of al remote connections made by all Component
Integration Services clients. It takes no arguments.

rusage returns areport describing the total memory used by each Component
Integration Services resource utilizing shared memory. The report describes
total configured items, number of items used, number of items available, and
total memory used for each resource. The CIS dbcc command dbcc
cis("rusage") has been replaced by the Adaptive Server Enterprise command:
dbcc mempools

srvdes returns aformatted list of all in-memory SRVDES structures, if no
argument is provided. If an argument is provided, this command syncsthein-
memory version of a SRVDES with information found in sysservers. The
command takes an optional argument as follows:

srvdes, [srvid]

showcaps shows alist of all capabilities for servername by capability name,
ID, and value as follows:

showcaps, server nane
Example:

dbcc cis(“showcaps”, “servername™)

Chapter 3 SQL reference

Trace flags

The dbcc traceon option allows the System Administrator to turn on trace
flagswithin Component I ntegration Services. Traceflags enable thelogging of
certain events when they occur within Component I ntegration Services. Each
trace flag is uniquely identified by a number. Some are global to Component
Integration Services while others are spid-based and affect only the user who
enabled the trace flag. dbcc traceoff turns off trace flags.

The syntax is:
dbcc traceon (traceflag [, traceflag...])
Trace flags and their meanings are shown in Table 3-1:

Table 3-1: Component Integration Services trace flags
Trace Flag Description

3703 Disables proxy tableindex creation during create existing table
or create proxy_table command execution. If thisflagisset on,
then no index metadata will be imported from the remote site
referenced by the proxy table, and no indexes for the proxy
table will be created. Thistrace flag is global and should be
used with care and turned off when no longer necessary.

(global)

11201 Logs client connect events, disconnect events, and attention
events. (global)

11202 Logs client language, cursor declare, dynamic prepare, and
dynamic execute-immediate text. (global)

11203 Logs client rpc events. (global)

11204 Logs al messages routed to client. (global)

11205 Logs dl interaction with remote server. (global)

11206 Logsfile/directory processing steps

11207 Logs text and image processing. (global)

11208 Preventsthe create index and drop table statements from being
transmitted to aremote server. sysindexes is updated anyway.
(spid)

11209 Instructs update statistics to obtain just row counts rather than
complete distribution statistics, from aremote table. (spid)

11210 Disables Component I ntegration Services enhanced remote
query optimization. (spid)

11211 Not used.

11212 Prevents escape on underscores (“_") in table names. (spid)

11213 Prevents generation of column and table constraints. (spid)

105

dbcc commands

106

Trace Flag Description

11214 Disables Component I ntegration Servicesrecovery at start-up.
(global)

11215 Sets enhanced remote optimization for servers of class db2.
(global)

11216 Disables enhanced remote optimization. (spid)

11217 Disables enhanced remote optimization. (global)

11220 Disables constraint checking of remote tables on the local
server. This avoids duplicate checking. Setting this trace flag
ON ensures that a query won't be rejected by the quickpass
mode because of constraints. (spid)

11221 Disables alter table commands to the remote server when ON.

This allows users to modify type, length and nullability of
columnsin alocal table without changing columnsin the
remote table. Use trace flag 11221 with caution. It may lead to
tables which are “out of sync.” (spid)

Chapter 3 SQL reference

Transact-SQL commands

The following pages are reference pages, presented in alphabetical order,
which discuss Transact-SQL commandsthat either directly or indirectly affect
external tables, and, as aresult, Component Integration Services. For each
command, a description of its effect on Component Integration Services, and
the manner in which Component I ntegration Services processes the command,
is described. For a complete description of each command, see the Adaptive
Server Reference Manual.

If Component Integration Services does not pass all of acommand’s syntax to
aremote server (such as all clauses of aselect statement), the syntax that is
passed along is described for each server class.

Each command has several sections that describeit:
Function - contains a brief description of the command.

Syntax - contains a description of the full Transact-SQL syntax of the
command.

Comments - contains a general, server class-independent description of
handling by Component Integration Services.

Server Class ASEnterprise - contains a description of handling specific to
server class ASEnterprise. Thisincludes syntax that is forwarded to aremote
server of class ASEnterprise.

Server Class ASAnywhere - contains a description of handling specific to
server class ASAnywhere. Thisincludes syntax that is forwarded to aremote
server of class ASAnywhere.

Server Class ASQ - contains adescription of handling specific to server class
AS Q. Thisincludes syntax that is forwarded to a remote server of class ASQ.

Server Class sgl_server - contains a description of handling specific to server
class sgl_server. Thisincludes syntax that is forwarded to a remote server of
class sgl_server.

Server Classdirect_connect - contains a description of handling specific to
server classdirect_connect (access server). Thisincludes syntax that is
forwarded to a remote server of class direct_connect (access server). In this
release, all comments that apply to server class direct_connect, also apply to
server class sds.

Server Class db2 - contains a description of handling specific to server class
db2. Thisincludes syntax that is forwarded to a remote server of class db2.

107

alter database

alter database

Description

Syntax

Usage

108

Increases the amount of space allocated to a database. Synchronizes proxy
table metadata with tables at remote location.

alter database database_name

[on {default | database_device } [= siz€]

[, database_device [= size]]...]

[log on { default | database_device } [= size]
[, database_device [= size]]...]

[with override]

[for load]

[for proxy_update]]

Usage

« |f adatabase has been created with the optional clause with
default_location = pathname, then the alter database command, with

the for proxy_update clause, will re-synchronize the proxy tablesin the
named database with tables and viewsfound in the pathnameto theremote

location.

* Thedefault location may also have been specified with the system stored
proceduresp_defaultloc. Thefor proxy_update clause of alter database

works the same way in this case.

* Thisisaconvenient, one-step procedure for keeping the proxy table

definitionin sync with the definition of actual tablesand viewsin aremote

database.

e If for proxy_update isspecified with no size or device name, thenthesize

isnot altered; only proxy table synchronization is performed.

* Insome cases, adatabase may not be large enough to contain all proxy

table definitions; therefore, it may be necessary to change the size as well

when the for proxy_update clause is used.

* Whenfor proxy_update isused, the names of remotetablesand viewsare
obtained from the server specified in the default location for the database

(master.dbo.sysdatabases.default_loc) using the RPC named sp_tables.
For each user table and view, column attributes are then obtained, using

the RPC named sp_columns. Once al metadata has been obtained for a

table (or view), an internal command is executed which is equivalent to
create existing table, causing the proxy table to be created within the
named database.

« If the proxy table already exists, it is automatically dropped before the
internal create existing table command is executed.

Chapter 3 SQL reference

See also

e After the proxy tableis created, index metadatais obtained from the
remote location so that indexes on the proxy table can also be created.
Index metadata is obtained from the remote server using the RPC
sp_statistics.

¢ This command behaves the same way for all server classes; interaction
with the remote server associated with the database default location is
limited tothe RPCssp_tables, sp_columns and sp_statistics (toimport
index information).

See Also

create database in the Adaptive Server Reference Manual and later in this
chapter.

109

alter table

alter table

Description Adds, changes or drops columns; adds, changes, or dropsconstraints; partitions
or unpartitions an existing table; changes the locking scheme for an existing
table; specifies ascending or descending index order when alter table is used
tocreatereferential integrity constraintsthat are based onindexes; specifiesthe
ratio of filled pagesto empty pages, to reduce storage fragmentation.

Syntax alter table [database.[owner].]Jtable_name

{add column_name datatype
[default {constant_expression | user | null}]
{identity | null | not null}
| [[constraint constraint_name]
{{unique | primary key}
[clustered | nonclustered] [asc | desc]
[with { { fillfactor = pct
| max_rows_per_page = num_rows }
, reservepagegap = hum_pages }]
[on segment_name]
| references [[database.]Jowner.]ref_table
[(ref_column)]
| check (search_condition)] ... }
[, next_column]...

| add { [constraint constraint_name]
{{unique | primary key}
[clustered | nonclustered]
(column_name [asc | desc]
[, column_name [asc | desc]...])
[with { { fillfactor = pct
| max_rows_per_page = hum_rows}
, reservepagegap = num_pages}]
[on segment_name]
| foreign key (column_name [{, column_name}...])
references [[database.Jowner.Jref_table
[(ref_column [{, ref_column}...])]
| check (search_condition)}

| drop {[column_name [, column_name]] |
[constraint constraint_namel]}

| modify column_name {[data_type] [null] |
[not null]] [, column_name]

| replace column_name
default {constant_expression | user | null}

| partition number_of_partitions

| unpartition

110

Chapter 3 SQL reference

Usage

| lock {allpages | datarows | datapages } }

| with exp_row_size = num_bhytes

Usage

» Component Integration Services processesthe alter table command when
the table on which it operates has been created as a proxy table.

Component Integration Services forwards the request (or part of it) to the
server that owns the actual object.

* When Component Integration Servicesforwardsthealter table command
to aremote server, it isassumed that the column names on the proxy table
and on the remote server are the same.

¢ Theonly portions of the alter table command that are forwarded to a
remote server are add, modify, drop column, partition, and unpartition.
Therest of the syntax is processed internally, and not forwarded to a
remote server. The only exception to thisisthelock clause, and then only
for ASEnter prise-class servers.

Server Class ASEnterprise

Component Integration Services forwards the following syntax to a server
configured as class sql_server:

alter table [database.[owner].]tabl e_nane
{add col um_nane datatype [{identity | null}]
{[, next_colum]}...}
| [drop colum_name [, colum_nane]}
| modify colum_nane [data_type] [NULL] |
[not null]] [, columm_nane]}

¢ When auser adds a column with the alter table command, Component
Integration Services passes the datatype of each column to the remote
server without type name conversions.

¢ For ASEnterprise class servers only, the lock clauseis also forwarded, if
contained in the original query, if the version of ASE is11.9.2 or later.

Server Class ASAnywhere

¢ Handling of the alter table command by serversin this classis the same
asfor ASEnterprise servers.

Server Class ASIQ

Handling of the alter table command by serversin this classisthe same asfor
ASEnterprise servers.

111

alter table

112

text and image datatypes are not supported by server class ASQ. If text
and image datatypes are used, Component | ntegration Services raises
Error 11205:

Datatype <typename> is unsupported for server <servername>.

Server Class sql_server

Handling of the alter table command by serversin this classis the same
asfor ASEnterprise servers.

Server Class direct_connect

Component Integration Services forwards the following syntax to a
remote server configured as class direct_connect:

alter table [database.[owner].]tabl e_nane
add col um_nane datatype [{identity | null}]
{[, next_colum]}...

Although Component | ntegration Services requestsacapabilitiesresponse
from a server with class direct_connect, support for alter table is not
optional. Component I ntegration Services forwards the alter table
command to the remote server regardless of the capabilities response.

The behavior of the server with class direct_connect is database
dependent.alter table [database .[owner].]table_name
{add column_name datatype [{identity | null}]

{[, next_column]}... The Transact-SQL syntax isforwarded, and
errors may or may not be raised, depending on the ability of the remote
database to handle this syntax.

If the syntax capability of the remote server indicates Sybase Transact-
SQL, Adaptive Server datatypesare sent to the remote server. If the syntax
capability indicates DB2 SQL, DB2 datatypes are sent. The mapping for
these datatypes is shown in Table 3-2

Table 3-2: DirectConnect datatype conversions for alter table

Adaptive

Server DirectConnect DirectConnect DB2
Datatype Default Datatype Syntax Mode Datatype
binary(n) binary(n) char(n) for bit data

bit bit char(1)

char char char

datetime datetime timestamp

decimal(p, s) decimal(p, 9) decimal(p, 9)

float float float

Chapter 3 SQL reference

Adaptive

Server DirectConnect DirectConnect DB2

Datatype Default Datatype Syntax Mode Datatype

image image varchar(n)
for bit data; the value of nis
determined by the global
variable @@textsize

int int int

money money float

numeric(p, S) numeric(p, S) decimal(p, 9)

nchar(n) nchar(n) graphic(n)

nvarchar(n) nvarchar(n) vargraphic(n)

red red rea

smalldatetime smalldatetime timestamp

smallint smalint smallint

smallmoney smallmoney float

timestamp timestamp varbinary(8)

tinyint tinyint smallint

text text varchar(n); thevalueof nis
determined by the global
variable @@textsize

unichar unichar varchar(n) for bit data

univarchar univarchar varchar(n) for bit data

varbinary(n) varbinary(n) varchar(n) for bit data

varchar(n) varchar(n) varchar(n)

Server Class db2

«Component Integration Services forwards the following
syntax to a remote server configured as class db2:

alter table [database.[owner].]tabl e_nane
add col um_nane datatype [null]

{[.

next _colum]}. ..

e text and image datatypes are not supported by server classdb?2. If text and
image datatypes are used, Component Integration Services raises Error

11205:

Datatype <typename> is unsupported for server <servername>

The datatype specification contains DB2 datatypes that are mapped from
Adaptive Server datatypes. The datatype conversions are shown in Table 3-3.

113

alter table

Table 3-3: DB2 datatype conversions for alter table

Adaptive Server

Datatype DB2 Datatype

binary(n) char(n) for bit data, where n <= 254

bit char(1)

char(n) char(n), where n <= 254

datetime timestamp

decimal(p, s) decimal(p, s)

float float

image Not supported

int int

money float

nchar char(n)

nvarchar varchar(n)

numeric(p, s) decimal(p, s)

real real

smalldatetime timestamp

smallint smallint

smallmoney float

tinyint smallint

text Not supported

unichar varchar(n) for bit data

univarchar varchar(n) for bit data

varbinary(n) varchar(n) for bit data, where n <=254

varchar(n) varchar(n), where n <= 254
See also See Also

alter table in the Adaptive Server Reference Manual.

114

Chapter 3 SQL reference

begin transaction

Marks the starting point of a user-defined transaction.

Description
Syntax

Usage

begin tran[saction] [transaction_name]
Usage

When the Distributed Transaction Manager (DTM) is enabled, DTM
handles all transaction processing for servers of server class ASEnterprise
with aversion of 12.0 or |ater.

If the Adaptive Server isconfigured with strict dtm enforcement = 1, any
attempt to include aremote server in the transaction that has a server class
other than ASEnterprise will cause the transaction to be aborted.

For all server classes, when Adaptive Server receivesabegin transaction
command, an internal state is set which marks the beginning of a
transaction. At thispoint, Component I ntegration Servicesisnot involved,
and the command is not immediately forwarded to remote locations.

transaction_name is not used by Component Integration Servicesin this
release.

Sever Class ASEnterprise

Transaction process for serversin class ASEnterprise with aversion prior
to 12.0isidentical to that of server classsgl_server (release 10.0 or later).

When DTM is not enabled, transaction processing for all serversin class
ASEnterpriseisidentical to that of server classsql_server (release 10.0 or
later).

Component Integration Services checks the transaction state of the
connection to a server of class ASEnterprise. If theinternal transaction
state indicates that atransaction isin progress, and the state of the
connection to the remote participant indicates that no transaction isin
progress, Component Integration Services informs the Distributed
Transaction Manager that the server has become a participant in the
transaction. The Distributed Transaction Manager then issues a
BeginXact RPC to the remote server.

Server Class ASAnywhere

Transaction processing for serversin class ASAnywhereisidentical to that
of server class sql_server (release 10.0 or later).

Server Class ASIQ

115

begin transaction

e Transaction processing for serversin class ASQ isidentical to that of
server class sgl_server (release 10.0 or later).

Server Class sql_server

e Component Integration Services checks the transaction state of the
connection to aserver of class sgl_server. If theinternal transaction state
indicates that atransaction isin progress, and the state of the connection
to the server indicates that no transaction is in progress, Component
Integration Services forwards the begin transaction command to the
server prior to forwarding the first command to that server. Inthe example
below, assumetables t1 and t2 are both located on the same remote SQL
Server:

begi n transaction

insert into tl values (...)
update t2 ...

commit transaction

At thetime the begin transaction command is processed, no interaction
with the remote SQL Server occurs.

When the insert command is processed, the transaction state of the
connection to the server that ownstl is checked. Since thisisthefirst
command within the transaction, the connectionisin aNO
TRANSACTION ACTIVE state, and the begin transaction command is
forwarded to the server. Theinsert command is then forwarded to the
remote location, and the transaction state for the connection is marked as
TRANSACTION ACTIVE.

When processing the update command, the transaction state of the server
that ownstable t2 is checked. Sinceit is the same server that owns table
t1,itisinthe TRANSACTION ACTIVE state, and thebegin transaction
command is not forwarded.

Note These comments apply only to release 10.0 or |ater, which supports
cursors. For pre-release 10.0 SQL Server and Microsoft SQL Server,
transaction handling is similar to server class db2, described below.

Server Class direct_connect

116

Chapter 3 SQL reference

See also

e Transaction processing for serversin class direct_connect isidentical to
that of server classsql_server (release 10.0 or later).

Server Class db2

¢ Transactions are supported only at the statement level for serversin class
db2. When theinternal state of a client connection indicates that thereis
an active transaction, Component Integration Services precedes each
statement forwarded to the server with abegin transaction command.
Component Integration Services then issues acommit or rollback
transaction (depending on the success or failure of the statement)
immediately after the statement is complete.

See Also

begin transaction in the Adaptive Server Reference Manual.

117

case

case

Description

Syntax

Usage

118

Supports conditional SQL expressions; can be used anywhere avalue
expression can be used.

case
when search_condition then expression
[when search_condition then expression]...
[else expression]

end

Usage

e case expression simplifies standard SQL expressions by allowing you to
express a search condition using awhen...then construct instead of an if
statement.

e case expressionscan be used anywhere an expression can beusedin SQL .

« If your query produces a variety of datatypes, the datatype of acase
expression result is determined by datatype hierarchy. If you specify two
datatypes that Adaptive Server cannot implicitly convert (for example,
char and int), the query fails.

Server Class ASEnterprise

The capability for handling case expressionsis set for ASE 11.5 and all later
versions. The presence of a case expression in the original query syntax will
not cause the query optimizer to reject quickpass mode.

Server Class ASAnywhere

The capability for handling case expressionsis set for ASA 6.0, ASIQ 12.0,
and all later versions. The presence of acase expression in the original query
syntax will not cause the query optimizer to reject quickpass mode.

Server Class ASIQ <The capability for handling case expressionsis not set
for serversin this class. When a SQL statement containing a case
expression is optimized, the presence of the case expression will cause
CI S quickpass optimi zation to rej ect the statement. When this happens, the
case expression must be evaluated by the local A SE after retrieving data
from the remote server.

Server Class sql_server

* The capability for handling case expressionsis not set for serversin this
class. When a SQL statement containing a case expression is optimized,
the presence of the case expressionwill cause CI S quickpass optimization
to reject the statement. When this happens, the case expression must be
evaluated by the local ASE after retrieving data from the remote server.

Chapter 3 SQL reference

Server Class direct_connect

The capability for handling case expressions is determined by the result set
from the RPC sp_capabilities. If the direct_connect indicates that it can
handl e case expressions, then CIS will forward them to the direct_connect
when quickpass mode is used to handle the query.

Server Class db2

The capability for handling case expressionsis, by default, not set for servers
inthisclass. When aSQL statement containing acase expressionisoptimized,
the presence of the case expression will cause CIS quickpass optimization to
reject the statement. When thishappens, the case expression must be eval uated
by the local ASE after retrieving data from the remote server.

» Iftraceflag 11215isturned on, the default capabilitiesfor server class db2
are modified to enable more capabilities, and case expressions are enabled
by default. Notethat DB2 doesrecognize case expression syntax. Also, the
traceflag must be turned on before CIS makes its first connection to the
remote server, or else the capabilities set by the first connection will
remain in effect until the server is rebooted.

119

close

close

Description
Syntax

Usage

See also

120

Deactivates a cursor.

close cursor_name

Usage

If the cursor specified by cursor_name containsreferencesto proxy tables,
Adaptive Server notifies Component Integration Services to close and
deall ocate its remote cursors for those tables.

Component Integration Services uses Client-Library to manage cursor
operations to aremote server. When Component I ntegration Services
receivesaclose command, it uses the following Client-Library functions
to interact with the remote server:

ct_cursor(command, CS_CURSOR_CLOSE, NULL,
CS_UNUSED, NULL, CS_UNUSED, CS_UNUSED)

ct_cursor(command, CS_CURSOR_DEALLOC, NULL,
CS_UNUSED, NULL, CS_UNUSED, CS_UNUSED)

If the cursor contai ns references to more than one proxy table, Component
Integration Services must close a remote cursor for each server
represented by the proxy tables.

See Also

deallocate cursor, declare cursor, fetch, open in this chapter.

close in the Adaptive Server Reference Manual.

Chapter 3 SQL reference

commit transaction

Description
Syntax

Usage

Marks the successful ending point of a user-defined transaction.

commit [tran[saction] | work] [transaction_name]
Usage

When Adaptive Server receives the commit transaction command, it
notifies Component I ntegration Services, and Component Integration
Servicesattemptsto commit work associated with remote serversinvolved
in the current transaction.

For all other server classes, when Adaptive Server receives the commit
transaction command, it notifies Component Integration Services, and
Component Integration Services attemptsto commit work associated with
remote serversinvolved in the current transaction.

Multiple remote servers can beinvolved in asingle transaction, each with
their own unit of work which is associated with the Adaptive Server unit
of work.

Remote work is committed beforelocal work. If the remote servers do not
respond, or respond with errors, the transaction is aborted, including any
local work.

Work performed by transactional RPC’'s must be part of an explicit
transaction.

transaction_name is not used by Component Integration Servicesin this
release.

Server Class ASEnterprise

Transaction process for serversin class ASEnterprise with aversion prior
to 12.0 isidentical to that of server class sgl_server (release 10.0 or later)

¢ When DTM isnot enabled, transaction processing for all serversin
class ASEnterpriseisidentical to that of server class sgl_server
(release 10.0 or later).

¢ Inall other cases, when the Adaptive Server receives notification to
commit atransaction, the Distributed Transaction Manager issues a
CommitXact RPC to all remote participants having a server class of
ASEnterprise.

Server Class ASAnywhere

Transaction processing for serversin class ASAnywhereisidentical to that
of server class sql_server (release 10.0 or later).

121

commit transaction

Server Class ASIQ

e Transaction processing for serversin class ASQ isidentical to that of
server class sgl_server (release 10.0 or later).

Server Class sql_server

* When Component Integration Services receives notification to commit a
transaction, it checksthe TRANSACTION ACTIVE state of all remote
participants associ ated with the client application. If thereismorethan one
remote server involved in atransaction, Component Integration Services
first sends aprepare transaction command to each connection with an
activetransaction. If all remote servers respond with no error, Component
Integration Services sendsacommit transaction command to each server
involved in the transaction. If all remote servers again respond with no
error, Component Integration Services notifies the Adaptive Server that it
can commit local work.

This process applies to release 10.0 or later. Transaction handling isthe
same as server class db2, described below, if the server represented by
server class sgl_server is:

e Prerelease 10.0 SQL Server
e Microsoft SQL Server (any version)
e SybaselQ

Server Class direct_connect

e Transaction processing for serversin class direct_connect isidentical to
that of server class sql_server (release 10.0 or later).

Server Class db2

e Transactions are supported only at the statement level for serversin class
db2. When theinternal state of a client connection indicates that thereis
an active transaction, abegin transaction command precedes all insert,
update and delete commands. Component I ntegration Services issues a
commit or rollback transaction (depending on the success or failure of
the statement) immediately after the statement is compl ete.

See also See Also

commit in the Adaptive Server Reference Manual.

122

Chapter 3 SQL reference

connect to...disconnect

Connects to the specified server to establish a passthrough-maode connection;
takes the connection out of passthrough mode.

Description

Syntax

Usage

connect to server_name
disconnect

Usage

connect to specifies the server to which a passthrough connection is
required. Passthrough mode enables you to perform native operations on
aremote server.

server_name must be the name of a server in the sysserverstable, with its
server class and network name defined.

When establishing a connection to server_name on behalf of the user,
Component Integration Services uses one of the following identifiers:

- A remote login alias described in sysattributes, if present
- The user’s name and password

In either case, if the connection cannot be made to the specified server,
Adaptive Server returns an error message.

For more information about adding remote servers, see sp_addserver.

After making a passthrough connection, Component Integration Services
bypasses the Transact-SQL parser and compiler when subsequent
language text is received. It passes statements directly to the specified
server, and converts the results into a form that can be recognized by the
Open Client interface and returned to the client program.

To take the connection created by the connect to command out of
passthrough mode, use the disconnect command. You can use this
command only after the connection has been made using connect to.

disconnect does not actually cause the termination of the connection to
the remote server; instead, it simply takes the connection out of
passthrough mode, |eaving the connection available for subsequent DDL
or DML statements that are processed normally by the ASE query
processor.

The disconnect command can be abbreviated to disc.

The disconnect command returns an error unless connect to has been
previously issued and the server is connected to a remote server.

Server Class ASEnterprise

123

connect to...disconnect

See also

124

* Whenthedisconnect command isissued, CISwill forward the
disconnect command to the remote server, to take it out of passthrough
mode. If not in passthrough mode, syntax errors may occur, but they are
ignored by CIS and not forwarded to the client.

Server Class ASAnywhere

* Nointeraction occurs with ASAnywhere when the connect or disconnect
commands are issued.

Server Class ASIQ

¢ Nointeraction occurs with ASQ when the connect or disconnect
commands are issued.

Server Class sql_server

No interaction occurs with sgl_server when the connect or disconnect
commands are issued.

Server Class direct_connect

When the connect command is issued using a server in class direct_connect,
the direct_connect is sent an RPC:

sp_thread_props “passthru mode”, 1

e Whenthedisconnect command isissued, and the server for which a
passthrough-mode connection has been established isa direct_connect,
the direct_connect is sent an RPC:

sp_thread_props “passthru mode”, 0

Server Class db2

* Nointeraction occurs with db2 when the connect or disconnect
commands are i ssued.

See Also

commit in the Adaptive Server Reference Manual.

Chapter 3 SQL reference

create database

Description Creates anew database

Syntax create database database_name

[on {default | database_device} [= size]
[, database_device [= size]]...]

[log on database_device [= size]
[, database_device [= size]]...]

[with override]

[with default_location = “pathname”]

[for proxy_update]

[for load]

Usage Usage

e Thiscommand creates a new database within Adapter Server Enterprise.
Thenew syntax with default_location = pathnameandfor proxy_update
have been added to allow automatic creation of proxy tables representing
tables and views found in a remote location.

e If theclause with default_location = pathname is used, the pathname is
stored in master.dbo.sysdatabases.default_|loc, and serves the same
purpose as the default location added via the system stored procedure
sp_defaultloc

e If theclause for proxy_update is used, the with default_location =
pathname clause must al so be used. Thisclauseindicatesthat the database
isto be aproxy database, and all tables created in it will become proxy
tables, referencing objects contained at the default location.

« When adatabase is created as a proxy database, and no device or size
specification isincluded in the syntax, the default size will be calculated
based on the number of proxy tablesthat it will be expected to contain. The
formulafor calculating the number of 2k, 4k, 8k, and 16k pages for the
database is asfollows:

pages = #rmt_tbls * 32/* 4 extents per table */
overhead = (pages * 1.1) /* add 10% */
if overhead < 500 pages
then overhead = 500 pages
total_pages = pages + overhead
add pages in model db

e Thenew database is placed on the default device, if no device nameis
specified.

125

create database

« After the databaseis created, but before the command is complete, the
presence of the for proxy_update clause will instruct CISto create a
proxy tablein the new database for each remote table or view. When the
create database command isfinished, the newly created database will be
populated with proxy tables representing all user tables and views found
at the remote location.

See also See Also

alter database in the Adaptive Server Reference Manual.

126

Chapter 3 SQL reference

create existing table

Description Creates a new proxy table representing an existing object in aremote server.

Syntax create existing table [database.[owner].]table_name (column_name datatype
[default {constant_expression | user | null}]
{[{identity | null | not null}]
| [[constraint constraint_name]

{{unique | primary key}

[clustered | nonclustered]

[with {fillfactor |[max_rows_per_page}= x]

[on segment_name]

| references [[database.Jowner.]ref_table
[(ref_column)]

| check (search_condition)}]}...

| [constraint constraint_name]

{{unique | primary key}
[clustered | nonclustered]
(column_name [{, column_name}...])
[with {fillfactor |[max_rows_per_page}= x]
[on segment_name]

| foreign key (column_name [{, column_name}...])
references [[database.]owner.]ref_table

[(ref_column [{, ref_column}...])]
| check (search_condition)}

[{, {next_column | next_constraint}}...])

[with max_rows_per_page = x] [on segment_name]
[external {table | procedure}]
[at “pathname”]

Usage Usage

e Adaptive Server processes the create existing table command asif the
table being created is anew local table.

e After creating the local table, Adaptive Server passesthe create existing
table command to Component Integration Services, with the external
location for the existing remote object.

Component Integration Services verifiesthat the table existsby issuing the
sp_tables RPC to the remote server that owns the existing object.

e Component Integration Services verifies the column list by sending the
sp_columns RPC to the remote server. Column names, datatypes,
lengths, identity property, and null properties are checked for the
following:

127

create existing table

128

« Datatypesin the create existing table command must match or be
convertible to the datatypes of the column on the remote |ocation. For
example, alocal column datatype might be defined as money, while
the remote column datatype might be numeric. Thisisalegal
conversion, therefore, no errors are reported.

e Each column’s null property is checked. If thelocal column’s null
property is not identical to the remote column’s null property, a
warning message is issued, but the command is not aborted.

e Each column’slength is checked. If the length of char, varchar,
binary, varbinary, decimal and numeric columns do not match, a
warning message is issued, but the command is not aborted.

The column names used in the syntax must match with those found at the
remote location.

The proxy table need not contain the exact number of columnsasfound in
the remote table. However, all columns referenced in by the proxy table
must be found in the remote table. If the count of columns in the proxy
table isless than the actual number of columns in the remote server, then
awarning is issued, but the command is not aborted.

The remote column name is stored in syscolumns.remote_name and is
used during query processing when astatement isforwarded to the remote
server. Thisnameis not affected by sp_rename, so after the proxy table
iscreated, if any column name is changed, it won't affect processing of
subsequent SQL commands.

Column datatypes do not need to beidentical, but they must be convertible
in both directions, or a column datatype mismatch error is raised, and the
command is aborted.

The column length defined for columns of type char, varchar, binary, and
varbinary must match the length of the corresponding columns in the
remote table.

Scale and precision of columns of type numeric or decimal must match the
scale and precision of the corresponding columns in the remote table.

If the null property isnot identical to the remote column’s null property, a
warning message is issued, but the command is not aborted.

Server Class ASEnterprise

Table 3-4 describes the allowable datatypes that can be used when
mapping remote Adaptive Server columns to local proxy table columns;

Chapter 3 SQL reference

Table 3-4: Adaptive Server datatype conversions for create existing table

Remote Adaptive
Server Datatype

Allowable Adaptive Server Datatypes

binary(n) image, binary(n), and varbinary(n); if notimage,
the length must match

bit bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

char(n) text, nchar(n), nvarchar(n), char(n), varchar(n),
unichar, univarchar; if not text, the length must
match

datetime datetime and smalldatetime

decimal(p, 9) bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

float bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

image image

int bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

money bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

nchar(n) text, nchar(n), nvarchar(n), char(n), varchar(n);
if not text, the length must match

numeric(p,) bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

nvarchar(n) text, nchar(n), nvarchar(n), char(n), varchar(n),
unichar, univarchar; if not text, the length must
match

real bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

smalldatetime datetime and smalldatetime

smallint bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

smallmoney bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

text text

timestamp timestamp

tinyint bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

unichar char, varchar, unichar, univarchar, text, datetime,

and smalldatetime

129

create existing table

Remote Adaptive

Server Datatype Allowable Adaptive Server Datatypes
univarchar char, varchar, unichar, univarchar, text, datetime,
and smalldatetime
varbinary(n) image, binary(n), and varbinary(n); if not image,
the length must match

varchar(n) text, nchar(n), nvarchar(n), char(n), varchar(n)
unichar, univarchar; if not text, the length must
match

Server Class ASAnywhere

e Table 3-5 describes the allowable datatypes that can be used when
mapping remote Adaptive Server columnsto local proxy table columns;

Table 3-5: Adaptive Server Anywhere datatype conversions for create
existing table

Remote Adaptive

Server Datatype Allowable Adaptive Server Datatypes

binary(n) image, binary(n), and varbinary(n); if not
image, the length must match

bit bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

char(n) text, nchar(n), nvarchar(n), char(n), varchar(n),
unichar, univarchar; if not text, the length must
match

datetime datetime and smalldatetime

decimal(p, s) bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

float bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

image image

int bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

money bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

nchar(n) text, nchar(n), nvarchar(n), char(n), varchar(n),
unichar, univarchar; if not text, the length must
match

numeric(p, s) bit, decimal, float, int, money, numeric, redl,

smallint, smallmoney, and tinyint

130

Chapter 3 SQL reference

Remote Adaptive
Server Datatype

Allowable Adaptive Server Datatypes

nvarchar(n) text, nchar(n), nvarchar(n), char(n), varchar(n),
unichar, univarchar; if not text, the length must
match

real bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

smalldatetime datetime and smalldatetime

smallint bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

smallmoney bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

text text

timestamp timestamp

tinyint bit, decimal, float, int, money, numeric, real,
smallint, smallmoney, and tinyint

varbinary(n) image, binary(n), and varbinary(n), unichar,
univarchar; if not image, the length must match

varchar(n) text, nchar(n), nvarchar(n), char(n), varchar(n),

unichar, univarchar; if not text, the length must
match

Server Class ASIQ

e text and image datatypes are not supported by ASIQ.

e Other than text and image datatypes, behavior isthe same as for server

class ASAnywhere.

Server Class sql_server

« Allowable datatype conversions are the same as for server class

ASEnterprise.

Server Class direct_connect

* TheRPCsp_columns queriesthe datatypes of the columnsintheexisting

table.

¢ Local column datatypes do not need to beidentical to remote column
datatypes, but they must be convertible as shown in Table 3-6. If not, a
column type error is raised, and the command is aborted.

131

create existing table

132

Table 3-6: DirectConnect datatype conversions for create existing table

DirectConnect

Datatype Allowable Adaptive Server Datatypes

binary(n) image, binary(n), varbinary(n); if the length does not
match, the command is aborted

binary(16) timestamp

bit bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

char(n) text, nchar(n), nvarchar(n), char(n) and varchar(n),

unichar, univarchar; if the length does not match, the
command is aborted

datetime datetime, smalldatetime

decimal(p,) bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

float bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

image image

int bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

money bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

nchar(n) text, nchar(n), nvarchar(n), char(n) and varchar(n),

unichar, univarchar; if the length does not match, the
command is aborted

numeric(p, s) bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint
nvarchar(n) text, nchar(n), nvarchar(n), char(n) and varchar(n),

unichar, univarchar; if the length does not match, the
command is aborted

real bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

smalldatetime datetime, smalldatetime

smallint bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

smallmoney bit, decimal, float, int, money, numeric, real, smallint,
smallmoney, and tinyint

text text

timestamp timestamp, binary(8), varbinary(8)

unichar text, nchar(n), nvarchar(n), char(n), varchar(n),

unichar, univarchar; if not text, the length must match

Chapter 3 SQL reference

DirectConnect
Datatype Allowable Adaptive Server Datatypes

univarchar text, nchar(n), nvarchar(n), char(n), varchar(n),

unichar, univarchar; if not text, the length must match

Datatypeinformationispassedinthe CS_ DATAFMT structure associated
with the parameter. The following fields of the structure contain datatype
information:

e datatype—the CS Library datatype representing the Adaptive Server
datatype. For example, CS _INT_TYPE.

e usertype—the native DBMS datatype. sp_columns passes this
datatype back to Component Integration Services during a create
existing table command as part of its result set (see sp_columns in
the Adaptive Server Reference Manual). Adaptive Server returnsthis
datatype in the usertype field of parametersto assist the
DirectConnect in datatype conversions.

Server Class db2

Column names are checked in a case-insensitive manner. If thereis no
match, a column name error israised, and the command is aborted.

Note The Adaptive Server table can contain fewer columns than the
remote table, but each column in the Adaptive Server table must have a
matching column in the remote table.

text and image datatypes are not supported by server class db2.

When acreate existing table command is processed, the datatype for
each column specifiesthe type of conversion to perform between the DB2
and Adaptive Server datatypes during query processing. Table 3-7
describes the allowable Adaptive Server datatypes that can be used for
existing DB2 datatypes:

Table 3-7: DB2 datatype conversions for create existing table

DB2 Datatype Allowable Adaptive Server Datatypes

int

int

smallint int, smallint, and tinyint; if length does not match,

awarning messageisissued

tinyint int, smallint, and tinyint; if length does not match,

awarning messageisissued

float real, float, and money

133

create existing table

134

DB2 Datatype

Allowable Adaptive Server Datatypes

double precision

real, float, and money

real

real, float, and money

decimal(scale > 0)

float, money, decimal, and numeric; for decimal
and numeric, scale and precision must match

decimal (scale = 0)

float, money, decimal, and numeric; for decimal
and numeric, scale and precision must match

numeric (scale > 0)

float, money, decimal, and numeric; for decimal
and numeric, scale and precision must match

numeric (scale = 0)

float, money, decimal, and numeric; for decimal
and numeric, scale and precision must match

char char, varchar, bit, binary, varbinary, text and
image, unichar, univarchar; if not text or image,
length must match

char(n) for bit data binary(n), varbinary(n), unichar, univarchar, and
image; if not image, length must match

varchar char, varchar, bit, binary, varbinary,unichar,

univarchar, text and image; if not text or image,
length must match

varchar(n) for bit data

binary(n), varbinary(n),unichar, univarchar, and
image; if not image, length must match

long varchar (length of
maximum column size
depends on the logical
page size of the Adaptive
Server)

char, varchar, bit, binary, varbinary, unichar,
univarchar, text and image; if not text or image,
length must match

date

char(10), varchar(10), and datetime (time set to
12:00AM)

time char(8), varchar(8), and datetime (date set to
1/1/1900)

timestamp char(26), varchar(26), datetime, and smalldatetime

graphic Not supported

vargraphic Not supported

long vargraphic Not supported

If the data contained in along varchar column exceeds the length allowed
by the logical page size of the Adapted Server, it istruncated, or, if the

gateway is so configured, an error is returned.

DB2 table names are limited to 18 characters.

DB2 authorization IDs (owner names) are limited to 8 characters.

Chapter 3 SQL reference

¢ The maximum string length for columns returned by DB2 is 254
characters for char and varchar datatypes. For long varchar, the length is
32,704 bytes.

¢ DB2 canreturn date values that are not within the range of the Adaptive
Server datetime datatype. DB2's range is 0001-01-01 to 9999-12-31. The
Adaptive Server'srangeis 1753-01-01 to 9999-12-31. When adate earlier
than 1753-01-01 isretrieved from DB2, it is converted to 1753-01-01.

¢ Check DB2 documentation for the maximum number of columns per DB2
table. This varies with the DB2 version.

See also See Also
create existing table in the Adaptive Server Reference Manual.

135

create index

create index

Description

Syntax

Usage

136

Creates an index on one or more columnsin atable.

create [unique] [clustered | nonclustered]

index index_name

on [[database.Jowner.]table_name (column_name

[, column_name]...)

[with {{fillfactor | max_rows_per_page} = X,

ignore_dup_key, sorted_data,
[ignore_dup_row | allow_dup_row]}]

[on segment_name]
Usage

Component Integration Services processes the create index command
when thetable involved has been created as aproxy table. The actual table
resides on aremote server, and Component Integration Services forwards
the request to the remote server after Adaptive Server catal ogs are updated
to represent the new index.

Trace flag 11208 changes the behavior of the create index command. If
trace flag 11208 is turned on, Component Integration Services does not
send the create index command to the remote server. Instead, Adaptive
Server processes the command locally, asif the table on which it operates
islocal. Thisisuseful for creating an index on a proxy table that maps to
aremote view.

Adaptive Server performs all system catalog updatesin order to identify
the index. However, just as there are no data pages in the server for proxy
tables, there are no index pages.

When Component Integration Services forwards the create index
command to aremote server, the table name used isthe remote table name,
and the column names used are the remote column names. These names
may not be the same as the local proxy table names.

Server Class ASEnterprise

Component Integration Services forwards everything except the on
segment_name clause to the remote server.

Server Class ASAnywhere

Component Integration Services forwards everything except the on
segment_name clause to the remote server.

Server Class ASIQ

Chapter 3 SQL reference

e Component Integration Services forwards everything except the on
segment_name clause to the remote server.

Server Class sql_server

¢ Forpre-release 10.0 SQL Server or Microsoft SQL Server 6.5, neither the
max_rows_per_page or on segment_name clause is forwarded to the
remote server.

Server Class direct_connect

» When the language capability is set to “ Transact-SQL”, Component
Integration Servicesforwards all syntax except the max_rows_per_page
and on segment_name clauses to the remote server.

* When thelanguage capahility is set to “DB2", the behavior isthe same as
for server class db2.

» The DirectConnect must either trandate the Sybase extensionsto
equivalent native syntax or ignore them.

Server Class db2

» Component Integration Services doesnot forward the following clausesto
the remote server:

* onsegment_name

* max_rows_per_page
* ignore_dup_key

* ignore_dup_row

e allow_dup_row

» Component Integration Services converts thefillfactor option to pctfree
and then forwards it to the remote server.

See also See Also

create index in the Adaptive Server Reference Manual.

137

create proxy_table

create proxy_table

Description Creates a proxy table without specifying acolumn list. Component I ntegration
Services derives the column list from the metadata it obtains from the remote
table.

Syntax create proxy_table table_name

[external type] at pathname
Usage Usage
e create proxy_table isavariant of the create existing table command.
You use create proxy_table to create a proxy table, but (unlike create

existing table) you do not specify acolumn list. Cl S derives the column
list from the metadata it obtains from the remote table.

* Thelocation information provided by the at keyword specifies the
pathname to the remote object.

« If theremote server object does not exist, the command isrejected with an
error message.

« |If the remote abject exists, column metadata is obtained from the remote
server, and an internal create existing table command is processed.

« |If the remote server is case insensitive (asis the case with DB2, Oracle,
perhaps others), then the case of the generated table and column namesis
determined by the case of thetable_name used with the create proxy_table
statement:

« if table_nameislower case, the generated proxy table nameisalso
lower case, asare al of its columns

« if table_nameis uppercase, the generated proxy table name isalso
upper case, asare al of its columns

* Theexternal type can be of three types

e external table specifiesthat the object is aremote table or view.
external table isthe default, so this clauseis optional.

» external directory specifies that the object is adirectory with a path
in the following format: “/tmp/directory_name[;R]”. The option“R”
indicates recursive

« external file specifiesthat the object is afile with apath in the
following format: “/tmp/filename”

See also See Also

138

Chapter 3 SQL reference

create table and create existing table in the Adaptive Server Reference
Manual.

139

create table

create table

Description

Syntax

Usage

140

Creates new tables and optional integrity constraints; specifies alocking
scheme for the table being created; specifies ascending or descending index
order when creating referential integrity constraints that depend on indexes;
specifies the expected row size, to reduce row forwarding; specifies aratio of
empty pages to be left for each filled page; allows you to map the tableto a
table, view, or procedure at a remote location.

create table [database.[owner].]table_name (column_name datatype
[default {constant_expression | user | null}]
{[{identity | null | not null}]
[off row | in row]
| [[constraint constraint_name]
{{unique | primary key}
[clustered | nonclustered] [asc | desc]
[with { { fillfactor = pct
| max_rows_per_page = num_rows }
, reservepagegap = num_pages }]
[on segment_name]
| references [[database.]Jowner.]ref_table
[(ref_column)]
| check (search_condition)}]}...
| [constraint constraint_name]
{{unique | primary key}
[clustered | nonclustered]
(column_name [asc | desc]
[{, column_name [asc | descl}...])
[with { {fillfactor = pct
| max_rows_per_page = num_rows },
reservepagegap = num_pages }]
[on segment_name]
|foreign key (column_name [{, column_name}...])
references [[database.Jowner.Jref_table
[(ref_column [{, ref_column}...])]
| check (search_condition) ... }

[{, {next_column | next_constraint}}...])

[lock {datarows | datapages | allpages }]

[with { max_rows_per_page = num_rows ,
exp_row_size = num_bytes ,
reservepagegap = num_pages } |

[on segment_name]

[[external {table | file}] at “pathname”]

Usage

« |f thetable being created is mapped to aremote location, aproxy tableis
created. A proxy tableisidentical to alocal table, except that the
sysobjects.sysstat2 column contains astatus flag that indicatesthe tableis
mapped to an external location.

Chapter 3 SQL reference

¢ Theexternal location must be previously defined using the at pathname
clause.

e After the Adaptive Server processesthe create table command, it notifies
Component Integration Services of the need to forward the command to
the remote location (if alocation has been previously specified).

Component Integration Services reconstructs the SQL necessary to create
the table, and forwards the SQL to the remote server. It does not forward
all the original syntax to the remote server. The following clauses are
processed by Adaptive Server:

* on segment name

e check constraints

e default

* with max_rows_per_page

e Traceflag 11213 changes the behavior of the create table command.
Referential constraints and unique or primary key constraints are
forwarded to the remote server unless trace flag 11213 isturned on, in
which case they are processed locally.

¢ For each column, the column name, datatype, length, identity property,
and null property are reconstructed from the original statement.

e Component Integration Services passesaNULL char column asaNULL
varchar column.

e Component Integration Services passes a NULL binary column asa
NULL varbinary column.

Server Class ASEnterprise

¢ Component | ntegration Services passesthe datatype of each columntothe
remote server without conversion.

Server Class ASAnywhere

» Component Integration Services passesthe datatype of each columnto the
remote server without conversion.

Server Class ASIQ

» Component Integration Services passesthe datatype of each columnto the
remote server without conversion.

Server Class sql_server

141

create table

e Component Integration Services passes the datatype of each columntothe
remote server without conversion.

Server Class direct_connect

e Component Integration Services reconstructs the create table command
and passes commands to the targeted DirectConnect. The gateway
transforms the commands into a form that the underlying DBMS
recognizes.

e SomeDirectConnectssupport DB2 syntax mode, whichisdescribedinthe
DirectConnect documentation. When the DirectConnect enables DB2
syntax mode, Component Integration Services constructs DB2 SQL
syntax and converts the column to a datatype DB2 supports.

e Adaptive Server datatypes are converted to either the DirectConnect or
DB2 syntax mode datatypes shown in Table 3-8, depending on whether the
DirectConnect supports DB2 syntax mode

Table 3-8: DirectConnect datatype conversions for create table

142

Adaptive

Server DirectConnect DirectConnect DB2

Datatype Default Datatype Syntax Mode Datatype

binary(n) binary(n) char(n) for bit data

bit bit char(1)

char char char

datetime datetime timestamp

decimal(p, s) decimal(p, 9) decimal(p, 9)

float float float

image image varchar(n) for bit data; the
valueof nisdetermined by the
global variable @@textsize

int int int

money money float

numeric(p, s) numeric(p, s) decimal(p, 9)

nchar(n) nchar(n) graphic(n)

nvarchar(n) nvarchar(n) vargraphic(n)

real real real

smalldatetime smalldatetime timestamp

smallint smallint smallint

smallmoney smallmoney float

timestamp timestamp varbinary(8)

tinyint tinyint smallint

Chapter 3 SQL reference

Adaptive
Server DirectConnect DirectConnect DB2
Datatype Default Datatype Syntax Mode Datatype
text text varchar(n); thevalueof nis
determined by the global
variable @@textsize
unichar(n) unichar char(n) for bit data
univarchar(n) char(n) for bit data varchar(n) for bit data
varbinary(n) varbinary(n) varchar(n) for bit data
varchar(n) varchar(n) varchar(n)

Server Class db2

Table 3-9 shows the datatype conversions that are performed when acreate
table command is processed. Adaptive Server datatypes are converted to the
DB2 datatypes shown.

Table 3-9: DB2 datatype conversions for create table

Adaptive Server

Datatype DB2 Datatype

binary(n) char(n) for bit data, where n <= 254
bit char(1)

char(n) char(n), wheren <= 254

datetime timestamp

decimal(p, 9) decimal(p, s)

float float

image Not supported

int int

money float

nchar char(n)

nvarchar varchar(n)

numeric(p, 9) decimal(p, s)

real real

smalldatetime timestamp

smallint smallint

smallmoney float

tinyint smallint

text Not supported

varbinary(n) varchar(n) for bit data, where n <=254

143

create table

Adaptive Server

Datatype DB2 Datatype
varchar(n) varchar(n), where n <= 254
See also See Also

create table in the Adaptive Server Reference Manual.

144

Chapter 3 SQL reference

create trigger

Description

Syntax

Usage

Creates atrigger, atype of stored procedure that is often used for enforcing
integrity constraints. A trigger executes automatically when a user attempts a
specified data modification statement on a specified table.

create trigger [owner.]trigger_name
on [owner.Jtable_name

for {insert, update, delete}

as SQL_statements

Or, using theif update clause:

create trigger [owner.]trigger_name
on [owner.Jtable_name
for {insert, update}
as
[if update (column_name)
[{and | or} update (column_name)]...]
SQL_statements
[if update (column_name)
[{and | or} update (column_name)]...
SQL_statements]...

Usage

* When atrigger is created on a proxy table, it will execute after an insert,
delete or update statement on that proxy table completes. However, the
special tablesinserted and del eted, which normally areviewsinto thelocal
transaction log, will not contain any data, since changesto remote dataare
not logged locally.

» Somedirect_connectshavethe ability to support the special tablesinserted
and deleted. I thisis the case, CISwill forward referencesto these tables
when found within atrigger. The reference will be constructed asin this
example:

select ...
from dbname.owner.tablename inserted,
dbname.owner.tablename deleted
where inserted.id = deleted.id

¢ Thenamesfor the inserted and del eted tables are passed to the
direct_connect asalias names, and the table namein thefrom clauseisthe
actual name of the table in the DBMS accessed by the DirectConnect.

Server Class ASEnterprise

e Serversinthisclass do not support access to remote inserted and deleted
tables.

145

create trigger

146

Server Class ASAnywhere

e Serversinthisclass do not support access to remote inserted and del eted
tables.

Server Class ASIQ

e Serversinthisclass do not support access to remote inserted and del eted
tables.

Server Class sql_server

e Serversinthisclass do not support access to remote inserted and del eted
tables.

Server Class direct_connect

e Theahility to support inserted and deleted tablesis determined by a
capability. If enabled, CISwill forward syntax referencing these tables to
the DirectConnect.

e Withversion 12.0, the only DirectConnect supporting this capability isthe
DirectConnect for Oracle.

Server Class db2

e Serversinthisclass do not support access to remote inserted and del eted
tables.

Server Class genereic

e Serversinthisclass do not support access to remote inserted and del eted
tables.

Chapter 3 SQL reference

deallocate cursor

Makes a cursor inaccessible and releases all memory resources committed to
that cursor.

Description

Syntax

Usage

See also

deallocate cursor cursor_name
Usage

If the cursor specified by cursor_name containsreferencesto proxy tables,
Adaptive Server notifies Component I ntegration Servicesto deallocateits
remote cursors for those tables.

If the remote cursor is not closed, Component I ntegration Services closes
and deallocates it. If the remote cursor is already closed, no additional
actions are taken.

Component Integration Services uses Client-Library to manage cursor
operations to a remote server. When Component I ntegration Services
receives adeallocate cursor command and the cursor has not been
explicitly closed with aclose command, Component Integration Services
uses the following Client-Library functions to interact with the remote
server:

ct_cursor(command, CS_CURSOR_CLOSE, NULL,
CS_UNUSED, NULL, CS_UNUSED, CS_UNUSED)

ct_cursor(command, CS_CURSOR_DEALLOC, NULL,
CS_UNUSED, NULL, CS_UNUSED, CS_UNUSED)

If the cursor contains referencesto more than one proxy table, Component
Integration Services must deallocate a remote cursor for each server
represented by the proxy tables.

See Also

close, declare cursor, fetch, open in this chapter.

deallocate cursor in the Adaptive Server Reference Manual.

147

declare cursor

declare cursor

Description Defines a cursor.

Syntax declare cursor_name cursor
for select_statement
[for {read only | update [of column_name_list]}]

Usage Usage
« |f thecursor specified by cursor_name containsreferencesto proxy tables,

Adaptive Server notifies Component Integration Services to establish a
connection to the remote servers referenced by the proxy tables.

A separate connectionisrequired for each server represented by all proxy
tables. For example, if all proxy tablesin the cursor reference the same
remote server, only one connection isrequired while the declare cursor
command is processed. However, if two or more servers are referenced by
the proxy tables, a separate connection to each server is required.

See also See Also
close, deallocate cursor, fetch, open in this chapter.

declare cursor in the Adaptive Server Reference Manual.

148

Chapter 3 SQL reference

delete

Description

Syntax

Usage

Removes rows from atable.

delete [from] [[database.Jowner.]{view_name|table_name}
[where search_conditions]

delete [[database.]Jowner.]{table_name | view_name}
[from [[database.]Jowner.]{view_name|table_name
[(index index_name [prefetch size][Irujmru])]}

[, [[database.]lowner.{view_name|table_name

(index index_name [prefetch size][lrujmru])]}]...]
[where search_conditions]

delete [from] [[database.Jowner.]{table_name|view_name}
where current of cursor_name

Usage

Component Integration Services processes the delete command when the
table on which it operates has been created as a proxy table. Component
Integration Services forwards the entire request (or part of it) to the server
that owns the actual object.

Component Integration Services executes the delete command using one
of two methods:

a Theentire command isforwarded to the remote server asasingle
statement in close to its original syntax. If the syntax and remote
capabilities match, the entire statement is forwarded and processed
remotely. Thisisreferred to as quickpass mode.

b If the entire command cannot be forwarded to a remote server,
Component Integration Services declares and opens one or more
cursors in update mode, and begins a scan on the remote table. Each
cursor forwards as much of the original statement’s predicatesto the
remote server as possible. For each row fetched that meets the search
criteria, a positioned delete is executed.

When Component Integration Servicesforwardsthe delete commandto a
remote server, the table name used is the remote table name, and the
column names used are the remote column names. These names may not
be the same as the local proxy table names.

Component Integration Services generally passesthe original delete
syntax to remote serversasasingle statement, but thefollowing conditions
will likely cause the statement to be executed using method 2, above:

» Thestatement contains multipletablesthat are not located in the same
remote server

149

delete

150

e The statement contains local tables (including temporary tables)

e The statement contains case expressions

e The statement contains text or image columns

e The statement contains certain referential integrity checks

e The statement contains system functions in the predicate list

e Thestatement contains syntax that the remote server does not support

The format involving where current of is never forwarded to aremote
server and causes the statement to be executed using method 2 above.

If Component Integration Services cannot pass the entire statement to a
remote server, a unique index must exist on the table.

Server Class ASEnterprise

If Component Integration Services cannot forward the original query
without alteration, it performs the delete using method 2.

Server Class ASAnywhere

If Component Integration Services cannot forward the original query
without alteration, it performs the delete using method 2.

Server Class ASIQ

If Component Integration Services cannot forward the original query
without alteration, it performs the delete using method 2.

Server Class sql_server

If Component Integration Services cannot forward the original query
without alteration, it performs the delete using method 2.

Server Class direct_connect

The syntax forwarded to servers of class direct_connect is dependent on
the capabilities negotiation which occurs when Component Integration
Services first connects to the remote DirectConnect. Examples of
negotiable capabilities include: subquery support, group by support, and
built-in support.

A DirectConnect can request that the delete command be generated in
DB2 syntax.

Chapter 3 SQL reference

e Component Integration Services passes dataval ues as parametersto either
acursor or adynamic SQL statement. Language statements can also be
used if the DirectConnect supports it. The parameters are in the datatype
native to Adaptive Server and must be converted by the DirectConnect
into formats appropriate for the target DBMS.

Server Class db2 <Server’'sof class db2 do not contain the capabilities
negotiation features of server classdirect_connect, so the syntax passed to
the remote server is simpler than that allowed by Transact-SQL. The
syntax does not contain the following:

e Search conditions containing subqueries, group by, or order by
clauses

e Transact-SQL built-in functions
e Transact-SQL operators (such as bitwise operators)
e Syntax not allowed by DB2

Component Integration Services processes the delete command using
method 2, described above, when the statement is complex.

e |If theserverisaDB2 system, use traceflag 11215 to instruct Component
Integration Services that the remote server is capable of handling all DB2
syntax. This assumption is not made automatically because not all
gateways using the db2 server class are actually connected to DB2
systems. When trace flag 11215 is turned on, quickpass modeis used
unless the following conditions exist:

¢ The statement cannot be expressed in DB2 syntax
¢ The statement contains outer joins
¢ The statement contains like clauses with Sybase extensions

¢ The statement contains built-in functions that are not supported by
DB2

See also See Also
delete in the Adaptive Server Reference Manual.

151

drop database

drop database

Description
Syntax

Usage

See also

152

Removes one or more databases from Adaptive Server.
drop database database_name [, database_name]...
Usage

« For each database being dropped, Component I ntegration Services scans
sysobjectsto check for proxy tablesin the database. Each proxy table that
was not created with the existing keyword is dropped in the remote server
that owns the object.

Server Class ASEnterprise *Component Integration Servicesissuesadrop
table command for each table that was not created with the existing
keyword.

Server Class ASAnywhere

« Component Integration Servicesissues adrop table command for each
table that was not created with the existing keyword.

Server Class ASIQ

« Component Integration Servicesissues adrop table command for each
table that was not created with the existing keyword.

Server Class sql_server

« Component Integration Servicesissues adrop table command for each
table that was not created with the existing keyword.

Server Class direct_connect

e Component Integration Servicesissues adrop table command for each
table that was not created with the existing keyword.

Server Class db2

e Component Integration Servicesissues adrop table command for each
table that was not created with the existing keyword.

See Also

drop database in the Adaptive Server Reference Manual.

Chapter 3 SQL reference

drop index

Description

Syntax

Usage

Removes an index from atable in the current database.

drop index table_name.index_name
[, table_name.index_name]...

Usage

Component Integration Services processes the drop index command
when thetableinvolved has been created as aproxy table. The actual table
and index reside on a remote server. Component Integration Services
forwards the request to the remote server, and removes the index from the
proxy table.

When Component Integration Services forwards the drop index
command to aremote server, the table name used isthe remote table name,
and the index names used are the remote index names. These names may
not be the same as the local proxy table names.

If multipleindexes are dropped in asingle command, each index is sent as
an individual drop index command.

Trace flag 11208 changes the behavior of the drop index command. If
trace flag 11208 is turned on, the drop index command is not sent to the
remote server. | nstead, Adaptive Server processesthe command locally, as
if the table on which it operatesislocal. Thisisuseful for synchronizing
thelocal Adaptive Server schemawith the schema of the remote database.

Server Class ASEnterprise

Component Integration Services forwards the following drop index
syntax to a remote server configured as class ASEnter prise:

drop index table_name.index_name

Component Integration Services precedes this statement with ause
database command since the drop index syntax does not allow you to
specify the database name.

Server Class ASAnywhere

Component Integration Services forwards the following drop index
syntax to a remote server configured as class ASAnywhere:

drop index table_name.index_name

Component I ntegration Services precedes this statement with ause
database command since the drop index syntax does not allow you to
specify the database name.

153

drop index

See also

154

Server Class ASIQ

e Component Integration Services forwards the following drop index
syntax to aremote server configured as class ASQ:

drop index table_name.index_name

Component Integration Services precedes this statement with ause
database command since the drop index syntax does not allow you to
specify the database name.

Server Class sql_server

e Component Integration Services forwards the following drop index
syntax to aremote server configured as class sql_server:

drop index table_name.index_name

Component I ntegration Services precedes this statement with ause
database command since the drop index syntax does not allow you to
specify the database name.

Server Class direct_connect

« Component Integration Services forwards the following drop index
syntax to aremote server configured as class direct_connect:

drop index table_name.index_name

Server Class db2

« Component Integration Services forwards the following drop index
syntax to aremote server configured as class db2:

drop index index_name

See Also
drop index in the Adaptive Server Reference Manual.

Chapter 3 SQL reference

drop table

Description

Syntax

Usage

Removes atable definition and al of its data, indexes, triggers, and
permissions from the database.

drop table [[database.]Jowner.]table_name
[, [[database.Jowner.]table_name]...

Usage

» Component Integration Services processesthe drop table command when
the table on which it operates has been created as a proxy table.
Component I ntegration Services forwards the entire request (or part of it)
to the server that ownsthe actua object if the table was not created with
the existing keyword.

* When Component Integration Servicesforwardsthedrop table command
to aremote server, the table name used is the remote table name. This
name may not be the same as the local proxy table name.

* If multipletablesaredropped in asingle command, each tableis sent asan
individual drop table command.

» A tablein use by another user or process cannot be dropped and an error
stating that the table isin useis returned.

Server Class ASEnterprise *Component Integration Services forwards the
following drop table syntax to aremote server configured as class
ASEnterprise:

drop table database.owner.table_name

Server Class ASAnywhere

» Component Integration Servicesforwardsthefollowing drop table syntax
to aremote server configured as class ASAnywhere:

drop table database.owner.table_name

Server Class ASIQ

e Component Integration Servicesforwardsthefollowing drop table syntax
to aremote server configured as class ASQ:

drop table database.owner.table_name

Server Class sql_server

e Component Integration Servicesforwardsthefollowing drop table syntax
to aremote server configured as class sgl_server:

drop table database.owner.table_name

155

drop table

See also

156

Server Class direct_connect

e Component Integration Services requests a capabilities response from a
remote server with server classdirect_connect, but support for drop table
is not optional. The behavior of the DirectConnect is database dependent.

Server Class db2

« Component Integration Servicesforwardsthefollowing drop table syntax
to aremote server configured as class db2:

drop table owner.table_name

See Also
drop table in the Adaptive Server Reference Manual.

Chapter 3 SQL reference

execute

Description

Syntax

Usage

See also

Runs a system procedure or a user-defined stored procedure.

[execute] [@return_status =]
[[[server.]database.Jowner.]procedure_name[;number]
[[@parameter_name =] value |
[@parameter_name =] @variable [output]
[,[@parameter_name =] value |
[@parameter_name =] @variable [output]...]]
[with recompile]

Usage

e When the execute command is used to issue an RPC to a remote server,
Adaptive Server issuesthe RPC viaone of two methods. The method used
to issue the RPC determines whether the work performed by the RPC can
be part of an on-going transaction. The two methods are as follows:

¢« TheRPCisissued viathe Adaptive Server's site handler. Thisisthe
Adaptive Server's default method of issuing RPCs. In this case, the
RPC cannot be part of an on-going transaction.

e« TheRPC isissued via Component Integration Services. In this case,
the RPC can be part of an on-going transaction. To issue RPCs using
thismethod, cis rpc handling must be turned on. Thisisdoneviathe
set command or the sp_configure system procedure.

See Also
“RPC handling and Component Integration Services’ on page 67.
set in this chapter.

execute in the Adaptive Server Reference Manual.

157

fetch

fetch

Description
Syntax

Usage

158

Returns arow or a set of rows from a cursor result set.

fetch cursor_name [into fetch_target_list]
Usage

When the first fetch is received, Component I ntegration Services
constructsthe query defined by thedeclare cursor command and sendsiit
to the remote server.

If the remote server supports Client-Library cursors, Component
Integration Services takes the following steps:

a Declaresacursor:
ct_cursor(command, CS_CURSOR_DECLARE...)
b Establishes the cursor row count:

ct_cursor(command, CS_CURSOR_ROWS,...
cursor_row_count)

¢ OpensacClient-Library client cursor to the remote server:
ct_cursor(command, CS_CURSOR_OPEN...)

If the remote server does not support Client-Library cursors, Component
Integration Services sends a language request to the server. This may
require an additional connection to that server.

If the declare cursor command included afor update clause, the cursor
row count is set to 1; otherwise, it is set to the value of the configuration
parameter cis_cursor_rows.

After the cursor is opened or the language request is sent, Component
Integration Servicesissues a Client-Library ct_fetch command to obtain
thefirst row. Client-Library array binding is used to establish the buffer in
which to place the fetched results, whether Client-Library cursors or
language requests are used to generate the fetchable results. The number
of rowsthat are buffered by asingle fetch is determined by the cursor row
count discussed above.

Subsequent fetch requestsretrieverowsfrom the buffered results, until the
end of the buffer isreached. At that time, Component Integration Services
issues another Client-Library ct_fetch command to the remote server.

A fetch against acursor that has no remaining rowsin itsresult set causes
Component I ntegration Services to close the remote cursor.

Server Class ASEnterprise

Chapter 3 SQL reference

See also

If the cursor isread only, Component I ntegration Services sends alanguage
request to the remote server when thefirst fetch isreceived after the cursor is
opened. Otherwise, Component I ntegration Services declares a cursor to the
remote server by means of Client-Library.

Server Class ASAnywhere
¢ Handling of the fetch statement is the same as for ASEnterprise.
Server Class ASIQ

» Component Integration Services sends a language request to the remote
server when thefirst fetch is requested after the cursor is opened.

Server Class sql_server

» For pre-version 10.0 SQL Server, Component I ntegration Services sends
alanguage request to the remote server when the first fetch is received
after the cursor is opened.

» Forversion 10.0 or later servers, Component I ntegration Services declares
acursor to the remote server by means of Client-Library.

Server Class direct_connect

e Component Integration Servicestreatsserversin classdirect_connect asif
they were version 10.0 or later of class sgl_server.

Server Class db2

e Component Integration Services sends a language request to the remote
server when thefirst fetch is requested after the cursor is opened.

See Also
close, deallocate cursor, declare cursor, open in this chapter.

fetch in the Adaptive Server Reference Manual.

159

Functions

Functions

Description

Support for Functions
within Component
Integration Services

Aggregate Functions

The following section defines the compatibility of the CIS server classes with
the built-in ASE functions.

When a SQL statement such as aselect, insert, delete or update containsa
built-in function, CIS has to determine whether or not the function can be
forwarded to theremote server, or if it must be evaluated withinthelocal server
using remote data.

Functionsare only sent to aremote server if the statement containing them can
be handled by quickpass mode (see the select command).

In the tables shown below, support for function by server classisindicated by
a‘'Y’; an ‘N’ indicates no support is provided, and ‘C' indicates support for it
is determined by capabilities of the underlying DBM S (often the case for
DirectConnects).

The aggregate functions generate summary values that appear as new columns
in the query results. The aggregate functions are:

Table 3-10: Server Class Support for Aggregate Functions

Function | ASE ASA ASIQ sql_serv | dir_con db2
avg Y Y Y Y C Y
count Y Y Y Y C Y
max Y Y Y Y C Y
min Y Y Y Y C Y
sum Y Y Y Y C Y

Datatype Conversion

Datatype conversion functions change expressions from one datatype to

Functions another and specify new display formats for date/time information. The
datatype conversion functions are:
Table 3-11: Server Class Support for Datatype Conversion Functions
Function | ASE ASA ASIQ sql_serv | dir_con db2
convert() Y Y Y Y C N
inttohex() Y Y N Y C N
hextoint() Y Y N Y C N

Date Functions

160

The date functions manipulate values of the datatype datetime or
smalldatetime. Notethat the getdate() functionisaways expanded by thelocal
server; the presence of this builtin function will not cause a query to be
eliminated from quickpass mode optimizations, however.

Chapter 3

SQL reference

Table 3-12: Server Class Support for Date Functions

Function | ASE ASA ASIQ sgl_serv | dir_con db2

dateadd Y Y Y Y C N

datediff Y Y Y Y C N

datename | Y Y N Y C N

datepart Y Y Y Y C N

Mathematical Mathematical functions return values commonly needed for operations on
Functions mathematical data. Mathematical function names are not keywords.
Each function also accepts arguments that can be implicitly converted to the
specified type. For example, functions that accept approximate numeric types
also accept integer types. Adaptive Server automatically convertsthe argument
to the desired type
Table 3-13: Server Class Support for Mathematical Functions

Function | ASE ASA ASIQ sgl_serv | dir_con db2

abs Y Y Y Y C N

acos Y Y N Y C N

asin Y Y N Y C N

atan Y Y N Y C N

atn2 Y Y N Y C N

ceiling Y Y Y Y C N

cos Y Y N Y C N

cot Y Y N Y C N

degrees Y Y N Y C N

exp Y Y N Y C N

floor Y Y Y Y C N

log Y Y N Y C N

log10 Y Y N Y C N

pi Y Y N Y c N

power Y Y N Y C N

radians Y Y N Y C N

rand Y Y Y Y C N

round Y Y N Y C N

sign Y Y N Y C N

sin Y Y N Y C N

sqrt Y Y Y Y C N

tan Y Y N Y C N

161

Functions

Security Functions Security functions return security-related information. The security functions
are:

Table 3-14: Server Class Support for Security Functions

Function | ASE ASA ASIQ sql_serv | dir_con db2
ic_ sec_ser | N N N N N N
vice_on()
show_sec_ | N N N N N N
services)
String Functions String function operate on binary data, character strings, and expressions. The

string functions are:

Table 3-15: Server Class Support for String Functions
Function | ASE ASA sql_serv | dir_con db2

ascii

>
()
o)

char

charindex

char_lengt

difference

lower

Itrim

patindex

replicate

reverse

right

rtrim

soundex

space

str
stuff

substring
upper

<|=<|=<|<|<|=<|=<|<|[<|=<|z|<|=<|<]|=<|<|=<|=<
<|<|<|<|<|z|<|<|z|<|z|<|=<|<]|<|<|=<]|=<
<| </ Z|Z|Z|<|<L|KL|Z|Z|Z|KL|KLX|<L|Z|Z|Z2|Z2
<|=<|=<|<|<|=<|=<|<|[<|=<|z|<|=<|=<]|=<|<|=<|=<
ololo|ojolo|o|o|<|o|z|olo|lo|ojo|lo|o
Zl Z|Z|Z2|1Z2|1Z2|Z2|Z2|Z2|Z2|Z2|1Z2|Z2|Z2/ 2|2/ 22

System Functions System functions return special information from the database. The system
functions are;

Table 3-16: Server Class Support for System Functions

Function ASE ASA ASIQ sqgl_serv | dir_con db2
col_length Y Y N Y C N
col_name Y Y N Y C N

162

Chapter 3 SQL reference

Function

ASE

ASA

ASIQ

sql_serv

dir_con

db2

curunreservedp
gs

P

P

N

N

P4

data_pgs

datalength

db_id

db_name

host_id

host_name

index_col

isnull

Ict_admin

mut_excl_roles

object_id

object_name

proc_role

ptn_data_pgs

reserved_pgs

role_contain

role_id

role_name

rowcnt

show_role

suser_id

suser_name

tsequal

used_pgs

user

user_id

user_name

valid_name

valid_user

Text and Image
Functions

Z|Z|<| K| <L Z|IK|Z|Z|Z|1Z|Z|Z2|Z2|Z|Z|Z2|Z2|Z|Z2|Z2|<|Z2|Z2|Z2|Z2|Z2|<X|Z2

Function | ASE

Z| Z|<| K| <L Z|IK| K| KL Z1Z|Z|Zz|Z2|Z|Z|Z2|Z2|Z|Z2|Z2|<|Z2|Z2|Z2|Z2|Z2|<X|Z2

Z| Z|X| K| <L Z|1Z|K|<L|Z|1Z|Z|Zz|Z2|Z|Z|Z2|Z2|Z|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2| 2

Z|IZ|<| K| Z|Z|IK|Z|Z|Z|1Z|Z|Z2|Z2|Z|Z2|Z2|Z2|Z|Z2|Z2|<|Z2|Z2|Z2|2|Z2|<X|Z2

2|1 Z|Z2|1Z2/Z2Z2|Z2|2Z2Z2Z|Z222Z2Z2|Z|2Z2Z2Z|Z22Z22Z2Z|Z2Z2Z2Z2|Z0(2

2| Z|Z2|1Z2Z2|Z2|Z2|1Z2/Z2|Z2|Z2|2|Z2|Z2|Z2|Z2|Z2|/Z2|Z2|2Z2|Z2|Z2|2/2 22|22

Text and image functions operate on text and image data. The text and image

functions are:

Table 3-17: Server Class Support for Text and Image Functions
| ASIQ

| ASA

| sql_serv | dir_con

| db2

textptr() | Y

K E

| Y

| C

| N

163

Functions

Function ‘ ASE ‘ ASA ‘ ASIQ ‘ sql_serv ‘ dir_con ‘ db2

textvalid) \ Y \ Y \ N \ Y \ C \ N

164

Chapter 3 SQL reference

insert

Description

Syntax

Usage

Adds new rows to atable or view.

insert [into] [database.[owner.]]{table_name|view_name}
[(column_list)]
{values (expression [, expression]...)
|select_statement }
Usage

e Component Integration Services processes the insert command when the
table on which it operates has been created as a proxy table. Component
Integration Services forwards the entire request (or part of it) to the server
that owns the actual object.

¢ When Component Integration Servicesforwardstheinsert commandto a
remote server, the table name used is the remote table name, and the
column names used are the remote column names. These names may not
be the same as the local proxy table names.

Server Class ASEnterprise
¢ insert commands using the values keyword are fully supported.

¢ insert commandsusing aselect command are supported for all datatypes
except text and image. text and image columns are only supported when
they contain null values.

e If dl insert and select tablesreside on the same remote server, the entire
statement is forwarded to the remote server for execution. Thisisreferred
to as quickpass mode. Quickpass mode isnot used if the select statement
does not conform to all the quickpass rules for aselect command (see
“select” on page 175).

* Iftheselect tablesreside on oneremote server, and theinsert table resides
on adifferent server, Component Integration Services selects each row
from the source tables, and inserts the row into the target table.

Server Class ASAnywhere

» Handling of the insert statement is the same as for ASEnterprise.
Server Class ASIQ

» Handling of the insert statement is the same as for ASEnterprise.
Server Class sql_server

» Handling of the insert statement is the same as for ASEnterprise.

Server Class direct_connect

165

insert

See also

166

insert commands using the values keyword are fully supported.

insert commands using a select command are fully supported, but the
table must have a unique index if the table has text or image columns.
When using insert with aselect command, the entire command is sent to
the remote server if:

« All tablesreferenced in the command reside on the remote server

e The capabilities response from the DirectConnect indicates that
insert-select commands are supported

If both conditions are not met, Component Integration Services selects
each row from the source tables, and inserts the row into the target table.

Component I ntegration Services passes dataval ues as parametersto either
acursor or adynamic SQL statement. Language statements can also be
used if the DirectConnect supportsit. The parameters are in the datatype
native to Adaptive Server and must be converted by the DirectConnect
into formats appropriate for the target DBMS.

Server Class db2

insert commands using the values keyword are fully supported for all
valid DB2 datatypes.

insert commandsusing aselect command are fully supported for all valid
DB2 datatypes.

When using insert with aselect command, the entire statement is sent to
the remote server if:

« All tablesreferenced in the statement reside on the remote server
e Traceflag 11215 is enabled

If both conditions are not met, Component Integration Services selects
each row from the source tables, and inserts the rows into the target table.

See Also

insert in the Adaptive Server Reference Manual.

Chapter 3 SQL reference

open
Description

Syntax

Usage

See also

Opens a cursor for processing.

open cursor_name
Usage

open opens a cursor. Cursors allow you to modify or delete rows on an
individual basis. You must first open acursor to usethefetch, update, and
delete statements. For more information about cursors, see the Transact-
QL User’'s Guide.

Adaptive Server returns an error message if the cursor is already open or
if the cursor has not been created with the declare cursor statement.

Opening the cursor causes Adaptive Server to evaluate the select
statement that defines the cursor (specified in the declare cursor
statement) and makes the cursor result set available for processing.

When the cursor isfirst opened, it is positioned before the first row of the
cursor result set.

When you set the chained transaction mode, Adaptive Server implicitly
begins a transaction with the open statement if no transaction is currently
active.

See Also

close, deallocate cursor, declare cursor, fetch in this chapter.

open in the Adaptive Server Reference Manual.

167

prepare transaction

prepare transaction

Used by two-phase commit applicationsto seeif aserver is prepared to commit
atransaction.

Description

Syntax

Usage

168

prepare tran[saction]
Usage

When the Distributed Transaction Manager (DTM) is enabled, DTM
handles all transaction processing for servers of server class ASEnterprise
with aversion of 12.0 or later.

prepare transaction isignored for servers with a server class of db2.

For all other server classes, Adaptive Server notifies Component
Integration Services when it receives a prepare transaction command so
that remote serversinvolved in the current transaction can enter the
prepared state.

For each server that isinvolved in the current transaction, aprepare
transaction command is sent to the server and the results are monitored.
If there are no errors reported, each remote server is assumed to bein a
prepared state and Component I ntegration Services returns control to the
Adaptive Server. Adaptive Server then enters a prepared state for local
work performed by the transaction.

Server Class ASEnterprise

Transaction process for serversin class ASEnterprise with aversion prior
to12.0isidentical to that of server class sgl_server (release 10.0 or later).

When DTM is not enabled, transaction processing for al serversin class
ASEnterpriseisidentical to that of server classsql_server (release 10.0 or
later).

When the Adaptive Server receives notification to prepare a transaction,
the Distributed Transaction Manager issues a PrepareXact RPC to all
remote participants having a server class of ASEnterprise. When all
remote participants have acknowledged the PrepareXact RPC, any local
data changes are written to the database.

Server Class ASAnywhere

Transaction processing for serversin class ASAnywhereisidentical to that
of server class sql_server (release 10.0 or later).

Server Class ASIQ

Chapter 3 SQL reference

See also

e Transaction processing for serversin class ASQ isidentical to that of
server class sql_server (release 10.0 or later).

Server Class sql_server

e Component Integration Services sends a prepare transaction command
to each server in class sgl_server that is version 10.0 or later.

¢ Theprepare transaction command is not sent to the following types of
servers:

e Sybase!lQ 11.x

¢ Microsoft SQL Server

¢ Pre-version 10.0 SQL Server

e OmniSQL Server 10.1.2
Server Class direct_connect

» Handling of the prepare transaction command for serversin class
direct_connect isidentical to that of server class sgl_server (version 10.0
or later).

Server Class db2

» Component Integration Services does not send the prepare transaction
command to serversin class db2.

See Also

prepare transaction in the Adaptive Server Reference Manual.

169

readtext

readtext

Description

Syntax

Usage

170

Reads text and image values, starting from a specified offset and reading a
specified number of bytes or characters.

readtext [[database.]Jowner.Jtable_name.column_name
text_pointer offset size

[holdlock | noholdlock] [readpast]

[using {bytes | chars | characters}]

[at isolation {

[read uncommitted | 0] |
[read committed | 1] |

[repeatable read | 2]|

[serializable | 31} 1]

Usage

Component Integration Services processes the readtext command when
the table on which it operates has been created as a proxy table.
Component I ntegration Services forwards the entire request (or part of it)
to the server that owns the actual object.

When Component | ntegration Servicesforwardsthereadtext commandto
aremote server, the table name used is the remote table name, and the
column names used are the remote column names. These names may not
be the same as the local proxy table names.

The using bytes and at isolation clauses are ignored.

The holdlock, noholdlock and readpast options are ignored.

Server Class ASEnterprise *Component Integration Services forwards the

following syntax to the remote server when the underlying tableisaproxy
table:

readtext [[database.]owner.]table_name.column_name
text_pointer offset size
[using {chars | characters}]

Server Class ASAnywhere

Handling of the readtext statement isthe same as for ASEnterprise.

Server Class ASIQ

Handling of the readtext statement isthe same as for ASEnterprise.

Server Class sql_server

Handling of the readtext statement is the same as for ASEnterprise.

Server Class direct_connect

Chapter 3 SQL reference

See also

e If the DirectConnect does not support text pointers, readtext cannot be

sent and its use resultsin errors.

e If the DirectConnect does support text pointers, Component I ntegration

Services forwards the following syntax to the remote server:

readtext
[[database.]owner.]table_name.column_name
text_pointer offset size

[using {chars | characters}]

* readtext isissued anytimetext or image data must be read. readtext is
called when aselect command refersto atext or image column in the
select list, or when awhere clause refersto atext or image column.

For example, you have a proxy table books that is mapped to the books
table on the remote server foo. The columns are id, name, and the text
column blurb. When the following statement is issued:

select * from books

Component Integration Services sendsthe following syntax to the remote
server:

select id, name, textptr(blurb) from foo_books
readtext foo_books.blurb @p1 0 0 using chars

Server Class db2

e readtext isnot supported sincetext and image datatypes are not supported
for serversin class db2.

See Also

readtext in the Adaptive Server Reference Manual.

171

rollback transaction

rollback transaction

Rollsauser-defined transaction back to thelast savepoint insidethe transaction
or to the beginning of the transaction.

Description

Syntax

Usage

172

rollback {transaction | tran | work}
[transaction_name | savepoint_name]

Usage

When the Distributed Transaction Manager (DTM) isenabled, DTM
handles all transaction processing for servers of server class ASEnterprise
with aversion of 12.0 or |ater.

For all other server classes, Adaptive Server notifies Component
Integration Services when it receives arollback transaction command
and Component | ntegration Services attemptsto rollback work associated
with remote serversin the current transaction.

Multiple remote servers can beinvolved in asingle transaction, each with
their own unit of work which is associated with the Adaptive Server unit
of work.

Remote work isrolled back before local work.

Work performed by transactional RPC’sisincluded inthelocal transaction
and can be rolled back if the remote server supports RPC's within
transactions.

transaction_name and savepoint_name is not used by Component
Integration Servicesin thisrelease.

Server Class ASEnterprise

Transaction processing for serversin class ASEnterprise with aversion
prior to 12.0 isidentical to that of server class sgl_server (release 10.0 or
later).

When DTM is not enabled, transaction processing for all serversin class
ASEnterpriseisidentical to that of server classsgl_server (release 10.0 or
later).

When the Adaptive Server receives notification to rollback atransaction,
the Distributed Transaction Manager issues a RollbackXact RPC to all
remote participants having a server class of ASEnterprise.

Server Class ASAnywhere

Transaction processing for serversin class ASAnywhereisidentical to that
of server classsql_server (version 10.0 or later).

Chapter 3 SQL reference

Server Class ASIQ

Transaction processing for serversin class ASQ isidentical to that of
server class sgl_server (version 10.0 or later).

Server Class sql_server

When Component Integration Services receives notification that a
transaction is to be rolled back, it checks the TRANSACTION ACTIVE
state of all remote connections associated with the client application. For
each connection with an active transaction, Component Integration
Services sends arollback transaction. If al remote servers respond with
no error, Component I ntegration Servicesnotifiesthe Adaptive Server that
it can begin to roll back local work.

This process applies to version 10.0 or later, but not to the following
servers represented by server class sgl_server is:

e Pre-version 10.0 SQL Server
* Microsoft SQL Server (any version)
* SybaselQ

For these types of servers, transaction handling is similar to server class
db2, described bel ow.

Server Class direct_connect

Transaction processing for serversin class direct_connect is identical to
that of server classsgl_server (version 10.0 or later).

Server Class db2

Transactions are supported only at the statement level for serversin class
db2. When theinternal state of a client connection indicates that thereis
an active transaction, Component I ntegration Services precedes each
insert, update and delete command with abegin transaction command.
It thenissuesacommit or rollback transaction (depending on the success
or failure of the statement) immediately after the statement is compl ete.

Object type =file

files are not part of transaction management. They can not be committed
or rolled back.

Object type = directory

directories are not part of transaction management. They can not be
committed or rolled back.

173

rollback transaction

See also See Also
rollback in the Adaptive Server Reference Manual.

174

Chapter 3 SQL reference

select

Description Retrieves rows from database objects.

Syntax select [all | distinct] select_list

[into [[database.Jowner.]table_name]

[from [[database.]Jowner.]{view_name|table_name

[(index index_name [prefetch size][Irujmru])]}
[holdlock | noholdlock] [shared]

[,[[database.]owner.]{view_name|table_name

[(index index_name [prefetch size][Irujmru])]}

[holdlock | noholdlock] [shared]]...]

[where search_conditions]

[group by [all] aggregate_free_expression
[, aggregate_free_expression]... |
[having search_conditions]

[order by
{[[[database.]Jowner.]{table_name.|view_name.}]
column_name | select_list_number | expression}
[asc | desc]
[{[[[database.]owner.]{table_name|view_name.}]
column_name | select_list_number | expression}
[asc | desc]]...]

[compute row_aggregate(column_name)
[, row_aggregate(column_name)]...
[by column_name [, column_name]...]J]

[for {read only | update [of column_name_list]}]

[at isolation {read uncommitted | read committed |
serializable}]

[for browse]
[plan "abstract plan"]

Usage Usage

e Component I ntegration Services processes the select command when any
table on which it operates has been created as a proxy table. When
possible, Component Integration Services forwards the entire syntax of a
select command to asingle remote server. Thisisreferred to as quickpass
mode.

¢ When Component Integration Servicesforwardsthe select commandto a
remote server, the table name used is the remote table name, and the
column names used are the remote column names.

175

select

176

Thefollowing keywords are ignored for all servers except Sybase System
10 and later versions of Adaptive Server Enterprise, but they do not
prevent Component I ntegration Services from using quickpass mode:

* lock
* index
e parallel

e prefetch size
e holdlock

* noholdlock

* readpast

e shared

e atisolation

The following keywords are never forwarded to a remote server and they
do prevent Component I ntegration Services from using quickpass mode;

e compute by

* for browse

* into

e plan “abstract plan”

Quickpass modeis not used if any of the following conditions exist:

+ All tablesreferenced in the from clause do not reside on the same
remote server

e Any tablesarelocal (including temporary tables)
e The query contains syntax that the remote server does not support

select commandsin aunion operation can all be forwarded to aremote
server, including the union operator, if al tablesin the select commands
reside on the same remote server.

Chapter 3 SQL reference

If the select command returns a sorted result set involving a character
column from aremote server (for example, inaunion operation, agroup
by clause, or an order by clause), the rows may be returned in an
unexpected sort order if the remote server is configured with a different
sort order than Adaptive Server. You can rerun the query with traceflag
11216 turned on to receive the expected sort order. Thistraceflag isglobal
and should be turned off as soon as the query is executed.

Server Class ASEnterprise

All syntax is supported. Since the remote server is assumed to have all
capabilities necessary to process Transact-SQL syntax, all elements of a
select command, except those mentioned above, are forwarded to a
remote server, using quickpass mode.

A bulk copy transfer is used to copy datainto the new table when a
select...into command isissued and the into table resides on aremote
Adaptive Server. Both thelocal and remote databases must be configured
with dboption set to select into / bulkcopy.

Server Class ASAnywhere

All syntax is supported. Since the remote server is assumed to have all
capabilities necessary to process Transact-SQL syntax, all elements of a
select command, except those mentioned above, are forwarded to a
remote server, using quickpass mode.

If theselect...into format isused and theinto tableisaccessed through the
ASAnywhere interface, bulk inserts are not used. Instead, Component
Integration Services uses Client-Library to prepare a parameterized
dynamic insert command, and executes it for each row returned by the
select portion of the command.

Server Class ASIQ

All syntax is supported. Since the remote server is assumed to have all
capabilities necessary to process Transact-SQL syntax, all elements of a
select command, except those mentioned above, are forwarded to a
remote server, using quickpass mode.

If theselect...into format isused and theinto tableisaccessed through the
db2 interface, bulk inserts are not used. Instead, a separate connection is
used to handle the text of a ClS-generated insert command.

Server Class sql_server

177

select

178

All syntax is supported. Since the remote server is assumed to have all
capabilities necessary to process Transact-SQL syntax, all elements of a
select command, except those mentioned above, are forwarded to a
remote server, using quickpass mode.

A bulk copy transfer is used to copy datainto the new table when a
select...into command isissued and the into table resides on aremote
Adaptive Server. Both the local and remote databases must be configured
with dboption set to select into / bulkcopy.

Server Class direct_connect

The first time Component Integration Services requires a connection to a
server in class direct_connect, arequest for capabilities is made of the
DirectConnect. Based on the response, Component Integration Services
determines the parts of aselect command to forward to the
DirectConnect. In most cases, thisis determined by the capabilities of the
DBMS with which the DirectConnect isinterfacing.

If the entire statement cannot be forwarded to the DirectConnect using
quickpass mode, Component Integration Services compensates for the
functionality that cannot be forwarded. For example, if the remote server
cannot handle the order by clause, quickpassis not used and Component
Integration Services performs a sort on the result set.

Component Integration Services passes dataval ues as parametersto either
acursor or adynamic SQL statement. Language statements can also be
used if the DirectConnect supportsit. The parameters are in the datatype
native to Adaptive Server and must be converted by the DirectConnect
into formats appropriate for the target DBMS.

Theselect...into command is supported, but the table must have a unique
index if the table has text or image columns.

If theselect...into format is used and theinto table is accessed through a
DirectConnect, bulk inserts are not used. Instead, Component Integration
Services uses Client-Library to prepare a parameterized dynamic insert
command, and executesit for each row returned by the select portion of
the command.

Server Class db2

By default, Component Integration Services does not forward syntax
involving order by, group by, union, distinct, all, and expressions that
involve more than column names.

Chapter 3 SQL reference

¢ When you turn traceflag 11215 on, the full capabilities of a DB2 database
are assumed, and Component Integration Services forwards as much
syntax to theremote server (gateway) as DB2 can process, including order
by, group by, union, and so forth.

See also See Also

select in the Adaptive Server Reference Manual.

179

set

set

Description

Syntax

Usage

180

Sets Adaptive Server query processing options for the duration of the user’s
work session. The subset of options listed bel ow affects behavior unique to
Component Integration Services. For acomplete list of options, see the
Adaptive Server Reference Manual.

set cis_rpc_handling {on | off}

set strict_dtm_enforcement {on | off}
set transaction_isolation_level {on | off}
set transactional_rpc {on | off}

set textptr_parameters {on | off}

set textsize value

Usage

e Normally, al outbound RPCs are routed through Adaptive Server’s site
handler. These RPCs cannot participate in any transactions, and the
performance characteristics of routing many RPCs through the site
handler may necessitate the use of an alternate method for RPC handling.

« Component Integration Services provides an alternate means of handling
outbound RPCs. If cis_rpc_handling ison, outbound RPCs are routed
through a Client-Library connection that is persistent through the life of
the client’s connection to the Adaptive Server. This means that any
number of RPCs can be routed through the same connection, without a
connect and disconnect between each RPC. This connection isthe same
connection used by Component Integration Services to handle all
interaction with the remote server, including processing of select, insert,
delete and update commands.

* Theclient application issues set cis_rpc_handling on or off to control
whether an outbound RPC is to be routed through the Adaptive Server’'s
site handler or through a Component Integration Services connection. If
cis_rpc_handling ison, Component Integration Services processes the
RPC request; if cis_rpc_handling is off, the site handler processes the
RPC.

* Whenaclient application makesanew connectionto Adaptive Server, the
connection inherits the setting for the configuration parameter cis rpc
handling (default is off). This determines the default handling for
outbound RPCs.

strict_dtm_enforcement

Chapter 3 SQL reference

See also

If this property is ON, then transactions that involve participants that are
not DTM-enabled servers (i.e. non-ASE 12.0 servers) are aborted.

Thedefault is OFF, in which case the behavior of transaction management
for remote serversis“best-effort”, which is compatible with prior release
behavior.

transaction_isolation_level

Theisolation level state between the local thread and the thread created by
the connection to the remote server is maintained. If the isolation level
changes, then the state is synchronized between the local and remote
servers by sending the appropriate set transaction_isolation_level
command.

This state synchronization isonly performed for connectionsto serversin
class ASEnterprise.

transactional_rpc

Setting transactional_rpc on results in the same behavior as setting
cis_rpc_handling on, except that RPCs that are issued outside of a
transaction will continue to be routed through the site handler if
cis_rpc_handling is off.

textptr_parameters

This command will affect the behavior of parametersto RPCsthat are
managed by CIS.

Any RPC parameter that is of type binary(16) or varbinary(16) isassumed
tobeatextptr if the setting for textptr_parametrs ison - only if thebinary
parameter is preceded by achar or varchar parameter that containsastring
reference to atable that was the source of the textptr (Please refer to the
discussion of textptr_parameter handling in Chapter 3 of this book).

Thetextptr is expanded into as many 32k chunks of text as are needed to
contain the full text value, and sent to the remote server as

CS LONGCHAR parametersif the remote server supportsthe TDS
LONGCHAR datatype. If thistypeis not supported, then theexpansionis
disabled, and the setting of textptr_parameters is assumed to be off.

See Also

set in the Adaptive Server Reference Manual.

181

setuser

setuser

Description
Syntax

Usage

See also

182

Allows a Database Owner to impersonate another user.

setuser ['user_name"]

Usage

The Database Owner uses the setuser command to adopt the identity of
another user in order to use another user’s database objects. When using
Component Integration Services, these objects can be either local or
remote.

Component Integration Servicesprocessesthesetuser command—it does
not forward the command to the remote server. Component Integration
Services drops all current connections that have been made on behalf of
the current user.

The setuser command cannot be executed when a transaction is current.

Permissions that are set on aremote server override permissions set by
Component Integration Services. Component Integration Services cannot
change permissions of a user on aremote server.

Prior to using the setuser command, the user to be impersonated must
have an external login mapped to the remote server. Thisis set by the
sp_addexternlogin system procedure (for more information on
sp_addexternlogin, see the Adaptive Server Reference Manual).

See Also

setuser in the Adaptive Server Reference Manual.

Chapter 3 SQL reference

truncate table

Description Removes all rows from atable.
Syntax truncate table [[database.]Jowner.]Jtable_name
Usage Comments

e Component Integration Services processes the truncate table command
when the table on which it operates has been created as a proxy table.

¢ When Component Integration Services forwards the truncate table
command to aremote server, the table name used isthe remote table name.
This name may not be the same as the local proxy table name.

Server Class ASEnterprise

¢ Component Integration Servicesforwardsthetruncate table command to
servers of class ASEnterprise.

Server Class ASAnywhere

» Component Integration Servicesforwardsthetruncate table command to
servers of class ASAnywhere.

Server Class ASIQ

» Component Integration Servicesforwardsthetruncate table command to
servers of class AS Q.

Server Class sql_server

» Component Integration Servicesforwardsthetruncate table command to
servers of class sgl_server.

Server Class direct_connect and sds

e If theremote server has requested DB2 syntax, the following statement is
forwarded:

delete from [owner.]table_name
Otherwise, Transact-SQL syntax is sent:
truncate table [[database.]Jowner.]Jtable_name
Server Class db2
e Thefollowing syntax is forwarded to the remote server:
delete from [owner.]table_name

See also truncate table in the Adaptive Server Reference Manual.

183

update

update

Description

Syntax

Usage

184

Changes dataiin existing rows, either by adding data or by modifying existing
data

update [[database.Jowner.]{table_name | view_name}
set [[[database.]Jowner.]{table_name.|view_name.}]
column_namel =
{expression1|NULL|(select_statement)}
[, column_name2 =
{expression2|NULL|(select_statement)}]...
[from [[database.]Jowner.]{view_name|table_name
[(index index_name [prefetch size][Irujmru])]}

[,[[database.]Jowner.]{view_name|table_name
[(index index_name [prefetch size][Iru|mru])]}]

[where search_conditions]

update [[database.Jowner.]{table_name | view_name}
set [[[database.]Jowner.]{table_name.|view_name.}]
column_namel =
{expression1|NULL|(select_statement)}
[, column_name2 =
{expression2|NULL|(select_statement)}]...
where current of cursor_name

« Component I ntegration Services processesthe update command when the
table on which it operates has been created as a proxy table. Component
Integration Services forwards the entire request (or part of it) to the server
that owns the actual object.

* Theupdate command specifies the row or rows you want to change, and
the new data. The new data can be aconstant, an expression, or datapulled
from other tables.

« Component Integration Services executesthe update command using one
of two methods:

e Theentire command is forwarded to the remote server asasingle
statement in close to its original syntax. If the syntax and remote
capabilities match, the entire statement is forwarded and processed
remotely. Thisisreferred to as quickpass mode.

* If the entire command cannot be forwarded to a remote server,
Component Integration Services declares and opens one or more
cursorsin update mode, and begins a scan on the remote table. Each
cursor forwards as much of the original statement’s predicatesto the
remote server as possible. For each row fetched that meets the search
criteria, a positioned update is executed.

Chapter 3 SQL reference

When Component Integration Services forwards the update command to
aremote server, the table name used is the remote table name, and the
column names used are the remote column names. These names may not
be the same as the local proxy table names.

Component Integration Services generally passes the original update
syntax to remote servers asasingle statement, but thefollowing conditions
will likely cause the statement to be executed using method 2, above:

¢ Thestatement contains multiple tablesthat are not located in the same
remote server

¢ The statement contains local tables (including temporary tables)

e The statement contains certain referential integrity checks

¢ The statement contains system functionsin the predicate list

e The statement contains syntax that the remote server does not support

The following keywords are ignored and do not prevent Component
Integration Services from using quickpass mode:

e prefetch
e index
e lru|mru

The format involving where current of is never forwarded to a remote
server and causes the statement to be executed using method 2 above.

Server Class ASEnterpriser

If Component Integration Services cannot pass the entire statement to a
remote server, a unique index must exist on the table.

The update command is fully supported for all datatypes except text and
image. text and image data cannot be changed with the update command,
except when setting the text or image value to null. Use the writetext
command instead.

If quickpass modeis not used, datais retrieved from the source tables, and
the valuesin the target table are updated using a separate cursor designed
for handling a positioned update.

Server Class ASAnywhere

Handling of the update statement is the same as for ASEnterprise.

Server Class ASIQ

185

update

186

« Handling of the update statement is the same as for ASEnterprise.
Server Class sql_server

« Handling of the update statement is the same as for ASEnterprise.
Server Class direct_connect

» Thefollowing syntax is supported by servers of class direct_connect:

update [[database.Jowner.]{table_name | view_name}
set [[[database.]Jowner.]{table_name.|view_name.}]
column_namel =
{expression1|NULL|(select_statement)}
[, column_name2 =
{expression2|NULL|(select_statement)}]...

[where search_conditions]

update commands that conform to this syntax use quickpass mode, if the
capabilities response from the remote server indicates that all elements of
the command are supported. Examples of negotiable capabilities include:
subquery support, group by support, and built-in support.

« |If theremote server does not support all elements of the command, or the
command contains afrom clause, Component Integration Servicesissues
aquery to obtain the values for the set clause, and then issues an update
command to the remote server.

« Component I ntegration Services passes data val ues as parametersto either
acursor or adynamic SQL statement. Language statements can also be
used if the DirectConnect supportsit. The parameters are in the datatype
native to Adaptive Server and must be converted by the DirectConnect
into formats appropriate for the target DBMS.

Server Class db2

e Thefollowing syntax is supported by servers of class db2:

update [[database.Jowner.]{table_name | view_name}
set [[[database.]Jowner.]{table_name.|view_name.}]
column_namel =
{expression1|NULL|(select_statement)}
[, column_name2 =
{expression2|NULL|(select_statement)}]...

[where search_conditions]

e Server'sof classdb2 do not contain the capabilities negotiati on features of
server class direct_connect, so the syntax passed to the remote server is
simpler than that allowed by Transact-SQL. The syntax does not contain
the following:

Chapter 3 SQL reference

e Search conditions containing subqueries, group by, or order by
clauses

e Transact-SQL built-in functions
e Transact-SQL operators (such as bitwise operators)
e Syntax not allowed by DB2

Component Integration Services processes the update command using
method 2, described above, when the statement is complex.

e |IftheserverisaDB2 system, use traceflag 11215 to instruct Component
Integration Services that the remote server is capable of handling all DB2
syntax. This assumption is not made automatically because not all
gateways using the db2 server class are actually connected to DB2
systems. When trace flag 11215 is turned on, quickpass mode is used
unless the following conditions exist:

¢ The statement cannot be expressed in DB2 syntax
¢ The statement contains outer joins
¢ The statement contains like clauses with Sybase extensions

e The statement contains built-in functions that are not supported by
DB2

¢ When an update statement contains aselect statement, Component
Integration Servicesissues aquery to obtain the values for the set clause,
and then issues an update command to the remote server, unlesstrace flag
11215 is enabled.

¢ Whenanupdate statement containsafrom clause, Component | ntegration
Services issues a query to obtain the values for the set clause, and then
issues an update command to the remote server.

See also update in the Adaptive Server Reference Manual.

187

update statistics

update statistics

Description

Syntax

Usage

188

Updates information about the distribution of key valuesin specified indexes.
Also updates row count information.

update statistics table_name [index_name]

When the update statistics command isissued against a proxy table,
Component Integration Services provides meaningful statistics on the
remote table and the given index or on all indexesif no index is specified.
The results are used to construct a distribution page for each index. This
distribution page is stored in the database. When a new distribution page
is created for an index, any previous distribution page for that index is
freed.

Using update statistics, Component Integration Services creates
extremely accurate distribution statistics for remote tables. This
information isused to determinethe optimal join order, giving Component
Integration Servicesthe ability to generate optimal queries against remote
databases which may not support cost-based query optimization.

When Component | ntegration Servicesforwards the command to aremote
server, the table name used is the remote table name, and the column
names used are the remote column names. These names may not be the
same as the local proxy table names.

Obtaining information on anindex, and especially onanumber of indexes,
can be time consuming on large tables. Trace flag 11209 can be used to
indicate that update statistics isto obtain row count only. When thisflag
ison, previous distribution pages for indexes are not replaced.

Component Integration Services retrieves row count information even if
no indexes exist.

Server Class ASEnterprise

If the table on which the statistics are requested has no indexes,
Component Integration Services issues the following command:

select count(*) from table_name

It is also the only command issued when trace flag 11209 is on.

If the table has an index and the index is specified in the command,
Component Integration Services issues the following commands:

select count(*) from table_name

Chapter 3 SQL reference

See also

select count(*) column_name [,column_name, ...]
from table_name
group by column_name [,column_name, ..]

The column name(s) represent the column or columns that make up the
index.

For example, when the following command is issued:
update statistics customers ind_name
Component Integration Services issues:

select count(*) from customers

select count(*) last_name, first_name
from customers
group by last_name, first_name

» If the table has one or more indexes but no index is specified in the
statement, Component Integration Services issues the select count (*)
once, and the select/order by commands for each index.

Server Class ASAnywhere

e Theprocessing of update statistics inthis server classisidentical to that
of server class ASEnterprise described above.

Server Class ASIQ

e Theprocessing of update statistics inthis server classisidentical to that
of server class ASEnterprise described above.

Server Class sql_server

» Theprocessing of update statistics in thisserver classisidentical to that
of server class ASEnterprise described above.

Server Class direct_connect

» Theprocessing of update statistics inthisserver classisidentical to that
of server class ASEnterprise described above.

» If thedirect_connect indicates that is cannot handle the group by or the
count(*) syntax, statistics are not collected for the direct_connect.

Server Class db2

e Theprocessing of update statistics in server classdb2 isidentical to that
of server class A SEnterprise described above.

update statistics in the Adaptive Server Reference Manual.

189

writetext

writetext

Description

Syntax

Usage

See also

190

Permits non-logged, interactive updating of an existing text or image column.

writetext [[database.]Jowner.]table_name.column_name
text_pointer [with log] data

« Component Integration Services processes the writetext command when
the table on which it operates has been created as a proxy table.

« If the remote server referenced by the proxy table does not support text
pointers, writetext is not supported.

e To process the writetext command, Component I ntegration Services
issues the following Client Library commands using the connection
established to the remote server:

ct_command(command, CS_SEND_DATA_CMD, NULL,
CS_UNUSED, CS_COLUMN_DATA);

ct_data_info(command, CS_SET, CS_UNUSED, iodesc)
ct_send_data(command, (CS_VOID *) start, length)

Server Class ASEnterprise

e Thewritetext command is processed using a separate connection to the
remote server.

Server Class ASAnywhere

e Thewritetext command is processed using a separate connection to the
remote server.

Server Class ASIQ

e Thewritetext command is processed using a separate connection to the
remote server.

Server Class sql_server

e Thewritetext command is processed using a separate connection to the
remote server.

Server Class direct_connect

e |f the DirectConnect supports text pointers, Component I ntegration
Servicestreats the DirectConnect asif it were aserver in classsgl_server.

Server Class db2
e writetext is not supported for tables owned by serversin this class.
writetext in the Adaptive Server Reference Manual.

APPENDIX A Tutorial

This chapter provides a beginner’stutorial for setting up Component
Integration Services and accessing a remote server.

Getting Started with Component Integration Services

Thissectionisintended to help first-time users get Component I ntegration
Services running quickly. It provides a step-by-step guide to configuring
the server to access remote data sources. It includes instructions for:

» Adding aremote server
» Mapping remote objects to local proxy tables
» Performing joins between remote tables

Routine system administration tasks such as starting and stopping
Adaptive Server, creating logins, creating groups, adding users, granting
permissions, and password administration are explained in the Adaptive
Server documentation.

Adding a Remote Server

You can use the server to access data on remote servers. Before you can
do this, you must configure Component Integration Services.

Follow these steps to configure the server to access remote data:

Overview of the Procedure

1 Addtheremote server to theinterfacesfile, using the dsedit or dscp
utility.

2 Addthename, server class, and network name of the remote server to
system tables, using the system procedure sp_addserver.

191

Getting Started with Component Integration Services

3 Assign an dternatelogin name and password, using the system procedure
sp_addexternlogin. This step is optional.

Step 1: Add the Remote Server to the Interfaces File

Usethedsedit or dscp utility to edit theinterfacesfilelocated in the $SYBASE
directory on the UNIX platform:

e InUNIX, theinterfacesfileis called interfaces.
* InWindows NT, the interfacesfileis called sql.ini.

For a complete discussion of the interfacesfile, see the Adaptive Server
configuration guide for your platform.

Step 2: Create Server Entries in System Tables

Example

Usethe system procedure sp_addserver to add entriesto the sysserverstable.
sp_addserver creates entriesfor the local server and an entry for each remote
server that isto be called. Thesp_addserver syntax is:

sp_addserver server_name [,server_class [,network_name]]
where:
e server_nameisthe name used to identify the server. It must be unique.

e server_classisone of the supported server classes. Server classes are
defined in Chapter 4, “ Server Classes.” The default valueissgl_server. If
server_classisset to local, network_nameisignored.

* network_nameisthe server namein the interfacesfile. This name may be
the same as server_name, or it may differ. The network_nameis
sometimes referred to as the physical name.

The following examples create entries for the local server named DOCS and
for the remote server CTOSDEMO with server class sql_server.

sp_addserver DOCS, | ocal
sp_addserver CTOSDEMO, sql _server, CTOSDEMO

Step 3: Add an Alternate Login and Password

192

Use the system procedure sp_addexternlogin to assign an alternate login
name and password to be used when communicating with aremote server. This
step isoptional. The syntax for sp_addexternlogin is:

APPENDIX A Tutorial

sp_addexternlogin remote_server, login_name, remote_name [,
remote_password]

where:

« remote_server isthe name of the remote server. The remote_server must
be known to thelocal server by an entry in the master.dbo.sysserverstable.

¢ login_nameis an account known to the local server. login_name must be
represented by an entry in the master.dbo.syslogins table. The “sa”
account, the“sso” account, and thelogin_name account are the only users
authorized to modify remote access for a given local user.

e remote_nameis an account known to the remote_server and must be a
valid account on the node where the remote_server runs. Thisisthe
account used for logging into the remote_server.

e remote_password is the password for remote_name.
Examples sp_addexternl ogin FRED, sa, system sys_pass

Allowsthelocal server to gain accessto remote server FRED using the remote
name “system” and the remote password “sys pass’ on behalf of user “sa’.

sp_addexternl ogin OWNI 1012, bobj, jordan, hitchpost

Tellsthe local server that when the login name “bobj” logsin, access to the
remote server OMNI1012 is by the remote name “jordan” and the remote
password “ hitchpost”. Only the“bobj” account, the“sa” account, and the*“ sso”
account have the authority to add or modify aremote login for the login name
“bobj”.

Verifying Connectivity

Use the connect to server_name command to verify that the configuration is
correct. connect to requiresthat “sa’ explicitly grant connect authority to
users other than “sa.” The connect to command establishes a passthrough
mode connection to the remote server. Thispassthrough moderemainsin effect
until you issue adisconnect command.

Mapping Remote Objects to Local Proxy Tables

L ocation transparency of remote datais enabled through remote object
mapping.

193

Getting Started with Component Integration Services

Once aremote server has been properly configured, users can reference the
remote objects that have been defined. Users can create new tables on remote
servers and can define the schema for an existing table on aremote server.

Overview of the Procedure

1 Usethestored procedure sp_addobjectdef to define the storage location
of aremote object.

2 Usethecreate table or the create existing table command to map the
remote table schema to the server.

Step 1: Define the Storage Location of a Remote Object

The at pathname syntax used with create existing table command is the
preferred method for defining the storage location of remote objects. The
following method using sp_addobjectdef is also supported.

The stored procedure sp_addobjectdef defines the storage location of a
remote object. This procedure allows the user to associate a remote object
name with alocal table name. The remote object may or may not exist before
the storage location is defined. The syntax for sp_addobjectdef is:

sp_addobjectdef object_name, "object_loc" [,"object_type"]

where:

« object_nameisthelocal proxy table name to be used by subsequent
statements. object_name takes the form:

dbname. owner . obj ect

where dbname and owner are optional and represent thelocal database and
owner name. If not present, the object is defined in the current database
owned by the current owner. If either dbname or owner is specified, the
entire object_name must be enclosed in quotes. If only dbnameis present,
aplaceholder isrequired for owner.

e object_locisthe storage location of the remote object. It takes the form:
server _nane. dbnane. owner . obj ect ; aux1. aux2
where:

e server_nameisthename of the server that containsthis remote object
(required.)

194

APPENDIX A Tutorial

¢ dbnameisthenameof the database managed by the remote server that
contains this object (optional). If the server is class db2, thisisthe
location_name portion of a DB2 table name.

* owner isthe name of the remote server user that owns the remote
object (optional). If the server isclass db2, thisisthe DB2
authorization ID.

e object isthe name of the remote table, view, or rpc.

¢ auxl.aux2isastring of charactersthat is passed to the remote server
during acreate table or create index command asthe segment name;
the meaning of this string is dependent upon the class of the server
that receivesit. If the server isclass db2, aux1 isthe DB2 database in
which to place the table, and aux2 is the DB2 tablespace in which to
place the table. aux1.aux2 is optional.

« object_typeisthetype of remote object. It can be atable, view, file, or rpc.
This parameter is optional; the default istable.

When present, the object_type option must be enclosed in quotes.

Example To map the proxy table authors to the remote authors table, use the following
syntax for the database shown in Figure A-1:

sp_addobj ect def authors, "ORACLEDC...authors", "table"

Figure A-1: Using sp_addobjectdef to map a remote table to a proxy
table

MY CIS Server ORACLEDC server

authors
proxy table

authorstable

Step 2: Map Remote Table Schema to Adaptive Server

Once you have defined the storage location, you can create the table as a new
object or as an existing object. If the table does not exist at the remote storage
location, use the create table syntax. If it already exists, use the create
existing table syntax. If the object typeisrpc, only the create existing table
syntax is allowed.

195

Getting Started with Component Integration Services

When acreate existing table statement isreceived and the object typeiseither
table or view, the existence of the remote object is checked using the catalog
stored procedure sp_tables.

If the object exists, column and index attributes are obtained and compared
with those defined for the object in the create existing table command. The
server checks the column name, type, length and null property and adds index
attributes to the sysindexes system table.

Once the object has been created, either as a new or existing object, users can
query the remote object by using the local proxy name.

See create table and create index in the Adaptive Server Reference Manual.

Join Between Two Remote Tables

With Component Integration Services, you can perform joins across remote
tables. The following steps show how to join two Adaptive Server tables:

Overview of the Procedure

1 Add theremote serversto the interfacesfile.

2 Define each remote server using sp_addserver.

3 Map the remote tables to the server using create existing table.
4

Perform the join using select.

Step 1: Add the Remote Servers to the Interfaces File

Edit the interfaces file using the dsedit utility.

Step 2: Define the Remote Servers

196

Use the system procedure sp_addserver to add entriesto the sysservers
systemtable. On the server originating the call, there must be an entry for each
remote server that isto be called. The sp_addserver syntax is:

sp_addserver server_name [,server_class] [,network_name]

where:

e server_nameisthe name used to identify the server. It must be unique.

APPENDIX A Tutorial

Example

e server_classisone of the supported server classes, defined in Chapter 4,
“Server Classes.” The default valueissql_server. If thevalueislocal,
network_nameisignored.

¢ network nameisthe server namein the interfaces file. This name may be
the same as the server_name specification, or it may be different. If
network_name is not provided, the default value is the server_name.

The following examples create entries for the local server named DOCS and
for the remote server SYBASE of class sql_server.

sp_addserver DCCS, | ocal
sp_addserver CTOSDEMO, sql _server, SYBASE

Step 4: Map the Remote Tables to Adaptive Server

Example

Thecreate existing table command enables the definition of existing (proxy)
tables. The syntax for this option is similar to the create table command and
reads as follows:

create existing table table_name (column_list)
[on segment_name]
at “pathname”

When the server processes this command, it does not create a new table.
Instead, it checksthetable mapping and verifiesthe existence of theunderlying
object. If the object does not exist (either host datafile or remote server object),
the server rejects the command and returns an error message to the client.

After you define an existing table, it is good practice to issue an update
statistics command for that table. This helps the query optimizer make
intelligent choices regarding index selection and join order.

Figure A-2 illustrates the remote Adaptive Server tables publishers and titles
in the sample pubs2 database mapped to alocal server.

197

Getting Started with Component Integration Services

Figure A-2: Defining remote tables in a local server

MY CIS Server SYBASE server
myown database pubs2 database
owner “dbo” blishers tabi
ublisherstable
publishers [—— P ,
y— proxy table iﬁ — - pub_id |pub name |city
=) T
- books *ﬂ \
proxy table Tablés A
titlestable
N title id | title type

¥%?ping the Remote The steps required to produce the mapping illustrated above are as follows:
ables
1 Define aserver named SYBASE. Its server classis sgl_server, and its

namein the interfaces fileis SY BASE:
exec sp_addserver SYBASE, sql _server, SYBASE

2 Definearemotelogin alias. This step isoptional. User “sa’ is known to
remote server SYBASE as user “sa,” password “timothy”:

exec sp_addexternlogi n SYBASE, sa, sa, tinmothy
3 Add an object definition for the remote publisherstable:

exec sp_addobj ectdef publishers,
" SYBASE. pubs?2. dbo. publ i shers", "tabl e"

4 Define the remote publisherstable:

create existing table publishers

(
pub_id char (4) not nul I,

pub_nane varchar (40) nul |,

city var char (20) nul | ,
state char (2) nul |
)

at " SYBASE. pubs2.dbo.titles"
5 Define the remote titles table:

create existing table books

(

198

APPENDIX A Tutorial

title_id tid not nul |
title var char (80) not nul |
type char(12) not null
pub_id char (4) nul |
price noney nul I,
advance noney nul |
total _sal esint nul |
not es var char (200) nul |
pubdate datetime not null
contract bit not nul
)

6 Update statistics in both tables to ensure reasonabl e choices by the query

optimizer:

update statistics publishers
update statistics books

Step 5: Perform the Join
Use the select statement to perform the join.

sel ect Publisher = p.pubnane, Title = b.title
from publishers p, books b

where p.pub_id = b.pub_id

order by p.pubnane

199

Getting Started with Component Integration Services

200

APPENDIX B

Troubleshooting

This appendix provides troubleshooting tips for problems that you may
encounter when using Component Integration Services. The purpose of
this chapter is:

» To provide enough information about certain error conditions so that
you can resolve problems without help from Technical Support

» Toprovide lists of information that you can gather before calling
Technical Support, which will help resolve your problem quickly

» To provide you with a greater understanding of Component
Integration Services

Error Messages and the Troubleshooting Guide should also be used for
troubleshooting. While this appendix provides troubleshooting tips for
most frequently asked Component Integration Services questions, Error
Messages lists all error messages with a one-line recovery procedure; the
Troubleshooting Guide providestipson SQL Server problemsthat are not
specific to Component I ntegration Services.

For the most up-to-date information on troubleshooting and technical tips,
refer to Sybase’s electronic services. See “ Other sources of information”

on page X.

Problems Accessing Component Integration Services

If you issue a command that accesses a remote object and Component
Integration Servicesis not found, the following error message appears:

4050 ci s extension not enabled or installed
Do the following:

* Verify that the enable cis configuration parameter is set to 1 by
running:

sp_configure "enable cis"

201

Problems Using Component Integration Services

sp_configure returns the following row for the enable cis parameter:

name nmn max config value run val ue
enable cis 0 1 1 1

Both “config value” and “run value” should be 1. If both values are 0, set
theenable cis configuration parameter to 1, and restart the server. Usethe
syntax:

sp_configure "enable cis" 1

If “config value” is1 and “run value” is 0, the enable cis configuration
parameter is set, but will not take effect until the server isrestarted.

e Check the error log. If Component Integration Services loaded correctly,
you will seethefollowing line at the start of the error log:

Di stributed services option | oaded.

If there was a problem loading Component Integration Services, the
message stating the problem is displayed instead. Contact Sybase
Technical Support to correct the problem. (See “If You Need Help” on
page 208.)

Problems Using Component Integration Services

This section providestipson how to correct problemsyou may encounter when
using Component Integration Services.

Unable to Access Remote Server

When you cannot access a remote server, the following error message is
returned:

11206 Unabl e to connect to server server_name.

The message will be preceded by one of the following Client-Library
messages.
Request ed server nane not found

Driver call to connect two endpoints failed
Login failed

The Client-Library message indicateswhy you cannot accessthe remote server
as described in the following sections.

202

APPENDIX B Troubleshooting

Requested Server Name Not Found
The server is not defined in the interfaces file when the following messages

display:

Request ed server name not found
11206 Unabl e to connect to server server_name.

When aremote server is added using the sp_addserver stored procedure, the
interfaces file is not checked. It is checked the first time you try to make a
connection to the remote server. To correct this problem, add the remote server
to the interfacesfile that is being used by Component Integration Services.

Driver Call to Connect Two Endpoints Failed

If the remote server is defined in the interfaces file, but no response was
received from the connect request, the following messages are displayed:

Driver call to connect two endpoints failed
11206 Unabl e to connect to server server_name.

Check the following:

Isyour environment set up correctly?

To test this, try to connect directly to the remote server usingisgl or a
similar tool. Do this by following these steps:

Log into the machine where Component Integration Servicesis
running.

Set the SYBASE environment variabl e to the same location that was
used when Component I ntegration Services was started. Component
Integration Services uses the interfaces file in the directory specified
by the SYBASE environment variable, unlessit is overridden in the
runserver file by the -i argument.

Note Thesefirst two steps are important to ensure that the test
environment is the same environment that Component I ntegration
Services was using when you could not connect to the remote server.

Useisqgl or asimilar tool to connect directly to the remote server.

If the environment is set up correctly and the connection fails, continue
through thislist. If the connection is made, there is a problem with the
environment being used by Component Integration Services.

Is the remote server up and running?

203

Problems Using Component Integration Services

Login Failed

204

Log into the machine where the remote server islocated to verify the
server isrunning. If the server is running, continue through thislist. If the
server is hung, restart the server and try your query again.

« Isthe entry for the remote server in the interfaces file correct:

* |sthe machine name the correct name for the machine the softwareis
|oaded on?

« |f theinterfacesfileisatext file, do the query and master lines start
with atab and not spaces?

e Isthe port number available? Check the servicesfilein the /etc
directory to ensure that the port number is not reserved for another
process.

If the port isavailable, isit aready in use? To determine this on
UNIX, run the command:

netstat -a

If the remote server is accessed, but the login name and password are not
correct, the following messages display:

Login failed
11206 Unabl e to connect to server server_name.

Check to see if there is an external login established for the remote server by
executing:

exec sp_hel pexternl ogin server_name

If no external login is defined, Component Integration Services uses the user
login name and password that was used to connect to Adaptive Server. For
example, if the user connected to Adaptive Server using the “sa’ account,
Component Integration Services uses the login name “sa” when making a
remote connection. Unless the remote server is another Adaptive Server, the
"sa" account probably doesnot exist, and an external login must be added using
sp_addexternlogin.

If an external login is defined, verify that the user’s login name s correct.
Remote server logins are case sensitive; for example, DB2 logins are all
uppercase. s the case correct for the user login name you are using and the
entry in externlogins?

APPENDIX B Troubleshooting

If thelogin nameis correct, the password might be incorrect. It is not possible
to display the password. If the user login name isincorrect or if the password
might beincorrect, drop the existing external login and redefineit by executing
the commands:

exec sp_dropexternl ogin server_nane, |ogin_nane
go

exec sp_addexternl ogin server_nane, | ogin_nane,
renote_| ogi n, renote_password

go

Unable to Access Remote Object

When you are unabl e to access a remote object, the following error message
appears:

Error 11214 Renobte object object does not exi st.

The problem may bein the local proxy table definition or in the table itself on
the remote server.

Verify the following:

Has the object been defined in Component Integration Services?
To confirm, run:
sp_hel p obj ect _name

If the object does not exist, create the object in Component Integration
Services (see “Mapping Remote Objects to Local Proxy Tables’ on page
3-4).

If the object has been defined in Component I ntegration Services, isthe
definition correct?

Table names can have four parts with the format
server.dbname.owner.tablename. The dbname part is not valid for DB2,
Oracle or InfoHUB servers.

If the object definitionisincorrect, deleteit using sp_dropobjectdef, and
define correctly using sp_addobjectdef.

If the local object definition is correct, check the table on the remote
server:

* Arepermissions set to alow accessto both the database and table?

» Hasthe database been marked suspect?

205

Problems Using Component Integration Services

. Is the database available?

e Canyou accesstheremotetable using anativetool (for example, SQL
on Rdb or SQL*Plus on Oracle)?

Problem Retrieving Data From Remote Objects

When you receive error messages pertaining to mismatches in remote objects,
the Component Integration Services object definition does not match the
remote object definition. This happensif:

* The object definition was altered outside of Component Integration
Services

e Anindex was added or dropped outside of Component I ntegration
Services

Object Is Altered Outside Component Integration Services

206

Once an object isdefined in Component Integration Services, alterations made
to an object at the remote server are not made to the local proxy object
definition. If an object is atered outside of Component Integration Services,
the steps to correct the problem differ, depending on whether create existing
table or create table was used to define the object.

To determine which method was used to define the object, run the statement:
sp_hel p obj ect _nane

If the object was defined viathe create existing table command, thefollowing
message is returned in the result set:

hj ect existed prior to CI'S.

If this message is not displayed, the object was defined via the create table
command.

If create existing table was used to create the tablein Component Integration
Services:

1 Usethedrop table command in Component Integration Services.

2 Createthetable again in Component Integration Services using create
existing table. This createsthe table using the new version of thetable on
the remote server.

APPENDIX B Troubleshooting

If the table was created in Component | ntegration Services using create table,
you will drop the remote object when you use drop table. To prevent this,
follow these steps:

1 Renamethetableonthe remote server so thetableisnot deleted when you
usedrop table.

2 Create atable on the remote server using the original name.

3 Usedrop table in Component Integration Services to drop the tablein
Component Integration Services and on the remote server.

4 Rename the saved table in step 1 with its original hame on the remote
server.

5 Createthe table again in Component Integration Services using create
existing table.

Warning! Do not use drop table in Component I ntegration Services prior to
renaming the table on the remote server, or you will delete the table on the
remote server.

A good ruleto follow isto create the object on the remote server, and then do
acreate existing table to create the object in Component Integration Services.
This enables you to correct mismatch problems with fewer steps and with no
chance of deleting objects on the remote server.

Index Is Added or Dropped Outside CIS

Component Integration Services is unaware of indexes that are added or
dropped outside Component Integration Services. Verify that the indexes used
by Component Integration Services are the same as the indexes used on the
remote server. Use sp_help to see the indexes used by Component Integration
Services. Use the appropriate command on your remote server to verify the
indexes used by the remote server. For example, you can use the describe
command with an Oracle server or select * from syscolumns, sysindexes for
aDB2 server.

If the indexes are not the same, the steps to correct the problem differ,
depending on whether create existing table or create table was used to define
the object.

To determine which method was used to define the object, run the statement:

sp_hel p obj ect _name

207

If You Need Help

If the object was defined viathe create existing table command, thefollowing
message is returned in the result set:

hj ect existed prior to CI'S.

If this message is not displayed, the object was defined via the create table
command.

If create existing table was used to create the object:
1 Usedrop table in Component Integration Services.

2 Re-create the table in Component Integration Services using create
existing table. Thiswill update the indexes to match the indexes on the
remote table.

If create table was used to create the object:
1 Usedrop table to drop the index from the remote table.

2 Re-create theindex in Component Integration Services using create
index. This creates the index in Component Integration Services and the
remote server.

An alternative method if create table was used to define the object is to turn
on trace flag 11208. Thistrace flag prevents the create index statement from
transmitting to the remote server. To use trace flag 11208, follow these steps:

1 Turnon traceflag 11208:

dbcc traceon(11208)
2 Createtheindex using create index.
3 Turn off trace flag 11208:

dbcc traceoff(11208)

If You Need Help

208

If you encounter a problem that you cannot resolve using the manuals, ask the
designated person at your site to contact Sybase Technical Support. Gather the
following information prior to calling Technical Support to help resolve your
problem more quickly.

APPENDIX B Troubleshooting

If aproblem occurswhileyou aretrying to access remote data, execute the
same script against alocal table. If the problem does not exist on thelocal
table, it is specific to Component Integration Services and you should
continue through this list.

Find out what version of Component Integration Services you are using:
sel ect @i s_version

Note the SQL script that reproduces the problem. Include the script that
was used to creste the tables.

Find the processing plan for your query. Thisis generated using set
showplan. An example of thisis:

set showpl an, noexec on

go
sel ect au_ | nane, au_fnanme from aut hors
where au_id = ‘ A1374065371’

go
The output for this query will look like this:

STEP1

The type of query is SELECT.
FROM TABLE

aut hors

Nested iteration

Usi ng C ustered | ndex

The noexec option compiles the query, but does not execute it. No
subsequent commands are executed until noexec is turned off.

Obtain the event logging when executing the query by turning on trace
flags 11201 — 11205. These trace flags log the following:

¢ 11201 - Client connect, disconnect, and attention events

e 11202 — Client language, cursor declare, dynamic prepare, and
dynamic execute-immediate text

e 11203 - Client rpc events
e 11204 — Messages routed to client
e 11205 - Interaction with remote servers

After executing the script with the trace flags turned on, the logging is
found in the error log in the $SYBASE/install directory. For example:

dbcc traceon (11201, 11202, 11203, 11204, 11205)
go

209

If You Need Help

210

sel ect au_l nane, au_fnane from authors

where au_id = ' A1374065371’

go

dbcc traceof f (11201, 11202, 11203, 11204, 11205)
go

Theerror log output is asfollows (the timestamps printed at the beginning
of each entry have been removed to improve legibility):

server LANGUAGE, spid 1: conmand text:

sel ect au_l name, au_fname fromauthors where au_id
= " Al374065371’

server SIGDI SABLE, spid 1: signals disabled on
endpoi nt 10

server RMI_CONNECT, spid 1: connected to server
" SYBASE', using | anguage/ charset
"us_english.iso_1', packet size 512

server SYB TSCN, spid 1, server SYBASE:

SELECT au_id, au_lnanme, au_fnane FROM
pubs2. dbo. aut hors WHERE au_id = "A1374065371"

server OWN ENDS, spid 1: closing cursor 'Ol_16’

server OWN CLCS, spid 1: deallocating cursor
"OL_16", type CONNECTI ON.

Thistracing isglobal, so once the trace flags are turned on, any query that
is executed will be logged; therefore, turn tracing off once you have your
log. Also, clean out the error log periodically by bringing the server down,
renaming the error log, and restarting the server. This creates a new error

log.

Index

A

Access methods 8
access_server server class 41
connection management 43
datatype conversions 133
with text and image datatypes 91
Adding
columnsto atable 108, 110
rowstoatableor view 165
spaceto adatabase 108
Aliases, user
remotelogins 192
Allocating resources with sp_configure 97
alter database command 108
ater tablecommand 108, 110
ANSl joins 37
@@textsize global variable 88
auto identity 66
auto identity database option 15
Automatic connections 63

B

bep (bulk copy utility)
for text and image datatypes 90
begin transaction command 75
proxy tablesand 115

C

Changes, canceling. Seerollback command 172
Changing
database size 108
remotetables 108, 110
Checkpoint process
See also Recovery\ 172
Savepoints 172

cis connect timeout configuration parameter 100
cis cursor rows configuration parameter 100
cis packet size configuration parameter 100
cisrpc handling configuration parameter 100
Client-Library functions 10

connection management 42

ct send data 89
closecommand 117
Clustered indexes

Seedso Indexes 136
Columns

addingtotable 108, 110

creating indexes on proxy table 135
commit command 120

remoteserversand 75
commit work command. See commit command 121
Component Integration Services

configuring and tuning 199

running 5

settingup 5, 191

users 4
Configuration (Server)

Component Integration Services 4, 191, 199
Configuration and tuning 97
Configuration parameters

Component Integration Services 98, 101
connect tocommand 61, 193
connect to option, grant 62
Connection management 42
Connections

listing of remote 104

management of 42

permission 62

physical and logical 67

timeouts 100

verification 75, 193
Constraints

preventing 105
Conventions

used in manuals x

211

Index

Converting remote server datatypes 14 with text and image datatypes 92
server classdb2 135 db2 syntax mode, Open Server applications that support
Copying 142
text and image datatypes 90 dbce (Database Consistency Checker) 69, 105
create exigting table 14 DB-Library programs
create existing tablecommand 11, 14 preparetransaction 168
datatype conversionsand 15 dbmoretext DB-Library function 89
example 15 dbwritetext DB-Library function 89
proxy tables 122,124 deall ocate cursor command
create index command 135 remote serversand 144
query plan for remote tables 59 Deallocating cursors 147
create proxy table 13, 16 declare cursor command 147
create proxy_table command Defining
mapping proxy tablesto remote tables 138 indexes 14
create table command remote objects 10, 193, 196
proxy tables 137 remote servers 10, 191, 193
query plan 58 storage locations of remote objects 11, 194
remotetables 11, 14 tables 11, 14,15
Creating delete command
indexes on proxy tables 135 remotetables 148
proxy tables 122, 124, 137 Deleting
ct_send data Client-Library function 89 Seeadso Dropping 149
Cursor result set direct_connect server class 41
returning rows 158 connection management 43
Cursors with text and image datatypes 91
dedllocating 147 Direct CONNECT servers 5
fetching remotely 158 directory access 32
opening 167 disconnect command 62
row count, setting 100 drop database command

remote servers 151
drop index command
proxy tables 152

D query plan for remote tables 60
Data modification drop table command

text and image with writetext 190 proxy tables 154

update 184 query plan for remotetables 60
Database syntax, using native. See Passthrough mode 66 Dropping
Databases databases from remote servers 152

increasing sizeof 108 indexes on proxy tables 153
Datatype conversions 87 proxy tables 155

remote servers 14 rowsfrom atable 149

server classdb2 135
server classdirect_connect or access_server 133
Datatypes 85
db2 server class E
datatype conversions 135 enable cis configuration parameter 99

212

Index

Error logging of text and image datatypes 90
Event logging 105
execute command
RPCs 157
Execute immediate 96
Extending database storage 108
External logins 192

F

fetch command

proxy tables 157
Fetching cursors

proxy tables 157
Fileaccess 35
File system access 32

Files
interfaces 192
sgl.ini file 192
G

grant command
passthrough connections 62
grant connect to command 62

IDENTITY columns 15
image datatype 88
bulk copy to remote servers 90
converting 89
entering values 89
error logging 90
padding 88
pattern matching 89
pointer valuesin readtext 170
restrictions 88
with server classsgl_server 90
with server classdb2 92
with server classdirect_connect or access server
91
with server classsgl_server 90

writetext to 190
Impersonating a user. See setuser command 182
Indexes
defining 14
dropping from proxy tables 152
update statisticson 188
updating 105
insert command
proxy tables 159
Integrity of data
remotetablesand 66
Interface to remote servers 9
Interfacesfile
adding remote servers 192

J

Javain the database 80
Joins
between remotetables 196, 197

L

LDAP directory services 43

like keyword 89

Local tables. See Proxy tables 66

lock timeout interval configuration parameter 69

Logging

events 105

text or imagedata 190
Loggingin

toremoteservers 10
Logical connections 67
Logins

external 192

See dso Remotelogins\ 182
Users 182

M

Mapping
remote objects 193, 196
Mapping externd logins 45

213

Index

Markers, user-defined. See Placeholders. 172
maX cis remote connections configuration parameter 99
Memory
releasing with deallocate cursor 147
Memory usagereport 104
Modes, trusted/untrusted 45
Modifying
databases 108

N

Names

loca 11

setuser 182
Native database syntax, using. See Passthrough mode 61
Nested select statements. See select command\ 175
Non-logged operations 190

O
Object types 9
rpc asread only tables 18
open command 166
Opening cursors 167
Optimization
defining existing tablesand 14
quickpassmode 51, 149, 165, 175, 184
remotetables 53, 78
update statistics 53
Origina identity, resuming an. See setuser command 182
Outbound remote procedure calls 100

P

Packets, network
size for remote servers 100
Pages, data
See also Index pages\ 136
Tablepages 136
Passthrough connection permission 62
Passthrough mode 61
connect to command 61, 193
connect to command 123

214

Sp_autoconnect system procedure 62
sp_passthru system procedure 63
sp_remotesgl system procedure 64
patindex string function 89
Pattern matching
remotetables 89
with text datatype 89
Performance
configuration parameters 97
query optimization 43
remotetables 53, 78
Permissions
passthrough connections 62
Physical connections 67
prepare transaction command 75
proxy tablesand 168
Processing remote procedurecalls 67
Proxy databases 25
Proxy tables 13
mapping 193, 196
mapping to remote tables with create proxy_table
138
triggers 66

Q

Queries

execution settings 180
Query optimization 49, 57

disabling 105
Query plans 57

createtable 58

remotetablesand 57
Query processing 49
Quickpassmode 51, 149, 165, 175, 184
Quoted identifier support 65

R

readtext command
errorsfrom 89
remotetablesand 169
Recovery
disabling CIS at start-up 106

Index

Reference information

Transact-SQL commandsfor CIS 107
Referential integrity 39, 66
remcon option, docc 104
Remote connection listing 104
Remote logins. See External logins 192
Remote objects

defining 10

individual storagelocation 194
mapping 193, 196
Remote procedure calls 77

handling outbound 100
transactional 75

transmitting 67
Remote servers 40

adding 191, 193

connection verification 193
definition 10

interfaceto 9

interfacesfile entries 192

joins 196, 197

loggingin 10

security issues 44

setting up external logins 192
transaction management 75
Remote tables

joins 196, 197
Removing. See Dropping 149
Reports

in-memory SRVDES structures 104
memory usage 104

remote connections 104
Resource dlocation (sp_configure) 97
Results

cursor result set 158

rollback command

remote serversand 171

rollback command\ 172

rollback transaction command. See rollback command

172
rollback work command. Seerollback command 172
Rows, table
See also select command 175
update 184

RPC handling 24, 67
RPCs. See Remote procedure calls 75

Running a procedure with execute
remote servers 157

Running Component Integration Services

rusage option, docc 104

4,191

S

Savepoints 172
schema synchronization 29
sdsserver class 42
Search conditions
remotetables 89
Security
issues for remote servers 44
Security issues 45
select command
remotetables 174
select intocommand 94, 95
Server classaccess server 41
connection management 43
datatype conversions 133
with text and image datatypes 91
Server classdb2 41
connection management 43
datatype conversions 135
with text and image datatypes 92
Server classdirect_connect 41
connection management 43
with text and image datatypes 91
Server class generic
connection management 43
Server classsds 42
Server classsgl_server 41
connection management 43
with text and image datatypes 90
Server classes 8
See dsoindividual server classnames 8
access server 41

db2 41

direct_connect 41

sds 42

sol_server 41
set command

See dsoindividual set options 179
remote queries 179

215

Index

Set commands 74
Setting up Component Integration Services 4, 191
setuser command

remote objectsand 181
sp_addexternlogin system procedure 192
sp_addobjectdef system procedure 11, 194
sp_addserver system procedure 192, 196
Sp_autoconnect system procedure 63
sp_capabilities system procedure 47
sp_configure system procedure 97
sp_passthru system procedure 63
sp_remotelogin system procedure 45
sp_remotesgl system procedure 64

Space
adding to database 108
sgl.ini file 192

sol_server server class
connection management 43
srvdes option, dbcc 104

SSL 43
Start-up recovery, disabling 106
Statistics

update statistics 187
Stored procedures

executing remote 157
Subqueries 175
Syntax, using native database. See Passthrough mode 66
sysconfigures system table

updating valuesin 98
sysservers system table

remote servers for Component Integration Services

40, 192

System activities

setting query processing option for 180

T
Tables
changing remote 108, 110
creating proxy 127
creatingremote 140
dropping proxy 155
read-only 18
remote, joins 196, 197
Tables, proxy

216

defining 11, 14, 15

triggers 66
text datatype 88

bulk copy to remote servers 90

converting 89

entering values 89

error logging 90

padding 88

pattern matching 89

restrictions 88

with server classdb2 92

with server class direct_connect or access_server

91

with server classsgl_server 90
@@textsize global variable 88
textsize option, set 88
Timeout, connect 100
Traceflags 105
traceon/traceoff option, dbcc 105
Transaction canceling. See rollback command 172
Transaction management 72, 76
Transactional remote procedurecalls 75
Transactional RPCs 76
transactional _rpc on option, set command 76
Transactions

ending with commit 121

preparing 167

See also Batch processing\ 172
User-defined transactions 172
Transmitting remote procedure calls 67
Triggers 60
truncate table command

query plan for remote tables 60

remotetables 182
Trusted mode 45
Tuning

Component Integration Services 199

U

Undoing changes. Seerollback command 172
Unioninviews 38
update command
remotetables 183
update statistics 78

Index

update stati stics command
defining existing tablesand 14
obtaining complete distribution statistics 105
remotetables 53, 78, 188
Updating
image datatype 90
indexes 105
text datatype 90
writetext 190
User-defined stored procedures, executing
RPCs 157
User-defined transactions
Seedso Transactions 115
begintransaction 115
ending with commit 121
Usars 182
Users of Component Integration Services 4
using option, readtext
errorsfrom 89

V

Variables, configuration. See Configuration parameters
97
Verifying connectivity 193

w

Wildcard characters 89
Work session, set optionsfor 180
Write operations

logging text orimage 190
writetext command

remotetables 189

217

Index

218

	Component Integration Services User’s Guide
	About This Book
	Audience
	How to use this book
	Adaptive Server Enterprise documents
	Other sources of information
	Conventions
	If you need help

	CHAPTER 1 Introduction
	Figure 1-1: Component Integration Services connects to multiple vendor databases
	New features in Adaptive Server Enterprise 12.5
	Who can use Component Integration Services
	Steps needed to use Component Integration Services

	CHAPTER 2 Understanding Component Integration Services
	Basic concepts
	Access methods
	Server classes
	Object types
	Interface to remote servers
	Directory services
	Remote server definition
	Logging into remote servers
	Defining remote objects
	Defining the storage location of individual objects
	Creating proxy tables

	Proxy tables
	Using the create table command
	Using the create existing table command
	Datatype Conversions
	Example of Remote Table Definition

	Using the create proxy_table command
	Remote Procedures as proxy tables
	Examples

	New server limits
	Table 2-1: New Limits
	Table 2-2: Maximum Index Width
	Remote server capabilities
	create new proxy table
	create existing proxy table
	create proxy_table
	alter proxy table
	select, insert, delete, update
	RPC handling

	Cascading proxy tables

	Proxy databases
	User proxy databases
	User Proxy Database Schema Synchronization

	System proxy databases
	System proxy database creation
	Schema synchronization when current database has a system proxy database
	Stored procedure execution within a system proxy database
	Additional behavior of the system proxy database

	DDL commands behavior affected by proxy databases

	File system access
	Directory access
	Table 2-3: Proxy table columns

	Recursion through subordinate directories
	Table 2-4: Values for files

	File access
	Security considerations
	ANSI joins
	When the remote server supports only ANSI joins
	When the remote server supports both ANSI joins and T-SQL joins
	When the remote server supports only DB2-ANSI
	When an ANSI query is received for a server that does not support ANSI syntax

	50-Table join limit
	Union in views
	Referential integrity

	Remote servers
	Defining remote servers
	Server class ASEnterprise
	Server class ASAnywhere
	Server class ASIQ
	Server class sql_server
	Server class db2
	Server class direct_connect
	Figure 2-1: Adaptive Server with CIS interacts with clients and other servers

	Server class sds

	Connection management
	LDAP directory services
	Secure communication with SSL
	Trusted root files

	Security issues
	Remote server logins
	Trusted mode

	Mapping of external logins
	Remote server connection failover
	Remote server capabilities

	Query processing
	Processing steps
	Figure 2-2: Query processing steps
	Query parsing
	Query normalization
	Example

	Query preprocessing
	Decision point
	Component Integration Services plan generation
	Adaptive Server optimization and plan generation
	Component Integration Services remote location optimizer
	update statistics
	Join processing
	Aggregate processing

	Query execution
	Distributed query optimization
	Optimizer cost model for proxy tables
	Sort/Merge joins
	Semi joins (Reformatting)

	Component Integration Services access methods

	Query plan execution
	create table command
	create existing table command
	alter table command
	create index command
	drop table command
	drop index command
	truncate table command

	Passthrough mode
	The connect to command
	Example

	sp_autoconnect
	sp_passthru
	Example

	sp_remotesql
	Example

	Quoted identifier support
	auto identity option
	Triggers

	RPC handling and Component Integration Services
	Site handler and outbound RPCs
	Component Integration Services and outbound RPCs
	Text parameters for RPCs
	Text parameter support for XJS/390

	Transaction management
	Two-phase commit
	Table 2-5: Transaction capabilities
	Server classes and ASTC
	Table 2-6: ASTC and CIS server classes

	Strict DTM enforcement
	Enable xact coordination
	Enable CIS
	CIS set commands
	Table 2-7: CIS RPC Handling and Transactional RPCs

	Attach and detach

	Pre-12.x servers
	Transactional RPCs
	Restrictions on transaction management

	Using update statistics
	Finding index names

	Java in the database
	@@textsize
	@@stringsize
	Constraints on Java class columns
	Error messages
	SQLJ in Adaptive Server Enterprise
	Changes to CIS
	Java Abstract Datatypes (ADTs)
	Java class definitions

	Datatypes
	Unicode support
	create table
	create existing table
	create proxy_table
	alter table
	select, insert, update and delete statements

	Datatype conversions
	text and image datatypes
	Restrictions on text and image columns
	Limits of @@textsize
	Odd bytes padded
	Converting text and image datatypes
	Pattern matching with text data
	Entering text and image values
	readtext using bytes
	text and image with bulk copy
	Error logging
	text and image data with server class sql_server
	text and image data with server class direct_connect (access_server)
	db2 server issues

	Fine-grained access control
	The select into command
	select into syntax

	Execute immediate
	Configuration and tuning
	Using sp_configure
	sysconfigures table
	Changing the configuration parameters
	Component Integration Services configuration parameters
	enable cis
	enable file access
	enable full-text search
	max cis remote connections
	cis bulk insert batch size
	cis bulk insert array size
	cis connect timeout
	cis cursor rows
	cis packet size
	cis rpc handling

	Dynamic reconfiguration
	CIS dbcc commands

	Global variables for status

	CHAPTER 3 SQL reference
	dbcc commands
	dbcc options
	remcon
	rusage
	srvdes
	showcaps

	Trace flags
	Table 3-1: Component Integration Services trace flags

	Transact-SQL commands
	alter database
	alter table
	Server Class ASEnterprise
	Server Class ASAnywhere
	Server Class ASIQ
	Server Class sql_server
	Server Class direct_connect
	Table 3-2: DirectConnect datatype conversions for alter table
	Server Class db2
	Table 3-3: DB2 datatype conversions for alter table

	begin transaction
	Sever Class ASEnterprise
	Server Class ASAnywhere
	Server Class ASIQ
	Server Class sql_server
	Server Class direct_connect
	Server Class db2

	case
	Server Class ASEnterprise
	Server Class ASAnywhere
	Server Class ASIQ
	Server Class sql_server
	Server Class direct_connect
	Server Class db2

	close
	commit transaction
	Server Class ASEnterprise
	Server Class ASAnywhere
	Server Class ASIQ
	Server Class sql_server
	Server Class direct_connect
	Server Class db2

	connect to...disconnect
	Server Class ASEnterprise
	Server Class ASAnywhere
	Server Class ASIQ
	Server Class sql_server
	Server Class direct_connect
	Server Class db2

	create database
	create existing table
	Server Class ASEnterprise
	Table 3-4: Adaptive Server datatype conversions for create existing table
	Server Class ASAnywhere
	Table 3-5: Adaptive Server Anywhere datatype conversions for create existing table
	Server Class ASIQ
	Server Class sql_server
	Server Class direct_connect
	Table 3-6: DirectConnect datatype conversions for create existing table
	Server Class db2
	Table 3-7: DB2 datatype conversions for create existing table

	create index
	Server Class ASEnterprise
	Server Class ASAnywhere
	Server Class ASIQ
	Server Class sql_server
	Server Class direct_connect
	Server Class db2

	create proxy_table
	create table
	Server Class ASEnterprise
	Server Class ASAnywhere
	Server Class ASIQ
	Server Class sql_server
	Server Class direct_connect
	Table 3-8: DirectConnect datatype conversions for create table
	Server Class db2
	Table 3-9: DB2 datatype conversions for create table

	create trigger
	Server Class ASEnterprise
	Server Class ASAnywhere
	Server Class ASIQ
	Server Class sql_server
	Server Class direct_connect
	Server Class db2
	Server Class genereic

	deallocate cursor
	declare cursor
	delete
	Server Class ASEnterprise
	Server Class ASAnywhere
	Server Class ASIQ
	Server Class sql_server
	Server Class direct_connect
	Server Class db2

	drop database
	Server Class ASEnterprise
	Server Class ASAnywhere
	Server Class ASIQ
	Server Class sql_server
	Server Class direct_connect
	Server Class db2

	drop index
	Server Class ASEnterprise
	Server Class ASAnywhere
	Server Class ASIQ
	Server Class sql_server
	Server Class direct_connect
	Server Class db2

	drop table
	Server Class ASEnterprise
	Server Class ASAnywhere
	Server Class ASIQ
	Server Class sql_server
	Server Class direct_connect
	Server Class db2

	execute
	fetch
	Server Class ASEnterprise
	Server Class ASAnywhere
	Server Class ASIQ
	Server Class sql_server
	Server Class direct_connect
	Server Class db2

	Functions
	Support for Functions within Component Integration Services
	Aggregate Functions
	Table 3-10: Server Class Support for Aggregate Functions
	Datatype Conversion Functions
	Table 3-11: Server Class Support for Datatype Conversion Functions
	Date Functions
	Table 3-12: Server Class Support for Date Functions
	Mathematical Functions
	Table 3-13: Server Class Support for Mathematical Functions
	Security Functions
	Table 3-14: Server Class Support for Security Functions
	String Functions
	Table 3-15: Server Class Support for String Functions
	System Functions
	Table 3-16: Server Class Support for System Functions
	Text and Image Functions
	Table 3-17: Server Class Support for Text and Image Functions

	insert
	Server Class ASEnterprise
	Server Class ASAnywhere
	Server Class ASIQ
	Server Class sql_server
	Server Class direct_connect
	Server Class db2

	open
	prepare transaction
	Server Class ASEnterprise
	Server Class ASAnywhere
	Server Class ASIQ
	Server Class sql_server
	Server Class direct_connect
	Server Class db2

	readtext
	Server Class ASEnterprise
	Server Class ASAnywhere
	Server Class ASIQ
	Server Class sql_server
	Server Class direct_connect
	Server Class db2

	rollback transaction
	Server Class ASEnterprise
	Server Class ASAnywhere
	Server Class ASIQ
	Server Class sql_server
	Server Class direct_connect
	Server Class db2
	Object type = file
	Object type = directory

	select
	Server Class ASEnterprise
	Server Class ASAnywhere
	Server Class ASIQ
	Server Class sql_server
	Server Class direct_connect
	Server Class db2

	set
	strict_dtm_enforcement
	transaction_isolation_level
	transactional_rpc
	textptr_parameters

	setuser
	truncate table
	Server Class ASEnterprise
	Server Class ASAnywhere
	Server Class ASIQ
	Server Class sql_server
	Server Class direct_connect and sds
	Server Class db2

	update
	Server Class ASEnterpriser
	Server Class ASAnywhere
	Server Class ASIQ
	Server Class sql_server
	Server Class direct_connect
	Server Class db2

	update statistics
	Server Class ASEnterprise
	Server Class ASAnywhere
	Server Class ASIQ
	Server Class sql_server
	Server Class direct_connect
	Server Class db2

	writetext
	Server Class ASEnterprise
	Server Class ASAnywhere
	Server Class ASIQ
	Server Class sql_server
	Server Class direct_connect
	Server Class db2

	APPENDIX A Tutorial
	Getting Started with Component Integration Services
	Adding a Remote Server
	Overview of the Procedure
	Step 1: Add the Remote Server to the Interfaces File
	Step 2: Create Server Entries in System Tables
	Example

	Step 3: Add an Alternate Login and Password
	Examples

	Verifying Connectivity

	Mapping Remote Objects to Local Proxy Tables
	Overview of the Procedure
	Step 1: Define the Storage Location of a Remote Object
	Example
	Figure A-1: Using sp_addobjectdef to map a remote table to a proxy table

	Step 2: Map Remote Table Schema to Adaptive Server

	Join Between Two Remote Tables
	Overview of the Procedure
	Step 1: Add the Remote Servers to the Interfaces File
	Step 2: Define the Remote Servers
	Example

	Step 4: Map the Remote Tables to Adaptive Server
	Example
	Figure A-2: Defining remote tables in a local server
	Mapping the Remote Tables

	Step 5: Perform the Join

	APPENDIX B Troubleshooting
	Problems Accessing Component Integration Services
	Problems Using Component Integration Services
	Unable to Access Remote Server
	Requested Server Name Not Found
	Driver Call to Connect Two Endpoints Failed
	Login Failed

	Unable to Access Remote Object
	Problem Retrieving Data From Remote Objects
	Object Is Altered Outside Component Integration Services
	Index Is Added or Dropped Outside CIS

	If You Need Help

